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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Classical contrastive learning paradigms rely on manual aug-
mentations like cropping, masking, dropping, or adding noise randomly
to create divergent sample views from original data. However, the choice
of which method to manipulate samples is often subjective and may
destroy the latent pattern of the sample. In response, this paper intro-
duces a novel contrastive learning paradigm without choosing sample
view augmentation methods, termed Heterogeneous Spatial-Temporal
Representation Contrasting (HSTRC). Instead of sample view augmen-
tation, we employ dual branches with a heterogeneous spatial-temporal
flipped structure to extract two distinct hidden feature views from
the same source data, which avoids disturbing the original time series.
Leveraging a combination of cross-branch spatial-temporal contrastive
and projected feature contrastive loss functions, HSTRC can effectively
extract robust representations from unlabeled time series data. Remark-
ably, by only fine-tuning the fully connected layers on top of extracted
representations by HSTRC, we achieve the best performance across sev-
eral Remaining Useful Life prediction datasets, showing up to 19.2%
improvements over the state-of-the-art supervised learning methods and
classical contrastive learning paradigms. Besides, further intensive exper-
iments demonstrate HSTRC’s effectiveness in active learning, out-of-
distribution testing, and transfer learning scenarios.

Keywords: Time-Series Representation Learning · Contrastive
Learning · RUL Prediction · Temporal-Spatial Contrasting

This work is supported within the LongLife (020E-100583532) project, funded by
BMWK: German Federal Ministry for Economic Affairs and Climate Action.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-78398-2 1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15327, pp. 1–21, 2025.
https://doi.org/10.1007/978-3-031-78398-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78398-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-78398-2_1
https://doi.org/10.1007/978-3-031-78398-2_1


2 Z. Huang et al.

1 Introduction

The goal of Remaining Useful Life (RUL) prediction is extracting degradation
representations from sensors multivariate time series (MTS) to estimate the time
until a system can no longer maintain its normal operational state [21]. Accurate
RUL predictions are expected to yield significant benefits, including the devel-
opment of intelligent maintenance strategies, reduction in operational costs, and
extension of equipment lifespan [29]. The degradation representations indicate
the gradual decline of system performance and are mainly extracted by temporal
and spatial features [8]. Recurrent Neural Networks (RNNs) and one-dimensional
Convolutional Neural Networks (CNNs) are widely used to extract temporal fea-
tures [12,15,24,28], while Graph Neural Networks (GNNs) are utilized to learn
spatial relationships among sensors [11,21]. Recent studies [8,29] demonstrate
that RUL prediction accuracy can be improved by integrating these two types of
features. Specifically, Huang et al. [8] introduced a cascaded architecture based
on Graph Convolutional Networks (GCN) and Temporal Convolutional Net-
works (TCN), demonstrating significantly improved predictive accuracy com-
pared to other existing methods. The above-mentioned research on RUL pre-
diction employs supervised learning paradigms. As shown in Fig. 1a, the model
learns hidden features H from X by corresponding RUL label y. However, in
real-world scenarios, the scarcity of labeled MTS data reduces the efficiency of
supervised learning paradigms.

Fig. 1. Learning Paradigms Comparison

A potential solution is to employ the classical contrastive learning paradigm
in Fig. 1b, as a subset of self-supervised learning, which extracts meaningful
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representations from unlabeled MTS [4]. Most studies in recent years have uti-
lized sample view augmentation techniques to create positive and negative pairs.
As illustrated in Fig. 1b, a source MTS sample X is augmented to two distinct
sample views X1 and X2, such as by adding noise [22], cropping [2], amplitude
scaling [5], masking [5,20], dropping [3,26], and segmenting [27]. Then these two
distinct sample views are fed into symmetric branches with shared parameters to
extract representations Z1 and Z2 respectively. The classical loss function guides
the model to minimize the distance between Z1 and Z2 [5] from the same source
MTS sample X. The sample views belonging to two different sources are com-
monly used as negative pairs [4,5], while some studies [7,27] use only positive
pairs due to the existing periods in the MTS.

Above mentioned manual view augmentation techniques [2,9,20,22,26,27]
such as masking, adding noise, and shuffling randomly have applied in down-
stream tasks such as time series classification [3,5,22,26] or forecasting [9,23,27].
However, when we face a new downstream task, such as RUL prediction, in which
contrastive learning has not been widely applied, selecting an appropriate aug-
mentation method without prior knowledge becomes subjective and challeng-
ing. Inappropriate random modifications to the original samples, such as adding
excessive noise or altering the time series trend due to shuffling, can disrupt
the latent patterns of the original MTS samples, resulting in suboptimal learned
representations.

In response to these constraints, we propose an innovative contrastive learn-
ing paradigm referred to as Heterogeneous Spatio-Temporal Representation Con-
trasting (HSTRC). As shown in Fig. 1c, HSTRC differs from the classical con-
trastive learning paradigm by three main aspects:

– Eliminating Sample View Augmentation: Instead of sample view aug-
mentation, HSTRC extracts distinct hidden feature views Hr and Hf from
source MTS X by two heterogeneous branches directly to avoid disturbing
the latent pattern in MTS.

– Heterogeneous Spatial-Temporal Flipped Branches: Instead of shared
symmetric branches, HSTRC constructs two heterogeneous branches with
non-shared parameters by flipping the cascade sequence of the Spatial Feature
Extractor (SFE) and the Temporal Feature Extractor (TFE). We define the
SFE-TFE as the reference branch, extracting spatial features before temporal
features, and TFE-SFE as the flipped branch, doing the reverse.

– Joint Contrastive Loss Function: HSTRC’s loss function combines cross-
branch spatio-temporal contrasting and projected feature contrasting. The
former encourages the two branches to cross-guide spatial and temporal fea-
ture learning. The latter aims to maximize the similarity between representa-
tions from the same source MTS while minimizing the similarity from different
sources.

The main Contributions of this paper can be summarized as follows:

1. We propose a novel contrastive learning paradigm HSTRC, which is specific
to MTS representation learning.
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2. By only fine-tuning based on extracted representations, HSTRC achieves up
to 19.2% improvement over the state-of-the-art supervised learning methods
and classical contrastive learning paradigms in the RUL prediction scenario.

3. The further intensive experiments demonstrate that the learned representa-
tions by HSTRC are effective for downstream tasks under active learning,
out-of-distribution (OOD) testing, and transfer learning settings.

4. We provide the code 1 to enable interested researchers to replicate our results
and extend the application to other downstream tasks for MTS.

The overall structure and implementation details of HSTRC are described
in Fig. 2 and Sec. 2, 3 and 4. We use RUL prediction as a downstream task in
Sec. 5, and demonstrate the efficiency and accuracy of HSTRC on time series
representation learning through intensive experiments in Sec. 6.

2 Overall Architecture

Fig. 2. HSTRC includes four primary steps: 1© The spatial-temporal feature encoder
with dual heterogeneous branches extracts distinct feature views Hr and Hf from
source X. 2© The feature projection module further performs a nonlinear transforma-
tion on Hr and Hf . 3© Learning Z by optimizing cross-branch spatial-temporal con-
trasting (Ls

cb,Lt
cb) and projected feature contrasting Lpf loss functions. 4© Downstream

task module for fine-tuning.

We define a sample of MTS as X = [x1
L,x2

L, . . . ,xK
L ] ∈ R

L×K , where xk
L refers

to univariate time series of the k-th sensor with length L, k ∈ {1, 2, . . . ,K}. A
1 https://anonymous.4open.science/r/HSTRC/

https://anonymous.4open.science/r/HSTRC/
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time series data set contains N instances is denoted as X = {X1,X2, . . . ,XN}.
The overall architecture of the HSTRC framework, as illustrated in Fig. 2b,
comprises four primary components:

1© Spatial-Temporal Feature Encoder G(·): G(·) integrates two heteroge-
neous models without shared parameters, forming a dual-branch structure.
One branch adopts the SFE-TFE cascading structure, denoted as the refer-
ence branch Gref(·), while the other represents a flip of the reference branch,
i.e., TFE-SFE, defined as the flipped branch Gflip(·). We generate two distinct
hidden feature views Hr ∈ R

Dr and Hf ∈ R
Df from the same source MTS X

as follows:
{Hr,Hf} = G(X) = {Gref(X),Gflip(X)}, (1)

where Dr and Df denotes the output dimension of the extracted views,
with Dr = Df .

2© Feature Projection Module P(·): P(·) comprises two independent (i.e. no
shared parameters) but homogeneous branches, Pr(·) and Pf(·), each consist-
ing of two FC layers with spectrum normalization [17]. These two branches are
utilized for the nonlinear transformation of Hr and Hf , yielding the projected
features Zr and Zf , respectively. Zr ∈ R

D and Zf ∈ R
D are concatenated

into Z ∈ R
2D, serving as representation of X:

Z = [Zr ‖ Zf ] = [Pr(Hr) ‖ Pf(Hf)] , (2)

where D is the dimension of the projected features, and ‖ denotes the con-
catenation operation.

3© Joint Contrastive Loss Function Lc: In the self-supervised learning phase,
to learn robust representations Z from the source MTS sample, we design a
joint contrastive loss function Lc, which comprises a cross-branch spatial Ls

cb

and temporal Lt
cb contrasting in G(·) and a projected feature contrasting Lpf

in P(·). Lc is presented as below:

Lc = λ ·
(
Ls
cb + Lt

cb

)
+ (1 − λ) · Lpf , (3)

where λ is a hyperparameter representing the relative weight, with 0 ≤ λ ≤ 1.
4© Downstream Task Module F(·): F(·) consists of a single FC layer. When

training downstream tasks, the parameters of the spatio-temporal feature
encoder G(·) are frozen. Only the feature projection module P(·) and the
downstream task module F(·) are fine-tuned through labeled samples. When
employing RUL prediction as a downstream task, the goal is to establish
a mapping function y = F(Z) that correlates a representation Z with a
corresponding RUL value y ∈ R.

We will detail the implementation of the spatio-temporal feature encoder G(·)
in Sec. 3 and the contrastive loss function Lc in Sec. 4.

3 Spatial-Temporal Feature Encoder

In this section, we describe the model implementation of SFE and TFE shown in
Fig. 2a; and the Heterogeneous Spatial-Temporal Flipped Structure in Fig. 2b.
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3.1 Spatial Feature Extractor

In SFE S(·), we construct sensor graphs and extract spatial relationships between
sensors from MTS through a GNN. As shown in Fig. 2a, the SFE consists of
multiple residual-connected blocks, each of which consists of a GCN layer, a
spectral normalization layer, and a spatial attention layer. The parameters of
GCN are normalized through the spectrum normalization [17] layer to main-
tain distances between samples in the latent space. A M -head spatial attention
layer [19] interprets sensor spatial relationships by enhancing attention between
sensor connections.

3.2 Temporal Feature Extractor

Similarly, the TFE T (·) shown in Fig. 2a includes multiple blocks with resid-
ual connections. Each block comprises a TCN layer, a spectral normalization
layer, and a temporal attention layer. A M -head temporal attention mecha-
nism is incorporated into each temporal block. Diverging from [8], which treats
sensors equally, we improve the temporal attention mechanism in this paper
to distinguish the significance of different sensors at each time step. For more
implementation detail of SFE and TFE please see Appendix A. It is noted that
SFE and TFE can also be replaced by other model structures.

3.3 Heterogeneous Spatial-Temporal Flipped Structure

As shown in Fig. 1c and Fig. 2b, this structure consists of two indepen-
dent branches that do not share parameters. Due to their different cascading
sequences, they are respectively referred to as the reference branch Gref(·) and
the flipped branch Gflip(·).

Reference Branch: The SFE in the reference branch is denoted as Sref(·),
and the TFE as Tref(·). The sequence of cascading is SFE-TFE, meaning spa-
tial features are first extracted from the MTS sample by the SFE Hs,ref =
Sref(X) ∈ R

Cref
s ×K , which are then fed into the TFE to obtain the temporal fea-

tures Ht,ref = Tref(Hs,ref) ∈ R
Cref

t ×K . The final temporal features are flattened
to serve as the hidden feature view of the reference branch, defined as Hr ∈ R

Dr ,
where Dr = Cref

t · K:

Hr = Gref(X) = Flatten (Tref (Sref(X))) . (4)

Flipped Branch: Conversely, the flipped branch employs TFE Tflip(·) and
SFE Sflip(·), with the flip cascading sequence, i.e. TFE-SFE. The flipped branch
initially extracts temporal features through the TFE Ht,flip = Tflip(X) ∈
R

Cflip
t ×K , which are then input to the SFE Hs,flip = Sflip(Ht,flip) ∈ R

Csflip×K

to extract spatial features. It is noteworthy that Cref
s = Cflip

t and Cref
t = Cflip

s .
Ultimately, the spatial features are flattened as the output view of the flipped
branch, defined as Hf ∈ R

Df , where Df = Cflip
s · K:
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Hf = Gflip(X) = Flatten (Sflip (Tflip(X))) . (5)

Hr and Hf are two distinct spatial-temporal feature views of heterogeneous
dual branches from the same source MTS X. These hidden feature views are then
directed into the feature projection module to obtain the representation Z. The
visualizations of two branches’ attention from same X are located in Appendix C.

4 Joint Contrastive Loss Function

HSTRC is jointly optimized through two types of contrastive loss functions in
the self-learning phase. These two losses are tailored for the spatial-temporal
feature encoder G(·) and the feature projection moduler P(·), respectively.

4.1 Cross-Branch Spatial-Temporal Contrasting

This loss function is implemented within the spatial-temporal feature encoder.
Given the b-th MTS sample from a batch with size B, we extract spatial hid-
den features (Hb

s,ref and Hb
s,flip) as well as temporal features (Hb

t,ref and Hb
t,flip)

through the reference branch and flipped branch. Taking the spatial contrast-
ing as an example, we first flatten two spatial features as H

b

s,ref and H
b

s,flip

and then apply a bilinear function to maintain the mutual information between
the inputs, which is exp

(
Ks(H

b

s,flip)(H
b

s,ref)
T
)
. Here, Ks(·) is a linear mapping

function that projects H
b

s,flip to the same dimensional space as H
b

s,ref , defined

as Ks(·) : RCflip
s ·K → R

Cref
s ·K . Specifically, we transform the H

b

s,flip into same

shape with the H
b

s,ref . The contrastive loss Ls
cb defined in Eq. (6) aims to max-

imize the dot product between H
b

s,flip and H
b

s,ref from the same source MTS
sample, while minimizing the dot product with spatial feature views generated
from other samples within the same batch. This encourages the contrastive tar-
get to align the transformed Ks(H

b

s,flip) with its corresponding feature H
b

s,ref . A
similar loss function Lt

cb in Eq. (7) is also formulated for the temporal contrast-
ing:

Ls
cb = − 1

B

B∑

b=1

log
exp

(
Ks(H

b

s,flip)(H
b

s,ref)
T
)

∑
j∈B exp

(
Ks(H

b

s,flip)(H
j

s,ref)T
) , (6)

Lt
cb = − 1

B

B∑

b=1

log
exp

(
Kt(H

b

t,ref)(H
b

t,flip)
T
)

∑
j∈B exp

(
Kt(H

b

t,ref)(H
j

t,flip)T
) . (7)
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4.2 Projected Feature Contrasting

In the feature projection module, we utilize contrastive learning for projected
features to explore discriminative representations. Within a batch containing
B original MTS samples, the b-th sample generates two projected features,
namely Zb

r and Zb
f , resulting in a total of 2B projected feature views. For each Zb

r ,
its corresponding Zb

f is considered a positive sample from the same source MTS,
thereby making a positive pair (Zb

r ,Z
b
f ). Concurrently, the remaining (2B − 2)

feature views from other samples in the same batch serve as negative samples
of Zb

r , leading to (2B − 2) negative pairs for Zb
r . Based on this setup, we define

the projected feature contrastive loss Lpf in Eq. (8). Specifically, given Zb
r , we

divide its similarity with the positive sample Zb
f by the sum of its similarities

with all other (2B −1) projected feature views in the batch, including a positive
pair and (2B − 2) negative pairs. The goal of Lpf is maximizing the similarity
between positive pairs while minimizing the similarity between negative pairs:

Lpf = − 1
B

B∑

b=1

log
exp

(
sim(Zb

r ,Z
b
f )/τ

)

∑B
i=1 1[i�=b] exp (sim(Zb

r ,Zi
r)/τ) +

∑B
i=1 exp

(
sim(Zb

r ,Zi
f)/τ

) ,

(8)
where sim(a,b) is denoted as the cosine similarity between vectors a and b,
1[i�=b] ∈ 0, 1 is a mask function that equals 1 if i �= b, and τ represents the tem-
perature parameter. The joint contrastive loss function Lc represents in Eq. (3)
is a combination of cross-branch spatial-temporal contrasting Lcb and projected
feature contrasting Lpf .

5 Experimental Setup

5.1 Datasets Description

We utilize RUL prediction as the downstream task to verify the performance of
HSTRC. For a fair comparison with existing work, we conduct our experiments
based on the widely recognized Commercial Modular Aerospace Propulsion Sys-
tem Simulation (C-MAPSS) data collection [18]. As detailed in Table. 1, this data
collection comprises four datasets referred to as from FD001 to FD004 respec-
tively, and used as a benchmark for numerous research articles concerned with
RUL prediction [1,8,10,12–15,21,24,29]. Each dataset contains multiple engine
records and is divided into a training and a test set. Each engine recorded time
series with 24 sensors (symbolizing K = 24 in X) and corresponding operational
duration denoted as RUL. The measurements of engines are collected under dif-
ferent operational conditions. FD001 and FD003 were measured by single con-
ditions, while FD002 and FD004 contain the measurements collected under six
operational conditions, which present more complex challenges for the accurate
RUL prediction [8]. Consistent with other RUL prediction research [6,8,25], we
normalize the data based on operating conditions and use sliding windows with
length 50 (i.e. L = 50 in X) to segment the raw time series data. The operating
conditions and sensor measurements constituted the final input vectors for the
models.
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5.2 Evaluation Metrics and Implementation Details

Following previous works [1,12,15,21,24], we utilize the RMSE and Score [12]
to evaluate the performance of RUL prediction. The lower RMSE and Score
indicate higher prediction accuracy. For more details of metrics, see Appendix B.
The spatial-temporal feature encoder extracts features with the dimension Dr =
Df = 240, and the output dimension of each branch in the feature projection
module is D = 50. The number of attention heads M is 4 and temperature τ is
0.2. We employ the Adam optimizer with a learning rate of 0.0001 for FD002
and FD004, 0.005 for FD001 and FD003, a batch size of 50, and training epochs
of 32. Each experiment is repeated five times with different random seeds to
ensure reliability. The mean values of relevant evaluation metrics are computed
for performance assessment.

6 Experimental Results

In this section, we conduct five experiments. Firstly, the effectiveness of HSTRC
is validated in Sec. 6.1. Subsequently, Sec. 6.2 utilizes RUL prediction as a down-
stream task to compare HSTRC with other existing methods. Sec. 6.3 and 6.4
explore HSTRC’s representation capabilities under active learning, OOD test-
ing, and transfer learning settings. Lastly, we employ model ablation study in
Sec. 6.5 to analyze the impact of spatial-temporal feature encoder on prediction
results.

Table 1. Statistics of the C-MAPSS dataset

Subsets FD001FD002FD003FD004

Number of Training Engines 100 260 100 249

Number of Test Engines 100 259 100 248

Number of Operation Conditions 1 6 1 6

6.1 Model Effectiveness and Sensitivity Analysis

This experiment aims to: (1) Validate the effectiveness of HSTRC; (2) Analyze
the impact of the hyperparameter λ on the loss function Eq. (3). HSTRC learns
the hidden degradation representation Z from unlabeled MTS sample X. Note
that HSTRC can not access the RUL labels during the self-supervised learning
phase.

Fig. 3a shows the distribution of Z without using the joint contrastive loss
function Lc, where the representations are randomly distributed, failing to dis-
tinguish degradation information. After introducing Lc, corresponding to Fig. 3b
and 3c, the representations demonstrate clustering and stratification effects in
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accordance with RUL decreases. Fig. 3b shows the representations distribution
when λ = 0, i.e., only using the projected feature contrasting Lpf . When λ = 1,
we solely use the cross-branch spatio-temporal contrasting Lcb, with the distribu-
tion shown in Fig. 3c. The comparison between Fig. 3b and 3c indicates that Lpf

primarily clusters similar samples together, while Lcb further increases the dis-
tance between samples with different degradation levels. The above observations
confirm that our proposed loss function Lc can help HSTRC effectively extract
degradation information from unlabeled data through contrastive learning.

Fig. 3d quantifies the impact of λ on downstream task performance in terms
of RMSE and Score. The HSTRC exhibits robustness to variations in λ from 0.2
to 0.8. More visualization results such as attention in the dual branches can be
found in Appendix C.

Fig. 3. Sensitivity Analysis of λ. (a), (b) and (c) visualize the distribution of HSTRC’s
latent representations Z regarding the first 1000 samples in the FD002 dataset using
t-SNE. Each circle represents a MTS sample, with its color indicating the sample’s
actual RUL value. (d) presents the RMSE and Score on the FD002 under the different
λ values.

6.2 Comparison with State-of-the-Art

This experiment compares HSTRC with existing research in RUL prediction. As
shown in Table 2, all existing approaches utilize end-to-end supervised learning
methods. We cite the results from their original papers. To explore the impact
of sample view augmentation on distorting degradation information in MTS,
we also adopt the advanced method TS-TCC [5] based on the classical con-
trastive learning paradigm to RUL prediction. TS-TCC augments source samples
by adding noise and shuffling. Additionally, we create a baseline that does not
employ the contrastive loss function Lc to compare the performance of HSTRC.

By solely fine-tuning the FC layers, HSTRC delivers not only the best perfor-
mance on FD001, FD002, and FD004 but also near state-of-the-art performance
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Table 2. Performance Comparison in RUL Prediction

Learning Datasets FD001 FD002 FD003 FD004

Type MethodsRMSE Score RMSE Score RMSE Score RMSE Score

Supervised HALSTM [1] 14.53 322.4 N/A N/A N/A N/A 27.08 5649.1

RNN [24] 13.58 228 19.59 2650 19.16 1727 22.15 2901

AGCNN [15] 12.42 225.5 19.43 1492 13.39 227 21.50 3392

GCN [21] 12.76 266 N/A N/A 12.07 278 N/A N/A

LSTMBS [13] 14.89 481.1 26.86 7982 15.11 493.4 27.11 5200

DLSTM [16] 12.29 N/A 17.87 N/A 14.34 N/A 21.81 N/A

HAGCN [10] 11.93 222.3 15.05 1144.1 11.53 240.3 15.74 1218.6

BDL [14] 18.60 2774 22.90 7734 27.90 19990 28.10 53295

GAT [11] 13.21 303.1 17.25 5338.8 15.36 507.5 21.44 2971.9

RGCNU [29] 11.18 173.5 16.22 1148.16 11.52 225.0 19.11 2215.9

STAGNN [8] 11.50 187.2 13.81 826.3 11.05 196.0 14.30 1038.5

Self-Super. TS-TCC [5] 14.51 358.7 16.25 1356.3 18.39 1142.9 20.65 2350.6

+ Baseline 28.36 1959.3 43.45 119202 31.76 8371.3 38.81 61777

Fine-Tuning HSTRC 11.10 167.7 12.42 679.2 11.51 226.0 13.33 838.1

on FD003. Furthermore, compared with the cutting-edge supervised learning
model STAGNN [8], HSTRC archives up to 19.2% improvement in Score. These
results demonstrate that self-supervised learning paradigms can be successfully
applied to RUL prediction, and validate that our proposed HSTRC can effec-
tively learn representations from unlabeled MTS datasets. The visualized repre-
sentation distribution before and after fine-tuning can be found in Appendix D.
Comparative results between HSTRC and TS-TCC validate the hypothesis in
Sec. 1 that sample view augmentations could disturb the pattern of MTS, lead-
ing to suboptimal performance. Compared to the baseline in Table. 2, HSTRC
demonstrates significant improvements in RMSE and Score on all datasets. The
results of the baseline are consistent with our observations in Fig. 3a that the
baseline is not able to learn effective degradation information without Lc.

6.3 Active Learning Experiment

Active learning aims to approximate the efficacy of fully supervised learning by
selectively annotating a minimal subset of samples from a large pool of unla-
beled data. This study examines the performance of HSTRC and TS-TCC in
integrating self-supervised and active learning. Initially, HSTRC and TS-TCC
extract high-dimensional representations from unlabeled samples. Subsequently,
a limited set of these samples is annotated for fine-tuning of FC layers on the
top. To provide a baseline, the state-of-the-art supervised model STAGNN is
utilized for comparative analysis, undergoing end-to-end training in the active
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Fig. 4. Active Learning with Random Sampling on FD002 and FD004

learning scenario. The process involves executing 10 active learning cycles, where
2% of the unlabeled samples are annotated per cycle through random sampling.

Under the limited annotated samples, the performance of STAGNN and TS-
TCC (indicated by the blue and green lines in Fig.4) is suboptimal, whereas
our HSTRC, through only fine-tuning FC layers, achieved better performance
on both the RMSE and Score (the red line in Fig.4), with a maximum improve-
ment of 66.1%. For the FD002 and FD004 datasets, by annotating solely 16%
and 20% of the samples respectively, HSTRC can match the performance of fully
fine-tuning with 100% labeled data in Table. 2. This highlights that HSTRC
leveraging robust representation by contrastive learning can enhance the effi-
ciency in active learning scenarios.

Fig. 5. OOD Testing. The gray circles show the distribution of SD training sets. Circles
in other colors are representations of TD samples extracted by HSTRC after self-
supervised training on SD. Their colors correspond to their datasets.
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6.4 OOD Testing and Transfer Learning Experiment

The goal of transfer learning is to apply the knowledge from the source
domain (SD) to the target domain (TD), under the premise that the data distri-
butions between the two domains are similar. OOD testing can assess whether
the SD and TD are aligned in an identical distribution. This experiment aims
to evaluate whether HSTRC can accurately identify OOD samples and perform
transfer learning effectively. Specifically, we alternately choose the FD001-FD004
datasets as the SD and the remaining three test sets as the TD. The normal-
ization scaler from the SD is applied to the TD data. After HSTRC is trained
based on the SD, we transfer the learned knowledge to the TD.

Fig. 5 shows the OOD testing results with FD001-FD004 as SD, respectively.
Overall, the distributions of FD001 and FD003 are close to each other, indicating
they might have been collected under similar operating conditions. A similar dis-
tribution also exists between FD002 and FD004. When FD001 and FD003 serve
as SD (as shown in Fig. 5a and 5c), FD002 and FD004 are considered as OOD
data because FD001 and FD003 were solely collected under a single condition,
whereas FD002 and FD004 encompass six different operating conditions, making
it challenging for FD001 and FD003 to adapt to the diversity. Conversely, when
FD002 and FD004 serve as SD (as shown in Fig. 5b and 5d), FD001 and FD003
appear as in-distribution data, with their representations primarily located in
the edge of the SD distribution. This suggests that FD002 and FD004 could
transfer their knowledge to FD001 and FD003.

Table 3. Performance of HSTRC for Transfer Learning

Source

Target FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score

Zero-Shot

FD001 - - 51.07 35645 21.69 1861.0 54.23 45332

FD002 16.70 336.7 - - 19.07 684.8 18.27 2292.7

FD003 12.19 185.2 46.23 23281 - - 47.71 23394

FD004 14.07 285.7 13.42 809.8 13.66 288.4 - -

Fine Tuning

FD001 - - 41.68 32299 11.54 232.1 43.48 37618

FD002 11.18 182.8 - - 10.61 182.3 13.53 956.96

FD003 11.58 199.0 42.64 36521 - - 43.45 26901

FD004 11.33 188.1 13.39 808.8 11.28 194.7 - -

Table 3 presents the quantitative results of applying HSTRC to transfer learn-
ing. We employ two transfer learning strategies: Zero-Shot and Fine-Tuning. The
former directly applies the model trained on the SD to the TD, while the latter
further fine-tunes the downstream task through labeled TD data. The quan-
titative outcomes are consistent with the observations from the OOD tests in
Fig. 5, indicating effective transfer learning between FD001 and FD003, as well
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as between FD002 and FD004. The transfer performance from FD001 and FD003
to FD002 and FD004 showed poor results due to the latter being OOD for the
former. In contrast, the knowledge learned from FD002 and FD004 could be effec-
tively transferred to FD001 and FD003. Even with Zero-Shot, the performance
is comparable to or even better than most existing fully supervised methods
in Table 2. This experiment not only proves HSTRC’s ability to identify OOD
samples accurately but also demonstrates its effectiveness in performing transfer
learning between SD and TD with similar data distributions.

Table 4. Ablation Analysis of Spatial-Temporal Feature Encoder

Approaches FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score

STEF 11.82 211.3 14.55 868.9 12.64 284.1 15.97 1202.5

STFE RS 11.71 187.3 12.76 814.7 11.72 237.5 14.55 955.8

STFE A 13.58 228 20.65 2892.6 12.26 259.0 14.78 1128.0

STFE AR 11.50 189.3 13.14 704.3 12.71 264.8 17.20 1470.3

STFE AS 20.51 2739.8 20.07 2307.3 22.42 1520.6 22.64 3375.7

STFE ARS 11.10 167.7 12.42 679.2 11.51 226.0 13.33 838.1

6.5 Model Ablation Analysis

Compared to the existing model STAGNN [8], we incorporate improvements
in the spatial-temporal feature encoder of HSTRC, including the enhancement
of the temporal attention mechanism, spectral normalization, and residual con-
nections. This experiment aims to conduct an ablation analysis of these three
enhancements to assess their impact on the performance of downstream tasks.
Therefore, we decomposed the spatial-temporal feature encoder (STFE ASR)
into five submodels: STFE contains only GCN-TCN cascade structure; STFE A
introduces the attention mechanism; STFE SR adds spectral normalization and
residual connections; and STFE AR and STFE AS are based on STFE A but
incorporate residual connections and spectral normalization, respectively.

Table. 4 shows the results of the ablation analysis across four datasets. Com-
pared to the STFE, STFE SR and STFE A showed up to a 16.4% improvement
in Score. This indicates that spectral normalization, residual connections, and
attention effectively prevent feature collapse, enabling the feature encoder to
extract more diverse features. Consider STFE AS and STFE ASR, only com-
bining attention and spectral normalization will make the results less opti-
mized, but further adding residual connections can achieve the best performance.
Appendix E shows an additional explanation and visualization of submodels’
representations.
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7 Conclusion and Future Work

We propose a novel contrastive learning paradigm for MTS termed HSTRC
and introduce contrastive learning to RUL prediction for the first time. Unlike
classical paradigms that manipulate the original MTS in sample view augmenta-
tion, HSTRC uses dual branches with a heterogeneous spatial-temporal flipped
structure to generate two distinct feature views from the same source with-
out any disturbance. Integrating cross-branch spatial-temporal contrastive with
projected feature contrastive loss functions, HSTRC efficiently extracts robust
features from unlabeled MTS. Only fine-tuning the FC layers on the top, HSTRC
achieves superior performance on several RUL prediction datasets, with up to
a 19.2% improvement over the state-of-the-art supervised learning methods and
classical contrastive learning paradigms. Additionally, HSTRC demonstrates its
effectiveness in active learning scenarios, achieving close fully supervised perfor-
mance with only 20% of the labeled samples. It also accurately identifies OOD
data between SD and TD, providing valuable insights for transfer learning. This
paper mainly focuses on RUL prediction as a use case, but HSTRC as a novel
contrastive learning paradigm holds potential for other downstream tasks, such
as time series classification and anomaly detection, which we aim to explore in
future work.

A Implementation Detail of Spatial and Temporal
Feature Extractor

A.1 Spatial Feature Extractor

In SFE, we construct sensor graphs and extract spatial relationships between
sensors from MTS through GNN. A graph structure symbolizes sensors as nodes
encapsulated in an adjacency matrix A ∈ R

K×K . The learnable adjacency
matrix represent as a parameter matrix Θ ∈ R

K×K , activated by the Tanh
function: A = Tanh(Θ). As shown in Fig. 2a, the SFE consists of multiple
residual-connected blocks, each of which consists of a GCN layer, a spectral
normalization layer, and a spatial attention layer. The parameters of GCN are
normalized through the spectrum normalization [17] layer to maintain distances
between samples in the latent space.

A multi-head spatial attention layer [19] interprets sensor spatial relation-
ships by enhancing attention between sensor connections. The input of spa-
tial attention layer, Ĥs ∈ R

Cs×K , represents the spectral normalized feature
extracted by GCN, where Cs × K is the output shape after GCN convolution
and Ĥi

s ∈ R
Cs corresponding to the i-th sensor. The output of the multi-head

spatial attention layer for the i-th sensor, Hi
s, is given by:

Hi
s =

1
M

M∑

m=1

∑

j∈Ni

αm
ij Ĥ

j
s , (9)

with M being the number of attention heads, αm
ij being the attention coefficient

for the m-th head and Ni denotes the neighbors of sensor i.
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A.2 Temporal Feature Extractor

Similarly, the TFE includes multiple blocks with residual connections. Each block
comprises a TCN layer, a spectral normalization layer, and a temporal attention
layer. The spectral normalized output of TCN is denoted as Ĥt ∈ R

Ct×K . A
multi-head temporal attention mechanism is incorporated into each temporal
block. Diverging from [8], which treated sensors equally, we propose a novel
mechanism in this paper to enable distinguishing the significance of different
sensors at each time step. The matrix β ∈ R

Ct×K , representing the significance
of each sensor across Ct steps, is calculated as follows:

β =
exp

(
Sigmod

(
ĤtWt + b

))

∑
exp

(
Sigmod

(
ĤtWt + b

)) , (10)

where Wt ∈ R
K×K and b are the weight and bias of the attention layer, respec-

tively. The output of the multi-head temporal attention layer is:

Ht =
1
M

M∑

m=1

Ĥt � βm. (11)

Here, M represents the number of attention heads, βm is the attention coefficient
matrix for the m-th head, and the � symbol denotes element-wise multiplication.

B Evaluation Metrics

The RMSE and Score are utilized in the experiments. RMSE is a classic metric
that measures the error between the actual and predicted values in the regression
task:

RMSE =

√
∑N

i=1(yi − ŷi)2

N
, (12)

where N is the total number of predicted samples, yi represents the actual RUL
value of the i-th sample and ŷi is the predicted RUL value. Unlike RMSE,
which can not distinguish between early and delayed predictions, the Score will
bring more penalties to delayed RUL predictions. The lower Score indicates high
prediction accuracy.

Score =

{∑N
i=1(e

− ŷi−yi
13 − 1), if ŷi < yi∑N

i=1(e
ŷi−yi

10 − 1), if ŷi � yi
(13)

C Attention Visualization of Heterogeneous Branches

In Sec.6.1, we validated the effectiveness of HSTRC in extracting features
through heterogeneous dual branches combined with our proposed contrastive
objective function. As a novel contrastive learning paradigm, HSTRC is based
on the following two core hypotheses:
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Fig. 6. Spatial-Temporal Attention on Reference and Flip Branches

1. Heterogeneous models can learn different hidden feature views from the same
source data. Unlike existing contrastive learning methods that use homoge-
nous models with shared parameters to contrast different augmented sample
views, our paradigm employs two independent heterogeneous models.

2. Changing the order of spatio-temporal feature extraction can produce dif-
ferent hidden feature views. Current state-of-the-art RUL prediction meth-
ods [8] typically extract spatial features from the original time series first and
then extract temporal features (SFE-TFE). By reversing this order of spatio-
temporal feature extraction, i.e. extracting temporal features before spatial
features (TFE-SFE), we create heterogeneous models that can generate dif-
ferent feature views.

To validate these assumptions, an intuitive method is to visualize the spatio-
temporal attentions of the two branches based on the same source MTS. Spatial
attention reflects the importance of sensor connections, while temporal attention
can reveal the importance of different sensors at each time step. The comparison
of attention of the reference and the flipped branch on the same source data, as
shown in Fig. 6, indicates that heterogeneous branches focus on different aspects
of the same source data. This difference leads to the generation of different
hidden feature views, thus validating our hypotheses and further proving the
effectiveness of our proposed HSTRC.

D Distribution of Representation after Fine-Tuning

When training downstream tasks in Sec. 6.2, the parameters of the spatio-
temporal feature encoder G(·) are frozen. Only the feature projection module
P(·) and the downstream task module F(·) are fine-tuned through supervised
learning, i.e., using labeled data. In this section, we compare the distribution
changes of representations before and after fine-tuning. According to Fig. 7,
after fine-tuning through supervised learning, the distribution of representations
becomes more concentrated compared to before fine-tuning, while the overall
trend remains. This validates the robustness of the representations learned dur-
ing self-supervised learning phase.
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Fig. 7. The representation distribution before and after fine-tuning for downstream
task.

E Distribution of Representation for Ablation Analysis

In Sec. 6.5, we decomposed the spatio-temporal feature encoder (STFE ASR)
into five submodules for ablation analysis: STFE, STFE A, STFE SR,
STFE AR, and STFE AS. We conducted a quantitative result analysis in
Table. 4. This section visualizes the representation distribution of different mech-
anisms during the self-supervised learning phase.

Based on the visualization results for STFE A and STFE AS in Fig. 8, we
found that the representations using attention mechanisms not only distribute
according to the RUL trend but also cluster together based on the same engine.
This visualization potentially suggests that STFE A and STFE AS may achieve
the best performance on downstream tasks. However, contrary to intuition, the
result in Table. 4 shows that STFE A and STFE AS perform the worst in FD001
to FD004. This indicates that without residual connections, the robustness of
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Fig. 8. The representation distribution before and after fine-tuning

the features learned in self-supervised learning is poor, which is detrimental to
fine-tuning for downstream tasks.
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Abstract. Effective protein representation learning is crucial for pre-
dicting protein functions. Traditional methods often pretrain protein
language models on large, unlabeled amino acid sequences, followed by
finetuning on labeled data. While effective, these methods underutilize
the potential of protein structures, which are vital for function deter-
mination. Common structural representation techniques rely heavily on
annotated data, limiting their generalizability. Moreover, structural pre-
training methods, similar to natural language pretraining, can distort
actual protein structures. In this work, we introduce a novel unsuper-
vised protein structure representation pretraining method, cross-modal
contrastive protein learning (CCPL). CCPL leverages a robust protein
language model and uses unsupervised contrastive alignment to enhance
structure learning, incorporating self-supervised structural constraints to
maintain intrinsic structural information. We evaluated our model across
various benchmarks, demonstrating the framework’s superiority.

Keywords: Protein Representation · Pretrained Language Model ·
Structure-Sequence Pairing · Contrastive Learning · Unsupervised
Learning

1 Introduction

Learning effective protein representations is crucial for various biological tasks. In
recent years, deep protein representation learning has revolutionized the field,
notably in protein structure prediction, represented by AlphaFold2 [15], and
protein design, exemplified by [10] and ProteinMPNN [2]. With the advent of
low-cost sequencing technologies, a vast number of new protein sequences have
been discovered. Current methods typically pretrain protein language models on
large, unlabeled amino acid sequences[18,24] and then finetuned on downstream
tasks using limited labeled data. While sequence-based methods are effective,
they often fail to explicitly capture and utilize existing protein structural infor-
mation, which is vital for protein functions.

Given the high cost and time-consuming nature of annotating new protein
functions, there is a pressing need for accurate and efficient function annotation
methods to bridge the existing sequence-function gap. Since the functions are
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governed by folded structures, some data-driven approaches rely on learning
structural representations of proteins, which are then applied to various tasks
such as protein design, and function prediction and classification. Therefore, an
effective structural encoder is essential. To better leverage structural information,
several structure-based protein encoders have been proposed [6,9]. However, due
to the scarcity of protein structures, these encoders are often designed for specific
tasks, and their generalizability to other tasks remains unclear.

Protein structure encoders face two main challenges: 1) Data scarcity. The
number of reported protein structures is significantly lower than datasets in other
machine learning fields due to the challenges of experimental protein structure
determination. For example, the Protein Data Bank (PDB) contains 182K exper-
imentally determined structures, whereas Pfam has 47 million protein sequences
[19] and ImageNet contains 10 million annotated images. 2) Representation dif-
ficulty. Unlike sequences, traditional self-supervised language pretraining meth-
ods, such as masked language modeling, are not feasible for learning structural
representations. Introducing noise or perturbations into structural data can lead
to unstable or chemically incorrect structures, making augmented data unreli-
able. Therefore, the ability to pretrain on known protein structures has not been
widely applied to protein property prediction.

