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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. In ICRP 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain



Organization

General Chairs

Umapada Pal Indian Statistical Institute, Kolkata, India
Josef Kittler University of Surrey, UK
Anil Jain Michigan State University, USA

Program Chairs

Apostolos Antonacopoulos University of Salford, UK
Subhasis Chaudhuri Indian Institute of Technology, Bombay, India
Rama Chellappa Johns Hopkins University, USA
Cheng-Lin Liu Institute of Automation, Chinese Academy of

Sciences, China

Publication Chairs

Ananda S. Chowdhury Jadavpur University, India
Wataru Ohyama Tokyo Denki University, Japan

Competition Chairs

Richard Zanibbi Rochester Institute of Technology, USA
Lianwen Jin South China University of Technology, China
Laurence Likforman-Sulem Télécom Paris, France

Workshop Chairs

P. Shivakumara University of Salford, UK
Stephanie Schuckers Clarkson University, USA
Jean-Marc Ogier Université de la Rochelle, France
Prabir Bhattacharya Concordia University, Canada



x Organization

Tutorial Chairs

B. B. Chaudhuri Indian Statistical Institute, Kolkata, India
Michael R. Jenkin York University, Canada
Guoying Zhao University of Oulu, Finland

Doctoral Consortium Chairs

Véronique Eglin CNRS, France
Daniel P. Lopresti Lehigh University, USA
Mayank Vatsa Indian Institute of Technology, Jodhpur, India

Organizing Chairs

Saumik Bhattacharya Indian Institute of Technology, Kharagpur, India
Palash Ghosal Sikkim Manipal University, India

Organizing Committee

Santanu Phadikar West Bengal University of Technology, India
SK Md Obaidullah Aliah University, India
Sayantari Ghosh National Institute of Technology Durgapur, India
Himadri Mukherjee West Bengal State University, India
Nilamadhaba Tripathy Clarivate Analytics, USA
Chayan Halder West Bengal State University, India
Shibaprasad Sen Techno Main Salt Lake, India

Finance Chairs

Kaushik Roy West Bengal State University, India
Michael Blumenstein University of Technology Sydney, Australia

Awards Committee Chair

Arpan Pal Tata Consultancy Services, India



Organization xi

Sponsorship Chairs

P. J. Narayanan Indian Institute of Technology, Hyderabad, India
Yasushi Yagi Osaka University, Japan
Venu Govindaraju University at Buffalo, USA
Alberto Bel Bimbo Università di Firenze, Italy

Exhibition and Demonstration Chairs

Arjun Jain FastCode AI, India
Agnimitra Biswas National Institute of Technology, Silchar, India

International Liaison, Visa Chair

Balasubramanian Raman Indian Institute of Technology, Roorkee, India

Publicity Chairs

Dipti Prasad Mukherjee Indian Statistical Institute, Kolkata, India
Bob Fisher University of Edinburgh, UK
Xiaojun Wu Jiangnan University, China

Women in ICPR Chairs

Ingela Nystrom Uppsala University, Sweden
Alexandra B. Albu University of Victoria, Canada
Jing Dong Institute of Automation, Chinese Academy of

Sciences, China
Sarbani Palit Indian Institute of Technology, Kolkata, India

Event Manager

Alpcord Network



xii Organization

Track Chairs – Artificial Intelligence, Machine Learning for Pattern
Analysis

Larry O’Gorman Nokia Bell Labs, USA
Dacheng Tao University of Sydney, Australia
Petia Radeva University of Barcelona, Spain
Susmita Mitra Indian Statistical Institute, Kolkata, India
Jiliang Tang Michigan State University, USA

Track Chairs – Computer and Robot Vision

C. V. Jawahar Indian Institute of Technology, Hyderabad, India
João Paulo Papa São Paulo State University, Brazil
Maja Pantic Imperial College London, UK
Gang Hua Dolby Laboratories, USA
Junwei Han Northwestern Polytechnical University, China

Track Chairs – Image, Speech, Signal and Video Processing

P. K. Biswas Indian Institute of Technology, Kharagpur, India
Shang-Hong Lai National Tsing Hua University, Taiwan
Hugo Jair Escalante INAOE, CINVESTAV, Mexico
Sergio Escalera Universitat de Barcelona, Spain
Prem Natarajan University of Southern California, USA

Track Chairs – Biometrics and Human Computer Interaction

Richa Singh Indian Institute of Technology, Jodhpur, India
Massimo Tistarelli University of Sassari, Italy
Vishal Patel Johns Hopkins University, USA
Wei-Shi Zheng Sun Yat-sen University, China
Jian Wang Snap, USA



Organization xiii

Track Chairs – Document Analysis and Recognition

Xiang Bai Huazhong University of Science and Technology,
China

David Doermann University at Buffalo, USA
Josep Llados Universitat Autònoma de Barcelona, Spain
Mita Nasipuri Jadavpur University, India

Track Chairs – Biomedical Imaging and Bioinformatics

Jayanta Mukhopadhyay Indian Institute of Technology, Kharagpur, India
Xiaoyi Jiang Universität Münster, Germany
Seong-Whan Lee Korea University, Korea

Metareviewers (Conference Papers and Competition Papers)

Wael Abd-Almageed University of Southern California, USA
Maya Aghaei NHL Stenden University, Netherlands
Alireza Alaei Southern Cross University, Australia
Rajagopalan N. Ambasamudram Indian Institute of Technology, Madras, India
Suyash P. Awate Indian Institute of Technology, Bombay, India
Inci M. Baytas Bogazici University, Turkey
Aparna Bharati Lehigh University, USA
Brojeshwar Bhowmick Tata Consultancy Services, India
Jean-Christophe Burie University of La Rochelle, France
Gustavo Carneiro University of Surrey, UK
Chee Seng Chan Universiti Malaya, Malaysia
Sumohana S. Channappayya Indian Institute of Technology, Hyderabad, India
Dongdong Chen Microsoft, USA
Shengyong Chen Tianjin University of Technology, China
Jun Cheng Institute for Infocomm Research, A*STAR,

Singapore
Albert Clapés University of Barcelona, Spain
Oscar Dalmau Center for Research in Mathematics, Mexico



xiv Organization

Tyler Derr Vanderbilt University, USA
Abhinav Dhall Indian Institute of Technology, Ropar, India
Bo Du Wuhan University, China
Yuxuan Du University of Sydney, Australia
Ayman S. El-Baz University of Louisville, USA
Francisco Escolano University of Alicante, Spain
Siamac Fazli Nazarbayev University, Kazakhstan
Jianjiang Feng Tsinghua University, China
Gernot A. Fink TU Dortmund University, Germany
Alicia Fornes CVC, Spain
Junbin Gao University of Sydney, Australia
Yan Gao Amazon, USA
Yongsheng Gao Griffith University, Australia
Caren Han University of Melbourne, Australia
Ran He Institute of Automation, Chinese Academy of

Sciences, China
Tin Kam Ho IBM, USA
Di Huang Beihang University, China
Kaizhu Huang Duke Kunshan University, China
Donato Impedovo University of Bari, Italy
Julio Jacques University of Barcelona and Computer Vision

Center, Spain
Lianwen Jin South China University of Technology, China
Wei Jin Emory University, USA
Danilo Samuel Jodas São Paulo State University, Brazil
Manjunath V. Joshi DA-IICT, India
Jayashree Kalpathy-Cramer Massachusetts General Hospital, USA
Dimosthenis Karatzas Computer Vision Centre, Spain
Hamid Karimi Utah State University, USA
Baiying Lei Shenzhen University, China
Guoqi Li Chinese Academy of Sciences, and Peng Cheng

Lab, China
Laurence Likforman-Sulem Institut Polytechnique de Paris/Télécom Paris,

France
Aishan Liu Beihang University, China
Bo Liu Bytedance, USA
Chen Liu Clarkson University, USA
Cheng-Lin Liu Institute of Automation, Chinese Academy of

Sciences, China
Hongmin Liu University of Science and Technology Beijing,

China
Hui Liu Michigan State University, USA



Organization xv

Jing Liu Institute of Automation, Chinese Academy of
Sciences, China

Li Liu University of Oulu, Finland
Qingshan Liu Nanjing University of Posts and

Telecommunications, China
Adrian P. Lopez-Monroy Centro de Investigacion en Matematicas AC,

Mexico
Daniel P. Lopresti Lehigh University, USA
Shijian Lu Nanyang Technological University, Singapore
Yong Luo Wuhan University, China
Andreas K. Maier FAU Erlangen-Nuremberg, Germany
Davide Maltoni University of Bologna, Italy
Hong Man Stevens Institute of Technology, USA
Lingtong Min Northwestern Polytechnical University, China
Paolo Napoletano University of Milano-Bicocca, Italy
Kamal Nasrollahi Milestone Systems, Aalborg University, Denmark
Marcos Ortega University of A Coruña, Spain
Shivakumara Palaiahnakote University of Salford, UK
P. Jonathon Phillips NIST, USA
Filiberto Pla University Jaume I, Spain
Ajit Rajwade Indian Institute of Technology, Bombay, India
Shanmuganathan Raman Indian Institute of Technology, Gandhinagar, India
Imran Razzak UNSW, Australia
Beatriz Remeseiro University of Oviedo, Spain
Gustavo Rohde University of Virginia, USA
Partha Pratim Roy Indian Institute of Technology, Roorkee, India
Sanjoy K. Saha Jadavpur University, India
Joan Andreu Sánchez Universitat Politècnica de València, Spain
Claudio F. Santos UFSCar, Brazil
Shin’ichi Satoh National Institute of Informatics, Japan
Stephanie Schuckers Clarkson University, USA
Srirangaraj Setlur University at Buffalo, SUNY, USA
Debdoot Sheet Indian Institute of Technology, Kharagpur, India
Jun Shen University of Wollongong, Australia
Li Shen JD Explore Academy, China
Chen Shengyong Zhejiang University of technology and Tianjin

University of Technology, China
Andy Song RMIT University, Australia
Akihiro Sugimoto National Institute of Informatics, Japan
Qianru Sun Singapore Management University, Singapore
Arijit Sur Indian Institute of Technology, Guwahati, India
Estefania Talavera University of Twente, Netherlands



xvi Organization

Wei Tang University of Illinois at Chicago, USA
Joao M. Tavares Universidade do Porto, Portugal
Jun Wan NLPR, CASIA, China
Le Wang Xi’an Jiaotong University, China
Lei Wang Australian National University, Australia
Xiaoyang Wang Tencent AI Lab, USA
Xinggang Wang Huazhong University of Science and Technology,

China
Xiao-Jun Wu Jiangnan University, China
Yiding Yang Bytedance, China
Xiwen Yao Northwestern Polytechnical University, China
Xu-Cheng Yin University of Science and Technology Beijing,

China
Baosheng Yu University of Sydney, Australia
Shiqi Yu Southern University of Science and Technology,

China
Xin Yuan Westlake University, China
Yibing Zhan JD Explore Academy, China
Jing Zhang University of Sydney, Australia
Lefei Zhang Wuhan University, China
Min-Ling Zhang Southeast University, China
Wenbin Zhang Florida International University, USA
Jiahuan Zhou Peking University, China
Sanping Zhou Xi’an Jiaotong University, China
Tianyi Zhou University of Maryland, USA
Lei Zhu Shandong Normal University, China
Pengfei Zhu Tianjin University, China
Wangmeng Zuo Harbin Institute of Technology, China

Reviewers (Competition Papers)

Liangcai Gao
Mingxin Huang
Lei Kang
Wenhui Liao
Yuliang Liu
Yongxin Shi

Da-Han Wang

Yang Xue

Wentao Yang

Jiaxin Zhang

Yiwu Zhong



Organization xvii

Reviewers (Conference Papers)

Aakanksha Aakanksha
Aayush Singla
Abdul Muqeet
Abhay Yadav
Abhijeet Vijay Nandedkar
Abhimanyu Sahu
Abhinav Rajvanshi
Abhisek Ray
Abhishek Shrivastava
Abhra Chaudhuri
Aditi Roy
Adriano Simonetto
Adrien Maglo
Ahmed Abdulkadir
Ahmed Boudissa
Ahmed Hamdi
Ahmed Rida Sekkat
Ahmed Sharafeldeen
Aiman Farooq
Aishwarya Venkataramanan
Ajay Kumar
Ajay Kumar Reddy Poreddy
Ajita Rattani
Ajoy Mondal
Akbar K.
Akbar Telikani
Akshay Agarwal
Akshit Jindal
Al Zadid Sultan Bin Habib
Albert Clapés
Alceu Britto
Alejandro Peña
Alessandro Ortis
Alessia Auriemma Citarella
Alexandre Stenger
Alexandros Sopasakis
Alexia Toumpa
Ali Khan
Alik Pramanick
Alireza Alaei
Alper Yilmaz
Aman Verma
Amit Bhardwaj

Amit More
Amit Nandedkar
Amitava Chatterjee
Amos L. Abbott
Amrita Mohan
Anand Mishra
Ananda S. Chowdhury
Anastasia Zakharova
Anastasios L. Kesidis
Andras Horvath
Andre Gustavo Hochuli
André P. Kelm
Andre Wyzykowski
Andrea Bottino
Andrea Lagorio
Andrea Torsello
Andreas Fischer
Andreas K. Maier
Andreu Girbau Xalabarder
Andrew Beng Jin Teoh
Andrew Shin
Andy J. Ma
Aneesh S. Chivukula
Ángela Casado-García
Anh Quoc Nguyen
Anindya Sen
Anirban Saha
Anjali Gautam
Ankan Bhattacharyya
Ankit Jha
Anna Scius-Bertrand
Annalisa Franco
Antoine Doucet
Antonino Staiano
Antonio Fernández
Antonio Parziale
Anu Singha
Anustup Choudhury
Anwesan Pal
Anwesha Sengupta
Archisman Adhikary
Arjan Kuijper
Arnab Kumar Das



xviii Organization

Arnav Bhavsar
Arnav Varma
Arpita Dutta
Arshad Jamal
Artur Jordao
Arunkumar Chinnaswamy
Aryan Jadon
Aryaz Baradarani
Ashima Anand
Ashis Dhara
Ashish Phophalia
Ashok K. Bhateja
Ashutosh Vaish
Ashwani Kumar
Asifuzzaman Lasker
Atefeh Khoshkhahtinat
Athira Nambiar
Attilio Fiandrotti
Avandra S. Hemachandra
Avik Hati
Avinash Sharma
B. H. Shekar
B. Uma Shankar
Bala Krishna Thunakala
Balaji Tk
Balázs Pálffy
Banafsheh Adami
Bang-Dang Pham
Baochang Zhang
Baodi Liu
Bashirul Azam Biswas
Beiduo Chen
Benedikt Kottler
Beomseok Oh
Berkay Aydin
Berlin S. Shaheema
Bertrand Kerautret
Bettina Finzel
Bhavana Singh
Bibhas C. Dhara
Bilge Gunsel
Bin Chen
Bin Li
Bin Liu
Bin Yao

Bin-Bin Jia
Binbin Yong
Bindita Chaudhuri
Bindu Madhavi Tummala
Binh M. Le
Bi-Ru Dai
Bo Huang
Bo Jiang
Bob Zhang
Bowen Liu
Bowen Zhang
Boyang Zhang
Boyu Diao
Boyun Li
Brian M. Sadler
Bruce A. Maxwell
Bryan Bo Cao
Buddhika L. Semage
Bushra Jalil
Byeong-Seok Shin
Byung-Gyu Kim
Caihua Liu
Cairong Zhao
Camille Kurtz
Carlos A. Caetano
Carlos D. Martã-Nez-Hinarejos
Ce Wang
Cevahir Cigla
Chakravarthy Bhagvati
Chandrakanth Vipparla
Changchun Zhang
Changde Du
Changkun Ye
Changxu Cheng
Chao Fan
Chao Guo
Chao Qu
Chao Wen
Chayan Halder
Che-Jui Chang
Chen Feng
Chenan Wang
Cheng Yu
Chenghao Qian
Cheng-Lin Liu



Organization xix

Chengxu Liu
Chenru Jiang
Chensheng Peng
Chetan Ralekar
Chih-Wei Lin
Chih-Yi Chiu
Chinmay Sahu
Chintan Patel
Chintan Shah
Chiranjoy Chattopadhyay
Chong Wang
Choudhary Shyam Prakash
Christophe Charrier
Christos Smailis
Chuanwei Zhou
Chun-Ming Tsai
Chunpeng Wang
Ciro Russo
Claudio De Stefano
Claudio F. Santos
Claudio Marrocco
Connor Levenson
Constantine Dovrolis
Constantine Kotropoulos
Dai Shi
Dakshina Ranjan Kisku
Dan Anitei
Dandan Zhu
Daniela Pamplona
Danli Wang
Danqing Huang
Daoan Zhang
Daqing Hou
David A. Clausi
David Freire Obregon
David Münch
David Pujol Perich
Davide Marelli
De Zhang
Debalina Barik
Debapriya Roy (Kundu)
Debashis Das
Debashis Das Chakladar
Debi Prosad Dogra
Debraj D. Basu

Decheng Liu
Deen Dayal Mohan
Deep A. Patel
Deepak Kumar
Dengpan Liu
Denis Coquenet
Désiré Sidibé
Devesh Walawalkar
Dewan Md. Farid
Di Ming
Di Qiu
Di Yuan
Dian Jia
Dianmo Sheng
Diego Thomas
Diganta Saha
Dimitri Bulatov
Dimpy Varshni
Dingcheng Yang
Dipanjan Das
Dipanjyoti Paul
Divya Biligere Shivanna
Divya Saxena
Divya Sharma
Dmitrii Matveichev
Dmitry Minskiy
Dmitry V. Sorokin
Dong Zhang
Donghua Wang
Donglin Zhang
Dongming Wu
Dongqiangzi Ye
Dongqing Zou
Dongrui Liu
Dongyang Zhang
Dongzhan Zhou
Douglas Rodrigues
Duarte Folgado
Duc Minh Vo
Duoxuan Pei
Durai Arun Pannir Selvam
Durga Bhavani S.
Eckart Michaelsen
Elena Goyanes
Élodie Puybareau



xx Organization

Emanuele Vivoli
Emna Ghorbel
Enrique Naredo
Enyu Cai
Eric Patterson
Ernest Valveny
Eva Blanco-Mallo
Eva Breznik
Evangelos Sartinas
Fabio Solari
Fabiola De Marco
Fan Wang
Fangda Li
Fangyuan Lei
Fangzhou Lin
Fangzhou Luo
Fares Bougourzi
Farman Ali
Fatiha Mokdad
Fei Shen
Fei Teng
Fei Zhu
Feiyan Hu
Felipe Gomes Oliveira
Feng Li
Fengbei Liu
Fenghua Zhu
Fillipe D. M. De Souza
Flavio Piccoli
Flavio Prieto
Florian Kleber
Francesc Serratosa
Francesco Bianconi
Francesco Castro
Francesco Ponzio
Francisco Javier Hernández López
Frédéric Rayar
Furkan Osman Kar
Fushuo Huo
Fuxiao Liu
Fu-Zhao Ou
Gabriel Turinici
Gabrielle Flood
Gajjala Viswanatha Reddy
Gaku Nakano

Galal Binamakhashen
Ganesh Krishnasamy
Gang Pan
Gangyan Zeng
Gani Rahmon
Gaurav Harit
Gennaro Vessio
Genoveffa Tortora
George Azzopardi
Gerard Ortega
Gerardo E. Altamirano-Gomez
Gernot A. Fink
Gibran Benitez-Garcia
Gil Ben-Artzi
Gilbert Lim
Giorgia Minello
Giorgio Fumera
Giovanna Castellano
Giovanni Puglisi
Giulia Orrù
Giuliana Ramella
Gökçe Uludoğan
Gopi Ramena
Gorthi Rama Krishna Sai Subrahmanyam
Gourav Datta
Gowri Srinivasa
Gozde Sahin
Gregory Randall
Guanjie Huang
Guanjun Li
Guanwen Zhang
Guanyu Xu
Guanyu Yang
Guanzhou Ke
Guhnoo Yun
Guido Borghi
Guilherme Brandão Martins
Guillaume Caron
Guillaume Tochon
Guocai Du
Guohao Li
Guoqiang Zhong
Guorong Li
Guotao Li
Gurman Gill



Organization xxi

Haechang Lee
Haichao Zhang
Haidong Xie
Haifeng Zhao
Haimei Zhao
Hainan Cui
Haixia Wang
Haiyan Guo
Hakime Ozturk
Hamid Kazemi
Han Gao
Hang Zou
Hanjia Lyu
Hanjoo Cho
Hanqing Zhao
Hanyuan Liu
Hanzhou Wu
Hao Li
Hao Meng
Hao Sun
Hao Wang
Hao Xing
Hao Zhao
Haoan Feng
Haodi Feng
Haofeng Li
Haoji Hu
Haojie Hao
Haojun Ai
Haopeng Zhang
Haoran Li
Haoran Wang
Haorui Ji
Haoxiang Ma
Haoyu Chen
Haoyue Shi
Harald Koestler
Harbinder Singh
Harris V. Georgiou
Hasan F. Ates
Hasan S. M. Al-Khaffaf
Hatef Otroshi Shahreza
Hebeizi Li
Heng Zhang
Hengli Wang

Hengyue Liu
Hertog Nugroho
Hieyong Jeong
Himadri Mukherjee
Hoai Ngo
Hoda Mohaghegh
Hong Liu
Hong Man
Hongcheng Wang
Hongjian Zhan
Hongxi Wei
Hongyu Hu
Hoseong Kim
Hossein Ebrahimnezhad
Hossein Malekmohamadi
Hrishav Bakul Barua
Hsueh-Yi Sean Lin
Hua Wei
Huafeng Li
Huali Xu
Huaming Chen
Huan Wang
Huang Chen
Huanran Chen
Hua-Wen Chang
Huawen Liu
Huayi Zhan
Hugo Jair Escalante
Hui Chen
Hui Li
Huichen Yang
Huiqiang Jiang
Huiyuan Yang
Huizi Yu
Hung T. Nguyen
Hyeongyu Kim
Hyeonjeong Park
Hyeonjun Lee
Hymalai Bello
Hyung-Gun Chi
Hyunsoo Kim
I-Chen Lin
Ik Hyun Lee
Ilan Shimshoni
Imad Eddine Toubal



xxii Organization

Imran Sarker
Inderjot Singh Saggu
Indrani Mukherjee
Indranil Sur
Ines Rieger
Ioannis Pierros
Irina Rabaev
Ivan V. Medri
J. Rafid Siddiqui
Jacek Komorowski
Jacopo Bonato
Jacson Rodrigues Correia-Silva
Jaekoo Lee
Jaime Cardoso
Jakob Gawlikowski
Jakub Nalepa
James L. Wayman
Jan Čech
Jangho Lee
Jani Boutellier
Javier Gurrola-Ramos
Javier Lorenzo-Navarro
Jayasree Saha
Jean Lee
Jean Paul Barddal
Jean-Bernard Hayet
Jean-Philippe G. Tarel
Jean-Yves Ramel
Jenny Benois-Pineau
Jens Bayer
Jerin Geo James
Jesús Miguel García-Gorrostieta
Jia Qu
Jiahong Chen
Jiaji Wang
Jian Hou
Jian Liang
Jian Xu
Jian Zhu
Jianfeng Lu
Jianfeng Ren
Jiangfan Liu
Jianguo Wang
Jiangyan Yi
Jiangyong Duan

Jianhua Yang
Jianhua Zhang
Jianhui Chen
Jianjia Wang
Jianli Xiao
Jianqiang Xiao
Jianwu Wang
Jianxin Zhang
Jianxiong Gao
Jianxiong Zhou
Jianyu Wang
Jianzhong Wang
Jiaru Zhang
Jiashu Liao
Jiaxin Chen
Jiaxin Lu
Jiaxing Ye
Jiaxuan Chen
Jiaxuan Li
Jiayi He
Jiayin Lin
Jie Ou
Jiehua Zhang
Jiejie Zhao
Jignesh S. Bhatt
Jin Gao
Jin Hou
Jin Hu
Jin Shang
Jing Tian
Jing Yu Chen
Jingfeng Yao
Jinglun Feng
Jingtong Yue
Jingwei Guo
Jingwen Xu
Jingyuan Xia
Jingzhe Ma
Jinhong Wang
Jinjia Wang
Jinlai Zhang
Jinlong Fan
Jinming Su
Jinrong He
Jintao Huang



Organization xxiii

Jinwoo Ahn
Jinwoo Choi
Jinyang Liu
Jinyu Tian
Jionghao Lin
Jiuding Duan
Jiwei Shen
Jiyan Pan
Jiyoun Kim
João Papa
Johan Debayle
John Atanbori
John Wilson
John Zhang
Jónathan Heras
Joohi Chauhan
Jorge Calvo-Zaragoza
Jorge Figueroa
Jorma Laaksonen
José Joaquim De Moura Ramos
Jose Vicent
Joseph Damilola Akinyemi
Josiane Zerubia
Juan Wen
Judit Szücs
Juepeng Zheng
Juha Roning
Jumana H. Alsubhi
Jun Cheng
Jun Ni
Jun Wan
Junghyun Cho
Junjie Liang
Junjie Ye
Junlin Hu
Juntong Ni
Junxin Lu
Junxuan Li
Junyaup Kim
Junyeong Kim
Jürgen Seiler
Jushang Qiu
Juyang Weng
Jyostna Devi Bodapati
Jyoti Singh Kirar

Kai Jiang
Kaiqiang Song
Kalidas Yeturu
Kalle Åström
Kamalakar Vijay Thakare
Kang Gu
Kang Ma
Kanji Tanaka
Karthik Seemakurthy
Kaushik Roy
Kavisha Jayathunge
Kazuki Uehara
Ke Shi
Keigo Kimura
Keiji Yanai
Kelton A. P. Costa
Kenneth Camilleri
Kenny Davila
Ketan Atul Bapat
Ketan Kotwal
Kevin Desai
Keyu Long
Khadiga Mohamed Ali
Khakon Das
Khan Muhammad
Kilho Son
Kim-Ngan Nguyen
Kishan Kc
Kishor P. Upla
Klaas Dijkstra
Komal Bharti
Konstantinos Triaridis
Kostas Ioannidis
Koyel Ghosh
Kripabandhu Ghosh
Krishnendu Ghosh
Kshitij S. Jadhav
Kuan Yan
Kun Ding
Kun Xia
Kun Zeng
Kunal Banerjee
Kunal Biswas
Kunchi Li
Kurban Ubul



xxiv Organization

Lahiru N. Wijayasingha
Laines Schmalwasser
Lakshman Mahto
Lala Shakti Swarup Ray
Lale Akarun
Lan Yan
Lawrence Amadi
Lee Kang Il
Lei Fan
Lei Shi
Lei Wang
Leonardo Rossi
Lequan Lin
Levente Tamas
Li Bing
Li Li
Li Ma
Li Song
Lia Morra
Liang Xie
Liang Zhao
Lianwen Jin
Libing Zeng
Lidia Sánchez-González
Lidong Zeng
Lijun Li
Likang Wang
Lili Zhao
Lin Chen
Lin Huang
Linfei Wang
Ling Lo
Lingchen Meng
Lingheng Meng
Lingxiao Li
Lingzhong Fan
Liqi Yan
Liqiang Jing
Lisa Gutzeit
Liu Ziyi
Liushuai Shi
Liviu-Daniel Stefan
Liyuan Ma
Liyun Zhu
Lizuo Jin

Longteng Guo
Lorena Álvarez Rodríguez
Lorenzo Putzu
Lu Leng
Lu Pang
Lu Wang
Luan Pham
Luc Brun
Luca Guarnera
Luca Piano
Lucas Alexandre Ramos
Lucas Goncalves
Lucas M. Gago
Luigi Celona
Luis C. S. Afonso
Luis Gerardo De La Fraga
Luis S. Luevano
Luis Teixeira
Lunke Fei
M. Hassaballah
Maddimsetti Srinivas
Mahendran N.
Mahesh Mohan M. R.
Maiko Lie
Mainak Singha
Makoto Hirose
Malay Bhattacharyya
Mamadou Dian Bah
Man Yao
Manali J. Patel
Manav Prabhakar
Manikandan V. M.
Manish Bhatt
Manjunath Shantharamu
Manuel Curado
Manuel Günther
Manuel Marques
Marc A. Kastner
Marc Chaumont
Marc Cheong
Marc Lalonde
Marco Cotogni
Marcos C. Santana
Mario Molinara
Mariofanna Milanova



Organization xxv

Markus Bauer
Marlon Becker
Mårten Wadenbäck
Martin G. Ljungqvist
Martin Kampel
Martina Pastorino
Marwan Torki
Masashi Nishiyama
Masayuki Tanaka
Massimo O. Spata
Matteo Ferrara
Matthew D. Dawkins
Matthew Gadd
Matthew S. Watson
Maura Pintor
Max Ehrlich
Maxim Popov
Mayukh Das
Md Baharul Islam
Md Sajid
Meghna Kapoor
Meghna P. Ayyar
Mei Wang
Meiqi Wu
Melissa L. Tijink
Meng Li
Meng Liu
Meng-Luen Wu
Mengnan Liu
Mengxi China Guo
Mengya Han
Michaël Clément
Michal Kawulok
Mickael Coustaty
Miguel Domingo
Milind G. Padalkar
Ming Liu
Ming Ma
Mingchen Feng
Mingde Yao
Minghao Li
Mingjie Sun
Ming-Kuang Daniel Wu
Mingle Xu
Mingyong Li

Mingyuan Jiu
Minh P. Nguyen
Minh Q. Tran
Minheng Ni
Minsu Kim
Minyi Zhao
Mirko Paolo Barbato
Mo Zhou
Modesto Castrillón-Santana
Mohamed Amine Mezghich
Mohamed Dahmane
Mohamed Elsharkawy
Mohamed Yousuf
Mohammad Hashemi
Mohammad Khalooei
Mohammad Khateri
Mohammad Mahdi Dehshibi
Mohammad Sadil Khan
Mohammed Mahmoud
Moises Diaz
Monalisha Mahapatra
Monidipa Das
Mostafa Kamali Tabrizi
Mridul Ghosh
Mrinal Kanti Bhowmik
Muchao Ye
Mugalodi Ramesha Rakesh
Muhammad Rameez Ur Rahman
Muhammad Suhaib Kanroo
Muming Zhao
Munender Varshney
Munsif Ali
Na Lv
Nader Karimi
Nagabhushan Somraj
Nakkwan Choi
Nakul Agarwal
Nan Pu
Nan Zhou
Nancy Mehta
Nand Kumar Yadav
Nandakishor Nandakishor
Nandyala Hemachandra
Nanfeng Jiang
Narayan Hegde



xxvi Organization

Narayan Ji Mishra
Narayan Vetrekar
Narendra D. Londhe
Nathalie Girard
Nati Ofir
Naval Kishore Mehta
Nazmul Shahadat
Neeti Narayan
Neha Bhargava
Nemanja Djuric
Newlin Shebiah R.
Ngo Ba Hung
Nhat-Tan Bui
Niaz Ahmad
Nick Theisen
Nicolas Passat
Nicolas Ragot
Nicolas Sidere
Nikolaos Mitianoudis
Nikolas Ebert
Nilah Ravi Nair
Nilesh A. Ahuja
Nilkanta Sahu
Nils Murrugarra-Llerena
Nina S. T. Hirata
Ninad Aithal
Ning Xu
Ningzhi Wang
Niraj Kumar
Nirmal S. Punjabi
Nisha Varghese
Norio Tagawa
Obaidullah Md Sk
Oguzhan Ulucan
Olfa Mechi
Oliver Tüselmann
Orazio Pontorno
Oriol Ramos Terrades
Osman Akin
Ouadi Beya
Ozge Mercanoglu Sincan
Pabitra Mitra
Padmanabha Reddy Y. C. A.
Palaash Agrawal
Palaiahnakote Shivakumara

Palash Ghosal
Pallav Dutta
Paolo Rota
Paramanand Chandramouli
Paria Mehrani
Parth Agrawal
Partha Basuchowdhuri
Patrick Horain
Pavan Kumar
Pavan Kumar Anasosalu Vasu
Pedro Castro
Peipei Li
Peipei Yang
Peisong Shen
Peiyu Li
Peng Li
Pengfei He
Pengrui Quan
Pengxin Zeng
Pengyu Yan
Peter Eisert
Petra Gomez-Krämer
Pierrick Bruneau
Ping Cao
Pingping Zhang
Pintu Kumar
Pooja Kumari
Pooja Sahani
Prabhu Prasad Dev
Pradeep Kumar
Pradeep Singh
Pranjal Sahu
Prasun Roy
Prateek Keserwani
Prateek Mittal
Praveen Kumar Chandaliya
Praveen Tirupattur
Pravin Nair
Preeti Gopal
Preety Singh
Prem Shanker Yadav
Prerana Mukherjee
Prerna A. Mishra
Prianka Dey
Priyanka Mudgal



Organization xxvii

Qc Kha Ng
Qi Li
Qi Ming
Qi Wang
Qi Zuo
Qian Li
Qiang Gan
Qiang He
Qiang Wu
Qiangqiang Zhou
Qianli Zhao
Qiansen Hong
Qiao Wang
Qidong Huang
Qihua Dong
Qin Yuke
Qing Guo
Qingbei Guo
Qingchao Zhang
Qingjie Liu
Qinhong Yang
Qiushi Shi
Qixiang Chen
Quan Gan
Quanlong Guan
Rachit Chhaya
Radu Tudor Ionescu
Rafal Zdunek
Raghavendra Ramachandra
Rahimul I. Mazumdar
Rahul Kumar Ray
Rajib Dutta
Rajib Ghosh
Rakesh Kumar
Rakesh Paul
Rama Chellappa
Rami O. Skaik
Ramon Aranda
Ran Wei
Ranga Raju Vatsavai
Ranganath Krishnan
Rasha Friji
Rashmi S.
Razaib Tariq
Rémi Giraud

René Schuster
Renlong Hang
Renrong Shao
Renu Sharma
Reza Sadeghian
Richard Zanibbi
Rimon Elias
Rishabh Shukla
Rita Delussu
Riya Verma
Robert J. Ravier
Robert Sablatnig
Robin Strand
Rocco Pietrini
Rocio Diaz Martin
Rocio Gonzalez-Diaz
Rohit Venkata Sai Dulam
Romain Giot
Romi Banerjee
Ru Wang
Ruben Machucho
Ruddy Théodose
Ruggero Pintus
Rui Deng
Rui P. Paiva
Rui Zhao
Ruifan Li
Ruigang Fu
Ruikun Li
Ruirui Li
Ruixiang Jiang
Ruowei Jiang
Rushi Lan
Rustam Zhumagambetov
S. Amutha
S. Divakar Bhat
Sagar Goyal
Sahar Siddiqui
Sahbi Bahroun
Sai Karthikeya Vemuri
Saibal Dutta
Saihui Hou
Sajad Ahmad Rather
Saksham Aggarwal
Sakthi U.



xxviii Organization

Salimeh Sekeh
Samar Bouazizi
Samia Boukir
Samir F. Harb
Samit Biswas
Samrat Mukhopadhyay
Samriddha Sanyal
Sandika Biswas
Sandip Purnapatra
Sanghyun Jo
Sangwoo Cho
Sanjay Kumar
Sankaran Iyer
Sanket Biswas
Santanu Roy
Santosh D. Pandure
Santosh Ku Behera
Santosh Nanabhau Palaskar
Santosh Prakash Chouhan
Sarah S. Alotaibi
Sasanka Katreddi
Sathyanarayanan N. Aakur
Saurabh Yadav
Sayan Rakshit
Scott McCloskey
Sebastian Bunda
Sejuti Rahman
Selim Aksoy
Sen Wang
Seraj A. Mostafa
Shanmuganathan Raman
Shao-Yuan Lo
Shaoyuan Xu
Sharia Arfin Tanim
Shehreen Azad
Sheng Wan
Shengdong Zhang
Shengwei Qin
Shenyuan Gao
Sherry X. Chen
Shibaprasad Sen
Shigeaki Namiki
Shiguang Liu
Shijie Ma
Shikun Li

Shinichiro Omachi
Shirley David
Shishir Shah
Shiv Ram Dubey
Shiva Baghel
Shivanand S. Gornale
Shogo Sato
Shotaro Miwa
Shreya Ghosh
Shreya Goyal
Shuai Su
Shuai Wang
Shuai Zheng
Shuaifeng Zhi
Shuang Qiu
Shuhei Tarashima
Shujing Lyu
Shuliang Wang
Shun Zhang
Shunming Li
Shunxin Wang
Shuping Zhao
Shuquan Ye
Shuwei Huo
Shuyue Lan
Shyi-Chyi Cheng
Si Chen
Siddarth Ravichandran
Sihan Chen
Siladittya Manna
Silambarasan Elkana Ebinazer
Simon Benaïchouche
Simon S. Woo
Simone Caldarella
Simone Milani
Simone Zini
Sina Lotfian
Sitao Luan
Sivaselvan B.
Siwei Li
Siwei Wang
Siwen Luo
Siyu Chen
Sk Aziz Ali
Sk Md Obaidullah



Organization xxix

Sneha Shukla
Snehasis Banerjee
Snehasis Mukherjee
Snigdha Sen
Sofia Casarin
Soheila Farokhi
Soma Bandyopadhyay
Son Minh Nguyen
Son Xuan Ha
Sonal Kumar
Sonam Gupta
Sonam Nahar
Song Ouyang
Sotiris Kotsiantis
Souhaila Djaffal
Soumen Biswas
Soumen Sinha
Soumitri Chattopadhyay
Souvik Sengupta
Spiros Kostopoulos
Sreeraj Ramachandran
Sreya Banerjee
Srikanta Pal
Srinivas Arukonda
Stephane A. Guinard
Su O. Ruan
Subhadip Basu
Subhajit Paul
Subhankar Ghosh
Subhankar Mishra
Subhankar Roy
Subhash Chandra Pal
Subhayu Ghosh
Sudip Das
Sudipta Banerjee
Suhas Pillai
Sujit Das
Sukalpa Chanda
Sukhendu Das
Suklav Ghosh
Suman K. Ghosh
Suman Samui
Sumit Mishra
Sungho Suh
Sunny Gupta

Suraj Kumar Pandey
Surendrabikram Thapa
Suresh Sundaram
Sushil Bhattacharjee
Susmita Ghosh
Swakkhar Shatabda
Syed Ms Islam
Syed Tousiful Haque
Taegyeong Lee
Taihui Li
Takashi Shibata
Takeshi Oishi
Talha Ahmad Siddiqui
Tanguy Gernot
Tangwen Qian
Tanima Bhowmik
Tanpia Tasnim
Tao Dai
Tao Hu
Tao Sun
Taoran Yi
Tapan Shah
Taveena Lotey
Teng Huang
Tengqi Ye
Teresa Alarcon
Tetsuji Ogawa
Thanh Phuong Nguyen
Thanh Tuan Nguyen
Thattapon Surasak
Thibault Napolãon
Thierry Bouwmans
Thinh Truong Huynh Nguyen
Thomas De Min
Thomas E. K. Zielke
Thomas Swearingen
Tianatahina Jimmy Francky Randrianasoa
Tianheng Cheng
Tianjiao He
Tianyi Wei
Tianyuan Zhang
Tianyue Zheng
Tiecheng Song
Tilottama Goswami
Tim Büchner



xxx Organization

Tim H. Langer
Tim Raven
Tingkai Liu
Tingting Yao
Tobias Meisen
Toby P. Breckon
Tong Chen
Tonghua Su
Tran Tuan Anh
Tri-Cong Pham
Trishna Saikia
Trung Quang Truong
Tuan T. Nguyen
Tuan Vo Van
Tushar Shinde
Ujjwal Karn
Ukrit Watchareeruetai
Uma Mudenagudi
Umarani Jayaraman
V. S. Malemath
Vallidevi Krishnamurthy
Ved Prakash
Venkata Krishna Kishore Kolli
Venkata R. Vavilthota
Venkatesh Thirugnana Sambandham
Verónica Maria Vasconcelos
Véronique Ve Eglin
Víctor E. Alonso-Pérez
Vinay Palakkode
Vinayak S. Nageli
Vincent J. Whannou De Dravo
Vincenzo Conti
Vincenzo Gattulli
Vineet Padmanabhan
Vishakha Pareek
Viswanath Gopalakrishnan
Vivek Singh Baghel
Vivekraj K.
Vladimir V. Arlazarov
Vu-Hoang Tran
W. Sylvia Lilly Jebarani
Wachirawit Ponghiran
Wafa Khlif
Wang An-Zhi
Wanli Xue

Wataru Ohyama
Wee Kheng Leow
Wei Chen
Wei Cheng
Wei Hua
Wei Lu
Wei Pan
Wei Tian
Wei Wang
Wei Wei
Wei Zhou
Weidi Liu
Weidong Yang
Weijun Tan
Weimin Lyu
Weinan Guan
Weining Wang
Weiqiang Wang
Weiwei Guo
Weixia Zhang
Wei-Xuan Bao
Weizhong Jiang
Wen Xie
Wenbin Qian
Wenbin Tian
Wenbin Wang
Wenbo Zheng
Wenhan Luo
Wenhao Wang
Wen-Hung Liao
Wenjie Li
Wenkui Yang
Wenwen Si
Wenwen Yu
Wenwen Zhang
Wenwu Yang
Wenxi Li
Wenxi Yue
Wenxue Cui
Wenzhuo Liu
Widhiyo Sudiyono
Willem Dijkstra
Wolfgang Fuhl
Xi Zhang
Xia Yuan



Organization xxxi

Xianda Zhang
Xiang Zhang
Xiangdong Su
Xiang-Ru Yu
Xiangtai Li
Xiangyu Xu
Xiao Guo
Xiao Hu
Xiao Wu
Xiao Yang
Xiaofeng Zhang
Xiaogang Du
Xiaoguang Zhao
Xiaoheng Jiang
Xiaohong Zhang
Xiaohua Huang
Xiaohua Li
Xiao-Hui Li
Xiaolong Sun
Xiaosong Li
Xiaotian Li
Xiaoting Wu
Xiaotong Luo
Xiaoyan Li
Xiaoyang Kang
Xiaoyi Dong
Xin Guo
Xin Lin
Xin Ma
Xinchi Zhou
Xingguang Zhang
Xingjian Leng
Xingpeng Zhang
Xingzheng Lyu
Xinjian Huang
Xinqi Fan
Xinqi Liu
Xinqiao Zhang
Xinrui Cui
Xizhan Gao
Xu Cao
Xu Ouyang
Xu Zhao
Xuan Shen
Xuan Zhou

Xuchen Li
Xuejing Lei
Xuelu Feng
Xueting Liu
Xuewei Li
Xueyi X. Wang
Xugong Qin
Xu-Qian Fan
Xuxu Liu
Xu-Yao Zhang
Yan Huang
Yan Li
Yan Wang
Yan Xia
Yan Zhuang
Yanan Li
Yanan Zhang
Yang Hou
Yang Jiao
Yang Liping
Yang Liu
Yang Qian
Yang Yang
Yang Zhao
Yangbin Chen
Yangfan Zhou
Yanhui Guo
Yanjia Huang
Yanjun Zhu
Yanming Zhang
Yanqing Shen
Yaoming Cai
Yaoxin Zhuo
Yaoyan Zheng
Yaping Zhang
Yaqian Liang
Yarong Feng
Yasmina Benmabrouk
Yasufumi Sakai
Yasutomo Kawanishi
Yazeed Alzahrani
Ye Du
Ye Duan
Yechao Zhang
Yeong-Jun Cho



xxxii Organization

Yi Huo
Yi Shi
Yi Yu
Yi Zhang
Yibo Liu
Yibo Wang
Yi-Chieh Wu
Yifan Chen
Yifei Huang
Yihao Ding
Yijie Tang
Yikun Bai
Yimin Wen
Yinan Yang
Yin-Dong Zheng
Yinfeng Yu
Ying Dai
Yingbo Li
Yiqiao Li
Yiqing Huang
Yisheng Lv
Yisong Xiao
Yite Wang
Yizhe Li
Yong Wang
Yonghao Dong
Yong-Hyuk Moon
Yongjie Li
Yongqian Li
Yongqiang Mao
Yongxu Liu
Yongyu Wang
Yongzhi Li
Youngha Hwang
Yousri Kessentini
Yu Wang
Yu Zhou
Yuan Tian
Yuan Zhang
Yuanbo Wen
Yuanxin Wang
Yubin Hu
Yubo Huang
Yuchen Ren
Yucheng Xing

Yuchong Yao
Yuecong Min
Yuewei Yang
Yufei Zhang
Yufeng Yin
Yugen Yi
Yuhang Ming
Yujia Zhang
Yujun Ma
Yukiko Kenmochi
Yun Hoyeoung
Yun Liu
Yunhe Feng
Yunxiao Shi
Yuru Wang
Yushun Tang
Yusuf Osmanlioglu
Yusuke Fujita
Yuta Nakashima
Yuwei Yang
Yuwu Lu
Yuxi Liu
Yuya Obinata
Yuyao Yan
Yuzhi Guo
Zaipeng Xie
Zander W. Blasingame
Zedong Wang
Zeliang Zhang
Zexin Ji
Zhanxiang Feng
Zhaofei Yu
Zhe Chen
Zhe Cui
Zhe Liu
Zhe Wang
Zhekun Luo
Zhen Yang
Zhenbo Li
Zhenchun Lei
Zhenfei Zhang
Zheng Liu
Zheng Wang
Zhengming Yu
Zhengyin Du



Organization xxxiii

Zhengyun Cheng
Zhenshen Qu
Zhenwei Shi
Zhenzhong Kuang
Zhi Cai
Zhi Chen
Zhibo Chu
Zhicun Yin
Zhida Huang
Zhida Zhang
Zhifan Gao
Zhihang Ren
Zhihang Yuan
Zhihao Wang
Zhihua Xie
Zhihui Wang
Zhikang Zhang
Zhiming Zou
Zhiqi Shao
Zhiwei Dong
Zhiwei Qi
Zhixiang Wang
Zhixuan Li
Zhiyu Jiang
Zhiyuan Yan
Zhiyuan Yu
Zhiyuan Zhang
Zhong Chen

Zhongwei Teng
Zhongzhan Huang
Zhongzhi Yu
Zhuan Han
Zhuangzhuang Chen
Zhuo Liu
Zhuo Su
Zhuojun Zou
Zhuoyue Wang
Ziang Song
Zicheng Zhang
Zied Mnasri
Zifan Chen
Žiga Babnik
Zijing Chen
Zikai Zhang
Ziling Huang
Zilong Du
Ziqi Cai
Ziqi Zhou
Zi-Rui Wang
Zirui Zhou
Ziwen He
Ziyao Zeng
Ziyi Zhang
Ziyue Xiang
Zonglei Jing
Zongyi Xu



Contents – Part XVI

6-DOF Motion Blur Synthesis and Performance Evaluation of Object
Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Hanjin Yang, Feng Li, and Lei Zhang

OVOSE: Open-Vocabulary Semantic Segmentation in Event-Based
Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Muhammad Rameez Ur Rahman, Jhony H. Giraldo, Indro Spinelli,
Stéphane Lathuilière, and Fabio Galasso

Moiré Pattern Detection: Stability and Efficiency with Evaluated Loss
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Zhuocheng Li, Xizhu Shen, Simin Luan, Shuwei Guo, Zeyd Boukhers,
Wei Sui, Yuyi Wang, and Cong Yang

Rare Fungi Image Classification Based on Few-Shot Learning and Data
Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Jiayi Hao, Yulin Feng, Wenbin Li, and Jiebo Luo

Interpretative Attention Networks for Structural Component Recognition . . . . . . 63
Abhishek Uniyal, Bappaditya Mandal, Niladri B. Puhan,
and Padmalochan Bera

Pedestrian Attribute Recognition Using Hierarchical Transformers . . . . . . . . . . . 78
Lalit Lohani, Kamalakar Vijay Thakare, Kamakshya Prasad Nayak,
Debi Prosad Dogra, Heeseung Choi, Hyungjoo Jung, and Ig-Jae Kim

Born-Again Multi-task Self-training for Multi-task Facial Emotion
Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Ryo Masumura, Akihiko Takashima, Satoshi Suzuki, and Shota Orihashi

Boosting Fine-Grained Oriented Object Detection via Text Features . . . . . . . . . . 109
Beichen Zhou, Qi Bi, Jian Ding, and Gui-Song Xia

Large-Scale Pre-trained Models are Surprisingly Strong in Incremental
Novel Class Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Mingxuan Liu, Subhankar Roy, Zhun Zhong, Nicu Sebe, and Elisa Ricci

Layer-Wise Pruning Ratios Auto-configuration: A One-Shot Channel
Pruning Through Sensitivity and Spatial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Guonan Li, Meibao Yao, and Xueming Xiao



xxxvi Contents – Part XVI

Hyperspectral Imaging for Characterization of Construction Waste
Material in Recycling Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Hannah Frank, Karl Vetter, Leon A. Varga, Lars Wolff, and Andreas Zell

LiDUT-Depth: A Lightweight Self-supervised Depth Estimation Model
Featuring Dynamic Upsampling and Triplet Loss Optimization . . . . . . . . . . . . . . 176

Hao Jiang, Zhijun Fang, Xuan Shao, Xiaoyan Jiang,
and Jenq-Neng Hwang

Generalization Gap in Data Augmentation: Insights from Illumination . . . . . . . . 190
Jianqiang Xiao, Weiwen Guo, Junfeng Liu, and Mengze Li

Harmonizing Regression-Classification Inconsistency for Task-Specific
Decoupling in Underwater Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Minrui Xiang, Tianyang Xu, and Xiaojun Wu

S3Simulator: A Benchmarking Side Scan Sonar Simulator Dataset
for Underwater Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

S. Kamal Basha and Athira Nambiar

Trajectory Forecasting Through Low-Rank Adaptation of Discrete Latent
Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Riccardo Benaglia, Angelo Porrello, Pietro Buzzega,
Simone Calderara, and Rita Cucchiara

Towards Completeness: A Generalizable Action Proposal Generator
for Zero-Shot Temporal Action Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Jia-Run Du, Kun-Yu Lin, Jingke Meng, and Wei-Shi Zheng

GRAtt-VIS: Gated Residual Attention for Video Instance Segmentation . . . . . . . 268
Tanveer Hannan, Rajat Koner, Maximilian Bernhard, Suprosanna Shit,
Bjoern Menze, Volker Tresp, Matthias Schubert, and Thomas Seidl

AFMA-Track: Adaptive Fusion of Motion and Appearance for Robust
Multi-object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Wei Liao, Lei Luo, and Chunyuan Zhang

Structure from Motion with Variational Bayesian Inference
in Multi-resolution Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Teruya Aburayama and Norio Tagawa

3D Pose-Based Evaluation of the Risk of Sarcopenia . . . . . . . . . . . . . . . . . . . . . . . 318
Bo-Cheng Liao, Jie-Syuan Wu, Chen-Lung Tang, Gee-Sern Hsu,
and Jiunn-Horng Kang



Contents – Part XVI xxxvii

Learning Explicit Modulation Vectors for Disentangled Transformer
Attention-Based RGB-D Visual Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Yifan Pan, Tianyang Xu, Xue-Feng Zhu, Xiaoqing Luo, Xiao-Jun Wu,
and Josef Kittler

Attention-Based Patch Matching and Motion-Driven Point Association
for Accurate Point Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Han Zang, Tianyang Xu, Xue-Feng Zhu, Xiaoning Song, Xiao-Jun Wu,
and Josef Kittler

SITUATE: Indoor Human Trajectory Prediction Through Geometric
Features and Self-supervised Vision Representation . . . . . . . . . . . . . . . . . . . . . . . . 364

Luigi Capogrosso, Andrea Toaiari, Andrea Avogaro, Uzair Khan,
Aditya Jivoji, Franco Fummi, and Marco Cristani

Sensor-Agnostic Graph-Aware Kalman Filter for Multi-Modal
Multi-Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Depanshu Sani, Anirudh Iyer, Prakhar Rai, Saket Anand,
Anuj Srivastava, and Kaushik Kalyanaraman

Multi-Level Feature Exploration Using LSTM-Based Variational
Autoencoder Network for Fall Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Anitha Rani Inturi, V. M. Manikandan, Partha Pratim Roy,
and Byung-Gyu Kim

Pedestrian Trajectory Prediction Based on ImprovedDiffusionwith Fourier
Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Boyang Fu, Jiashu Liao, Yixuan Yang, and Victor Sanchez

RTAT: A Robust Two-Stage Association Tracker for Multi-object Tracking . . . . 432
Song Guo, Rujie Liu, and Narishige Abe

Inverse DLT Method for One-Sided Radial Distortion Homography . . . . . . . . . . . 448
Gaku Nakano

Best of Both Sides: Integration of Absolute and Relative Depth Sensing
Modalities Based on iToF and RGB Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

I-Sheng Fang, Wei-Chen Chiu, and Yong-Sheng Chen

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481



6-DOF Motion Blur Synthesis and
Performance Evaluation of Object

Detection

Hanjin Yang1 , Feng Li1,2(B) , and Lei Zhang2

1 School of Computer Science and Technology, Donghua University,
Shanghai 201600, China
lifeng@dhu.edu.cn

2 National Innovation Center of Advanced Dyeing and Finishing Technology,
Tai’an 271000, Shandong, People’s Republic of China

Abstract. The current state-of-the-art deep learning vision networks
commonly employs synthetic approaches for data augmentation when
confronted with scenes requiring motion blur. However, existing blur syn-
thesis methods often fall short in accurately simulating motion blur as
observed in real-world scenarios, consequently hindering the generaliza-
tion capability of trained deep visual networks to real-world applications,
a phenomenon known as domain shift effects [1]. To address this problem,
we propose a novel non-uniform motion blur synthesis method for data
augmentation. First, we randomly generate the camera’s motion trajec-
tory using a more general six-degree-of-freedom (6-DOF) camera motion
model, and then map this trajectory to pixel-level blur kernels. To effi-
ciently perform spatially varying convolution, we employ non-negative
matrix factorization (NMF) to decompose those blur kernels into a set
of kernel basis and their corresponding mixing coefficients. This enables
parallel execution of spatial variation convolutions, thereby significantly
improving the efficiency of blur synthesis. Our experiments demonstrate
consistently superior results of the proposed method on publicly available
real datasets RealBlur, as well as synthetic datasets GoPro and REDS.

Keywords: Motion blur synthesis · Data augmentation · 6-DOF
Camera shake

1 Introduction

Motion blur synthesis [1,4,6–9] aims to transform sharp images into motion-
blurred counterparts through post-processing techniques, thereby eliminating
the cost of acquiring actual blurry images [1] for training deep learning visual net-
works. This paper focuses on the efficient simulation of spatially varying motion
blur. Ideally, deep learning networks such as object detection typically operate
on sharp images without any degradation. However, in real-world applications,
these networks, which exhibit robust performance in controlled environments,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. Example of the blurry image synthesis by different methods. From left to right
are: sharp image, blurry image synthesis by Xie et al. [2], Boracchi et al. [3], Carbajal
et al. [4], Gong et al. [5] and ours, respectively. [2] and [3] are uniform motion blur
synthesis methods, the rest are non-uniform. The blur kernels corresponding to these
methods are plotted on the images.

frequently confront challenges posed by motion blur [2,7,8,10], leading to a
decline in performance.

To enhance robustness against motion blur, existing methods adopt to incor-
porate blurry images into the training of neural networks. However, acquiring
labeled blurry images in reality presents significant challenges [1], prompting
many methods to resort to synthesizing blurry images to acquire training data.
Here, “labeled” refers to the requirement of collecting additional data paired
with blurry images.

Depending on whether the blur kernel is shared by all pixels in the image,
motion blur can be categorized into two types : uniform motion blur and non-
uniform motion blur. The simulation of uniform motion blur is relatively straight-
forward and allows for efficient synthesis of blurry images. Methods in [2,7,8],
under the assumption of uniform blur, demonstrate strong performance in sce-
narios adhering to their motion blur model.

In contrast, another category of approaches assumes motion blur to be non-
uniform. By benefitting from a more precise modeling of the blur kernel com-
pared to uniform blur, methods in [4,6,11,12] achieve significant advancements
in single-image deblurring tasks. However, the augmented data produced by
existing non-uniform methods still encounter two primary challenges when inte-
grated into visual systems : (1) Domain shift effects [1] : Deep learning systems
trained on synthetic data often exhibit poor generalization in real-world sce-
narios due to the dissimilarity between the synthesized blur and real blur; (2)
Computational inefficiency : Particularly when augmenting large-scale datasets
like MS COCO, computational inefficiency arises primarily from the serial nature
of spatial variant convolution in existing methods.

Our contributions are summarized as follows:

1. We propose an efficient non-uniform motion blur synthesis method for data
augmentation in deep learning visual systems.

2. We introduce a simple yet effective method for generating random camera
motion trajectory with arbitrary degrees of freedom up to six.
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3. With the experimental results, we demonstrate that deep learning visual sys-
tem trained with our data augmentation method outperform existing methods
on various datasets.

Fig. 2. On the left is our framework for generating non-uniform motion blur kernels.
At each time step t, we project some points from the real world onto the image plane
based on the camera pose. On the right is the pinhole camera model, XcYcZc is the
camera coordinate system (black), the world coordinate system coincides with it, and
xy is the image plane (red) (Color figure online).

2 Related Works

2.1 Uniform Motion Blur Synthesis

In the case of uniform blur, blurring is modeled as the convolution of the sharp
image with a blur kernel, the differences among various methods lie in the way
the blur kernel is generated.

Some works have shown that using simple linear motion blur kernels and
convolving them with sharp images can still be effective in their tasks [2,13].
However, in reality, the relative motion between the camera and the scene is often
more complex and nonlinear. In order to generate more complex and realistic blur
kernels, Gavant et al. [14] proposed a camera shake kernel generator based on
hand physiological tremor data to obtain the blur kernel which able to mimic the
mechanical response of a shoulder-arm-hand system. Boracchi et al. [3] directly
considered the projection of camera motion trajectories on a two-dimensional
plane. They model the motion trajectories on the plane as a Markov random
process and took into account the influence of random shake when holding the
camera by hand and the exposure time on the scale of the blur kernel. Due to its
simple principle and low computational cost, and its ability to simulate the blur
kernel (i.e., Point Spread Function, PSF) in complex camera motion scenarios,
this method has been widely used.

2.2 Non-uniform Motion Blur Synthesis

In non-uniform motion blur, different positions in the image correspond to dif-
ferent blur kernels. Luo et al. [13] pointed out the necessity of distinguishing
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whether the motion occurs in the foreground or background, as failure to do so
could result in pixel distortion along object edges. However, their method was
proposed for controlled artistic image editing and required additional manual
intervention, making it unsuitable for large-scale data generation.

To explore the performance of various blind image deblurring algorithms on
real non-uniform blur images, [15] constructed a system capable of recording
and replaying camera motion during photography. They recorded 40 real cam-
era motion trajectories during exposure time and used a high-precision hexapod
robot to playback these trajectories to capture real motion blur images. [5] gener-
ates non-uniform motion blur images by simulating 4-DOF camera ego-motion.
They first sample a dense flow map, then pixel-wise map the optical flow to
linear blur kernel parameters and perform convolution, ultimately obtaining the
non-uniform blurry image. [16] considered camera motion with 6-DOF, but their
method was used for light field image motion blur synthesis and cannot be used
on common three-channel images. Aitor et al. [17] used image matting to seg-
ment the image to obtain masks for the regions to be blurred. After uniformly
blurring the image, they combined each superpixel blocks using masks and then
used inpainting to eliminate pseudo-artifacts along region boundaries. Another
research [4] is similar to [17]. Instead of using inpainting, they convolved the seg-
mented mask of the image, achieving a soft transition between different blurry
regions.

Other works utilize deep learning methods instead of motion model-based
approaches to generate motion blur. [18] used a pair of temporally continuous
sharp images as input to obtain non-uniform motion blur images by spatially
varying linear blur kernel estimation. [19] extends the implicitly encoded blur
kernel to sharp images to generate motion blur images.

Recent research [20] employs neural networks to generate random but image
depth-related motion offsets, and then repositions them at the pixel level accord-
ing to the motion offset to generate blurry images. However, these deep learning
based methods are data-driven no matter how the network structure changes.
The datasets used to train these networks, such as GoPro, contain limited
number of images and degradation patterns. [20] pointed out that these meth-
ods [18,19,21] although increasing the diversity of generation by sampling ran-
dom noise, still have insufficient diversity in degradation patterns. Non-deep
learning methods provide advantages in terms of the controllability and inter-
pretability of blur parameters compared to deep learning methods. Therefore we
utilize non-deep learning method to synthesis blurry images.

2.3 Deep Learning Visual Systems Augmented with Motion Blur

Xie et al. [2] designed a blur classification network to assist a plug-and-play
module, which improves object detection on blurry images without affecting the
detection performance on sharp images. Zheng et al. [10] integrated deblurring
and object detection into an adversarial generative training framework, pre-
serving the speed advantage of the object detection network while achieving
motion blur robustness. They observed improvements in both blind deblurring
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and object detection tasks. Wang et al. [22] devised an adversarial image gener-
ation method to enhance object detection performance on open and composite
degraded images. Gathering real-world composite degraded images is challeng-
ing, so they employed image-to-image translation to generate degraded images.

In [21], the author employs a real blurry dataset they collected to train a
single-image deblurring network structured similarly to CycleGAN [23]. The
architecture includes two generators and two discriminators. The GAN which
learns blurring play a role in data augmentation to some extent, enhancing gen-
eralization on new data. Similar to [21,24] also employs a dual-branch design to
learn degradation representations for single-image deblurring. They model degra-
dation information as the residual between sharp and blurry images and opti-
mize the degradation information representation through a deblurring branch,
improving the deblurring performance.

3 Camera Shake Simulate for Blur Synthesis

3.1 Our Camera Shake Model

During the exposure time, the camera moves independently in six degrees of free-
dom in our camera shake model, and the light rays from the scene accumulate
on the image plane, forming a motion blur image. Although the actual imaging
process involves continuous motion, modeling continuous camera motion trajec-
tories is challenging. Inspired by [3,15], we sample a series of discretized camera
poses to approximate the camera motion during the exposure time.

Assuming the exposure time is T, we discretize the exposure time into M
time steps. At each time step t, we generate a six-dimensional camera pose:

p(t) = [θx(t), θy(t), θz(t), lx(t), ly(t), lz(t)]� (1)

The first three dimensions represent the rotation angles of the camera around
each axis, measured in degrees. The last three dimensions represent the trans-
lations of the camera along each axis, measured in millimeters. Our coordinate
system is shown on the right side of Fig. 2. Each trajectory consists of M posi-
tions generated by a particle moving randomly in a six-dimensional continuous
space. The process of trajectory generation is detailed in Algorithm 1 (at the
end of the manuscript) . The parameter settings initially follows a similar algo-
rithm [3] and then adjusts to fit the data range of real-recorded trajectories
from [15].

3.2 6-DOF Trajectory Transform to Dense Motion Kernel Map

Mapping of Real-World Points to the Image Plane. The 6-DOF trajec-
tory records camera poses at continuous time steps. To convert the trajectory
into a motion blur kernel, we need to utilize the pinhole camera model to map
points in the real world coordinate system to the pixel coordinate system. By
repeating this operation for each time step of a trajectory, we can obtain a series
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of projected points on the pixel coordinate system, as shown in Fig. 2. The tra-
jectory formed by these points constitutes the blur kernel, also known as the
Point Spread Function (PSF).

Without considering camera lens distortion, for a point (xw, yw, zw)� in the
world coordinate system , its coordinates in the image plane can be obtain by:

[
u v 1

]� =
1
d

⎡

⎣
fx 0 u0 0
0 fy v0 0
0 0 1 0

⎤

⎦
[

R t
0�
3 1

]
[
xw yw zw 1

]� (2)

The two matrices multiplied by the point (xw, yw, zw)� are respectively the
camera’s extrinsic matrix and intrinsic matrix, d represents the distance from
the point to the XcYc plane, it is also equal to zw, as shown on the right side
of Fig. 2. The camera’s intrinsic parameters can be obtained through calibra-
tion methods [25]. In this paper, we directly utilize the calibrated parameters
from [15]. The rotation matrix R and translation matrix t in the extrinsic matrix
vary with the camera’s pose change, the two matrix can be derived from the
rotation and translation components of the camera pose in Eq. 1 respectively.

According to Eq. (2), a point in the real world can be mapped to the image
plane. For a camera motion trajectory with M time steps, performing M map-
pings yields M points on the image plane. Since the differences in camera poses
between each pair of adjacent time steps are small, these points naturally connect
without interruption, forming a trajectory on the plane. Rotating the trajectory
on the image plane by 180◦ (due to the pinhole camera model forming an inverted
image) yields a blur kernel.

Furthermore, to obtain the Dense motion kernel Map based on the camera
motion trajectory, we only need to sample multiple points in the real world, and
then project these points onto the image plane at once. We noticed that very
few sampling points (far fewer than the number of pixels in the image) can still
yield good results. More details can be found in Sect. 4.4.

Selection of Points in the Real-World. Our objective is to synthesize non-
uniform motion blur, which requires sampling multiple points according to cer-
tain rules to obtain a set of spatially related PSFs, forming a Dense motion kernel
Map. In our method, we only consider motion blur caused by camera ego-motion
(i.e., only the camera is moving while objects in the scene remain stationary).
It is easy to demonstrate that when the camera pose is fixed, all points along
the ray OcP will map to the same location on the image plane, as shown in
Fig. 2. Therefore, instead of considering all points in the world coordinate sys-
tem, we can use a bounded (due to the fixed field of view of the camera being
less than 180◦in both horizontal and vertical directions) plane that is parallel to
the image plane and a distance d away from the XcYc plane. We refer to this
plane as Planed. Intuitively, this plane can be thought of as blocking all light
rays passing through the pinhole imaging model. We only need to sample the
two-dimensional coordinates (xw, yw) of points on this plane because the points
on Planed share the same z coordinate. In this paper, the distance d between
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the object and the camera is set to 62 cm, which is consistent with [15], in this
way, the parameter adjustment of our trajectory generation algorithm can be
based on the real-recorded trajectories from [15].

Specifically, we take the origin of Planed (i.e. the intersection of the z axis
and Planed) as the center, and perform equal-interval sampling in the x and y
directions to obtain P ∗ P points. The equal interval ensures the representative-
ness of these PSFs obtained from point mapping, and sampling the same number
of steps in both directions is for convenience.

3.3 Efficient Blur Synthesis

The entire process of blur synthesis is primarily time-consuming in two aspects:
the generation of heterogeneous kernel maps and the convolution of kernels with
the image. Our method inherently benefits from parallel generation of the Dense
motion kernel Map, in this way, the key factor affecting the speed lies in the
convolution process.

Performing pixel-wise convolution in a serial manner is time-consuming,
inspired by [4], we implement efficient non-uniform blur synthesis using an adap-
tive basis decomposition approach, preserving the complexity of pixel level blur
kernels while allowing parallelization of the blurring process. Specifically, based
on the assumption that pixel level blur kernels exhibit redundancy [4], we decom-
posing the kernel Map into a linear combination of basis blur kernels. In our
framework, given a sharp image S, the blurry image is generated as:

B =
C∑

b=1

S ∗ Kbmb + N (3)

where ∗ denotes the convolution, C is the number of basis blur kernels and we set
C = 25 follow [4] , Kb is the b-th basis blur kernel, mb is the pixel level mixing
coefficient matrix corresponding to the b-th basis, and N is additive noise.

Decomposing the Dense motion kernel Map needs to satisfy two fundamental
conditions: firstly, the basic properties of acknowledged blur kernels, namely
non-negativity and normalization; secondly, the mixing coefficients need to be
non-negative and normalized to achieve convex combinations of the basis blur
kernels, thereby ensuring energy conservation.

To meet the aforementioned conditions, we opt for Non-negative Matrix Fac-
torization (NMF) as the decomposition method. NMF is capable of decomposing
a non-negative matrix into the product of two non-negative matrices:

Mm×n ≈ Km×kWk×n (4)

where Mm×n is the Dense motion kernel Map, m and n are the dimension of a
single PSF and the number of sampling points respectively. Km×k is the k basic
blur kernels with dimension m, corresponding to K in Eq. 3. Wk×n represents
k mixing coefficient matrices with dimension n, to extend to pixel-level non-
uniform blurring, we simply upsample each mixing coefficient matrix of dimen-
sion n to the size of the image, thereby obtaining the pixel-level m in Eq. 3. For
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normalization, we normalize the obtained Km×k and Wk×n respectively after
NMF. Examples of non-uniform blurring of image and decomposition of kernel
map are shown in Fig. 3.

Fig. 3. Example of adaptive decomposition of Dense motion kernel Map. The images in
the top row from left to right are, sharp image, synthetic blurry image, and visualized
kernel map. The following two lines are the decomposed kernel basis and corresponding
mixing coefficients respectively.

4 Experiments

Our non-uniform motion blur synthesis method was proposed to mitigate the
domain shift effect [22] introduced during data augmentation. The domain shift
problem manifests when deep learning networks trained on synthetic data per-
form well on synthetic data but exhibit performance degradation on real data.
To demonstrate the effectiveness of our blur synthesis method, we choose the
representative object detection network YOLOv7 [26] from the deep learning
visual networks as our experimental platform.

We compare our blur synthesis method with another four blur synthesis
methods. Specifically, we applied each synthesis method to generate motion-
blurred training data from sharp images in the MS COCO [27] dataset. We then
train the object detection network using this data and evaluate the performance
of object detection on a real blur dataset RealBlur [1], as well as two synthetic
blur datasets GoPro [28] and REDS [29]. The better performance of object
detection indicates that the synthesized blur is closer to the real blur because
the domain shift is smaller.

4.1 Datasets

COCO2017 Dataset. To ensure the object categories of the three deblurring
datasets as inclusive as possible, we choose the COCO2017 dataset [27] with 80
object categories as the source of sharp images,which involves a total of 123287
(merged the train and val sets) images. Each blur synthesis method utilize the
sharp images in COCO2017 to generate blurry images.
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Three Deblurring Datasets. The RealBlur dataset [1] is the only dataset
among these three deblurring datasets that contains real blur images. Gopro [28]
and REDS [29], are both perform inter-frame averaging on high frame rate
videos to obtain blurry images. These datasets were collected for deblurring
tasks and without bounding box labels. We employs the YOLOv8 [30] to perform
object detection on the sharp images in these three datasets (all data, including
training and test sets) , and the detection results were used as ground truth
bounding boxes (GT Box).

4.2 Implementation details

Blur Synthesis Parameter Settings. The naming and parameter settings of
each synthesis methods are as follows: (a) Purelin [2] : Linear blur kernels are
generate using the MATLAB toolbox, with length and angles ranging from [1,33]
and [0,360] uniformly; (b) Markov [3] : The parameter settings followed [7] ; (c)
EFF [4] : The parameter settings followed [4] ; (d) Denselin [5] : The parameter
settings followed [5]. The blur kernels generated by each method were centered as
described in [7] to reduce positional discrepancies between the data and labels.

Experimental Setup. We compare the performance of different motion blur
synthesis methods on the object detection network YOLOv7 [26]. For train-
ing YOLOv7, we fine-tuning the pretrained weights on sharp images instead of
training from scratch. The same settings are applied to each synthesis method :
pretrained weights were used, training for 100 epochs with a batch size of 16, and
other settings are consistent with the original training setup of original YOLOv7,
including random flipping and Mixup [31] augmentation.

4.3 Performance Comparison

In this section, we discuss the performance of the object detection network
trained with different motion blur synthesis methods on real and synthetic blurry
datasets. To evaluate the performance of object detection, we employ the com-
monly used AP (Average Precision) and mAP (mean of Average Precision) met-
rics mAP@0.5 and mAP@0.5:0.95 [27]. In our experiments, the higher these two
metrics, the smaller the domain shift effect and the synthesized blur is closer
to the real blur, we label these two metrics for detecting blurry images in three
datasets as mAP50 and mAP50:95 respectively. To reduce the impact of random-
ness, each blur synthesis method generates three batches of training data, and
the reported results are the average mAP over three training runs.
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Table 1. AP for YOLOv7 trained on COCO2017 images with synthesized blur and
evaluated on Gopro [28]. The last two columns are mAP for all categories.

Method Bench Bicycle Motorcycle Person PottedPlant Truck mAP50 mAP50:95

Original 65.85 63.26 53.43 87.14 49.26 57.78 64.37 45.12

Purelin[2] 58.75 76.64 61.84 91.50 74.40 80.37 70.75 49.52

Markov[3] 65.34 77.20 66.72 91.15 69.30 79.56 71.63 49.65

EFF[4] 69.32 77.94 59.89 90.81 72.72 77.97 70.51 49.35

Denselin[5] 63.27 76.72 62.94 91.17 75.20 80.24 70.22 48.87

Proposed 70.29 76.02 63.85 91.49 75.22 81.00 73.87 51.47

Table 2. AP for YOLOv7 trained on COCO2017 images with synthesized blur and
evaluated on RealBlur [1]. The last two columns are mAP for all categories.

Method Bench Bicycle Bottle Bowl PottedPlant Truck Umbrella mAP50 mAP50:95

Original 69.70 78.81 31.47 67.24 63.27 65.95 68.73 64.30 51.77

Purelin[2] 77.63 85.51 36.61 75.38 71.69 59.06 80.58 66.41 51.35

Markov[3] 77.41 86.03 46.73 76.72 69.81 65.38 76.48 66.63 51.56

EFF[4] 74.65 86.91 34.45 71.54 65.26 65.11 76.86 65.43 50.78

Denselin[5] 74.54 88.38 34.51 74.77 68.73 64.53 74.68 65.43 50.10

Proposed 79.54 89.04 43.93 77.86 67.13 66.68 83.19 68.48 53.75

Table 3. AP for YOLOv7 trained on COCO2017 images with synthesized blur and
evaluated on REDS [29]. The last two columns are mAP for all categories.

Method Boat Car Chair Person PottedPlant Truck Umbrella mAP50 mAP50:95

Original 57.86 83.53 47.95 84.49 60.69 66.17 61.47 65.49 45.68

Purelin[2] 64.75 86.79 61.65 89.37 66.71 67.92 60.95 68.11 46.83

Markov[3] 61.67 87.56 60.45 89.27 69.67 70.28 60.00 68.70 47.37

EFF[4] 61.07 86.41 60.29 88.64 66.87 67.92 59.09 67.51 45.98

Denselin[5] 60.75 85.93 61.26 89.04 66.78 66.81 60.88 67.22 45.49

Proposed 62.17 87.96 62.92 90.31 69.28 71.10 62.77 69.28 47.91

Tables 1, 2 and 3 presents the testing results of the object detection net-
work YOLOv7 [26] trained with different augmentation methods on the Gopro,
RealBlur and REDS datasets, respectively. Red and blue colors are used to
indicate the 1st and 2nd ranks, respectively. Limited by the width of the table,
we only show the AP values of some object categories with the largest differences,
while the mAP value is for all object categories in each dataset.

As expected, the detection performance improves on blurry images after fine-
tuning with all synthesis method. From the results, the performance of Markov
method [3] is better than Purelin [2] on three datasets. Both methods are uni-
form and the entire image shares a blur kernel. Before the Markov method [3],
the Purelin method was widely used for motion blur synthesis. [3] can simu-
late motion blur more realistically than linear blur method Purelin [2] and is
computationally simple.

Unexpectedly, the non-uniform motion blur synthesis methods EFF [4] and
Denselin [5] perform worse than the two uniform blur synthesis methods Pure-
lin [2] and Markov [3]. The results on three datasets indicate that the perfor-
mance of these two non-uniform motion blur synthesis methods is similar, but
both are inferior to the uniform blur methods, which indicates that the blurry
images produce by these two methods are far from the real blur.
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We speculate that the poor performance of EFF [4] is due to distortion
when handling the boundaries of different blurry regions. Although their soft
transition strategy is visually artifact-free, the blur kernel at the junction of
different regions is actually mathematically unknown, and the results in the
above tables indicate that this unrealistic transformation increases the domain
shift effect.

For Denselin [5], the training results in Table 2 indicate a significant discrep-
ancy between their method and real motion blur. We speculate that their poor
performance was due to their method only being able to simulate the motion of
the camera’s four degrees of freedom, leading to deviations in motion patterns.
Further experiments are detailed in Sect. 4.4.

From the results in Tables 1, 2 and 3, our method achieved the best perfor-
mance (mAP) on all three datasets. Compared to the two uniform blur synthe-
sis methods Purelin [2] and Markov [3], our method is non-uniform. Compared
to the two non-uniform blur synthesis methods EFF [4] and Denselin [5], our
blur kernel is non-linear. This implies that non-uniform and non-linear motion
blur synthesis method is able to generate data closer to real-world motion blur,
thereby reducing the impact of domain shift at the data level. The improve-
ment in object detection with various augment methods under blurred scenes is
depicted in Fig. 4.

Fig. 4. Example of the effectiveness of various augmentation methods in training object
detection network. In this image form Gopro [28], only our method can detect all
people in the upper right corner. We enlarged a portion of each image for better
observation.

4.4 Ablation study

In this section, we conduct ablation experiments on each component of the pro-
posed non-uniform motion blur synthesis framework.

The Freedom of Camera Motion. To validate the effectiveness of full camera
motion freedom(i.e. 6-DOF) on motion blur synthesis, we modified the non-
uniform blur synthesis method Denselin [5], which initially had only 4-DOF, to
simulate 6-DOF motion. We then compared it with our method.
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Specifically, we retain the characteristic of pixel-level linear kernels and re-
generate training data using a new optical flow generation method [32] with 6-
DOF, the transformation from optical flow to pixel-level linear kernels remains
consistent with the original Denselin, then retrain the object detection network
with the re-generated data. [32] simulates arbitrary camera motion in 3D space
to generate optical flow for a single image. The re-generated data labeled as
Denselin6D.

Table 4. The mAP@0.5 for the proposed method and two variations of the Denselin
method on three datasets. Best results are shown in bold.

Methods DOF BlurKernel Gopro[28] RealBlur[1] REDS[29]

Denselin[5] 4 linear 70.22 65.06 67.22

Denselin6D 6 linear 71.24 66.97 68.57

Proposed 6 non-linear 73.87 68.48 69.28

Table 4 presents a comparison of two Denselin [5] methods using different
optical flow strategies. From the results, the Denselin6D with more degrees of
freedom shows an improvement compared to Denselin, but still slightly worse
than the uniform blur method markov [3] on the Gopro and REDS datasets,
refer to Table 1, which means that, besides the degrees of freedom of camera
motion, the linear kernel is also an important factor limiting the performance of
Denselin. Our method and Denselin6D are both capable of simulating 6-DOF
camera motion blur. However, the difference lies in the fact that the pixel-level
blur kernel in Denselin6D is linear, whereas our is non-linear, linear kernel is
just a special case in our method. The Dense blur kernel corresponding to these
two methods are shown in Fig. 1.

Our camera motion model assumes that the camera’s motion in the six
degrees of freedom is independent, allowing our method to simulate random
camera motion with up to six degrees of freedom. To demonstrate the backward
compatibility of our method, we freeze certain degrees of freedom of camera
motion, and the resulting Dense motion kernel Maps are shown in Fig. 5.

Fig. 5. Demonstration of the backward compatibility of our method. The Dense motion
kernel Map is depict in the figure, with the corresponding camera motion pattern and
blurry image shown in the top left and bottom right corners, respectively. Best viewed
when zoomed in.
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The Other Parameters in Our Method. Our method involves two another
primary parameters : camera impulsive shake probability ps and the number
of sampled points num. The former parameter controls the degree of camera
impulsive shake, a larger value resulting in more distorted blur kernels. The
latter parameter controls the degree of non-uniformity of the kernel map, with
larger values resulting in greater variability of the kernel across different positions
in the image.

Fig. 6. Evaluation of the augmentation performance of the object detection network
with data generated under different parameter combinations. The sampling points in
the legend correspond to the square of the actual number.

Table 5. The average time taken by each method to synthesis a single blurry image.
The first three columns represent our method.

methods 10 × 10 50 × 50 100 × 100 Purelin[2] Markov[3] EFF[4] Denselin[5]

times/s 0.12 0.29 1.01 0.03 0.17 0.29 0.68

non-uniform ✓ ✓ ✓ ✗ ✗ ✓ ✓

Figure 6 illustrates the effectiveness of the generated data under different
parameter settings, where higher mAP values indicate a closer resemblance
between the synthesized blur and real blur. From the results, the overall trend
on the three datasets indicates that more sampling points, i.e., higher non-
uniformity of the blur, result in blur that is closer to reality. The best perfor-
mance was achieved with kernels close but not entirely linear and with a higher
number of sampling points. However, as the number of sampling points increases,
the computational cost also increases. More specific speed comparisons can be
found in Table 5. We observed that a satisfactory balance between speed and
performance could be achieved when the number of sampling points is 10 × 10.

Figure 7 explains the non-uniformity of the Dense motion kernel Map when
our method has different sampling points num ∗ num. Since we utilize a fixed
interval to sample points on Planed, the more sampling points there are, the
farther the edge points are from the center, and the more non-uniform the PSFs
generated by the projection are.
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Fig. 7. The non-uniformity of the Dense motion kernel Map corresponding to the same
trajectory under different numbers of sampling points. For ease of observation, we only
display the kernels at the four corners of the kernel map.

Algorithm 1. 6-DOF Trajectory generation.
Parameters:
M = 167 - number of iterations,
Lrot = 0.5 - max length of the rotation component movement,
Lshift = 5 - max length of the translation component movement,
ps - probability of impulsive shake, uniform from (0,0.2),
I - inertia term, uniform from (0,0.7),
Pb - probability of big shake, uniform from (0,0.1),
Pg - probability of gaussian shake, uniform from (0,0.7),
v - velocity of particle,with six dimensions, the superscript acts the same as x.
x - trajectory vector, with six dimension, the first and last three dimension
labeled as x

′
and x

′′
respectively.

1: procedure Generate6DTrajectory(M, ps, pb, pg)

2: v
′
0 ← randn(3); v

′′
0 ← randn(3)

3: v
′ ← v

′
0 ∗ Lrot/(M − 1); v

′′ ← v
′′
0 ∗ Lshift/(M − 1)

4: x = zeros(M, 6)
5: for t = 1 to M − 1 do
6: if randn < ps ∗ pb then
7: nextDir ← 2 ∗ v ∗ sin(π + randn − 0.5)
8: else
9: nextDir ← zeros(6)

10: dv
′ ← nextDir + ps ∗ (pg ∗ randn(3) − I ∗ x

′
[t]) ∗ (Lrot/(M − 1))

11: dv
′′ ← nextDir + ps ∗ (pg ∗ randn(3) − I ∗ x

′′
[t]) ∗ (Lshift/(M − 1))

12: v
′ ← v

′
+ dv

′
; v

′′ ← v
′′

+ dv
′′

13: v
′ ← (v

′
/‖v

′‖) ∗ (Lrot/(M − 1)); v
′′ ← (v

′′
/‖v

′′‖) ∗ (Lshift/(M − 1))
14: x[t + 1] ← x[t] + v

15: return x
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5 Conclusion

In this study, we propose a novel method for synthesizing non-uniform motion
blur in single images, aimed at augmenting data for deep learning vision net-
works. With the proposed motion blur framework, we are able to synthesis more
accurate pixel-level non-linear motion blur. Experimental results on both syn-
thesized and real data demonstrate the superiority of our proposed method.

References

1. Rim, J., Lee, H., Won, J., Cho, S.: Real-world blur dataset for learning and bench-
marking deblurring algorithms. In: Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16, pp.
184–201. Springer (2020)

2. Xie, G., Li, Z., Bhattacharyya, S., Mehmood, A.: Plug-and-play deblurring for
robust object detection. In: 2021 International Conference on Visual Communica-
tions and Image Processing (VCIP), pp. 1–5. IEEE (2021)

3. Boracchi, G., Foi, A.: Modeling the performance of image restoration from motion
blur. IEEE Trans. Image Process. 21(8), 3502–3517 (2012)

4. Carbajal, G., Vitoria, P., Delbracio, M., Musé, P., Lezama, J.: Non-uniform
Blur Kernel Estimation Via Adaptive Basis Decomposition (2021). arXiv preprint
arXiv:2102.01026

5. Gong, D., et al.: From motion blur to motion flow: A deep learning solution for
removing heterogeneous motion blur. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2319–2328 (2017)

6. Schmidt, U., Jancsary, J., Nowozin, S., Roth, S., Rother, C.: Cascades of regression
tree fields for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 38(4),
677–689 (2015)

7. Sayed, M., Brostow, G.: Improved handling of motion blur in online object detec-
tion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 1706–1716 (2021)

8. Cho, S.J., Kim, S.W., Jung, S.W., Ko, S.J.: Blur-robust object detection using
feature-level deblurring via self-guided knowledge distillation. IEEE Access 10,
79491–79501 (2022)

9. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind
motion deblurring using conditional adversarial networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192
(2018)

10. Zheng, S., Wu, Y., Jiang, S., Lu, C., Gupta, G.: Deblur-yolo: real-time object detec-
tion with efficient blind motion deblurring. In: 2021 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

11. Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken
images. Int. J. Comput. Vis. 98, 168–186 (2012)

12. Ji, X., Wang, Z., Satoh, S., Zheng, Y.: Single image deblurring with row-dependent
blur magnitude. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 12269–12280 (2023)

13. Luo, X., Salamon, N.Z., Eisemann, E.: Controllable motion-blur effects in still
images. IEEE Trans. Visual Comput. Graphics 26(7), 2362–2372 (2018)

http://arxiv.org/abs/2102.01026


16 H. Yang et al.

14. Gavant, F., Alacoque, L., Dupret, A., David, D.: A physiological camera shake
model for image stabilization systems. In: SENSORS, 2011 IEEE, pp. 1461–1464.
IEEE (2011)
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2 LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
{jhony.giraldo,stephane.lathuiliere}@telecom-paris.fr

Abstract. Event cameras, known for low-latency operation and supe-
rior performance in challenging lighting conditions, are suitable for sensi-
tive computer vision tasks such as semantic segmentation in autonomous
driving. However, challenges arise due to limited event-based data and
the absence of large-scale segmentation benchmarks. Current works are
confined to closed-set semantic segmentation, limiting their adaptabil-
ity to other applications. In this paper, we introduce OVOSE, the first
Open-Vocabulary Semantic Segmentation algorithm for Event cameras.
OVOSE leverages synthetic event data and knowledge distillation from
a pre-trained image-based foundation model to an event-based coun-
terpart, effectively preserving spatial context and transferring open-
vocabulary semantic segmentation capabilities. We evaluate the per-
formance of OVOSE on two driving semantic segmentation datasets
DDD17, and DSEC-Semantic, comparing it with existing conventional
image open-vocabulary models adapted for event-based data. Similarly,
we compare OVOSE with state-of-the-art methods designed for closed-
set settings in unsupervised domain adaptation for event-based seman-
tic segmentation. OVOSE demonstrates superior performance, showcas-
ing its potential for real-world applications. The code is available at
https://github.com/ram95d/OVOSE.

Keywords: Open vocabulary segmentation · Low-level vision ·
Distillation

1 Introduction

Event cameras, known for their exceptional temporal resolution, low latency, and
motion blur resistance, have transformed various deep learning applications [10].
Use cases include autonomous driving [4], object recognition [8], and semantic
segmentation [2]. Their outstanding performance in challenging conditions makes
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Fig. 1. Output of a regular RGB foundation model for semantic segmentation and
OVOSE in event-based data. OVOSE accurately segments person, trees, and (the sky)

event cameras optimal for capturing reliable visual data [19]. Despite their suc-
cess, integrating event cameras into existing computer vision models is challeng-
ing. Their unique data format, featuring asynchronous event streams without
traditional image frames [28], necessitates a reassessment of established tech-
niques. While traditional image-based semantic segmentation has made notable
progress [17], event cameras, being less prevalent in real-world scenarios, suffer
from a scarcity of both raw and labelled data. This fact raises two intertwined
issues: the impossibility of collecting internet-scale event datasets and, as a con-
sequence, the difficulty in training data-intensive deep learning techniques. This
challenge obstructs effective semantic segmentation model training, especially in
scenarios lacking established benchmarks or methodologies.

Recently, powerful foundation models have demonstrated their effectiveness
in segmenting conventional images [17]. Some of these models extend the closed-
set capabilities of classical semantic segmentation models [5,6], performing well
in open-vocabulary settings where the set of classes in training and testing are
disjoint. However, applying these powerful open-vocabulary models directly to
event-based images is challenging, and retraining them is impractical due to the
scarcity of annotated event-based data [15].

The alternative approach of converting events into images using E2VID [25],
and pairing it with an open-vocabulary model does not perform satisfactorily
as illustrated in Fig. 1. Despite the fact that E2VID is intended to reduce the
domain gap between images and events, there still exists a difference between real
grayscale and reconstructed-event images. In this paper, we introduce OVOSE,
the first Open-Vocabulary Semantic Segmentation algorithm tailored for event-
based data. OVOSE operates as a two-branch network, with one branch ded-
icated to grayscale images and the other to event data. Each branch incorpo-
rates a copy of an image foundation model, with OVOSE adapting the event
branch for optimal performance in event-based data. Our algorithm integrates
text-to-image diffusion [23] and a mask generator. Using a CLIP-style image
encoder and MLP, we derive embeddings for conditioning the text-to-image dif-
fusion UNet. We use UNet’s features as input to the mask generator for mask
generation. We categorize the mask generator’s outputs using a frozen CLIP-
style text encoder for open-vocabulary segmentation. To enhance model perfor-
mance, we distill knowledge from the image branch to the events branch, using
an E2VID model [25] for translating events to reconstructed images. OVOSE,
characterized by its simplicity and effectiveness, outperforms existing models
in event-based semantic segmentation, including Unsupervised Domain Adap-
tation (UDA) methods, demonstrating its effectiveness in addressing the open-
vocabulary segmentation problem in event-based data.
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Our main contributions can be summarized as follows:

– To the best of our knowledge, we present the first open-vocabulary semantic
segmentation approach tailored explicitly for event-based data.

– We introduce OVOSE that distills knowledge to transfer semantic insights
from a foundation model trained on regular images to enhance open-
vocabulary segmentation performance for event-based data.

– To mitigate the effects of sub-optimal reconstructions, we investigate various
mask reweighting strategies and introduced a novel dissimilarity network.
This network recalibrates the mask loss by leveraging the differences between
reconstructed and original images, enabling precise fine-tuning of the segmen-
tation model and thus producing robust and accurate predictions.

– We perform extensive evaluations in open-vocabulary semantic segmenta-
tion for three event datasets. OVOSE readily outperforms existing closed-set
semantic segmentation methods and straightforward adaptations of open-
vocabulary models. A set of ablation studies validates the key components of
our algorithm.

2 Related Work

Event Camera Semantic Segmentation. Alonso et al. [1] introduced event
camera semantic segmentation an Xception-type network for the DDD17 dataset
but suffered from limitations in the quality of generated labels. Gehrig et al. [11]
improved performance substantially by utilizing a synthetic event dataset con-
verted from videos. Wang et al. [30] explored knowledge distillation and transfer
learning between images and events, though relying on labeled datasets. Mes-
sikommer et al. [20] proposed a method aligning image and event embeddings
but faced challenges with hallucinations [28]. Sun et al. [28] addressed domain
gap reduction between events and images, yet required real event-based data.
Yang et al. [35] presented a self-supervised learning framework, but still relied
on labeled datasets for fine-tuning. While existing methods are designed for
closed-set semantic segmentation with limited known classes, our approach is an
open-vocabulary segmentation method tailored for event-based cameras, trained
solely on synthetic unlabeled datasets.

Open-Vocabulary Semantic Segmentation. Recent approaches in open-
vocabulary semantic segmentation for regular images have centered on embed-
ding spaces linking image pixels to class descriptors [3,32]. Some methods lever-
age CLIP [22] for text and image embeddings [16], while others combine CLIP
with Vision Transformer [9]. OpenSeed is introduced [36] for joint segmenta-
tion and detection tasks. ODISE [34] uniquely merges pre-trained text-image
diffusion and discriminative models [26], excelling in open-vocabulary panoptic
segmentation. However, these methods are designed for image data and don’t
directly translate to event cameras due to the fundamentally different data rep-
resentation (continuous event streams vs. static images). This work proposes a
novel approach for open-vocabulary semantic segmentation on event cameras.
We bridge the gap between image-based methods and event data by transferring
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knowledge from a powerful image foundation model to a new model specifically
tailored for the event domain.

2.1 Knowledge Distillation

Prior knowledge distillation (KD) [14] methods focus on single modality, i.e,
image using logits [33] or features [21] or across different modalites [37] utiliz-
ing paired data. KD is also applied to event cameras [31] to distill knowledge
from the image-based teacher model to the event-based student model. However,
they require labeled image datasets and unlabelled real events and frames for
effective transfer in semantic segmentation. Furthermore, [30] employs event-to-
image transfer for semantic segmentation, but it gives poor performance [28]
when applied for semantic segmentation. Unlike these approaches, we employ
a synthetic training dataset and distill knowledge from an image foundation
model to a foundation model tailored for open vocabulary semantic segmenta-
tion in events. The problem becomes complex as we strive to bridge the gap
between events and images, and additionally tackle the synthetic-to-real gap.

3 Open-Vocabulary Segmentation in Events

3.1 Preliminaries

Event Representation. Each pixel in an event camera operates independently
and reports brightness changes asynchronously, signaling only when the changes
exceed a certain threshold. When a change is detected, an event is generated,
capturing the pixel positions (xi, yi), timestamp (ti), and polarity (pi), indicating
whether a change involves an increase or decrease in brightness. Consequently,
each event can be represented as E = [xi, yi, ti, pi]. In this paper, we transform
events into grid-like representations [12], such as voxel grid [28,38] to facilitate
further processing. We utilize a voxel grid representation of events as input to
our model.

Text-to-Image Diffusion UNet. The text-to-image diffusion model [23] gen-
erates high-quality images from textual descriptions, utilizing the power of pre-
trained encoders like CLIP [22] to encode text into embeddings. The process
starts by adding Gaussian noise to images, and then the UNet architecture effec-
tively reverses this noise, guided by cross-attention mechanisms that align the
text embeddings with visual features, making the features semantically rich. We
incorporated the text-to-image diffusion UNet into our model to extract rich
features that are relevant to the text.

Problem Statement. Open vocabulary represents a generalization of the zero-
shot task in semantic segmentation. In this setting, a model predicts masks for
unseen classes Cunseen by learning from labeled data of seen classes Cseen. The sets
of seen and unseen classes are separate and do not overlap, i.e, Cunseen∩Cseen = ∅.
The objective of this work is to train a model Fθ with parameters θ to predict the
segmentation map of some stream of events. To solve this, we have a unlabeled
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Fig. 2. Overview of OVOSE pipeline. Our algorithm comprises two components:
the original grayscale image branch and the event-based branch. Initially, events are
transformed into a grayscale image using the E2VID model. Subsequently, both the
original and reconstructed grayscale images undergo text embedding through an image
encoder and an MLP. The features from a frozen text-to-image diffusion UNet are
then extracted for each tuple of image and text embedding. For each branch, a mask
generator predicts class-agnostic binary masks and associated mask embedding fea-
tures. Categorization is achieved through a dot product between mask embedding
features and text embeddings. Both branches are initialized with ODISE weights [34],
and knowledge distillation occurs from the original image branch to the event-based
branch during training. Original and reconstructed images are input into a dissimilar-
ity network to weigh the distillation in the outputs. During the evaluation, only the
event-based branch is utilized.

training set Xtrain = {E(t)
i ,X(t)

i }Nt
i=1, where E(t)

i is the ith stream of events, X(t)
i ∈

R
H×W is the ith original grayscale image with H and W the height and width of

the image, and Nt is the number of streams in the dataset. For the training set,
we additionally need the set of seen classes Cseen. We evaluate Fθ in a testing set
Xtest = {E(s)

i ,Y(s)
i }Ns

i=1 where Y(s)
i ∈ {0, 1}H×W×|Cunseen|.

3.2 Overview of OVOSE

As shown in Fig. 2 OVOSE is divided into two sections: (i) the image branch that
takes as input the original grayscale imagesX(t)

i ∈ Xtrain, and (ii) the event branch
that takes as input the stream of events E(t)

i ∈ Xtrain or E(s)
i ∈ Xtest. It is worth

clarifying that during the evaluation we only use the event branch. During training,
the whole image branch is frozen and only used to distill knowledge to the event
branch. For the event branch, we use the pre-trained E2VID model with param-
eters θe [25] to transform some stream of events E into a reconstructed image X̂,
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thus Fθe
(E) = X̂. E2VID introduces a novel approach by leveraging a convolu-

tional recurrent neural network architecture to process event camera data’s sparse
and asynchronous nature, producing high temporal resolution images. Taking as
input X or X̂, the forward pass of each branch is identical, so we explain only one
of these in the following.

We first employ a frozen image encoder of type CLIP V(·) [22] to encode X
or X̂ into an embedding space. Subsequently, a learnable MLP is used to project
the image embedding into implicit text embeddings. We use X or X̂ along with
the implicit text embeddings as input to a text-to-image diffusion model [17]
for feature extraction. More precisely, we employ a UNet architecture to do the
denoising process. Formally for the image branch, we have:

f = FθU
(X,MLP(V(X))), (1)

where f is the feature vector from the diffusion network in the image branch,
and θU is the parameters of the UNet model. We feed this feature vector f as
input to a Mask2Former model [7] to produce class-agnostic binary masks with
their corresponding mask embeddings. For categorization, we use a text encoder
of type CLIP T (·) to embed the categories in Cseen. We thus perform a dot
product between text and mask embeddings to categorize each mask.

We use the estimated segmentation map of the image branch as the ground
truth of the event branch by computing a loss function between both outputs.
However, as we kept E2VID frozen, under poor reconstructions, we weighed this
loss function using the output of a dissimilarity network to give more emphasis
to the regions where E2VID reconstructs well. We further perform knowledge
distillation from the Mask2Former in the image to the Mask2Former in the event
branch, and similarly for the MLP networks. The parameters of the two branches
are initialized with the weights of the ODISE model [34].

3.3 Distilling Image Embeddings

To address the difference in image embeddings between the output of the MLP
for the grayscale image and the corresponding output for the synthetic (recon-
structed) image, we implement knowledge distillation. This involves transferring
knowledge from the image embeddings of the original image to those of the
reconstructed image in the event branch. To do so, we introduce the minimiza-
tion of the Frobenius norm (‖ · ‖F ) of the matrix of differences between real and
reconstructed images encoded by the trainable MLP:

Lt = ‖MLPX(V(X)) − MLPE(V(X̂))‖F , (2)

where MLPX(·) is the frozen MLP of the image branch and MLPE(·) is the
MLP of the event branch. In other words, we leverage the information encoded
in the image embeddings of the original image to guide the learning of the image
embeddings for the reconstructed image. The Frobenius norm serves as a met-
ric to quantify the dissimilarity between these embeddings, enabling the model
to refine its representation of image information and enhance the consistency
between the two image modalities.
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Fig. 3. Dissimilarity network takes the grayscale and reconstructed images as input,
and it outputs an error map to reweight the mask loss. E2VID is unable to reconstruct
the stripes and hence considered a high error area by the dissimilarity network

3.4 Feature Distillation

To provide further guidance from the image branch to the event one, we mini-
mize the Frobenius norm of the matrix differences of the outputs of each layer in
the transformer decoder of Mask2Former between the original image and recon-
structed image:

Lf =
1
L

L∑

i=1

‖Di − D̂i‖F , (3)

where L represents the total number of decoder layers, and D and D̂ are the
output matrices of each layer in the image and events branch, respectively.

3.5 Mask Re-weighting

While maintaining E2VID frozen, poor reconstructions may occur, prompting
the imposition of classification on inadequately reconstructed regions. However,
this approach risks compromising model performance where reconstructions are
accurate. To address this, we introduce a dissimilarity network to discern dif-
ferences between the grayscale image and its reconstructed counterpart from
events. Illustrated in Fig. 3, this network comprises two convolutional layers.
The first layer shares weights for grayscale and reconstructed images, followed
by a rectified linear unit (ReLU) activation, while the second layer is followed by
a sigmoid activation function σ(·). The squared error between the grayscale and
reconstructed images’ outputs feeds into the second convolutional layer, gener-
ating a reweighting map. As shown in Fig. 3 that a notable discrepancy exists
between the grayscale image and the reconstructed image, particularly concern-
ing the stripes on the shirt in this example. Consequently, this discrepancy in
the error map indicates reduced importance attributed to that specific area.
Mathematically, this process can be expressed as:

M = σ(conv2(ReLU(conv1(X)) − ReLU(conv1(X̂)))2), (4)
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Fig. 4. The impact of reweighting the mask loss, influenced by the dissimilarity between
the grayscale and reconstructed images. Poorly reconstructed areas such as the person
and the elephant’s trunk lead to their exclusion in the reweighting process

where X is the grayscale original image and X̂ is the reconstructed image from
E2VID. We use M to re-weight our distillation loss at the level of segmentation
maps Lm. This loss for the ith stream is given by:

Lm = M � LCE

(
Yi, Ŷi

)
, (5)

where Yi ∈ R
H×W×|Cseen| is the output segmentation map of the image branch,

Ŷi ∈ R
H×W×|Cseen| is the output segmentation map of the event branch, LCE

is the cross-entropy loss, and � is the point-wise product between matrices. We
illustrate a sample output of the dissimilarity network in Fig. 4. It can be seen
that OVOSE successfully ignores the areas where the error is high, for example,
the person and the elephant’s trunk.

3.6 Category Label Supervision

As we have access to category labels in the training set, we follow [34] to compute
a category label loss Lc. To this end, we compute the probability of a mask
belonging to one of the training categories using a cross-entropy loss with a
learnable temperature parameter as in [34].

The total loss of OVOSE is given by:

Lfinal = Lt + Lf + λmLm + λcLc (6)

where λm = 5.0 and λc = 2.0 are regularization parameters.

4 Experiments and Results

In this section, we present an overview of the baseline methods for comparison,
details on the training and test data, and a comprehensive analysis of both
quantitative and qualitative results. Subsequently, we delve into ablation studies
to validate the components of OVOSE.

4.1 Experimental Framework

Baseline Methods. As there is no open-vocabulary semantic segmentation
method for events, we benchmark OVOSE against leading UDA methods for
semantic segmentation in event-based data. However, this comparison is unfair
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with OVOSE since UDA methods: (i) know the set of unseen classes, (ii) have
access to one or multiple labeled source datasets, and (iii) have access to the
unlabeled testing dataset for adaptation. We also compare our algorithm with
straightforward adaptations of open-vocabulary semantic segmentation methods
in regular images. This adaptation consists of reconstructing a grayscale image
from the stream of events with the E2VID model (similar to our event branch)
and using this as input to the open-vocabulary model. More precisely, OVOSE is
compared with the UDA methods E2VID [25], EV-transfer [20], VID2E [11] and
ESS [28]. For the open-vocabulary methods, we compare our algorithm against
E2VID+OpenSeed [36] and E2VID+ODISE [34]. We use the mean Intersection
over Union (mIoU) and pixel accuracy metrics for the quantitative evaluations.

Training Data. As described in the problem statement, OVOSE requires a
training dataset Xtrain where we have the stream of events and their correspond-
ing grayscale images. To address this need, we leverage synthetic training data as
introduced by [25]. This synthetic dataset was generated using the event simu-
lator ESIM [24], which simulated MS-COCO images [18]. The dataset comprises
1, 000 sequences, each spanning 2 seconds, with grayscale images and events
of dimensions 240 × 180. For our training purposes, we resize the images and
events to dimensions 256× 192, ensuring compatibility and optimization for our
network. Following [34], we use MS-COCO classes for category label supervision.

Evaluation Datasets. We evaluate the open-vocabulary performance of
OVOSE on two popular event camera-based self-driving datasets and Time-
Lens++:

– DAVIS Driving Dataset (DDD17) is a dataset for semantic segmentation in
autonomous driving. Alonso et al. [1] pre-trained an Xception network to
generate semantic pseudo-labels which were consolidated into six classes: flat
(road and pavement), background (construction and sky), object (pole, pole
group, traffic light, traffic sign), vegetation, human, and vehicle.

– DSEC-Semantic DSEC [13] consists of high-resolution images 1440 × 1080,
synchronized events 640×480, and semantic labels [28] are generated using a
state-of-the-art semantic segmentation method. The fine-grained labels for 19
classes are consolidated into 11 classes: background, building, fence, person,
pole, road, sidewalk, vegetation, car, wall, and traffic sign.

– TimeLens++ We show qualitative results of applying directly OVOSE in the
Time lens++ dataset [29]. Time Lens++ consists of high-resolution events of
size 970 × 625.

Implementation Details. We keep the image branch frozen and fine-tune the
MLP and Mask2Former of the event branch. We use convolutions with 3 × 3
kernel size with a stride of 2 and padding 1 for the dissimilarity network. We
set the learning rate as 1 × 10−5. We train OVOSE using Adam optimizer with
a batch size of 4 on Nvidia Ampere GPU with 48GB of RAM. We initialize
the weights of text and image encoder from [22], text-to-image diffusion UNet
from [23], and MLP and Mask2former from [34]. For qualitative results we use
the open source code and weights provided by [28,34]. For OpenSeed [36], we
use their provided open-source code and weights.



OVOSE: Open-Vocabulary Semantic Segmentation in Event-Based Cameras 27

Fig. 5. Qualitative samples from ESS in UDA closed-set, E2VID+ODISE, and OVOSE
in open vocabulary setting. As compared to ESS and E2VID+ODISE, OVOSE produce
accurate and less noisy predictions even though it is trained on a synthetic dataset

4.2 Results

Semantic Segmentation on DSEC-Semantic. Figure 5 shows a qualitative
comparison of OVOSE against ESS and ODISE. We obtain the qualitative results
for the ESS in Fig. 5 by utilizing the official model provided by the authors. Even
though the ESS method is trained on real events in a closed-set setting, its overall
semantic segmentation across the entire image appears noisy. Notably, it fails to
segment vehicles in several instances accurately. For E2VID+ODISE in an open
vocabulary setting, it misclassifies parts of the road and buildings. In contrast,
OVOSE excels in recognizing traffic signs and delivers superior overall semantic
segmentation across the entire image. This is particularly evident in its ability
to discern intricate details and provide accurate segmentations, showcasing its
robustness and adaptability in the driving scenario of DSEC. Table 1 presents
the comparison of OVOSE against the baseline methods on the DSEC-Semantic
dataset. Even though the UDA methods are trained in the closed-set setting
using real events and urban street datasets similar to DSEC, OVOSE surpasses
their performance by a significant margin. Notably, our model improves the state-
of-the-art UDA method ESS [28] by a substantial 3.57% in the mIoU metric.
Similarly, OVOSE outperforms E2VID+ODISE by 4.83% in the mIoU metric,
showcasing the superior performance of OVOSE for semantic segmentation in
event-based data.

Semantic Segmentation on DDD17. Figure 6 presents a qualitative com-
parison between OVOSE, ESS, and E2VID+ODISE. ESS effectively segments
poles and other event-specific objects that may not be available in the ground
truth. However, it struggles with inaccuracies and noise when segmenting cars.
In contrast, OVOSE operating in an open vocabulary setting showcases the
ability to segment traffic signs even when unlabeled in the ground truth images.
Notably, OVOSE excels in differentiating between classes, particularly with vehi-
cles, and demonstrates more accurate and noise-resistant semantic segmentation
compared to the ESS. OVOSE also outperforms E2VID+ODISE by providing
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Table 1. Results on DSEC Semantic in UDA and open-vocabulary setting. OVOSE
not only outperforms all the UDA methods even though they are trained in closed-set
settings but also translated open-vocabulary methods

Method Type Problem Formulation Training Data Input Acc (%) ↑ mIoU (%) ↑
EV-Transfer [20] UDA Closed-Set Cityscapes+DSEC events+frames 60.50 23.20

E2VID [25] UDA Closed-Set Cityscapes+DSEC events+frames 76.67 40.70

ESS [28] UDA Closed-Set Cityscapes+DSEC events+frames 84.04 44.87

E2VID+OpenSeed [36] Translation Open-Set MS-COCO events 65.25 32.82

E2VID+ODISE [34] Translation Open-Set MS-COCO events 81.24 43.61

OVOSE (Ours) Distillation Open-Set EV-COCO events 85.67 48.44

Fig. 6. Qualitative samples from DDD17 in UDA closed-set, E2VID+ODISE, and
OVOSE in open vocabulary setting. OVOSE does better overall predictions, especially
vehicles, persons, vegetation, and construction

clearer object recognition and segmentation. This comparison emphasizes the
need for knowledge distillation and OVOSE’s capacity to deliver precise seman-
tic segmentation even in scenarios with incomplete or noisy ground truth anno-
tations.

When it comes to quantitative evaluation on the DDD17 dataset, the presence
of noisy ground truth labels, as highlighted by [28], poses challenges. Addition-
ally, the previous work by Ev-SegNet [1] merged several labels, further compli-
cating the evaluation process. To address this, we consider the original classes
pre-merge for predictions, subsequently merging them to facilitate a compari-
son with the ground truth. Table 2 summarizes the quantitative comparison of
OVOSE with the baseline methods on the DDD17 dataset. OVOSE significantly
improves the UDA state-of-the-art ESS method [28] by 0.93% in the mIoU met-
ric. Notably, our algorithm outperforms E2VID+OpenSeed and E2VID+ODISE
by large margins, underscoring the significance of knowledge distillation and
mask reweighting in semantic segmentation for event cameras.

Qualitative Results on the Time Lens++ Dataset. We use the Time
Lens++ [29] dataset to evaluate the open-vocabulary capabilities of OVOSE
since no open-vocabulary event dataset is available. Some qualitative results
are illustrated in Fig. 7. We see in Fig. 7 that OVOSE performs high-quality
segmentation of various classes such as trees, traffic lights, people, cars, build-
ings, sidewalk, and roads which demonstrates OVOSE preserved open vocabulary
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Table 2. Results on DDD17 in UDA and open-vocabulary setting. OVOSE outper-
forms all the UDA methods trained in closed-set settings but also translated open
vocabulary methods

Method Type Problem Formulation Training Data Input Acc (%) ↑ mIoU (%) ↑
EV-Transfer [20] UDA Closed-Set Cityscapes+DDD17 events+frames 47.37 14.91

E2VID [25] UDA Closed-Set Cityscapes+DDD17 events+frames 83.24 44.77

VID2E [11] UDA Closed-Set Cityscapes+DDD17 events+frames 85.93 45.48

ESS [28] UDA Closed-Set Cityscapes+DDD17 events+frames 87.86 52.46

E2VID+OpenSeed [36] Translation Open-Set MS-COCO events 33.25 17.95

E2VID+ODISE [34] Translation Open-Set MS-COCO events 84.63 48.12

OVOSE (Ours) Distillation Open-Set EV-COCO events 88.84 53.39

Fig. 7. Open-vocabulary performance of OVOSE on the Time Lens++ dataset [29]

capabilities. Furthermore, OVOSE can recognize the bike and train even though
the reconstruction from E2VID is very noisy and far from optimal.

4.3 Ablation Studies

Mask Reweighting. We conduct an ablation study to validate the reweighting
schemes and knowledge distillation techniques in OVOSE. To that end, We eval-
uate OVOSE without training; this is equivalent to performing E2VID+ODISE.
Then, we analyzed the impact of reweighting by using only the distillation
pipeline, with reweighting based upon cosine similarity (CS) on the original and
reconstructed image, by using the squared differences of the output of Stable
Diffusion (SD) from the image and event branches and finally with our Dissimi-
larity Network (DN) corresponding to OVOSE. Table 3 shows the results of the
ablation study. Distillation resulted in a notable increase in accuracy by 3.8%
and mIoU by 3.4%, showcasing the effectiveness of this approach. Moreover, the
introduction of the dissimilarity network for reweighting the loss function gives
an additional improvement of 1.43% in the mIoU metric.
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Table 3. Ablation of distillation strategies of OVOSE on DSEC Semantic dataset

Method Acc (%) ↑ mIoU (%) ↑
Baseline 81.2 43.61

Distillation 85.0 47.01

Distillation+Reweight CS 85.1 48.01

Distillation+Reweight SD 85.1 47.32

Distillation+Reweight DN 85.6 48.44

Table 4. Ablation studies on DSEC-Semantic dataset. MLP’s is MLP layer of OVOSE
and MG is the Mask Generator

Ablation Parameters Acc (%) ↑ mIoU (%) ↑
Loss λc λm

5.0 5.0 84.47 46.47

5.0 2.0 84.70 46.44

2.0 5.0 85.67 48.44

Finetuning MLP’s MG

� ✗ 82.46 44.34

✗ � 83.19 44.68

� � 85.67 48.44

Image-Reconstructor FireNet [27] E2VID [25]

� ✗ 82.85 43.94

✗ � 85.67 48.44

Text Prompts DSEC Classes Ours

� ✗ 84.04 46.50

✗ � 85.67 48.44

Loss Parameters. We study the impact of varying λc and λm in Eq. 6 on
model performance. As shown in Table 4, the optimal combination of λc = 2.0
and λm = 5.0 achieved the highest accuracy 85.67% and mean Intersection over
Union (mIoU) 48.44%, indicating that a lower weight on caption loss and a
higher weight on mask loss enhance performance.

Fine-Tuning Ablation. We explore the effects of fine-tuning the MLP layers
and the Mask Generator (MG), individually and together. From Table 4, we
observe that fine-tuning only the MLP resulted in 82.46% accuracy and 44.34%
mIoU, while fine-tuning only MG slightly improved performance to 83.19% accu-
racy and 44.68% mIoU. However, simultaneous fine-tuning of both MLP’s and
MG yielded the best results with 85.67% accuracy and 48.44% mIoU, underscor-
ing the necessity of fine-tuning both components together.
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Image Reconstructor Ablation. We replaced E2VID [25] with FireNet [27]
and reported results in Table 4. E2VID significantly outperformed FireNet,
achieving 85.67% accuracy and 48.44% mIoU which indicates that E2VID’s
recurrent neural network handles temporal information well and outputs higher
quality reconstructions for our downstream task.