By rethinking the protein representations, we observe that the success of
sequence-based models is due to large-scale data and the guidance provided
by self-supervised signals. Considering there is a natural pairing relationship
between structure and sequence, establishing this relationship can help guide
structural learning without compromising the protein structure itself. Based on
this observation, we pose the question: Can we augment protein structure model
training supervised by robust pretrained protein language models?

Inspired by advances in cross-modal pretraining (e.g., CLIP [22], Context-
to-Vector [30]), we introduce a novel cross-modal contrastive protein learning
(CCPL). This method calculates contrastive loss between two independently
pretrained encoders, maximizing the similarity between paired protein struc-
tures and sequences while minimizing it for non-paired ones [26,28,29,32]. Com-
pared to supervised learning methods, our contrastive learning approach has sev-
eral advantages. First, finding the matching relationship between protein struc-
tures and sequences is natural. Second, our designed contrastive loss reduces
dependence on explicit functional annotations, facilitating the use of large-scale
unlabeled data. We reframe structural representation training as an information
retrieval task, where the protein structure is the query, and the goal is to retrieve
the sequence with the highest binding probability to the target protein structure
from a pool of candidates. To strengthen structural representation constraints,
we also propose a self-supervised contact map constraint based on intermediate
features from the structural encoder.

To evaluate our proposed framework, we conducted benchmark tests. Due to
the lack of established evaluation strategies for this novel pretraining paradigm,
we designed a series of evaluation experiments, including internal tasks (e.g., con-
tact map prediction and distribution alignment quality assessment) to demon-
strate internal contrastive alignment ability and refinement performance, and
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Fig. 1. (a) The proposed cross-modal contrastive learning framework utilizes a pre-
trained protein language model to guide the training of the protein structure model
through contrastive alignment loss. To reinforce information constraints on the struc-
ture, we introduce a self-supervised contact map prediction. (b) The internal and exter-
nal evaluation tasks for our trained structure model during inference phase.

external/downstream tasks (e.g., protein design and function prediction) to
demonstrate generalization capability. Our experimental results validate the
effectiveness of the CCPL framework, highlighting its robustness in pretrain-
ing performance and exceptional downstream task performance.

Our contributions can be summarized as follows:
• We propose an cross-modal protein representation framework, establishing

a novel deep alignment relationship between sequences and structures. For the
first time, we pretrain protein structural models under the guidance of rich prior
language knowledge from pretrained protein sequence models.

• We introduce a comprehensive evaluation system to assess the pretrained
structural models, providing benchmarks for the protein research community.

• Our proposed protein structural model pretraining demonstrates competi-
tive performance across various evaluation tasks.

2 Proposed CCPL Framework

2.1 Problem Statements

Viewing CCPL as a supervised pseudo-dense retrieval task, we treat the pro-
tein structure as a query and retrieve the most relevant sequence from a given



CCPL: Cross-Modal Contrastive Protein Learning 25

Fig. 2. Schematic diagram of the GVP module: Protein backbone atoms (C, Cα, and
N) form the basis for generating graphs with node and edge features based on k-nearest
neighbor relationships. These graphs are fed into the vector and scalar channels of the
GVP module to produce vector and scalar features. These primary features are then
enhanced with additional spatial features, including rotation frame, sidechain, orienta-
tion, and dihedral characteristics, to create comprehensive spatial structure features.

dataset. The overall framework, illustrated in Figure 1, involves training two
separate encoders to learn representations for protein structures and sequences,
respectively. The similarity between each protein structure-sequence pair is then
calculated, and a contrastive learning objective is used to distinguish between
positive and negative pairs. Formally, given a protein structure p and its paired
protein sequence m, the objective of CCPL representation training is to max-
imize the probability of the sequence that naturally pairs with the structure.
This selection process is guided by a scoring function δ(·), which evaluates the
pairing probability between the protein p and the candidate sequence m.

2.2 Protein Structure and Sequence Encoders

Equivariant Protein Structure Encoder. For downstream protein structure
tasks, it is essential that the predicted sequences remain unaffected by the ref-
erence frame of the structural coordinates. This means that the model’s output
distribution should be invariant under any rotation or translation applied to
the input coordinates H. Equivariant network models, such as geometric vector
perceptron (GVP)-based models, are commonly employed in protein 3D struc-
ture modeling to meet this requirement. Models like GVP-GNN [14] and GVP-
Transformer [10] have demonstrated impressive performance in protein design
tasks, highlighting the crucial role of the GVP module in representing structural
features while maintaining equivariant properties. Thus, we use GVP as our
equivariant structure module. For any transformation T ∈ E(3), the GVP mod-
ule ϕ is considered E(3)-equivariant since ϕ(T ·H) = T ·ϕ(H), and E(3)-invariant
since ϕ(T ·H) = ϕ(H). Moreover, the simplicity and lightweight nature of GVP
components make the GVP architecture well-suited for our structure module. A
schematic diagram of the GVP module is illustrated in Figure 2.
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Pretrained Protein Language Encoder. Pretrained protein language mod-
els have become integral to deep protein downstream tasks, having been trained
on extensive datasets. These sequence models inherently encapsulate rich struc-
tural information gleaned from sequence data, enabling them to effectively guide
structure model learning. Among the available models, we choose ESM-2 [18] as
our primary teacher model due to its exceptional performance.

Formulation. Formally, we denote the protein structure encoder as gφ with
parameters φ and the sequence encoder as fθ with parameters θ. The represen-
tations of the protein structure vector xp and the corresponding sequence vector
ym are then defined as gφ(xp) and fθ(ym), respectively.

2.3 Training Objectives

Contrastive Alignment Objective. To enable the contrastive learning pro-
cess, we first need to measure the similarity between each protein structure and
sequence pair. Drawing on previous research, we can utilize either dot product
or cosine similarity for this purpose. When using the dot product, the similarity
score for pairs (xi

p, y
j
m), where i, j ∈ [1, N ], is defined as:

δ(xi
p, x

j
m) = gφ(xi

p)
T · fθ(yj

m), (1)

where, by normalizing these scores, we then obtain cosine similarity. Since our
protein dataset includes only positive pairs of binding protein structures and
sequences, we need to create negative pairs for contrastive learning. We imple-
ment a batch-wise sampling strategy inspired by CLIP. For a given batch of
paired data {(xp

b , y
m
b )}B

b=1 with batch size B, we extract a list of protein struc-
tures {xp

b}B
b=1 and a corresponding list of sequences {ym

b }B
b=1. By combining these

lists, we generate B2 pairs (xp
i , y

m
j ) where i, j ∈ [1, B]. Pairs where i = j are pos-

itive, while pairs where i �= j are negative. This approach relies on a fundamental
assumption: if a protein and sequence pair is known to bind, it is likely that this
protein does not bind with other sequences and vice versa. This assumption is
validated by the distinct distribution patterns of positive and negative pairs.

We formalize this with two loss functions: the structure-to-sequence loss Lp

and the sequence-to-structure loss Lm . The structure-to-sequence loss quan-
tifies the likelihood of ranking the correct binding sequence higher than other
sequences for a given protein structure xb

p:

Lp
b(x

p
b , {ym

i }B
i=1) = − 1

B

B∑

i=1

log
exp(δ(xp

b , y
m
i ))

∑B
j=1 exp(δ(x

p
b , y

m
j ))

(2)

Conversely, the sequence-to-structure loss measures the likelihood of correctly
ranking the binding target for a given molecule yb

m:

Lm
b (ym

b , {xp
i }B

i=1) = − 1
B

B∑

i=1

log
exp(δ(ym

b , xp
i ))∑B

j=1 exp(δ(y
m
b , xp

j ))
(3)
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Therefore, the final contrastive alignment loss for a mini-batch is the average
of the two-direction losses Lalign as:

Lalign =
1
2

B∑

b=1

(Lp
b + Lm

b ). (4)

Fig. 3. Various alignment levels. (a) Residue-level alignment entails comparing each
pair of structure-sequence features residue by residue. (b) Protein-level alignment
involves comparing each pair of structure-sequence features protein by protein. The
features of each protein are amalgamated from all the residue features contained within
it. Identical colors indicate a sequence-structure pair originating from the same protein.

Contrastive Alignment Level. As shown in Figure 3, we propose to com-
pute the alignment loss at both the residue and protein levels, respectively. For
residue-level alignment, we compare the encoded sequence and structure fea-
tures residue by residue. In contrast, for protein-level alignment, we compare
the encoded features at a coarser, fine-grained level. Intuitively, alignment at
different fine-grained levels results in different capabilities. Finer-grained com-
parisons, such as residue-level alignment, necessitate more complex computations
but may yield better performance. Conversely, coarse-grained comparison align-
ments, such as protein-level alignment, may exhibit inferior performance but are
worth considering due to their lighter computational load. Refer to our experi-
mental section for a detailed analysis. Regardless of the level used for calculation,
the samples in the mini-batch will be randomly shuffled, and each pairing will
be different, thereby implicitly serving as a form of data augmentation.

Structural Reconstruction Constraint. As previously mentioned, the GVP
layers encode the core structural features using N, Cα, and O atoms (These
three types of atoms are called backbone atoms). To further enhance the struc-
tural constraints, we introduce a self-supervised structure reconstruction task.
While predicting the coordinates of virtual Cβ atoms directly from the structural
features of N, Cα, and O atoms would be the most straightforward approach,
it proves challenging to achieve accurate predictions in practice. Therefore, we
simplify this task by transforming the coordinate prediction into a contact map
prediction, illustrated in the Figure 4. Specifically, we utilize the intermediate
attention maps generated by the self-attention blocks depicted in Figure 1(a)
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Fig. 4. Pipeline for reconstructing the contact map based on Cβ atoms with length L:
First, attention maps are extracted from each layer of the self-attention blocks. These
maps undergo symmetrization and average product correction (APC) along the amino
acid dimensions to produce an L×L coupling matrix. This matrix forms the basis for
the final contact map predictions, which are refined using a regression layer.

to predict the contact maps related to Cβ [24]. In addition to serving as a con-
straint during training to preserve structural information, the generation of con-
tact maps can also serve as a metric for internally evaluating the performance
of the pretrained model.

Virtual Cβ Atom Generation. The virtual Cβ atoms are derived coordinates
that may not physically exist in every residue. However, their positions can be
inferred from the spatial relationships among protein backbone atoms: N, Cα,
and O atoms. The positions are calculated as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ0 = �(Cα) − �(N),
δ1 = �(C) − �(Cα),
δ2 = δ0 ⊗ δ1,

�(Cβ) = ε0 · δ0 + ε1 · δ1 + ε2 · δ2 + �(Cα),

(5)

where ⊗ denotes the cross product of vectors and �(∗) denotes the coordinates of
the corresponding atom types. And ε0 = 0.5680, ε1 = −0.5407 and ε2 = −0.5827
are constant coefficients.

Self-supervised Contact Map Prediction. The pipeline diagram of the con-
tact map predictor is depicted in Figure 4. Self-attention maps extracted from
the self-attention blocks undergo symmetrization and average product correction
(APC) to generate the final contact maps. The self-supervised structural loss is
formulated to constrain the structural feature representation using cross-entropy:

Lcontact = CrossEntropy(Sigmoid(Mpred),Mref )

= −
∑

i=1

M(i)
ref · log(M(i)

pred),
(6)

where Mref denotes the ground-truth contact maps (binary values 0 or 1), and
Mpred denotes the predicted values distributed between 0 and 1.

The pretraining objective involves jointly optimizing the contrastive align-
ment loss Lalign and the contact map loss Lcontact, with weighted values λ1 and
λ2, as expressed by::

Lpretrain = λ1 · Lalign + λ2 · Lcontact. (7)
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2.4 Inference Phase

As depicted in Figure 1(b), the architecture of the inference phase utilizes only
the pretrained language-enhanced structure model, rendering other flows unnec-
essary during this stage. Evaluating a pretrained protein structure model within
a novel training framework poses significant challenges. To address these chal-
lenges, we have developed a comprehensive evaluation system that includes mul-
tiple validation tasks, showcasing the model’s representation learning, alignment
capability, and generalization ability. Based on the necessity for fine-tuning, we
categorize the validation tasks into internal and external/downstream tasks.

External Evaluation Tasks. External tasks require fine-tuning and are
focused on downstream applications. We introduce the protein sequence design
task (also known as protein inverse folding), which involves predicting pro-
tein sequences based on corresponding protein backbone atomic coordinates.
Key metrics for this task include perplexity and accuracy of sequence recovery.
Additionally, we incorporate protein functional recognition tasks to validate the
robust representation capabilities acquired during training.

Internal Evaluation Tasks. Internal tasks do not require fine-tuning and
include contact map prediction and self-similarity evaluation. The contact map
prediction task uses the top-L long-range precision (P@L) metric to evaluate
the quality of the predicted contact maps. The self-similarity evaluation task
assesses the alignment between the language model and the structure model
using accuracy and KL divergence metrics.

3 Experiments

Table 1. Fmax of gene ontology term prediction and enzyme commission prediction.

Input Methods Gene Ontology Enzyme Commission
BP MF CC

1D CNN 0.244 0.354 0.287 0.545
ResNet 0.280 0.405 0.304 0.605
LSTM 0.225 0.321 0.283 0.425
Transformer 0.264 0.211 0.405 0.238

1D GCN 0.252 0.195 0.329 0.320
GAT 0.284 0.317 0.385 0.368
3D CNN 0.240 0.147 0.305 0.077

3D+1D GraphQA 0.308 0.329 0.413 0.509
GVP [13] 0.326 0.426 0.420 0.489
IEConv (residue level) [8] 0.421 0.624 0.431 -
GearNet [25] 0.356 0.503 0.414 0.730
CDConv [3] 0.453 0.654 0.479 0.820

3D Ours 0.459 0.663 0.491 0.828

3.1 Settings

Pretraining Datasets. We utilize a larger-scale protein dataset, PDB, com-
prising sequence-structure pairs, as the pretraining dataset. To prevent label
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leakage, we exclude all existing data also appearing in evaluation datasets. To
augment the datasets, we use the AlphaFoldDB for pretraining. This database
contains the protein structures predicted by the AlphaFold2 model.

Evaluation Datasets. The CATH dataset is widely employed, featuring train-
ing, validation, and test splits consisting of 18204, 608, and 1120 protein data
samples. In downstream protein design tasks, the training set is utilized for fine-
tuning, and the test set is used for evaluation. We also report results on Ts50 &
Ts500 [16]. Furthermore, the trRosetta set is utilized for contact map prediction,
comprising around 15000 instances. The CASP14 set, renowned for AlphaFold2,
though modest in number, closely resembles the practical environment of blind
tests and competitions. To summarize, the trRosetta set, CATH testing set,
Ts50/Ts500, and CASP14 set are all utilized for internal evaluation.

Implementation Details. During pretraining, AdamW optimizer with a batch
size of 8 and an initial learning rate of 1e-3 is used. We employ the ESM-2 base
version as the default teacher protein language model, with fixed parameters
in the training pipeline. The GVP module comprises 4 layers with a dropout
of 0.1, top-k neighbors of 30, a node hidden dimension of scalar features of
1024, and a node hidden dimension of vector features of 256. The self-attention
block following the GVP includes 4 self-attention layers, 8 attention heads, an
embedded dimension of 512, and an attention dropout of 0.1. It’s noteworthy
that we pretrain the model separately for residue-level alignment and protein-
level alignment. 2 NVIDIA GPU A100 80GB were used.

3.2 Evaluation on Protein Function Prediction Tasks

Table 2. Comparison among our protein design models (#2) and baselines (#1).
The best results are bolded, followed by underlined. Designp: Protein-level pretrained
model; Designr: Residue-level pretrained model.

# Models Perplexity Recovery (%)
CATH Ts50 Ts500 CATH Ts50 Ts500

1 Natural frequencies [10] 17.97 - - 9.5 - -
SPIN2 [21] - - - - 33.6 36.6
Structured Transformer [12] 6.85 5.60 5.16 36.4 42.40 44.66
Structured GNN [14] 6.55 5.40 4.98 37.3 43.89 45.69
GVP-Transformer [10] 6.44 - - 38.3 - -
AlphaDesign [4] 6.30 5.25 4.93 41.31 48.36 49.23
GVP-GNN-large [14] 6.17 - - 39.2 - -
GVP-GNN [14] 5.29 4.71 4.20 40.2 44.14 49.14
ProteinMPNN [2] 4.61 3.93 3.53 45.96 54.43 58.08

2 Design (w/o Pretraining) 6.27 5.05 4.87 39.62 49.21 50.01
Designp (w/ Pretraining) 4.51 3.82 3.35 50.1 55.7 59.5
Designr (w/ Pretraining) 4.48 3.76 3.28 50.8 55.8 60.3

Our method shows superior performance in gene ontology (GO) term prediction
and enzyme commission (EC) number prediction tasks, surpassing existing 1D-
only, 3D-only, and (3+1)D approaches. We used the Fmax accuracy metric for
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evaluation. These findings, detailed in Table 1, highlight the effectiveness of our
cross-modal contrastive learning approach.

The IEConv method, featuring both atom-level (Hermosilla et al., 2021) and
amino-acid-level (Hermosilla & Ropinski, 2022) variants, served as a key bench-
mark in our comparisons. The atom-level variant, denoted as "3D+Topo," uti-
lizes 3D coordinates and the topological structure of bonds between atoms. Our
approach outperformed this and other existing methods significantly. Follow-
ing the work of Hermosilla et al. (2021), Hermosilla & Ropinski (2022), and
Zhang et al. (2022), we assessed our method across three GO term prediction
sub-tasks: biological process (BP), molecular function (MF), and cellular compo-
nent (CC). Both GO term and EC number predictions are framed as multi-label
classification tasks. In essence, our approach integrates 1D and 3D data using
cross-modal contrastive learning, yielding robust representations and achieving
higher accuracy in GO and EC prediction tasks.

Fig. 5. Protein functional prediction tasks. (a) Comparing the fold-level predictions.
P@k denotes the top-k precision. (b) Performances for enzyme recognition task.

3.3 Evaluation on Protein Inverse Folding Tasks

Computational protein design, also known as protein inverse folding, aims to
deduce amino acid sequences given the corresponding atomic coordinates of
protein backbones. The protein design model serves as a key component for
downstream evaluation. It directly leverages the pretrained structure model as
the backbone, coupled with a non-autoregressive decoder featuring linear MLPs.
The CATH testing set and Ts50/Ts500 are employed to evaluate the primary
results. Table 2 presents a selection of several prominent baselines across different
types. Notably, ProteinMPNN [2] and GVP-Transformer [10] exhibit advanced
performance, particularly excelling in sequence recovery and perplexity. The
lightweight GVP-GNN [14] also demonstrates competitiveness, showcasing rela-
tively strong performance and speed. Our protein design models outperform the
baselines. Notably, the inclusion of a non-autoregressive decoder in our mod-
ule contributes to faster sampling speeds. Furthermore, regarding different lev-
els (Designp vs. Designr), while there is no significant disparity between the
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residue-level and protein-level pretrained modules in downstream tasks, Designr

slightly outperforms Designp overall. This observation suggests that any small
gaps between the two levels of pretrained models are further diminished during
the fine-tuning process. Additionally, within Group 2 of Table 2, we compared
the pretrained model with a non-trained model serving as the backbone. Notably,
the pretrained model significantly enhances performance in terms of perplexity
and recovery, underscoring the stronger generalization ability of the pretrained
structure model for downstream tasks.

3.4 Evaluation on Protein Fold-level Classification

Furthermore, we undertake predictions on challenging fold types based on
the Fold dataset [7], which essentially involves a less data-intensive multi-task
enzyme function prediction. We gather approximately 700 enzymes with exper-
imentally determined structure-sequence pairs across 10 folds from RCSB for
multi-class functional prediction tasks. This involves precisely predicting the
fold level to which an enzyme belongs. ‘Fold’ here refers to the 3D arrange-
ment of secondary structural elements (such as alpha helices and beta sheets)
that characterize a particular protein or group of proteins. Proteins with similar
folds typically share significant structural similarities, even if their sequences and
functions differ. Fold classification can offer insights into evolutionary relation-
ships among proteins. The objective of this setup is to predict, within enzymes
with mixed folds, the specific fold to which an enzyme belongs. As illustrated in
Figure 5(a), we choose ESM-IF and GVP as baseline structure-to-sequence mod-
els, as they also utilize N, Cα, and C as standard inputs. These comparisons val-
idate the superior structural representation capabilities by a large margin (Ours:
16.8%P@1, 31.3%P@2, 40.2%P@3). We employ ESM-2 as a language modality
input for comparison to confirm its sequence-only representation capabilities.
Although ESM-2 (11.5%P@1, 24.5%P@2, 36.5%P@3) slightly outperforms the
earlier GVP, it significantly lags behind the performance of ours, demonstrating
enhanced generalization ability due to the incorporation of context information.

3.5 Evaluation on Functional Enzyme Recognition

To explore enzyme recognition through binary classification, we leverage a novel
dataset that extends the Fold dataset. Each fold in this dataset is meticulously
crafted to include an equal number of enzymes, balanced with non-enzyme neg-
ative samples. Given the binary nature of the classification task, positive and
negative samples are aggregated across folds and then randomly divided, with
80% allocated to the training set and 20% to the evaluation set. Our experi-
mental findings, as illustrated in Figure 5(b), reveal that our model, augmented
with prior language enhancements, achieves the highest performance, boasting
an average accuracy of 97%. Among the baseline models, ESM-IF and ESM2
yield comparable accuracies of 93% and 92%, respectively, despite operating on
different modalities (sequence vs. structure). Notably, our model outperforms
ESM-IF, a benchmark recognized for its exceptional representation and similar-
ity in modalities, indicating superior generalization capabilities.
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3.6 Zero-shot Learning for Protein Fitness Prediction

Additionally, we introduce a zero-shot learning approach for fitness prediction,
which enables the direct validation of the model’s representational stability in
a non-parametric manner. To ensure a thorough and unbiased comparison, we
selected prominent protein language models and inverse folding models as bench-
marks, as depicted in Figure 6. All baseline models utilize zero-shot learning for
evaluating mutation effects through the ProteinGym dataset [20], which encom-
passes millions of mutations. Our proposed method yields an average ρ of 43.0%,
consistently achieving the top matching rank. This suggests that leveraging prior
language knowledge significantly contributes to enhanced overall performance in
mutation prediction. In contrast, the optimal baseline model (ESM-IF) scores
42.2%. The superiority in performance of our model can be attributed to its
dual advantage, encompassing both contextual and structural transfer learning
within the proposed training paradigm.

Fig. 6. Spearman’s rank correlation on ProteinGym set.

4 Ablation Studies and Analysis

Table 3. Internal evaluation across test sets. Group 1 showcases the contact map pre-
dictions, measured by P@* scores. Group 2 focuses on retrieval alignment evaluations,
quantified by alignment accuracy and KL distance. The acc1 and acc2 metrics denote
the accuracy of structure-to-sequence and sequence-to-structure alignment.

Group Level CATH Test Set trRosetta Set Ts500 Set Ts50 Set CASP14 Set

P@L P@L2 P@L5 P@L P@L2 P@L5 P@L P@L2 P@L5 P@L P@L2 P@L5 P@L P@L2 P@L5
1 Residue 78.05 90.97 96.12 87.69 94.94 96.89 90.31 96.67 98.10 91.36 98.66 100.00 74.9 91.49 95.34

Protein 72.21 88.03 98.31 81.30 92.42 96.18 83.78 94.14 97.44 85.18 96.32 99.53 68.24 87.23 93.96
acc1 acc2 KL acc1 acc2 KL acc1 acc2 KL acc1 acc2 KL acc1 acc2 KL

2 Residue 87.71 87.65 0.004 96.13 96.23 0.0001 94.69 95.02 0.0001 98.29 98.41 0.0001 30.87 30.45 0.0001
Protein 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00

4.1 Internal Contact Map Generation

Contact map predictions serve as a significant indicator of structural representa-
tion capabilities. Due to our pretraining mechanism, the contact map predictor
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can generate accurate contact maps directly without the need for fine-tuning.
Group 1 of Table 3 showcases the contact map prediction scores, evaluated across
the CATH, trRosetta, Ts50/Ts500, and CASP14 test sets. Both the residue-level
and protein-level pretrained models demonstrate high P@L accuracy in predict-
ing contact maps across all datasets, indicating that the pretrained structure
module has acquired rich structural representations. Notably, the residue-level
evaluation exhibits superior performance within Group 1, likely attributable to
its finer granularity. Expanding on this analysis, the ability of our pretrained
models to generate precise contact maps across diverse datasets underscores
their robustness and generalization potential in capturing intricate structural
details. Such proficiency in contact map prediction signifies the effectiveness of
our pretraining approach in enhancing structural representation learning.

4.2 Retrieval Alignment Evaluation

In the proposed pretraining framework, we operate under the strong assump-
tion that protein language models and protein structure models are equally
proficient in representing features, albeit through different modalities. Hence,
we advocate for quantifying the sequence-structure retrieval power to gauge the
alignment prowess of the pretrained model. Reflecting on the contrastive align-
ment loss employed during pretraining, it becomes evident that the loss encom-
passes both structure-to-sequence and sequence-to-structure alignment calcula-
tions. The intermediate state score computations offer a direct means to eval-
uate the multi-modality alignment level. The retrieval alignment evaluation on
the CATH, trRosetta, Ts50/Ts500, and CASP14 test sets is presented in Group
2 of Table 3. Additionally, we provide residue-level and protein-level results for
comprehensive analysis. It’s noteworthy that the protein-level pretrained model
exhibits a higher ease in aligning sequences and structures, evident through
higher accuracy and lower KL distance, which aligns well with our intuition.
Overall, the pretrained structure module demonstrates a robust alignment level,
underscoring the effectiveness of the proposed framework.

Fig. 7. Visualization using t-SNE to demonstrate enzyme recognition.



CCPL: Cross-Modal Contrastive Protein Learning 35

4.3 Classification Visualization

To visually represent the efficacy of enzyme classification, we advocate the uti-
lization of t-distributed Stochastic Neighbor Embedding (t-SNE) as a means to
illustrate the clustering patterns of enzymes, as depicted in Figure 7. Employing
this visualization technique provides insights into the distribution of enzyme data
points in a lower-dimensional space. In the context of enzyme recognition, our
proposed structural model manifests discernible classification boundaries within
the t-SNE plot. This observation underscores the robustness of our model’s fea-
ture representation capabilities. The distinct clustering of enzymes reaffirms the
model’s ability to delineate between enzyme and non-enzyme samples effectively,
further validating suitability for the task of functional recognition.

5 Related Work

Protein Language Models. Protein language modeling has emerged as a
promising avenue for unsupervised learning of protein primary structures [11,27,
31]. Models such as UniRep [1] utilize LSTM or its variants to capture sequence
representations and long-range dependencies. TAPE [23] benchmarks a range of
protein models across various tasks, affirming the effectiveness of self-supervised
pretraining methods. Many efforts have focused on enhancing model scale and
architecture to capture richer protein semantics. For instance, ESM-1b employs a
Transformer architecture and masked language modeling strategy to learn robust
representations from a large-scale dataset. Subsequently, ESM-2 [17] extends
ESM-1b with larger-scale parameters (15 billion), achieving superior results com-
pared to smaller ESM models.

Protein Structure Models. Given that a protein’s function is often deter-
mined by its structure. The advancements in protein structure prediction meth-
ods have led to initiatives like AlphaFoldDB, providing over 200 million pro-
tein structure predictions to accelerate scientific research. Building upon this
progress, various protein structure models have emerged, aiming to encode spa-
tial information using convolutional neural networks (CNNs) or graph neural
networks (GNNs). Among these methods, IEConv [8] introduces a convolu-
tion operator to capture all relevant structural levels of a protein. GearNet [25]
encodes the spatial information by adding different types of sequential or struc-
tural edges and then performed relational message passing on protein residue
graphs. GVP-GNN [13] designed the geometric vector perceptrons (GVP) to
learn both scalar and vector features in an equivariant and invariant manner,
while [5] adopts SE(3)-invariant features as model inputs and reconstruct gradi-
ents over 3D coordinates to avoid the complexity of SE(3)-equivariant models.
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6 Conclusions and Limitations

We propose leveraging pretrained protein language model to train protein struc-
ture models using cross-modal contrastive learning . Our approach demonstrates
superior performances in various evaluation tasks. However, challenges remain,
including the scope of language model transfer, data efficiency, generalization,
computational resources, and evaluation metrics. Addressing these limitations
will be crucial for advancing the utility of pretrained protein language models in
protein structure prediction and related applications.
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Abstract. A large amount of procedural videos on the web show how
to complete various tasks. These tasks can often be accomplished in dif-
ferent ways and step orderings, with some steps able to be performed
simultaneously, while others are constrained to be completed in a spe-
cific order. Flow graphs can be used to illustrate the step relationships of
a task. Current task-based methods try to learn a single flow graph for all
available videos of a specific task. The extracted flow graphs tend to be
too abstract, failing to capture detailed step descriptions. In this work,
our aim is to learn accurate and rich flow graphs by extracting them
from a single video. We propose Box2Flow, an instance-based method to
predict a step flow graph from a given procedural video. In detail, we
extract bounding boxes from videos, predict pairwise edge probabilities
between step pairs, and build the flow graph with a spanning tree algo-
rithm. Experiments on MM-ReS and YouCookII show our method can
extract flow graphs effectively.

Keywords: Flow Graph · Procedural Videos · Object Detection

1 Introduction

Procedural videos showing how to perform various tasks can be found on video
sharing platforms, ranging from adding oil to cars to making cakes. This wealth
of data creates an opportunity for computer vision systems [37,38,40] to learn a
computational representation of those multi-step procedures, which can then be
used in various downstream applications ranging from video activity segmenta-
tion to general procedure analytics.

However, in real-world procedures seemingly identical tasks are often per-
formed differently by individual users, including, e.g., using different materials
or cooking ingredients, different actions, different step orderings, and different
number of steps, while also sharing some common procedural elements. This will
lead to different procedure workflows depending on each instance of the task as
recorded in a video. As shown in Figure 1a, 1c, two recipes, Carnitas Tacos
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Fig. 1. (a), (c): Two recipes for making tacos that differ in ingredients, actions, and
number of steps. (b), (d): The corresponding flow graphs of the two recipes.

With Cilantro Lime Sauce and Carne Asada Tacos, both belong to the same
task category, making tacos, but they are very different. The two recipes use dif-
ferent ingredients for flavoring. Carnitas Tacos With Cilantro Lime Sauce
added the sauce in the last step while Carne Asada Tacos marinated the meat.
In terms of actions, Carnitas Tacos With Cilantro Lime Sauce cooked the
pork with water and pulled apart the pork while Carne Asada Tacos grilled and
diced the meat. Carnitas Tacos With Cilantro Lime Sauce heated the tor-
tillas after pulling apart the pork while Carne Asada Tacos heated the tortillas
before dicing the meat. Finally, Carnitas Tacos With Cilantro Lime Sauce
is annotated with 10 steps while Carne Asada Tacos is annotated with 6. As
a result, their workflows are also different, as in Figure 1b, 1d. Therefore, in
order to comprehend procedural videos, a computer vision system must be able
to recognize the various types of steps and their possible sequences. We propose
that disassembling each video instance separately into individual steps can lead
to a better understanding of the overall task than task-based methods [15,21,37]
that try to learn task steps simultaneously by processing all available videos of
a particular task.
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One aspect of understanding the procedure flow in the video is determin-
ing the step dependencies. Some earlier steps are prerequisites of later steps.
For example, in Carnitas Tacos With Cilantro Lime Sauce, the sauce cor-
responding to steps 0 and 1 must be made, the meat corresponding to steps
2-7 must be cooked, and the tortilla corresponding to step 8 must be heated in
order for the taco to be assembled in step 9. Therefore, steps 1, 7, and 8 are pre-
requisites of step 9, and this relationship is defined as sequential. Meanwhile,
steps 1, 7, and 8 deal with three parallel components of the taco, and switch-
ing their order will not affect the final dish. In other words, the step sequence
0,2,1,3,4,5,6,8,7,9 would also be a valid recipe resulting in the same dish. Par-
allel relation is formally defined as different steps involving non-overlapping
ingredients and utensils. Swapping the ordering of parallel steps will not affect
the final dish. The sequential and parallel structure of the steps in a recipe can
be characterized as a flow graph, where directed edges connect sequential steps
(represented as nodes), and the edge direction describes the execution order. All
topological sorts of the flow graph will be valid recipes resulting in the same
dish. A formal definition will be given in Section 3. The flow graphs of the two
recipes Carnitas Tacos With Cilantro Lime Sauce and Carne Asada Tacos
are shown in Figure 1b and 1d respectively.

In this paper, we study the problem of predicting the flow graph given a
procedural video instance and its step starting and ending timestamps. Some of
the challenges associated with predicting flow graphs are: First, according to
the definition of the parallel relation, the model needs to accurately recognize
the involved ingredients and utensils, including distinguishing visually similar
utensils and different ingredients. Second, cooking involves complex operations
that transform ingredients both mechanically and chemically. Attributes such as
shape and color can change drastically during this process. Consequently, the
model needs to track the state change of the ingredients.

To tackle these challenges, we propose the Box2Flow framework, as shown in
Figure 2. We first calculate the edge probabilities for all step pairs in a video to
get a probability matrix. Then, we create the flow graph from the matrix with a
spanning tree algorithm for directed graphs. More specifically, to make our model
focus on the ingredients and utensils involved in order to more accurately predict
the step relations, we extract the object bounding boxes in the step segments. To
tackle the second challenge, we include the whole video as context to monitor
the state of each ingredient. We experiment on the labeled MM-ReS[26] and
the unlabeled YouCookII[38] datasets. Furthermore, we interpolated the missing
frames in MM-ReS to improve the performance. In addition to traditional recall
and precision metrics, we use maximal common subgraph[5] for a more structural
evaluation. Results show Box2Flow can effectively predict the flow graphs.

In summary, the contributions of this paper are:

– We study the less explored problem of generating the flow graph from a single
procedural video instance.

– We propose Box2Flow to solve the problem of predicting flow graphs from
videos. Experiments show the framework effectively predicts the flow graphs.
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– We interpolate the missing frames in the MM-ReS dataset to extract flow
graphs effectively. We also explore the utility of a learned flow graph predictor
trained on MM-ReS to a zero-shot transfer task for the unlabeled YouCookII
dataset.

– We assess the accuracy of the predicted flow graphs to the ground truth
graphs using the structural similarity metric, Maximal Common Subgraphs.

Fig. 2. Overview of our method. We first predict the edge probabilities for all step
segment pairs then create the flow graph using a spanning tree algorithm from the
probability matrix.

2 Related Work

Our work relates to video graph representations, flow graph prediction, and
their downstream applications. Previous work in computer vision has focused
on various graph representations for videos. When characterizing tasks with
multiple steps as flow graphs, previous work has focused on flow graph prediction
and applications for text, sequences of images, and program codes. However, flow
graph prediction from a single procedural video instance has been less explored.
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Video graph representations. One of the most studied graph representations
is the scene graph. [6,18] generated video scene graphs by predicting the scene
graphs at each frame. Although the temporal properties were considered during
prediction, the outputs for each frame remain unconnected. [10] added temporal
edges between the same node in neighboring frames, which is also called spatio-
temporal graph. [31] built a panoptic 3D scene from RGB-D videos by exploiting
the actual spatial relations between neighboring scenes. For representing videos
as various types of graphs, [14,29] learned a semantic graph from the entire
instructional video where the nodes learn semantic concepts and the edges are
calculated from the node features. [15,21] learned general flow graphs from
multiple videos for each task and [37] built a large flow graph together for all
tasks. In these non-instance-based works, if two steps are performed in different
orderings in different videos, they are treated as parallel. However, the parallel
relationships might not be fully covered due to the limited number of videos in
the dataset. On the other hand, the relationships between the steps are intrinsic
to the steps themselves through the involved objects. To address the issues caused
by task-based methods that learn a single graph from multiple videos, in our
work, we focus on an instance-based method that learn flow graphs specific
to each available video. This approach allows us to develop more precise and
detailed video-specific representations.

Regarding graph downstream applications, [7,24] used scene graphs for video
rendering and synthesis, respectively. [25,28] used spatio-temporal graphs for
temporal moment localization given language queries and action recognition,
respectively. Specifically, [28] included linguistic and visual nodes in their graph.
[33] formulated video snippets as graph nodes and snippet correlations as edges
for action detection. [2] used task graphs where nodes correspond to objects
and edges correspond to actions for video synthesis. [12] represented videos as
conjugate task graphs where the nodes are actions, and the edges are states for a
single-shot action plan. [13] used graph representations for action segmentation
where the nodes are segments, and the edges represent neighboring segment
relations. [30] used graphs for video captioning where the nodes include both
whole video features and word features.

Flow graph prediction and downstream applications. [22,34] created the
fine-grained flow graphs from Japaneses and English recipe texts respectively
where each node is a named entity. [26,27,36] created recipe step flow graphs
from text and images. Specifically, [36] used Japanese language text.

In terms of applications employing flow graphs, [20] used flow graphs from
5G communication base station product manual texts for error detection and
correction. [3] used program control flow graphs for malware detection. [8] used
general task flow graphs for video grounding, which were created from web text.
Specifically, only one flow graph is created for all videos of the same category.
[23] used the help of flow graphs from text to train a captioning model where the
inputs include a list of ingredients and a sequence of images where each image
is considered as a single step.
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In summary, instance-based flow graph prediction from a single video has
been less explored. Compared with text, predicting flow graphs from visual
inputs are more challenging. The involved objects might not be salient in images
and videos. The view points might also change and the cooking process will
drastically change the visual appearances of the ingredients, making them dif-
ficult to track therefore challenging to create the flow. Meanwhile, long videos
contain more information than a sequence of a few frames (less than 100 images)
and, subsequently, are more challenging. [26,27] are image-based methods which
average all image features in a single step while we study video-instance inputs.
We explicitly model the input images or video clips as sequences to capture the
action information. Furthermore, predicting a flow graph for each video can pre-
serve the specific steps in the recipe that might not be covered by the general
task flow graph, e.g., A general flow graph of the task making coffee might miss
some steps specific to certain videos including add milk foam and add syrup
which gives unique flavoring to the recipe. These steps could be included when
predicting the flow graph from one video instance. In this paper, we predict a
flow graph for each video instance by predicting pairwise edge probabilities from
both frame-level and object features, then convert the probability matrix to a
flow graph with a spanning tree algorithm.

3 Method

3.1 Flow Graph Definition

A flow graph F = (S,E) is a directed acyclic graph where each node is a step.
Let the set of nodes S = {S1, S2, . . . , Si, . . . , Sn}, where Si is the i-th step in the
recipe. A directed edge (Si, Sj) exists between if and only if the following rules
hold:

1. i < j, and
2. Si and Sj are sequential, and
3. if j > i + 1, there is no such k where i < k < j, such that both step pairs

(Si, Sk) and (Sk, Sj) are sequential.

Rule 1 determines the graph’s flow where the later nodes are descendants. Rule
2 considers the sequential relation as edges, and rule 3 does not allow skip edges.

In other words, an edge connects a step with its direct consequence. If Si

and Sj are sequential but indirect (e.g., steps 2 and 9 in Carnitas Tacos With
Cilantro Lime Sauce Recipe, as shown in Figure 1a, 1b), there exists a path
with length at least two between Si and Sj and vice versa.

3.2 Pairwise Edge Probability

Given a video V and the start and end frames for each step T = {(si, ei)|1 ≤ i ≤
n}, our goal is to predict the flow graph F or the set of edges E ⊆ {(Si, Sj)|1 ≤
i < j ≤ n}. In addition, we denote the i-th video segment V [si : ei] as Vi.
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To predict the pairwise edge probability, we first extract the object bounding
boxes with an object detector:

Bi = Fod(Vi) (1)

where Bi = {(xminkt
, yminkt

, xmaxkt
, ymaxkt

)}.(xminkt
, yminkt

) is the top-left cor-
ner and (xmaxkt

, ymaxkt
) is the bottom-right corner of the k-th box in the t-th

frame of the segment. The frame patches defined by Bi are denoted as Vi[Bi].
Next, we extract the object features with a video encoder:

Fbi = Ffe(Vi[Bi]) (2)

where Fbi ∈ R
Ki×d. Ki =

∑ei−si+1
t=1 kt is the total number of bounding boxes in

the segment and d is the output feature dimension.
Similarly, the frame features of Vi can be extracted as

Fi = Ffe(Vi) (3)

where the bounding boxes can be treated as (1,1,W ,H) for all frames. W is the
frame width and H is the frame height. Fi ∈ R

(ei−si+1))×d.
As the step relations given only two video segments can be ambiguous, we

also include the whole video feature F as context, which consists of all frame-level
features stacked together:

F = stack(F1, F2, . . . , Fi, . . . , Fn) (4)

F ∈ R
N×d where N =

∑n
i=1(ei − si + 1) is the total number of non-background

frames related to the task.
Then, we aggregate the frame and box features for each segment using BERT

with adapters[11]. The features are first projected to BERT input embedding
dimension through the same linear layer:

Fei = tanh (Ffc(Fi)) (5)
Febi

= tanh (Ffc(Fbi)) (6)

Fe = tanh (Ffc(F )) (7)

The frame and the box embeddings are stacked together with the BERT
[CLS] embedding and fed through the transformer encoder to extract the step
features. The position IDs for the kt boxes and the frame embeddings in the t-th
frame are all t, and the [CLS] embedding has position ID 0. The output of [CLS]
representation is taken as the aggregated feature. For the context feature, only
the frame feature F is used.

fi = Fbertstep

(
stack(Fcls, Fei , Febi

)
)

(8)

f = Fbertctx (stack(Fcls, Fe)) (9)

where Fbertstep , Fbertctx are two different BERT adapters for step features and
context features respectively. Fcls is BERT [CLS] embedding. fi, f ∈ R

dbert are
1-D vectors with BERT output dimension.
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Finally, two-step features fi, fj , (i < j) and the context feature f are concate-
nated and fed through an MLP to predict the pairwise sequential probability:

pij = σ (Fmlp(fi ⊕ fj ⊕ f)) (10)

where σ(·) is the Sigmoid function and ⊕ stands for concatenation.
During training, we use the weighted binary cross-entropy loss:

L = −ws

∑

1≤i<j≤n

[wpyij log pij + (1 − yij) log(1 − pij)], (11)

where ws is the video sample weight, wp is the positive weight for unbalanced
label distribution. yij = 1 for sequential relation, both direct and indirect, and
yij = 0 for parallel relation.

Multi-modality. Our framework can be easily extended to prediction with only
text or both video and text modalities. When only the recipe text is available,
we have R = R1 ⊕R2 ⊕ . . .⊕Ri ⊕ . . .⊕Rn, where Ri is the text for the i-th step.
Then, the text tokens are directly fed to the BERT adapters to get the features
for the MLP module in Equation 10:

ftexti = Fberttext
(Ri) (12)

ftext = Fberttext
(R) (13)

The text-described step and context features share the same adapter. The
sequential probability is calculated as follows:

pij = σ
(
Fmlp(ftexti ⊕ ftextj ⊕ ftext)

)
(14)

When both video and text are available, after the features fi, f, ftexti , ftext are
extracted as Equation 8, 9, 12, 13, the probability is calculated as:

pij = σ
(
Fmlp(fi ⊕ fj ⊕ f ⊕ ftexti ⊕ ftextj ⊕ ftext)

)
(15)

Three different adapters are involved: video step, video context and text.

3.3 Graph Construction

We construct the flow graph after all the pairwise scores P = {pij |1 ≤ i < j ≤ n}
have been calculated. Since most of the flow graphs in the real world are trees
with at most one descendent for each node, we focus on constructing trees.
Because of rule 3 in Section 3.1, if the flow graph is a tree and there is an edge
between (Si, Sj), Sj has to be the earliest step such that Si and Sj are sequential.
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Algorithm 1. Flow graph from proba-
bility matrix

Inputs: probability matrix P , number of
steps n
Output: edge set E
E ← φ
Ecan ← {(Si, Sj)|pij > 0.5}
for i = 1 to n do

I ← {j|(Si, Sj) ∈ Ecan}
if I �= φ then

j ← argminj>i(j ∈ I)
E ← E ∪ {(Si, Sj)}

end if
end for
Return E

Therefore, we first select the edges
according to the standard probability
threshold 0.5 to get a set of candidate
edges Ecan = {(Si, Sj)|pij > 0.5}.
Then, for each step i, we select the
earliest step j such that (Si, Sj) ∈
Ecan to form the flow graph, as in
Algorithm 1.

4 Experiments

4.1 Datasets and Metrics

We use two datasets, labeled MM-
ReS[26] and unlabeled YouCookII[38].

MM-ReS consists of recipe texts, step images and annotated flow graphs.
The original dataset includes 9850 recipes collected from the Internet. Since we
focus on predicting tree graphs, we only use the 8370 recipes with tree annota-
tions and randomly split into training, validation and test sets, with 6696, 837,
837 each. 64.5k steps are annotated in flow graphs. The dataset includes 131k
images, with 2.8 images/step on average for steps with images. The images can
be treated as short video clips for each step. Meanwhile, 18% of the steps do not
have images and need to be removed, zero-padded or interpolated.

YouCookII consists of cooking videos from YouTube, with step starting and
ending time annotations and step text descriptions rephrased by annotators but
without annotated flow graphs. We use 1181 training videos and 414 validation
videos, which are still available on Youtube. There are 7.7 steps/video on aver-
age. For evaluation, we manually annotated the flow graphs of 39 videos in the
training set and 63 videos in the validation set. 97 of the annotations are trees.
During training, we combined the manual annotation and predictions from a
text model trained on MM-ReS as labels.

Fig. 3. An example of ground truth and predicted flow graphs where the recall and
precision are high but very different structurally. The recipe is Peanut Butter and
Jelly Sandwich from MM-Res.
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Metrics. Following [26], we report edge-level recall Re, precision Pe, F1 and
recipe-level recall Rr, precision Pr, F1, which are calculated as the follows:

Suppose the ground truth edge set of the i-th video in the dataset is Ei, the
predicted edge set is Êi, | · | denotes set cardinality and there are M videos in
the dataset,

Re =
∑M

i=1 |Ei ∩ Êi|
∑M

i=1 |Ei|
, Pe =

∑M
i=1 |Ei ∩ Êi|
∑M

i=1 |Êi|
(16)

The edge-level F1 is the harmonic average between Re and Pe. Define Ri, Pi as
the precision and recall for each recipe, calculated as

Ri =
|Ei ∩ Êi|

|Ei| , Pi =
|Ei ∩ Êi|

|Êi|
(17)

Define F1i as the harmonic average between Ri and Pi. Then Rr, Pr, F1r are
calculated as 1

M

∑M
i=1 Ri,

1
M

∑M
i=1 Pi,

1
M

∑M
i=1 F1i respectively.

However, these metrics might not accurately reflect the structural similarity
between the predicted and the ground truth graph, as shown in Figure 3, taken
from Peanut-Butter-and-Jelly-Sandwich-1 recipe in MM-ReS. The ground
truth shows two branches merging, while the predicted is a chain. Therefore,
the structures are very different. However, the only different edge is (2,6) in the
ground truth and (2,3) in the predicted. Recall, precision, and F1 are all as high
as 83% in this case. As a result, we also include a structural similarity metric
maximal common subgraph (MCS)[5]. Define cc as the number of nodes in the
connected component of E ∩ Ê with the maximum size and n is the number of
nodes in E, MCS = cc/n. In the example, the maximal common subgraph is
{(3,4),(4,5),(5,6)} with 4 nodes and mcs=4/7=57%.

4.2 Compared Methods

We investigate methods using different modalities, including video-only, text-
only, and video+text. 1Specifically since only a few annotations are available for
YouCookII, we directly transfer a pre-trained model on MM-ReS for text-only
to show zero-shot ability.

We include video captioning as a baseline for video-only methods. Captions
are first generated for videos then flow graphs are created from the captions
using Equation 14. We also manually annotated some examples from generated
captions. The details are in our supplement. We compare with the baseline video
captioning methods MART[17] and VLTinT[35].

To show the effects of bounding boxes, we compare Box2Flow with its vari-
ance using only frame features Fei in Equation 8 but not box features Febi

. The
variance is denoted by "f". To remove the effects of more parameters introduced

1 Our results are not directly comparable with [26,27] because of different evaluation
subsets and code not available.
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by two adapters, we also include models using the same adapter for both con-
text and step features, denoted by "1". Specifically, for video+text methods on
YouCookII, all methods are trained with one adapter.

For MM-ReS, we fix bottom-up attention[1] for feature extraction and com-
pare two different object detectors, Detectron2[32] pre-trained on COCO[19]
and SAM[16] masks, denoted by "C" and "S" respectively. As 18% of the steps
do not have images in MM-ReS, we also study the effect of interpolating the
missing images using instruct-pix2pix[4] for image+text models, denoted by "i".
Otherwise, we zero-pad the image features for image+text methods and directly
remove these nodes for image-only methods.

For YouCookII, we compare two different frame feature extractors, Densecap
[39] and SlowFast[9], denoted by "D" and "SF" respectively. Specifically, only
SlowFast can include bounding boxes for feature extraction. We fix Detectron2
as the object detector.

We also include a naive chain baseline which only requires the number of
steps: E = {(S1, S2), (S2, S3), . . . , (Si, Si + 1), . . . , (Sn−1, Sn)}.

The implementation details are in our Supplement.

4.3 Results and Evaluation

Table 1 shows the results on MM-ReS dataset. For image-only methods, we
remove the steps without images during training and evaluation. The flow graphs
will change after step removal. When removing steps from the graph, a node is
directly deleted if it has no ancestor or descendant. Otherwise, its ancestor is
directly connected to its descendant. To enable comparison across modalities, we
also evaluate text-only and chain methods on steps with images, denoted by *.
We remove nodes without images from text-only model and chain outputs using
the above process. Table 2 shows the results on YouCookII dataset.

Effects of Modalities. For video or image only methods, only Box2Flow-
SF surpassed the naive chain baseline in Table 1 and 2, showing that directly
predicting flow graphs from videos is a challenging problem. We show in our
Supplement that the flow graphs predicted by the text model from generated
captions do not accurately capture the true structure of the captions. The video
captions are inconsistent in ingredients and the scores of manually labeled cap-
tion flow graphs would be much lower. Therefore, directly predicting flow graphs
from videos is needed. Using text modalities can significantly improve the perfor-
mance, surpassing the chain baselines. The text model trained on MM-ReS also
shows zero-shot ability, achieving high performance on the YouCookII dataset.
This is not to be taken for granted, as video clip descriptions are different from
formal recipe steps. Furthermore, the step texts in MM-ReS are significantly
longer than those in YouCookII. Each step has an average of 32.3 BERT tokens
in MM-ReS, while YouCookII only has 14.4 tokens. Yet videos provide comple-
mentary information. Methods using both video and text improve upon text-only
models. For example, in Figure 1c, 1d, the text mentions that step 3, "heat up
the tortillas", is parallel with steps 2 and 4 as step 3 introduces a new ingredient.
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Fig. 4. An example from MM-ReS. The text-only model did not predict the graph
correctly, while the image+text model did. The interpolated images are marked in
blue.

Fig. 5. An example from YouCookII. The predicted captions are in red in (a). Video
captioning and the text model did not predict the graph correctly, while the video and
video+text models did.
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However, the video shows the meat is grilled first; then, the tortillas are added
while the meat is still grilling and share the same grill, showing the steps are
actually sequential.

Effects of Bounding Boxes. Comparing image-only methods and
image+text methods in Table 1, video-only methods and video+text methods
in Table 2, where step and context features share the same adapter for methods
using bounding boxes, the results show using bounding boxes can improve the
performance by focusing on the involved ingredients and utensils.

Effects of Object Detectors, Feature extractors and Interpolation.
Table 1 shows SAM masks can further improve the performance from Detec-
tron2 object detectors on COCO. Instruct-pix2pix interpolation improves on the
COCO detector more than SAM. Table 2 shows video-only frame-level SlowFast
is better than Densecap features in structures. Including bounding boxes further
improves the performance when using SlowFast feature extractor.

In summary, Box2flow can predict the flow graphs effectively and can be
used together with different object detectors and feature extractors. Videos can
provide information that complements text, and bounding boxes can further
improve the effectiveness, even without introducing more parameters in the
model. We include more ablation studies, including the effects of context fea-
tures, SAM mask selection and binary vs soft labels in our Supplement.

4.4 Qualitative Results

We show some recipe examples and the flow graph predictions of various meth-
ods. The examples are selected based on the largest MCS improvement using
video + text from text-only. We include more examples in our Supplement.

Figure 4 shows an example from MM-ReS where the text model did not
predict the correct graph, but the image+text model did. The shared edges
between the ground truth and the text graph are {(1,2),(3,4)}; therefore, the
precision, recall, and F1 of the recipe are all 2/4=0.5. The maximum common
subgraph is 1-2 or 3-4; therefore, MCS=2/5=0.4. For the image+text model, all
metrics will be 1. The text model treats step 0 preheat oven and step 1 cook
vegetables in a pot as sequential; step 2 mix vegetables and step 3 sprinkle bread
crumbs on vegetables as parallel, showing the model did not notice some word
details from the long instructions. The images from step 0, 3, 4 are originally
missing from the dataset and are interpolated with instruct-pix2pix, marked by
blue borders. The interpolated images correctly show the oven and baking action
in steps 0 and 4 and the bread crumbs in step 3, although missing the vegetables.
The image+text model still correctly determined the edge (0,4) and the step 2,
3 should be sequential.
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Table 1. MM-ReS results in percentage. The best performance evaluated on all nodes
is marked bold. * means evaluation on steps with images only.

Modality Method Edge Recall Edge Precision Edge F1 Recipe Recall Recipe Precision Recipe F1 MCS

Images MART[17] 80.0 81.0 80.5 81.5 82.5 81.8 77.6
VLTinT[35] 81.8 82.6 82.2 82.2 82.9 82.4 78.6
Box2Flow-f 80.5 81.0 80.7 81.5 82.3 81.7 77.7
Box2Flow-1 80.1 80.6 80.3 81.9 82.3 82.0 78.4

Text Box2Flow 82.5 83.0 82.8 87.3 87.5 87.4 81.7
Box2Flow* 82.9 83.3 83.1 86.1 86.3 86.1 81.7

Images+Text Box2Flow-f 83.6 83.9 83.7 87.2 87.5 87.3 82.1
Box2Flow-C 83.7 83.9 83.8 87.3 87.5 87.4 82.8
Box2Flow-Ci 84.5 84.7 84.6 87.7 87.9 87.8 83.1
Box2Flow-S 84.7 84.9 84.8 87.9 88.1 88.0 83.3
Box2Flow-S1 83.4 83.6 83.5 87.1 87.3 87.2 82.7
Box2Flow-Si 84.6 84.8 84.7 87.9 88.0 87.9 83.4

- chain 84.1 84.1 84.1 83.4 83.4 83.4 78.6
chain* 85.1 85.0 85.0 84.5 84.3 84.3 80.5

Table 2. YouCookII results in percentage. The best performance is marked bold.

Modality Method Edge Recall Edge Precision Edge F1 Recipe Recall Recipe Precision Recipe F1 MCS

Video MART[17] 74.3 76.0 75.2 77.6 78.9 78.1 70.5
VLTinT[35] 73.3 75.6 74.4 75.2 76.4 75.7 67.2
Box2Flow-fD 78.6 79.1 78.8 80.0 80.0 80.0 69.6
Box2Flow-fSF 77.0 77.8 77.4 78.9 80.1 79.3 71.8
Box2Flow-SF1 79.3 79.3 79.3 80.7 80.9 80.7 72.0
Box2Flow-SF 80.5 80.3 80.4 81.9 81.5 81.7 72.9

Text Box2Flow-MMReS 85.5 85.8 85.6 87.8 88.0 87.9 80.8
Video+Text Box2Flow-fD 85.8 86.0 85.9 87.9 87.9 87.9 81.7

Box2Flow-fSF 85.5 85.5 85.5 88.1 88.0 88.0 81.8
Box2Flow-SF 86.3 86.5 86.4 88.5 88.7 88.6 81.8

- chain 81.0 80.8 80.9 82.9 82.5 82.7 72.7

Figure 5 shows Yummy Pepperoni Pizza Bread recipe from YouCookII.
Video captioning from MART and text model did not predict the correct graph,
but video and video+text model did. Both video captioning and the text model
predicted chains. The only different edge between the ground truth and the chain
is (1,3) in ground truth and (1,2) in the chain; therefore, the precision, recall,
and F1 of the recipe are all 6/7=0.875. The maximum common subgraph is the
part from 2-7; therefore, MCS=6/8=0.75. For the video and video+text model,
all metrics will be 1. MART did not generate the correct ingredients for the first
two steps and recognized cheese as butter in step 6. It also generated the impos-
sible action "spread sandwich on bread" in step 3. The captions for steps 4 and
5 are correct. The text model predicted the generated captions as a chain even
with inconsistent ingredients throughout the recipe. Meanwhile, the video model
and the video+text model correctly predicted step 2 is parallel to the previous
steps from the visual clue, correcting the mistake made by the text model.



Box2Flow: Instance-Based Action Flow Graphs from Videos 53

5 Conclusion

We have studied the less explored problem, predicting the flow graph from a sin-
gle procedural video instance. We proposed Box2flow framework, which exploits
the bounding boxes and creates a spanning tree from pairwise sequential proba-
bilities. Although a challenging problem, Box2flow can predict the flow graphs
effectively. This also opens up possible future research directions: predicting the
flow graphs more effectively from video or image-only features and exploring
their utility in downstream applications, like more structured video captioning
and planning.
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Abstract. The goal of this paper is to learn the differential geometry of pose
image manifolds for 3D objects. Indexed by the rotation group SO(3), a pose
manifold constitutes images of a 3D object from all viewing angles. Learning
geometry implies computing geodesics, intrinsic statistics (means, etc), and cur-
vatures on estimated manifolds. As these goals are unattainable in the huge image
space, we perform dimension reduction that is geometry preserving and invert-
ible. This paper introduces two distinct concepts: (1) A Geometry-Preserving
StyleGAN (GP-StyleGAN2) that maps training images to a low-dimensional
latent space with two novel geometry-preserving terms. These terms penalize
changes in pairwise distances between points and pairwise angles between tan-
gent spaces under the map. (2) Densifying the estimated manifold in latent
space using Euler’s Elasticae-based nonlinear interpolations between sparse data
points. In contrast to the past findings, the latent pose manifolds are found to be
distinctly nonlinear and similar in shape across objects. Incorporating these fea-
tures results in superior performance in image interpolation, denoising, and com-
puting image summaries when compared to state-of-the-art GANs and VAEs.

Keywords: Manifold Learning · Pose Image Manifold · Elasticae · Latent
Space Geometry · Geodesics · Geometric GAN

1 Introduction

Image manifolds are subsets of image spaces corresponding to images of 3D objects
of interest. In this paper, we focus on specific image manifolds called rotation or pose
manifolds. A pose manifold is the set of images of an object under all 3D rotations
(while fixing other imaging conditions). Even though images are high-dimensional, the
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pose manifolds are typically low-dimensional and are nonlinearly embedded in the huge
ambient Euclidean space. Learning the differential geometries of image manifolds has
been a long-standing and challenging goal in the field, especially when using limited
training data. Learning, characterizing, and exploiting this geometry can help accom-
plish several goals in image analysis and computer vision: interpolating between images
using geodesics, denoising an image using manifold projection, making statistical anal-
ysis more interpretable by adhering to the manifold structure, and creating simple yet
powerful generative and discriminative models by defining probability distributions on
the manifold. The goal of this paper is to learn the differential geometry of image man-
ifolds for individual 3D objects, enabling computation of geodesics, tangents, curva-
tures, and intrinsic statistics (means, etc.) on the estimated manifolds.

We will follow the notation in [13] to develop a mathematical formulation. Let α
be a 3D object, such as a chair, airplane, or car, and let Oα denote its 3D geometry
and reflectance model. Let s ∈ SO(3) represent the 3D pose of Oα relative to the
camera and P be the orthographic projection of sOα into the focal plane of the camera,
resulting in an n × n image P(sOα). As mentioned earlier, all other imaging variables,
e.g. illumination, are fixed for this discussion.

Definition 1 Under these conditions, the set Iα = {P(sOα) ∈ R
n×n|s ∈ SO(3)}, a

subset of Rn×n, is called the rotation or pose manifold of α.

Using additional assumptions on the smoothness of P and non-symmetry of Oα with
respect to the rotation group, the set Iα shares the closed, boundary-free manifold topol-
ogy of SO(3). (This statement deserves additional consideration to be precise but we
leave the details for a future paper.) It is thus three-dimensional and its nonlinear embed-
ding is small (almost singular) in the ambient space Rn×n.

Problem Specification: Given a training set of rotation-image pairs Rtrain =
{(si, Ii = P(siO

α)) ∈ SO(3) × Iα}m
i=1, our goal is to estimate the manifold Iα.

We want not only to learn the topological set Iα, but also to characterize its local and
global geometry. This characterization will enable us to compute quantities on the man-
ifold such as geodesics, geodesic distances, and intrinsic statistical summaries. The
task of learning Iα from Rtrain is challenging because (i) Learning nonlinear mani-
folds typically requires large sample sizes that are even greater in high-dimensional (n2)
spaces, and (ii) The underlying geometry of Iα is often complex and does not follow
known simplifications such as spheres, ellipsoids, or hyperbolic spaces.

The difficulties associated with high dimensions can be mitigated by mapping to
a smaller Euclidean space R

d, d � n2. If we have a map Φ : Rn2 → R
d which is

approximately isometric and invertible on the manifold, we can analyze the geometry
on the simpler latent manifold Mα = Φ(Iα) ⊂ R

d using {(si, Φ(Ii))}m
i=1 and map

the results back to the image manifold using Φ−1. The next question is: What is a good
choice of Φ? Existing methods for manifold learning (such as LLE, Isomap, t-SNE,
etc.), dimension reduction and latent space representation either distort the geometry of
Iα or are not invertible (see section 2). We require a new technique.

Our Approach: There are two main elements to our approach. Firstly, we seek a map-
pingΦ that preserves the geometry of the pose manifold. Secondly, rather than assuming
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a flat geometry in the latent space as is often the case in the current literature, we use
nonlinear interpolations between mapped points in R

d to discover the unknown mani-
fold. We introduce these items here and elaborate on the details in section 3.

(1) Geometry-Preserving and Invertible Dimension Reduction: How can one design a Φ
that maximally preserves the geometry? Preserving the geometry implies that distances,
angles, and curvatures remain similar from the domain to the range of Φ. We create Φ
by training with a neural network that combines elements of GANs and autoencoders,
specifically a modified version of AE-StyleGAN2. The decoder trained as part of this
model provides an inverse map as well. We build on this architecture by introducing
two geometry-preserving loss terms, and call our model Geometry-Preserving Style-
GAN2 or GP-StyleGAN2. The new terms help preserve (i) pairwise Euclidean distances
between point locations, and (ii) pairwise dissimilarity (a measure of local curvature)
between tangent space orientations. Here we use all training points to compute pairwise
distances, and not just the neighbors, and treat Euclidean distances as extrinsic distances
to help learn the global geometry. Estimation of tangent planes {Ti} at points {Ii} used
to compute orientation dissimilarity is described later.

(2) Discovering the Manifold using Nonlinear Elasticae: We use the trained Φ to map

points from another sparse set Rtest ⊂ R
n2

(disjoint from Rtrain) to the latent space,
resulting in {Φ(Ii) ∈ R

d}. These points lie on the latent manifold Mα and we can
use them to uncover it in more detail. We do this by interpolating between neighboring
mapped points using free elasticae [25,29]. Elasticae use curved interpolations between
pairs (Φ(Ii), Φ(Ij)), with curvatures dictated by their distance and the misalignment of
tangent planes (dΦ(Ti), dΦ(Tj)). Repeatedly applying this tool between neighboring
points, we ‘fill in’ the manifold with arbitrarily dense point sets and produce an esti-
mated latent manifold ̂Mα and the corresponding image manifold ̂Iα = Φ−1( ̂Mα).

Knowing the geometry of Mα allows us to improve performance in some cru-
cial vision tasks including: (1) Image Interpolation Using Geodesics: Given any two
images Ii ≡ P(siO

α) and Ij ≡ P(sjO
α) in the test data, the task is to estimate

the image path t �→ P(x(t)Oα), where x : [0, 1] → SO(3) is a geodesic between
si, sj in SO(3). The image path should resemble the video of a rotating object. (2)
Intrinsic Image Statistics and Modeling: Given a set of images {Ii}, one would like
to compute their summary statistics (mean, covariance) and develop statistical models
as elements of Iα rather than R

n2
. (3) Image Denoising Using Manifold Projection:

Given a noisy or corrupted image J ∈ R
n2

known to be associated with an I ∈ Iα, we
seek a tool to denoise it.

2 Related Works

In recent years, deep neural networks (DNNs) have provided powerful tools for encod-
ing of images by mapping them to low-dimensional latent spaces. In the following we
summarize some past ideas that are most relevant to our method.

Manifold Learning Techniques: From the pre-deep network era, there is a long list
of learning methods that sought nonlinear dimension-reduction while preserving some
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geometric properties for image data, including LLE [33], Isomap [40], LTSA [44],
Laplacian eigenmaps [3], Hessian eigenmaps [10], diffusion maps [7], vector diffu-
sion maps [37], Riemannian relaxation [27], and t-SNE [26]. These were successful
in mapping image data into smaller Euclidean spaces while preserving pairwise dis-
tances or other local properties. However, these mostly only go as far as embedding
the observed training points in a low-dimensional space. They fall far short of our goal
of creating an invertible map that can read out-of-sample points in both the input and
latent spaces. Several recent papers such as FM-VAE [6], IRVAE [42], GRAE [11],
structure-preserving AE [38], GGAE [24], and DIMAL [31] seek geometry-aware man-
ifold learning using different DNN architectures. Our work constitutes further explo-
ration of this area.

Differential Geometry of Latent Spaces: Bengio et al. [4] stressed the importance of
understanding the geometry of latent space representations. Several papers [23,35,36]
have investigated this geometry, mainly utilizing existing architectures geared towards
image synthesis, and reported them to be (surprisingly) flat. Other papers [2,9,16]
demonstrated that Jacobian-based Riemannian metrics on the latent space produce bet-
ter inference results than using Euclidean distance. Sáez et al. [30] fitted local, constant-
curvature patches to data using Gromov-Hausdorff distance and Bayesian optimization.
Zhang and Jiang [43] presented a method for geometric space selection in representa-
tion learning, allowing data points to select optimal geometric spaces.

GANs and VAEs: Goodfellow et al. [12] introduced the basic framework and training
procedure for generative adversarial networks (GANs). Radford et al. [32] improved
their stability and efficiency, while Karras et al. [18] proposed Progressive Growing
GAN and Style-Based GAN that incorporated regularizations. Han et al. [14] designed
AE-StyleGAN2 for more disentangled latent space and improved efficiency. Kingma
and Welling [22] introduced variational autoencoder (VAE) to map input data to a
low-dimensional latent space (encoder) and back (decoder). VAEs have been extended
in various directions. Davidson et al. [8] proposed the Hyperspherical VAE (SVAE)
that samples latent vectors on a unit sphere. Chadebec and Allassonière [5] proposed
the geometry-based Riemannian Hamiltonian VAE (RHVAE), which models the latent
space as a Riemannian manifold, combining Riemannian metric learning and geodesic
shooting. Huh et al. [17] proposed Quotient VAEs.

3 Proposed Framework

In this section, we present the design of Geometry Preserving StyleGAN2
(GP-StyleGAN2), which facilitates learning by preserving the geometry of the image
manifold. We start with a brief introduction to StyleGANs and AE-StyleGAN2. Con-
sider a set of images {Ii ∈ I}b

i=1 and random latent vectors {vk ∈ V ≡ R
d}K

k=1

sampled from a probability distribution Pv . StyleGANs [20] use a Multilayer percep-
tron (MLP) F : V → W that maps vk to an intermediate latent space point wk which
is then fed to a generator G : W → I that synthesizes an image G(F (vk)). One
trains the generator by pitting it against a discriminator network Q that distinguishes
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between real and generated images. The disentangled latent space W used in Style-
GANs gives improved image generation compared to the basic GAN architecture. AE-
StyleGAN2 [14] borrows ideas from a VAE, attaching an encoder E to the model which
maps from the image to latent space (as our application requires) and giving additional
training to G as a decoder. E and G are trained using autoencoder reconstruction loss
minE,G

∥

∥I −G(E(I))
∥

∥+
∥

∥η(I)− η(G(E(I)))
∥

∥ where η is a pre-trained VGG16 net-
work, and adversarial lossminE,F,G maxQ EI [logQ(I)]+Ev[log(1−Q(G(F (v))))]+
EI [log(1 − Q(G(E(I))))] which adds an autoencoder term to previous StyleGAN
objectives. While AE-StyleGAN2 accomplishes its aims, it does not consider the geom-
etry of the image manifold. For preserving geometry, we propose GP-StyleGAN2.

3.1 Learning Latent Map Using GP-StyleGAN2

Fig. 1. Training and inference procedure. We preserve the geometry of image space by constrain-
ing the encoder (E) with loss functions Le and Lg defined in Algorithms 1, 2.

GP-StyleGAN2 Architecture: We seek a significant dimension reduction (from n2 =
214 to d = 5) which is (1) invertible and (2) geometry preserving (d = 5 is the
smallest embedding dimension of SO(3)). The computational demands of learning a
nonlinear map for such a drastic reduction suggest a two-step approach. We first move
the problem to points {zi} in an intermediate dimension c2 = 210 using PCA. This
linear projection Φ suffices for a modest reduction while being approximately invertible
and norm-preserving (Parseval’s theorem), though it will fail if we use it for the full
reduction 214 → 5. From here, we train the nonlinear encoder E : Rc2 → R

d generator
G : Rd → R

c2 between {zi} in the PCA space and points {wi} in the latent space. After
this training we build the finalized maps Φ : Rn2 → R

d and Φ−1 : Rd → R
n2

defined
by the compositions Φ = E ◦ Φ and Φ−1 = Φ−1 ◦ G. We note that Φ−1 and Φ−1 are
approximate inverses and that the PCA reconstruction Φ−1 is fine-tuned by a denoising
neural network. The architecture for training E and G begins with the AE-StyleGAN2
autoencoder and adversarial objectives, but augments the training of E with geometry-
preserving loss terms based on pairwise point and tangent space distances. Fig. 1 shows
a schematic of the training and inference procedure.
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Algorithm 1. Optimizing encoder E with geometry-preserving term Le (points)

1: Given (1): E; (2): A batch of images IB ∈ R
b×n2

.
2: Map images to PCA space: ZB = Φ(IB) ∈ R

b×c2 .
3: Map ZB to latent space: W B = E(ZB) ∈ R

b×d.
4: Compute pair-wise distance matrices: De,z

ij = ‖zi − zj‖ and De,w
ij = ‖wi − wj‖, where

zi, zj ∈ ZB , wi, wj ∈ W B , and ‖ · ‖ denotes the Euclidean norm.
5: Compute the loss: Le = L(De,z, De,w), where L is defined in Eqn. 1.
6: Update the weights: θE ← ADAM(∇θELe, θE), where θE denotes the internal parameters

of E, and ADAM refers to adaptive moment optimization [21].

Geometry-preserving Terms: The central feature of our method is a loss function
designed to make the Euclidean distances between the latent space encodings of images
correspond to their Euclidean distances in the image space. The loss is computed as a
dissimilarity between pairs of distance matrices. We use three types of metrics to com-
pute these matrices. The first is the standard Euclidean distance ‖ · ‖. The second is a
metric defined on SO(3): Using the rotation matrix representations si, sj ∈ SO(3)
of two poses of an object, the Riemannian distance between them is ds(si, sj) =

cos−1

(

trace(sis
T
j )−1

2

)

. The third is a metric on sets of linear subspaces with common

dimensions: Let Ti, Tj ∈ R
d×r, r ≤ d, denote arbitrary orthogonal bases of any two

r-dimensional subspaces in R
d. Then, define dg(Ti, Tj) = ‖TiT

T
i − TjT

T
j ‖F . We use

this extrinsic distance on the Grassmannian manifold to simplify computations.
In practice, we approximate tangent spaces in the PCA space and the latent space

using the training data as follows. First, we findN > 3, SO(3)-neighbors for each train-
ing image (si) using the lowest values of ds(si, s

′). For PCA points, we then approx-
imate N tangent vectors at zi using finite differences as {Vij = zj−zi

ds(si,sj)
∈ R

c2}N
j=1

and set T z
i ∈ R

c2×3 to be the three dominant singular vectors of the set {Vi·}. Similarly,
we can approximate tangent spaces Tw

i ∈ R
d×3 in the latent space (see Algorithm 2).

A very similar method for tangent plane estimation is used in [37], where a proof is
given for convergence to the true tangent plane.

Given a batch of b images, we compute distance matrices D ∈ R
b×b between

mapped points and tangent planes in the PCA and latent spaces. Then a measure of
discrepancy between computed matrices D1 (PCA space) and D2 (latent space) is cal-
culated using:

L(D1,D2) =
b

∑

j=1

[

1 − (D1
·j − μ1

j1)
T (D2

·j − μ2
j1)

‖D1
·j − μ1

j1‖ ‖D2
·j − μ2

j1‖

]

, (1)

where μ1
j and μ2

j are the mean values for columnsD1
·j andD2

·j , and 1 is a vector of ones.
We center and scale columns (or rows) of D matrices into unit vectors and compute the
cosines of angles between them. In an implicit manner, each entry of D1 is compared
with the corresponding entry of D2. Since we are forming a loss function, we subtract
this quantity from one, and sum over all points in the batch. We use the resulting loss L
to define novel geometric terms for modifying AE-StyleGAN2 as follows:
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1. Term 1: Distance Preserving: Here D1
ij = ‖zi − zj‖, the Euclidean distances

between PCA scores of training images, and D2
ij = ‖wi − wj‖, the Euclidean dis-

tances between corresponding latent vectors. We use Euclidean distances between
all pairs, not just the neighbors. These distances play the role of extrinsic or embed-
ding distances between points on the (unknown) manifold and help learn its global
geometry. Later on in the paper, once the manifold is estimated, we use geodesics
and geodesic (intrinsic) distances to perform statistical analysis. In other words, we
use the extrinsic Euclidean distance for learning and intrinsic geodesic distance for
analysis. We will call the loss L = Le in this case. Algorithm 1 lists the steps for
computing Le.

2. Term 2: Curvature Preserving: Here D1
ij = dg(T z

i , T z
j ), the tangent space dis-

tance, and D2
ij = dg(Tw

i , Tw
j ) the tangent distances in the latent space. We will call

the loss L = Lg in this case. Algorithm 2 lists the steps for computing Lg .

Algorithm 2. Optimizing encoder E with geometry-preserving term Lg (tangent dis-
tances)

1: Given (1): A set of images IB ∈ R
b×n2

. (2): The corresponding rotation set SB ∈ R
b×3×3.

(3): Corresponding neighborhoods N I
i = [I�1(i), · · · , I�N (i)] ∈ R

n2×N , of the N closest
points to Ii ∈ IB according to ds. (4): The the index functions {�k}N

k=1, which take an
argument i and return the index of the kth nearest neighbor of Ii.

2: Map images and their corresponding neighbors to PCA space:
ZB = Φ(IB) ∈ R

b×c2 , N z
i = Φ(N I

i ) = [z�1(i), · · · , z�N (i)], where zi ∈ ZB .
3: Map ZB and {N z

i }b
i=1 to latent space:

W B = E(ZB) ∈ R
b×d, N w

i = E(N z
i ) = [w�1(i), · · · , w�N (i)], where wi ∈ W B .

4: Compute neighborhood SO(3) distances:
Δs

i =
[
ds(si, s�1(i)) · · · ds(si, s�N (i))

] ∈ R
N , where si, sj ∈ SB .

5: Compute over-dimensional tangent planes in Principal Component Analysis (PCA) space
and latent space:
T̃ z

i =
(N z

i −zi1
T
)·diag(Δs

i

)−1 ∈ R
c2×N , T̃ w

i =
(N w

i −wi1
T
)·diag(Δs

i

)−1 ∈ R
d×N .

6: Compute tangent planes T z
i , T w

i by taking the three dominant singular vectors of the corre-
sponding T̃ z

i , T̃ w
i .

7: Compute pair-wise distance matrices: Dg,z
ij = dg(T z

i , T z
j ) and Dg,w

ij = dg(T w
i , T w

j ).
8: Compute the loss: Lg = L(Dg,z, Dg,w).
9: Update the weights: θE ← ADAM(∇θELg, θE).

3.2 Elasticae Interpolation

We can use the trained map Φ to project test data into the latent space. However, this
data may be sparse, and we wish to discover the projected manifold Mα at a higher
resolution than the test data permits. One way to find intermediate points is through
interpolation. Straight line interpolations would be reasonable if we had just the points
{wi ∈ R

d}. However, our access to tangent planes {(wi, T
w
i ) ∈ R

d × R
d×3} at each
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point allows us to account for the nonlinearity of the underlying manifold by utilizing
nonlinear interpolations based on elasticae.

Elasticae are smooth curves that can be used to interpolate between directed points,
i.e. Euclidean points with attached tangent vectors. Consider the set B of smooth curves
in R

d parameterized on [0, 1]. For a curve β ∈ B, let β̇ and κβ denote its velocity
and scalar curvature functions, Len[β] its length, and define its elastic energy En[β] =
1
2

∫ 1

0
κ2

β(s) ds. Then the free elastica from a given directed point (w1, u1) to another

(w2, u2) is the minimizing curve β̂ = arg min
β∈B

(En[β]+λLen[β]) such that β(0) = w1,

β(1) = w2, β̇(0) = u1, and β̇(1) = u2. The tuning parameter λ > 0 balances the focus
on length versus curvature. Mumford [29] advocated the use of free elasticae as the
most likely solutions to fill in the missing or obscured curves in images, e.g., in the
famous Kanizsa triangles.

Our implementation follows Mio et al. ([28], Algorithm 4.2). We interpolate
between point pairswi, wj in the latent spaceRd. To find the corresponding tangent vec-
tors, we take the difference vector ũij = wj −wi, project it separately into each point’s
tangent space, and scale to form the unit vectors ui ∈ span(Tw

i ) and uj ∈ span(Tw
j ).

These maximally-aligned vectors are used to direct a free elastica β that interpolates
from (wi, ui) to (wj , uj). This interpolation is mapped to a path in image space as
Φ−1(β(t)). The top portion of Fig. 3 in Section 4.1 illustrates the image space elasticae
as sequences of images.

4 Experiments

Before detailing the design and results of our experiments, we begin by laying the
groundwork of key features which are used throughout.

Experimental Data: Creating an image set to represent an object Iα for training Φ
and Φ−1 requires a structured sampling over rotations in SO(3). We express rotations
using a Hopf coordinate system similar to Yershova et al. [41]. Seeking a partition of
SO(3) with regular equivolumetric cells, we first generate (θ, φ) values on S2 using the
Fibonacci grids of Swinbank and Purser [39] (also studied in Hardin et al. [15]). We
attach a circle of ψ values to each pair, and the circle is uniformly segmented following
a ratio shown in [41] to produce SO(3) cells analogous to cubes. The experimental
results presented here are restricted to a patch of SO(3) to simplify computations. This
patch is P � {(θ, φ, ψ) ∈ [25π, 3

5π] × [45π, 6
5π]2}. To create an image set, we begin

with a three-dimensional object Oα set at a default position. We use CAD objects α ∈
{chair, sports car, zebra} from clara.io [1] processed using meshio [34]. We apply 4000
rotations from P to the default orientation and use P to generate images P(siO

α). We
will call this training set Rtrain � {(si, Ii) ∈ (SO(3) × Iα)}4000i=1 . Fig. 2 shows a
representation of these points. We also create a separate data set Rtest of 3696 indexed
images for testing and evaluation. The points in Rtest also lie in P but are defined by a
uniform rectangular grid in (θ, φ, ψ) coordinates.

Evaluation Metrics: Our goals include performing several tasks that can be evaluated
quantitatively. In our quantifiable experiments, we compare model outcomes against
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ground truth values using the Euclidean norm and tabulate errors. In our most-used
scenario, we compare a ground truth path in image space {I(t) ∈ R

n2}T
t=0 with an

estimated {Î(t) = Φ−1(ŵ(t)) ∈ R
n2}T

t=0 decoded from a computation in latent space.
Our evaluations use the Squared Errors (SE) ‖Î(t) − I(t)‖2 indexed by t. For elasticae
evaluations, we also compare the velocities along the path to the ground truth using
‖(Î(t + 1) − Î(t)) − (I(t + 1) − I(t))‖2.
Model Comparisons: We compare our method with three recent deep-learning gener-
ative models described in Section 2: RHVAE [5], SVAE [8], and AE-StyleGAN2 [14].

Implementation details: Experiments are conducted on a Linux workstation with
Nvidia RTX A6000 (48GB) GPU and Intel Core i9-13900K CPU @ 5.8GHz with
128GB RAM. The hyperparameters of generator G and MLP F are chosen to be iden-
tical to those in [19]. The hyperparameters of encoder E are the same as in [14]. The
size of image space is n2 = 1282. The size of PCA space is c2 = 322. The dimension
of latent space is d = 5. The batch size for training is b = 64. The tangent spaces are
built using N = 16 neighbors. The balance parameter for elasticae is λ = 1.