Ablation on Text prompts. We further assess the effectiveness of two
text prompt configurations: directly using the DSEC-Class name and our text
prompts shown in Tables 1 and 2 in the supplementary document. Results in
Table 4 show that DSEC-Classes configuration resulted in 84.04% accuracy and
46.50% mIoU. In contrast, our text prompts configuration achieved superior
performance with 85.67% accuracy and 48.44% mIoU, demonstrating that the
detailed prompts enhance the model’s performance more effectively.

5 Conclusion

In this work, we introduced OVOSE, the first open-vocabulary semantic segmen-
tation algorithm designed for event-based data. Comprising grayscale image and
event branches, each equipped with a pre-trained foundation model, our app-
roach leverages synthetic data for Knowledge Distillation from regular images to
enhance semantic segmentation in events. OVOSE employs distillation at mul-
tiple stages of the foundation model, enhancing its effectiveness with a mask
reweighting strategy through a dissimilarity network. We evaluate OVOSE in
the DDD17 and DSEC-Semantic datasets and compare it against with exist-
ing methods in UDA close-set semantic segmentation and foundation models
adapted to the event domain with E2VID. Our algorithm outperforms all these
models, offering a promising avenue for research in open-vocabulary semantic
segmentation tailored for event cameras.
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Abstract. Detecting moiré patterns in digital images is essential as it
offers insights for assessing image integrity and undertaking demoiréing
processes. MoireDet is a simple and efficient moiré pattern detection
neural network designed explicitly for moiré edge map estimation [23].
However, the random feature mapping of the Performer significantly
affects the prediction for continuous video frames. This paper introduces
MoireDet+ based on existing work, which introduces Vision Transformer
into moiré-related tasks. MoireDet+ utilizes a mixed-encoder as a back-
bone, integrating both high- and low-level vision encoders in an FPN-like
method, along with a spatial encoder to extract the complex spatial fea-
tures of moiré patterns. Furthermore, we produce a rapid approximation-
based evaluation method to aid loss function design in image restoration
and similar tasks. MoireDet+ reaches a state-of-the-art level on main-
stream datasets, reducing time costs by 18% compared to MoireDet and
other baselines with comparable performance levels.

Keywords: Moiré Pattern · Moiré Pattern Detection · Moiré Pattern
Restoration

1 Introduction

Demoiréing has been a long-standing research direction in image restoration
research. Moiré patterns arise from the loss of texture detail due to the Nyquist
effect [2]. It is caused by an insufficient sampling frequency of the camera sensor,
which occurs when photographing objects with high-frequency appearance fea-
tures, such as displays and high-frequency fine lines in nature. The moiré pattern
detection and demoiré tasks target the same subject matter but have different
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objectives. Moiré pattern detection involves binary classification to detect the
presence of moiré patterns in images. This study does not encompass the widely
researched field of demoiré but focuses solely on moiré pattern detection. Moiré
pattern detection task has applications in diverse fields [1,11,23], including por-
tal security, autonomous driving, etc. Typical work scenarios include (1) Face
moiré detection for cameras. Here, moiré patterns can be an anti-cheating mea-
sure against attempts to spoof the camera using images of the owner’s face [11].
(2) Moiré extraction in fashion design. When designers show particular styles by
designing moiré, the moiré pattern can help designers evaluate and refine their
complex designs. (3) Remove misleading information from autopilot tasks. In
bustling commercial centers, images such as cars displayed by giant light signs
on the roadside can deceive multi-camera systems, leading to errors in autopilot
functionality.

MoireDet by Yang et al. [23] has demonstrated efficiency in detecting moiré
patterns and identifying moiré images. By leveraging both high-level contextual
features and low-level structural features, MoireDet employs three encoders to
encode moiré patterns effectively, utilizing adaptive kernels that are sample- and
location-specific. However, providing a high-quality prediction of moiré pattern
for a screen-shot video can be challenging for MoireDet. The random feature
mapping of the Performer significantly affects predictions for continuous video
frames, leading predicted videos to exhibit a ”jittering” effect of moiré. This
problem becomes more pronounced when MoireDet is compared to other models
designed for similar purposes, emphasizing the complexity of accurately detect-
ing video moiré patterns. The prediction of the moiré pattern is often not fine
enough compared to the ground truth, underscoring the need for further refine-
ment in model performance.

Succinctly, the main contributions of this work are as follows: (1) we introduce
a new type of Vision Transformer inspired by MB-TaylorFormer [22], a proven
effective image denoising method for finely extracting fusion features. (2) We
enhance the structure of the original model by using a Mixed-Encoder as the
backbone, which integrates both high- and low-level vision encoders. This is
achieved by using an FPN-like method while keeping a spatial encoder to extract
the complex spatial features of moiré patterns. In addition, a distinctive contrast
detection module during the prediction stage is proposed in MoireDet+. We show
superior performances against the state-of-the-art MoireDet on moiré pattern
detection and identification (e.g., SSIM 0.57 v.s. 0.33 on MoireScape dataset,
accuracy 82.1% VS 81.6% on moireIDT dataset), a prominent improvement in
accuracy, and the time cost is 18% lower than MoireDet on prediction period.
The visualization of MoireDet+ output can be seen in Fig. 1.
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Fig. 1. Examples of moiré patterns detected by MoireDet+. Top: Model’s input, and
Bottom: Corresponding Moiré Layers by MoireDet+)

2 Related Works

2.1 Moiré Pattern Detection

While considerable research has been devoted to removing moiré [10,21,24], moiré
detection methods have received comparatively less attention. Historically, moiré
detection methods were generally extended from existing detection methods like
smoke, haze, etc. [1,18]. Later studies explored multi-scale detection methods
using the U-Net class, which are significantly effective and can be migrated to
moiré detection using the shadow detection method through RNN [14]. Abra-
ham [1] and Garcia [11] proposed an intriguing approach combining neural net-
works with spectral analysis to portray the full range of moiré features. But
MoireDet [23] employs predicted grey-scale moiré images for detection, confirm-
ing that the direct moiré detection method is ineffective in moiré detection tasks,
while the prediction-then-detection method fits better. Our proposed MoireDet+
is built on a single Vision Encoder and Vision Transformer to address sensitivity
issues. MoireDet+ has a state-of-the-art performance on primary datasets.

2.2 Loss Function Set

In previous research, the setting of the loss function has often been standardized
within specific tasks [6,9]. However, image generation tasks require different loss
functions tailored to their unique requirements [20]. While standard loss like SSIM
offers reasonable outcomes, relying solely on SSIM can lead to issues such as learn-
ing overly complex features and suppressing model output [17]. It is crucial to
adopt an appropriate loss function to guide the generation of outputs that align
with the specific features of the task. Still, this process may yield a less-than-ideal
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loss function, possibly leading to misleading results or insufficient smoothing of the
gradient descent. Consequently, establishing a method to evaluate the loss func-
tion is essential for task-specific settings. We use mathematical analysis to derive
and validate this method, as detailed in Sect. 4.

3 MoireDet+

Our proposed MoireDet+ employs distinct methods for the output moiré O and
detection moiré stages (see Fig. 2). In the output stage, we utilize Mixed-feature
Encoder and Spatial Encoder to extract moiré features and generate a binary
output map. In the detection stage, we conduct comparative moiré detection on
O through the tail-plugging detection module. Also, the detection method of the
tail-plugging module can be changed according to specific usage scenarios.

3.1 Architecture

Mixed-Encoder. The Mixed-Encoder(ME) in MoireDet+ is a branch encoder
that encodes fine multi-scale texture details within an image. ME uses the first
two residual blocks of ResNet18 [13] and the complete ResNet18 to extract both
low-level and high-level features from the original image. These features are
then fused using BiFPN [4], the architecture of ME is depicted in Fig. 3. Unlike
MoireDet, which fuses both high- and low-level encoders (HLE and LLE) via
pointwise multiplication, a method that can lead to complications during gradi-
ent descent optimization, we enhance this process with a continuous serial fusion
strategy. This refinement improves parameter-to-loss gradient mixing, strength-
ening the global optimization process following feature map fusion.

Vision Transformer. We introduce a new type of Vision Transformer inspired
by MB-TaylorFormer [22], proven effectiveness in image denoising and fine
extraction of fusion features. Leveraging Taylor expansion, this approach signif-
icantly reduces the variance of similar image features and provides more stable
outputs, making MoireDet+ the first model to provide stable restoration for
video moiré. Using MB-TaylorFormer, we compress information within feature
maps, producing detailed fused feature maps encompassing local texture and
macro features. Also, it reduces the time complexity of Vision Transformer’s
softmax stage from O(n2) to O(n) [22], substantially decreasing the time cost
for MoireDet+ by up to 18% in the same prediction task (see Table 1).

Spatial-Encoder. The Spatial-Encoder (SE) in MoireDet+ is similar to
MoireDet and is tasked with indicating the spatial distribution of moiré patterns.
Comprising adaptive 5 × 5 convolution kernels, SE calculates the weights of these
kernels based on the output of the Mixed-Encoder feature map. Each convolutional
kernel in the SE is responsible for extracting features from specific local regions of
the image, enabling the capture of local moiré patterns. In addition to the original
input, it also needs to receive the feature map output from the ME for guidance.
The spatial pattern of Moiré can be seen in the first row of Fig. 5.
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Fig. 2. Architecture of our proposed MoireDet+

Fig. 3. Mixed-Encoder Architecture

Tail Plug Detection Module. The Tail Plug Detection Module (TPDM)
is the primary difference between MoireDet+ and MoireDet in their detection
methods. Its purpose is to detect the presence of moiré patterns in the origi-
nal image based on the extracted moiré layer. This step is necessary because
high-frequency textures in the background of the original image can sometimes
be mistaken for moiré patterns and extracted incorrectly. Using the moiré layer
without verification can lead to false positives. For MoireDet+, we have designed
various TPDM methods, including previously used Pixel-Sum and FFT methods,
as well as our proposed GLCM (Gray-level Co-occurrence Matrix [19]) and CNN
(Convolutional Neural Network) methods. The GLCM method extracts Haral-
ick features [12] from the moiré layer’s GLCM and uses SVM (Support Vector
Machine) [3] for subsequent binary classification. The CNN method employs a
simple shallow CNN for classification.
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3.2 Loss Functions

The total loss L is defined as a combination of two components:

L = w1Lpixel + w2LBS . (1)

where Lpixel and LBS denote the Per Pixel Loss and Background Similarity
Loss, respectively. The weights w1 and w2 are empirically set to 0.7 and 0.3,
respectively. LBS is designed to mitigate the impact of high-frequency textures
in the background image, which are similar to moiré pattern. The parameters w1

and w2 are used to balance Lpixel and LBS , and they are determined based on
the characteristics of the MoireScape dataset. For datasets with stronger moiré
patterns or more high-frequency background textures, these parameters need to
be adjusted accordingly.

Per Pixel Loss: Per Pixel Loss (PPL) is the fundamental loss function, i.e.,
a pixel-by-pixel comparison between the output map and the Ground Truth. In
our approach, we utilize the L1 Paradigm for smoothing. The formula for PPL
is given by:

Lpixel =
1

m × n

m∑

i=1

n∑

j=1

d(O(i, j),M(i, j)) . (2)

where m and n are the height and width of the input image. d(·) denotes the
L1 Paradigm. O represents the output moiré layer, and M denotes the Ground
Truth moiré layer in training triplet.

Background Similarity Loss. Background Similarity Loss (BSL) aims to
mitigate mispredictions in the image I, featuring high-frequency regions, such
as dense foliage or intricate flower details, which may obscure the moiré layer.
Leveraging the training triplet (combined image, moiré layer, natural image)
from MoireScape, we compute BSL using the natural image after the edge detec-
tion process. The formula of BSL is as follows:

LBS = − 1
m × n

m∑

i=1

n∑

j=1

d(O(i, j), Bedge(i, j)) . (3)

where Bedge represents the natural image with edge detection applied.

4 Loss Function Evaluation

Custom loss functions are commonly employed in image generation and restora-
tion tasks to guide models, enhancing generalization and learning speed. How-
ever, this could potentially lead to unforeseen issues. When using MoireDet for
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inference, it consistently applies a fixed, grid-like pattern across the image’s
underlying layer, regardless of the type of moiré pattern present. The authors
also observed this problem and suggested that the Performer could resolve it.
However, this was actually due to the random mapping by the Performer miti-
gating the issue rather than fundamentally solving it.

It is crucial to emphasize that the motivation behind proposing a mechanism
for evaluating loss functions is to address the challenge of repetitive training and
conditioning models, particularly considering the significant time and resource
costs associated with larger models. Our proposed evaluation method is intended
to be lightweight, facilitating the testing to determine whether a singular or
combination of loss functions yields specific patterns of locally optimal solutions.
Our evaluation method employs a learnable Tensor for rapid approximation.
utilizing a Tensor sheet of the same size as the input to simulate the parameter
gradient descent process during learning (see Algorithm 1).

Algorithm 1: Loss Evaluation
Input:

Weight Matrix and Output, Target ;
Ground Truth, GT ;
Loss Function to be evaluated, L;

Output:
Visualization of Output Map, O

for step i in range(steps) do
Loss ← L(Targeti, GT )
Train and Optimize, optimize on Targeti
Targeti+1 ← Targeti with Optimization

end for

The process enables the selection of the composition of the Target Tensor,
which consists of all 0, random values and uses image inputs from the correspond-
ing dataset. Given that the potential effects of locally optimal solutions may not
always be quantified through data alone, it is essential to visually observe the
ultimate impact of the Target and assess SSIM(Structural SMIilarity) concerning
the GT(Ground Truth). The visualization of our proposed loss function evalua-
tion is shown in Fig. 4.

4.1 Validity of Loss Function Evaluation

To substantiate the validity of our method, we employ mathematical analysis
to establish error limits between our approximate estimation method and the
actual value. The detailed proof is presented below:
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Fig. 4. Visualization of our proposed Loss Function Evaluation. They are displayed on
a black background with a pure white input for optimal contrast and clarity

During Training: For a weight parameter w∗:

w∗;k+1 = w∗;k ⊕ dL

dw∗;k
× LearningStep . (4)

where ⊕ symbolizes the parameter change induced by the Trainer (e.g., ADAM).
w denotes a weight parameter in the Learnable Tensor, and k represents the
iteration time. L refers to the Loss Function.

During Inference: For a pixel pi,j;k+1 in Ok+1 with the same input ISpec:

pi,j;k+1 = Net(ISpec;W[·N ],k) . (5)

where i, j denote the position of pixel p in the map. W[·N ],k encompasses all
parameters set at iteration k ,ranging from w1;k to wN ;k. Net(∗; ∗) represents
the network used for approximation. ISpec denotes the specific input.This is an
abstract reasoning process, which will be approximated in the following steps.

After Approximation: For a pixel pi,j;k+1 in Ok+1 with same input ISpec:

pi,j;k+1 = pi,j;k − dL

dpi,j;k
. (6)

To demonstrate that the two methods yield insignificant differences, we compare
their outputs, such that:

Δpi,j;k+1 =‖ Net(Ii,j ;W[···N ];k+1) − pi,j;k +
dL

dpi,j;k
‖
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=‖ Net(Ii,j ;W[···N ];k) ⊕ dL

dW[···N ];k
× ε +

dL

dpi,j;k
− pi,j;k ‖ . (7)

where ε represents the learning rate or the change rate of parameter set W
after iteration k by the Trainer. Net(·) must exhibit a continuous property, and
it is commonly subjected to Lipschitz conditions, which are pivotal in convex
optimization. For a network Net(·) that satisfies Lipschitz continuity for all
parameters W[...N ], it can be derived from the Lipschitz continuity condition
that the upper and lower bounds of its variations can be determined:

∀w∗ : Net(Ii,j ;W[···N ]\w∗;k, wk+1) ≤ Net(ISpec;W[···N ],k) + L ‖ Δw∗ ‖ .(8)
∀w∗ : Net(Ii,j ;W[···N ]\w∗;k, wk+1) ≥ Net(ISpec;W[···N ],k) − L ‖ Δw∗ ‖ .(9)

where W[···N ]\w∗;k, wk+1 signifies the removal of w∗;k and the addition of wk+1

in the parameter set W[···N ]. We also need to ensure that this domain remains
sufficiently small:

Net(Ii,j ;w[···N ];k) ⊕ dL

dW[···N ];k
× ε ∼ Net(ISpec;w[···N ],k) · · · L ‖ Δw∗ ‖

Δw∗ =
dL

dW∗
× ε . (10)

The step length is sufficiently small, Δw∗ defines a tight neighborhood size:

pi,j;k+1 ≤ L ‖ Δw[···N ] ‖ +
dL

dpi,j;k
. (11)

Differences converge rapidly through stepwise training, and adopting a ran-
domized optimization strategy ensures that the output graphs are evenly tuned.
It requires the gradient of the Loss Function to be bounded and continuous in our
approach to ensure that the range of differences remains reasonably estimable.
Failure to satisfy this condition would render the approximation method inef-
fective. However, it is widely accepted in routine tasks that the gradient of Loss
Function is bounded. Hence, in most cases, this condition will be met.

5 Experiments

5.1 Datasets

Moiré Image Identification. Moiré identification task aims to classi-
fier whether an image contains moiré patterns. For this, three datasets
(MoireFace [11], MoireIDT [23], and MRBI [25]) are employed for evaluation and
comparison. Specifically, the MoireFace dataset was collected using 50 selected
original faces displayed on MacBook, iPad, and iPhone for camera capturing
with 12 different cameras, display, and distance combinations. 12 × 50 = 600
face images with moiré pattern (positives) were collected. Along with 50 original
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Table 1. Ablation Study on MoireDet+, left two columns shows results on MoireScape
dataset, right two shows results on Continuous Video Frames

PSNR SSIM RunTime CVR

MoireDet 8.65 0.33 160.9 0.053

ME+SE 8.84 0.33 122.7 0.055

ME+ViT 10.38 0.37 131.5 0.032

MoireDet+ 10.80 0.57 141.3 0.040

faces (negatives), MoireFace contains 600+50 = 650 face images for face-spoofing
identification. The MoireIDT dataset comprises 4,000 images collected from vari-
ous scenarios, including 2000 authentic moiré images (positives) and 2000 moiré-
free images (negatives) featuring varying degrees of background complexity. The
positive set includes camera-captured screen images and natural images exhibit-
ing moiré effects. Similarly, the MRBI dataset contains 340 pairs for testing.

Moiré Pattern Detection. Moiré pattern detection task aims to detect the
distribution and density of moiré patterns (similar to moiré pattern heatmap)
within an image. We selected 1000 triplets from the MoireScape dataset [23],
using the moiré layer compared with the output to calculate the PSNR (Peak
Signal-to-Noise Ratio) and SSIM (Structural SMIilarity) metrics. In MoireScape,
images were organized in triplet form. Each triplet contains a segmentation moiré
edge layer with transform, a ground truth background image, and a combined
image with the background image and moiré layer. The pure moiré layers were
captured from screenshot photos with an all-white screen, followed by edge detec-
tion segmentation to isolate the moiré layer. Background images are sourced
from COCO [16], ImageNet [7], PASCAL VOC [8] and Retail50K [5] dataset,
each resized to 320×320 size. The combined images are generated by transform-
ing the moiré layer with rotation and scaling, reflecting that moiré patterns may
not always mask the entire image but only a portion of it.

5.2 Moiré Pattern Detection

First, we train MoireDet+ for high-precision moiré capture. We employ the com-
plete MoireScape dataset [23] with 50000 triplets for training. The training set
is divided with a 9 : 1 ratio for training and validation purposes. We use a single
NVIDIA RTX 3090 GPU, training lasting 32 h over 100 epochs. The learning
rate is set to 1e−3, and the chosen optimizer is Adam [15].

We conducted ablation studies to validate the effectiveness of the MoireDet+
structure. With the complete ME + ViT + SE architecture, the output shows
the finest spatial structure and seems most detailed. The model output with
Performer is more coarse, while the appearance generally remains like a moiré
pattern. Its prediction time cost is about 18%. The result of the ablation study
is shown in Table 1.
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SE is motivated by the difference in fine-grained moiré patterns by region.
During this experiment, we also found that it plays a role in keeping the multi-
layer moiré pattern. Multi-layer moiré means that moiré shows different inclina-
tions and appearances but in the same region. With SE, the model can precisely
capture the moiré pattern with various patterns, as shown in Fig. 5 (middle).
In particular, the captured patterns show a finer appearance. Otherwise, the
output is misled by dark regions from the background (see Fig. 5 (right)).

Fig. 5. Example on model with and without SE, the first row shows different inclina-
tion, the second row shows SE’s finer appearance

Compared to MoireDet, the detected moiré patterns from MoireDet are more
fine-grained. Ideally, MoireDet+ reproduces coarse- and fine-grained moiré spa-
tial structures with near pixel-level accuracy, whereas MoireDet only captures
rough distribution lines. Adjustments to the loss function effectively resolve peri-
odic lattice point issues seen in MoireDet. Existing models still struggle with
occlusion and misrepresentation by dark backgrounds, and MoireDet+ offers
more accurate predictions under dark occlusion due to the heightened sensitiv-
ity of its Vision Transformer.

5.3 Moiré Image Identification

With the detection output from MoireDet+, we extend it for the moiré image
identification task with our proposed TPDM (see Fig. 2). With the distribution
and density of detected moire patterns from MoireDet+, we directly identify
the existence of moire patterns with TPDM. Our experiments in this part show
that in environments with dark and variable background images, MoireDet+
(equipped with TPDM) performs more stability than the other methods.
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Table 2. Ablation study of MoireDet+ on moire image identification task with Pixel-
Sum method [23] employed

MoireDet+ ME+ViT ME+SE

MoireIDT 81.75 79.21 81.99

MRBI 90.00 85.41 88.19

Table 3. Comparison with four TPDM identification methods on MoireIDT [23] and
MRBI [11] dataset

MoireIDT MRBI

Pixel-Sum 81.75 90.00

GLCM 80.00 91.52

FFT 81.89 89.77

CNN 82.10 90.42

Firstly, we do an ablation study with MoireDet+ to examine its best per-
formance module in moiré image identification task on MoireIDT [23] and
MRBI [11] dataset with the direct Pixel-sum method (see Table 2). The com-
plete MoireDet+ and ME+SE structures have the best performance. We choose
the MoireDet+ to do the following comparison with the four TPDM methods
(Pixel-Sum [23], FFT-Based [11], GLCM- and CNN-Based) (see Table 3). The
CNN-based method reaches the best performance on both datasets. So we choose
MoireDet+ with CNN-Based TPDM method to do the moire image identifi-
cation with existing other methods: MDCNN [1], Peak [11], Wavelet [1] and
MoireDet [23]. Results are in Table 4.

We also need to point out that although MoireDet+ employs the CNN
method for detection in Table 4, which performs best overall, other methods
may be more suitable in specific cases. For instance, in the MoireIDT dataset,
where the CNN method exhibits a lower recall, the GLCM method performs
better (81.36 by GLCM vs. 72.10 by CNN). This suggests that different TPDM
detection methods can be selected based on the specific requirements of the
application, such as a higher emphasis on recall or precision.

Differently, MoireDet+ is more generalized, and achieves the highest preci-
sion on the MoireIDT dataset, and has the most stable performance overall. It
shows a much larger improvement on the MoireIDT and MRBI datasets than on
MoireFace. One possible reason is that the MoireFace dataset was captured on
screen conditions that differed from other datasets, causing the moiré pattern to
change. A moiré pattern is very well suppressed on miniLED screens, so the thresh-
olds commonly used on LCD screens were used, leading to misclassification.

5.4 Prediction on Continuous Video Frames

When predicting moiré patterns from video, we need to tackle the problem of
the model being sensitive to the detail of the input image and give different
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Table 4. Performance comparison of moiré pattern identification on three datasets [1,
11,25]. P : Precision(%), R: Recall(%), Acc: Accuracy(%)

MoireIDT MoireFace MRBI

P R Acc P R Acc P R Acc

MDCNN 50.32 97.75 50.63 92.96 88.00 82.77 51.38 98.53 52.65

Peak 74.71 79.90 76.43 95.27 97.33 93.08 73.07 69.41 71.91

Wavelet 38.54 40.20 38.05 76.24 23.00 22.31 53.89 87.65 56.32

MoireDet 84.13 77.90 81.60 95.88 93.00 90.57 90.11 89.06 90.00

MoireDet+ 88.5 72.1 82.1 89.13 88.62 88.97 91.08 90.11 90.42

Fig. 6. Visualization on Continuous Video Frames Prediction by MoireDet+ and
MoireDet

predictions for continuous video frames that are almost the same. Thus, we
compare MoireDet+ on continuous screen-shot video frames with MoireDet (see
Fig. 6). We collect a frame-by-frame dataset from several screen-shot videos
captured using a 60 FPS (Frame per Second) phone camera, extracting one frame
from every five continuous frames. We scale the frames to a size of 320 × 320.
Subsequently, both MoireDet and MoireDet+ are applied to these continuous
frames. The comparison results are shown in Table 1. Our findings demonstrate
a significant improvement in the smoothness of MoireDet+ output compared to
MoireDet, with minimal jitter observed on nearly identical image frames. This
substantial improvement not only enhances the overall performance of the model
but also its stability and robustness.
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To quantify the stability of this task, we propose a novel metric called the
Continuous Variation Ratio (CVR). For a series of the same frames with iota
difference length Len, CVR is defined as:

CVR =
‖Si − E(S)‖1
Len × E(S)

. (12)

CVR measures the variability ratio of the output for continuous frames, where Si

represents the sum of t pixel values for frame i, and E(S) denotes the expected
value of the sum across all frames. In our experiment, MoireDet+ exhibited
a CVR that was 24.5% lower than that of MoireDet, confirming the superior
stability of MoireDet+ in continuous frame prediction.

5.5 Effectiveness of Loss Function Evaluation

In Sect. 4.1, we have demonstrated the lower bound of our loss function evalu-
ation algorithm’s approximation. Since this method is not a direct quantitative
approach, we do not have an effective way to verify its intrinsic validity. There-
fore, we present the accuracy results on the MRBI dataset by training MoireDet
and MoireDet+ with the loss functions before and after the evaluation, as shown
in Table 5. The results show that the model not only achieves improved accuracy
after the evaluation but also gains the ability to output based on the specific
moiré pattern details in the image, rather than producing a fixed pattern format.

Table 5. Effectiveness of Loss Function Evaluation (Acc(%), test on MRBI)

MoireDet MoireDet+

MRBI MoireIDT MRBI MoireIDT

Before 90.00 81.60 88.35 80.66

After 90.21 81.93 90.42 82.10

6 Limitations

We encounter the occasional unpredictability of MoireDet+ predictions, partic-
ularly notable in the FHDMi dataset, where the output often appears sparse and
misleading. We suspect this impunity is caused by the variability in screen tech-
nologies and the scaling we employ on the images. In MoireScape, moiré patterns
were captured from single-display monitors with different phone cameras. How-
ever, our experiments revealed disparities in moiré manifestation across various
display types, such as VA (Vertical Alignment), IPS (In-Plane Switching), and
TN (Twisted Nematic) monitors. This disparity poses a considerable challenge,
as the vast array of monitor parameters can generate diverse moiré patterns.
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7 Conclusion

This paper presents MoireDet+, an optimized Moiré Pattern Detection model.
By introducing a new type of Vision Transformer inspired by MB-TaylorFormer,
enhancing the model structure with a mixed-encoder backbone, and incorporat-
ing a contrast detection module, we significantly improve its performance in
moiré pattern detection. MoireDet+ demonstrates compatibility with various
TPDM methods and exhibits stability and validity in the Moiré Identification
Task. Additionally, we introduce an evaluation method for task-specific loss opti-
mization. Our proposed MoireDet+ achieves state-of-the-art performance across
several main-stream datasets. For further development and to ensure the repro-
ducibility of our results, we make our codes and evaluations publicly available
on https://github.com/Siztas/MoireDetPlus.
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Abstract. Fungi image classification is highly challenging due to the
high degree of similarity in the visual features and varying image qual-
ity. The classification of rare fungi is made more difficult by the lim-
ited data and images available. To address this issue, we employ few-
shot learning techniques on the Danish Fungi 2020 dataset, utilizing the
LibFewShot implementation. In particular, our study focuses on experi-
menting with five metric-learning based few-shot learning methods and
comparing their performances on this dataset. Further, we examine the
effectiveness of applying five data augmentations on each method, and
find that adding all beneficial augmentations does not yield better results
than applying the most beneficial augmentation alone. We also attempt
to enhance the models with two self-supervised learning tasks, where
we discover them to have the best performance on weaker models. Sim-
ilarly, when adding augmentations to self-supervised tasks, the overall
performance was weakened. Overall, we have found the Cross Atten-
tion Network with ColorJitter augmentation to be the optimal model
in this application along with a remarkable scalability. Our study pro-
vides insights into the potential of utilizing few-shot learning to classify
uncommon fungi and directions for further improvements.

Keywords: Fungi Image Classification · Few-Shot Learning · Data
Augmentation · Self-Supervised Learning Tasks

1 Introduction

The classification of fungi has been identified as a crucial component in bio-
taxonomy, offering researchers a deeper understanding of biodiversity within
mycology [16]. Employing fungi image classification models presents a consid-
erable time-saving alternative to traditional manual classification, which also
requires less human expertise. Furthermore, fungi recognition is the core tech-
nique in fungi recognition apps that are emerging for people interested in fungi,
similar to other smartphone apps for flowers and plants. Despite the critical role
such models could play, the explorations in fungi image classification have been
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relatively limited, primarily due to the absence of relevant datasets. This scenario
is improved by the introduction of the Danish Fungi 2020 Dataset (DF20) [12],
marked by its unparalleled quality and scale. The dataset, which originated from
the Atlas of Danish Fungi, encompasses 1,604 classes with 266,344 training
instances and establishes an ideal test bed for conducting image classification
experiments related to fungi.

By employing data in DF20 and state-of-the-art (SOTA) image classifica-
tion methods, the majority of fungi image classification tasks—except for rare
species—should be significantly more manageable. Given the scarcity of available
data for these particular species, ordinary deep-learning methodologies prove
ineffective for their classification. However, few-shot Learning (FSL) [3,18]
can be employed to address this challenge. FSL enables classifiers to be first
trained on an abundant but mutually exclusive auxiliary dataset (e.g., common
fungi species), enabling the transfer of this knowledge to the classification of
rare species. Currently, three primary categories of FSL methods exist: meta-
learning based methods [5], metric-learning based methods [14,17], and non-
episodic based methods [2]. LibFewShot [8] provides a comprehensive library
of eighteen representative state-of-the-art FSL methods. Utilizing LibFewShot’s
implementation, FSL experiments can be conducted with ease and efficiency.
Despite FSL methods being widely experimented on other popular benchmark
datasets like miniImageNet and tieredImageNet, to our knowledge, only one
work has applied FSL to the DF20 dataset. [1] criticized current FSL bench-
marks as “far from real case” and proposed DF20 as a better benchmark. How-
ever, their work mainly focused on improving the current benchmark with a
better sampling technique while the experiments on DF20 were limited.

In this study, we conduct a comprehensive experimental analysis on the DF20
dataset with current SOTA metric-learning based FSL methods. In our experi-
ments, we first propose a data split on the DF20 dataset according to the con-
ventional FSL setting to conduct a rare fungi classification task. Then, we test
five state-of-the-art metric-learning based FSL methods on the 5-way 5-shot
tasks and compare the results with other benchmarks. We also explore the effects
of five data augmentations and two self-supervised learning (SSL) tricks [6,15]
as regularization in these methods. Further, experiments are conducted on the
20-way 5-shot tasks with selected FSL methods. Finally, we combine the best-
performed methods, regularization, and SSL tricks in this classification task. By
adding self-supervised tasks to the metric-learning based FSL methods in the
LibFewShot environment, we also enable a fair comparison of the effectiveness of
self-supervised tricks in metric-learning based FSL methods. We hope our study
can provide insights into employing the few-shot learning method to address the
rare fungi image classification challenge and other similar domains.

The main contributions of this work are as follows:

– We investigate few-shot learning techniques for the challenging problem of
rare fungi image classification.
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– We examine the effectiveness of employing various data augmentation and
self-supervised learning strategies in conjunction with few-shot learning to
improve classification performance.

– We provide insights into using few-shot learning to classify uncommon fungi
and achieve respectable accuracy that can facilitate practical.

2 Related Work

Picek et al proposed the first large-scale fungi dataset, i.e., Danish Fungi 2020.
They proposed this data as a new benchmark and discussed the uniqueness of
this dataset which we will describe later in Sect. 3. The researchers also provided
baseline performance results using Convolutional Neural Network (CNN) and
Vision Transformer, which showed the DF20 dataset is challenging.

Li et al. proposed and built a comprehensive library for few-shot learning
called LibFewShot by re-implementing eighteen SOTA few-shot learning meth-
ods in a unified framework. In the paper, they first reviewed the methods of few-
shot learning, including non-episodic based, meta-learning based, and metric-
learning based, and then compared the performance of 18 state-of-the-art mod-
els on miniImageNet and tieredImageNet datasets.

Bennequin et al. published a critique on few-shot learning methods arguing
that the old benchmarks (i.e., miniImageNet and tieredImageNet) are too far
from the “real industrial cases”, and suggested DF20 as a more challenging and
better benchmark for FSL. In their paper, they compared the performances of
six FSL methods on tieredImageNet using DF20 as a testing set and concluded
that the FSL models performed much worse in DF20. Therefore, they suggested
researchers use more many-way classification, like in DF20, when evaluating FSL
methods.

Su et al. scrutinized the impact of self-supervised learning (SSL) on few-
shot learning performance. They explored the utility of SSL on small datasets, a
subject relatively untouched in prior studies. They emphasized that traditional
training methods might discard important semantic information when the focus
is solely on base class classification. To address this, they advocated for leveraging
SSL as an auxiliary task to improve the model’s ability to generalize to new
classes in a few-shot scenario. Their findings suggested that SSL can reduce the
relative error rates of few-shot learners, particularly when dealing with small or
challenging datasets.

Recent advances in the FSL field have also highlighted several important con-
tributions. Notably, [13] proposed the Contrastive Language-Image Pre-Training
(CLIP) model, a vision-language model pre-trained on a massive dataset of 400
million image and text pairs. The CLIP model demonstrated remarkable zero-
shot capabilities, accurately predicting the descriptive text for provided images
with performance comparable to ResNet50, without task-specific optimization.
Building on the success of CLIP, [20] introduced Large Language Models as
Prompt Learners (LLaMP) and leveraged the capabilities of large language mod-
els to enhance CLIP. The LLaMP model showed significant improvements across
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Fig. 1. Example fungi images in DF20

11 datasets in both zero-shot and few-shot scenarios. Additionally, research such
as [11] has provided critical insights into the robustness of FSL, underscoring
the importance of addressing security issues of FSL models, especially in their
real-world applications.

While the fungi data and the FSL methodology exist in previous works,
no study has thoroughly examined the effects of combining them. Therefore, we
conduct a comprehensive experimental study aiming to explore the possibility of
using FSL methods to solve the challenging problem of fungi image classification.
By attempting to build an effective classification model, we hope to inspire the
future development of practical solutions.

3 Dataset

3.1 Data Preparation

Following the common settings of the few-shot learning datasets [18], we split
the dataset into three parts: training, validation, and testing. In fact, in each
training/test epoch, many training/testing episodes will be built from these sets.
In the training stage, the training set will be used as the Auxiliary set, and
training episodes will be built from it. Similarly, in the testing stage, the Support
set and Query set will be constructed from the testing set. The validation set is
used, after each training epoch, to validate that the parameter updates can be
generalized to other classes by calculating the accuracy on a separate set. This
process is employed to avoid over-fitting and ensure the model can adapt to
the target Query classes. Notably, it is important to ensure that the classes in
training, validation, and testing sets must be mutually exclusive. Illustrative
examples of dataset images are depicted in Fig. 1.

For the Danish Fungi 2020 (DF20) dataset with 1,604 distinct classes, a
thresholding approach is used to separate rare species: classes with fewer than
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40 observations are identified as rare and thus split into the testing set. This
threshold ensures that approximately 10% of the total classes are used for testing
purposes. This threshold should be chosen considering the trade-off of model
accuracy and generalizability. Specifically, a higher threshold will include more
fungi species in the testing set, allowing the model to be more practical but also
making the training process much more challenging.

Table 1. Data Split on the DF20 Dataset

Subset Number of Classes Number of Images

Training 1270 260506
Validation 148 29037
Testing 186 6398
Total 1604 295941

The remaining 90% of classes go through a random sampling process, with a
stipulated 10% of these classes allocated to the validation set. As summarized in
Table 1, this data split results in an unbalanced distribution of classes, noted by
a higher number of classes in the testing set. This distribution, though uncon-
ventional to standard practices that include a higher number of classes in the
training set, is particularly tailored to suit the objective of rare fungi classifica-
tion. This data split emphasizes the challenge of classifying lesser-documented
species, thereby facilitating a more rigorous examination of model performance
within the specific context of this study.

4 Methodology

4.1 Problem Formulation

In a few-shot learning problem, there are three sets of data: the Auxiliary set
(A), the Support set (S), and the Query set (Q). The “few-shot” concept refers
to the number of samples available in the Support set S.

In our application, the rare fungi classes we aim to classify are in the Support
set and Query set, while other common classes are in the Auxiliary set. The
Auxiliary set enriches the model with extra classes and samples. To better utilize
extra data, Few-shot learning models aim to propose better adaptation methods
to overcome the domain difference between the Auxiliary and Query sets. These
different adaptation methods primarily differentiate various few-shot learning
algorithms.

4.2 Metric-Learning Based Methods

In this study, we opt for metric-learning based FSL methods because [8] revealed
that the test-tuning during the test stage is not necessary for few-shot learning
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due to the limited amount of data. Consequently, choosing metric-learning based
methods, which avoid the need for test-tuning, appears to be reasonable. A
metric-learning based model has two major components - an embedding back-
bone and a classifier. These two components serve different purposes: the back-
bone is a Convolutional Neural Network that learns how to extract features from
the images, while the classifier learns how to classify based on the features.

Metric-learning based methods focus on comparing classes through learn-
ing better measurements of similarity and dissimilarity between images and
classes, i.e. metric functions. There are various methods in this division while
the methods we experiment on are Prototypical Networks (ProtoNet) [14], Rela-
tion Network (RelationNet) [17], Covariance Metric Networks (CovaMNet) [9],
Deep Nearest Neighbor Neural Network (DN4) [7], and Cross Attention Network
(CAN) [19]. We briefly describe the characteristics of these methods as follows.

ProtoNet [14], one of the earliest and most classic metric-learning based meth-
ods, calculates the Euclidean distances between the Query image feature vec-
tor and the mean feature vector of each Support class (i.e. class prototypes),
and makes classifications with a 1-Nearest-Neighbor classifier. For Relation-
Net [17], instead of using a fixed metric, a relation network is employed as
the classifier which learns a metric dynamically using the training stage. The
learned metric is then used to calculate a similarity score for classification. Cov-
aMNet [9], instead of using first-order distance calculation, employs a covariance
metric layer to calculate the second-order similarity metric and then make clas-
sification with a softmax function. DN4 [7], improving on ProtoNet, directly
uses a local descriptor to calculate the similarity between images and classes,
instead of first pooling down the features with fully connected layers. Finally,
CAN [19], approaches the problem by understanding what to compare between
target Query images and Support images. After embedding the backbone, CAN
includes a Cross Attention Module which highlights the objects-to-compare in
both Query and Support images by calculating the class attention map, and thus
produces the final features that have higher discriminative power.

4.3 Data Augmentation and Self-supervised Learning Tasks

Based on the FSL methods, we are interested in further examining if the model
performance can be improved by applying proper data augmentation and/or
self-supervised learning tasks. The key motivation is to enhance the model’s
ability to extract semantic information (characteristics of fungi). This is partic-
ularly important because the majority of the fungi images are taken outdoors:
under different lights, of different distances and positions. However, the avail-
able training sample is insufficient to cover these variations. Therefore, we hope
proper data augmentation can help the model generalize better to these unseen
conditions and thus avoid over-fitting.

The use of self-supervised learning tasks shares a similar purpose. By training
the model to solve Jigsaw and Rotation puzzles, we hope to enhance its ability to
recognize fungi placed in tilted positions or off the center of the image. In addition
to the original FSL framework where labeled images are embedded and used to
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Fig. 2. Pipeline figure of the method

calculate a supervised loss Ls, an SSL data loader and an SSL classifier are
added to the model following the framework proposed in [15]. During training,
unlabeled images are generated by the SSL data loader according to the specific
SSL task, embedded by the same backbone, and passed to the SSL classifier to
calculate a self-supervised loss Lss. The final loss function combines supervised
and self-supervised losses as L = (1 − λ)Ls + λLss, where λ here is a hyper-
parameter that controls the weights of the two losses. The two self-supervised
tasks we experiment with are the Jigsaw task and the Rotation task [6,15].
Each task has a different data loader and classifier. To improve the clarity, we
summarize our method as a pipeline in Fig. 2.

5 Experiments

5.1 Experiment Settings

In our experiment, we mainly follow the experiment settings used in LibFewShot
and other previous works [8,15].

– Dataset. Following the procedure, we split the DF20 dataset into training,
validation, and testing sets. The classes are mutually disjointed in these sets.
All images are resized to 96× 96 and RandomCrop to 84× 84.

– Embedding Backbone. We experiment with two embedding backbones—
Conv64F [14,18] and ResNet18. Conv64F is adopted by the original ProtoNet
implementation which has 4 convolution blocks and 64 filters in each block
[14]. ResNet18 is a much deeper network with 17 convolutional layers. The
parameter sizes of methods with these backbones can be found in the result
in Table 2. Conv64F produces much lower accuracy than ResNet18 and thus
its results are omitted.

– Classifiers. When having ResNet18 as the embedding backbone, DN4, Rela-
tionNet, CovaMNet, and CAN use features without adaptive average pooling
or flattening. RelationNet and CovaMNet use stride = 1 in the last convolu-
tional layer. DN4 uses Topk = 3.
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– Training Stage. All methods are trained for 100 epochs in the training
stage. Each epoch includes 600 training episodes (i.e., a total of 6000 tasks).
Model updates are saved when accuracy in the validation set is improved. All
models are trained with either the ADAM optimizer with an initial learning
rate of 0.001 or SGD with an initial rate of 0.1. For details see Table 2.

– Testing Stage. All methods are tested for 6 epochs with 600 testing episodes
(i.e., a total of 3000 tasks). All accuracy reported is top-1 accuracy (accu-
racy@1).

– Data Augmentation. In the training stage, images are only resized and ran-
domly cropped (i.e. no augmentation). Augmentations we experimented with
are Brightness, Contrast, and Saturation in ColorJitter, RandomGrayscale,
and HorizontalFlip. In the validation and test stages, all images are center-
cropped only.

Table 2. Overview of FSL models’ performances. All models use ResNet18 as the
embedding backbone

Method Learning Rate/Optimizer/lr Scheduler Param. Size Training Time Accuracy@1

ProtoNet [14] 0.001/Adam/StepLR 11.17M 3:16:58 83.71
RelationNet [17] 0.001/Adam/StepLR 18.29M 3:24:51 76.56
CovaMNet [9] 0.001/Adam/StepLR 11.17M 3:12:26 70.16
DN [7] 0.001/Adam/StepLR 11.17M 3:18:04 83.98
CAN [19] 0.1/SGD/Cosine 11.82M 2:59:40 87.87

– Self-supervised Tasks. For training with self-supervised tasks, namely Jig-
saw and Rotation, images are prepared following the procedure in [6,15]. In
the SSL classifier, the embedded features from the backbone are passed to
several fully connected layers, following the architecture in [15]. For methods
that do not use average pooling and flattening in the backbone, we add these
layers manually in the SSL classifier.

5.2 Overview of FSL Methods on DF20

In this section, we primarily experiment with the baseline models with Pro-
toNet [14], RelationNet [17], CovaMNet [9], DN4 [7], and CAN [19] as the FSL
method and ResNet18 as the embedding backbone. All the experiments are
done in the 5-way 5-shot setting, and no data augmentations are used except for
resizing. We evaluate the methods by comparing their top-1 accuracies, model
parameter sizes, and training times. The comparison of the models is summarized
in Table 2.

The results indicate that CAN outperforms all other methods with an accu-
racy of 87.87% and the shortest training time. Notably, we discover that CAN
requires using SGD as the Optimizer. Adam works well with other methods but
results in an accuracy of merely 30% on CAN. The reason for CAN’s outstand-
ing performance might be its effective employment of the attention mechanism.
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Table 3. Effects of various data augmentation on each method. Accuracy with improve-
ment compared to no augmentation is shown in bold. All Positive includes all aug-
mentations with positive effects. The best combination is shown with underline

Method Without Augment Brightness Contrast Saturation Gray scale Horizontal Flip All Positive

ProtoNet [14] 83.71 83.89 83.79 83.79 80.90 83.87 83.88
RelationNet [17] 76.56 20.00 20.00 75.68 73.94 77.07 77.04
CovaMNet [9] 70.16 65.82 72.37 71.02 70.98 72.92 72.85
DN4 [7] 83.98 81.79 83.47 83.99 80.30 84.29 84.11
CAN [19] 87.87 88.05 82.82 88.40 82.85 82.90 83.71

The Cross Attention Module allowed CAN to learn which parts of the fungi (e.g.
cap skirt, stem, or volva) are more important to focus on when classifying fungi
species. This could be particularly beneficial in difficult cases where the two
species are in the same fungi family and share most appearances. Additionally,
distinguishing these cases requires high human expertise, which further amplifies
the practical significance of having a fungi image classification model.

When comparing to the benchmarks in the LibFewShot paper [8], we have not
found the dataset to be more challenging based on our data-splitting. However,
it is possible to make the task more difficult by raising the number of classes
in the testing set as there is no currently established train-test-split for DF20.

5.3 Data Augmentation

The augmentation techniques affect the accuracy of few-shot learning models
differently, as demonstrated in Table 3. We observe that different methods lead
to various responses to the augmentations. For example, ProtoNet consistently
demonstrates slight improvement with most augmentations, except for Random
Grayscale. Conversely, RelationNet showes extreme sensitivity to brightness and
contrast adjustments, resulting in a significant decrease in accuracy. Regarding
specific augmentations, HorizontalFlip appears to be highly beneficial across
most methods, particularly in enhancing the performances of RelationNet, DN4,
and CovaMNet.

The different effectiveness might be influenced by the diverse angles and
lighting conditions under which the photos were taken. While these findings
could provide valuable insights into selecting beneficial augmentation methods
for this dataset and similar scenarios, such as fungi recognition apps, they should
not be generalized to all fungi classification tasks, since the augmentations are
customized to suit specific photography conditions.

Notably, when combining all augmentations with positive effects into the “All
Positive” column, the overall gain is lower than the single most effective augmen-
tation across all methods. This finding suggests that the combination of multiple
augmentations is not linearly addictive with performance improvement in this
task. It implies that certain augmentations, when applied simultaneously, may
diminish each other’s effectiveness.
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Table 4. Further results on 20-way 5-shot classification with ProtoNet and CAN meth-
ods. Accuracy with improvement compared to no augmentation is shown in bold

Method Without Augment Brightness Contrast Saturation Grayscale Horizontal Flip

ProtoNet [14] 71.27 71.72 71.11 70.39 66.12 74.02
CAN [19] 78.56 78.46 78.67 78.36 66.89 80.09

Further, we select two well-performed methods—ProtoNet and CAN— and
conduct some initial experiments on their performance on 20-way classification.
Although 20-way classification is typically a much more challenging task than
5-way, we notice from Table 4 that the transition from 5-way to 20-way classi-
fication does not significantly diminish accuracy, especially in CAN. This result
suggests a surprising scalability of these methods in the Fungi classification task.
In addition, the comparison of the 5-way and 20-way results indicates that the
effectiveness of the augmentations varies when the number of classes changes. For
example, HorizontalFlip is more effective in the 20-way setup, while other aug-
mentations that benefit the 5-way scenario do not translate into the same level
of improvement in the 20-way setting. This observation emphasizes the impor-
tance of optimizing the augmentation methods separately for tasks of different
way numbers.

5.4 Self-Supervised Learning Tasks

Does solving self-supervised learning puzzles help? In our experiments,
we experiment on two SSL tasks—Jigsaw and Rotation. To keep a fair compar-
ison, we maintain the same model framework in LibFewShot, and add supports
to the self-supervised learning tasks by introducing additional data-loading pro-
cedures and classifiers in the original metric-learning methods, following the
architecture in [15].

Table 5. Effects of self-supervised tasks on each method. Each self-supervised task
is tested with loss weight λ equals 0.2 or 0.5. Accuracy with improvement compared
to no SSL task is shown in bold. Augmentation+SSL shows the result using the best
data augmentation plus SSL task, while “-” denotes when no SSL task is beneficial

Method Without Jigsaw Rotation Augmentation+SSL
λ = 0.2 λ = 0.5 λ = 0.2 λ = 0.5

ProtoNet [14] 83.71 80.72 81.14 83.81 84.03 84.00
RelationNet [17] 76.56 74.76 74.01 76.97 78.57 76.57
CovaMNet [9] 70.16 68.62 73.98 65.60 73.27 70.36
DN4 [7] 83.98 83.10 82.32 81.89 83.24 –
CAN [19] 87.87 78.18 80.10 70.77 73.89 –
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In contrast to the improvements presented in [15] with ProtoNet, SSL tasks
yield benefits primarily for weaker methods in our experiment, as shown in
Table 5, with the highest improvement of over 3%. Specifically, we find the
Rotation task beneficial for ProtoNet, although the improvements are less pro-
nounced compared to those reported in [15].

However, no improvement is observed for stronger models like CAN. This
could be attributed to the loss of spatial information, which is essential for the
attention mechanism in CAN, during the Jigsaw and Rotation operations. This
finding is consistent with the results in Table 3, where the HorizontalFlip aug-
mentation is not beneficial for CAN in the 5-way setting. This further illustrates
that augmentations related to spatial information should be used with caution
for CAN.

More importantly, we find that the selection of the λ parameter significantly
influences the efficacy of SSL methods in our experiments. As illustrated in
the Table 5, for CovaMNet, varying λ choices lead to effects ranging from an
improvement of over 3% to a reduction of over 4%. Similar patterns are observed
across all methods, emphasizing that λ needs to be carefully tested and selected
for each method to optimize results.

We also experiment with the effects of combining data augmentations and
SSL tasks for those methods in which SSL tasks are beneficial, i.e., ProteNet,
RelationNet, and CovaMNet. Interestingly, we observe a reduction in accuracy
across all three methods when incorporating the previously identified beneficial
data augments outlined in Sect. 5.3 into the top-performing SSL tasks. This
finding, coupled with the findings from data augmentation, initially suggests
that adding extra augmentations might not be as beneficial as simply choosing
the most effective one.

Combining the findings from Sects. 5.3 and 5.4, we can summarize the most
beneficial augmentation and SSL task combinations for each metric-learning
based method in the 5-way 5-shot classification task. The results, along with
their corresponding accuracies, are presented in Table 6. Overall, the optimal
solution for this particular task emerged as CAN with saturation alone, achiev-
ing an accuracy of 88.4%. For the 20-way 5-shot task, the best solution is CAN
with HorizontalFlip, achieving a remarkably satisfactory accuracy of 80.09%.

Table 6. Best combination of methods, data augmentation, and self-supervised task

Method Combination 5-way 5-shot Acc@1

ProtoNet [14] Rotation (λ = 0.5) 84.03
RelationNet[17] Rotation (λ = 0.5) 78.57
CovaMNet [9] Jigsaw (λ = 0.5) 73.98
DN4 [7] HorizontalFlip 84.29
CAN [19] Saturation 88.40
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6 Conclusion

By experimenting with state-of-the-art metric-learning based few-shot learning
methods on the Danish Fungi 2020 dataset, we have found the Cross Atten-
tion Network (CAN) as the best-performing method, demonstrating the highest
accuracy and reasonable training time. CAN also exhibits remarkable scalability
in 20-way classification tasks. For data augmentation, HorizontalFlip is bene-
ficial across metric-learning methods except for CAN. When integrating self-
supervised learning techniques, positive effects are primarily observed in weaker
models, such as ProtoNet. The loss weight λ significantly influences the outcomes
and thus requires careful selection.

While this study offers valuable insights, there is ample room for further
research. CAN has outperformed other methods in this specific task, but aug-
mentations and self-supervised learning (SSL) tasks fail to enhance its accuracy
significantly. Future studies should explore additional augmentation methods or
self-supervised learning tasks that preserve spatial information to refine CAN
further. Exploring other SSL beyond the Jigsaw and Rotation tricks is also use-
ful. Regarding SSL, although we have not been able to thoroughly experiment
with the choice of λ, it is worth tuning it for each FSL model separately. Addi-
tionally, investigating the potentials of the latest FSL methods, such as [10]
and [4], could yield valuable findings. Finally, it would be interesting to develop
a smartphone app for fungi recognition and compare it with the limited offerings
currently on the smartphone app market.
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Abstract. Bridges are essential for enabling movement during envi-
ronmental disasters and serve as crucial links for rescue and aid deliv-
ery. Effective bridge inspection and maintenance are more critical than
ever due to increasing severity and frequency of environmental disasters.
Although current state-of-the-art deep learning models have achieved
good performance many challenges still exist, such as their performance
on challenging datasets and their opaque-box nature makes it difficult to
understand their decision-making process and identify potential biases.
This research work proposes a novel architecture that incorporates inno-
vative parallel twin attention module, synchronous amplification module,
aggregated multi-feature attention module and squeeze and excitation
blocks, that helps to focus on specific regions of the image plane automat-
ically resulting in improved structural component recognition accuracy.
Its parallelism helps to capture long-range dependencies enabling the
model to use contextual information encompassing spatial and channel
information when segmenting bridge components. Experimental results
and ablation studies show that our proposed architecture outperforms
the current state-of-the-art methodologies in the challenging bridge com-
ponent classification dataset. We also examine our models through XAI
methods to provide insights into its decision-making process and making
it more trustable by highlighting the importance of different features for
various similar recognition/segmentation tasks.

Keywords: Attention Networks · Structural Component Recognition ·
Interpretative Models

1 Introduction and Background Work

In emergency situations, critical structures like bridges and other civil struc-
tures play a crucial role in ensuring public safety, facilitating emergency response
efforts and enhancing overall resilience. These structures can help in evacuation
routes, access for emergency services, supply chain support and post-disaster
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recovery. Due to this, it has become highly important to maintain these infras-
tructure and also monitoring their health. By investing in regular inspections,
repairs, and upkeep, communities can enhance safety, reduce long-term costs,
maintain operational continuity, and improve the overall resilience of their crit-
ical infrastructure. Achieving these tasks by manual inspection poses significant
challenges such as limited accessibility, time consuming/criticality, safety risk for
humans, disruptions to normal traffic, real time monitoring and many others.

Computer vision (CV) and machine learning (ML) can be helpful in bridge
and other structure inspections by automating image analysis, improving accu-
racy and consistency, enabling remote and difficult access inspections, providing
real-time monitoring, facilitating data-driven decision making, and analysing his-
torical data for insights into structural behaviour and deterioration [2–4,7,22].
A key initial step in the automated inspection of civil infrastructure is expected
to be the method of detecting and recognising distinctive portions of a structure
using structural component recognition (SCR). SCR is the crucial initial step
towards assessing the health of structures as it eliminates interference caused by
damage or other non-structural components and leads to more accurate locali-
sation and/or improves the usefulness/practicality of the system [7,18]. Recog-
nising these components using image/video data is very challenging task due to
degradation of components, environmental conditions such as shadows or light-
ning which affect the image data, variability and occlusion by other objects and
a multitude of other problems [2,10,13,14,21].

Narazaki et al. [14] proposed a method that combines multiscale convolu-
tional neural networks (CNNs) to achieve SCR, where the approach is inspired
by [5] for hierarchical scene labelling in images. Their integration with scene
classification helped to minimise false-positive results and ensured consistent
labels. Furthermore, Narazaki et al. [13] extended the approach by employing
the fully convolutional network (FCN) and SegNet architectures. Two variations
of the SegNet architecture, namely SegNet45-S and SegNet45, are defined based
on the number and sizes of layers after upsampling. Three network configu-
rations, namely naive, parallel, and sequential, are employed for each network
architecture. These configurations are used to combine the scene understand-
ing and bridge component classification, enhancing the overall recognition pro-
cess. Recently attention networks has emerged as a powerful tool within the
framework of CNN for SCR [10,21], offering significant advantages over tradi-
tional CNNs alone. The attention mechanism enables the model to concentrate
on particular regions of the input that are regarded more essential or informative
as opposed to CNNs, which process the full input uniformly.

2 Interpretative Attention Network

The proposed interpretative attention network (IAN) incorporates attention
mechanisms at various levels, which captures intricate details, correlations, spa-
tial dependencies for accurate recognition of diverse components within complex
structures and their ambiguous continuations [7,18]. With parallel twin attention
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module (PTAM) at its core, along with other attention mechanisms it facilitates
the extraction of high-level representations that capture the distinct character-
istics of different structural components as shown in Fig. 1.

Fig. 1. Architecture of the proposed IAN model for structural component recognition.
It consists of mainly 3 attention modules PTAM, aggregated multi-feature attention
module (AMFA) and squeeze and excitation block (SEB). In the first stage, inputs
passes through convolution layer of 3×3 kernel size, with number of filters represented
inside each intermediate block, followed by batch normalisation and max pooling. In
second stage, outputs from attention layers is passed through convolution transpose
layers followed by concatenation with corresponding layers from first stage using skip
connection and then the convolution layers of 3×3 kernel size with batch normalisation.
Lastly, dense layer is added which have 5 nodes.

2.1 Parallel Twin Attention Module (PTAM)

The PTAM consists of multiple attention operating simultaneously/in parallel as
shown in Fig. 2(a), this involves spatial and channel attentions and aggregation
of their results to extract discriminative features for multiple target structural
component classification task. The parallel twin operation of PTAM is achieved
by using convolutional block attention and synchronous amplification modules.

Convolutional Block Attention Module (CBAM): We have adapted
CBAM from [24] by incorporating innovative channel attention module (CAM)
and the spatial attention module (SAM), to improve the representational
strength of traditional convolutional neural networks as shown in Fig. 2(b).
On the feature maps, the CAM logs how different channels are interdependent
on one another. To obtain a channel descriptor, pooling operation is performed,
which includes both max and average pooling, whose description features include
the channel’s general statistics. Following that, two fully connected layers with
rectified linear unit (ReLU) activation are used to simulate the channel-wise
relationships. These layers learned how to create weights for channel attention
as is evident from the experimental and ablation studies.
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Fig. 2. (a) Parallel twin attention module (PTAM) incorporating convolutional block
attention module (CBAM) and synchronous amplification module (SAM). (b) CBAM,
consisting of channel attention and spatial attention modules. (c) Squeeze and excita-
tion block (SEB).

By adding these attention weights to the initial feature map, ability to either
amplify or suppress the channel-wise information and train the network to focus
on the most discriminative channels is possible. On the other hand, the SAM
made it simpler to record spatial location interdependencies inside the feature
map. The SAM accomplished this by using ReLU activation and two convolu-
tional layers, each with a 7×7 kernel size. These layers returned spatial descrip-
tors that indicated regional geographic trends. To develop spatial attention maps,
sigmoid activation function is used to the spatial descriptors that were created.
The resulting attention maps were then element-wise multiplied with the original
feature map. This method highlights important geographic areas while suppress-
ing superfluous ones.

Synchronous Amplification Module (SAM): To encode salient spatial
and channel information concurrently, the convolution layer captures local spa-
tial features across all channels, as shown in Fig. 3 Left. While bringing out the
channel-wise discriminative structural component features, we selectively draw
attention to and repress other aspects. The SAM analyses critical spatial and
channel data separately to resolve these issues and improve performance. SAM
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compresses the spatial plane of the input tensor using global average pooling
before stimulating it channel by channel to obtain the channel information. The
module can automatically include the global channel description due to the chan-
nel compressing operation, which provides channel-by-channel statistics for the
entire image. The subsequent dense layers use non-linear adaptive re-calibration
to extract discriminative channels with significant characteristics, while also util-
ising contextual channel information. In order to generate the channel attention
feature map Ch(I) depicted in Fig. 3 Left, the output of two dense layers is
multiplied by the sigmoid function and the input (I). This is done to high-
light the characteristics necessary for channel-specific identification. In a man-
ner analogous to how the first portion of the module for simultaneous activation
compresses the channels, the second portion of the module employs convolution
blocks to capture the spatial characteristics shared by all channels. The recovered
features are spatially stimulated and the output is then multiplied by the input
tensor to emphasise the essential spatial data Sp(I). In contrast to where spa-
tial attention is conducted via an average and maximum pooling operation, the
global channel features are compressed to extract salient spatial information for
the provision of spatial statistics by reducing the input through the channel
dimension. Instead of employing 1 × 1 convolution directly for the aggregation
of spatial information, an additional 3 × 3 convolution block is placed before
it to aid in the extraction of features. In this instance, in addition to spatial,
Sp(I), and channel, Ch(I), information, the input is also added using a skip con-
nection to prevent the loss of critical discriminative information and to alleviate
the vanishing gradient problems [1], as shown in Fig. 3 Left. Together, CAM and
SAM improved CBAM’s ability to learn and discriminate between more usable
representations.

2.2 Aggregated Multi-Feature Attention Module

We developed a group of attention modules with multiple features to aggregate
various representations of the local parallel feature extraction process and encode
significant data from visually identical concrete structural components, as shown
in Fig. 3 Right. The purpose of this module is to include highly localised feature
selection mechanisms to differentiate non-bridge components, columns, beams
and slabs, other structural and non-structural components. The proposed atten-
tion actions in AMFA are executed multiple times to ensure the selection of
the most important aspects. Each attention module utilises three dense layers to
perform concurrent computations for producing parallel non-linear projections in
feature space. The input, I, and its height, breadth, and number of channels are
considered. Then, the outputs, T2 and T3, are elementally multiplied, a SoftMax
function is applied to produce the attention mask, and T1 is multiplied with the
attention mask to emphasise the most critical features. The AMFA module pro-
duces its output by merging the attentive features from various representations
generated by three different attention operations, namely, att1, att2, and att3.
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Fig. 3. Left: Synchronous amplification module (SAM) consist of global average pooling
for squeezing, followed by dense layers to extract contextual channel features. The
other module applies convolution layers to the input to capture spatial features across
all channels. Right: Aggregated multi-feature attention module (AMFA) consists of 3
attention layers, each attention layer processes the input simultaneously. The input
I is passed through a dense layers. The resultant outputs T2 and T3 are multiplied
element-by-element, and a softmax function is then applied to generate an attention
mask. The generated mask is then multiplied by T1 in order to emphasise key features.
In order to accomplish identity mapping, the output is appended to the input tensor.

2.3 Squeeze and Excitation Block

Instead of recording positional or global dependencies, the squeeze and exci-
tation block (SEB) module adapted from [9], focuses on recalibrating the rel-
ative relevance of specific channels inside a feature map, as shown in Fig. 1
and details in Fig. 2(c). By emphasising informative channels while suppressing
less important ones, it strengthens the network’s ability to discriminate. The
squeeze layer and the excitation layer are the two main layers that make up
the SEB module. The squeeze layer applies global average pooling over the spa-
tial dimensions of the input feature maps to produce spatial compression. The
process captures channel-wise statistics and aggregates data across the spatial
dimensions by reducing each channel to a single value. The excitation layer mod-
els and captures the interactions and interdependencies between channels. The
excitation squeeze layer and the excitation excitation layer are its two sub-layers.
Excitation squeeze layer utilises a fully linked layer with a lot fewer units than
the initial number of channels, the excitation squeeze layer further compresses
the channel-wise information. This compression preserves crucial channel fea-
tures while assisting in the reduction of computing complexity. The excitation
layer restores the original number of channels to the compressed descriptor. It
uses an activation function like sigmoid or ReLU, followed by a second fully
linked layer. This layer produces channel-specific attention weights that show
how crucial each channel is for capturing differentiating elements.
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3 Experimental Results, Analysis and Discussions

In this work, at first we study the impact of attention mechanism on the inter-
pretability and performance of image classification models on the bridge compo-
nent classification dataset [13,14]. The experiment involved utilisation of explain-
able AI visualisations techniques (XAI) [17] on both traditional classification
models with/without attention mechanisms and compare them with our IAN
architecture.

3.1 Bridge Component Classification Dataset

Bridge component classification (BCC) dataset is provided by the authors
of [13,14]. This dataset consists of 1,563 photographs of bridges acquired for
research and comparative evaluation purposes. Using their provided partitions,
1329 images are used for training, while the remaining 234 images are utilised for
testing. Each image is labelled into five categories: Non-bridge, Columns, Beams
and Slabs, Other Structural and Non- structural components. The dataset com-
prises images with dimensions of 320× 320 pixels. We used this dataset to train
our proposed model and compared with the existing methods to check its per-
formance.

3.2 XAI Visualisations

In this study, we aim to compare the interpretability and performance of the
models with and without attention mechanism and identify any differences in
their behaviour. To enable attention mechanism, the models are modified by
including attention layers that helped them focus on important features of
the input image. Popular XAI techniques such as local interpretable model-
agnostic explanations (LIME) [19] is used to provide insights into how the mod-
els make their predictions, enabling the development of more trustworthy and
interpretable image classification models. At first, we conducted our experiments
on ResNet18 [8], which is a popular deep residual neural network models widely
used for image classification. The experiment is carried out on the CIFAR-10
dataset [11], a standard dataset for image classification consisting of 60,000
images divided into 10 classes, each with 6,000 images.

Visualisation on ResNet18: We did experimental analysis of ResNet18
model with and without the inclusion of attention module, using the CIFAR-10
dataset [11] for a classification task. Specifically, we evaluate CBAM attention
module to assess its impact on the model’s performance. In this context, Fig. 4
shows the LIME visualisation outputs for two selected images, which serve as
an important step towards evaluating the model’s interpretability and ensur-
ing its explainability. On left top in Fig. 4(i), the image depicts a ‘dog’ that is
accurately predicted by the model. However, to determine which region or clus-
ter have the most significant influence on the model’s prediction, LIME XAI is
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Fig. 4. For ResNet18 model [8] on CIFAR-10 dataset [11], left top row, in (i) without
attention module to predict image as a ‘dog’ but the most important or dominant
region highlighted by LIME is not accurate, but in left bottom row, (ii) when CBAM
attention is employed to the model, focus of model is improved and LIME visualised
more accurate region as the dominant for predicting it as a dog. Right top row, (i)
Heatmap shows less important region to a human as more important for the model’s
prediction as a ‘car’, However when attention is employed as in right bottom row,
(ii), region which is more relevant to a human is also more important for the model
according to the LIME visualisation. For both center images ((B)Heatmap), dark blue
region represents more importance of the region to model for positive prediction.

utilised to replicate the model. The resulting visualisation is shown in Fig. 4(i)
‘Most relevant region’. The region displayed in the visualisation is less relevant.
The heatmap in Fig. 4 (i) provides an observation of all the important regions for
the model by using the intensity of blue color. As the superpixel becomes dark
blue (or more blue), it indicates that it is more critical for the model’s prediction
whereas the red region represent the superpixel which impacted negatively for
the prediction of a model. When an attention module (CBAM in this case) was
added to the model, however, the visualisation improved and the region iden-
tified by the LIME XAI technique became more accurate which can be seen in
Fig. 4(ii), or we can say bias in the model is reduced. Similar observation can be
drawn with the second image of a ‘car’ in Fig. 4 right, top and bottom.

Visualisation Using our Proposed IAN: Figure 5 shows the mask gener-
ated by LIME using IAN, it depicts the region where the model is focused when
predicting for the beams/slabs class on an image. From this Fig. 5 it can be
illustrated that the region where model is focusing is very relevant based on the
ground truth image. The accuracy of the masked region is compromised because
the segmentation is not finely tuned and relies on the chosen segmentation algo-
rithm. When the algorithm forms clusters that encompass both positive and
negative regions, the resultant output includes the entire cluster, leading to a
reduction in the accuracy of the visualisation. There are few points that can be
conjectured based on observation pertaining to this use case. Firstly, LIME’s
effectiveness is influenced by multiple factors beyond just emulating the model.
The approach employs different segmentation algorithms to partition images
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into clusters or superpixels. However, if a single pixel in the region is active, the
entire cluster generated during segmentation is taken into consideration some-
times, which diminishes the accuracy and performance of the model, which is
an issue if the images has noises in the dataset, which is currently the case with
the dataset we are using, detail analysis can be found here [10,21].

Fig. 5. IAN’s LIME visualisation highlights the key features within the image that hold
significance for the model’s prediction of the beams/slab class on the bridge component
dataset [13,14].

Secondly, the accuracy of surrogate models is influenced by the number of
perturbations used during training [12]. Fewer number of superpixel combina-
tions can negatively impact the model’s subsequent predictions and sometimes
lead to the prediction of clusters that are not part of the ground truth. Lastly,
various segmentation algorithms, such as SLIC [16], Quickshift [23], and Felzen-
szwalb [6], generate varying numbers of superpixels. The greater the number of
superpixels, the greater the number of possible cluster combinations, resulting in
finer granularity, and subsequently, improving the performance of the surrogate
model. Here granularity refers to the level of detail or resolution of something.
In the context of image segmentation, granularity refers to the level of detail in
the segmentation or clustering of pixels into superpixels. A higher granularity
indicates a finer segmentation with more distinct superpixels, whereas a lower
granularity indicates a coarser segmentation with fewer but larger superpixels.
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3.3 Implementation Details

In our proposed IAN model we employ max pooling operation which helps in
retaining important features, suppresses noise, and promotes generalisation [15].
For training process, the batch size used is 4. The dataset has been subjected
to random cropping, random flipping, and random rotation in addition to the
centre crop, in accordance with the previous report works [10,14,21]. Binary
cross entropy loss function is employed for learning of model. The learning rate
is set at 0.001 at this time. Adam optimiser is used for smooth weights update
and training process of model with Beta1 = 0.9 and Beta2 = 0.999. Number
of epochs used to train this model on the BCC dateset is 100. Experiments
are conducted on a machine equipped with an Intel Xeon W-2123 CPU with
3.60 GHz, 96 GB of RAM, and an NVIDIA Titan XP 8 GB GPU card using the
Python Keras API and TensorFlow backend.

3.4 Performance Metrics

We employed two metrics: pixel accuracy (PA) and mean of intersection over
union (mIoU) to evaluate the performance of our model and conduct compar-
isons with other benchmark models, similar to [10,21]. It assesses the model’s
effectiveness by quantifying the number of pixels accurately identified by the
model in relation to the total number of pixels. However, this metric has a lim-
itation in that it does not provide a comprehensive evaluation of the model’s
segmentation performance. Details are provided in [10,21], with examples of
visualisation Fig. 5 and explanations in Section 3.3 in [21]. An effective metric
for assessing a segmentation model’s performance is the intersection over union
(IoU). IoU provides a more thorough and insightful assessment of the segmen-
tation model’s performance in comparison to metrics like pixel accuracy, which
only count the proportion of properly categorised pixels. It also considers sensi-
tivity to tiny items. For instance, the mean of IoU (mIoU) of the input image
would be much lower compared to pixel accuracy when only two classes (back-
ground and structural component) are taken into account, showing the larger
relevance of IoU in evaluating segmentation performance, details are here [21].

3.5 Comparison with Benchmarks

Table 1 summarises the performance of the proposed architecture over the other
benchmarking techniques [10,13,14,21,25]. Most of the other results are different
approaches proposed by [13], which uses three architectures FCN45, SegNet45
and SegNet-S, using three different configurations (naive configuration, paral-
lel Configuration and sequential configuration). Both mIoU metric and pixel
accuracy (PA) metrics are used to compare the performance of his most recent
suggested naive (N), parallel (P) and sequential (S) models with different con-
figurations. Out of all the methods by [13], FCN45-N evidenced to be the most
successful, with a pixel accuracy of 84.1% and a mIoU of 57.0%. [10,21] most
recent research on this perform better than earlier models. In contrast to [21]
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Table 1. Comparison with benchmarks evaluating intersection over union (mIoU)
and pixel accuracy (PA), for comparison of different models on bridge component
classification dataset [13,14]

Benchmarking Methods mIoU(%) PA(%)

CNPT-N [14] 50.8 80.3
CNPT-Scene [14] – 82.4
FCN45 [13] – 82.3
FCN45-N [25] 57.0 84.1
FCN45-P [25] 56.9 84.1
FCN45-S [25] 56.6 83.9
SegNet45-S [25] 54.5 82.3
SegNet45-N [25] 55.2 82.9
SegNet45-P [25] 55.2 82.9
SegNet45-S-N [25] 55.8 83.1
SegNet45-S-P [25] 55.9 83.3
SegNet45-S-S [25] 55.4 82.7
StructureNet [10] 57.46 89.08
DNNAM [21] 65.94 82.85
UNet [20] 67.8 83.21
IAN 71.02 85.09

model, which has a pixel accuracy of 82.85% but a mIoU of 65.94%, which is
higher than the StructureNet model [10], proposed by [10] has the highest pixel
accuracy of 89.08% and a mIoU of 57.46%. Our proposed IAN model outper-
forms all other models with the highest mIoU of 71.02% and the second-highest
pixel accuracy of 85.09%. Since mIoU offers a class-specific evaluation and han-
dles class imbalance, providing a more detailed, balanced and effective assess-
ment of segmentation models compared to pixel accuracy, our emphasis has been
directed towards prioritising mIoU as the primary evaluation metric. Hence, in
terms of mIoU, our proposed IAN model surpasses the previously established
highest benchmarks by 5.08%, demonstrating superior performance.

The convergence curves during the training process are shown in Fig. 6(i),
which demonstrate how well our proposed model performs, with loss continuously
decreasing and accuracy and IoU continuously rising. However, it should be noted
that the performance of models using validation data gets saturated due to the
irregular labelling of few ground truth images on the BCC dataset. IAN’s average
processing time for a 256× 256 input image is 0.081 s.

Figure 6(ii) shows the output generated by the proposed IAN model on few
images from BCC dataset. Figure 6(iii) shows the activation maps followed by
heatmaps, which helps in depicting how attention mechanism are helping the
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model to improve the focus more on correct component or region in order to cor-
rectly distinguish it in an image. Furthermore AMFA, SEB and PTAM attentions
employed in our model combined helps in capturing long-range dependencies and
integrating information from distant regions in the feature maps to improve the
performance and understanding of the model.

Fig. 6. (i) Training process curves showcasing model performance over iterations on
different parameters. Blue represents the training set, while orange represents the vali-
dation set. (ii) Segmentation results from our proposed IAN model on images of Bridge
Component Classification Dataset. They highlight that employing attention mecha-
nism has significant affect on the outputs. (iii) Attention maps and heatmaps obtained
by the proposed model for different images on Bridge Component Classification dataset.
They highlight the regions that are dominant for the prediction of a particular class.
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4 Ablation Studies

To investigate the individual contributions and effects of various components on
the performance of our model, ablation study is conducted. By selectively remov-
ing or altering specific modules, we aim to assess their impact on the model’s per-
formance. Initially, we established a baseline model (adapted UNet [20]) that rep-
resents the network architecture without any attention modules. Subsequently,
we systematically removed or modified specific components, while keeping the
remaining system intact. The performance of each modified configuration is
then evaluated and compared against the baseline network. At first, we omitted
the PTAM placed at the core of network, and SEB attention module is placed at
the core of network, a drop in the performance is observed, as noted in Table 2.

Table 2. Ablation Study on the attention mechanism employed by proposed IAN
Model on BCC dataset [14]. mIoU and Pixel Accuracy metric is used to check the
performance of different configurations

Models mIoU(%) PA(%)

UNet [20] 67.8 83.21
Baseline architecture (adapted UNet [20]) 69.5 84
only SEB 70.3 83.9
only PTAM 70.3 84.2
SEB + PTAM 70.5 84.1
PTAM + AMFA 70.7 84.5
PTAM at internal 2 layer + SEB at center 70.2 84.02
SEB at 2 outer layer + PTAM at center 70.6 84.3
SEB+ AMFA at all layer + PTAM at center 69.8 83.9
PTAM with SAM only 69.97 84.39
PTAM with CBAM only 70.27 84.80
IAN 71.07 85.09

Without PTAM module, model struggle to effectively capture channel-wise
dependencies in feature maps and spatial wise dependencies within a feature
map and assign appropriate weights to different channels. This can lead to sub-
optimal feature extraction, reducing the discriminative power of the model and
hindering accurate segmentation. It can also result in difficulties in capturing
spatial relationships and attending to critical spatial locations. This may lead
to challenges in accurately delineating object boundaries, handling occlusions,
and capturing fine-grained details. The model’s segmentation performance may
suffer as it fails to focus on relevant spatial regions and adequately suppress
irrelevant or noisy parts of the input.

Similarly, performance drop is seen, when the SEB module is omitted and
only PTAM is placed at the core, due to the lack of spatial attention to the input
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image at outer layers, it becomes difficult to focus on individual objects and
struggle to prioritise informative regions in the image. Subsequently, we investi-
gated the insertion of these attention mechanisms between various intermediate
layers of the model architecture and evaluated the resulting performance which
can be seen in Table 2. The findings indicate that when these attention mech-
anisms are placed in accordance with the proposed methodology, they produce
the most beneficial and optimal results.

Next, we tested the efficacy of AMFA module with PTAM module. First we
disabled the SEB module, only AMFA was enabled at the inner two layer, then
we enabled the SEB and disabled AMFA. It can be noted from the observed
results in Table 2 that each module does not provide optimum results individ-
ually, but when both enabled simultaneously significant improvement can be
observed. Disabling AMFA causes lack in highly localised feature selection and
may struggle to capture intricate boundaries, handle overlapping objects during
segmentation. Later on we tried with different configuration of these modules,
experimental results are noted in Table 2.

5 Conclusions

In this work, an interpretative attention network (IAN) is proposed for han-
dling the challenges involved in structural component recognition. It incorpo-
rates attention mechanism that enables the model to focus on relevant regions
automatically, help in efficient training and resulted in improved recognition
accuracy. The proposed architecture incorporates innovative parallel twin atten-
tion module, synchronous amplification module, aggregated multi-feature atten-
tion module and squeeze and excitation blocks, that helps to capture long-range
dependencies, allowing the model to take contextual information into consider-
ation when segmenting objects. We utilised XAI techniques such as LIME to
visualise the efficacy of the attention mechanism. We illustrated how the model
allocated its attention and the effectiveness of the attention mechanisms in cap-
turing pertinent image regions. In order to assess the performance of the pro-
posed model, various evaluation metrics, including pixel accuracy and mIoU
are utilised. Additionally, ablation study is conducted to further examine the
model’s performance by systematically analysing the effects of removing specific
components or network modules. Experimental results on various benchmark-
ing datasets demonstrate the superiority of the proposed architecture over the
existing approaches.
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Abstract. The goal of pedestrian attribute recognition (PAR) is to
detect and classify a wide range of pedestrian attributes, such as gender,
carrying objects, clothing styles, body postures, age groups, and more.
It plays a vital role in computer vision, specifically in crucial applica-
tions such as behaviour analysis, public safety monitoring, and video
surveillance. However, existing PAR approaches are unable to achieve
substantial performance due to multiple factors. First, multiple appear-
ances of the same attribute confuse the models. Second, adverse weather
and lighting conditions restrict model generalization capability. To mit-
igate these challenges, this paper proposes a new evaluation baseline
that uses Vision Transformer (ViT) blocks for hierarchical feature mod-
elling. The approach categorizes attributes into different spatial granu-
larity levels and employs diverse patch formations to extract discrimina-
tive features. Furthermore, we introduce an enhanced loss function for
stable training in the re-formulated granularity scenario, where a novel
attribute-aware granularity factor influences the loss. The proposed base-
line has been extensively evaluated on the three popular PAR datasets,
namely RAP, PA100K and PETA.

Keywords: Pedestrian Analysis · Vision Transformer · Video
Surveillance · Attribute Recognition

1 Introduction

The task of Pedestrian Attribute Recognition (PAR) attempts to identify a
wide spectrum of attributes such as gender, age group, profession, body shape,
posture, hair structure or clothing styles of pedestrians. In recent years, PAR
has achieved large interest due to its critical application in public safety and
surveillance. This significant enhancement has initiated the implementation of
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few important use-cases such as person re-identification [6,7,29] and scene anal-
ysis [28]. In addition to this, few researchers have utilized advanced deep learn-
ing based techniques to enhance the model’s recognition performance. Tang et
al. [23] employed feature pyramid architecture to train end-to-end network. A
pioneer CNN-based model proposed by Li et al. [12] utilize multi-attribute train-
ing to train the baseline model. Jia et al. [10] proposed disentangled attribute
feature learning (DAFL) framework to learn disentangled features from the
input images. Tang et al. [24] combined multiple pedestrian datasets and trained
the common transformer network to achieve substantial performances on down-
stream tasks. Thakare et al. [25] attempt to predict a wide range of attributes
from multi-view input setting. On the other hand, approaches proposed in [8,31]
employ ResNet-50 as backbone and extract high-level features from single image
and learn semantic consistency across the attributes.

Pedestrian Attribute Recognition (PAR) also gained popularity due to
the availability of a few benchmark datasets. The popular PAR datasets are
PETA [3], RAP [14], Market1501 [16] and PA100K [18] include several impor-
tant attributes such as gender, cloth patterns, accessories, viewpoints, etc. How-
ever, the generalization ability of the trained models is restricted by the data
imbalance in these datasets. For example, the Market1501 dataset consists pri-
marily of 94.4% of images featuring individuals wearing short sleeves. Further-
more, inaccurate annotation guidelines pose challenges; for instance, in the
PETA dataset, the age attribute spans a wide range, yet it is assigned as age
18-60, encompassing over 73% of samples. However, a handful of recent PAR
approaches have correctly addressed data imbalance problem. Specker et al. [20]
introduced UPAR dataset which is a unified version of RAP [14], PETA,
PA100K, and Market1501. Li et al. [12] and another recent study [21] obtained
attribute positive ratio and integrated it with cross-entropy loss to increase the
recognition capability of the model.

Though the performance of recent PAR approaches is commendable, their
robustness and generalization are constrained by three major problems. Firstly,
multiple appearance of the same attribute hampers the accuracy of the pre-
diction. For instance, in a crowded scene for the Person Re-Identification task
mentioned in these studies [6,7,29], many pedestrians wear identical hats. The
similarity in appearance makes it difficult to identify individuals solely based
on their appearance. Jia et al. [8] have correctly identified this similarity prob-
lem and proposed semantic attribute consistency module. Secondly, the varying
weather and lighting conditions alter the visual clues of the attributes. For exam-
ple, it is difficult to predict the presence of the “black hair style” in the dark.
Lastly, data imbalance within the PAR datasets hampers the generalization and
robustness of PAR models. To address these challenges, the proposed solution is
expected to exhibit in-variance to complex weather conditions and similarities in
features.

To address the above complexities, an effective approach is to classify
attributes into distinct categories based on their appearance patterns. For exam-
ple, the appearance of gender aggregates information from various attributes
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such as hair pattern, clothing style, and accessories. Jia et al. [8] categorize
attributes based on their semantic consistency; for instance, items like helmet,
hood, and bucket hat are grouped together within the same semantic embedding
space as hats. Similarly, the authors of ParFormer [5] investigate the interrela-
tionships between groups of attributes in conjunction with the pedestrian view-
point in the given image. Inspired by this approaches, we provide a strong base-
line for hierarchical feature modelling by employing Vision Transformer (ViT),
in which the attributes are divided and recognized into 3 spatial granularity
levels. Concerning hierarchical feature modelling, we first grouped the set of
attributes according to their spatial distribution and granularity levels. We then
extract discriminative features using ViT blocks. Attributes like age, gender, and
viewpoint lack spatial region and necessitate global-level feature analysis repre-
senting low-level granularity. Conversely, attributes like face masks, boots, and
glasses can be spatially located in an image, enabling their recognition through
attention to a specific region. Therefore, based on their spatial granularity char-
acteristics, we have categorized the attributes into 3 levels and utilized diverse
patch formations prior to extracting shared features using ViT blocks. We have
explained these levels in Sect. 3.2.

ViT [4], which has been utilized for various computer vision tasks due to
its ability to learn discriminative features through multi-head self attention, has
been used in our baseline. The recent work proposed in [1] and ParFormer [5]
have employed variants of popular Transformer networks. However, they sig-
nificantly differ from proposed approach. The study proposed in [1] consists of
two pre-processing stages: (i) it employs ResNet-50 as backbone and extracts
high-level features from single image into three different feature map formats
F1, F2, and F3. (ii) Then each feature map undergoes another sub-layer, where
authors have utilized attention masks and series of convolution layers to extract
attribute-wise features. On the other hand, our approach first divides the single
image (unlike [1]) into patches according to the granularity level and attribute-
wise features have been extracted by series of Vision Transformers blocks. The
approach mentioned in [8] also employs ResNet-50 to extract high-level fea-
tures and it obtains spatial attention maps to segregate positive-negative sam-
ples for better training. Their proposed Semantic Consistency Module takes care
of obtained attribute-wise features, which is significantly different than our pro-
posed approach. More technical discussion about our architectural choice can be
found in Sect. 3.3. In addition to the feature extraction framework, we have also
introduced an enhanced loss function tailored for effective model training in the
proposed granularity scenario. Our experiments reveal that, higher granularity
demands more discriminative features for precise detection. Moreover, we have
integrated a logical combination of positive ratio and granularity into the loss
function for stable training.

Putting all this together, the paper makes the following contributions: i) We
attempt to address Pedestrian Attribute (PAR) task by formulating granular-
ity setup, where feature extraction and learning take place based on attribute-
wise granularity levels through a series of Vision Transformer blocks. ii) We also
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address the inherent data imbalance problem in PAR via proposing a granularity-
based penalty in training loss. iii) To demonstrate the effectiveness of the pro-
posed setup and loss, we have conducted a wide range of experiments on the
popular PAR benchmark datasets.

2 Related Work

In recent years, Pedestrian Attribute Recognition (PAR) has attracted inter-
est due to its applications in person retrieval, re-identification, and behavior
understanding. This section examines a number of notable efforts that have con-
tributed to the PAR.

In the past few years, deep learning-based architectures such as CNN and
LSTM have been popular choices for mainstream computer vision tasks. Several
PAR approaches have also utilized these architectures to mitigate the complex-
ity exists in PAR. A handful of PAR methods are CNN-based [13,17] or utilized
time-series-model [15]. Cheng et al. [2] introduced a visual-textual pipeline for
Pedestrian Attribute Recognition (PAR), treating it as a multi-modal task to
leverage intrinsic textual information within the attribute annotations. Li et
al. [15] employed a continual learning approach to manage multiple groups of
pedestrian attributes, integrating a self-learning method to address inconsistent
labels. Jia et al. [10] have highlighted the constraints of the one-shared-feature-
for-multiple-attributes approach, opting instead for a disentangled attribute fea-
ture learning framework. Thakare et al. [25] and Fan et al. [5] leverage rela-
tionship between attributes with respect to different viewpoints. Specifically,
authors of [5] have proposed Multi-view Contrastive Loss (MVCL) to exploit
viewpoint information into network, whereas approach mentioned in [25] extract
class activation information from all available viewpoints and fuse it to obtain
robust prediction. Bui et al. [1] extract global-level features using a combination
of both Swin and Vision Transformer and fused it using cross fusion technique.

In addition to these approaches, several frameworks centered around clas-
sifiers address the inherent data imbalance in PAR. In data-centric framework,
the minority class augmented through oversampling, or the majority class can be
scaled down to ensure stable training. On the other hand, loss-centric approaches
involve training the classifier with novel loss functions that account for various
scenarios, such as viewpoint and the positive ratio of attributes, among others.
One of the pioneer work in PAR [12] introduced the weighted binary cross-
entropy loss function to effectively address data imbalance. Jia et al. [10] addi-
tionally suggested employing a triplet loss to aid the group attention merging
module in learning discriminative features. Yan et al. [30] proposed incorporat-
ing a dropping rate during training, coupled with delaying the training of hard
samples, thereby favoring easier samples.

Though the recent works employ Transformer-based methods detailed in [1,
2,5], however, it differs in several critical aspects: (i) Unlike the unified patch
embedding utilized in [1,5], our method adopts a granularity-based patching
technique. (ii) By integrating hierarchical patching at the preprocessing stage,
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our framework eliminates the necessity for hierarchical feature extraction models.
(iii) Contrary to the viewpoint-centric loss applied in [5], we introduce a novel
granularity-based loss function for training. In the next section, we provide a
details description of the proposed method.

3 Proposed Baseline Method

PAR models expect to identify and characterize pedestrian attributes across a
wide spectrum of vastly differing conditions and environments. We propose a
strong evaluation baseline for recognizing attributes. The high-level architec-
ture of the baseline model is depicted in Fig. 1. It consists of three stages: (i)
Concerning hierarchical feature modelling, we have grouped attribute sets into
3 levels according to their spatial distribution. Patch formation and positional
embedding are done as per the three granularity level. (ii) In the second stage,
we employ multiple Vision Transformer (ViT) blocks to extract features from
embedded patches at each level. (iii) Lastly, a level-wise MLP-Head is trained
with custom loss to predict the probability for level-wise attributes. In the next
subsection, we discuss each stage in detail.

Fig. 1. Proposed Strong Baseline: The proposed baseline comprises of three stages:
(i) According to the spatial granularity level, the input image is divided into non-
overlapping patches, and positional embedding is added. (ii) Embedded patches are
then fed to the corresponding series of ViT blocks for feature extraction. (iii) Finally,
MLP-Head of each block is trained with the proposed loss function and the probability
for level-wise attributes, is predicted.

3.1 Problem Formulation

Following the prior works [2,12,30], we formulate the PAR problem as a multi-
label classification problem, where the model expects to learn discriminating
features that represent the presence or absence of attributes in a given pedestrian
image.
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Assume attribute set of a
pedestrian image is denoted by Π = {π1, π2, . . . , πK}, where K is the num-
ber of attributes. Let {(I1,Y1), (I2,Y2), . . . (IN ,YN )} be N image samples in
the training set, where Ii is the i-th pedestrian image and Yi ∈ Π. More pre-
cisely, Y represents a human-annotated binary vector wherein 0 and 1 denote
the absence and presence of an attribute in the image I, respectively. In this
scenario, our aim is to train a Pedestrian Attribute Recognition (PAR) model
denoted as H(.), which calculates the probability pi for each attribute πi within
the set Π, represented as H(I,Π) = [p1, p2, . . . , pM ]. These probabilities (p) are
utilized to calculate the loss during training and generate predictive outcomes
during inference.

3.2 Spatial Granularity and Embedding

The attribute-wise granularity levels are determined based on the image por-
tion they occupy to be correctly detected. For example, the number of pixels
required to detect attributes like hair color or boot color is significantly smaller
as compared to attributes such as gender, age, or viewpoint. To establish these
levels, we have divided pedestrian images from the PAR dataset into multiple
patches and analyzed the level of appearances. This analysis has involved review-
ing hundreds of images by multiple annotators, leading to the formation of three
distinct granularity levels. In addition to our observations, we have employed
object detection models like Faster R-CNN and YOLO-V3 to detect specific
attributes such as face masks, boots, and bags from cropped patches. Upon suc-
cessful detection, it has confirmed the low-level granularity of these attributes
through cropped patches from pedestrian images. Therefore, the proposed gran-
ularity levels are both empirically derived and supported by object detection
model’s predictions. Figure 2 depicts a handful of attributes from each level and
summarizes the attributes from PA100K dataset with their respective levels. For
each granularity level, we first divide the image into patches and map each patch
to a high-dimensional representation using linear embedding. Moreover, position
embeddings are also sequentially added to this vector to retain the positional
encoding. These embeddings are then processed through a series of consecutive
ViT blocks.

3.3 ViT Encoder Blocks

A handful of contextual factors influence the appearance of attributes; hence,
attentive feature learning is essential in a PAR setting. To achieve this, we employ
a series of ViT blocks for each granularity level. Each ViT block is basically a
regular Transformer [26] encoder, which consists of two sub-layers: Multi-head
self-attention and feed-forward layers. For instance, for the level L2, we have
processed 8 × 8 embedded patches through a series of 8 consecutive Transformer
blocks before feeding them to the classification head. We chose to employ Vision
Transformer (ViT) for three key reasons: (i) ViT is directly derived from the
popular Transformer architecture with image patch embedding, making it highly
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Fig. 2. Spatial Granularity Levels: Three granularity levels, L1, L2, and L3.
Abstract attributes such as gender, age demands full-image analysis for recognition.
On other hand, concrete attributes such as glasses, boots are difficult to localize due to
small spatial location.

suitable for handling highly annotated PAR datasets. (ii) ViT allows for faster
training and inference due to a lower number of network parameters (86M) and
higher throughput (35.9 s per image versus 88M and huge throughput of 120.7 s
on PA100K). (iii) Unlike Swin-T, ViT avoids complex hierarchical constructions,
which is beneficial since the input consists of predefined hierarchical attribute
categories.

3.4 Loss Function

Let TTrain = {Ii,Yi}Ni=1 be the training set, and pij be the predicted probability
by the model H for jth attribute of ith image. In multi-label classification context,
the weighted binary cross-entropy loss suggested by [12] is a good choice as the
primitive loss function for training the classifier, which is depicted in Eq. 1.
Here, yij is the human-annotated ground truth, and K is the total number of
attributes.

L = − 1
N

N∑

i=1

K∑

j=1

ωj (yij log (pij) + (1 − yij) log (1 − pij)) (1)

ωj =

{
e1−rj , yij = 1
erj , yij = 0

(2)

Here, ωj is the weight factor, and rj is the positive ratio of the jth attribute
in the set TTrain. Several existing PAR works [2,5,12] employ the loss function
depicted in Eqs. 1 and 2. Apart from this, a few recent works re-formulate the
loss function and incorporate additional aspects such as gradient norm [30] and
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penalty coefficient [21] to effectively handle data imbalance. We have utilised
weighted binary cross-entropy loss and attribute-wise penalty coefficient to han-
dle the imbalanced sample distributions. The updated loss function is depicted in
Eqs. 3 and 4.

Lj = − 1
N

N∑

i=1

K∑

j=1

Ωj (yij log (pij) + (1 − yij) log (1 − pij)) (3)

Ωj =

⎧
⎪⎪⎨

⎪⎪⎩

√
1

2rj
, yij = 1

√
1

2(1−rj)
, yij = 0

(4)

The imbalance weight factor, Ωj is designed to address class imbalance
by assigning greater importance to low-frequency classes. For positive samples
(yij = 1), Ωj increases when the positive ratio rj is low, thereby boosting the
training loss for such classes. This design ensures that the model emphasizes
minority classes, thus balancing the learning process. In addition to this, We
integrate an attribute-aware granularity factor, denoted as ζij , which assists the
model in learning more discriminative features at different levels. Our observa-
tions indicate that L1 attributes necessitate global-level feature analysis, and
their positive ratio is notably higher compared to other levels. Conversely, for
L3, positive ratios are uneven, thus require more attention during the training.
We calculate attribute-aware granularity factor using Eq. 5.

ζmj = [γm · 1
Ωj

] (5)

Here, ζmj is granularity factor for jth attribute on mth attribute granularity
level. Since, weighted attribute-wise training loss in Eq. 3 necessitates a higher
training loss for minority attributes, the new loss favours low granularity level
attribute due to special low-level feature analysis requirement. This granularity
factor (ζmj ) is influenced by two key considerations: (i) the positive ratio of the
specific attribute and (ii) the prior assumption that L1-level attributes occupy
a larger portion of visual features due to their appearance, thus requiring less
specific attention compared to L3-level attributes. The γm = [0.3, 0.5, 0.8] are a
set of granularity-base multipliers for L1,L2, and L3, respectively. These values
ensure that the weighted loss is propagated according to the granularity level.
For example, the age attribute, which belongs to the highest level L1, should
receive a small adjustment (0.3) in training loss even with a higher positive ratio
rj . In contrast, the face mask attribute, categorized under L3, should experience
an (0.8) times greater fluctuation in training loss due to its complex appearance.
The final loss is shown in Eq. 6. Here, Lj is the weighted binary cross entropy
loss defined in Eq. 3 and λ being the constant to control the influence of the
granularity term.

LF = Lj + λ · ζmj (6)
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4 Experiments

4.1 Datasets and Evaluation Metrics

The PA-100K dataset [18] consists of 100K pedestrian images taken in 598
outdoor scenes, with each image annotated for 26 commonly used attributes.
The dataset is divided into training, validation, and test sets, maintaining an
8:1:1 ratio for training. On the other hand, the PETA dataset [3] comprises
more than 8.7K pedestrians across 19K images, with diverse resolutions rang-
ing from 17 × 39 to 169 × 365. Each pedestrian is annotated with 61 binary
attributes and four multi-class attributes. However, for our current analysis, we
only consider 35 attributes with a positive label ratio exceeding 5%, following
the established protocol. Based on the main study [3], the dataset undergoes
a random division into three splits, allocating 9.5K images for training, 1.9K
images for validation, and the remaining 7.6K images for testing.

The RAP [14] is a collection of over 41K pedestrian images. Adhering to
the original protocol by Li et al. [14], we selectively consider 51 attributes for
evaluation purposes. For model evaluation, five random splits are employed, with
over 33K images utilized for training and over 8K images for testing in each split.
The final evaluation entails averaging the performance across all splits.

4.2 Implementation Details

We employ ViT-Base [4] encoder block to extract features which is pre-trained
on ImageNet-21k, at a resolution of 224 × 224. The patch size is set to 8 × 8, 8 ×
8, and 16 × 16 for granularity levels L1, L2 and L3, respectively. We also set 16, 8,
and 8 consecutive ViT blocks for L1, L2 and L3 for level-wise feature extraction.
The MLP-head for each level is a 3-layer fully-connected network with 512 and 36
neurons followed by output neurons equal to number of attributes in each level.
The input image is resized to 224 × 224 and each ViT encoder block produces
features of dimension [ H

2i+1 × W
2i+1 × Ci], where (H,W,C) are height, width, and

channel of the input image. We have followed layer-wise training, with 128 batch
size and 300 epochs. All heads are optimized by Adam optimizer, with λ = 1,
and granularity factor are set to γm = [0.3, 0.5, 0.8] ∈ m = 0, 1, 2.

Architectural Choice: Our approach with varying patch size and ViT blocks is
driven by several key considerations: (i) The number of attributes varies signifi-
cantly between datasets. For example, PA100k has 26 attributes, while PETA has
61 attributes. Hence, constructing a unified architecture to accommodate such
variability is not straightforward. (ii) The ViT-based architecture consists of 12
Transformer blocks [4]. Constructing a separate base architecture with 12 blocks
for each attribute in PA100k may result in an impractical architecture com-
prising 12 times 26 blocks, leading to excessive complexity and computational
demands. (iii) As noted in the ICLR 2021 paper on ViT [4], “Transformer’s
sequence length is inversely proportional to the square of the patch size, thus
models with smaller patch sizes are computationally more expensive”. There-
fore, the length of the architecture needs to vary if the patch sizes vary. For L3
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attributes, where the patch size is 16 × 16, we have utilized only 8 Transformer
blocks for feature extraction to maintain computational efficiency. By using dif-
ferent ViT configurations for different attribute levels, we ensure that the model
is computationally efficient and capable of handling the varying granularity of
attributes.

4.3 SOTA Comparisons

We have compared the proposed baseline with recent SOTA approaches [2,5,10,
12,13,15,17–19,21–23,27]. Table 1 summarises the performance comparisons on
RAP [14] and PETA [3] datasets. It can be observed that the proposed baseline
achieves competitive performance through leveraging granularity-based analysis
on both datasets. The experiments also reveal that ViT-based PARFormer [5]
reports best recall values due to integration of attribute and viewpoint informa-
tion. However, viewpoint may not always be a decisive feature, and completely
relying on it may generate more false positives. This is evident when other met-
rics are used for comparisons.

Table 1. Prior Arts Analysis: Performance comparisons on PETA [3] and RAP [14]
datasets. Best two results are shown in red and blue colors, respectively.

Method Backbone RAP [14] PETA [3]
mA Acc. Prec. Rec. F1 mA Acc. Prec. Rec. F1

CNN + SVM [3] VGG16 72.28 31.72 35.75 71.78 47.73 76.65 45.41 51.33 75.14 61.00
DeepMAR [12] CaffeNet 73.79 62.02 74.92 76.21 75.56 82.89 75.07 83.68 83.14 83.41
HP-Net [18] Inception 76.12 65.39 77.33 78.79 78.05 81.77 76.13 84.92 83.24 84.07
VeSPA [19] Inception 77.70 67.35 79.51 79.67 79.59 83.45 77.73 86.18 84.81 85.49
JRL [27] AlexNet 77.81 – 78.11 78.98 78.58 85.67 – 86.03 85.34 85.42
PgDM [13] CaffeNet 74.31 64.57 78.86 75.90 77.35 82.97 78.08 86.86 84.68 85.76
JLPLS-PAA [22] – 81.25 67.91 78.56 81.45 79.98 84.88 79.46 87.42 86.33 86.87
RA [32] Inception-V3 81.16 – 79.45 79.23 79.34 86.11 – 84.69 88.51 86.56
ALM [23] BN-Inception 81.87 68.17 74.71 86.48 80.16 86.30 79.52 85.65 88.09 86.85
JLAC [21] ResNet50 83.69 69.15 79.31 82.40 80.82 86.96 80.38 87.81 87.09 87.45
DAFL [10] Inception 83.72 68.18 77.41 83.39 80.29 87.07 78.88 85.78 87.03 86.40
SSC [9] ResNet50 82.77 68.37 75.05 87.49 80.43 86.52 78.95 86.02 87.12 86.99
PARFormer-B [5] Swin-B 83.84 69.70 79.24 87.81 81.16 88.65 82.34 86.89 91.55 88.66
Ours ViT-B 85.03 69.55 81.46 86.39 83.85 88.51 83.82 88.58 86.97 87.76

Other notable methods such as JLAC [21], DAFL [10] show promising results
on both datasets due their integration of GCN and triplet loss. Similar obser-
vations are reported on performance comparisons using the PA-100K dataset.
Table 2 shows the performance of several PAR approaches. The proposed base-
line achieves SOTA performance on PA-100K dataset with precision, recall,
and F1 values as high as 88.13%, 90.36%, and 89.23%, respectively. It can also
be observed that the overall label-based accuracy is low on PA100K [18]. It is
probably due to poor annotations on PA100K dataset. This has led to smaller
inter-class variations.
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Table 2. Prior Method Analysis: Performance comparisons on PA100K [18].
PARFormer-B + SL is a combination Swin Transformer and semantic loss [5].

Method mA Acc. Prec. Rec. F1
DeepMAR [12] 72.70 70.39 82.24 80.42 81.32
HP-Net [18] 74.21 72.19 82.97 82.09 82.53
JLPLS-PAA [22] 81.61 78.89 86.83 87.73 87.27
ALM [23] 80.65 77.08 84.21 88.84 86.46
JLAC [21] 82.31 79.47 87.45 87.77 87.61
Baseline [11] 81.61 79.45 87.66 87.59 87.62
DAFL [10] 83.54 80.13 87.01 89.19 88.09
PARFormer-B + SL [5] 83.95 80.26 87.51 91.07 87.69
PARFormer-B + Swin-B [5] 81.89 79.07 86.87 87.17 86.73
Ours 82.42 80.17 88.13 90.36 89.23

4.4 Qualitative Results

We also include qualitative results showcasing sample images from the
PA100K [18] and RAP [14] datasets to ensure a fair comparison between the
proposed method, DeepMAR [12], and VTB [2]. DeepMAR network is deep
learning-based multi-attribute recognition network and VTB is cross-module
fusion where textual information is fused with visual clues. Figure 3 depicts the
prediction scores of three approaches on input samples taken from the PAR100K
dataset. On the other hand, Fig. 4 illustrate performance comparison on images
from RAP [14]. As depicted in the Fig. 3, the proposed method demonstrates
superior robustness compared to the DeepMAR and VTB frameworks as it reg-
istered relatively higher confidence scores across a diverse range of attributes
from PA100K. For instance, consider the image of a woman wearing a pink t-
shirt (first column, second row) and walking with a handbag in her left hand.
Despite a minor occlusion on the left side, both DeepMAR and VTB detect the
handbag with a confidence score of less than 0.5, indicating low certainty regard-
ing its presence. In contrast, the proposed method detects the handbag with a
score of 0.98, showcasing its superior occlusion handling capability. Conversely,
in the case of a man wearing a striped t-shirt (last example) without a hat,
DeepMAR incorrectly registers a higher confidence score (0.77) for the presence
of a hat, whereas the other two methods indicate very low scores.

Similar observations can be made by inspecting Fig. 4. The RAP [14] dataset
offers a higher degree of diversity compared to PA100K [18], thanks to its exten-
sive attribute set. To provide a comprehensive comparison, we intentionally
selected challenging attributes to visualize results from this dataset. It is evi-
dent that DeepMAR [12] despite having its simple CNN-based architecture, the
model performs well on certain attributes such as hairstyle, upper body cloth
type, and face viewpoint. Conversely, the VTB [2] method primarily relies on
textual descriptions of attributes. It is noticeable that complex attributes like
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Fig. 3. Prediction Probabilities: Comparison outcomes among DeepMar [12],
VTB [2], and proposed baseline on samples from1 PA100K [18] dataset samples. The
bars denote the prediction probabilities between 0 to 1 and are plotted accordingly for
each method.

Fig. 4. Prediction Probabilities: Comparison outcomes among DeepMar [12],
VTB [2], and proposed baseline on samples from RAP [14] dataset samples. The bars
denote the prediction probabilities between 0 to 1 and are plotted accordingly for each
method.
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shoe color and viewpoint cannot be detected accurately due to the absence of
detailed explanations.

4.5 Ablation Study

The primary components of the proposed baseline include ViT blocks for fea-
ture extraction, semantic granularity levels, and an improved loss function. To
comprehend individual impact on the overall performance, we have conducted
an ablation study. Initially, we have computed the performance using the basic
DeepMAR [12] model with a feature extractor replaced by ResNet50. We selected
the DeepMAR network as the baseline for the ablation study because of its
straightforward feature extraction and classification-assisted framework. Table 3
shown performance comparisons of different components of the proposed frame-
work on PA100K dataset. It is worth noting that DeepMAR [12] with ResNet50
as the feature extractor performs reasonably well even without the proposed
spatial granularity and loss. However, it also demonstrates a notable improve-
ment of 2.92 in mean average precision (mA) and 2.28 in precision with their
inclusion. We also experimented with various feature extractors; however, we did
not observe significant variation in the resulting values.

Table 3. Component-wise performance of the proposed framework on the PA100K [18].

Baseline Granularity Loss mA F1

DeepMAR [12] × × 72.20 81.32
DeepMAR [12] � × 73.41 82.54
DeepMAR [12] × � 73.69 82.77
DeepMAR [12] � � 75.12 83.60
ViT × × 76.48 83.50
ViT � × 77.92 84.08
ViT × � 78.15 85.21
ViT (Ours) � � 82.42 89.23

Since the DeepMAR [12] framework only utilizes a basic CNN structure, it may
not be capable of extracting intricate features due to its limited capacity. Hence,
we employed a Vision Transformer [4] to extract the latent features, leveraging its
ability to capture complex patterns and relationships in the pedestrian data. By
closely examining the baseline transition from DeepMAR [12] to ViT [4], it is evi-
dent that the Vision Transformer, as a feature extractor, achieved relatively higher
accuracy across the dataset. However, once equipped with the proposed granular-
ity and novel loss functions, the proposed framework achieves state-of-the-art per-
formance on the PA100K dataset. Thus, the proposed ViT-based architecture is
capable of capturing long-range dependencies alongside attribute partitioning. It
thus aids in spatially focused attribute analysis that essentially contributes toward
the model’s ability to discern finer attribute details.



Pedestrian Attribute Recognition Using Hierarchical Transformers 91

The patch sizes for granularity levels are set to 8x8, 8x8, and 16x16 for L1,
L2, and L3, respectively. Given that L3 level attributes occupy minimal portions
of the images, they necessitate larger patch sizes. This aligns with the state-
ment from the Vision Transformer (ViT) paper,“Transformer’s sequence length
is inversely proportional to the square of the patch size”, resulting in sequence
lengths of 16, 8, and 8 for L1, L2, and L3, respectively. We have carried out
ablation experiments to assess the efficacy of these configurations. In the first
variant, we have reversed the patch sizes to 16x16, 8x8, and 8x8 for L1, L2, and
L3, respectively. In the second variant, we have reversed the sequence lengths to
8, 8, and 16 for L1, L2, and L3. The first experiment has demonstrated a signif-
icant degradation of 10.46% in mean Average Precision (mAP) on the PA100K
dataset compared to the original setting. Conversely, the second setting has
exhibited a slight mAP variation of 6.72%. Highest level L1 attributes with only
8x8 patch sizes necessitate global-level feature analysis, thus requiring a higher
number of transformer blocks. When the patch size is reversed to 16x16, the
transformer fails to capture global features effectively due to the insufficiently
small patch size. This issue is consistent across other levels as well.

5 Conclusion and Future Work

In response to the challenges presented by current Pedestrian Attribute Recogni-
tion (PAR) datasets and approches, we have devised a comprehensive approach.
Our suggested framework involves employing a robust baseline model utilizing
Vision Transformer (ViT) blocks. We have further enhanced this framework by
categorizing attributes into three spatial granularity levels, exploiting hierarchi-
cal feature extraction to capture both global and local visual cues effectively.
Additionally, we have introduced a novel loss function designed specifically to
mitigate the inherent data imbalance prevalent in PAR datasets. The proposed
solution approach not only ensures more stable model training but also achieve
superior performance in accurately recognizing pedestrian attributes. We con-
ducted extensive experiments on three widely used Pedestrian Attribute Recog-
nition (PAR) datasets: RAP, PA100K, and PETA. The results demonstrate that
our proposed approach has achieved significant improvements across all three
datasets, depicting its effectiveness and robustness in addressing the challenges
inherent in PAR. One limitation of the proposed approach is its dependence
on pre-defined spatial granularity levels for attribute classification. This fixed
granularity may not fully capture the diverse and nuanced visual characteristics
present in real-world pedestrian images. Consequently, the model’s ability to
adapt to novel or unexpected attribute variations might be limited. To address
this limitation, future research could explore dynamic or adaptive spatial granu-
larity schemes that allow the model to adjust its feature extraction process based
on the specific attributes and context present in each image.
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Abstract. In this paper, we propose novel learning methods for multi-
task facial emotion recognition that simultaneously performs multiple
facial emotion recognition tasks. It is often difficult to collect datasets
with multiple completely annotated targets (i.e., fundamental emotion,
valence-arousal, action unit intensity, etc.), so a technology is required
that constructs a multi-task facial emotion recognition model from mul-
tiple single-target annotated datasets. To this end, previous studies
have introduced a method called multi-task self-training, in which the
multi-task learning is performed by supplementing missing targets with
pseudo-targets generated using single-task models. However, the pseudo-
targets are often not precise enough, so effective multi-task learning can-
not be performed. To address this problem, our proposed method, called
born-again multi-task self-training, refines the pseudo-targets via iter-
ative born-again steps of the multi-task model, i.e., the pseudo-targets
are regenerated using the pre-trained multi-task model. In addition, to
enhance the born-again steps, the proposed method temporarily creates
single-task models via fine-tuning of the pre-trained multi-task model.
The temporal single-task models effectively regenerate precise pseudo-
targets. In our experiments with three facial emotion recognition tasks,
we demonstrate that the proposed method outperforms the conventional
multi-task self-training.

Keywords: multi-task model · facial emotion recognition · multi-task
self-training · born-again · psudo-targets

1 Introduction

Analysis of facial information is crucial as human face images hold a wealth of
information, particularly facial expressions, that is linked to human emotions [1].
There are several prominent tasks in the field of facial emotion recognition,
including facial expression classification [2], estimation of action units that rep-
resent individual facial muscle movements [3], and estimation of valence-arousal,
which is a two-dimensional value based on the circumplex model of emotion [4].
In general, these tasks are individually modeled as task-specific models, i.e.,
single-task models. In recent years, approaches have been developed to per-
form multiple facial emotion recognition tasks with one multi-task model [5],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. Key idea of born-again multi-task self-training

which has the advantage of enhancing the knowledge of each task during learn-
ing and reducing computation costs during inference. Therefore, this paper aims
to develop methods for constructing a multi-task model that can effectively per-
form multiple facial emotion recognition tasks using one multi-task model.

In previous studies, multi-task learning methods to build multi-task mod-
els have been investigated [6–9]. Basically, multi-task learning requires a dataset
with multiple completely annotated targets. Unfortunately, completely annotat-
ing a dataset is costly and not practical under realistic conditions. Therefore, a
multi-task model needs to be built using easily obtainable single-target annotated
datasets. The most basic approach under this condition is to calculate the loss
only for the output part of the corresponding task when data for a certain task is
inputted [10]. This approach cannot learn the relationships between tasks from a
single piece of data. Recently, multi-task self-training [11] has been used to perform
multi-task learning from multiple single-target annotated datasets. This method
first trains single-task models as teachers for each task and uses them to supple-
ment missing targets with pseudo-targets. Then, a multi-task model is trained
from pseudo-completely annotated datasets via the pseudo-target annotation.

However, conventional multi-task self-training methods often fail to produce
the synergistic effects of multi-task learning because the pseudo-target annotated
by the single-task teacher models are not necessarily accurate or informative.
If the accuracy of pseudo-targets is poor, it is expected to negatively impact
accuracy instead of transferring knowledge between tasks. Therefore, multi-task
learning with single-target annotated datasets requires improved accuracy of
pseudo-targets.