Fig. 2. Right: A visual representation of the 4000 SO(3) training rotations. Each rotation is rep-
resented by its heading (θ, φ) on S

2 and its roll about that heading drawn as a curve ψ around it.
Left: Top image is the chair at default orientation. Others are P(sIchair) for some s ∈ SO(3)
with the same heading and varying roll.

4.1 Results: Elasticae Interpolations and Manifold Estimation

Having used Rtrain to train the maps Φ and Φ−1, we map elements of Rtest to points
in latent space, use elasticae to interpolate between them, and then map these elasticae
paths to image space. We then compare results from our framework to using various
SOTA DNN models. Fig. 3 (top) shows results for α = chair. These interpolations are
computed in the latent space but visualized in the image space. Each row shows an
interpolation between two fixed points in Rtest at the left and right. Different rows
correspond to different techniques. The bottom row shows the ground truth geodesic
t �→ P(x(t)Oα), where x(t) is a geodesic in SO(3). We observe that the path obtained
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by our model is consistently closest to the ground truth. This outcome is representative
of the results we obtained for several experiments.

To quantify performance, we perform extensive experiments on three 3D objects:
α ∈ {chair, sports car, zebra}. We compute 100 different interpolation paths using ran-
domly selected pose pairs in Rtest (3696 points). For each time index t, we calculate
the mean values of the errors (point values and tangent values) and plot them in Fig. 3.
The errors are naturally close to zero at the start and the end, and are highest at the
center. As these plots exhibit, the interpolation errors are the smallest using our method
when compared to RHVAE, SVAE, and AE-StyleGAN2.

Ablation Studies: To evaluate the key components of GP-StyleGAN2, we perform
ablation studies that add them sequentially to an AE-StyleGAN2 baseline model. We
study six models which differ in: (1) the type of interpolation: linear or elastica, (2) the
loss function for trainingE: inclusion of geometry-preserving termsLe and Lg (defined
in Section 3.1) or not, and (3) PCA for image pre-processing: PCA or no PCA. For each
of the six models, the experimental setup is an analysis of interpolation path accuracy as
above. The results of these experiments performed on the chair object are summarized
in Table 1. The table lists the means over 100 experiments of the average interpolation
error summed over all time indices t in the path. Comparing Models 1, 2 versus the
others shows dramatic gains due to the introduction of the geometry-preserving terms.
Comparisons of Models 3, 4, and 5 versus Model 6 show individual benefits of the use
of both Le and Lg over Le alone, elasticae over linear interpolation, and PCA reduction.

Fig. 3. Top: Interpolated paths between the original (left) and rotated poses (right) using various
methods. Bottom: Average squared errors over 100 interpolated paths for each object, and zoom
from top. First row: Average SEs for interpolated points. Second row: Average SEs for velocities.
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The complete Model 6 (GP-StyleGAN2) including all of the components substantially
outperforms the others.

Computational Cost: The computational cost of training for the four methods are as
follows: AE-StyleGAN2 - 20.64 min/500 epochs, RHVAE - 12.78 min/500 epochs,
SVAE - 8.78min/500 epochs, and GP-StyleGAN2 - 38.41min/500 epochs. The com-
putational cost for interpolating a path between two test points is: AE-StyleGAN2 -
0.02 sec, RHVAE - 62.36 sec, SVAE - 0.01 sec, and GP-StyleGAN2 - 0.13 sec.

Manifold Estimation: To estimate the latent pose manifold ̂Mα, we randomly select
800 sparse points from Rtest and map them using the trained Φ. For each point in
this latent space, we identify its five nearest-neighbors using SO(3) distance ds and
interpolate between these neighbors using elasticae with eight intermediate points. This
results in an ̂Mα with 32,800 total points.

Table 1. (Ablation studies): Average total squared errors over 100 interpolated paths (for chair)
under different models. AE-loss denotes the standard loss function of AE-StyleGAN2.

Model Features Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

AE-StyleGAN2 yes yes yes yes yes yes

Interpolation linear elasticae elasticae linear elasticae elasticae

Loss function AE-loss AE-loss AE-loss + Le AE-loss + Le + Lg AE-loss + Le + Lg AE-loss + Le + Lg

PCA no no yes yes no yes

Summary Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 (Ours)

Mean error 1638.97 1654.32 698.14 687.02 561.70 436.11

4.2 Results: Analyzing Latent Map Φ Using Test Data

We investigate the geometry-preserving properties of the mapping Φ by applying it to
the complete test set Rtest. As described above, Rtest is a set of 3696 points in the
same patch P as Rtrain but disjoint from it. We exploit the grid structure of Rtest to
interpret the range space of Φ visually, create paths that bridge distant points, and verify
the goal of distance preservation on a large scale.

Visualizing Φ(Rtest): First we visualize the mapping of Rtest into Rd using the learnt
Φ. Here we investigate the geometry of the underlying manifold Mα using this set’s
grid structure rather than densifying interpolations. The latent space plots shown here
use the first three PCA axes of the mapped points in R

5. We note that the subset of
SO(3) used in these experiments is topologically a box and that the first three singular
values accounted for most of the variation in these examples. Figure 4 displays two
viewing angles of the GP-StyleGAN2 latent space embeddings of the chair, car, and
zebra objects. The three clouds look remarkably similar, all resembling shell-like seg-
ments of a thickened sphere, despite the vastly different shapes of the original objects.

Traversing Distant Points in Φ(Rtest): In this experiment, we first endow the set
Φ(Rtest) with a graph structure determined by SO(3) neighbors. Each point in SO(3)
has 26 neighbors; see the supplement for details. We then arbitrarily select two dis-
tant points in this set and create three paths between them: (1) the ground truth path
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derived from the geodesic in SO(3), (2) the shortest-length path through the graph
found using Dijkstra’s algorithm, and (3) a simple straight-line interpolation in latent
space. Finally, we map the paths to image space. Figure 5 compares the results obtained
using AE-StyleGAN2 and GP-StyleGAN2. We can derive multiple conclusions from
these results. Firstly, the linear interpolations perform poorly under both models, high-
lighting the nonlinearity of the pose manifold. Notice how the linear interpolation loses
its chair structure as it passes through the hollow space in the point cloud on the right.
Secondly, GP-StyleGAN2 performs significantly better than AE-StyleGAN2 both visu-
ally and by error quantification: the Dijkstra path for GP-StyleGAN is nearly as good as
the ground truth, while for AE-StyleGAN it is hardly any better than the straight line.

Fig. 4. Latent pose manifolds of chair, car, and zebra objects. Two views of each. We emphasize
that these are not just points but are graphs with geometries.

4.3 Results: Exploiting Manifold Geometry

Once we have the estimated manifold ̂Mα, we study its geometry in two different ways:
Computing intrinsic image means and performing image denoising. (Fig. 6).

Mean Computations on ̂Mα: We assess the utility of finding mean images in the
latent space by comparing the decoded means to the ground truth, defined by images
associated with SO(3)Karcher means of sample rotations. Selecting 10 random images
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{Ij ∈ Rtest}, we first compute a naive mean in R
n2
, denoted as μI . Then we compute

the Euclidean mean of {Φ(Ij)} in R
d , project it to the nearest point in ̂Mα, and map

it back to image space to define μw. For comparison, we show the result μ̃w obtained
by performing these steps but skipping projection. The corresponding quantities under
AE-StyleGAN2 are labeled as μA

w and μ̃A
w respectively. Fig. 6 (top part) compares these

results with the ground truth means μgt. The means estimated using GP-StyleGAN2
(green boxes) display realistic structure of the chair and better resemble the ground
truth (orange boxes) than AE-StyleGAN2.

Image Denoising using ̂Mα: The manifold geometry can also be used for denoising or
cleaning corrupted images. A noisy image J can be mapped into latent space a Φ(J),
projected to the nearest point w ∈ ̂Mα, and mapped back as a cleaned image Φ−1(w).
Fig. 6 (bottom) shows images of the chair corrupted by adding noise and clutter, and
compares results of cleaning using GP-StyleGAN2 and AE-StyleGAN2. The visual
results and a histogram of reconstruction errors both show better outcomes using GP-
StyleGAN2.

Fig. 5. Traversing distant points. Top and middle rows: Paths in latent and image space - geodesic
GT (orange), Dijkstra on graph (brown), and straight line (black). Bottom: Euclidean squared
errors along paths. Dijkstra paths under GP-StyleGAN2 perform best.
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Fig. 6. Top Part: Manifold averaging on M̂α. Ground truth μgt is compared with image space

mean μI and different latent space means: μw, μ̃w computed with/without projection on M̂α

using GP-StyleGAN2, and likewise μA
w, μ̃A

w using AE-StyleGAN2. Bottom Part: Left: Top row
displays noisy images J , middle and bottom rows show corresponding denoised images using
GP-StyleGAN2 and AE-StyleGAN2, respectively. Right: Histogram of squared errors for 500
noisy images using AE-StyleGAN2 (blue) and GP-StyleGAN2 (orange).

5 Conclusions

We introduced a new approach, GP-StyleGAN2, for characterizing pose manifolds of
3D objects. This approach preserves geometry when mapping to a low-dimensional
latent space and creates dense manifold representations that account for nonlinearity
using Euler’s free elasticae. Comparisons of interpolations using GP-StyleGAN2 and
various other methods (Fig. 3) showed superior results for our model visually and quan-
titatively. Ablation studies (Table 1) gave more detailed quantitative results that demon-
strated improvements from including our two novel geometry-preserving terms and
using elasticae rather than linear interpolation. Graph-based geodesic approximations
pointed to regular but nonlinear geometry of pose manifolds (Fig. 5), in stark contrast to
past conclusions of linear geometry for latent space image data. We also found that the
use of manifold geometry improved mean computations and image denoising (Fig. 6).
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While there is still much progress to be made, the overall success of GP-StyleGAN2
shows a step in the direction of truly learning the geometry of pose manifolds.
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Abstract. Self-supervised learning has achieved remarkable perfor-
mance in computer vision, utilizing two key paradigms: contrastive learn-
ing and masked image modeling. Contrastive learning focuses on global
representations by learning similarities and dissimilarities from different
views of the inputs. On the other hand, masked image modeling learns
from a pixel-level reconstruction objective and has shown improved
performance compared to contrastive learning. However, masked image
modeling lacks global semantics due to its pixel-level objective. To this
end, we propose MOMA, a novel self-supervised distillation framework
that employs a contrastive learning teacher to enhance the global repre-
sentation of the masked image modeling student. Specifically, the teacher
provides masks for the student, encouraging reconstructions that favor
better global semantics. The feature alignment between the teacher and
the student further enhances the global features in masked image model-
ing. Experimental results demonstrate that the proposed MOMA outper-
forms other masked image modeling methods and achieves competitive
performance compared to other self-supervised baselines.

Keywords: Self-supervised Learning · Knowledge Distillation ·
Computer Vision · Machine Learning · Deep Learning

1 Introduction

Self-supervised learning (SSL) has emerged as a powerful methodology in various
vision tasks and applications, particularly in computer vision [20,21]. SSL elim-
inates the need for dataset annotations, reducing the costs associated with man-
ual labeling and expertise. By extracting semantically rich knowledge from large
volumes of unlabeled data, SSL forms the basis for powerful and generalizable
models [3,14]. The learned representations from these models can be effectively
utilized in downstream tasks, and in some cases, they can even surpass the perfor-
mance of supervised approaches. Among the rapidly evolving SSL methodologies
in computer vision, two branches have established their dominance: contrastive
learning and masked image modeling. Contrastive learning [7,21] enhances unsu-
pervised learning by emphasizing the agreement between two distinct augmented
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15327, pp. 73–88, 2025.
https://doi.org/10.1007/978-3-031-78398-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78398-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-78398-2_5


74 Y. Yao et al.

views of the same input and enforcing disagreement with augmented views from
different inputs. The key to this approach lies in applying reliable and challenging
data augmentations to foster semantically significant representations. It learns
the similarity or dissimilarity between the augmented views of the data, equip-
ping the model with rich representation and high-level global semantics [7,35].
Over the years, contrastive learning has showcased unprecedented results, even
outperforming supervised learning algorithms in some cases [11]. However, it
relies heavily on data augmentation [19] during its self-supervised pre-training
and also requires a large batch size [8,31] to possess adequate negative samples
for the contrastive objective [29]. Recently, masked image modeling [20,37] has
emerged as another primary paradigm in self-supervised learning. Inspired by
the success of masked language pre-training [4,14] in natural language process-
ing, masked image modeling aims to reconstruct original images from partially
masked inputs. The framework adopts an encoder-decoder architecture, where
the encoder encodes the masked inputs, and the decoder reconstructs the original
inputs. The learning objective is to minimize the reconstruction loss in the pixel
space. Notably, masked image modeling demonstrates high efficiency under high
mask ratios, without needing hand-crafted data augmentation and large batch
sizes, outshining contrastive learning across various benchmarks [13,24]. How-
ever, the limitation of masked image modeling lies in its pixel-level reconstruc-
tion objective. Although this objective is simple and effective, it cannot capture
high-level semantics and global features from the data [39,41], as masked image
modeling aims solely to reconstruct the masked pixels. Additionally, the masking
process in masked image modeling is typically performed by random masking,
which lacks semantics related to the global and discriminative features in the
input. We question whether we can encourage global representation learning in
masked image modeling, thus fostering better representation and a more powerful
self-supervised learning framework.

To this end, we propose MOMA, a self-supervised learning framework incor-
porating knowledge distillation to encourage global feature learning and improve
masked image modeling. MOMA forms a self-supervised distillation setup with
an off-the-shelf contrastive learning teacher [11] and a masked image model-
ing pipeline as the student. The teacher provides two types of guidance for the
student: (1) it first presents the attention map to guide the masking process
for the masked image modeling pipeline, and (2) it also provides the target
representations for the student encoder to align its learned features. The masks
generated from the attention map encourage the student to reconstruct the most
discriminative features and global semantics in the input. Furthermore, global
semantics are strengthened during the feature alignment between the teacher
and the student encoder. In this setup, the contrastive teacher effectively distills
global features and high-level semantics to the masked image modeling student
through a semantic-guided masking strategy and feature alignment. The major
contributions of MOMA can be summarized as follows:
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– We propose MOMA, a novel self-supervised knowledge distillation framework
that effectively encourages global semantics and features for masked image
modeling so that learning does not solely depend on pixel-level reconstruction.

– We utilize an off-the-shelf contrastive learning teacher to provide an attention
map that guides the student’s masked image modeling pipeline to reconstruct
features corresponding to the discriminative information and global seman-
tics.

– We further align the learned features in the student encoder with the teacher
through feature alignment, thereby encouraging the global semantics and fea-
tures in the student’s representation.

Experimental results show that the proposed MOMA improves the performance
of masked image modeling approaches, achieving competitive performance over
various self-supervised baselines.

Fig. 1. Overview of the Proposed MOMA Framework. Our proposed self-
supervised distillation framework consists of a static teacher branch and an actively
updated student branch. The teacher, a pre-trained contrastive learning model, gener-
ates an attention map that guides the masking process in the student’s Vision Trans-
former encoder. The student representations are aligned with the teacher’s to reinforce
semantics and global features. The framework optimizes for both a reconstruction loss
(Lrec) from masked image modeling and an alignment loss (Lalign) from feature align-
ment.

2 Related Work

2.1 Contrastive Learning

This self-supervised learning approach is based on instance discrimination [35],
where each data sample is treated as an individual class. Each instance undergoes
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substantial data augmentation, with positive pairs stemming from augmented
views of the same instance and negative pairs from different instances. The
learning process hinges on amplifying the concordance among positive samples
(or disagreement between negative pairs), formally addressed by the InfoNCE
loss[29]. SimCLR [7] and MoCo [21] are two of the most influential works that sig-
nificantly advance contrastive learning, even showing better performance than
supervised methods. SimCLR highlights the importance of projectors in the
contrastive learning framework, while MoCo proposes a momentum encoder
to further improve performance. In contrastive learning, having an adequate
number of negative samples is critical so that the learning algorithm will not
yield trivial solutions, as demonstrated by the improved performance of Sim-
CLR implementation with large batch size [8]. Data augmentation also plays
a key role in contrastive learning [8,19], ensuring that the contrastive objec-
tive has diverse augmented views for quality representation learning. DINO [5]
incorporates self-distillation into the contrastive learning framework and uti-
lizes the Vision Transformer (ViT) [15], which shows exceptional performance,
with the resulting attention maps of the self-supervised model very close to the
ground-truth segmentation masks on the images. MoCo v3 [11] further improves
the contrastive learning baselines by incorporating advanced training strategies,
large batch sizes, and more advanced architectures, and stabilizes the training
by freezing the patch embedding of ViT. Although contrastive learning methods
achieve exceptional performance in various tasks in computer vision, their per-
formance is limited by high reliance on large batches, hand-crafted heavy data
augmentation, quality of negative samples, and strategies to ensure training
stability. These requirements and constraints limit the usage and applicability
of contrastive learning in different domains and motivate more straightforward
self-supervised objectives.

2.2 Masked Image Modeling

This simple idea involves reconstructing corrupted input to form the self-
supervised learning objective. The pioneering work [30] introduced inpainting
as a pretext task for self-supervised learning, enabling the reconstruction of cor-
rupted inputs. iGPT [6] performed reconstruction on corrupted images, adher-
ing to the auto-regressive approach detailed in GPT [4]. Conversely, BEiT [3]
adopted a BERT [14]-style pre-training protocol, which restores masked image
tokens in an autoencoding fashion. The approach employed a pre-trained tok-
enizer to transform input images into visual tokens. MAE [20] and SimMIM
[37] are two concurrent influential works that employ an end-to-end framework
with an asymmetric encoder-decoder architecture, utilizing a high mask ratio to
boost computational efficiency and challenge the model to learn better represen-
tations. The straightforward concept involves a masking strategy that can be as
simple as random masking. In MAE, the encoder takes unmasked patches, and
the decoder reconstructs the original images based on encoded visible tokens
and masked tokens, outperforming previous contrastive learning benchmarks.
SimMIM encodes both visible patches and the masks, supporting both vision
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transformers [15] and hierarchical vision transformers (Swin [25]). CIM [16] uti-
lized a generator to produce corrupted patches onto the original input rather
than using masks, achieving competitive results on various vision benchmarks
using both ViT and Convolutional Neural Networks (CNN). CAE [10] intro-
duced a regressor component into the masked image modeling framework and
formulates masked prediction and reconstruction objectives, which shows bet-
ter transfer performance over classification and segmentation tasks. Although
masked image modeling appears as a new paradigm in self-supervised learning
and achieves improved performance than contrastive learning baselines, it lacks
high-level semantics and global features as the learning objective is formed at
the pixel level.

2.3 Knowledge Distillation in Self-supervised Learning

The concept of knowledge distillation was introduced in [22] and represents a
technique to transfer knowledge from a well-trained teacher model to a more
compact or compressed student model. Existing methods have also incorporated
knowledge distillation into the self-supervised learning framework to improve
the original baselines for various objectives. In [28], the authors used knowledge
distillation to decouple the backbone model used for self-supervised pre-training
and the supervised downstream tasks, creating a more flexible self-supervised
framework with improved results. SEED [17] applies self-supervised distillation
to enable contrastive learning for small models. S2-BNN utilized knowledge dis-
tillation to construct binary neural networks [12] from contrastive learning-based
real-valued models. DMAE [2] demonstrated masked knowledge distillation on
the intermediate features between the student and teacher for masked image
modeling, where the teacher is a large pre-trained MAE encoder model, and the
student is a standard MAE pipeline with a smaller encoder. The authors show
that their proposed method can distill a student with comparable performance
to the teacher under an extremely high mask ratio.

2.4 Combining Self-supervised Paradigms

Recent works have sought to fuse the strengths of contrastive learning and
masked image modeling to compensate for individual limitations and encour-
age better representation learning. SiameseIM [33] incorporated masking as a
part of data augmentation operations into the contrastive learning framework.
The results show that SiameseIM improves the performance of classification
and segmentation, with more significant improvement in few-shot learning and
robustness. MimCo [41] strived to enhance the linear separability of masked
image modeling by introducing a two-stage pre-training process that includes
contrastive learning and masked image modeling. It achieves exceptional per-
formance on small ViT models and outperforms other self-supervised baselines.
CAN [27] applied a mask to both branches in a siamese network and optimized
an InfoNCE loss [29], a reconstruction loss, and a denoising loss. The combi-
nation results in a simple and robust self-supervised learning algorithm that
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outperforms methods relying solely on contrastive learning or masked image
modeling.

3 Methodology

3.1 Preliminary

Momentum Contrast (MOCo). The proposed MOMA utilizes a pre-trained
contrastive learning model (MoCo v3 [11]) as the teacher in the self-supervised
distillation framework. MoCo v3 utilizes a siamese network setup with one main
encoder and one momentum encoder, optimizing its contrastive learning objec-
tive as follows:

Lq = − log
exp (q · k+/τ)

∑K
i=0 exp (q · ki/τ)

(1)

Here, q is the encoded query from the main encoder and k is the encoded key
from the other branch’s momentum encoder (k+ is the positive key), and τ is
the temperature parameter for the contrastive objective [35]. The positive and
negative keys are generated from strong data augmentations [8,19] to create
diverse views. Therefore, MoCo v3 enables the model to learn rich global infor-
mation that captures the high-level discriminative features of the object that is
invariant and robust to different augmented views. We take the main encoder
from the pre-trained MoCo v3 framework as the off-the-shelf teacher network to
encourage high-level semantic and global feature learning for the student in the
masked image modeling pipeline.

Masked AutoEncoder (MAE). The Masked Autoencoder (MAE) [20] is built
based on the simple design of pixel reconstruction from randomly masked inputs
and trains the network end-to-end. It adopts an asymmetric encoder-decoder
architecture, where the encoder learns the rich semantics from the data and the
lightweight decoder performs the pixel reconstruction from the masked inputs.
The pixel-level reconstruction objective can be formally addressed as follows

Lrec = L2 (Dθ, Eθ (x � M) ,x) (2)

Here, Eθ and Dθ are the encoder and decoder in MAE, respectively. M stands
for the mask applied on the input x. � is the operator that uses indices from
M to mask the input. In the proposed MOMA, we adapt MAE into the student
branch, where the encoder in the adapted MAE is the student network in the
self-supervised distillation network.

3.2 MOMA

Self-supervised Distillation Framework. We propose a self-supervised dis-
tillation framework to transfer high-level semantics and global features from a
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contrastive learning-based teacher to a masked image modeling student. The pro-
posed framework employs a Siamese network structure comprising two branches:
a teacher branch and a student branch. In the teacher branch, we utilize an off-
the-shelf MoCo v3 pre-trained Vision Transformer (ViT) as the teacher network,
which receives unmasked input data. Once the inputs are encoded by the teacher
network, they proceed to a normalization module that produces normalized fea-
tures, serving as the target representations for the student network to align its
learned representations. Layer normalization [1] is applied within the normaliza-
tion module to stabilize and generalize the model [38]. Furthermore, the teacher
network conveys its attention map to the student model to guide the masking
process in the masked image modeling pipeline. The attention map, derived from
the contrastive learning teacher, contains rich high-level semantics, global and
discriminative features, thereby guiding the masks to foster improved learning of
global features and enhance the discriminative power of the student. The student
branch adopts a masked image modeling pipeline, consisting of three compo-
nents: an encoder, a decoder, and a projector. The encoder is a ViT, the decoder
is a shallow transformer with two layers, and the projector is a lightweight two-
layer Multi-Layer Perceptron (MLP). The student branch receives masked input
data, where the teacher network influences the masking process. The encoder
processes the masked data, and the resulting encoded representations are passed
to the decoder and the projector, respectively. The decoder aims to reconstruct
the original input data, fulfilling the masked image modeling objective. Mean-
while, the projector maps the encoded representations from the encoder, aligning
these projected representations with the target representations produced by the
teacher branch. An overview of the proposed framework is illustrated in Fig. 1.

Masking Strategy. Although random masking suggested in MAE [20] employs
a high mask ratio (i.e., 75%), it does not inherently prompt the model to focus
on global semantics or discriminative features. To address this, we designed
a semantic-guided masking strategy utilizing the attention map from the con-
trastive learning teacher. Specifically, the attention output from the last trans-
former block of the ViT in the contrastive learning teacher is extracted, retrieving
the multi-head attention of the [CLS] token to all other tokens, excluding itself.
The attention values are then averaged across the head dimension and reshaped
to match the input image dimensions. Sorting the attention values in descending
order, we identified that larger values correspond to more attended features, thus
indicative of discriminative features that capture global semantics. The indices
of the top 50% attention values are retained as the mask indices for the mask-
ing process. This approach encourages the masked image modeling pipeline to
learn and reconstruct the most significant discriminative semantic features that
encapsulate the global semantics of the objects.

Feature Alignment. To enforce the high-level semantics and global features,
we implement feature alignment between the representations from the teacher
and student branches. During pre-training, the student updates its parameters
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not only to fulfill the masked image modeling objective but also to align its
learned representation with the target representations from the teacher, thereby
enhancing the global features. We align the normalized representations from the
teacher branch with the projected representations from the student branch by
minimizing a distance metric. For more stable and robust learning, we employ
the smooth L1 loss as the distance metric [18], which encourages better alignment
of the teacher and student representations. The formalization of the alignment
process is expressed as:

Lalign = LSmoothL1(Norm(zt),Proj(zs)) (3)

where Norm and Proj represent the normalization module and projector in the
teacher and student branches, respectively. zt and zs denote the representations
from the contrastive learning teacher and the student encoder, respectively.

Learning Objectives. The proposed self-supervised distillation framework
jointly optimizes two objectives (see Eq. 4): a reconstruction loss (see Eq. 2)
from the masked image modeling, where the masked indices are guided by the
teacher network rather than random masking, and an alignment loss (see Eq. 3)
between the representations from the two branches.

L = Lrec + Lalign (4)

Parameters of the teacher branch remain fixed during the self-supervised pre-
training phase. The off-the-shelf ViT is frozen with no gradient updates, and the
normalization module (without affine transformations) has no learnable param-
eters. In contrast, the student branch is dynamic, with its encoder, decoder, and
projector actively updated through gradient backpropagation.

4 Experiments

4.1 Datasets and Experiment Setup

Datasets. During the pre-training stage, we utilized ImageNet-1K [13] for our
proposed self-supervised distillation, without using any annotations. After pre-
training, we assessed the transfer learning capabilities of our method for down-
stream classification tasks on CIFAR-10 and CIFAR-100 [23], and for semantic
segmentation on ADE20K [40]. We employed accuracy as the metric for image
classification tasks and mean intersection over union (mIoU) as the metric for
the semantic segmentation task. Detailed descriptions of the datasets can be
found in the supplementary material.

Experiment Setup. We utilized the ViT-base [15] as the encoder for the stu-
dent branch, with a patch size of 16 and 12 transformer blocks, each with 12-head
multi-head attention and an embedding dimension of 768. The decoder in the
student branch is a 2-layer shallow transformer with an embedding dimension of
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Table 1. Comparison of top-1 fine-tuning
accuracy on ImageNet-1K. CL denotes
Contrastive Learning and MIM represents
Masked Image Modeling

Method Supervision Acc (%)

Supervised [34] Annotations 81.8

DINO [5] CL 82.8

MoCo v3 [11] CL 83.2

BEiT [3] MIM 83.2

MAE [20] MIM 83.6

SimMIM [37] MIM 83.8

CIM [16] MIM 83.3

CAE [9] MIM 83.8

DMAE [2] Combination 84.0

MimCo [41] Combination 83.7

SiameseIM [33] Combination 83.7

CAN [27] Combination 83.6

MOMA Combination 84.4

Table 2. Transfer learning top-1 accuracy
(%) on CIFAR-10 and CIFAR-100.

Method CIFAR-10 CIFAR-100

Random Init. 77.8 48.5

IN1K Sup. [15] 98.1 87.1

DINO [5] 99.1 91.7

MoCo v3 [11] 98.9 90.5

BEiT [3] 98.5 90.1

MAE [20] 99.1 91.6

SimMIM [37] 99.2 91.7

CAE [9] 99.1 91.7

DMAE [2] 99.2 91.6

SiameseIM [33] 99.1 91.6

CAN [27] 99.0 91.5

MOMA 99.2 91.8

512. The projector is a 2-layer MLP with a dimension of 768. We used the pub-
licly available pre-trained ViT-base from MoCo v3 for the teacher branch, which
shares the same architecture as the encoder in the student branch. During the
self-supervised pre-training phase on ImageNet-1K, we trained the model for 800
epochs with a batch size of 1,024, using the AdamW [26] optimizer with a learning
rate of 1.5e-4, β1 and β2 set to 0.9 and 0.95, respectively, and a weight decay of
0.05. In the fine-tuning phase for classification tasks (including ImageNet-1K and
transfer learning on CIFAR-10 and CIFAR-100), we fine-tuned the pre-trained
ViT from the student encoder for 100 epochs with a batch size of 1024, using the
AdamW optimizer with a learning rate of 1e-3, β1 and β2 set to 0.9 and 0.999,
respectively, and a weight decay of 0.05. For the semantic segmentation task, we
integrated our pre-trained ViT into the UperNet [36] framework and fine-tuned
it for 100 epochs with a batch size of 16, following the methodology outlined in
[20]. All baseline comparison models adopted ViT-base as the backbone in the
experimental results. Our experiments utilized 4 NVIDIA A100 GPUs during
both the pre-training and fine-tuning phases.

4.2 Results on ImageNet-1K

We report the fine-tuning accuracy of our proposed MOMA framework along-
side other baseline models on ImageNet-1K in Table 1. Our comparison includes
models trained in a supervised manner, self-supervised approaches based on con-
trastive learning objectives, those utilizing masked image modeling objectives,
and models employing a combination of different objectives. The results demon-
strate that self-supervised baselines, including MOMA, surpass the supervised
baseline, indicating that self-supervised pre-training on the large-scale ImageNet-
1K dataset enhances fine-tuning classification performance. The rich and gener-
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alized representations derived from self-supervised learning foster a more robust
model that exceeds the performance of models trained solely on annotations.
Furthermore, MOMA outperforms self-supervised baselines trained exclusively
on either contrastive learning or masked image modeling objectives. This sug-
gests that the synergistic integration of the contrastive learning teacher and
the masked image modeling student yields superior representations for MOMA,
leading to enhanced classification performance that leverages the strengths of
both contrastive learning and masked image modeling. Compared to other self-
supervised baselines that adopt a combination of different objectives, MOMA
consistently outperforms them, achieving better performance than SiameseIM,
Mimco, and CAN, which learn multiple objectives, including contrastive and
masked reconstruction objectives. Additionally, MOMA surpasses DMAE, which
utilizes knowledge distillation from a pre-trained large MAE. These findings indi-
cate that MOMA effectively amalgamates knowledge from contrastive learning
and masked image modeling. The knowledge from the off-the-shelf contrastive
learning teacher reinforces global representations and high-level semantics in the
masked image modeling student. Specifically, semantic-guided masks are more
informative in capturing discriminative features and essential semantics than
random masking. Moreover, the feature alignment process effectively enforces
the global features within the masked image modeling student, leading to a
more effective representation for vision tasks.

4.3 Transfer Learning on Downstream Tasks

Image Classification. We explored transfer learning for downstream classifica-
tion tasks on CIFAR-10 and CIFAR-100. Both datasets are small-scale compared
to the ImageNet-1K dataset, on which the proposed MOMA was self-supervised
pre-trained. As illustrated in Table 2, we compared the proposed MOMA with
a randomly initialized Vision Transformer (ViT) trained from scratch, a super-
vised ViT trained on ImageNet-1K, and various self-supervised baselines also
pre-trained on ImageNet-1K. The randomly initialized ViT performed poorly
on both datasets, likely due to the complex ViT model’s potential to overfit
the small-scale data. In contrast, the supervised ViT trained on ImageNet-1K
demonstrated excellent performance, showcasing that models trained on large-
scale datasets can extract rich and powerful representations that transfer well
to downstream tasks, even when the datasets are small-scale. Excluding DINO,
all other self-supervised baselines surpassed both the supervised baseline and
the randomly initialized baseline, highlighting the efficacy of self-supervised
learned features in improving transfer learning ability and generalizability for
downstream tasks. Among the self-supervised learning methods, MOMA consis-
tently outperformed the other baselines on both datasets, indicating that MOMA
acquires higher quality representations that generalize better on downstream
classification tasks than other methods. The contrastive learning teacher within
the proposed framework effectively enforces high-level semantics and global fea-
tures onto the masked image modeling student, resulting in more generalizable
learned representations with enhanced transfer learning capability.
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Semantic Segmentation. We present the transfer learning semantic segmenta-
tion results in Table 3. The findings suggest that self-supervised learning general-
izes well across different downstream vision tasks, achieving better performance
than the supervised method. The proposed MOMA consistently outperforms
both the supervised baseline and self-supervised baselines. The contrastive learn-
ing teacher and masked image modeling student within MOMA equip it with a
combination of high-level semantic global features, as well as pixel-level represen-
tational power. Consequently, MOMA possesses enhanced discriminative power
and has improved performance on pixel-level dense prediction tasks, achieving
exceptional results in semantic segmentation.

Table 3. Transfer learning semantic segmentation results on ADE20K.

Supervised [25]DINO [5]MoCo v3 [11]BEiT [3]MAE [20]

mIoU (%) 46.6 47.2 47.3 48.8 48.1

SimMIM [37]CAE [9]DMAE [2]SiameseIM [33]CAN [27]MOMA

mIoU (%) 50.0 50.1 49.7 49.6 48.8 50.2

4.4 Ablation Study

Choice of the Teacher Model. We considered various off-the-shelf pre-trained
models as the teacher, including supervised models, masked image modeling pre-
trained models, contrastive learning pre-trained models, and self-supervised pre-
trained models that learned both contrastive and reconstruction objectives. As
indicated in Table 4, the contrastive MoCo v3 pre-trained teacher model out-
performed the supervised baseline and other self-supervised baselines. The con-
trastive learning pre-trained DINO model also demonstrated impressive results
compared to other models. Supervised representations, coupled with supervision
from classification annotations, and masked image modeling pre-trained models
(MAE and SimMIM) that learn representations based on pixel-level reconstruc-
tion, do not incorporate critical features and global semantics. SiameseIM and
CAN, despite being pre-trained with both contrastive and reconstruction objec-
tives, do not effectively convey critical global features to the student model due
to the neutralizing effect of the reconstruction objective. Thus, a pure contrastive
teacher model is more effective in transferring knowledge to the student model,
compensating for the lack of global features and high-level semantics in the
masked image modeling pipeline.

Importance of Masking Strategy. We explored different masking strategies
to investigate their importance in our proposed MOMA (see Fig. 2). Random
masking [20] makes the masked image modeling task more challenging, poten-
tially encouraging stronger models and better-learned representations. However,
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these masks lack specific shapes or patterns and do not emphasize discrimi-
native features or semantics. Block masking[3] creates rectangular masks with
random sizes and aspect ratios, masking groups of neighboring pixels and being
less scattered compared to random masking. Nonetheless, it does not take into
account the semantic information during the mask generation process. In con-
trast, the proposed semantic-guided masking in MOMA leverages the attention
map from the contrastive learning teacher, incorporating rich semantics, includ-
ing discriminative features of the input data. According to the results in Table 5,
semantic-guided masking outperforms the other two strategies, indicating that
guidance from the contrastive learning teacher encourages the masked image
modeling to focus more on discriminative features and semantics, leading to
superior representations and better performance in vision tasks.

Fig. 2. Comparison of Different Masking Strategies. We illustrate the compar-
ison of different masking strategies. From left to right, the figures display the original
input image, followed by random masking [20], block masking [3], and our proposed
semantic-guided masking.

Impact of Feature Alignment. The goal of feature alignment is to bring the
student representations from the masked image modeling pipeline closer to the
target representations produced by the contrastive learning teacher. This align-
ment allows the student’s representations to better match the teacher’s, which
are rich in high-level semantics and global features. As shown in Table 6, remov-
ing feature alignment significantly decreased MOMA’s performance, underscor-
ing the importance of global features and semantics from the teacher model in
generating beneficial representations for learning. Additionally, we explored dif-
ferent alignment functions within the framework, including cosine similarity, L1,
and L2 metrics. All alignment functions improved performance compared to the
absence of feature alignment, highlighting the critical role of feature alignment in
capturing global semantics, and improving representation quality. The smooth
L1 metric achieved better performance than other functions, as it is more robust,
stable, and easier to optimize during learning [32].
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Table 4. Comparison of
top-1 fine-tuning accuracy
on ImageNet-1K regard-
ing choice of teacher.

Teacher Acc (%)

Supervised [34] 83.7

DINO [5] 84.1

MoCo v3 [11] 84.4

MAE [20] 83.8

SimMIM [37] 83.9

SiameseIM [33] 84.0

CAN [27] 83.8

Table 5. Comparison of
top-1 fine-tuning accuracy
on ImageNet-1K regard-
ing masking strategies.

Masking Acc (%)

Random [20] 84.1

Block [3] 83.8

Semantic-guided 84.4

Table 6. Comparison of top-
1 fine-tuning accuracy on
ImageNet-1K regarding fea-
ture alignment methods.

Alignment Acc (%)

None 83.7

Cosine Similarity 84.2

L1 Distance 84.3

L2 Distance 84.2

Smooth L1 84.4

5 Conclusion

In this work, we introduced MOMA, a self-supervised knowledge distillation
framework that enhances masked image modeling by encouraging the integra-
tion of high-level semantics and global features. We leveraged a contrastive learn-
ing teacher to generate semantic-guided masks for the masked image modeling
student and incorporated feature alignment between the teacher and student
representations. Our extensive experiments across various vision benchmarks
demonstrate that the proposed MOMA framework achieves improved perfor-
mance compared to traditional masked image modeling frameworks and exhibits
competitive results relative to other self-supervised baselines. We aim to apply
the proposed method to other critical domains, such as medical applications and
aspire to inspire advancements in the design of more sophisticated self-supervised
learning algorithms.
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Abstract. Semi-supervised semantic segmentation leverages both
labeled and unlabeled images to accomplish pixel-wise classification task.
Within this field, the weak-to-strong consistency regularization has been
widely popularized and has become a standard approach. However, unidi-
rectional regularization often leads to the ignorance of correct but filtered
predictions and brings the noise of wrong but confident predictions. To
address these inherent flaws, we fully leverage Cross-Augmentation Con-
sensus and Conflict (CACC), including Augmentation Feedback Mecha-
nism (AFM) and Category Threshold Controller (CTC). AFM aims to
mitigate the influence of incorrect predictions with high-confidence and
mine unconfident but accurate predictions by re-weighting the pixel-wise
pseudo supervision and applying supplementary regularization. Con-
currently, CTC adopts category-specific thresholds by considering the
model’s overall performance and the varying category-specific learn-
ing difficulty. Experimental results on benchmark datasets demonstrate
the superior performance of our method, showcasing its effectiveness in
improving semi-supervised semantic segmentation.
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1 Introduction

Semantic segmentation is a fundamental task in computer vision, which is about
classifying each pixel in an image into semantic categories. It is widely applied in
various visual fields, including autonomous driving [12], medical image analysis
[23] and remote-sensing image analysis [16]. Although it is crucial, densely per-
pixel labeling is time-consuming and labor-intensive. Considering the substantial
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demand for annotations, semi-supervised semantic segmentation emerges as a
practical solution. This approach leverages a limited set of labeled data along-
side a larger pool of unlabeled images, which not only alleviates the annotation
burden but also enhances the generalization of the segmentation model.

Specifically, semi-supervised semantic segmentation can be classified into two
principal approaches. The first one is the pseudo-labeling, which assigns high-
quality pseudo-labels to unlabeled data, thereby transferring the knowledge from
labeled to unlabeled data [11]. The second one is the consistency regularization,
which enforces the model to produce stable outputs for perturbed inputs [18].

A foundational work in this area is FixMatch [20]. Specifically, it generates
pseudo-labels from the weakly augmented images and uses these pseudo-labels to
supervise the predictions of strongly augmented images, which also serves as the
consistency regularization among different perturbed views. Unlike many other
semi-supervised learning methods, FixMatch does not rely on complex auxiliary
components or post-processing workflows. FixMatch has inspired subsequent
innovations including UniMatch [29], CorrMatch [21] and MaskMatch [19].

Fig. 1. Qualitative results generated by UniMatch [29] on the Pascal VOC 2012 dataset.
We fix 0.9 as the threshold. (a) Images; (b) Ground truth; (c) Predictions; (d) High-
confidence wrong predictions (marked as white); (e) Low-confidence correct predictions
(marked as white).

However, despite their simplicity and efficiency, FixMatch-family methods
are not without its limitations. As column (d) in Fig. 1 shows, predictions with
high-confidence from weakly perturbed images as pseudo-labels may introduce
noise into the training process, as some of these reliable predictions may be
erroneous. This noise can accumulate over the course of training, leading to the
confirmation bias of the model. As column (e) in Fig. 1 shows, a non-negligible
fraction of pixels are discarded due to threshold-based filtering, potentially omit-
ting valuable information that could contribute to the model learning.

Additionally, the one-size-fits-all threshold overlooks the overall training per-
formance of the model and class-wise learning difficulties. High thresholds may
filter out potentially correct predictions for challenging categories and inhibits
their learning. Low thresholds may introduce noise from easier-to-learn cate-
gories predictions, exacerbating the model’s bias towards these categories.
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Based on the analysis above, this paper attempts to address the following
issues without introducing additional components, solely based on the con-
flicts and consensus among different augmentation flows within the
model itself: (i) How to reduce the impact of reliable but incorrect predictions?
(ii) How to re-mine unreliable but correct predictions, treating filtered “trash”
as “treasure”? (iii) How to design dynamically adjusted category thresholds that
consider the global and class-wise learning progress? To this end, the paper pro-
poses the Augmentation Feedback Mechanism (AFM) to tackle the issues of
model overreaction (problem i) and underreaction (problem ii), while the Cate-
gory Threshold Controller (CTC) addresses the issue of category learning imbal-
ance caused by fixed model thresholds (problem iii). For AFM, robust supervi-
sion from the consensus among data augmentations is selected as a supplemen-
tary supervision when predictions from the weak augmentation branch are miss-
ing due to the threshold filtering. Adaptive weight adjustment is also applied
to the weak augmentation branch predictions based on consensus within the
augmentation space. For CTC, the strategy is based on the following hypoth-
esis: categories that are close in the representation space are easily confused
after applying data augmentation [14]. Therefore, CTC calculates the transition
frequency among categories between weak and strong augmentation, which is
a measure of confusion among categories. Category thresholds are determined
based on the degree of confusion across categories, thus setting flexible con-
straints for hard-to-learn samples and strict constraints for easy-to-learn sam-
ples.

Overall, the contributions of this work are summarized into three folds:

– This paper proposes AFM to reduce the impact of reliable but incorrect
predictions and to utilize unreliable but correct predictions.

– This paper proposes CTC, which dynamically adjusts class-wise thresholds
based on the conflict among categories.

– Experiments on extensive benchmarks has demonstrated the superior perfor-
mance of the proposed method.

2 Related Work

As outlined in Sec. 1, semi-supervised learning bridges the gap between super-
vised and unsupervised methodologies by utilizing both labeled and unlabeled
data. This approach leads to two key strategies: consistency regularization and
pseudo-label training. Consistency regularization focuses on producing stable
outputs under variations of image space or feature space. In contrast, pseudo-
label training assigns proxy labels to unlabeled data, thereby continuously guid-
ing the model towards a more supervised pattern.

2.1 Consistency Regularization

Consistency regularization capture the distributional structure of unlabeled
data, thereby enhancing the model’s generalization. Some works focus on apply-
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ing adaptive strong augmentations to enhance data diversity. [33] enhances semi-
supervised semantic segmentation performance through intensity-based augmen-
tations and adaptive CutMix [31] techniques. [32] introduces instance-specific
enhancements and model-adaptive supervision to address instance learning-
difficulties variability. [9] tackles class imbalance by employing adaptive Copy-
Paste and CutMix augmentations and a re-weighting strategy to balance cate-
gory performance. Some works explore a broad perturbation space. [29] explores
image and feature perturbation spaces and integrates them into a unified frame-
work. [15] presents a dual-teacher framework which jointly injects feature-level
adaptive perturbations to the student model.

In this work we explore a noise-resistant consistency regularization strategy
through the interactions between data augmentation flows within the model
itself, without relying on additional components or auxiliary contrastive loss.

2.2 Pseudo labeling

Pseudo-label self-training methods use pseudo-labels to convert unlabeled data
into the annotated format, reducing the gap between semi-supervised and fully-
supervised approaches. For rectification, [4] proposes a decoupling training strat-
egy and an entropy-based sampling strategy to train a class-unbiased decoder.
[17] adopts dynamic soft pseudo labels to maintain the potential ground-truth
classes. For cross-model supervision, [13] applies a cross-fusion supervision mech-
anism to fuse predictions from multiple learners, as well as applying a lower
weight to the object boundary to mitigate the noise from unreliable pixels. [6]
trains two parallel classifiers by the supervision of the intersection and union
between their predictions, and [26] minimizes the similarity between the feature
extracted by two sub-nets. Both of them encourage to learn reliable predictions
from two irrelevant views for co-training.

In this work, we do not rely on a multi-model system to generate comple-
mentary and robust pseudo-labels. Instead, we construct dynamically adjusted
thresholds based on the conflicts between data augmentation flows within the
model. This approach can filter out unreliable pseudo-labels while retaining high-
quality ones.

3 Methodology

In this section we delve into the proposed CACC approach with AFM and CTC.
Fig. 2 shows the overall pipeline of our method. In Sec. 3.1, we briefly define the
task and introduce the motivation of the proposed CACC. In Sec. 3.2 we intro-
duce AFM to dynamically adjust prediction weights and incorporate additional
supervision signals based on augmentation consensus. In Sec. 3.3 we introduce
CTC, focusing on how to adjust category thresholds based on cross-category
conflicts.
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Fig. 2. The overview pipeline of the proposed CACC. Images with weak augmentation
(arrows marked as orange) are sent to the model and the pseudo labels are generated to
supervise predictions from two strong augmentation flows (arrows marked as green and
blue). The original weak-to-strong loss function will be modified into Lrefine by reweight-
ing strategy (Sec. 3.2) and threshold controller (Sec. 3.3). Beyond the Lweak−strong, an
additional loss Ladd will serve as the supplementary supervision based on the prediction
consensus (Sec. 3.2).

3.1 Preliminary

Semi-supervised learning combines supervised and unsupervised learning meth-
ods to improve model performance. In supervised learning, the model is trained
on a labeled dataset to learn the prior classification information. In unsupervised
learning, the model uses an unlabeled dataset to identify patterns of the data.
Using a larger amount of unlabeled data besides the labeled one often results in
better generalization and accuracy.

To be more specific, given a dataset D = DL ∪DU , where DL = {(xi, yi)}NL
i=1

represents the labeled set with NL image-label pairs and DU = {xj}NU
j=1 repre-

sents the unlabeled set with NU images, the goal is to classify each pixel into
K categories with a limited amount of labeled data alongside a larger set of
unlabeled data. The overall loss function can be described as Eq. 1

L = Lunsup + λLsup, (1)

where λ is a trade-off factor to balance two targets and Lsup =
− 1

NL

∑NL

j=1 H(yj ,pj .
For general setting, pseudo-labels generated from weakly augmented version

is used to guide the learning on strongly augmented data. The unsupervised loss
function can be written as Eq. 2

Lunsup = − 1
NU

NU∑

j=1

Mj � H(ŷw
j ,ps

j), (2)

where NU is the number of unlabeled images. Mj = I(pw
j > τ) is the indicator

matrix for the j-th image, where I is the indicator function, returning 1 when
the condition max(pweak

j ) > τ is satisfied (i.e., when the prediction probability
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exceeds the confidence threshold τ) and 0 otherwise for each pixel. � represents
the Hadamard product. H is the cross-entropy function. ŷw

j is the one-hot label
for the weakly augmented view, and ps

j is the prediction probability matrix for
the strongly augmented versions.

Upon revisiting this equation, we encounter three issues: First, predictions
from the weakly augmented branch are not always reliable, and it is needed
to identify these incorrect predictions. Second, it is important to retrieve the
accurate predictions filtered by the threshold. Third, the threshold should be
dynamically adjusted to accurately distinguish erroneous and correct samples
as the training goes on. Sec. 3.2 will delve into the first two issues, while the
discussion on the third issue will be presented in Sec. 3.3.

Fig. 3. Supportive experiments of CACC. Fig. 3(a) shows that the phenomenon exists
where predictions of weak and strong augmented images don’t reach a consensus. Fig.
3(b) shows that the accuracy of pseudo labels in conflict is lower than the normal one.
Fig. 3(c) shows that the consensus predictions from both strong-augmented flows are
more accurate where the pseudo labels are filtered.

3.2 Augmentation Feedback Mechanism

This chapter primarily investigates how to enhance the utilization of pseudo-
labels in unlabeled datasets and the capability to filter noisy pseudo-labels. As
mentioned in Sec. 2.2, cross supervision helps mitigate confirmation bias and
promote knowledge exchange. In fact, the concept of cross-supervision among
multiple models can also be transferred to a single model by considering differ-
ent data augmentation branches as views of different models. Consequently, a
straightforward idea emerges that the consensus among predictions from multi-
ple strongly augmented branches is reliable. This consensus can not only serve as
the judgement to the accuracy of predictions from weakly augmented branches,
but also be a supplementary supervisory signal when the pseudo-supervision
from weakly augmented branches is filtered by the threshold.

To verify the reliability of this idea, we conduct experiments on the Pascal
VOC blender [7] 1/8 split with ResNet-101 [8] backbone. First, we select all pixels
where predictions from dual augmentation branches are consistent, and then
we extract predictions of selected pixels from the weak augmentation branch.
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We measure the frequency of conflicts between the prediction from the weak
and strong augmentation branch, and calculate the proportion of pixels whose
predictions from the weak augmentation branch is wrong but the predictions
from the strongly augmented one is correct. Fig. 3(a) indicates that pixels with
conflict occurs in high frequency and needs consideration. Fig. 3(b) indicates
that pixels with conflicts are more likely to exhibit noisy predictions compared
to regular pixels. Second, we fix thresholds τ = 0.8 to identify pixels filtered out
by the thresholds. We calculate the accuracy of these filtered pixels where the
predictions from the strong augmentation branches agree. The results in Fig.
3(c) demonstrate that these consistent predictions could indeed serve as a form
of reliable auxiliary supervision.

The experimental results strongly support our hypothesis that the consensus
among multiple augmented views and the discrepancies in weak-strong view
pairs serve as a robust indicator for identifying errors in pseudo-labels. Based
on this, Eq. 2 can be modified. Specifically, we update the mask as Eq. 3:

Nj =
{

1, if ŷs1
j �= ŷs2

j

max(pw
j ), if ŷs1

j = ŷs2
j .

(3)

For the part where Nj = 1, the strong augmentation branches fail to reach a
consensus, and their predictions are probably unreliable. It is essential to rely on
the supervision provided by the weak augmentation branch. For the part where
Nj < 1, pixels can be divided into two subsets: First, in cases where conflicts
arise between weak and strong augmented predictions, dynamic weighting is
applied to the loss function. A lower confidence in the weakly augmented branch
indicates that the pseudo-prediction is less reliable, thereby mitigating the noise
from pseudo-labels. Second, if the predictions from the weak and strong branches
are consistent, it suggests that the model has adequately learned the information
for the region. As such, further learning is unnecessary, and the model’s attention
on these reliable regions can be reduced by diminishing their weights.

Beyond the vanilla loss function, we add a supplement term where predictions
from weakly augmented view are filtered. Similar to Eq. 3, we define the weight
as Eq. 4:

Rj =
{

0, if ŷs1
j �= ŷs2

j

1 − max(pw
j ), if ŷs1

j = ŷs2
j .

(4)

Overall, mitigating the concept of Eq. 3 and Eq. 4, Eq. 2 can be re-formulated
to Eq. 5:

Lrefine = − 1
2NU

NU∑

j=1

Mj � Nj � (H(ŷw
j ,ps1

j ) + H(ŷw
j ,ps2

j )),

Ladd = − 1
2NU

NU∑

j=1

(1 − Mj) � Rj � (H(ŷs2
j ,ps1

j ) + H(ŷs1
j ,ps2

j )),

Lunsup = Lrefine + Ladd.

(5)
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3.3 Category Threshold Controller

Fig. 4. Comparison of mean confidence of correct predictions and wrong predictions
during 10th and 30th Epoch across Pascal VOC 2012 classes (with ResNet-101 model).

Before designing our threshold strategy, we firstly compute the mean value of
confidence and the corresponding standard deviation1 of correct and incorrect
predictions for each category during the 10th and 30th epochs (corresponds to the
captions of ”correct” and ”wrong” in Fig. 4). Two key insights can be obtained
from Fig. 4: First, the overall performance is improving, indicating a gradual
enhancement in model performance. Second, the confidence level vary among
categories. There exist easy-to-learn and difficult-to-learn categories. Such obser-
vation have inspired our approach to designing thresholds: (1) they should reflect
the overall learning progress of the model, and (2) the thresholds should be
category-specific. Nearly all previous studies employ a fixed threshold, which is
contradictory to the first principle. A few works including CorrMatch [21] and
U2PL [25], despite obeying to principle 1, overlook the principle 2.

Building upon the above discussions, we compute both the global threshold
and category confusion factors to reflect the model’s overall training performance
and the learning difficulty of categories. For the global threshold, we calculate
the online global threshold for the current batch by averaging the confidence of
all pixels exceeding the current global threshold, and then update the historical
global threshold using exponential moving average (EMA):

P̄ =

∑
i max(pwi ) · I(max(pwi ) > τ t−1

g )
∑

i I(max(pwi ) > τ t−1
g )

, (6)

1 The standard deviation will be provided in Sec. A in the supplementary material.
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τ t
g = α · τ t−1

g + (1 − α) · P̄ , (7)

where τg means the global threshold, t means the time step, P̄ means the online
factor, i indicates the pixel, α is the momentum decay of EMA. Secondly, we
compute the confusion factor for each category to represent the learning difficulty
of each category. Specifically, We initialize a confusion matrix C ∈ R

K×K and
count the transfer frequency in a minibatch. C [r, c] means the number of pixels
where the weak augmentation predictions belong to category r and either of the
strong augmentation predictions belong to category c. Then we sum the rows of
matrix C and divide each diagonal element by the row-wise sum to obtain the
normalized category confusion factors F̄ t

k ∈ R
K :

F̄ t
k =

Ckk∑
c Ckc

, (8)

where k represents the index of category. Like the global threshold, we also
update the category confusion factors using EMA:

F t
k = α · F t−1

k + (1 − α) · F̄ t
k. (9)

Finally, we normalize the category confusion factors to their maximum value
to obtain the relative confusion factors for each category, which are then multi-
plied by the global threshold to determine the final category-specific thresholds:

τ t
k = τ t

g · F t
k

max(F t
k)

. (10)

4 Experiments

4.1 Experimental Setup

Datasets. We conducts experiments on both the PASCAL VOC 2012 [5] and
Cityscapes [2] datasets to evaluate our method. The PASCAL VOC 2012 dataset
comprises 1,464 finely annotated training images and 1,449 validation images.
Additionally, we incorporate additional 9,118 coarsely labeled images from the
Semantic Boundaries Dataset (SBD) [7], the same as all the baseline methods
mentioned in Tab. 2. We evaluate our method on both classic and blender Pascal
setting. For the Cityscapes dataset, it is an urban-scene-related dataset, includ-
ing 2,975 images for training and 500 images for validation. For all datasets we
adopt 1/2, 1/4, 1/8, and 1/16 labeled data ratio as the settings of experiments.

Evaluation Protocols. For all datasets, we use the mean Intersection-over-
Union (mIoU) as our evaluation metric. During the inference phase, for the
Pascal dataset, we center-crop the image to a fixed size and conduct inference for
whole cropped image. For the Cityscapes dataset, we adopt the sliding-window
way for image inference. Inferences are conducted on the validation sets of all
datasets.
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Implementation Details. For the batch size, there are 8 labeled and 8 unla-
beled images in a minibatch. For the learning rate, we start with 0.001 for the
Pascal dataset and 0.005 for the Cityscapes dataset. The learning rate for the
decoder is set 10 times as large as that of the backbone network for Pascal.
The optimization is carried out by an SGD optimizer with a weight decay of
0.0001, and we employ a poly policy to adjust learning rate. For the image size,
we resize the Pascal dataset images to 512 × 512 and Cityscapes images to 769
× 769. All augmentation methods keep the same as UniMatch and all derived
works. We set 80 epochs and 240 epochs of the training process for Pascal and
Cityscapes. For the model we use DeepLab v3+ [1] with the output stride of 16
as the segmentation network, and the backbone is ResNet101 [8] pretrained on
ImageNet [3]. All experiments are conducted on 4 V100 GPUs.

4.2 Comparison with State-of-the-Arts methods

Table 1. Comparison with the state-of-the-art methods on Pascal VOC 2012 Classic
Val set. †means that since the released code corrresponds to the older version of the
manuscript on arXiv, we only report the previous results. See the paper for more details.
The highest mIOU is marked in red, and the second highest mIOU is marked in blue.
Same as below.

Methods Venue 1/16 (92)1/8 (183)1/4 (366)1/2 (732)

SupOnly - 44.98 50.79 63.88 69.30

PRCL [27] AAAI23 69.91 74.42 76.69 77.88

MKD† [30] ACMMM23 65.35 70.18 74.44 75.90

AugSeg [33] CVPR23 71.09 75.45 78.80 80.33

CCVC [26] CVPR23 70.20 74.40 77.40 79.10

DGCL [24] CVPR23 70.47 77.14 78.73 79.23

iMAS [32] CVPR23 68.80 74.40 78.50 79.50

UniMatch [29] CVPR23 75.20 77.20 78.80 79.90

CSS [22] ICCV23 68.09 71.93 74.91 77.57

ESL [17] ICCV23 70.97 74.06 78.14 79.53

DeS4 [4] IJCAI23 68.02 72.23 74.58 77.62

PCR [28] NIPS22 70.06 74.71 77.16 78.49

GTA [10] NIPS22 70.02 73.16 75.57 78.37

Ours - 75.44 77.75 79.28 80.48

Results on classic Pascal VOC 2012 dataset. As shown in Tab. 1, our
method significantly outperforms the SupOnly baseline by 30.46%, 26.96%,
15.40% and 11.18%, showing an impressive improvement across all subsets, with
the most notable increase being over 30% in the 1/16 subset. When compared to

https://github.com/jianlong-yuan/semi-mmseg
https://arxiv.org/pdf/2208.11499v2.pdf
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Table 2. Comparison with the state-of-the-art methods on Pascal VOC 2012 Blender
Val set. † is reproduced with the output stride of 16. See the code for more details. 1/2
result of § is reproduced by abandoning the Dropout in the backbone and keeping the
original dilation rate, as same as all baseline methods and ours. Since U2PL prioritizes
selecting high quality labels in blender experiment setting, we compare with methods
using the same split as U2PL for fairness (marked as‡).

Methods Venue 1/16 (662)1/8 (1323)1/4 (2646)1/2 (5291)

SupOnly - 67.26 69.05 75.03 76.81

CorrMatch† [21] CVPR24 77.82 78.57 78.96 -

MKD [30] ACMMM23 75.90 76.59 77.62 78.94

MaskMatch [19] Arxiv23 76.66 78.56 79.44 -

AugSeg [33] CVPR23 77.01 77.31 78.82 -

CCVC [26] CVPR23 77.20 78.40 79.00 -

DGCL§ [24] CVPR23 76.61 78.37 79.31 79.87

iMAS [32] CVPR23 76.50 77.90 78.10 -

UniMatch [29] CVPR23 78.10 78.40 79.20 -

ESL [17] ICCV23 76.36 78.57 79.02 79.98

Ours - 78.50 78.98 79.50 80.03

U2PL‡ [25] CVPR22 77.20 79.00 79.30 -

CSS‡ [22] ICCV23 78.73 79.54 80.82 81.06

GTA‡ [10] NIPS22 77.82 80.47 80.57 81.01

PCR‡ [28] NIPS22 78.60 80.71 80.78 80.91

Ours‡ - 80.81 81.64 81.77 81.97

existing SOTA methods, our approach surpasses leading methods such as Uni-
Match and AugSeg. Specifically, in the constrained subset (1/8 labeled ratio),
our method exceeds the SOTA method by 0.55%, demonstrating our method’s
effectiveness in leveraging limited labeled data.
Results on blender Pascal VOC 2012 dataset. As shown in Tab. 2, our
method again demonstrates superior performance over the SupOnly baseline,
with up to a 13.54% increase in mIOU in the 1/16 subset. Against the cur-
rent SOTAs, our method outperforms them by 0.40%, 0.41%, 0.06% and 0.05%,
respectively. Under the setting of U2PL, our method exceeds the baseline meth-
ods by 2.08%, 0.93%, 0.95% and 0.91% respectively. Two groups of experiments
demonstrate that our method perform well under different partitions.

Results on Cityscapes dataset. In this dataset, known for its complexity
due to the diversity of urban scenes, our method continues to exhibit improve-
ments over the SupOnly baseline, especially with a 9.82% increase in the 1/16
subset. Compared to leading SOTAs, our method maintains a competitive out-
performing by 0.17%, 0.23%, 0.11% respectively. Under 1/2 split our method
still achieves comparable result.

https://github.com/BBBBchan/CorrMatch/blob/main/configs/pascal.yaml


100 J. Cao et al.

Table 3. Comparison with the state-of-the-art methods on Cityscapes Val set. †is
reproduced with the output stride of 16 and the resolution of 769, see the code for more
details. ‡are reproduced with the resolution of 769 by us and MaskMatch, respectively.

Methods Venue 1/16 (186)1/8 (372)1/4 (744)1/2 (1488)

SupOnly - 66.30 72.80 75.00 78.00

CorrMatch† [21] CVPR24 75.95 77.63 78.27 79.34

MKD [30] ACMMM23 75.31 75.98 78.28 80.74

MaskMatch [19] Arxiv23 75.68 77.82 78.71 80.29

AugSeg‡ [33] CVPR23 74.93 77.42 78.77 79.61

CCVC [26] CVPR23 74.90 76.40 77.30 -

DGCL [24] CVPR23 73.18 77.29 78.48 80.71

iMAS [32] CVPR23 74.30 77.40 78.10 79.30

UniMatch‡ [29] CVPR23 75.76 77.61 78.60 79.08

CSS [22] ICCV23 74.02 76.93 77.94 79.62

ESL [17] ICCV23 75.12 77.15 78.93 80.46

DeS4 [4] IJCAI23 - 75.74 77.87 -

PCR [28] NIPS22 73.41 76.31 78.40 79.11

Ours - 76.12 78.05 79.04 79.82

4.3 Ablation Study

Table 4. Ablation study of the proposed components in CACC.

AFMadd AFMrefine CTCPascal(183)Pascal(1/8)Cityscapes(1/2)

75.90 77.57 78.73

� 76.78 78.23 79.64

� � 77.19 78.44 79.82

� 76.57 78.16 78.73

� � � 77.75 78.98 79.82

We conduct the ablation study on the classic Pascal 183 split, blender Pascal 1/8
split and Cityscapes 1/2 split to provide insightful observations on the individual
and combined effects of AFM and CTC within the CACC framework.

Effectiveness of AFM. Initially, the baseline model (with only two branches
of strong augmentations) achieves performance scores of 75.90%, 77.57%, and
78.73% mIOU respectively. The inclusion of the adaptive weighting compo-
nent (AFMrefine) demonstrates independently beneficial effects, with increases
of 0.88%, 0.66% and 0.91%. This demonstrates its efficacy in handling diverse

https://github.com/BBBBchan/CorrMatch/blob/main/configs/cityscapes.yaml
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Table 5. Comparison of Computational Burden under the setting of the classic Pascal
732 split.

Method GFLOPsTime (per epoch)

Baseline 2197.41 19min37s

CCAC 2197.41 19min39s

data scenarios. The simultaneous application of both AFM components further
enhanced model performance to 77.19%, 78.44%, and 79.82%. This result indi-
cates the complementary effect of two components. Notice that just adopting
AFMadd individually will lead to the failure of training, since the majority of
loss function is still AFMrefine.

Effectiveness of CTC. Notice that since we adopt zero as the threshold,
following the setting of all baseline methods, there is no contribution of CTC
in Cityscapes. Compared to the fixed threshold, the integration of CTC further
yields the improvement of 0.56% and 0.54%, which verifies its pivotal role in
dynamically balancing learning thresholds based on category confusion, thereby
distinguishing the correct and wrong predictions. For the contribution to the
class-wise IOU, please refer to the Sec. B in the supplementary material.

Ablation Study on Hyper-parameters. The only hyper-parameter in the
proposed method is the momentum factor α. Please refer to Sec. C in the sup-
plementary material.

Analysis on the computational burden. Although incorporating two com-
ponents in our method, it can be concluded that the additional computational
burden is negligible. From the perspective of the theoretical aspect, the addi-
tional computational burden only comes from a few matrices. In Eq. 5, the
additional matrices are Rj and Nj . The extra computation includes the argmax-
operation and comparison between ŷs1

j and ŷs2
j , and the calculation of per-pixel

weight. The amount of computation is Nu × (2 × K + 1) × H × W , where H
and W are the width and height of an image. In Eq. 10, the extra computation
comes mainly from the matrix operations, including Eq. 6 and the construction
of matrix C. And the computation can be estimated as 2×Nu×H ×W . Overall,
just a few image-level matrices computation is totally negligible, compared to
the large amount of matrices computation in the neural network. We also con-
duct the experiment to compare the computational burden between our baseline
method and the CACC method. As shown in Tab. 5, adding our designed com-
ponents will not bring too much computational burden.

Qualitative Results. We have visualized the comparison of different seman-
tic segmentation methods and different components implementation strategies.
Please refer to Sec. D in the supplementary material.
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5 Conclusion

In this paper, we propose CACC framework to enhance model performance by
leveraging internal consensus and conflicts cross data augmentations, eliminating
the need for external components. The AFM module not only reduces the impact
of unreliable but incorrect predictions by leveraging consensus in data augmen-
tations, but also amplifies the low-confidence correct predictions. CTC module
addresses the challenge of fixed thresholds by dynamically adapting them based
on the confusion among categories. Extensive experiments across various bench-
marks have demonstrated the superiority of the CACC, and ablation studies
have further validated the effectiveness of each component.
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Abstract. Fraudulent transactions affect the different entities involved
in the payment pipeline: (i) the merchant/vendor at which the transac-
tion is performed, (ii) the authorizing bank, (iii) the card-holder, and
(iv) the payment processing network/gateway. While fraud transactions
result in the loss of billions of dollars globally, they may also result
in reputational damage to the involved parties. Detecting fraudulent
transactions is thus of utmost importance for the business and it also
enhances customer experience in the financial domain. Predicting fraud
transactions involves identifying suspicious transactions at the time of
authorization and raising an alert to the decision-making authority. This
research proposes a novel Event-aware Multi-component (EMl) loss for
fraud prediction which incorporates key fraud-specific characteristics for
learning a robust and accurate fraud prediction model. Specifically, the
proposed loss incorporates key domain characteristics of fraud modeling
such as focusing more on recent transactions, optimizing for an ideal
event (fraud) rate, and maximizing the net benefit (or fraud savings)
seen by the fraud prediction model. Further, the proposed loss is agnos-
tic to the model architecture and can be utilized with different backbone
architectures. Experimental results and analysis on multiple datasets
demonstrate the efficacy of the proposed loss, where it achieves improved
detection performance while optimizing for the above-mentioned indus-
try requirements.

Keywords: Fraud Detection · Transaction Modelling · Financial
Domain

1 Introduction

Fraudulent transaction prediction is one of the key challenges faced by the finan-
cial industry. Fraud transactions that are not blocked or detected in real-time
often result in monetary loss, along with anguish to the card-holder (Fig. 1).
Further, high fraud rates also affects the brand value/reputation of banks, pay-
ment networks, and merchants. As per a recent report in 2021, there was a
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Fig. 1. (a) Fraudulent transaction attempts are growing in number, resulting in larger
number of affected individuals and higher revenue loss. (b) Often, poor customer expe-
rience due to fraud transactions result in account closures at financial institutions.
Detecting fraud transactions is thus an important task for all involved stakeholders.
Both images have been taken from the Internet.

global loss of 20 billion US dollars due to fraudulent e-commerce transactions
world-wide1, which is a steep increase of 14% as compared to the previous year.
Therefore, developing an efficient fraud prediction model is of utmost importance
with large-scale real-world applicability and wide-scale impact. Transaction mon-
itoring applications are often used by financial institutions such that they are
able to monitor potentially risky transactions and take real-time decisions for
fraud alerting. Often, in such scenarios the applications are required to provide
a score for each transaction, following which the financial institutions might
incorporate domain knowledge based business rules for ingesting the scores onto
their final decision making pipeline. In order to eliminate the post-processing via
business rules, this research proposes a novel model-agnostic Event-aware Multi-
component loss for training a robust fraud prediction model, while incorporating
key domain-specific characteristics during training.

The task of fraudulent transaction prediction involves taking real-time deci-
sions on whether an incoming transaction is fraudulent or not [2,9,21,23]. The
task thus requires efficient algorithms (capable of running in real-time) while
modeling key characteristics of fraudulent transactions in order to have high
detection rates. In the literature, recent research has focused on proposing novel
algorithms for the challenging problem of fraud transaction prediction. Given the
sequential/time-based behavior of card-holders, most of the algorithms focus
on modeling the previous history of the user using sequential models [11,31].
Research has also focused on modeling the relationship between the different
entities in the payment network (such as card-holder and merchant) using spa-

1 https://www.statista.com/statistics/1273177/ecommerce-payment-fraud-losses-
globally/.

https://www.statista.com/statistics/1273177/ecommerce-payment-fraud-losses-globally/
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tial/relational models [16]. While such algorithms focus on capturing the dif-
ferent patterns observed in the data (further elaborated in Section 2), to the
best of our knowledge, they do not focus on incorporating the domain-specific
business knowledge for generating robust fraud prediction models, suitable for
applicability in the real world.

In order to address the above limitations, this research proposes a novel
model-agnostic Event-aware Multi-component (EMl) loss for fraudulent trans-
action prediction. The proposed loss incorporates domain knowledge by model-
ing the transaction patterns while optimizing for the overall fraud predictions,
net benefit (amount savings), and effective classification performance. Further,
since fraud patterns often change over time, the proposed EMl loss focuses on
providing higher importance to recent transactions in order to ensure recency
based model learning. The model-agnostic property of the EMl loss enables its
applicability across different architectures, thus also supporting quick real-time
inference. To summarize, the key highlights of this research are as follows:

– A novel Event-aware Multi-component (EMl) loss function has been pro-
posed for learning efficient fraud prediction models. The EMl loss utilizes key
domain-specific knowledge for optimizing the number of fraud predictions
over a batch of transactions. The proposed loss ensures that the model is
deployable in real-world setups without hampering the customer experience
(by not raising too many false alarms or false positives). Further, to the best
of our knowledge, this is the first of its kind formulation which focuses on
incorporating domain-specific business knowledge for fraud prediction mod-
els such as optimizing for the predicted event rate, net benefit, and recency
based data importance.

– As shown in Fig. 2, the proposed EMl loss is model agnostic and can be
applied with different backbone architectures (e.g., Multi Layer Perceptrons
(MLPs), Long Short-Term Memory architectures (LSTMs), or transformers).
Experimental analysis across different models demonstrates the model agnos-
tic behavior of the loss, where enhanced performance is obtained with different
backbone architectures.

– The efficacy of the proposed loss has been demonstrated on two financial
datasets: (i) the Tabformer dataset [24] and (ii) an in-house synthetically gen-
erated dataset. Experimental analysis and results demonstrate the improve-
ment obtained by the proposed EMl loss as compared to the baseline and
other comparative techniques. Experiments have also been performed to fur-
ther analyze the different components of the proposed loss via an ablation
study, which strengthens the inclusion of different terms in the proposed for-
mulation.

The remainder of this paper is organized as follows: Section 2 presents the related
work in the area of automated fraud transaction prediction. Section 3 presents
the proposed EMl loss, along with the detailed description of the framework.
Section 4 presents the dataset details and protocols, followed by the results and
analysis. Section 6 concludes the paper with the summary and future work.
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Fig. 2. In the literature, research has focused on developing sequential or non-sequential
architectures for the given transaction data. The proposed loss can be applied to either
kinds of deep learning models while also incorporating domain-specific characteristics
for improved business relevance.

2 Related Work

The area of automated fraud transaction prediction has been an active area
of research since the past several decades. Early fraud detection systems relied
on rule-based techniques [20], wherein the system’s capabilities are limited by
the experts’ knowledge [1]. Such engines typically hard-code business rules and
thus suffer from limited real-world applicability. On the other hand, statistical
methods try to learn these rules using the data by employing techniques like
capturing interactions among features and generating summaries at transaction
level [22,34]. Association rules have also been used to detect credit card fraud [8]
as well as other fraud types like healthcare fraud [28]. These methods try to infer
IF-THEN-ELSE statements from the data itself, using symbolic/categorical fea-
tures. For example, Brause et al. [8] proceed by comparing each transaction with
another and finding pairs of similar ones (associations) and thus infer causality
among sets of objects. Such raw associations lead to long rules, often diminishing
the generalization ability of the model. Various techniques, like ignoring selec-
tive features for rule generation at varying tree levels, hope to shorten the rule
length. Other statistical methods include clustering and outlier detection based
on user analysis [6,32] which fall under the unsupervised learning paradigm and
do not utilize the rich label information available during model training.

In the literature, supervised learning-based algorithms have been proposed
for fraud detection which either utilize the sequential information of a card-
holder/user or rely on non-sequential cues for identifying fraudulent transactions.
Non-sequential supervised learning algorithms rely on robust feature engineering
in the form of profiling. Profiles are aggregations of data by a particular field,
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or group of fields, over a pre-decided window of time to capture the histori-
cal behaviour and interactions among features and their interaction with fraud
labels [22,30]. Models like the Multi-Layer Perceptron (MLP), Decision Tree, or
Support Vector Machine (SVM) often utilize a single transaction as input and
thus are benefited by the feature engineering process, that would have otherwise
been devoid of context. An example of such features can be the amount trans-
acted by a user at a given merchant in the previous one hour, represented by
user_merch_amt_1hr. Given a test transaction, this feature provides the model
the ability to look back one hour, know whether the user was active/inactive,
whether they are accustomed to having interactions with the merchant for the
amount in question. In this way, such methods can identify relevant patterns in
the scope of their features and respective time windows. Such heavy dependence
on manual feature engineering limits the field of view of algorithms and thus
limits their potential for real-world applications. This method of feature engi-
neering is also time and compute expensive, and thus hard to utilize for quick
inference requirements during run-time as well as challenging to engineer [7].

Sequential models aim to utilize the inherent ordering amongst subsequent
transactions with respect to time by implicitly modeling this characteristic by
design. Models like Convolutional Neural Networks (CNN) are known to capture
short-term context, whereas others like Recurrent Neural Network (RNN) [4],
Long-Short Term Memory Network (LSTM) [18], and gated-recurrent unit [13]
can capture longer range dependencies as well. Zhang et al. [33] use convolu-
tion to capture interactions among subsequent features and extract the relevant
derivative features, instead of interactions amongst subsequent transactions, for
which they use a feature sequencing layer to learn the best order of features.
In order to capture the longer range dependencies, Branco et al. [7] treat each
entity/user as an independent sequence that share learnable parameters of the
Gated Recurrent Unit (GRU). Such models focus on learning from the past
events of the given user/card-holder. While these models don’t rely on extensive
feature engineering, it has been found that adding the manually engineered fea-
tures appear to guide them further to an optimal solution [18]. Zhu et al. [36] cap-
tures relevant feature level and event level characteristics using field-level extrac-
tor and event-level extractor, respectively. While existing sequential and non-
sequential learning-based algorithms have provided substantial advancements in
the current literature, automated fraud transaction detection still remains to be
a long standing problem [10,12,29,31,35]. We believe that a possible drawback of
the existing solutions is the lack of domain/business specific knowledge inclusion
during model development. Most of the current approaches aim to improve the
modelling and representation of data from an architectural perspective, while
ignoring the domain-specific business aspects of the same.

3 Proposed EMI Loss

This research focuses on bridging the above discussed gap and incorporating
domain-specific insights for learning an efficient, robust, and deployable model.
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Fig. 3. Diagrammatic representation of the architecture used with the proposed EMl
loss. The previous ten events (transactions) are provided to the LSTM model, followed
by applying dense layers on the learned embedding. The error obtained via the proposed
EMl loss is back-propagated throughout the network for effective model learning.

We aim to explicitly learn fraud prediction models that not only give better
performance with respect to the various metrics but also improve the net benefit
(fraud amount savings) incurred for direct business relevance while keeping an
overall low fraud prediction alarms. From our domain understanding [14], we
notice that recent trends in transactions are often more important than the
older ones, and thus propose to incorporate the notion of recency during model
training which can be useful for non-sequential networks [18] as well, thus leading
to improved real-time impact.

For a given architecture, the loss function is the function that measures the
distance between expected and predicted outputs. To create the best perform-
ing models, we are often required to minimize this function. In order to develop
robust models, we should first identify important aspects needing to be opti-
mized which can be included in the loss function. For example, while creating a
fraud prediction model, the dollar amount saved (or the net benefit) [27] is often
more important than the cross-entropy loss [15] values. These two are related
but not always 100% correlated. Furthermore, the loss functions are mostly opti-
mized using gradient descent [26] while training. Thus, they must be continuous
and differentiable, this leads to achieving the global minimum loss values. To this
effect, we propose a novel Event-aware Multi-component (EMl) loss function con-
sisting of three components: (i) recency based cross-entropy loss (LRecency), (ii)
predicted event rate optimization (LPER), and (iii) net benefit loss component
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(LNet):
LEMl = αLRecency + βLPER + γLNet (1)

where, α, β, γ correspond to the weight values given to each loss component.
Details regarding each component are as follows:

(i) Recency based Cross-entropy Loss Component (LRecency): Transac-
tion fraud monitoring can be referred to as a two class classification problem
(fraud or non-fraud). As with traditional classification loss functions, the base
architecture utilizes the standard Cross-Entropy loss for learning an effective
classifier. The financial world often witnesses variations in the transaction pat-
terns which are essential to model. The proposed recency based cross-entropy
loss component introduces a recency factor during model training. The recency
factor focuses on providing higher weight-age to recent transactions as compared
to the older transactions, thus ensuring that the model is able to capture recent
fraud trends. Mathematically, given a prediction yi′ for a target yi, a recency
weight of �ti is introduced:

LRecency =
∑ yi ∗ log y′

i

�ti
(2)

The recency weight is inversely proportional to the duration of the current trans-
action from the last transaction, thus resulting in higher weight-age to most
recent transactions.
(ii) Predicted Event Rate (PER) Optimization Loss Component
(LPER): The Predicted Event Rate (PER) is defined as count of fraud pre-
dictions over the count of total observations. On the other hand, the True Event
Rate is defined as the count of the true frauds over the count of total observa-
tions. In an ideal scenario, the model should produce a PER close to true event
rate, thus resulting in lesser false positives and promoting the model to predict
the under-sampled class (fraud). In order to model the PER, the LPER has been
formulated as follows:

LPER = (r − MSE (y′
i,0n)) (3)

where, r is the true event rate and 0n = (0, 0, . . . , 0) ε Rn is a zero vector. The
above loss thus promotes the model’s PER to be as close as possible to the true
event rate.
(iii) Net Benefit Loss Component (LNet) [5]: This is one of the most impor-
tant business metrics for the fraud prediction domain. When a fraud prediction
model has been deployed by an entity, it would provide recommendations for
blocking transactions that appear fraudulent to the model. For a true positive
event (actual fraud), it will be saving the total sum of the amount of such trans-
actions. On the other hand, for a false positive event (incorrect fraud prediction),
it will lose out on the transaction processing fee that it would have gained by
allowing the transaction through. So, effectively the net benefit (or fraud sav-
ings) can be viewed as the difference between the dollar amount of the true



112 T. Somavarapu et al.

positive transactions and the loss incurred due to the false positive transactions.
For generality, we have defined the net benefit loss component as a function of
the true positive transactions and the false positive transactions, which can be
represented as follows:

LNet = f(true positives, false positives) (4)

The proposed EMl loss is thus a combination of the above defined loss compo-
nents: LRecency,LPER,LNet by using relevant hyper-parameters (α, β, γ). Thus,
the combined Event-aware Multi-component fraud prediction loss is defined as:

LEMl(y′
i, yi) = α ∗

∑ yi ∗ log y′
i

�ti
+ β ∗ (r − MSE (y′

i,0n))+

γ ∗ f(true positives, false positives) (5)

The proposed Event-aware Multi-component loss function thus enables the learn-
ing of a robust fraud prediction model while incorporating the domain-specific
business trends and requirements.