In this paper, we propose a born-againmulti-task self-trainingmethod for effec-
tive multi-task learning from multiple single-target annotated datasets. The pro-
posed method extends the conventional multi-task self-training to improve the
qualities of pseudo-targets. Figure 1 shows the key idea of born-again multi-task
self-training. The idea is to use the constructed multi-task model as a teacher to
iteratively refine the multi-task model. This can refine the information of the
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pseudo-targets and perform more sophisticated multi-task self-training. Born-
again steps have been studied in born-again neural networks [12] in which knowl-
edge distillation using the same model structure is repeated.Different from the pre-
vious study, this paper is the first to perform multi-task self-training while being
born-again. Furthermore, to enhance the effect of the born-again steps, the pro-
posed method temporarily creates single-task models specialized for each task via
fine-tuning of the pre-trained multi-task model. The temporal single-task models
effectively regenerate precise pseudo-targets compared with the pre-trained multi-
task model. This is because the fine-tuned temporal single-task models can uti-
lize the good parts of multi-task knowledge through multi-task learning and task-
specific knowledge at the same time. We expect that improved accuracy of pseudo-
targets will promote improved multi-task model training.

In our experiments, we deal with a facial expression classification task, action
unit intensity estimation task, and valence-arousal estimation task as multi-
tasks. Our experiments show that the proposed method with iterative born-again
steps outperforms conventional multi-task learning methods.

2 Definition

In this paper, we handle three facial emotion recognition tasks: facial expression
classification (EXPR), action unit intensity estimation (AU), and valence-arousal
estimation (VA). This section defines the single-target annotated dataset, mod-
eling, and loss functions for the supervised learning.

2.1 Single-Target Annotated Datasets

The single-target annotated dataset for each task is defined as

D(i) = {(x(i)
n ,y(i)

n ) | n ∈ {1, · · · , N (i)}}, (1)

where, x
(i)
n is the input image and y

(i)
n = [y(i)

n,1, · · · , y
(i)

n,K(i) ]� is the ground-
truth target for the n-th sample in the i-th single-target annotated dataset. N (i)

represents the number of samples for the i-th dataset and K(i) represents the
number of elements in the i-th task’s target.

Each input image is annotated with only one task. i ∈ {1, 2, 3} are the
indices for each task, where i = 1, i = 2, and i = 3 refer to EXPR, AU, VA
tasks, respectively. In EXPR task, y(1)

n is a one-hot vector. In an AU task, y(2)
n

has multiple action unit elements, each of which has a value in the range [0, 5].
In VA task, y(3)

n has two elements, the valence value and the arousal value, each
of which has a value in the range [−1, 1].

2.2 Modeling

This paper uses single-task models that individually have a task-specific input
layer and a task-specific output layer, and a multi-task model that has a
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task-agnostic input layer and multiple task-specific output layers. We denote
the output of a single-task model for the i-th task by

ŷ(i) = S(i)(x; θ(i)), (2)

where S(i)(·) is the model function and θ(i) is its model parameter of the i-
th single-task model. We denote the output for the i-th task of a multi-task
model by

ŷ(i) = M(i)(x; θ), (3)

where M(i)(·) is the model function that predicts the i-th output and θ is a
shared model parameter.

2.3 Loss Functions

For each task, we define loss functions, which are cross-entropy loss for the EXPR
task and mean squared error for AU and VA tasks. When targets are available
for each task, we define loss functions for supervised learning as

L(1)(y(1), ŷ(1)) = −
K(1)∑

k=1

y
(1)
k log ŷ

(1)
k , (4)

L(2)(y(2), ŷ(2)) =
1

K(2)

K(2)∑

k=1

(y(2)
k − ŷ

(2)
k )2, (5)

L(3)(y(3), ŷ(3)) =
1

K(3)

K(3)∑

k=1

(y(3)
k − ŷ

(3)
k )2, (6)

where ŷ
(i)
n = [y(i)

1 , · · · , y
(i)

K(i) ]� is the outputs of the i-th task’s model. The out-
puts can be computed from either the single- or multi-task model.

3 Baseline Methods

This section details baseline training methods that train single-task models.

3.1 Task-Specific Training

Task-specific training, i.e., supervised learning, utilizes single-target annotated
data for building a single-task model. Figure 2 shows an overview of task-specific
training. To train a single-task model for the i-th task, the loss function is defined
as

L(θ(i)) =
N(i)∑

n=1

L(i)(y(i)
n ,S(i)(x(i)

n ; θ(i))). (7)

The model parameter can be optimized by minimizing the loss function.
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Fig. 2. An overview of task-specific training

3.2 Task-Specific Self-training

Task-specific self-training utilizes not only single-target annotated data but also
pseudo-target annotated data [13,14]. The pseudo-target is obtained using a
pre-trained single-task model as a teacher. Thus, pseudo-target is annotated
against an input image in another-task’s datasets. The pre-trained single-task
model is attained by task-specific training detailed in Sect. 3.1. Figure 3 shows
an overview of task-specific self-training. In this case, θ(1) is trained with task-
specific self-training. To train a single-task model for the i-th task, the loss
function is defined as

L(θ(i)) =
N(i)∑

n=1

L(i)(y(i)
n ,S(i)(x(i)

n ; θ(i)))

+
∑

m �=i

N(m)∑

n=1

L(i)(S(i)(x(m)
n ; θ̂(i)),S(i)(x(m)

n ; θ(i))), (8)

where θ̂(i) is the frozen pre-trained parameters. Note that θ̂(i) is trained on
Eq. (7).

4 Conventional Method

This section describes conventional multi-task self-training [11]. This training has
two steps. First, single-task models are trained as teachers from a single-target
annotated dataset for each task. Next, a multi-task model is trained from pseudo-
completely annotated datasets that are created using the single-task teacher
models. Figure 4 shows an overview of multi-task self-training.
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Fig. 3. An overview of task-specific self-training

In the first step, a single-task model is built from a single-target anno-
tated dataset for each task. This is achieved by task-specific training detailed
in Sect. 3.1. In the second step, a multi-task model is trained using the teacher
models. We define the loss function to train the multi-task model as

L(θ) =
3∑

i=1

N(i)∑

n=1

{
L(i)(y(i)

n ,M(i)(x(i)
n ; θ))

+
∑

m �=i

L(m)(S(m)(x(i)
n ; θ̂(m)),M(m)(x(i)

n ; θ))
}

, (9)

where the model parameters θ̂(1), θ̂(2), θ̂(3) are the fixed parameters trained in
Eq. (7). Note that the loss weights to take the importance of each loss term into
consideration are omitted in Eq. (9) for simplicity.

5 Proposed Methods

This section details proposed born-again multi-task self-training. In the proposed
method, the multi-task model is first constructed using the conventional multi-
task self-learning framework formulated in Eq. (9). Then, the multi-task model is
leveraged as a teacher for generating pseudo-targets. We present two methods:
simple born-again multi-task self-training and task-specific born-again multi-
task self-training.

5.1 Simple Born-Again Multi-task Self-training

In simple born-again multi-task self-training, we use the pre-trained multi-task
model θ̂ as a teacher to build a next-generation multi-task model θ. Figure 5
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Fig. 4. An overview of multi-task self-training

shows an overview of multi-task self-training. We define the loss function to train
the next-generation multi-task model as

L(θ) =
3∑

i=1

N(i)∑

n=1

{
L(i)(y(i)

n ,M(i)(x(i)
n ; θ))

+
∑

m �=i

L(m)(M(m)(x(i)
n ; θ̂),M(m)(x(i)

n ; θ))
}

, (10)

where θ̂ is fixed non-trainable parameters.
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Fig. 5. An overview of simple born-again multi-task self-training

In the first born-again step, θ trained on conventional multi-task self-training
is used as θ̂. The born-again can be iterated by replacing the trained next-
generation multi-task model as θ̂ in Eq. (10).

5.2 Task-Specific Born-Again Multi-task Self-training

In task-specific born-again multi-task self-training, we temporarily build single-
task models θ

(1)
tmp, θ

(2)
tmp, θ

(3)
tmp using the pre-trained multi-for generating pseudo-

targets. Figure 6 shows an overview of building the temporal single-task models.
In this case, θ

(1)
tmp is trained. To build the i-th temporal single-task model, we

define the loss function as
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Fig. 6. An overview of building a temporal single-task model in task-specific born-again
multi-task self-training

L(θ(i)tmp) =
N(i)∑

n=1

L(i)(y(i)
n ,S(i)(x(i)

n ; θ(i)tmp))

+
∑

m �=i

N(m)∑

n=1

L(i)(M(m)(x(i)
n ; θ̂),S(i)(x(i)

n ; θ(i)tmp)), (11)

where θ̂ is fixed non-trainable parameters. In the first born-again step, model
parameters trained on conventional multi-task self-training is used as θ̂. The
temporal single-task models effectively regenerate precise pseudo-targets com-
pared with the pre-trained multi-task model. Therefore, the pre-trained temporal
single-task models θ̂

(1)
tmp, θ̂

(2)
tmp, θ̂

(3)
tmp are used as teachers for building the next-

generation multi-task model θ. Figure 7 shows an overview of task-specific born-
again multi-task self-training. To train the next-generation multi-task model,
the loss function is defined as

L(θ) =
3∑

i=1

N(i)∑

n=1

{
L(i)(y(i)

n ,M(i)(x(i)
n ; θ))

+
∑

m �=i

L(m)(S(m)(x(i)
n ; θ̂(i)tmp),M(m)(x(i)

n ; θ))
}

, (12)

where θ̂
(1)
tmp, θ̂

(2)
tmp, θ̂

(3)
tmp are fixed non-trainable parameters. The born-again can

be iterated by replacing the trained next-generation multi-task model as θ̂ in
Eq. (11).
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Fig. 7. An overview of task-specific born-again multi-task self-training

6 Experiments

To verify the effectiveness of the proposed method, we evaluated its performance
in facial expression classification, action unit intensity estimation, and valence-
arousal estimation tasks.
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6.1 Datasets

We used multiple single-target annotated datasets for evaluation.

– EXPR datasets: We used two datasets, FER2013 [15] and RAF-DB [16],
both annotated with seven categories: neutral, happy, sad, angry, fearful,
disgusted, and surprised. Both datasets used published training and test sets
of about 41,000 and 6,600 images, respectively.

– AU datasets: We used the DISFA dataset [17], which consists of video data
from 27 subjects annotated with 12 elements of AU intensity at the frame
level. We used 21 subjects as our training set and the remaining 6 subjects as
our test set, which consisted of about 96,000 and 29,000 images, respectively.

– VA datasets: We used the AffectNet dataset [18], which is annotated with
valence-arousal values. As a reminder, AffectNet is also annotated with tar-
gets for the facial expression classification task, but we did not use them. To
ensure consistency with other tasks, we randomly sampled 50,000 images from
the published training set, and we used 4,500 images for testing, published as
a test set.

Each dataset has different face image cropping due to variations in their respec-
tive domains. For effective multi-task learning, a common face alignment is nec-
essary. Therefore, we used a landmark detector [19] to align the faces with the
same criteria and compensate for facial tilt. The face images were cropped and
resized to 256 × 256.

6.2 Setups

We evaluated single-task models with baseline methods (task-specific training
and task-specific self-training [13,14]), a multi-task model with conventional
multi-task self-training [11], and multi-task models with proposed methods (sim-
ple born-again multi-task self-training and task-specific born-again multi-task
self-training).

For the single-task models and multi-task models, the MobileNetV3 archi-
tecture [20] was used for the backbone network, which is a 13-layer convo-
lutional neural network (CNN). After the global average pooling layer, two
fully connected layers with 256 dimensions and am output layer are added.
For the EXPR task, a softmax layer was used as the output layer. For the
AU and VA tasks, a linear layer was used as the output layer. In the multi-
task model, the MobileNetV3 architecture serves as a shared backbone network.
The model parameters in the MobilenetV3 were pre-trained with the VGGFace2
dataset [21]. To construct the single-task and multi-task models, the mini-batch
size was set to 128, and we used Adam [22] for optimization. The training steps
were stopped on the basis of early stopping using a part of the training sets.
Loss weights in multi-task self-training were determined by grid search.
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6.3 Results

The experimental results are shown in Table 1. The EXPR task used accuracy,
the AU task used the Intra-Class Correlation ICC (3,1) [23], and the VA task used
the concordance correlation coefficient [24]. As an evaluation score for overall
tasks, we defined the summed score of each task. “Overall-S” represents an overall
score when using three single-task models, and “Overall-M” represents that when
using a multi-task model. Note that “iter.” represents the number of performing
multi-task self-training in the conventional and proposed methods. Thus, the
number of performing multi-task self-training in the conventional method is 1.

Table 1. Experimental results of baseline, conventional and proposed methods

Single-task model with baseline method EXPR AU VA Overall-S

Task-specific training 0.715 0.413 0.442 1.570
Task-specific self-training [13,14] 0.728 0.435 0.453 1.616
Multi-task model with conventional method iter. EXPR AU VA Overall-M
Multi-task self-training [11] 1 0.719 0.430 0.462 1.611
Multi-task model with proposed method iter. EXPR AU VA Overall-M
Simple born-again multi-task self-training 2 0.716 0.430 0.463 1.609
Simple born-again multi-task self-training 3 0.729 0.414 0.468 1.611
Simple born-again multi-task self-training 4 0.727 0.415 0.466 1.608
Task-specific born-again multi-task self-training 2 0.720 0.444 0.465 1.629
Task-specific born-again multi-task self-training 3 0.729 0.440 0.472 1.641
Task-specific born-again multi-task self-training 4 0.726 0.440 0.468 1.634

The results show the multi-task model with the conventional multi-task
self-training achieved comparable emotion recognition performance to a single-
task model with task-specific self-training. This indicates that the multi-task
model has enough potential to improve emotion recognition performance while
reducing inference cost compared with using multiple single-task models. How-
ever, this also indicates that conventional multi-task self-training did not yield
synergy between tasks. The proposed simple born-again multi-task self-training
yielded no performance improvements compared with conventional multi-task
self-training. This suggests that pseudo-targets simply regenerated by using a
multi-task model are not effective to improve the multi-task model. On the other
hand, the proposed task-specific born-again multi-task self-training yielded per-
formance improvements in each task. In addition, by increasing iterative born-
again steps, the task-specific born-again self-training yielded further performance
improvements. The highest performance was attained by task-specific born-again
multi-task self-training with two born-again steps. These results suggest that
task-specific born-again multi-task self-training is effective to train a multi-task
model from multiple single-target annotated datasets and yield synergy between
tasks. We consider that the synergy is attained when there is no inconsistency
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Table 2. Evaluation of pseudo-targets in each born-again steps

Multi-task model with conventional method iter. EXPR AU VA
Multi-task self-training [11] 1 0.715 0.413 0.442
Multi-task model with proposed method iter. EXPR AU VA

Simple born-again multi-task self-training 2 0.719 0.430 0.462
Simple born-again multi-task self-training 3 0.716 0.430 0.463
Simple born-again multi-task self-training 4 0.729 0.414 0.468
Task-specific born-again multi-task self-training 2 0.735 0.443 0.476
Task-specific born-again multi-task self-training 3 0.738 0.474 0.478
Task-specific born-again multi-task self-training 4 0.739 0.474 0.474

between pseudo-targets for missing tasks and manually-annotated ground-truth
targets. Note that iterative self-training steps are computationally expensive
compared with task-specific training or conventional multi-task self-training.
But, computation complexity in an inference step is exactly comparable with
other training method.

Furthermore, we analyzed the performance of pseudo-targets in each born-
again steps. We evaluated intermediate models that generate pseudo-targets. For
conventional multi-task self-training, models via task-specific training was the
intermediate ones. For simple born-again multi-task self-training, a multi-task
model trained in a previous iteration step is the intermediate one. For task-
specific born-again multi-task self-training, temporal single-task models trained
in the process of the task-specific born-again multi-task self-training are the
intermediate ones. We performed same evaluations for the EXPR, the AU, and
VA tasks with Table 1. Table 2 shows the experimental results. The results show
the intermediate models for task-specific born-again multi-task training outper-
formed those for conventional multi-task self-training and those for simple born-
again multi-task self-training. This is because the fine-tuned temporal single-task
models can utilize the good parts of multi-task knowledge through multi-task
learning and task-specific knowledge at the same time. These results show that
performance improvements by the proposed method were due to improvements
of pseudo-targets. They also show that that the multi-task model was still no
match for well-designed single-task models. Therefore, our future work is to reach
the performance of temporal single-task models by using a multi-task model.

7 Conclusion

This paper proposed a novel approach for multi-task facial emotion recogni-
tion that utilizes single-target annotated datasets. We introduced a born-again
multi-task self-training method to refine the pseudo-targets generated by the
conventional multi-task self-training method. Our proposed method constructs
a multi-task model that reduces computation costs compared to the single-task
model. Experimental results showed that our approach improves the synergy
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among tasks and achieves better performance than the conventional multi-task
self-training method. In future work, we will examine similar experiments using
state-of-the-art vision Transformer based backbone architecture.
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Abstract. Fine-Grained Oriented Object Detection (FGOOD) aims to
simultaneously categorize and localize fine-grained objects using ori-
ented bounding box predictions. In this paper, we propose to exploit
rich text features to discern fine-grained object categories from sub-
ordinate coarse-grained semantic classes, such as Boeing 747 vs. air-
plane. To this end, we leverage the emerging Contrastive Language-
Image Pre-training (CLIP) model, which provides image-text represen-
tations to bridge the gap between oriented localization representations
and fine-grained semantics. Our method is distinct from early FGOOD
approaches which commonly focus on region proposal refinement but
overlook the inter-class relations between fine-grained categories, result-
ing in inadequately discriminative features to discern the fine-grained
categories. Specifically, our simple yet effective language-guided fine-
grained oriented object detector first integrates hierarchical information
from multi-granularity labels into a rotated object detection framework,
establishing a shared representation space for Region of Interest (RoI)
features and text features. Then, we extract fine-grained discrimina-
tive features from those RoI features using our elaborated Fine-grained
Orthogonal Decomposition (FOD) and Fine-grained Orthogonal Feature
Queue (FOQ). Extensive experiments validate the superiority of our app-
roach, demonstrating a substantial performance improvement over state-
of-the-art oriented object detectors on two FGOOD datasets, FAIR1M
and HRSC2016, with a notable 1.67% and 3.42% mAP improvement on
FAIR1M and HRSC2016.

Keywords: Oriented Object Detection · Fine-Grained · CLIP

1 Introduction

In recent years, the rapid development of oriented object detection [8,13,14,18,
24,38,42] has been driven by advancements in deep learning and Earth Vision.
Unlike object detection in generic images, which predicts Horizontal Bound-
ing Boxes (HBBs) [1,21,29,32], oriented object detection focuses on detecting
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Fig. 1. Comparison between the FGOOD dataset and a conventional fine-grained clas-
sification dataset. In contrast to the right image from a conventional fine-grained classi-
fication dataset, FGVC-Aircraft [25], the left image from the FGOOD FAIR1M dataset
[31] presents challenges such as low resolution, high distortion, and limited samples from
highly varied viewpoints

objects in aerial images using Oriented Bounding Boxes (OBBs). Despite sig-
nificant progress in accurately localizing OBBs, most state-of-the-art methods
classify aerial objects only at a coarse granularity, such as distinguishing an air-
plane from a ship. However, practical Earth Vision applications require more
fine-grained classification of aerial objects [31], such as differentiating between a
Boeing 747 and an Airbus 350 within the airplane category.

This problem is known as Fine-Grained Oriented Object Detection
(FGOOD), which aims to simultaneously localize and categorize fine-grained
aerial objects using OBB predictions. Despite the challenges inherited from ori-
ented object detection, such as arbitrary orientations and densely distributed
small objects [36], FGOOD is particularly challenging in discerning specific fine-
grained categories from others. As depicted in Fig. 1, aerial images commonly
present unique challenges due to low resolution, high distortion, and limited sam-
ples from highly varied viewpoints, which deviate from the near-horizontal views
prevalent in most natural images. As a result, aerial images often exhibit small
inter-class variations and significant intra-class differences, making it extremely
difficult to discern fine-grained categories.

Early FGOOD approaches primarily focus on improving oriented bounding
box predictions from the detection head [3,6,16,19,26,27,30,33,44], but over-
look the unique challenge of discerning fine-grained categories. As a result, the
feature representation from these oriented object detectors remains insufficient
for fine-grained categorization, leading to suboptimal performance of the clas-
sification head. In this paper, we focus on enhancing the oriented object rep-
resentation to better discern fine-grained categories. We draw inspiration from
the fine-grained visual categorization (FGVC) community, which also considers
hierarchical relationships between categories [2,4,5,22,37].

Fortunately, the rich hierarchical semantic contexts for fine-grained classifica-
tion can be leveraged by the emerging paradigm of Contrastive Language-Image
Pre-training (CLIP) [28]. CLIP provides a natural way to harness connections
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between semantic categories of varying granularity. After large-scale pre-training
on noisy image-text pairs, the text encoder of the CLIP model can map text into
a vision-language common feature space, where the feature distributions of fine-
grained classes within the same coarse class are close to each other and aligned
with visual features. Motivated by this, we introduce multi-granularity text fea-
tures from the text encoder of CLIP and employ Text Embedding Projection
(TEP) learning to facilitate the alignment of region of interest (RoI) features
with text features in a shared representation space.

Nevertheless, how to incorporate the hierarchical text representation between
fine- and coarse-grained levels into the oriented detector representation remains
an open question. To address this, we propose Fine-grained Orthogonal Decom-
position (FOD) learning, aided by a Fine-grained Orthogonal Feature Queue
(FOQ). Specifically, we orthogonally decompose the Rotated RoI (RRoI) fea-
tures using the coarse-grained text features mapped by the TEP module. The
resulting feature vectors are orthogonal to the discriminator vector of the coarse-
grained category within the common feature space. This segment of the feature
can be considered as the component that allows each fine-grained category within
the same coarse category to distinguish itself from others [22,35,40]. We then
apply supervised contrastive learning [17] to the fine-grained orthogonal features,
encouraging the model to capture intricate and semantically rich features while
mitigating the small inter-class variation problem.

Our contributions can be summarized as follows:

– We propose a language-guided fine-grained oriented object detector, dubbed
LOOD, for FGOOD. To the best of our knowledge, this is the first work in the
field to exploit vision-language models for representing fine-grained categories.

– We introduce a novel text embedding projection and fine-grained orthogonal
decomposition learning to incorporate hierarchical fine-grained text represen-
tation into oriented detector representation.

– Comprehensive experiments demonstrate that the proposed method outper-
forms existing state-of-the-art methods by 1.67% and 3.42% mAP on the
FAIR1M and HRSC2016 datasets, respectively.

2 Related Work

2.1 Vision-Language Models

(VLM) ingest data from both language and image modalities, and have drawn
increasing attention in the past few years. A typical VLM paradigm for the vision
community is contrastive language-image pre-training (CLIP) [28], which has
been adopted in numerous downstream tasks. For example, ViLD [12] distills the
CLIP knowledge to identify novel classes. DetPro [10] introduces the automatic
prompt learning paradigm [46]. RegionCLIP is proposed to [45] to aid region-
level classification inference. ZegFormer [9] is proposed to boost the segmentation
ability for unseen (novel) classes. However, to the best of our knowledge, none of
these works have leveraged CLIP to represent the fine-grained aerial images.
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Oriented Object Detection employs Oriented Bounding Boxes (OBBs) to
accommodate the arbitrary orientations of objects in aerial imagery. These meth-
ods can be classified into two categories, namely, one-stage [13] and two-stage
[7,14,38]. More recently, Oriented RepPoints [18] has introduced an adaptive
point learning approach. SASM [15] has improved the label assignment strategy.
However, these methods are only designed for coarse-grained detection.

Fine-Grained Oriented Object Detection is predominantly evolved from
oriented object detection. Some typical works include PCLDet [27], SFRNet [6],
CF-ORNet [33] , RB-FPN [30] and etc. However, these methods usually focus on
enhancing the feature representation for oriented bounding box predictions, but
pay less attention to the relation between fine-grained categories. For FGOOD,
leveraging the relation between fine- and coarse-grained categories can be critical
to improving the category representation.

Fine-Grained Visual Categorization (FGVC) on natural images has under-
gone extensive research. Although the part-driven paradigm is the most common
approach in this research direction [34], in recent years, more and more meth-
ods have begun to focus on the classification knowledge within multi-granularity
labels [4,11,22,43]. These approaches leverage hierarchical label information to
assist in training. Inspired by this trend, we introduce multi-granularity label
knowledge into the FGOOD task.

3 Methodology

3.1 Revisiting Two-Stage Oriented Object Detector

Existing two-stage oriented object detectors (e.g.,, RoI Transformer, ReDet)
typically follow the Cascade R-CNN paradigm. For an input image I, the detec-
tion backbone processes it through the backbone and Feature Pyramid Network
(FPN), generating multi-level convolutional features denoted as fI . These fea-
tures are then fed into the Region Proposal Network (RPN), which produces
horizontal region proposals emphasizing potential object-containing areas. RoI
Align is applied to align features within these proposals to a fixed-size map,
resulting in horizontal RoI features, denoted as fHRoI. The first stage transforms
HRoIs fHRoI into RRoIs fRRoI. Subsequently, a secondary RoI Align is performed
based on the RRoI locations, generating rotated RoI features. The second stage
fRRoI undergoes another cycle of classification and regression, predicting rotated
bounding boxes.

3.2 Problem Setup and Framework Overview

Fine-grained labels adhere to a hierarchical taxonomy structure. To align with
dataset labels, we designate the most detailed category as the fine-grained cat-
egory {lF }. Coarser labels, one level above {lF }, are defined as coarse-grained
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Fig. 2. Framework overview of the proposed language-guided fine-grained oriented
object detector (LOOD) for fine-grained oriented object detection. The framework
includes a novel text embedding projection learning (TEP, in Sect. 3.3) and fine-grained
orthogonal decomposition learning (FOD, in Sect. 3.4) to incorporate hierarchical fine-
grained text representation into the oriented detector representation. FOD is further
supported by a Fine-Grained Orthogonal Feature Queue (FOQ, in Sect. 3.5)

categories {lC}, given by

{lF } = {lF,1, lF,2, ..., lF,|lF |}
{lC} = {lC,1, lC,2, ..., lC,|lC |}

(1)

where lF,i and lC,i denote the natural language names of the categories.
Given an input remote sensing image denoted as I, the objective of the

FGOOD detector Φ is to identify and precisely locate fine-grained objects
of interest within I using OBBs. This task can be denoted as Φ : I →
(x, y, w, h, θ, lF,i), where x, y, w, h, θ denote the upper-left x-coordinate, upper-
left y-coordinate, width, height, and long-edge angle of OBBs, respectively. lF,i

denotes the fine-grained category.
Our LOOD is built on the RoI Transformer structure, as depicted in Fig. 2.

After the detection backbone and the Region Proposal Network (RPN), our
method comprises three key components: TEP, FOD, and FOQ. The TEP
projects text embeddings of various granularities into a shared representation
space synchronized with RoI features. Subsequently, the RRoI features are fed
into the FOD module, which performs classification and regression. Fine-grained
discriminative features are extracted through orthogonal decomposition in the
common representation space. To enable the model to capture subtle differences
between finer-grained details, we utilize the contrastive loss LFSC on fine-grained
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discriminative features to reduce intra-class distance and increase inter-class dis-
tance. Additionally, we employ the FOQ module to interact with FOD, col-
lecting high-quality fine-grained discriminative features for contrastive learning
across multiple batches. FOQ enhances the optimization performance of LFSC

by increasing the number of positive and negative samples.

3.3 Text Embedding Projection

We leverage the CLIP model to generate text embeddings as a multi-grained rep-
resentation. Due to CLIP’s extensive vision-language pre-training, text embed-
dings can encapsulate the taxonomic knowledge within the multi-grained labels.
We introduce Text Embedding Projection (TEP) learning to integrate this
knowledge from text into the oriented detector. TEP learns a common repre-
sentation space for RoI features and multi-grained class features through a pro-
jection learner. This module incorporates taxonomic knowledge and inter-class
relations from text embeddings while accurately representing text features of
coarse-grained classes in the joint feature space, facilitating feature decomposi-
tion in the subsequent Feature Orthogonal Decomposition (FOD) and Feature
Orthogonal Query (FOQ) modules.

We combine {lCG} and {lFG}, both with prompt templates (e.g., “a photo
of a category”), and feed them into the CLIP text encoder T (·). Following the
practices of ViLD [12], we ensemble multiple prompt templates to generate fine
and coarse-grained text embeddings, denoted as eFG and eCG. To ensure the
integrity of the original CLIP text embeddings during detector training, the
parameters of T (·) are frozen.

We use a projection learner to map class features into the common feature
space. The projection learner consists of lightweight bottleneck linear layers with
a linear-ReLU-linear structure. eFG and eCG pass through the projection learner,
denoted as

tFG = ReLU(eFGW1 + B1)W2 + B2

tCG = ReLU(eCGW1 + B1)W2 + B2

(2)

where Wi and Bi denote the weight and bias of the fully connected layer, respec-
tively.

Then, fine-grained category features tFG act as classification weights for
RCNN Stage One. To align HRoI features with tFG, we modify the RCNN Stage
One classifier to a cosine similarity classifier akin to CLIP. The classification
logits for the ith RoI and jth class are computed as the scaled cosine similarity
between HRoI features and fine-grained text features in the hypersphere:

Logiti,j = λ · fHRoIi · tFGj

‖fHRoIi‖ · ‖tFGj
‖ (3)

where λ is a scaling factor, and ‖ · ‖ denotes the Euclidean norm. The modified
classifier employs conventional cross-entropy loss to optimize the classification
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Fig. 3. Illustration of the proposed fine-grained orthogonal decomposition learn-
ing (FOD)

process:

LCE = − 1
N

N∑

i=1

|lF |∑

j=1

yi,j · log(pi,j) (4)

where N denotes the number of RoIs, and pi,j is the softmax probability of
Logiti,j .

During backpropagation, the projection learner is optimized. By minimizing
the classification loss, the projection learner is expected to establish a bridge from
the original vision-language feature space of CLIP to the RoI features in remote
sensing images. Note that, although tCG plays a crucial role in the subsequent
module training processes, the gradients of the projection learner originate solely
from the classification process in RCNN Stage One.

3.4 Fine-Grained Orthogonal Decomposition

Conventional RoI features may suffice for coarse-grained classification tasks, but
they often fall short of capturing subtle differences for fine-grained classification.
To address this limitation, we introduce Fine-grained Orthogonal Decomposition
(FOD) learning. Motivated by [22,35,40], this module aims to disentangle fine-
grained discriminative features from coarse-grained features.

FOD operates concurrently with the classification and regression branches in
RCNN Stage Two, as depicted in Fig. 3. Initially, both fRRoI and coarse-grained
class features tCG undergo Euclidean normalization. Subsequently, we compute
the projection of the m-th RRoI feature onto its corresponding coarse-grained
class feature tCG,lCG

:

Proj(fRRoIm , tCG,lCG
) =

fRRoIm · tCG,lCG

‖fRRoIm‖ · ‖tCG,lCG
‖ (5)

where lCG denotes the coarse-grained category of the ground truth matching
the m-th RRoI. In the joint feature space constructed by the TEP module,
this projection vector aligns with the coarse-grained class feature, encapsulating
common features of the respective coarse-grained category.
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The representation of fine-grained discriminative features characterizing the
RRoI is obtained by calculating the orthogonal component of the RRoI feature:

Ortho(fRRoIm , tCG,lCG
) = fRRoIm − Proj(fRRoIm , tCG,lCG

) (6)

In RCNN Stage One, through the optimization of the classification loss, we align
the HRoI features with fine-grained class features. Therefore, on the hypersphere
with a radius of 1, the m-th HRoI feature is nearly in the same direction as its cor-
responding fine-grained class features. However, after the regression correction
in RCNN Stage One and the RRoI Align process, as shown by the yellow vector
in Fig. 3, fRRoI is distributed in the vicinity of its fine-grained class feature. We
calculate the orthogonal component of fRRoI with respect to its coarse-grained
class feature. This set of features characterizes finer-grained, unique details and
is a crucial component for distinguishing different fine-grained subclasses within
the same coarse-grained category.

3.5 Fine-Grained Orthogonal Feature Queue

We employ a contrastive loss on the extracted fine-grained discriminative fea-
tures to minimize intra-class distances and maximize inter-class distances. The
efficacy of contrastive learning relies on the quantity and quality of positive and
negative samples. To enhance this, we introduce a Fine-grained Orthogonal Fea-
ture Queue (FOQ) responsible for storing high-quality feature samples. Through-
out the detector training, FOQ collaborates with the FOD module, updating the
queue, and the stored samples contribute to subsequent contrastive loss calcula-
tions.

We consider only positive RRoIs matching the ground truth (GT) and use
Intersection over Union (IoU) with the GT RBBox as a metric for assessing the
quality of fine-grained discriminative features. Let Q represent FOQ, which we
express as:

Q = [(v1, c1), (v2, c2), . . . , (vl, cl)] (7)

Here, vi denotes the feature vector from FOD, and ci denotes the corresponding
fine-grained class of the RRoI. The length of the list is denoted as l.

During training, vi is randomly initialized, and ci is initialized to |lF | + 1,
representing the background class in the detector. Filtering samples with an IoU
greater than 0.5, we enqueue their fine-grained discriminative features:

Q ← {(vi, ci) | IoU(GT RBBox,RRoIi) > 0.5} (8)

Given that gradient backpropagation occurs in each iteration, outdated sam-
ple features should not persist in training. To maintain the queue’s timeliness,
samples at the tail will be dequeued as new samples are added.

After updating the queue, we compute the contrastive loss for fine-grained
discriminative features. Following the approach in [17], we calculate the Fine-
grained Supervised Contrastive Loss (LFSC) for high-quality FOQ samples and
the samples generated in the current mini-batch. To ensure sample quality, only
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those with an IoU greater than 0.4 from the current mini-batch participate in the
LFSC calculation. Moreover, only higher-quality samples with an IoU exceeding
0.5 are added to FOQ. Let F denote the full set of features involved in the LFSC

computation. We have

F = Fminibatch ∪ FFOQ,

Fminibatch = {(vi, ci) | IoU(GT RBBox,RBBoxi) > 0.4},

FFOQ = {(vi, ci) | ci �= (|lF | + 1)}.

(9)

The computation process of LFSC is expressed as:

LFSC(F) = − 1
|F|

∑

(vi,ci)∈F

log

(
exp(sim(f(vi), f(xj))/τ)∑

(vk,ck)∈F �[ck �=ci] exp(sim(f(vi), f(vk))/τ

)
.

(10)

where

�[ck �=ci] =

{
1 if ck �= ci,

0 otherwise

3.6 Training Objective

We denote the classification and regression losses in the conventional RoI Trans-
former’s two stages as Lcls and Lreg, respectively. The loss generated by the RPN
part is denoted as LRPN . The training objective of LOOD is formulated as

L = LRPN + Lcls + Lreg + αLFSC ,

where LFSC follows the formulation in Eq. 9. Here, α serves as a hyperparameter,
typically set to 0.5. Its purpose is to normalize the values of each loss to the same
order of magnitude, preventing the training of the detector from being dominated
by a single loss.

4 Experiments

4.1 Datasets

FAIR1M [31] is the largest fine-grained aerial object detection dataset to date,
comprising 42,762 high-resolution images and over a million annotated objects
across 5 categories and 37 sub-categories using oriented bounding boxes. We
utilized the FAIR1M-2.0 training set and evaluated on its validation subset due
to the unavailability of the test set.
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HRSC2016 [23] is a specialized dataset for ship detection, with 1,061 images
ranging from 0.4m to 2.0m resolution. It includes three levels of category labels,
providing both category-level and type-level annotations across 27 fine-grained
categories. We used the second and third-level annotations as coarse-grained and
fine-grained categories, respectively, and reported accuracy based on the test set.

4.2 Implementation Details

As our proposed LOOD serves as the RoI Head of a rotation detector, the stan-
dard version of LOOD based on RoI Transformer is denoted as LOOD (RT) and
employs ResNet50 and Feature Pyramid Network as the detection backbone. We
also implement LOOD integrated with ReDet, denoted as LOOD (RD). LOOD
(RD) uses ReResNet50 and ReFPN as the detection backbone, and the second
RoI Align employs the RiRoIAlign algorithm.

To maintain the stability of samples in the Feature Orthogonal Queue (FOQ),
we use the Exponential Moving Average algorithm to update the model param-
eters. For a fair comparison, we also adopt this algorithm during the training
of other methods. All detectors are trained using ResNet50 pretrained on Ima-
geNet. The SGD optimizer is employed during training, with an initial learning
rate set to 5×10−3, momentum and weight decay set to 0.9 and 1×10−4, respec-
tively. Specifically, to maintain the stability of the common feature space in the
TEP module, the learning rate of the projection learner in the TEP module is
separately set to 1 × 10−4. Training lasts for 12 epochs on the FAIR1M dataset
and 36 epochs on HRSC2016.

4.3 Comparison with State-of-the-Art

Results on FAIR1M. The experimental results on the FAIR1M dataset are
presented in Table 1. Due to space constraints, we have placed the table for
ship categories in the Supplementary Materials. We compared our proposed
LOOD with well-known oriented object detectors. LOOD (RT) and LOOD
(RD) achieved mAP scores of 42.30 and 44.90, respectively. Notably, LOOD
(RD) outperformed all other detectors, while LOOD (RT) surpassed all detec-
tors using ResNet50. Compared to the baseline RoI Transformer and baseline
ReDet, LOOD demonstrated improvements of 2.09 and 1.67 points, respectively.

Among the total of 37 fine-grained categories, LOOD (RD) excelled in 21
categories. In the challenging Airplane category, where fine-grained models are
harder to distinguish, LOOD (RD) achieved the best performance in 9 out of
11 fine-grained models. In categories like court and road, where fine-grained
attributes are less distinctive (i.e., significant differences between fine-grained
classes), LOOD and baseline versions of detectors showed mixed results. It can
be concluded that LOOD provides significant performance improvement, partic-
ularly in challenging and less distinguishable fine-grained categories. For those
fine-grained categories that can be easily distinguished, opting not to employ
LOOD for contrastive learning is a more favorable choice.



Boosting Fine-Grained Oriented Object Detection via Text Features 119

Table 1. Results comparison between the proposed LOOD and existing oriented object
detectors. Experiments conducted on FAIR1M Dataset. The evaluation metric mAP50
is presented in percentage

Coarse Cat. Fine Cat. SASM
RepPoints
[15]

R-FCOS [20] S2A-Net [13] R-Faster
RCNN [41]

O-Rep-
Points
[18]

O-RCNN [38] RoI Trans [7] LOOD
(RT)

ReDet [14] LOOD
(RD)

AAAI 2022 ICCV 2019 TGRS 2021 PAMI 2017 CVPR 2022 ICCV 2021 CVPR 2019 - CVPR 2021 -

Airplane Boeing737 38.3 39.2 40.4 37.5 37.7 37.6 38.9 44.6 37.1 43.1

Boeing747 61.7 82.7 83.7 82.5 81.4 84.8 81.8 83.4 86.6 90.6

Boeing777 15.0 15.9 17.2 15.4 15.4 16.9 14.6 18.5 16.5 22.2

Boeing787 35.4 52.0 49.9 47.7 48.8 49.0 46.1 47.9 57.2 55.8

C919 0.4 0.2 0.2 9.4 7.9 7.3 7.1 11.7 9.4 9.4

A220 44.0 41.0 42.5 41.7 43.4 41.6 42.4 44.6 44.9 46.6

A321 53.3 54.5 57.0 50.8 54.6 49.7 55.4 59.4 59.1 63.7

A330 30.6 44.2 42.7 47.5 43.5 43.1 38.6 47.5 45.4 55.8

A350 20.7 43.5 52.0 60.6 56.6 62.4 57.3 59.9 60.3 68.3

ARJ21 3.9 9.3 10.3 8.3 9.5 13.1 10.3 18.0 11.1 16.5

Other Airplane 70.7 73.1 74.8 72.5 73.3 72.1 73.4 76.1 76.4 77.0

Vehicle Small Car 53.6 55.1 66.2 57.7 62.9 59.8 62.2 63.3 63.7 64.9

Bus 9.4 11.5 13.4 12.9 15.4 18.5 20.6 20.24 20.9 23.3

Cargo Truck 29.9 37.9 39.7 41.4 42.0 43.9 43.7 45.0 44.2 45.8

Dump Truck 21.2 26.0 35.7 38.2 42.8 41.5 43.4 45.5 42.7 45.5

Van 48.3 51.0 61.7 53.4 59.5 56.0 58.5 59.1 59.7 61.2

Trailer 2.8 6.3 2.8 11.7 4.5 7.9 13.7 10.4 13.2 12.5

Tractor 0.1 1.1 0.8 2.1 0.6 2.2 1.9 2.2 1.8 4.8

Excavator 2.2 12.9 10.5 16.8 17.0 24.4 21.0 21.7 24.2 19.0

Truck Tractor 0.1 5.4 2.5 11.9 5.7 10.4 16.5 22.2 16.7 14.9

Other Vehicle 2.4 2.7 2.2 2.0 0.9 1.2 1.3 1.7 1.4 1.6

Court Basketball Court 37.2 43.7 46.2 42.6 46.3 47.2 50.4 52.31 55.8 54.2

Tennis Court 80.4 86.2 82.1 83.3 84.3 83.3 86.2 84.7 86.2 84.6

Football Field 49.9 56.3 59.0 55.4 61.4 59.6 61.0 67.3 66.8 64.7

Baseball Field 87.4 88.1 88.2 89.4 89.2 89.1 88.7 89.8 91.0 92.4

Road Intersection 44.5 48.0 41.5 50.4 46.7 48.3 50.2 50.8 51.1 50.7

Roundabout 54.8 57.2 62.9 65.1 60.8 62.6 66.3 68.2 74.5 71.7

Bridge 28.3 25.7 20.3 26.1 33.2 31.8 30.7 37.3 37.6 41.2

mAP 30.86 36.1 37.42 37.52 38.9 40.38 40.21 42.57 43.23 44.90

Table 2. Results comparison on HRSC2016

Methods R-Faster
RCNN [41]

R-FCOS [20] Gliding
Vertex
[39]

S2A-Net [13] Oriented
RCNN
[38]

RoI Trans [7] LOOD
(RT)

Redet [14] LOOD
(RD)

mAP 11.86 12.34 19.50 22.96 39.01 38.16 40.11 51.74 55.16

Results on HRSC2016. The experimental results on the HRSC2016 dataset
are presented in Table 2. Due to the dataset’s relatively small size and the high
difficulty of fine-grained tasks, previous studies using this dataset have mostly
employed single-category label experiments. In fine-grained tasks, LOOD (RD)
outperforms all other detectors. Compared to the baseline RoI Transformer and
baseline ReDet, LOOD achieves improvements of 2.09 and 1.67 points, respec-
tively.

4.4 Ablation Studies

On Each Component. Table 3a systematically elucidates the impact of vari-
ous components in our proposed LOOD. When employing only the TEP module-
meaning the utilization of class features solely for classification in RCNN Stage
One-the model’s detection accuracy is scarcely affected. However, incorporat-
ing the FOD module, which decouples RoI features and employs contrastive



120 B. Zhou et al.

learning, significantly enhances detection accuracy. In the FAIR1M dataset, this
enhancement results in a 0.95% mAP increase. The inclusion of FOQ further
improves the optimization effectiveness of LFSC .

On Length of FOQ. Additionally, we conducted a series of experiments regard-
ing the choice of FOQ length, as presented in Table 3b. We set the FOQ lengths
to 256, 512, 1024, and 2048. The results indicate that at lower queue lengths
(256 and 512), increasing the length enriches the number of positive and nega-
tive samples in LFSC , leading to respective mAP increments of 0.94% and 1.36%
compared to not using FOQ. However, when the queue length reaches 1024, the
model’s accuracy slightly decreases. We attribute this to excessively long queues
retaining outdated features, which conflict with the current model’s feature space
and render LFSC relatively inefficient.

Different Selection of Text Features. To investigate the impact of text
embedding quality on LOOD, we present the mAP metrics using text embed-
dings from different sources on the FAIR1M dataset in Table 3c. Although the
ViT-B/32 version demonstrates significantly stronger zero-shot capabilities com-
pared to the RN50 version when generating text embeddings with various CLIP
pre-trained models, their performance on LOOD does not show substantial dif-
ferences. Word2Vec is a commonly used method in NLP for obtaining word
embeddings, and text embeddings acquired using a pre-trained Word2Vec model
can compute the similarity between two words. The experiments reveal that
CLIP text embeddings outperform those from Word2Vec. These meaningful text

Table 3. Ablation Study Results. Experimental setting: LOOD on FAIR1M

(a) Ablation study on each component.

Component mAP

TEP FOD FOQ

40.21

� 40.26

� � 41.21

� � � 42.57

(b) Results with different FOQ lengths.

Length of FOQ mAP

256 42.15

512 42.57

1024 42.34

2048 41.96

(c) mAP values for different sources of text embeddings.

Source of Text Embeddings mAP

CLIP (RN50) 42.57

CLIP (ViT-B/32) 42.28

random init 41.10

Word2Vec 41.85

Fig. 4. (a) Visualized confusion matrix. (b) t-SNE visualization on GT RoIs’ classifi-
cation features
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embeddings, compared to randomly initialized vectors, contribute to enhancing
the model’s detection performance.

On Confusion Matrix. We present the confusion matrix for the coarse cate-
gory “airplane” in the FAIR1M dataset, comparing LOOD (RT) with the base-
line RoI Transformer, as shown in Fig. 4a. The values on the diagonal indi-
cate that LOOD (RT) enhances category recognition performance in most fine-
grained categories, notably in Boeing747 (83% vs. 66%), A321 (46% vs. 38%),
and A330 (44% vs. 28%).

Feature Space Visualization by t-SNE. We conducted t-SNE visualization
on the classification features of Ground Truth (GT) Regions of Interest (RoIs),
as shown in Fig. 4b. The left image corresponds to the baseline RoI Transformer,
while the right image represents the results of LOOD (RT). Since we visualize
only the GT RoIs, this comparison is fair and unaffected by regression perfor-
mance. The visualization reveals that LOOD (RT) exhibits a more compact fea-
ture distribution for most categories, particularly evident in the “other-airplane”
category. However, due to the inherent challenges of the FGOOD task, as illus-
trated in Fig. 1, the classification boundaries for some categories, while improved
compared to the baseline, remain less distinct (e.g., A220 and Boeing737). Addi-
tionally, some extremely challenging samples affected by distortions still lead to
misclassifications. This observation aligns with the outcomes presented in our
confusion matrix, shown in Fig. 4a.

Fig. 5. Visual Detection Results. Zoom in for better view

4.5 Visual Detection Results

Our visualization of detection results is depicted in Fig. 5. The first row illus-
trates the detection results of the baseline RoI Transformer, while the second
row presents the results of LOOD (RT). Comparing the detection results for
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the same image, LOOD shows a significant reduction in instances where multi-
ple bounding boxes appear for the same target, highlighting an improvement in
classification accuracy. Additionally, LOOD contributes to an enhanced detec-
tion recall rate for certain categories, such as Tennis Court.

5 Conclusion

In this paper, we propose to exploit rich text features for Fine-Grained Oriented
Object Detection. By leveraging the Contrastive Language-Image Pre-training
(CLIP) model, we present a straightforward yet effective method for detecting
detailed-oriented objects. Our approach involves integrating information from
different label levels into a detection framework, establishing a shared space for
image and text features. Subsequently, we extract detailed features using our
proposed Fine-grained Orthogonal Decomposition and Fine-grained Orthogonal
Feature Queue modules. Our extensive experiments have validated the superior-
ity of the proposed method. Our work demonstrates the potential of leveraging
pretrained VLM to enhance closed-set tasks.
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Abstract. Discovering novel concepts in unlabelled datasets and in a
continuous manner is an important desideratum of lifelong learners. In
the literature such problems have been partially addressed under very
restricted settings, where novel classes are learned by jointly accessing a
related labelled set (e.g., NCD) or by leveraging only a supervisedly pre-
trained model (e.g., class-iNCD). In this work we challenge the status
quo in class-iNCD and propose a learning paradigm where class discov-
ery occurs continuously and truly unsupervisedly, without needing any
related labelled set. In detail, we propose to exploit the richer priors
from strong self-supervised pre-trained models (PTM). To this end, we
propose simple baselines, composed of a frozen PTM backbone and a
learnable linear classifier, that are not only simple to implement but also
resilient under longer learning scenarios. We conduct extensive empirical
evaluation on a multitude of benchmarks and show the effectiveness of
our proposed baselines when compared with sophisticated state-of-the-
art methods. The code is open source.

Keywords: Novel Class Discovery · Class-Incremental Learning

1 Introduction

Clustering unlabelled samples in a dataset is a long standing problem in com-
puter vision, where the goal is to group samples into their respective semantic
categories. Given, there could be multiple valid criteria (e.g., shape, size or color)
that could be used to cluster data, Deep Clustering (DC) [48] can at times lead
to clusters without desired semantics. A more efficient alternative was proposed
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Fig. 1. Overview of different learning paradigms for discovering novel (or new) cate-
gories from unlabelled data. (a) NCD learns and discovers novel classes in an unala-
belled dataset by exploiting the priors learned from related labelled data. (b) class-
iNCD is similar to NCD, except it discovers novel classes arriving in sessions without
any access to labelled data during the discovery phase. (c) Our proposed simple Base-
line for class-iNCD that leverages a self-supervised pre-trained model (PTM) instead of
expensive labelled data. Inference on test data is carried out in a task-agnostic manner.

in the work of Novel Class Discovery (NCD) [18], where the goal is to discover
and learn new semantic categories in an unlabelled dataset by transferring prior
knowledge from labelled samples of related yet disjoint classes (see Fig. 1a). In
other words, NCD can be viewed as unsupervised clustering guided by known
classes. Due to its practical usefulness, the field of NCD has seen a tremendous
growth, with application areas ranging from object detection [16] to 3D point
clouds [39].

Fig. 2. Comparison of traditional Super-
vised pre-training (Sup.) with self-
supervised pre-trained model (PTM)
initialization on the Novel Class Discovery.

A commonality in most of the
NCD methods [15,19] is that they
rely on a reasonably large labelled
dataset to learn good categorical and
domain priors about the dataset.
Thus, the success of these meth-
ods rely entirely on the availabil-
ity of large labelled datasets, which
might not always be guaranteed or
can be expensive to collect. In this
work we challenge the de facto super-
vised pre-training step on a large
labelled dataset for NCD and show
that supervised pre-training can be
easily replaced by leveraging self-
supervised pre-trained models (PTM), such as DINO [6]. PTMs being readily
available off-the-shelf, it reduces the burden of pre-training on labelled data. As
a part of a preliminary study, we compare supervised pre-training with PTMs
and analyse their impact on the novel classes performance. As shown in Fig. 2,
the PTMs achieve significantly better or at-par performance in comparison with
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Fig. 3. Comparison of our proposed baselines with the incremental learning (EwC,
LwF, DER), unsupervised incremental learning (CaSSLe), and iNCD (ResTune,
FRoST) methods on CIFAR-100. In each step 20 novel classes are learned. We report
the Overall Accuracy and Maximum Forgetting.

the only supervised counterparts on all the datasets. Furthermore, when the
PTMs are fine-tuned with supervised training on the labelled data, the perfor-
mance is only marginally better. Note that the work in GCD [43] used DINO as
PTM, except it is used as initialization for the supervised training. Contrarily,
we propose to entirely get rid of the supervised step.

Another striking drawback of the vast majority of NCD methods, especially
in [15,19], is that they assume access to the labelled dataset while discovering
the novel (or new) classes. Due to storage and privacy reasons the access to
the labelled dataset can be revoked, which makes NCD a very challenging prob-
lem. To address this, some very recent Class-incremental Novel Class Discovery
(class-iNCD) methods [26,40] have attempted to address NCD from the lens
of continual learning, by not accessing the labelled dataset when learning new
classes (see Fig. 1b). Albeit more practical than NCD, the class-iNCD methods
are still susceptible to catastrophic forgetting [17], thereby impairing knowledge
transfer from the labelled set to the unlabelled sets.

In this work we aim to create a simple yet strong baseline for class-iNCD that
can continually learn to cluster unlabelled data arriving in sessions, without los-
ing its ability to cluster previously seen data. To this end, we propose Baseline
(see Fig. 1c) that uses the DINO pre-trained ViT backbone, as a frozen fea-
ture extractor, with a learnable linear cosine normalized classifier [21] on top.
Every time an unlabelled set arrives, we simply train the task-specific classi-
fier in a self-supervised manner, while keeping the backbone frozen. For testing
we concatenate all the task-specific classifiers, yielding task-agnostic inference.
The simplicity of our approach lies in the decoupled training on task-specific
data, while preserving performance across tasks. We characterize our Baseline
as frustratingly simple as it neither requires labelled data, nor any specialized
losses for preventing forgetting. Additionally, we propose Baseline++ that stores
discovered the novel class prototypes from the previous tasks to further reduce
forgetting.
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To verify the effectiveness of our proposed baselines, we compare with several
state-of-the-art class-iNCD methods [32,40], class-incremental learning meth-
ods (CIL) [3,27,30] and unsupervised incremental learning (UIL) [14] methods
adapted to the class-iNCD setting. In Fig. 3 we plot the Overall Accuracy (A)
and Maximum Forgetting (F) on CIFAR-100 for all the methods under consider-
ation, where higher A and lower F is desired from an ideal method. Despite the
simplicity, both the Baseline and Baseline++ surprisingly achieve the highest
accuracy and least forgetting among all the competitors. Thus, our result sets a
precedent to future class-iNCD methods and urge them to meticulously compare
with our baselines, that are as simple as having a frozen backbone and a linear
classifier.

In a nutshell, our contributions are three-fold: (i) We bring a paradigm shift
in NCD by proposing to use self-supervised pre-trained models as a new starting
point, which can substitute the large annotated datasets. (ii) We, for the first
time, highlight the paramount importance of having strong baselines in class-
iNCD, by showcasing that simple baselines if properly implemented can outper-
form many state-of-the-art methods. To that end, we introduce two baselines
(Baseline and Baseline++) that are simple yet strong. (iii) We run extensive
experiments on multiple benchmarks and for longer incremental settings.

To foster future research, we release a modular and easily expandable
PyTorch repository for the class-iNCD task, that will allow practitioners to repli-
cate the results of this work, as well as build on top of our strong baselines.

2 Related Work

Novel Class Discovery (NCD) was formalized by [18] with the aim of alle-
viating the innate ambiguity in deep clustering [7,11,48–50] and enhancing the
clustering ability of novel classes in an unlabelled dataset, by leveraging the
prior knowledge derived from related labelled samples [18,22,23]. Many of the
recent NCD works utilize a joint training scheme that assumes access to both
labelled and unlabelled data concurrently to exploit strong learning signal from
the labelled classes [13,15,19,25,43,51–54].

Keeping in mind the data regulatory practices, the NCD community has
been paying more attention to the problem of Incremental Novel Class Discov-
ery (iNCD) [32] where the access to the labelled (or base) dataset is absent
during the discovery stage. Unlike iNCD, FRoST [40] and NCDwF [26] investi-
gate a more realistic yet challenging setting known as Class-incremental Novel
Class Discovery (class-iNCD), where task-id information is not available during
inference. However, all the class-iNCD methods so far have investigated learning
in short incremental scenarios (2 steps in [40] and 1 step in [26]). Differently, we
explore a more realistic setting of longer incremental setting (up to 5 steps) and
show that many existing class-iNCD methods deteriorate in such settings.

Importantly, staying aligned with the original motivation of the NCD and
GCD paradigm – discovering new classes by leveraging prior knowledge – we

https://github.com/OatmealLiu/MSc-iNCD
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propose a new direction to tackle the class-iNCD problem, i.e., by solely leverag-
ing the prior knowledge learned from self-supervised PTMs (e.g., DINO [6]), as
opposed to relying on a large amount of expensive highly related labelled data.

Class-Incremental Learning (CIL). [35] aims to train a model on a sequence
of tasks with access to labelled data only from the current task, while the model’s
performance is assessed across all tasks it has encountered to date. Notably,
the IL methods [3,27,30,38] are devised with a dual objective of mitigating
catastrophic forgetting [17] of the model’s knowledge on the previous tasks, while
concurrently enabling it to learn new ones in a flexible manner. To overcome the
need of labelled data, unsupervised incremental learning (UIL) [14,31,34] have
recently been proposed that aim to learn generalized feature representation via
self-supervision to reduce forgetting. Different from UIL, that solely aims to learn
a feature encoder, the class-iNCD methods additionally learn a classifier on top
of the encoder to classify the unalabelled samples.

Moreover, as shown in the class-iNCD method FRoST [40], due to the differ-
ences in the learning objectives of class-iNCD during the supervised pre-training
and unsupervised novel class discovery stages, learning continuously is more
challenging than the supervised CIL setting. Our proposed baselines attempt
to mitigate this issue with cosine normalization of the classifier weights, frozen
backbone and feature replay using prototypes, thus greatly simplifying class-
iNCD.

3 Method

Problem Formulation. As illustrated in Fig. 1c, a class-iNCD model is trained
continuously over T sequential NCD tasks, each of which, T [t], presents an unla-
belled data set D[t] = {x[t]

n }N [t]

n=1 with N [t] instances containing C [t] novel classes
that correspond to a label set Y [t]. As in prior works [42], we assume that novel
classes in D[i] and D[j] are disjoint, i.e., Y [i] ∩ Y [j] = ∅. Following the NCD
literature, we assume the number of novel classes C [t] at each step is known as
a priori. During each discovery step t, we only have access to D[t]. The aim of
class-iNCD is to discover semantically meaningful categories in D[t] and accu-
rately group the instances into the discovered clusters, without compromising its
performance on the instances from D[1] to D[t−1]. In other words, a class-iNCD
model comprises a unified mapping function f : X →

⋃T
t=1 Y [t] that can group

any test image x into the categories
⋃T

t=1 Y [t] discovered from the unlabelled
task sequence T = {T [1], T [2], · · · , T [T]} without the help of task-id (i.e., task
agnostic inference).
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3.1 Overall Framework

Fig. 4. Overview framework of the proposed methods
Baseline and Baseline++ for class-iNCD task.

In this work our goal is
to address class-iNCD
by leveraging the pri-
ors learned by a self-
supervised pre-trained
model (PTM). To this
end we propose a strong
baseline called Baseline
that internally uses the
PTM. As illustrated
in Fig. 4, the proposed
Baseline is marked by
two steps – (i) an ini-
tial discovery step
(see pink box), where
task-specific classifier is
learned to discover the
novel classes contained
in D[1] for the first task
T [1] with a clustering
objective (Lbaseline). Pseudo
per-class prototypes are
computed and stored; and (ii) it is followed by an incremental discovery step
(see blue box), where Baseline conducts the same discovery training, after which
task-agnostic inference (see green box) is performed by simply concatenat-
ing the two learned task-specific classifiers. Baseline++ further fine-tunes the
concatenated classifier with Lpast and Lcurrent using the stored class prototypes
to strength class-discrimination among tasks. In the following sections, we first
present a comprehensive overview of Baseline. Additionally, we introduce an
advanced variant of Baseline, named Baseline++, which incorporates feature
replay to further mitigate the issue of forgetting.

Discovery Step. In the introductory discovery task T [1] (see Fig. 4), we learn
a mapping function f [1] : X [1] → Y [1] in a self-supervised manner (i.e., using the
Sinkhorn-Knopp cross-view pseudo-labelling [5]) to discover the C [1] categories
contained in the given unlabelled data set D[1]. The mapping function f [1] =
h[1] ◦ g is modeled by a frozen feature extractor g(·) and a Cosine Normalized
linear layer h[1](·) as task-specific classifier. The g(·) is initialized by the PTM
weights θg [6], while h[1](·) is randomly initialized. In other words, only the
classifier h[1](·) weights are learned during this step.

Incremental Discovery Step. After the first discovery step, D[1] is discarded,
and access to only D[2] is given in the first incremental discovery step T [2] (see
Fig. 4). Same as the first step, we train a task-specific mapping function modeled
by f [2] = h[2] ◦ g. The h[2] is newly initialized for the C [2] novel classes of D[2],
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while the frozen g is shared across tasks. Thanks to the frozen feature extractor
and Cosine Normalization (CosNorm), Baseline easily forms a unified model
f [1:2] = h[1:2] ◦ g by sharing the feature extractor g, and concatenating the two
task-specific heads h[1:2](·) = h[1](·) ⊕ h[2](·) for task-agnostic inference.

Task-Agnostic Inference. After training for T steps, the inference on the test
samples, belonging to any class presented in T , is carried out with the final
unified model f [1:T] = h[1:T] ◦ g in a task-agnostic manner (see Fig. 4).

3.2 Why Use Self-supervised Pre-trained Models?

Table 1. Analysis of NCD accuracy using the same back-
bone (ViT-B/16) with different pre-training settings.

Pre-training CIFAR-10 CIFAR-100 CUB-200 Avg. (Δ)
(5–5) (50–50) (100–100)

Supervised 82.1 32.4 12.8 42.4
PTM-DINO 95.0 65.6 36.1 65.6 (+23.2%)
PTM-DINO
+ Supervised

94.5 67.2 42.5 68.1 (+25.7%)

Before delving into the
specifics of our method,
we first validate the ben-
efits of leveraging self-
supervised PTMs for NCD,
where supervised pre-
training is the standard
practice. Specifically, we
conduct experiments with
our Baseline method under
traditional NCD setting and splits [15] on three benchmarks (CIFAR-10, CIFAR-
100 and CUB-200), comparing three pre-training strategies: (i) supervised pre-
training on the labelled set starting from a randomly initialized model (as in
Fig. 1a), (ii) self-supervised PTM initialization (e.g., DINO [6], a self-supervised
model) (as in Fig. 1c), and (iii) supervised fine-tuning starting from PTM ini-
tialization. After this step the novel classes are discovered in the unlabelled set.
In Table 1 we can see that the PTM-DINO, a model trained without any super-
vision, performs significantly better in discovering novel classes compared to
the supervised counterpart (by +23.2%), which is trained on the highly related
base classes. This demonstrates that the original motivation of using a highly
related labelled set to aid NCD [18] is clearly suboptimal when compared with
self-supervised pre-training on a rather larger dataset. Additionally, fine-tuning
PTM-DINO on the labelled samples only gives limited accuracy gain, with the
PTM-DINO performing reasonably at-par (-2.5%). Guided by these observa-
tions, we propose using strong PTMs (e.g., DINO [6]) with Vision Transformers
(ViT) [12] as a new starting point for NCD and class-iNCD, thereby eliminating
the dependence on the labelled data.

3.3 Strong Baselines for class-iNCD

In this section we detail the proposed methods, Baseline and Baseline++, for
solving the class-iNCD task. Both the baselines use PTMs, as backbone, that
are general purpose and publicly available. Additionally, the Baseline++ uses
latent feature replay. The baselines have been designed to preserve stability on
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the past novel classes, while being flexible enough to discover the novel classes
in the current task.

Baseline

Self-supervised Training for Discovery. Starting from a frozen feature
extractor g, initialized with the weights from DINO [6], we optimize a self-
supervised clustering objective to directly discover the novel categories at each
step. In details, first we randomly initialize a learnable linear layer h[t] as the
task-specific classifier for the C [t] novel classes contained in the unlabelled set
D[t]. To learn the task-specific network f [t] for discovery, Baseline employs
the Sinkhorn-Knopp cross-view pseudo-labeling algorithm [5]. We optimize a
swapped prediction problem, where the ‘code’ y1 of one view is predicted from
the representation of another view z2, derived from the same image x through
different image transformations, and vice-versa:

LBaseline = �(z2,y1) + �(z1,y2) (1)

where �(·, ·) is the standard cross-entropy loss. We obtain the codes (or soft-
targets) y1 and y2 by using the Sinkhorn-Knopp algorithm. Note that, we freeze
the entire feature extractor g during optimizing LBaseline as a straightforward
way to prevent catastrophic forgetting.

Multi-step Class-Incremental Discovery. Our ultimate goal is to learn a
unified mapping function f [1:T] : X →

⋃T
t=1 Y [t]. If all the training data are

available, an ideal clustering objective for f [1:T] can be achieved by minimizing
an adequate loss L[1:T] at the end of the task sequence:

L[1:T] = ET [t]∼T L[t] (2)

However, due to the data unavailability of past tasks in class-iNCD, we can only
pursue an approximation of this ideal joint objective defined by Eq. 2. In this
work, unlike most of the CIL solutions [44], we pursue a better approximation
from a new perspective: balancing the individual clustering objectives in each
task to a unified importance. To be more specific, the proposed Baseline adopts
frozen feature extractor with cosine normalized classifier to unify the clustering
objectives across tasks.

Frozen Feature Extractor. In Baseline we freeze the entire PTM g by intro-
ducing ‖θ

[t]
g − θ

[t−1]
g ‖2 = 0, t ∈ {1, . . . , T} as a constraint. This enables us to

leverage the power of the generalist PTM g for all tasks equally, without intro-
ducing bias towards any particular task, i.e., avoiding the model drift issue in
CIL literature [46].

Cosine Normalization. The frozen feature extractor not only preserves the
powerful prior knowledge from the pre-training data, but also maintains the
cooperative mechanism between g and each individual classifier h[t]. With the
stable cooperative mechanism, the test data can be directly routed to the corre-
sponding task-specific function network f = h[t] ◦ g, if the task-id t is available.
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However, the task-id is not available in class-iNCD. To achieve simple task-
agnostic inference, we propose to apply Cosine Normalization (CosNorm) [21,33]
on each individual linear classifier h[t]. This enables the learned classifiers to out-
put scores of the same scale, avoiding imbalance between the past and current
novel classes.

Formally, given an input vector x, the L2 normalization operation can be
defined as x̃ = L2Norm(x) = x/‖x‖ = x/

√
xxT+ε, where ε is a small value to

avoid division by zero and is set to 1e−12 in this work. At every discovery step,
L2Norm(·) is continuously applied to both the input feature embedding z and
each weight vector θi

h of the task-specific linear classifier h[t]. θi
h ∈ R

k is the i-th
column of the classifier weight matrix θh, corresponding to one semantic cluster.
Consequently, the i-th output logit from the classifier is then computed as:

li = θ̃iT
h z̃ =

θiT
h z

‖θi
h‖‖z‖ = cos(θi

h) (3)

where ‖θi
h[t]‖ = ‖z‖ = 1 and cos(θi

h[t]) is the cosine similarity between the feature
vector z and the i-th weight vector θi

h[t] . We thus use the term CosNorm for this
operation. The magnitude of the output logits l is thereby unified to the same
scale [−1, 1] for all classifiers from different steps.

Task-Agnostic Inference. Having the balanced classifier weights, we can then
build a unified classification head h[1:T] by simply concatenating the task-specific
heads learned at each step h[1:T] = h[1] ⊕ h[2] ⊕ . . . ⊕ h[T]. By means of the frozen
feature extractor and feature normalization, all the feature embedding z̃ are
mapped to the uniform feature space under the same scale. Incorporating with
the normalized classifier weights in h[1:T], task-agnostic inference can be fairly
achieved using f [1:T] = h[1:T] ◦ g for all the discovered classes so far.

Baseline++

To take full advantage of the stable feature extractor, we propose Baseline++
that additionally uses the learned model f [t−1] = h[t−1] ◦ g to compute the
pseudo per-class feature prototypes µĉ[t−1] and variances v2

ĉ[t−1] as proxies for
the novel classes discovered from the previous task T [t−1]. For the subsequent
tasks, features drawn from the Gaussian distribution, constructed with the stored
µĉ[t−1] and v2

ĉ[t−1] , are replayed to reduce forgetting in the classifiers. We call this
simplified replay mechanism as Knowledge Transfer with Robust Feature Replay
(KTRFR) (see Fig. 4), which we describe next.

Knowledge Transfer with Robust Feature Replay (KTRFR). At each
previous discovery step t ∈ {1, . . . , T − 1}, Baseline++ computes and stores
a set M [t] = {N (µ

ĉ
[t]
j

,v2

ĉ
[t]
j

)}C[t]

j=1 that contains pseudo per-class feature pro-

totype distributions derived from the unlabelled set D[t]. Here, µ
ĉ
[t]
j

and v2

ĉ
[t]
j

are the calculated mean and variance of the feature embedding predicted by
the task-specific model f [t] as pseudo class ĉ

[t]
j . Since the feature prototype set

M [t] can represent and simulate the novel classes discovered at each previous
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step, Baseline++ can further train the concatenated model f [1:T] = h[1:T] ◦ g by
replaying the per-class features sampled from the saved Gaussian distributions
in {M [1], . . . ,M [T−1]} with the objective defined as:

Lpast = −EM [t]∼M [1:T−1]E
(z ĉ[t] ,ŷ ĉ[t] )∼N (µ

c[t]
,v2

c[t]
)

C[t]
∑

j=1

ŷĉ
[t]
j log σ(

h[1:T](zĉ
[t]
j )

τ
) (4)

where, σ(·) is a softmax function and τ is the temperature. By optimizing the
objective defined in Eq. 4, Baseline++ can better approximate the ideal objec-
tive defined in Eq. 2 by simulating the past data distribution. Furthermore, to
maintain the clustering performance for the current novel classes in D[T], we
also transfer the knowledge from the current task-specific head h[T] to h[1:T]. In
details, using the pseudo-labels ŷ

[T]
i computed by the learned f [T], we can build

a pseudo-labelled data set D[T]
PL = {x[T]

i , ŷ
[T]
i }N [T]

i=1 . The task-specific knowledge
stored in the pseudo-labels can be then transferred to the unified classifier by
optimizing the following objective:

Lcurrent = −E
(x[T],ŷ [T])∼D[T]

PL

C[T]
∑

j=1

ŷc[T]

j log σ(
h[1:T](g(xc[T]))

τ
). (5)

The final past-current objective for KTRFR training at step T of Baseline++
is formulated as:

LBaseline++ = Lpast + Lcurrent (6)

4 Experiments

4.1 Experimental Settings

Datasets and Splits. We conduct experiments on three generic image recog-
nition datasets and two fine-grained recognition datasets: CIFAR-10 (C10) [28],
CIFAR-100 (C100) [28], TinyImageNet-200 (T200) [29], CUB-200 (B200) [45]
and Herbarium-683 (H683) [41]. Although the PTM (DINO) used in our base-
lines and the methods we compared was pre-trained without labels, there’s a
potential for category overlap between the pre-training dataset (ImageNet [10])
and C10, C100, and T200. To ensure a equitable evaluation, we include B200
and H683 datasets. Notably, B200 shares only two categories with DINO’s pre-
training dataset (ImageNet), whereas H683 has no overlap whatsoever. For each
dataset, we adopt two strategies (two-step and five-step) to generate the task
sequences, where the total classes and corresponding instances of training data
are divided averagely for each step. The test data are used for evaluation.
Detailed data splits are provided in the supplementary material.

Evaluation Protocol. We evaluate all the methods in class-iNCD using the
task-agnostic evaluation protocol [40]. Specifically, we do not know the task
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ID of the test sample during inference, and the network must route the sample
to the correct segment of the unified classifier.

Evaluation Metrics. We report two metrics: maximum forgetting F and over-
all discovery accuracy (or clustering accuracy [40]) A for all discovered classes
by the end of the task sequence. F measures the difference in clustering accu-
racy between the task-specific model f [1] and the unified model f [1:T] (at the last
step) for samples belonging to novel classes discovered at the first step. A is the
clustering accuracy from the unified model f [1:T] on instances from all the novel
classes discovered by the end of the sequence.

4.2 Implementation Details

Baseline and Baseline++. By default, ViT-B/16 [12] is used as the backbone
g with DINO [6] initialization for all data sets. The 768-dimensional output
vector z ∈ R

768, from the [CLS] token is used as the deep features extracted
from a given image. g is frozen during training. Following the backbone, one
cosine normalized linear layer (without bias) is randomly initialized as the task-
specific classifier h[t] with C[t] output neurons. Soft pseudo-labels self-supervised
are generated using the Sinkhorn-Knopp [5,9] algorithm with default hyper-
parameters (number of iterations = 3 and ε = 0.05).

Training. At each step, we train the model for 200 epochs on the given unla-
belled data set D[t] with the same data augmentation strategy [8] in all the
experiments. After the discovery stage, Baseline++ further conducts KTRFR
training on the unified model f [1:t] for 200 epochs. A cosine annealing learning
rate scheduler with a base rate of 0.1 is used. The model is trained on mini-
batches of size 256 using SGD optimizer with a momentum of 0.9 and weight
decay 10−4. The temperature τ is set to 0.1.

4.3 Analysis and Ablation Study

Comparison with Reference Methods. We first establish reference meth-
ods using K-means [1] and joint training scheme (Joint (frozen), based on
Baseline but access to the previous training data is given) [30], respectively.
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Table 2. Comparison of our proposed baselines with refer-
ence methods on two task splits of C10, C100 and T200.

Datasets C10 C100 T200
Methods F ↓ A ↑ F ↓ A ↑ F ↓ A ↑

Two-step Kmeans [24] 93.9 87.3 68.2 56.7 62.0 47.1
Joint (frozen) 4.9 92.1 5.3 61.8 3.3 51.1
Joint (unfrozen) 0.8 92.4 2.5 65.2 2.3 56.5
Baseline 8.5 89.2 6.7 60.3 4.0 54.6
Baseline++ 4.5 90.9 6.6 61.4 0.2 55.1

Five-step Kmeans [24] 99.1 82.1 76.3 54.3 66.0 52.9
Joint (frozen) 5.1 93.8 10.5 68.6 1.8 57.8
Joint (unfrozen) 1.5 97.5 5.9 74.9 3.0 60.7
Baseline 8.2 85.4 15.6 63.7 9.2 53.3
Baseline++ 7.6 91.7 12.3 67.7 1.6 56.5

To further enhance
the upper reference
performance, we unfreeze
the last transformer
block during train-
ing on joint data
sets, which is referred
as to Joint (unfrozen)
method. As shown
in Table 2, the joint
training methods slightly
outperform our base-
lines on all data sets
and splits, as they can
jointly optimize the ideal objective defined in Eq. 2 using the given access to all
training data. Nonetheless, our baselines perform nearly as well as the joint
training methods, indicating limited benefits from access to all unlabelled data
under class-iNCD and the effectiveness of our baselines.

Table 3. Self-ablation analysis of the proposed components on two task splits of C10,
C100 and T200.

Datasets C10 C100 T200

CosNorm KTRFR F ↓ A ↑ F ↓ A ↑ F ↓ A ↑
Two-step (a) � � 4.5 90.9 6.6 61.4 0.2 55.1

(b) � � 8.5 89.2 6.7 60.3 4.0 54.6

(c) � � 8.2 80.2 5.1 54.1 3.3 38.9

(d) � � 16.1 74.3 7.3 50.1 4.3 33.2

Five-step (a) � � 7.6 91.7 12.3 67.7 1.6 56.5

(b) � � 8.2 85.4 15.6 63.7 9.2 53.3

(c) � � 6.3 90.7 14.3 58.2 0.7 49.7

(d) � � 10.9 80.3 16.6 49.1 8.1 41.9

Ablation on Proposed Components. We further present an ablation study
on the individual core components of our baseliens, namely CosNorm and
KTRFR. Results are shown in Table 3. It is noticeable from the results that
CosNorm plays a substantial role in enhancing the overall accuracy of our pro-
posed baselines (refer to Baseline: (b) v.s. (d) and Baseline++: (a) v.s. (c)).
This is attributed to its unification capability to effectively address the issue of
that the weight vectors with significant magnitudes in f [1:T] = h[1:T] ◦ g always
dominating the prediction. On the other hand, KTRFR can improve the overall
accuracy and mitigate the forgetting at the end of each task sequence (refer to
(a) v.s. (b) and (c) v.s. (d)). Of particular note is that the performance gain



138 M. Liu et al.

attained by using KTRFR is more significant when dealing with longer task
sequences (refer to the upper half v.s. lower half in Table 3). Baseline++ (a)
equipped with both CosNorm and KTRFR achieves the best overall accuracy
and the least forgetting.

Table 4. Ablation of architectures and pre-training strate-
gies of PTMs on five-step splits of C10, C100 and T200.

Baseline
Datasets C10 C100 T200
Backbones F ↓ A ↑ F ↓ A ↑ F ↓ A ↑
ResNet50-DINO 37.5 45.8 16.4 38.5 10.1 24.7
ViT-B/16-DINO 8.2 85.4 15.6 63.7 9.2 53.3
ViT-B/16-CLIP 5.3 87.5 17.1 62.4 15.7 42.5

Analysis of Pre-trained
Models (PTM). In
Table 4, we present a
comparison between dif-
ferent PTMs such as
ResNet50 [20] and ViT-
B/16 [12], along with
various pre-training strate-
gies (CLIP [37] and
DINO [6]). Transformer
architecture achieves superior performance owing to its discrimination abil-
ity [36]. CLIP pre-training achieves similar outcomes to DINO, demonstrating
the effectiveness of strong PTM with a different pre-training strategy on web
data.

4.4 Comparison with the State-of-the-Art Methods

For a comprehensive comparison, we adapt methods from closely related fields
for state-of-the-art comparison. We adjust ResTune [32] and FRoST [40] to the
multi-step class-iNCD setting from the closely related iNCD field. We adapt
three representative CIL methods: EwC [27], LwF [30], and DER [3] to this
self-supervised setting. Similarly, we adapt the UIL method, CaSSLe [14], for
incremental discovery. All adapted methods employ ViT-B/16 with the same
DINO-initialization as a feature extractor. For the adapted CIL and UIL meth-
ods, the same self-training strategy is used as in our Baseline method to prevent
forgetting. All adapted methods unfreeze only the last transformer block of the
feature extractor [2,47], except ResTune that unfreezes the last two blocks for
model growing. More implementation details can be found in the supplementary
material.

Table 5 compares our proposed Baseline and Baseline++ with the adapted
methods. ResTune underperforms in the class-iNCD setting due to its reliance
on task-id information. FRoST exhibits strong ability to prevent forgetting on all
data sets and sequences by segregating the not-forgetting objective between the
feature extractor and classifier. The adapted CIL methods capably discover new
classes leveraging PTM knowledge. For two-step split sequences, these methods
generally outperform class-iNCD adaptations by maintaining a balance between
old and new classes. However, on five-step split sequences, the advantage of CIL-
based methods over class-iNCD-based methods is not evident anymore, because
CIL-based methods tend to forget tasks at the initial steps more when dealing
with long sequences, as widely studied in CIL literature. EwC achieves bet-
ter discovery accuracy by applying its forgetting prevention component directly
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Table 5. Comparison with the adapted state-of-the-art methods on two task splits of
C10, C100, T200, B200, and H683 under class-iNCD setting with the same DINO-ViT-
B/16 backbone. Overall accuracy and maximum forgetting are reported.

Datasets C10 C100 T200 B200 H683

Methods F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑
Two-step EwC [27] 32.4 79.0 42.5 43.9 27.2 33.3 18.1 25.5 13.8 25.1

LwF [30] 30.4 34.4 44.1 42.4 40.0 27.2 20.2 23.9 16.3 24.9

DER [3] 49.0 69.9 29.8 30.3 39.0 28.9 5.0 20.4 14.0 24.7

ResTune [32] 97.6 47.2 32.7 17.1 32.3 17.2 12.0 13.0 27.4 17.1

FRoST [40] 2.5 46.6 4.7 34.2 4.3 26.1 3.9 17.6 16.2 18.4

CaSSLe [14] 9.1 87.3 10.3 53.7 6.9 36.5 4.8 26.8 10.9 25.3

Baseline 8.5 89.2 6.7 60.3 4.0 54.6 4.1 28.7 7.9 25.7

Baseline++ 4.5 90.9 6.6 61.4 0.2 55.1 4.2 36.9 6.0 27.5

Five-step EwC [27] 21.1 81.1 60.1 30.6 48.0 23.2 21.2 19.1 15.7 22.4

LwF [30] 20.1 25.8 60.9 16.1 53.7 15.6 21.7 15.7 16.5 23.4

DER [3] 30.1 76.2 62.6 36.2 52.1 21.7 16.2 16.3 18.0 22.3

ResTune [32] 95.5 49.2 83.3 19.4 60.4 12.2 24.2 12.4 28.2 11.2

FRoST [40] 0.9 69.2 14.2 43.6 14.4 31.0 19.4 18.5 13.5 23.4

CaSSLe [14] 11.3 78.5 25.3 61.7 14.1 42.3 14.6 22.3 13.8 24.1

Baseline 8.2 85.4 15.6 63.7 9.2 53.3 13.7 28.9 3.1 25.2

Baseline++ 7.6 91.7 12.3 67.7 1.6 56.5 0.6 41.1 2.7 26.1

to the model parameters using Fisher information matrix, while LwF [30] faces
slow-fast learning interference issues. DER’s performance suffers due to unstable
self-supervised trajectories. CaSSLe is notably proficient in incremental discov-
ery, attributed to its effective distillation mechanisms. Without bells and whis-
tles, our Baseline and Baseline++ models consistently outperform adapted
methods across datasets and sequences. While FRoST gives lower forgetting in
some two-step split cases, our Baseline++, by improving the capacity for class-
discrimination across all tasks, achieves lower forgetting in most five-step split
cases.

Generalizability Analysis. Our proposed approach offers a versatile frame-
work to convert related methods into effective class-iNCD solutions. In Fig. 5,
we equip two such methods, AutoNovel [19] and OCRA [4], with our proposed
components (frozen PTM and CosNorm). The results emphasize the pivotal role
of CosNorm in forming a task-agnostic classifier. Our findings reveal that, by
removing CosNorm, the converted methods suffer from significant forgetting due
to non-uniformly scaled weight vectors, resulting in a decrease in overall discov-
ery accuracy. This echoes the importance of CosNorm in aligning the magnitude
of the classifiers learned at each step to the same scale in class-iNCD scenar-
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ios. Instead, with using CosNorm, PTMs can be effectively leveraged to develop
strong methods for the problem of class-iNCD.

5 Conclusion

Fig. 5. Generalizability analysis. Results
are reported on the five-step split of C100
with DINO-ViT-B/16.

In this work we address the prac-
tical yet challenging task of Class-
incremental Novel Class Discovery
(class-iNCD). First, we highlight that
the use of self-supervised pre-trained
models (PTMs) can achieve better
or comparable performance to mod-
els trained with labelled data in NCD.
Building upon this observation, we
propose to forego the need for expen-
sive labelled data by leveraging PTMs
for class-iNCD. Second, we introduce two simple yet strong baselines that com-
prise of frozen PTM, cosine normalization and knowledge transfer with robust
feature replay. Notably, our proposed baselines demonstrate significant improve-
ments over the state-of-the-art methods across five datasets. We hope our work
can provide a new, promising avenue towards effective class-iNCD.
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Abstract. Pruning is a common compression approach for neural net-
works. Existing structured pruning methods suffer two major issues: (1)
coupling of analyzing pruning ratios configuration and which specific con-
volution kernels to remove from a certain layer, i.e., intra-layer pruning
strategy, makes it difficult to evaluate their real impact, (2) insufficient
consideration of spatial context results in the loss of target features, lead-
ing to a significant accuracy decline. To this end, we propose a Layer-
wise Pruning Ratios Auto-configuration (LPRA) framework, offering a
standardized pruning ratios configuration approach for various intra-
layer pruning strategies, making it easy to compare their actual pruning
effects. We simultaneously assess two metrics: Spatial Coherence (SC),
representing the extraction capability of spatial features, and Hessian
Mean (HM), representing the sensitivity of convolutional kernels, indi-
cating the impact of the layer on the output. LPRA can preserve spatial
information in the model while reduce its impact on accuracy, achiev-
ing efficient one-shot channel pruning without introducing any additional
network modules or regularization losses. Experimental results show that
LPRA performs well in both classification and segmentation tasks, prun-
ing almost 50% of parameters from VGG-16 with 0.36% accuracy gain
on CIFAR-100, pruning 41% of parameters from ResNet-34 with 0.16%
accuracy gain on CIFAR-10. Furthermore, we identify redundancy in
real-time semantic segmentation models.

Keywords: Computer Vision · Convolutional Neural Networks ·
Model Compression

1 Introduction

Convolutional Neural Networks (CNNs) have demonstrated outstanding perfor-
mance in the field of computer vision. However, the large number of parameters
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and computational demands make the deployment of these models in resource-
constrained devices and scenarios challenging. CNNs often have excessive param-
eters, requiring the use of model compression techniques to eliminate redundan-
cies.

Structured pruning, recognized for its simplicity and flexibility, is a widely
adopted technique in model compression. It eliminates redundancy from pre-
trained neural networks by assessing the significance of convolutional kernels.
The number of kernels suitable for removal varies for each convolutional layer.
Layers with higher sparsity contain less information, allowing for the pruning
of more kernels within the layer. The pruning strategy for convolutional kernels
includes direct kernel analysis [12,17,29] and data analysis [22] using gradients
or feature maps. Despite post-pruning fine-tuning, traditional methods struggle
to significantly surpass the original network’s accuracy. Advanced pruning intro-
duces modules or regularization terms in training, promoting sparsity but adding
computational overhead and lacking transferability to hardware deployment.

Although structured pruning research is comprehensive, two key issues per-
sist: (1) Traditional methods place excessive emphasis on evaluating the impor-
tance of convolutional kernels and overlook the pruning ratios configuration for
each layer. We cannot confirm whether the former or the latter improves the
pruning effect. Therefore, a unified and standardized pruning ratios configura-
tion scheme is needed to perform pruning for each layer based on this. (2) Pre-
vious pruning methods have neglected spatial contextual information, causing
the pruned network to lose some learned object features, resulting in signifi-
cant accuracy reduction, especially in computationally intensive tasks such as
semantic segmentation.

Inspired by “Random Channel Pruning” [18], which emphasizes the impor-
tance of the pruning configuration, it highlights that even the simplest pruning
strategy based on the L1 norm can achieve comparable results to more complex
methods when using the same configuration (e.g., pruning ratios, fine-tuning
periods, etc.). We view the model as a container, where its capacity determines
its learning capacity. Setting the pruning ratios for each layer influences the
shape of the container, which is the key factor that affects its capacity. To
obtain a reasonable pruning ratios configuration scheme to ensure model capac-
ity, we propose a framework called “Layer Pruning Ratios Auto-configuration”
(LPRA). Through a comprehensive analysis of the entire pre-pruned network,
LPRA determines the pruning ratios for each layer, providing a standardized
pruning ratios configuration method for various intra-layer pruning strategies.
LPRA consists of sensitivity analysis and feature extraction capability analy-
sis. “Sensitivity” represents the influence of a certain layer on the final result,
while the “feature extraction capability” reflects the ability of layers to capture
spatial context information. Figure 1 shows the general framework of our LPRA
method. Sensitivity is represented by the Hessian Mean (HM) metric obtained
through Hessian analysis, while spatial feature extraction capabilities are quan-
tified using the novel Spatial Coherence (SC) metric. By uncovering the trade-off
between HM and SC on the impact of pruning results, we quantified the spar-
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sity of each layer and obtained specific pruning configuration schemes. LPRA
gets pruning rate for each layer by one-shot analysis of the network, requiring
few annotated data and computational overhead. There’s no need to introduce
additional modules or loss terms. It works for compressing all networks with con-
volutional architecture and seamlessly integrates with other model compression
techniques.

Fig. 1. Our LPRA framework is a standardized pruning ratios configuration approach
by analyzing the sensitivity of each layer’s convolutional kernel W and the aggregation
of output feature maps X, yielding vectors HM and SC. The trade-off between HM
and SC on the impact of pruning results is expressed through the module “Integration”,
resulting in the generation of the pruning rate vector R, which guides layer-specific
pruning strategies

We summarize our main contributions as follows:

– We proposed the LPRA framework, which efficiently quantifies the sparsity
relationship between convolutional layers. It serves as a standardized and
automated pruning ratios configuration method, facilitating the comparison
of intra-layer pruning strategies.

– We first introduced the Spatial Coherence (SC) metric to preserve spatial
information. Furthermore, we simplified the analysis process by calculating
the average Hessian Mean (HM) of the convolutional kernel to depict the
sensitivity of the convolutional layer.

– Compare to traditional methods, LPRA demonstrated superior performance
in image classification and semantic segmentation tasks. We achieved a 0.36%
accuracy improvement while pruning 50% of the parameters with VGG-16 on
CIFAR-100.



146 G. Li et al.

2 Related Work

Common neural network compression techniques include quantization [14,26],
knowledge distillation [7,23], low-rank approximation [1], unstructured prun-
ing [8], and structured pruning. Notably, structured pruning is the only method
that preserves the overall architecture of the network. Its hardware-friendly and
flexibility in selecting redundant network structures make it a versatile tool for
compression, particularly suitable for resource-constrained devices.

Structured pruning typically adheres to the Train-Prune-Finetune paradigm.
Initially, the base model is trained, followed by pruning operations on a pre-
trained model. To regain accuracy, a specified number of fine-tuning rounds
are performed. The pivotal step is the pruning operation, designed to minimize
accuracy loss while preserving substantial model capacity.

Within the Train-Prune-Finetune paradigm, pruning can be classified into
two types: 1) data-independent and 2) data-dependent. The first approach
designs strategies solely based on the analysis of pre-trained model weights,
such as L1/L2-based channel pruning [17] and geometric median FPGM [12].
This approach is advantageous for its simplicity, requiring no additional infer-
ence or training. The second approach relies on data, analyzing gradients or
activation values during training provides a thorough understanding of impor-
tance, improving information capture. Evaluation criteria include means of first
or second-order Taylor series approximations [9,16,21], feature map sparsity level
APoZ [13], and channel impact on output feature maps ThiNet [20]. Traditional
methods often focus on individual kernels, lacking a unified benchmark for layer-
wise pruning ratios. Recent research [18] highlights issues with pruning method
benchmarks. Results suggest that common methods perform similarly under the
same random pruning ratios, even L1/L2-based channel pruning comparable to
other standards. This shifts our focus towards more holistic pruning ratios con-
figuration strategies.

Recent methods induce neural network sparsity through additional mod-
ules [3,11]. However, this brings extra computational challenges and a black-
box-like operation for configuring pruning ratios. Previous work [22] pro-
posed a global importance criterion using filter gradients and norms. Other
approaches [19,27] introduced sparsity loss beyond task loss, pruning filters
below a threshold. Yet, the impact of the regularization term on task loss can
bias training. Assessing all kernels with the same criterion is impractical due to
significant variations across layers and may lead to irrecoverable accuracy loss.
Therefore, an interpretable and unified benchmark is necessary to automate
layer-wise pruning ratios.

3 Methodology

3.1 Problem Formulation

Our LPRA method is based on the analysis of convolutional kernels and feature
maps at each layer of the convolutional neural network. Here, we provide an
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explanation of the symbolic definitions. Let layeri represent the i-th convolu-
tional layer (0 ≤ i ≤ m), where there are m layers to be pruned. ni represents
the number of channels in the input feature map of the i-th layer. Taking a
convolutional layer as the unit of interest for measuring layer-wise sparsity, let
Xi denote the input feature map of the i-th layer, Xi ∈ R

ni×hi×wi , with hi

and wi as height and width. The corresponding output feature map for the i-th
layer is Xi+1 ∈ R

ni+1×hi+1×wi+1 , which is also the input for the (i + 1)-th layer.
Wi represents the convolutional kernels for the i-th layer, Wi ∈ R

ni+1×ni×ki×ki ,
where k is the size of the convolutional kernel, and the kernel corresponding
to the j-th output channel is Wi,j ∈ R

ni×ki×ki . For comprehensive layer-wise
sparsity measurement, the LPRA method simultaneously extracts all convolu-
tional kernels Wi and the output feature map Xi+1. Two metrics, Hessian Mean
(HM) and Spatial Coherence (SC), are calculated for interpretability. Through
nonlinear mapping, specific pruning ratios R = [r1, r2, . . . , rm], where ri ∈ [0, 1),
are quantified for each layer, yielding an m-dimensional vector.

3.2 Layer-Wise Evaluation Metrics for LPRA

In this section, we will provide a detailed explanation of the design principles,
specific calculation methods, and rationale behind the HM and SC metrics.

Hessian Mean (HM). We seek to measure the layer-wise sensitivity of the
network, assessing how variations in each layer impact the final network accu-
racy. Due to the vast parameter volume of convolutional neural networks, an
exhaustive algorithm to traverse each layer’s influence on the final performance
is computationally prohibitive. The L1 norm [17] uses the most basic sensitiv-
ity analysis, individual layer sensitivity was evaluated by autonomously pruning
each layer and assessing the pruned network’s accuracy on the validation set.
However, this method requires a significant amount of additional time and com-
putational resources, cannot be considered as a standardized pruning ratios con-
figuration approach. A definitive benchmark is necessary for determining optimal
pruning ratios for each layer. The challenges in configuring single-layer pruning
ratio resemble those faced in selecting quantization precision for mixed-precision
quantization [4,5]. HAWQ [5] proposed an automated method for determining
relative quantization precision, using the Hessian spectrum for each layer to
establish quantization precision at each hierarchical level. Inspired by HAWQ,
utilizing second-order information from the Hessian matrix, rather than first-
order information from the gradient vector, provides a more discerning sensitiv-
ity measure.

We start by calculating the first-order derivatives of the final task loss L with
respect to all parameters in the i-th layer. This results in the gradient matrix gi
for each layer in the network:

gi =
∂L

∂Wi
(1)
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Next, we calculate second-order derivatives, incorporating a random vector
to enhance the generalizability of the Hessian matrix in this process:

∂(gTi v)
∂Wi

=
∂gTi
∂Wi

v + gTi
∂v

∂Wi
=

∂gTi
∂Wi

v = Hiv (2)

It’s important to note that the vector v has the same dimensionality as gi,
and Hi denotes the Hessian matrix of L with respect to Wi.

Fig. 2. On Cityscapes dataset, the Class Activation Maps (CAM) for layer0, layer2
and layer9 of the STDC network

This algorithm involves iterative assessments of the Hessian matrix. Distin-
guishing itself from HAWQ [5], which exclusively retains the top eigenvalues of
Hi, our approach entails averaging the results over multiple evaluations, denoted
as Hi.

Hi =
1
n

n∑

i=1

Hi (3)

where n represents the total count of evaluations. Our objective is to evaluate
the sensitivity of each layer within the network. Given the substantial variability
in the number of channels across layers, a standardized and impartial metric is
essential. To address this issue, we obtain the output channel count, represented
by ni+1, for layeri and measure the sensitivity of layeri by averaging the metric
across all channels:

hmi =
∑ni+1

i=1 Hi

ni+1
(4)

Let hmi denote the sensitivity of layer i. The computation is carried out for
each of the m convolutional layers earmarked for pruning. Consequently, an m-
dimensional vector, HM = [hm1, hm2, ..., hmm]T , is obtained. This vector serves
as the representation of the layer-wise sensitivities. Larger sensitivity values sig-
nify that alterations in each convolutional kernel of the respective layer exert a
more substantial influence on the final model output.
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Spatial Coherence (SC). We introduce, the Spatial Coherence (SC) metric for
the first time to gauge the network’s spatial feature extraction capability. Draw-
ing inspiration from Class Activation Mapping (CAM) [28], a technique that
delineates regions of interest in images, we visualize attention regions of distinct
layers in the real-time semantic segmentation network STDC [6], depicted in
Fig. 2. CAM maps exhibit varying degrees of concentration in attention regions,
with some being more focused while others are more dispersed. According to
our analysis, more concentrated feature representations are deemed to be more
targeted, which can be computed using fewer channels, as an excess of channels
tends to introduce undesirable noise interference. We are considering introducing
a metric to measure the model’s aggregation level accurately.

In the realm of both classification and segmentation tasks, the range of target
object categories spans from a few to several dozen. Consequently, the generation
of Class Activation Maps (CAM) for all corresponding categories introduces a
computationally onerous endeavor. Given the pivotal role that feature maps play
in the computation of CAM, we introduce Spatial Coherence (SC) metric. This
metric directly scrutinizes the distributional characteristics of attention regions
across all output feature maps within a specific layer, offering insight into the
extent of redundancies amenable to pruning in said layer.

We focus on individual feature maps denoted as Xi,j ∈ R
hi×wi , where these

feature maps represent the output corresponding to the j-th channel of the i-th
layer. To ensure fairness, we adjust Xi,j using bilinear interpolation to match
the size of the input image, resulting in X̃i,j ∈ R

H×W . The threshold, Ti,j , is
computed as the mean of all pixel values within X̃i,j . Pixels surpassing Ti,j are
designated as feature attention points with a value of 1, while those equal to
or below the threshold are set to 0. Through this process, we obtained Gi,j , a
binary matrix that reflects the distribution status of the attention points of the
feature map:

Gi,j,h,w =

{
1 if X̃i,j,h,w > Ti,j

0 if X̃i,j,h,w ≤ Ti,j

(5)

where h and w denote the indices of the last two dimensions of Gi,j . The atten-
tion points of different feature maps exhibit distinct distribution characteris-
tics. To quantify the spatial aggregation level of Gi,j , we traverse it starting
from the top-left corner in a row-major (or column-major) order. Initially, con-
nected components labeling is applied to the attention state map Gi,j . For each
foreground pixel (with a value of 1), if the current pixel is unmarked (label
0), either a depth-first search or breadth-first search algorithm is employed to
label all connected foreground pixels, assigning them a common label as a con-
nected region. Subsequently, statistical information is collected for each con-
nected region as shown in Appendix, including the collection of all central coor-
dinates C = (x1, y1), (x2, y2), . . . , (xn, yn) within each connected region. Here, n
refers to the total number of connected regions. Additionally, essential statisti-
cal information such as the total pixel count N within all connected regions is
obtained. First, calculate the average distance d between search pair of elements
in the set of central coordinates C:
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d̄ =
2

n(n − 1)

n−1∑

i=1

n∑

j=i+1

√
(xi − xj)2 + (yi − yj)2 (6)

Calculate the average pixel count for all connected regions on a feature map:
N̄ = N/n. Next, compute the average metric of all ni+1 output feature maps for
the i-th layer to reflect the layer’s spatial coherence metric:

sci =
∑

d̄ × N̄

ni+1
(7)

By calculating the sc for each layer, we obtain an m-dimensional vector
SC = [sc1, sc2, . . . , scm]T with the same shape as HM. Larger SC values in
the convolutional layers indicate that the attention points (i.e., pixels with a
value of 1 in Gi,j) in the output feature maps are more concentrated in specific
regions. This implies that the current layer exhibits sparsity in spatial contextual
representation. Therefore, it can be represented with fewer channels.

3.3 Integration of HM and SC

The m-dimensional vectors HM and SC, obtained in our previous discussion,
exclusively capture the relative sensitivity and spatial coherence of each layer.
It is crucial to integrate the impact of HM and SC on the pruning results in
order to arrive at the final pruning strategy. Figure 3(a) depicts the numerical
distribution of HM and SC vectors for STDC, revealing substantial differences
in their distribution regions and spans. Therefore, our initial step involves inde-
pendently normalizing these vectors. For each element hmi in the HM vector
and sci in the SC vector, we apply min-max normalization to obtain ˆHM and
ŜC:

ĥmi = −s +
2s · (hmi − min(HM))
max(HM) − min(HM)

(8)

ŝci = −s +
2s · (sci − min(SC))
max(SC) − min(SC)

(9)

where s represents the specified scaling factor to normalize the numerical val-
ues of the two vectors within the range [−s, s]. Through distribution analysis of
the ˆHM and ŜC vectors, relative to the fluctuations in intermediate values, the
impact of extreme values on the final result is almost negligible. Figure 3(b) illus-
trates the specific distribution of ˆHM and ŜC values on a variant of the sigmoid
curve. We found that the distribution of the indicators is extremely scattered or
overly concentrated. To fully leverage the characteristics of the sigmoid function,
we set s to 5 in Eq. 8, the specific reasons are explained in Appendix. Based on
these numerical observations, we employ a variant of the sigmoid function to
blend the numerical values of the two-dimensional vectors, as shown below:

ri =
σ(ŝci) − σ(ĥmi) + 1

2
(10)
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Fig. 3. Illustration of HM and SC vectors for the STDC backbone network. (a) The
original data distribution. (b) The numerical distribution by directly mapping data to
the sigmoid function. (c) The mapping of normalized ˆHM and ŜC to R. Red signifies
dense, and blue indicates sparsity in convolutional layers (Color figure online)

In the given context, ri represents an element in R, where R =
(r1, r2, . . . , rm) ∈ [0, 1)m denotes the final layer-wise pruning ratios configura-
tion scheme. σ(. . .) corresponds to the sigmoid function, a pivotal mathematical
operation frequently employed in neural network computations. Figure 3(c) illus-
trates a three-dimensional visualization of the mapping from ˆHM and ŜC to R.
To achieve arbitrary global pruning rates, R can be scaled proportionally and
pruning can be constrained within upper and lower bounds.

3.4 Scalability for Residual Network Structures

The above methodology is designed for single-branch networks originally. For
networks with residual structures such as ResNet and STDC, we have also
employed corresponding pruning methods. We employ the greedy pruning strat-
egy and processing method for ResNet residual modules outlined in [17], and we
have devised a specialized pruning strategy for the STDC module introduced in
[6], as illustrated in Fig. 4.

Fig. 4. Pruning process for STDC network architecture. Taking one stage of the STDC
network as an example, for clarity, we only depict 2 blocks. The gray areas represent
pruned portions
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4 Experiments

In our experiments, we compare two pruning ratios configuration schemes: “Iden-
tical”, where each layer is pruned with the same ratio, and “LPRA”, our Layer-
wise Pruning Ratios Auto-configuration method. For intra-layer pruning, we
consider six methods: L1 [17], FPGM [12], Apoz [13], Taylor [22], Thine [20],
and Random. The Random method randomly selects kernels within a layer for
removal based on pre-defined ratios, can serving as a baseline. Our experiments
aim to compare the effectiveness of foundational pruning strategies and validate
the advantages of our LPRA-based automatic pruning ratios determination when
using consistent intra-layer pruning strategies.

We conduct experiments on both classification and real-time semantic seg-
mentation task. For classification, we utilize two prominent datasets, CIFAR-
10/100 [15] and ImageNet2012 [24]. The experiments encompass two key network
architectures: ResNet [10] and VGG [25]. In the ResNet series, pruning is applied
selectively, targeting the first convolution layer of normal residual blocks and
the first and second convolution layers of bottleneck blocks. In the VGG series,
all internal convolutional layers are pruned. Evaluation metrics include Top-1
and Top-5 accuracy, FLOPs, and parameters(Params). For real-time semantic
segmentation task, Cityscapes [2] is employed, and pruning is executed on the
lightweight STDC network [6]. Figure 4 depicts a pruning strategy specifically
designed for the unique structure of STDC. Evaluation metrics for this task
encompass mIoU (mean Intersection over Union), Flops, and Params.

4.1 Experiments on CIFAR-10 and CIFAR-100

The CIFAR-10 and CIFAR-100 datasets contain 50,000 training images and
10,000 test images each, standardized to 32 × 32 pixels. CIFAR-100 covers 100
categories, while CIFAR-10 covers 10 categories. By employing “Identical” and
“LPRA” pruning schemes, along with six intra-layer pruning strategies, we com-
pressed ResNet and VGG architectures, achieving comparable reductions in both
FLOPs and Params. In particular, only 10 randomly selected batches of the
training set served as data dependencies for LPRA. Following pruning, the net-
works underwent 300 epochs of fine-tuning with parameters aligned to the train-
ing regimen.

We depict the correlation between Top-1 and Top-5 accuracy changes and the
pruning ratios of FLOPs and parameters. Table 1 and Table 2 depict the results
for VGG-16 and ResNet-34, other experimental results are shown in Appendix.
The results indicate that intra-layer pruning schemes minimally impact accu-
racy, as even random pruning attains levels akin to more intricate methods.
In contrast, intra-layer pruning ratios guided by our LPRA strategy, demon-
strate noticeably higher accuracy. Notably, LPRA achieves a significantly larger
Params compression ratio at similar FLOPs compression ratio compared to
the Identical scheme. Additionally, Fig. 5 illustrates accuracy change curves for
ResNet-18 networks compressed at various ratios under both Identical and LPRA
schemes, Here, the fine-tuning epoch is set to 60, with an initial learning rate of
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Table 1. Retain 60% of FLOPs for VGG-16 on CIFAR-100. “Baseline” refers to the
data of the original model. For Ratios: “Identical” means using the same pruning rate
for each layer, “LPRA” is our pruning rate configuration method. “Crit.” indicates the
specific pruning strategy within each layer.

Ratios Crit. Top-1 Acc(%) Top-5 Acc(%) Params[M]/Ratio(%)

VGG-16, CIFAR-100, Target FLOPs Ratio 60%

Baseline 72.80 91.32 14.77/100.0

Identical L1 72.07(−0.73) 90.84(−0.48) 8.86/59.99

FPGM 72.79(−0.01) 91.13(−0.19)

Apoz 71.75(−1.05) 91.10(−0.22)

Taylor 72.10(−0.70) 91.19(−0.13)

Thinet 72.27(−0.53) 90.78(−0.54)

Random 72.19(−0.61) 91.02(−0.30)

LPRA L1 73.03(+0.23) 91.27(−0.05) 7.40/50.10

FPGM 72.63(−0.17) 91.37(+0.05)

Apoz 73.16(+0.36) 91.30(−0.02)

Taylor 72.77(−0.03) 91.29(−0.03)

Thinet 72.66(−0.14) 91.46(+0.14)

Random 72.53(−0.27) 91.36(+0.04)

Fig. 5. Top-1 accuracy obtained by pruning ResNet-18 with different pruning rates,
where (a) represents the results on CIFAR-10, (b) represents the results on CIFAR-100.
The blue line indicates the accuracy before pruning (Color figure online)

0.1, decreasing to 0.1 times the original rate every 20 epochs. We found that the
LPRA method can maintain or even surpass the accuracy of the original model
even when pruning 70% of the Params.
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Table 2. The results of preserving 70% of FLOPs for the ResNet-34 network on CIFAR-
10.

Ratios Crit. Top-1 Acc(%) Top-5 Acc(%) Params[M]/Ratio(%)

ResNet-34, CIFAR-10, Target FLOPs Ratio 70%

Baseline 93.57 99.77 21.28/100.0

Identical L1 93.60(+0.03) 99.80(+0.03) 14.76/69.36

FPGM 93.39(−0.18) 99.75(−0.02)

Apoz 93.35(−0.22) 99.81(+0.04)

Taylor 93.62(+0.05) 99.81(+0.04)

Thinet 93.55(−0.02) 99.74(−0.03)

Random 93.41(−0.16) 99.75(−0.02)

LPRA L1 93.73(+0.16) 99.82(+0.05) 12.50/58.74

FPGM 93.46(−0.11) 99.83(+0.06)

Apoz 93.70(+0.13) 99.86(+0.09)

Taylor 93.59(+0.02) 99.79(+0.02)

Thinet 93.57(+0.00) 99.77(+0.00)

Random 93.49(−0.08) 99.78(+0.01)

4.2 Experiments on ImageNet

ImageNet2012 comprises 1.28 million annotated images, with 1.2 million utilized
for training, and the remaining 50,000 divided into validation and test sets. Each
image has a resolution of 224 × 224 pixels. Unlike Sect. 4.1, due to the large size
of the ImageNet dataset and to save computation time, we set the fine-tuning
epochs to 20, with an initial learning rate of 1 × 10−2, decreasing to 0.1 times
the original rate every 10 epochs. Table 3 presents the pruning results of ResNet-
50 on ImageNet, demonstrating the continued effectiveness of LPRA on large
datasets.

4.3 Experiments on STDC Network

The Cityscapes dataset contains 5000 annotated images, with 2975 used for
training, 500 for validation, and 1525 for testing. Each image has a resolution
of 1024 × 2048. Unlike image classification tasks, for improved computational
efficiency, we randomly selected 5 images from the training set as the basis for
LPRA calculation. This was done to reduce similar FLOPs and Params in the
STDC network. After pruning, the learning rate was reduced to one hundredth
of the training learning rate, followed by fine-tuning for 30 epochs.

Table 4 presents the pruning results of the STDC-75 network with an input
image size of 0.75 × (512 × 1024). In cases with similar FLOPs and Params, the
LPRA achieved significantly higher accuracy compared to the Identical scheme.
Notably, under the LPRA pruning rate configuration scheme, the Random prun-
ing strategy outperformed most pruning strategies under the Identical scheme.
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Table 3. The results of preserving 67.44% of FLOPs for the ResNet-34 network on
ImageNet2012

Ratios Crit. Top-1 Acc(%) Top-5 Acc(%) Params[M]/Ratio(%)

ResNet-50, ImageNet2012, Target FLOPs Ratio 67.44%

Baseline 76.13 92.86 25.56/100.0

Identical L1 74.29(−1.84) 92.14(−0.72) 17.47/68.35

FPGM 73.72(−2.14) 91.93(−0.93)

Apoz 74.02(−2.11) 92.00(−0.86)

Taylor 74.22(−1.91) 92.03(−0.83)

Thinet 74.27(−1.86) 92.07(−0.79)

Random 74.20(−1.93) 92.00(−0.86)

LPRA L1 74.54(–1.59) 92.21(−0.65) 16.62/65.02

FPGM 74.05(−2.08) 92.05(−0.81)

Apoz 74.46(−1.67) 92.12(–0.74)

Taylor 74.29(−1.84) 92.03(−0.83)

Thinet 73.86(−2.27) 91.92(−0.94)

Random 73.86(−2.27) 91.90(−0.96)

Fig. 6. Relationship between fine-tuning epochs and Top-1 accuracy after pruning 40%
of FLOPs from VGG-16 and 32% of FLOPs from ResNet-34 on CIFAR-100

This further underscores the effectiveness of our LPRA pruning rate automatic
configuration scheme.

4.4 Ablation Studies

In this section, we will explore the impact of the number of fine-tuning epochs
on the final accuracy and attempt an ablation study on the main components
of LPRA.

The Impact of Retraining-Epoches. To investigate the impact of fine-tuning
iterations on the final accuracy, we extensively fine-tuned the pruned models,
recording accuracy changes over 300 iterations. Figure 6 illustrates results for
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pruning 40% of VGG-16 on CIFAR100. Results from other networks and datasets
are presented in Appendix. The red line represents the LPRA scheme, and the
green line represents the Identical scheme, both using L1 norm for intra-layer
pruning. The initial learning rate is set to 0.1, reducing to 0.1 times the origi-
nal value every 100 epoches. Visual results show that as fine-tuning iterations
increase, the model’s accuracy on the validation set generally rises. However,
there is an apparent upper limit: after a certain number of iterations, the model’s
accuracy ceases to significantly improve.

The Impact of HM. We use the HM vector of the convolution layer to rep-
resent its sensitivity and the SC vector to represent the spatial context infor-
mation representation ability. In order to explore the effect of Hessian Mean
(HM) analysis (corresponding to the HM analysis module placed on Fig. 1) on
the pruning accuracy of the pruned model, we keep only the Spatial Coherence
(SC) part below Fig. 1 to obtain the SC vector. We then use the min-max nor-
malization module and the Nonlinear map to process SC and obtain the final
pruning ratios R. Table 3 shows the experimental results of VGG-16 on CIFAR-
100 and ResNet-34 on CIFAR-10. We observe that removing HM analysis results
in a slight accuracy decrease, while the compression of FLOPs is significantly
reduced, indicating its crucial role in maintaining model predictive performance
and reducing FLOPs.

Table 4. Pruning Results of the STDC Semantic Segmentation Network on Cityscapes

Ratios Crit. mIoU(%) FLOPs[G]/Ratio(%) Params[M]/Ratio(%)

Baseline 74.13 35.34/100.0 14.24/100.0

Identical L1 70.38(−3.75) 21.16/59.88 8.30/58.29

FPGM 69.87(−4.26) 21.84/61.80 8.52/59.83

Apoz 68.62(−5.51) 21.16/59.88 8.30/58.29

Taylor 69.19(−4.94) 21.16/59.88 8.30/58.29

Thinet 67.15(−6.98) 21.09/59.68 8.29/58.22

Random 67.50(−6.63) 21.16/59.72 8.30/58.29

LPRA L1 71.08(–3.05) 21.84/61.80 8.25/57.94

FPGM 70.54(−3.59) 24.55/69.47 8.23/57.79

Apoz 70.14(−3.99) 21.45/60.70 8.28/58.15

Taylor 71.01(−3.12) 21.45/60.70 8.28/58.15

Thinet 69.08(−5.05) 21.26/60.16 8.37/58.78

Random 70.67(−3.46) 21.45/60.70 8.28/58.15

The Impact of SC. Similarly, in order to explore the effectiveness of Spatial
Coherence (SC) analysis, we removed the SC analysis module and directly used
the min-max normalization module and Nonlinear map to process the HM vector
to obtain the final pruning ratios R. From the results in Table 5, we found that
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Table 5. The impact of HM and SC modules on pruning results on VGG-16 and
ResNet-34. “w/o HM” means removing HM analysis, “w/o SC” means removing SC
analysis.

Ratios Top-1 Acc (%) FLOPs[G]/Ratio(%) Params[M]/Ratio(%)

VGG-16 CIFAR-100 Crit.L1

Baseline 72.80 0.39/100.0 14.77/100.0

LPRA 71.20(–1.60) 0.15/38.46 3.44/23.29

w/o HM 71.16(−1.64) 0.19/48.72 3.46/23.43

w/o SC 70.74(−2.06) 0.15/38.46 3.98/26.95

Identical 70.15(−2.65) 0.15/38.46 5.65/38.25

ResNet-34 CIFAR-10 Crit.L1

Baseline 93.57 0.99/100.0 21.28/100.0

LPRA 93.47(–0.10) 0.57/57.58 8.81/41.40

w/o HM 93.45(−0.12) 0.76/76.77 9.03/42.43

w/o SC 93.27(−0.30) 0.55/55.56 11.17/52.49

Identical 93.38(−0.19) 0.53/53.54 11.38/53.48

compared to the LPRA scheme, removing SC leads to a significant decrease in the
model’s accuracy, indicating that SC analysis plays a crucial role in maintaining
accuracy and compressing Params.

5 Conclusion

This paper introduces LPRA, an end-to-end pruning ratios configuration frame-
work, benchmarking various structured pruning techniques. With limited data
and computation, we employ sensitivity and spatial context analysis to quantify
sparsity in each convolutional layer, with the aim of preserving the network’s
inference capability after pruning. Extensive experimental results demonstrate
the competitive performance of LPRA across various network architectures and
datasets compared to commonly used pruning ratios configuration methods. Par-
ticularly noteworthy is its commendable outcomes in parameter compression and
accuracy retention. Due to the flexibility and universality of LPRA, it can be
readily integrated with other methods to achieve enhanced model compression
results.
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Abstract. Hyperspectral imaging offers a way for computer vision to
surpass human visual perception by increasing the available spectral
information beyond RGB images. The requirement of specific cameras
and difficulty of capturing hyperspectral images has led to a scarcity
of data, with most belonging to the aerial remote sensing paradigm.
In this paper, we present a novel and extensive hyperspectral dataset
of construction debris for recycling applications that includes objects
from 14 different material classes, measured by three different hyper-
spectral sensors. We compare a variety of hyperspectral image classifi-
cation approaches and demonstrate that relative performance of com-
mon hyperspectral models differs for our new dataset. Furthermore, we
demonstrate a positive effect of pre-training on our dataset for other
similar hyperspectral image classification tasks.

Keywords: Hyperspectral Imaging · Dataset · Classification

1 Introduction

In recent years, computer vision algorithms have undergone significant improve-
ments, rivaling human performance. Most applications limit their algorithms by
providing only three color channels in the visible spectral range. Hyperspectral
imaging (HSI) overcomes this limitation by recording up to hundreds of wave-
lengths beyond the visible light, especially in the near-infrared (NIR) range, and
thus offers a way for computer vision to surpass human visual perception.

Its utility in tasks where spectral information is important has made it
increasingly popular and nowadays, it is applied in many different fields, like
in remote sensing where HSI has its origin (e.g., [7]). But also in medical appli-
cations [20], in agriculture [19], in the food industry [4,28], and in the recycling
sector where the objective is, for example, the sorting of plastic or construction
and demolition waste (CDW) material [3,25].
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The latter has become particularly relevant as environmental protection
comes to the forefront of public policymaking, and interest in avenues of decreas-
ing waste has grown. Nowadays, CDW makes up almost one fourth of globally
produced waste, and millions of tons of concrete waste are generated annu-
ally, most of which could be recycled. However, recycling is only possible if the
reusable material can be identified and effectively separated from other, contam-
inating material. At the waste processing facility where hundreds of trucks loads
of CDW come in daily, an automatic classification of the material is required.

Various approaches and methods for classifying hyperspectral data have been
developed over the years. While in the early stages, classical machine learning
approaches, like support vector machines (SVM) [31], were used on a pixel-wise
basis, nowadays, hyperspectral image data is mostly evaluated using more sophis-
ticated approaches that are able to incorporate spatial context in addition to the
spectral information. These include convolutional neural networks (CNN) of dif-
ferent complexity [6,23,24], and most recently also vision transformers (ViT)
[12,33] that are currently achieving outstanding results in all kinds of computer
vision tasks.

Ideally, these classification models should be as generic and generally appli-
cable to HSI data as possible. However, the application of construction waste
sorting, for instance, is completely different from the task of segmenting areas in
remote sensing. Still, design and evaluation of HSI classification methods hap-
pens almost exclusively based on a small number of remote sensing scenes (e.g.,
[23]). A recurring challenge in the field of HSI lies in the limited availability and
size of hyperspectral datasets, impeding exhaustive architecture search for more
generally suitable classifier models. Consequently, these are the main contribu-
tions of our work:

– We present a novel and completely annotated hyperspectral dataset, consist-
ing of recordings of 14 different CDW material classes, measured by three
different sensors over more than 200 bands in the visible and near-infrared
range.

– Based on this dataset that enables object-wise classification as well as pixel-
or patch-wise prediction, we present a comprehensive evaluation and com-
parison of multiple HSI classification methods. Further, we compare classifier
performance in two other applications – where we observe that methods per-
form indeed different on this dataset relative to existing ones.

– Additionally, we show that pre-training the HSI classifiers on our dataset can
also be helpful for other, similar classification tasks.

2 Related Work

Hyperspectral Datasets. With the hyperspectral imaging technique becom-
ing more popular, there already exist many publications on measuring and pro-
cessing this particular type of recording with many spectral bands. However,
only a few corresponding datasets are actually publicly available.
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Firstly, worth mentioning are the CAVE dataset [34] as well as the Havard
hyperspectral “real world” dataset [5], although they both only provide 31
spectral bands – making them rather multispectral than hyperspectral image
datasets.

Actual hyperspectral datasets stem mainly from remote sensing applications,
like the most popular and frequently used Hyperspectral Remote Sensing Scenes
(HRSS) [9], but there are some other similar datasets [1,13,14,22]. There is data
from the agricultural sector [16,21] as well as from the food industry, depicting
pasta [4], or fruit, like for example the DeepHS Fruit and DeepHS Fruit v2
dataset [27,28]. Then, there is also some medical data [26]. In the context of
material characterization, we can find small public datasets covering, e.g., plastic
types [18], or components of building facades [10]. A freely available dataset that
includes CDW material for application in waste sorting and recycling does – to
the best of our knowledge – not yet exist.

Hyperspectral Image Classification. To classify hyperspectral images, in
the early stages, classical ML approaches, like support vector machines (SVM)
[31] or partial least squares analysis (PLS-DA) [3,25] were used, often in com-
bination with feature extraction or dimensionality reduction, e.g., via principal
component analysis (PCA), as a preprocessing step. These methods operate
pixel-wise and therefore on the spectral dimension only.

Nowadays, hyperspectral image data is mostly evaluated using deep learn-
ing. Deep learning models, such as autoencoders, recurrent neural networks and
especially convolutional neural networks (CNN), have been successfully applied
for HSI classification [6,23,24].

Conventional CNNs use 2D convolutions and operate on patches of the image
or even on the entire image, utilizing the spatial information. However, it has
been shown that HSI classification performance is highly dependent on both
spatial and spectral information [23]. 3D convolutions can act on the spectral
and spatial dimension simultaneously, but at the cost of increased computa-
tional complexity. Most recently, there have been attempts to combine both
2D and 3D convolutions in order to benefit from the spatial and spectral feature
learning capability, by simultaneously overcoming the latter drawback. Such net-
works, like the one proposed by Roy et al. [24], are then referred to as hybrid
CNNs or 3D-2D CNNs. An alternative approach is to apply spectral transforma-
tions and then again use 2D convolutions on the transformed data. For instance,
Chakraborty et al. [6] employed wavelet transformations to incorporate both
aspects.

Although CNNs have proven to be powerful in extracting spatial and locally
contextual information, they fail to capture the global information, especially
long-term dependencies in the spectral dimension of the hyperspectral data.
Vision transformers (ViT) are specifically designed for analyzing sequential
data and accounting for global information, and therefore have also been suc-
cessfully applied for HSI classification recently [12,33].
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The current development of HSI models has been reviewed by a couple of
publications already [2,23,30]. However, these reviews often lack the most recent
developments, including vision transformers, and focus mostly on remote sensing
scenes.

Pre-training on Hyperspectral Image Data. Most classifier models highly
depend on the amount of training data available, but only a small number of
annotated samples is usually available from HS datasets for a specific application.
A potential workaround is to pre-train the classifier model on other available data
of similar structure, and then just fine-tune it on the actual application scenario.

As this has been shown to stabilize training, avoid overfitting, improve clas-
sification accuracy and allow for the use of larger (deeper) models in general,
pre-training is nowadays state-of-the-art for RGB data. It has also already been
explored for hyperspectral image classification to some extent [17,32]. Lee et al.
[17], for example, showed that pre-training works on hyperspectral data as well,
and that it is even possible to pre-train a shared backbone using a multi-domain
approach. However, they only considered different remote sensing scenes, with
both data and task still being very similar across those domains.

In contrast, we conduct pre-training on our DeepHS Debris dataset and ask
whether general hyperspectral features can be learned and subsequently trans-
ferred to entirely different application scenarios, like remote sensing or food
inspection where data, recorded wavelengths and classification task vary consid-
erably.

Application: HSI in Waste Management and Recycling. There is already
some existing research on the application of hyperspectral imaging in the waste
management and recycling sector, esp. work on CDW material classification.
Generally, the datasets used in these works are extremely small, and none of
them is – to the best of our knowledge – publicly available. Further, mostly very
basic ML approaches were used, completely ignoring the potential of promising,
more recent approaches using deep learning (e.g., CNNs or ViTs).

For example, Serranti et al. [25] and Bonifazi et al. [3] investigated the use
of hyperspectral images for recycling and successfully performed classification of
both construction waste and different plastic types. However, these results were
achieved exclusively applying PLS-DA, a very basic ML approach, and using
only a few material types as part of a very small, unpublished dataset.

3 Dataset: DeepHS Debris

We present a new hyperspectral dataset that depicts objects of different CDW
material classes. The data was recorded under laboratory conditions, using three
hyperspectral line-scan cameras (Corning microHSI 410 Vis-NIR Hyperspectral
Sensor, Innospec RedEye 1.7, Specim FX10), covering the visible and the lower
near-infrared range (from 400 nm up to 1700 nm) and producing high-resolution
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Table 1. List of the hyperspectral cameras and their specifications

Camera # Bands Wavelength range Spatial width

Corning microHSI 410 Sensor 249 408–901 nm 1486 px

Innospec RedEye 1.7 252 920–1730 nm 320 px

Specim FX10 224 400–1000 nm 600 px

images of the debris under consideration. The detailed specifications of the cam-
eras can be found in Table 1.

Each camera recording contains a single debris object, belonging to one of
14 material classes. For a detailed breakdown of the classes, refer to Table 2. As
each of the 215 objects was recorded from two sides, using at least two different
hyperspectral cameras, this results in overall 860 recordings.

Table 2. List and number of recorded objects and corresponding hyperspectral record-
ings for the material classes covered by the DeepHS Debris dataset

Class name # Objects # Recordings

Concrete 35 140

Stone 20 80

Tile 25 100

Brick 25 100

Porous material 10 40

Bituminous material 15 60

Soil 10 40

Sand 10 40

Glass 10 40

Ceramic 15 60

Wood 10 40

Plastic 10 40

Metal 10 40

Paper 10 40
∑

215
∑

860

The raw recordings were subjected to the following pre-processing: Refer-
encing using a white and dark reference recorded at the beginning of every
measurement, background extraction and cropping. Finally, each recording was
resized to 512 px longer edge, keeping the ratio.

For all recordings, we provide both global object-wise and pixel-wise annota-
tion – in the form of a class label and a color-coded segmentation mask, respec-
tively. Figure 1 shows an annotated sample recording of a brick, recorded by the
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Fig. 1. A brick recording of the DeepHS Debris dataset. (a) depicts the average of
the bands. (b) shows a reconstructed RGB image, (c) shows the corresponding ground-
truth segmentation mask. An orange colored pixel represents the class brick. The global
ground-truth is also “brick”, correspondingly (Color figure online)

Fig. 2. A recording of multiple materials at once. (a) depicts the average of the bands,
and (b) shows the corresponding segmentation mask. The recording contains concrete
(purple), porous material (gray), brick (orange), tile (pink), and bituminous material
(blue) (Color figure online)

Fig. 3. Visual analysis of the spectral information in the data: (a) shows the charac-
teristic spectra, with the respective class mean in bold, and in (b), the projection to
the first three principal components over the spectral dimension (mean over pixels per
sample) is plotted, for the Corning HSI camera and for the most frequent material
classes: Concrete (purple), tile (pink), brick (orange), porous material (gray), bitumi-
nous material (blue), stone (turquoise) and soil (light green) (Color figure online)
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Corning camera. Also, some combinations of multiple debris of different mate-
rial classes were recorded, and we provide the corresponding class segmentation
masks. An example is shown in Fig. 2.

In addition to the plain collection of hyperspectral recordings itself, we pro-
vide some fundamental spectral analysis on our dataset: Fig. 3a shows the charac-
teristic spectra curves for a selection of the most frequently found CDW material
classes. Further, we employed PCA for dimensionality reduction – again over the
spectral dimension – and show the samples’ projection on the first three principal
components in Fig. 3b.

Both visualizations indicate that distinction between material classes
based on the spectral information contained in a hyperspectral recording is pos-
sible. However, it is not as straightforward as one may have expected. A clear
separation in low-dimensional space is not possible, and the fact that the class-
specific spectra curves show areas of overlap and variance in-between samples,
confirm the need for more sophisticated approaches and models for classification.

4 Experiments

4.1 Methods

We utilize our dataset to re-evaluate a number of methods, based on fundamen-
tally different approaches to handle the hyperspectral data during classification.

The first category comprises classical machine learning techniques operat-
ing on a pixel-basis, namely SVM with an RBF kernel (similar to Waske et al.
[31]), and PLS-DA. Secondly, we evaluate basic CNNs with kernels of different
dimensionality: Similar to Paoletti et al. [23], we use a 1D CNN that employs
1D convolution layers only along the spectral dimension of each pixel. a 2D
CNN that convolves the input (image patches or whole images) in the spatial
dimension using 2D convolutional layers, while combining the spectral data in
the fully connected head, and finally, a 3D CNN that is able to incorporate
all three dimensions of the hyperspectral cube at the same time. Furthermore,
we evaluate a spatial 2D CNN solely focusing on spatial features by “squash-
ing” the spectral dimension averaging over all channels, or applying a Gabor
filter enhancing textural information in case of the Gabor CNN [8] beforehand.
Another 2D CNN-based architecture, but with shortcut connections enhancing
inter-connectivity between layers at varying depths, is the ResNet proposed by
[11]. For our experiments, we utilize the ResNet-18 and a ResNet-152, repre-
senting a larger-scale CNN architecture. DeepHS-Net [28] is again a 2D CNN,
specifically designed for efficient performance on small hyperspectral datasets,
like DeepHS Fruit [27,28]. DeepHS-Hybrid-Net [27], adds a layer of 3D convolu-
tions – leveraging both spectral and spatial dimension and simultaneously reduc-
ing the number of parameters as compared to a fully 3D CNN. Another improved
variant of the DeepHS-Net replaces the first layer by a HyveConv layer [29]. We
further evaluate two state-of-the-art methods for remote sensing: SpectralNET
[6], which utilizes wavelet transformations to conduct convolutions in both the
spatial and spectral dimensions of image patches, and HybridSN [24] which again
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combines regular 3D and 2D convolutions. The last category represents trans-
former models, adapted for hyperspectral image classification: SpectralFormer,
introduced by Hong et al. [12], and the HiT [33] which is a ViT model includ-
ing 3D convolution projection modules and convolution permutators to capture
subtle spatial-spectral discrepancies, both again operating on image patches.

Based on the complexity of the model and/or suggestions by the authors,
some models are applied to a PCA-reduced or otherwise preprocessed input.

An overview of the individual methods and additional information can be
found in Table 3.

Table 3. Overview and further details on the methods

Model Type # Param. Spectral inform. Spatial context Input Pre-process.

SVM Classic ML - ✓ ✗ Pixel PCA(10)

PLS-DA - ✓ ✗ Pixel Raw

1D CNN [23] CNN 73,000 ✓ ✗ Pixel Raw

2D CNN [23] 7,700,000 ✓ ✓ Patch/obj. PCA(40)

2D CNN (spatial) 7,400,000 ✗ ✓ Patch/obj. Mean

Gabor CNN [8] 7,400,000 ✗ ✓ Patch/obj. PCA(3)

3D CNN [23] 44,000,000 ✓ ✓ Patch/obj. PCA(40)

ResNet-18 [11] CNN 12,000,000 ✓ ✓ Patch/obj. Raw

ResNet-152 [11] 59,000,000 ✓ ✓ Patch/obj. Raw

DeepHS-Net [28] CNN 31,000 ✓ ✓ Patch/obj. Raw

DeepHS-Net+HyveConv [29] 17,000 ✓ ✓ Patch/obj. Raw

DeepHS-Hybrid-Net [27] 210,000 ✓ ✓ Patch/obj. PCA(40)

SpectralNET [6] CNN 8,300,000 ✓ ✓ Patch Raw

HybridSN [24] 50,000,000 ✓ ✓ Patch/obj. PCA(30)

SpectralFormer [12] ViT 1,100,000 ✓ ✓ Patch Raw

HiT [33] 59,000,000 ✓ ✓ Patch Raw

4.2 Training Procedure and Evaluation

In order to enable a fair comparison between all the methods introduced in
Sect. 4.1, the training procedure was homogenized as far as possible.

The model parameters were optimized with Adam [15], using a learning rate
of 0.01, which was stepwise decreased during training. Cross-entropy loss was
used as loss function. We trained for 50 epochs and used checkpoint callback
and early stopping based on the validation loss. A batch size of 32 was chosen.
The training data was augmented using random flipping, random rotation and
random cut, each with a probability of 50%, and random cropping with 10%
probability. Individual model-specific exceptions exist.

The experiments were primarily conducted on the DeepHS Debris dataset
of construction waste objects, described in the previous Sect. 3. We additionally
included two other, existing HS datasets:

– The DeepHS Fruit v2 dataset [27,28] containing HS recordings of exotic fruit,
that can be categorized into three ripeness levels (unripe, ripe overripe). As
this data was recorded at the same chair, (partially) the same measurement
settings, esp. sensors (wavelength range 400–1000 nm), were used.
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– The widely-used HRSS collection [9], containing remote sensing scenes,
recorded by another kind of sensor (up to 2500 nm), and for a completely
different task of pixel-wise land cover classification.

Please refer to the original publications for a detailed description and further
information.

For all three datasets, we defined a random but fixed train-val-test-split (i.e.,
70%–10%–20% for DeepHS Debris), and balanced the size of the classes in the
categories, respectively. Also, we used a standardized input image size across
datasets and models. For object-wise classification, the whole image was resized
to 128× 128 pixels while for patch-wise classification, we used patches of size 63
pixels, in combination with a dilation of one for the HRSS datasets and 30 for
the DeepHS Debris dataset, respectively. For testing, all available pixels were
used (dilation = 1).

We trained and evaluated each classifier model on the fundamentally different
approaches – object-wise and pixel- or patch-wise classification –, if possible. For
all combinations, the average accuracy over three different seeds was reported.
Although the pixel-/patchwise classification can also be regarded as a segmen-
tation task which would require different performance measures (such as IoU),
we decided to stick with (pixel-wise) accuracy for better comparability.

4.3 Pre-training

Aside from evaluating HSI classification approaches, our dataset might further
be used for pre-training classifier networks and to meaningfully initialize their
weights for subsequent fine-tuning and application in other HSI application sce-
narios.

For the pre-training experiments, we constrained ourselves to the HyveConv
variant of the DeepHS-Net. As the hyperspectral visual embedding convolution
(HyveConv) layer [29] operates on a wavelength-based feature learning paradigm,
rather than the conventional channel-based approach, it ensures applicability
across different camera setups – avoiding the need to employ a separate first
layer when transferring to data recorded by another sensor later.

We employed the following pre-training and fine-tuning procedure.

1. Pre-training We pre-trained the initial HyveConv network on our DeepHS
Debris dataset using the same procedure, hyperparameters and augmenta-
tions as for regular classifier training (see Sect. 4.2).

2. Fine-tuning To transfer to and specialize on another sensor or one of the
other aforementioned hyperspectral datasets and corresponding task(s) (see
Sect. 4.2), we re-initialized the fully-connected task-specific head (except for
the BN layer) to adapt to the differing class outputs, while keeping the pre-
trained weights of the remaining layers. The resulting model was again opti-
mized in an end-to-end fashion as described in Sect. 4.2, but only for 30 epochs
and with a reduced learning rate of 0.001 – effectively training the last layer
from scratch, while only fine-tuning the general backbone part.
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Fig. 4. Predicted class mask for a Corning HSI recording of multiple materials: Con-
crete (purple), porous material (grey), brick (orange), tile (pink), and bituminous mate-
rial (blue) by (a) SVM, and (b) DeepHS-Net+HyveConv model (Color figure online)

Table 4. Classification accuracy on the DeepHS Debris data set (most relevant material
classes: concrete, tile, brick, porous material, bituminous material, stone, soil) [in %] for
the different classifier models and classification approaches, camera-wise and averaged
over the three sensors. The three highest average accuracies object-wise and pixel-
/patch-wise are highlighted (bold and underlined)

Model Approach Innospec Corning Specim Avg.

(unit) RedEye HSI FX10

SVM Pixel 32.14 61.11 50.00 47.75

PLS-DA Pixel 50.00 57.14 37.50 48.21

1D CNN Pixel 63.87 68.86 69.44 67.39

2D CNN Object 72.14 76.11 77.50 75.25

Patch 80.25 80.28 63.61 74.71

2D CNN (spatial) Object 42.86 50.00 50.00 47.62

Patch 26.69 60.29 60.56 49.18

Gabor CNN Object 32.14 80.56 87.50 66.73

Patch 58.02 78.56 68.89 68.49

3D CNN Object 85.71 83.33 87.50 85.51

Patch 83.27 72.84 66.94 74.35

ResNet-18 Object 35.71 83.33 50.00 56.35

Patch 74.00 78.77 80.56 77.78

ResNet-152 Object 28.57 61.11 25.00 38.23

Patch 76.32 76.24 72.22 74.93

DeepHS-Net Object 57.14 91.67 75.00 74.60

Patch 57.73 68.48 81.67 69.29

DeepHS-Net+HyveConv Object 71.43 88.89 75.00 78.44

Patch 71.16 82.22 71.39 74.92

DeepHS-Hybrid-Net Object 67.86 80.56 77.50 75.31

Patch 69.95 80.93 74.17 75.02

SpectralNET Patch 69.20 80.56 68.89 72.88

HybridSN Object 71.43 86.11 62.50 73.35

Patch 84.60 79.63 70.83 78.35

SpectralFormer Patch 79.73 81.84 70.56 77.38

HiT Patch 82.63 79.26 83.33 81.74
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5 Results

In this section, we present the results of our previously described experiments.
Table 4 lists the classification accuracy for all approaches and sensors, and

all classifiers enumerated in Sect. 4.1 when evaluated on a subset of the DeepHS
Debris data set, containing the seven most frequent and therefore most relevant
material classes in practice (concrete, tile, brick, porous material, bituminous
material, stone, soil).

Besides the obvious differences in performance between the most simple and
more sophisticated deep learning approaches, we also observe substantial dis-
parity in accuracy between pixel-wise, patch-wise and object-wise classification
approaches, even for the very same model.

The advantage of incorporating the spatial context with the patch-wise app-
roach in contrast to considering only one pixel at a time, is visible in Fig. 4
containing the predicted class masks for a multi-class recording for the SVM
and DeepHS-Net+HyveConv, respectively. The corresponding ground truth can
be found in Fig. 2(b).

For patch-wise versus global object-wise classification, although the
approaches are not directly comparable, their difference might partially be
explained by the varying number of data points available: While for the object-
wise classification, the training set size actually equals the (small) number of
recordings, for patch-wise classification, the division into multiple small patches
results in many more data points to train the model parameters on.

This reasoning might also apply for the varying number of recordings for the
different cameras, while the main underlying difference is definitely their covered
spectral range and their spatial resolution.

Fig. 5. Pixel-/patch-wise classification accuracy for (a) the DeepHS Debris (relevant
classes) and (b) HRSS datasets (Indian Pines, Salinas, Pavia University - averaged)
and each model considering the spatial dimension only (grey), the spectral dimension
only (gold), or both dimensions (red) (Color figure online)
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Overall, we conclude that models specialized on 3-dimensional HS data out-
perform regular vision models (like the ResNet), and that among those models,
the larger ones are more sensitive to the size of the hyperspectral datasets and
prone to overfitting. Smaller models, like the DeepHS-Nets, perform relatively
better on the object-wise task, but are again outperformed by the more com-
plex models when provided enough training samples. The two best performing
models, the 3D CNN and HiT, are in fact also among the largest ones. The third-
best model, DeepHS-Net+HyveConv, however is the smallest of all considered
networks, with only 17.000 parameters.

Aside from their model type and size, the classifiers can be categorized based
on which dimension(s) of the HSI cube they operate on. Figure 5 again shows
the pixel- or patch-wise classification accuracy for the models and their dimen-
sionality indicated by color, on our DeepHS Debris data subset as well as HRSS
data for comparison.

We observe that pixel-based models that only access the spectral informa-
tion, and purely spatial models, both achieve only low classification accuracies,
while models like the DeepHS-Net variants or 3D CNN, operating on both, the
spectral and spatial dimension, perform best overall. For the remote sensing
data (Fig. 5(b)), we obtain an even more extreme distribution. We find that,
here, the purely spatial information is already enough to achieve high accuracy
(above 95%). This should be alarming to any researcher working in the field, as
it indicates that the so frequently used HRSS dataset is not best suited for eval-
uating spectrum-based methods after all. Therefore, with our work, we aim to
provide an alternative dataset and classification task(s), for which we show that,
as expected, models considering both the spectral and spatial information can
actually outperform purely spatial models for hyperspectral image classification
(see Fig. 5(a)).

Also generally, model performance differs significantly for our and other
hyperspectral datasets and applications. Especially, the ranking of methods
changes for this dataset relative to existing ones, like for HRSS (see Fig. 5),
but also for the DeepHS Fruit v2 dataset.

Nonetheless, we can show that pre-training on our dataset is helpful for other
HSI applications and tasks. Table 5, for example, lists the classification accuracy
without and with pre-training on DeepHS Debris (Specim FX10 sensor), fine-
tuned and evaluated on another sensor, another dataset, and even an entirely

Table 5. Classification accuracy for the DeepHS-Net+HyveConv, without pre-training
(random initialization) and with pre-training on the DeepHS Debris dataset (Specim
FX10/patch-wise), plus subsequent fine-tuning and evaluation on (a) a different sen-
sor (DeepHS Debris/Corning HSI/patch-wise), (b) another dataset (DeepHS Fruit
v2/Avocado/Corning HSI/object-wise), (c) a completely different task (HRSS/Indian
Pines/0.05 train ratio/patch-wise). Highest accuracy in bold, respectively

(a) Debris/Corning HSI (b) Fruit (c) HRSS

No pretraining 71.39% 88.89% 81.69%

Pre-trained on Debris/Specim FX10 87.50% 100.00% 83.84%
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different application and task. Pre-training led to perfect classification on the
DeepHS Fruit v2 dataset and increased accuracy in all cases.

6 Limitations

While we present the first publicly available hyperspectral dataset of this specific
kind, its size is still very limited compared to RGB datasets that usually contain
thousands of images. Moreover, although it already covers a large majority of
what can frequently be found on the construction site, the dataset could always
be further expanded in terms of additional classes as well as additional samples
for existing classes, esp. regarding intra-class variety.

There are critical cases in which a coating hides the actual material under-
neath (esp. glaze for tiles and ceramic). Also, samples in the dataset are not
unmixed, but may contain other materials (like concrete which is made from
cement and gravel or sand, or bricks partially covered by mortar), and therefore
strictly speaking, cannot be clearly assigned to a single class.

This may cause problems, especially for purely spectral classification and
pixel-wise prediction, as it was done by Serranti et al. [3,25]. In contrast, we
pursue a different approach, namely to classify entire objects as one material type
even if part of it is, e.g., partially covered by a different material. This focus on
whole objects along with the increased number of materials makes classification
on our dataset more difficult, but realistic and interesting for benchmarking at
the same time.

7 Conclusion

We present a novel, publicly available hyperspectral dataset containing sam-
ples of 14 different construction waste material classes. Aside from serving as a
benchmark for evaluating and comparing HSI classification approaches for both
object-wise and patch- or pixel-wise prediction, our dataset might be used for
pre-training HSI classifier networks for other, similar tasks.

Application-wise, this work can enhance automatic waste sorting and there-
fore the whole recycling process. Increasing the reusability of construction and
demolition waste material represents a significant stride toward safeguarding our
future environment.
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1 Introduction

Pixel-wise dense depth maps are widely used in fields such as autonomous driv-
ing, robot navigation, and augmented reality. However, LiDAR-based depth data
is expensive to acquire, leading to research on using deep neural networks to
estimate dense depth maps from an RGB image [6,7,13]. Traditional supervised
methods require extensive, accurate ground truth depth data, which is time-
consuming and costly. This has led to increased interest in self-supervised learn-
ing methods, which transform depth estimation into a view synthesis problem
using neighboring views or frames as supervision signals [10,11,21,24]. Thus, In
this paper, we focus on self-supervised training using monocular videos. Unlike
existing works that are eager to build deeper and more complex CNN architec-
tures [21,25], our approach prioritizes practical applications, i.e., we focus not
only on accuracy but also on light-weighting. Given the aforementioned con-
siderations, we propose LiDUT-Depth, a lightweight yet reliable self-supervised
monocular depth estimation architecture. Our architecture employs an efficient
dynamic upsampling module (EDU Module) to preserve detailed features. In
addition, to optimize our model and improve the estimation accuracy in gradient-
rich areas, we also incorporate an improved semantic-aware triplet loss (SaTri
Loss) into the loss calculation. Our architecture builds upon the baseline work
[22], enhancing estimation reliability without adding any computational over-
head at inferring time.

The main contributions of this work can be summarized in three aspects:

• A lightweight architecture for self-supervised monocular depth estimation,
named LiDUT-Depth, is proposed, further improving depth estimation accu-
racy without adding computational overhead or increasing model size.

• An efficient dynamic upsampling module (EDU Module) is introduced to
preserve more detailed local features, thereby obtaining more accurate depth
estimation results.

• An improved semantic-aware triplet loss (SaTri Loss) is integrated into
the training loss to optimize the model further, significantly improving the
model’s performance in gradient-rich regions without affecting the inference
speed.

2 Related Work

In this section, we reviewed the tasks of monocular depth estimation using deep
learning and dense feature extraction methods separately.

2.1 Monocular Depth Estimation Using Deep Learning

Monocular depth estimation is a fuzzy and ill-posed problem, as infinite world
scenes can generate a given image. Deep learning methods for depth estimation
can be broadly categorized into supervised and self-supervised learning.
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Supervised Depth Estimation. Supervised depth estimation treats the task
as regression, using ground truth depth maps as supervision signals. It utilizes
deep neural networks to extract features from input images and learns the rela-
tionship between depth and RGB values. Eigen et al. [6] proposed a multi-scale
network stack that combines features from global coarse-scale and local fine-scale
networks, introducing scale-invariant error and achieving depth estimation from
a single image using deep neural networks (DNNs). Laina et al. [13] introduced
the inverse Huber loss for model optimization (Fig. 1).

Fig. 1. Depth estimation comparisons. From left to right are the input image and
the depth maps predicted by Lite-Mono [22], and LiDUT-Depth (ours), respectively.
Our architecture shows higher accuracy, especially in gradient-rich areas

Self-supervised Depth Estimation. Self-supervised depth estimation meth-
ods were initially proposed by Garg et al. [8], who treated depth estimation
from stereo images as a view synthesis problem. They enabled depth estima-
tion without ground truth data by minimizing the photometric reprojection loss
between the input left view and the output right view. Zhou et al. [24] introduced
the SfM-Learner architecture, which incorporated a camera pose estimation net-
work to estimate depth from monocular video frames. Godard et al. [11] pro-
posed the Monodepth2 architecture, which addressed occlusions and motion by
optimizing the loss function and introducing masking, achieving high accuracy
without increasing network parameters. Additional supervision techniques have
been introduced, including optical flow estimation [21] and spatial-temporal geo-
metric constraints [19]. In recent years, Vision Transformers (ViTs) have shown
remarkable performance in computer vision tasks, leading to their integration
into depth estimation. Zhao et al. [23] proposed an architecture that combines
CNN with Transformers, resulting in more detailed and accurate predictions.
Zhang et al. [22] introduced Continuous Dilated Convolution (CDC) modules and
Local-Global Feature Interaction (LGFI) modules, reducing trainable parame-
ters while improving accuracy.
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2.2 Feature Upsampling

In the widely used encoder-decoder architecture of depth estimation, the decoder
typically needs to receive the feature maps extracted by the encoder, then decode
them separately at 3–5 different scales, upsample and concatenate them, and feed
them to the next layer.

The two most commonly used upsampling methods, NN (Nearest Neigh-
bor) and Bilinear Interpolation, both ignore the semantic meaning in the fea-
ture maps and only use fixed rules to interpolate low-resolution features [14],
which will result in the loss of a large number of valuable features during the
depth decoding process. Researchers have made various attempts to overcome
these issues. SegNet [1] uses max pooling to retain more edge information, but
the introduced zero padding disrupts the semantic continuity of smooth areas.
Pixel Shuffle [18] first uses convolution to increase the number of channels and
then reshapes the feature maps to improve the resolution, but this inadvertently
increases the model’s size, making it more difficult to deploy on edge devices.

Therefore, in order to retain more details of the feature maps at each scale
and thus estimate more accurate depth maps, our goal is to replace the commonly
used bilinear interpolation upsampling module in the depth decoder with a more
efficient upsampling method.

Fig. 2. Overview of the proposed LiDUT-Depth. LiDUT-Depth consists of an
encoder-decoder depth estimation network and a pose estimation network similar to
[11]. The decoder of the depth estimation network employs an EDU Module to pre-
serve more detailed local features. The model was also optimized using an additional
SaTri Loss
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3 Methodology

As Fig. 2 shows, LiDUT-Depth consists of two networks: a depth estimation
network with an encoder-decoder structure for estimating the depth map at
different scales from a single input RGB image, and a pose estimation network for
estimating the relative camera pose between adjacent frames. The information
obtained from the two networks is used to reconstruct the target view, thus
calculating the error with the actual target view and optimizing the model. Then,
in the following sections, we demonstrated the aforementioned two networks in
detail, and provided a thorough explanation of the SaTri Loss we integrated into
our training loss.

3.1 Depth Estimation Network

Similar to most prior work, we employ an encoder-decoder U-Net architecture
to design our Depth Estimation Network.

Depth Encoder. We use a depth encoder adopted from Lite-Mono [22]. Using
a 4-stage hybrid architecture of CNN and Transformer, the encoder can extract
rich, detailed features while also encoding long-range global information into the
features.

Depth Decoder. Considering that the U-Net architecture requires multiple
downsampling and upsampling operations, which may lead to significant detail
loss, it is crucial to minimize this loss as much as possible. Therefore, [22] intro-
duced dilated convolutions and Transformers in the encoder to obtain a larger
receptive field, addressing this issue. However, in the decoder, they only used
simple bilinear interpolation for upsampling, resulting in substantial informa-
tion loss in the feature maps. To address this, we employed a more efficient
dynamic upsampling module (EDU Module) as the upsampler. This approach
mitigates feature loss without requiring additional attention mechanisms [23] or
complex upsampling methods [25].

EDU Module. The EDU Module is introduced to retain more detailed local
features in the decoding phase. Inspired by image super-resolution methods, we
employ the low computational cost and highly effective Pixel Shuffle [18] as the
core upsampling algorithm in the EDU Module. Specifically, given a feature map
X with size C×H×W and an upsampling ratio s (which is 2 in our architecture),
a feature map X ′ with size C × sH × sW is to be generated. We use two linear
layers with both input channels of C and output channels of 2s2 to compute the
offsets. First, we use the first linear layer, Lineara, to calculate an initial offset
O with size 2s2 × H × W . Second, to enhance the flexibility of this initial offset,
we employ a second linear projection layer, Linearb, to obtain a dynamic weight
of size 2s2×H ×W , and apply a Hadamard product with the offset O to achieve
a new dynamic offset O. Then, we reshape O to 2 × sH × sW through Pixel
Shuffle. Finally, by calculating the sum of the offset O and the original sampling
grid G, we obtain a sampling set s, as shown in Fig. 3.

O = 0.5 × Sigmoid(Lineara(X )) · Linearb(X ), (1)
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S = O + G. (2)

In the end, the GS function, which stands for the built-in grid-sample function
of PyTorch, takes the positions in S and uses them to resample the hypothetical
bilinear-interpolated feature map X into X ′:

X ′ = GS(X ,S). (3)

Fig. 3. Sampling set generator in the EDU module. The EDU module uses the
positions in the sampling set S generated here to upsample the input feature maps

3.2 Pose Estimation Network

For the sake of lightweight design, our work follows the approach used in [11],
using an ImageNet pre-trained ResNet18 as the pose encoder to encode the
image pairs of adjacent frames in the video sequence as input. Then, we use
a pose decoder with four convolutional layers to estimate the 6-DoF relative
camera pose between two frames.

3.3 Self-supervised Learning

Following other self-supervised learning methods, we transform the depth esti-
mation task into a novel view synthesis task. Specifically, the learning objective
is to minimize an image reconstruction loss Lr between a target view It and
the synthesized target view I ′

t, together with an edge-aware smoothness loss Ls.
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Moreover, we also introduced Ltri, an improved semantic-aware triplet loss [3]
(SaTri Loss), to optimize the model, thereby improving the model’s performance
in gradient-rich regions.

Image Reconstruction Loss. First, we take three frames from a sequence of
consecutive video frames. The middle frame is denoted as the target view It,
and either of the adjacent frames can be considered source view Is. Next, we
define Dt as the predicted depth map, Ps→t as the predicted relative camera
pose between the two frames, and K as the camera intrinsic parameters. Then,
similar to [11], we denote the image reconstruction loss as:

Lr(I ′
t, It) = μ · Lp(I ′

t, It), (4)

where It is the target view, Is is the adjacent source view, I ′
t is the recon-

structed target view, Lp stands for the photometric reprojection loss, and
μ = min Lp(Is, It) < min Lp(I ′

t, It) represents the binary masks used to remove
moving pixels.

Edge-Aware Smoothness Loss. Following [11,25], we calculate Ls as the
edge-aware smoothness loss to obtain a smoother depth map:

Ls = |∂xd∗
t |e−|∂xIt| + |∂xd∗

t |e−|∂yIt|, (5)

where d∗
t = dt

d′
t

represents the inverse depth normalized by the mean.

Fig. 4. Splitting patches according to semantic information. For pixels in the
semantic boundary region, we split the local patch into a triplet according to the
semantic patch

SaTri Loss. In addition, we noticed that the depth information in gradient-rich
areas, namely the edge regions, is often prone to prediction errors, as is called
edge-fattening. Therefore, we introduce the SaTri Loss to optimize this issue
without increasing the additional computational overhead during the inference
stage [3]. However, it should be noted that when we initially introduced this
loss to the baseline work [22], the experimental results demonstrated that its
optimization effect on the model was extremely limited, the AbsRel metric only
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decreases from 0.107 to 0.106. We believe this is due to the use of bilinear inter-
polation for upsampling in the network, which results in the loss of a significant
amount of detail in the feature maps, particularly in the edge regions of objects.
This negatively impacts the subsequent optimization of the model when combin-
ing semantic information. However, after we optimized the network architecture
to address this issue by incorporating the EDU Module with Pixel Shuffle in the
DepthNet decoder, the optimization effect of this loss was significantly enhanced.
Subsequent ablation experiments (Table 3) also confirmed this improvement.

As shown in Fig. 4, we first group the pixels in a local patch into triplets,
defining the center pixel as the anchor point Pi, pixels with the same semantic
meaning as the positive sample P+

i , and others as the negative sample P−
i .

Then, define the anchor-positive sample distance D+ and the anchor-negative
sample distance D− as the mean of the Euclidean distance of L2 normalized
deep features [12]:

D+(i) =
1

|P+
i |

∑

j∈P+
i

‖F̂d(i) − F̂d(j)‖22, (6)

D−(i) =
1

|P−
i |

∑

j∈P−
i

‖F̂d(i) − F̂d(j)‖22, (7)

where F̂d = Fd

‖Fd‖ , in which Fd represents the corresponding depth feature. Then,
the loss function will minimize the anchor-positive distance D+ and maximize
the anchor-negative distance D−. Furthermore, a margin m is introduced as a
threshold to regulate the minimum separation between D− and D+, thereby
preventing an excessive discrepancy between the two:

D− − D+ > m, (8)

Then, the original triplet loss is defined as:

Ltri =
1
|γ|

∑

Pi∈γ

[D+(i) − D−(i) + m]+, (9)

where [·]+ is the hinge function.
However, the original triplet loss suffers from two issues: it may overlook

small but poorly estimated fatten regions, and there also exists a mutual influ-
ence between positive and negative samples. To address these problems, following
the work of Chen et al. [3], we apply a strategy based on the minimal opera-
tor to handle all negative samples. This prevents well-performing negative sam-
ples from masking errors from margin-inflating negative samples. Additionally,
we separate the anchor-positive distance and anchor-negative distance from the
original triplet and directly optimize the positive samples, avoiding the influence
of negative samples. By doing so, we obtain an improved triplet loss called SaTri
Loss:

Lsatri =
1
|γ|

∑

Pi∈γ

(
D+(i) + [m′ − D−′

(i)]+
)

, (10)
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where γ = Pi|(|P+
i | > k) ∧ (|P−

i | > k) is the set that contains all the semantic
boundary pixels that satisfy the aforementioned constraint conditions.

Total Loss. Finally, we obtain this complete loss function:

L =
1
3

∑

s∈[1, 12 , 14 ]

(Lr + λLs + Lsatri), (11)

where s represents different scales outputted by the decoder, with λ set to 1e−3,
which is the same value as [11].

4 Experiments

4.1 Dataset

The KITTI [9] dataset contains 61 road scenes and collects a large amount
of data using multiple sensors, including RGB cameras, LiDAR, GPU/IMU,
etc. We used the Eigen split [5] for training and evaluation. In the monocular
frame sequence, every three consecutive frames were taken as a group, with
39,180 triplets used for training, 4,424 for evaluation, and 697 for testing. Self-
supervised training is based on the known camera intrinsic matrix. Following the
approach of Godard et al. [11], we took the average focal length of all images in
the KITTI dataset, thus using the same intrinsic parameter value for all images
during training. In line with common practice, in the evaluation, we limit the
maximum depth of the forecast to 100 m and the minimum to 0 m.

4.2 Implementation Details

Our model was implemented using PyTorch, with AdamW [15] as the optimizer.
We loaded the weights pre-trained on ImageNet [4] and trained the model for
22 epochs. The batch size was set to 12, the initial learning rate was set to
1e−4, and the weight decay was set to 1e−2. The input/output resolution was
set to 640 × 192. On a single RTX 3080 GPU, the training time for 22 epochs is
approximately 13 h.

4.3 Quantitative and Qualitative Results on KITTI

As shown in Table 1, we have quantitatively compared our architecture with
other representative methods, and the qualitative depth estimation results com-
pared with former state-of-the-art methods are also illustrated in Fig. 5. LiDUT-
Depth demonstrates the best balance between accuracy and complexity among
all methods. Compared to the larger version of Monodepth2 [11], which uses
ResNet-50 as the backbone network, our architecture achieves a 6.36% error
reduction in terms of AbsRel in 640 × 192 resolution, with less than one-tenth
of its size. Our architecture also outperforms the previous lightweight model R-
MSFM [25]. Compared to Lite-Mono [22], we reduced AbsRel by 3.63% without
increasing Params or FLOPs.
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Table 1. Comparison of LiDUT-Depth to prior competitors on KITTI using
the Eigen split [5]. All input images are resized to 640 × 192. The 1st and the 2nd

best results are highlighted in bold and underlined, respectively

Method Year Data Depth Error (↓) Depth Accuracy (↑) Model Size (↓)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253 Params.

GeoNet [21] 2018 M 0.149 1.060 5.567 0.226 0.796 0.935 0.975 31.6M

Monodepth2 ResNet-18 [11] 2019 M 0.115 0.903 4.863 0.193 0.877 0.959 0.981 14.3M

Monodepth2 ResNet-50 [11] 2019 M 0.110 0.831 4.642 0.187 0.883 0.962 0.982 32.5M

HR-Depth [16] 2021 M 0.109 0.792 4.632 0.185 0.884 0.962 0.983 14.7M

R-MSFM3 [25] 2021 M 0.114 0.815 4.712 0.193 0.876 0.959 0.981 3.5M

R-MSFM6 [25] 2021 M 0.112 0.806 4.704 0.191 0.878 0.960 0.981 3.8M

MonoFormer [2] 2021 M 0.108 0.806 4.594 0.184 0.884 0.963 0.983 >23.9M

Lite-Mono [22] 2023 M 0.107 0.765 4.561 0.183 0.886 0.963 0.983 3.1M

LiDUT-Depth (Ours) 2023 M 0.103 0.723 4.469 0.178 0.889 0.964 0.984 3.1M

Fig. 5. Qualitative results on KITTI. From left to right are the input image and the
depth maps predicted by Monodepth2 [11], R-MSFM3 [25], R-MSFM6 [25], Lite-Mono
[22], and LiDUT-Depth (ours), respectively. Other methods have limited accuracy in
estimating edge area, whereas our model can achieve better results

4.4 Quantitative and Qualitative Results on Make3D

Zero-shot experiments are also conducted on the Make3D dataset to verify the
generalization ability of the proposed method in different outdoor scenes. As
shown in Table 2, LiDUT-Depth outperforms the other four methods. Figure 6
shows the visual comparison results. Thanks to the proposed EDU module and
SaTri Loss, LiDUT-Depth can achieve more accurate depth predictions in regions
with large gradients.

4.5 Ablation Studies

To further demonstrate the effectiveness of the proposed architecture, we con-
ducted an ablation analysis of the introduced components, and the results are
shown in Table 3. It is imperative to acknowledge that the model size remains
unaffected by the proposed method, thereby resulting in an equivalent number
of model parameters across all ablation experiments.
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Fig. 6. Qualitative results on Make3D [17]. From left to right are the input image
and the depth maps predicted by Monodepth2 [11], R-MSFM6 [25], Lite-Mono [22],
and LiDUT-Depth (ours), respectively

Table 2. Comparison of LiDUT-Depth to prior competitors on the Make3D
[17] Dataset. All models are trained on KITTI [9] with the resolution of 640 × 192

Method Abs Rel Sq Rel RMSE RMSE log

DDVO [20] 0.387 4.720 8.090 0.204

Monodepth2 [11] 0.322 3.589 7.417 0.163

R-MSFM6 [25] 0.334 3.285 7.212 0.169

Lite-Mono [22] 0.305 3.060 6.981 0.158

LiDUT-Depth (Ours)0.301 2.935 6.947 0.157

Table 3. Ablation study on model architectures. All the models mentioned above
are trained and tested on KITTI with the input size of 640 × 192

Architecture Params. Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

LiDUT-Depth full model 3.069M 0.103 0.723 4.469 0.178 0.889 0.964 0.984

w/o EDU Module 3.069M 0.106 0.726 4.419 0.178 0.888 0.964 0.984

w/o SaTri Loss 3.069M 0.111 0.716 4.477 0.183 0.872 0.961 0.984

EDU Module. The accuracy suffers a 2.91% decrease in terms of Abs Rel when
all the EDU Modules in the depth decoder are removed and replaced with the
original bilinear interpolation upsampling. This is because bilinear interpolation
upsampling results in the loss of a significant amount of detail in the feature
maps, especially at object edges. However, these details are crucial for the SaTri
Loss, which combines semantic information to compute the loss during the model
optimization phase. Thus, the EDU module effectively helps the model retain
more local features during the decoding stage, resulting in smoother feature maps
at the edges and maximizing the effectiveness of subsequent model optimization.
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SaTri Loss. When optimizing the model without the SaTri Loss, the accuracy
drops significantly on all metrics except for Sq Rel. Specifically, the Abs Rel
(lower is better) increased by 7.76%, even higher than the baseline model. Thus,
the triplet loss computed in combination with semantic information can help the
model more accurately estimate depth in gradient-rich regions.

It is important to note that the above experiments validate our optimization
approach, that Simply combining semantic information to compute the loss for
model optimization may not yield significant performance improvements because
a substantial amount of useful information, including object edge features, is lost
in the decoder, which makes it difficult to align with semantic boundaries during
the optimization process. However, by optimizing the network architecture and
employing a more effective upsampling method, we can retain this information,
resulting in clearer edges and achieving the best optimization results.

5 Conclusion

This paper proposes a lightweight self-supervised monocular depth estimation
framework named LiDUT-Depth. The depth network of this architecture features
an EDU Module for preserving more detailed local features during upsampling.
In addition, the architecture introduces a SaTri Loss to optimize the model,
thereby obtaining depth estimation results with more precise edges. Experiments
on the KITTI dataset demonstrate the superiority of our architecture in accu-
racy, as well as the excellent balance we achieve in model size and computational
complexity.
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Abstract. In the field of computer vision, data augmentation is widely
used to enrich the feature complexity of training datasets with deep
learning techniques. However, regarding the generalization capabilities
of models, the difference in artificial features generated by data augmen-
tation and natural visual features has not been fully revealed. This study
introduces the concept of “visual representation variables” to define the
possible visual variations in a task as a joint distribution of these vari-
ables. We focus on the visual representation variable “illumination”, by
simulating its distribution degradation and examining how data augmen-
tation techniques enhance model performance on a classification task.
Our goal is to investigate the differences in generalization between mod-
els trained with augmented data and those trained under real-world illu-
mination conditions. Results indicate that after applying various data
augmentation methods, model performance has significantly improved.
Yet, a noticeable generalization gap still exists after utilizing various data
augmentation methods, emphasizing the critical role of feature diversity
in the training set for enhancing model generalization.

Keywords: Computer Vision · Data Augmentation · Generalization

1 Introduction

Over the past ten years, there has been a significant revolution in computer
vision field. The advancement mainly belongs to deep learning techniques, par-
ticularly the utilization of Convolutional Neural Networks (CNNs) [1–4] and
Transformer [5,6] architectures. By emulating creatural visual systems, CNNs
stack convolutional layers and pooling layers, while Transformers utilize self-
attention mechanisms [7] to handle long-range image dependencies effectively.
With all these efforts, researchers made significant progress in image classifica-
tion [1–4], object detection [8,9], and semantic segmentation [10,11]. Nowadays,
computer vision expands its applications in industry [12], healthcare [13], and
transportation [14], improving convenience and quality of people’s lives.
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Fig. 1. Visual representation variables decomposition guided by task prior knowledge

In the realm of deep learning-based computer vision algorithms, the qual-
ity and variety of data significantly impact the generalization of visual mod-
els [15,16]. Despite the importance of real-world data collection, challenges such
as scene diversity, labeling expenses, and privacy issues hinder the ability of
extensive datasets to fully capture all visual characteristics. Through techniques
such as geometric modifications, color channel adjustments, and filter incorpo-
ration [17,18], data augmentation effectively enhances visual feature diversity
in datasets, improving training model generalization capabilities. Furthermore,
data augmentation serves as a crucial method to prevent overfitting, especially
when dealing with limited data. Consequently, data augmentation has become a
fundamental component in the training process of computer vision application
projects [19–21].

The visual diversity in datasets can be broadly divided into two categories:
changes in the intrinsic properties of the recognition objects (e.g., the variety
of vehicles in autonomous driving scenarios [22]), and changes indirectly caused
by external environmental factors (e.g., different weather conditions [23] in self-
driving). The visual diversity in the dataset ensures the model preserves robust
recognition capabilities across various scenarios. However, when the distribu-
tion of visual characteristics is uneven, potentially diminishes the model’s per-
formance across various environmental conditions [24]. When data distribution
imbalances occur, data augmentation is widely used as an effective method [25–
27]. However, a discernible gap remains between augmented images and those
captured in the physical world, highlighting under certain extreme conditions,
such as adverse weather, the artificial features produced by data augmentation
could potentially impair model performance [28,29]. This has prompted a reeval-
uation of data augmentation, whether synthetic, non-realistic pixel-wise feature
characteristics might undermine a model’s generalization in real-world scenario.
Our study involves controlling illumination settings in a classification task to
compare model performance under real-world and data augmentation datasets,
aiming reveal the effectiveness and limitations of data augmentation.

In our study, we introduce the concept of “visual representation variables”
to define the potential visual changes in a task as a joint distribution of these
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variables (Fig. 1). We focus on isolating a single visual representation variable,
“illumination”, to comprehensively study its effects. “Illumination” was chosen
because it can be quantitatively measured and is relatively easy to replicate
in data augmentation. By controlling illumination settings in a classification
task, we compare model performance under real-world and data augmentation
conditions to reveal the effectiveness and limitations of data augmentation.

Our main contributions are as follows:

– We validate that the model’s generalization ability suffers a devastating
impact when the illumination environment degrades into a singular distri-
bution;

– By using a gray card to measure scene illumination mapping and optimiz-
ing color data augmentation parameters through Bayesian optimization, we
achieve significant improvements in the generalization ability of datasets with
singular illumination distribution;

– We demonstrate a significant generalization gap between models trained with
data augmentation and those trained with real-world data. This emphasizes
the limitations of data augmentation in replicating real-world visual features
and underscores the necessity of carefully designed datasets.

2 Related Works

2.1 Domain Generalization

Domain generalization aims to enhance a model’s performance on unseen data
(target domain), particularly when there is a distributional discrepancy between
the training data (source domain) and test data. The main strategies include
domain alignment [30] to minimize distributional differences between source and
target domains, meta-learning [31] which leverages learning across tasks to boost
generalization capabilities, data augmentation [32,33] that introduces sample
visual diversity to enhance model robustness and ensemble learning [34] which
integrates multiple models to optimize overall performance. The issue of domain
shift in domain generalization can be decomposed into differences in the distribu-
tion of a series of “visual representation variables” between the source domains
and target domains. Our study focuses on data-level augmentation as it directly
enriches the visual features of training data without the need to alter network
structures or training strategies, closely aligning with our goal of exploring the
impact of illumination environments on model generalization.

2.2 Data Augmentation

Data augmentation is a crucial technique for enhancing the generalization abil-
ity of deep learning models. Common methods, such as geometric transforma-
tions [35], color space adjustments [36], and random cropping [37], expand the
representation of visual features and strengthen the model’s generalization abil-
ity to recognize unseen data. Specifically, adjustments in the color space simu-
late different lighting conditions, directly influencing the model’s adaptability to
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Fig. 2. An assortment of 10 distinct toy dogs serves as recognition targets in our classi-
fication task. The variety in their visual features, such as shape, color, fur texture, and
attire, highlights the complexity of our dataset and assesses the classification models’
ability to distinguish visual differences from subtle to pronounced

changes in illumination [38]. Although current research on data augmentation
mainly focuses on its efficacy in enhancing model generalization, there has been
limited exploration of the holistic impact of data augmentation techniques in sim-
ulating complex environmental changes, such as illumination settings [39]. Our
study focuses on illumination settings, investigating the generalization effects
of models by constructing distributions of real lighting and corresponding data-
augmented distributions. This approach aims to reveal the potential disparities in
generalization capabilities between augmented datasets and real-world datasets.

3 Experimental Framework and Data Preparation

3.1 Recognition Targets

To verify the universality of our insights, we selected basic image classification
as our target task. As shown in Fig. 2, the collection of objects comprises ten
different toys designed to challenge vision models’ ability to recognize a wide
range of visual aspects. The diversity in shape, color, and texture of these toys
spans from easily recognizable to complex features, thoroughly testing the mod-
els’ capabilities in processing subtle visual differences. This systematic selection
strategy evaluates the models’ recognition ability to handle visual complexity
and reveals the delicate differences in visual features during the generalization
process, enhancing our understanding of the image classification mechanism.

Given that this study primarily investigates the impact of data augmentation
techniques on enhancing model generalization capabilities, focusing especially on
the challenge of the “illumination” variable compared to real datasets, we aim to
dive into how models adapt to visual stimuli across different data augmentation
methodologies. By selecting toys with distinct visual characteristics as recog-
nition objects, we established a foundation for subsequent research into data
augmentation and model generalization.
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Fig. 3. (a) A dual light source setup with supplementary lamps placed at 45-degree
angles to ensure balanced illumination. (b) The light intensity meter for precise mea-
surement of illumination conditions

3.2 Illumination Environment Setting

To examine the impact of illumination as a critical visual characteristic variable
on model generalization, we designed our experimental environment as illus-
trated in Fig. 3(a). Our goal was to create a stable and uniform lighting envi-
ronment, crucial for ensuring the integrity and reliability of our results. For this
purpose, two fill lights were positioned at 45◦ on either side of the experimen-
tal platform. This arrangement created a balanced and even dual light source
environment, effectively eliminating potential shadows or irregular illumination
during the data-taking process. These fill lights were adjustable, capable of emit-
ting light at three different color temperatures and allowing for controlling the
intensity via remote control, thus establishing a uniform dual-source lighting
condition.

As an integral part of this setup, we utilize a lux meter (as shown in Fig. 3(b))
to provide precise quantification of the illumination environment. This instru-
ment is crucial for precision measurements of light intensity in various illumina-
tion settings, enabling us to describe the attributes of each scene quantitatively.
Carefully designed illumination environments and quantitative measurements
form the foundation for constructing illumination distributions in our research,
ensuring that variations in lighting can be precisely controlled and accurately
quantified. All these illumination environment settings built a comprehensive
experimental environment with dual controllable light sources, providing a trust-
worthy platform for our data collection process.

3.3 Data Preparation

Training Set. In order to thoroughly investigate the impact of the visual vari-
able, “illumination”, on the generalization capabilities of visual models, we pur-
posefully constructed two training sets. The Full Spectrum Illumination Dataset
(FSID) encompasses a range of illumination distributions, incorporating vari-
ations in light color and intensity. This representation ensures a uniform dis-
tribution of the “illumination” variable in our study. In contrast, the Singular
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Illumination Dataset (SID) simulates a narrowed range of illumination by select-
ing specific median illumination settings from FSID, transitioning from a broad,
uniform distribution to a degraded, singular distribution.

Table 1. Illumination settings with different levels of intensity and color temperature,
where illumination intensity was measured using the light intensity meter in Fig. 3(b),
ensuring an error margin within ±20 lux. And the color temperature was indirectly
measured using a gray card under different illumination settings. An average value was
calculated from 100 images

Intensity −2 level −1 level 0 level +1 level +2 level

Warm Light 180 Lux, 3222K 540Lux, 3812K 900 Lux, 4205K 1260 Lux, 4388K 1620Lux, 4205K

White Light 200 Lux, 20397K 600Lux, 15186K 1000 Lux, 12769K 1400 Lux, 12527K 1800Lux, 11931K

Mixed Light 400 Lux, 8058K 1200Lux, 7628K 2000 Lux, 7192K 2700 Lux, 6607K 3500Lux, 6499K

Full Spectrum Illumination Dataset (FSID): For this dataset, we followed
a detailed data collection process under various illumination settings. The illu-
mination attributes include light color and illumination intensity. The light color
included [Warm, Cool, Mixed] three different attributes, while the illumination
intensity was divided into five distinct levels [−2,−1, 0,+1, 1] by measuring the
intensity’s scope of different light colors. By forming 15 different illumination set-
tings (3 light colors * 5 illumination intensities), we created a series of diverse illu-
mination variations and performed data-taking based on these settings. For each
toy, high-resolution images were captured by high resolution camera under these
varied illumination settings, ensuring at least 100 clear, unobstructed images
from different angles. Eventually, a set of 15,000 images was collected (3 color
temperatures * 5 levels of light intensity * 10 categories * 100 images) as our
FSID. Figure 4 shows images of Toy 1 under 15 different lighting scenarios as an
example.

Singular Illumination Dataset (SID): In this dataset, we focused on con-
structing image data under a singular illumination setting. We chose the middle
illumination setting [Cool light, 0 level] listed in Fig. 4 as the target condition,
with at least 1500 images of various poses collected around each recognition
object to ensure data volume consistency with FSID. The construction of this
dataset served two purposes: on one hand, to explore the impact on visual model
generalization when visual representation variables are simplified to a singular
distribution; on the other hand, to provide a basis for data augmentation study
on enhancing model generalization abilities.

During the data-taking progress of our study, we used the Intel RealSense
D435i camera to capture images of 10 toys from a similar height. All RGB images
in our two datasets are clear and unobstructed, with a resolution of 640*640.
This consistent data-taking method assures that the primary difference between
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Fig. 4. Toy 1 depicted under 15 illumination settings within the FSID, with light colors
[Warm, Cool, Mixed] and intensities [−2,−1, 0,+1,+2]. The illumination intensity and
color temperature are described in Table 1.

the FSID and SID training sets is attributed to changes in illumination settings,
without introducing additional covariates. This provides a solid basis for further
analyzing model performance under different illumination settings as a training
set, ensuring the reliability of the research findings.

Test Set: Throughout the process of evaluating models’ adaptability to changes
in illumination, a standardized test set was specifically constructed, character-
ized by a complexity of lighting variations far exceeding all scenarios within the
training sets. The construction of this test set took into account the diverse
changes in light color properties and ensured random fluctuations in light inten-
sity across the entire spectrum. Contrasting with the fixed light intensity levels
of training set A (five predefined levels for each light color), the test set was
designed to cover the complete range of illumination spectrum. Through metic-
ulous adjustments of auxiliary lighting in the testing equipment, a brightness
cycle from bright to dark and back to bright was achieved, ensuring a uniform
distribution of brightness throughout the range.

To assess the relationship between model generalization capabilities and the
illumination distribution in the training set, we constructed a standardized test
set with a range of illumination variations that exceed all scenarios in the training
set. The construction of this test set considered the diverse changes in light color
properties and ensured random fluctuations in light intensity across the entire
scope. Contrasting with the fixed light intensity levels of FSID (five predefined
levels for each light color), the test set was designed to cover the complete range
of illumination intensity scope. By continuously adjusting the light intensity
during the data collection process, and cycling from bright to dark and back
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to bright, we ensured a uniform distribution of light intensity across the entire
range in the test set.

3.4 Classification Model

To ensure the experimental findings are widely applicable, we selected a vari-
ety of widely-used deep learning models for comparative experiments, including
AlexNet [1], VGG [2], ResNet [3], EfficientNet [4], ViT [5], and Swin Trans-
former [6], including classic CNNs and latest Transformer models. These deep
learning models were originally designed to process large, semantically abundant
datasets like ImageNet [40], which provides a comprehensive feature collection in
visual tasks. However, when applying these deep learning models to the relatively
simple training sets in our study, all models find it hard to reach convergence
during the training process. This is due to the dominant feature complexity gap
between our training set and comprehensive datasets such as ImageNet. Finally,
we solved this problem by scaling the models to match the capacity of our train-
ing data. For CNN models, including AlexNet, VGG, ResNet, and EfficientNet,
we adjusted by reducing the number of channels to one-quarter of their original
count. For Transformer architectures, with means ViT and Swin Transformer,
we made more meticulous modifications. Specifically, we simplified the num-
ber of attention heads per layer and reduced the number of hidden units in
each layer, aiming to decrease model complexity and computational burden. All
these adjustments simplified the model structures while retaining their powerful
image processing capabilities. By optimizing the architectures in this manner,
we ensured faster model convergence on smaller-scale datasets, preserving the
key architecture of their original designs. After confirming that all deep learning
models could be trained on FSID and SID with steady loss reduction and ulti-
mately reached convergence, we completed all preparatory work for the following
comparative experiments.

4 Comparative Experiments

4.1 Experiment 1: Uniform Distribution vs. Singular Distribution
of Illumination Attributes in Training Set

In our first experiment, we focused on how the distribution of the “illumination”
attribute within training datasets affects the generalization performance of deep
learning models. Specifically, we utilized the six deep learning models mentioned
in Sect. 3.4 and conducted comparative experiments using the Full Spectrum
Illumination Dataset (FSID) and the Singular Illumination Dataset (SID) as
the training datasets. We aimed to examine the impact of differences in the
distribution of the “illumination” variable on model generalization while keeping
all other variables unchanged.

To ensure fairness and consistency for all deep learning models, we applied
nearly the same training hyperparameters for all experiments. This included set-
ting the data validation split to 0.2, the batch size to 64, choosing Adam as the
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optimizer, and setting the initial learning rate to 0.001. During the preprocess
stage, we follow the procedural of AlexNet [1] by scaling all training images to
224*224 and making color normalization. All models were trained extensively on
FSID and SID until their training loss reached convergence. Notably, CNN-based
models typically converged within 10 epochs, while Transformer-based models
required more training epochs. Specifically, our ViT model needed 20 epochs,
and our Swin Transformer model needed 60 epochs to reach the convergence [41].
After completing all training processes, we evaluated the generalization perfor-
mance of all models trained on FSID and SID using the test set described in
Sect. 3.3. The evaluation metrics included model accuracy, precision, and recall
on our test set, the experimental results details were shown in Table 2.

Table 2. Performance comparisons of different models trained on FSID and SID
datasets under identical configurations reveal that accuracy declined by 0.67 across
the test sets

Metrics AlexNet VGG ResNet EfficientNet ViT Swin T

Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec.

FSID 0.981 0.982 0.981 0.995 0.995 0.995 0.997 0.997 0.997 0.996 0.996 0.996 0.981 0.981 0.981 0.982 0.982 0.982

SID 0.347 0.580 0.347 0.324 0.570 0.324 0.382 0.313 0.382 0.373 0.678 0.373 0.290 0.604 0.290 0.264 0.502 0.264

By analyzing the results showcased in Table 2, when the illumination distri-
bution degenerates to a singular one, we could clearly recognize the difference of
their performance on the test set. Although all models preserved the same train-
ing configuration in FSID and SID, the four CNN and two Transformer models
exhibited significant performance discrepancies due to their training sets con-
taining different illumination distributions. The SID only contained a singular
illumination distribution [Cool light, 0 level] while the FSID provided a full spec-
trum distribution with 15 illumination settings. Particularly, all models trained
on FSID performed great performance on the test set, however, models received
about 0.67 drops in accuracy when trained on SID, with similar declines observed
in precision and recall. These results compellingly demonstrate that when the
visual variable distribution in training sets degenerated (specifically illumina-
tion in our study), this led to a catastrophic decrease in their generalization
capabilities.

4.2 Experiment 2: Statistical Illumination Vector Mapping
Augmentation in the Singular Illumination Dataset

In experiment 1, we confirmed that a singular distribution of illumination sig-
nificantly reduces the performance of deep learning models. Further observation
of the data showed that the color and intensity of lighting have a significant
impact on the visual characteristics, especially on the color appearance of train-
ing images. Given this observation, we hypothesized that quantifying the pixel-
level mapping correlations between different illumination settings could mitigate
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the decline in model generalization caused by a singular illumination distribution
in SID. In experiment 2, we aimed to explore this hypothesis and attempted to
address this issue through color channel enhancement methods [42].

Fig. 5. Establishing the illumination settings of FSID to generate extensive illumina-
tion vectors for augmenting the SID dataset. (a) 18% gray card, (b) scene assembled
for data collection, and (c) images from the SID dataset of Toy 1, enhanced with
illumination vectors under diverse illumination settings (detailed in Table 1).

In this experiment, we used an 18% gray card shown in Fig. 5(a) as the
subject and replicated the same 15 diverse illumination settings found in the
Full Spectrum Illumination Dataset (FSID), as depicted in Fig. 5(b). Under
these conditions, we captured multiple photographs. From these, we meticu-
lously selected 100 images with consistent imaging quality for further analy-
sis. For each selected image, we calculated the average values of the R, G,
and B color channels under the current lighting conditions, defining it as the
environmental illumination vector Vill[R,G,B], where the light color C includes
three types (Warm, Cool, Mixed) and light intensity I is divided into five levels
(−2,−1, 0,+1,+2). Then, we calculated the standard illumination environment
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vector Vill,SID[R,G,B] in SID for the [Cool, 0 level] scenario and compared it
with the vectors V

(k)
ill,FSID[R,G,B] under the other 14 different lighting condi-

tions. Based on these ratios, we enhanced 15,000 images in SID, selecting 100
images randomly for each lighting condition for processing. The enhancement
process was accomplished by applying the corresponding illumination mapping
coefficients to the global pixels of the images, thus creating the Illumination
Vector Augmentation Dataset (IVAD).

Figure 5(c) showed the results of Toy1 in IVAD enhanced by illumination
mapping enhancement, where the dataset shifted from a singular illumination
distribution of [Cool light, 0 level] in SID to 15 types of full-spectrum illumina-
tion distributions. This enhancement through color channel-based illumination
mapping allowed images in SID, previously constrained by a singular illumi-
nation distribution and lacking visual diversity, to present much more compli-
cated visual characteristics. These characteristics were similar to those observed
under various illumination settings in FSID. Subsequently, following the setup
from Experiment 1, we trained all deep learning models in IVAD. As shown in
Table 3, our experimental results indicate that models trained on IVAD achieved
an increase of approximately 0.57 in accuracy on the test set compared to those
trained on SID. This means that using illumination vector mapping as our data
augmentation method could significantly improve models’ performance compar-
ing those trained on a singular illumination distribution in SID.

Fig. 6. Each box displayed the optimization of color enhancement parameters achieved
through Bayesian optimization using Optuna across six distinct visual models over 200
iterations. It highlighted the progress in model generalization due to color-based data
augmentation, showing improvements beyond the IVAD’s results from Experiment 2,
while still emphasizing the gap in performance compared to the FSID dataset’s real-
world illumination variations



Generalization Gap in Data Augmentation: Insights from Illumination 201

Table 3. Comparative analysis of model performance on the SID and IVAD, high-
lighting the effectiveness of illumination vector-based data augmentation method for
improving model generalization capabilities

Data AlexNet VGG ResNet EfficientNet ViT Swin T

Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec.

SID 0.347 0.580 0.347 0.324 0.570 0.324 0.382 0.313 0.382 0.373 0.678 0.373 0.290 0.604 0.290 0.264 0.502 0.264

IVAD 0.864 0.881 0.864 0.886 0.892 0.886 0.906 0.912 0.906 0.944 0.949 0.944 0.825 0.840 0.825 0.893 0.901 0.893

4.3 Experiment 3: Color Augmentation via Bayesian Optimization
in the Singular Illumination Dataset

During the training process of deep learning-based visual models, data augmen-
tation techniques play an important role. In Experiment 2 we demonstrated
that color channel enhancement could significantly improve model performance.
Given that our study mainly focused on the “illumination” attribute, this exper-
iment also focused on color-based data augmentation methods. We utilized
Torchvision, a package from the PyTorch [43] project that provides tools and
datasets for computer vision. It provided a color augmentation function “torchvi-
sion.transforms.ColorJitter” which included 4 variables: brightness, contrast,
saturation, and hue. In this section, we aim to maximize the model’s perfor-
mance on the test set by searching for the best parameter configurations on
torchvision.transforms.ColorJitter data augmentation function.

To precisely adjust these four color enhancement parameters, we employed
the Optuna Bayesian optimization framework [44], with the Tree-structured
Parzen Estimator (TPE) as the parameter sampling strategy. During the opti-
mization process, each TPE iteration generated a new set of parameter config-
urations. These configurations were applied to data augmentation and subse-
quently used to train models according to the setup established in Experiment
1. After training, we evaluated the effectiveness of each iteration by measuring
the model’s accuracy on the test set. For six different deep learning models,
we conducted 200 optimization iterations for searching the best color augmen-
tation parameter configurations. As shown in Fig. 6, the results demonstrated
that after 200 iterations of Bayesian optimization for data augmentation, with
the best parameter configurations, the models’ performance approached or even
surpassed the illumination mapping data augmentation methods used in IVAD.
Our experiments showed that color enhancement techniques in Torchvision, fine-
tuned through Bayesian optimization, could surpass the illumination vector map-
ping augmentation method in Experiment 2. However, despite all these improve-
ments, a generalization gap still existed when compared to the FSID dataset,
which included actual illumination changes. This emphasized the irreplaceable
of visual feature complexity in real datasets for constructing a robust model
generalization.
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Table 4. Performance analysis of models across different distributions and augmenta-
tion methods within FSID, SID, IVAD, and Bayesian Optimization Data Augmentation
(BO-DA). It demonstrates that while data augmentation methods (IVAD and BO-DA)
significantly improved models’ generalization, a notable gap persists when compared to
FSID which took data from a real-world illumination distribution. The gap highlights
that artificial illumination variations introduced through data augmentation inherently
involve certain generalization limitations

Metrics AlexNet VGG ResNet EfficientNet ViT Swin T

Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec.

FSID 0.981 0.982 0.981 0.995 0.995 0.995 0.997 0.997 0.997 0.996 0.996 0.996 0.981 0.982 0.981 0.982 0.983 0.982

SID 0.347 0.580 0.347 0.324 0.570 0.324 0.382 0.313 0.382 0.373 0.678 0.373 0.290 0.604 0.290 0.264 0.502 0.264

IVAD 0.864 0.881 0.864 0.886 0.892 0.886 0.906 0.912 0.906 0.944 0.949 0.944 0.825 0.840 0.825 0.893 0.901 0.893

BO-DA 0.897 0.900 0.897 0.902 0.908 0.902 0.951 0.952 0.951 0.941 0.943 0.941 0.821 0.822 0.821 0.844 0.855 0.844

5 Conclusion

To conclude our study, we summarized all results in Table 4. In our research,
we focused on the visual representation variable “illumination” by forming the
Full Spectrum Illumination Dataset (FSID) with uniform distribution and the
Singular Illumination Dataset (SID) with singular distribution on datasets of a
classification task. In Experiment 1, we proved that when a visual representa-
tion variable degenerated to a singular distribution, it will occur a catastrophic
decline in deep learning-based visual models. We performed an illumination vec-
tor mapping data augmentation method in Experiment 2. Models’ generaliza-
tion abilities trained by the Illumination Vector Augmentation Dataset (IVAD)
had significant improvements. Experiment 3 further conducted a Bayesian Opti-
mization Data Augmentation (BO-DA) method, which slightly outperformed
the models’ performance trained with IVAD.

Nevertheless, whether employing intuitive color mapping techniques or imple-
menting color-based data augmentation through Bayesian optimization, these
strategies still exhibit a generalization gap when compared to models trained on
a complex, real-world illumination dataset. This outcome highlights that while
data augmentation can enhance model generalization, it has inherent limita-
tions. It is essential to ensure that different visual representation variables are
sufficiently complex and diverse. Most importantly, any visual representation
variable should not degrade into a singular distribution. Proper dataset design
is critical for achieving robust model generalization, emphasizing the importance
of incorporating diverse visual features.

6 Data Limitation

One limitation of our study is the image format. Currently, images were saved
in PNG format using an Intel RealSense D435i camera, which does not preserve
physical illumination information as effectively as RAW format. RAW captures
linear data directly from the sensor, crucial for accurate color correction and
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augmentation. We acknowledge that using PNG may affect our results and plan
to use RAW format in future work to enhance data accuracy and robustness.
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Abstract. In the realm of underwater object detection, challenging
conditions, characterized by blurriness and complexity, suppress the
representative power of general deep backbone features. In this work,
we propose an innovative decoupled head structure building upon the
YOLOv7 framework. This structure segregates classification and regres-
sion branches to better capture the semantic features required for each
subtask. In order to make effective use of the contradiction between clas-
sification and regression, we introduce the adjacent feature layer as a
complementary operator to harmonizing subtasks. To address the issue
of image blurriness in the underwater environment, a probabilistic mod-
eling approach was adopted for regression box handling. The ultimate
detection outcome is determined jointly by the classification and regres-
sion branches, enhancing the overall consistency of the category and
bounding box results. An additional branch is introduced within the
classification branch and seamlessly integrated to further augment the
coherence of the detection outcomes. This comprehensive approach effec-
tively addresses the challenges posed by the underwater environment, sig-
nificantly improving the accuracy and robustness of underwater object
detection.

Keywords: Underwater Object Detection · YOLOv7 · Decoupled
Head Structure · Task-Specific

1 Introduction

In recent years, the rapid development of the field of computer vision has
brought great potential for various applications, especially in object detection
tasks [8,11]. As an important branch in the field of computer vision, underwater
object detection (UOD) has a wide range of applications, including underwater
resource exploration, environmental monitoring, underwater robot operation and
so on. Despite notable advancements in the broader field of object detection, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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intricate and unique nature of the underwater environment presents persistent
challenges for underwater object detection in real marine conditions [1,5,19].

Fig. 1. Utilizing Grad-CAM visualization for the classification and regression output.

The challenges in underwater object detection stem from the unique charac-
teristics of the underwater environment and the complexities involved in achiev-
ing effective detection within such conditions. These challenges are influenced
by a combination of optical properties, image degradation, fluctuations in illu-
mination, and underwater noise. The optical properties of water lead to color
distortion and uneven brightness in underwater images, resulting in targets
with an unstable appearance. Image degradation, including blurring, scatter-
ing, and interference from particles, further complicates the identification of
target edges and details. Changes in illumination introduce variations in bright-
ness and contrast, which pose additional challenges in distinguishing visual fea-
tures of targets. Moreover, underwater noise, comprising suspended particles and
wave-induced disturbances, combines with targets, reducing their discriminative
characteristics. These factors collectively contribute to a deterioration in the
quality of underwater images, exacerbating the inherent challenges associated
with underwater object detection.

In the previous research [10,12,20,21] on underwater target detection, under-
water image enhancement is widely used, relevant studies [5,28] have identified
that underwater image enhancement may potentially inhibit the performance of
object detection. Particularly, in complex scenarios, image enhancement might
exacerbate the suppression of detector performance, potentially increasing inter-
ference caused by the background. Despite the capability of underwater image
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enhancement to mitigate degradation issues in underwater images and obtain
visually improved images, it introduces additional quality degradation problems,
adversely affecting underwater target detection. Although underwater color cast
is not a primary interference factor, its introduction of diverse colors through
enhancement may impact the performance of the detector.

Unlike prior methods, we harness the robust feature extraction capabilities of
YOLOv7 [26] and refine its head section. Various studies [24,29,30,34] indicate
fluctuating demands for semantic features across detection subtasks, prompting
the adoption of a decoupled head structure by many detectors [9,13,16,31]. Visu-
alizing the output of this decoupled head (as illustrated in Fig. 1) offers insight
into the focal points of the classification and regression branches in underwater
object detection tasks. Specifically, the classification branch predominantly tar-
gets the central aspect of the object, whereas the regression branch emphasizes
the object’s surroundings. Decoupling the head facilitates precise adjustments,
aligning both branches with the unique characteristics of underwater scenes.
While the classification branch concentrates on the object’s internal structure
and shape, the regression branch attends to its positional information and exter-
nal environment. This independent handling of focus areas optimizes the per-
formance of both classification and regression tasks. We implement head decou-
pling within YOLOv7 [26], enabling detection subtasks to focus on their requi-
site semantic content. Additionally, we introduce a Task-Specific Enhancement
Module, integrating information from nearby feature layers to bolster subtasks.
To address object blurring in underwater scenarios, we employ a probabilistic
modeling approach where the regression branch outputs probabilities for each
interval, culminating in the expected value of the interval for final localization.
Finally, our Regression Guidance Module enhances consistency among subtasks,
thereby refining detector performance in complex scenarios.

The main contributions can be summarized as follows:

– We proposed a decoupled head structure built upon YOLOv7, where the
classification and regression branches no longer share the same feature input.
This design allows each subtask to concentrate on its specific semantic infor-
mation, enhancing the model’s ability to address underwater object detection
challenges.

– We enhanced the input to the head by introducing neighboring feature layer
information tailored to the semantic requirements of each subtask.

– We adopted a probabilistic modeling approach for regression box probabil-
ity, where the model’s regression output represents the likelihood at various
positions. This effectively addresses the issue of underwater object blurriness.

– We introduced supervision from the regression branch into the classification
branch, enhancing the consistency between the detector’s regression and clas-
sification outputs.

2 Related Work

We will review the pertinent technique related to our work briefly in this section.
The YOLOv7 model, developed by Chien-Yao Wang and Alexey Bochkovskiy
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et al. in 2022, introduces enhancements to achieve an effective balance between
detection efficiency and precision. Comprising four modules, namely the Input
module, Backbone network, Head network, and Prediction network, YOLOv7
incorporates strategies such as E-ELAN and model scaling.

Input module: Utilizing mosaic and hybrid data enhancement techniques,
the Input module ensures uniform scaling of color images to a 640 × 640 size,
meeting the backbone network’s input size requirements.

Backbone network: Consisting of CBS, E-ELAN, and MP1, the Backbone
network employs convolution, batch normalization, and SiLU activation in the
CBS module. E-ELAN enhances learning ability, and MP1 facilitates channel
and size reduction, enhancing feature extraction.

Head network: Adopting the Feature Pyramid Network architecture with
PANet design, the Head network integrates CBS blocks, Sppcspc structure, E-
ELAN, and MP2. These elements improve perceptual field and feature extraction
ability.

Prediction network: Employing a Rep structure, the Prediction network
adjusts image channels and utilizes 1×1 convolution for confidence, category, and
anchor frame predictions. Inspired by RepVGG, the Rep structure simplifies to
a basic convolution for practical predictions, reducing network complexity with-
out compromising performance. Prediction network: Employing a Rep structure,
the Prediction network adjusts image channels and utilizes 1× 1 convolution for
confidence, category, and anchor frame predictions. Inspired by RepVGG, the
Rep structure simplifies to a basic convolution for practical predictions, reduc-
ing network complexity without compromising performance. Prediction network:
Employing a Rep structure, the Prediction network adjusts image channels and
utilizes 1×1 convolution for confidence, category, and anchor frame predictions.
Inspired by RepVGG, the Rep structure simplifies to a basic convolution for
practical predictions, reducing network complexity without compromising per-
formance (Fig. 2).

Fig. 2. This is the pipeline: we introduce neighboring layer feature information Fn+1

and Fn−1, incorporating Task-Specific Feature Enhancement modules into both the
classification and regression branches. The regression branch adopts a probabilistic
modeling approach, outputting interval probabilities. Finally, the regression-guided
module learns to combine this distribution with the results from the classification
branch.
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3 Methodology

Classification and regression are two highly correlated yet contradictory tasks in
the object detection. In the underwater environment, the extracted features are
abundant but lack richness in information. Leveraging this characteristic, in this
paper, we use YOLOv7 as the baseline and propose a novel decoupled head struc-
tures called TSD-YOLO shown in Fig. 1. By taking advantage of the relationship
between subtasks, we aim to better handle feature information, addressing the
challenges posed by the complex underwater environment.

3.1 Decouple Head

Fig. 3. Frameworks of Couple Head and Decouple Head.

YOLOv7, positioned as a cutting-edge algorithm, excels in object detection tasks
due to its refined network architecture and advanced training strategies, show-
cased in Fig. 3(a). Despite the traditionally shared feature maps for classification
and regression subtasks, recent studies reveal distinctive preferences between
these tasks. In challenging underwater environments, the conventional coupled
head structure may not effectively handle extracted features.

To address this, we propose a novel decoupled head structure (Fig. 3(b)).
The two layers of blue modules employ 3 × 3 convolution operations, capturing
diverse information within the feature map. The yellow module, a 1 × 1 convo-
lution operation, synthesizes the final result based on learned information. This
innovative structure tailors to the nuances of underwater object detection, seg-
regating and processing information effectively. Our approach aims to enhance
adaptability to underwater features, improving overall detection accuracy and
robustness.

3.2 Task-Specific Feature Enhancement

In the feature pyramid structure, lower-level feature maps with higher resolution
excel in capturing image details for precise target localization, while higher-level
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Fig. 4. Task-Specific Feature Enhancement

feature maps capture abstract semantic information crucial for target classifica-
tion. To enhance effective feature utilization (as shown in Fig. 4), we propose a
Task-Specific Feature Enhancement Module.

For the classification branch, we introduce an additional high-level feature
map, enlarged through bilinear interpolation, and concatenate it with the orig-
inal feature layer. In the regression branch, a lower-level feature map is incor-
porated, reducing its size through max pooling, preserving local structures and
textures better than average pooling.

Dedicated information introduction for each subtask reinforces specific fea-
ture information required, optimizing the fusion of detailed local information
and abstract semantic context. This modular approach contributes to superior
performance in both target localization and classification.

3.3 Probabilistic Modeling

The term “probability modeling” refers to the introduction of a more versatile
probability distribution for representing bounding boxes. Unlike traditional box
regression methods that often rely on a deterministic Dirac distribution, which
assumes a highly certain target position, this approach embraces a more general
probability distribution. This distribution accommodates the uncertainty asso-
ciated with bounding box representations in complex scenes, where targets may
have multiple possible positions or exhibit boundary fuzziness. The adoption of
a more general probability distribution enhances the model’s flexibility, enabling
it to better adapt to uncertainties in target positions across diverse scenarios. By
incorporating this versatile probability modeling, the model becomes more adept
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at handling uncertainties, thereby improving the robustness of box regression in
complex and challenging environments.

3.4 Regression Guidance

Fig. 5. Regression Guidance

Classification and regression tasks often share the same feature representation.
In deep learning models for object detection, it is common to use shared Convo-
lutional Neural Network (CNN) layers to extract features from images, which are
then utilized for both classification and regression tasks. Consistency between
classification and regression tasks can be achieved by introducing a branch that
connects to the regression branch. This branch serves as an auxiliary task, guid-
ing the classification task indirectly by supervising the learning of the regres-
sion branch. This design of consistency ensures that the model learns a coher-
ent feature representation for both tasks, enhancing the overall performance of
the model. Therefore, we have devised a Regression Guidance Module, which
improves the consistency of sub-tasks by learning the preceding probability dis-
tribution (Fig. 5).

4 Experiments

We objectively assess TSD-YOLO through qualitative experiments, gauging its
performance. A series of ablation experiments is systematically conducted to
evaluate the influence of different network structures and modules in our inves-
tigation.

4.1 Experimental Scheme

Our model underwent an assessment using the DUO [18] dataset. This recently
released underwater dataset presents a diverse array of underwater scenes along
with more sensible annotations. A refined iteration of the UTDAC2020 dataset



Harmonizing Regression-Classification Inconsistency 213

[3], the DUO dataset is a product of enhancements originating from the 2020
Underwater Target Detection Algorithm Competition. Comprising a total of
7,782 images (6,671 for training and 1,111 for testing), the dataset includes
74,515 instances across four primary categories: echinus, holothurian, starfish,
and scallop. The images are provided in four distinct resolutions: 3840 × 2160,
1920 × 1080, 720 × 405, and 586 × 480. Within this framework, we conducted a
thorough evaluation of our model’s performance specifically on the DUO dataset.

We employ multi-scale training, configuring the long edge to 640 and the
short edge to 640 to avoid repetition. The training regimen spans 300 epochs
with an initial learning rate of 0.0025, subject to a 0.1 decay rate. Our method
is trained on a single GeForce RTX 2080Ti GPU, utilizing a total batch size of 8
during training. We opt for SGD as the training optimization algorithm, setting
the weight decay to 0.0001 and the momentum to 0.9. Throughout the experi-
ments, traditional horizontal flipping is the only data augmentation applied.

4.2 Qualitative Results

We conducted comparisons with other state-of-the-art methods and applied our
approach to various sizes of both YOLOv5 and YOLOv7. The results are pre-
sented in Table 1 and Table 2.

Table 1. Comparison with the state-of-the-art methods of generic detectors and under-
water detectors on the DUO dataset

Methods AP AP50AP75 echinus starfish holothurian scallop

Generic Object Detector:

Faster R-CNN [23] 61.3 81.9 69.5 70.4 71.4 61.4 41.9

Cascade R-CNN [2] 61.2 82.1 69.2 69.0 72.0 61.9 41.9

AutoAssign [32] 66.1 85.7 72.6 74.1 75.5 65.8 48.9

SABL w/ Cascade R-CNN [27] 63.4 81.2 70.5 72.0 74.0 64.7 42.8

DetectoRS [22] 64.8 83.5 72.4 73.5 74.3 65.8 45.7

Deformable DETR [33] 63.7 84.4 71.9 71.6 73.9 63.0 46.3

GFL [14] 65.5 83.7 71.9 74.2 75.9 64.3 47.5

YOLOv7 [26] 68.0 88.0 75.9 75.6 76.3 68.0 52.1

Underwater Object Detector:

ROIMIX [17] 61.9 81.3 69.9 70.7 72.4 63.0 41.7

ERL-Net [7] 64.9 82.4 73.2 71.0 74.8 67.2 46.5

Boosting R-CNN [25] 63.5 78.5 71.1 69.0 74.5 63.8 46.8

SWIPENet [4] 63.0 79.7 72.5 68.5 73.6 64.0 45.9

RoIAttn [15] 62.3 82.8 71.4 70.6 72.6 63.4 42.5

GCC-Net [6] 69.1 87.8 76.3 75.2 76.7 68.2 56.3

TSD-YOLO 70.6 89.3 77.4 77.1 77.8 69.1 53.4
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We evaluate the performance of TSD-YOLO through comparisons with the
baseline method YOLOv7 [26] and state-of-the-art methods, categorizing them
into generic object detectors (GOD) and underwater object detectors (UOD).
Table 1 presents a summary of the results on the DUO dataset, revealing two
key observations. Firstly, in terms of AP accuracy, TSD-YOLO achieves a
notable 70.6 AP. In comparison with the baseline method YOLOv7, our pro-
posed method outperforms YOLOv7 by 2.6% (68.0% vs 70.6%). To provide
further context, TSD-YOLO exhibits significant performance advantages over
DetectoRS by 5.8% (64.8% vs 70.6%), Deformable DETR by 56.9% (63.7% vs
70.6%), GFL by 5.1% (65.5% vs 70.6%), and AutoAssign by 4.5% (66.1% vs
70.6%). These results underscore a substantial margin of improvement achieved
by TSD-YOLO across various methodologies, highlighting its effectiveness in
both generic and underwater object detection scenarios. Regarding the com-
parison with UOD methods, we have selected recent open-source approaches to
assess the performance of TSD-YOLO. Our proposed method stands out as the
top-performing model among these methods. Specifically, TSD-YOLO surpasses
SWIPENET by 6.1% (63.0% vs 69.1%), Boosting R-CNN by 5.6% (63.5% vs
69.1%), RoIAttn by 6.8% (62.3% vs 69.1%), and ERL-Net by 4.2% (64.9% vs
69.1%).

TSD-YOLO effectively addresses these challenges, enhancing the visibility
of objects in low-contrast regions and thereby significantly improving the per-

Table 2. Comparison of detection performance for different YOLO versions and their
depth-wise variants.

Method Precision Recall mAP 0.5 mAP 0.5:0.95

YOLOv5n 84.0 72.1 80.2 55.4

YOLOv5s 88.1 75.5 83.8 61.8

YOLOv5m 88.7 76.6 84.6 64.6

YOLOv5l 87.8 78.2 85.0 66.4

YOLOv7n 84.3 73.1 81.9 56.8

YOLOv7s 88.6 75.6 84.6 62.5

YOLOv7m 89.0 77.3 85.2 66.2

YOLOv7l 88.1 78.7 86.9 68.0

TSD-YOLOv5n 82.3 69.1 77.8 57.1

TSD-YOLOv5s 87.2 74.4 84.4 63.5

TSD-YOLOv5m 84.2 78.9 86.1 66.1

TSD-YOLOv5l 84.7 80.1 87.1 68.5

TSD-YOLOv7n 82.6 69.7 82.9 58.4

TSD-YOLOv7s 88.7 75.0 85.2 64.5

TSD-YOLOv7m 85.3 79.1 87.9 68.9

TSD-YOLOv7l 85.6 81.2 89.3 70.6
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formance of UOD tasks by mitigating the difficulties in feature extraction and
enriching the information contained in the extracted features. Moreover, it’s
essential to note that both YOLOv5 and YOLOv7 feature coupled head struc-
tures. To showcase the effectiveness of our proposed method, we implemented it
on both these models, each configured with different sizes. The results, presented
in Table 2, unequivocally highlight the impact of our method.

The data clearly indicates that our approach yields an average improvement
of two points across both YOLOv5 and YOLOv7. Particularly noteworthy is the
discernible impact on YOLOv7, known for its more efficient architecture com-
pared to YOLOv5. This efficiency translates into a higher enhancement effect,
underscoring the adaptability and potency of our method in optimizing different
model architectures.

These findings contribute to a robust validation of our method’s versatility,
demonstrating its capability to enhance object detection across varying model
configurations and sizes, ultimately affirming its utility in diverse applications.

4.3 Ablation Study

Table 3. Differential ablation experiments of each module.

Baseline DH TSFE PM RG mAP

� 68%

� � 69.2%

� � � 70.2%

� � � � 70.4%

� � � � � 70.6%

� � � 70.2%

� � � 69.4%

� � � 69.3%

In this section, we conducted a series of ablation experiments on the DUO dataset
to assess the efficacy of each module pertaining to the four innovation points.
The results, as depicted in the table, reveal that DH (Decouple Head) exhibits
the most substantial enhancement for the model, achieving an improvement of
approximately 1.2%. Following closely, TSFE (Task-Specific Feature Enhance-
ment) contributes around 1.0%, while the improvements associated with the PM
(Probabilistic Modeling) and RG (Regression Guidance) modules are approxi-
mately 0.2% each. Furthermore, under the decoupling condition, the enhance-
ments for the three modules are 1%, 0.2%, and 0.1%, respectively. Notably,
the incorporation of additional neighboring layer information significantly con-
tributes to the overall improvement of the model (Table 3).
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Fig. 6. Comparing visualization results with the baseline using Grad-CAM

4.4 Visualization

We selected low-quality images from the DUO dataset for visualization analy-
sis. It is evident that the feature visualization images generated by YOLOv7
encapsulate both classification and regression information, leading to potential
interference with the detection results. In contrast, our approach produces fea-
ture visualization images that distinctly focus on regression and classification
information. This refinement allows us to obtain more precise feature informa-
tion. The synergistic integration of these two aspects significantly enhances the
overall accuracy of the detection results TSD-YOLO demonstrates superior han-
dling of features (Fig. 6).

5 Conclusion

In this paper, we propose a Task-Specific Decoupling YOLO (TSD-YOLO) to
address the challenge of extracting features from low-quality images in under-
water environments. Our approach originates from the relationship between the
two detection subtasks, classification and regression. We employ a decoupling
structure based on contradictions and further introduce additional information
to enhance each subtask. Additionally, we propose regression-guided classifica-
tion from a consistency perspective. Finally, we adopt a probabilistic modeling
approach to address challenges posed by the underwater environment.
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Abstract. Acoustic sonar imaging systems are widely used for under-
water surveillance in both civilian and military sectors. However, acquir-
ing high-quality sonar datasets for training Artificial Intelligence (AI)
models confronts challenges such as limited data availability, financial
constraints, and data confidentiality. To overcome these challenges, we
propose a novel benchmark dataset of Simulated Side-Scan Sonar images,
which we term as ‘S3Simulator dataset’. Our dataset creation utilizes
advanced simulation techniques to accurately replicate underwater con-
ditions and produce diverse synthetic sonar imaging. In particular, the
cutting-edge AI segmentation tool i.e. Segment Anything Model (SAM)
is leveraged for optimally isolating and segmenting the object images,
such as ships and planes, from real scenes. Further, advanced Computer-
Aided Design tools i.e. SelfCAD and simulation software such as Gazebo
are employed to create the 3D model and to optimally visualize within
realistic environments, respectively. Further, a range of computational
imaging techniques are employed to improve the quality of the data,
enabling the AI models for the analysis of the sonar images. Extensive
analyses are carried out on S3simulator as well as real sonar datasets to
validate the performance of AI models for underwater object classifi-
cation. Our experimental results highlight that the S3Simulator dataset
will be a promising benchmark dataset for research on underwater image
analysis. https://github.com/bashakamal/S3Simulator.

Keywords: Sonar imagery · Side Scan Sonar Simulated dataset ·
Segmentation · SelfCAD · Gazebo · underwater object classification

1 Introduction

SONAR, which stands for Sound Navigation and Ranging, plays a crucial role
in various underwater applications [20]. Sonar systems utilize sound waves to
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overcome the limitations posed by optical devices, such as water darkness and
turbidity. It has found applications in various civilian and defence sectors. The
detection and classification of underwater objects in sonar images remain one
of the most challenging tasks in marine applications, such as underwater rescue
operations, seabed mapping, and coastal management [20].

Traditionally, Sonar imagery is manually inspected by human operators,
which is a time-consuming task as well as requires domain expertise [17]. To
automate this process, the integration of Artificial Intelligence (AI) emerged as
a promising solution. However, the availability of publicly accessible, high-quality
sonar datasets to train the AI models is scarce. This paucity of sonar datasets is
mainly due to the extensive costs, domain expertise to label, limited resources,
security and data sensitivity, and confidentiality constraints. Furthermore, the
quality of the available sonar datasets is also suboptimal due to the complexity
of the underwater environment, such as various kinds of distortion, underwater
noise, speckle noise, small objects, and poor visibility [26].

In order to address the aforementioned challenges, i.e., the scarcity of pub-
licly available sonar data and low-quality sonar images, we propose a syn-
thetic approach for generating Side Scan Sonar simulator dataset named as
“S3Simulator” dataset. A novel framework that combines an advanced AI
segmentation model, i.e., Segment Anything Model (SAM) [11], with the self-
CAD computer-aided design tool and the 3D dynamic simulator Gazebo is
leveraged for the creation of the S3Simulator dataset. Further, it is augmented
with cutting-edge computational imaging techniques to provide a heterogeneous
dataset replicating real-world sonar imagery such as highlight, shadow, seafloor
reverberation, and other characteristics. The S3Simulator dataset consists of 600
images of ships and 600 images of planes, which have been meticulously simu-
lated to replicate real-world sonar conditions.

The proposed S3Simulator dataset is developed in five stages: First, silhouette
images of military and civilian planes and ships are acquired in their raw format.
In the second stage, a benchmarking segmentation model SAM is utilized to
explicitly segment out the image object, i.e., shipwrecks, plane wreckage, and
its fragments, from the rest of the image based on the provided prompts. In the
third stage, we employ a self-CAD tool to reconstruct 2D segmented images into
3D models, adjusting the model’s properties such as shape, size, and texture. In
the fourth stage, these 3D objects are deployed on a simulator platform, e.g.,
Gazebo, to generate a simulated replica of the real-world objects by rendering
the self-CAD results. This environment simulates complex sonar characteristics
such as noise, shadows, object complexity, and diverse seabed terrain. Finally,
we employ a range of computational imaging techniques, including pixel value
clipping, linear gradient integration, and nadir zone mask generation, to enhance
the data quality and replicate the characteristics of sonar images.

Extensive analysis is carried out on real and S3Simulator datasets to validate
the performance of the AI model for underwater image analysis. In particular,
we investigate the application of AI models for sonar image classification. To this
end, benchmarking classical Machine Learning (ML) approaches such as Support
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Vector Machine (SVM), Random forest, K-Nearest Neighbors (KNN) and Deep
Learning (DL) models including VGG16, VGG19, MobileNetV2, InceptionRes-
NetV2, InceptionV3, ResNet50, and DenseNet121 are trained using augmenta-
tion and transfer learning techniques and tested on unseen real data. The key
contributions of the paper are as follows:

• Proposal of a novel ‘S3Simulator dataset’ that consists of simulated side-
scan sonar imagery to tackle the scarcity of publicly available sonar data and
low-quality sonar images.

• Integration of Gazebo simulator and selfCAD 3D with the advanced AI seg-
mentation model SAM, augmented by computational imaging refining.

• Incorporation of a realistic environment comprising images with nadir zone,
shadows and object rendering, alongside diverse seabed compositions.

• Extensive evaluation of AI models through classical ML and DL methodolo-
gies for sonar image classification in both real-world and simulated scenarios.

The rest of the paper is organized as follows. The related works are described
in Sect. 2. The overall architecture of the proposed S3Simulator multi-stage app-
roach and methodology is presented in Sect. 3. In Sect. 4 and Sect. 5, sonar image
classification on the S3Simulator dataset and the experimental setup are dis-
cussed. In Sect. 6, experimental results are discussed in detail. Finally, the con-
clusion and future works are enumerated in Sect. 7.

2 Related Works

2.1 Sonar Image Dataset

In the exploration of marine and object detection, researchers have made notable
progress in creating sonar image datasets. In one of the earliest studies of side-
scan sonar datasets, Huo et al. [9] developed Seabed Objects-KLSG, a side-scan
sonar dataset obtained from real sonar equipment, featuring 385 wrecks and 36
drowning victims, 62 airplanes, 129 mines, and 578 seafloor images. Sethuraman
et al. [18] AI4Shipwrecks dataset comprises 286 high-resolution side-scan sonar
images obtained from autonomous underwater vehicles (AUVs) and labeled with
consultation from specialist marine archaeologists. Another dataset i.e. Sonar
Common Target Detection Dataset (SCTD) [27] consists of 57 images of planes,
266 images of shipwrecks, and 34 images of drowning victims, each with different
dimensions.

However, due to real-world dataset limitations, synthetic sonar images play a
significant role in advancing research in underwater exploration. Shin et al. [19]
proposed a method using the Unreal Engine (UE) to generate synthetic sonar
images with various seabed conditions and objects like cubes, cylinders, and
spheres. Sung et al. [21] synthesized realistic sonar images using ray tracing
algorithms and GAN. Liu et al. [15] proposed cycle GAN-based generation of
realistic acoustic datasets for forward-looking sonars. Yang et al. [25] proposed
a side-scan sonar image synthesis method based on the diffusion model. Xi et
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al. [23] used optical data to train their developed sonar-style image. Lee et al. [13]
simulated a realistic sonar image of divers by applying the StyleBankNet image
synthesizing scheme to the images captured by an underwater simulator.

2.2 Sonar Image Classification

After the extensive development of sonar imaging technology, underwater image
classification has emerged as a crucial area in the field of ocean development.
Li et al. [14] used Support Vector Machine (SVM) as the classifier to recognize
small diver from dim special diver targets accurately and selected five main
characteristics of divers such as divers average scale, velocity, shape, direction,
and angle with 94.5% as accuracy rate. After feature extraction, Karine et al. [10]
implemented the k-nearest neighbor (KNN) and SVM algorithms for seafloor
image classification recorded by side scan sonar. Zhu et al. [28] proposed an
extreme learning machine (KELM) and principle component analysis (PCA)
for side scan sonar image classification. Du et al. [7] compared different CNN
model prediction accuracy and found less improvement for AlexNet and VGG-
16 and good improvement for Google Net and ResNet101 after the transfer
learning technique is applied. Google Net has the highest prediction accuracy
at 94.27%. After fine-tuning limited data, [5] used a pre-trained deep neural
network in which ResNet-34 and DenseNet-121 were the best-performing models
of underwater image classification.

Fig. 1. Overall architecture of proposed S3Simulator-based Sonar Image classification

In contrast to the aforementioned synthetic sonar images, which are expensive
and time-consuming due to recreating from real data, our S3Simulator dataset
is an economical and time-efficient solution built on simulator technology and
advanced AI techniques. To the best of our knowledge, the S3Simulator dataset is
the first publicly accessible and extensive compilation of side-scan sonar images
for ship and plane objects.
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3 S3Simulator Dataset

This section explains the workflow and generation of the S3Simulator dataset.
The overall architecture of the proposed pipeline of S3Simulator is depicted
in Fig. 1. It consists of modules Segment Anything Model (SAM), SelfCAD,
Gazebo, computational imaging, output of the simulated image, real sonar
image, and its classification using Machine Learning (ML) and Deep Learning
(DL) techniques. The details of the modules are explained below.

3.1 Data Acquisition

To replicate the sonar imagery of realistic objects such as ships and planes, the
data is collected from the Royal Observer Corps Club’s third-grade exam. The
collection has a total of 62 unique aircraft, whereas each aircraft is depicted as
a black image on both sides and plan perspectives [3], and the U.S. ship silhou-
ettes show the relative size of the various classes of aircraft carriers, battleships,
cruisers, and destroyers [4]. (The images are represented in the supplementary
material for reference.)

Further, for the AI investigation and classification, as mentioned in Sect. 2.1
Seabed object KLSG dataset is utilized. (Sample images of the Seabed object
KLSG dataset are given in the supplementary material for reference.) This
dataset serves as the basis for testing the S3Simulated dataset against real sonar
data.

3.2 Segmentation with Segment Anything Model (SAM)

Segment Anything Model (SAM) [11]- is one of the cutting-edge models in
semantic segmentation. SAM is intended to identify and isolate an object of
interest within an image in response to specific user-provided prompts. Prompts
can be text, a bounding box, a collection of points (including a complete mask),
or a single point. Even though the request is ambiguous, the model still gener-
ates an appropriate segmentation mask, as shown in Fig. 2. Consequently, it can
perform effectively in the zero-shot learning regime, i.e. it can segment objects
of types it has never encountered before without the need for further training.
SAM consists of an image encoder, a flexible prompt encoder, and a fast mask
decoder based on Transformer vision models. The image encoder is applied once
per image before prompting the model. Masks consist of dense prompts encoded
with convolutions and combined element-wise with the image embedding. Image,
prompt, and output token embedding are efficiently mapped to masks via the
mask decoder.

In the analysis of real-world objects, SAM is applied to facilitate the segmen-
tation and masking of specified objects. In this work, SAM approach is used to
segment the planes and ships objects from the raw silhouette images, as shown
in Fig. 2.



224 S. Kamal Basha and A. Nambiar

Fig. 2. The Segment Anything Model is utilized to segment fragmented images of ships,
aircraft, and vessels from the image.

3.3 3D Model Generation in SelfCAD

SelfCAD [2] is a software application for computer-aided design (CAD) that
enables users to modify pre-existing designs as well as to generate 3D model
from 2D image. SelfCAD enables users, with its robust tools, to effortlessly
create, sculpt, and slice objects. In our work, SelfCAD is employed to generate
a 3D model from the segmented 2D images shown in Fig. 2. We refined the
3D models by applying sculpting techniques, improving resolution, modifying
tolerances, and manipulating size and shape. The purpose of these modifications
is to improve and optimize the final 3D models, which are similar to real-world
objects as shown in Fig. 3.

Fig. 3. SelfCAD 3D objects after segmentation

3.4 Deployment to the Gazebo Simulator

Gazebo [1] is an open-source robotic simulator that simplifies high-performance
application development. Its primary users are robot designers, developers, and
educators. In our work, Gazebo is employed to simulate sonar images by render-
ing 3D objects and shadows on various seabeds shown in Fig. 5. The generated 3D
model is integrated into Gazebo World. The rendering of objects is achieved by
adjusting their poses on the x, y, and z axes and incorporating features like roll,
pitch, and yaw rotations. Additionally, the visual texture of the 3D model can
be fine-tuned with RGB values from the link inspector available in the Gazebo.
To bring the simulated image to a more realistic sonar image, we explicitly add
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Fig. 4. Gazebo environment

Fig. 5. 3D object simulated in Gazebo with object rendering (a) and (b), shadow
rendering (c) and (d) of plane and ship in different seabed (e) and (f).

noise from sensors provided by Gazebo models, which adds Gaussian-sampled
disturbance independently to each pixel (Fig. 4).

3.5 Computational Imaging

This process includes a series of computational imaging techniques aimed at
converting data from a Gazebo simulator into a visual representation that closely
resembles sonar imagery. Some of the key techniques include the clipping of pixel
values, the integration of linear gradients, and the generation of nadir zones.
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Image Clipping and Integration of Linear Gradient. In a sonar image, we
can identify that dark colours represent deeper areas and bright colours represent
shallow areas. To mimic the real-world conditions, the linear gradient technique
is employed in simulated sonar images by partitioning the image into 50% and
applying a gradient on both sides as shown in Fig. 6. The gradient for the image
function is given by:

ΔI =
[

∂I

∂x
,
∂I

∂y

]
(1)

Gradient for Quarter-based Intensity Mapping in a Simulated Sonar Image,

ΔI(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x ≤ 0.25 · w (first quarter)
0.5 if 0.25 · w < x ≤ 0.5 · w (second quarter)
0.9 if 0.5 · w < x ≤ 0.75 · w (third quarter)
0.5 if 0.75 · w < x ≤ w (last quarter)

(2)

In this representation:

– w - width of the image.
– ΔI(x, y) - gradient intensity at position (x, y) in the image.
– The gradient changes at different rates depending on the value of x, where x

is the horizontal position within the image.
– The gradient is 0 in the first quarter of the width, 0.5 in the second, 0.9 in

the third, and 0 in the last.

Fig. 6. Image (a) represents the simulated image from the Gazebo; (b) represents the
integration of the linear gradient and nadir zone; and (c) represents the final output
image after the computational imaging technique.

Generation of Nadir Zone. The nadir zone in the sonar image is beneath the
sonar sensor which appears as a dark zone with a thick white line in between the
zone. To mimic this in our work the combination of clipping and linear gradient
is employed, to mask the nadir zone and thin white line inside the zone.

K(x, y) =

{
1 if I(x, y) ≥ Th

0 otherwise
(3)

where:
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– Th - chosen threshold value.
– K(x, y) - resulting mask, with a value of 1 indicating that the pixel (x, y) is

part of the Nidar zone and 0 indicating it’s not.

3.6 Image Augmentation

Image augmentation techniques [24] are utilized to improve the resilience and
classification performance of the models, trained on both the synthetic sonar sim-
ulation dataset and the real sonar dataset. The augmentation pipeline consists of
modifications to horizontal flips and random crops. These changes facilitate the
inclusion of alterations in the images, hence strengthening the model’s ability to
acquire robust features and mitigating the issue of overfitting.

4 Sonar Image Classification on S3Simulator Dataset

To showcase the effectiveness of the proposed S3Simulator, the developed dataset
is used to benchmark computer vision applications such as image classification.
Image classification is a fundamental task in computer vision that involves cat-
egorizing an image into one or more predefined classes [12]. This study explores
two primary techniques for image classification: the classical Machine Learning
(ML) approach, which utilizes algorithms like k-nearest neighbors (KNN), Ran-
dom Forest, and Support Vector Machines (SVM), suitable for smaller datasets;
and deep learning (DL) models, such as Convolutional Neural Networks (CNNs),
which can automatically learn from huge datasets with intricate patterns to pro-
vide better results.

The k-nearest neighbors [8] algorithm is a simple approach that classifies new
data by calculating the distance between the nearest neighbors. Similarly, Ran-
dom forest [6] is a technique in ensemble learning that combines predictions from
multiple decision trees that were trained on random subsets of data. Whereas,
SVM [14] utilize a hyperplane in the feature space to distinguish between classes.
Formally, the aforementioned techniques can be represented as

f(x) =
n∑
i

αiyiK(x, xi) + b (4)

where, f(x) is the predicted label for the input x, αi is lagrange multipliers
obtained from the SVM optimization process, xi the feature vector of the training
data, yi is class labels (−1 or 1) for the training data point, K(x, xi) represents
the kernel function that calculates the similarity between the input vector x and
the support vectors xi, and b is the bias to determine the offset of the decision
boundary.

Deep Learning (DL) is widely used in the field of pattern recognition and
are more efficient than traditional machine learning approaches for image clas-
sification [16]. In particular, Convolutional Neural Networks (CNN) are utilized
to classify images. In our study, we leverage transfer learning approach [22]
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wherein knowledge from one model is transferred to another model, in order to
train deep neural networks with comparatively little data. Mathematically, the
neural network learning can be represented as follows.

f = σ (Wn ∗ h + bn) (5)

where, f is the predicted label, σ be the activation function, Wn is the weights of
the newly added fully-connected layer for binary classification, h is the Output
from the pre-trained model (usually the last layer before the final classification
layer in the backbone model) and bn is the biases of the newly added fully-
connected layer.

5 Experimental Setup

In this Section, the experimental details employed to develop, train, and evaluate
the sonar image classification is explained.

5.1 Dataset

In the generation of the S3Simulator dataset, a 3D object model is generated
from the silhouette images. To enhance realism with realistic objects, the silhou-
ette image is acquired from army fighter planes, army bombers, naval planes,
and battleships, as mentioned in Sect. 3.1.

For AI investigation, we incorporate a simulated dataset S3Simulator along
with a real sonar Seabed objects-KLSG dataset [9]. This dataset comprises 578
seafloor images, 385 wreck images, 36 drowning victim images, 62 aircraft images,
and 129 mine images accumulated over a period of more than ten years. With the
generous assistance of numerous sonar equipment suppliers—including Lcocean,
Hydro-tech Marine, Klein Marine, Tritech, and EdgeTech—this dataset is made
possible. Additionally, it comprises images that were obtained directly from the
original large-scale side-scan sonar images without any preprocessing.

5.2 Evaluation Protocol

In the evaluation of the sonar image classification task, benchmarking classifi-
cation metrics such as accuracy and confusion matrix are used. Accuracy is an
evaluation metric that allows to measure the total number of predictions a model
gets right. Mathematically, Accuracy (ACC) is formulated as,

ACC =
(TP + TN)

(TP + FP + FN + TN)
, (6)

– TP (True Positives) - number of images correctly classified as positive.
– TN (True Negatives) - number of images correctly classified as negative.
– FP (False Positives) - number of images incorrectly classified as positive.
– FN (False Negatives) - number of images incorrectly classified as negative.
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Confusion matrix displays counts of the True Positives, False Positives, True
Negatives, and False Negatives produced by a model as shown in Fig. 9. Using
a confusion matrix we can get the values needed to compute the accuracy of a
model.

5.3 Implementation Details

In this investigation, pre-trained models such as VGG16, VGG19, MobileNetV2,
InceptionResNetV2, InceptionV3, ResNet50, and DenseNet121 are trained on
the ImageNet dataset with two active layers of 1024 and 512 neurons. A dropout
layer with a 0.25 dropout rate and a batch normalization layer improved the
model’s robustness. In training, we used the Adam optimizer with a learning
rate of 0.0001 and a batch size of 16. We employed model checkpoint and early
stopping during the evaluation to evaluate training progress and prevent over-
fitting. In the Gazebo, models are described as Simulation Description Format
(.sdf) files detailing their physics characteristics, properties, visual appearance,
collision, etc. We Utilized Ubuntu 22.04.4 LTS and Gazebo multi-robot simula-
tor, version 11.10.2 for Gazebo simulation. The implementation of image classi-
fication is conducted on Google Colab, utilizing an T4 GPU with an allocation
of 15 GB of RAM for training and employing Google’s TensorFlow framework.