Table 1. Details regarding the datasets and protocols used in this research. Number of
transactions (txns.) in the training, testing, and validation sets have been provided for
ease in reproducibility. Both the datasets simulate real-world scenarios with a relatively
smaller event rate (%) (fraud rate) across the transactions.

Dataset TxnsFraudsEvent RateUsersFieldsTrain Val Test

Tabformer [24] 24M 29757 0.122 6139 8 17M 2.4M 4.8M
In-house Synthetic 1M 67580 6.758 37404 8 700K 100K 200K

4 Experiments and Protocol

Experiments have been performed on two datasets with varying backbone archi-
tectures (LSTM, MLP, and RNN), along with detailed analysis of the EMl loss.
The following subsections elaborate upon the dataset details and corresponding
protocols, followed by the implementation details and the results.

4.1 Datasets and Protocol

The proposed EMl loss has been evaluated on two datasets containing trans-
action records. Table 1 presents the dataset details along with the training
and testing protocols. The following paragraphs elaborate upon the protocols
in detail:
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– Tabular Transformers for Modeling Multivariate Time Series
Credit Card Dataset (Tabformer) [24]: The dataset contains synthet-
ically generated 24M credit card transactions from 20,000 users. The transac-
tions have been generated using rule based generators, where the values are
generated using stochastic sampling techniques, similar to the methods by
Altman et al. [3]. Every transaction has 12 fields consisting of both continuous
and discrete nominal attributes, such as the transaction amount, merchant
location, transaction date etc. Similar to the existing protocol, we create sam-
ples by combining 10 contiguous rows (with a stride of 10) in a time-dependent
manner for each user.

– In-house Synthetic Dataset: Owing to the limited availability of pub-
licly available datasets containing fraud/non-fraud transaction information,
experiments have also been performed on an in-house synthetic dataset. The
dataset consists of 1M transactions from 37,500 unique users with 28,000
unique merchants and has a total of 67,580 fraudulent transactions. Every
transaction consists of 298 unique fields like transaction time, merchant ID,
etc. We create sequences of time, amount, and other fields in the input for
each user, ordered by time and pass it then onto the model architecture. The
complete dataset is divided into a training, validation, and testing partition,
having 70%, 10%, and 20% of transactions, respectively in each set.

4.2 Implementation Details

For the two datasets, experiments have been performed with a LSTM [17] base
architecture (Fig. 3) consisting of two hidden layers, followed by two dense (fully
connected) layers for classification. The LSTM model has been implemented
in the PyTorch environment [25] with a NVIDIA Quadro RTX6000 GPU. As
demonstrated in Fig. 3, the past ten transactions of a user are provided to the
LSTM model, followed by two dense layers for predicting whether the current
transaction is fraudulent or not. Characteristics of the transactions are provided
as input (depending upon the dataset and availability of information). Cate-
gorical features (e.g., merchant category code, industry, etc.) are converted into
one-hot encoded embeddings, while numerical features (e.g., transaction amount)
are provided as is. The predicted class scores are used in the loss equation Eq.5
and the weight parameters for the same are initialized as follows: α = 1e − 5
, β = 1.5 and γ = 0.01. The model is trained using the Adam optimizer [19]
for 100 epochs with 1024 batch-size. Comparison has also been performed by
replacing the LSTM with a RNN and a MLP architecture as well. The following
section elaborates upon the results and analysis.

5 Results and Analysis

Tables 2-4 present the performance obtained by the EMl loss in different exper-
iments. Comparison has been performed in terms of the precision, recall, F-1
score, and the net benefit obtained by the different models. Due to privacy con-
cerns, we are unable to share the exact dollar savings (net benefit), and thus have
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Table 2. Results obtained on the TabFormer dataset: precision, recall, F-1 score, and
the percentage variation in the net benefit by each algorithm have been reported. The
proposed EMl loss with a LSTM architecture demonstrates improved performance in
terms of the overall F-1 score, while also obtaining a higher net benefit.

Algorithm PrecisionRecall F-1 ScoreAUC-PRBenefit (%)

Multi-layer Perceptron 74.21 52.15 61.25 48.25 -67.2%
Recurrent Neural Network 89.02 75.46 81.68 81.49 -0.5%
Long Short-Term Memory 89.22 70.05 78.48 79.65 -6.5%
MLP + LEMl 86.11 51.55 64.49 49.51 -66.7%
RNN + LEMl 90.36 76.14 82.25 82.64 +2.6%

Proposed LSTM + LEMl 92.43 76.48 83.70 84.21 -

presented them in a relative format, that is, percentage increase or decrease. The
key results are as follows:

Comparison on the TabFormer Dataset: As demonstrated in Table 2, the
proposed EMl loss presents improved performance on the Tabformer dataset as
compared to other techniques. Specifically, the proposed loss achieves a precision
and recall of 92.43 and 76.48, respectively, demonstrating significant improve-
ment from the LSTM model (trained only with the cross-entropy loss) which
obtains a F-1 score of 78.48, which is around 5% lower than the proposed model
(83.70). In the literature, a F-1 score of 86.00 has been reported on the Tab-
former dataset [24], however, it is important to note that the authors follow a
different protocol (exact splits are not available) and also perform additional
steps of upsampling during training. Therefore, it is impossible to draw a fair
comparison. Further, the existing research [24] presents an improvement of 3%
from the then reported baseline, while we observe an improvement of around 5%
from the base LSTM architecture. Comparison can also not be performed on the
net benefit (in terms of the dollar amount) since that has not been reported in
the existing research.

Table 3. Ablation study of the proposed EMl loss on the TabFormer dataset. The
experiments demonstrate contribution of each loss component towards the creation of
a robust fraud prediction model. Benefit (%) presents the percentage variation in the
net amount benefit (in dollars) by each model.

Algorithm PrecisionRecall F-1 ScoreBenefit (%)

LEMl - LRecency 94.46 72.25 81.87 +0.7%
LEMl - LNet 91.64 74.28 82.05 -2.9%
LEMl - LPER 92.48 72.92 81.55 -5.1%

Proposed LEMl 92.43 76.48 83.70 -
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Fig. 4. Improvement in the F-1 score and net benefit (percentage) on training the
three architectures with the proposed EMl loss. Maximum improvement is seen with the
LSTM model, possibly due to their better capabilities of modeling long term sequential
data.

Effect of Different Backbone Architectures: The efficacy of the proposed
loss has also been demonstrated by using different backbone architectures (RNN,
MLP, LSTM), where, training with the proposed EMl loss demonstrates improve-
ment as compared to training with the native loss function. Table 2 presents the
performance comparison on different backbone architectures with and without
the proposed loss. The improved performance (in terms of the precision/recall/F-
1 score) thus supports the model-agnostic behavior of the proposed loss. For
example, an improvement of over 3% is observed upon utilizing the EMl loss
with the LSTM architecture as compared to the native loss (92.43 versus 89.22).
The benefit of using sequential models is also visible across different architec-
tures, where a difference of at least 15% in precision is observed between the
MLP architecture and the RNN/LSTM architectures. Further, it is also inter-
esting to note that MLP based architectures appear to perform substantially
poorer in terms of modelling the effective net benefit. Fig. 4 also presents a bar
graph showcasing the improvement in the F-1 score and the net benefit percent-
age on training the three architectures with the proposed loss as compared to the
native cross-entropy loss. Maximum improvement is observed with the LSTM
architecture for both the metrics. Overall, the best performance is obtained by
utilizing the LSTM architecture with the proposed EMl loss in terms of the
accuracy metrics (precision/recall), while a minor trade-off is seen in the overall
net benefit as compared to the RNN architecture with the EMl loss.
Ablation Study on the EMl Loss: Table 3 presents the ablation study on
the proposed EMl loss using the TabFormer dataset. Experiments have been
performed to understand the contribution of each loss component by training
the LSTM architecture with the proposed loss function after removing each
term and analyzing the performance metrics. As can be observed from Table 3,
removal of any component from the EMl loss results in a drop in performance in
terms of the precision, recall, and F-1 scores. Maximum drop in performance is
observed upon removing the PER loss component (LPER), resulting in a drop
in F-1 score from 83.70 to 81.55. The performance drop appears intuitive in
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nature since the PER loss component controls the total fraud predictions, thus
pushing the model towards predicting lesser false positives. On the other hand,
minimal impact is seen upon removing the recency based component (LRecency),
where a drop in F-1 score is accompanied with a slight increase (0.7%) in the net
benefit. Overall, the ablation study supports the inclusion of the different loss
components for achieving enhanced fraud prediction performance and business
objectives.

Table 4. Results obtained on the in-house synthetic dataset. The proposed technique
demonstrates an improvement in the overall F-1 score and a 3.5% increase in the net
benefit.

AlgorithmPrecisionRecall F-1 ScoreBenefit (%)

LSTM 33.80 49.81 40.31 -3.5%
Proposed 39.76 48.69 43.75 -

Performance on the In-house Synthetic Dataset: Table 4 presents the
performance comparison between the proposed loss and the baseline model on
the in-house synthetic dataset. An increase in the F1-Score is observed from
40.31 to 43.75, along with an increase in the precision (from 33.80 to 39.76) for
the fraud class when using the proposed loss. An improvement of +3.5% is also
observed for the overall net benefit.

The above set of experiments and results suggest improved performance by
the proposed Event-aware Multi-component (EMl) loss function. Improvement
can be seen across capturing fraudulent transactions and the overall net benefit
(in terms of dollar amount). The improved performance strengthens its usage
for real-time fraud prediction, while providing flexibility during model training
for tuning different business aspects.

6 Conclusion and Discussion

The past few decades have witnessed tremendous growth in the domain of Data
Mining, Machine Learning, and Artificial Intelligence. While initial research
began with modelling a handful of data points, current research focuses on
understanding patterns and trends across millions of instances. The research
developments have further enabled the adoption of such techniques/models in
the real-world industrial setups as well. These days, it is not uncommon to auto-
mate mundane tasks and rely on learned AI models for day-to-day predictions
such as weather forecasts, market trends, transaction monitoring, entertainment
recommendations (dining/content consumption), or customer support for trou-
bleshooting commonly faced issues. The omnipresence of such algorithms has
thus enabled widespread utility of AI based services to the consumers (individ-
uals) as well as institutions/corporations.
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The financial world is one such domain consisting of billions of data points
(transactions) and being fed by multiple automated services for several tasks. For
example, automated data cleansing including noise removal, credit score assess-
ment, market analysis, transaction risk monitoring, financial (credit/debit) limit
adjustments, loan approvals, etc. The wide applicability of financial solutions
across different demographics and geographies makes it an imperative domain
for deployment of automated services. Despite the multiple applications and
solutions, fraudulent transaction detection remains a long-standing challenging
problem requiring dedicated research focus. From the real-world data, it is evi-
dent that fraudulent transactions are becoming more and more difficult to detect
even with state-of-the-art algorithms developed in the past five years. Further,
newer methods of transactions bring with them more innovative ways in which
criminals can commit fraud. Thus, in order to keep up with the emerging trends
in today’s modern world, it is imperative to keep researching and developing
more ingenious solutions to this problem.

To this effect, this research proposes a novel Event-aware Multi-component
(EMl) loss function which incorporates domain-specific knowledge for building
robust fraud prediction models. The proposed loss can be used for training a
transaction monitoring model which provides a score of riskiness for each trans-
action, thus determining whether it is fraudulent or not. The EMl loss focuses
on increasing the net benefit (in terms of the fraud amount savings) which is
often a function of the true positives, false positives, and false negatives; mini-
mizing the total fraud predictions (in order to reduce false positives) such that
the model provides confident predictions; and gives higher importance to recent
transactions (recency based learning). Experimental results and analysis across
two different datasets (one open source and one in-house synthetic dataset gen-
erated from modelling the real-world transaction distribution) demonstrate the
effectiveness of the proposed loss. Further, the inclusion of business-specific loss
components allows the model to be deployable, while supporting a smaller model
for quick real-time inference.

Despite the research advancements, we believe that there is still a long way
to go in the field of fraudulent transaction detection. Novel techniques when
creatively implemented to solve this problem can potentially help in creating
better and more robust models. As part of future work, our efforts will be focused
on incorporating better backbone architectures with the proposed EMl loss for
robust model creation. Further, improvements can also be made at the input-
level, where novel features can be identified and provided as input to the model
for developing further enhanced models.
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Abstract. In many cases, machine learning model is used not autono-
mously, but as a part of some larger system that may include human
experts. Learning to defer technique allows to train models that can
take into account error probabilities of both machine learning model and
human expert and route samples accordingly in order to maximize overall
accuracy of the system. However, most of the learning to defer methods
don’t allow constraining the deferral fraction, which is important, as the
number of human experts and their capacity are usually limited. The
paper proposes and explores a simple yet effective heuristic technique
allowing to impose constraints on the fraction of samples deferred to an
expert, thereby, helping to balance accuracy and coverage metrics. The
technique can be used in conjunction with many existing learning to
defer and rejection learning methods; it is evaluated using three popular
learning to defer techniques and two datasets — a synthetic and a real-
life, collected using crowdsourcing.

Keywords: Learning to defer · Human-AI complementarity ·
Human-AI collaboration

1 Introduction

Machine learning models taking into account human-AI collaboration, e.g., sim-
ply by avoiding to classify samples for which they are uncertain are especially
demanded in responsible and critical applications. The most widely used tech-
nique to build such models is to train a model (e.g., for the classification) and
then, during inference, estimate the uncertainty of the prediction and redirect to
the human expert only those samples, for which the model is uncertain. There are
several approaches for estimating uncertainty [3,6,9], potentially, any of them
can be used. The main drawback of this approach is that it ignores the limited
knowledge of the human (and respective probability of an error), considering
him/her as an oracle.

To account for the limited human knowledge, a learning to defer paradigm
has been proposed [11,14]. The idea is to train two models — main model and a
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rejector model. The first one is responsible for solving the classification problem
per se, while the second one decides which samples should be assigned to the
main model, and which to the human. These models can be trained jointly or
separately [2], but their training typically relies on some specially constructed
loss function, taking into account human errors in the training sample. There-
fore, the models learn also the distribution of human expertise in the feature
space and act accordingly. However, a severe limitation of this approach is that
it doesn’t account for possibly limited human resources, besides, some of the
methods of this group rely on the relative weight of terms in the loss function
which can be hard to set up correctly.

As it is shown in [1,13], learning to defer problem with limited human
resources can be formulated as a mixed-integer linear programming problem
(MILP), where coverage can be just one of the constraints (e.g., [13] introduce
also fairness constraints). While the solution of such MILP can provide an opti-
mal sample allocation between human and model (in some sense and with certain
assumptions), this setting has two potential drawbacks: a) these algorithms are
designed to distribute a given set of samples, so they may be less convenient for
a situation when the samples need to be distributed as soon as they arrive, b)
solving a MILP problem can be computationally expensive.

This paper proposes and explores a simple yet effective heuristic technique
to account for the situation when human resources are limited, allowing to
balance accuracy and coverage metrics while distributing samples “on the fly”.
The proposed heuristic is not intended to replace the existing learning to defer
approaches (based on unconstrained optimisation of surrogate loss functions),
instead, it aims to complement them.

The rest of the paper is structured as follows. Section 2 describes related
publications. Section 3 describes the formal problem definition and the pro-
posed technique. Section 4 contains the results of the evaluation of the proposed
technique using several datasets.

2 Related Work

The problem of joint work of an AI model and a human expert has been attract-
ing attention of the ML researchers for a relatively long time. Probably, the
most developed setting is so-called rejection learning, when a model is trained
to reject certain samples to improve reliability on the others [7]. However, in
rejection learning human expert is typically out of the scope (or considered to
be absolutely accurate).

More recently, a concept of learning to defer has been proposed [11], where
human expert has been placed “into” the system, which means that these algo-
rithms optimize deferral policies taking into account not only the performance
of the machine learning model in various regions of the feature space, but also
accuracy of the human expert which may also be different in the different regions
of the feature space.

Most approaches to learning to defer rely on specially constructed loss func-
tions, balancing components responsible for automated classifier and human
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expert. These loss functions can either be very closely based on the utility the-
ory [17] or further elaborated as surrogate loss functions with better optimization
and calibration properties, see, e.g. [12,14,16].

However, all of these approaches are either aimed to find a deferral policy
optimizing only the system accuracy, or rely on relative weighting in the loss
function, which should reflect relative cost of sample processing by the model
and the human expert, however, may be hard to specify. Crucial is that most of
these approaches ignore that the expert capacity can be limited [10].

A few methods have been proposed to deal with the limited expert capacity,
typically via MILP reformulation of learning to defer problem, e.g. [1,4,5,13].
In [4,5], MILP is solved for the training set and then its solution is approxi-
mated by an additional model (the proposed MILP formulation is limited to
certain types of models). In [1,13] MILP is built during inference, therefore,
these approaches can only allocate a set of samples, but are less suited for the
situation when the samples have to be distributed between model and human
expert as soon as they arrive. Besides, solving MILP can be computationally
expensive, especially for large datasets.

This paper explores a heuristic method for on the fly sample allocation
respecting limited expert capacity, which can be used with existing learning
to defer approaches and doesn’t require solving MILP.

3 The Proposed Technique

3.1 Problem Definition

Given the dataset {(Xi,mi, yi)}ni=1 ∼ D, where Xi ∈ X are the features describ-
ing objects, yi ∈ Y are true labels, and mi ∈ Y are expert labels (not necessarily
equal to the true labels, as the expert can also be wrong). The problem is find
two functions — a classifier h : X → Y and a rejector r : X → {0, 1}. To obtain
a decision ŷi for some instance xi these functions are combined in the following
way:

ŷi =

{
h(xi), if r(xi) = 1
mi, if r(xi) = 0

(1)

Moreover, as access to the expert evaluations can be limited in the infer-
ence time, these functions must maximize classification quality, respecting the
restriction on the number of used expert evaluations. Formally,

(h∗, r∗) = argmax
(h,r)

E(x,m,y)∈D[I{r(x)h(x) + (1 − r(x))m} = y], s.t. E[r(x)] ≥ Cr.

(2)
In practise, expectations in the equation above are typically estimated via

empirical metrics, evaluated using a test dataset, sampled from the same distri-
bution D. Expectation of the number of correct answers corresponds to accuracy
and the expectation of the samples assigned to the model h corresponds to cov-
erage (ratio of the samples classified by the model, without resorting to the
expert).



Controlling Human Workload in Learning to Defer 123

3.2 Loss Functions

The requirement to account for errors of both a machine learning model and an
expert translates to natural loss function used to train h and r [11]:

Lnat(xi,mi, yi, h, r) = r(xi)�m(h(xi), yi) + (1 − r(xi))�exp(mi, yi),

where �m is a model loss and �exp is an expert loss. For example, if it is a
binary classification problem, then �m can be a binary cross entropy (for the �exp
it is a bit more complicated, see below).

However, direct using of such natural loss has two main drawbacks:

1. In the training data, m represents the class provided by the end user, there-
fore, if the expert is wrong, binary cross entropy becomes infinite. In practice,
one can either clamp too large values (e.g., it is a default work-around for
infinite log implemented in PyTorch) or use some other loss function (e.g.,
L1). In either case, a particular value, corresponding to the user error, must
be somehow scaled to the range of the first term (�m).

2. The loss function optimizes the models only in terms of accuracy, not paying
attention to the fact, that access to the pool of human experts might be
limited.
Some surrogate losses has been proposed in the literature (e.g., [14]), miti-
gating the first problem, but they still optimize only in terms of accuracy.

3.3 Method

The proposed technique relies on a possibility to obtain a score, reflecting rela-
tive confidence of the classification of the sample by the model w.r.t. the clas-
sification of the same sample by the human expert. We will denote this score
as score(h,r)(x). Absolute values of this score don’t matter, instead, this score
establishes an ordering: if score(h,r)(xi) > score(h,r)(xj), then assigning xi to the
model (rather than human expert) will result in less probability of an error, than
assigning xj to the model. We provide specific examples of building score(h,r)(x)
for several existing learning to defer methods later in this section.

The technique consists of three steps:

1. Train h and r models using an existing learning to defer algorithm. The
resulting pair can perform deferral, typically achieving good (or, optimal in
some sense) accuracy, but not respecting coverage constraints.

2. Using separate dataset Vc = {(Xc
i ,m

c
i , y

c
i )} ∼ D and Algorithm 1, find the

score threshold θ, corresponding to the required coverage Cr.
3. Apply Algorithm 2 to classify any incoming instances, sampled from the D.

Training algorithm (Algorithm 1) evaluates scores for all the samples of Vc

and then considers each score value as a candidate threshold for assigning all
samples with greater (or equal) scores to the model and the rest to the human
expert (which is done using function fsi , defined as h(xj) if score(h,r)(xj) ≥ si
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and mj otherwise). It then evaluates accuracy and coverage of each such split
and picks a score value, such that: at least Cr (the required coverage) samples
of Vc have greater scores and the accuracy is maximal (among all the values,
respecting the required coverage constraint).

Algorithm 1. Training
Require: Cr ∈ [0; 1], Vc, h, r
Ensure: θ

for all i ∈ |Xc| do
si ← score(h,r)(xi)

end for
a ← 0
θ ← None
for all i ∈ |Xc| do

ã ← Accuracy(fsi(X
c, mc), yc)

c̃ ← |{j|j ∈ {1, ..., |Xc|}, sj ≥ si}|/|Xc|
if c̃ ≥ Cr and ã > a then

a ← ã
θ ← si

end if
end for

Inference algorithm (Algorithm 2) evaluates score of the passed instance,
compares it with the threshold, found during training and redirects it accord-
ingly (ASK). Note, that the algorithm uses only the value of the parameter θ,
estimated using Algorithm 1, and the sample x, therefore, it can be applied to
the samples as soon as they arrive, without the need for a large batch (unlike,
e.g. [1]).

Algorithm 2. Inference
Require: x, θ

if score(h,r)(x) ≥ θ then
return h(x)

else
return ASK

end if

Lets consider scoring functions for several learning to defer algorithms. The
simplest algorithm is confidence threshold-based (we’ll refer to it as Threshold).
It doesn’t have a separate rejection model, but redirects to human expert
instances, for which maximal softmax output [3] is lower than certain threshold
(threshold is typically set to maximize accuracy). This algorithm is inherently
not sensitive to the expertise variability in the input domain, so score(h,r)(x)
can be defined as any confidence measure, e.g., maximal softmax output.
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Another approach is to use natural loss directly, training two separate func-
tions — classifier h and rejector r (NatLoss). In this case, there is a separate
rejector, which output (sigmoid function, before binarization) gives the value
appropriate for score(h,r)(x).

Finally, softmax parametrization loss, proposed in [14] (SP). In this case, h
and r are modeled using using one neural model with K + 1 outputs (where K
is the number of classes). Outputs 1 to K correspond to class probabilities, and
(K +1)-th output correspond to deferral to the human expert. Let p̂i(x) be the
value of the i-th output. In this model, h(x) is defined as argmaxk∈1:K p̂k(x),
and r(x) is 1 iff maxk∈1:K p̂k(x) ≥ p̂K+1(x) and 0 otherwise. The score(h,r)(x)
can be defined as maxk∈1:K p̂k(x)− p̂K+1(x). Intuitively, it reflects the difference
between classifier’s confidence and estimated human expert’s reliability for the
considered sample.

4 Evaluation

4.1 Datasets

The approach is illustrated using two datasets: synthetic and real-life. Synthetic
dataset is designed for binary classification and is generated using following
equations. For class (y = 0):

x2 ∼ U(0, 1) (3)
x1 ∼ N(2x2, σ) (4)

For class (y = 1):

x2 ∼ U(0, 1) (5)
x1 ∼ N(2 − 2x2, σ) (6)

And expert labels are defined by the following function:

m(x1, x2, y) =

{
y, if Bernoulli(x2)
1 − y, otherwise

(7)

A sample from this dataset is shown in Fig. 1. The plot on the left shows
two classes and the plot on the right uses color to highlight instances for which
the expert gives correct (green) and incorrect (red) result. The idea is that there
is a region where the classes are separated relatively well (low values of x2),
and a region, where they are hard to separate (higher values of x2, at the same
time, expert’s competence is highest for the high values of x2 and lowest for the
low values. As a result, it can be expected, that for the low values of x2 the
classification would be done by the model, and for the high values — delegated
to the expert. The σ parameter of the normal distribution controls the overlap
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Fig. 1. A sample from the synthetic dataset.

between classes and limits the classification model accuracy (even for the low
values of x2). In the experiments, presented in this paper, the value of σ is set
to 0.25 (the same value is used in the sample shown in Fig. 1).

Real-life dataset is CIFAR-10H [15], a subset of CIFAR-10 [8], containing
10,000 images, for which human labels were collected using crowdsourcing. There
are several human labels for each image in this dataset, and to produce mi one
of them was picked randomly.

4.2 Models

For the synthetic dataset we used a multi-layer perceptron (MLP) architecture
with two hidden layers (each with 40 neurons) and ReLU activation. The the
number of such models, output layer configuration and loss function were differ-
ent for the examined learning to defer approaches:

– for Threshold it was one MLP model with two output neurons (corresponding
to classes) trained using cross entropy using only ground truth labels;

– for NatLoss it were two MLP models (one for h and one for r), each with one
output neuron, trained simultaneously using Lnat;

– for SP it was one MLP model with three output neurons (two of them corre-
spond to classes and one for the deferral to the expert) trained using softmax
parametrization loss from [14].

In all cases, the optimizer was Adam, and training was done in batch mode
until convergence (training set loss change less than 10−5).

For the CIFAR-10H we trained a ResNet-18 model on the CIFAR-10 dataset
(excluding the images that are also part of the CIFAR-10H) to obtain classi-
fication accuracy of about 86%. Then we transformed CIFAR-10H images into
their compressed representations of width 512, taking the output of the layer
just before the classification head. All the models for human-AI learning (clas-
sification and deferral policies) are MLPs with two hidden layers of 80 and 40



Controlling Human Workload in Learning to Defer 127

neurons and ReLU activation function. Output layer configuration and loss func-
tions were the same as described above (but with 10 classes).

4.3 Results

The main question that has to be answered during evaluation is if the heuristic
technique described in Sec. 3 allows one to impose coverage constraint during
inference time. The behaviour of one particular model w.r.t this requirement
can be visualized using required coverage vs. test coverage plots (or, CC-plots).
On the x-axis is required coverage (set during model training), on the y-axis is
the test coverage evaluated using the test set. Note, that according to formal
definition of the problem (Sec. 3), test coverage must be greater or equal to the
required coverage, therefore, the graph should be above the diagonal line.

Fig. 2 shows example CC-plots for the synthetic dataset (left) and for CIFAR-
10H dataset (right). It can be seen, that test coverage actually follows the
required coverage in certain required coverage range, but for low required cov-
erage, test coverage turns out to be significantly greater than required. This
happens because algorithm in Sec. 3 looks for the parameter value maximiz-
ing accuracy and respecting coverage constraint. However, for certain coverage,
maximum accuracy is obtained, therefore, for all required coverage values lower
than this one, the same test coverage is returned (corresponding to the overall
best accuracy of the human-AI system).

Fig. 2. Required coverage vs. test coverage for the synthetic dataset (left) and CIFAR-
10H (right).

CC-plots can give insights to the behavior of the algorithm using certain
trained model and certain human labels. However, it lacks generalization. For this
purpose, we also build CC violation plots, showing the distribution of maximum
violation of the coverage requirement for model. Fig. 3 shows an example of such
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plot, built for 100 generated synthetic datasets (and respective models). We can
see, that coverage constraint can be violated, but in vast majority of cases this
violation is less than 1% and in all the cases it is less than 5%.

Fig. 3. Distribution of maximal coverage violation.

Finally, Fig. 4 shows examples of coverage-accuracy graphs induced by the
proposed algorithm. In the scope of this paper, we do not consider the problem
of selecting the best training algorithm (Threshold, NatLoss, SP or something
else), rather, we aim to show that the simple technique described in Sec. 3 allows
for adding coverage constraint to any of them. Coverage-accuracy graphs in this
context are secondary, but their examination explains the patterns found on
CC-plots (coverage with overall high accuracy).

Fig. 4. Coverage vs. accuracy plots for the synthetic dataset (left) and CIFAR-10H
(right).

An interesting observation is that coverage-accuracy graphs in the considered
examples are unimodal curves. The ultimate goal of the algorithm 1 is to find
maximum accuracy in certain coverage region, therefore, the unimodality of the
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coverage-accuracy gives an opportunity to significantly improve time complexity
of this algorithm by employing zero-order unidirectional optimization algorithms
(e.g., golden section search). However, this effect requires further research and
proper theoretical grounding.

5 Conclusion

The paper proposes and analyzes empirically a simple heuristic technique to help
imposing coverage constraints on existing learning to defer models. It has been
evaluated in conjunction with three popular deferral techniques — confidence-
based, natural deferral loss-based and the one based on a surrogate loss function.
Computational experiments using two datasets — a synthetic one and CIFAR-
10H dataset collected using crowdsourcing — has shown that the imposed cov-
erage constraint is respected during inference time, violations are possible, but
they are not very numerous and not severe.

Future work is mostly connected to improving the complexity of the algo-
rithm (accuracy-coverage curves give one possible idea for that), and to estimat-
ing theoretical guarantees of the constraint violation probability.
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Abstract. Complex network theory has been widely demonstrated as a
powerful tool in modeling and characterizing various complex systems.
In the past, complex network theory has focused on the behaviors as well
as the characteristics of the network nodes and edges. However, with the
continuous evolution of society, traditional graph theory faces challenges
due to the emergence of extermely large network structures. Recently,
complex network method based statistics has attracted much attention.
The new approach effectively manages very large networks and uncovers
their intrinsic properties. In this paper, we present a complex network
analysis model for undirected, unweighted networks based on a statistical
analysis approach. This model is inspired by the ensemble model in ther-
mostatistical physics. Based on the established mathematical model, we
derive physical measures that reflect the intrinsic properties of the net-
work, including Entropy, Free Energy, Temperature, and so on. In the
experimental part, we first explored the mathematical characterization
of these metrics. Then, we observed the performance of various network
categories under the same metric. Finally, we applied these measures to
the field of graph classification. Extensive experiments demonstrate the
effectiveness and superiority of the proposed method.

Keywords: statistical mechanics · complex network · entropy ·
ensemble

1 Introduction

The complex network theory provides a useful thinking method for analyzing
complexity science and complex system [1]. They possess the capacity to depict,
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elucidate, and model intricate real-world systems from both theoretical and prac-
tical perspectives [2]. For instance, a cell can be conceptualized as a complex net-
work of chemicals linked by chemical reactions, the Internet is a complex network
of routers and computers interconnected through diverse physical or wireless
links [3] and a community as a complex network of interpersonal relationships
woven by individuals who coexist. Indeed, myriad scientific, technological, social,
economic, and biological systems can be elegantly and efficiently represented as
networks: individual elements assume the role of nodes, and connections between
these elements manifest as edges within the network, the edge weights can signify
the strength of these connections, and unidirectional associations find expression
in directed networks [4].

Utilizing classical graph-theoretic approaches, researchers have discovered
numerous properties of complex systems, the best known of which are graph
models, such as the small-world network models and the scale-free network mod-
els. The salient characteristic of scale-free networks is their adherence to a power
law distribution in the degree distribution. This shows that most nodes exhibit
minimal connections, while a scant few nodes facilitate the majority of inter-
connections [5]. The key property of small-world networks lies in the gradual
expansion of the shortest path between two vertices with the scale of networks,
often exhibiting logarithmic growth [6] [7]. This equates to a relatively short aver-
age distance between nodes in the network [8]. Exemplifying this concept, social
networks stand as a quintessential instance of a small-world network. Real-world
networks frequently showcase a community structure as well, characterized by
subsets of vertices densely interconnected within, yet sparsely linked between [8]
[9].

Despite relying on conventional methods, numerous complex network models
have been constructed to describe complex systems. The complexity of tradi-
tional analysis methods inevitably increases with the network size, necessitating
the development of more efficient analytical tools. Statistically based methods
for analyzing complex networks were first proposed by Newman [10]. He applied
the ensemble models from thermostatistical physics to predict network proper-
ties and derive partition functions for random graphs and generalized random
graphs. This set the stage for the subsequent development of statistically-based
complex network models. Grounded in robust mathematical theory, statistical
mechanics boasts significant utility in the examination of physical systems like
fluids and solids. Its applicability to network research is equally justifiable [10].
Complex networks are usually evolving dynamically and typically encompass a
substantial number of nodes and interconnected edges. The analogy with ther-
modynamic systems provides a rational basis for employing statistical mechanics
methods in network science [11].

There are already numerous statistical models that yield physical measures
characterizing the network. Richard C. et al. [12] applied the Maxwell-Boltzmann
partition function to calculate network Entropy and model the Energy of the
network in terms of thermodynamic equilibrium. For random graphs, small-
world networks, and scale-free networks, they propose three physical measures
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to characterize the intrinsic properties of networks: average network Energy, Free
Energy, and network Temperature. However, the calculation of thermodynamic
Entropy requires the network system to be in thermodynamic equilibrium. Hao-
ran Zhu et al. [13] proposed the concepts of inverse Temperature and total Energy
for the network, focusing on the variation of network Entropy with respect to
network degree. Xin Zhao et al. [14] focused on the total Energy of edges in the
network, which is primarily used to extract the network’s backbone structure.

In this paper, we propose a feature extraction model for undirected
unweighted networks, also based on the ensemble model in statistical physics. We
maximizing the Entropy with the assumption that the number of nodes and edges
in the network is fixed, and then we obtain the degree distribution of the nodes
according to Maxwell-Boltzmann partition function. By analogy with physical
measures in statical mechanics, six metrics characterizing the intrinsic patterns of
the network are obtained: Temperature, Entropy, Free Energy, Capacity, Gibbs
Free Energy, and Gibbs Chemical Potential. For example, the network Temper-
ature indicates the average node degree, the Free Energy reflects the network’s
ability to establish new connections, and the Gibbs Chemical Potential can be
used to control the number of network nodes at a given Temperature.

In experiments, we calculated the metrics for each network in the dataset
and analyzed their distributions. By fitting these distributions, we found that
the metrics follow similar distribution patterns in pairs. For example, both net-
work Entropy and Gibbs Free Energy conform to a normal distribution. We then
explored the differences between various network categories under the same met-
ric. For example, social networks exhibit smaller network Entropy compared to
biological networks. Furthermore, to verify whether these network metrics can
represent the unique characteristics of a network, we visualized the network clus-
tering results using these six metrics as embedding. The results showed that these
network metrics effectively differentiate between network categories. Finally, we
used the network metrics for the graph classification task and compared the
results with those obtained from a GCN [14] model on a graph dataset with no
node or edge features. We found that using the network metrics as embeddings
for the classifier yielded performance that was comparable to or better than that
of the two-layer GCN model. This demonstrates that these network metrics can
efficiently extract the intrinsic features of the network.

2 Related Work

Our paper mentioned graph model and ensemble model. In what follows, we
provide a brief overview on related work in both models.

Classical Graph Model A regular graph is the simplest network structure,
which has each node connected to all other nodes, which makes the degree of
each node the same. Such a graph is also called a complete graph.

Random graphs have fixed values for certain attributes, while the structure
of such networks is random in other respects. The simplest case involves a fixed
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number of nodes and edges, but the positions of the edges connecting these nodes
are randomized. The most famous random graph is the ER graph [15]. ER graph
is constructed by randomly selecting E pairs of vertices from N vertices, each
pair of vertices being selected with equal probability. Random graphs can be
used to study the properties of the probability space associated with a graph
with N nodes as N tends to infinity.

The property of small-world networks is that the shortest path between two
vertices gradually expands as the network size increases, usually showing loga-
rithmic growth. The two most common small-world network construction models
are the WS model [16] and the NW model [17]. Small-world network models are
widely used in social network analysis.

One other characteristic of real-world networks that have not been observed
in previously mentioned model are growth. Scale-free networks are open to
growth, as the most real networks. As the time passes, the number of nodes
will be greater which is the same for World Wide Web that grows exponentially
by addition of new web pages [18]. As a result, the node degrees of scale-free
networks often follow a power law distribution.

Ensemble Model The concept of ensembles in statistical physics, which entails
an assemblage of numerous potential states of a system under specific conditions
[19]. In this paper, we deal with the canonical ensemble. The canonical ensemble
represents the set of all possible states of a system in thermal equilibrium when
in contact with a thermostatic thermal reservoir. The possible microstates of the
system can have different energies because the system can exchange energy with
the heat reservoir. In analogy with canonical ensemble, each node and edge in
a complex network has different properties and the entire network is in contact
with the real world at all times thus reaching thermal equilibrium.

3 Description Of Networks

Let G(V, E) be an unweighted and undirected network with a set of nodes V and
a set of edges E ⊆ |V | × |V |. N = |V | and L = |E| represents the total number
of nodes on graph G(V, E). The adjacency matrix A is defined as

Auv =
{

1 if(u, v) ∈ L
0 otherwise (1)

where (u, v) is a pair of nodes forming an edge in the network.
The corresponding degree matrix D is diagonal, where the elements are the

degrees of the nodes,
D(u, u) = ku =

∑
v∈V

Auv (2)

where the degree of node u is ku.
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The average deegree k̄, also known as the edge density, is

k̄ =
1
N

∑
v∈V

D(u, u) =
2L

N
(3)

For a network, the straightforward statistical property is the degree distribu-
tion, where nk refers to the number of nodes which have certain value of degree
k in the network. Thus,

|V |∑
k=0

nk = N (4)

The preliminary Entropy relates to the number of ways for choosing nk nodes
among the total number of nodes N in the network. This is given by the combi-
natorial formula in terms of the factorials

Ω =
N !∏|V |

k=0 nk!
(5)

Then, the Entropy is the lograithm of the expression Ω in (5) can be simplified
by using Stirlings approximation logn! ≈ nlog(n) − n and as a result

S = logΩ = −N

|V |∑
k=0

PklogPk (6)

where Pk is the nodal degree distribution of nodes as

Pk =
nk

N
(7)

Thus, the Entropy in a network is related to the degree distribution.

4 Methond

4.1 Canonical Ensemble

The definition of canonical ensemble in our study refers to a very large group
of networks with the identical number of nodes N and edges L. This means the
network group follows an ergodic process, which contains all kinds of statistical
structural propertites with the same number of nodes and edges. Our work is to
study one of the graphs in this ensemble, particularly focus on one general case
of a network with nodes N and edges L.

In a network, each node has the number of edges to connect that is a degree
ki, where ki ∈ 0, 1, 2, . . . , N . The number of nodes with the certain degree k
in the network is nk, where nk ∈ 0, 1, 2, . . . , N . Then, we want to maxmise the
Entropy in (6) with respect to the probability Pk, subject to two constraints
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where the overall number of nodes and edges in a network is equal to N and L,
respectively.

max logΩ = −
|V |∑
k=0

PklogPk

s.t.
|V |∑
k=0

Pk = 1

|V |∑
k=0

kPk = k̄ =
2L

N
(8)

A straightforward method is to apply Largrange multipliers to find the opti-
mum solution. This introduces two parameters α and β as

F = −
|V |∑
k=0

PklogPk + α

⎛
⎝1 −

|V |∑
k=0

Pk

⎞
⎠ + β

⎛
⎝k̄ −

|V |∑
k=0

kPk

⎞
⎠ (9)

When the partial differential of (9) with the respect of Pk is equal to zero, as

∂F

∂Pk
= −logPk − 1 − α − βk = 0 (10)

We derive the degree probability by maximising the Entropy as

Pk = e−(1+α)e−βk =
1
Z

e−βk (11)

where Z is the named as partition function following the first constraint that
the overall probability is unit.

Z = e1+α =
|V |∑
k=0

e−βk =
1 − e−βN

1 − e−β
(12)

When the number of nodes in a network is large, the corresponding partition
function in (12) can be approximated as

Z = lim
N→∞

N∑
k=0

e−βk =
1

1 − e−β
(13)

The second constraint of network edge proposes the relation of partition function
and the average degree.

k̄ =
2L

N
= − 1

Z

∂Z

∂β
= −∂logZ

∂β
=

1
eβ − 1

(14)



Explore Complex Networks from Ensemble Models 137

According to (13), we derive the expression of parameter β as

β = log

(
1 +

1
k̄

)
= log

(
1 +

N

2L

)
(15)

The parameter β is named as inverse Temperature, and the corresponding Tem-
perature T is given as

T =
1
β

=
[
log

(
1 +

N

2L

)]−1

∝ k̄ (16)

So the Temperature T is proportional to the average degree(edge density) in the
network.