Fig. 7. Pipeline of S3Simulated dataset
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6 Experimental Results

6.1 S3Simulator Dataset Results

As explained in Sect. 3 overall architecture, the final pipeline of simulated sonar
image is shown in Fig. 7. The pipeline consists of data acquisition, SAM, self-
CAD, Gazebo simulator, and computational imaging techniques employed to
generate the S3Simulator dataset. Sample S3Simulator images shown in Fig. 8.

6.2 Sonar Image Classification

Referring to Sect. 4, a benchmark study of classification using the S3Simulator
dataset is carried out using both Machine Learning (ML) and Deep Learn-
ing (DL) classifiers. Extensive analysis using simulated data, real data, and
real+simulated data is conducted. The classifier performance of ML and DL
models are shown in Table 1 and Table 2. From Table 1, it can be observed that
by using simulated data SVM outperforms with an accuracy of 92%. Similarly,
the Random Forest classifier outperforms with a test accuracy of 88% in real
data. While utilizing both real + simulated data and testing on real data, which
represents a realistic deployment of scenarios in the wild, SVM classifier outper-
forms with 88% accuracy. From all the above analyses, SVM classifier was found
to be providing superior performance among all.

Analogous to the ML classifier, the performance of the DL classifier, as
mentioned in Sect. 5.3, is also investigated. Referring to Table 2, the test accu-
racy of different models in test data that are trained using real data/real +
simulated data are studied. It is observed that while training with real data,
DenseNet121 and InceptionResNetV2 outperform the models with an accu-
racy of 92% and 91%, respectively. Further training with real+simulated data,
DenseNet121 achieved the best performance with test accuracy of 96%. It is

Fig. 8. S3Simulated Dataset images of ship and plane
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Table 1. ML Classifier performance of both real and simulated sonar datasets

Training Data Testing Data Classifier Train Accuracy Test Accuracy

Simulated Simulated SVM 1.00 0.92

Random Forest 1.00 0.69

KNN 0.75 0.56

Real Real SVM 1.00 0.77

Random Forest 1.00 0.83

KNN 0.83 0.72

Real + Simulated Real SVM 1.00 0.88

Random Forest 1.00 0.63

KNN 0.79 0.65

Table 2. Test accuracy of different models tested in real data

Model Trained in real data Trained in real +
simulated data

Percentage improved from real
data to combined data

VGG 16 0.90 0.94 4%

VGG 19 0.87 0.92 5%

ResNet50 0.64 0.70 6%

InceptionV3 0.91 0.94 3%

DenseNet121 0.92 0.96 4%

MobileNetV2 0.89 0.94 5%

InceptionResNetV2 0.91 0.95 4%

Fig. 9. Confusion matrix of the highest-performing classifiers i.e. Support Vector
Machine(SVM) and DenseNet121, respectively.

observed that the significant improvement in accuracy of all the models from
3%–6% is observed in real + simulated data compared to real data. This accen-
tuates the impact of additional synthetic data augmenting the training process,
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by replicating realistic sonar data in terms of the number of images, and quality
of images and by recreating real-world scenarios.

The confusion matrices of the best-performed models in both ML (i.e., SVM)
and DL (i.e., DenseNet121) are depicted in Fig. 9. The overall as well as class-
wise accuracy is analysed in the test scenario. The accuracy of the best ML
classifier and DL classifier are 88% and 96%, respectively. It is observed that the
performance of the “plane” class is improved in the DL Model with an accuracy
of 88% compared to the ML accuracy of 84%. Similarly, the accuracy of “ships”
is increased from 92% to 96% in the DL model.

6.3 Visualization: Highlights and Shadows

In sonar image analysis, both the shadow and highlight regions are crucial for
accurate classification and detection, as they provide complementary informa-
tion about the objects’ shape and size. In many cases, the highlight area of an
object in a sonar image may not be clearly visible, but its shadow can be dis-
tinctly observed as shown in Fig. 10(a). By emphasizing the shadow information,
the “S3Simulator” dataset addresses an important gap in existing sonar image
datasets and provides a valuable resource for researchers to advance the field of
sonar image analysis.

The shadow characteristics in publicly available datasets are typically deter-
mined by the fixed positioning of the sonar relative to the object. The
“S3Simulator” dataset overcomes this limitation by allowing for the generation
of sonar images with varying shadow angles for a given object. This is achieved
through the flexibility of the simulation process, where the position and orienta-
tion of the sonar device can be adjusted to create images with different shadow
characteristics, as shown in Fig. 10(b). Furthermore, real-world side-scan sonar
data contains a nadir zone, a crucial feature often missing in synthetic datasets.
The “S3Simulator” dataset uniquely incorporates the nadir zone, enhancing the
realism of simulated sonar imagery as shown in Fig. 11.

Fig. 10. Leveraging Simulated Sonar Shadows to Enhance Real-World Object Identi-
fication
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Fig. 11. Addressing the Nadir Zone Challenge in Sonar Simulation through the
“S3Simulator” Dataset.

7 Conclusion and Future Works

In this work, we presented a novel benchmarking Side Scan Sonar simulator
dataset named “S3Simulator dataset” for underwater sonar image analy-
sis. By employing a systematic methodology that encompasses the collection
of real-world images, reconstruction of 3D models, simulations, and computa-
tional imaging techniques, we have effectively generated a comprehensive dataset
similar to real-world sonar images. The effectiveness of our methodology is
demonstrated by benchmarking image classification results obtained from sev-
eral machine learning and deep learning techniques applied to both simulated
and real sonar datasets. Future enhancements aim to increase reliability and
broaden usability by integrating 3D models of humans, mines, and marine life
into diverse environmental settings for enhanced information richness. Addition-
ally, we envisage improving the diversity and scalability of the generated datasets
by incorporating advanced generative AI techniques such as GAN and diffusion
models. We contemplate that the S3Simulator dataset will significantly advance
AI technology for marine exploration and surveillance by offering valuable sonar
imagery for research purposes.
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Abstract. Trajectory forecasting is crucial for video surveillance analyt-
ics, as it enables the anticipation of future movements for a set of agents,
e.g., basketball players engaged in intricate interactions with long-term
intentions. Deep generative models offer a natural learning approach
for trajectory forecasting, yet they encounter difficulties in achieving
an optimal balance between sampling fidelity and diversity. We address
this challenge by leveraging Vector Quantized Variational Autoencoders
(VQ-VAEs), which utilize a discrete latent space to tackle the issue of
posterior collapse. Specifically, we introduce an instance-based codebook
that allows tailored latent representations for each example. In a nutshell,
the rows of the codebook are dynamically adjusted to reflect contextual
information (i.e., past motion patterns extracted from the observed tra-
jectories). In this way, the discretization process gains flexibility, lead-
ing to improved reconstructions. Notably, instance-level dynamics are
injected into the codebook through low-rank updates, which restrict the
customization of the codebook to a lower dimension space. The resulting
discrete space serves as the basis of the subsequent step, which regards
the training of a diffusion-based predictive model. We show that such a
two-fold framework, augmented with instance-level discretization, leads
to accurate and diverse forecasts, yielding state-of-the-art performance
on three established benchmarks.

Keywords: Trajectory forecasting · Vector Quantization

1 Introduction

Trajectory forecasting finds applications in video surveillance [19], multi-object
tracking [6,22], behavioural analysis [29], and intrusion detection [34]. The goal
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is to predict the future paths of a set of agents from a few observations of their
motion. The prediction can incorporate the interactions between pedestrians [15,
24,33], or visual attributes of the environment they move within [5].

As multiple plausible paths can be forecast, trajectory prediction reveals
an uncertain and multi-modal nature. To achieve this, recent data-driven
approaches [12,16,23] lean toward a stochastic formulation that places a dis-
tribution over the future trajectory, rather than a single estimated path with
100% certainty (i.e., deterministic approaches [24]). In doing so, recent stochas-
tic methods take advantage of the latest breakthroughs in deep generative model-
ing for image generation. For example, [12,30] resorted to Generative Adversarial
Networks, while [16,36,45] borrowed ideas from the class of variational methods.

One of the hindrances toward the application of variational approaches is
the posterior collapse issue: i.e., when the latent variables collapse to the prior
becoming uninformative; as a consequence, the decoder learns to ignore them.
This translates into a model with undermined generative capabilities, wherein
its predictions are distributed on a single path (e.g., the most trivial one) with
low uncertainty. A similar tendency (mode collapse) has been observed in adver-
sarial networks, and has been addressed through burdensome learning objectives
promoting variety [12,30], or by devising multiple generator networks [5].

In the field of image generation, Vector Quantized Variational Autoen-
coders [40] (VQ-VAEs) have proven to mitigate posterior collapse. VQ-VAEs
models avoid the hand-crafted Gaussian prior distribution; differently, they build
upon a learnable categorical prior, thereby yielding a discrete latent space. The
symbols of this space are the keys of a fixed-size dictionary (codebook), whose
values are learnable latent codes. Thanks to the resulting increased flexibility,
VQ-VAEs embody a promising paradigm for trajectory forecasting.

In this respect, our main contribution regards the content of the VQ-VAE
codebook. In particular, while the original formulation devises a single codebook
shared across all examples, we propose to dynamically adjust its values based on
the context of each example, leading to an instance-based codebook. We refer
as context to the set of historical information related to each agent, namely the
past steps of its trajectory as well as its interactions with nearby agents. In this
way, we aim to encourage even more flexibility during the discretization process,
as distinct motion patterns can be discretized with varying granularity.

Moreover, we envision the customization of the codebook as an adaptation
of the shared original VQ-VAE codebook. By doing so, our goal is to strike a
balance between per-instance customization and the emergence of cross-instance
concepts that are relevant across multiple examples. In practice, we draw inspira-
tion from recent advances in Parameter Efficient Fine Tuning and represent the
dynamic adjustments to the codebook as low-rank updates of its values (see
Fig. 1). We show that such a modeling constraint improves the representation
capabilities of the learned latent space, thereby encoding additional informa-
tion and facilitating the reconstruction task. The traditional subsequent stage
in VQ-VAEs involves fitting the distribution on the discrete latent codes. In
this respect, we make use of a vector-quantized diffusion model [10] to learn the
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implicit prior, departing from existing approaches [7,40] that rely on autoregres-
sive priors, which are more susceptible to issues related to error accumulation.

The contributions are i) to the best of our knowledge, we are the first leverag-
ing VQ-VAEs in a trajectory generation task; ii) we introduce a novel instance-
based codebook based on low-rank modeling; iii) we achieve SOTA performance
on three established benchmarks (Stanford Drone [28], NBA [20] and NFL [41]).

2 Related Work

The traditional approach to trajectory prediction considers solely the past
movements of the agent [3]. However, its motion is likely to be influenced by
the motions of other agents (e.g., to avoid collisions or to perform coordinate
actions). The first approaches took into account social behaviors through hand-
crafted relations, energy-based features, or rule-based models [2,26]. In recent
years, the focus has shifted towards data-driven approaches [1,12], leveraging
deep models to extract social information [15,33]. Others, instead, rely on the
attention mechanism, which has proven highly effective at capturing interactions
within tokenized data [24]. For example, [15] employs a graph-based attention
mechanism to model human interactions, while [24] utilizes a social-temporal
attention module to capture temporal relationships between consecutive time
steps and interpersonal interactions occurring among agents.

Given the inherent uncertainty and multi-modal characteristics of future tra-
jectories, recent approaches embrace a deep probabilistic framework to model
their distribution. S-GAN [12] leverages a conditional Generative Adversarial
Network (GAN) [8], while the authors of SoPhie [30] extend GANs to incor-
porates visual and social interaction components. Other works utilize condi-
tional Variational Autoencoders (VAE) [17] for multimodal pedestrian trajec-
tory prediction, including [16,31,36,45,46]. Trajectron++ [31] employs a VAE
and represents agents’ trajectories in a graph-structured recurrent neural net-
work, while PECNet [23] integrates VAEs and goal conditioning. However, both
GAN and VAE-based methods grapple with collapsing issues in trajectory gen-
eration, necessitating burdensome countermeasures [38]. Ultimately, the work
by [11] pioneers the utilization of denoising diffusion models [13] within the tra-
jectory prediction framework, marking a significant advancement in this domain.

Vector Quantization Models. Vector Quantized Variational Autoen-
coders [40] address posterior collapse by replacing the continuous latent space of
VAEs with a discrete set of codewords. Starting from pioneering works, which
showed the potential of these models in image generation [27,40], recent studies
focused on improving the two fundamental stages: the codebook learning and the
discrete prior learning [18]. In this respect, SQ-VAE [35] replaces deterministic
quantization with a pair of stochastic dequantization and quantization processes.
To create a more comprehensive codebook, [7] supplements the original training
losses of VQ-VAE with adversarial training. Additionally, [47] adopts a mask-
ing strategy during training and introduces prior distribution regularization to
mitigate issues related to low-codebook utilization.
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The advances regarding discrete prior learning involve architectural modifi-
cations [7] and a critical reevaluation of autoregression. [37] employs a discrete
diffusion architecture to model code prediction, while MaskGIT [4] utilizes a
bidirectional transformer decoder. This decoder generates all tokens of an image
simultaneously and iteratively refines the image based on the preceding gen-
eration. In this paper, we condition the codebook on historical instance-level
information while preserving the discrete nature of the latent space.

3 Preliminaries

We denote the future trajectory as y ∈ R
T×d, where T is the number of future

time steps and d is the input channel dimension. When dealing with pedestri-
ans, their trajectories are projected into the 2D bird’s-eye view (so d = 2). The
predicted trajectory ŷ is generated by a learnable model, fed with a set of con-
ditioning information: i) the observed trajectory x ∈ R

Tp×d of the agent, i.e.,
the coordinates observed at previous Tp steps, and ii) a set of neighboring tra-
jectories denoted as X = {x1, x2, . . . , xN}. We define neighbors of an agent as
all agents within the same scene, without imposing any distance threshold.

Vector Quantization. Standard VAEs [17] employ i) an encoder E ≡ E(y|θE)
that, given input y, outputs a parametric posterior distribution q(z|y) over latent
variable z; ii) a decoder G ≡ G(z|θG) that provides the reconstruction of
the input data as pθG(y|z). The posterior q(z|y) is encouraged to conform to a
standard Gaussian prior distribution p(z), which could lead to over-regularized
representations (posterior collapse). VQ-VAEs [40] extend VAEs by employ-
ing discrete latent variables and Vector Quantization (VQ) [9]. In particular,
both posterior and prior distributions are categorical, and their samples provide
indices for a learned embedding table e ∈ R

C×D, which consists of C static
D-dimensional latent vectors. As outlined in the following paragraphs, the train-
ing of VQ-VAEs is divided into learning the codebook and fitting the categorical
prior.

First Stage. Given the input y ∈ R
T×d, the encoder provides a continuous rep-

resentation z ∈ R
T×D, where zt ∈ R

D with t ∈ {1, 2, . . . , T} and D indicates the
dimension of the latent space. Then, the VQ-VAE characterizes the posterior as
a joint distribution over T independent categorical variables q(c1, c2, . . . , cT |y)
(one for each latent). Each marginal q(ct|y) is determined by matching each
element of the encoding sequence zt with the nearest vector in the codebook e:

q(ct|y) = C(p1, p2, . . . , pC)
︸ ︷︷ ︸

[0,...,0,1,0,...,0]

s.t. pc =

{

1 if c = argminc′∈{1,2,...,C} ‖zt − ec′‖22
0 otherwise.

(1)
Notably, the posterior distribution is deterministic and not stochastic as for
VAEs: hence, we can draw a sample zq ≡ zq(y) from the posterior distribution
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Fig. 1. Overview of our approach to trajectory prediction, based on Vector Quantiza-
tion and Low-Rank adaptation of the codebook (highlighted in the purple box). (Color
figure online)

by selecting the corresponding rows of the codebook, as follows:

zq = [ec1 , ec2 , . . . , ecT ]
ct ∼ q(ct|y) =⇒ ct = argmax q(ct|y).

(2)

The subsequent step regards the decoder G, which reconstructs ŷ from the sam-
pled latent vector. During training, the first stage optimizes the following loss:

LFS = log pθG(y|zq)
︸ ︷︷ ︸

rec. error e.g., MSE

+
∑

t
‖sg[zt] − ect‖2
︸ ︷︷ ︸

embedding loss

+
∑

t
‖zt − sg[ect ])‖2
︸ ︷︷ ︸

commitment loss

, (3)

where sg is a shortcut for the stopgradient operator, which stops backpropaga-
tion from that computational node backward. The second term encourages the
quantized latent vectors to be as close as possible to the nearest codeword, while
the third one encourages the encoder to be committed to the chosen codeword.

Second Stage. The goal here is to learn a parametric model pθp
(c1, c2, . . . , cT )

– termed categorical prior – which allows to draw new samples from the latent
space. During this phase, the modules of the VQ-VAE are no longer subject to
learning. Given the trained encoder, each training example y is embedded into
a sequence of indices, built by relating each latent vector to the nearest row of
the codebook (as in Eq. 2). On top of that, the generative model targets the
generating process p(c1, c2, . . . , cT ) of the discrete latent codes, and optimizes
the following Maximum Likelihood Estimation (MLE) training objective:

LSS = E c1,...,cT
ct∼q(ct|y)

[− log pθp
(c1, c2, . . . , cT )]. (4)
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4 Low-Rank Adaptation for VQ-VAE

We herein present our approach to trajectory prediction, which we name LRVQ,
depicted in Fig. 1. Briefly, we exploit VQ-VAEs to encode the future trajectory
y of a given agent. On top of that, the following main novelties are introduced:

– We extend VQ-VAE to predict a trajectory coherent with the observed his-
torical trend. To do so, we feed additional contextual information to the
VQ-VAE, conditioning both the prior and the posterior distributions. The
contextual information consists of the past observed trajectory x, and a sum-
mary of the interactions between the agent and its neighbours. The structure
of the resulting quantization model is presented in Sect. 4.1.

– To encourage further flexibility, the codebook itself is conditioned on the
additional contextual information (see Sect. 4.2). As discussed later, the con-
text is introduced by devising a low-rank adjustment to the codebook.

– To avoid the error accumulation and the unidirectional bias problem, typical
of auto-regressive methods [10], we make use of a discrete diffusion model
for the generation of the sequence of indices (see Sect. 4.3). We also introduce
a new sampling technique, based on the k-means clustering algorithm, to
produce better and more consistent generations (see Sect. 4.4).

4.1 Trajectory Forecasting with VQ-VAEs

Formally, our VQ-VAE can be summarized as:

hctx = Ectx([x,X ]) (context encoding) (5a)
zq = E(y, [Y, hctx]) (encoding) (5b)
ŷ = G(zq,Zq), (decoding) (5c)

where X , Y and Zq represent respectively the past, the future, and the latent
quantized representation of the nearby agents’ trajectories (see Sect. 3). The
modules Ectx(·), E(·), G(·) are three neural networks, each of which exploits
social-temporal transformer [24] to account for social-temporal relations.

In particular, a contextual encoder Ectx(·) computes hidden features hctx ∈
R

Tp×D that summarize both the past trend x ∈ R
Tp×2 of the trajectory and

spatial interactions (Eq. 5a). The function E(·) plays the role of the VQ-VAE
encoder, transforming the future trajectory y into a discrete representation zq ∈
R

T×D (see Eq. 5b). To condition the model on historical information, the encoder
is fed also with the hidden contextual information hctx; in detail, a tailored cross-
attention layer is devised to mix future and past information. Finally, in step (5c)
we achieve the estimated future trajectory ŷ ∈ R

T×2 through the decoder G(·).
As well as traditional VQ-VAEs, we employ Mean Squared Error (MSE) as

our reconstruction term between the ground truth and predicted trajectory.
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4.2 Instance-Based Codebook

The codebook plays a crucial role in VQ-VAEs and can cause instabilities during
optimization. For instance, the uneven utilization of the vectors of the codebook
is a factor that may lead to inefficiencies in representation learning. This imbal-
ance often results in certain elements of the codebook being underutilized, while
others never match with real-valued embeddings. To mitigate these issues, the
authors of [44] resort to reducing the latent-space dimensionality, showing that
it leads to a condensed but richer codebook. In practice, before quantization,
each vector z is projected from R

D to a lower-dimension space Dr � D. In the
following, we will refer to this strategy as static codebook, to distinguish it
from our proposal that instead leverages dynamic cues.

Our idea is to modify the content of the codebook, such that it reflects the
motion observed in the past trajectory. The intuition is that different motion
styles (e.g., straight vs. curvilinear) could prefer distinct latent codes and dis-
cretization strategies. On this basis, we exploit again the contextual features hctx

to generate an instance-based codebook ξ = fξ(·, hctx), computed through
a tailored learnable module fξ. The latter shares the same design of the above-
described encoding networks and hence builds upon social-temporal transform-
ers [24]. Afterwards, we combine static and instance-based codebooks by means
of summation, thus obtaining a conditioned codebook ec:

ec = l2 norm(e) + λξl2 norm(ξ) (6)

where l2 norm indicates the row-wise l2-normalization v/‖v‖2 and λξ is an hyper-
parameter that weighs the sum. We leverage normalizing layers to ensure that
the two components contribute almost equally to the final embedding table.

Moreover, the way we define the codebook draws inspiration from the
successes of low-rank adaptation [14] for fine-tuning Large Language Models
(LLMs). Namely, we opt for a low-rank characterization of fξ, which means
that the instance-driven modifications to the static codebook lie on a lower-
dimensional manifold of the parameter space. We hence define the instance-based
codebook ξ as a matrix product of two low-rank matrices Bctx and A, as follow:

Bctx = fξ(B, hctx) where B,Bctx ∈ R
D×r

ξ = BctxA where A ∈ R
r×C .

(7)

Considering B as a set of learnable tokens, fξ adopts cross attention between
the conditioning information hctx and B to create an instance-based Bctx.

4.3 Diffusion-Based Categorical Prior

As previously mentioned, the second main stage regards the training of the
parametric categorical prior pθp

(c|x,X ) (note that the pθp
is also conditioned

on historical information), where c = {c1, c2, . . . , cT }. Notably, the learned prior
serves to forecast the future trajectory y at inference time, when the posterior
distribution of y is not available. Section 4.4 provides a detailed description of
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the sampling procedure, while the rest of this section describes the architectural
and training aspects of the categorical prior.

We borrow the design of the categorical prior from the framework of Denois-
ing Diffusion Probabilistic Models (DDPMs). In particular, we employ vector-
quantized diffusion models [10], as they naturally handle discrete distributions.
Notably, the application of DDPMs allows one to learn the categorical prior
without the need for autoregressive modeling, as commonly employed in many
existing approaches [7,39]. In the context of trajectory prediction, we view the
adoption of a non-autoregressive model as an additional strength. On the one
hand, auto-regressive methods can leverage the inherent inductive bias of time-
series data, where consecutive time steps relate to each other. However, this often
results in error accumulation issues and in the so-called unidirectional bias [10],
which blurs contextual information that flows in a direction not coherent with
the chosen auto-regressive order. In the task under consideration, this means
that auto-regressive approaches may struggle to leverage cues emerging in later
moments of the trajectory, as the goal or the long-range intention of the agent.
These crucial aspects of trajectory prediction [23] could be better addressed by
the approach proposed in this work, which is order-free and capable of captur-
ing multiple plausible trends.

Formally, we define qdiff as the diffusion process that injects incremental
noise to the token sequence c for Ψ diffusion steps. Instead, pdiff

θ is the denoising
process that gradually reduces the noise of the noised sequence. The parameters
θ of the denoising module are trained with the variational lower bound [32]:

Lvlb = L0 + L1 + · · · + LΨ−1 + LΨ , (8a)

Lψ = DKL(qdiff (cψ|cψ−1) ‖ pdiff
θ (cψ|cψ+1, ̂Cψ, x,X )), (8b)

Lc0 = − log pdiff
θ (c0|cψ, ̂Cψ, x,X ), (8c)

where we use x, X and ̂Cψ – the token sequence of neighboring agents at diffu-
sion step ψ – as conditioning information during denoising. (8c) is an auxiliary
objective encouraging the prediction of a noiseless token s0. The loss function:

L ←
{

L0, if ψ = 1
Lψ−1 + λLc0 otherwise.

(9)

We refer to [10] for more exhaustive details on the diffusion steps and the prior.

Generation. At inference time, the past and social information is encoded
using Ectx and then passed to the diffusion process pdiff

θ . The latter, after Ψ
denoising steps, provides a (denoised) sequence of T indices ĉ ∈ R

T . These indices
represent the encoding of the future unobserved trajectory; therefore, we used
them to select the proper elements of the codebook ec, thus allowing us to create
a quantized sequence representation zq. Then zq undergoes decoding through the
VQ-VAE decoder G, which finally yields the generation of trajectories ŷ.
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4.4 Enforcing Effective Multi-modal Forecasting

The sampling approach described above represents the common way to draw
new samples from the learned prior of a VQ-VAE. However, we build upon it
to create a stronger and richer selection strategy that furthers the multi-modal
capabilities of DDPMs. The standard evaluation process involves sampling K
distinct trajectories from the model and assessing the top-performing one (as
described in Sect. 5). Therefore, each methodology must find the right balance
between accuracy in its prediction and potential for exploration. The proposed
procedure goes in this direction: we generate numerous raw future paths, called
guesses, and then condense them into the most representative ones. In formal
terms, we sample N guesses and then perform the k-means clustering algorithm,
with a number of clusters equal to K < N (in our experiments, we set N = 200
and K = 20). We view the resulting centroids as the principal modes of the
predictive distribution learned by the DDPM and thus use them for prediction
in place of the original samples. This strategy guarantees a twofold advantage
compared to naive prediction: firstly, out-of-distribution samples typically form
independent clusters, thus enhancing exploration; secondly, the use of centroids
reduces the quantization noise, as in-distribution samples are grouped into large
clusters and averaged element-wise (see Fig. 2).

Fig. 2. Comparison between the K = 5 samples obtained from a uniform sampling
strategy (on the left) and the ones given as output from the proposed k-means centroids
sampling strategy (on the right), starting from the same N = 20 initial guesses.

5 Experiments

We assess our proposal on the following three trajectory prediction benchmarks.

Stanford Drone Dataset (SDD). The dataset [28] gathers trajectories of
pedestrians within the Stanford University campus in a bird’s eye view. Given 8
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time steps (≈3.2 s), methods have to forecast the subsequent 12 frames (4.8 s).
We employ the established train-test split [23].

NBA SportVU Dataset (NBA). Collected by the NBA’s SportVU auto-
matic tracking system, this dataset [20] provides the trajectories of 10 players
and the ball in real basketball games. Given 10 previous time-steps (≈2.0 s), the
models predict the subsequent 20 steps (4.0 s).

NFL Football Dataset (NFL). The NFL Football Dataset [41] records the
movements of every player throughout each play of the 2017 season. The goal is
to predict the trajectories of the 22 players (11 per team) and the ball for the
ensuing 3.2 s (16 steps), given the preceding 1.6 s (8 steps).

Metrics. We use two established metrics [1,26] i.e., the Average/Final Dis-
placement Errors (ADE/FDE). Given predicted and ground-truth trajectories,
ADE computes the average error on all points, while the FDE restricts the error
committed in the final step. Following other works dealing with stochastic mod-
els [16,23], we adhere to the best-of-20 protocol [42,43], selecting for evaluation
the best trajectory from a pool of K = 20 generations. We denote the corre-
sponding metrics as ADEK and FDEK ; these are in meters for NBA and NFL,
and in pixels for SDD. For sports datasets, we compute these metrics at different
delta times to provide a more comprehensive assessment.

Table 1. Impact of distinct VQ-VAE codebooks on performance (ADE20/FDE20).

Dataset Static Full-Rank Low-Rank

SDD 8.29/13.44 8.07/12.89 7.86/12.68

NBA 0.895/1.279 0.894/1.275 0.893/1.267

NFL 0.993/1.702 0.993/1.702 0.982/1.679

Implementation Details.1 We set the number of codewords C to 16 for all
datasets, while we take the best rank r for each dataset (e.g., 8 for SDD and
NBA, 4 for NFL). For the first stage, we use AdamW [21] as optimizer with
lr = 5 × 10−4, β1 = 0.5 and β2 = 0.9. We train on SDD for 7000 epochs with
batch size equal to 256. For NBA and NFL, we instead optimize for 700 epochs
(the batch size equals 64). We use a cosine schedule for λξ from an initial value of
0 to a final value of 1. In this way, we can introduce the instance-level codebook
gradually during training.

For the second stage, we re-use the same optimizer/batch-size setup, while
training for 3000 epochs for SDD, 1000 epochs for NBA, and 700 for NFL. As an
augmentation technique, we rotate the trajectories by a random angle, ranging
between 0 and θmax. We set θmax to 180◦ for the first stage, while we find it
beneficial to adopt a lower value (5◦) for the second stage.

1 The code is available at https://github.com/aimagelab/LRVQ.

https://github.com/aimagelab/LRVQ
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5.1 On the Impact of the Instance-Based Codebook

To assess the merits of our low-rank instance-based codebook, we herein empir-
ically compare it with two alternative strategies. On the one hand, we devise
a comparison with a static codebook (→ standard VQ-VAEs, lacking instance-
level conditioning). Secondly, we contrast it with a full-rank codebook (which
includes instance-level conditioning but lacks low-rank design constraints). To
be more precise, the full-rank codebook is a baseline approach herein provided,
which computes the values of the codebook through a learnable module fed
with historical information as input. Unlike the proposed low-rank counterpart,
the full-rank codebook does not adapt a shared static codebook but directly
outputs its values. Through such a comparison, we can evaluate the efficacy of
constraining the updates to the dictionary within a low-dimensional manifold.

Table 1 presents the related results: as can be observed, the low-rank model
outperforms both the static and full-rank variants. In particular, the improve-
ments are remarkable for SDD and NFL and more modest for NBA. Moreover,
the presence of instance-level conditioning, common to full- and low- approaches,
proves particularly beneficial for the SDD dataset, as demonstrated by the gap
w.r.t. the static codebook (similar evidence emerges for the NBA dataset).

Table 2. Impact of varying the rank of B on the behavior of the model. Optimal
performance (ADE20) is achieved by identifying a sweet spot characterized by a low
reconstruction error (ADErec) and a high accuracy in code prediction (Acc).

Dataset Rank ADErec ↓ Acc(%) ↑ ADE20 ↓
SDD 4 3.41 26.38 7.96

16 2.97 22.20 8.06

NBA 4 0.207 15.92 0.898

16 0.164 13.27 0.892

NFL 4 0.227 15.30 0.982

16 0.177 11.95 0.996

In the second place, we aim to investigate the impact of the rank r, which
controls the dimension of the matrix Bctx (i.e., the degree of instance-level cues
introduced into the codebook). In particular, we want to measure how the rank r
affects: i) the reconstruction capabilities of the VQ-VAE decoder (learned during
the first stage); ii) the generative capabilities of the diffusion model (learned
during the second stage). For point i), we exploit the Average Displacement Error
(ADErec) to assess the reconstruction performance. Instead, to characterize the
generative capabilities, we resort to the mean accuracy achieved by the diffusion
model in predicting codebook indexes, as well as the already mentioned ADE20.

Table 2 presents the results for different ranks r. We observe that a higher
reconstruction capability during the initial training stage is associated with
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increased difficulty in the diffusion task, resulting in lower accuracy. This indi-
cates a correlation between the two phases: achieving optimal results in the first
phase does not necessarily yield the best final generation metrics, as it compli-
cates the joint task of trajectory generation (i.e., sampling from the prior and
reconstructing through the decoder). Table 2 demonstrates that the most favor-
able final metrics are achieved by striking a balance between low reconstruction
error and good diffusion accuracy.

5.2 Comparison with SOTA Methods

In this section, we compare our model to the following existing approaches:

– Social-GAN [12] relies on a Conditioned GAN, with a module to handle social
interactions between agents.

– Trajectron++ [31] exploits VAEs and graph-structured recurrent networks.
– PECNet [23] augments a VAE with goal-oriented reasoning.
– LB-EBM [25] targets the prediction of long-range trajectories through a belief

vector, which encapsulates the energy distribution in the environment.
– GroupNet [42] is a multiscale hypergraph network that captures both pair-

and group-wise interactions at different scales.
– Memo-Net [43] mimics retrospective memory in neuropsychology and predicts

intentions by retrieving similar instances from a memory bank.
– MID [11] leverages a diffusion model to progressively reduce indeterminacy

within potential future paths.

Table 3. SDD results (ADE20/FDE20).
∗ represents the reproduced results from open

source. Best results in bold, second-best underlined.

Time S-GAN Trajectron++ PECNet MemoNet GroupNet MID∗ LRVQ

4.8 s 27.23/41.44 19.30/32.70 9.96/15.88 8.56/12.66 9.31/16.11 9.73/15.32 7.86/12.68

Table 4. NBA results (ADE20/FDE20). Best results in bold, second-best underlined.

Time S-GAN PECNet Trajectron++ MemoNet GroupNet MID LRVQ

1.0 s 0.41/0.62 0.40/0.71 0.30/0.38 0.38/0.56 0.26/0.34 0.28/0.37 0.19/0.29

2.0 s 0.81/1.32 0.83/1.61 0.59/0.82 0.71/1.14 0.49/0.70 0.51/0.72 0.41/0.63

3.0 s 1.19/1.94 1.27/2.44 0.85/1.24 1.00/1.57 0.73/1.02 0.71/0.98 0.64/0.96

4.0 s 1.59/2.41 1.69/2.95 1.15/1.57 1.25/1.47 0.96/1.30 0.96/1.27 0.89/1.27

Table 5. NFL results (ADE20/FDE20). Best results in bold, second-best underlined.

Time S-GAN PECNet Trajectron++ LB-EBM GroupNet MID LRVQ

1.0 s 0.37/0.68 0.52/0.97 0.41/0.65 0.75/1.05 0.32/0.57 0.30/0.58 0.23/0.35

2.0 s 0.83/1.53 1.19/2.47 0.93/1.65 1.26/2.28 0.73/1.39 0.71/1.31 0.53/0.92

3.2 s 1.44/2.51 1.99/3.84 1.54/2.58 1.90/3.25 1.21/2.15 1.14/1.92 0.98/1.68
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We report the comparison in Table 3, Table 4, and Table 5. To sum up, our LRVQ
demonstrates superior performance across all the considered benchmarks.

On the SDD dataset (Table 3), we attain superior ADE results, matching
closely MemoNet in FDE. While PECNet and GroupNet, among C-VAE meth-
ods, demonstrate noteworthy performance compared to the older S-GAN and
Trajectron++, they struggle in FDE, especially when compared to MemoNet.
This could be ascribed to the effective sampling strategy of MemoNet, which
integrates a tailored clustering phase to generate multiple overall intentions.

Additionally, our approach showcases robust performance across all examined
partial timestamps for both the NBA (Table 4) and NFL datasets (Table 5). The
two most competing methods are GroupNet – based on the C-VAE framework
– and more importantly MID, which akin to our approach utilizes a diffusion
process. However, we highlight an important distinction with MID, which we con-
sider as a motivation for our improvements: while MID adopts diffusion modeling
directly in output space, we instead apply it to the discrete variables extracted
by the VQ-VAE encoder. We believe that our latent-based formulation further
promotes the emergence of multi-modal generative capabilities.

5.3 Qualitative Results

Figure 3 provides a qualitative comparison on 20 generations (with sub-sampling)
produced by a VQ-VAE trained with a static codebook, a dynamic codebook,

Fig. 3. Qualitative comparison for three SDD scenes (one for each row of the figure)
between the trajectories obtained from a VQ-VAE with a static codebook, a full rank
codebook the proposed low-rank codebook (from left to right).
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and the low-rank conditioned codebook (see Sect. 5.1). Each row illustrates a
different scene from the SDD dataset, showcasing different agent behaviors: in
the first one, the agent remains stationary, while in the others, it either turns left
or proceeds straight ahead. Compared to the other two methods, low-rank con-
ditioning appears to be more accurate, particularly in complex scenarios where
the agent stays still or changes its direction of movement.

6 Discussion and Conclusions

Limitations. The complexity of our model is linked to two factors:

– Two-step training procedure: although VQ-VAE offers benefits such as a
learned prior, the training must be divided into two distinct stages, which
increases the total time required to train the model.

– Inference time: the inference procedure described in Sect. 4.4 takes longer as
the number N of starting guesses increases. To obtain a trade-off between the
accuracy of the ensemble of K final generations and the computational time,
the parameter N has to be carefully adjusted.

Conclusion. We propose a stochastic approach for trajectory prediction. It
builds upon Vector Quantization to yield a predictive distribution that preserves
both sampling fidelity and diversity. Our main contribution lies in a dynamic,
instance-related codebook encompassing past trajectory information. Notably,
contextual information is incorporated into the codebook through a low-rank
update. We conduct several empirical studies to validate our approach, demon-
strating its superior generative capabilities compared to both standard VQ-VAEs
and existing methods. This leads to state-of-the-art results on three established
benchmarks.
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Abstract. To address the zero-shot temporal action localization
(ZSTAL) task, existing works develop models that are generalizable
to detect and classify actions from unseen categories. They typically
develop a category-agnostic action detector and combine it with the Con-
trastive Language-Image Pre-training (CLIP) model to solve ZSTAL.
However, these methods suffer from incomplete action proposals gen-
erated for unseen categories, since they follow a frame-level prediction
paradigm and require hand-crafted post-processing to generate action
proposals. To address this problem, in this work, we propose a novel
model named Generalizable Action Proposal generator (GAP), which
can interface seamlessly with CLIP and generate action proposals in a
holistic way. Our GAP is built in a query-based architecture and trained
with a proposal-level objective, enabling it to estimate proposal com-
pleteness and eliminate the hand-crafted post-processing. Based on this
architecture, we propose an Action-aware Discrimination loss to enhance
the category-agnostic dynamic information of actions. Besides, we intro-
duce a Static-Dynamic Rectifying module that incorporates the gener-
alizable static information from CLIP to refine the predicted proposals,
which improves proposal completeness in a generalizable manner. Our
experiments show that our GAP achieves state-of-the-art performance on
two challenging ZSTAL benchmarks, i.e., Thumos14 and ActivityNet1.3.
Specifically, our model obtains significant performance improvement over
previous works on the two benchmarks, i.e., +3.2% and +3.4% aver-
age mAP, respectively. The code is available at https://github.com/
Run542968/GAP.
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1 Introduction

Temporal Action Localization (TAL) is one of the most fundamental tasks
in video understanding, which aims to detect and classify action instances
in long untrimmed videos. It is important for real-world applications such
as video retrieval [6,21,30,44], anomaly detection [8,40,48], action assess-
ment [18,19], and highlight detection [11,32]. In recent years, many methods
have shown significant performance in the close-set setting [7,10,28], where cat-
egories are consistent between training and inference. However, a model trained
in the close-set setting is capable of localizing only pre-defined action categories.
For example, a model trained on a gymnastic dataset cannot localize a “diving”
action, even though they are both sports actions. As a result, temporal action
localization models are significantly limited in real-world applications.

Fig. 1. Left: Zero-shot temporal action localization requires the model trained on
seen action categories to be generalizable in detecting and classifying unseen action
categories during inference. Right: Visualization of the action proposals generated by
STALE [33], EffPrompt [14] and our GAP. The “mIoU” denotes the mean Intersection
over Union, which evaluates the completeness of predicted proposals. We can find that
our GAP generates more complete action proposals and has a higher mIoU score than
the compared frame-level methods. Best viewed in color.

To alleviate the above limitation, our work studies the Zero-Shot Tempo-
ral Action Localization (ZSTAL) task. This task aims to develop a localization
model capable of localizing actions from unseen categories by training with only
seen categories. In this task, the action categories in training and inference are
disjoint, that is neither labels nor data for testing categories are available during
training. For example, as shown in Fig. 1 (Left), ZSTAL aims to develop a model
that is capable of localizing instances of “Shotput” by training with instances of
“Diving”, “HighJump”, etc.

Typically, existing works address the ZSTAL task by a composable model,
which consists of a CLIP-based classifier for action classification and a category-
agnostic action detector for detecting instances of unseen action categories. For
example, Ju et al. [14] propose to combine the Contrastive Language-Image Pre-
training (CLIP) model [36] with an off-the-shelf frame-level action detector to
solve the ZSTAL task. STALE [33] design a single-stage model that consists of
a parallel frame-level detector and CLIP-based classifier for ZSTAL.
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Despite the progress made by these methods, they suffer from gener-
ating incomplete proposal in detecting unseen action categories. As shown
in Fig. 1 (Right), the frame-level detectors (i.e., STALE [33] and EffPrompt [14])
generate fragmented action proposals and have low mIoU scores when detect-
ing unseen category “SoccerPenalty”. This is because these detectors are
trained with frame-level objectives and require hand-crafted post-processing
(e.g., aggregating frame-level predictions via threshold) to obtain action propos-
als, which leads to a lack of training on estimating the completeness of action
proposals.

In this work, we propose a novel Generalizable Action Proposal generator
named GAP, aiming to generate complete proposals of action instances for
unseen categories. Our proposed GAP is designed with a query-based archi-
tecture, enabling it to estimate the completeness of action proposals through
training with proposal-level objectives. The proposal-level paradigm eliminates
the need for hand-crafted post-processing, supporting seamless integration with
CLIP to address ZSTAL. Based on the architecture, our GAP first models
category-agnostic temporal dynamics and incorporates an Action-aware Dis-
crimination loss to enhance dynamic perception by distinguishing actions from
background. Furthermore, we propose a novel Static-Dynamic Rectifying mod-
ule to integrate generalizable static information from CLIP into the proposal
generation process. The Static-Dynamic Rectifying module exploits the com-
plementary nature of static and dynamic information in actions to refine the
generated proposals, improving the completeness of action proposals in a gener-
alizable manner.

Overall, our main contributions are as follows:

– We propose a novel Generalizable Action Proposal generator named GAP,
which can generate action proposals in a holistic way and eliminate the com-
plex hand-crafted post-processing.

– We propose a novel Static-Dynamic Rectifying module, which integrates gen-
eralizable static information from CLIP to refine the generated proposals,
improving the completeness of action proposals for unseen categories in a
generalizable manner.

– Extensive experimental results on two challenging benchmarks, i.e., Thu-
mos14 and ActivityNet1.3, demonstrate the superiority of our method. Our
approach significantly improves performance over previous work, +3.2% and
+3.4% in terms of average mAP, on the two benchmarks, respectively.

2 Related Works

2.1 Temporal Action Localization

Temporal Action Localization (TAL) is one of the key tasks in video understand-
ing topics. Existing methods can be roughly divided into two categories, namely,
two-stage methods and one-stage methods. The one-stage methods [28,38,49] do
the detection and classification with a single network. Two-stage [20,25,26,46,47]
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methods split the localization process into two stages: proposal generation and
proposal classification. Most of the previous works put emphasis on the pro-
posal generation phrase [25,26,39,41]. Concretely, boundary-based [20,25,26]
predict the probability of the action boundary and densely match the start and
end timestamps according to the prediction score. Query-based methods [39,41]
directly generate action proposals based on the whole feature sequence and fully
leverage the global temporal context. In this work, we employ query-based archi-
tecture and focus on integrating generalizable static and dynamic information
to improve the completeness of action proposals generated for unseen categories.

2.2 Zero-Shot Temporal Action Localization

Zero-shot temporal action localization (ZSTAL) is concerned with the problem
of detecting and classifying unseen categories that are not seen during train-
ing [14,15,33,35]. This task is of significant importance for real-world applica-
tions because the available training data is often insufficient to cover all the
action categories in practical use. Recently, EffPrompt [14] is the pioneering
work to utilize the image-text pre-trained model CLIP [36] for ZSTAL, which
adopts an action detector (i.e., AFSD [25]) for action detection and apply the
CLIP for action classification [23,24,43,51,52]. Subsequently, STALE [33] and
ZEETAD [35] trains a single-stage model that consists of a parallel frame-level
detector and classifier for ZSTAL. Despite the process made by these methods,
they struggle to generate complete action proposals for action in unseen cate-
gories. In this work, we focus on building a proposal-level action detector, which
integrates generalizable static-dynamic information to improve the completeness
of action proposals.

2.3 Vision-Language Pre-training

The pre-trained Vision-Language Models (VLMs) have showcased significant
potential in learning generic visual representation and enabled zero-shot visual
recognition. As a representative work, the Contrastive Language-Image Pre-
training (CLIP) [36] was trained on 400 million image-text pairs and showed
excellent zero-shot transferable ability on 30 datasets. In the video domain, sim-
ilar ideas have also been explored for video-text pre-training [3,45] with a large-
scale video-text dataset Howto100M [31]. However, due to the videos containing
more complex information (e.g., temporal relation) than images and large-scale
paired video-text datasets being less available, video-text pre-training still has
room for development [5,12,17,22,45,50]. In this work, we develop a generaliz-
able action detector that can seamlessly interface with the CLIP, thus utilizing
the excellent zero-shot recognition ability of CLIP to solve the zero-shot tempo-
ral action localization problem.
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3 Methodology

In this section, we detail our GAP, a novel Generalizable Action Proposal gen-
erator that integrates generalizable static-dynamic information to improve the
completeness of generated action proposals.

Fig. 2. Left: The pipeline of our method. We adopt a video of T = 8 with Nq = 5
predicted action proposals for example. Right: An illustration of the motivation of
Static-Dynamic Rectifying. The red and blue areas in the horizontal bar represent
two predicted action proposals. Top: Detection by leveraging only dynamic informa-
tion may result in incomplete proposals, where the model focuses on salient dynamic
parts. Bottom: After cooperating with static and dynamic information, the proposals
are refined by interacting with proposals exhibiting consistent static information to
approach ground truth. Best viewed in color.

3.1 Problem Formulation

Zero-Shot Temporal Action Localization (ZSTAL) aims to detect and classify
action instances of unseen categories in an untrimmed video, where the model is
trained only with the seen categories. Formally, the category space of ZSTAL is
divided into the seen set Cs and unseen set Cu, where C = Cs∪Cu and Cs∩Cu =
∅. Each training video V is labeled with a set of action annotations Ygt =
{ti, ci}i=Ngt

i=1 , where ti = (tsi , t
e
i ) represents the duration (i.e., action proposal)

of the action instance, where tsi and tei are start and end timestamps, ci ∈ Cs

is the category and Ngt is the number of action instances in video V. In the
inference phase, the model needs to predict a set of action instances Ypre =
{t̃i, c̃i}i=Nq

i=1 that has the same form as Ygt for each video, where Nq is the number
of predicted action proposals in inference, and c̃i ∈ Cu.

3.2 Model Overview

Pipeline of Our Method. Our model is composed of a CLIP-based action clas-
sifier and an action detector (i.e., proposal generator), as shown in Fig. 2 (Left).
The action detector generates category-agnostic action proposals for unseen
action categories. Then, the action classification is achieved by utilizing the



Towards Completeness 257

excellent zero-shot recognition abilities of CLIP, where a temporal aggregation
module is adopted to aggregate frame features for similarity computation.

The Proposed Action Detector. The core of our work is the proposal-level
action detector GAP, which integrates generalizable static-dynamic information
to improve the completeness of generated action proposals. As shown in Fig. 3,
the GAP is designed with a query-based architecture for temporal modeling, and
an Action-aware Discrimination loss Lad is used to enhance the perception of
category-agnostic temporal dynamics. Then, to mitigate the incomplete problem
introduced by category-agnostic modeling, a novel Static-Dynamic Rectifying
module is proposed to incorporate static information from CLIP to refine the
generated proposals, improving the completeness of action proposals.

Fig. 3. An illustration of our proposed GAP. Specifically, given the video feature X
extracted by the visual encoder, which is fed into the temporal encoder for tem-
poral dynamics modeling. And an Action-aware Discrimination loss Lad is used to
enhance the temporal modeling by distinguishing action from the background. Next,
the temporal decoder is adopted to generate dynamic-aware action queries. Then, the
static information is injected into dynamic-aware action queries by the Static-Dynamic
Rectifying module for refinement. Finally, action proposals are generated and super-
vised by the detection loss Ldet. Best viewed in color.

3.3 Temporal Dynamics Modeling

In this section, we design a query-based proposal generator with the trans-
former [4,42] structure for temporal modeling, which incorporates an Action-
aware Discrimination loss to enhance dynamics perception by distinguishing
actions from background.

Query-Based Architecture. Following previous works [14,33], we use the
visual encoder Fv of CLIP [36] for video feature extraction. Specifically, the
frames of video V are fed into Fv to obtain features X = Fv(V) ∈ R

T×D, where



258 J.-R. Du et al.

T denotes the number of frames, D is the feature dimension. Subsequently,
the video features X are fed into the temporal encoder, where the position
embedding and self-attention are applied to model the temporal relation within
them. After that, the temporal features X̂ ∈ R

T×D are obtained.
Given the temporal features X̂, they are fed into the temporal decoder along

with a set of learnable action queries Q. The action queries Q = {qi}i=Nq

i=1 ,
where qi is learnable vector with random initialization. As shown in Fig. 3, in
the decoder, the module follows the order of the self-attention module, cross-
attention module, and feedforward network. Specifically, self-attention is adopted
among the action queries to model the query relations with each other. The cross-
attention performs the interactions between the action queries with the temporal
features X̂, thereby the action queries can integrate the rich temporal dynamics
from video. Finally, the dynamic-aware action queries Q̂ are obtained after the
feedforward network.

Temporal Dynamics Enhancement. In order to enhance the temporal fea-
ture modeled by the temporal encoder, we propose an Action-aware Discrimi-
nation loss Lad by identifying whether each frame contains an action, which is
formulated as follows:

Lad = −
T∑

i=1

(mi log(σ(ai)) + (1 − mi) log(1 − σ(ai))), (1)

where σ is the sigmoid function, and ai (i ∈ [1, T ]) is the actionness score for i-th
frame, which is predicted by feeding temporal features X̂ into a 1D convolutional
network. mi is obtained by mapping the action boundary timestamps in ground
truth Ygt to temporal foreground-background mask {mi}i=T

i=1 as follows:

mi =

{
1, if i

T ∈ [ts, te]
0, if i

T /∈ [ts, te],
(2)

where [ts, te] ∈ Ygt is the normalized [start, end] timestamps of each action
instance.

With the Action-aware Discrimination loss Lad, the temporal encoder is capa-
ble of perceiving more category-agnostic dynamics of actions, thus helping to
generate more complete action proposals for unseen categories.

3.4 Static-Dynamic Rectifying

Since actions are composed of static and dynamic aspects [1], by only using
dynamic information of action, the generator tends to predict regions exhibiting
salient dynamics, rather than generating complete proposals that are close to
the ground truth. For example, as shown in Fig. 2 (Right), the action proposals
generated leveraging dynamic information are mainly located in the regions with
intense motion in the “Shotput” action, such as “turning” and “bending the
elbow”.
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Motivated by the above, we propose to integrate generalizable static and
dynamic information to improve the completeness of action proposals. We pro-
pose a Static-Dynamic Rectifying module, which injects the static information
from CLIP into the dynamic-aware action queries Q̂. As shown in Fig. 2 (Right),
by supplementing the static information, the model is aware of proposals that
exhibit consistent static characteristics (e.g., contextual environment), thereby
enhancing information interaction with these proposals to refine them and
improving the completeness of proposals. Notably, the Static-Dynamic Recti-
fying module is category-agnostic and can generalize to process unseen action
categories.

Specifically, with the dynamic-aware action queries Q̂, we first feed them
into the proposal generation head Fgen(·) to obtain action proposals t̂ =
σ(Fgen(Q̂)) ∈ R

Nq×2, where σ is the sigmoid function to normalize the boundary
timestamps, and t̂ = {t̂si , t̂

e
i }i=Nq

i=1 . Then, the static information corresponding to
the action proposals is obtained by applying temporal RoIAlign [9,28] to the
static feature X extracted by CLIP, which is formulated as follows:

Z = T-RoIAlign(t̂, X) ∈ R
Nq×L×D, (3)

where L is the number of bins for RoIAlign. Note that the gradient back-
propagation is not involved in the above process, it is only used to generate
the action proposals to introduce the static information.

Subsequently, the static-dynamic action queries Q̃ are obtained by injecting
the static features Z into the dynamic-aware action queries Q̂, as follows:

Q̃ = Q̂ + SA(CA(Q̂,Z)) ∈ R
Nq×D (4)

where the CA and SA denotes the cross-attention and self-attention, respec-
tively. In this way, static information from different frames in Z is injected into
the action query through attention-weighted aggregation. By injecting the static
information, our action queries Q̃ incorporate not only category-agnostic tempo-
ral dynamics from our temporal encoder but also generalizable static information
from CLIP, leading to stronger cross-category detection abilities for generating
complete action proposals.

3.5 Action Proposal Generation

Proposal Generation. Given the static-dynamic action queries Q̃, we feed
them into the proposal generation head Fgen(·) to generate category-agnostic
action proposals t̃ = σ(Fgen(Q̃)) ∈ R

Nq×2, where σ is the sigmoid function to
normalize the boundary timestamps, and t̃ = {t̃si , t̃

e
i }i=Nq

i=1 .
In addition, along with generated action proposals, we predict category-

agnostic foreground probabilities E = σ(Fcls(Q̃)) ∈ R
Nq for action proposals,

where Fcls is the binary classification head and E = {ξi}i=Nq

i=1 .

Category-Agnostic Detection Loss. Given the action proposals t̃, their fore-
ground probabilities E and the ground-truth action proposals t = {tsi , t

e
i }i=Ngt

i=1 .
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Similar to DETR [4], we assume Nq is larger than Ngt and the ground-truth
action proposals t is augmented to be size Nq by padding ∅. Then, the category-
agnostic detection loss Ldet is given as follows:

Ldet =
Nq∑

j=1

[Lcls(ξπ̂(j), ξ
∗) + Itj �=∅Lreg(t̃π̂(j), tj)], (5)

where Lreg = L1 + LtIoU , and Lcls is the binary classification loss that is imple-
mented via focal loss [27]. ξ∗ is 1 if the sample is marked positive, and otherwise
0. The π̂ is the permutation that assigns each ground truth to the corresponding
prediction, it is obtained by Hungarian algorithm [16] as follows:

π̂ = arg min
Nq∑

i=1

Cost(t̃i, ξi, ti), (6)

where Cost(t̃i, ξi, ti) is defined as I{ti �=∅}[α · L1(t̃i, ti) − β · LtIoU (t̃i, ti) − γ · ξi],
and LtIoU is the temporal IoU loss [28].

3.6 Training Objective and Inference

Training Objective. Overall, the training objective of our GAP is given as
follows:

L = Ldet + λad · Lad, (7)

where λad = 3 and the balance factor of Lcls, L1 and LtIoU in Ldet are 3, 5 and
2, respectively.

Zero-Shot Inference. After generating the category-agnostic action proposals,
following previous works [14,33], we construct the text prompt to transfer the
zero-shot recognition capability of CLIP, as shown in Fig. 2 (Left).

Specifically, the category name is wrapped in a prompt template “a video of a
person doing < CLS >”, then the textual (i.e., prompt) embeddings S ∈ R

Nc×D

are obtained by feeding the prompt into text encoder Ft of CLIP, where Nc is
the number of unseen categories.

Given the category-agnostic action proposals t̃ generated by the action detec-
tor, we obtain the frame features Z ∈ R

Nq×L×D corresponding to action pro-
posals by applying the temporal RoIAlign to spatial features X, as in Eq. (3).
Subsequently, the action classification is conducted as follows:

ĉ = arg max
c∈Nc

ψ(cos(Z,S)) ∈ R
Nq , (8)

where ĉ = {c̃i}i=Nq

i=1 is the set of predicted categories corresponding to the action
proposals, ψ is the temporal aggregation module and cos(·, ·) denotes the cosine
similarity. Subsequently, the final prediction Ypre = {t̃i, c̃i}i=Nq

i=1 is obtained by
combining the predicted action proposals t̃ and predicted category ĉ.
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4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our method on two public benchmarks, i.e., Thumos14 [13] and
ActivityNet1.3 [2], for zero-shot temporal action localization. Following the pre-
vious methods [14,33], we adopt two split settings for zero-shot scenarios: (1)
training with 75% action categories and test on the left 25% action categories;
(2) training with 50% categories and test on the left 50% action categories.

Thumos14 contains 200 validation videos and 213 test videos of 20 action
classes. It is a challenging benchmark with around 15.5 action instances per
video and whose videos have diverse durations. We use the validation videos for
training and the test videos for test, following previous works.

ActivityNet1.3 is a large dataset that covers 200 action categories, with a
training set of 10,024 videos and a validation set of 4,926 videos. It contains
around 1.5 action instances per video. We use the training and validation sets
for training and test, respectively.

Evaluation Metric. Following previous works [14,33], we evaluate our method
by mean average precision (mAP) under multiple IoU thresholds, which are
standard evaluation metrics for temporal action localization. Our evaluation is
conducted using the officially released evaluation code [2]. Moreover, to eval-
uate the quality of proposals generated by our method, we calculate Average
Recall (AR) with Average Number (AN) of proposals and area under AR v.s.
AN curve per video, which are denoted by AR@AN and AUC. Following the
standard protocol [25], we use tIoU thresholds set [0.5:0.05:1.0] on Thumos14
and [0.5:0.05:0.95] on ActivityNet1.3 to calculate AR@AN and AUC.

4.2 Implementation Detatils

For a fair comparison with previous works [14,33], we only adopt the visual
and text encoders from pre-trained CLIP [36] (ViT-B/16) to extract video and
text prompt features, the dimension D = 512. The number of layers for the
temporal encoder and decoder for Thumos14 and ActivityNet1.3 is set to 2, 5,
and 2, 2 respectively. The proposal generation head, binary classification head,
and temporal aggregation module are implemented by MLP, FC, and average
pooling, respectively. The AdamW [29] optimizer with the batch size 16 and
weight decay 1 × 10−4 is used for optimization. The equilibrium coefficients α,
β and γ in Eq. (6) are specified as 5, 2 and 2. The number of bins L = 16
for RoIAlign. The number of action queries is set to 40 and 30, learning rate is
set to 1 × 10−4 and 5 × 10−5 for Thumos14 and ActivityNet1.3. The method is
implemented in PyTorch [34] and all experiments are performed on an NVIDIA
GTX 1080Ti GPU. More details are available in supplementary material.
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4.3 Comparison with State-of-the-Arts

Performance of Localization Results. In Table 1, we compare our method
with the state-of-the-art ZSTAL methods on Thumos14 and ActivityNet1.3
datasets, in terms of mAP metric. From the results, it can be found that our
method significantly outperforms the existing methods and achieves new state-
of-the-art performance on both datasets. Our method outperforms the latest
method by 3.2% and 3.4% in terms of average mAP (i.e., AVG) of the 75%
v.s. 25% split on the Thumos14 and ActivityNet1.3 datasets, respectively. In the
case of the more challenging 50% v.s. 50% split, our method still significantly
outperforms the state-of-the-art methods. This demonstrates the effectiveness
of our proposed proposal-level action detector. It is worth noting that for a fair
comparison with other methods, we only use CLIP (i.e., RGB only) as the back-
bone, without the introduction of optical flow features that necessitate complex
processing. This demonstrates that our GAP has excellent generalization ability
to detect the location of unseen action categories by integrating generalizable
static and dynamic information.

Table 1. Comparison with the state-of-the-art ZSTAL methods on Thumos14 and
ActivityNet1.3 datasets. AVG represents the average mAP (%) computed under dif-
ferent IoU thresholds, i.e., [0.3:0.1:0.7] for Thumos14 and [0.5:0.05:0.95] for Activi-
tyNet1.3. The † denotes the extra information (i.e., optical flow) is disabled for a fair
comparison. All results of the compared methods are from their official report.

Split Method Thumos14 ActivityNet1.3

0.3 0.4 0.5 0.6 0.7 AVG 0.5 0.75 0.95 AVG

75% Seen 25% Unseen DenseCLIP [37] 28.5 20.3 17.1 10.5 6.9 16.6 32.6 18.5 5.8 19.6

CLIP [36] 33.0 25.5 18.3 11.6 5.7 18.8 35.6 20.4 2.1 20.2

EffPrompt [14] 39.7 31.6 23.0 14.9 7.5 23.3 37.6 22.9 3.8 23.1

STALE [33] 40.5 32.3 23.5 15.3 7.6 23.8 38.2 25.2 6.0 24.9

ZEETAD [35]† 47.3 – 29.7 – 11.5 29.7 45.5 28.2 6.3 28.4

Ours 52.3 44.2 32.8 22.4 12.6 32.9 47.6 32.5 8.6 31.8

50% Seen 50% Unseen DenseCLIP [37] 21.0 16.4 11.2 6.3 3.2 11.6 25.3 13.0 3.7 12.9

CLIP [36] 27.2 21.3 15.3 9.7 4.8 15.7 28.0 16.4 1.2 16.0

EffPrompt [14] 37.2 29.6 21.6 14.0 7.2 21.9 32.0 19.3 2.9 19.6

STALE [33] 38.3 30.7 21.2 13.8 7.0 22.2 32.1 20.7 5.9 20.5

Ours 44.2 36.0 27.1 15.1 8.0 26.1 41.6 26.2 6.1 26.4

Quality of Generated Action Proposals. We conduct a comparison between
our proposed GAP and existing methods in terms of the quality of generated
action proposals for unseen action categories. All experiments are performed in
the split 75% v.s. 25% on the Thumos14 dataset. Notably, the ZEETAD [35] does
not release its code, so we cannot make a fair comparison with it. Following the
standard protocol [25], we adopt the AR@AN and AUC as evaluation metrics,
and the comparison results are summarized in table Table 3. From the results, we
can find that our method significantly outperforms the previous ones in both AR
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and AUC metrics. This demonstrates that our GAP can generate more accurate
and complete action proposals for unseen actions. This is attributed to both the
proposed proposal-level detector and the integration of generalizable static and
dynamic information, which significantly improves the generalizability to detect
actions from unseen categories.

4.4 Analysis

We conduct extensive quantitative and qualitative analysis to demonstrate the
effectiveness of our proposed GAP. All experiments are performed in the split
75% v.s. 25% on the Thumos14 dataset. More analyses are available in supple-
mentary material.

Table 2. Ablation studies of our method on the Thumos14 dataset, adopting the 75%
v.s. 25% split. The “Actionness” denotes the Action-aware Discrimination loss Lad and
“Rectifying” denotes the Static-Dynamic Rectifying module.

Models mAP@IoU AR@AN AUC

0.3 0.4 0.5 0.6 0.7 AVG @10 @25 @40

Full 52.3 44.2 32.8 22.4 12.6 32.9 12.7 22.7 25.6 23.8

w/o Rectifying 50.6 39.7 31.8 19.8 10.5 30.5 12.3 21.1 23.9 22.6

w/o Rectifying & Actionness 49.0 39.7 28.7 17.7 8.2 28.7 11.4 20.5 22.9 21.6

Table 3. Comparison with the state-of-the-
art ZSTAL methods in terms of AR@AN
(%) and AUC (%). “Frame” and “Pro-
posal” denote the frame-level and the
proposal-level detector, respectively.

Method Detector Type AR@AN AUC

@10 @25 @40

EffPrompt [14] Frame 9.3 15.7 19.6 19.3

STALE [33] Frame 6.9 12.6 15.8 14.8

Ours Proposal 12.7 22.7 25.6 23.8

Table 4. Comparison of different
implementations of Static-Dynamic
Rectifying module. All experiments
are performed in the split 75% v.s.
25% on Thumos14.

Models AVG AR@AN AUC

@10 @25 @40

STALE [33] 23.8 6.9 12.6 15.8 14.8

Mean 30.3 12.0 22.1 24.6 23.2

Max 31.8 12.5 21.8 24.7 23.4

Cross-Attention 32.9 12.7 22.7 25.6 23.8

Ablation Studies of Each Component. In Table 2, we show the quanti-
tative analysis of the different components in our method. By comparing the
first and second rows, removing the Static-Dynamic Rectifying module results
in the 2.4% and 1.2% performance degradation in terms of AVG and AUC,
which demonstrates that the integration of generalizable static-dynamic infor-
mation does help to improve the detection abilities of the detector to generalize
to unseen action categories. From the second and third rows, we find that the
absence of the Action-aware Discrimination loss Lad leads to a 1.8% and 1.0%
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performance drop of AVG and AUC, respectively. This is attributed to that
Lad enhances the ability of the temporal encoder to perceive category-agnostic
dynamic information. Moreover, from the third row, we find that by only adopt-
ing the category-agnostic detector, our method still outperforms the frame-
level method STALE [33] 4.9% and 6.8% in terms of AVG and AUC. This is
because the frame-level detector in STALE generates action proposals by group-
ing consecutive frames, resulting in fragmented action proposals. Our proposed
proposal-level detector is able to generate action proposals directly, which guar-
antees the completeness of action proposals in a holistic way.

Different Implementations of Static-Dynamic Rectifying Module.
In Table 4, we compare the different implementations of the Static-Dynamic
Rectifying module. “Mean” and “Max” refer to the static information of dif-
ferent frames (i.e., L) in Z ∈ R

Nq×L×D aggregated through average pooling
and max pooling, respectively. From the results, we find that the best per-
formance is achieved by adopting cross-attention, which is attributed to the
attention-adaptive aggregation focusing on more valuable information. Notably,
regardless of different implementations, our method still outperforms the state-
of-the-art method STALE [33] in all metrics. This demonstrates that combining
generalizable static-dynamic information effectively improves the generalization
ability of our GAP to detect unseen action categories.

Fig. 4. Visualization of the three action
proposals before and after the Static-
Dynamic Rectifying module, without
retraining. The same color represents the
result from the same action proposal.
Best viewed in color.

Fig. 5. Performance of different number
of action queries. AVG mAP denotes the
average mAP for IoU thersholds from
0.1 to 0.7 with 0.1 increment. All exper-
iments are performed in the split 75%
v.s. 25% on the Thumos14 dataset. Best
viewed in color.

Qualitative Analysis of Static-Dynamic Rectifying. In Fig. 4, we track and
visualize the changes in the specified action proposals before and after apply-
ing the Static-Dynamic Rectifying module. Note that here the input and output
of the Static-Dynamic Rectifying module are compared directly, without retrain-
ing. The experiments are performed on our full method, and we choose the
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top-3 category-agnostic action proposals with the highest predicted scores for
visualization. From the result, we find that the durations (start, end) of the
three different action proposals are all refined after the Static-Dynamic Recti-
fying module. This further verifies that the Static-Dynamic Rectifying module
improves the completeness of action proposals by exploiting the complementary
nature of static-dynamic information.

Analysis of the Number of Action Queries. In Fig. 5, we compare the
results under different number of action queries. Due to the query-based archi-
tecture we adopted, each action query in our action detector corresponds to an
action proposal. In principle, a fewer number of action queries results in miss-
ing action instances of unseen categories, while a large number of action queries
results in generating a large number of low-quality action proposals. As shown
in Fig. 5, our method achieves the best performance when using a medium num-
ber of action queries (i.e., 40 queries). Despite the varied performance using
different numbers of action queries, our proposed GAP can outperform state-of-
the-arts in all the cases as shown in the figure, which demonstrates our effective-
ness in generating high-quality action proposals.

5 Conclusion

We propose a novel Generalizable Action Proposal generator named GAP, which
can generate more complete action proposals for unseen action categories com-
pared with previous works. Our GAP is designed with a query-based archi-
tecture, enabling it to generate action proposals in a holistic way. The GAP
eliminates the need for hand-crafted post-processing, supporting seamless inte-
gration with CLIP to solve ZSTAL. Furthermore, we propose a novel Static-
Dynamic Rectifying module, which integrates generalizable static and dynamic
information to improve the completeness of action proposals for unseen cat-
egories. Extensive experiments on two datasets demonstrate the effectiveness
of our method, and our approach significantly outperforms previous methods,
achieving a new state-of-the-art performance.
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Abstract. Video Instance Segmentation (VIS) has seen a growing
reliance on query propagation-based methods to model complex and
lengthy videos. While these methods dominate the performance, they
do not explicitly model discrete events, e.g., occlusion, disappearance,
and reappearance. Such events often results in degraded object features
over time. We believe learning these events end-to-end with the propaga-
tion network would prevent the degradation. To this end, we propose a
novel propagation method that models these discrete events with a gating
mechanism. First, the gate identifies degraded object features caused by
these events. Second, we apply a residual configuration to rectify the fea-
ture degradation, alleviating the need for a conventional memory bank.
Third, we restrict interaction between relevant and degraded objects
with a novel gated self-attention. The gated residual configuration and
self-attention forms GRAtt block, which can easily be integrated into
the existing propagation frameworks. GRAtt-VIS performs on par with
the state-of-the-art methods on YTVIS-19,-21,-22 and challenging OVIS
datasets by significantly improving performance over previous methods.
The code is available in the supplementary.

Keywords: Video Instance Segmentation · Multi Object Tracking

1 Introduction

Video Instance Segmentation (VIS) [26] is a complex task that requires detect-
ing, segmenting, and tracking all instances or objects within a video sequence.
Existing methodologies for VIS can be broadly categorized into offline and online
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Fig. 1. While tracker-based methods suffer from computational complexity, vanilla
propagation lacks a decision system. GRAtt-VIS bridges both paradigms with a sin-
gle network capable of replacing the heuristic association of the tracker with a gated
propagation method.

methods. Offline methods [3,7,18,22,29] process the entire video at once. In con-
trast, online methods [4,6,8,11,12,21,23,28] process video sequences frame by
frame. The recent emergence of datasets [17,25] containing lengthy and occluded
videos has presented more challenging, real-world scenarios for VIS. Notably,
online-VIS models have shown remarkable robustness in processing these lengthy
and challenging videos and achieved higher precision than offline approaches.

As illustrated in Fig. 1, these models primarily rely on frame-level detec-
tion and inter-frame association facilitated either through a tracker [4,8,23,27]
or a propagation method [6,11,21,30]. Tracker-based methods employ heuris-
tic algorithms to tackle disruptive events, e.g., occlusion and reappearance.
First, they match objects in the present frame with the detected objects of the
past ones. This similarity matching removes duplicate detection and improves
robustness against partial occlusion. Second, during object disappearance, the
tracker does not update instance representation. Instead, it matches the reap-
pearing object with the representation of the last visible one. Third, tracker-
based methods selectively keep object representation between frames, allowing
more free slots for newly appearing objects. However, their reliance on heuris-
tic algorithms restricts end-to-end learning, decreases inference speed, and lacks
scalability across datasets.

On the other hand, the query propagation-based methods became alternative
choices because of their simplicity and less heuristic dependency. However, they
lack an explicit decision system to model the discrete events in the video.
For example, in the case of occlusion, it is necessary to identify and prevent the
accumulation of degraded features. Instead, the current query propagation-based
methods continually accumulate noisy object representations even during occlu-
sion or disappearance and do not possess any mechanism to recover from the
degraded features. Few methods like [6,11] incorporate a memory bank con-
sisting of past representations to mitigate the impact of erroneous propagation.
However, designing an optimal memory queue is a double-edged sword because
a small memory size may not facilitate instance recovery, while a large mem-
ory may introduce noisy representations. Moreover, integrating a memory queue
through cross-attention is resource-intensive and poses optimization challenges
due to the ‘irrelevant’ and redundant features in the memory bank.
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Although query propagation can implicitly learn these shocks in a data-driven
manner, we postulate injecting a discrete decision system as an inductive
bias into the network is beneficial. Ideally, such a decision system should trigger
automatically and immediately in cases of shock, e.g., blur, abrupt camera move-
ment, occlusion, disappearance, and new object appearance. In the presence of
shock, instance queries lose their context and may become irrelevant queries,
whereas previous frame queries remain more useful for future detection. Our
first objective is to detect such degraded query representations whenever a shock
occurs. Finding hand-crafted criteria for this binary detection is hard to formal-
ize exhaustively. Instead, we let the model decide which query is relevant and
which one is degraded without any explicit supervision. Our second objective is
to prevent the propagation of degraded queries and allow relevant and unallo-
cated ones from past frames. The unallocated queries could facilitate new object
detection. Our third objective is to preserve the relevant queries from interacting
with the degraded ones.

Our Contribution: To this end, we present a Gated Residual Attention for
Video Instance Segmentation, termed GRAtt-VIS as shown in Fig. 2. Our app-
roach aims to explicitly identify and model discrete events in a video to enhance
temporal consistency in query propagation while making it robust against abrupt
noise or shock. Firstly, we introduce a gating mechanism that learns to predict
whether the current query is relevant or degraded. Secondly, we use the gating
signal in a residual configuration that controls query propagation conditioned
on the learned relevance. This prevents the degraded queries from accumulating
noise that could affect current and future predictions. Thirdly, to preserve the
relevant queries from interacting with the degraded ones, we introduce a novel
gated self-attention. Additionally, we simplify the VIS pipeline by eliminating
complex and expensive memory mechanisms.

Together, these components improve on key challenges of VIS: occlusion, new
object detection, and robustness against abrupt shock in the video. Importantly,
our method can be integrated ad-hoc into existing propagation-based networks,
e.g., InstanceFormer [11] or GenVIS [6], emphasizing its generalizability. GRAtt-
VIS performs on par with the state-of-the-art methods across multiple bench-
mark VIS datasets, such as, YTVIS-19, -21, -22 [24–26] and OVIS [17]. Compared
to the prior baseline [6], GRAtt-VIS improves performance in Average Precision
(AP) by 1.8% in YTVIS-21, 3.3% on YTVIS-22 long videos, and 0.4% on OVIS.

2 Related Literature

Offline-VIS processes the whole video simultaneously, making future frames
available during inference. Earlier offline-VIS incorporated instance mask propa-
gation [1,13] for temporal connection. Recently, the instance query of the Detec-
tion Transformer [2] has been exploited vastly in this paradigm. VisTR [20]
pioneered this line of research with the very first end-to-end trainable query-
based method. IFC [9], SeqFormer [22], continued this effort by reducing overall
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complexity and improving performance. They focused on building efficient tem-
poral attention mechanisms to achieve this feat. Mask2Former-VIS [3] further
demonstrated that powerful frame-level query-based detectors could compete
with contemporary methods with little overhead. TeViT [29] and VITA [7] went
further by limiting the temporal attention with a more effective shifted win-
dow mechanism. Finally, EfficientVIS [21] developed a streamlined heuristic for
linking clips, thereby facilitating the processing of longer videos.

Tracker-based Online-VIS requires heuristic post-processing on top of
network detection. MaskTrack R-CNN [26] associates instances with a
track head during inference. Subsequent tracker-based works, CrossVIS [27], and
VISOLO [4] improved on top of it by utilizing video-level properties in their train-
ing pipeline. Though trained on frame-level, MinVIS [8] substantially improves on
previous methods by leveraging a powerful object detector Mask2Former [3] and
tracking instances with bipartite matching. The current state-of-the-art tracker-
based method IDOL [23], is built on Deformable-DETR [31]. It adopts con-
trastive learning on the instance queries between frames during training and
deploys a heuristic instance matching during inference.

Propagation-based Online-VIS eliminates the need for an external tracker or
data association by leveraging the instance queries readily available in Detection
Transformer [2] based architectures. TrackFormer [16] initially demonstrated this
powerful technique on Multi-Object Tracking and Segmentation [19] challenge.
Later on, this method was adopted by InstanceFormer [11], and ROVIS [30]
for the VIS datasets. InstanceFormer propagated instance queries and reference
points of Deformable-DETR [31] from frame to frame. On the other hand, ROVIS
utilizes the more powerful frame level Mask2Former [3] features to establish the
inter-frame link. Before our work, GenVIS [6] held state-of-the-art performance
by crafting a decisive video-level training strategy utilizing the Mask2Former
architecture.

3 Methodology

In this section, we present GRAtt-VIS, comprising a novel Gated Residual Atten-
tion (GRAtt) in the Decoder. We begin by providing a brief background on the
query propagation-based VIS methods. Afterward, we present our proposed gat-
ing mechanism, its use in residual configuration, and gated self-attention.

3.1 Background: Query Propagation Based VIS

Query Propagation methods [6,11], use a transformer to process each frame and
pass their instance representation to the next one. Let video X ∈ R

Nf×H×W×3

consist of Nf frames of height H and width W . At the time t, a query
propagation-based model extracts feature ft from a frame xt ∈ X through its fea-
ture extractor ft = Φ(xt). Afterward, it contextualizes ft through a transformer
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Fig. 2. The architecture of GRAtt-VIS. Our GRAtt-decoder is a generic archi-
tecture to make the temporal query propagation robust and stable against abrupt
noise and shock. This is achieved by a gated residual connection following a masked
self-attention. Together they form a Gated Residual Attention (GRAtt) block, which
learns to rectify the effect of noisy features and implicitly preserves ‘relevant’ instance
representations along the temporal dimension. The GRAtt block is a simple replace-
ment for computation-heavy memory and provides superior performance on complex
videos across multiple propagation-based VIS frameworks.

encoder to be used by a decoder. The decoder uses N instance queries that learn
the instance representation.

In the decoder D, the instance queries {qit}Ni=1 attend to current frame fea-
tures ft through multiple layers of cross-attention followed by a self-attention-
based contextualization. After processing the current frame, the instance queries
are propagated to the subsequent frame as in Eq. 1.

qit+1 = D(qit, ft) (1)

The propagation mechanism assigns instances with a particular indexed query
throughout the video. Once a query has been associated with an instance, it
becomes persistently linked to that query, thereby preventing reassignment to
any new objects that may appear later in the video. The unallocated queries cap-
ture a new object’s appearance. During training, Hungarian matching is applied
only upon the appearance of a new object. To mitigate noise and re-identify
objects in long videos, these models [6,11] often employ additional memory
attention. This feature is implemented by an extra cross-attention module and a
memory bank consisting of past instance queries. Recent works [6,11,30] follow
the query propagation and memory queue as the main principle.

3.2 GRAtt Decoder

At the core of our contribution lies a gating mechanism within the decoder layers.
We aim to assess the relevance of queries to correctly capture instance represen-
tation and discard them in case of degradation. This is a discrete decision-making
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process (‘yes’ or ‘no’) necessitating a gating mechanism that provides a binary
decision within the decoder. We leverage the Gumbel-Softmax trick [10,15], a
technique capable of transforming a continuous distribution into a categorical
one. This trick allows us to attain the binary gating output while ensuring end-
to-end differentiability. Our gating mechanism learns the distribution of occur-
rences of abrupt perturbations based on a dataset. We apply this gating mech-
anism at every decoder layer to allow multiple checks against the degraded fea-
tures. Note that we do not provide any explicit supervision to the gating output.
Consequently, one can interpret the gate output as an auto-rectifying mecha-
nism targeted toward the most useful instance queries throughout the temporal
dynamics.

Discrete Gating: At frame t, let qi,lt ∈ R
C be the ith input object query of

lth decoder layer, where where C is the query dimension, i ∈ {1, .., N} and
l ∈ {1, .., L}. We place the gating between each cross- and self-attention layer.
We want to assess the relevancy of the query feature with respect to the cur-
rent frame. At decoder layer l, after the cross-attention, for qi,lt we obtained its
corresponding gate signal gi,lt as

gi,lt = fg

(
qi,lt

)
, (2)

Here fg is a linear projection layer of output dimension 1. To obtain a categorical
variable Gi,l

t with probabilities π1
i,l
t = σ(gi,lt ) and π0

i,l
t = 1 − σ(gi,lt ), where σ

is the sigmoid operation. We can reparameterize the sampling process of Gi,l
t

using the Gumbel-Max trick as follows:

Gi,l
t = argmaxk

{
log

(
πk

i,l
t

)
+ gk : k = 0, 1

}
(3)

Here, {gk}k=0,1 are i.i.d. random variables sampled from Gumbel(0, 1). Due
to the discontinuous nature of the argmax operation, we approximate Gi,l

t with
a differentiable, soft version Ĝi,l

t , obtained from the Gumbel-Softmax relaxation:

Ĝi,l
t =

exp
((
log

(
π1t

i,l
)
+ g1

)
/τ

)

Σk∈0,1 exp
((

log
(
πk

i,l
t

)
+ gk

)
/τ

) (4)

Following the recommendations in the literature [15], we set the softmax tem-
perature τ to 0.67. Finally, to achieve differentiability with the discrete samples
Gi,l

t , we apply the Straight-through trick [10] and use the gradients of Ĝi,l
t as an

approximation for the gradients of Gi,l
t in the backward pass.

Residual Configuration: By convention, instance queries flagged as ‘0’ in the
gating mechanism are considered ‘irrelevant’ and do not propagate through the
current frame. If propagated, the ‘irrelevant’ features could accumulate erroneous
contextualization of instances. Instead, a residual connection from the previous
frame supplies a relevant representation of instance queries. The gated residual
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connection is placed between the cross-attention and self-attention of lth decoder
layer Dl. The output of lth layer (qi,l+1

t ) can be described as

qi,l+1
t =

{
Dl(q

i,l
t , ft) if Gi,l

t = 1
qi,L+1
t−1 if Gi,l

t = 0
(5)

Equation 5 allows propagation of all ‘relevant’ queries to the subsequent layers,
whereas degraded queries are rectified with their preceding temporal counter-
part. Such residual connection effectively manages the flow of relevant queries
in a video in cases of occlusion and object disappearance and reappearance. For
example, if an instance is occluded at frame t, our proposed gating mechanism
could preserve the information from frame t−1 if the gate activation stays ‘0’. If
the object reappears at t + 10, the preserved query could be used to re-identify
the same object. This also alleviates the need for a memory bank of past repre-
sentation to recover from shocks in the current frame.

Although the residual connection is placed between layers, the correction
term, qi,L+1

t−1 is retrieved from the past frame instead of the past layer. This con-
figuration establishes effective frame-to-frame continuation and provides addi-
tional expressiveness during intra-frame processing. Consequently, degraded fea-
tures are rectified through the residual connection with the ‘relevant’ ones in
case of occlusion or distortion. Furthermore, unallocated instance queries might
be available during processing and can easily bind to new objects. The abla-
tion on different design choices of the place of the residual connection among
inter-frame, inter-layer, and inter-attention is visualized in Fig. 7 and justified in
ablation Table 6.

Gated Self-attention: In this subsection, we use italic letters to represent
query, key, and value of the gated self-attention layers. Upon computation of
Gi,l

t for each query, we propose a novel gated self-attention with a query selector
for the attention layers. This selector allows object queries with a corresponding
gate value of ‘1’ to engage in global attention with the rest of the queries. In
contrast, object queries yielding a ‘0’ gate output are removed from the query
set, effectively removing them from self-attention considerations.

A gate value of ‘0’ indicates irrelevant frame features for a particular instance
query. Obtaining additional information from these irrelevant queries inside the
self-attention is unlikely. Further, there is the possibility of noisy frame feature
injection through self-attention. Therefore, by removing such queries, we adopt a
greedy strategy to prefer undistorted instance representations over the recently
degraded ones. Conversely, global attention to ‘relevant’ queries with gate value
‘1’ enables them to contextualize useful information from other queries.

Let’s denote I l
t = [q1,lt , q2,lt , · · · qN,l

t ] ∈ R
N×C to be the complete set of all

instance queries at the lth decoder layer of tth frame. We define the relevant
instance queries as Ĩ

l

t = {qi,lt ∈ I l
t | Gi,l

t = 1} ∈ R
M×C . The degraded queries

are defined as I l
t = I l

t\Ĩ
l

t ∈ R
(N−M)×C

The queries, denoted as Q = fQ(Ĩ
l

t) ∈ R
M×C are computed from the relevant

features. In contrast, the keys and values, denoted as K = fK(I l
t) ∈ R

N×C and
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V = fV (I l
t) ∈ R

N×C are computed from all the instance features. Here, fQ(·),
fK(·), and fV (·) denote the projection layers for the query, key, and value respec-
tively.

The gated self-attention is computed as

Ĩ l+1
t = softmax(QKT )V + Ĩ

l

t

Il+1
t = [Ĩ l+1

t , Î
l

t]
(6)

The final concatenation of relevant, Ĩ l+1
t and degraded queries, Î

l

t in Eq. 6 pre-
serves the original order of the query index. We justify our design choice in
comparison with other attention configurations (c.f. Fig. 8) in Table 7 in the

Fig. 3. Number of active gates across frames. When instances queries undergo shock,
in this example, disappearance and reappearance, the number of active gates drops.
In the last displayed frame, many gates have turned active again, as the objects are
clearly visible.

Table 1. Quantitative performance of GRAtt-VIS compared to previous methods on
YTVIS-19/21 datasets. GRAtt-VIS achieves significant improvement on both datasets
with ResNet-50 backbone.

Method YouTube-VIS 2019 YouTube-VIS 2021
AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

Offline EfficientVIS [21] 37.9 59.7 43.0 40.3 46.6 34.0 57.5 37.3 33.8 42.5
IFC [9] 41.2 65.1 44.6 42.3 49.6 35.2 55.9 37.7 32.6 42.9
Mask2Former-VIS [3] 46.4 68.0 50.0 - - 40.6 60.9 41.8 - -
TeViT [29] 46.6 71.3 51.6 44.9 54.3 37.9 61.2 42.1 35.1 44.6
SeqFormer [22] 47.4 69.8 51.8 45.5 54.8 40.5 62.4 43.7 36.1 48.1
VITA [7] 49.8 72.6 54.5 49.4 61.0 45.7 67.4 49.5 40.9 53.6

Online CrossVIS [27] 36.3 56.8 38.9 35.6 40.7 34.2 54.4 37.9 30.4 38.2
VISOLO [4] 38.6 56.3 43.7 35.7 42.5 36.9 54.7 40.2 30.6 40.9
ROVIS [30] 45.5 63.9 50.2 41.8 49.5 - - - - -
InstanceFormer [11] 45.6 68.6 49.6 42.1 53.5 40.8 62.4 43.7 36.1 48.1
MinVIS [8] 47.4 69.0 52.1 45.7 55.7 44.2 66.0 48.1 39.2 51.7
IDOL [23] 49.5 74.0 52.9 47.7 58.7 43.9 68.0 49.6 38.0 50.9
GenVIS [6] 50.0 71.5 54.6 49.5 59.7 47.1 67.5 51.5 41.6 54.7
GRAtt-VIS (Ours) 50.4 70.7 55.2 48.4 58.7 48.9 69.2 53.1 41.8 56.0
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supplementary document. Together, the gated residual connection and self-
attention maintain the integrity and temporal consistency of object represen-
tation, enhancing our model’s robustness and performance. Finally, similar to
previous methods [6,11], the object queries go through a classification and mask
head for the final segmentation.

4 Experiments

We compare GRAtt-VIS with the state-of-the-art models on YTVIS and OVIS.
We achieve competitive performance on all benchmarks, outperforming the pre-
vious methods.

Table 2. Performance comparison of GRAtt-VIS with recently developed VIS frame-
works on the most challenging Occluded (OVIS) and Long (YTVIS-22) Video Instance
Segmentation data-sets. The evaluation of SeqFormer is taken from IDOL.

Method OVIS YouTube-VIS 2022
AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

Offline SeqFormer [22] 15.1 31.9 13.8 10.4 27.1 – – – – –
TeViT [29] 17.4 34.9 15.0 11.2 21.8 – – – – –
VITA [7] 19.6 41.2 17.4 11.7 26.0 32.6 53.9 39.3 30.3 42.6

Online CrossVIS [27] 14.9 32.7 12.1 10.3 19.8 – – – – –
VISOLO [4] 15.3 31.0 13.8 11.1 21.7 – – – – –
InstanceFormer [11] 20.0 40.7 18.1 12.0 27.1 32.0 55 34.5 29.5 38.3
MinVIS [8] 25.0 45.5 24.0 13.9 29.7 33.1 54.8 33.7 29.5 36.6
IDOL [23] 30.2 51.3 30.0 15.0 37.5 – – – – –
ROVIS [30] 30.2 53.9 30.1 13.6 36.3 – – – – –
GenVIS [6] 35.8 60.8 36.2 16.3 39.6 37.5 61.6 41.5 32.6 42.2
GRAtt-VIS (Ours) 36.2 60.8 36.8 16.8 40.0 40.8 60.1 45.9 35.7 46.9

Datasets: We experimented on four benchmark datasets, YouTubeVIS(YTVIS)-
19/21/22 [24,25] and OVIS [17]. YTVIS is an evolving dataset with three iter-
ations from 2019, 2021, and 2022. It focuses on segmenting and tracking video
objects with 40 predefined categories. The dataset’s complexity has increased
with the introduction of more intricate, longer videos containing complex object
trajectories. Despite the YTVIS 2021 and 2022 versions sharing an identical
training set, additional 71 long videos have been introduced to the validation set
of the 2022 version. In comparison, OVIS is a more recent dataset comprising 25
specified categories, presenting a more challenging setup with significantly higher
occlusion.

Implementation Details: GRAtt-VIS uses a pre-trained frozen Mask2-
Former [3] backbone to extract frame-wise features from a given video. We train
GRAtt-VIS with AdamW [14] optimizer with a learning rate of 5∗10−5 for 140K
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iterations. We train our model with five frames, which we sample randomly. The
frames are sampled five to fifteen time-steps apart from each other. We use ran-
dom flipping and cropping as data augmentation techniques. Following standard
practice [6,11,30], we also use augmented COCO to supplement the primary
dataset like OVIS or YTVIS to increase the number of samples for training. We
train our model on four Nvidia-RTX-A6000 GPUs with a batch size of eight.

4.1 Main Results

YTVIS 19 & 21: Table 1, compares the performance of GRAtt-VIS with previ-
ous methods on both YTVIS-19 and 21 datasets. We observe comparable perfor-
mance for YTVIS-19 and attribute it to label inaccuracy which was improved in
the 2021 version. Moreover, YTVIS-21 added more challenging videos on top of
YTVIS-19, which contains mostly short videos with gradual changes. GRAtt-VIS
outperforms the prior query propagation based GenVIS by 1.8% AP.

YTVIS 22: Table 2, illustrates the performance of GRAtt-VIS on the YTVIS-
22 dataset. GRAtt-VIS improves the overall AP by 3.3% on top of GenVIS,
thereby setting a new benchmark. Note that YTVIS-22 is the most challenging
dataset in YTVIS, containing longer and more complex videos. The enhanced
performance on longer videos also validates the efficacy of the proposed residual
propagation and masked self-attention strategy in preserving the relevant object
features throughout long video sequences.

OVIS: Lastly, we evaluate our method on the highly challenging OVIS dataset
in Table 2. As in YTVIS-22, we observe a similar trend in GRAtt-VIS’s supe-
rior performance. We achieve a 0.4% improvement over GenVIS, which has a
dedicated memory bank. Compared to GenVIS without this memory bank, we
observe 1.3% gain in Tab. 3, suggesting our proposed propagation mechanism is
a better and more lightweight alternative to the memory-based methods.

4.2 Ablation Studies

We present ablation studies to show the proposed modules’ effectiveness and
generalizability. We empirically illustrate the underlying mechanics of the gate.
Here, we use the ResNet-50 [5] backbone and the OVIS [17] dataset.

Table 3. Cumulative Ablation for Baseline Memory and the proposed Discrete Gate,
Residual Configuration, and Gated Attention. Detailed ablation for each component is
included in the supplementary (Sec. A). ∗ denotes the memory-free baseline.

Model AP AP50 AP75 AR1 AR10

Memory Baseline 35.4 60.2 36.0 16.3 39.8
GRAtt-VIS 36.2 60.8 36.8 16.8 40.0
w/o Gated Attn. 35.2 58.6 35.5 16.7 39.0
w/o Residual Config.∗ 34.9 57.6 36.3 16.3 36.3
w/o Discrete Gate 34.2 57.7 33.5 16.2 39.5
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Effects of Proposed Modules: Table 3 provides a comprehensive ablation
analysis on the OVIS dataset, examining various components of GRAtt-VIS.
Our baseline models include both the memory-free and memory-inclusive vari-
ants of GenVIS [6], which we reproduce for our ablation. Notably, GRAtt-VIS
demonstrates a remarkable performance improvement, surpassing the memory-
free baseline by 1.3% in AP and even outperforming the memory-inclusive base-
line by 0.8% in AP. The sequential propagation of past instances facilitated by
the gated residual connection maintains instance representations amidst shocks
or noise in the current frame. Consequently, this eliminates the need for a mem-
ory module, reducing complexity and mitigating optimization challenges.

Notably, the performance improvement was complemented by reducing
Decoder GFLOPs from 3.7 to 2.4. This reduction in GFLOPs was achieved by
eliminating the memory module and subsetting the queries in the Decoder self-
attention. Instances with a gated output of ‘0’ do not require feature updates;
therefore, their past features are reused. This reduction of computational com-
plexity and elimination of memory places GRAtt-VIS in a better operating point
in the efficiency vs. performance landscape.

Moreover, we also ablate between our choice of discrete gating mecha-
nism against soft-gating. Table 3 verifies that discrete Gumble-Softmax gating
improves the AP by 2% in comparison to soft-gating. Therefore, in the presence
of shock, a definitive ‘yes’ or ‘no’ choice between noisy and contextual features is
helpful for VIS modeling. For instance, if a shock perturbs an object in the cur-
rent frame, the corresponding query will also be distorted. With soft gating, the
noise would still be partially present if we chose a weighted sum of a noisy query
and a relevant one. Moreover, the sparsification of the decoder self-attention,
and simplification of the VIS pipeline by eliminating a memory module help
the GRAtt decoder converge 33% faster than the baselines. We further include
detailed ablation for each proposed module in Sec. A of the supplementary.

Table 4. Impact of GRAtt decoder integrated with InstanceFormer. It improves on
both the memory-free and memory-based variants. ∗ denotes the memory-free baseline

Decoder Type AP AP50 AP75 AR1 AR10

Memory Baseline 20.0 40.7 18.1 12.0 27.1
GRAtt-VIS (Ours) 22.3 43.0 19.5 12.1 29.8
w/o Gating∗ 17.1 35.5 15.4 9.8 24.7

Generizability of GRAtt Decoder: The SOTA propagation methods [3,6,30]
utilize Masked Attention. To show the universality of GRAtt decoder, we test
it on a different setup, e.g., Deformable Attention of InstanceFormer in Tab. 4.
We replaced its decoder layer with our GRAtt module. The GRAtt module also
outperforms its memory-free and memory baseline by 5.2% and 2.3% AP.

Temporally Consistency: We visualize query features across video frames
through t-SNE plots, comparing the baseline model GenVIS with our proposed
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GRAtt-VIS in Fig. 4. Our gating mechanism effectively prevents query degrada-
tion, leading to greater temporal consistency in instance features. This consis-
tency fosters discriminative features, resulting in distinct clusters of instances in
the feature space. Consequently, this improvement enhances the overall perfor-
mance of GRAtt-VIS.

Gate Statistics: The gate activation statistics provide insight into how gating
behaves in the presence of many instances or occlusion. Figure 5 (left) shows
the average gate activations decrease with more objects. This phenomenon
aligns with the higher occurrence of occlusions and object disappearances in
scenarios with more objects. The decrease in gate activations signifies that gat-

Fig. 4. Comparison of t-SNE embeddings. Each column depicts the t-SNE embeddings
of predicted instances from the same video. Colors differentiate the instances. GRAtt
produces temporally more consistent instance features essential for tracking.

Fig. 5. Discrete Gate activation statistics on OVIS dataset w.r.t. object count and its
difference between consecutive frames.
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ing effectively retains past object queries in the presence of noise, ultimately
benefiting the re-identification process. Figure 5 (right) shows gate activation
w.r.t. the difference in the number of objects between frames. When the number
of objects decreases, gate activation lowers, meaning the gate is preserving more
from past frames. On the other hand, when the number of objects increases, the
gate activation rises, thus selecting more features from the new or reappearing
objects.

5 Qualitative Analysis

We illustrate the predictive ability of GRAtt-VIS on the OVIS dataset in Fig. 6.
These videos contain diverse situations, such as slight occlusion (1st row), a
rapidly moving person (2nd row), ducks with similar appearances crossing each
other’s paths (3rd row), and severe occlusion (4th row). We visualize more pre-
dictions of our model in the supplementary Fig. 9 and Fig. 10. To gain deeper
insights into our model’s operational principles, we have visualized the output
of the gating mechanism in Fig. 3 and 6. Figure 3 illustrates the gate activations
for a single video. We notice a decrease in active gates during occlusion or abrupt
changes in the video. For example, gate activation is significantly reduced when
the two horses start to occlude each other or when one of them vanishes. Sim-
ilarly, the count drops again when the smaller horse goes through the severe
occlusion. The last frames do not possess any complicated dynamics, and we

Fig. 6. Qualitative analysis of GRAtt-VIS on OVIS dataset. The overall and instance-
specific gate activation is presented in each video. Notably, with the presence of occlu-
sion and abrupt changes, the Gate activation shows a downward spike. For example, In
the second video, we can see that the gate activation goes down significantly when the
cars get occluded by the pedestrians.



GRAtt-VIS: Gated Residual Attention for Video Instance Segmentation 281

observe an increasing trend of gate activation in that region of time. This high-
lights the model’s ability to suppress degraded queries from the current frame
during sudden changes. The gating signal in Fig. 6 turns to ‘0’ when subjected
to occlusion, preserving the non-occluded features from past frames.

6 Conclusion

In this work, we have introduced the GRAtt-VIS, a novel query propagation
VIS method capable of absorbing shock in video frames and recovering degraded
instance features. A gating mechanism is learned purely based on data without
any heuristic to find an optimum discrete decision system for the propagation
method. It can be seamlessly integrated into the family of query propagation-
based methods. It simplifies the VIS pipeline by eliminating the need for a mem-
ory bank and, at the same time, performing on par state-of-the-art. We hope our
work will accelerate research towards adaptive modeling of real-world dynamic
scenarios.
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Abstract. Motion and appearance cues play a crucial role in Multi-
object Tracking (MOT) algorithms for associating objects across con-
secutive frames. While most MOT methods prioritize accurate motion
modeling and distinctive appearance representations, the use of appear-
ance and motion cues is often confined to simplistic association tech-
niques. For instance, fixed weights are commonly employed to com-
bine the intersection-over-union (IoU) matrix and appearance similarity
matrix, yielding an association cost matrix. To harness the full potential
of motion and appearance cues across diverse scenarios, we propose an
innovative approach that dynamically balances motion and appearance
cues based on scene and object information during the association pro-
cess. Furthermore, we introduce a new mechanism for updating appear-
ance representations, effectively mitigating noise introduced by occlusion.
Our method demonstrates state-of-the-art performance on the MOT17
and MOT20 test sets.

Keywords: MOT · tracking-by-detection · motion · appearance

1 Introduction

Multi-object tracking (MOT) is a fundamental task in computer vision and has
a wide range of applications in many downstream tasks, such as autonomous
driving, video surveillance, robot navigation. It aims to detect all interested
objects in a video stream and to track the trajectory of all objects.

In general, MOT algorithms can be classified into tracking-by-detection
(TbD) and tracking-by-regression paradigms, depending on whether data asso-
ciation is included or not. TbD is the prevalent paradigm for MOT, which com-
prises three phases: (1) object detection in the current frame, (2) prediction of
tracklets positions with the extraction of pertinent cues (such as appearance
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15316, pp. 283–298, 2025.
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Fig. 1. Examples of low appearance similarity or low IoU (motion). The yellow and
green numbers represent the IoU and appearance similarity between the tracklet and
the corresponding detection, respectively (Color figure online)

features) and (3) the association of detections and tracklets using these cues.
The association phase is pivotal and relies on two key cues: object motion and
appearance. The former is used to predict the position of the tracklets and then
calculate the IoU matrix between the tracklets and the detections. Simultane-
ously, the latter is utilized to measure the similarity in appearance between the
tracklets and the detections.

Recently, the majority of TbD methods [1–6] have focused on optimizing
either motion or appearance models to obtain more precise location information
or more distinctive appearance representations. However, the use of appear-
ance and motion cues is often confined to simplistic association techniques. For
instance, fixed weights are commonly employed to combine the IoU matrix and
appearance similarity matrix, yielding the result association cost matrix. Dur-
ing the application of these TbD methods, we observed the following issues:
(i) As illustrated in Fig. 1a, the IoU between tracklet prediction and detection
remains relatively stable even in the case of sudden changes in scene illumi-
nation, while the appearance similarity drops significantly. (ii) As depicted in
Fig. 1b, appearance similarity decreases notably when the object is occluded,
and the object’s appearance representation contains considerable noise at this
point. These observations clearly indicates that employing a fixed weight to
merge motion and appearance cues across all scenes is not justified. As shown in
Fig. 1c, although appearance cues may not be very stable, they play an indispens-
able role in long-term association. It’s a better way to assign different weights to
motion cues and appearance cues based on different scene conditions. For dark
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scenes and crowded objects, we should place more trust in motion cues, while
for bright scenes and substantial differences in appearance between objects, we
should increase the weight of appearance cues.

In this paper, we propose two strategies to address the identified issues.
Firstly, we introduce an adaptive fusion module that dynamically determines
fusion weights between IoU and appearance similarity for each frame. This app-
roach leverages scene-specific and object-related information to automatically
select the appropriate fusion weights for each scene, eliminating the need for
manual selection. Additionally, we propose a new technique for updating appear-
ance that takes into account the degree of object occlusion. This technique aims
to mitigate the impact of noise features from occluded objects, thereby enhancing
the quality of appearance features.

By combining our methods into Bot-SORT [7], we achieve state-of-the-art
results on the MOT17 [8] and MOT20 [9] test sets. To summary, our contribution
are as follows:

– We present a method for assessing the quality of motion (IoU) and appear-
ance cues for tracking, and accordingly, develop an adaptive fusion module to
combine IoU and appearance similarity matrices to address variations quality
of them across different scenarios.

– We further propose a dynamic appearance update technique that utilizes
the IoU matrix extracted from the adaptive fusion module to calculate the
occlusion degree of each object, aiming to mitigate the impact of noise features
from occluded objects.

2 Related Work

Tracking-by-Detection. Due to advancements in detectors, contemporary
methods predominantly adhere to the TbD paradigm. These approaches lever-
age detectors to identify objects within video sequences and subsequently utilize
identity information for object association. Motion information serves as a foun-
dational aspect for object association, with methods like SORT [10] employing
Kalman filtering [11] to predict future object positions based on the assump-
tion of constant motion, followed by employing the Hungarian algorithm [12]
for association. Recent efforts [2,13,14] have integrated neural networks to
enhance position prediction accuracy, constructing motion models for more intri-
cate motion prediction. For instance, TrajE [13] models object motion using a
Gaussian mixture model and utilizes Gated Recurrent Unit (GRU) [15] to pre-
dict parameters within the mixture. Meanwhile, ArTIST [14] represents motion
as a discrete probability distribution to better capture natural pedestrian move-
ment, additionally considering pedestrian interaction and integrating temporal
information using GRU. However, relying solely on motion information may
not effectively address object occlusion. Consequently, DeepSort [16] incorpo-
rates appearance information into SORT to enhance association accuracy. Both
motion and appearance cues are crucial for association, and their judicious uti-
lization can significantly improve association effectiveness. Our method aims to
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effectively incorporate both motion and appearance cues by analyzing environ-
mental and object-related information.

Data Association. Data association constitutes a crucial step in the TbD
paradigm. In the early TbD methods, such as in SORT, association relied solely
on IoU. DeepSort innovatively incorporates the appearance similarity of objects
into the association process, enhancing its performance. MOTDT [17] generates
candidate objects from detection and tracking objects and then uses a new scor-
ing mechanism to select the final candidates. FairMOT [18] combines the Maha-
lanobis distance with the cosine distance calculated on re-identification (re-ID)
features. ByteTrack [19] introduces the idea that detection objects with low con-
fidence should not be discarded during association, contributing to a more robust
tracking system. While numerous algorithms [5,18,19] conventionally employ a
fixed weight to amalgamate IoU and appearance similarity during the association
process, Deep OC-SORT [20] adopts varying fusion weights for distinct objects,
albeit relying on predefined fixed weights for adaptive fusion. In contrast, our
proposed method integrates both object-specific information and scene features
to compute fusion weights at the image level. This approach ensures a balanced
utilization of motion and appearance cues without necessitating manual weight
selection. Besides, prevalent global association algorithms such as the Hungar-
ian algorithm are commonly utilized during the association phase, our method,
which determines fusion weights per image, aligns more effectively with these
algorithms than the approach of calculating varied fusion weights for individual
objects in Deep OC-SORT.

Appearance Update Strategies. Appearance cues are vital for distinguish-
ing and re-identifying objects in tracking tasks. Most of the methods [4,7,19]
use the Exponential Moving Average (EMA) mechanism to fuse the appearance
features of the current frame with the historical appearance features to obtain
more robust appearance features. Deep OC-SORT [20] argues that an object’s
detection confidence serves as a reliable indicator of its appearance feature qual-
ity. Fusion weights are consequently determined based on this confidence metric.
Moreover, in our evaluation of appearance feature quality, we consider not only
detection confidence but also factor in the degree of object occlusion. This com-
prehensive assessment enhances understanding of appearance feature reliability
in diverse tracking scenarios.

3 The Quality of Motion and Appearance Cues
for Tracking

We use Ground Truth to evaluate the quality of motion and appearance cues
for tracking in different frames. For tracklet i, let pai , pmi as the similarity of
appearance and IoU with the corresponding detection under the current frame
respectively, we define the quality of appearance cues rai and the quality of
motion cues rmi as follow:

rai = pai − max
j �=i

(AT
ij), r

m
i = pmi − max

j �=i
(ITij), (1)
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Fig. 2. The quality of motion and appearance cues varies across different scenarios, (c)
is the statistical histogram of motion cues quality minus appearance cues quality

Fig. 3. Fusion weights for motion cues and appearance cues in different scenarios, (c)
is the statistical histogram of motion cues weighting minus appearance cues weighting

where AT
ij , ITij represent the appearance similarity and IoU between the i-th

tracklet and the j-th detection object.
We performed a statistical analysis on the MOT dataset using the aforemen-

tioned definition. Specifically, we analyzed 4000 samples each from MOT17-02
and MOT20-03. Figure 1a shows MOT20-03, while Fig. 1b depicts MOT17-02.
These results are illustrated in Fig. 2. Despite the low illumination conditions
in MOT17-02, MOT20-03 exhibits variations in lighting and smaller objects,
suggesting a greater reliance on appearance cues in MOT17-02. However, the
MOT17-02 sequence, characterized by a low camera angle, introduces significant
occlusion, diminishing the impact of motion cues compared to the MOT20-03
scenario with a higher camera angle. After subtracting the quality of appear-
ance cues from that of motion cues in both scenarios (Fig. 2c), it becomes evi-
dent that motion cues exert a more substantial influence than appearance cues
in both scenarios. This influence is particularly pronounced in MOT20-03 com-
pared to MOT17-02. Although motion cues generally exhibit higher quality com-
pared to appearance cues, they tend to be less effective in addressing short-term
occlusions. This is illustrated by the significant number of 0 values depicted in
Fig. 2b. On the other hand, appearance cues demonstrate robustness when faced
with short-term occlusions. Hence, adjusting fusion weights based on scenario-
specific characteristics becomes imperative for optimizing tracking performance.
For instance, assigning a higher weight to motion cues in MOT20-03 compared
to MOT17-02.



288 W. Liao et al.

Fig. 4. An overview of AFMA-Track. (Conv: Convolution Layer, FFN: Feedforward
Neural Network)

To validate the capability of our module in deriving fusion weights based on
environmental and object-specific information. We randomly selected the fusion
weights of 300 images from each of the MOT17-02 and MOT20-03 datasets
for statistical purposes, as depicted in Fig. 3. The results indicate that the dis-
tribution of fusion weights aligns with the prior analyses of motion cues and
appearance cues (Fig. 2). Specifically, the fusion weights related to motion cues
surpass those related to appearance cues in both the MOT17-02 dataset and
the MOT20-03 dataset. Moreover, the motion cues weights in MOT20-03 are
notably higher than those in MOT17-02. These findings underscore the adaptive
fusion module’s ability to leverage environmental and object-related information
to assess the quality of motion cues and appearance cues.

4 AFMA-Track

4.1 Overview

As depicted in Fig. 4, our approach adheres to the TbD paradigm. In the cur-
rent frame t, we employ detector to acquire detections Dt = {dti}Mi=1, where
M represents the number of detections. Simultaneously, we retain the feature
map F extracted from the backbone. Subsequently, we compute the IoU matrix
ID ∈ R

M×M and the appearance similarity matrix AD ∈ R
M×M based on

the detections in the current frame. Next, our adaptive fusion module extracts
global information from F and object-related information from ID and AD,
yielding fusion weights β1 and β2. During the association phase, we utilize the
Kalman Filter (KF) to predict the position of tracklets, computing the IoU
matrix IT ∈ R

N×M and the appearance similarity matrix AT ∈ R
N×M between

tracklets and detections, where N denotes the number of tracklets. The fusion
weights β1 and β2 are applied to combine IT and AT into the cost matrix C, fol-
lowed by the utilization of the Hungarian algorithm for matching. Post-matching,
we implement a dynamic appearance update strategy to refine the appearance
features of the tracklets.
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4.2 Adaptive Fusion Module

To effectively allocate fusion weights for appearance and motion cues in different
scenarios, our adaptive fusion module extracts scene information and object-
related information to determine the fusion weights of the IoU matrix IT and
the appearance similarity matrix AT .

Global Information Extracting Module. We utilize the backbone to extract
the feature map F from the image. Subsequently, the Position Attention Module
(PAM) [21] is employed to obtain preliminary global context information. PAM
facilitates the capture of spatial dependencies across the feature map by introduc-
ing an attention mechanism. Specifically, the feature at each position is updated
through a weighted summation of features from all positions, with weights deter-
mined by the feature similarity between the corresponding positions. This mecha-
nism enhances the model’s ability to capture intricate spatial relationships within
the feature map.

We derive the final global information from the feature maps ˜F processed
by the PAM, employing a method akin to the approach described in [22]. This
process can be represented as:

˜W = Softmax(conv1×1( ˜F )),

z = FFN(conv3×3(
H

∑

i=1

W
∑

j=1

˜Wi,j
˜Fi,j)),

(2)

where ˜W is a weight map extracted from ˜F , H and W represent the dimensions
of the feature map, and z represents the global context vector.

Object-Related Information Extracting Module. We dissect the infor-
mational interplay between objects into two pivotal dimensions: location inter-
action and appearance similarity. The matrix ID meticulously delineates the
spatial relationships among objects, capturing their intricate interactions. Simul-
taneously, the matrix AD is employed to encode the semblances in appearance,
providing insights into the visual similarities between objects. To accommodate
scenarios with different numbers of objects, we expand ID and AD to a fixed
dimension Mf × Mf , and the value of Mf is manually determined.

We stitch ID and AD together and use a 1× 1 convolution to obtain matrix
O1. As each row within matrix O1 encapsulates the relationships between an
individual object and others, we subsequently apply a horizontal convolution to
enhance information extraction:

O1 = δ(BN(conv1×1(Cat(ID, AD)))),
O2 = δ(BN(conv1×N (O1)),

(3)

where δ denotes the ReLU, BN is Batch Normalization. Afterwards, we use a
1 × 1 convolution and a FFN to process F2 to obtain the final object-related
information vector o.
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After obtaining the global context vector and the object-related information
vector, we concatenate the two vectors and then process them to calculate the
final fusion weights:

β1, β2 = Softmax(FFN(Cat(z, o))). (4)

Training. The main objective of the matching process is to maximize the sim-
ilarity between tracklets and their corresponding detections while minimizing
the similarity between tracklets and detections with distinct IDs. However, con-
sidering all the similarities between tracklets and detections during training is
unnecessary, what really affects the correlation is often the detection with the
highest similarity beyond the detection corresponding to the tracklet. There-
fore, it suffices to focus on the similarity between these two detections and the
tracklet. Let pi represent the similarity between tracklet i and its corresponding
detection in the current frame. We use the focal loss function to train adaptive
fusion module:

L =
1
N

N
∑

i

(FL(pi,max
j �=i

(Cij))), (5)

where Cij is the similarity between the i-th tracklet and the j-th detection, and
FL represents the focal loss.

4.3 Dynamic Appearance Update Strategy

In previous work [4,7,19], the appearance embeddings of matched tracklets were
updated using the EMA mechanism, which requires a fixed weight α to adjust
the ratio between the current frame’s embeddings and the historical appearance
embeddings. Let eti be the appearance state of the i-th tracklet at the t-th frame.
The standard EMA is

eti = αet−1
i + (1 − α)ei, (6)

where ei is the appearance embedding of the matched detection, and α is usually
set to 0.9.

However, the EMA mechanism overlooks the influence of noise features that
arise due to occluded objects. To address this issue, we propose to adapt the
value of α based on the degree of occlusion between objects. The IoU matrix
effectively captures the occlusion between objects, and assessing the degree of
occlusion involves identifying which objects are obstructed by others. Here, the
detection confidence of the object reflects this relationship, with the detection
confidence of the obstructed object typically being lower compared to that of
the object causing the occlusion. To quantify the degree of occlusion of the i-th
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object, we define σi as follows:

ÎDi,j =

{

IDi,j , sj ≥ si

0, sj < si,
(7)

σi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min{
M
∑

j=1,j �=i

ÎDi,j , 1}, si ≥ st

1, si < st,

(8)

where si is the detector confidence of i-th detection, st is the detection con-
fidence threshold and objects with detector confidence larger than this value
are considered to be present in the frame, , IDi,j is the IoU between the i-th
detection and j-th detection, ÎD is the filtered IoU matrix. As we employ the
association method described in [19], objects with detection confidence below
the threshold may also be associated. However, it is observed that many of these
objects with low detection confidence exhibit significant occlusion or motion
blur, leading to the presence of substantial noise in the acquired appearance
features. Hence, we assign an occlusion degree of 1 to these objects.