When combining (11), (13) and (15), we can derive the probability of a
node with a certain degree as the function of degree distribution

P (k) =
e−βk

Z
= (1 − e−β)e−βk (17)

which exponentially decays as the value of connected edges increasing. According
to (15) and (17), we can also get the expression of degree probability in terms
of the edge density as

P (k, k̄) =
(

1
k̄ + 1

) (
k̄

k̄ + 1

)k

= θ(1 − θ)k (18)

where θ = 1
k̄+1

.
This shows that the degree distribution is also a geometric distribution

related to the average degree.

4.2 Limit Case of Canonical Ensemble

As the number of nodes N tends to infinity, with the partition function of (12)
in hand, the preliminary entropy in the canonical ensemble case in (7) can be
written as

S = −
|V |∑
k=0

PklogPk = −
|V |∑
k=0

e−βk

Z
(−βk − logZ)

= β(k̄ − F ) (19)

where F is named as the Helmholtz Free Energy in statistical mechanics as

F = − 1
β

logZ = −T logZ (20)

It reflects the ability of the network to make new connections.
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To simplify, the parameter μ in the grand canonical ensemble can be com-
puted from Helmholtz free energy as

μ(T ) =
(

∂F

∂N

)
T

=
1

1 − eN/T
(21)

Therefore, the parameter μ is named as Chemical Potential that is used to control
the number of nodes in the network corresponding to the Temperature.

From (16), we can also derive the Capacity C which reflects how the average
degree in a single node changes with the Temperature as

C =
(

∂k̄

∂T

)
=

e1/T

T 2(e1/T − 1)2
(22)

This show the ability of a node to attract new connections is not always increas-
ing with the degree. It can reach to a platform while the connection is saturation
in a network.

So far, we only consider a single node in a network with the statistical
mechanics framework. For a network with N indistinguishable nodes, the parti-
tion function in (12) can be written as Gibbs partition function

Z =
ZN

N !
(23)

Then, the Helmholtz Free Energy can be calculated when combine with the
partition function in (13)

F = −T log(Z) = −TNlogZ + T log(N !) (24)

The corresponding Chemical Potential in (21) is

μ =
(

∂F
∂N

)
T

= T log

(
N

Z

)
= T log

(
N

1 + k̄

)
(25)

We can observe the critical point happens when μ = 0. This is consistent to be
trival solution that number of edges in a network reach to a half of potential
connections in nodes.

k̄ = N − 1, when μ = 0 (26)

that is
L =

1
2
N(N − 1) (27)

Therefore, the parameter μ can be used to reflect the edge density changes in
the network connection.

5 Experiments

5.1 Datasets

We use five well-known datasets consisting of two complex network reposi-
tory (KONECT [20] and REPOSITORY [21]) and three graph classification
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Table 1. Statistics of the experimental benchmark datasets. #G denotes the numbers
of graphs. #Ctg denotes the numbers of categories #Cls denotes the number of class
labels. Avg#N denotes the average number of nodes per graph. Avg#E denotes the
average number of neighbors per node. d is the dimension of feature vectors.

Dataset #G #Ctg#ClsAvg#NAvg#Ed

KONECT 1,32624 - - - -
REPOSITORY5,66133 - - - -
COLLAB 5,0001 3 74.5 65.9 -
IMDB-B 1,0001 2 19.8 9.8 -
DD 1,1781 2 284.3 5.0 82

datasets(COLLAB, IMDB-B, and DD). The COOLAB, IMDB-B datasets do
not have available node features; thus we use node degrees as features. Dataset
statistics are summarized in Table. 1.

KONECT: The Koblenz Network Collection, one of the most important
dataset in the field of network science, contains over 1,000 network datasets.
KONECT contains networks of all sizes, from samll calssical datasets from the
social science, such as Kenneth Tead’s Highland Tribes network with 16 vertices
and 58 edges, to the Twitter social network with 52 million nodes and 1.9 billion
edges.

REPOSITORY: The largest network repository with thousands of dona-
tions in 30+ domains from biological to social network data.

Social networks datasets: COLLAB is a scientific dataset, where each
graph represents a collaboration network of a corresponding researcher with
other researchers from each of 3 physical physics fields; each graph is labeled to
a physics field that the researcher belongs to. IMDB-B is movie collaboration
datasets, where each graph is derived from actor/actress and genre information
of different movies on IMDB.

Bioinformatics datasets: DD is a collection of 1,178 protein network struc-
tures with 82 discrete node labels, where each graph is classified into enzyme or
non-enzyme class.

5.2 Experimental Results

Experiment 1 In this experiment, we explored the mathematical distributional
properties of the proposed six metrics, Entropy, Temperature, Capacity, Free
Energy, Gibbs Chemical Potential, and Gibbs Free Energy. First, we computed
six metrics on KONECT and REPOSITORY, and we constructed statistical his-
tograms of these results. Fig. 1 portrays the metrics distribution of the database
KONECT. Note that we take logarithms with base ten for Gibbs Free Energy.
Obviously, Entropy and Gibbs Free Energy seem to obey a similar mathematical
distribution, and the same phenomenon occurs between Temperature and Gibbs
Chemical Potential, Capacity, and Free Energy. Fig. 2 shows the results calcu-
lated on the REPOSITORY and the distribution pattern between the measures
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Fig. 1. Histogram of the distribution of the six metrics on the KONECT dataset.
We can see that each column of metrics follows the same distribution. Note: we take
logarithms with base ten for Gibbs Free Energy.

Fig. 2. Histogram of the distribution of the six metrics on the REPOSITORY dataset.
Similarly, in this dataset, we can observe the same conclusion as mentioned in Fig. 1

is the same as that shown in Fig. 1. And the distribution of the same measure
is also the same between the two datasets.

Then, we fit distributions to these metrics using KONECT as an illustra-
tion. The Results indicate that Entropy and Gibbs Free Energy follow a normal
distribution, Temperature, and Gibbs Chemical Potential obeys the Gamma dis-
tribution, and Capacity and Free Energy follow the stable distribution. Fig. 3
exhibits the results of the probability density fitting curve and the cumulative
probability distribution comparison.

Experiment 2 Real-world networks can be loosely classified into four cate-
gories: social networks, information networks, technological networks, and biolog-
ical networks. Notably, social and biological networks have garnered significant
research attention [22]. In this experiment, we use Entropy and Gibbs Chemical
Potential as measures to explore the differences between social networks and bio-
logical networks. In Fig. 4a, it becomes evident that biological networks exhibit
lower Entropy in comparison to social networks. We believe that the reason for
this difference is that the structure of biological networks is relatively regular.
Such structure is determined by the genetic and metabolic patterns which all
creatures have similarly. In contrast, social networks tend to evolve more ran-
domly, rendering them inherently less organized.

The Gibbs Chemical Potential shows the tendency of the Free Energy of the
network to change with the number of nodes when given a specific Tempera-
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Fig. 3. Probability density function fitting and cumulative metric distribution for six
metrics on KONECT. In Fig. 3b, the value of the fitted cumulative probability dis-
tribution is small compared to the actual cumulative probability distribution when
Free Energy is less than −60. But the number of networks is few in this interval, we
considered the fitting results to be valid. The same is true for capacity.

ture. Fig. 4b displays that the Gibbs Chemical Potentials of biological networks
generally exceed social networks. This discrepancy could be attributed to the
small-world property that is common in social networks. The new nodes added
into the community have little impact on the integral network structure. As a
result, in social networks, the variation of Free Energy caused by the change in
the number of nodes is not obvious.

Experiment 3 In this experiment, we explored the feasibility of the proposed
metrics as network embeddings. We performed dimensionality reduction on the
network features using the TSNE method on the REPOSITORY. For ease of
presentation, we have listed only the top 18 categories with the highest number
of datasets. In Fig. 5, It can be seen that the result of using the six metrics as
network features to cluster is basically the same as the original network cate-
gories.
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Fig. 4. Comparison of biological and social networks under Entropy and Gibbs Chemi-
cal Potentials on DD and IMDB-B, respectively. The results show that social networks
have greater Entropy, while biological Networks have greater Gibbs Chemical Potential.

Table 2. Graph classification results(% accuracy). The best scores are in bold

Model COLLABIMDB-BDD

GCN-2 66.6% 62.03% 41.52%
Our* 67.69% 67.98% 77.39%
DGCNN [23] 68.34% - 77.21%
GAP-Layer(Ncut) [24]65.89% 68.80% -
1-NMFPool [25] 65.0% - 76.00%
CT-Layer [24] 69.87% 69.84% -
∗ using proposed metrics as embeddings feeds to
single-layer classifier.

Experiment 4 Inspired by the results of Fig. 5, in this experiment, we verified
the feasibility of the proposed metric for supervised graph classification tasks.
We used the proposed metrics as the graph embeddings feeding to single-layer
classifier. As a contrast, we selected some graph convolution models to generate
graph embeddings and then applied them to classifier of the single-layer struc-
ture. For two datasets, COLLAB and IMDB-B, there are no node features, so
we use one-hot vectors of node degree as node features. The DD dataset uses
one-hot vectors of node labels as node features. Table .2 presents the experi-
mental results for the benchmark datasets. It can be seen that although our
classification accuracy is not the highest in COLLAB and IMDB-B, it is suffi-
cient to demonstrate our proposed metrics can be used as graph embeddings for
downstream tasks.
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Fig. 5. A T-SNE visualization using proposed metrics as graph embeddings on REPOS-
ITORY.

6 Conclusion

This paper introduces a model based on statistical mechanics, applied for
unweighted and undirected networks, which yields six parameters characterizing
the features of the network. Inspired by statistical mechanics canonical ensem-
ble concepts, we employ the maximum Entropy method to study networks with
fixed count of nodes and edges. Through the Lagrange multiplier technique, we
proved that the network’s degree distribution adheres to a geometric distribu-
tion under maximal Entropy conditions. In line with thermodynamic principles,
we introduce the notion of network Temperature and deduce the distribution
function for the canonical ensemble.

In the experimental part, we designed four experiments. In the first experi-
ment, we focused on the mathematical distribution of the proposed metrics and
determined the statistical distribution followed by the metric through distribu-
tion fitting. In the second experiment, we explored the difference between social
and biological networks in terms of Entropy and Gibbs Chemical Potential, and
found that the Entropy of social networks is small, while the biological Entropy
is on the large side. In the third experiment, we clustered the network data by
TSNE, and the experimental results are similar to the original network cate-
gories, proving that the proposed metrics can be used as network embedding. In
the fourth experiment, we take six metrics as graph embedding and use them
for the graph classification task, and compared with the two-layer GCN model,
directly using the proposed metrics for the classifier works better than the two-
layer GCN model in the dataset without node features.

Although our proposed metrics can extract network macroscopic features,
it is unable to take into account network microtopology and graph-level fea-
tures when compared to the graph convolutional models. In future work, we will
explore the combination of the proposed metrics and graph convolutional models
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to improve the graph classification performance in graph datasets without node
features.
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Abstract. This study uses machine learning techniques to classify the
surface roughness using the laser speckle images of the machined samples,
an intriguing yet relatively less explored field of research in the realm of
speckle metrology. The laser speckle imaging technique is sensitive to
surface roughness paving the way for the classification of the machined
specimen based on surface roughness using the distinct speckle pattern.
The paper presents the analysis of the performance of the state-of-the-
art machine learning techniques on the preliminary dataset of the speckle
pattern of the machined sample. The gray level co-occurrence matrix is
used for feature extraction. The model performance with various combi-
nations of features is studied to distinguish the most descriptive feature
for generalization. The assessment of the classifiers’ performance aids in
the generalization of the classification and prediction of the roughness
classes in the range Ra = 0.1 µm − 1.6 µm using the speckle images.

Keywords: Surface Roughness · Laser Speckle Imaging Technique ·
Classification · Gray Level Co-Occurance Metrix · k-Nearest
Neighbour · Support Vector Machine · Decision Tree · Random Forest

1 Introduction

Surface Roughness, Ra is an important texture property that specifies the
microstructural variation of the material surface. For industrial applications, it is
pertinent to understand the micro-details of a surface to match the desired sur-
face texture characteristics. The laser speckle imaging technique (LSI) [16,17] is
a non-destructive optical imaging modality for gathering multiparameter object
information. Speckle Metrology, based on LSI techniques, is a new paradigm for
numerous industrial applications including measurement of object movement,
vibration modes, and surface roughness [14,25]. The speckles represent the inten-
sity distribution developed from the mutual interference of the wavefront scat-
tering from the object when illuminated by a coherent light source. Since the
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wavefront scattering takes place from the different depths of the object’s sur-
face, the statistical analysis of speckle patterns displays subtle variations related
to the surface roughness. Therefore, the speckle imaging technique is relatively
suitable for the classification and prediction of surface roughness measurement
compared to the other non-destructive techniques.

The statistical methods for speckle image processing were proposed includ-
ing Speckle Contrast(SC) [2,13] which is frequently used for a small range of
Ra measurements. Besides SC, bright to dark (B/D) pixel ratio [9,20], speckle
correlation [18], fractal dimensions [7], Hurst exponent [1] were proposed for
Ra measurement. With the digital transition, the role of machine learning tech-
niques for speckle image processing to convert the observations into the desired
attributes is pivotal to accelerate the performance and alleviate the pitfall of the
traditional image-processing algorithms.

The classification and prediction of surface roughness of the machined sam-
ples based on machine vision technique are reported in [4,5,15,22,24]. Never-
theless, machine vision is a non-destructive and undisturbing method of data
acquisition, it is very sensitive to the lighting conditions. In dim or dark con-
ditions, the quality of the image can degrade affecting the true results. In such
cases, artificial lighting is an additional requisite. Moreover, for unstructured
scenes, specimen identification may be difficult with the machine vision tech-
nique. In comparison, the laser speckle images can encode the microstructural
details of the surface from the scattering of the light, making speckle patterns
distinct for each surface that visually might appear alike. Therefore, the pre-
diction and classification of surface roughness of the optically smooth surfaces
is feasible with LSI. In addition, the laser speckle imaging technique is suitable
for 2-dimensional and 3-dimensional surfaces where machine vision techniques
might face several limitations.

In this paper, k-Nearest Neighbour, Support Vector Machine, Decision
Tree, and Random Forests techniques have been used to illustrate the surface
roughness-based classification of the machined samples using the speckle images.
The samples are prepared using the grinding operation. The classification for the
five classes of grinding samples is performed for Ra = 0.1μm−1.6μm with a brief
discussion on the classification accuracy and the important features. Section 1
presents the introduction, methodology is described in Section 2; Section 3 cov-
ers the experiment details followed by results and discussion in Section 4; Section
5 discusses the potential scope for improvement, and Section 6 reports the con-
clusion and future work.

2 Methodology

2.1 Feature Extraction

The speckle is a 2-dimensional random intensity pattern, therefore they are often
investigated by statistical methods. Gray-level co-occurrence matrix (GLCM) is
a second-order statistical method for texture analysis [11]. The statistic of pixel
intensity distributions in the direction θ and distance d between the pixels is
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obtained using GLCM. The pixel pair in GLCM with certain mutual spatial
relationships provides more efficient representative information than a single
pixel, thereby bringing GLCM to the front for the feature extraction of the
images. GLCM calculates how often a pixel value i occurs either horizontally
(0◦), vertically (90◦), or diagonally (45◦ and 135◦) to the adjacent pixels of
value j. Haralick et. al [11] defined fourteen features that provide spatial context
information for texture classification. Conners and Harlow [6] reported energy,
entropy, local homogeneity, and inertia as the few significant GLCM features,
that are commonly used. The following procedure is followed for the feature
extraction using GLCM:

– Decide the offset distance integer (d) and direction (θ).
– The formation of GLCM matrix for an image I of size M × N ; where each

pixel-pair is separated by d and θ, the probability of having the pixel intensity
i next to pixel intensity j is addressed. The GLCM is a square matrix of size
N where N is the total number of grey levels in the image. Each matrix
element is represented by P (i, j|d, θ).

After GLCM formulation, one can compute the statistical features given below:

– Energy
It is also known as the angular second moment (ASM). It is a measure of
image uniformity.

ASM =
N∑

i=1

N∑

j=1

[Pd(i, j)]2. (1)

– Contrast
Contrast is the difference between the highest and the lowest values of a
continuous set of pixels. It is useful to measure the grey-level local intensity
variations in the image.

Con =
N∑

i=1

N∑

j=1

(i, j)2Pd(i, j). (2)

– Homogeneity
It is measured to show the closeness of GLCM matrix elements to the GLCM
diagonal.

Hom =
N∑

i=1

N∑

j=1

1
1 + (i − j)2

Pd(i, j). (3)

– Correlation
The joint probability occurrence of the specified pixel pairs is measured using
the correlation parameter.

Corr =
N∑

i=1

N∑

j=1

P (i, j)
(i − μx)(j − μy)

σxσy
. (4)
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where μx and μy are the means and σx and σy are the standard deviation of
rows and columns, respectively.

– Entropy
It is a measure to describe the disorder or the complexity of the image.

Ent = −
N∑

i=1

N∑

j=1

Pd(i, j) log2 Pd(i, j). (5)

– Disssimilarity
Dissimilarity represents the linear local variation in the image intensity.

Diss =
N∑

i=1

N∑

i=1

|i − j|Pd(i, j). (6)

where μ is a mean of Pd(i, j).

2.2 Feature Selection

The appropriate selection of features is important for effective classification. For
the classification of surface roughness based on the respective speckle images of
the samples, the following aspects are considered for the feature selection:

– To reduce the dimensionality of feature space and avoid overfitting.
– To improve the accuracy of a classification algorithm.

According to the principle of laser speckle imaging, when the light is scattered
from a random surface with higher roughness, the intensity of the speckle grain
reduces, thus the resultant speckle pattern contains more dark speckles as com-
pared to the smooth surface. Eventually, the number of similar neighbor pixels
tends to increase which increases the homogeneity of the sample. Therefore, the
correlation between the neighboring pixels increases. Moreover, the contrast of
the speckle pattern decreases with an increase in surface roughness. Numerous
studies have demonstrated the relation between the average surface roughness
and the contrast of the speckle images based on the regression analysis. The cor-
relation increases with an increase in the surface roughness. In addition to the
aforementioned features, energy or angular second moment is weekly sensitive
to the smooth surface, which varies between 0 − 1. Moreover, according to the
general principle, the feature must be discriminative, reliable, and independent.
Based on these considerations, the analysis is confined to the Haralick features
viz., contrast, correlation, homogeneity, dissimilarity, entropy, and energy in the
present study.

2.3 Classification Methods

k-Nearest Neighbour: k-Nearest Neighbor (kNN) is a supervised machine
learning technique for classification due to its simple implementation and dis-
tinguished performance [23]. In the case of classification, kNN aims to find the
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value of k on the observations in the training data which is closest to the obser-
vations in the testing datasets [26]. Being a user-defined constant, the effective
classification of data explicitly depends on the appropriate selection of k-values.
The Euclidean distance metric is most widely used in kNN defined below:

d(x, y) =

√√√√
(

p∑

i=1

(xi − yi)2
)

. (7)

The other metrics include the Manhattan distance, the Chebyshev distance,
the Cosine distance, the Jaccord distance, and the Hamming distance. The
Minoskowi distance is known as a generalized form used for the Chebyshev, the
Manhatten, and the Euclidean distances calculation depending on the selection
of p.

Support Vector Machine: Support vector Machine (SVM) was formally intro-
duced by V. Vapnik in 1965. SVM is widely applied in pattern recognition, text
and image classification, biological sequence analysis, natural language process-
ing, etc [8]. The model uses a linear classifier with an optimal margin in the
feature space. The learning strategy is to maximize the margin to formulate a
convex quadratic programming problem. The input vector X is mapped into a
high-dimensional decision feature space S non-linearly by choosing a priori. The
decision surface is known as hyperplane H, defined as the maximum margin of
separation between two classes [12].

H =
{
x|wTx+ b = 0

}
, (8)

where w is a weight vector normal to the plane and b is a bias. The SVM can
also be used on a dataset that might have required a non-linear decision plane.
This is achieved using various kernel functions which can map the non-linearly
separable input space into a linearly separable space. The kernel functions are
described below:

– Linear Kernel: It assumes the linear relationship between the data points
and is suitable for the dataset following a linear trend.

K(x, xi) = [(xT .xi)], (9)

– Polynomial Kernel: Polynomial kernel is used for learning the non-linearity
in the data points. It is expressed as follows:

K(x, xi) = [xT .xi + c]d, (10)

x and xi are the vectors of size n in the input space. c is the constant used to
tread off between the higher-order and lower-order terms in the polynomials.
The degree of polynomial is represented by d.

– Sigmoid Kernel: The Sigmoid kernel provides the basis for similarity mea-
sure based on the hyperbolic tangent function.
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K(x, xi) = tanh(α(x.xi) + β, (11)

The hyperparameters α and β control the shape of the kernel.

– Gaussian Radial Basis Function Kernel: This function uses the
Euclidean distance relationship between the data points. The parameter g
represents the width of the Gaussian function which aids the adoption of the
high dimensional datasets of varying scale.

K(x, xi) = exp

(
‖x − xi‖2

g2

)
. (12)

Decision Tree: The Decision Tree(DT) is a non-parametric supervised learning
method that simplifies the relationships between feature input and the target
variables by partitioning the original features into potential subgroups. It is often
used to deal with large and complex datasets for classification, prediction, and
data manipulation tasks. The decision tree methods can be used to select the
most relevant features that should be used to form decision tree models. The
model performance is sensitive to the splitting, stopping, and pruning[21].

Random Forest: Random Forest (RF) technique treats the overfitting problem
of decision tree algorithm on training dataset through ensemble learning by
constructing the multiple decision tree during the training phase. The subset of
the feature is selected in a random split while the decision tree considers all the
possible feature splits.

3 Experiment

3.1 Description of LSI Setup

The schematic of the experimental assembly is shown in Fig. 1. The sample
was illuminated using a laser source at an illumination angle, θi = 450 form-
ing a speckle pattern due to wavefront interference at the image plane. The
interferences of the wavefront captured by the CMOS sensor are recorded using
the image acquisition software as a speckle pattern. The distance between a
laser source and an object to the image sensor was kept unchanged during the
experiment. A He-Ne laser source of wavelength λ = 632.5 nm, 15mW and
a CMOS camera with a maximum resolution of 2048 × 1536 and pixel size
3.45 μm × 3.45 μm were used for the illumination and recording of a speckle
pattern, respectively. Fig. 2 shows the recorded speckle images for each class of
Ra.
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Fig. 1. Schematic of the experimental setup for the acquisition of speckle images of
the machined samples.

Fig. 2. Speckle images of the grinding sample classes with surface roughness Ra (a)
0.1µm (b) 0.2µm (c) 0.4µm (d) 0.8µm (e) 1.6µm.

3.2 Data Collection and Data Description

The speckle images of the grinding specimen were recorded by scanning at dif-
ferent sampling positions of the specimen. The preliminary dataset consists of a
total of 200 speckle patterns of five classes of surface roughness as tabulated in
Table 1. The speckle of the respective class of roughness is distinct in terms of
the speckle intensity and speckle size. The speckle is a random intensity pattern
representing the structural irregularities of the corresponding point of illumina-
tion on the sample plane, it is noteworthy that the speckle pattern of the two
closely sampled positions of the same class of roughness are not alike. For the
classification analysis, the raw speckle image data is used for each classifier.

Table 1. The description of the sample set.

Ra (µm)0.10.20.40.81.6

label 0 1 2 3 4

4 Results and Discussion

This section describes the result and analysis of experiments conducted for the
classification of surface roughness of the grinding specimen based on the speckle
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Table 2. The impact of feature selection on the accuracy. FS-Feature Subset; FS-
I: contrast, correlation, homogeneity, dissimilarity, energy, entropy; FS-II: correlation,
homogeneity, dissimilarity, energy, entropy; FS-III- dissimilarity, energy, entropy, homo-
geneity, FS-IV: correlation and dissimilarity, FS-V: correlation, dissimilarity, entropy;
FS-VI: homogeneity, dissimilarity, energy. The cross-validation is obtained for k = 10
-fold. The accuracy is expressed in %.

FS-I FS-II
K-valueCross -validationTest AccuracyCross-validationTest Accuracy

3 72.50 75 99.00 100
5 75.50 78.33 98.5 98.33
7 72.99 76.66 97.00 98.33
9 75.50 80.00 96.00 96.33
11 74.5 78.33 93.99 95.00
13 75.50 75.50 93.49 95.00
15 74.49 73.33 92.5 96.66
17 73.00 71.66 95.5 95.00
19 76.49 68.33 92.99 95.00

FS-III FS-IV
K-valueCross -validationTest AccuracyCross -validationTest Accuracy

3 95.00 100 99.00 100
5 92.00 95.00 98.00 98.33
7 89.49 93.33 96.50 98.33
9 87.5 83.33 95.50 95.00
11 84.5 83.33 93.49 95.00
13 83.00 83.33 92.99 95.0
15 82.00 83.33 91.49 96.66
17 80.99 76.99 90.99 93.33
19 81.50 76.77 96.00 95.00

FS-V FS-VI
K-valueCross -validationTest AccuracyCross -validationTest Accuracy

3 99.00 100 89.50 88.33
5 98.00 98.33 85 80
7 97.00 98.33 82.5 81.66
9 96.00 96.33 80.5 83.33
11 93.99 95.00 76.5 81.66
13 93.49 95.0 78.49 78.33
15 92.50 96.66 78.00 75.00
17 92.50 95.00 75.50 73.00
19 96.00 95.00 78.00 70.00
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images. The kNN algorithm is often sensitive to the selection of the k value [10].
Liu et al. suggested that a fixed k value may not be suitable for many test data
points in a given training dataset[19]. Nevertheless, kNN is a simple algorithm,
the high dimensional feature space hinders the performance of kNN[3]. In the
present case, the effect of variable k value for different GLCM feature subsets
(FS) which significantly affects the model’s predictions is presented. The cross-
validation for k = 10 is analyzed for the train-test split of 70:30 of the dataset.
The importance of each feature is determined by examining how the perfor-
mance is affected with or without having the specific feature(s). If the removal
of feature degrades the classifier performance, the feature is considered to be
important. The key contributing features are thus selected for the final feature
subset. As described in Table.2, at first, the FS-I consisting of all six features
resulted in 80% testing, and 75.50% cross-validation (CV) accuracy which is the
highest for k = 9. In the FS-II configuration, the removal of contrast shows a
remarkable increase in testing and cross-validation accuracy. The optimal value
of k is 3 for which the CV = 99% and the test accuracy obtained is 100%. The
accuracy further reduces with an increase in k. In the FS=III the CV accuracy
is 95.50% while testing accuracy is 100% for k= 3. Due to the high difference in
the testing and CV accuracy, FS-III seems unpredictable for generalization. The
performance of kNN with a combination of correlation and dissimilarity (FS-V)
shows a consistent decrease in CV with a marginal difference with the testing
accuracy. To investigate further, the inclusion of entropy over FS-V has moder-
ately increased the accuracy beyond k= 7. Furthermore, homogeneity, energy,
and dissimilarity in FS-VI showed the cross-validation accuracy higher than the
testing accuracy which might lead to overfitting with the unseen data. the kNN
suffers from the curse of dimensionality with a large number of features as appar-
ent in the case of the present dataset as well. For the generalization, dissimilarity,
correlation, and entropy are promising descriptive features as compared to the
other GLCM features for the kNN model. Fig.3 (A),(B),(C) illustrates the plot
of accuracy (CV and Test) versus k for FS-I, IV, and, V. The plot in Fig 3 (D)
represents accuracy (CV and Test) versus K for energy, entropy, and homogene-
ity which indicates the overfitting of the data. The FS-V seems promising for
model building using kNN for the classification of surface roughness.

The performance of SVM with linear and the rbf kernel is presented in the
Table. 3. The exhaustive search method is applied for the selection of optimal
hyperparameters. The linear kernel with FS-II having correlation, dissimilarity,
energy, homogeneity, and entropy features resulted in 100% accuracy, precision,
recall, and F1-score for C = 10 whereas, the accuracy obtained with the rbf
kernel is 98.33% for C= 10 and gamma = 1 for the similar FS. The FS-I, FS-III,
FS-IV, and FS-V under-perform indicating the incompetency for prediction on
unseen data. The statistics presented in Table. 3 infer that the performance of
FS-II with the linear kernel is reliable for the generalization as compared to the
remaining combinations.

Fig. 4 shows the plot for the testing and training accuracy as a function of the
maximum depth of the decision tree. The plot indicates the model performs well
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Fig. 3. The plot of cross-validation and test accuracy as a function of nearest neighbour,
k for kNN model with (A) FS-I (B) FS-IV,(C) FS-V, and (D) The combination FS with
energy, homogeneity, and entropy.

on the training data but is relatively poor on unseen instances which indicates the
overfitting due to the small data size. The problem of overfitting can be countered
with pruning implementation. From the plot, it is observed that the minimum
level of depth required is 4 for which the training and validation accuracy are
approximately similar. The performance of the random forest is analyzed based
on the train-test split of the dataset in the ratio of 80:20, 70:30, and 60:40 using
the cross-validation for k-fold= 5 and k-fold= 10 as tabulated in Table.4. The
10-fold CV accuracy obtained for the train-test split of 70:30 is 96.42%.

The Nested Cross-Validation(N-CV) procedure is often justified by providing
a more reliable means of model selection for a given dataset. In the N-CV, the
hyperparameter selection is performed in the inner cross-validation, whereas, the
outer cross-validation provides an unbiased estimate of the expected accuracy
of the algorithm. The statistics in Table.2 and Table.3 show the generaliza-
tion performance obtained with CV accuracy is overly optimistic for certain FS.
Therefore, N-CV is performed for those feature subsets. Table.5 presents the
N-CV score for the kNN and SVM model. The SVM(linear) model with FS-II
provides best performance for a given dataset with hyperparameters, C= 10.
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Table 3. The comparative analysis of SVM with the kernel function: linear and rbf
for various Feature Subset (FS). All values are represented in %. FS-I: contrast, cor-
relation, dissimilarity, energy, entropy, homogeneity; FS-II: correlation, dissimilarity,
energy, entropy, homogeneity; FS-III: dissimilarity, energy, entropy, homogeneity; FS-
IV: energy, entropy, homogeneity; FS-V: entropy, homogeneity.

Linear rbf
FSAccuracyF1-scorePrecisionRecall AccuracyF1-scorePrecisionRecall

I 83.33 83.36 84.33 83.33 71.67 70.67 73.14 71.67
II 100 100 100 100 98.33 98.32 98.34 71.67
III 76.67 76.95 78.33 76.67 83.33 83.22 84.44 83.33
IV 36.66 21.48 30.85 76.67 53.33 40.63 35.38 53.33
V 46.67 30.08 22.40 46.6 46.67 34.71 33.03 46.67

Fig. 4. Plot of training and testing error as a function of maximum depth.

5 Potential Scope for Improvement

In order to develop a suitable machine learning model, the following potentials
for improvements are summarized as follows:

– Data sufficiency: The challenge faced in the present analysis is related to
the sufficient dataset. There is no common consensus about the number of
data instances sufficient for effective model performance. The performance of
the model suffers unless the optimal instances are included. For the present
study, extensive experiments with diverse specimens for the comprehensive
dataset is indeed desirable.

– Preprocessing Techniques: Data preprocessing is another critical aspect
of understanding the model performance. The speckle image is essentially an
intensity pattern representing the surface irregularity, the scope of comparison
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Table 4. Cross-validation accuracy for Random Forest classifier for the different ratios
of the train-test split.

Cross-Validation Accuracy(%)

Data Split (Train-Test)k-fold= 5k-fold= 10

80:20 98.75 96.25
70:30 92.85 96.42
60:40 98.33 99.16

Table 5. The Nested Cross-Validation accuracy for kNN and SVM model. All values
are represented in %.

Feature Subset Methods
kNN SVM(linear)SVM(rbf)

II 97.86 98.00 97.5
IV 96.42 - -
V 97.86 - -

of the results based on pre-processing is a crucial aspect to understand the
model’s robustness.

– Data Agumentaion: The process of data augmentation in its capacity of
data alternation by applying random transformations to the existing data
affects the efficiency of the model. It is interesting to analyze the effect
on model performance by applying the data augmentation process with the
speckle images.

– Speckle Statistics: The speckle pattern of the machined samples is sensi-
tive to the machining operations (grinding, milling, turning) imparted to the
sample during the manufacturing. The surface operation affects the speckle
statistics such as speckle size and structure. With the comprehensive dataset
including mixed patterns, the application of suitable machine learning config-
urations with various feature extraction tools can aid in the efficient prediction
of sample class and surface roughness measurement.

6 Conclusion and Future Work

The classification of the surface roughness based on the speckle images of the
metal specimen using state-of-the-art machine learning techniques is discussed.
The performance is each technique discussed is based on the k-fold accuracy
and the other performance indices such as precision, recall, and F1-score. The
analysis is promising for the application of machine learning to the dataset of
the speckle images encoded with the surface texture information, particularly
the surface roughness. The results presented can be useful for the exploration
of diverse machine learning and deep learning techniques to the high dimen-
sional dataset for the classification and prediction of the surface roughness of
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the machined samples based on the speckle images. The performance of the k-
nearest neighbor is promising for the combination of correlation, dissimilarity,
and homogeneity and also with correlation, dissimilarity, energy, entropy, and
homogeneity. The cross-validation accuracy is 99% and nested cross-validation
is 97.86% for k = 3 in both cases. Similarly, a Support Vector Machine with a
linear kernel provides nested cross-validation is 98% for feature subsets of cor-
relation, dissimilarity, energy, entropy, and homogeneity. The performance of
Decision Tree suffers from overfitting due to small datasets. Both Decision Tree
and Random Forests are expected to perform well with large datasets. The read
of comparative analysis offers a strong basis for the practical in-situ implemen-
tation of machine learning techniques for speckle image-based surface roughness
classification of the machined samples.

Based on the present analysis, future work would focus on the evaluation
of the model’s efficiency, particularly on a large dataset (balanced and unbal-
anced) containing the mixed speckle pattern of the specimens polished by var-
ious machining operations. In addition, the optimization of feature extraction
techniques, investigation of the advanced algorithms, and inclusion of ensemble
techniques for refining the accuracy and robustness of the model on the compre-
hensive dataset shall be addressed in the future.
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Abstract. Transfer learning is a common practice that alleviates the
need for extensive data to train neural networks. It is performed by pre-
training a model using a source dataset and fine-tuning it for a target
task. However, not every source dataset is appropriate for each target
dataset, especially for time series. In this paper, we propose a novel
method of selecting and using multiple datasets for transfer learning
for time series classification. Specifically, our method combines multiple
datasets as one source dataset for pre-training neural networks. Further-
more, for selecting multiple sources, our method measures the transfer-
ability of datasets based on shapelet discovery for effective source selec-
tion. While traditional transferability measures require considerable time
for pre-training all the possible sources for source selection of each pos-
sible architecture, our method can be repeatedly used for every possi-
ble architecture with a single simple computation. Using the proposed
method, we demonstrate that it is possible to increase the performance of
temporal convolutional neural networks (CNN) on time series datasets.

Keywords: Transfer Learning · Time Series Classification ·
Transferability Estimation

1 Introduction

Neural networks have widespread usage in time series recognition. For example,
temporal Convolutional Neural Networks (CNN) [19] have been shown to be
effective across many time series domains [2,38]. However, often, neural networks
require large amounts of data [10,15]. Also, acquiring large amounts of annotated
data can take time and effort.

Several ideas exist to solve the problem of the requirement of large amounts
of annotated data, such as transfer learning, self-supervised learning, data aug-
mentation, etc. In particular, transfer learning has become a popular method of
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initializing neural networks. In transfer learning, to alleviate the need for data,
neural networks can be trained on larger source datasets and fine-tuned for tar-
get datasets. In this way, the weights of the neural network can be trained to
extract generalized features [46] and be used for the target task. In the image
recognition domain, transfer learning is a standard practice. For example, using
pre-trained models trained with ImageNet [8] in image recognition is standard
practice. However, for time series, transfer learning is still a budding field [10].

In order to realize an effective method of transfer learning for time series, we
propose a combination of multi-source transfer learning with a novel shapelet-
based distance measure used for dataset selection. Specifically, to increase the
effectiveness of transfer learning and the source dataset’s size, we propose a
method of using multiple datasets for pre-training.

However, selecting the datasets for transfer learning is complex. Fawaz et
al. [10] demonstrated that the choice of dataset for transfer learning for time
series has a large effect on the effectiveness of transfer learning. Notably, only
some datasets increased the accuracy of the model. Oftentimes, the accuracy
was decreased when using an inappropriate dataset.

Thus, we propose a dataset distance-based measure to select the appropriate
datasets for our multi-source pre-training. To do this, first, we extract discrimi-
native shapelets using shapelet discovery [42]. Next, a dataset distance measure
is created by comparing the discriminative shapelets between the source and
target datasets. The idea is that datasets with similar discriminative shapelets
would have similar features, thus leading to more effective transfer learning.

The contribution of this paper is as follows:

– We propose a new method of predicting and selecting source datasets for
transfer learning in temporal neural networks. This method uses extracted
shapelet similarity between the target and possible source datasets.

– We create a transfer learning method that combines multiple sources into one
super dataset.

– We evaluate the proposed method on all 128 time series datasets from the
2018 UCR Time Series Archive (UCR Archive) [7].

– We provide code for easy transfer learning at https://github.com/uchidalab/
time-series-transferability

2 Related Works

2.1 Transfer Learning for Time Series

Transfer learning has been used for various applications in image recognition [46].
Furthermore, transfer learning has become the standard practice for training
networks, as pre-trained weights are available for the most popular image recog-
nition network architectures.

Conversely, transfer learning is less common for time series recognition and
temporal neural networks [10] outside of Natural Language Processing (NLP).

https://github.com/uchidalab/time-series-transferability
https://github.com/uchidalab/time-series-transferability
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However, there have been a few works that demonstrate the usefulness of trans-
fer learning in the time series domain [10,36,39]. Other examples include using
transfer learning with health data [4], human activity recognition [1], predic-
tion of internet load [9], and fall detection [23]. De Souza et al. [33] proposed
decomposing time series into shapelets and noise and using the decompositions
to pre-train models. In comparison to our method, we use shapelets as a distance
measure between datasets and not directly to train models.

For the source selection, several works demonstrated that source selection
with dataset similarity, computed by using Dynamic Time Warping (DTW) [27]
distance, can be effective [10,22,43].

2.2 Multi-Source Transfer Learning

There have been a few works that use multiple source datasets for transfer
learning. For example, Yao and Doretto [41] extend TrAdaBoost [6], a method
of boosting transfer learning, to use with multiple sources. Huang et al. [13]
improve on this and propose SharedBoost for multiple source transfer learning.
Multi-transfer [34] combines multi-view and multi-source transfer learning. For
multi-source transfer learning, Song et al. [32] use the conditional probability
difference to weight source domains.

Multi-source transfer learning has also been used for time series data. One
of the typical methods of multi-source transfer learning is to use a preliminary
classifier to select the sources. For example, for electroencephalogram (EEG)
data, Jinpeng Li et al. [20] trained each source individually, and then they tested
the target domain on each and selected the top-performing models. Ren et al. [26]
classify EEG data using a multi-source model. Huiming Lu et al. [22] use an
ensemble model to implement multi-source transfer learning for building energy
prediction.

Also, Yao et al. [40] use multi-source transfer learning with Variational
Mode Decomposition to improve PM2.5 concentration forecasting while select-
ing sources using Euclidean Distance and Maximum Mean Discrepancy. Lotte
and Guan [21] use a search algorithm to combine different datasets. Senanayaka
et al. [29] used a similarity-based approach for multi-source transfer learning
to generate a mixed domain of multiple sources and targets in the pre-training
stage.

3 Transferability Measure

3.1 Problem Setting

Given source dataset S = {(s1, z1), . . . , (sm, zm), . . . , (sM , zM )}, where (sm, zm)
is the m-th pair of pattern sm and respective label zm, transfer learning aims
to train a network f with S, so that it will be a practical starting point for
target dataset T = {(x1, y1), . . . , (xn, yn), . . . , (xN , yN )}, where (xn, zn) is the
n-th pair of pattern xn and respective label yn. Unlike domain adaptation, there
is no assumption that the task of the source and target datasets are related.
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As Fawaz et al. [10] found, not all source datasets are useful for transfer learn-
ing with time series. Thus, a suitable source dataset S for each target dataset
T should be determined. Under the problem setting, this determination should
be performed before training T , i.e., without exhaustively fine-tuning T on all
possible datasets.

Two types of measures have been proposed to solve the source selection prob-
lem. One class of measures is to estimate the transferability of the pre-trained
network f , and the other is to measure the similarity of the datasets.