With σi, we replace α with a new αi defined as

αi = 1 − (1 − α)(1 − σi), (9)

we set the fixed value α = 0.95 follow [20]. When σi = 1, we set αi = 1,
resulting in the complete disregard of the new appearance embedding. On the
other hand, if σi = 0, then αi = α, leading to the maximal contribution of ei to
the update of the tracklet appearance embedding.

5 Experiments

5.1 Settings

Datasets. To validate the effectiveness of our method, we conduct experiments
on the MOT17 and MOT20 datasets under the “private detection” protocol.
The MOT17 dataset encompasses diverse scenes, featuring various camera move-
ments and angles, while MOT20 emphasizes crowded and complex environments,
including indoor and outdoor settings, as well as scenarios with varying light
conditions. Both MOT17 and MOT20 exclusively consist of training and test
sets, without a separate validation set. We follow [7,19,30], when doing ablation
experiments, the first half of each video sequence in the training set is used for
training and the second half is used for validation.

Metrics. We apply CLEAR metrics [31] which includes HOTA [32], AssA, DetA,
MOTA and IDF1 [33], etc. to evaluate different aspects of the tracking perfor-
mance. HOTA is currently the main metric used to evaluate tracking perfor-
mance, taking into account a balance of detection accuracy, matching accuracy
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Table 1. Comparsion of the state-of-the-art methods under the “private detector”
protocol on MOT17 test set. Bold represents the best results and underlining for the
second best result

Tracker HOTA↑ AssA↑ AssR↑ IDF1↑ MOTA↑ FP↓ FN↓ IDs↓
FairMOT [18] 59.3 58.0 63.6 72.3 73.7 27507 117477 3303
CSTrack [23] 59.3 57.9 63.2 72.6 74.9 23847 114303 3567
TransCenter [24] 54.5 49.7 54.2 62.2 73.2 23112 123738 4614
TransTrack [25] 54.1 47.9 57.1 63.5 75.2 50157 86442 4872
MOTR [26] 62.0 60.6 65.6 75.0 78.6 23409 94797 2619
RelationTrack [22] 61.0 61.5 67.3 74.7 73.8 27999 118623 2166
MotionTrack [2] 65.1 65.1 70.8 80.1 81.1 23802 81660 1140
FineTrack [4] 64.3 64.5 70.1 79.5 80.0 217500 90096 1272
OC-SORT [1] 63.2 63.4 67.5 77.5 78.0 15129 107055 1950
StrongSORT [27] 64.4 64.4 70.0 79.5 79.6 27876 86205 1866
ByteTrack [19] 63.1 62.0 68.2 77.3 80.3 25491 83721 2196
UTM [28] 64.0 62.5 69.1 78.7 81.8 25077 76298 1431
BPMTrack [29] 63.6 62.0 68.4 78.1 81.3 25785 77859 2010
BoT-SORT [7] 65.0 65.5 71.2 80.2 80.5 22521 86037 1212
AFMA-Track (ours) 65.31 65.78 71.79 80.66 80.66 23634 84363 1113

and positioning accuracy. AssA is the metric that evaluates association accu-
racy and AssR is to evaluate the recall of the association. MOTA emphasizes
detection performance and IDF1 focuses on identity association performance.

Implementation Details. To ensure a fair comparison, we employ the YOLOX
model trained by [19] for object detection and the FastReID’s SBS-50 model
trained by [7] for extracting appearance features. For MOT17, we set Mf = 128,
while for MOT20, we use Mf = 256. In the linear assignment stage, we reject
a match if the IoU is less than 0.2 when considering only IoU. Similarly, if
only appearance similarity is considered, a match is rejected if the appearance
similarity is less than 0.6. When both are used, we adjust the rejection thresholds
according to the fusion weight of IoU and appearance similarity in the AFMA-
Track. Additionally, to prevent premature termination, we retain lost tracklets
for 30 frames. We have also adapted the Modified KF (MKF) algorithm by
setting the object’s bounding box size and speed at the time of loss to the
average values obtained from previous frames before the loss occurred. During
the lost period, we ensure consistency in the object’s bounding box size follow
[7]. For other parameter settings, we maintain consistency with BoT-SORT.

During the training phase, we implemented a random successive sampling
strategy, selecting 8 consecutive frames randomly from the video sequence for
training. Specifically for MOT17, we initially trained for 4 epochs using this strat-
egy, followed by an additional 4 epochs with sequential sampling on the MOT17
training set, totaling approximately 8 h. For MOT20, a similar approach was
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Table 2. Comparsion of the state-of-the-art methods under the “private detector”
protocol on MOT20 test set

Tracker HOTA↑ AssA↑ AssR↑ IDF1↑ MOTA↑ FP↓ FN↓ IDs↓
Decode-MOT [34] 54.5 54.6 58.4 69.0 67.2 35217 131502 2805
FairMOT [18] 54.6 54.7 57.7 67.3 61.8 103440 88901 5243
CSTrack [23] 54.0 54.0 57.6 68.6 66.6 25404 144358 3196
MAA [35] 57.3 55.1 61.1 71.2 73.9 24942 108744 1331
TransCenter [24] 43.5 37.0 45.1 49.6 58.5 64217 146019 4695
TransTrack [25] 48.9 45.2 51.9 59.4 65.0 27191 150197 11352
ReMOT [36] 61.2 58.7 63.1 73.1 77.4 28351 86659 2121
QDTrack [37] 60.0 58.9 65.7 73.8 74.7 23352 106313 1042
MotionTrack [2] 62.8 61.8 68.0 76.5 78.0 28629 84152 1165
StrongSORT [27] 62.6 64.0 69.6 77.0 73.8 16632 117920 1003
OC-SORT [1] 62.4 62.5 67.4 76.3 75.7 19067 105894 1086
ByteTrack [19] 61.3 59.6 66.2 75.2 77.8 26249 87594 1223
BoT-SORT [7] 63.3 62.9 68.6 77.5 77.8 24638 88863 1313
AFMA-Track (ours) 63.47 63.14 69.16 77.76 77.81 26222 87385 1207

taken, with 4 epochs of training using random successive sampling followed by 2
epochs using sequential sampling on the MOT20 dataset, requiring around 12 h.
The training was conducted on an NVIDIA GeForce RTX 2080ti GPU with a
batch size of 1. We employ the SGD optimizer with a weight decay of 5 × 10−4

and momentum of 0.9. The initial learning rate is set to 10−4 with a 1 epoch
warmup and cosine annealing schedule.

5.2 Benchmark Results

We compare our method with the state-of-the-art trackers on the test of MOT17
and MOT20 under the private detection protocol.

MOT17. As show in Table 1, our method outperforms the state-of-the-art meth-
ods on many key metrics. i.e. rank first for metrics in HOTA, IDs, IDF1, AssA
and AssR . By focusing on enhancing object association accuracy, we have suc-
cessfully achieved exceptional performance in diverse scenarios. The notable high
scores in HOTA and IDF1 further underline our ability to achieve robust and
precise object associations.

MOT20. Our method exhibits strong performance on the intricate and densely
populated MOT20 dataset. Table 2 illustrates our results in comparison to state-
of-the-art methods, highlighting our method’s leading positions in terms of IDF1
and HOTA, as well as second place rankings in AssA, AssR, and MOTA. These
results emphasize the exceptional effectiveness and robustness of our approach.
Despite our method’s strong performance, it is noteworthy that StrongSORT [27]
outperforms our approach in metrics related to the association effect, specifically
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Table 3. Ablation experiments on the MOT17 validation set. (MKF: Modified Kalman
Filter, AW: Adaptive Weighting, DA: Dynamic Appearance)

Setting HOTA↑ AssA↑ AssR↑ IDF1↑ MOTA↑ IDs↓ FPS↓
Baseline (BoT-SORT) 68.802 70.700 76.081 81.575 78.601 456 6.335
Baseline+AW 69.553 72.254 77.503 82.141 78.692 442 6.188
Baseline+AW+MKF 69.641 72.422 77.603 82.504 78.692 444 6.187
Baseline+AW+MKF+DA 69.947 73.028 77.768 82.944 78.688 445 6.172

Table 4. Ablation study of various association strategies on BoT-SORT

Fusion Strategy HOTA↑ AssA↑ AssR↑ IDF1↑ MOTA↑ IDs↓
Fairmot Strategy [18] 67.973 69.484 74.822 79.767 77.641 527
BoT-SORT Original [7] 68.802 70.700 76.081 81.575 78.601 456
Deep OC-SORT Strategy [20] 69.033 71.229 76.013 81.284 78.397 491
AW (ours) 69.553 72.254 77.603 82.141 78.692 442

AssA and AssR. This superiority can be attributed to StrongSORT’s utilization
of an offline global association method, contrasting with our online association
approach. Additionally, because our method optimizes the association process by
leveraging acquired motion and appearance cues through adaptive weight fusion,
its performance is closely tied to the quality of these cues, and the improvement
in performance is also constrained by the quality of these two cues.

5.3 Ablation Study

Effect of Each Component. We conduct ablation experiments on the MOT17
validation set to evaluate the effectiveness of each component in our method. To
ensure a fair comparison, we keep all other baseline settings consistent. As pre-
sented in Table 3, the adaptive fusion module exhibits significant improvements
in HOTA, AssA, AssR, and IDF1, indicating the efficacy of adaptive fusion
weights. We introduce the MKF as a simple modification to KF, which mit-
igates error accumulation caused by occlusions to some extent. The observed
enhancements in HOTA and IDF1 further validate this approach. Additionally,
the dynamic appearance update strategy effectively boosts HOTA and IDF1,
proving its effectiveness for correlation. It is noteworthy that our methods have
minimal impact on MOTA, as it is primarily influenced by detection perfor-
mance, while our optimizations primarily focus on the association aspect.

Computational Overhead. As shown in Table 3, our method introduces addi-
tional modules, incurring some computational overhead. However, the impact on
processing speed is minimal, with a decrease of less than 0.2 frames per second
(FPS). The incurred overhead is nearly negligible, highlighting the efficiency of
our approach.
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Analysis of Adaptive Weighting. In order to validate the advantages of
our adaptive fusion module, we compare it with several other fusion strate-
gies on BoT-SORT while maintaining other settings consistent. As depicted in
Table 4, our method outperforms the fusion strategies of FairMOT and BoT-
SORT across several metrics such as HOTA, AssA, AssR, and more. Despite
Deep OC-SORT employing different fusion weights for different objects, our
method achieves a 0.5% higher HOTA and 0.8% higher IDF1 compared to it,
fully demonstrating the superiority of the adaptive fusion module and the sig-
nificance of using different fusion weights in varying scenarios. Additionally, as
illustrated in Fig. 5, we showcase the impact of utilizing different fixed fusion
weights; IoU alone can already yield satisfactory results, while a 0.7:0.3 fusion
weighting strategy produces even better results. However, our adaptive module
attains the best results without the need for manual selection of fusion weights.

Fig. 5. Performance with different fixed fusion weights on BoT-SORT

Analysis of Dynamic Appearance. To demonstrate the superiority of our
dynamic appearance update strategy, we compare it with three other update
strategies on the basis of AW and MKF-enhanced BoT-SORT, keeping all other
settings consistent. The results, as presented in Table 5, show that the dynamic

Table 5. Ablation Experiments for Different Appearance Update Strategies on AW
and MKF-enhanced BoT-SORT. “-” represents using the currently detected appearance
embedding as the appearance embedding of the tracklet, and AP is average appearance
embedding update strategy

Settings HOTA↑ AssA↑ AssR↑ IDF1↑ MOTA↑ IDs↓
– 69.189 71.530 76.977 81.918 78.566 449
EMA 69.641 72.422 77.603 82.504 78.692 444
AP 69.537 72.271 77.335 82.669 78.675 450
Deep OC-SORT Strategy [20] 69.773 72.703 77.727 82.879 78.631 448
DA (ours) 69.947 73.028 77.768 82.944 78.688 445
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appearance update strategy significantly outperforms the other strategies in key
metrics such as HOTA and IDF1, while also being comparable in terms of MOTA
and IDs. While Deep OC-SORT evaluates and diminishes the noise impact on
appearance features based on the object’s detection confidence, our dynamic
appearance update strategy further effectively mitigates noise interference aris-
ing from occlusion by assessing the degree of occlusion for each object.

6 Conclusion

In this paper, we propose a new TbD method to address the varying impact of
motion and appearance cues across different scenarios. By designing an adaptive
fusion module to obtain the fusion weights of IoU and appearance similarity
matrices based on scene information and object-related information. And we
additionally propose a dynamic appearance update strategy to reduce the impact
of noise features from occluded objects. We validate the effectiveness of each
component, and our results on MOT Benchmark can demonstrate the benefits
of our method.
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Abstract. In this study, we investigate a depth recovery method based
on optical flow from two consecutive frames with relative motion between
the object and the camera. Multi-resolution processing is suitable for
high-density depth recovery that avoids aliasing and preserves discon-
tinuities. Propagation of the recovery results from the low-resolution
layer to the high-resolution layer is an important issue. In this paper,
we propose a method based on variational Bayesian inference. By com-
puting the posterior distributions of the depth and motion parameters at
each layer using the mean-field approximation and converting them into
the prior distribution of the upper layer, it is possible to propagate the
depth and motion information simultaneously. The effectiveness of the
proposed method was quantitatively evaluated using artificial images,
and its practicality of the system was also confirmed qualitatively.

Keywords: Structure from motion · Depth recovery · Optical flow ·
Variational Bayesian inference · Multi-resolution processing

1 Introduction

In recent years, human perception and consciousness have been elucidated on
the basis of the free energy principle, and it is claimed that they function
through variational Bayesian inference (VB) realized by bidirectional connec-
tions between nerve cells [5,6,20]. On the other hand, deep neural networks have
solved various problems that artificial intelligence tries to solve, including depth
recovery from images [2,7,10,13,18]. These processes do not necessarily occur in
the same way in the human brain, but these functions are considered necessary
as a process of acquiring the prior probabilities required by VB through experi-
ence. Conversely, VB can be seen as a process of processing current observations
based on a physical model, using the knowledge gained from such experience.
Therefore, in this study, we focus on 3D perception from a sequence of 2D images
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[1,9,17,21], called “Structure from Motion (SfM),” and investigate a new method
within the framework of VB [11,12].

As a more primitive task, we consider the estimation of dense depth maps
and relative camera motion from two consecutive frames. For this reason, this
study is based on using optical flow rather than feature point correspondence.
The problems to be solved in this framework can be summarized as follows:

1. The gradient equation is a first-order approximation of the invariance of image
brightness before and after camera movement. Therefore, if there is a large
optical flow relative to the scale of the image texture, aliasing will occur, and
therefore a small, incorrect optical flow will satisfy the gradient equation.

2. In small areas with uniform texture, optical flow cannot be uniquely deter-
mined. To avoid this, it is necessary to assume that the optical flow is constant
in large areas with different brightness gradients, but this prevents the detec-
tion of detailed depth structures, especially discontinuities.

3. The degrees of freedom in depth that can be recovered increases as the number
of pixels increases. For this reason, it is natural to define and use a semi-
parametric model in SfM. In this case, the estimation accuracy of not only the
depth but also the camera motion parameters decreases due to the Neyman-
Scott problem [3].

To comprehensively solve the above problems, we construct a Bayesian net-
work in the resolution direction, which represents a multi-resolution model
of depth [14]. We define a transition model between the resolutions by varying
the block size, which is assumed to be constant depth, in conjunction with the
resolution. To improve estimation accuracy, smooth depth models based on ridge
regression and/or total variation regularization are often used, which contribute
to the recovery of depth discontinuities, but are computationally expensive. In
contrast, our hierarchical model assumes smooth depth over a large area at low
resolutions and is able to represent fine structure as resolution increases, natu-
rally handling depth discontinuities in the process. Furthermore, a hierarchical
estimation framework that sequentially recovers depths from lower resolutions
allows warping of higher resolution images based on optical flows computed from
lower resolution depths, thus eliminating the aliasing.

In our previous work, only depth information was propagated in the Bayesian
network [14]. In this study, the posterior distributions of depth and motion
parameters are computed using VB with the mean-field approximation in the
low-resolution layer and propagated together to the high-resolution layer. We
quantitatively confirm the effectiveness of the proposed method on artificial
images, such as the suppression of aliasing made possible by hierarchical infer-
ence and the ability of the hierarchical depth model to recover discontinuities.
We also qualitatively evaluate the applicability to real images.
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2 Gradient Equation and Optical Flow for Perspective
Projection

Assuming that the camera motion between the two frames is small enough,
the optical flow (vx(x, y, t), vy(x, y, t)), which is a 2D velocity field, satisfies the
following gradient equation at each pixel.

ft(x, y, t) = −fx(x, y, t)vx(x, y, t) − fy(x, y, t)vy(x, y, t), (1)

Fig. 1. Camera projection model and notation definition.

where f is the image brightness value, and fx, fy, and ft are the spatiotemporal
derivatives. In the gradient equation, fx, fy, and ft are observations. In the
gradient equation, an explicit observation equation can be specifically defined as
follows.

ft = −f̄xvx − f̄yvy + εt, fx = f̄x + εx, fy = f̄y + εy. (2)

In SfM assuming perspective projection, the optical flow for the rigid motion
is formulated as follows:

vx = xyrx − (1 + x2)ry + yrz − (ux − xuz)d ≡ vr
x(r) + vu

x(u)d, (3)

vy = (1 + y2)rx − xyry − xrz − (uy − yuz)d ≡ vr
y(r) + vu

y (u)d, (4)

where r = [rx, ry, rz]� and u = [ux, uy, uz]� indicate the rotational velocity
vector and the translational velocity vector respectively and d corresponds to the
shallowness 1/Z. Figure 1 shows the camera projection system and the notations
used in the text.

By accurately computing fx and fy with a spatial filter using the brightness
values of the surrounding pixels [4], we assume that the observation errors εx

and εy are sufficiently small. The errors associated with εx and εy on the right-
hand side of Eq. 1 are then approximately incorporated into the error in ft and
are often treated as random errors. Even if we consider fx and fy as noise-free
observations in this way, the unknown degrees of freedom for depth are large,
and to reduce them, this study uses a hierarchical depth model.
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3 Key Features of Our Approach

3.1 Gradient Equation for Rigid Motion

In the rigid motion analysis, the camera motion and depth satisfying Eqs. 2, 3
and 4 are estimated. In the past, many studies have been conducted on a two-
step method in which (vx, vy) is detected from Eq. 2 and then analyzed based
on Eqs. 3 and 4 [1,15]. Since this method expands the solution space on the way,
there is a problem from the viewpoint of optimality. In this study, we consider
the problem of substituting Eqs. 3 and 4 into Eq. 2 to implicitly detect an optical
flow that completely satisfies the rigid motion constraint.

ft = −{fxvr
x(r) + fyvr

y(r)
}− {fxvu

x(u) + fyvu
y (u)

}
d ≡ −f�

r r − df�
u u, (5)

fr =

⎡

⎣
fxxy + fy(1 + y2)

−fx(1 + x2) − fyxy
fxy − fyx

⎤

⎦ , fu = [−fx,−fy, fxx + fyy]� . (6)

Equation 5 is treated as an observation equation with ft as the observation. For
that purpose, it is effective to use a differential kernel instead of a simple first-
order difference to determine fx and fy. In this study, we use the five-tap kernel
[−0.108415,−0.280353, 0, 0.280353, 0.108415] is applied to all the resolution lay-
ers as a differentiator [4].

When a rigid body can be assumed, depth and camera motion can be recov-
ered directly from the image brightness by not treating optical flow explicitly.
The optical flow is determined a posteriori from the estimated depth and motion
parameters by Eqs. 3 and 4.

3.2 Multi-resolution Scheme to Suppress Aliases

The aliasing in this study is that when the optical flow is relatively large with
respect to the spatial wavelength of the brightness pattern, the optical flow
that is shorter than the actual length is detected as an artifact. The aliasing
problem is effectively solved by multi-resolution processing. First, each of the two
consecutive original images is decomposed into a multi-resolution image with an
appropriate number of layers. From a low-resolution image pair, i.e., an image in
which the wavelength of the brightness pattern is long, a low-resolution optical
flow is detected that is less likely to cause aliases. Depth and motion parameters
estimated at low resolution, along with their reliability, should be propagated
accurately to the next higher resolution layer. This achieves estimation based on
all brightness information while avoiding aliases. The proposal in this study is
to implement such information propagation based on VB.

3.3 Time Derivative of Image Brightness Using Image Warping

In the multi-resolution process of this study, instead of calculating the depth
perturbation corresponding to the resolution at each layer, the entire depth is
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updated. Therefore, the updated value of ft in the gradient equation Eq. 5 must
be calculated using image warping as follows.

ft = −fxv̂x − fy v̂y +
∂

∂t
W(f, v̂), (7)

Fig. 2. Features of the proposed method; (a) Compensation calculation of the time
derivative of the image brightness based on the warp of the first frame image. For
simplicity, only the x coordinate value is shown. The blue dashed line represents the
warped image. (b) Multi-resolution and local optimization strategy. (c) Bayesian net-
work representation of our probabilistic model. (Color figure online)

where, v̂ = [v̂x, v̂y]� is an optical flow estimate calculated from the depth and
camera motion estimated at this point. The time partial derivative ∂/∂t in this
equation is practically executed as a finite difference, and image warping W is
defined as

W(f,v)(x, t + δt) ≡ f(x − vδt, t + δt). (8)

The mechanism of this ft calculation is shown in Fig. 2(a), and the ft allows for
higher resolution depth updates while preventing aliasing in the upper layers.
Note that in this study fx and fy are calculated for the first frame.

3.4 Hierarchical Depth Model for Local Optimization

There are two main ways to reduce the depth degrees of freedom while avoiding
the aperture problem. One is the global optimization method and the other is
the local optimization method. The former requires that the optical flow and
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depth are spatiotemporally smooth. The latter assumes that the optical flow
and depth are constant in spatiotemporally localized regions.

For integration with multi-resolution schemes, local optimization methods
that reduce the size of the local region as resolution increases are very compat-
ible. No additional processing is required to estimate the location of the depth
discontinuity, and the estimated depth automatically retains the depth discon-
tinuity. Defining depth variables in multiple layers increases the number of vari-
ables, but defining transition probabilities between layers reduces the effective
depth degrees of freedom. This results in a stable depth recovery. Figure 2(b)
shows the outline of the processing strategy.

By using this hierarchical depth model, we can calculate the prior probability
for the higher resolution layer based on the depth estimation results for the
lower resolution layer during inference. This avoids the arbitrariness of the prior
probability for each layer. For the lowest resolution layer, we can specify an
arbitrary prior probability, in which case it is appropriate to express it in terms
of parameters and estimate these parameters as a type-2 maximum likelihood
estimator (MLE) [8]. In this study we do not use this prior probability, so overall
we do not use any external knowledge of depth.

4 Method

4.1 Definition of Probabilistic Model and Parameters

Depth Model. Layers with different resolutions are identified by the indexes
l = 1, 2, · · · , L, where l = 1 has the lowest resolution and l = L has the highest
one. d(l) represents the shallowness of each pixel with a layer l, and {d(l)} is a
set of shallowness of all the pixels. The resolution of the depth map recovered at
each layer, that is, the size of the region where the depth is constant, should be
determined according to the image resolution. The number of the local regions
for the layer l is indicated by R(l), and M

(l)
r represents the number of pixels in

the region r. It is straightforward to keep M
(l)
r constant regardless of r. R(l) is

set so that R(l1) < R(l2) is satisfied for l1 < l2.
We define a probabilistic model of shallowness. As the depth relationship

between layers, we adopt the following model with linear interpolation operator
U (l) and perturbation ε

(l)
p .

d(l+1) = U (l)d(l) + ε(l+1)
p . (9)

It is assumed that the linear interpolation is calculated using the depth of adja-
cent regions. If ε

(l)
p follows a Gaussian distribution with mean zero and variance

σ2
p
(l) which is common to all regions but is independent for each layer, then

d(l+1) is a random variable with the following Gaussian distribution.

pd(d(l+1)|d(l), σ2
p
(l+1)

) =
1

√
2πσ2

p
(l+1)

exp

{

− (d(l+1) − U (l)d(l))2

2σ2
p
(l+1)

}

. (10)
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This modeling increases the number of unknown variables, but the correlations
among them reduce the intrinsic degrees of freedom.

Observation Model. Next, let us consider a probabilistic model of observation.
From Eq. 5, the observed f

(l)
t of each layer l is modeled by

f
(l)
t = −f (l)

r

�
r − d(l)f (l)

u

�
u + ε

(l)
t . (11)

If ε
(l)
t follows a Gaussian distribution with mean zero and variance σ2

t
(l) which

is common to all regions but is independent for each layer, then f
(l)
t is a random

variable with the following Gaussian distribution.

pf (f (l)
t |d(l), σ2

t
(l)

,u, r) =
1

√
2πσ2

t
(l)

exp

⎧
⎨

⎩
− (f (l)

t + f
(l)
r

�
r + d(l)f

(l)
u

�
u)2

2σ2
t
(l)

⎫
⎬

⎭
.

(12)
The above-mentioned dependency between observations {f (l)

t }l=1,··· ,L and
parameters m = [u�, r�]� and Θl = {σ2

p
(l)

, σ2
t
(l)} can be shown in Fig. 2(c) by

the Bayesian network, which is one of the graphical models. Here f
(l)
t is the set

of f
(l)
t for all pixels.

4.2 Information Propagation by Variational Bayesian Inference

Mean-Field Approximation. To be computed are the posterior distributions
of {d(l)}l=1,··· ,L and m in the graphical model shown in Fig. 2(c). Here, d(l) is
a set of all d(l) in that layer, that is, all d(l) for each region where the depth is
assumed to be constant. The MLE of {Θl}l=1,··· ,L must also be inferred. There
are various methods for estimating posterior probabilities based on the graphical
model. Belief propagation is well known, and its relationship with inference based
on mean-field approximation (MFA) is also discussed. In this paper, the latter
is adopted to derive a concrete algorithm.

The fundamental strategy is to predict the prior probabilities of d(l) and m
used in the current layer from their posterior probabilities obtained in the lower
layer. First, consider the joint probabilities of all random variables in a layer.

p(f (l)
t ,d(l),m|D(l−1),Θl) = pf (f (l)

t |d(l),m,Θl)pdm(d(l),m|D(l−1),Θl), (13)

where, D(l−1) ≡ {f (l−1)
t , . . . ,f

(1)
t }. In this problem, by using MFA on the prior

distribution pdm in layer l predicted from layer l − 1, MFA can naturally be
applied to the posterior distribution in layer l.

pdm(d(l),m|D(l−1),Θl) ≈ qd(d(l)|D(l−1),Θl)qm(m|D(l−1),Θl). (14)
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The prediction distribution of d(l) for observations up to D(l−1) is, as in Eq. 10,
expressed as

qd(d(l)|D(l−1),Θl) =
R(l)
∏

r=1

exp{−(d(l)r − U (l−1)d̄
(l−1)
r )2/2σ2

er

(l)}
√

2πσ2
er

(l)
, (15)

σ2
er

(l)
= U (l−1)2σ2

dr

(l−1)
+ σ2

p
(l)

, (16)

where, U (l)2 is also the interpolation operator, the weight coefficients of which
correspond to the power of each of the corresponding coefficient of U (l). This
definition of the variance indicates an approximated representation in which
the covariance terms of d(l) are neglected and only the variance terms are
considered. Note that σ2

p
(l) is included as an unknown parameter to be esti-

mated. Equation 15 means that pixel-by-pixel independence of d(l)’s prior, that
is, qd(d(l)|D(l−1),Θl) =

∏R(l)

r qdr
(d(l)r |D(l−1),Θl).

On the other hand, since the camera motion is a variable common to all
layers, the prior probability can be defined by using the estimation results of the
lower layers as they are. For simplicity, we assume that each parameter follows
an independent Gaussian distribution. The mean and variance-covariance matrix
of these are denoted as m̄ and V m, respectively.

qm(m|D(l−1),Θl) =
exp
{−1/2(m − m̄)�V −1

m (m − m̄)
}

√
(2π)5 detV m

. (17)

Variational Bayesian Inference. First, the likelihood of the observations
appearing in Eq. 13 is given by the following equation.

pf (f (l)
i |d(l),m,Θl)

=
R(l)
∏

r=1

M(l)
r∏

i=1

exp
{

−
(
ft

(l)
(r,i) + f

(l)
r(r,i)

�r + d
(l)
r f

(l)
u(r,i)

�u
)2

/2σ2
t
(l)
}

√
2πσ2

t
(l)

, (18)

where, M
(l)
r represents the number of pixels in the region r in layer l. Further-

more, by using Eqs. 14, 15, and 17, Eq. 13, which are the simultaneous probabil-
ities of random variables, are formulated as follows.
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p(f (l)
t ,d(l),m|D(l−1),Θl)

= pf (f (l)
t |d(l),m,Θl)qd(d(l)|D(l−1),Θl)qm(m|D(l−1),Θl)

=
R(l)
∏

r=1

M(l)
r∏

i=1

exp
{

−
(
ft

(l)
(r,i) + fr(l)

(r,i) + fu(l)
(r,i)d

(l)
r

)2
/2σ2

t
(l)
}

√
2πσ2

t
(l)

×
R(l)
∏

r=1

exp
{

−
(
d
(l)
r − U (l−1)d̄

(l−1)
r

)2
/2σ2

er

(l)
}

√
2πσ2

er

(l)

×exp
{−(m − m̄)�V −1

m (m − m̄)/2
}

√
(2π)5 detV m

. (19)

From the principle of variational free energy minimization, we can deduce
the log of qdr

(d(l)r |D(l),Θl) that is the posterior probability after observing f
(l)
t

as follows.

ln qdr
(d(l)r |D(l),Θl) = −Em

[
p(f (l)

t ,d(l),m|D(l−1),Θl)
]
, (20)

where, Em[·] is the expectation with respect to qm(m|D(l),Θl). Similarly, the
log of qm(m|D(l),Θl) can be derived as follows.

ln qm(m|D(l),Θl) = −Ed

[
p(f (l)

t ,d(l),m|D(l−1),Θl)
]
, (21)

where, Ed[·] is the expectation with respect to qd(d(l)|D(l),Θl). The expectation
calculation in Eq. 20 requires qm derived from Eq. 21, and vice versa. There-
fore, both equations are alternately updated until convergence. Note that in this
iterative calculation process, f (l)

t is also updated with the updated depth and
camera motion according to Eq. 7.

Although {Θl−1, · · · ,Θ1} are not explicitly involved in f
(l)
t , the estimates of

d(l) and m are dependent on {Θl−1, · · · ,Θ1}. This implies that it is possible to
update {Θl−1, · · · ,Θ1} for f

(l)
t observations as well. However, since it is com-

putationally expensive, the estimation of Θl is done only in the corresponding
l-layer. We can maximize the following Q-function with respect to Θl.

Q(Θl) = −Edm

[
p(f (l)

t ,d(l),m|D(l−1),Θl)
]
, (22)

where, Edm[·] is the expectation with qd(d(l)|D(l),Θl) and qm(m|D(l),Θl).
Thus, the entire estimation procedure at each layer constitutes the EM

(Expectation-Maximization) algorithm. In the E-step, the depth and motion
parameters are updated by VB, and in the M-step, the two variance parameters
are updated. See Sect. A for the specific expressions of these equations.
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The posterior probabilities of depth and camera motion at layer l are con-
verted and used as the prior probabilities at the next high resolution layer l + 1,
and the averages of these are used to compute f

(l+1)
t in Eq. 7. In each iteration

of the VB-EM algorithm, ft can be updated using Eq. 7, but in this study, due
to computational cost, it is updated once when the resolution level changes.

Fig. 3. Data used for experimental evaluation: (a) first image; (b) depth map; (c)
results of 4-layer resolution decomposition.

Table 1. Parameter values used for artificial images.

Parameter Value, etc.
Angle of view 1 × 1 with focal length as 1

Number of pixels 256 × 256

Gradation level 256 greyscale
Number of layers 4

Image decomposition filter
DoG filter (Gauss filter for 1st layer)

1st layer: σ = 4 pix.

2nd layer: σ1 = 4, σ2 = 8

3rd layer: σ1 = 8, σ2 = 16

4th layer: σ1 = 16, σ2 = 32

Number of local blocks
(block size)

1st layer: 8 × 8 (32 × 32 pix.)
2nd layer: 16 × 16 (16 × 16)
3rd layer: 32 × 32 (8 × 8)
4th layer: 64 × 64 (4 × 4)

Velocity vector (ux, uy, uz) = (0.2, −0.2, −0.1)

(rx, ry, rz) = (−0.01, 0.0, 0.01)

Image noise White additive noise of 3% to the maximum brightness value

5 Performance Verification

5.1 Verification on Artificial Images

The image shown in Fig. 3(a) was generated taking into account the depth shown
in Fig. 3(b). The parameters for image generation and resolution decomposition
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Fig. 4. Hierarchical recovery results for depth from (a) noise-free ft and (c) ft computed
by Eq. 7. The respective estimation errors are shown in (b) and (d).

are shown in Table 1. A second image was created by changing the texture in
accordance with the camera motion and depth settings. Depth is defined as the
distance in units of the focal length of the camera. The depth range is from 10
to 40. Under these conditions, the average size of the optical flow is a few pixels.
Figure 3(c) shows the result of the resolution decomposition.

In the lowest resolution layer, the prior probabilities of the depth and motion
parameters were assumed to be Gaussian with sufficiently large variance to be
uninformed prior distributions. This means that the prior probabilities are not
used for the whole system.

First, we applied the proposed method to the noise-free ft, i.e., ft computed
by Eq. 5 at each layer using the true depth and motion parameters. The results
confirm the correctness of the proposed algorithm. It is clear from Eqs. 3 and 4



310 T. Aburayama and N. Tagawa

Fig. 5. Ablation studies for the proposed recovery: (a) without image warping; (b)
without motion and depth propagation (image warping is done); (c) without motion
propagation (EM); (d) MLE without hierarchical processing.

that the norm of u and the scale of d are not uniquely determined. Then we set
‖u‖ = 1.

Figure 4(a) shows that the detailed depth structure is recovered as the reso-
lution increases. In Fig. 4(b), the depth error is defined as the ratio of the root
mean square error for pixels to the average depth value. The accuracy of the
motion parameters is evaluated by the ratio of the length of the error vector to
the length of the true vector. Both errors decrease as processing progresses in
the resolution direction. However, the error is not zero despite the absence of
noise. This is due to the use of the model for depth. In particular, the fact that
the depth is constant in the fourth layer in blocks of 4 × 4 pixels, which makes
it less sensitive to noise, is considered to be a major error factor.

The results from ft calculated using image warping are shown in Figs. 4(c)
and (d). Although the results are clearly worse than Figs. 4(a) and (b), qualita-
tively looking at the depth recovery results, the proposed method is considered to
have sufficient performance. Jagged errors increase from the third to the fourth
layer. This means that the error in ft at the fourth layer is treated as depth
information.

Next, we evaluated the recovery performance when part of the procedure in
the proposed method is removed. Figure 5(a) shows the case where the image
warping is not performed and a simple frame-to-frame difference is used as ft. A
relatively smooth depth is recovered up to the second layer, indicating that alias-
ing does not occur up to this resolution. However, from the third layer onward,
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fine irregularities appear, and the recovery error due to aliasing is noticeable,
clearly indicating the effect of the warping process. Figure 5(b) shows the results
when the image is warped for ft computation, but both depth and motion param-
eter estimates are not propagated between the layers. In the third and fourth
layers, the degradation of depth estimation is evident, indicating the importance
of information propagation by VB. For comparison, Fig. 5(c) shows the results of
depth-only interlayer information propagation using the EM algorithm without
VB, with the motion parameters updated at each layer in the M-step [14]. This
suggests that not only depth but also motion parameters need to be propagated
between layers to recover depth detail. The effectiveness of the VB application
in this study is obvious. Figure 5(d) is the result of MLE on the 2-frame image
without resolution decomposition. Depth was recovered as a constant in 4 × 4
pixel blocks.

Fig. 6. Recovery of two-planes shape: recovered depth by (a) proposed method and
(b) estimation errors for motion and depth.

Table 2. Parameter values changed to real images.

Parameter Value

Image decomposition filter
DoG filter (Gauss filter for 1st layer)

1st layer: σ = 4 pix.

2nd layer: σ1 = 4, σ2 = 16

3rd layer: σ1 = 16, σ2 = 64

4th layer: σ1 = 64, σ2 = 128

Since the depth used in the above evaluations was smooth, the depth of the
highly discontinuous shape, consisting of two flat surfaces on the front and back,
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was also recovered. The images and camera motions used are the same as in the
evaluation above. Figure 6(a) shows the recovered depth, and (b) the estimation
errors. These results indicate that the proposed method is also effective for edge-
preserving recovery.

In this study, the variance of the error in ft, i.e. σ2
t , is assumed to be indepen-

dent for each resolution. In other words, it can handle cases where the noise is
not white in the spatial domain. As a result, the number of unknown degrees of
freedom increases, and the estimation accuracy of the fourth layer in particular,
which has a low signal-to-noise ratio, becomes insufficient. The recovery errors
in Fig. 4(c) and Fig. 6(a) are thought to be due to overfitting. By using σ2

t as a
common parameter for all layers and updating it in the resolution direction using
VB in the same way as the motion parameters, it is expected that σ2

t can be
estimated with high accuracy. This is expected to reduce the depth estimation
error, especially in the fourth layer.

It is possible to reapply the VB-EM algorithm to all image information based
on the a-priori distributions of depth and motion obtained with the proposed
hierarchical method.

Fig. 7. Actual images used and their resolution decomposition: (a) first frame; (b)
frequency characteristics of the resolution decomposition filter; (c)-(f) are the results
of resolution decomposition from the lowest resolution to the highest resolution.

5.2 Verification on Real Images

We applied our method to the Tsukuba Stereo Image Dataset - Venus Scene,
using the image pair with the smallest baseline. Figure 7 shows the first frame of
the image pair, the characteristics of the frequency decomposition filter, and the
four decomposed images. We cropped a 256 × 256 pixel area from these images
and performed depth recovery on that area. In order to take advantage of the
high spatial frequency components that are abundant in this image pair, the
DoG filter parameters were set as shown in Table 2.
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Fig. 8. Results of depth recovery from real images: (a)-(d) are recoveries using the
proposed method from lowest to highest resolution; (e) without image warping; (f)
MLE without hierarchical processing.

Since this image pair is a standard image for parallel stereo, the transla-
tion velocity is only in the x-axis direction, and the rotation velocity is 0. We
performed depth recovery using the proposed method with these two velocity
vectors as unknowns. Figure 8 shows the depth recovery results as a grayscale
image. As can be seen from Figs. 8(a) to (d), the proposed method gradually
recovers accurate depth from low resolution to high resolution. The results for
the fourth layer also include information about the books on the shelf. Figure 8(e)
shows the results when no image warping was performed, and Fig. 8(f) shows
the results of MLE without hierarchical processing. These are almost entirely
black and white, indicating that quantitative recovery was not possible. We
also confirmed that the estimation of the motion parameters improves as the
information propagates in the resolution direction, and the final values were
û = [0.990, 0.125, 0.063]�, r̂ = [3.99 × 10−3,−5.93 × 10−3,−3.91 × 10−3]�.

In this study, we were able to qualitatively confirm that the proposed method
is also effective for real images. However, it is a recovery from small movements
between two frames, and the accuracy is insufficient. For accurate depth recogni-
tion, it is essential to integrate a large amount of image information. Therefore,
it is important to improve the accuracy of two-frame recovery, and the future
challenge is to connect the two-frame recovery in this study in the temporal
direction. There has been a lot of research on bundle adjustment, and Kalman
filter-like online information integration methods have been developed. These are
consistent with the method used in this study as a resolution-direction Kalman
filter with parameter estimation function, and we will address the extension to
the temporal direction as a future issue.
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6 Conclusions

In this study, we proposed simultaneous information propagation of depth and
camera motion by variational Bayesian inference on a multi-resolution network.
The scheme features a hierarchical depth model and image warping based on
3D recovery results in the low-resolution layer, which are properly made to work
by variational Bayesian inference. To achieve even higher accuracy, the depth
and motion estimation results of the proposed method can be used for image
warping, allowing the VB-EM algorithm to be reapplied to all image information
in a non-hierarchical manner.

We have only confirmed the effectiveness of the newly introduced techniques
and do not refer to the absolute performance of the proposed method. We plan
to confirm the effectiveness in detail for real images and then compare it with
state-of-the-art methods, especially methods based on robust statistics [19].

The method proposed reduces the intrinsic degrees of freedom of depth, but
it still increases with the number of pixels. We have proposed a method to avoid
the degradation of camera motion estimation accuracy due to high degrees of
freedom in depth [16]. We would like to confirm the effect of incorporating this
estimator into the final layer of the method proposed in this study.

Furthermore, we aim to add the “Structure from Shading” function to the
proposed method to recover depth and albedo simultaneously. The fusion of
methods based on deep neural networks and methods based on the mathematical
expression of physical principles, as proposed in this study, is an important issue
in early vision problems. In the future, we plan to deepen our investigations, for
example, by using deep learning inference as prior information for the proposed
method.

A Appendix

Equation 20 is expressed concretely.

ln qdr
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2σ2
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(23)

where, m̄ = [ū, r̄]� is the mean of qm, and F u = fuf
�
u and F ur = fuf

�
r .

〈A,B〉 ≡ tr(A�B) is the Frobenius product (the subscripts (r, i) and (l) are
omitted). From Eq. 23, we can see that the posterior probability of d

(l)
r has a
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Gaussian distribution. The variance is obtained from the coefficient of d
(l)
r of the

derivative obtained by differentiating the right side with d
(l)
r .

Equation 21 is represented concretely using d̄
(l)
r and σ2

dr
(l) as follows.
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where, m̄ and V m are the mean and variance of the posterior distribution
obtained in one lower resolution layer. V m indicates the variance-covariance
matrix of m with 6 degree of freedom.

Since Eq. 24 is a quadratic equation with respect to m, the updated values
of m̄ and V m are easily determined. However, m̄ must be found by constrained
maximization with ‖u‖ = 1, and rankV m = 5 must hold. In this study, m̄ was
obtained using the Lagrange multiplier method and Newton’s method, and V m

was corrected using this m̄ so that its rank is 5.
Finally, Θl can be updated by maximizing the following Q-function, which

is obtained by taking the expectation of ln p(f (l)
t ,d(l),pd(l),pθl) in Eq. 19 with

qd and qm, ignoring the constants.
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σ2
t
(l) can be computed analytically, while σ2

p
(l) needs to be solved using numerical

calculation, for example, the hill climbing method.
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Abstract. We propose a computer vision model to assess the risk of
sarcopenia in functional movement video clips. Sarcopenia progressively
reduces muscle mass and strength with age, posing a significant threat
to the well-being of seniors. Early detection and timely intervention can
significantly improve an individual’s life and alleviate pressure on the
healthcare system. Our model includes a 3D posture keypoint detector
and a transformer classifier. The posture keypoint detector identifies 16
keypoints that form 4-Vector and 7-Vector input configurations capable
of distinguishing individuals with sarcopenia from those without. How-
ever, the differences in these configurations between individuals with sar-
copenia and those without are too subtle for human observation. There-
fore, we trained the transformer classifier to assess the probability of sar-
copenia risk in video clips featuring five specific functional movements.
We verified our approach through experiments involving 20 sarcopenia
patients and 20 individuals without sarcopenia.

Keywords: Sarcopenia · Keypoints · Health · Transformer

1 Introduction

We propose a computer vision model to assess the likelihood of sarcopenia
using video clips of human movements. This vision model holds the potential
to support healthcare professionals in gauging sarcopenia risk through simple
camera-based evaluations. Sarcopenia, a condition commonly associated with
aging, involves the gradual and systemic decline in muscle mass and skeletal
strength [2]. A study by Duggan et al. [4] underscores the heightened risk of
falls among individuals with sarcopenia, with rates as much as double those of
their peers without the condition. With up to half of people over 80 years of
age affected by sarcopenia [6] and prevalence rates in Asia ranging from 7.3%
to 12%, particularly affecting men [8,10,11]. The condition presents a signifi-
cant health challenge, particularly in aging populations. Addressing sarcopenia
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through preventive measures and targeted interventions is crucial to mitigate its
impact on overall health and quality of life. Our proposed approach distinguishes
movement patterns characteristic of sarcopenia patients from healthy individuals
and estimates sarcopenia risk based on the captured video footage of subjects’
movements.

The current gold standard for diagnosing sarcopenia relies on assessing mus-
cle strength and mass, although these measurements can be challenging to obtain
precisely. Muscle strength is typically evaluated using a hand dynamometer
[3], while muscle mass assessment involves methods such as dual-energy X-ray
absorptiometry (DXA), bioelectrical impedance analysis (BIA), and computed
tomography (CT) [3]. However, functional tests also play a crucial role in evalu-
ating body balance and the severity of sarcopenia, aiding in estimating fall risk.
We considered five functional tests in our study: Balance A and B, Fukuda, Tan-
dem Gait, and Romberg. We collected a dataset comprising video recordings of
20 patients with sarcopenia and 20 control group individuals performing these
tests.

Our approach is based on PoseTriplet [5], a state-of-the-art 3D human pose
estimator. PoseTriplet transforms 2D pose sequences into a low-fidelity 3D out-
put, which an imitator then enhances by enforcing physical constraints. These
enhanced 3D poses undergo further augmentation by a hallucinator to gener-
ate diverse data, which, once again, are processed by the imitator and used
to train the pose estimator. This co-evolutionary training scheme enables the
development of a robust pose estimator using self-generated data, eliminating
dependence on pre-existing 3D datasets.

In the following, we will first present the five functional movement tests and
our data set in Sect. 2, followed by our proposed approach presented in Sect. 3,
then the experiments in Sect. 4, and then the conclusion of this study in Sect. 5.

2 Functional Movements and Sarcopenia Dataset

The following five functional movements are clinically verified to be good at
distinguishing patients with sarcopenia from those without.

– Balance A and B: Functional assessments measure an individual’s ability
to maintain equilibrium in various positions, engaging key muscle groups
such as the abdominal muscles, quadriceps, and thigh adductors. These tests,
depicted in Fig. 1, consist of two distinct positions: Balance A and Balance
B. Balance A entails assuming a side-by-side stance with feet parallel. At the
same time, Balance B requires a semi-tandem stance, positioning the heel of
one foot against the side of the other foot’s big toe. The objective of these
tests is for the individual to sustain an unassisted standing posture for 10 s
in each specified stance.

– Tandem Gait (TG): Participants are required to stand with their feet together
and carefully walk 10 steps on a flat surface arranged in a straight line, with
the specific instruction to walk heel-to-toe. This heel-to-toe walking can be
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Fig. 1. Balance A, shown on the left, requires standing with feet together side by side.
Balance B requires a semi-tandem stand.

subdivided into several movements: abducting the thigh, transferring the cen-
ter of mass to the other foot, maintaining balance on one foot, adducting the
thigh, and transferring the center of mass between the feet. These movements
significantly challenge the adductor, abductor, and core muscles. We calculate
the steps taken before the first mistake during the test. Figure 2(A) illustrates
an example of the Tandem Gait (TG) test. Patients are classified into five
grades based on the number of consecutive steps achieved: grade 0 (impos-
sible to walk), grade 1 (≤ 3 steps), grade 2 (< 10 steps), grade 3 (10 steps,
but unstable with swaying from side to side) and grade 4 (10 steps, walking
normally) [9].

– Fukuda: As Fig. 2(B) shows, the test is a straightforward yet effective tool
for assessing balance and mobility. Participants are instructed to stand with
closed eyes, arms extended forward, and complete 50 steps in place within des-
ignated floor markings. This test engages the quadriceps and biceps femoris
muscles for stepping while involving the deltoids and upper arm muscles
through arm elevation. The smooth transfer of the center of mass between
feet during stepping indicates core muscle strength. By observing the range
of motion in the hip joints and limbs, this test provides insights into overall
balance capability. Trembling or shaking the limbs often signals inadequate
muscle strength, potentially contributing to balance issues.

– Romberg: Fig. 2(C) shows a simple assessment tool for evaluating balance
and proprioception. During this test, the patient must stand with their feet
together and their eyes closed. This test specifically evaluates the contribution
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of proprioceptive and vestibular inputs to balance by eliminating visual input
[1]. The examiner closely observes whether the person sways or falls during
the test. Any swaying or falling behavior suggests abnormal proprioception,
potentially linked to posterior column disease or other neurological conditions
affecting balance and spatial awareness.

Fig. 2. The figure demonstrates Tandem Gait, Fukuda, and Romberg. As in (A), par-
ticipants are instructed to walk carefully for 10 steps, with specific guidance to walk
heel to toe when performing the Tandem Gait. Based on the number of consecutive
steps achieved, we subgrouped patients into five grades: grade 0 (impossible to walk),
grade 1 (≤ 3 steps), grade 2 (< 10 steps), grade 3 (10 steps, but unstable with swaying
from side to side) and grade 4 (10 steps, walking normally). As shown in (B), Fukuda
assesses balance and mobility by having participants close their eyes, lift their hands
forward, and take 50 steps within marked floor areas. (C) indicates the Romberg, a
straightforward evaluation tool for assessing balance and proprioception. Patients are
instructed to stand with their feet together, and their eyes closed.

We recruited 40 individuals, half with sarcopenia and half without, perform-
ing five functional tests: Balance A, Balance B, Fukuda, TG, and Romberg. The
participants were all older than 20 years.

The studies were conducted according to international ethical guidelines and
approved by the Joint Institutional Review Board of Taipei Medical University.
All patients provided written consent. The dataset was divided into an 80:20
ratio, with 80% of the subjects allocated for training and the remaining 20% used
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to test the developed model. Notably, we systematically distributed the dataset
across various gender ratios to explore potential gender-related tendencies during
the evaluation process and assess the impact of data balance on predictive model
performance.

3 Proposed Approach for Estimating Sarcopenia
Probability

We formulate the estimation of sarcopenia probability by observing the move-
ments in video clips as a video-based human pose classification. By classifying
the video clips of individuals performing the five specified functional movements,
both with and without sarcopenia, we develop a pose classifier to differentiate
between the two groups. Our approach involves two key components: 3D pos-
ture keypoint localization and the classification of these keypoints into distinct
categories representing the presence or absence of sarcopenia.

3.1 3D Posture Keypoint Localization

The PoseTriplet [5] is instrumental in pinpointing the 16 keypoints on each
subject’s body across frames. PoseTriplet consists of a pose estimator, an imi-
tator, and a hallucinator, operating within a dual-loop architecture optimized
for joint efficiency. In the initial loop, the pose estimator generates motions that
may lack physical coherence, which the imitator promptly corrects by enforcing
essential physical constraints, thus producing more physically plausible move-
ments. Subsequently, in the second loop, the hallucinator amplifies the diversity
of motions based on the sequence from the first loop, sends them to the imita-
tor for refinement, and further enhances the dataset’s richness. This dual-loop
paradigm facilitates the coevolution of the three components and enables iter-
ative self-improving training of the pose estimator with the generated diverse
yet plausible motion data. Leveraging only 2D pose information as input, the
PoseTriplet iteratively refines and hallucinates 3D pose data, nurturing contin-
uous enhancement across all elements within the dual-loop paradigm.

We propose the use of 4- and 7-Vector configurations derived from the 16 3D
keypoints detected by PoseTriplet to assess the likelihood of sarcopenia. Clinical
observations suggest that the movement and stability of the human trunk during
Balance A and B can offer insights into tendencies towards sarcopenia. The 4-
Vector configuration, illustrated in Fig. 3, focuses on capturing trunk movements
during Balance A/B using four vectors. Similarly, during Fukuda, Tandem Gait,
and Romberg, specific body movements signify signs of sarcopenia. In contrast
to the four-vector setup for Balance A/B, an additional seven vectors, as depicted
on the right side of Fig. 3, constitute the seven-vector configuration to estimate
the probability of sarcopenia during Fukuda, Tandem Gait, and Romberg assess-
ments.
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Fig. 3. The feature of 4-Vector system and 7-Vector system. The star point on the left
represents the body centroid calculated by keypoints 10, 8, 13, 7, 0, 4, 1, 5, and 2. The
orange vector lines represent the chosen features. (Color figure online)

3.2 Transformer Classifier

Figure 4 shows that the key points detected by the PoseTriplet on each image
frame constitute the 4-vector and 7-vector inputs. Assuming that we process F
image frames in one batch, we denote the 4-Vector input as V4 ∈ RF×12 and
the 7-Vector input as V7 ∈ RF×21 for 3D key points. Here, we illustrate using
four vectors. Before entering the input embeddings, since the input embeddings
consist of three layers of two-dimensional linear transformations, we first convert
the original three-dimensional input (Batch, F, Vector) into two dimensions using
the x.view() method in PyTorch. This transformation changes the dimensions
from three to two, denoted as V ′

4 ∈ RF ′×12, where F ′ is the product of the batch
and F . Then, V ′

4 passes through the three linear layers, becoming f ′
e, which

is represented as f ′
e ∈ RF ′×128. After this, the x.view() method converts the

two-dimensional data to three dimensions, represented as fe ∈ RF×128. Before
entering the transformer encoder, we enhance fe with positional encoding from
[7] to preserve the ordering information of the sequence at each layer.

fe then proceeds to the Transformer encoder Te, which consists of L layers
of multi-headed self-attention. Each layer includes a multi-headed self-attention
module, which facilitate the capture of global and local attention across the
entities of the feature sequence from the previous layer. Let’s denote the feature
sequences at layer l and l − 1 as fl and fl−1, respectively. At layer l, the multi-
headed self-attention module initially maps fl−1 into a triplet representation
comprising the query Ql, key Kl, and value Vl as follows:

Ql = fl−1Wq,Kl = fl−1Wk, Vl = fl−1Wv (1)

Here, Wq, Wk, and Wv are the weights learned during training to determine Ql,
Kl, and Vl, respectively. Next, we compute the dot product of Ql and Kl using
matrix multiplication (matmul), denoted as M1. After applying the softmax
function, denoted as S, to M1, we obtain Nh attention weights of size F × F .
These attention weights are multiplied (matmul) with Vl, denoted as M2. This
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Fig. 4. The SDF network architecture.

process continues for each layer fl , and ultimately yields an output Ol,j from
the j-th head is computed as follows:

Ol,j = softmax

(
QF

l KF
l√

dk/j

)
V F
l , j ∈ 1, ..., Nh (2)

where dk represents the dimension of Kl, and Nh denotes the number of heads.
This learning process repeats for all L layers to yield the self-attention feature
sequence fl. After that, the outputs Ol,j from all Nh heads are concatenated and
processed by the MLP head layer denoted as MLP ∈ RF×128 to produce the
feature sequence fm. This MLP layer comprises three linear layers with ReLU
activation applied between them. The final step involves a fully connected layer
that transforms the prediction probability obtained through the sigmoid func-
tion to a range of 0–1. The prediction probability obtained through the sigmoid
function is then transformed to a range of 0–1. The standard for diagnosing
sarcopenia is based on this probability: a value greater than 0.5 indicates sar-
copenia, while less than 0.5 classifies the individual as control group.
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4 Experiments

We conducted experiments using the proposed approach on the dataset with
20 patients with sarcopenia and 20 control group. We followed the 5-fold cross-
validation and split the data into sets of 80% training (16 subjects per category)
and 20% testing (4 subjects per category) in each fold. Evaluation metrics include
accuracy, precision, and recall. Accuracy represents the probability of correctly
predicting either sarcopenia or control group, precision indicates the accuracy
of predicting normal conditions, and recall reflects the accuracy of predicting
sarcopenia. Given our emphasis on precisely identifying cases of sarcopenia in
evaluating deep neural networks, we primarily utilized accuracy and recall as
benchmarks.

Fig. 5. Samples of attention heatmaps are shown for the 4-Vector configuration, with
the upper row representing patients with sarcopenia and the lower row representing
those without sarcopenia. The greater color variation across the top heatmaps indi-
cates the distinctions between positive and negative cases. Different variation patterns
are shown for Balance A and B.

4.1 Attention Heatmap

Figure 5 displays the attention heatmaps between sarcopenia and control group
subjects within the 4-Vector system. For illustration, we selected three examples
of sarcopenia patients and three control group from the dataset. The horizontal
axis of the attention heatmap corresponds to the timeline, indicating the frame
number of the photos.
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Fig. 6. Samples of attention heatmaps are shown for the 7-Vector configuration, with
the upper row representing patients with sarcopenia and the lower row representing
those without sarcopenia. The greater color variation across the heatmaps on the top
indicates the differences between positive and negative. Different variation patterns are
shown for different functional movements.

In the 4-Vector system, the bright spots on the attention heatmap represent
the degree of trunk and shoulder sway during the balancing process. In Fig. 5,
although the control group exhibits bright green spots indicating body move-
ment, their trunk sway is uniformly distributed across different time points and
joints. On the contrary, individuals with sarcopenia show a higher overall num-
ber of bright spots on the heatmap, with noticeable periods of significant move-
ment. For example, in patients with sarcopenia during Balance A, individual
S 022 exhibits distinct sways in frames 30, 73, and 115, as evidenced by three
prominent bright bands on the heatmap.

Figure 6 presents the attention heatmaps within the 7-Vector system. Similar
to Fig. 5, the distribution of highlights can be observed, indicating uneven and
pronounced trunk movements in individuals with sarcopenia, characterized by
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more peaks. In contrast, the limb movements of control group appear more
uniform. The patterns observed in Figs. 5 and 6 confirm that Our model consists
of a 3D posture keypoint detector and a transformer classifier relies on capturing
individual trunk sways and enhanced joint movements to assess the likelihood
of sarcopenia in patients.

Table 1. Comparative study in 5-fold cross-validation

Balance A Balance B Romberg Fukuda Tandem

V4 - � - - � - - � - - � - - � -

V7 - - � - - � - - � - - � - - �
Accuracy Fold 1 64% 93% 71% 71% 86% 71% 79% 71% 79% 71% 71% 75% 71% 71% 86%

Fold 2 57% 86% 64% 71% 93% 71% 71% 71% 79% 86% 83% 86% 64% 75% 79%

Fold 3 79% 86% 86% 71% 79% 71% 71% 71% 79% 64% 71% 71% 71% 86% 79%

Fold 4 71% 79% 64% 64% 86% 77% 77% 77% 100% 71% 76% 93% 62% 71% 75%

Fold 5 68% 76% 71% 68% 83% 75% 71% 71% 86% 73% 73% 83% 64% 71% 79%

Mean 68% 84% 71% 69% 85% 73% 75% 72% 79% 73% 76% 87% 67% 75% 84%

Recall Fold 1 56% 83% 78% 56% 100% 56% 89% 56% 86% 56% 56% 67% 56% 71% 100%

Fold 2 44% 100% 67% 56% 83% 56% 56% 56% 100% 88% 88% 100% 67% 71% 100%

Fold 3 75% 71% 75% 56% 86% 56% 56% 56% 70% 67% 56% 75% 71% 86% 88%

Fold 4 83% 75% 67% 67% 78% 71% 71% 71% 100% 71% 86% 89% 56% 71% 56%

Fold 5 67% 84% 67% 60% 89% 64% 67% 71% 78% 71% 83% 78% 71% 78% 83%

Mean 65% 82% 72% 59% 87% 60% 68% 62% 87% 71% 74% 82% 64% 76% 86%

Precision Fold 1 83% 100% 78% 100% 100% 100% 80% 100% 75% 100% 100% 75% 67% 71% 67%

Fold 2 80% 75% 75% 100% 86% 100% 100% 100% 67% 88% 88% 100% 75% 71% 70%

Fold 3 86% 100% 100% 100% 86% 100% 100% 100% 75% 75% 100% 83% 71% 83% 78%

Fold 4 63% 86% 75% 75% 100% 83% 83% 83% 83% 71% 75% 75% 75% 71% 75%

Fold 5 75% 83% 86% 71% 88% 83% 67% 71% 100% 71% 83% 86% 71% 77% 83%

Mean 77% 88% 83% 89% 92% 93% 86% 91% 80% 81% 89% 84% 72% 75% 79%

4.2 Transformer Classifier

As for the settings of our experiments, we adopted Adam optimizer with β1 =
0.9 and β2 = 0.999, and the learning rate 2 × 10−5. All images were resized to
64×128. We trained 12,000 epochs with a batch size of 8, incorporating 32 heads
in the multi-head attention mechanism. Our proposed model was implemented
in PyTorch and trained on NVIDIA RTX 4090 GPU.

In our experiment, positive samples correspond to cases of sarcopenia. Preci-
sion reflects the proportion of predicted cases with sarcopenia, while recall indi-
cates the proportion of actual sarcopenia cases correctly identified by the model.
Table 1 shows that in our comparative study, we evaluated different selection
methods of 4-Vector and 7-Vector, as well as the scenario without any selec-
tion. We used 16 keypoints as input for the non-selection part, representing
the entire body skeleton. The results showed that the performance after vec-
tor selection was better than using the full-body skeleton. Specifically, 4-Vector
performed better for Balance A and B, while 7-Vector showed better results for
Romberg, Fukuda, and Tandem gait. Here, we want to understand the impact of
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Fig. 7. Compare samples of the 4-vector based on the brightness of frames in the
attention heatmap to distinguish between sarcopenia and control group. Bright frames
correspond to more considerable Euclidean distances between 3D skeletal vectors in sar-
copenia cases (ΔU :[Δu1,Δu2,Δu3,Δu4]), while dark frames indicate smaller distances
in control group individual.

Fig. 8. Compare samples of the 7-vector based on the brightness of frames in the
attention heatmap to distinguish between sarcopenia and control group. Bright frames
correspond to more considerable Euclidean distances between 3D skeletal vectors in
sarcopenia cases (ΔV :[Δv1, Δv2, Δv3, Δv4, Δv5, Δv6, Δv7]), while dark frames indi-
cate smaller distances in control group.

the attention mechanism in the transformer on vector features. We investigate
the segments highlighted in the attention heatmap for 4-Vector and 7-Vector.

Firstly, focusing on the 4-Vector scenario, we illustrate with the “balance A”
example. In Fig. 7, we compare cases of sarcopenia and control group. Specif-
ically, for sarcopenia in the “Balance a” scenario, we highlight the example
S 005. We extract the brighter frames in the attention heatmap and backtrack to
the values of the vector features. By calculating the Euclidean distance between
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Fig. 9. Samples of 3D vectors were compared between sarcopenia (S) and control group
(C) conditions using frames selected from every five frames in Figs. 7 and 8.

each pair of frames, we denote the Euclidean distances for the 4-Vector as ΔU :
[Δu1, Δu2, Δu3, Δu4], and for the 7-vector as ΔV : [Δv1, Δv2, Δv3, Δv4, Δv5,
Δv6, Δv7]. Let’s take Δu1 as an example. The Euclidean distance formula is as
follows:

Δu1 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (3)

Here, Δu1 represents the difference between frames for the first vector among
the 4-Vector. (x2, y2, z2) denotes the subsequent frame of the first vector, and
(x1, y1, z1) denotes the previous frame of the first vector. Then, within a sequence
of 5 frames, we calculate the Euclidean distance between each pair of frames and
identify the maximum distance as Δu1. This process is repeated to calculate the
differences between frames for the second vector, resulting in Δu2, and so forth
for the remaining vectors.

We observe that frames highlighted in the attention heatmap exhibit larger
distances. Conversely, in the case of control group like N 055, frames with darker
attention heatmap values show smaller Euclidean distances.

Next, for the 7-Vector scenario, we use “Fukuda” as an example. Figure 8
highlights the example S 022 for “Fukuda”. Like the 4-Vector case, frames with
brighter attention heatmap values demonstrate more considerable Euclidean dis-
tances, represented as ΔV :[Δv1,Δv2,Δv3,Δv4,Δv5,Δv6,Δv7]. Conversely, in the
case of control group like N 015, frames with darker attention heatmap values
exhibit smaller Euclidean distances. This suggests that the attention mechanism
can identify frames with more significant movement in the vectors highlighted
in the attention heatmap.
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Figure 9 shows that we selected one frame from every 5 in Figs. 7 and 8 to
compare their 3D vectors. Individuals with sarcopenia show a lower average cen-
ter of gravity than the control group in the 4-Vector comparison, resulting in a
slight forward inclination of the body, leading to more considerable variations
ΔU in the 4-Vector compared to those in the control group. In the case of the
7-Vector comparison, the vector from keypoints 0 to 7 (v1) exhibits a tilting phe-
nomenon in individuals with sarcopenia. At the same time, minimal movement
is observed in the same vectors for the control group. Consequently, the values
of ΔV are more significant in individuals with sarcopenia than in the control
group, corresponding to the brighter regions highlighted in the earlier attention
heatmap.

5 Conclusion

In this study, we focus on early detection and intervention of sarcopenia, a con-
dition characterized by age-related decline in skeletal muscle mass, strength,
and physical performance. Our approach combines a 3D posture keypoint detec-
tor with a transformer classifier, providing a promising strategy for diagnosing
sarcopenia from functional test videos.

To enhance interpretability, we integrate mechanisms that offer insights into
decision-making. Our approach effectively identifies sarcopenia patients by ana-
lyzing body sway and joint movements through attention heatmaps.

Furthermore, our comparative analysis demonstrates the transformer’s supe-
rior performance in handling the complexity of functional test videos. Our
approach achieves higher classification accuracy and precision than traditional
approaches, highlighting its potential for more accurate and reliable sarcopenia
diagnosis and proactive healthcare interventions.
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Abstract. Effective fusion of RGB-D multi-modal features is crucial
for RGB-D object tracking. Existing fusion methods mainly guide the
interaction of RGB and depth by dense attention, but such formulation
relies only on independent spatial token attributes, without considering
the correspondences among channel slices. To address this limitation, we
propose a spatial and channel disentangled attention mechanism, provid-
ing dual guidance on spatial and channel relevance for RGB-D fusion.
Simultaneously, to deal with potential erroneous attention, we exploit the
explicit modulation vectors to weaken less relevant spatial and channel
features. Drawing on this, we design an adaptive architecture by weaken-
ing the significance of less confident intra-modal features and amplifying
the supportive cross-modal features. The experimental results on four
standard RGB-D benchmarking datasets, i.e., ARKitTrack, DepthTrack,
RGBD1K, and CDTB, confirm the merit of our approach in adaptive
fusion, outperforming existing state-of-the-art solutions.

Keywords: RGB-D Object Tracking · Multi-modal Interaction ·
Disentangled Attention

1 Introduction

Visual object tracking [1,6,13,31,32] is a foundational computer vision task,
aiming to predict an object’s trajectory within a video sequence based on an ini-
tial state. This task holds vital significance for applications like surveillance,
autonomous driving, and augmented reality. In general, traditional tracking
methods primarily rely on RGB images, utilising colour and texture cues to dif-
ferentiate targets from the surroundings. However, these frameworks achieve lim-
ited performance under challenging conditions, such as low illumination, occlu-
sion, and complex backgrounds, challenging their practical applications.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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https://doi.org/10.1007/978-3-031-78444-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78444-6_22&domain=pdf
https://doi.org/10.1007/978-3-031-78444-6_22


Learning Explicit Modulation Vectors for Disentangled Transformer 333

Fig. 1. Motivation of our proposed disentangled attention-based RGB-D fusion app-
roach. Compared to the dense attention-based fusion approach, our approach com-
bines the disentangled attention of the two modalities from the channel and spatial
perspectives. Besides, explicit modulation vectors are introduced for both types of
attention to weaken the effect of possible noise and redundancy.

To provide a complementary source besides the visual modality, the inte-
gration of RGB-D information, obtained from RGB-D sensors capturing both
colour (RGB) and depth data, has emerged as a potent solution to these chal-
lenges [15,24,26,27,30]. In essence, depth modality offers geometric and spatial
alignment of the scene. However, fusing RGB and depth modalities for advanced
RGB-D object tracking remains challenging. It is critical to effectively combine
these two modalities with boosted and consistent feature representations.

As illustrated in Fig. 1, to explore RGB-D fusion, [24,28] directly fuse the
RGB and Depth modalities through feature-weighted averaging or concatenation
operations. This direct fusion neglects the inherent differences between the two
modalities, potentially compromising the original source information. To this
end, recent fusion approaches [9,30] utilise global attention to compute dense
attention between the two modalities, thereby integrating the RGB and depth
modalities more compactly. However, global attention mechanisms rely more on
spatial tokens to establish attention, lacking consideration for channel attributes.
Besides, less confident spatial tokens may lead to erroneous attention, result-
ing in negative information delivery that suppresses the performance of RGB-D
trackers. To address this issue, we disentangle the global attention operation into
modulatory spatial group attention and modulatory channel group attention. At
the same time, we introduce explicit modulation vectors to adjust the relevance
of potential errors in the attention computation, adaptively suppressing less rele-
vant spatial and channel features. Based on this, we design an RGB-D interaction
module, as shown in Fig. 1(c). Compared to the dense attention-based RGB-D
fusion module, our disentangled attention supplements the channel-wise atten-
tion between the two modalities. Our disentangled attention-based interaction
module ensures effective utilisation of the most informative cues from RGB and
depth modalities across different situations, obtaining high-quality fused fea-
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tures that significantly support the localisation demands from RGB-D object
tracking.

Overall, we have the following three contributions:

– We disentangle the global dense attention into modulatory spatial and channel
group attention to obtain the attention of RGB and depth modal features
jointly to guide advanced RGB-D fusion.

– We propose an RGB-D interaction network that combines disentangled self-
attention and cross-attention to process both unimodal and bimodal input,
providing a new solution for multimodal feature learning.

– We introduce a new RGB-D tracker, DAMT, which updates state-of-the-art
performance on four RGB-D object tracking benchmarks.

2 Related Work

2.1 Attention Modules

The introduction of attention modules has significantly improved the power
of deep networks to understand image content by selectively focusing on key
areas or features. In the beginning, SENet [11] introduces the “Squeeze-and-
Excitation” (SE) module, improving the feature discrimination ability of con-
volutional neural networks (CNN) by dynamically adjusting the importance of
channels. Building upon SENet, CBAM [22] further enhances attention to image
features by adding spatial attention, enabling the network to identify important
channel features and locate crucial spatial features. Simultaneously, the trans-
former [20], originally designed for natural language processing tasks and effec-
tively adapted to computer vision tasks, computes attention scores between all
regions in an image, capturing complex long-range dependencies. This makes it
particularly valuable for tasks such as image classification [7] and object detec-
tion [3]. Additionally, modules like Dual Attention [8] and Attention in Attention
[10] further advance their structures by combining spatial and channel atten-
tion mechanisms or applying attention mechanisms recursively at multiple levels
respectively.

Different from existing designs, the disentangled transformer attention we
propose is mainly aimed at the interaction of RGB and depth modalities in
RGB-D object tracking, providing a more delicate way to learn the relevance
between RGB and depth modal features.

2.2 Multi-modal Fusion in RGB-D Visual Tracking

Benefited from the rapid advancement of high-performance depth sensors, the
emergence of large-scale RGB-D tracking datasets [24,26,27,30] has opened up
new possibilities for exploration in RGB-D visual tracking. Compared to tradi-
tional RGB object tracking [1,13], RGB-D object tracking integrates informa-
tion from both RGB and depth images. While this provides more scene infor-
mation, it also requires a focused consideration of the interaction between the
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two modalities. For instance, DeT [24], inspired by the architectures of ATOM
[5] and DiMP [2], effectively combines RGB and depth features by comput-
ing pixel-wise maximum or average values from their feature maps. To exploit
transformer structure, SPT [30] initially feeds RGB and depth features into their
respective multi-layer transformer encoders, separately processing each modal-
ity at the feature extraction stage. Subsequently, it employs channel dimension
splicing along with self-attention modules to promote the interaction between
RGB and depth features. To preserve the power of the RGB modality-trained
tracker, ViPT [29] adopts visual prompt learning, embedding prompt structures
into each layer of the interaction module to integrate multi-modal information.
To explore the underlying geometric clues, ARKitTrack [26] transforms the depth
map into BEV space to obtain a structured depth map coding. Then, Cross-View
Fusion is followed to fuse RGB features and depth maps. These RGB-D fusion
designs have developed effective innovations in multi-modal feature extraction,
feature selection and modal adaptation.

To perform sufficient fusion, our design generates RGB-D multi-modal fea-
tures from both single-modal feature modulation and multi-modal feature inter-
active modulation, providing a new and effective solution for RGB-D multi-
modal fusion.

3 Approach

The framework of our RGB-D tracker DAMT is shown in Fig. 2, where the
backbone of the feature extraction and interaction network is the Vision Trans-
former (ViT) [7]. On this basis, we innovatively develop the Spatial and Channel
Disentangled Attention module and create the Disentangled Transformer Atten-
tion RGB-D Interaction network. The network excels at integrating high-quality,
highly correlated RGB-D features, significantly improving tracking performance.
In the following sections, we introduce our DAMT tracker in detail, focusing on
three aspects: overall network architecture, Spatial and Channel Disentangled
Attention, and Disentangled Transformer Attention RGB-D Interaction network.

3.1 Overall Network Architecture

In this section, we introduce the general architecture of our DAMT tracker.
Our bimodal feature extraction and template-search region interaction module
is built based on the LiteTrack [21], which is a high-performance tracker of asyn-
chronous feature extraction and interaction. The term “asynchronous” denotes
a sequential process where template features are initially extracted, followed by
the extraction of the search area features, culminating in the interaction and
learning of the template-search region features. Specifically, for the RGB modal-
ity, we first input the template image (Zrgb ∈ R

C×Hz×Wz ) and the search image
(Xrgb ∈ R

C×Hx×Wx) into the patch embed layer and convert them into the cor-
responding token patches (Zrgb ∈ R

C× Hz
16 ×Wz

16 , Xrgb ∈ R
C× Hx

16 ×Wx
16 ). Feature
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Fig. 2. Overall architecture of our proposed RGB-D tracker DAMT. It includes the
RGB Extraction and Interaction branch, Depth Extraction and Interaction branch,
and Disentangled Transformer Attention RGB-D Interaction.

extraction and interaction are implemented using continuously stacked trans-
former encoder layers. The basic block uses ViT [7], and its internal operation is
multi-head self-attention:

Attn = softmax
(

QK�
√

dk

)
V (1)

For the template patches Zrgb, we send it into Mv ViT blocks for feature extrac-
tion. Regarding the search patches Xrgb, we first feed it into the correspond-
ing feature extraction phase with Nv ViT blocks to perform the multi-head
self-attention operation, and then concat it together with the template feature
tokens output from the last layer, forming the input for the interaction phase.
This interaction phase comprises Lv ViT blocks and its internal operation differs
slightly from the standard multi-head self-attention. Specifically, the generation
of Query (Q) only relies on search region features, as shown in Eq. (2).

Attn[Z:X] = softmax
(

QK�
√

dk

)
V = softmax

(
[Qx]

[
K�

x ;K�
z

]
√

dk

)
[Vx;Vz] (2)

Although the attention computation in feature extraction is slightly different
from that in the interaction phase, the network parameters are the same. For
the same modality, the template branch and the search region branch share the
weights. For the depth modality, the computation of the feature extraction and
interaction phases is the same as that of the RGB modality, the only difference
is that the number of ViT blocks used for the depth modality can be different
from the RGB modality, but both satisfy Eq. (3). We performed an extensive
ablation analysis of the number of ViT blocks for both modalities, as shown in
Table 3.

M{v,d} = N{v,d} + L{v,d} (3)
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Fig. 3. Design details include Disentangled Self-Attention module, Disentangled Cross-
Attention module, and Spatial and Channel Disentangled Attention.

After obtaining the RGB interactive token (Trgb) and the depth interactive
token (Tdepth), input them into the Disentangled Transformer Attention RGB-
D Interaction network, which consists of two Disentangled Self-Attention (DSA)
modules and two Disentangled Cross-Attention (DCA) modules. The network
drives the adaptive interaction of the RGB and depth modalities by Spatial and
Channel Disentangled Attention. More detailed framework explanations will be
provided in Sect. 3.2 and 3.3.

After passing through the RGB-D Interaction network, we extract the search
feature tokens from the fused multi-modal features and input them into the cen-
tral prediction head. This prediction head comprises three convolution branches:
central score classification, offset regression, and width-height regression. The
position with the highest confidence in the central score map is chosen as the
predicted target position, and subsequently, the bounding box is computed as
the final output based on the corresponding regression coordinates. We employ
the focal loss [14] for classification. For localisation, we combine the L1 loss and
the generalised GIoU loss [19] as the training objectives. The overall loss function
can be expressed as:

Losstotal = Lfocal + λG · LGIoU + λ� · L1 (4)

where λG = 2 and λ� = 5 are trade-off weights, as suggested in [25], to balance
optimisation.

3.2 Spatial and Channel Disentangled Attention

To cope with the lack of consideration of channel attributes in dense attention
when fusing RGB and depth modalities, we propose the Spatial and Channel
Disentangled Attention, which disentangles the dense attention into an adaptive
fusion of modulatory spatial group attention and modulatory channel group
attention. Its input dimension is (N × C), where N stands for the number of
patches and C represents the number of channel layers. The structure is depicted
in Fig. 3.
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In particular, Modulatory Spatial Group Attention, which first calculates the
degree of attention of each patch relative to all patches by matrix multiplica-
tion of Query (Q) and Key (K), while dividing by

√
nk to balance the value of

the attention weights, and nk represents the number of patches involved in the
current attention computation. Then, explicit spatial modulation vector(Vecs)
of dimension (N × 1) is introduced, and it is applied to the spatial attention
map to contract the group attention and fine-tune the attention for each patch,
aiming at weakening the effect of some erroneous relevance in the spatial atten-
tion. Next, the weight vector (Attns) is expanded to the dimension of (N × C)
and dot-multiplied with the value (V). This method will obtain spatial atten-
tion features (Fs) by applying modulatory spatial attention weights to the input
features, based on the varying levels of attention received by each patch within
the current patch group. The whole process is shown in Eq. (5) and (6).

Attns = softmax
(

QK�
√

nk

)
· Vecs (5)

Fs = Attns � V (6)

The operation of Modulatory Channel Group Attention is similar to that of
Modulatory Spatial Group Attention. The degree of attention for each channel
relative to all channels is calculated by matrix multiplication of Query (Q) and
Key (K), while dividing by

√
dk to balance the attention weights, where dk

represents the number of channels involved in the current attention computation.
Then, explicit channel modulation vector(Vecc) of dimension (C × 1) is used to
contract the channel group attention and fine-tune the attention for each channel,
with the intention of mitigating the influence of noisy weights in the channel
attention. The weight vector (Attnc) is expanded to the (N ×C) dimension and
then dot-multiplied with the value (V), thereby producing channel attention
features (Fc). The entire process is depicted in Eq. (7) and (8).

Attnc = softmax
(

Q�K√
dk

)
· Vecc (7)

Fc = Attnc � V (8)

The computational complexity of Spatial and Channel Disentangled Atten-
tion is O(n2d), which is on the same order of magnitude as standard dense
attention. Finally, we using the learnable parameters λ1 and λ2 to perform non-
proportional fusion of spatial attention features (Fs) and channel attention fea-
tures (Fc) to obtain the final output(F). The specific operation is shown in Eq.
(9).

F = λ1 · Conv(Fs) + λ2 · Conv(Fc) (9)

3.3 Disentangled Transformer Attention RGB-D Interaction

Our Disentangled Transformer Attention RGB-D Interaction network consists
of two Disentangled Self-Attention (DSA) modules and two Disentangled Cross-
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Attention (DCA) modules. DSA and DCA are used to process single-modality
input and dual-modalities feature inputs, respectively. For single-modality input,
we use DSA for its spatial and channel features for relevance filtering to increase
the weight of highly relevant spatial and channel information in the overall fea-
ture.

T{rgb,depth} = T{rgb,depth} + DSA
(
T{rgb,depth}

)
(10)

For dual-modalities inputs, our method relies on the more detailed relevance
of the two modalities in spatial and channel demensions to guide RGB-D fusion,
which also smoothes the difference between RGB and depth modalities during
fusion to a certain extent.

Trgb = Trgb + DCA (Trgb,Tdepth) (11)
Tdepth = Tdepth + DCA (Tdepth,Trgb) (12)

Finally, the outputs of the two DCA modules are concatenated to obtain the
final fused features, the search region tokens are extracted and then sent to the
central prediction head to predict the target bounding box.

4 Experiments

Our RGB-D tracker DAMT is implemented in Python 3.8 based on PyTorch
1.13.0 and training and test are performed on a single Nvidia RTX3090 GPU.
The tracking speed of DAMT is about 60 FPS on a 3090 GPU.

4.1 Experimental Setting Details

Training. The number of stacks of ViT blocks in the feature extraction
and interaction branches of our DAMT tracker is chosen based on the
parameter combination that yielded the best results in Table 3, which is
[Mv, Nv, Lv,Md, Nd, Ld] = [9, 6, 3, 6, 3, 3]. Input images are resized to 128
× 128 (template) and 256 × 256 (search area) in the DAMT tracker. Train-
ing utilized DepthTrack, RGBD1K, and ARKitTrack datasets (approx. 1,300
RGB-D sequences), with a learning rate of 10−4 and a loss function inspired
by OsTrack’s principles. The training spanned 200 epochs for robustness and
accuracy.

Testing. We evaluated DAMT on four challenging RGB-D tracking datasets
(ARKitTrack, DepthTrack, RGBD1K, and CDTB), surpassing the state-of-the-
art performance achieved by previous trackers.

Evaluation. Our evaluation follows the metrics (Precision, Recall, and F-score)
from [16] for long-term tracking assessment. Precision measures overlap between
predicted and ground-truth bounding boxes on successful detections, Recall mea-
sures the mean overlap ratio between the predicted and ground-truth bounding
boxes across frames where the target remains within the camera’s view, and the
F-score combines both metrics for overall performance.
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Table 1. Quantitative Comparison with advanced RGB and RGB-D trackers.

Tracker ARKitTrack [26] DepthTrack [24] RGBD1K [30] CDTB [15] Type

Pr Re F-score Pr Re F-score Pr Re F-score Pr Re F-score

STARK [23] 0.407 0.381 0.393 0.503 0.468 0.485 0.481 0.509 0.495 0.657 0.669 0.663 RGB

OSTrack [25] 0.440 0.440 0.440 0.558 0.582 0.570 0.489 0.516 0.502 0.713 0.686 0.699 RGB

MixFormer [4] 0.449 0.421 0.434 0.490 0.454 0.471 - - - 0.692 0.664 0.678 RGB

ToMP [17] 0.449 0.433 0.441 0.515 0.495 0.505 - - - 0.670 0.683 0.676 RGB

LiteTrack [21] 0.447 0.446 0.447 0.529 0.513 0.521 0.512 0.501 0.507 0.683 0.692 0.687 RGB

DDiMP [12] 0.495 0.413 0.450 0.503 0.469 0.485 0.557 0.534 0.545 0.703 0.689 0.696 RGB-D

ATCAIS [12] 0.389 0.343 0.364 0.500 0.455 0.476 0.511 0.451 0.479 0.709 0.696 0.702 RGB-D

Siam LTD [12] - - - 0.418 0.342 0.376 0.543 0.318 0.398 0.626 0.489 0.549 RGB-D

TSDM [28] 0.389 0.292 0.334 0.442 0.363 0.398 0.455 0.361 0.403 0.647 0.543 0.591 RGB-D

DAL [18] 0.446 0.329 0.378 0.512 0.369 0.429 0.562 0.407 0.472 0.620 0.560 0.589 RGB-D

DeT [24] 0.428 0.405 0.416 0.560 0.506 0.532 0.438 0.419 0.428 0.674 0.642 0.657 RGB-D

DMT [9] - - - 0.619 0.597 0.608 - - - 0.662 0.658 0.660 RGB-D

SPT [30] 0.439 0.439 0.439 0.527 0.549 0.538 0.545 0.578 0.561 0.654 0.726 0.688 RGB-D

ViPT [29] 0.444 0.447 0.446 0.592 0.596 0.594 0.453 0.472 0.462 0.651 0.721 0.684 RGB-D

ARKitTrack [26] 0.488 0.469 0.478 0.617 0.607 0.612 - - - 0.711 0.671 0.691 RGB-D

DAMT(Ours) 0.537 0.546 0.541 0.630 0.627 0.629 0.584 0.546 0.565 0.687 0.719 0.703 RGB-D

4.2 Comparison with SOTA RGB-D Trackers

To demonstrate the superiority of our RGB-D tracker DAMT, we perform quan-
titative and qualitative comparisons with a sufficient number of state-of-the-art
RGB-D trackers on four standard RGB-D tracking benchmarks.

Quantitative Comparison. In Table 1 we perform a quantitative comprehen-
sive evaluation of 16 state-of-the-art trackers (including DAMT) on the ARKit-
Track [26], RGBD1K [30], DepthTrack [24] and CDTB [15] datasets. Among the
competitors, STARK [23], OSTrack [25], MixFormer [4], ToMP [17], and Lite-
Track [21] stand out as RGB trackers. The remaining competitors, encompassing
both depth and colour branches, include well-known works such as DDiMP [12],
ATCAIS [12], Siam LTD [12], TSDM [28], DAL [18], and state-of-the-art meth-
ods like DeT [24], DMT [9], ViPT [29], ARKitTrack [26], and SPT [30]. Com-
parative analyses show that our DAMT tracker performs superiorly, particularly
achieving significant F-scores on the ARKitTrack and DepthTrack datasets.

In the ARKitTrack benchmark test, all three indicators, Pr, Re, and F-score,
ranked first. The F-score of DAMT significantly exceeded the second-ranked
ARKitTrack tracker by 6.3%. Its F-score is also 12.5%, 10.2% and 9.5% higher
than leading short-term trackers like DeT, SPT and ViPT respectively. Fur-
thermore, DAMT demonstrates significant enhancements compared to top long-
term RGB-D trackers such as DAL and TSDM, with F-score improvements of
16.3% and 20.7%, respectively.

Performance on the DepthTrack dataset is also commendable, with DAMT
leading the way in precision, recall and F-score metrics. It outperforms the top
performer, ARKitTrack, with a 1.3%, 2.0%, and 1.7% improvement in preci-
sion, recall, and F-score, respectively. In addition, DAMT also shows significant
advantages over other advanced trackers such as SPT, DeT and ViPT, with
F-score improvements of 9.1%, 9.7% and 3.5%, respectively.
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Although the DAMT tracker slightly outperforms other state-of-the-art
trackers on the RGBD1K and CDTB datasets, it still achieves the highest F-
scores. Comparative results on four large-scale RGB-D benchmarking datasets
not only highlight the effectiveness of DAMT, but also show its robustness, pro-
viding strong support for its adoption in a variety of tracking scenarios.

Fig. 4. Qualitative Comparison with state-of-the-art RGB-D trackers.

Table 2. Ablation study on the necessity of RGB-D fusion.

Tracker ARKitTrack DepthTrack RGBD1K CDTB

Pr Re F-score Pr Re F-score Pr Re F-score Pr Re F-score

LiteTrack-baseline 0.447 0.446 0.447 0.529 0.513 0.521 0.512 0.501 0.507 0.683 0.692 0.687

LiteTrack-FT 0.503 0.512 0.508 0.571 0.594 0.583 0.510 0.538 0.524 0.637 0.706 0.670

DAMT 0.537 0.546 0.541 0.630 0.627 0.629 0.584 0.546 0.565 0.687 0.719 0.703

Qualitative Comparison. To vividly demonstrate the strengths of our method,
we conduct a qualitative analysis comparing DAMT with state-of-the-art track-
ers, including ViPT [29], SPT [30], and ARKitTrack [26], as shown in Fig. 4.
The evaluation is performed on a range of challenging RGB-D sequences, encom-
passing scenarios such as fast-moving targets, dimly environments, occlusions,
and background blending. The visual comparisons vividly highlight the distinct
advantages of our proposed method. Our RGB-D tracker remains capable of
tracking the corresponding targets in numerous challenging scenarios. This pro-
vides compelling evidence of the robustness and effectiveness of our approach in
addressing RGB-D object tracking challenges.
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Fig. 5. (a) Target bounding boxes generated by the baseline and DAMT, red represents
the ground truth, green is the output of baseline, and blue is the output of DAMT. (b)
The search region of baseline. (c) The score map of baseline. (d) The search region of
DAMT. (e) The score map of DAMT. (Color figure online)

Table 3. Ablation analysis of ViT Stacks for Feature Extraction and Interaction.

RGB
[Mv, Nv, Lv ]

Depth
[Md, Nd, Ld]

ARKitTrack DepthTrack RGBD1K CDTB

Pr Re F-score Pr Re F-score Pr Re F-score Pr Re F-score

[9,6,3] [9,6,3] 0.525 0.535 0.530 0.619 0.618 0.619 0.575 0.524 0.548 0.681 0.706 0.693

[9,6,3] [6,3,3] 0.537 0.546 0.541 0.630 0.627 0.629 0.584 0.546 0.565 0.687 0.719 0.703

[9,6,3] [4,2,2] 0.523 0.532 0.528 0.603 0.593 0.598 0.564 0.546 0.554 0.671 0.700 0.685

[6,3,3] [6,3,3] 0.506 0.504 0.505 0.582 0.556 0.569 0.555 0.512 0.533 0.663 0.690 0.676

[4,2,2] [4,2,2] 0.488 0.495 0.492 0.526 0.504 0.515 0.523 0.472 0.496 0.658 0.656 0.657

4.3 Ablation Study

Necessity of RGB-D Fusion. Regarding the necessity of RGB-D fusion, in
Table 2 we compare three trackers, namely LiteTrack-baseline, LiteTrack-FT and
DAMT. LiteTrack [21] is our baseline tracker, and we use the largest public
model LiteTrack-B9, LiteTrack-FT is the fine-tuned version of the LiteTrack
model, trained on RGB sequences from the DepthTrack [24], RGBD1K [30], and
ARKitTrack [26] datasets, and DAMT is our proposed RGB-D tracker. Our
method shows improvements in F-score by 9.4%, 10.8%, 5.8%, and 1.6% com-
pared to the baseline tracker, and by 3.3%, 4.6%, 4.1%, and 3.3% compared
to the fine-tuned version baseline across four benchmarks. In Fig. 5, we visual-
ize the search region and score map generated by our method and the baseline
method for the same scene. As can be seen from the figure, our method exhibits
stronger attention towards the tracked target and produces a more accurate
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Table 4. Comparing ablation with other attention modules.

Tracker ARKitTrack DepthTrack RGBD1K CDTB

Pr Re F-score Pr Re F-score Pr Re F-score Pr Re F-score

DAMT(SA+CA) 0.528 0.522 0.525 0.599 0.606 0.603 0.558 0.521 0.539 0.675 0.697 0.686

DAMT(DSA+DCA) 0.537 0.546 0.541 0.630 0.627 0.629 0.584 0.546 0.565 0.687 0.719 0.703

Table 5. Modular ablation on DSA and DCA in Disentangled Transformer Attention
RGB-D Interaction Network.

Dateset Disentangled RGB-D Interaction Pr Re F-score

DSA(RGB) DSA(Depth) DCA

ARKitTrack � 0.529 0.527 0.528

� 0.519 0.528 0.524

� � 0.532 0.530 0.531

� � � 0.537 0.546 0.541

Depthtrack � 0.604 0.607 0.606

� 0.591 0.588 0.590

� � 0.619 0.625 0.622

� � � 0.630 0.627 0.629

RGBD1K � 0.553 0.508 0.530

� 0.568 0.525 0.545

� � 0.569 0.533 0.551

� � � 0.584 0.546 0.565

CDTB � 0.665 0.693 0.679

� 0.671 0.696 0.683

� � 0.674 0.705 0.689

� � � 0.687 0.719 0.703

Table 6. Ablation Study on methods for Group Attention Contraction.

Attention Contraction ARKitTrack DepthTrack RGBD1K CDTB

Pr Re F-score Pr Re F-score Pr Re F-score Pr Re F-score

Max 0.518 0.528 0.523 0.591 0.582 0.587 0.583 0.539 0.560 0.682 0.701 0.692

Mean 0.519 0.528 0.524 0.592 0.600 0.596 0.577 0.522 0.548 0.680 0.703 0.691

Sum 0.518 0.522 0.520 0.609 0.616 0.612 0.578 0.524 0.550 0.672 0.687 0.679

Modulation Vector 0.537 0.546 0.541 0.630 0.627 0.629 0.584 0.546 0.565 0.687 0.719 0.703

Table 7. Ablation study of two weighted adaptive parameters.

Parameters of Add ARKitTrack DepthTrack RGBD1K CDTB

Spatial Channel Pr Re F-score Pr Re F-score Pr Re F-score Pr Re F-score

1 1 0.534 0.532 0.533 0.621 0.625 0.623 0.567 0.528 0.547 0.681 0.711 0.695

λ1 λ2 0.537 0.546 0.541 0.630 0.627 0.629 0.584 0.546 0.565 0.687 0.719 0.703
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bounding box. These show that effective use of RGB-D bimodal features can
improve tracker performance, and our method can well extract and fuse RGB
and Depth modalities to achieve significant tracking accuracy and robustness.

Ablation Analysis of the Number of ViT Blocks in Different Modali-
ties. As shown in Table 3, we conducted an experimental analysis on the num-
ber of ViT blocks used in the feature extraction and interaction stages for both
modalities. Given that the modal information of depth images is relatively sim-
pler compared to RGB images, it might not be necessary to utilise deeper net-
works for feature extraction.

Comparing Ablation With Dense Attention Modules. As shown in
Table 4, We compare our proposed Disentangled Self-Attention and Disentangled
Cross-Attention with standard self-attention and cross-attention while ensuring
consistency in the training dataset and number of training epochs. In terms of
F-score scores, our fusion strategy leads by about 1.6%-2.6%. The results show
that the disentangled attention we propose complements the relevance of RGB
and depth modalities in channel attributes compared to dense attention, and
can provide more detailed guidance for RGB-D fusion.

Modular Ablation on DSA and DCA in RGB-D Interaction Network.
We investigate modular ablation of Disentangled Self-Attention and Disentan-
gled Cross-Attention in RGB-D interaction network in Table 5. Our Disentangled
Self-Attention optimises the feature quality of a single modality, while Disentan-
gled Cross-Attention can effectively interact with RGB and depth modal features
and establish the relevance between RGB and depth modalities from the spa-
tial and channel dimensions. The performance of the DAMT tracker gradually
improves as the modules are stacked, which demonstrates the effectiveness and
generalisation of our method in fusing RGB-D multi-modal features.

Methods for Group Attention Contraction. To demonstrate that our pro-
posed explicit modulation vectors applied to group attention contraction can
better screen out highly correlated spatial and channel features in RGB-D
bimodal, we compare the performance of three unified contraction methods(max,
mean, and sum). As can be seen from Table 6, our proposed explicit modula-
tion vector contraction can obtain higher F-scores on four benchmarks compared
to the other three unified contractions, which indicates the effectiveness of our
method.

Ablation of Two Weighted Adaptive Parameters. We perform parame-
ter adaptive summation of features from Modulatory Spatial Group Attention
and Modulatory Channel Group Attention. Table 7 provides ablation analysis of
learnable weighting (λ1: λ2) and equal proportional weighting (1:1). It can be
seen from the results that the learnable weighting of spatial and channel features
also brings certain performance improvements. The improvement is smaller com-
pared to equal weighting, probably because the use of modulation vectors has
weakened most of the irrelevant features.
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5 Conclusion

In this paper, we propose a disentangled attention mechanism consisting of mod-
ulatory spatial group attention and modulatory channel group attention, which
supplements the perceptual deficiencies of dense attention. Based on this, we
design a disentangled transformer attention RGB-D interaction network for fus-
ing RGB and depth modalities. Extensive experiments on four RGB-D track-
ing benchmarks demonstrate that our method exhibits advantages compared
to state-of-the-art methods. To further unveil the power of multi-modal fusion,
we will explore a fine-grained RGB-D fusion strategy to investigate the RGB-D
fusion principles in future.
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Abstract. Point tracking can be regarded as a transfer and exten-
sion of keypoints representation and matching. In contrast to match-
ing the salient points like corners or spots, which are easily detected and
described by detector-based approaches, point tracking tasks are capable
of handling arbitrary points on physical surfaces, including nonrigid or
weakly-textured surfaces. Additionally, keypoint matching lacks a direct
mechanism to handle occlusion in tracking tasks. Therefore, we propose
to use a detector-free local feature-matching model based on the trans-
former structure to perform patch matching, incorporating occlusion pre-
diction and introducing an uncertainty estimate for extended robustness.
Besides, using a coarse-to-fine strategy, we generate coarse predictions
at the patch level and refine them to obtain accurate coordinates at the
sub-pixel level by motion-driven point association. After fine-tuning the
model on the training set of the Perception Test benchmark, our model
APM-MPAPT outperforms the competitors in the benchmark on the
corresponding validation set, with promising performance improvement
against the baseline.

Keywords: Point Tracking · Feature Matching · Transformer

1 Introduction

Many 3D computer vision tasks, such as Structure from Motion (SfM), and
Visual Simultaneous Localisation & Mapping (VSLAM), typically rely on fea-
ture matching as a foundational technology. In these tasks, feature matching is
primarily employed to associate sparse keypoints between image pairs, as these
points often reflect specific physical saliency on rigid objects. Before obtain-
ing the correct correspondences of these keypoints, it is often necessary to detect
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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and describe them using feature descriptors/maps. However, these detected
points in structured and texture-rich areas are expert in 3D reconstruction,
rather than depicting the trajectory of moving objects in the scene.

Considering the significance of detecting and predicting motion in scene
understanding, point tracking aims to address the problem of long-term motion
estimation of points. The targeted points are on arbitrary surfaces of various
objects (whether in motion or stationary) within real scenes. Specifically, in this
task, the model is given a video along with the 2D coordinates of query points.
To this end, there is a basic requirement to address the feature matching problem
for query points. Therefore, we attempt to transfer the existing feature match-
ing methods to point tracking by integrating local motion estimation. However,
it is worth noting that query points exhibit greater arbitrariness compared to
keypoints, which challenges the model to provide discriminative features thereby.

In order to fulfil the demands of tracking arbitrary points, we first perform
patch matching between image pairs. These patch features extracted by raw con-
volutional neural networks (CNNs) tend to focus on local information, neglect-
ing long-range relevance interaction. Therefore, points with repetitive patterns
or low texture clues are easily mismatched. To enhance the discrimination of
these local features, i.e., to make each patch feature as identical as possible on
the same image, and as consistent as possible across image pairs, we employ
an attention mechanism [13] to process these patch features for extended global
interaction. This mechanism is initially applied to natural language processing
tasks and has gradually found its way into computer vision tasks, including image
feature matching tasks. For the frame containing the query point, we formulate
the objective to match its feature with the corresponding points in subsequent
frames of the video. After obtaining a reliable Attention-based Patch Matching
(APM) module, we propose to achieve point-level matching. In this stage, motion
clues are explicitly studied to construct an interactive shift position prediction
module, which performs Motion-driven Point Association (MPA). Finally, we can
obtain the model for accurate Point Tracking named APM-MPAPT by combin-
ing APM and MPA modules. Moreover, we integrate TAPIR’s [2] occlusion pre-
diction of query points and an uncertainty assessment mechanism for extended
robustness in our design.

To evaluate our designed APM-MPAPT, we opt for the Perception Test [3]
benchmark. As a comparison, we evaluate the performance of the feature match-
ing model LoFTR [1] (same model weights, different matching points of ‘inter-
est’) on the validation set, and fine-tuned the APM-MPAPT with the off-the-
shelf weights, and subsequently evaluate its performance on the validation set.
The results obtained from the experiment surpass the static baseline in the
benchmark, updating the state-of-the-art record.

The contributions of this paper are three-fold. First, we bridge the gap
between existing attention-based feature-matching methods and arbitrary point-
tracking techniques, creating a unified approach that leverages the strengths of
both methodologies. Second, our method can achieve point tracking across videos
of arbitrary length, demonstrating its versatility and scalability. Third, our effi-



350 H. Zang et al.

cient fine-tuning paradigm requires minimal fine-tuning data and significantly
reduces fine-tuning time, ensuring practical applicability for deployment. We
have incorporated the corresponding summary into the introduction section.

2 Related Work

Compared to object tracking [28–32], point tracking tasks place a stronger
emphasis on feature matching, which is a pivotal step in the process. Considering
this, in this section, we introduce related work from the perspectives of point
tracking and feature matching.

2.1 Point Tracking

TAP-Vid [20] is a benchmark dataset comprising real-world and synthetic videos
with accurately human-labelled and generated point tracks, accompanied by a
simple end-to-end point tracking model TAP-Net. In terms of comparing the
query point feature with other dense features, TAP-Net generates cross-frame
similarity by dot product. The subsequent post-processing via occlusion and
coordinate regression branches infer the final position and occlusion degree for
TAP-Net. To achieve fine-grained point matching, the Persistent Independent
Particles (PIPs) [21] method employs an iterative strategy to gradually infer the
correct coordinates and occlusion status. Combining the coarse prediction stage
of TAP-Net with the iterative refinement of PIPs, TAPIR [2] designs a two-
stage strategy, significantly outperforming all baselines on the TAP-Vid bench-
mark. This coarse-to-fine pipeline can naturally be generalised to other advanced
matching approaches.

To facilitate point tracking evaluation, Perception Test [3] is the benchmark-
ing dataset. This benchmark is designed to assess the transfer capabilities of pre-
trained models under zero-shot, few-shot, or fine-tuning conditions. It introduces
11.6k real-world videos, and we only utilise point tracking annotations for evalua-
tion. The benchmark open sources the videos and annotations in the training and
validation splits, including 28 training videos with 1,758 tracks, and 73 validation
videos with 4,362 tracks. There are two baselines for the benchmark. One is a
dummy static baseline which assumes the points never move and are always visi-
ble in every frame. With the existence of static points in static camera scenarios,
this dummy method also exhibits a certain level of performance. Another baseline
uses a TAP-Net model [20] trained on Kubric dataset [25], which directly per-
forms point tracking via cross-frame matching. The benchmark evaluation met-
rics are as follows. (1) Position Accuracy(< δx). (2) Occlusion Accuracy(OA).
(3) Jaccard at δ.

2.2 Local Feature Matching

Local feature matching is widely studied in image matching [4]. To establish
accurate matching correspondences between image pairs, a considerable amount
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of work typically adheres to the following stages: detecting keypoints, describing
keypoints, matching features of keypoints. To detect points, a straightforward
solution is to explore the local saliency (point of interest), ranging from hand-
crafted designs [5–7] to deep learning approaches [8–10], which only requires
identifying sparse correspondences between keypoints that satisfy the geomet-
ric reconstruction requirements. Despite the powerful representation of the local
salient points, such formulation impedes the requirement of matching any point.
Therefore, other methods [1,11,12] that do not rely on feature detection can
establish dense feature matching between image pairs, which is suitable to be
transferred to point trackers.

However, the above features are extracted by CNNs, suffering from limited
receptive fields with poor point identity. Drawing on this, the attention mecha-
nism has been introduced to image feature matching tasks [1,26,27], enhancing
the point identity by interacting with long-range features. Furthermore, the posi-
tional encoding mechanism enhances the performance of feature matching even
in indistinctive regions with weakly textured, motion blur, or repetitive pat-
terns. For instance, COTR [14] is a typical model that employs a transformer
architecture to associate image regions by absorbing the most relevant regions
with them. It leverages mapping relationships between images to determine the
positions of query points on another image.

Both LoFTR [1] and COTR lack a direct mechanism for handing occlusion in
point tracking tasks. Additionally, they are trained on MegaDepth [19], a dataset
that encompasses real-world scenes and utilises reconstruction to obtain ground-
truth correspondence. Hence, they demonstrate more accurate point matching
in rigid scenes. To accurately leverage the query point features at various stages
of the model, and to enhance occlusion and uncertainty predictions, we opted to
transfer and extend the LoFTR model to track points.

To achieve fine-grained point localisation, LoFTR [1] utilises an attention-
based [13] architecture for coarse localisation, followed by a fine-grained module
to pursue sub-grid precision [2,15–18]. Firstly, it utilises a convolution back-
bone to obtain the coarse-level and fine-level feature maps. Four stacked self-
attention and cross-attention blocks are designed to process the coarse-level fea-
ture maps, to obtain rough matches between image patches. Here, the matched
patches are determined by the maximal corresponding similarity across the
row and column. Subsequently, using these rough matches as anchors, corre-
sponding windows are cropped from the fine-level feature maps. A pair of self-
attention and cross-attention blocks is stacked to establish fine-grained heatmap
between corresponding windows. Finally, sub-pixel level keypoint correspon-
dences are obtained through the heatmap. However, here, sub-pixel level coor-
dinates are only applicable to one of the image pairs, termed as the ‘queried’
frame, while the other frame, termed as the ‘querying’ frame, still retains integer
coordinates. The requirement for integer coordinates has been improved in our
model, allowing it to track points at arbitrary sub-pixel positions.
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Fig. 1. Overview of our APM-MPAPT. The entire model contains five compo-
nents: 1. CNN Backbone extracts the coarse- and fine-level feature maps from two
frames. 2. The coarse feature maps are flattened to 1-D vectors, added with positional
encoding, and processed by the Matching module for Nc times. 3. Using the processed
features F̃ q

tr, F̃
s
tr to construct Ps and Pc. From these dense correspondences, locate

the rows where the query points resides. The initial uncertainty and occlusion can be
preliminarily predicted through neural networks. The max value in every row of Pc is
predicted as the most relevant patch, denoted as jpre. 4. For every query point iq and
its coarse prediction index jpre, a local window with size w×w is cropped from the fine-
level feature maps. 5. Utilising classification and regression branches, fine predicting
module refines all initial predictions to accurately predict the motion.

3 Proposed Approach

The model of point tracking task requires input both a pair of images and the
query point coordinates. Leveraging the attention mechanism for dense match-
ing, we precisely ascertain the correlation between the features of the query
point and features of another frame. Utilising this information, we devised a
coarse-to-fine point tracking method APM-MPAPT. We simultaneously match
all the query points, which are annotated within the same frame referred to
as the query frames. By conducting matching the query frame with every subse-
quent frame in the video sequence, we accurately predict the motion of points.
Therefore, the model processes only two frames: frame Iq containing the query
point and the subsequent frame Is. An overview of the proposed approach is
presented in Fig. 1.
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Fig. 2. Three computation graphs of different attention mechanisms. (a)
Softmax Attention in vanilla Transformer [13]. (b) Linear Attention in LoFTR [1]
reduces computational complexity. (c) Agent Attention [23] uses an agent A pooled
from Q to combine high expressiveness with low computational complexity.

3.1 CNN Backbone

In the stage of image feature extraction, we use the standard convolutional archi-
tecture with FPN [22] (denoted as CNN Backbone). Through this backbone,
pixel values are encoded into higher-dimensional patch features. This process
not only captures information at various scales but also ensures a manageable
computation cost for subsequent calculations. We denote the coarse-level features
of Iq and Is as F̃ q and F̃ s, respectively. Similarly, the corresponding fine-level
features are denoted as F̂ q and F̂ s.

3.2 Coarse-Level Feature Matching

Positional encoding is added to the flattened coarse feature maps and indicates
the spatial locations in the Matching module. In this module, we interleave the
self and cross attention layers for Nc = 4 times with reference to LoFTR [1] to
obtain the transformed features, denoted as F̃ q

tr, F̃ s
tr.

We briefly introduce the attention mechanism in transformer here as back-
ground. The attention in transformer plays a key role, as it facilitates the inter-
action between the query features fi(Q) and the queried features fj(V ). During
the self-attention process, both fi and fj originate from the same frame, whereas
in the cross-attention, they originate from different frames. Before the interac-
tion, V uses features K as its key features, and typically, K and V are the
same. The computation procedure of vanilla self-attention [13], i.e., the Softmax
Attention in Fig. 2(a), is as follows:

AttentionS(Q,K, V ) = softmax(QKT )V (1)

Considering the O(N2d) complexity in the Softmax Attention, LoFTR [1]
proposes the more efficient Linear Attention as follows, which utilises the asso-
ciativity of matrix multiplication to reduce the computational complexity from
O(N2d) to O(Nd2), since N � d.
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AttentionL(Q,K, V ) = φ(Q)(φ(KT )V ) (2)

where N is the number of all query or value tokens (patches), and d is the hid-
den dimension of patches. Since the query features Q and the queried features
V are derived from the same video, the number of query and value tokens N is
equal. Although the model’s computational complexity is significantly reduced,
there are still limitations in its feature representation capacity. By employing
a graceful fusion of Softmax Attention and Linear Attention, Agent Atten-
tion [23] effectively combines the advantages of both strong representation capac-
ity and low computational complexity. The computation procedure of the distinct
attention is illustrated in Fig. 2(c), and can be written as:

AttentionA(Q,A,K, V ) = AttentionS(Q,A,AttentionS(A,K, V )) (3)

where A, serving as an agent of Q, participating in the computation with a
smaller scale, can be obtained by pooling Q. Specifically, for matrix, n = 49,
indicating that we pool the feature map of Q to a size of 7 × 7.

3.3 Coarse Predicting

Subsequently, a dense similarity matrix Ps can be obtained from the transformed
features F̃ q

tr, F̃ s
tr with a learnable matrix E, which is initialised as an identity

matrix:
Ps(i, j) =

1
τ

· 〈〈F̃ q
tr(i), E〉, F̃ s

tr(j)〉 (4)

The matrix Ps represents the similarity between features at any position on
the query frame and those on the subsequent frame at the coarse level. The Nq

rows are located in the similarity matrix based on the coordinates of Nq query
points on the query frame. Using this information of Nq rows, we design a coarse
prediction module to roughly predict occlusion and uncertainty, drawing inspira-
tion from TAPIR [2]: The Average Jaccard [20] metric is more adversely affected
when the algorithm predicts a significantly incorrect location compared to simply
marking the point as occluded. Uncertainty u is the other output logit together
with occlusion o. It measures the uncertainty of the predicted point coordinates
and is trained in a self-supervised manner. We require that the value approaches
1 if the distance between the predicted coordinates and the ground truth exceeds
a threshold δ = 8, even if the model predicts that it’s visible. We directly employ
the coarse-level loss Lcou(p, o, u) in TAPIR to a pair of frames, where Lcou is
defined as:

Lcou(p, o, u) = BCE(û, u) ∗ (1 − ô) + BCE(ô, o)

where, û =
{

1 if d(p̂, p) > δ
0 otherwise

(5)

where p̂ ∈ R
2 and ô ∈ {0, 1} are the ground truth point locations and occlu-

sion on the subsequent frame respectively, when point is occluded ô = 1, d is
Chebyshev distance, δ is the distance threshold, and BCE is binary cross entropy.
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To enhance the consistency of the feature matching, we then apply the dual-
softmax operator [1] on both dimensions of the similarity matrix Ps to calculate
the Confidence matrix Pc:

Pc(i, j) = softmax(Ps(i, ·))j · softmax(Ps(·, j))i (6)

Clearly, Pc and Ps are of the same size. We represent Pc and Ps at the same
position in the third part in Fig. 1 for convenience. Then we initialise predictions
for the query points coordinates. It’s worth noting that when obtaining the Nq

row where the query points are located, we retain its fractional part at the current
scale, i.e., 1/8 of the original image size. According to Pc and all Nq rows. The
maximum value in each row serves as the corresponding coarse prediction jpre:

predicted jpre = arg max(Pc(iq, ·))j (7)

When mapping back to the coarse-level image coordinates based on the predicted
jpre, it is necessary to add the previously retained fractional part. And this added
coordinates are the initial coordinates from the module of coarse predicting.

In the coarse prediction, we use the ground truth to obtain matrix Mgt
c ∈

{0, 1}, which has the same size as Pc with (1/8)2HqW q × (1/8)2HsW s, and we
calculate loss over Pc. The 1 value only appears on some column in the row of the
query point iq and the column must be its correspond visible ground truth jgt.
We employ focal loss [24] to compute. We focus only on all value in rows of all
query points iq and all value in columns of all visible ground truth jgt, and the
set of (iq, ·) ∩ (·, jgt) is denoted as F . The loss Lcm calculation is as follows:

Lcm = Lcp + Lcn (8)

Lcp = − 1
||Mgt

c ||1 α
∑

(1 − Pc(i, j)β log(Pc(i, j))
s.t. (i, j) ∈ F and Mgt

c (i, j) = 1
(9)

Lcn = − 1
||Mgt

c (i,j)−1||1 (1 − α)
∑

(Pc(i, j)β log(1 − Pc(i, j))
s.t. (i, j) ∈ F and Mgt

c (i, j) = 0
(10)

The parameters α and β in Eqs. (9) and (10) are two hyperparameters for focal
loss, with α typically set to 0.25 and β set to 2.

3.4 Fine-Level Feature Matching

This part primarily deals with fine-level features F̂ q and F̂ s. For every query
point iq and its correspond predicted jpre, we crop the size of w×w = 7×7 win-
dows with the center of their coordinates, and then we use bilinear interpolation
to obtain more accurate features. We match these Nq pairs of 7 × 7 windows
with Nf = 1 time self-attention and cross-attention, which are Linear attention
architecture. Simultaneously, we upsample the fine-level features by a factor of
two and perform the same operation. We use the transformered features from
fine- and its upsampling- level to obtain Nq pairs of 7 × 7 heatmaps. Each pair
of heatmaps are unfolded and concatenated for subsequent processing. For two
levels of transformered query features, we merge them into one set of features
with the same dimension as the fine-level features.
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3.5 Fine Predicting

For every query point, we first concatenate the prepared information as follows:
two zero initialisation coordinate (x, y), the initial occlusion and uncertainty
from coarse predicting module, the integrated query features (128 dimensions)
from fine-level feature matching, and the flatten and concatenate heatmaps from
fine-level feature matching. So for every query point, the concatenated feature
has 2+2+128+2×7×7 dimensions. We processed this feature with a linear layer
and obtained a feature with 2 + 2 + 128 dimensions. The first two dimensions
respectively correspond to the local coordinates x, y. After further processing,
adding them to the initial coordinates prepared from coarse predicting module
yields the final predicted coordinates (x, y). The features beyond the second
dimension are processed in another branch, resulting in the final estimates for
occlusion and uncertainty. The loss for the fine-level predicting is given by:

Lf (p, o, u) = BCE(û, u) ∗ (1 − ô)
+ BCE(û, o)
+ Euc(p̂, p) ∗ (1 − ô) ∗ (1 − û)

where, û =
{

1 if d(p̂, p) > δ
0 otherwise

(11)

The meaning of all the variables in Eq. (11) is the same as in equation (5),
and the Euc represents the Euclidean metric. It is noteworthy that fine-level
predictions are only relevant to the mutual comparison within local regions.
Therefore, we compute distance loss only for distances within the threshold δ.
Additionally, when the value û is 1, i.e., d(p̂, p) > δ, we interpret it as the query
point being occluded in local window of another frame. This may be different
from the occlusion ground truth, therefore, we directly use û as the supervision
signal for occlusion loss calculation.

Follow TAPIR [2], in order to comprehensively consider occlusion and uncer-
tainty predictions, we do a same soft combination of two probabilities: the algo-
rithm outputs that the point is visible if (1 − u) ∗ (1 − o) > 0.5.

3.6 Objective

The final loss consists of the losses for the coarse- and fine-level:

L = wcmLcm + wcouLcou + wfLf (12)

On the training set of the Perception Test [3] benchmark, we transform the
trajectories of points to correlate with each frame in the video. This way, when
selecting any two frames within a video, we can simultaneously obtain the coor-
dinates of any trajectories appearing, along with the ground truth for occlusion.
Simultaneously, we map these coordinates to the positions of feature patches at
the coarse level, facilitating the construction of Mgt

c used to supervise Pc. At the
same time, we retain the decimal part of the coordinates during mapping for the
initialisation of the coarse prediction coordinates.
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APM-MPAPT fine-tuned the existing model weights of LoFTR [1], which is
trained on MegaDepth [19]. Simultaneously, we freeze the weights of the CNN
Backbone, preventing them from changing during the training process. With this
pre-trained weights, we just need to select only a small subset of frames from
one video. Specifically, for one video, we sorted the frames based on the number
of point annotations in ascending order. We select the first 30% to form a non-
repeating combination of frame pairs, randomly choosing only 200 pairs from
them, resize them to 256 × 256 resolution. So for the 28 training set videos, we
utilised only 5600 frames in total. Considering that the training set contains
a large number of static points, and to enhance the model’s ability to track
dynamic points, during training, we apply a slight random global movement to
the two frames to be matched, akin to applying a subtle jitter.

When fine-tuning, we set the learning rate of 3 × 10−5, the weights in loss
are as follows: wcm = 0.1, wcou = 0.8, wf = 1.0.

4 Experiments

4.1 Quantitative Comparison

We evaluate APM-MPAPT on validation set in point tracking part of the Per-
ception Test [3] benchmark. Follow Perception Test, the model processes images
at a 256 × 256 resolution, without maintaining the aspect ratio. The evaluation
follows the same metrics: (1) Position Accuracy(< δx): given a threshold δ we
compute the proportion of points that fall within this threshold of their ground
truth locations in frames where the points are visible. Predictions are resized to
256 × 256 resolution, and we measure accuracy at five thresholds: 1, 2, 4, 8, and
16 pixels. (2) Occlusion Accuracy(OA): a straightforward classification accu-
racy for predicting whether a point is occluded in each frame. (3) Jaccard at δ:
an evaluation metric accounts for both occlusion and position accuracy. It repre-
sents the fraction of ‘true positives’, i.e., points within the threshold of any visible
ground truth points, divided by the sum of ‘true positives’, ‘false positives’(points
predicted as visible but are either occluded or farther than the threshold), and
‘false negatives’(visible ground truth points predicted as occluded or where the
prediction is farther than the threshold). The final metric, AverageJaccard(AJ),
averages Jaccard across all 5 thresholds: 1, 2, 4, 8, and 16 pixels.

LoFTR*. We also evaluated the performance of the original LoFTR [1] model
on this task. LoFTR was designed for keypoint matching, but its dense matching
mechanism can also be leveraged to predict designated points without occlusion
prediction. Similar to our proposed method, we change LoFTR to predict by
finding the maximum value in the designated row (located by query points)
of the confidence matrix Pc. It is important to note that in the original model,
fine-level prediction involves mapping integer coordinates from the coarse to fine
level. Even though we retain the decimal part of the query point during the
matching at the coarse level, the final prediction results still have a considerable
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Table 1. Evaluation on the validation set of point tracking task in Perception Test [3]
benchmark. Top: Average Jaccard (AJ), higher is better. Middle: Occlusion Accuracy
(OA), Position Accuracy (< δx) and its average value (< δxavg), higher is better. Bot-
tom: Jaccard at δ, higher is better. Bold indicates the best performance, and underline
indicates the second-best performance.

Method All points static camera moving camera

Static Baseline [3] 0.384 0.436 0.094

LoFTR* [1] 0.447 0.475 0.290

TAP-Net [20] 0.511 0.530 0.400

APM-MPAPT 0.509 0.535 0.358

Method OA < δxavg < δ0 < δ1 < δ2 < δ3 < δ4

Static Baseline [3] 0.733 0.597 0.394 0.511 0.601 0.695 0.784

LoFTR* [1] 0.733 0.703 0.436 0.636 0.760 0.820 0.861

TAP-Net [20] 0.850 0.624 0.217 0.517 0.740 0.811 0.835

APM-MPAPT 0.781 0.637 0.374 0.591 0.706 0.747 0.768

Method Jac. δ0 Jac. δ1 Jac. δ2 Jac. δ3 Jac. δ4

Static Baseline [3] 0.228 0.318 0.387 0.457 0.530

LoFTR* [1] 0.239 0.384 0.488 0.542 0.582

TAP-Net [20] 0.126 0.366 0.613 0.707 0.741

APM-MPAPT 0.245 0.444 0.575 0.626 0.653

margin of error. The changed LoFTR with zero-shot denoted as LoFTR* is also
compared to the other method in Table 1.

APM-MPAPT. The processing of two frames with APM-MPAPT has been
thoroughly described in the third section. For long-term tracking within a video,
we simultaneously predict all the query points on the query frame which is
the first frame of query points, by conducting matching the query frame with
every subsequent frame in one video sequence. Table 1 shows the results. We also
exhibit some prediction examples on frames from the validation set of the Per-
ception Test [3] in Fig. 3. APM-MPAPT successfully predicts significant occlu-
sions, correcting many erroneous coordinates predicted by the LoFTR* model.
At the same time, it ensures a high level of position accuracy. Although APM-
MPAPT performs well in areas with weak textures, its capability to recognise
objects is relatively poor. This is evident when similar objects exchange posi-
tions, as APM-MPAPT may fail to accurately identify them.

Quantitative Analysis. To further analyse the experimental results, following
Perception Test [3], we divide the video into static camera scenario and moving
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Fig. 3. APM-MPAPT compared to LoFTR*. Top row represents the query points
on the first frame of the videos. Predictions of both models for a subsequent frame
are below. The filled circles represent our predicted points, with their connected ends
being the ground truth(GT). X’s indicate predictions where the GT is occluded, while
empty circles denote location of the points which are visible in the GT but predicted
as occluded (note: we did not retain the coordinates predicted as occluded). APM-
MPAPT successfully predicts and eliminates a significant numbers of occlusions that
LoFTR* fails to predict, while maintaining high position accuracy, even in texture-less
areas such as surfaces of table or blanket. For similarly structured objects that switch
positions, APM-MPAPT tends to predict erroneous coordinates as occluded.

camera scenario. For AJ metric, Due to the presence of numerous static points
in the video, the static baseline also performs well to a certain extent. The
performance of LoFTR*, which was modified slightly from LoFTR [1], has a sig-
nificant improvement compared to the Static Baseline [3]. APM-MPAPT, after
fine-tuning, has shown significant performance improvements across two distinct
scenarios. Additionally, with our designed occlusion prediction, APM-MPAPT
shows improvement in the OA metric compared to LoFTR*. Here, it is impor-
tant to note that, for the evaluation of position accuracy, we only focus on
predicting visible points. Although the model predicts coordinates for all points,
including those predicted to be occluded, we do not retain the coordinates for
these predicted occlusion points. Therefore, it is possible that erroneous occlu-
sion prediction may result in lower position accuracy compared to the LoFTR*.
Finally, APM-MPAPT outperforms both the static baseline and LoFTR* in Jac-
card at all thresholds (δx). Compared to TAP-Net [20], which is trained on the
large-scale synthetic Kubric dataset [25], APM-MPAPT employs a fine-tuning
paradigm that uses only a small amount of training data (200 frames per video
× 28 videos, totalling 6400 frames) and a short fine-tuning time (<2 h). With a
much lower cost, APM-MPAPT achieves comparable performance as TAP-Net.
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Table 2. Model ablation by removing specific component at a time. In “W/O
Occlusion Estimate”, we removed the losses related to occlusion and uncertainty from
the model. After fine-tuning, we conducted testing without setting a visibility threshold,
rather than simply omitting the visibility threshold during testing.

Average Jaccard (AJ) All points static camera moving camera

Full Model 0.509 0.535 0.358

Agent Attention (n = 256) 0.509 0.534 0.365

Linear Attention 0.508 0.533 0.367

W/O Uncertainty Estimate 0.504 0.531 0.354

W/O Occlusion Estimate 0.440 0.462 0.307

W/O Fine-level Prediction 0.370 0.399 0.209

Table 3. The impact of different weights wo during occlusion supervision. In
both Eqs. (5) and (11), the same weights are used for supervising occlusion predication.

Average Jaccard (AJ) All points static camera moving camera

wo = 1.00(Full Model) 0.509 0.535 0.358

wo = 0.75 0.502 0.527 0.363

wo = 0.50 0.502 0.526 0.365

wo = 0.25 0.496 0.521 0.353

Furthermore, due to the high precision requirements in LoFTR’s application
scenarios, APM-MPAPT outperforms TAP-Net at stricter thresholds after fine-
tuning.

4.2 Ablation Studies

We evaluate the impact of different design in APM-MPAPT, and the results
are shown in Table 2. The result can evident that the fine matching stage and
occlusion prediction play crucial roles in the model’s performance. In dynamic
scenes particularly, the fine-grained prediction by Motion-driven Point Associa-
tion (MPA) significantly enhances the model’s accuracy. Similarly, the improve-
ment in occlusion prediction also indicates the robustness of APM-MPAPT
against most occlusion scenarios. Even when dealing with points that reappear
after prolonged occlusion over time, APM-MPAPT demonstrates sufficient per-
formance. The introduction of uncertainty also slightly improves the model’s
performance. We also compared the impact of different attention mechanisms
on model performance. Since LoFTR [1], the pre-trained model, originally uses
linear attention, which is well-suited to the existing parameters and performs
well in point tracking tasks. Additionally, we tested the impact of increasing the
size of the Agent (n) in Agent Attention, which yielded better performance in
dynamic scenes. Through comparison, we ultimately chose to use Agent Atten-
tion (n = 49), which is a form of generalised Linear Attention, for the full model.
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Considering the significant improvement in model performance with the
introduction of occlusion prediction, we further explored the impact of the super-
vision weight on occlusion prediction, and the results are shown in Table 3.
Specifically, we applied weighting to the supervision of occlusion in Eqs. (5) and
(11), i.e., wo ∗ BCE(ô, o) and wo ∗ BCE(û, o), with weights wo set at 0.25, 0.50,
and 0.75. Through comparison, our final model sets wo = 1.00.

5 Conclusion

In this paper, we introduce APM-MPAPT, which utilises an attention-based
patch feature matching method associated with motion information to accom-
plish the task of point tracking. From a global rough prediction initialisation to
a local refinement, a coarse-to-fine tracking framework is formed. APM-MPAPT
offers a more robust matching approach for the task of point tracking, main-
taining excellent accuracy when dealing with two frames of arbitrary tempo-
ral distance. Although the matching approach for arbitrary two frames enables
ultra-long-term video tracking, it still exhibits sub-optimal performance in main-
taining the temporal continuity of point trajectories. Nevertheless, our method
broadens the scope of solutions for point tracking tasks.
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Abstract. Patterns of human motion in outdoor and indoor environ-
ments are substantially different due to the scope of the environment
and the typical intentions of people therein. While outdoor trajectory
forecasting has received significant attention, indoor forecasting is still
an underexplored research area. This paper proposes SITUATE, a novel
approach to cope with indoor human trajectory prediction by leverag-
ing equivariant and invariant geometric features and a self-supervised
vision representation. The geometric learning modules model the intrin-
sic symmetries and human movements inherent in indoor spaces. This
concept becomes particularly important because self-loops at various
scales and rapid direction changes often characterize indoor trajecto-
ries. On the other hand, the vision representation module is used to
acquire spatial-semantic information about the environment to predict
users’ future locations more accurately. We evaluate our method through
comprehensive experiments on the two most famous indoor trajectory
forecasting datasets, i.e., THÖR and Supermarket, obtaining state-of-
the-art performance. Furthermore, we also achieve competitive results in
outdoor scenarios, showing that indoor-oriented forecasting models gen-
eralize better than outdoor-oriented ones. The source code is available at
https://github.com/intelligolabs/SITUATE.

Keywords: Human Trajectory Prediction · Geometric Deep
Learning · Self-Supervised Vision Representation

1 Introduction

Human trajectory prediction is the task of predicting the likely path that a
subject will take to reach its designated endpoint [30]. This predictive process
finds its applicability and utility in a multitude of domains [22]. For example,
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Fig. 1. Examples of different trajectories from the Supermarket [11] dataset to show
the difficulty of the indoor trajectory prediction task. In particular, the dataset show-
cases long trajectories (Person 4), self-loops (Person 1 and Person 3), and confusing
movements (Person 2) performed in an environment that strongly affects the people’s
paths. Specifically, the red circle represents the starting point of a trajectory, and the
yellow star represents its final point. (Color figure online)

in the context of robotics, it serves as a tool for facilitating the predictions on
potential future robot trajectories, useful for intelligent planning considering
human responses [31]. In industry, human trajectory prediction becomes criti-
cal for optimizing automated systems and ensuring seamless interactions with
other occupants and components of a production line [32].

Despite the significant volume of research over the past decade devoted to
outdoor trajectory prediction [1,4,12,13,15,31,41], there has been a notable
scarcity of studies that exploited user trajectory data in indoor settings
[26,28,29,35,36,38,39], also considering the crucial role these predictions play
nowadays in the development of location-based services within indoor spaces.
This gap in research inspired this work, which investigates a learning framework
designed explicitly for indoor trajectory prediction.

Motivations for This Paper. In Fig. 1, we can note the distinctive nature
of indoor settings, where users can encounter numerous choices and potential
pathways. This factor implies that the dynamic of the motion can be strongly
influenced by the environment setup [6,26]. Users can navigate through differ-
ent interconnected rooms, corridors, doors, and elevators, often having the free-
dom to deviate from straightforward paths and choose alternative routes. Indoor
spaces also have a higher density of structural elements and potential obstacles,
such as furniture, walls, and partitions, as shown in Fig. 1, related to the Super-
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market [11] dataset. Outdoor environments provide more open spaces, where vis-
ibility is less restricted, and the impact of physical barriers is typically reduced
[7].

Consequently, indoor trajectory prediction requires a deeper understanding
of the context and semantics of the indoor space, as users may have specific goals,
like finding a particular room, reaching a specific point of interest, or accessing
various facilities [14]. This contextual richness adds a layer of complexity to the
prediction process since it also makes it necessary to consider the space’s physical
layout. Considering the omnipresence of indoor environments in human lives, it
is imperative to address trajectory forecasting in these situations. Indeed, recent
studies show that humans spend most of their time in indoor environments
such as homes, supermarkets, airports, conference facilities, and train stations
[2]. These considerations form the basis of the research conducted in this work.

Innovations in This Paper. While outdoor trajectory forecasting has received
significant attention, indoor forecasting is still an underexplored research area.
As a result, we present SITUATE, the first model designed specifically to cope
with indoor trajectory forecasting by leveraging equivariant and invariant geo-
metric feature learning and a self-supervised vision representation. Taking inspi-
ration from [42], the equivariant and invariant geometric learning modules were
employed to accurately represent intrinsic movements, like self-loops at various
scales and hierarchies inherent in indoor spaces. On the other hand, the self-
supervised vision representation module enabled us to acquire spatial-semantic
information about the environment, using the scene or space layout images when
available, to predict users’ future locations meaningfully and accurately.

In summary, the main contributions of this paper are:

– We present SITUATE, a novel approach for indoor human trajectory fore-
casting based on equivariant and invariant geometric feature learning modules
and a self-supervised vision representation;

– The equivariant and invariant modules are used to cope with the problem
related to the more complicated movements inherent in indoor spaces;

– The vision representation module is used to acquire spatial-semantic informa-
tion about the environment to predict users’ future locations more accurately;

– SITUATE also achieves competitive results in outdoor scenarios, showing that
indoor forecasting models generalize better than outdoor-oriented ones.

2 Related Work

Indoor Human Trajectory Prediction. Predicting the evolution of a pedes-
trian trajectory in the future is a long-standing task whose interest is con-
stantly renewed by the emergence of new scenarios that can benefit from it,
e.g ., autonomous driving [30]. When proposing a methodology to tackle trajec-
tory forecasting, one should take care of several aspects, from the environment’s
geometry [26] to the presence of obstacles [16] and the possible interactions
between multiple agents [3]. Some traditional methods to approach this task
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involved force models [17], Markov models [21], and RNNs [46]. Notably, consid-
ering common sense rules and conventions that humans observe in social spaces
helps to manage simultaneous predictions in crowded scenes [1].

Multiple deep learning-based models have been applied successfully to fore-
cast pedestrian trajectories, such as GNNs [44], Trasformers [12] and Conditional
Variational AutoEncoders (CVAEs) [25]. More recently, diffusion models have
also been applied to solve this problem [13]. However, most proposed methods
are tested only on datasets representing outdoor scenarios. This is due to a
lack of comprehensive indoor datasets and the fact that indoor trajectories can
be considered more “difficult” or non-linear [28]. When traversing indoors, our
immediate movement decision is influenced by the objects in our path and the
surrounding walls [26]. In indoor settings, people navigate in loosely constrained
but cluttered spaces with multiple goal points that can be reached in many ways
[29]. Moreover, people in indoor scenarios tend to focus on their surroundings,
fixating on the most interesting parts of the scene, alternating movement and
stationary phases [36]. At the same time, outside, the movement area can be
much larger, and the subjects can move further apart.

Some works have been proposed to address the specific problem of indoor tra-
jectory forecasting [26,28,29,35,39], highlighting the differences between indoor
and outdoor trajectory forecasting. In [28], the authors address the problem of
generalizability, proposing a novel indoor dataset and new metrics to normalize
common biases. They tackle the problem of aleatoric multimodality with the
GAN-Tri model, which uses a heuristic to produce samples corresponding to dif-
ferent behaviors. [26] examine trajectories, modeled as a Markov chain, within
3D environments, introducing the concept of an occupancy map to represent
the relative accessibility of each point on the map with respect to its geometry.
The study emphasizes the importance of proximity from each point to the des-
tination and the occupancy frequency in constructing a probability transition
matrix for trajectory prediction. Unlike them, our approach considers indoor
spaces’ detailed scene layouts and non-trivial human movements.

Equivariant and Invariant Graph Neural Networks. Inspired by the
research on rotation-equivariant convolutional neural networks within the 2D
image domain [8], the advent of Graph Neural Network (GNN) architectures
opened doors to investigating symmetries beyond rotations [43]. For exam-
ple, in [33], the authors proposed partial equivariance by focusing on transla-
tion equivariance. Meanwhile, [10] constructed filters using spherical harmonics,
enabling equivariance to rotations and translations and facilitating transforma-
tions between higher-order representations.

In [34], a new model for learning equivariant graph neural networks, dubbed
EGNNs, is proposed. Differently from the previous works, this formulation main-
tains the flexibility of GNNs while remaining E(n) equivariant (translation, rota-
tion, and reflection equivariant) without the need to compute expensive higher-
order operations. [19] further extended this concept by incorporating geometrical
constraints implicitly encoded in the forward kinematics when tackling molecu-
lar dynamics prediction and human motion capture. However, a significant lim-
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itation of current methods is their focus solely on state prediction, preventing
models from effectively using sequence information.

Recently, EqMotion [42] extended on these ideas to propose an equivariant
motion prediction parametric network with an invariant interaction reasoning
module, able to tackle distinct problems such as particle and molecule dynamics,
human pose forecasting, and outdoor pedestrian trajectory prediction. Interac-
tion invariance is fundamental in ensuring the agents’ interactions remain con-
stant under input transformation.

In our research, we adapt some of the concepts presented in [42] to pro-
pose an equivariant model for the human trajectory prediction task, which, in
combination with a module to extract semantic information about the scenes,
unlock more precise forecasting capabilities in indoor settings.

Self-supervised Vision Representation. One way to get image representa-
tions without heavily relying on annotated data is to perform Self-Supervised
Learning (SSL). In a nutshell, SSL learns deep feature representations invariant
to sensible transformations of the input data. Then, the learned representations
could be used in supervised downstream tasks.

The self-supervised vision representation state-of-the-art rapidly evolved,
with Transformer-based architectures emerging as leading models. The Vision
Transformer (ViT) [9], and its variants like DeiT [37], have demonstrated impres-
sive performance in learning powerful visual representations from unlabeled data.
Specifically, these models leverage self-attention mechanisms to capture global
context and long-range dependencies within images, enabling them to encode rich
semantic information efficiently.

In this paper, to extract semantic information from scenes represented in a 2D
map, we use the pre-trained BEiT [5], the state-of-the-art self-supervised vision
representation model. This offers a powerful framework for learning visual repre-
sentations without explicit supervision, effectively capturing high-level semantics
and intricate features inherent in visual data.

3 Method

Mathematical Background. Given a set of transformations Tx : X → X, a
function F : X → Y is called Equivariant if exists a transformation Ty : Y → Y
equivalent to Tx, on the Euclidean space such that:

F (Tx(X)) = Ty(F (X)) . (1)

Moreover, we also want the model to have the invariance property. Given the
same set of transformations, a function F : X → Y is called Invariant on the
Euclidean space if it exists a transformation Ty : Y → Y such that:

F (X) = F (Tx(X)) . (2)

Specifically, this work addresses the problem of multi-person trajectory fore-
casting by considering the input trajectories as a graph. As proven by [34], during
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the message passing of a GNN, the property of equivariance can be ensured by
enriching the features of the neighbor nodes with the L2 distance between nodes.
Let G = {V,E} be an input graph representing the input trajectory with nodes
vi ∈ V and edges eij ∈ E. For every node vi, a feature vector h ∈ Rh and an
absolute position xi ∈ R3 are given. To preserve equivariance among different
layers of the model, we update the position as follows:

mij = φe

(
hl
i, h

l
j ,

∥∥xl
i − xl

j

∥∥2
)

, (3)

xl+1
i = xl

i + C
∑
j �=i

(
xl
i − xl

j

)
φx (mij) , (4)

where C is equal to 1/(M −1) with M number of nodes, φe and φx are learnable
Multi-layer Perceptrons (MLPs), defined as φe(·) = We · +Be, l indicates the
layer and mij represents the information passed between two nodes during the
message passing.

As reported in [34], φx has to be a scoring function φx : X → S, with S ∈ R1.
With this procedure, the update of V is consistent, allowing the model to learn
without being affected by SO(2) transformations, with SO(2) being the group of
all rotations in the plane around the origin that preserve the Euclidean norm,
mathematically described by 2 × 2 matrices. Furthermore, the features learned
across layers must be consistent and invariant to graph transformations. To do
so, the following procedure governs the final message-passing operations and the
update of the features carried out by the i − th layer:

mi =
∑
j �=i

mij , (5)

hl+1
i = φh

(
hl
i,mi

)
, (6)

with φh, an MLP also designed as φh(X) = WhX + Bh, responsible for the
invariant feature learning. Mixing these two components allows us to build an
Equivariant and Invariant GNN using Euclidean SO(2) transformations.

Motion Prediction. Here, we introduce the general problem formulation of
motion prediction. We have a multi-agent system with m agents. Each agent
is represented as Ai, where i = 1, 2, . . . ,m. The goal is to predict the future
motions of these agents based on their historical observations. For each agent
Ai, we can denote the historical observations as Xi. These observations typically
include positions and can be represented as Xi = {xi

0, x
i
1, . . . , x

i
t}, where xi

t

represents the position of agent Ai at time step t. We also add the velocity
Si = {sit+1, s

i
t+2, . . . , s

i
t+f} as input information of the model. The velocity of an

agent is a natural invariant feature because it is not affected by any translation or
SO(2) transformation. We use the velocity to compute the initial feature vector
of a specific agent Ai. More details in Sect. 3.2. Specifically, for each agent Ai

we aim to predict its future f positions Yi = {yi
t+1, y

i
t+2, . . . , y

i
t+f}.
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Fig. 2. In SITUATE, we first produce a feature vector regarding the scene using the
self-supervised vision representation module. Then, a feature initialization layer is used
to initialize geometric and pattern features. We then successively update the geomet-
ric and pattern features by the equivariant geometric feature learning and invariant
pattern feature learning layers, obtaining expressive feature representation. We further
use an invariant reasoning module to infer an interaction graph used in equivariant
geometric feature learning. Finally, we use an equivariant output layer to obtain the
final prediction.

3.1 The SITUATE Prediction Network

In this section, we present SITUATE, our motion prediction network that explic-
itly uses equivariant and invariant geometric features and a self-supervised scene
representation module to tackle the indoor trajectory prediction problem. The
model architecture is shown in Fig. 2.

The first module we present is in charge of producing the scene-representation
encoding. As anticipated, the subjects’ motion characteristics differ greatly from
those of the outdoor case when considering indoor trajectory forecasting. Indeed,
the motion is strongly characterized and limited by the objects and obstacles in
the scene. Knowing the available space that limits the viable paths in the scene
can, for every Xi, strongly reduce the cardinality of all the possible outcomes of
the model. Starting from the assumption that all the scene objects and structure
are available in the form of a scene layout or a camera image, BEiT [5] is first
used to output visual tokens Ts, the so-called scene-representation encodings.
These tokens Ts are fed into a learnable MLP defined as φt : Ts → Te and then
concatenated into the input.

The input concatenated with Te is then fed into two modules: Equivariant
block (EquiGCN) and Invariant block (InvGCN). Following [42], these two
blocks are both based on the implementation of the message passing described in
Eq. 3, modified to accept also Te:

mij = φe

(
hl
i, h

l
j ,

∥∥xl
i − xl

j

∥∥2
, Te, aij

)
, (7)

where aij is the edge attribute (or weight), which can be derived from the adja-
cency matrix.

Specifically, the EquiGCN block is responsible for the update of the node’s
coordinates x, and it represents the implementation of the update function
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described in Eq. 4. On the other hand, InvGCN is the implementation of the
update function of the node’s features h in Eq. 6.

The possible pathways are learned by the module φt, starting from the
token produced by the pre-trained BeIT model. The outputs of EquiGCN and
InvGCN are computed as reported respectively in Eq. 4 and Eq. 6, updating
hl+1
i and xl+1

i .
To understand the contribution of these two modules in less formal and more

practical terms, imagine a navigation system. It can get from point A to point
B but might struggle with tricky situations. In SITUATE, EquiGCN injects a
sense of direction like a compass you wear on your hat. Specifically, it ensures
the network understands the environment’s layout, regardless of where it starts
“looking”. InvGCN, on the other hand, acts like a map you hold - it helps the
network account for different starting points and body orientations, making the
predictions more robust.

3.2 Feature Initialization

The input given to our model is a set of trajectories of different agents. The first
step is to define a node for every position xt for every agent Ai. Every node xt

is connected with xt−1 and xt+1 if they are related to the same agent Ai. Since
only trajectories (and thus positions xt) are given as starting data, it is necessary
to define for each trajectory a vector of initial features h0

i to be used as input
together with the positions x0

i .
As stated in [19], having an invariant feature vector h0

i is necessary to guar-
antee equivariance. Given that as input data we only have position Xi, we fol-
lowed the procedure in [42] to use velocities in order to create h0

i as follows:

x̂i = φX(Xi + H) + H , (8)
ρti = ‖vt

i‖2 , (9)
θti = angle(vt

i , v
t−1
i ) , (10)

h0
i = φh0(ρi, θi) , (11)

where h0
i is the initial features vector of the i−th agent. vt

i represent the velocity
of the agent and is defined as �x̂t

i, where � is the finite difference operator, H
is the centroid of the observed trajectories of all agents in the scene. φX and φh0

are two fully connected layers responsible for encoding and producing the initial
graph and the initial features of the trajectory.

To compute h0
i , two different types of velocities are needed (thus, information

invariant to rotation and translation): �xt
i effectively represents the Euclidean

velocity of the agent and θti represents the angular velocity on a certain time step
t. Note that both φx0 and φh0 , and in general all the operations described, are
linear transformations: this is necessary to preserve both equivariance and invari-
ance properties of the remaining part of the model.
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4 Experiments

Our experimental evaluation is tailored toward two objectives. Firstly, in
Sect. 4.2, we show the superiority of SITUATE in the two most well-known indoor
datasets, defining the new state-of-the-art in indoor scenarios. Secondly, in
Sect. 4.3, we prove that SITUATE can also achieve comparable results with
respect to other competitors on outdoor datasets. Finally, in Sect. 4.4, we report
some ablation studies.

4.1 Evaluation Setup

Datasets. We evaluate SITUATE on the state-of-the-art indoor datasets and
the most well-known outdoor human trajectory prediction dataset.

THÖR. The THÖR dataset [29] includes human motion trajectory and gaze
data collected in an indoor environment with accurate ground truth for the par-
ticipants’ position. It comprises 395K frames at 100 Hz, 2531K people detections,
and over 600 individual and group trajectories between multiple resting points.
The map was taken from the dataset’s official website.

Supermarket. The Supermarket dataset [11] comprises 4 different scenario:
German1, German2, German3, and German4, i.e., four different supermarket.
The dataset collection involved attaching devices on shopping carts/baskets and
recording their movements during customer usage. Each subset includes a file
with a map of the supermarket.

ETH-UCY. The ETH [27] and UCY [23] dataset group consists of five different
scenes: ETH & HOTEL (from ETH) and UNIV, ZARA1, &ZARA2 (from UCY).
The scenes are captured in unconstrained outdoor environments with few objects
blocking the pedestrian paths. In this case, images of the scene were used.

Evaluation Metrics. We use standard metrics for the trajectory prediction
task, i.e., minimum Average Displacement Error (ADE), and minimum Final
Displacement Error (FDE). In particular, ADE measures the average L2 differ-
ence between the prediction at all time steps and the ground truth. On the other
hand, FDE measures the difference between the predicted endpoint and the
ground truth.

Prediction Mode. Following the evaluation protocol of [42], SITUATE is
employed in two prediction modes: deterministic and multi-prediction. Deter-
ministic means the model only outputs a single prediction for each input motion
observation, while multi-prediction means the model has 20 predictions for each
input motion observation. Under multi-prediction, ADE and FDE will be cal-
culated using the best-predicted trajectory. To adapt to multi-prediction, we
modify SITUATE to repeat the last feature updating layer and the output layer
20 times in parallel to have a multi-head prediction.

Implementation Details. As a backbone for our model, we used the structure
of [42]. The model architecture has four layers of geometric feature learning.
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Table 1. Deterministic prediction performance (ADE (m)/FDE (m)) on the THÖR
and the Supermarket datasets. The bold/underlined font denotes the best/second-best
result.

Performance (ADE (m) ↓ / FDE (m) ↓)

Deterministic Evaluation THÖR Supermarket Average

TransF [12] 2.62/4.81 2.56/2.90 2.59/3.85

MemoNet [41] 0.78/5.05 1.79/2.94 1.28/3.99

EqMotion [42] 0.56/0.94 1.71/2.65 1.13/1.79

SITUATE (ours) 0.45/0.93 1.21/1.84 0.83/1.38

Table 2. Multi-prediction performance (ADE (m)/FDE (m)) on the THÖR and the
Supermarket datasets. The bold/underlined font denotes the best/second-best result.

Performance (ADE (m) ↓ / FDE (m) ↓)

Multi-prediction Evaluation THÖR Supermarket Average

PECNet [25] – 1.57/3.45 –

GP-Graph [4] 2.80/3.92 3.19/4.57 2.99/4.24

EqMotion [42] 1.32/1.03 1.29/1.77 2.61/1.40

SITUATE (ours) 0.50/0.86 0.53/0.65 0.51/0.75

We use the SiLU activation function and dropout with a 0.5 probability to
regularise within all MLPs. The visual embeddings of the image, i.e., the floor
plans (look at Fig. 1) for context information are derived from the last layer of the
BEiT model. The model is provided with past trajectory information spanning
eight discrete time steps, and the model’s task is to predict 12 steps into the
future. In addition to the dropout mentioned above, we apply the Discrete Cosine
Transform (DCT) to the input data as a regularisation technique. Specifically, by
representing the data in the frequency domain, it becomes easier to distinguish
between signal and noise components, resulting in a cleaner signal. The impact
of these regularization approaches is discussed in Sect. 4.4. We train our models
with a batch size of 64 for 60 epochs, using AdamW [24] as an optimizer within
the PyTorch Lightning framework on an NVIDIA RTX 3090.

4.2 Indoor Human Trajectory Prediction Results

We conducted comparative experiments to assess the soundness of our approach
against existing trajectory prediction methods. The methods include determin-
istic evaluation models (TransF [12], MemoNet [41]), as well as multi-prediction
evaluation models (PECNet [25], GP-Graph [4]). Our evaluation for both predic-
tion modes also encompasses EqMotion [42], the state-of-the-art method with
invariant end equivariant interaction reasoning. Table 1 and Table 2 show the
results.
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Table 3. Deterministic prediction performance (ADE (m)/FDE (m)) on the ETH-
UCY dataset. The bold/underlined font denotes the best/second-best result.

Performance (ADE (m) ↓ / FDE (m) ↓)

Deterministic ETH HOTEL UNIV ZARA1 ZARA2 Average

S-LSTM [1] 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54

SGAN-ind [15] 1.13/2.21 1.01/2.18 0.60/1.28 0.42/0.91 0.52/1.11 0.74/1.54

Traj++ [31] 1.02/2.00 0.33/0.62 0.53/1.19 0.44/0.99 0.32/0.73 0.53/1.11

TransF [12] 1.03/2.10 0.36/0.71 0.53/1.32 0.44/1.00 0.34/0.76 0.54/1.17

MemoNet [41] 1.00/2.08 0.35/0.67 0.55/1.19 0.46/1.00 0.37/0.82 0.55/1.15

EqMotion [42] 0.96/1.92 0.30/0.58 0.50/1.10 0.39/0.86 0.30/0.68 0.49/1.03

SITUATE (ours) 0.94/1.90 0.30/0.57 0.50/1.10 0.41/0.89 0.32/0.70 0.49/1.03

Table 4. Multi-prediction performance (ADE (m)/FDE (m)) on the ETH-UCY
dataset. The bold/underlined font denotes the best/second-best result.

Performance (ADE (m) ↓ / FDE (m) ↓)

Multi-prediction ETH HOTEL UNIV ZARA1 ZARA2 Average

SGAN [15] 0.87/1.62 0.67/1.37 0.76/0.52 0.35/0.68 0.42/0.84 0.61/1.21

STGAT [20] 0.65/1.12 0.35/0.66 0.34/0.69 0.29/0.60 0.52/1.10 0.43/0.83

STAR [44] 0.36/0.65 0.17/0.36 0.31/0.62 0.29/0.52 0.22/0.46 0.26/0.53

NMMP [18] 0.61/1.08 0.33/0.63 0.52/1.11 0.32/0.66 0.43/0.85 0.41/0.82

Traj++ [31] 0.61/1.02 0.19/0.28 0.30/0.54 0.24/0.42 0.18/0.31 0.30/0.51

PECNet [25] 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48

Agentformer [45] 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39

GroupNet [40] 0.46/0.73 0.15/0.25 0.26/0.49 0.21/0.39 0.17/0.33 0.25/0.44

MID [13] 0.39/0.66 0.13/0.22 0.22/0.45 0.17/0.30 0.13/0.27 0.21/0.38

GP-Graph [4] 0.43/0.63 0.18/0.30 0.24/0.42 0.17/0.31 0.15/0.29 0.23/0.39

EqMotion [42] 0.40/0.61 0.12/0.18 0.23/0.43 0.18/0.32 0.13/0.23 0.21/0.35

SITUATE (ours) 0.41/0.64 0.13/0.20 0.23/0.43 0.22/0.35 0.14/0.26 0.22/0.37

The results show that the proposed SITUATE consistently outperforms all
baseline methods in all cases. On the THÖR dataset, SITUATE achieves an
ADE of 0.45 and an FDE of 0.93, showcasing its superiority over other models.
Notably, compared to EqMotion, the second-best model, SITUATE exhibits a
substantial 22% reduction in ADE and a 1% reduction in FDE.

Similarly, on the Supermarket dataset, SITUATE continues demonstrating
its effectiveness with an ADE of 1.21 and an FDE of 1.84. Compared to EqMo-
tion, again the closest competitor, SITUATE achieves a 29% reduction in ADE
and a 31% in FDE, reinforcing its dominance.
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Table 5. Ablation results (ADE (m)/FDE (m)) of SITUATE. We assess the contribu-
tion of the scene representation module and regularization methods in the deterministic
prediction case.

Performance (ADE (m) ↓ / FDE (m) ↓)

Scene Representation Regularization THOR Supermarket Average

✗ ✗ 0.50/1.02 1.92/1.55 1.21/1.29

✗ ✓ 0.56/0.74 1.79/2.94 1.18/1.84

✓ ✗ 0.57/0.96 1.29/1.89 0.93/1.43

✓ ✓ 0.45/0.93 1.21/1.84 0.83/1.38

The consistently good performance of SITUATE across both datasets under-
scores its robustness and efficacy in trajectory prediction tasks. The results fur-
ther suggest that SITUATE is accurate and that using scene information when
tackling indoor prediction scenarios offers a key advantage compared to the
available approaches.

4.3 Outdoor Human Trajectory Prediction Results

We also evaluate the performance of SITUATE with the deterministic and multi-
prediction modalities with outdoor scenarios. Here, we show that SITUATE
achieves competitive results, showing that indoor-oriented forecasting models
tend to generalize better than outdoor-oriented ones. Table 3 and Table 4 present
the quantitative results.

Specifically, when considering the deterministic prediction case, SITUATE
demonstrates a performance improvement by obtaining state-of-the-art results in
both ADE and FDE across the ETH (0.94/1.90), HOTEL(0.30/0.57), and UNIV
(0.50/1.10) scenes. It places second in the ZARA1 and ZARA2 scenes while
performing on par with EqMotion [42] when considering average performance.
In the context of multi-prediction modality, SITUATE secures the second rank
in terms of ADE and FDE across nearly 75% of the scenes within the ETH-UCY
dataset while maintaining an overall second place in average performance.

Designed for indoor scenarios and their peculiar conformations, SITUATE
remarkably demonstrates robust capabilities, even when tested on outdoor
datasets. In contrast, this is not always true for architectures tailored for out-
door instances, as we can observe in Table 1 and Table 2, that often struggle when
confronted with scenes that differ from those for which they were designed.

4.4 Ablation Study

We quantitatively evaluate the impact of the scene representation module and
regularization methods by considering the deterministic indoor prediction sce-
nario. Results are summarized in Table 5. It is observed that both contributions
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play a crucial role in enhancing the overall performance of SITUATE. In partic-
ular, the scene representation module effectively encodes semantic information
from the visual scene maps, facilitating an accurate understanding of the envi-
ronment. On the other hand, the regularization methods ensure robustness and
generalization of the model by mitigating overfitting and improving its ability
to generalize to unseen data. Therefore, we assert that both contributions are
indispensable for achieving the desired outcomes and validating the efficacy of
our approach.

5 Conclusion

This paper presents SITUATE, a graph neural network-based model designed
specifically to cope with indoor human trajectory prediction. SITUATE, using
geometric features and self-supervised vision representations, models the intri-
cate human movements inherent in indoor spaces and accurately predicts users’
future locations. The scene vision representation module provides insights about
the environment, particularly helping in those indoor scenes that are more con-
strained and full of obstacles. We evaluate our method on two well-known indoor
trajectory prediction datasets, i.e., THÖR and Supermarket, and achieve state-
of-the-art prediction performance. Furthermore, we also achieve competitive
results in outdoor scenarios, showing that indoor-oriented forecasting models
generalize better than outdoor-oriented ones.
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Abstract. Recent progress in open-source object detection techniques
has significantly advanced Multi-Object Tracking (MOT) methodolo-
gies, primarily under the tracking-by-detection paradigm. To enhance
the robustness and reliability of MOT systems, recent research has pro-
posed integrating information gathered from diverse sensors. However,
many Kalman filter-based MOT approaches assume the independence
of object trajectories, overlooking potential inter-object relationships.
While some efforts have been made to incorporate these relationships,
they often concentrate on learning feature representations to facilitate
better association. Moreover, the existing filter-based method for esti-
mating graphs from noisy data is unsuitable for online MOT appli-
cations. To alleviate these problems, we introduce a Sensor Agnostic
Graph-Aware (SAGA) Kalman filter, which is the first online state esti-
mation technique designed to fuse multi-modal graphs derived from noisy
multi-sensor data. We validate the effectiveness of our proposed frame-
work through extensive experiments conducted on both synthetic and
real-world driving dataset (nuScenes). Our results showcase an improve-
ment in MOTA and a reduction in estimated position errors (MOTP)
and identity switches (IDS) for tracked objects using the SAGA-KF.

Keywords: Graph Kalman Filters · Graph Tracking · Multi-Object
Tracking · Multi-Sensor Fusion

1 Introduction

MOT methods such as SORT [5], DeepSORT [24] and ByteTrack [28], rely on a
Kalman filter-based probabilistic framework for estimating the state of individual
objects over time. This model-based framework assumes all object trajectories
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Fig. 1. We use state-of-the-art detectors to obtain objects in a scene and use them
to construct the scene graph. The observed scene graph is then fed into the SAGA-
KF framework to predict, associate and estimate the state of the scene graph. The
proposed graph-based approach helps in better tracking by capturing the correlation
between the dynamics of different objects. For instance, the observed neighbors of an
occluded object can help better predict its position.

to be independent of each other and usually considers a constant velocity or
acceleration model to predict the new state of each tracked instance. However,
increasing scene complexity and the number of objects introduce additional chal-
lenges, such as detection errors (false alarms and misses) and occlusions. The
nonlinear dynamics of individual objects also present significant challenges in
achieving reliable tracking performance for safety-critical applications such as
autonomous driving. This performance gap is often addressed by multi-modal
sensor fusion using approaches like CLAMOT [26], TransFusion [2] and BEV-
Fusion [16]. While several of these methodologies predict future positions by
regressing velocities during the detection phase, certain approaches as Eager-
MOT [12] adopt a formal model-based Kalman filter approach. While Kalman
filters have been extensively used in single and multi-object tracking, the selected
system evolutions (dynamical models) are often very basic. Most approaches
track each object independently and in isolation from others, whereas, in applica-
tion settings like road traffic monitoring, the dynamics of an object are arguably
correlated with and are influenced by that of its neighbors. For instance, at a
busy urban intersection, an autonomous vehicle can utilize the trajectory of an
oncoming vehicle that is decelerating to anticipate the presence and movement
of pedestrians who are temporarily occluded by a passing truck. This allows the
autonomous vehicle to make safer and more informed navigation decisions, even
when direct visibility is compromised.
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In a recent paper, Bal et al. [3] seek to capture object dependencies using
a graph-based representation that explicitly includes inter-object interactions.
The objects of interest are represented as nodes of the graph, while interactions
between the nodes are captured via edges. Using video as raw input, they formu-
late MOT as a graph tracking problem, which is solved by designing a Kalman
filter over the space of graphs. Tracking a time-series of scene graphs, rather than
individual nodes, helps in modeling the dependencies between the constituent
objects. The parameters of the dynamical system are estimated using the clas-
sical maximum likelihood criterion. This approach was shown to improve esti-
mation errors and better handle both false and missed detections while tracking
multiple targets. However, tracking the entire scene graph results in a substantial
increase in complexity; for an n-node graph with potentially n2 edges, the covari-
ance of the edge attributes requires estimating O(n4) parameters. Moreover, the
system parameters are estimated for each video, thereby limiting scalability.
This, in turn, requires more hardware (memory and processing power), thus
restricting its usage to video sequences that contain a small number of objects.

While [3] clearly establishes the benefits of capturing inter-object relation-
ships using graph representations, its practical applicability and scalability is
restricted due to its edge tracking, i.e., estimating mean and covariance of n2

edge attributes. In this paper, we argue that the inter-object relationships can
still be captured in the dynamical model without explicitly tracking graph edges.
The resulting focus on node-only tracking can substantially reduce the computa-
tional complexity of the Kalman filter. We retain object interactions by imposing
a more structured and topology-aware dynamical model on nodes. This model
captures inter-node interactions and allows us to share dynamics across the inter-
acting objects. As the edges are not explicitly tracked in this approach, our
proposed approach is termed graph-aware Kalman filter, as opposed to a graph-
tracking Kalman filter. We also emphasize that a graph-based approach allows
each object in the scene to be represented as an abstract entity in the scene graph.
This abstract representation of the dynamic scene using graph-based represen-
tation makes it viable to incorporate different sensing modalities by registering
the abstract graphs obtained from each sensor using an assignment method,
like the Hungarian algorithm. However, the measurement noise associated with
each sensor and its corresponding pre-processing method needs to be modeled.
Our dynamical model is also designed to handle the measurement noise associ-
ated with each sensor, thereby making the state evolution sensor-agnostic. With
these two novel components, i.e., a topology-aware node-interacting dynamical
model and sensor-agnostic state evolution, we propose a Sensor-Agnostic Graph-
Aware Kalman Filter (SAGA-KF) and show its efficacy on the MOT problem
using a synthetic dataset and the nuScenes [6] autonomous driving dataset. The
overview of SAGA-KF is shown in Fig. 1 and following is a summary of our
contributions:

1. We propose a novel dynamical model that captures the inter-object rela-
tionships in the form of a time-varying and topology-aware state-transition
function on graph nodes. This function is parameterized by a small number
of fixed parameters that are estimated using the training dataset.
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2. We propose an observation model that is agnostic to the low-level processing
of sensory data. This allows any pre-processing method to be used to construct
nodes and edges in the graph. In our experiments, we use the camera and
LiDAR modalities in conjunction with popular deep-learning-based 3D object
detection methods for pre-processing the raw sensor data.

3. We adapt and apply the node-only Kalman Filter model from [3] and demon-
strate that it scales easily to much larger graphs.

4. We evaluate our method on the nuScenes dataset [6] which is a large, real-
world, autonomous driving dataset.

The rest of the paper is organized as follows. In Sect. 2, we discuss related
work, followed by a description of our problem setup and an overview of [3] in
Sect. 3. We then present our proposed model, SAGA-KF in Sect. 4. We present
the experimental setup and the results and analysis in Sects. 5 and 6 respectively.

2 Related Works

There are several areas of vision research that are relevant in the current context.
We discuss these works next.

Multi-Object Tracking: Recent MOT techniques broadly fall into two cat-
egories: (i) tracking-by-detection and (ii) simultaneous detection and track-
ing. The tracking-by-detection approach involves employing separate models for
object detection and subsequent tracking. This methodology proves advanta-
geous in scenarios where the objects are already localized, and the sole aim
is to trace their trajectories. These detected objects may be supplied by an
oracle or obtained from a state-of-the-art detector. Conversely, simultaneous
detection and tracking methods, also known as single-stage tracking, are partic-
ularly valuable when there is no prior information about the objects present
in a given scene. The primary focus of research, which is common to both
paradigms, is developing better association methods. Notable association meth-
ods include model-based techniques such as Kalman filter (SORT [5], Byte-
Track [28], AB3DMOT [22], Poly-MOT [14]), appearance-based methods like
ReID embedding (Deep-SORT [24], JDE [21], FairMOT [29]) and motion pre-
diction based approaches (CenterTrack [30], CenterPoint [25]). The majority of
these works assume a predefined dynamical model for each node, e.g., constant
velocity or constant acceleration models. Thus, the trajectory of an object is
assumed to be independent of the trajectory of other objects, which is rarely
true in a real-world road setting.

Some of the recent works also propose variations to the standard Kalman
filter pipeline used for MOT. BoT-SORT [1] introduces a Camera Motion Com-
pensation module that solves the registration problem between frames at t − 1
and t to return an affinity matrix, which provides the scale, rotation and transla-
tion of the frames. These transformations are then introduced into the Kalman
filter update steps in order to account for the dynamic motion of the cam-
era. In order to account for the dynamic and non-linear motion of the objects,
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OC-SORT [7] designs Kalman filter to be observation-centric instead of being
estimation-centric. They highlight that even if an object can be associated again
by SORT after a period of not being tracked, it will likely be lost again because
its Kalman filter parameters may have already deviated substantially from the
correct ones due to the temporal error magnification. To alleviate this problem,
they propose Observation-centric Re-Update (ORU) to reduce the accumulated
error. The key idea is to create dummy observations by generating a virtual
trajectory by referring to the observations on the steps starting and ending the
untracked period. They use these virtual trajectories to run the Kalman predict
and update steps to account for the accumulated temporal error. While such
methods modify the Kalman filter equations, the dynamical system still treats
each object independently.
Graph-Based MOT: Recent works acknowledge the need to capture relation-
ships between different objects. A natural way to accomplish this is to use graph
representations. GNN3DMOT [23] is one of the earliest methods for online MOT
using graph neural networks (GNNs). They identify that the key process for
reducing confusion during the data association pipeline is to learn discriminative
features for different objects. Hence, they introduce a GNN for feature interac-
tion mechanism and also propose a novel joint feature extractor to learn appear-
ance and motion features from 2D and 3D space simultaneously. Similarly, Liang
et al. [15] propose to use graph convolution networks to exploit the cues from
the neighbor graph of a target. GCNNMatch [19] and GNMOT [13] are a few
other works that also use GNNs to improve the appearance and motion repre-
sentations. Another line of work focuses on learning associations among different
objects [8,11,19]. MotionTrack [20] uses a self-attention mechanism followed by
a GCN-based architecture to learn the interactions between different tracklets
and to predict the offsets from the previous frame that can be used with the
detections for IoU-based association.

To our knowledge, [3] is the only work that develops a method for estimating
graphs from noisy, cluttered, and incomplete data that is naturally extended to
MOT. They introduce a quotient space representation of graphs that incorpo-
rates temporal registration of nodes (objects); then use that metric structure to
impose a dynamical model on graph evolution. Finally, they derive a Kalman
smoother, adapted to the quotient space geometry, to estimate dense, smooth
trajectories of graphs. Although this approach has been demonstrated to reduce
the rate of false and missed detections, it is practically limiting because of various
factors. We will elaborate on these limitations in Sect. 3.2.
Sensor Fusion for MOT: Many practical systems employ multiple sensors with
different imaging modalities for data acquisition. Different sensors can capture
complementary information and fusing them provides a better understanding of
the observed scene. For instance, (visible-light) cameras are better at capturing
visual appearances but struggle with depth and 3D information of objects. On
the other hand, LiDARs are better for 3D measurements but provide sparse and
weak appearance information. Consequently, much effort has been invested in
fusing information captured from multi-modal sensors. Most of the research in
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this domain for MOT is restricted to single-stage methods. A general approach
to multi-sensor MOT is to extract features from each sensor separately (e.g.,
by using deep learning-based feature extractors) and aggregate all the extracted
features. This unified feature representation is then adopted for various down-
stream tasks, such as MOT [2,16,26,27].

EagerMOT [12] is a simple two-stage tracking method that uses a model-
based approach to integrate all available object observations from camera and
LiDAR sensors to reach a well-informed interpretation of the scene dynamics.
Their approach is to obtain detected objects from different sensors and fuse them
into fused object instances, parameterized jointly in 3D and/or 2D space; fol-
lowed by a two-stage association procedure. The first stage comprises of matching
instances with 3D information (with/without 2D information) to existing tracks.
In the second association stage, unmatched tracks from the previous timestep
are matched with instances, localized only in 2D. The filtering approach adopted
by EagerMOT is similar to CIWT [18] except that they maintain the 2D and
3D state of tracks independently; which is based on the constant velocity model.

3 Problem Setup

3.1 Preliminaries and Notation

Assume a dynamic scene that is observed by multiple sensors to generate a
time-series of sensory data (e.g., a video sequence or a sequence of LiDAR
scans). Without loss of generality, we can assume that the sensors are asyn-
chronous, i.e., at any time t the scene is observed by only one sensor. We use T
to denote the length of the observation (or the number of frames), mt for the total
number of detected objects in a frame and n for the total number of instances
(unique objects) observed. Let Gt(Vt, Et) represent the scene graph observed at
time t, in which the mt = |Vt| nodes are constructed using a pre-trained object
detector ψ(n)(·) and edges Et are formed using the function ψ(e)(·). While each
edge instance in Gt captures the relationship between the corresponding node
instances, we also define the set of edge types, E , that are common across all
scenes of a dataset. Examples of edge types for a traffic scene could be car-car,
pedestrian-pedestrian, car-traffic light, and so on. We shall use these
edge types to develop our state transition function in our dynamical model.

Let Φ(Gt, g) be the graph registration function that is used to match an
observed graph Gt with another graph g, yielding the registered graph Gt. Graph
matching [9,17] is performed by identifying the optimal permutation of the nodes
so as to obtain registration between nodes that correspond to the same object
of interest. This is a difficult problem and is further exacerbated when the two
graphs have a different number of nodes. In Sect. 4, we discuss our approach
that builds upon the registration approach adopted in [3]. Consistent with the
commonly used Kalman filter notation, Ĝt|t−1 denotes the registered graph using
the a priori state estimate and Ĝt|t denotes the registered graph using the a
posteriori state estimate.
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3.2 Kalman Filters for Video Graphs

In the Classical Kalman filter (C-KF), one uses state and observation models
for each object to estimate their trajectory. For simultaneously tracking multiple
objects, C-KF methods make use of domain knowledge for resolving the node
associations across frames. C-KF methods typically assume that each object is
independent of the other. Contrary to this assumption, Bal et al. [3] were the
first to propose a model (BEVG-KF1) for using Kalman Filters directly on time
series of graphs generated from video data [3]. A key idea introduced in [3] was
to register the observed graph at time t − 1, Gt−1, with that at time t, i.e., Gt,
using a modified Umeyama algorithm developed for graph matching [10].

After the temporal graph registration, the Kalman filter is applied to the
node and edge attributes. For temporally registered graphs, a linear discrete-time
graph dynamical system as defined in [3] is given below, where l ∈ {node, edge}
represents the system equations for node or egde filtering respectively:

x(l)
t = F(l)x(l)

t−1 + Ω(l)w(l)
t−1

y(l)
t = W(l)

t

(
H(l)x(l)

t + Λ(l)v(l)
t

)

Here x(l)
t is the state vector, y(l)

t is the observation vector, F(l) and H(l) are the
time-invariant state transition matrix and observation matrix respectively. The
vectors w(l)

t and v(l)
t denote the random perturbations or additive noise from

a standard normal distribution; the resulting covariance matrices for the pro-
cess and observation noise are given by Q(l) = Ω(l)TΩ(l) and R(l) = Λ(l)TΛ(l),
respectively. To deal with different number of nodes (object instances), mt at
different time steps, the knowledge of the maximum number of nodes (n) is
assumed and (n−mt) null nodes are introduced at the tth timestep. The matrix
W(l)

t in the observation equation above handles the difference between the num-
ber of nodes in the observed graph and the tracked graph. Further details of
the Kalman equations as adapted by [3] are provided in Sect. A.1 of the sup-
plementary material included with this paper. Additionally, the parameters of
their dynamical model are estimated using a classical maximum likelihood based
approach, also summarized in the supplementary material Sect. A.2. The model
parameters are estimated for each video scene, implicitly assuming that the
state-transition function is time-invariant, even when the scene graph topology
changes over time. It is worth noting that the parameter estimation depends on
the quality of graph registration, which is expected to be noisy due to the use of
observed graphs. The registration method also makes use of all future observa-
tions, thus precluding the applicability to online tracking methods. Moreover, to
deal with different number of nodes at each time step, null nodes are introduced,
which further increase the number of model parameters to be estimated, the com-
putational and the memory requirements. Finally, two independent dynamical
models are used separately, one each for the nodes and the edges.

1 Bayesian Estimation method for Video Graphs using Kalman Filters.
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4 Graph-Aware Kalman Filter

To address the limitations discussed in the previous section, we propose a dynam-
ical system that leverages the topological structure of the graph, without the
need to track the complete graph. We take an online approach to tracking, i.e.,
processing incoming frames as they are streamed, as well as a sensor-agnostic
approach, where the multi-modal observations are used to update a sensor-
agnostic fused graph. With these additions, we optimize the implementation
of the Kalman filter that is more memory and time efficient.

For defining a state estimation technique to be online, firstly, it is important
to characterize the state of a node. Whenever a previously tracked object is not
visible in any dynamic scene, it can either be occluded or moved out of the
current frame. Now, it is crucial to decide whether such a node is expected to
be returning to the scene in subsequent timesteps or not. If not, we don’t want
such nodes to contribute towards the estimation of the graph.

Definition 1. For the tracked graph Ĝt|t, we categorize the state of a node as:

• Observed: Node is currently visible, i.e., detected by ψ(n)(·) at time t.
• Missed: Node was visible at some time t′, such that (t − δt) ≤ t′ < t.
• Dropped: Node is not visible since time (t − δt).

We propose to achieve a better graph matching by registering the observed
graph Gt with the a priori estimate of the tracked graph Ĝt|t−1 (instead of the
observed graph Gt|t−1 as in BEVG-KF) using the Umeyama algorithm while
also imposing the domain constraints, as in C-FK. Thus, a node in the observed
graph that is not matched to any of the observed or missed nodes is considered a
new node that needs to be inserted into the tracked graph. Similarly, whenever
an observed or missed node is not matched to any of the nodes in the observed
graph, the state of such nodes is updated based on Definition 1. Further, we
assume that the dropped nodes are not expected to return; thus, such nodes only
contribute towards the size and order of the graph while not affecting the state
estimation. Therefore, removing the dropped nodes from the tracked graph will
result in improving the space and time complexity. However, removing nodes
from the tracked graph is non-trivial because the corresponding system matri-
ces are associated with the entire graph and, therefore, will affect the Kalman
equations, which assume a fixed size for system matrices. A similar argument
holds whenever a new node needs to be inserted into the tracked graph. Later in
this section, we redefine the Kalman equations for dynamic graphs with varying
order and size. Since we now have a notion to actively add or drop the nodes, we
first define the graph dynamical system while assuming that the system matrices
only include the observed and missed nodes.

Definition 2. We define the linear discrete-time graph-aware dynamical system
as:

xt = Ftxt−1 + wt (1)
yt = Wt(Hxt + vt) (2)
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where Ft is the time-varying state transition matrix; Wt is the matrix used to
retain only the observed nodes that were tracked previously; all the other variables
remain the same as before.

Note that, unlike BEVG-KF, the state and observation equations above do
not include the process and observation covariances Ω and Λ; resulting in a
reduction in the number of model parameters. Instead, we learn the process
covariance Q and observation covariance R using the training dataset.

As discussed in the previous sections, a major drawback of BEVG-KF is
that the dynamical system can only be defined for a single scene. Moreover, the
number of model parameters grows substantially (O(n4)) with the number of
instances (n) in the scene. To improve the generalizability of the dynamical sys-
tem, it is crucial to reduce the number of parameters and define a state-transition
function that is known a priori or can be reliably estimated from the state of
the dynamical system itself. Furthermore, BEVG-KF maintains two separate
and independent dynamical systems for nodes and edges. Therefore, the estima-
tion of node attributes is not affected by the actual topology of the dynamic
graphs defined via edges; rather, it learns a time-invariant state-transition func-
tion that might define a topology different from the one defined using the edges
in the graph.

Definition 3. We define the time-varying state-transition function as a linear
combination of arbitrary but known state-transition functions Ae

t that encode the
edge information of the tracked graph Ĝt|t. Specifically,

Ft = F̃t +
∑
e∈E

μe · Ae
t (3)

where F̃t is the state transition function encoding the dynamics of each node
independently (e.g., constant velocity model), E is the set of different edge types,
Ae

t is an ‘interaction function’ which is a state-transition function based on the
weighted adjacency matrix corresponding to edge type e and μe factors the impact
of influence exerted by the edge e.

We point out that F̃t is a block diagonal matrix with state-transition function
corresponding to the independent motion dynamics of a node (e.g., a constant
velocity model) as the block diagonal elements. Such a block diagonal matrix sig-
nifies that the state-transition of each node is not affected by any other node in
the graph. Also, Ae

t can either be constructed based on the edges retrieved using
a deep learning-based edge feature extractor, ψ(e)(Ĝt|t), or can be handcrafted
based on the current state estimate of the graph Ĝt|t. Thus, this formulation of
state equations for graph spaces allows the model parameters μμμ(= [μ1 · · · μ|E|]T )
to be independent of the order and size of the graph; and the number of parame-
ters is significantly reduced to |E|. Moreover, it supports online state estimation
of graphs and the model parameters can be learned from a distinct set of scenes.

Let’s illustrate the operational principle of the proposed state-transition func-
tion with a concrete example. For this example, let’s assume that F̃t is a constant
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velocity model, E = {‘trailing’} and the edge weights are the scaled distances
between the nodes. Let’s define the interaction function so that the position of
a node is updated based on the weighted average of the rate of change in veloc-
ities of the neighboring nodes, while all the other attributes are constant. Now,
consider the following example.

“In an urban driving scenario, an autonomous vehicle in the rightmost lane
may have its view of a smaller car (A) in the leftmost lane occluded by a large
truck (B) in the middle lane. By observing the behavior of a leading vehicle (C)
in the leftmost lane that starts to decelerate, the autonomous vehicle should be
able to infer that the occluded smaller car will also decelerate.”

Inferring this information from the dynamic scene is possible using SAGA-
KF because the state evolution of A depends on its constant velocity and the
interaction function, i.e., the rate of change in velocity of C, weighted based
on the learned parameter μ‘trailing’. Therefore, when C starts to decelerate, the
interaction function allows A to update its position by aggregating the rate of
change in velocities of the neighboring nodes. This is the key idea when extended
to graphs containing multiple neighbors and different edge types is effective for
modeling more complex scenarios, e.g., a road traffic scene.

4.1 State Transition Model Parameters

With the goal of generalizability and viability for online state estimation, we pro-
pose a model such that its parameters can be learned from a separate set of train-
ing scenes. Let’s assume xt denotes the state vector obtained from ground truth
labels, μμμ denotes the model parameters, i.e., the column vector (μ1, μ2, · · · , μ|E|),
and At is the matrix whose e’th column is the column vector Ae

txt. We then use
least squares estimation to learn the model parameters μμμ. The final solution to
estimate these parameters is given in Eq. (4). The steps to derive this solution
are given in section B of the supplementary material.

μμμ = (
T∑
t=1

AT
t At)−1(

T∑
t=1

AT
t (xt+1 − F̃txt)) (4)

Following an approach similar to BEVG-KF, we learn the covariance matri-
ces from the data. The key difference in our approach is that we compute the
covariance matrices for each node in the training dataset instead of a single scene.
This helps us in constructing generic covariance matrices that can be used for
any scene. We then stack the node-level covariance matrix to get a block diag-
onal covariance matrix representing the graph-level covariance matrix. A more
detailed explanation about this approach is provided in section C of the supple-
mentary material.

4.2 Observation Model Parameters

The observation noise covariance is estimated based on the detection errors, i.e.,
prediction errors between the detected objects and ground truth annotations.
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This implies that the observation noise covariance is directly estimated using
the deep-learning-based detector’s predictions rather than the sensor itself. As a
result, any pre-processing method can be used to construct the nodes and edges
in the graph, making the approach sensor-agnostic. Consequently, our proposed
observation model (Eq. 6) in the dynamical system is agnostic to the low-level
processing of sensory data.

xt = Ftxt−1 + wt (5)

y(s)
t = W(s)

t

(
Hxt + v(s)

t

)
(6)

where (s) represents the different sensors involved. Equation (6) implies that the
Kalman update step is sensor-dependent and that the observation noise matrix,
R(s), can be different for each sensors.

4.3 Kalman Filter Update Equations

We have defined the graph-aware dynamical system that handles graphs con-
structed from noisy, multi-sensor data having different order and size. The state
transition function leverages the graph topology, and uses the training data
to estimate the parameters for the state transition and the observation mod-
els. Next, we have to modify the Kalman equations proposed by BEVG-KF to
account for the dynamic graphs with varying order and size. For this purpose,
we introduce two operators W̃t and W̃(i)

t . Similar to the Wt
(s) matrix operator

discussed above in Eq. (6), W̃t retains missed nodes along with the previously
tracked observed nodes and W̃(i)

t is used to insert new nodes. We assume that
W̃t, W̃

(i)
t and Wt

(s) have dimensions (w̃t×nt), (w̃(i)
t ×nt) and (wt×nt) respec-

tively, where nt is the number of instances currently being tracked, w̃t ≤ nt,
w̃

(i)
t ≥ nt and wt ≤ nt. We adopt the same strategy as BEVG-KF to retain the

relevant nodes, i.e., W̃t can be constructed by removing the rows corresponding
to the nodes to be ignored from an identity matrix Int

. Similarly, W̃(i)
t can be

constructed by appending a row of zeros to Int
for every node to be inserted.

We give the algorithm for a single pass of the online state estimation of dynamic
graphs with varying order and size below (also illustrated in Fig. 1). The shape
of the resultant matrix, wherever needed, is mentioned with blue color.

1. Construction of a scene graph from noisy sensor data observation, Gt.
2. Kalman predict (a priori estimation of the tracked graph to obtain Ĝt|t−1):

(a) A priori state estimation (w̃t × 1):
x̂t|t−1 = (W̃tFtW̃T

t )(W̃tx̂t−1|t−1)
(b) A priori covariance estimation (w̃t × w̃t):

Pt|t−1 = (W̃tFtW̃T
t )(W̃tPt−1|t−1W̃T

t )(W̃tFT
t W̃T

t ) + (W̃tQW̃T
t )

3. Registration of observed graph Gt with a priori graph estimate Ĝt|t−1 using
the graph registration module Φ(Gt, Ĝt|t−1).

4. Kalman update (a posteriori estimation of the tracked graph to obtain Ĝt|t):
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(a) Kalman Gain (w̃t × wt):
K(s)

t = Pt|t−1(W̃tHTW̃T
t )(W̃tW

(s)
t

T )(W(s)
t HPt|t−1HTW(s)

t
T +

W(s)
t R(s)W(s)

t
T )−1

(b) A posteriori state estimation (w̃t × 1):
x̂t|t = x̂t|t−1 + K(s)

t (W(s)
t y(s)

t − W(s)
t Hx̂t|t−1)

(c) A posteriori covariance estimation (w̃t × w̃t):
Pt|t = (W̃tIW̃T

t − K(s)
t W(s)

t HW̃T
t )Pt|t−1

5. Insertion of new nodes, i.e., observed nodes not previously tracked:
(a) Inserting rows to the state vector (w̃(i)

t × 1):
x̂t|t = W̃(i)

t x̂t|t
(b) Inserting rows and columns to the state-transition (Ft), observation (H),

process covariance (Pt|t) and noise matrices (Q and R(s)). Let’s denote
all these matrices using X (w̃(i)

t × w̃
(i)
t ):

X = W̃(i)
t XW̃(i)T

t

(c) Initializing the new rows and columns as discussed in the next section.

4.4 Optimization of the Graph Filtering Method

By defining the notion of actively adding or deleting the nodes, we modified
the Kalman equations for dynamic graphs with varying sizes and order. As
discussed earlier, this is facilitated by introducing two new operators W̃t and
W̃(i)

t . Although employing these operators reduces the size of the state vector
and process covariance matrix significantly, the number of matrix multiplications
is increased considerably. Thus, we can physically remove the corresponding
rows and columns from the system matrices to improve the space and time
complexity. This will significantly reduce the size of all the system matrices and
the number of matrix multiplications. It is important to note that employing this
optimization reduces the Kalman equations to the one proposed by BEVG-KF
with an added assumption that size of the state and system matrices is variable
and they only include the observed and missed nodes. This optimization enables
scalability, which is critical for applications like Multi-Object Tracking. A long
driving sequence can easily have 1000 unique object instances, which will lead to
a 1000-node graph. While BEVG-KF will need to estimate 106 parameters for
node-tracking and 1012 parameters for edge-tracking, this optimization limits the
size of our graph to the maximum number of unique objects in a short window
(δt) of the driving sequence.

5 Experimental Setup

5.1 Experimental Configuration

Baselines: We use C-KF, a node-level model-based tracking approach, and
CenterPoint [25], a velocity regression-based tracking approach, as the baseline
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methods. Most of the recent tracking-by-detection methods employ a state-of-
the-art detector along with these tracking approaches. Due to the limitations of
BEVG-KF [3] highlighted in the previous sections, we do not compare it with
our approach. However, we compare the computational expense incurred while
using [3] as compared to SAGA-KF, as discussed in the next section.
Graph Filtering Optimization: We show the benefits of optimization on the
mini-val set of nuScenes dataset (i.e. 2 scenes). We use a graph representation
of fixed order and size, as in BEVG-KF, and compare the time taken to track a
graph as the maximum number of instances increases. For a fair comparison, we
assume that the graph has no edges and use the constant-velocity model for all
the methods, thus yielding the same MOT performance. Whenever a new node
was observed, which can not be tracked because of the limit on the number of
instances, we performed a regression-based prediction and update step as in [25].

Fig. 2. A snapshot from the synthetic dataset. This figure demonstrates the influence
of neighboring nodes on the dynamics of a node.

Graph Registration Module: The graph registration module, Φ(·, ·), takes
two scene graphs as inputs. For each node in the observed graph Gt, we iden-
tify a subset of nodes from Ĝt|t−1 such that the Euclidean distance between
the observed node and the tracked node is less than a certain threshold. To
compute the cost of matching the entire graphs, we calculate the Mahalanobis
distance between the observed node’s attributes and the process covariance of
the tracked node in its identified subset. As no covariance is associated with the
regression-based approach, we use the Euclidean distance instead of Mahalanobis
for CenterPoint. Like BEVG-KF, we use the Umeyama matching algorithm for
SAGA-KF and the Hungarian matching algorithm for C-KF and CenterPoint.
Datasets: We use a synthetic dataset to present our results followed by compar-
ative evaluation on nuScenes [6], a large, real-world, autonomous driving dataset.
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A snapshot of the synthetic dataset is shown in Fig. 2 and the details of both,
the synthetic and nuScenes dataset along our scene graph construction approach
are also provided in the material. To evaluate the effectiveness of the proposed
SAGA-KF, we evaluate its performance for a single and multi-sensor setup. To
simulate the effect of false negative detection errors, in the case of synthetic data,
we randomly drop nodes in the scene graph at each time. We then compare the
MOT metrics obtained using our approach with the baselines when different
levels of detection errors are introduced.

5.2 MOT Metrics

We use the CLEAR-MOT [4] metrics to evaluate the performance of the syn-
thetic data. We highlight the performance improvements achieved in MOT
Accuracy (MOTA), MOT Precision (MOTP) and the number of Identity
Switches (IDS). For the nuScenes dataset, we use their official evaluation pipeline
and additionally report the Average MOTA (AMOTA) and Average MOTP
(AMOTP).

6 Results and Analysis

Fig. 3. Tracking time comparison using the corresponding Kalman equations.

We show the efficiency gains attained through the optimization in Fig. 3. It can
be observed that the execution time is the least in the case of C-KF because
the size of the state vector and system matrices is independent of the num-
ber of instances. The execution time increases drastically as the order of the
graph increases in the case of BEVG-KF. This is primarily because the size of
the state vectors and system matrices increases by O(nf) and O(n2f2), respec-
tively, whenever the number of instances is increased by n and the number of
attributes for each node is f . With the optimized graph filtering approach, the
size is dependent only on the number of active nodes at any particular time,
i.e., the number of observed and missed nodes. For an evolving scene, such as
nuScenes, the number of active nodes is significantly less than the total number of
instances. Hence, a significant reduction in execution time can be observed with
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the optimized BEVG-KF method. It is important to note that this experiment
highlights the performance when only the nodes are tracked. This implies that
the execution time for BEVG-KF would be substantially higher as compared to
SAGA-KF when edge tracking is also included.

The summary of the results obtained for the multi-sensor synthetic dataset is
shown in Table 1. The table clearly shows the benefits of using a graph-filtering
approach as compared to C-KF for single sensor as well as fusion of multi-modal
sensors. The reported metrics show a gradual increase in the error rate as the
number of randomly dropped nodes increases. We also demonstrate the benefits
of using the proposed sensor-agnostic graph fusion technique followed by the
proposed graph Kalman filter. Significant improvement is observed throughout
all the experiments with respect to all the reported MOT metrics. Figure 2 shows
a snapshot from the synthetic dataset. This figure illustrates the qualitative
performance and benefits of SAGA-KF as compared to C-KF.

Table 1. Ablative study on the synthetic dataset. ‘Dropped Nodes’ represents the %
of the instances that were randomly dropped to simulate the effect of detection errors.
A and B denote the two sensors, and A+B denotes their fusion.

Dropped Tracking MOTA (↑) MOTP (↓) IDS (↓)

Nodes Method A B A + B A B A + B A B A + B

Centerpoint 97.200 97.847 97.227 0.569 0.665 0.586 160 130 153

C-KF 97.867 96.227 94.933 0.979 1.921 0.864 114 187 1710%

SAGA-KF 99.593 99.680 98.287 0.767 1.162 0.512 24 14 34

Centerpoint 93.940 94.780 92.193 1.248 1.278 0.997 424 363 422

C-KF 95.127 93.907 91.700 1.394 2.237 1.278 335 404 34320%

SAGA-KF 95.973 96.327 94.493 1.231 1.582 0.864 276 246 193

Centerpoint 79.400 80.147 88.887 1.745 1.716 1.435 1223 1170 697

C-KF 80.627 79.553 89.173 1.765 2.431 1.675 1144 1197 60340%

SAGA-KF 80.133 80.467 89.773 1.682 2.002 1.353 1155 1111 524

Centerpoint 48.600 49.207 77.073 1.99 1.905 1.913 2261 2219 1514

C-KF 48.853 48.827 77.787 1.963 2.416 2.068 2236 2231 143160%

SAGA-KF 48.887 49.607 77.900 1.905 2.148 1.857 2237 2195 1389

Centerpoint 15.153 15.467 37.273 1.683 1.615 2.017 2142 2128 2751

C-KF 15.093 15.153 37.320 1.717 1.923 2.116 2143 2134 273880%

SAGA-KF 15.133 15.267 37.507 1.684 1.809 2.037 2143 2133 2722

For the real-world dataset, we observe improvements over the baseline meth-
ods, though the gains are marginal (Table 2). Therefore, we conduct additional
experiments to better understand the advantages and limitations of our pro-
posed technique. For this purpose, we first summed up the estimation errors
(εs) of the predicted object trajectories for each scene. Then, we compared
the difference between the summed errors obtained using C-KF (

∑
εCs ) and

SAGA-KF (
∑

εSs ). We observed that out of the 150 validation scenes, SAGA-
KF performs better on 69 scenes only, i.e.,

∑
εSs <

∑
εCs . For 76 of the remain-
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ing validation scenes, our approach performs nearly the same as C-KF, i.e.,∑
εSs −

∑
εCs ≤ 0.5 meters. This analysis points out the edges’ and interaction

functions’ lack of ability to generalize well on all the scenes. To validate this
hypothesis, we conducted an experiment wherein we assumed that the obser-
vations have no registration or observation errors by using the ground truth
annotations. Again, we observed that SAGA-KF performs marginally better
than C-KF. Since we know that whenever there are no observation or regis-
tration errors, the estimation errors using the proposed SAGA-KF depend on
the weighted adjacency matrix and interaction functions. Therefore, we specu-
late that the potential of formulating the tracking problem as the SAGA-KF
is evident from the improvement obtained in constrained and real-world envi-
ronments. However, its performance depends on the reliability of the graph and
interaction functions to estimate the real-world correlations. Additionally, we
hypothesize that a better choice of edge connections and interaction functions
can further improve the results.

Table 2. Results for the nuScenes dataset on the validation set.

Sensor Tracking Method AMOTA (↑) AMOTP (↓) MOTA (↑) MOTP (↓) IDS (↓)

CenterPoint 36.84% 1.0101 39.03% 0.6780 870

C-KF 33.57% 1.0374 37.87% 0.7329 398Camera

SAGA-KF 33.57% 1.0375 37.95% 0.7344 399

CenterPoint 53.05% 0.7062 44.56% 0.3609 2521

C-KF 53.77% 0.7422 45.80% 0.4459 1363LiDAR

SAGA-KF 53.82% 0.7418 45.85% 0.4458 1392

CenterPoint 34.99% 0.7626 33.78% 0.3913 2099

C-KF 39.71% 0.6969 38.97% 0.4557 960Fusion

SAGA-KF 39.76% 0.6950 38.86% 0.4555 946

7 Discussion

The experiments with the synthetic dataset show that SAGA-KF clearly outper-
forms the other MOT methods. For the synthetic dataset, the graph construction
was perfect, i.e., the method to construct edges used for describing the corre-
lation of nodes in the dynamic scene was the same for data generation and
observation. Moreover, the interaction functions were assumed to be known a
priori; consequently, we had good estimates of the model parameters μμμ. This con-
firms that the correct graph construction mechanism and interaction functions
can allow SAGA-KF to better estimate the scene evolution by incorporating the
relationships between nodes without explicitly tracking the edges. As observed
in the previous section, the small performance gains in the real dataset may be
due to sub-optimal graph construction and the handcrafted interaction function
design. These results suggest that a more accurate interaction function, perhaps
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learned via data-driven methods can further benefit the model. While we used
only camera and LiDAR in this paper, the approach is agnostic to the sensor and
pre-processing method and can be used for other sensing modalities like depth
or thermal cameras or RADARs with associated processing techniques.

8 Conclusion

This work develops a Kalman filter that uses a graph-based state representation.
The graph-based representation allows different objects in the scene to interact,
thus capturing their correlation while estimating the state for MOT. There-
fore, estimating the state of the graph implicitly estimates the state of each
object in the scene while capturing how the other neighboring objects influ-
ence the dynamics of the object. The proposed solution, SAGA-KF, develops a
novel MOT technique that efficiently encodes the edge information as interac-
tion functions, which are used for tracking the nodes in the graph. SAGA-KF is
also designed to maintain a common state for the entire scene while including
observations from multiple sensors. By encoding the edge information as inter-
action functions into node-tracking, the proposed solution eliminates the need
to track the edges, thereby, significantly reducing complexity. These interaction
functions define a structure on the evolving scene by describing how the dynam-
ics of any node are influenced by the node attributes of its neighbors. Moreover,
by including observations from multiple asynchronous sensors into the common
graph-based state representation, this method allows seamless integration of het-
erogeneous data from multi-modal sensors for MOT.
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Abstract. Accidental falls and their consequences are critical concerns
for elderly people. Fatal injuries, when delayed in treatment, can lead to
severe outcomes. Fall detection systems are crucial for the timely treat-
ment of such injuries. Although sensor-based fall detection approaches
are effective, video-based approaches are more useful because they assist
in analyzing the fall scene and identifying the cause of the fall. However,
privacy preservation is a major concern in video-based fall detection. The
proposed system introduces a privacy-preserving mechanism that masks
the identified human with a silhouette. A custom dataset, including 80
activities of daily living and 70 fall activities, is introduced. An LSTM
variational autoencoder architecture is designed with a gradient clipping
mechanism and a smooth variant of Adaptive Moment Estimation with
Stochastic Gradient Descent (AMSGrad) optimizer to enhance the accu-
racy of fall detection. The reconstruction error between normal and fall
activities is clearly identified with the help of a dynamic threshold. This
results in a system performance that achieves accuracy, precision, and
sensitivity of 99%, 97%, and 99%, respectively.

Keywords: Fall Detection · Computer Vision · Assistive Living ·
Autoencoders · Deep learning

1 Introduction

In the contemporary world, life expectancy has increased due to substantial
advancements in medicine and technology. According to the World Health Orga-
nization (WHO), one in six individuals worldwide will be 60 years of age or older
by 2030. This will result in an increase in the population of people over 60 from
1 billion in 2020 to 1.4 billion in 2030 [24]. Therefore, it is imperative to address
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the primary issues encountered by the geriatric population. Falls are a major
concern for the elderly and people with chronic illnesses. An incident where a
person unintentionally descends to a lower level or the ground is considered a
fall. However, events caused by acute illness or environmental hazards are not
classified as falls. The number of deaths caused by unintentional falls in the
geriatric population is increasing rapidly every year. The Centers for Disease
Control and Prevention (CDC) conducted a thorough analysis investigating the
number of deaths related to inadvertent falls between 2018 and 2023, as shown
in Fig. 1 [9]. According to a review of 19 studies, the percentage of falls among
older Indian adults ranged from 14% to 53%. This situation has led to increased
research efforts focused on creating and exploring assistive living environments.

Fig. 1. A study given by the Centers for Disease Control and Prevention on deaths
caused by unintentional falls in the geriatric population from the year 2018 to 2023

Aging is the main cause of falls among the elderly. An array of factors,
including urbanization, globalization, and technological advancements, directly
or indirectly impact the elderly population. The years 2021 to 2030 have been
designated by the UN as the Decade of Healthy Aging to address this issue.
In this manner, suitable solutions to address the various factors affecting senior
citizens can be developed. Researchers attempting to address falls are working
to develop reliable fall detection systems.

Due to the high sensitivity required in fall detection systems, significant
attention is devoted to research in this area. Fall detection techniques are broadly
classified into ambient sensors, vision-based techniques, and wearable sensors.
This research primarily focuses on vision-based techniques. The advantages
of vision-based approaches are comparatively higher than other approaches.
Research has shown that ambient sensors and wearable sensors do not provide
any information additional to their vision-based counterparts [19].

Vision-based methods are further divided into RGB and depth visual cat-
egories based on the type of camera used. A combination of global and local
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features is used to analyze the RGB images. Global features are characteris-
tics of the image as a whole or of a particular area, while local features are
characteristics of a specific area or segment, such as color, texture, intensity, or
distinct elements. In contrast, depth features in depth images are non-intrusive
and robust to variations in illumination. These characteristics provide depth val-
ues that enhance the analysis of vision-based systems. Each category has its own
set of benefits and drawbacks. Depth-based methods are unsuitable for contex-
tual analysis since background information is lost, and the main drawback of
RGB images is their lack of privacy [21].

The proposed approach uses the RGB visual category for the development
of the fall detection framework. The framework integrates a privacy-preserving
mechanism to mitigate the drawbacks of RGB images. An imbalance in data
results from the significant variance in the number of daily activities that the
elderly population engages in compared to the yearly incidence of falls. Algo-
rithms that rely on balanced data cannot effectively address the fall detection
problem due to this identified deviation. The evolution of machine learning and
deep learning architectures has addressed the problem of dealing with unbal-
anced data.

This paper proposes a fall detection framework where falls are considered
anomalies while other activities are considered normal. A variational autoen-
coder is designed using long-short term memory (LSTM) layers. This LSTM
variational autoencoder (LSTM-VAE) is trained on normal activities and tested
on both fall and normal activities. The LSTM encoder is used to examine the
temporal sequences, which are further projected onto a lower-dimensional latent
space. Later, the LSTM decoder reconstructs the sequence. Any sequence that
deviates from the set sequence is considered an anomaly. The main contributions
of the proposed work are:

– A dataset has been created with 30 falling activities and 40 daily living activ-
ities.

– A privacy-preserving technique is introduced, ensuring that the people being
captured by the camera are concealed during fall analysis.

– An LSTM-VAE is designed and optimized by implementing gradient clipping
and a smoothened AMSGrad optimizer.

– Since 80 daily living activities are considered for training the system, the
number of false alarms has been reduced.

This research article is organized as follows: Related work is discussed in Sect. 2,
the proposed work is detailed in Sect. 3, and the results obtained are presented in
Sect. 4 along with a comparison with state-of-the-art algorithms in the literature.
The conclusions and further improvements are discussed in Sect. 5.

2 Related Work

Machine learning algorithms apply optimization techniques such as gradient
descent [15] to reduce the loss function. These techniques iteratively adjust the
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model parameters toward the lowest value of the loss function. In deep learning
architectures, a backpropagation algorithm is employed to update the network
parameters using optimization algorithms such as gradient descent. By updat-
ing the model parameters in the opposite direction of the gradients, the loss is
minimized. Equation (1) is used recurrently to complete this update.

θ(t+1) = θt − α ∗ ∇L(θt) (1)

Though implementing gradient descent with backpropagation is simple and com-
putation is straightforward, the model parameters are updated after the forward
pass is completed on the whole dataset. This results in misleading local minima
[22]. Also, the convergence of gradient descent is very slow when the difference in
the computed gradients is very low. Alternatively, the stochastic gradient descent
(SGD) method is capable of reaching global optimality despite misleading local
minima [6,11,22]. This is achieved by updating model parameters on a random
subset of the dataset using Eq. (2).

θ(t+1) = θt − η ∗ ∇L(θt;xi, yi) (2)

where xi, yi are the input and target of the ith training sample. However, this
update results in high variance among the parameters and an unstable gradi-
ent descent. Alternatively, the mini-batch SGD computes gradients over small
batches of data using Eq. (3). This reduces the variance among the parameters
and supports a stable gradient descent.

θ(t+1) = θt − η ∗ ∇L(θt;xi, yi) (3)

where xi, yi are mini-batches of input and target.

2.1 Adaptive Learning Rates

Adaptive learning rates can be classified based on their application to station-
ary or non-stationary objectives. These techniques learn from the gradient infor-
mation and adjust the learning rate of the training process dynamically. While
learning rates for stationary objectives do not retain all sequences of information,
those for non-stationary objectives retain important information and avoid the
vanishing gradient concern. The work described in [3] evaluated their proposed
model using various adaptive learning rate algorithms such as adaptive moment
estimation (ADAM), adaptive gradient algorithm (ADAGrad), root mean square
propagation (RMSProp), etc. These algorithms typically use an approach to fil-
ter out old data, either by continuously monitoring modifications or keeping an
up-to-date estimate. As a result, their predictions are affected by the vanishing
gradient problem. Learning rates for non-stationary objectives observe unknown
changes in the parameters, also known as concept drift. These techniques are
very useful in time series analysis. Adaptive moment estimation with stochastic
gradient descent (AMSGrad) [7] is one such optimization algorithm that sup-
ports time series analysis. A maximum of the squared gradients is used to update
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the parameters of the optimization function as given in Eq. (4).

θ(t+1) = θt − η√
vt + ε

∗ mt (4)

where mt and vt represent the first and second gradient moments. While the
first moments estimate the direction of gradients, the second moments analyze
the variance of gradients across iterations. The work proposed in this paper
customizes an AMSGrad gradient descent algorithm to overcome the convergence
problem when it gets stuck in local minima.

2.2 Fall Datasets

– SDUFall Dataset: The authors in [13] developed this action dataset using
low-cost Kinect depth cameras. The activities consisted of 5 activities of daily
living (ADL) and 1 fall activity.

– CMD-FALL Dataset: This dataset comprises multimodal multiview data that
includes RGB images, depth images, and sensor data. The authors in [20]
captured activities from 50 subjects, each performing 8 falling activities and
12 non-fall activities.

– Fall Dataset: The authors of the fall dataset [1] recorded falls in different
indoor setups. The dataset is a collection of RGB images, depth images, and
their combination RGB-D images.

– UP-Fall Dataset: This is a multimodal dataset developed by [14]. The dataset
comprises 11 activities, out of which 6 are ADL and 5 are falling activities
performed by 17 subjects.

– URFall Dataset: The authors of this dataset [10] employed two Kinect cam-
eras, one parallel to the ceiling and the other parallel to the floor. The dataset
consists of 40 activities of daily living and 30 fall activities.

It is observed that the amount of data available for research on identifying falls
is very limited. Hence, the proposed work constructs a dataset that covers 80
ADL and 70 fall activities.

2.3 Fall Detection Approaches

Recent advancements in fall detection have significantly improved the accuracy
and robustness of various methods. The work [2] presents an automated vision-
based fall detection system that achieves 100% accuracy using SVM classifiers on
three benchmark datasets. The system uses human segmentation, image fusion,
and a 4-stream 3D convolutional neural network (4S-3DCNN) to successfully
detect falls and trigger immediate alarms. A cost-effective vision-based fall detec-
tion system that leverages advanced deep learning models and fusion methods to
improve fall detection accuracy is proposed in [12]. The system includes object
detection, pose estimation, action recognition, and result fusion, with proba-
bilistic fusion demonstrating a significant performance improvement, achieving
an average 0.84% increase in accuracy on the HAR-UP dataset.
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Deep variational autoencoders (VAEs) are useful for time series anomaly
detection because of their unsupervised training and uncertainty estimation abil-
ities. A frequency-enhanced conditional variational autoencoder was introduced
by [23] to capture complex temporal patterns by combining local and global fre-
quency data to achieve enhanced anomaly detection. A novel generative frame-
work that integrates VAEs with self-supervised learning was introduced in [25]
to address data scarcity concerns and improve anomaly detection.

Human pose estimation techniques have also contributed significantly to fall
detection. The work in [18] leverages the Mediapipe human pose estimation
architecture, resulting in improved accuracy and real-time processing capabili-
ties. Despite the efficiency of these systems, there are still limitations in dealing
with dynamic environments and optimizing performance for real-time applica-
tions, which our work addresses.

3 Proposed Methodology

The proposed approach section will cover the major contributions of the paper.
The dataset was collected to train and test the LSTM-VAE network. A cus-
tomized optimization technique leverages the AMSGrad optimizer to overcome
the convergence problem when stuck at local minima. The implementation of
approaches such as gradient clipping and gradient checkpointing contributes to
handling outliers.

3.1 Dataset Collection Protocol

The dataset was collected from 20 subjects who performed 80 activities of daily
living (ADL) and 70 fall activities. To develop a framework robust in distin-
guishing falls from fall-like activities, the participants were made to perform five
different activities: walking, falling from walking, running, sitting on a chair, and
falling from a chair. There is minimal variance in the activities recorded. Each
participant performed three trials for every activity. The system was trained on
70 ADL activities and tested on a combination of 10 ADL and 70 fall activities.

3.2 Data Pre-processing

The pre-processing section establishes a privacy-preserving mechanism for
human activity recognition. The videos are divided into frames, and each frame
undergoes a series of pre-processing operations. Each frame is normalized to
a range between [0, 1]. To identify people in the video frames, sophisticated
object detection algorithms like You Only Look Once (YOLO) [17] are first
used. YOLO, a deep learning architecture pre-trained on the large ImageNet
dataset [4], provides high accuracy in identifying a wide range of objects, includ-
ing humans. After detecting humans, the human silhouettes are extracted from
the detected regions using a contour-based approach. This method gathers the
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critical spatial information required for subsequent activity recognition chal-
lenges. The extracted human silhouettes undergo a series of morphological pro-
cesses, such as erosion and dilation, to conceal identifiable features while retain-
ing activity-related information. This method ensures that everyone recorded in
the video feed-especially those involved in fall detection scenarios-remains anony-
mous, addressing privacy concerns related to ongoing monitoring and analysis.
The procedure for obtaining a de-identified human image is given in Algorithm 1,
and a pictorial representation of the process is depicted in Fig. 2. One potential
failure case in the human de-identification process is the inaccurate masking of
the human figure due to certain environmental conditions. Some of the failure
cases are depicted in Fig. 3.

Fig. 2. Privacy-preserving for fall detection workflow : (a) represents the original image,
(b) represents the person detection with YOLO, (c) represents the silhouette extraction
and privacy protection

Fig. 3. Some cases where the de-identification process failed
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Algorithm 1 The procedure for Privacy-Protection Mechanism
for each frame in the frames of a video do

Normalize each frame to obtain pixel values of the range [0, 1].
Normalized frame = frame/255
Apply pre-trained human detection algorithm
Extract human regions

end for
for each frame that has extracted human regions do

Identify the largest contour and extract the silhouette
Apply erosion to obtain a fine contour
Mask the original human with the obtained silhouette

end for
The fall detection process is carried out using the privacy-protected frames.

3.3 LSTM-Based Variational Autoencoder Network

An LSTM-VAE network is designed in the proposed fall detection system. The
network is trained and reconstructed on normal activities. Hence, during the
testing process, a high deviation in the reconstruction error is identified as a
fall. An illustration of the LSTM-VAE network is shown in Fig. 4.

Fig. 4. Illustration of the LSTM-VAE Network for Fall Detection

Encoder. The encoder consists of a sequence of LSTM layers that process
the input video frames sequentially. The LSTM layers learn significant repre-
sentations of video sequences from the temporal dependencies captured in the
data. These representations are then compressed into probabilistic interpreta-
tions, such as mean μ and standard deviation σ. A sample latent space Z is
computed by adding noise ε to μ and σ using Eq. (5).

z = zµ + ε · e
1
2 zlogσ (5)

where ε is drawn from a standard normal distribution N(0, 1).

Decoder. The decoder reconstructs the sample latent space Z passed from
the encoder network. The decoder, like the encoder, consists of LSTM layers
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but operates in reverse order. The reconstructed data is then compared with
the original data using a binary cross-entropy (BCE) loss function, as given
in Eq. (6). Additionally, Kullback-Leibler (KL) divergence loss is computed to
measure the deviation between the prior and current distributions, as shown in
Eq. (7).

BCE Loss = − 1
N

N∑

i=1

(yi log(ŷi) + (1 − yi) log(1 − ŷi)) (6)

LKL = −1
2

J∑

j=1

(
1 + log(σ2

j ) − μ2
j − σ2

j

)
(7)

Optimization. Conventionally, the AMSGrad optimizer is used for non-
stationary objectives. However, in the proposed framework, a smoothened AMS-
Grad optimizer is introduced to reduce noise. This is achieved by incorporating
a smoothing parameter (ρ) that smooths the historical maximum of squared
gradients. Additionally, a gradient clipping mechanism is imposed to prevent
gradients from growing exponentially by applying a gradient threshold. The
algorithm for the smoothened AMSGrad optimizer is provided in Algorithm 2.
Initially, the hyperparameters β1, β2 that control the decay rate of the first and
second moment estimates are initialized, along with ε to avoid division by zero, ρ
as the smoothing parameter, and clip threshold for the gradient clipping mech-
anism. The exponential moving average (exp avg), exponential moving average
of squared gradients (exp avg sq), and maximum exponential moving average
of squared gradients (max exp avg sq) are initialized to zero. In each iteration,
these variables are updated, corrected for bias, and the smoothened maximum
exponential moving average of squared gradients (smoothed max exp avg sq) is
calculated by applying the ρ smoothing factor. Finally, every parameter and step
size are updated with bias correction.

g = g ∗ clip threshold

norm(g)
(8)

step size =
lr√

(smoothed max exp avg sq) + ε
(9)

p =
p − step size ∗ corrected exp avg√

(smoothed max exp avg sq) + ε
(10)

The LSTM-VAE is trained on normal activities and tested on fall activities.
If the reconstruction error during testing exceeds a predetermined threshold,
the activity is flagged as an anomaly and marked as a fall. The threshold is
dynamically computed using a moving average thresholding technique.

Initially, a moving average is computed within a sliding window of size 64. For
each step, the average of the data points within the window is calculated, and
then the window is advanced by one step. After the moving average is obtained,
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Algorithm 2 Smoothened AMSGrad Optimizer Algorithm:
Initialize Hyperparameters : β1, β2, ε, ρ, clip threshold
for each parameter p do

initialize exp avg, exp avg sq, max exp avg sq
initialize step = 0

end for
for each iteration do

compute gradients and L2 norm
Apply gradient clipping function given in Equation (8) if norm > clip threshold
Update variables:
exp avg = β1 ∗ exp avg + (1 − β1) ∗ gradient
exp avg sq = β2 ∗ exp avg sq + (1 − β2) ∗ gradient2

max exp avg sq = max(max exp avg sq, exp avg sq)
for every bias correction do

corrected exp avg = exp avg/(1 − β1step)
corrected exp avg sq = exp avg sq/(1 − β2step)
smoothed max exp avg sq = ρ ∗ smoothed max exp avg sq + (1 − ρ) ∗

max exp avg sq
Update parameters: step size and p using Equation (9) and (10) respectively.

end for
end for

the deviation of each data point from the moving average is calculated. The
threshold is determined by adding a margin, adjusted by the standard deviation,
to the mean of the moving averages. An activity is identified as an anomaly if
its deviation from the moving average exceeds the set threshold. This process is
detailed in Algorithm 3.

4 Ablation Study

In this section, the ablation study conducted on the custom dataset for anomaly
detection is discussed. Table 1 presents a comparative analysis of the current and
smoothed AMSGrad optimizers. The performance of various fall detection tech-
niques on our dataset is also covered in the table. Subsequently, Table 2 lists the
performance of different object detection models, such as YOLO and MobileNet.
It is observed that the YOLO model has achieved significant performance.

5 Experimental Results

In this section, the experimental results that were carried out on the custom
dataset for anomaly detection are discussed. Our proposed approach uses an
LSTM-VAE for detecting falls by analyzing latent feature distributions. By train-
ing the VAE on normal activities, the model learns a compact representation of
typical human behavior. This involves capturing the regular patterns and varia-
tions in normal activities. Fall scenarios are different from normal activities and
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Algorithm 3 Moving Average Thresholding
Require: Reconstruction errors, window size, threshold margin
Ensure: Anomalies identified based on reconstruction errors exceeding the threshold
1: Initialize empty list for moving averages: moving averages
2: for i in range(len(reconstruction errors)) do
3: start idx ← max(0, i − window size + 1)
4: window ← reconstruction errors[start idx : i + 1]

5: moving avg ←
∑

j∈window j

len(window)

6: Append moving avg to moving averages
7: end for
8: Calculate threshold: threshold ← mean(moving averages) + threshold margin ×

std(moving averages)
9: Initialize empty list for anomalies: anomalies

10: for each error, moving avg in zip(reconstruction errors, moving averages) do
11: if error > threshold then
12: Append (error, moving avg) to anomalies
13: end if
14: end for
15: return anomalies

Table 1. System performance employing different approaches using a smoothened
AMSGrad optimizer.

Model AMSGrad Optimizer Smoothened AMSGrad Optimizer

Accuracy (%) Train Time (h) Accuracy (%) Train Time (h)

CNN 87.25 8 90.62 6.9

LSTM 90.42 10 93.49 9.8

Autoencoder 90.98 7 92.52 5.2

LSTM-Autoencoder 95.57 10 99.23 7.2

Table 2. Comparison of the performance of one-stage object detection models using
various approaches.

Model MobileNet YOLO

Accuracy (%) Accuracy (%)

CNN 90.89 90.62

LSTM 91.27 93.49

Autoencoder 94.98 92.52

LSTM-Autoencoder 98.57 99.23

often exhibit abrupt and significant changes in posture and motion. The VAE’s
latent space is designed to capture these subtle differences, making it effective for
detecting falls as deviations from learned normal activity patterns. The latent
space representation of normal activities and fall scenarios can be analyzed to
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illustrate why the approach is effective. Figures 5 and 6 shows a sample of latent
space mean and latent space variance for normal and fall scenarios. The latent
space visualizations shown in Fig. 7 reveal that the clusters for normal activities
and fall activities are distinct, demonstrating that the model effectively sepa-
rates these classes. The Gaussian-like distribution of the latent variables further
supports that the model generalizes well to unseen data, thus preventing overfit-
ting. These observations confirm that our approach is both effective and robust
for fall detection.

Fig. 5. Mean of the latent space for fall and normal scenarios

Fig. 6. Variance of the latent space for fall and normal scenarios

In the proposed framework, fall activities are considered as anomalies while
the remaining activities are normal. The LSTM-VAE network is trained on the
normal activities and tested on the fall activities. The reconstruction rate for

Fig. 7. Latent space visualization with GMM probabilities
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Fig. 8. The reconstruction error for video anomaly detection

normal activities is identified as the reconstruction threshold. Any activity that
goes beyond the reconstruction threshold is categorized as a fall. The reconstruc-
tion error for all the videos in the test set is shown in Fig. 8.

The test dataset consists of 70 fall activities and 10 normal activities. It can
be observed from the Fig. 8 that fall activities are clearly distinguished from
normal activities based on the reconstruction threshold. The system achieved an
accuracy of 99%, precision of 97%, and sensitivity of 99%.

To further evaluate the system, the UPfall dataset, and the URfall datasets
are also tested. An accuracy of 100% was achieved on the URfall dataset. The
results of the system are given in Table 3.

Table 3. Performance evaluation of the proposed system on benchmark fall detection
datasets

Accuracy (%) Precision (%) Recall (%)

Custom Dataset 99.23 97.10 99.34

UPfall dataset 99.42 97.27 97.27

URfall dataset 99.98 99.21 99.35

Some similar approaches in the literature are identified in the works discussed
in [5,8,16,21,26]. The work discussed in [21] proposed a temporal convolutional
hourglass autoencoder. A stream of images is fed into the temporal convolutional
hourglass encoder to produce a compressed sample latent space. The temporal
convolutional hourglass decoder reconstructs the sample, and any significant
deviation from the input stream is considered an anomaly. The work proposed
in [16] presents a DeepFall framework for fall detection using depth and thermal
images. A OneFall generative adversarial network was proposed by [5]. This app-
roach considers falls as anomalies and trains only on ADL, achieving an accuracy
of 98.75% on the UPFall dataset. An activity recognition and fall detection net-
work (ARFDNet) was proposed in [26]. They applied pose estimation to identify
human keypoints, which were then fed into a sequence of convolutional neural
networks and gated recurrent units for fall analysis. Their system achieved an
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accuracy of 96.7% on the UPFall dataset. Pose estimation and keypoint identifi-
cation were also employed in the work proposed in [8]. The identified keypoints
were fed into a CNN to identify spatial dependencies and then moved to an
LSTM network to identify temporal dependencies. The system was evaluated
on the UPFall dataset, achieving an accuracy of 98.59%. A comparison of these
existing approaches with the proposed system is given in Table 4.

Table 4. Comparing fall detection methods against state-of-the-art approaches

Accuracy (%) Precision (%) Sensitivity (%)

Scheme [21] 98.22 96.45 97.12

Scheme [16] 95.33 89.13 92.25

Scheme [5] 93.10 91.29 94.17

Scheme [26] 95.89 89.68 92.63

Scheme [8] 98.59 91.72 94.21

Our Proposed Work 99.98 99.21 99.35

6 Conclusion

In this work, we have addressed the challenge of limited video-based fall data by
introducing a custom dataset comprising 80 activities of daily living (ADL) and
70 fall activities. To tackle privacy concerns, we have implemented a privacy-
preserving mechanism that ensures anonymity in video footage. We designed a
custom LSTM-VAE architecture to enhance fall detection accuracy, incorporat-
ing a gradient clipping mechanism and a smoothened variant of the AMSGrad
optimizer to ensure smooth gradient convergence.

The system effectively distinguishes between normal and fall activities,
achieving remarkable performance metrics: 100% accuracy, 99% precision, and
99% sensitivity on the URFall dataset. Future work could focus on further
improving privacy-preserving methods by integrating radar-based detection sys-
tems with vision-based approaches, offering enhanced privacy and robustness in
fall detection scenarios.
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Onefall-gan: a one-class gan framework applied to fall detection. Int. J. Eng. Sci.
Technol. 35, 101227 (2022)

6. Gunale, K., Mukherji, P.: Indoor human fall detection system based on automatic
vision using computer vision and machine learning algorithms. J. Eng. Sci. Technol.
13(8), 2587–2605 (2018)

7. Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer
algorithms to improve computer vision tasks: a comparative study. Multimed. Tools
Appl. 82(11), 16591–16633 (2023)

8. Inturi, A.R., Manikandan, V., Garrapally, V.: A novel vision-based fall detection
scheme using keypoints of human skeleton with long short-term memory network.
Arab. J. Sci. Eng. 48(2), 1143–1155 (2023)

9. Kakara, R.: Nonfatal and fatal falls among adults aged 65 years-united states,
2020–2021. MMWR. Morbidity and Mortality Weekly Report 72 (2023)

10. Kepski, M., Kwolek, B.: Embedded system for fall detection using body-worn
accelerometer and depth sensor. In: 2015 IEEE 8th International Conference on
Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), vol. 2, pp. 755–759. IEEE (2015)

11. Keskes, O., Noumeir, R.: Vision-based fall detection using st-gcn. IEEE Access 9,
28224–28236 (2021)

12. Kim, J., Kim, B., Lee, H.: Fall recognition based on time-level decision fusion
classification. Appl. Sci. 14(2), 709 (2024)

13. Ma, X., Wang, H., Xue, B., Zhou, M., Ji, B., Li, Y.: Depth-based human fall
detection via shape features and improved extreme learning machine. IEEE J.
Biomed. Health Inform. 18(6), 1915–1922 (2014)

14. Mart́ınez-Villaseñor, L., Ponce, H., Brieva, J., Moya-Albor, E., Núñez-Mart́ınez, J.,
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Abstract. Predicting stochastic pedestrian trajectories is a complex
task, requiring the integration of contextual information and the inher-
ent uncertainty of human movement. Conventional generative models
attempt to capture this uncertainty by mapping randomness to a latent
space, producing a multimodal distribution of potential trajectories.
These models, however, often fall short in complex scenarios with highly
uncertain trajectories due to inadequate temporal dependency model-
ing. To address this shortcoming, we propose a framework that uses an
improved conditional diffusion model that significantly enhances stochas-
tic trajectory prediction. By conditioning on past trajectory data, the
model iteratively adds Gaussian noise and employs a reverse generative
process to output a diverse set of future trajectories. A novel denois-
ing component merges noised predictions with historical data through
a feature extractor, leveraging cross-attention mechanisms to intertwine
past and future trajectories effectively. Furthermore, we enrich the frame-
work’s temporal analysis with Fourier embeddings, improving its time-
series predictive power. Rigorous benchmarking on the ETH, UCY, and
SDD datasets confirms that our framework outperforms several state-of-
the-art methods in generating accurate future trajectories.

Keywords: Multimodal Trajectory Prediction · Diffusion Model

1 Introduction

Pedestrian trajectory prediction aims to forecast the future movement path
of a pedestrian by analyzing the surrounding vehicles, other pedestrians, and
the environment. Recently, through deep learning methods, pedestrian trajec-
tory prediction has played a crucial role in tasks like autonomous driving [16],
surveillance by drones [28], and robotics [34]. The main challenge of the pedes-
trian trajectory prediction task is the randomness and probabilistic nature
of human movements. The majority of current solutions are based on deter-
ministic predictions, where a single trajectory is predicted for each pedestrian
by using a sequence-to-sequence structure, such as Recurrent Neural Network
(RNN)-based [19,25] or Transformer-based [39] autoencoders. In this case, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15316, pp. 415–431, 2025.
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encoder extracts spatial and temporal information and the decoder predicts
future trajectories. However, such methods are limited by social interactions and
the uncertainty of human movement, hindering their performance. To accurately
capture the uncertainty of future trajectories, we need a prediction system that
generates an unbiased distribution of plausible future trajectories. Therefore,
current research predominantly utilizes generative models [10,11,36] to learn
the distribution of trajectories; i.e., to provide stochastic trajectory predictions.

In stochastic trajectory prediction, generative models conditioned on past
trajectories are the most commonly used solutions. For example, methods
employing explicit density functions, such as Conditional Variational Autoen-
coders (CVAEs), assume the outputs follow a Gaussian distribution to simulate
future trajectories [17,22,32,36]. However, the expressiveness of their latent rep-
resentations is limited, failing to capture all the subtle nuances of the data.
As a result, the output often appears unnatural or overly simplified. Genera-
tive Adversarial Networks (GANs) are not confined by a fixed density form,
thus offering greater flexibility and diversity in generating trajectories. However,
GANs also face challenges during training, such as mode collapse and unstable
gradients [2,7,21].

Recently, advancements in image generation [8,30], video synthesis [13,37],
and audio synthesis [6,20] have led to the development of a new type of gen-
erative model: Denoising Diffusion Probabilistic Models (DDPMs) [14]. These
models reduce prediction uncertainty effectively by injecting random noise into
future trajectories to generate multiple plausible paths, learning the data gen-
eration process based on noise and the true data distribution. During inference,
such models start with Gaussian noise and refine the noise samples through an
iterative process. For example, MID [10] employs a Transformer-based vanilla
diffusion model that has been shown to predict trajectories in a stochastic or
deterministic manner. However, MID still faces challenges in integrating condi-
tional information effectively, which limits its effectiveness in complex scenarios.
Additionally, the inference process is time-consuming, rendering it unsuitable for
applications that require immediate responses. To address these challenges, we
propose a new predictive Denoiser capable of merging conditional information
with noisy trajectories to effectively learn the distribution patterns of trajec-
tories. Additionally, we leverage Denoising Diffusion Implicit Models (DDIM)
to accelerate the sampling process, enabling faster generation of probabilistic
trajectory distributions. The contributions of our work are as follows:

• We propose a novel Denoiser capable of effectively processing noise-injected
trajectories and integrating past information through a cross-attention mech-
anism. This strategy allows the generated trajectories to be consistent with
both historical behavior patterns and potential future changes.

• We incorporate the Fourier transform to enhance our framework’s analytical
capabilities for time-series data. This allows capturing and predicting pedes-
trian movements across different time scales, further improving performance.

• Compared with the recent baselines, our framework showcases outstanding
performance in evaluations on the pedestrian trajectory prediction bench-
marks, ETH, UCY and SDD.
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2 Related Work

Early research in trajectory prediction primarily focuses on deterministic predic-
tion, which involves using historical trajectory data to predict a set of positions
for each of several pedestrians at future time steps. The time-series nature of
this task makes the use of RNNs and autoencoders in a sequence-to-sequence
structure particularly suitable. For example, Social-LSTM [1] introduces a social
pooling structure that integrates the hidden states of each pedestrian to cap-
ture and understand the interactions and relationships between moving objects.
Sophie [31] employs the VGG-19 network to extract features from aerial views
and introduces physical and social attention mechanisms. With the advent of the
Transformer, multi-head attention is more suited for processing sequential data.
For instance, STAR [38] employs a Transformer to capture spatial and temporal
information, which is subsequently combined with a graph structure to achieve
complex spatio-temporal interactions. This Transformer-based graph convolu-
tion mechanism is used to dynamically learn and adjust to the complex spatial
relationships between nodes in the graph, while separate temporal transformers
are used to capture the temporal dependencies between graphs. The recently pro-
posed EqMotion [35], which uses interaction graphs, ensures motion equivariance
under Euclidean geometric transformations and invariance of agent interactions,
providing robust and accurate multi-agent motion predictions.

Recently, there has been a significant focus on stochastic trajectory predic-
tion to predict a set of plausible trajectories given past trajectories, also known
as multimodal trajectory prediction. Solutions based on Distributed Generative
Models (DGMs) are effective in generating diverse trajectories that accurately
reflect real-world complexity by leveraging probabilistic frameworks. GANs and
CVAEs are particularly suited in this case, with GANs emphasizing diversity. For
example, the combination of Bicycle-GAN and Graph Attention Networks [21]
explore multimodal trajectory prediction by accounting for social interactions.
MG-GAN [7] enhances the diversity and realism of trajectory prediction through
a multi-generator strategy, effectively avoiding the generation of outlier samples.
DESIRE [22] employs a CVAE for multi-trajectory prediction, leveraging prior
and posterior distribution constraints to learn trajectory distributions. More
recent research integrates contrastive learning into CVAEs [5,12], enhancing fea-
ture and pattern discrimination. Social-VAE [36] incorporates attention mecha-
nisms for processing time-series data. It is important to note that CVAEs may
fail at capturing complex data distributions due to assumptions made about the
latent space structure, impacting trajectory generation quality.

Lately, the work in [10] introduces MID, an innovative diffusion model-based
strategy that finely simulates the uncertainty of movement through a progressive
noise addition process, achieving a transition from vague to precise trajectory
prediction. BOsampler [3] introduces unsupervised sampling, which enhances the
effectiveness of stochastic human trajectory generation. LED [27], on the other
hand, uses a two-stage training process that first trains a complete denoiser fol-
lowed by the fast sampling component. The unsupervised sampling technique,
however, may encounter challenges with noise and variability in the trajectories
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without labeled data. Moreover, a two-state training process may be computa-
tionally complex and not fully leverage the denoiser’s potential understanding
of trajectory patterns. Our framework, which is based on a diffusion model and
a single training stage, improves stochastic pedestrian trajectory prediction by
introducing 1) a novel Denoiser that enhances past information integration, 2)
Fourier embeddings that enhance spatio-temporal analysis capabilities, and 3)
DDIM to accelerate inference when sampling the plausible future trajectories.
Our framework hence enhances adaptability to real-time scenarios.

3 Proposed Framework

The goal of stochastic pedestrian trajectory prediction is to forecast future tra-
jectories based on given historical information and the surrounding environment.
The historical trajectory of pedestrian i is represented by Pi = [pi

1, p
i
2, . . . , p

i
t] ∈

R
t×2, where t denotes the length of the observation time steps, and pi

t ∈ R
2

indicates the pedestrian’s {x, y} position at time t. The historical trajectory
information of the jth neighbor is denoted as N i

j = [N i
j,1, N

i
j,2, . . . , N

i
j,t] ∈ R

t×2,
where N i

j,t ∈ R
2 describes the {x, y} position of the neighbor at time t. We define

the future trajectory of pedestrian i as Fi = [f i
t+1, f

i
t+2, . . . , f

i
t+T ] ∈ R

T×2, where
T is the time step length of the future trajectory. The task’s goal is to learn the
conditional probability pθ(Fi | Pi, {Nj}), which represents the probability dis-
tribution of a pedestrian’s future trajectory with given historical trajectories.

3.1 Framework Overview

Figure 1 illustrates our framework, which predicts future trajectories through
a diffusion process, using past trajectory information as a conditional input.
During the training phase, noise is added to ground truth future trajectories
over k ∈ [1,K] time steps. The denoising network is trained to predict the noise
and distill temporal features from the trajectory data, enabling it to reconstruct
future paths more accurately. During inference, our framework generates initial
trajectory estimates from a Gaussian distribution, incorporates past trajectories
as context, and progressively refines the predicted trajectory using the Denoiser.
This iterative refinement process allows the framework to effectively navigate
the inherent uncertainties within trajectory forecasting, yielding more precise
predictions.

3.2 Extracting Conditional Information

Figure 2 shows the architecture of our Denoiser. Inspired by [32], the condi-
tional information is extracted by a Social-Temporal Encoder, which captures
and encodes the social interactions among pedestrians; i.e., the historical trajec-
tories of the target and its neighbors. Our Denoiser comprises two components:
the historical information temporal encoder, φ(·), and the neighboring informa-
tion social encoder, ψ(·). The temporal encoder, φ(·), uses a Long Short-Term
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Fig. 1. Overview of the proposed framework. During the training phase, the past
trajectories of the target pedestrian Pi and set of neighbors {Nj} serve as conditional
information guiding the diffusion learning process. The model trains the Denoiser θ(·)
to predict noise and restore future trajectories by iteratively adding noise ε ∼ N (0, I)
to the target’s future trajectory, i.e., from F 0

i to F k
i , over k ∈ [1, K] time steps. In the

inference phase, the trajectory IK is initialized from Gaussian distribution combined
with conditional information and refined through K iterations of the Denoiser, by
sampling and predicting noise to produce the predicted trajectory I0.

Memory (LSTM) network [15] with the {x, y} position and speed of pedestrian i

to produce the feature pφ
i of dimension h. The social encoder, ψ(·), also employs

an LSTM to encode the historical information of the neighbors associated with
pedestrian i. Since the number of neighbors and their interactions can fluctuate
over time, the social encoder ψ(·) encodes the past trajectories of all neighbors
within a radius r by using a single-layer LSTM. Subsequently, an attention
mechanism is applied to calculate the influence of each neighbor on the tar-
get pedestrian. This results in an aggregated feature set, denoted by pψ

t ∈ R
h.

These aggregated features encapsulate both the positional and velocity data of all
neighbors within the pedestrian’s vicinity, providing a comprehensive social con-
text for trajectory prediction. After the encoding step, the historical features
pφ

i and the neighboring features pψ
t are concatenated to create the conditional

pedestrian features Pi ∈ R
2h.

3.3 Forward Process

During training, our framework uses a diffusion model in which forward diffusion
obfuscates the ground truth future trajectories, Fi, by incrementally adding noise
over k ∈ [1,K] time steps to produce the noisy trajectory F k

i ∈ R
T×2:

F k
i =

√
αkF 0

i +
√

1 − αkε, k = 1, 2, . . . ,K (1)

where F 0
i represents the initial future trajectory at the starting point, the value of

k ∈ [1,K] is randomly selected, and ε ∼ N (0, I) is a noise matrix matching F 0
i ’s
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Fig. 2. The Denoiser. The historical trajectory features of the target pφ
i and neighbors

pψ
t are extracted by the temporal encoder φ(·) and social encoder ψ(·), respectively. The

noisy trajectory F k
i is concatenated with the Fourier embeddings F and fed into a fully

connected layer to produce Fk. Subsequently, after the feature extractor, the temporal
features P̂i and F̂k are merged through cross attention and ultimately decoded into the
predicted noise ε̂ .

dimensions. Note that the variable αk is a pre-determined coefficient controlling
the amount of noise added for the selected value of k. The value of αk decreases
as k increases, i.e., as more steps are used, more noise is added to the trajectory.
This method allows our framework to learn the features of trajectories under
different noise levels, which in turn facilitates the reconstruction of the original
trajectory during the reverse diffusion process. Such a forward diffusion process
provides training data for the reverse process, enabling it to learn how to recover
the original trajectory from noisy data.

3.4 Fourier Embedding

We introduce Fourier encoding to capture temporal features in the noisy trajec-
tories F k

i . This involves applying sine and cosine transformations, distributed
logarithmically to achieve precise encoding for each dimension, thus effectively
capturing periodic features across different time scales:

F(F k
i , δ) =

{
sin(2π · 2m·δ · F k

i )
cos(2π · 2m·δ · F k

i ), (2)

where δ is a scaling factor that determines the granularity of the frequency
distribution. In our model, the index m starts at 1 and increases to M , indexing
different frequency bands used in the encoding process. Frequencies for these
bands are logarithmically spaced, beginning at the lowest and increasing to a
maximum determined by the power of two, which is scaled by δ and the band
index m. The noisy trajectory data F k

i and its corresponding Fourier-encoded
features F(F k

i , δ), are fused along the feature dimension, creating an enhanced
feature space F̂k:

F̂k = F k
i ⊕ F(F k

i , δ). (3)
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Fig. 3. Feature extractor architecture. The noisy trajectory Fk and condition
information Pi are fed, separately, to the feature extractor for further feature extrac-
tion. K is a time encoding, which is only used on Pi.

Such feature fusion further expands the framework’s ability to exploit temporal
features, allowing it to gain a more comprehensive understanding of temporal
dynamics, enhancing the accuracy of complex time series behavior prediction.
Following this, F̂k is fed into a fully connected layer to produce Fk with dimen-
sions R

T×2h, preparing the data for subsequent feature extraction.

3.5 Feature Extractor

The feature extractor used by the Denoiser, as shown in Fig. 2, is detailed in
Fig. 3. It extracts finer-grained features from both Fk and Pi. A self-attention
mechanism is first employed to process the input trajectory data, establish-
ing direct dependencies between different positions within the sequence. Sub-
sequently, both Conv1D convolutions and multi-scale dilated 1D convolutions
are utilized for extracting local features and trend features, respectively. Finally,
layer normalization is applied to unify the data distribution and enhance the
framework’s stability. The final output of the feature extractor is utilized in the
subsequent denoising step. Each component of the feature extractor is detailed
next.

Time Encoding: The feature extractor uses time encoding on Pi to amplify
its capability in capturing time-steps of noise. Specifically, time encoding for k
time steps is achieved as follows:

Emb(k) = concat(βk, sin(βk), cos(βk)), (4)
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where k is the same value used to add noise to Fi, βk is the scalar representation
of the value of k, and the concat operation produces a unified time embedding
vector.

Positional Encoding: A 2h-dimensional position embedding p is also concate-
nated with Fk and the time-feature-injected trajectory Pi. This embedding is
computed as follows: {

p(i, 2j) = sin
(

i
100002j/d

)
p(i, 2j + 1) = cos

(
i

100002j/d

)
,

(5)

where d denotes the dimension of the position embedding, which equals the
dimension of Fk and that of Pi; i represents the time step; and 2j and 2j+1 refer
to the even and odd dimension indices within d. This guarantees a distinctive
encoding for every position.

Self Attention: After concatenation with the time and position embeddings,
Fk and Pi are fed into the self-attention module to compute Q = XWQ, K =
XWK , V = XWV , where X represents the input, {WQ,WK ,WV } are the
learnable weight matrices, and dk is the dimensionality of the keys:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V. (6)

Note that Eq. 6 normalizes the dot product of Q and K to obtain attention
weights, which are used to perform a weighted sum of V , yielding a weighted
feature representation. Also, note that the output of the self-attention module is
combined with its corresponding input to form a residual connection to mitigate
gradient vanishing. The result is then standardized using LayerNorm, which
enhances stability and convergence speed by standardizing features.

Local Feature Extraction: We employ a standard 1D convolutional layer to
extract local features. This approach aims to improve the model’s capacity to
capture local temporal patterns within the sequence data.

Trend Feature Extraction: To capture intrinsic trend features within the
trajectory data more comprehensively, we incorporate a multi-scale dilated 1D
convolutional architecture. This architecture is adept at detecting varying trends
and patterns across multiple time scales, thereby enriching the framework’s inter-
pretation of trajectories. Specifically, we employ 1D convolutions with dilation
rates {1, 2, 4}, each with a kernel size set to 3, to capture and integrate multi-
scale information. The outputs from the multi-scale dilated 1D convolutional
architecture are added to those of the 1D convolution. This comprehensive fea-
ture representation allows the model to effectively capture and articulate both
local and trend features at each time step in the trajectory data. The output
of the feature extractor block is then F̂k and P̂i (see Fig. 2).
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3.6 Conditional Fusion

We use a cross-attention mechanism as a means of fusion. This approach enables
the effective blending of information from future noisy trajectories with condi-
tional past trajectories to guide the denoising process:

Cross Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (7)

where Q and K are derived from F̂k, capturing querying and matching aspects
of the future trajectory, respectively, while V encapsulates the conditional past
trajectories P̂i, providing the necessary context for denoising reconstruction. By
employing this cross-attention mechanism, the framework selectively concen-
trates on relevant segments of the noisy future trajectories that hold the most
promise for reconstructing the future trajectories under the guidance of the past
trajectories. Finally, we feed the output of this cross-attention mechanism to a
fully connected layer to compute the predicted noise ε̂ ∈ R

T×2.

3.7 Training

During training, given the condition and the noisy future trajectory, the Denoiser
aims to estimate the noise ε that was added to the ground truth future trajec-
tories. The loss function for the denoising model is defined as:

L(θ) = Eε∼N (0,I),F 0
i ,k

∥∥∥ε − ε̂θ(F k
i , Pi, {N j

i })
∥∥∥ , (8)

where ε̂θ(F k
i , Pi, {N j

i }) is the noise estimated by the model with parameters θ,
and F k

i , Pi, and {N j
i } represent the input noisy trajectory, the target’s past

trajectory, and the neighboring trajectories, respectively.
Throughout the training process, the estimated noise ε̂θ is continuously

refined to enhance the framework’s ability to reverse the diffusion process.
The final model is expected to accurately predict the noise for any given noisy
future trajectory through the condition Pi and {N j

i }.

3.8 Inference

During the inference stage, the denoising process learned in the training phase
is applied to generate clean trajectories from noisy data. We commence the
inference with an initial noisy trajectory assumed to be the result of adding
noise to a clean trajectory over K steps i.e., IK

i ∼ N (0, I). We then apply reverse
diffusion over K steps to reconstruct the original trajectory. The trajectory at
step k − 1 in this reverse process can be expressed as:

Ik−1
i =

1√
αk

(
Ik
i − βk√

1 − αk
ε̂θ(Ik

i , Pi, {N j
i })

)
+

√
βkz, (9)
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where z ∼ N (0, I) is a random variable sampled from a standard Gaussian
distribution, significant for steps k > 1. Here, αk and βk are coefficients that
modulate the diffusion process, ε̂θ(Ik

i , Pi, {N j
i }) represents the noise estimated

by the model with parameters θ, and
√

βkz accounts for the added noise at step
k. The denoising network’s input includes the current noisy trajectory Ik

i , the
target’s past trajectory Pi, and the neighboring trajectories {N j

i }.
Note that the standard reverse DDPM sampling approach requires K denois-

ing steps to generate a sample, which can be time-consuming and computation-
ally expensive. To address this, we incorporate the DDIM [33] sampling tech-
nique, which skips every γ steps in the reverse process. This modification reduces
the number of iterations to K/γ, effectively accelerating the sampling process by
a factor of γ, thus leading to more efficient and expedient trajectory generation.

By incorporating the DDIM technique, we enhance efficiency and operational
speed while maintaining the quality of the generated samples.

4 Experiments and Analysis

Datasets: We evaluate our framework on three benchmark datasets: ETH [4],
UCY [23], and Stanford Drone Dataset (SDD) [29]. These datasets reflect real-
world scenarios and record pedestrian movements and interactions from a bird’s-
eye view. The SDD dataset comprises 20 different scenes, the ETH dataset
includes two scenarios (ETH and HOTEL), and the UCY dataset includes three
scenarios (UNIV, ZARA1, and ZARA2). These scenarios were collected at a
sampling rate of 2.5 Hz, showing rich multi-person interactions in unrestricted
settings, allowing for various pedestrian paths and interaction patterns. For ETH
and UCY, we employ a leave-one-out approach similar to other studies, training
on four scenarios and testing on the remaining one. After observing the initial 8
frames (3.2 s), the task is to estimate the pedestrian’s coordinates for the next
12 frames, i.e., over a window of 4.8 s.

Metrics: We use two primary metrics: Average Displacement Error (ADE) and
Final Displacement Error (FDE). ADE measures the average Euclidean distance
between each point of the predicted trajectory and the corresponding point of the
actual trajectory over the entire forecast period. FDE measures the Euclidean
distance between the actual and the predicted positions at the final time step.
These are mathematically expressed as:

ADE =
1
T

T∑
t=1

√
(xt − x̂t)2 + (yt − ŷt)2, (10)

FDE =
√

(xT − x̂T )2 + (yT − ŷT )2, (11)

where T denotes the total number of time steps and (xt, yt) and (x̂t, ŷt) are the
coordinates of the actual trajectory and the predicted trajectory, respectively, at
time t. In light of the stochastic property of our framework, we follow other
works [10] by adopting a Best-of-N strategy, selecting the best result out of
N = 20 trials to calculate the final ADE and FDE.
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Implement Details: Our framework is built on PyTorch 1.13.1 and trained
end-to-end with no pre-training. The optimizer chosen is AdamW for the first
80% of the training and Adamax for the remaining 20%. The initial learning rate
is set to 0.001, which is set to decay exponentially at rate of 0.98. Each batch
size is set to 256. The LSTM hidden dimension for past trajectories is 128, and
the number of channels for the dilated 1D convolution is 256 with a kernel size
of 3. The embedding dimension for self-attention is 256 with 4 heads, while the
dimension for cross-attention is 768. We use a value of δ = 0.5 and M = 4 for the
Fourier embeddings. Our experiments are conducted on an NVIDIA RTX-3060.

Table 1. Performance of several models on the ETH and UCY datasets in terms of
ADE/FDE metrics with a Best-of-20 strategy. The best and second-best results are
highlighted in bold font and

��������
underlined, respectively.

Model ETH HOTEL UNIV ZARA1 ZARA2 AVG

Social-GAN [11] 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18

SoPhie [31] 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15

CGNS [24] 0.62/1.40 0.70/0.93 0.48/1.22 0.32/0.59 0.35/0.71 0.49/0.97

STGCNN-C [4] 0.64/1.00 0.38/0.45 0.49/0.81 0.34/0.53 0.32/0.49 0.43/0.66

MG-GAN [7] 0.47/0.91 0.14/0.24 0.54/1.07 0.36/0.73 0.29/0.60 0.36/0.71

PECNet [26] 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48

CAGN [9] 0.41/0.65 0.13/0.23 0.32/0.54 0.21/0.38 0.16/0.33 0.25/0.43

MID-DDIM 0.41/0.70 0.19/0.32 0.22/0.43 0.26/0.51 0.17/0.34 0.25/0.46

MID* [10] 0.40/0.73 0.17/0.29 0.22/0.47
���
0.20/0.39

���
0.15/0.30 0.22/0.43

BOsampler [3] 0.52/0.95 0.19/0.39 0.30/0.67 0.14/
����
0.33 0.20/0.45 0.27/0.56

LED [27]
���
0.39/0.58 0.11/0.17 0.26/0.43 0.18/0.26 0.13/0.22 0.21/0.33

Ours-DDIM 0.41/0.70 0.16/0.28 0.26/0.46 0.23/0.41 0.18/0.36 0.24/0.44

Ours (w/o Fourier)
���
0.39/0.70 0.15/0.24 0.24/0.45 0.21/0.41 0.17/0.30 0.23/0.41

Ours 0.37/
����
0.61

���
0.12/

���
0.20

���
0.23/

���
0.44

���
0.20/0.36

���
0.15/

���
0.29 0.21/

����
0.38

* reproduced results from the open source implementation.

4.1 Comparison with the SOTA

In Table 1, we compare our framework with the state-of-the-art methods
in [3,4,7,9–11,24,26,27,31] on the ETH & UCY datasets. Among them, Social-
GAN [11], SoPhie [31], and MG-GAN [7] implement GAN-based generative
methods, PECNet [26] utilizes a conditional VAE, PECNet and CAGN [9] are
goal-conditioned methods, and MID [10], LED [27] employ diffusion models. The
results reported for MID-DDIM, which uses DDIM sampling, are those obtained
after reproducing this method. ‘Ours-DDIM’ refers to the case of using DDIM
sampling with K = 2 steps, ‘Ours’ refers to using the standard sampling with
K = 80 steps, and ‘Ours w/o Fourier’ refers to not using Fourier embeddings
with standard sampling with K = 80 steps.

Compared to other models, our framework achieves strong performance on
the majority of scenarios of the benchmarks and attains the best average ADE



426 B. Fu et al.

Table 2. Performance of several models in terms of ADE/FDE metrics on the SDD
dataset with a Best-of-20 strategy. The best and second-best results are highlighted in
bold font and

���������
underlined, respectively.

Model SDD

Social-GAN [11] 27.23/41.44

SoPhie [31] 16.27/29.38

CGNS [24] 15.60/28.20

MG-GAN [7] 13.60/25.80

PECNet [26] 9.96/15.88

GroupNet [9] 9.31/16.11

MID [10] 9.73/15.32

LED [27]
���
8.48/11.66

Ours 8.21/
�����
14.62

Fig. 4. Qualitative comparison of our framework against MID (baseline) on the ETH,
HOTEL, UNIV, ZARA1, and ZARA2 scenarios.

and second-best average FDE. Note that although LED achieves better results
in several of the scenarios, it is a two-stage training model: training the denoiser
first, followed by training fast sampling process, whereas our model requires a
single training stage. When we use the fast DDIM sampling, our framework
also attains better results than the majority of evaluated methods; however, the
best results are attained when standard sampling is used along with the Fourier
embeddings. The results for the SDD dataset in Table 2 further confirm our
framework’s enhanced ability to capture the relationship between past and future
trajectories, thereby better grasping the association of stochastic trajectories
over time.

Figure 4 shows visual results for four scenes of the ETH, HOTEL, UNIV,
ZARA1, and ZARA2 scenarios. The trajectories predicted by our framework (in
light blue) are compared with the ground truth trajectories (in blue). Compared
to the predictions made by MID (in green), which can be considered as a baseline,
our framework can predict trajectories that are closer to the ground truth.
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4.2 Ablation Studies

Fusion Strategies: As tabulated in Table 3, we investigate several fusion strate-
gies for integrating conditional information from past trajectories with noisy tra-
jectories. We use the five scenarios of the ETH &UCY datasets. Specifically, we
replace the cross-attention mechanism in the Denoiser (see Fig. 2) with three dif-
ferent fusion approaches: Concatenation, Addition, and Gate Fusion. In the Gate
Fusion strategy, a gating signal modulates the significance of features, allowing
the model to dynamically adjust the degree of feature fusion based on the cur-
rent context. The results indicate that cross-attention effectively retains essential
trajectory features while filtering out noise across consecutive time steps. In con-
trast, the other strategies may lose information or introduce unnecessary noise
when capturing the complex relationships of the trajectories.

Table 3. Average ADE & FDE values when using different fusion strategies on the
five scenarios of the ETH & UCY datasets.

Fusion Module ADE FDE

Concatenation 0.22 0.40

Addition 0.22 0.41

Gate Fusion 0.23 0.43

Cross-attention 0.21 0.37

Table 4. Average ADE & FDE values when using different scaling factors (δ) and
maximum frequencies (M) on SDD.

Scaling Factor δ = 2 δ = 1 δ = 0.5

Maximum frequency M = 4 M = 6 M = 8 M = 4 M = 6 M = 8 M = 4 M = 6 M = 8

ADE 8.29 8.37 8.43 8.31 8.59 8.36 8.21 8.47 8.38

FDE 14.79 14.84 15.62 14.63 15.30 14.78 14.62 14.84 14.60

Fourier Embedding: As shown in Table 4, we investigate different scaling
factors δ and maximum frequencies M to evaluate the impact of the Fourier
embeddings on performance on SDD. For δ = 2, ADE and FDE values increase
as M increases, suggesting that excessively high frequencies may introduce more
noise, leading to performance degradation. When δ = 1, the variations in ADE
and FDE values are relatively small across different frequencies, but the per-
formance is poor at M = 6, indicating that moderate frequencies may be less
effective than higher or lower frequencies. For δ = 0.5, the best results are
achieved at M = 4, demonstrating that lower frequencies can better capture the
dynamic characteristics of the trajectories at a fine granularity.

Sampling Methods: We investigate the performance of standard sampling,
DDIM, UniPC [40], and K-diffusion [18] sampling across various time step set-
tings and for several prediction windows. We use the five scenarios of the ETH &
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Table 5. Average ADE/FDE values for several prediction windows when using different
sampling methods on the ETH & UCY datasets.

Sampling method Prediction window Inference (ms)

1.2 s 2.4 s 3.6 s 4.8 s

Standard (K = 100) 0.04/0.04 0.09/0.14 0.15/0.25 0.21/0.39 ∼996

Standard (K = 80) 0.03/0.04 0.09/0.13 0.14/0.25 0.21/0.38 ∼974

Standard (K = 50) 0.07/0.08 0.15/0.21 0.24/0.38 0.34/0.55 ∼495

K-diffusion(K = 20) 0.07/0.07 0.14/0.18 0.22/0.31 0.30/0.48 ∼213

K-diffusion(K = 5) 0.06/0.06 0.12/0.16 0.19/0.29 0.27/0.43 ∼61

K-diffusion(K = 2) 0.08/0.07 0.13/0.17 0.21/0.31 0.29/0.46 ∼30

Unipc (K = 20) 0.04/0.05 0.10/0.15 0.16/0.28 0.24/0.44 ∼117

Unipc (K = 5) 0.05/0.06 0.11/0.16 0.17/0.29 0.25/0.45 ∼48

Unipc (K = 2) 0.07/0.06 0.13/0.17 0.20/0.31 0.28/0.47 ∼28

DDIM (K = 20) 0.04/0.05 0.10/0.15 0.17/0.28 0.27/0.47 ∼207

DDIM (K = 5) 0.05/0.06 0.11/0.16 0.17/0.29 0.25/0.46 ∼59

DDIM (K = 2) 0.06/0.07 0.12/0.195 0.18/0.30 0.24/0.44 ∼29

UCY datasets. The average results are tabulated in Table 5, where the inference
time is based on the analysis of a single trajectory on the ETH dataset. UniPC
sampling introduces adjusted noise prediction and sample update mechanisms to
smooth transitions between time steps, thereby enhancing the stability and qual-
ity of the generated samples. The K-diffusion sampling employs pseudo-Langevin
Markov Sampling (PLMS) to increase efficiency. We observe that as the number
of steps for standard sampling decreases from 100 to 50, the inference time signif-
icantly drops from ∼996 ms to ∼495 ms. However, there is a notable performance
degradation at K = 50, with the optimal results achieved at K = 80. DDIM
sampling with K = 2 markedly reduces the inference time to ∼29 ms, with rela-
tively stable results. UniPC sampling also shows promising results, reducing the
inference time to ∼28 ms at K = 2 while maintaining competitive performance.
Similarly, K-diffusion sampling reduces the inference time to ∼30 ms at K = 2,
with performance comparable to UniPC and DDIM. These findings suggest a
trade-off between inference speed and prediction accuracy, which may be related
to the degree of information loss during the sampling process. In standard sam-
pling, more steps might help to maintain the continuity of predictions, while in
DDIM, UniPC, and K-diffusion sampling, the rapid inference process does not
significantly compromise the quality of the predictions.

5 Conclusion

In this paper, we proposed a framework for the stochastic prediction of pedes-
trian trajectories by using an improved diffusion model. By introducing a novel
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denoising component, our diffusion model effectively combines noise-injected tra-
jectories with historical data, utilizing feature fusion to strengthen the linkage
between past and future trajectories. Rigorous testing on the ETH, UCY, and
SDD datasets showed that our framework surpasses several of the state-of-the-
art methods in generating accurate pedestrian trajectory predictions, showcasing
its potential and practical value in real scenarios.
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Abstract. Data association is an essential part in the tracking-by-detection based
Multi-Object Tracking (MOT). Most trackers focus on designing a better data
association strategy to improve the tracking performance. The rule-based hand-
crafted association methods are simple and highly efficient but lack generalization
capability to deal with complex scenes. While the learnt association methods can
learn high-order contextual information to deal with various complex scenes, but
they have the limitations of higher complexity and cost. To address these limita-
tions, we propose a Robust Two-stage Association Tracker, named RTAT, where
the first-stage association is performed between tracklets and detections to gen-
erate tracklets with high purity, and the second-stage association is performed
between tracklets to form final trajectories. For the first-stage association, we use
a simple data association strategy to generate tracklets with high purity by setting
a low threshold for the matching cost in the assignment process. For the second-
stage association, we adopt the message-passing GNN framework, which models
the tracklet association as a series of edge classification problem in hierarchical
graphs, so that it can recursivelymerge short tracklets into longer ones. Our tracker
RTAT ranks first on the test set of MOT17 and MOT20 benchmarks in most of
the mainMOTmetrics: HOTA, IDF1, and AssA. More specifically, RTAT achieve
67.2 HOTA, 84.7 IDF1, and 69.7 AssA on MOT17, and 66.2 HOTA, 82.5 IDF1,
and 68.2 AssA on MOT20.

Keywords: Multi-Object Tracking · Data Association · Tracklet Association ·
Graph Neural Networks · Neural Message Passing

1 Introduction

Multi-Object Tracking (MOT) aims to detect and identify all the objects, and ideally to
form one complete trajectory for each object in a video. It is an essential technology for
various applications, such as intelligent surveillance, autonomous driving, and robotics.
Tracking-by-Detection (TbD) [1, 3, 4, 7] is currently the most effective paradigm for
MOT, which contains two steps: object detection and data association. Most trackers
[1, 4, 5, 7, 8, 10] focus on designing a better data association strategy to enhance the
tracking performance, and various strategies have been proposed which broadly fall into
two categories: handcrafted association and learnt association.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Matching by cost matrix is usually adopted in handcrafted association methods,
where different strategies [1, 4, 5, 7, 8, 10, 33, 34] are designed to match the tracklets
and detections based on their distances. Bipartite matching, which is formulated as a
Linear Assignment Problem (LAP) and solved by Hungarian algorithm [27], is a com-
monly used matching strategy. The handcrafted association methods explicitly leverage
various cues (e.g., location, motion, appearance, detection scores [1], etc.) to calculate
the distances, and design different strategies to construct the cost matrix for identity
assignment. Because of their simplicity and efficiency, these methods are very popular
in MOT. However, most of them are rule-based, so it is hard and exhausting to design
a general association strategy that can deal with various scenes, such as crowded, fast
camera motion, night, and low resolution. Another drawback of these methods is that
the association error cannot be fixed once it occurs.

In the learnt associationmethods, the data association is usually done implicitly based
on the learnt association feature through a neural network, such as Transformer [28–
30], Graph Neural Networks (GNN) [17, 18, 20–22]. These methods learn to extract
high-order association feature from multiple sources of information (e.g., spatial and
temporal, appearance, motion, etc.) in a data-driven manner. In the transformer-based
methods [28, 30], data association is implemented by using query propagation, where
either parallel or sequential interactions between the (tracking and/or detection) query
and image feature are utilized. However, the training strategies are highly complex. Fur-
thermore, a large amount of data is required to train the Transformer models, which can’t
be easily satisfied due to the limited scales of MOT datasets [25, 26]. In Graph-based
methods [18, 21, 22], the detections and their connections are respectively represented
as nodes and edges in a graph, and the data association is solved as an edge classification
problem. However, the size of the graph is proportional to video duration and object
quantity in the video, therefore, large graphs will be constructed for long videos or
crowded scenes, leading to high computational complexity and large memory consump-
tion [21]. Generally speaking, the learnt association methods can leverage high-order
information to deal with more complex scenes, but they have the limitations of higher
complexity and cost.

In order to effectively utilize the advantages and address the limitations of these two
kinds of data association methods, we propose a Robust Two-stage Association Tracker,
named RTAT. The first-stage association is performed between tracklets and detections
to generate tracklets with high purity, and the second-stage association is performed
between tracklets to form complete trajectories.

In the first-stage association, we use a simple data association strategy to generate
tracklets with high purity. This is done by setting a low threshold for the matching cost in
the identity assignment process. The generated tracklets have higher purity and less iden-
tity switches. As a result, the number of tracklets will increase, and the fragmentations
problem will be solved in the second-stage by using tracklets association.

In the second-stage association, we merge the tracklets into complete trajectories by
using GNN. Our method models the tracklet merging as a series of edge classification
problem in hierarchical graphs, which can recursively merge short tracklets into longer
ones and finally form complete trajectories.We use the message passingmechanism [21,
31] to update the graphs and learn features for nodes and edges, and then perform edge
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classification based on the final edge feature. This process is hierarchically performed
on graph in each level. Since the number of tracklets is much smaller than that of
detections, our GNN model can take all the tracklets in a video sequence as input and it
can effectively deal with the problem of higher computational complexity and memory
consumption in existing graph-based tracking methods. Experiments on two of the most
popularMOTbenchmarks:MOT17 [25] andMOT20 [26], demonstrate the effectiveness
of our method.

2 Related Works

2.1 Handcrafted Association

The handcrafted association methods match the detections to the tracklets based on
well-designed cost matrix by leveraging various strategies [1, 4, 5, 7, 8, 10, 33, 34].
Intersection over union (IoU) and appearance distance are the most commonly used
metrics to construct the cost matrix. Motion model is adopted to predict the locations of
tracklets to calculate the IoU distance with the detections, while person Re-identification
(ReID) model is used to extract the appearance features to calculate the appearance dis-
tance. Generally, IoU distance is more useful in short-term matching, while appearance
information is more accurate in long-term matching.

There are four main research directions in the handcrafted association methods. (1)
Learn more accurate motion models: Kalman filter (KF) and its variants [1, 4, 5, 32–
34], camera motion compensation (CMC) [4, 5], etc. (2) Extract more discriminative
ReID feature: independent ReID model [4, 7, 34], occlusion-aware ReID feature [35],
dynamic ReID feature [4, 5], etc. (3) Design more sophisticated strategy to construct the
cost matrix: different combination of the IoU and appearance distance, such as weighted
sum [5, 7, 36], minimum cost [4], etc. (4) Develop better matching strategy: single
matching [33], cascade matching [2, 3, 34], etc. Many researchers have invested a great
deal of time and effort in designing a better data association strategy. However, it is hard
and exhausting to design a generic data association that can deal with various scenes.
Therefore, we turn to use a simple association method to obtain tracklets with high
purity, and further merge them by using tracklet association.

2.2 Graph-Based Association

Graph-based methods perform data association on constructed graphs, where nodes
represent detections and edges indicate linkage between them. The data association is
formulated as a graph optimization problem, which is solved by different algorithms,
such as network flows [15], k-shortest paths [16], minimum cost lifted multicut [17],
lifted disjoint paths [18, 19], etc. Recently, GNN [20] is introduced as an extension
of neural networks that can operate on graph. GNN can extract high-order contextual
information by adopting a message passing mechanism, which propagates the informa-
tion encoded in the features of neighboring nodes and edges across the graph [20–23].
MPNTrack [21] designs a tracker based on Message Passing Network to learn features
for nodes and edges and treats the data association as an edge classification task. SUSHI
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[22] proposes a unified tracker for short and long-term tracking by using a hierarchy of
message passing GNNs. SGT [23] employs GNNs to recover the missed detections to
enhance the tracking performance for online graph tracker.

In contrast to handcrafted association, graph-based association methods seek for
global optimization over longer range frames. Specially, GNN-based methods can learn
high-order information through message passing, and therefore they can achieve better
tracking performance [21, 22]. However, it needs to construct very large graphs for long
videos or videos in crowded scenes, which brings the issues of higher complexity and
cost [21]. In our work, we build graph for tracklet association, where the scale of the
graph is much smaller. Therefore, it can effectively solve the above-mentioned problems
and still utilize the advantages of graph-based association.

2.3 Tracklet Association

Tracklet association [11–13] has drawn much attention in TbD based MOT. Several
methods [11] exploit the idea of multi-level association, which first generates short
tracklets in adjacent frames and thenmerges them into trajectories by tracklet association.
Some works [12, 13] follow the split-merge pipeline to refine the tracking results of
existing trackers, and tracklet association is employed in the merging process. TAT
[11] employs a Multi-Layer Perceptron (MLP) to link detections in adjacent frames to
generate short tracklets, and then trains a network flow to associate the tracklets into
trajectories. ReMOT [12] splits tracklets by using appearance and motion features, and
then associates the tracklets by hierarchical clustering on a designed distancematrix. [13]
proposes a tracklet booster for existing trackers, which trains a Splitter to split tracklets
into small pieces, and then learns a Connector to merge the tracklet pieces that are from
the same identity. These methods generate short tracklets either in a sliding windowwith
limited size or by splitting existing tracklets into small pieces. The generated tracklets
are often too short, which will increase the burden for the following tracklet association.
Furthermore, performing tracklet association by using the message-passing GNN has
not been fully exploited in these methods.

3 Methodology

3.1 Motivation

The motivation of our Robust Two-stage Association Tracker (RTAT) is simple and
effective. It is hard and exhausting to design a generic data association strategy that
can handle various scenes by explicitly leveraging simple cues, while learnt association
methods have the limitations of higher complexity and cost, although they can learn high-
order information to dealwithmore complex scenes. Therefore,we propose to use simple
cues to generate clean tracklet pieces, and then employ GNN for tracklet association to
obtain the final trajectories. RTAT consists of two-stage associations, where the first-
stage association is performed between tracklets and detections to generate tracklets
with high purity, and the second-stage association is performed between tracklets to
obtain complete trajectories. The workflow of RTAT is shown in Fig. 1. We will describe
the details of our method in the following sections.
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Fig. 1. The workflow of our robust two-stage association tracker (RTAT). The first-stage associ-
ation (red dashed box) generate tracklets with high purity from detections, and the second-stage
association (green dashed box) merge short tracklets into longer ones by using hierarchical GNNs
and finally form complete trajectories (Color figure online)

3.2 Method Formulation

Given a video sequence with K frames and a set of detections D = {di, i ∈ [1,M ]},
whereM is the total number of detections obtained from theK frames. Each detection di
can be represented by its bounding box coordinates, image region, and timestamp. Let
us define the set of tracklets as T = {

tj, j ∈ [1,N ]
}
, where N is the number of tracklets

in the video sequence. Each tracklet consists of a set of detections tj =
{
di
j , i ∈ [1, nj]

}
,

where nj is the number of detections in the tracklet of tj. The aim of our first-stage
association is to generate the initial set of tracklets T.

In the task of tracklet association, we construct an undirected graphG= (V, E), where
nodes represent the tracklets (e.g., V = T ) and edges indicate the connections between
them. The set of edges can be denoted as E = {

eij = (
ti, tj

) ∈ N × N , i �= j
}
, where eij

represents the linkage of a pair of tracklets
(
ti, tj

)
. We introduce a binary variable yeij to

indicate whether ti and tj are from the same identity. Specifically,

yeij =
{
1, ∃I t ∈ I , s.t.

(
ti, tj

) ∈ It
0, otherwise

(1)

where I is the set of identities in a given video sequence. An edge is active if its value
yeij = 1, otherwise, it is inactive. We perform edge classification to predict the values
of each edge based on the learnt edge feature and merge the tracklets that belong to the
same identity, i.e., nodes are linked by active edge. Different from other graph-based
association methods which take detections in a short video clip with limited number of
frames as input, we take all the tracklets in a video as input to obtain the final trajectories.

3.3 First-Stage: Tracklet Generation

The aim of the first-stage association is to generate tracklets with high purity. Any tracker
can be used in this stage, butwe prefer trackerswith simple data association strategy, such
as ByteTrack [1], BoT-SORT [4]. The matching is usually done by bipartite matching,
which is solved by Hungarian algorithm [27]. In the assignment process, we set a cost
threshold thc for possible matching and reject the matchings with higher cost than thc.
For simplification, we normalize the value of the cost in cost matrix to be [0, 1] for
different tracker. By setting a lower cost threshold thc, we can obtain tracklets with
higher purity. Consequently, there are less identity switches in each tracklet, but the
number of tracklet fragments will increase. We will focus on solving the fragmentation
problem in the next stage by using tracklets association.
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3.4 Second-Stage: Tracklet Association

The aim of the second-stage association is to merge the tracklet pieces into trajectories.
We perform the tracklet association based on the framework of message-passing GNN
[21, 22, 31]. An illustration of the tracklets merging process is shown in Fig. 2.

Fig. 2. An illustration of the tracklets merging process in hierarchical graphs. The bold edges are
classified as active, and the nodes linked by active edge will be merged in current level. The final
trajectories are listed in the last column.

Our method models the tracklet merging as a series of edge classification problem
in hierarchical graphs, which can recursively merge short tracklets into longer ones. We
use the message passing mechanism to update the feature vectors for nodes and edges
across the graph and the edge classification is performed based on the final edge feature.
This process is performed hierarchically for graph in each level and the workflow of
each level contains four main steps:

Graph Construction. We construct an undirected graph G = (V, E), where each node
represents a tracklet and each edge indicates the possible connection for a pair of tracklets.
Compared to detection association, the number of nodes is largely reduced for tracklet
association.However, the number of edges is still very large if all the connections between
each pair of nodes are considered. Moreover, it will cause a severe label imbalance
between active and inactive edges, which can deteriorate the performance of the tracklet
association. Therefore, we only consider the edge between a pair of nodes that have no
temporal overlap. We further limit the number of edges for each node to be K, which
are selected by its top K nearest neighbors according to the similarity measures of
appearance, motion, and spatial position. As a result, we construct a sparse graph with
limited number of edges, which can reduce the computational complexity, and alleviate
the problem of edge label imbalance.

Graph Initialization. The node feature vector is initialized by the feature of its cor-
responding tracklet. We first extract appearance features for all the detections in each
tracklet by feeding their image patches into a pretrained Convolutional Neural Network
(CNN), and then calculate their average feature as the tracklet feature. The averaged
tracklet feature is more robust to motion blur, partial occlusion, and illumination change
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than single detection appearance feature. The tracklet feature is fed into a node encoder
Eenc
n , whose output is used to initialize its corresponding node feature.

The edge feature vector is initialized with the output of an MLP, the input of which
is a concatenated vector of the association features from two connected tracklets. We
adopt spatial and temporal distance, appearance and motion information to construct the
initial feature vector, which is an extension of MPNTrack [21] and SUSHI [22].

For a pair of tracklets Ta and Tb with their detection box coordinates and times-
tamps, which can be described as Ta = {(xi, yi,wi, hi, ti), i ∈ [a1, an]} and Tb ={(
xj, yj,wj, hj, tj

)
, j ∈ [b1, bn]

}
, where [a1, an] and [b1, bn] are the frame range of Ta

and Tb respectively. Assuming that Ta ends before Tb starts, so we have tan < tb1 .
We use their closest detection boxes to compute the relative spatial distance and scale
difference, which is formulated as:

[
2
(
xj − xi

)

hj + hi
,
2
(
yj − yi

)

hj + hi
, log

hj
hi
, log

wj

wi

]

(2)

where i = an and j = b1. Supposing the FPS (Frames Per Second) of the given video is
fps, we calculate their time difference by the following equation:

(
tb1 − tan

)
/fps (3)

To encode the appearance information, we use the Euclidean distance of the tracklets
feature and the average cosine similarity of the top L closest detections for each pair of
tracklets, which can be formulated as:

⎡

⎣‖appavgTb
− appavgTa

‖
2
,

1

L ∗ L

L∑

i=1

L∑

j=1

cos(appiTa , app
j
Tb
)

⎤

⎦ (4)

where the first distance encodes global appearance discrepancy between two track-
lets, and the second similarity describes local appearance similarity, which is helpful to
remove the influence of large appearance variations inside a tracklet, such as large pose,
long-time occlusion, and etc.

The tracklets belong to the same trajectory are expected to satisfymotion consistency
[22], so we add the motion information into the edge feature. We employ Kalman Filter
(KF) to model the object’s motion and predict its position in a desired frame for each
tracklet. For a pair of tracklets Ta and Tb, we calculate their middle frame tmid = tan +(
tb1 − tan

)
/2, and predict their box positions at this framewhich are respectively denoted

as pred_boxtmidTa
and pred_boxtmidTb

. We adopt the Generalized Intersection over Union
(GIOU) [6] score of these two estimated boxes to measure their motion consistency,
which is formulate as:

GIOU (pred_boxtmidTa
, pred_boxtmidTb

) (5)

Finally, the concatenation of the feature vectors from Eq. 2 to Eq. 5 is fed into an
edge encoder Eenc

e to obtain the initial edge feature. Both the node coder Eenc
n and edge

encoder Eenc
e are light-weight MLP networks.
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Graph Update. We employ the message-passing mechanism to update the features for
nodes and edges [21, 22, 31]. During each step of message-passing, every node and
edge aggregates their received information, and then combine the incoming information
with their own to update their feature vectors [31]. Specifically, for the construct graph
G = (V, E), we obtain the initial feature vector f 0i and f 0(i,j) for each node i ∈ V and
each edge (i, j) ∈ E from the graph initialization step. The mechanism of message-
passing is to propagatemessages between neighboring nodes and edges across the graph.
The propagation is performed by alternately updating the features of edges and nodes,
which is divided into two steps: update edge feature using neighboring nodes and update
node feature using neighboring edges. Both updates are sequentially performed for L
iterations. For each iteration l ∈ [1,L], the edges and nodes features are updated as
follows:

f l(i,j) = Ue

([
f l−1
i , f l−1

j , f l−1
(i,j)

])
(6)

ml
(i,j) = Un

([
f l−1
i , f l(i,j)

])
(7)

f li = φ

({
ml
(i,j)

}

j∈Ni

)
(8)

where Ue and Un are learnable networks (e.g., MLP) that aggregate information from
neighboring nodes and edges. Ni is the set of nodes adjacent to node i, and ϕ denotes an
order-invariant operation, e.g., maximum, summation or average. After L iterations, we
obtain the final node and edge features, which contain high-order contextual information
from neighboring nodes and edges in a distance of L along the graph.

Edge Classification. We use an MLP with sigmoid function as the edge classifier
Cclass
e and then perform edges classification based on their final features f L(i,j), which

is formulated as:

y(i,j) = Cclass
e

(
f L(i,j)

)
, (i, j) ∈ E (9)

where the predicted edge score y(i,j) ∈ (0, 1). The scores are further rounded to binary
values using the exact rounding solution described in [21]. The edges are classified as
active or inactive, and the tracklets linked by the active edges are merged into longer
ones.

Afterwards, we update the set of tracklets and hierarchically perform these four steps
to obtain the final trajectories, i.e., graph construction, graph initialization, graph update
and edge classification.

Data Augmentation. In the tracklet association stage, a training sample consists of a
video sequence and a set of tracklets. There are very few training samples in MOT17
[25] and MOT20 [26], which are 7 and 4 respectively. Therefore, we introduce data
augmentations from both video-level and tracklet-level to train the GNN networks with
higher robustness and generality. In video-level augmentation, we generate more video
clips from the original video sequences. We sample a video clip in every 50 frames (i.e.,
start points), and the start frame is randomly selected with a fluctuation of 15 frames at
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each start point. The length of a video clip is randomly selected from 25% to 100% of
the length for the whole video. In tracklet-level augmentation, we generate more sets of
tracklets by adopting different data association strategies under different cost thresholds
in Sect. 3.3.

TrainingGNN. We use the sameGNN architectures for graphs in different hierarchical
levels. Since the aims of all hierarchical levels are the same, which is to merge track-
lets that belong to the same identity into longer ones, we also share the parameters of
GNNs for all hierarchical levels. The difference among different levels is the lengths
and numbers of tracklets, so we design a level adapter, which is a learnable vector that
has the same dimension with the edge features. The level adapter is then added to the
edge feature for each level, and it will help the GNN model to learn the most important
cues for each level in a data-driven manner. We adopt the focal loss to train the edge
classifier, and the final loss is a summation of losses in all levels.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct our experiments on two of the most popular MOT benchmarks:
MOT17 [25] and MOT20 [26], under the “private detection” protocol. MOT17 [25]
contains 14 video sequences which are filmed under a variety of conditions, such as
cameramotions (moving, static), viewpoints (high,medium, low) andweather conditions
(night, sunny, cloudy, indoor, etc.). MOT20 [26] contains 8 video sequences in very
crowded scenes. Both datasets are split into training and testing sets.

Metrics. Our method focuses on robust data association, so we adopt HOTA [24] and
IDF1 [39] as the main metrics. We also use the metrics MOTA, AssA [24], and IDs to
provide comparisons from more perspectives. HOTAmaintains a good balance between
the accuracy of object detection and association. IDF1measures the identity preservation
ability and focus more on the association ability. AssA is used to evaluate the association
performance, while MOTA focuses on the detection performance. Moreover, we adopt
the number of tracklets as a metric to measure how many tracklets are there in a video
after data association.

We introduce a new metric, named High Purity Rate (HPR), to measure the rate of
high purity tracklets in all the tracklets for a given video. We use the definition of mostly
tracked (MT) as reference to define high purity. A tracklet has high purity if more than
80% of its detections are from the same identity.

Implementation Details. We train a YoloX detector to obtain detections for both
MOT17 and MOT20 following [1]. We adopt three popular trackers, i.e., ByteTrack
[1], BoT-SORT [4], and Deep OC-SORT [7], to generate short tracklets in the first-
stage association. The following part describes the implementation details of tracklet
association in RTAT. We train a ReID model using ResNet50 following [21] to extract
appearance feature. After the convolutional layers in ResNet50, a node encoder is added
to reduce the dimension of node feature to 32. All of the networks are light-weightMLPs,
and their detailed architectures are shown in Fig. 3.
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Fig. 3. Detailed architectures for all networks. d means the output dimensions for each layer.

We use all the tracklets in a video sequence and perform data augmentation from
both video-level and tracklet-level to train the GNN networks, as explained in Sect. 3.4.
We use three levels of hierarchical graphs for tracklet association. GNNs in all the three
levels are jointly trained for 500 epochs using the Adam optimizer with a learning rate
of 3× 10−4 and a weight decay of 10−4. We set γ= 1 for focal loss, K = 10 to limit the
number of edges connected to each node, and L = 12 for the steps of message-passing
in all GNNs. We further apply linear interpolation to fix the missing detections in the
final trajectories during inference.

4.2 Ablation Studies

We perform 3-fold cross-validation on the MOT17 training set for ablation studies fol-
lowing the experimental setup in [21] and use IDF1 as the primary metric. We study
three main aspects of our method in this Sect. 1) How to select the proper cost thresh-
old thc to obtain tracklets with high purity. 2) How different training strategies affect
the tracklet-association performance. 3) The effect of using different data association
methods to generate tracklets in the first-stage.

Obtain Tracklets with High Purity. We select BoT-SORT-ReID [4] to generate track-
lets for analysis in this experiment. We set a cost threshold thc to reject the matchings
that have higher cost in the assignment process. Obviously, lower cost threshold can
obtain more tracklets with higher purity. However, it is meaningless if we set a very
small threshold, such as 0, where each detection is a tracklet with 100% purity. We need
to keep a balance between the number of tracklets and the high purity rate (HPR).We list
the tracking performance in the first-stage and second-stage with different cost threshold
in Table 1. The number of tracklets in the ground-truth is also listed for comparison.

In the first-stage association, the number of tracklets and HPR constantly increase as
we decrease the cost threshold, while the IDF1 score decreases slightly when thc ≥ 0.2.
We perform tracklet association based on the tracklets generated in the first-stage, the
IDF1 score has increased after the second-stage association under all cost thresholds,
even when thc = 0.7 which is the default setting in BoT-SORT [4]. The best result is
achieved when thc = 0.2, which has the highest IDF1 score and the fewest ID switches.
When thc = 0.1, the largest increasement on IDF1 (i.e., 19.2%) occurs, however its IDF1
score is lower than that of thc = 0.2 in both stages, and it has much more tracklet (4964
versus 1693) which will bring more computational cost during inference. Therefore, we
choose 0.2 as the cost threshold in our experiments.
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Table 1. The tracking performance in the first-stage and second-stage with different cost
threshold. The number of tracklets in ground-truth is also listed for comparison

First-stage association Second-stage association GT

thc IDF1 ↑ #Tracklets HPR IDF1 ↑ #Tracklets IDs ↓ #Tracklets

0.7 85.0 753 84.5 86.0 641 291 546

0.5 85.2 979 87.3 86.5 630 282

0.4 84.5 1,091 89.0 87.6 623 278

0.3 84.3 1,218 91.1 88.2 615 265

0.2 83.6 1,693 93.4 88.5 612 261

0.1 67.1 4,964 98.1 86.3 621 276

Table 2. The performance of tracklet association with different hierarchical levels

# HL IDF1 ↑ IDs ↓ # Tracklets

0 83.6 1,344 1,693

1 86.2 406 1,021

2 87.6 287 728

3 88.5 261 612

4 88.6 258 608

5 88.6 257 607

The Effect of Different Training Strategies. We adopt BoT-SORT-ReID with a cost
threshold thc = 0.2 to generate tracklets in the first-stage association.

Firstly, we evaluate how the number of hierarchical levels (HL) in the tracklet asso-
ciation effect the metrics of IDF1, IDs and the number of tracklets. The number of HL
varies from 0 to 5, and their tracking metrics are listed in Table 2.HL = 0 means the per-
formance for the tracklets obtained in the first-stage. With the increase of HL, the IDF1
constantly increase, the ID switches and the number of tracklets constantly decrease.
At the same time, both the increase and the decrease become smaller and smaller. The
increasement of IDF1 can be ignored when the number of HL is bigger than 3. Further-
more, larger number of hierarchical levels will increase the time and memory costs for
the tracklet association. Hence, we set HL = 3 in our experiments.

Secondly, we evaluate the effect of using different data augmentation strategies in
training GNN networks. We take all the tracklets in a video sequence to build graph and
train GNNs, however, there are only 7 and 4 training samples in MOT17 and MOT20
respectively, which are very few to learnGNNswith higher robustness and generality. As
described in Sect. 3.4, we design data augmentations from both video-level and tracklet-
level to generate more training samples. The results of using different combinations of
data augmentations are listed in Table 3. We can see that both the data augmentation
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strategies can improve the IDF1 score separately, and their combination can achieve
higher improvement. The results demonstrate the effectiveness of our data augmentation
methods in training robust GNN networks.

Table 3. The performance of tracklet association using different data augmentation

Data Augmentation Tracking Metrics

Video-level Tracklet-level IDF1 ↑ IDs ↓
85.5 293√
86.7 278√
87.2 272√ √
88.5 261

The Effect of Using Different Data Association Methods in the First-Stage. We
use three popular trackers, i.e., ByteTrack [1], BoT-SORT [4], Deep OC-SORT [7], for
the first-stage association, and compare their performance before and after the tracklet
association in second-stage. The results are listed in Table 4. There are big differences
among the three trackers on all the three metrics in the first-stage association, however,
the differences are largely reduced after the second-stage association.We can see that our
method can obtain very similar tracking performance no matter which tracker is used,
which indicates that simple data association strategy is good enough for the first-stage.

Table 4. The performance of using different data association methods in the first-stage.

First-stage association Second-stage association

Tracker IDF1 ↑ #Tracklets HPR IDF1 ↑ #Tracklets IDs ↓
ByteTrack 76.6 1,571 91.9 88.0 623 276

BoT-SORT 83.6 1,693 93.4 88.5 612 261

Deep OC-SORT 81.2 1,264 89.7 88.2 617 264

4.3 Benchmarks Evaluation

Wepresent the results of the state-of-the-art trackers on the test set ofMOT17andMOT20
benchmarks under the “private detection” protocol in Tables 5 and 6, respectively. All
the results are obtained from the official MOTChallenge server [37].

We adopt ByteTrack and BoT-SORT to generate tracklets in the first-stage asso-
ciation, which are named RTAT-ByteTrack and RTAT-BoT-SORT, respectively. Both
versions of our method outperform all the other trackers in almost all the main metrics.
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Table 5. Comparison of the state-of-the-art methods under the “private detection” protocol on
MOT17 test set. The trackers are sorted by HOTA. The best results are shown in bold.

Tracker HOTA ↑ IDF1 ↑ MOTA ↑ AssA ↑ IDs ↓
ByteTrack [1] 63.1 77.3 80.3 62.0 2,196

StrongSORT [5] 64.4 79.5 79.6 64.4 1,194

Deep OC-SORT [7] 64.9 80.6 79.4 65.9 1,023

BoT-SORT [4] 65.0 80.2 80.5 65.5 1,212

MotionTrack [8] 65.1 80.1 81.1 65.1 1,140

ConfTrack [36] 65.4 81.2 80.0 66.3 1,155

CBIOU [14] 66.0 82.5 82.8 66.1 1,194

PIA [38] 66.0 81.1 82.2 65.8 1,026

ImprAsso [10] 66.4 82.1 82.2 66.6 924

SUSHI [22] 66.5 83.1 81.1 67.8 1,149

RTAT-ByteTrack (ours) 67.0 84.4 80.1 69.3 942

RTAT-BoT-SORT (ours) 67.2 84.7 80.4 69.7 912

Table 6. Comparison of the state-of-the-art methods under the “private detection” protocol on
MOT20 test set. The trackers are sorted by HOTA. The best results are shown in bold.

Tracker HOTA ↑ IDF1 ↑ MOTA ↑ AssA ↑ IDs ↓
ByteTrack [1] 61.3 75.2 77.8 59.6 1,223

StrongSORT [5] 62.6 77.0 73.8 64.0 770

MotionTrack [8] 62.8 76.5 78.0 61.8 1,165

BoT-SORT [4] 63.3 77.5 77.8 62.9 1,313

FineTrack [9] 63.6 79.0 77.9 63.8 980

Deep OC-SORT [7] 63.9 79.2 75.6 65.7 779

SUSHI [22] 64.3 79.8 74.3 67.5 706

ImprAsso [10] 64.6 78.8 78.6 64.6 992

PIA [38] 64.7 79.0 78.5 64.9 1,023

ConfTrack [36] 64.8 80.2 77.2 66.2 702

RTAT-ByteTrack (ours) 65.9 82.1 78.1 67.7 817

RTAT-BoT-SORT (ours) 66.2 82.5 78.4 68.2 787

Our method can achieve the best performance in all association related metrics, i.e.,
HOTA, IDF1, and AssA, on both benchmarks, which demonstrate the effectiveness of
our method for data association. For example, RTAT-BoT-SORT outperforms the tracker
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in second place by a large margin (i.e., +1.4 HOTA, +2.3 IDF1, and +1.9 AssA) on
MOT20 benchmark.

Both RTAT-ByteTrack and RTAT-BoT-SORT outperform their respective baseline
by a large margin on both MOT17 and MOT20. It is worth noting that RTAT-ByteTrack
can achieve similar performance with RTAT-BoT-SORT in all metrics. The performance
gap between ByteTrack and BoT-SORT are filled by using the tracklet associations in
our method. This observation demonstrates that simple association strategy is enough to
generate tracklets with high purity for the tracklet association in the second-stage, and
there is no need to design more sophisticated data association strategy by investing a
great deal of time and effort.

5 Conclusion

We propose a Robust Two-stage Association Tracker (RTAT), which can achieve higher
association performance by utilizing the advantages of two kinds of data association
methods: the simplicity and efficiency of handcrafted association methods and the effec-
tive high-order contextual information of learnt association methods. We use a simple
data association method to generate tracklets with high purity in the first-stage and use
message-passing GNNs to perform tracklet association in the second-stage. We fur-
ther design data augmentation strategies from video-level and tracklet-level to improve
the generalization ability of our tracklet association model. Ablation studies and MOT
benchmarks results validate the effectiveness of ourmethod.We hope ourwork is helpful
to release researchers from the hard and exhausting work of designing more and more
sophisticated data association strategy to obtain minor improvement in tracking perfor-
mance. We also expect this work can push forward the development of multiple-object
tracking.
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Abstract. In this paper, we present a novel linear method for the simul-
taneous estimation of the homography matrix and one-sided radial lens
distortion. Initially, we highlight that Fitzgibbon’s method, commonly
recognized as a DLT method for this problem, is inadequate for handling
noisy data. Subsequently, we formulate a new DLT method incorporating
lens distortion by considering the inverse homography transformation.
The proposed method, termed invDLT, provides two solutions: the min-
imal case with 4.5 point pairs and the least-squares case with more than
five point pairs. We conduct extensive experiments on both synthetic and
real image data, revealing that invDLT substantially outperforms con-
ventional methods in terms of estimation accuracy, robustness to outliers,
and computational efficiency.

Keywords: Homography matrix · Radial lens distortion · Direct
linear transform

1 Introduction

The planar homography is a geometric transformation of a plane between two
different views. The homography transformation is parameterized as a 3 × 3
matrix, and estimating the homography matrix from images is one of the most
fundamental procedures for computer vision applications such as camera cali-
bration [21], augmented reality (AR) [19], and visual odometry [9].

The homography matrix can be calculated using at least four point corre-
spondences, and the direct linear transform (DLT) method has been known as
the most standard solution [10]. The 4-point DLT method assumes no lens dis-
tortion, so the estimation accuracy degrades for images taken with a camera
equipped with a wide-angle lens.

To deal with this issue, various approaches have been investigated for joint
estimation of the homography matrix and lens distortion [4,8,13]. Fitzgibbon [8]
proposed a novel lens distortion model called the division model and showed the
first DLT-based solution that finds the homography matrix and lens distortion
using five point pairs. Fitzgibbon assumes that the cameras used to capture two
images are identical, i.e., the cameras share the same lens distortion. For the
case when two different cameras take images, Kukelova et al. [13] utilized a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. One-sided radially distorted homography transformation. While Fitzgibbon’s
method finds the forward homography H and the backward distortion k, the proposed
invDLT estimates both in the backward direction, i.e., the inverse homography H−1

and distortion k.

Grobner basis technique and developed a 6-point minimal method, which simul-
taneously estimates the homography matrix and two different lens distortions.
These methods assume that a 3D plane is captured by a single camera (or two
cameras) with a wide-angle lens, i.e., both images are distorted. However, in
applications such as camera calibration and AR, one image is a chessboard or a
fiducial marker unaffected by lens distortion. Therefore, the methods above that
assume lens distortion in both images are inappropriate for such situations of
one-sided radial distortion homography.

Another approach for finding the homography with one-sided radial distor-
tion is to solve the uncalibrated perspective-n-point (PnP) problem [3,11,14,15,
17]. The goal of this problem is to find the absolute pose of the camera and its
intrinsic parameters (the focal length, the optical center, the lens distortion, etc.)
from a set of 2D-3D point pairs; it is interpretable as camera calibration from
a single image. Several methods using the Gröbner basis technique have been
proposed; however, computing the floating-point Gröbner basis has a challenging
issue in numerical stability.

In this paper, we propose a novel linear method for solving the problem of
the one-sided radial distortion homography. Our strategy is based on the DLT
method but estimates the inverse of the homography matrix together with the
lens distortion parameter. Therefore, we refer to the proposed method as invDLT.
The proposed invDLT works for both the minimal (4.5 points) and least-squares
(more than five points) cases. Moreover, compared to the conventional methods,
invDLT is accurate to image noise, robust to outliers, and easy to implement.
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2 Preliminaries

2.1 One-Sided Radial Distortion Homography

In this section, we describe the estimation problem of the homography matrix
together with the one-sided radial lens distortion. Figure 1 illustrates the geo-
metric relationship of the problem.

Let us consider a situation where a 3D point (x, y, 0) on the z = 0 plane is
observed as a 2D point (u, v) by a camera with the radial lens distortion k. Using
the division model [8], the undistorted 2D position (u′, v′) in the homogeneous
coordinates is given by

[
u′

v′

]
=

1
1 + kr2

[
u
v

]
�−→

⎡
⎣u′

v′

1

⎤
⎦ ∝ m =

⎡
⎣ u

v
1 + kr2

⎤
⎦ , (1)

where r2 = u2 + v2 and ∝ denotes equality up to scale. Note that, unlike in [8],
lens distortion affects only 2D points but not 3D points. Then, the 3×3 homog-
raphy transformation H between the 2D and 3D point correspondence can be
represented as

m ∝ Hx, (2)

where x = [x, y, 1]T.
The goal of solving this problem is to find the homography matrix H and the

radial lens distortion k from a set of 2D–3D point correspondences. Since H is
of 3 × 3 but Eq. 2 holds up to scale, this problem has 9 DoFs in total (eight
from H and one from k). A single point pair gives two constraints, therefore, the
problem can be solved if more than 4.5 point correspondences are given.

2.2 Fitzgibbon’s Method

Fitzgibbon [8] showed a linear method for finding H with a single common distor-
tion on both images, i.e., the two-sided distortion case. We apply the Fitzgibbon’s
approach for the one-sided distortion case in this section.

Equation 2 can be reformulated by

m × Hx = 0. (3)

Given N ≥ 5 point correspondences {xi ↔ mi; i ∈ (1, . . . , N)} and writing H
by a 9-vector h, we obtain

(D1 − kD2)h = 0, (4)

where

D1 =

⎡
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01×3 −xT
1 v1xT
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N

⎤
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−r21x
T
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...
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N 01×3

−r2NxT
N 01×3 01×3
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⎥⎥⎥⎥⎥⎦

. (5)
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The third row of Eq. 3 for each point correspondence is left out as it is a linear
combination of the first two, hence yielding the matrices D1 and D2 of size 2N ×9
rather than 3N × 9. Thus, we can find the unknown vector h and the distortion
parameter k by solving the following generalized eigenvalue problem:

DT1 D1h = kDT1 D2h. (6)

Since the last three columns of D2 are all zeros, the rank of DT1 D2 is at most
six. The distortion parameter k can be obtained as one of the six real-valued
eigenvalues, and the unknown vector h, i.e., the homography matrix H, is the
corresponding eigenvector.

Although the above procedure seems correct at first glance, actually it has
two issues. First, Eq. 6 is not optimal in the least-squares sense. Equation 6 is
derived based on an assumption that the right-hand side is zero in Eq. 4. 2D
points contain localization errors in general, resulting in (D1 − kD2)h = ε.
Instead, the following optimization problem must be solved:

min
h,k

‖(D1 − kD2)h‖2

s.t. ‖h‖2 = 1
(7)

However, the standard DLT approach cannot solve Eq. 7.
The next issue is that there are multiple solutions in Eq. 6, even when N > 5.

One way to uniquely determine the least-squares solution is to discard k with a
large absolute value by heuristic thresholding or to select the best k that gives
the minimum reprojection error of other sampling points.

3 Inverse DLT Method

3.1 Basic Formulation

The focus of the proposed method differs from Fitzgibbon’s method in that it
first estimates the parameters of the backward transformation and then returns
to the forward transformation. As shown in Eq. 2 and Fig. 1, the homogra-
phy matrix H is a forward transformation from the z = 0 plane to the undis-
torted image plane, while the radial lens distortion k is an inverse transformation
from the distorted observations to the undistorted image plane. Hence, it makes
sense to simultaneously formulate both H and k based on the backward trans-
formation.

From Eq. 2, we can write the inverse homography transformation as

m ∝ Hx ↔ H−1m ∝ x. (8)

Now let us introduce the lifted coordinates [2]. The mapping between an undis-
torted point m = [u, v, 1 + kr2]T and its lifted coordinate m̂ = [r2, u, v, 1]T can
be represented by

⎡
⎣ u

v
1 + kr2

⎤
⎦ =

⎡
⎣ 0 1 0 0

0 0 1 0
k 0 0 1

⎤
⎦

⎡
⎢⎢⎣

r2

u
v
1

⎤
⎥⎥⎦ ↔ m = Qm̂, Q =

⎡
⎣ 0 1 0 0

0 0 1 0
k 0 0 1

⎤
⎦ . (9)
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Using Eq. 9, we can equivalently rewrite Eq. 8 as

H−1Qm̂ ∝ x. (10)

If we define a 3 × 4 matrix G such that G = H−1Q, we obtain

x × (H−1Q)m̂ = x × Gm̂ = 0. (11)

Let ḣi,j be the (i, j) elements of H−1, and h−1
j the j-th column vector of H−1.

We can express G by

G =

⎡
⎣kḣ1,3 ḣ1,1 ḣ1,2 ḣ1,3

kḣ2,3 ḣ2,1 ḣ2,2 ḣ2,3

kḣ3,3 ḣ3,1 ḣ3,2 ḣ3,3

⎤
⎦

=
[
kh−1

3 H−1
]
.

(12)

Given N point correspondences, we can build a linear equation

Mg = 0, (13)

where

M =

⎡
⎢⎢⎢⎢⎢⎣

01×4 −m̂T
1 y1m̂T

1

m̂T
1 01×4 −x1m̂T

1
...

01×4 −m̂T
N yNm̂T

N

m̂T
N 01×4 −xNm̂T

N

⎤
⎥⎥⎥⎥⎥⎦

, (14)

g = [kḣ1,3, ḣ1,1, ḣ1,2, ḣ1,3, kḣ2,3, ḣ2,1, ḣ2,2, ḣ2,3, kḣ3,3, ḣ3,1, ḣ3,2, ḣ3,3]T.
(15)

The strategy of the proposed method is to compute the vector g or the matrix
G from the design matrix M, which is of size 2N × 12. Since G has 9 DoFs and
a single point pair (Eq. 11) gives two constraints, we can solve g by utilizing
N ≥ 4.5 points, where 0.5 means one of the two constraints.

3.2 Minimal Solution (N = 4.5 Points)

Given five point correspondences, we obtain the 10 × 12 matrix M from Eq. 14.
Since the minimal case is 4.5 points as mentioned in Sect. 3.1, we select any (non-
degenerate) 9 rows out of 10 of M and say it as M9×12. The 12-vector g can be
parameterized as a linear combination of the nullspace vectors ni of M9×12:

g ∝ α1n1 + α2n2 + α3n3 = Nα, (16)

where αi are unknown coefficients, α = [α1, α2, α3]T, and N = [n1,n2,n3]. One of
αi is typically set to one, e.g., α3 = 1, to eliminate the scale ambiguity of
g [12]. It contributes to reduce the number of unknowns; however, it also causes
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a numerical degeneracy if α3 ≈ 0 [14]. Instead, we utilize a more sophisticated
way to determine αi.

From Eq. 15, we can see that [g1, g5, g9] and [g4, g8, g12] are linearly depen-
dent, where gi is the i -th element of g. Those six elements can be written in
the form ⎡

⎢⎢⎢⎢⎢⎢⎣

g1
g5
g9
g4
g8
g12

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

kḣ1,3

kḣ2,3

kḣ3,3

ḣ1,3
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ḣ3,3

⎤
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=
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⎤
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⎡
⎣α1

α2

α3

⎤
⎦ , (17)

where ni,j denotes the (i, j) element of N. Representing Eq. 17 in a matrix form,
we have [

kh−1
3

h−1
3

]
=

[
A3×3

B3×3

]
α, (18)

where A and B are the first and the last three rows of the nullvector matrix in
Eq. 17, respectively. We can rewrite Eq. 18 by

kh−1
3 = Aα,

h−1
3 = Bα.

(19)

Thus, we can obtain k and α by solving the following generalized eigenvalue
problem:

Aα = kBα. (20)

Since A and B are 3 × 3 matrices, Eq. 20 can be solved easily and stably. There
are at most three real solutions of k and α.

Substituting α into Eq. 16, we can obtain g. According to Eq. 12, we can
finally recover the forward homography matrix H by taking the inverse of the last
three columns of G. That is, letting gj be the j -th column of G, we can compute
H by

H =
[
g2 g3 g4

]−1
. (21)

3.3 Least Squares Solution (N > 5 Points)

In the least squares case, i.e., N > 5 point correspondences, Eq. 11 does not hold
for all point pairs due to image noise. Consequently, Mg = ε. Since the row rank
of M is 12 for noisy points in general (11 if noise-free), we can find g by solving
the following optimization problem:

min
g

‖Mg‖2

s.t. ‖g‖2 = 1
(22)

Equation 22 is a form of the standard DLT method, therefore, we can determine
g as the eigenvector associated with the smallest eigenvalue of MTM.



454 G. Nakano

After obtained the vector g and its matrix form G, we can recover the homog-
raphy matrix H as shown in Eq. 21. Moreover, we can calculate k by

k =
gT
1 g4

‖g4‖2 . (23)

Since the element g12, or the (3,3) element of H−1, is never zero for plausible
homography transformations, the denominator is always ‖g4‖ > 0. Moreover,
the numerator is gT

1 g4 = 0 if k = 0. Hence, Eq. 23 holds for any k.

4 Experiment

In this section, we report experimental evaluations of the proposed method com-
pared to the conventional ones. First, we tested the proposed method on syn-
thetic data to investigate the numerical stability, the robustness against image
noise, and the performance in the presence of outliers. Then, we evaluated the
performance of the methods using feature points obtained from real images.

We have implemented the following methods on MATLAB:

invDLT (N ≥ 4.5) The proposed minimal and least-squares methods for find-
ing the homography matrix with radial distortion (Sect. 3). At most three
solutions for the minimal case and a single solution for the least-square case.

AWF (N ≥ 5) A minimal and least-squares methods by Fitzgibbon’s
method [8] for finding the homography matrix with radial distortion
(Sect. 2.2). At most six solutions for the minimal and the least-squares cases.

p4pfr (N = 4) A Gröbner basis minimal solver proposed by Larsson et al. [14]
for solving the absolute camera pose problem with unknown focal length and
unknown radial distortion. At most 13 solutions for the minimal case.

VPnPfr (N ≥ 6) A Gröbner basis least-squares solver proposed by Nakano [17]
for solving the perspective-n-point problem with unknown focal length and
unknown radial distortion. At most 20 solutions for the least-squares case.

We have conducted all experiments on a PC with Core i7-13700K.

4.1 Synthetic Data Evaluation

We synthesized 3D scenes to conduct quantitative evaluations. We randomly
set a single camera of which Euler angles were −30◦ ≤ θx ≤ 30◦, −30◦ ≤
θy ≤ 30◦, −180◦ ≤ θz ≤ 180◦ and translation components were −1 ≤ tx ≤ 1,
−1 ≤ ty ≤ 1, 2 ≤ tz ≤ 6. The image resolution was 1920 × 1080, and the
optical center (or the center of the distortion) was set to the image center, i.e.,
[cx, cy] = [960, 540]. The focal length of the camera was set to f = 960, which
corresponds to the 90◦ horizontal field of view. Hence, we calculated the ground-

truth homography matrix by Hgt = K[r1, r2, t], where K =

⎡
⎣f 0 cx

0 f cy
0 0 1

⎤
⎦, r1 and r2



Inverse DLT Method for One-Sided Radial Distortion Homography 455

Fig. 2. Numerical accuracy of the minimal solvers for noiseless data. The difference of
AWF and invDLT is not visible because the two lines are almost overlapped.

Table 1. Runtime comparison of the minimal solvers on the synthetic data

Method Time [msec]

p4pfr 0.3664

AWF 0.0683

invDLT 0.0534

are the first and second columns of the rotation matrix, and t = [tx, ty, tz]T. We
varied the radial distortion kgt in each experiment. We generated N pairs of a
2D–3D point correspondence as follows: 1) randomly chose N distorted 2D points
(u, v) within [1920, 1080], 2) computed undistorted coordinates (u′, v′) by Eq.
1, 3) determined z = 0 planar points (x, y, 0) by back-projection, H−1[u′, v′, 1]T.

Numerical Errors and Runtime in Minimal Case. We first measured
numerical errors of the three minimal solvers, invDLT, AWF, and p4pfr. We
generated 100000 scenes and randomly set the radial distortion −0.01/f2 ≤
kgt ≤ −0.4/f2 for each trial. Figure 2 shows the histograms of Log10 rela-
tive errors between the ground-truth and estimated values: |kgt − kest|/|kgt| and
min(‖Hgt − Hest‖Fro, ‖Hgt + Hest‖Fro), where the two matrices were normalized so
that their Frobenius norms were one. We can see that AWF and the proposed
invDLT have almost the same performance and are more accurate than p4pfr.
This is because invDLT and AWF utilize simple linear operations, while p4pfr
requires a 40 × 50 Gaussian elimination and a 13 × 13 eigenvalue problem.

The complexity of the methodology also affects the computational time.
Table 1 shows the average runtime of each solver. The proposed invDLT is the
fastest, even 20% faster than AWF. Moreover, both methods are more than five
times faster than p4pfr.

Accuracy w.r.t. Varying Image Noise. In this experiment, we investigated
the robustness of the three least-squares solvers (invDLT, AWF, VPnPfr) against
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Fig. 3. Accuracy w.r.t. varying image noise.

Fig. 4. Accuracy w.r.t. varying number of the points.

image noise. We fixed the radial distortion by kgt = −0.2/f2. We generated
N = 100 points and added the zero-mean Gaussian noise on the points by vary-
ing the standard deviation ranging 0.5 ≤ σ ≤ 10. We measured the homography
estimation error by calculating the average corner loss [6], i.e., transforming the
four corner points surrounding the 3D planar points with Hgt and Hest, respec-
tively, and then calculating the average L2 distance between the true and esti-
mated 2D corners. Also, we measured the distortion estimation error as the
average distance of 2D positions that were undistorted using kgt and kest with
Eq. 1. We uniformly sampled 2D points for undistortion by dividing the image
coordinates into 50 × 50 blocks.

Figure 3 shows the median errors over 1000 independent trials for each noise
level. The estimation error by invDLT is the most moderate for the noise increase.
In particular, the difference against AWF becomes more significant for σ ≤
4. These results indicate that invDLT is the most robust against image noise.

Accuracy w.r.t. Varying Number of Points. We tested the estimation
accuracy of the three least-squares methods for changes in the number of point
correspondences. We used the fixed distortion kgt = −0.2/f2 and the fixed
noise level σ = 2. We varied the number of the points, 6 ≤ N ≤ 1000, and
measured the average corner loss and distortion errors.
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Fig. 5. Synthetic data evaluation in the presence of outliers. Note that the curves of
invDLT and AWF are almost overlapped.

Figure 4 shows the median errors over 1000 independent trials for each N .
The invDLT’s estimation error decreases as N increases whereas that of VPnPfr
and AWF reach a plateau.

Accuracy w.r.t. Varying Outlier Ratio. We studied the performance in
the presence of the outliers, i.e., the input point pairs are contaminated by
wrong matches. We implemented the vanilla RANSAC [7] with the three minimal
solvers and incorporated the three least-squares solvers into LO-RANSAC [5].
Since p4pfr is a 4-point minimal solver, we combined VPnPfr into the LO-
RANSAC with p4pfr as the least-squares method. We configured kgt = −0.2/f2,
N = 1000, σ = 2, and the inlier-outlier threshold by 3 pixels. We varied the out-
lier ratio by 0.1 ≤ w ≤ 0.7, then set the maximum number of iterations by
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Image 1
Image 2
(Original)

Image 2
(Distorted)

HPatches

Rotated-
HPatches

SO2S
(rotation)

SIM2S
(similarity)

PersS
(perspective)

Fig. 6. Image pairs of the datasets.

10 × log(1 − 0.99)/ log(1 − (1 − w)5) to ensure that the RANSACs can find
a solution. After convergence, we applied the final refinement using the least-
square method with all predicted inliers to polish the accuracy of the solution.
We updated the upper limit of the iterations each time more inliers were found.
In this experiment, in addition to the homography and distortion errors, we mea-
sured the runtime, the number of iterations until convergence, and the F1-score
of predicted inliers.

Figure 5 shows the median values of the five metrics over 1000 independent
trials for each outlier ratio. The LO-step accurately obtains more inliers and
significantly reduces the estimation error by invDLT and AWF. The minimal
solver of invDLT is faster than that of AWF as described in Sect. 4.1, and
as a result, the overall computational time of invDLT becomes shorter in the
RANSAC scenarios. Moreover, it is notable that invDLT utilizing 5-points is
faster than p4pfr.
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Table 2. Results of AUC on the HPatches, Rotated-HPathces, and SIM2E datasets

Dataset Method
Homography error Distortion error

@5px @10px @20px @5px @10px @20px

HPatches

p4pfr 0.08 0.14 0.22 0.13 0.20 0.29

AWF 0.24 0.36 0.49 0.35 0.46 0.58

invDLT 0.30 0.45 0.60 0.56 0.71 0.82

Rotated-
p4pfr 0.02 0.06 0.18 0.07 0.12 0.19

HPatches
AWF 0.18 0.31 0.44 0.29 0.40 0.52

invDLT 0.25 0.41 0.55 0.54 0.70 0.81

SO2S
p4pfr 0.46 0.61 0.71 0.37 0.49 0.61

(rotation)
AWF 0.34 0.56 0.71 0.44 0.62 0.75

invDLT 0.56 0.73 0.82 0.89 0.91 0.92

SIM2S
p4pfr 0.08 0.18 0.30 0.11 0.21 0.33

(similarity)
AWF 0.30 0.46 0.58 0.24 0.34 0.45

invDLT 0.35 0.52 0.64 0.67 0.73 0.77

PersS
p4pfr 0.00 0.02 0.06 0.03 0.06 0.10

(perspective)
AWF 0.06 0.15 0.26 0.09 0.18 0.29

invDLT 0.27 0.43 0.55 0.62 0.68 0.72

4.2 Real Data Evaluation

Finally, we evaluated the proposed invDLT and the two conventional meth-
ods on real image datasets using feature point detection and matching. We
used three publicly available datasets: HPatches [1], Rotated-HPatches [18], and
SIM2E [20]. HPatches consists of 59 planar scenes, providing 354 image pairs.
Rotated-HPatches is a modification of HPatches, which adds a significant 2D
rotational change to each image pair. SIM2E is a CG-based dataset composed
of three subsets of geometric transformations: SO2S (only 2D rotations), SE2S
(similarity transformations), and PersS (perspective transformations). Each sub-
set consists of 71 planar objects, providing 1482 image pairs. All datasets provide
the ground-truth homography matrix Hgt for each image pair. Dataset images are
shown in Fig. 6.

We conducted the experiments as follows. For each image pair, we defined the
first image as the z = 0 plane and the second as an image taken from a different
viewpoint. Setting the focal length f as the 80% of the image width and the lens
distortion kgt = −0.2/f2, we simulated a radial distortion on the second images.
Then, we obtained SIFT [16] feature matches from the image pairs1. Finally,
we evaluated the average corner error and the distortion error by applying the
LO-RANSAC, of which threshold and the maximum iterations were set by 3
pixels and 5000, respectively, on the initial point matches.
1 We used a SIFT implementation on VL-Feat: https://www.vlfeat.org/.

https://www.vlfeat.org/
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Fig. 7. Quantitative results on the HPatches and Rotated-HPatches datasets.

Fig. 8. Quantitative results on the SIM2E dataset.
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We used the same random seed between all methods for a single trial and
conducted 100 independent trials for each image pair. Table 2 reports the area
under the cumulative curve (AUC) at 5, 10, 20 pixels for the two error metrics.
The AUC result clearly indicates that the proposed invDLT provides more accu-
rate estimations than p4pfr and AWF in all thresholds. Figures 7 and 8 show
the detailed distributions of the experimental results by box plots. In each plot,
the box indicates 25% to 75% quartiles, the horizontal bar shows the median,
and the whiskers indicate the 1.5 interquartile ranges. The proposed invDLT
has more minor statistical variance than p4pfr and AWF in all criteria, and
the median values by invDLT are also lower. Notably, despite using 4.5 points,
invDLT is much faster by orders of magnitude than p4pfr while achieving more
accuracy. From these observations, we can conclude that invDLT is superior
to the conventional methods in practice.

5 Conclusion

In this paper, we have introduced a novel method for estimating the planar
homography along with one-sided radial lens distortion. By considering the
inverse transformation, we derived an optimal formulation for handling noisy
data and presented a straightforward DLT-based method applicable to both
the minimal and least-squares cases. Extensive experiments with synthetic and
real data demonstrated that the proposed invDLT significantly outperforms con-
ventional methods, achieving higher accuracy and robustness while maintaining
faster computational times.
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Abstract. LiDAR sensors have become one of the most popular
active depth sensing devices nowadays with their wide applications in
autonomous driving and robotics. Among various types of LiDARs, indi-
rect time of flight (iToF) has been ubiquitously applied on smartphones
and consumer-level imagining devices due to its affordable price. Based
on the common camera configuration on nowadays smartphones of hav-
ing an iToF sensor and multiple RGB cameras with different focal lengths
(thus leading to different fields of view), in this work, we investigate the
integration between two opposite but complementary sensing modalities
to achieve better depth estimation: 1) The active sensing modality based
on iToF provides absolute and metric depths but suffers from noises
caused by environmental lighting and heat; 2) The passive sensing modal-
ity based on monocular RGB cameras produces high-resolution but rela-
tive depth estimation. Our proposed integration is built upon a weakly-
supervised learning framework where the learning objective mainly stems
from the inter-camera geometric consistency with the help of iToF depth
estimates. Moreover, we adopt the structure distillation technique for
preserving structure details from the passive sensing method. We con-
duct experiments on both synthetic and real-world datasets and demon-
strate that the depth estimation produced by the proposed integration
model has a comparable quantitative performance with respect to the
supervised learning baselines. Besides, the qualitative evaluation of our
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1 Introduction

Depth estimation is an essential task in computer vision. Among various depth
sensors, RGB-D camera modules attract attention because of their capability of
multimodal perception from the environment, providing the depth and the RGB
images simultaneously. For the RGB-D camera module of consumer-level mobile
phones, time-of-flight (ToF) cameras are the more affordable solution. As shown
in Fig. 1, the camera module used in this study comprises an indirect time-of-
flight (iToF) depth camera, an ultra-wide-angle RGB camera, and a wide-angle
RGB camera. Our objective is to obtain accurate metric depth with the same
field of view (FoV) as that of the RGB image.

Fig. 1. Illustration of our RGB-D camera module with specific emphasis on the dif-
ferences in terms of focal lengths and fields of view (FoV). Compared with the RGB
cameras, the iToF camera typically has smaller resolution and longer focal length,
leading to the narrower FoV.

As shown in Fig. 2, we have the active sensing depths measured by the iToF
camera and the passive sensing depths estimated from the RGB image by the off-
the-shelf vision-based monocular depth estimation model [19]. The iToF depth
camera measures the phase shift between the emitted and reflected infrared
light [10] for depth calculation. As a result, the depth measured by iToF is accu-
rate in short range and has metric (absolute) values. However, its resolution
and FoV are relatively lower than those of the depth maps estimated from RGB
images. As shown in the right column of Fig. 2, the iToF depths warped onto
the RGB image plane have a large invalid part with void values (yellow region
with depth value 0). Moreover, the iToF depths suffer from different types of
noises and errors, such as multi-path interference errors, periodic noises, and
low reflection of the infrared signal, causing inaccurate warping results. On the
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other hand, vision-based monocular depth estimation models [23,31] have shown
impressive performance in the depth estimation with high-resolution results [19].
These models benefit from the variety of large datasets and the learned depth
cues of objects, such as edges and vanishing points [12]. However, the obtained
depths are relative values and may suffer from incorrect depth cues due to the
domain gap. In short, the active and passive depth sensing modalities are com-
plementary to each other and their integration stands a good chance in the
combination of advantages from both sides. Our goal is to obtain a metric depth
map with high resolution and less noise by utilizing both iToF depths and RGB
images.

Monocular

depth

estimated

[31,19]

on IL
(ultra-wide)

0.0

0.2

0.4

0.6

0.8

1.0

0

1000

2000

3000

4000

5000

6000

7000

iToF

depth

warped

onto

image

plane

ofCL

Monocular

depth

estimated

[31,19]

on IR
(wide)

0.0

0.2

0.4

0.6

0.8

1.0

0

1000

2000

3000

4000

5000

6000

7000

iToF

depth

warped

onto

image

plane

of CR

Fig. 2. An example set of the monocular depth estimation [19,31] on IL and IR, with
the corresponding iToF depth maps {DL

iToF,D
R
iToF} being warped onto the image planes

of their respective cameras (i.e. CL with ultra-wide-angle lens and CR with wide-angle
lens). Notice that {DL

iToF,D
R
iToF} stemmed from iToF sensor have metric depth values

with smaller FoVs and contain more noises, whereas the depth maps computed by
the off-the-shelf monocular depth estimation model [19,31] have higher resolutions but
only relative depth values.

The straightforward idea for cross-modal depth integration is to utilize the
confidence map of the metric depth, filter out the unreliable depth measurements,
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and train the model with supervised learning as a depth completion task. How-
ever, our iToF depth camera lacks the information for uncertainty, making it
difficult to expose the confident regions in the iToF depth map. Moreover, it is
difficult to reduce the influence of noise using RANSAC [30] because of the large
amounts of noises in iToF depth map. Therefore, iToF depths cannot be used
as ground truths for supervised learning. Furthermore, although the structured
light [28] could obtain the ground-truth depths, it is labor-intensive and sensitive
to noise. Another way for supervised learning is to adopt synthetic data [21].
Unfortunately, the problem of the domain gap between the real and synthetic
images is difficult to overcome. As shown in Fig. 3, iToF depths taken by our
device have high-frequency and periodic noises, which are not typical in the syn-
thetic dataset ToF-FlyingThings3D [21], causing the issue of deployment in the
real world.
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iToF-RGB1k ToF-FlyingThings3D [21]

Fig. 3. Comparison on the iToF depth maps between our collected iToF-RGB1k
dataset and the synthetic ToF-FlyingThings3D dataset [21]. The noises of iToF
depth maps in iToF-RGB1k are high-frequency and periodic while those in ToF-
FlyingThings3D are low-frequency and non-periodic, leaving a large domain gap to
deploy the model trained on synthetic data.

To tackle these challenges, we propose a cross-modal depth estimation model
to integrate passive sensing RGB and active sensing iToF images as well as its
weakly supervised learning method. Instead of direct supervision with ground-
truth depths, the training of our model is self-supervised with the consistency
of multi-view geometry by computing the similarity between the captured RGB
image and the warped one according to the estimated depths. Moreover, our
model leverages the off-the-shelf monocular depth estimation model to extend
the original limited FoV of iToF and distill the knowledge of depth structure.

In summary, contributions of this work include:

1. We propose a cross-modal depth estimation model and its weakly-supervised
learning framework containing the cross-warp consistency and depth
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structure distillation. This model integrates the active iToF depths with
the passive RGB image to obtain the metric depth map having the same FoV
as the RGB image.

2. We collect the real-world dataset iToF-RGB1k with 1074 sets of triplet data
for the training and testing of the cross-modal depth estimation model. Each
triplet contains an ultra-wide RGB image, a wide RGB image, and an iToF
depth map.

3. Quantitative evaluation using the synthetic dataset ToF-FlyThings3D[21]
as training data shows that our model gains competitive results compared
with other supervised learning methods, even though our model is a weakly
supervised learning method. Our model also qualitatively performs well when
trained and tested on real-world dataset iToF-RGB1k.

2 Related Works

2.1 Depth Completion

The objective of depth completion is to estimate a dense and accurate depth
map from a sparse or incomplete one by recovering missing or invalid depth
values. Ma et al. [17] propose the Sparse-to-Dense method to predict the dense
depth map from a sparse set of depth measurements and a single RGB image. In
their following work, Ma et al. [16] further improve Sparse-to-Dense by utilizing
photometric consistency and camera poses calculated by PnP with RANSAC.
Wong et al. [29] and Choi et al. [3] utilize temporal photometric consistency with
pose estimation network and L1 loss. DFuseNet [26] utilizes stereo photometric
consistency in depth completion task. While these approaches fill in missing
depth values based on confident measurements, our method extends the FoV
of depth images without confidence filtering. Moreover, our model tackles the
problem of large FoV differences among three cameras without additional pose
estimation or stereo image rectification.

2.2 iToF Depth Refinement and Cross-Modal Depth Estimation

Because of the success of deep learning [14] in various machine learning tasks,
many network models have been proposed to refine iToF depth, requiring syn-
thetic data for supervised learning [5,9,18,27]. As another modality, RGB has
been used for iToF refinement or depth estimation with supervised learning
for model training [13,21]. CroMo method [28] utilizes geometric consistency
for self-supervised learning from the cross-modal dataset with iToF and stereo
polarization images. Instead of depth data used in our method, CroMo uses iToF
correlation images. Moreover, their stereo RGB cameras are with the same focal
length, but ours are different. Furthermore, our method distills the knowledge
of depth structure from other off-the-shelf monocular depth estimation models.
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2.3 Monocular Depth Estimation and Knowledge Distillation

Monocular depth estimation models use the visual depth cue to estimate the
spatial relationship between objects [12] from a single image. Godard et al. [7]
introduce a self-supervised-learning method with left-right consistency. Recent
supervised-learning works, such as MiDaS [23], DPT [22], and LeReS [31], lever-
age neural networks with advanced model structures and large diverse datasets.
Miangoleh et al. [19] discover the trade-off between scene structure and high-
frequency details and mix the estimated depths with low and high resolutions
to boost the performance of the off-the-shelf model. Inspired by knowledge dis-
tillation, DistDepth [30] distills depth-domain structure knowledge from the off-
the-shelf model into its monocular depth estimator. In contrast with our method
which integrates RGB and iToF modalities to estimate absolute depths, these
works use single modality (RGB) and most of them estimate relative depths.

Fig. 4. Computational flow of our framework of integrating active and passive depth
sensing modalities (i.e. iToF sensor and RGB cameras respectively). We warp the iToF
depth map onto the image planes of the RGB cameras for rough alignment. Then, we
input the RGB image and the warped iToF depth map into the integration network
to integrate modalities and to estimate metric depth on the perspective of the RGB
image. Integration Network is weakly supervised by cross-warp consistency and depth
structure distillation. See Sect. 3 for details.

3 Methods

3.1 Problem Statement

Our cross-modal integration scenario for depth estimation is built upon a RGB-D
camera module composed of:
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1. Left RGB camera CL with an ultra-wide-angle lens, where the image captured
by CL is denoted as IL;

2. Right RGB camera CR with a wide-angle lens, where the image captured by
CR is denoted as IR;

3. iToF depth camera CiToF, in which CiToF produces the iToF depth map
DiToF.

In this RGB-D camera module, the FoV of IL is larger than IR, and the iToF
camera is typically with the smallest FoV. Without loss of generality, we assume
that the camera with ultra-wide-angle lens is placed on the left of the one with
wide-angle lens. The objective of our cross-modal integration is to acquire the
depth maps DL and DR respectively for both CL and CR, with well taking the
complementary properties between {CL,CR} and CiToF to achieve the better
depth perception results. The depth map DL is expected to consist of absolute-
metric and less-noisy depths from the same perspective of the left RGB camera
CL.

3.2 Camera Calibration

Prior to realizing cross-modal integration of the RGB-D camera module, we cal-
ibrate all the cameras to get their geometric characteristics (i.e. intrinsic param-
eters KL, KR, and KiToF for CL, CR, and CiToF respectively) as well as their
geometric relationship (i.e. extrinsic parameters TiToF→L, TL→iToF, TiToF→R,
TR→iTof, TL→R, and TR→L between cameras, where TiToF→L denotes the trans-
formation from CiToF to CL and the others are defined analogously). We adopt
the calibration toolkit of OpenCV [2] and a 7×9 metric chessboard pattern to
conduct calibration, where the intensity maps of RGB images {IL, IR} and the
infrared amplitude map of the iToF camera CiToF are taken as inputs.

3.3 Warping iToF Depths and RGB Images

With the extrinsic and intrinsic parameters among RGB and iToF cameras, the
warping grid for building the pixel-wise correspondence across their image
planes now becomes available, under the following computation procedure:

Given the intrinsic parameters {KA,KB} of two cameras {CA,CB}, the
extrinsic transformation TA→B between them, and the depth map DA related
to the image plane of CA, the corresponding pixel pB on the image plane of CB

for a specific pixel pA on the image plane of CA is computed by

pB = KBTA→BzpA
K−1

A pA (1)

where zpA
= DA(pA). Based on computing the corresponding pixels across cam-

eras, the forward warping grid from camera CA to camera CB with the help of
depth map DA is denoted as 〈proj(DA,TA→B,KA,KB)〉, indicating how the
pixels on camera CA’s image plane should move in order to be aligned with the
content on the image plane of camera CB (following the similar notations as
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DistDepth [30]). Moreover, we denote the backward warping grid from camera
CB to camera CA (i.e. the inverse mapping with respect to the forward warping
grid) as 〈proj(DA,TA→B,KA,KB)〉−1.

Based on such technique of warping grid, if we treat the iToF depth map
DiToF itself as a grayscale image on the image plane of iToF camera CiToF, we
then are able to warp it onto the image planes of {CL,CR} thus obtaining DL

iToF

and DR
iToF respectively:

DL
iToF = DiToF 〈proj(DiToF,TiToF→L,KiToF,KL)〉 (2)

DR
iToF = DiToF 〈proj(DiToF,TiToF→R,KiToF,KR)〉 (3)

in which {DL
iToF,DR

iToF} seem to already provide the depth perception from the
perspective of {CL,CR}. However, as iToF cameras typically have a longer focal
length than the RGB ones thus leading to the narrower FoV, the warped depth
maps (i.e. {DL

iToF,DR
iToF}) from iToF camera CiToF to RGB ones {CL,CR}

would unfortunately have large void regions. Moreover, the noise on iToF depth
map caused by environmental lighting and heat would also lead to the incorrect
warping results. Figure 2 shows the void region due to the difference in terms of
focal length as well as the wrong warped results caused by iToF noise. Despite
these limitations, the benefits of iToF depth, such as active sensing and met-
ric/absolute value, should be preserved after the following integration of RGB
and iToF cameras.

3.4 Off-the-Shelf Monocular Depth Estimation

In addition to the warped iToF depth maps {DL
iToF,DR

iToF}, another plausi-
ble and popular way of acquiring depth upon the image planes of RGB cam-
eras {CL,CR} is to use the off-the-shelf monocular depth estimation model f ,
thanks to the recent development of (deep-)learning-based techniques. The depth
maps {DL

RGB = f(IL),DR
RGB = f(IR)} contribute the largest FoV with respect

to {CL,CR} (as all the pixels of {IL, IR} have their depth estimates produced by
f , while {DL

iToF,DR
iToF} have quite some void regions) but only produce relative

depth perception.

3.5 Integration of RGB and iToF

Given both the active and passive depth sensing components (i.e. {DL
iToF,DR

iToF}
and {DL

RGB,DR
RGB} respectively) upon the image planes of {CL,CR}, we now

proceed to integrate them to produce better depth perception. Instead of directly
taking DL

iToF and DL
RGB as input to the fusion model for producing the final

depth estimation where their difference in terms of the depth-scale change would
lead to problematic learning, we propose a novel integration framework based on
the following learning scheme composed of three important aspects and shown
in Fig. 4. Please note that here we take CL as an example while CR follows
the analogous process. 1) An integration network M (as indicated by the region
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shaded by light purple color in Fig. 4) adopts the passive sensing RGB image
IL for refining the active sensing depth component DL

iToF to obtain the refined
depth DL

∗ . The basic idea behind it is leveraging the rich appearance and struc-
ture information of the RGB image to help denoising DL

iToF as well as enlarging
its FoV; 2) To address the lack of ground-truth depth for supervised learning
the integration, we leverage the geometric relationship across two RGB cam-
eras {CL,CR} and build the photometric and depth consistency loss to realize
the unsupervised learning of DL

∗ ; 3) We adopt the passive component DL
RGB

as structural guidance for DL
∗ during the training of the integration network

M. In other words, we distill the knowledge of depth structure from DL
RGB.

These three important aspects in our framework are driven by two main objec-
tives: cross-warp consistency and depth structure distillation, which we
detailed sequentially in the following.

Cross-Warp Consistency. As we tend to maximize the practical usage and
the flexibility of our proposed framework, we do not require the training of
DL

∗ to rely on the ground-truth labels. In other words, the learning of DL
∗ is

not supervised. Instead, we are inspired by the unsupervised objective built
upon the geometric relations between cameras and photometric reconstruction,
as proposed by Godard et al. [7], where the accurate depth estimate of the left
camera should enable the reconstruction of the right image by warping the left
image via the geometric transformation between them. Following the similar
idea, we introduce the cross-warp photometric consistency loss L

DL
∗

xwarp-I

for the refined depth DL
∗ :

L
DL

∗
xwarp-I = L

DL
∗ -fwd

xwarp-I + L
DL

∗ -bwd
xwarp-I

= S(IRDL∗
, IR) + S(ILDL∗

, IL) ,

where S(a, b) = α
1 − SSIM(a, b)

2
+ (1 − α) |a − b|1

and IRDL∗
= IL

〈
proj(DL

∗ ,TL→R,KL,KR)
〉

ILDL∗
= IR

〈
proj(DL

∗ ,TL→R,KL,KR)
〉−1

. (4)

in which function S(a, b) evaluates the SSIM structural distance as well as
L1 pixel errors between a and b (noting that we follow the common practice
as [30] to set α = 0.85). IRDL∗

denotes the reconstructed right image, using DL
∗

to perform the forward warping from CL to CR; ILDL∗
denotes the reconstructed

left image, using DL
∗ to perform the backward warping from CR to CL. Noting

that L
DR

∗
xwarp-I follows the similar procedure to evaluate S(ILDR∗

, IL) + S(IRDR∗
, IR).

In addition to the cross-warp photometric consistency loss {LL
xwarp-I,

LR
xwarp-I} for {DL

∗ ,DR
∗ }, we also modify the well-known left-right depth con-

sistency loss [7,8] into cross-warp depth consistency loss Lxwarp-D for our
training of integration network M, making the warped depth map of right cam-
era equal to the depth map of left camera and vice versa, regardless of forward
or backward warping:
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Lxwarp-D = L
DL

∗
xwarp-D + L

DR
∗

xwarp-D

= L
DL

∗ -fwd
xwarp-D + L

DL
∗ -bwd

xwarp-D + L
DR

∗ -fwd
xwarp-D + L

DR
∗ -bwd

xwarp-D

=
∣∣∣DR

DL∗
− DR

∗
∣∣∣
1

+
∣∣∣DL

DL∗
− DL

∗
∣∣∣
1

+
∣∣∣DL

DR∗
− DL

∗
∣∣∣
1

+
∣∣∣DR

DR∗
− DR

∗
∣∣∣
1

,

where DR
DL∗

= DL
∗

〈
proj(DL

∗ ,TL→R,KL,KR)
〉
,

DL
DL∗

= DR
∗

〈
proj(DL

∗ ,TL→R,KL,KR)
〉−1

,

DL
DR∗

= DR
∗

〈
proj(DR

∗ ,TR→L,KR,KL)
〉
,

DR
DR∗

= DL
∗

〈
proj(DR

∗ ,TR→L,KR,KL)
〉−1

. (5)

Depth Structure Distillation. As motivated previously that our third aspect
is to adopt the passive component (e.g. DL

RGB) as a structural guidance for the
output of our integration model, we choose to adapt the structure distillation
loss proposed by [30] into our framework for realizing such aspect, which is
defined as

Ldistill = L
DL

∗
distill + L

DR
∗

distill

= 1 − SSIM(D̄L
∗ , D̄L

RGB)

+1 − SSIM(D̄R
∗ , D̄R

RGB) , (6)

where D̄ denotes the operation of normalizing depth D with respect to its own
mean value. The depth structure distillation loss Ldistill relies on the off-the-
shelf pre-trained monocular depth estimation model f to provide the passive
depth perception. Therefore, although our cross-warp consistency objective is
self-supervised, we categorize our method as a weakly-supervised learning frame-
work.

Smoothness Loss [7]: Lastly, similar to other self-supervised depth estimation
methods [7,8], we also adopt the smoothness loss Lsm to regulate the estimated
depth {DL

∗ ,DR
∗ } for making them locally smooth and edge-aware:

Lsm =
∣
∣∂DL

∗
∣
∣ e−‖∂IL‖ +

∣
∣∂DR

∗
∣
∣ e−‖∂IR‖. (7)

The derivative operation ∂ in Lsm includes both the horizontal and vertical
gradients.

Total Loss. The overall objective is summarized as:

Ltotal = λxwarp-IL
DL

∗
xwarp-I + λxwarp-IL

DR
∗

xwarp-I

+ λxwarp-DLxwarp-D + λdistillLdistill + λsmLsm , (8)

where λ hyper-parameters are the weights to balance among the aforementioned
losses.
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3.6 Integration Network M

Our integration network M is based on an U-Net [25] architecture which is
also similar to the one in monodepth [7]. It contains an image feature encoder,
an iToF depth feature encoder, and a feature fusion decoder. For both RGB
image feature and iToF depth feature encoders, they adopt ResNet18 [11] as
their backbone while the former takes the pretrained weight from ImageNet [4]
classification task as warm start. The multi-scale features extracted by layers of
both encoders are concatenated in a layer-wise manner and further fed to the
corresponding convolutional blocks (of the same scale) in the fusion decoder.

4 Experiments

4.1 Datasets

The experiments are conducted on two datasets: the synthetic ToF-
FlyingThings3D [21] dataset and the real-world iToF-RGB1k dataset collected
by ourselves.

ToF-FlyingThings3D [21]. As such dataset is synthetic to have full access
to the groundtruth depth, we mainly adopt it for our quantitative evaluation.
Two different camera configurations are used in our experiments to synthesize the
dataset: 1) pseudo camera parameters as used in its original paper [21] for
ensuring a fair comparison with other methods, where all the cameras are with
the same focal length (thus nearly the same FoV) and the extrinsic transforma-
tion is simplified (i.e. no rotation and only 2D orthogonal translation); 2) device
camera parameters, where we adopt the calibration parameters obtained from
the RGB-D camera module (i.e. the device that we use for collecting our iToF-
RGB1k dataset, which has different focal lengths for all three cameras and the
extrinsic transformations are more complicated), making the synthesized dataset
more challenging for the integration between iToF and RGB cameras.

iToF-RGB1k. We collect such iToF-RGB1k dataset by using the mobile-phone
device of RGB-D camera in the natural world, in which it comprises 1074 scenes
that have been randomly split into 960 sets for training and 114 sets for testing.
The iToF depth has resolution of 640×480, while the RGB images have a resolution
of 1280 × 960. As iToF is better suited for indoor environments, the majority of
scenes in the dataset are indoor ones. We also consider the social impact of privacy
to avoid capturing the human being.

4.2 Quantitative Experiments

Comparison with iToF Refinement Methods. To ensure a fair comparison
with supervised learning methods, we first train our integration network M using
the supervised learning objective proposed by Qiu et al. and follow the same eval-
uation protocol [21]. This objective is also used in SHARP-Net [5].
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Table 1. Comparison with competitive methods on the ToF-FlyingThings3D
dataset [21]. SL: Supervised learning.

Methods SL Training Ground Truth Input Refined

Depth RGB RGB Depth MAE(cm)

Metric Relative FoV

DeepToF [18] � � ToF 4.69

ToF-Net [27] � � ToF 4.90

TOF-KPN w/o RGB [21] � � ToF 2.44

SHARP-Net [5] � � ToF 1.19

TOF-KPN [21] � � � ToF 1.51

Our network w/TOF-KPN loss [21] � � � ToF 1.50

Cross-warp � � RGB 3.16

Cross-warp + Structure Distillation � � � RGB 3.01

As shown in the row “our network w/TOF-KPN loss” in Table 1, we suc-
cessfully reproduce the performance of [21]. We then evaluate the performance
of our full model, as shown in the last row in Table 1. Our full model outper-
forms DeepToF [18] and ToF-Net [27] (both supervised ones) without requiring
the strong supervision of ground truth depths and can achieve full FoV of RGB
image. Although SHARP-Net [5] has the best performance of mean absolute error
(MAE), it is limited to refining the FoV of iToF. Considering the inherited perfor-
mance gap between the supervised and self-supervised learning methods [7,8], our
method performs well as a weakly supervised method.

Ablation Studies on Objectives and Modalities. To investigate how the
objectives and input modalities affect the performance of our model, we conduct
ablation studies with two camera configurations. As shown in Table 2, our abla-
tion study of objectives starts with the supervised learning baselines (in (a) and
(b) rows) and self-supervised learning baselines (in (c) and (d) rows). Then, we
use a single RGB image (as shown in (c) rows) or stereo RGB images (as shown in
(d) rows) as input for the integration network trained with cross-warp consistency.
In pseudo camera configuration, the model using stereo RGB input outperforms
the one using monocular RGB input. In device camera configuration, however,
the opposite results may be associated with the challenge of warping images and
depths with different FoVs. Next, we evaluate the performance of our model with
cross-modal stereo input (iToF and RGB), as shown in the (e) rows. The results
indicate that the model using cross-modal stereo input outperforms those mod-
els using single RGB modality because the iToF depths provide metric informa-
tion for absolute depth estimation. Lastly, as shown in the (f) rows, model training
with structure distillation from passive depths improves most performance metrics
(excluding the threshold-based ones), indicating the advantages of better structure
guidance and knowledge from the off-the-shelf monocular depth estimation model.
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Table 2. Quantitative studies for different supervision and the input. SL: Supervised
learning. Weak-sup.: Weakly supervised learning. CW: Cross-warp. SD: Structure dis-
tillation. Cam.: Camera. M: Monocular RGB. S: Stereo RGB. KPN: Using supervised
depth refinement loss of TOF-KPN [21]. S2D: Using Sparse-to-Dense [17] for supervised
learning. L: Left rgb camera. R: right rgb camera. UW: Ultra-wide RGB camera. W:
Wide RGB camera. Eval. region: Evaluated region. Ext.: extended FoV of iToF.

#
Input Weak-sup. Eval. Evaluation metrics

RGB iToF SL CWSD Cam. RegionMAE(cm) ↓ AbsRel ↓ SqRel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
(1) Pseudo Camera Parameters

(a) � KPN
L

RGB
2.130 0.04425 0.3086 4.475 0.04165 0.9394 0.9802 0.9957

R 1.550 10.56 215.5 4.392 0.04170 0.9747 0.9937 0.9969

(b)M � KPN
L

RGB
1.686 0.03585 0.2254 3.541 0.03512 0.9550 0.9793 0.9958

R 1.212 0.03614 1.0120 3.275 0.02790 0.9770 0.9938 0.9985

(c) M � L
RGB

7.267 0.08433 3.427 16.30 0.12330 0.9063 0.9397 0.9543

R 5.965 0.08375 2.835 13.46 0.11350 0.9105 0.9446 0.9581

(d) S � L
RGB

4.059 0.05112 1.444 11.04 0.08002 0.9492 0.9672 0.9753

R 5.151 0.07691 2.828 13.37 0.09934 0.9250 0.9508 0.9640

(e) M � � L
RGB

3.156 0.05717 0.760 7.775 0.06248 0.9519 0.9674 0.9762

R 3.236 0.05914 1.215 7.941 0.06750 0.9448 0.9650 0.9762

(f)

M � � �

L
RGB

3.006 0.04710 0.7509 7.731 0.06208 0.9506 0.9651 0.9739

R 3.213 0.05669 1.255 7.930 0.06841 0.9454 0.9639 0.9764

(g)
L 3.005 0.04502 0.7399 7.786 0.06098 0.9536 0.9676 0.9764

R
iToF

3.206 0.05477 1.215 7.935 0.06717 0.9475 0.9657 0.9784

(h)
L 3.536 0.07709 1.259 7.561 0.07777 0.9140 0.9344 0.9445

R
Ext.

3.891 0.09745 2.536 8.328 0.08513 0.9121 0.9350 0.9497

(i) M � S2D
L

RGB
54.17 1.383 118.8 64.32 0.4071 0.1132 0.2456 0.4110

R 56.76 1.565 141.3 66.62 0.4281 0.1013 0.2216 0.3746

(j) M � S2D � L
RGB

20.52 0.2246 7.323 27.92 0.1687 0.5968 0.8467 0.9168

R 17.77 0.2234 7.141 22.99 0.1738 0.6270 0.8390 0.9082

(2) Device Camera Parameters

(a) � KPN
UW

RGB
5.454 0.06630 1.639 13.03 0.07756 0.9333 0.9664 0.9784

W 2.473 0.03923 0.5655 6.923 0.04683 0.9586 0.9861 0.9941

(b)M � KPN
UW

RGB
1.921 0.03816 0.2513 3.655 0.03778 0.9644 0.9800 0.9893

W 1.604 0.02757 0.1765 3.516 0.02531 0.9774 0.9927 0.9991

(c) M � UW
RGB

6.740 0.08767 2.508 14.45 0.10030 0.9021 0.9846 0.9650

W 10.60 0.14480 3.976 17.39 0.11650 0.8185 0.9257 0.9576

(d) S � UW
RGB

11.62 0.1270 4.356 22.25 0.12260 0.8578 0.9222 0.9513

W 21.78 0.3129 13.97 31.36 0.17940 0.5835 0.8098 0.8982

(e) M � � UW
RGB

6.115 0.07910 2.116 13.42 0.08497 0.9175 0.9578 0.9747

W 9.211 0.13140 2.924 15.20 0.09361 0.8456 0.9469 0.9782

(f)

M � � �

UW
RGB

5.616 0.07305 1.773 12.62 0.07644 0.9232 0.9607 0.9764

W 9.376 0.12280 2.995 15.57 0.09220 0.8579 0.9494 0.9752

(g)
UW

iToF
7.453 0.09368 2.189 13.42 0.08332 0.9027 0.9564 0.9764

W 8.944 0.11670 2.615 14.60 0.08985 0.8718 0.9525 0.9759

(h)
UW

Ext.
4.715 0.06289 1.570 12.03 0.07208 0.9333 0.9628 0.9764

W 10.62 0.13980 4.064 17.84 0.09721 0.8194 0.9395 0.9731

Comparison Between Original and Extended FoVs. As shown in the (g)
and (h) rows of Table 2, we evaluate the performance of our estimated depths
within the original iToF FoV and the extended region outside the FoV of iToF,
as illustrated in Fig. 2. The results with pseudo camera parameters indicate that
the estimated depths in the original iToF FoV on both RGB image planes are bet-
ter than those in the extended FoVs. With device camera parameters, however,
this case holds only on the wide-angle image plane, suggesting that the model for
the wide-angle cameras could more depend on the metric information from iToF
depths than the model for the ultra-wide camera because of the larger overlapping
region between iToF and RGB cameras.
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Comparison with Depth Completion Method. To align with the setting of
Sparse-to-Dense [17], we randomly sample 750 points from DL

iToF to generate the
sparse depth maps. These sparse depth maps are paired with IL as the training
pairs for Sparse-to-Dense [17]. The results in the (i) rows of Table 2, where the
worse performance indicates that Sparse-to-Dense [17] is less effective for tackling
the noise in iToF depth and for leveraging the complementary properties across
modalities. Even being further regularized by the structure distillation loss (as
shown in the (j) rows), the performance is still much worse than ours. In contrast,
our proposed method leveraging geometric constraints for cross-warp consistency
is more effective in alleviating the interference from noisy iToF and gets better
fusion results.

4.3 Qualitative Experiments

We conduct experiments using our iToF-RGB1k to qualitatively evaluate our
model in the real world. As shown in Fig. 5, our model is capable of extending
the original FoV of iToF depths to the FoV of RGB images. Moreover, our model
is able to remedy the errors or noises of the iToF sensor. For example, as shown in
the first and second row of Fig. 5, the iToF depth values within the circled regions
are largely deviated due to the reflection of the wall or the transparent umbrella.
Our model refines the results by leveraging the rich appearance and structure infor-
mation from the RGB image. Other examples shown in the third and fourth row
in Fig. 5 demonstrate our model’s capability to correct depth errors from the off-
the-shelf monocular depth estimation model [19,31]. Monocular depth estimation
models, reliant on passive sensing RGB cameras, often misinterpret visual cues [12]
from TV screens and walls because of misleading or absent textures. In this case,
the depth information from active sensing iToF proves beneficial in resolving the
ambiguity. To sum up, our cross-warp and depth structure distillation model suc-
cessfully integrates the passive sensing RGB image and the active sensing iToF
depth to estimate the full FoV metric depth map of the scene.
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Fig. 5. Qualitative evaluation of estimated depths for the real-world dataset, iToF-
RGB1k. Our model overcomes the limitations of the iToF camera and the off-the-shelf
monocular depth estimation model, such as the reflective objects and transparent objects
(which are red-circled in the first and second row), and the wrong visual depth cues
(which are framed by red rectangles in the third and fourth row). Boosted [19] LeReS [31]
is the off-the-shelf monocular depth estimation model, a relative depth model. The unit
of absolute depth is millimeters. (Color figure online)

5 Conclusions

We introduce a weakly-supervised framework to tackle the task of cross-modal
depth estimation, driven by cross-warp consistency and depth structure distilla-
tion. Our proposed cross-warp consistency adopts iToF depth estimates to build
the inter-camera photometric consistency for guiding the model training, and the
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depth structure distillation preserves the structure of RGB images under the help
of an off-the-shelf monocular depth estimation model. Our quantitative experi-
ment on ToF-FlyThings3D [21] shows that our method is able to achieve compa-
rable performance with several supervised learning methods despite the lack of
depth domain ground truths. Moreover, we collect an iToF-RGB1k dataset for per-
forming qualitative evaluation in the real world, in which the corresponding exper-
imental results verify the efficacy of our method in extending the FoV of iToF as
well as fixing the incorrect/noisy depth estimate where neither iToF camera nor
off-the-shelf monocular depth estimation model can perform well.
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