3.2 Transferability Estimation

Transferability estimation measures attempt to predict how effective transfer
learning will be for model f , pre-trained on source dataset S, for target dataset
T . These methods first use models f pre-trained on datasets S to predict target
dataset T . Specifically, prediction f(xn) is done using the data xn of T with
the source labels c ∈ C and the features F(xn) ∈ F are extracted from model f
trained by S. While the source labels C might be unrelated to the target task,
the outputs are used for the transferability estimation. In other words, mod-
els trained for S are used as-is with dataset T , and the amount of information
inferred by the model is measured and used as a transferability estimation mea-
sure. Some transferability estimation measures include, Log Expected Empirical
Prediction (LEEP) [24], Negative Conditional Entropy (NCE) [37], Log Maxi-
mum Evidence (LogME) [45], Transrate [12], and H-score [3].

For example, LEEP [24] first predicts the target dataset T using trained f .
LEEP is then calculated by:

LEEP(S, T ) =
1
N

N∑

n=1

log

(
∑

c∈C

P̂ (yn|c)f(xn)

)
, (1)

where P̂ (yn|c) is the empirical conditional distribution calculated by:

P̂ (yn|c) = P̂ (yn, c)
P̂ (c)

=
1
N

∑
n:yn=c f(xn)

1
N

∑N
n=1 f(xn)

. (2)

LEEP is the average log-likelihood of the prediction of T in trained network f
multiplied by P̂ (yn|c) for each source class c.

Dataset Similarity Measure for Source Selection As an alternative to
transferability estimation, dataset similarity can also be used to predict transfer-
ability. The previous methods are helpful because only the pre-trained network
f and not the original dataset S is needed to calculate transferability. How-
ever, unlike image recognition, standard models with downloadable weights for
time series recognition are lacking. Therefore, requiring pre-trained networks is
a detriment because it requires training many networks before pre-training the
actual network for the task.
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Conversely, measuring the distance between datasets only requires access
to the datasets. Following this, Fawaz et al. [10] proposed to use DTW [27]
between representative time series patterns from each class in the target and
source datasets. The representative time series is the average time series of each
class found by DTW Barycenter Averaging (DBA) [25]. They defined the distance
between datasets as the distance between the most similar average time series
from each dataset. In this paper, we define this method as DBA-DTW. By
using the dataset-based distance measure, the appropriate source dataset can be
selected for the target dataset. The benefit of this and the proposed method is
that no initial trained model is required to measure transferability.

4 Multi-Source Transfer Learning

We propose a simple yet effective method of combining multiple source datasets
for transfer learning. As shown in Fig. 1, to perform multi-source pre-training,
we compile multiple source datasets S1, . . . ,Si, . . . ,SI into one super dataset
SMulti = {S1, . . . ,Si, . . . ,SI}. In order to transfer knowledge from a model
trained with multiple sources, the datasets are pre-processed so that they have
the same number of time steps as the target dataset. Note that by resampling
the source datasets, the features and characteristics of the datasets might not be
preserved. However, this fact is optional because the purpose of the pre-training
is to acquire a robust set of initial weights for transfer learning and not the
classification accuracy of the source datasets. In addition to resampling, SMulti

is balanced so that each sub-dataset has the same number of time series. To
balance SMulti, oversampling is performed while preserving the class ratios. This
is done due to the discrepancy in the size of possible source datasets; it ensures
that every dataset has an equal contribution to the transfer learning.

Fig. 1. An illustration of our multi-source transfer learning. Source datasets Si are
selected using a transferability measure, and the neural network is pre-trained. The
trained weights are then fine-tuned using target dataset T .
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As shown in Fig. 1, in order to train a network with multiple datasets, the
one-hot vector of the ground truth of each source dataset Si are concatenated,
and the output nodes are extended accordingly. In this way, the network is then
trained using SMulti for a classification task using all of the classes from all of
the source datasets. The result is the ability to pre-train a network with a larger
dataset with a larger number of classes.

After training the network, fine-tuning can be performed as typical transfer
learning does. The weights of the trained network can be used as an initialization
for a target dataset and fine-tuned for a specific task. While the experimental
results use temporal CNNs, there is no theoretical limitation on the type of
neural network used.used.

5 Shapelet Similarity-based Source Selection

In order to use the proposed transfer learning method effectively, some source
datasets need to be selected. However, as mentioned, selecting the source datasets
needs to be performed. Thus, we propose a new method of measuring the trans-
ferability of networks through a novel dataset similarity measure using discrim-
inative shapelets.

5.1 Shapelet

A shapelet refers to a subsequence extracted from time series data that are
maximally representative of a class [42]. These subsequences are intended to
encapsulate fundamental patterns or discriminative features within a class. For
example, the circled subsequences in Fig. 2 are well discovered within a class and
represent differences between the two classes. In the figure, the circled shapelets
are segments of the time series unique to each class.

Fig. 2. Examples of shapelets from the Arrowhead dataset. The left and right figures
are three time series patterns from the same classes.
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5.2 Matrix Profile for Shapelet Discovery

Since a shapelet can be any subsequence from a time series, finding the maximum
representative shapelet would be too costly with brute force. In order to overcome
this issue, Matrix Profile [44] has been shown to find discriminative shapelet
candidates efficiently.

Matrix Profile is an algorithm that represents a time series based on the
distances between subsequences of that time series and their nearest neighbor.
Specifically, given an ordered list of all subsequences A of a single time series t,
Matrix Profile p is a sequence that holds the distances between each subsequence
Ar to its nearest neighbor, or:

p = ||A1 − E1||, . . . , ||Ar − Er||, . . . , ||AR − ER||, (3)

where Er is the nearest subsequence of A to the respective Ar and || · || is the sum
of the pair-wise Euclidean distances between each element in the subsequences.
By finding Matrix Profile p using time series t, Matrix Profile can be used as a
fast motif and discord discovery method.

In order to use Matrix Profile for shapelet discovery, a few modifications
are performed. First, given a dataset S, all of the time series of each class c are
concatenated into a single time series t(c). For example, given class 1 and class 2,
a time series t(1) and t(2) are created. Then, instead of just calculating Matrix
Profile using the nearest neighbors of A(1) with itself in (3), a Matrix Profile
calculation is made for each combination of the two classes, or p(1,1), p(1,2),
p(2,2), and p(2,1). Finding the highest values in the differences p(1,2) − p(1,1)

and p(2,1) −p(2,2) will identify the maximally representative shapelet candidates
for class 1 and 2, respectively. Because this is only compatible with two-class
classification, we extend shapelet discovery via Matrix Profile using a one-versus-
all approach for each class.

5.3 Shapelet Similarity-based Source Selection

Now that the representative shapelets P(S) and P(T ) can be found for each source
dataset S and target dataset T , respectively, we use them as a basis for a dataset
distance measure. We propose two shapelet distance measure schemes, Average
Shapelet, and Minimum Shapelet distances. Fig. 3 represents an overview of
Average Shapelet and Minimum Shapelet.

Average Shapelet takes the average distance for each combination of P(S)
i

and P(T )
j , or:

Das =
1
IJ

∑

i,j

||P(S)
i − P(T )

j ||, (4)

where P(S)
i and P(S)

j are the i-th and j-th shapelet in P(S) and P(T ), respectively.
By using the average distance between shapelets, this measure compares all of
the discriminative features of the datasets simultaneously. The general idea of
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Fig. 3. Overview of Average Shapelet and Minimum Shapelet.

this measure is that if all of the shapelets of the datasets are similar, then the
datasets might be similar.

Minimum Shapelet is defined as the distance between the most similar
pair of shapelets of S and T , or:

Dms = min
i,j

||P(S)
i − P(T )

j ||. (5)

Instead of measuring all of the features, this measure allows the distance calcu-
lation to ignore features that might be specific to a dataset.

6 Experimental Result

6.1 Dataset

The experiments were conducted using all of the UCR Archive [7], which consists
of 128 datasets. We use the predetermined training and test set split provided by
the archive. Also, no pre-processing was performed except for resizing datasets
through Gaussian smoothing with different lengths.

6.2 Settings and Architecture

For the experiment, we adopted a 1-dimensional CNN model based on the VGG
architecture [31]. The convolutional network used three blocks of convolutional
layers and a pooling layer. The first block has two convolutional layers of size 3,
and the subsequent blocks have three convolutional layers. Max pooling is used
with the first two blocks, and global average pooling (GAP) is used with the
final block. While GAP is not required for the proposed method, it is required
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for LEAP, NCE, H-score, Transrate, and LogMe due to having different-sized
datasets; thus, we used it for all evaluations.

For training, we pre-train the network for 10,000 iterations with Adap-
tive Moment Estimation (Adam) optimizer [17] with an initial learning rate of
0.0001. For transfer learning, we then fine-tune the network for 5,000 iterations.
The batch size is set to 32 for both pre-training and fine-tuning. For statisti-
cal validity, we fine-tuned the model three times in order to have the mean of
the three models’ performances. Since the traditional transferability measures,
LEEP, NCE, LogME, Transrate, and H-Score, require a trained network, an
initial network to calculate the transferability is trained for 5,000 iterations.

There are two hyperparameters associated with the shapelet discovery by
Matrix Profile. First, we use a fixed shapelet size of 15 because this is the largest
possible size on the UCR Archive’s smallest dataset. Next, we use the top 10
shapelet candidates per class.

6.3 Comparative Evaluation

To evaluate the proposed method, we compared it to not using transfer learn-
ing, to using transfer learning using a dataset selected by a shapelelt-based dis-
tance measure, and to using a dataset selected by the other transferability met-
rics. The comparative measures used for source selection include using DTW
between DBA class representatives (DBA-DTW) [10], LEEP [24], NCE [37],
Transrate [12], LogME [45], and H-score [3].

Table 1. Average test accuracy.

Method Accuracy (%)

No Transfer Learning (TL) 74.18
TL w/ Random Source 76.89
TL w/ DBA-DTW 78.85
TL w/ H-Score 77.24
TL w/ LEEP 76.43
TL w/ LogME 79.59
TL w/ NCE 78.92
TL w/ Transrate 77.22
Proposed w/ Average Shapelet (10 shapelets) 79.91
Proposed w/ Minimum Shapelet (10 shapelets) 80.25

The results of the experiments are shown in Table 1. In the table, TL rep-
resents typical transfer learning that selects a single source dataset, and MTL
represents our proposed method, Multi-source Transfer Learning. Compared to
the model with random initialized weights, Multi-source Transfer Learning with
a Minimum Shapelet of 10 candidates showed the highest improvement. On the
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other hand, the Average Shapelet showed lower improvement than the Minimum
Shapelet; however, it is still better than other comparative methods.

Additionally, we looked into the datasets that showed better and worse per-
formance by adopting our proposed method. Fig. 4 shows sample plots of the
datasets. From the sample plot, we can affirm that our proposed method works
better with datasets with more clear features. Also, the datasets with more noise
showed worse performance than our proposed method. This trend is due to our
proposed method focusing on shapelet similarity.

Fig. 4. Sample plot of datasets of UCR Archive. Random three samples are plotted
from two classes. The upper three datasets performed better with our proposed method,
and the lower three datasets showed adverse effects by adopting our proposed method.

To compare the proposed method to other methods found in the litera-
ture, we compare it against reported results on the UCR Archive from methods
that use neural networks. Fig. 5 is a Nemenyi post-hoc test diagram comparing
the proposed methods, the base models, and various reported evaluations. The
comparison models include a temporal Residual Network (ResNet) [38], Fully
Convolutional Network (FCN) [38], MLP [38], Multi-scale CNN (MCNN) [5],
Time Warping Invariant Echo State Network (TWI-ESN) [35], Time Le-Net (t-
LeNet) [18], universal Encoder [30], LSTM [11], BLSTM [28], LSTM-FCN [16].
The models were evaluated by Wang et al. [38], Ismail Fawaz et al. [14], and
Iwana and Uchida [15]. The figure shows that the networks used by the pro-
posed method are comparable to the other state-of-the-art neural networks on
the same datasets.

7 Discussion

7.1 Ablation Study

We compared the classification performances with multi-source pre-training with
shapelet-based source selection, multi-source pre-training with random source
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Fig. 5. A Nemenyi post-hoc test diagram. The proposed methods are in green. The
numbers indicate the average rank when tested on all 128 datasets.

selection, and without transfer learning. Fig. 6 compares the performances of
each dataset of the UCR Archive. Our proposed method showed significantly bet-
ter results than the random initialized model and multi-source transfer learning
with random source selection. Specifically, the result on the right figure demon-
strates that our proposed shapelet similarity-based source selection is effective
for source selection on multi-source transfer learning. Also, according to the
t-test, our proposed method is effective with most datasets, p < 0.001.

Fig. 6. Ablation study of our proposed method. The Y-axis represents the classification
accuracy of our proposed method with 14 sources selected by Minimum Shapalet. The
X-axis of the left and right figures represent the classification accuracy of random
initialized models and proposed multi-source transfer learning with 14 random sources.

7.2 Number of Datasets

In order to examine how the hyperparameters for the proposed method affect
performance, we examined the number of shapelet candidates, the number of
source datasets, and the two shapelet similarity-based distance measures. For
the number of shapelet candidates, we discovered three, five, and ten shapelet
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candidates for every dataset. For the number of source datasets, we selected 1,
2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 datasets according to shapelet-based distance
measures. Finally, we examined the Average Shapelet and the Minimum Shapelet
for the shapelet-based distance measure.

The experimental results in Fig. 7 showed better performance with more
sources for all selection methods, including Random multi-source selection.
Thus, increasing the number of datasets using our multi-source transfer learning
method effectively increases the effect of pre-training while alleviating the risk of
negative transfer. However, there was no significant difference when the number
of datasets was more than 10. This implies a diminishing returns effect with
the number of datasets. Thus, there is a limit to how many datasets should be
combined.

Fig. 7. Experimental result of examining hyperparameters.

However, one possible reason for the diminishing returns is due to our training
scheme. We set the number of pre-training iterations to a fixed number, no
matter how many datasets and data samples were added for a fair comparison.
Therefore, it might be possible to increase the accuracy further using multiple
datasets with more iterations.

7.3 Similarity Based Source Selection

Generally, with a small-scale target dataset, pre-training with a closely related
source dataset allows for more efficient training while reducing the risk of over-
fitting. However, many time series tasks such as EGG, Speeches, and Gestures
have different features and usually contain a small number of patterns. Thus,
selecting a source dataset for time series transfer learning is often a big challenge,
and transfer learning with non-related tasks is usually not helpful.

According to the experimental result, as depicted in Table 1, selecting a
source dataset based on dataset ranking metrics of DBA-DTW and Minimum
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Shapelet resulted in superior performance compared to a random source selec-
tion and even to the classic transferability measures. Therefore, for time series
classification, where lack of data is a frequent challenge, measuring time series
similarity can serve as a valuable indicator of transferability.

7.4 Computational Time

Regarding computational time, shapelet similarity-based source selection has
a huge benefit compared to other transferability estimation metrics. Shapelet
similarity-based dataset ranking has two steps of calculation: one step is to
generate shapelet, and the other is to calculate the similarity among gener-
ated shapelets. Thus, the shapelet similarity-based source selection requires
O(n2 + w); O(n2) to generate shapelet and O(ws) to calculate the similarity
among shapelets, where n is the length of the dataset and ws is the length
of shapelet. The DBA-DTW also has the benefits of computational time com-
pared to the other transferability estimation measures; however, it is not like the
shapelet similarity-based method. DBA-DTW requires O(i · n2 + w2

d); O(i · n2)
to generate prototypes through DBA and O(w2

d) to calculate distance among
generated shapelets, where wd is the length of a prototype of DBA.

The other transferability estimation measures, such as LEEP, require a pre-
trained model to measure transferability. Training a model requires significant
time, and they have a disadvantage in that they need to re-calculate the trans-
ferability when the model architecture is changed. In this research, it is required
to train 128×128 models for evaluation. However, our proposed method requires
no re-calculation even though the model architecture has been changed. Thus,
unlike transferability estimation measures, additional datasets can be calculated
quickly and used for other tasks.

8 Conclusion

In this paper, we suggest using transfer learning for temporal neural networks
using a proposed multi-source pre-training. Specifically, we demonstrate that
by combining multiple datasets into a super dataset using pre-processing and
adjusting the classification task with the concatenation of the classes, it is pos-
sible to pre-train a network using a large amount of data and classes.

Furthermore, in order to select appropriate datasets out of the large num-
ber of possible datasets that exist, we propose a new transferability measure
based on shapelets. Our novel method calculates the distance between datasets
using a shapelet similarity. The shapelet-based distance compares the class-
discriminative shapelets between classes of the target dataset and the source
dataset. We demonstrate that by using multi-source transfer learning with our
shapelet similarity-based source selection, it is possible to increase the time series
classification accuracy with little downside.

In future work, we will investigate the combinations of source datasets to
optimize our proposed method further. We hope to contribute to the time series
classification community by continuing to expand upon these techniques.
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Abstract. Federated learning is a privacy-preserving, decentralized
machine learning approach, which faces the challenge of non-identically
distributed (non-iid) data between train-test data and across client
domains. Previous methods generally exchange domain information
between clients to perform data augmentation. While bringing privacy
risks and communication costs, these methods also destroy the coherence
of images. To tackle these issues, we propose Diffusion-Aligned Coherent
Augmentation (DACOA), a diffusion-based and text-guided style trans-
fer method. By composing different domains and labels as prompts, clients
are guided to perform cross-domain image augmentation with high qual-
ity, thereby learning robust representation against domain shift. To bet-
ter utilize the augmentation results and help the model focus on seman-
tic information, we conduct alignment on both the feature dimensions
and prediction results. We introduce the Domain Aligning Contrastive
Learning (DaCon) loss, which brings the feature similarity of the same
label closer. Also, we introduce the Semantic-Consistency KL (SCKL)
loss, aligning the prediction results of the augmented images with the orig-
inal classification results. Our model outperforms state-of-the-art FedDG
methods through comprehensive experiments. What’s more, we achieve
3.21%, 1.76% and 5.01% improvement on PACS, Office-Home, and Digits-
DG benchmarks. Ablation study validates the efficacy of each module.

Keywords: Federated domain generalization · Latent diffusion
model · Data augmentation

1 Introduction

There is significant progress in the field of deep learning, however, most of it relies
on the assumptions of independent and identically distributed (IID) data. This
reliance often leads to a noticeable decline in performance when these methods
are tested on Out-of-Distribution (OOD) datasets. The Domain Generalization
(DG) technique was introduced to address this issue, aiming to enhance the gen-
eralization to unseen data. In the DG framework, training occurs on known and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. Problems with previous augmentation methods.

utilized source domains, with the aim to improve performance on unknown tar-
get domains. Nevertheless, the growing popularity of distributed training has led
to less sharing of inter-domain data, which makes the conventional DG method
invalid.

To tackle this issue, Federated Domain Generalization (FedDG) was pro-
posed [10], offering a decentralized and privacy-preserving training approach.
In FedDG, each client’s training data serves as a source domain, characterized
by unique, non-shareable, and non-IID data distributions. After training locally,
each client’s model parameters are sent to a server where they are aggregated to
form a new global model. This model is then used for inference in the unknown
domains. However, the FedDG scenario presents its own set of challenges. Most
traditional DG methods require the simultaneous integration of information from
multiple domains for domain-invariant learning, making them less suitable for
the more realistic and demanding FedDG scenario.

Previous methods attempted to exchange frequency domain [10] or domain
statistical information [3] between clients and use it for augmentation. However,
these methods often result in unnatural results and destroy the style coher-
ence of the image. As shown in Fig. 1., frequency domain enhancement methods
are prone to style distortion, while statistical information enhancement meth-
ods generate unnatural new images. Moreover, exchanging information between
clients still brings privacy risks and greater communication costs. Introducing
the Latent diffusion model (LDM) [12] can solve the above problems well. LDM
effectively understands and maintains the characteristics of the image during the
data enhancement process, so it can provide effective enhancement while main-
taining the naturalness of the resulting image, thereby guiding the client model



178 G. Wang et al.

to learn domain invariant features. In addition, LDM can use text prompts to
control the generation of results, thereby achieving cross-domain enhancement
without communication between domains, complying with privacy regulations,
and reducing inter-domain communication.

Based on the aforementioned motivations, we propose a Diffusion-Aligned
Coherent Augmentation (DACOA) method. We leverage a pretrained LDM
for data augmentation, performing style transfer using text prompts like ”a
{domain} of {class}”. We also utilize CLIP’s text encoder to generate text
embeddings as conditional embeddings for the LDM’s denoising process. For
a specific instance, we set a prompt to generate augmented data with the same
label but different domains. By directly utilizing the LDM model, clients can per-
form style transfer without accessing data from other domains, thereby achieving
a higher coverage of feature range and learning domain invariant features.

To better utilize DACOA and enhance the model’s focus on semantic infor-
mation for improved generalization, we aim to align the augmented data with
the original data in terms of features and model prediction results. To achieve
this, we propose the Domain Aligning Contrastive Learning (DaCon) loss and
Semantic-Consistency KL (SCKL) loss. DaCon operates on the feature dimen-
sion, aiming to increase the similarity of features with the same label and push
away features with different labels. SCKL, on the other hand, calculates the
sharpened KL divergence on the predicted logits, with the goal of making the
predictions of augmented data closer to those of the original data. Our main
contributions can be summarized as follows:

• We propose the diffusion-aligned coherent augmentation (DACOA) method,
allowing clients to generate style-transfered image without ruining privacy
protocol, enabling model to learn domain-invariant feature.

• To better utilize DACOA, we incorporate domain aligning contrastive learn-
ing (DaCon) loss and semantic-consistency KL (SCKL) loss to draw aug-
mented feature and prediction closer to the original one.

• Comprehensive experiments on several datasets demonstrate that our results
achieve state-of-the-art performance, validating the effectiveness of each mod-
ule.

2 Related Work

An important prerequisite for generalizing well on unseen test domains is that
the model can extract domain invariant features [1] during the training process.
That is to say, after model training, we hope that the features extracted by its
encoder only depend on the input category information, and do not change with
the input texture and style information. In traditional DG methods, the model
mostly needs to use information from multiple domains to shorten the discrep-
ancy between domains. The most commonly used method is data augmentation.
[20], which belongs to image augmentation, generates new domain images from
the source data by optimizing a divergence measure based on optimal trans-
port. The feature augmentation method enhances the intermediate features of
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the model[7,21]. For instance,[7] computes the statistical features of multiple
domains and augmenting them through the encoder.

However, under the schema of FedDG, most conventional DG methods are
no longer applicable since they need to simultaneously utilize information from
multiple domains. One solution in FedDG is to optimize the training method
of local models. [10] first proposed a solution for FedDG scenarios, exchanging
data distribution information between clients to carry out enhancement in the
continuous frequency space. Similarly, [3] achieves a consistent distribution by
building a style bank, allowing clients to construct style transfer and generate
new domains. FADH [16] trains the local models with domain hallucinations for
robustness. Another idea is to optimize the parameter aggregation process to
extract domain invariant features. COPA [15] employs batch-wise mixed nor-
malization and aggregation, [18] optimizes the parameter aggregation process in
FL, conducts regularization by dynamically calibrating the aggregation weights
, CASC [17] utilizes layer weight to aggregate parameters.

3 Background

3.1 Federated Domain Generalization (FedDG).

As shown in Fig. 1(a), different from the conventional scenario, Federated
Domain Generalization (FedDG) can only train several client models on local
datasets. Given source domains D = {D1, . . . DN} where N denotes the num-
ber domains for training. Let (x, y) be a sample pair, x denotes a sample, and
y ∈ {c1, c2, . . . , cn} is the corresponding one-hot label.

During local training, a baseline loss function Lce gauges the gap between
the label and model prediction fk(xk) , where fk represents client model for the
kth domain. Typically, this model entails as encoder for feature extraction and
a simple fully-connected layer serving as the classifier. The standard training
objective involves minimizing the cross-entropy loss Lce

Lce = − 1
Mk

Mk∑

1

yki
log (f (xki

)) (1)

where Mk denotes sample number of each client domain Dk and (xki
, yki

) ∈ Dk,
0 < i < Mk.

Following local iterations, the global model f(·) undergoes updating via the
aggregation ofclient model parameters. In the FedDG scenario, the global model
confronts computer visiontasks within novel target domains, requiring adeptness
in generalizing to fresh domains.

3.2 Diffusion Model

Diffusion model is a type of generative model that creates data by progressively
adding noise to it and then learning to reverse the process to recover the data
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Fig. 2. Overall Framework of our method.

from the noise. The basic procedure of a diffusion model includes the forward
diffusion process and the reverse denoising process.

The forward diffusion process is a Markov process that gradually adds noise
to the data until it becomes nearly isotropic Gaussian noise. Given the original
data x0 and the noisy data at step t as xt, the forward diffusion process is defined
as:

q(xt|xt−1) = N (xt;
√

αtxt−1, (1 − αt)I) (2)

where αt ∈ (0, 1) is the is the scaling factor at time step t, typically set as a
decreasing sequence. By combining multiple steps, the forward diffusion process
can directly relate the original data x0, which can be described by:

xt =
√

αtx0 +
√

1 − αtε, ε ∼ N (0, I) (3)

where αt =
∏t

i=1 αi. The reverse denoising process involves training a model
pθ(xt−1|xt) to approximate the reverse of the forward process, where

pθ(xt−1|xt) = N (xt−1;μθ(xt, t),
∑

θ
(xt, t)) (4)

where μθ(xt, t) and
∑

θ(xt, t) are the mean and covariance parameterized by a
neural network. During training, the diffusion model optimizes the parameters θ
by minimizing the variational lower bound (VLB). A final a simplified loss that
directly optimizes the reconstruction error at each step is often used:

Lt−1 = Ex0,ε

[
‖ε − εθ (xt, t)‖2

]
(5)

where εθ(xt, t) is the noise term predicted by the neural network.
During data generation, the process starts from a standard Gaussian noise

xT ∼ N (0, I) and iteratively applies the reverse denoising steps:

xt−1 ∼ pθ(xt−1|xt) (6)

4 Method

Figure 2 shows the overall framework of our method. Firstly, the input will
undergo text-guided diffusion enhancement through the DACOA module, which
will be input into the encoder together with the original image. After the encoder
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extracts the feature representations, we introduce DaCon loss to shorten the
similarity between features with same labels. After the features are input into a
classifier to obtain the results, we design SCKL loss to ensure that the logits of
the enhanced image are consistent with the original image. Also, the classification
results of original and enhanced images are characterized by cross entropy loss.
During the testing phase, the model only focuses on the classification results of
the original image.

4.1 Diffusion-Aligned Coherent Augmentation (DACOA)

In FedDG scenario, a critical challenge is the inability to share information
between domains due to privacy constraints. Previous methods attempted to
exchange domain features between clients for augmentation, but the results had
coherence issues. This exacerbates the difficulty of achieving generalization per-
formance on unseen domains.

To address this issue, we propose the Diffusion-Aligned Coherent Augmenta-
tion (DACOA), shown in Algorithm 1. DACOA uses a pretrained latent diffusion
model for text-guided data augmentation, which performs style transfer across
different domains by text prompts. Firstly, the prompts follow the format of ”a
{domain} of {class}”, such as ”a cartoon of house”. For a given domain, we
randomly choose another domain of the same class to compose the prompt.

Algorithm 1 DACOA
Input: Domains D = {D1,D2, . . . , DN}, CLIP text encoder T , Diffusion model

M , Client models fi(i ∈ [1, N ]), Global model f
Output: Global model f
1: Initialize global model f parameters
2: for total communication round do
3: for each client model fi do
4: Distribute global model f parameters to client fi

5: end for
6: for each client i ∈ [1, N ] do
7: Dother ← {Dk ∈ D | k �= Di}
8: for each sample x ∈ Di do
9: Dr ← random choice(Dother)

10: encode text as condition embedding Ttext ← T (”a Dr of cj”)
11: encode image and noising z ← M.noising(M.encode(x))
12: diffusion sample ẑ ← M.ddim(z, Ttext)
13: decode back to image space x̂ ← M.decode(ẑ)
14: use (x̂, x) to train client model fi

15: end for
16: end for
17: Update parameters of f by fi(i ∈ [1, N ])
18: end for
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Fig. 3. Framework of DACOA and intuitive display of domain distribution. D is the
Source domain and DT is the target domain. DACOA uses text to guide the Diffu-
sion model to generate different distributions D′, thereby broadening the source and
improving the coverage of the target domain.

After obtaining the prompt, we utilize CLIP’s text encoder to generate text
embeddings, serving as conditional embeddings c during the denoising process
of the latent diffusion model(LDM). Subsequently, following the setup of LDM,
we encode and add noise to the input images, projecting them into the latent
space. Finally, we employ conditional embeddings and image embeddings for the
denoising operation within the diffusion process, writen as:

xt−1 =
√

ᾱt−1x̂0|t +
√

1 − ᾱt−1 − σ2
t εθ (xt, t, c) + σtε (7)

Using text prompts for augmentation offers advantage of semantic consis-
tency. The meanings of text prompt are fixed, ensuring that the generated images
remain contextually appropriate for the specified class. Also, as shown in lower
half of Fig. 3, the process of generating images by diffusion models involves ran-
dom initial values, which expand the breadth of the source domain distribution.
The randomness allows for diverse creation of the same image. Thus, even with
a fixed text prompt, different initial values result in multiple variations of the
augmented image, enhancing the diversity of the training data.

4.2 Domain aligning contrastive learning

In the context of privacy-preserving federated learning, data augmentation meth-
ods still face challenges in maintaining semantic consistency across different
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domains. To address this limitation, incorporating supervised contrastive learn-
ing (SupCon) [8] into our training process can enhance the discriminative power
of the model by leveraging label information to pull together samples from the
same class and push samples apart from different classes. The SupCon loss allows
the model to learn more distinct and robust feature representations, which is for-
mulated as:

Lsup =
∑

i∈I

−1
|P (i)|

∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ)
(8)

where I ≡ {1 . . . N} denotes the set of indices of all features. P (i) denotes the set
of indices of all samples whose label is same as i. A(i) ≡ {1 . . . , i−1, i+1, . . . N}
denotes all indices but i.

Fig. 4. Demonstration of DaCon and SCKL loss module, only the leftmost sample is
used as an anchor in the figure. (I) In feature dimension learning, DaCon regularize
the model to learn domain-invariant feature representations. (II) The enhanced image
approximate the original classification result in the form of SCKL on the logits of the
classification result, performing semantic constraints.

To further improve the feature extraction process, we bring another assump-
tion that a robust feature extractor should embed augmented and original fea-
tures adjacent to each other. We hence extend the concept of SupCon to Domain
aligning contrastive(DaCon) loss, as shown in the left of Fig. 4. We minimize the
distance between the original feature (anchor) and the augmented one in terms
of the dot-product similarity. This strategy ensures both semantic alignment and
class discriminability.

Our approach involves concatenating the original and augmented feature rep-
resentations, resulting in a combined feature set. By creating class-based positive
pairs and normalizing the feature vectors, we construct a similarity matrix to
measure the relationships between the samples. The supervised contrastive loss
is then computed by maximizing the similarity of samples within the same class
while minimizing it for samples from different classes.

Lsup =
∑

i∈I∪I′

−1
|P (i)|

∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i)∪A′(i) exp (zi · za/τ)
(9)

where I ′ and A′(i) denotes augmented set of I and A(i).
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4.3 Semantic-Consistency KL Loss

Combining with DaCon mentioned above, we propose a Semantic-Consistency
KL Loss (SCKL). Our approach aims to bridge the gap between different
domains while adhering to privacy-preserving protocols. As shown in the right
of Fig. 4, we achieve this by aligning the predicted logits of augmented data with
those of the original data, thereby drawing them closer. Similar to knowledge
distillation [5], we measure the KL divergence between the two sets of logits.

Unlike the classical distillation approach, where logits are typically softened
to elevate the values of less likely categories, our method includes a sharpening
operation on the original logits. This sharpening process ensures that the seman-
tic information is preserved and highlighted during the learning process, which
is crucial for maintaining the integrity of stylized predictions. By focusing on
the semantic consistency between the original and augmented data, our method
enhances the model’s ability to generalize across domains.

Lcons = − 1
Mk

Mk∑

i=1

f ′
k (xki

) log (fk (xki
, τ)) (10)

where Mk is the number of samples (xki
, yki

) in Dk. Function fk (x, τ) and f ′
k (x)

denotes the predict results of original and augmented features. τ is set as 0.5
to perform square root of the predicted logits of f , denoting the sharpening
approach. Finally, the complete loss can be written as:

L = Lce + L′
ce + λ1Lsup + λ2Lcons (11)

5 Experiment

5.1 Implementation Detail

In this section, we choose three well-known domain generalization datasets and
perform experiments on them:

• PACS: This dataset includes 9,991 images across seven classes, originating
from four domains with distinct styles [9].

• Office-Home: Comprising 15,500 images, this dataset covers 65 classes across
four different domains [13].

• Digits-DG: This dataset combines four traditional digit datasets [20].

For all benchmarks, we use a leave-one-domain-out evaluation strategy. In
each round, one domain is treated as the unseen test domain while the remaining
domains are used as the training sources. The training and validation splits
within each source domain follow the configurations outlined in previous works
[4,19]. The entire unseen domain is utilized for testing purposes.

For the PACS and Office-Home datasets, we employ a ResNet-18 model pre-
trained on ImageNet. For the Digits-DG dataset, we use a four-layer convolu-
tional network as detailed in [19]. We use the pretrained, version 1.4 of stable
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Table 1. Results on PACS datasets.

Paradigm Method PACS
Art Cartoon Photo Sketch Avg

Regular DG Jigen [2] 79.40 75.30 96.00 71.40 80.50
DDAIG [19] 84.20 78.10 95.30 74.70 83.10
L2A-OT [20] 83.30 78.20 96.20 73.60 82.80
MixStyle [21] 84.10 78.80 96.10 75.90 83.70
EISNet [14] 80.00 76.00 93.70 80.90 82.60
RISE [6] 85.10 81.80 96.00 78.40 85.30

Federated DGFedDG [10] 83.94 79.27 96.23 73.30 83.19
CASC [17] 82.00 76.40 95.20 81.60 83.80
FADH [16] 83.80 77.20 94.40 84.40 85.00
COPA [15] 83.30 79.80 94.60 82.50 85.10
Baseline [18] 81.28 76.73 93.97 82.57 83.64

Our Method FeSFD 84.26 81.97 96.35 84.81 86.85
Improvement ↑ 2.98 ↑ 5.24 ↑ 2.38 ↑ 2.24 ↑ 3.21

Table 2. Results on Office-Home datasets.

Paradigm Method Office-Home
Artist ClipartProductReal-worldAvg

Regular DG Jigen [2] 53.00 47.50 71.50 72.80 61.20
DDAIG [19] 59.20 52.30 74.60 76.00 65.50
L2A-OT [20] 60.60 50.10 74.80 77.00 65.60
MixStyle [21] 58.70 53.40 74.20 75.90 65.50
EISNet [14] 56.80 53.30 72.30 73.50 64.00
RISE [6] 59.10 52.90 75.10 76.40 65.90

Federated DGFedDG [10] 60.70 45.82 71.51 73.05 62.77
FedAvg [11] 58.20 51.60 73.10 73.80 64.20
FADH [16] 59.90 55.80 73.50 74.90 66.00
COPA [15] 59.40 55.10 74.80 75.00 66.10
CCST [3] 59.05 50.06 72.97 71.67 63.56
Baseline [18] 58.57 54.39 73.39 74.73 65.27

Our Method DACOA 59.42 56.24 75.30 77.15 67.03
Improvement ↑ 0.85 ↑ 1.85 ↑ 1.91 ↑ 2.42 ↑ 1.76
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Table 3. Results on Digits-DG dataset. The best and second-best are bolded and
underlined respectively.

Paradigm Method Digits-DG
MNISTSVHNSYN MNIST-MAvg

Regular DG Jigen [2] 96.50 63.70 74.00 61.40 73.90
DDAIG [19] 96.60 68.60 81.00 64.10 77.60
L2A-OT [20] 96.70 68.60 83.20 63.90 78.10
EISNet [14] 96.40 56.00 60.50 87.90 75.20
MixStyle [21] 96.50 64.70 81.20 63.50 76.50

Federated DGFedDG [10] 96.30 61.20 90.00 66.70 78.60
FedAvg [11] 96.93 62.19 90.04 57.75 76.71
FADH [16] 97.70 73.30 90.60 65.30 81.70
COPA [15] 97.00 71.61 90.66 66.52 81.49
CCST [3] 96.16 66.58 88.79 62.76 78.57
Baseline [18] 96.52 62.80 90.42 59.16 77.23

Our Method FeSFD 96.67 74.86 90.83 66.56 82.23
Improvement ↑ 0.15 ↑ 12.1 ↑ 0.41 ↑ 7.40 ↑ 5.01

diffusion [12] without finetuning as our base LDM. Also, For Digits-DG dataset,
we use “a new style of cls” as the prompt. To ensure fairness, we adhere to the
protocol described in [4]. Following a strong baseline in [18], we dynamically
calibrate client domains during model weight aggregation. The hyperparameters
strength, λ1, λ2 are set to 0.8, 5 and 0.3 respectively. All other hyperparameters
and optimization settings are consistent with those specified in [18].

5.2 Domain Generalization Ability

We report the overall performance comparison of all methods in Table 1, 2 and
3, and our observations are summarized below:

– Compared with the strong baseline FedDG-GA [18], our proposed method
improves the absolute value by 3.21%, 1.76% and 5.01% respectively, which
effectively verifies the significant improvement of our proposed method in
generalization ability.

– Compared to the best-performing methods among the three benchmarks,
RISE, COPA, and FADH, our method outperforms them on average and
has a significant improvement, indicating the superiority of our method.

– Our method has the most significant improvement on the Digits-DG dataset.
We believe that the different setting of prompts have allowed DACOA to play
a greater role, allowing local models to learn domain invariant features.
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– Our method achieves the best performance in most single target domains. It
can be seen that some methods surpass us on a single target domain, but have
significant performance degradation on other target domains, so we have an
advantage in overall generalization ability.

5.3 Ablation Study

Contributions of Different Components. As shown in Table 4, the baseline
indicates FedAvg-GA [18] as our strong baseline. Line 2 shows that, by utilizing
the DACOA augmentation strategy to expand client domains, the performance
on unseen target domain is significantly improved. In Lines 3 and 4, the model
improved by 0.89% and 1.13% respectively after adding DaCon and SCKL. It
means that our method can make samples with the same label closer in terms of
classification results or feature dimensions, thus learning semantic information.
Line 5 shows that the combination of DaCon and SCKL can achieve optimal per-
formance of the model, which demonstrates that these two modules we propose
complement each other.

Table 4. Ablation study for Contributions of Different Components. Line one denotes
the strong baseline we use.

Lce DACOALsup Lcons Acc

� 83.64
� � 85.21
� � � 86.10
� � � 86.34
� � � � 86.85

Table 5. Ablation study for the strength DACOA executes after.

StrengthPACS
Art CartoonPhoto SketchAvg

0.5 82.90 81.28 95.89 82.93 85.75
0.6 83.26 81.11 95.78 83.01 85.79
0.7 83.78 82.10 95.60 83.10 86.15
0.8 84.26 81.97 96.35 84.81 86.85
0.9 84.10 81.82 96.02 83.53 86.37
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The influence of strength in LDM. Strength is an important parameter of
image to image in LDM. Its meaning is: the number of times an image is added
to noise and inference sampling divided by the number of inference sampling in
the training process. Intuitively, the larger the strength setting, the closer the
generated image will be to the description of conditional embedding, and it will
also be more different from the original image. Table 5 shows the generalization
ability effect of the model after selecting different strengths in the PACS dataset.
It can be seen that the average result of generalization will gradually increase
from 0.5 at the beginning, and the optimal result is when 0.8 is selected, but it
starts to fall again when 0.9 is reached.

Fig. 5. Results of DACOA with different strength.

Figure 4 shows the generation result of the LDM under different strengths. It
can be seen that when the strength is between 0.5 and 0.7, the generated image
is often very close to the input. At 0.8, the image can have a good style transfer
while maintaining original semantic. However, at 0.9, there will be significant
semantic changes. For example, the left input of photo to sketch or photo to
cartoon, the gender of the image has changed when strength is 0.9. In the right
example, the output of the image have also been distorted or deformed. This
indicates that the larger the augmentation amplitude is not the larger the better.
If the strength is too large, the semantics of the image may even be changed,
which affects the learning of models. In order to learn robust representation
against domain shift, the model needs to achieve a balance between semantics
and cross-style learning. Therefore, choosing a moderate strength of 0.8 will
achieve the best generalization ability of the model.
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5.4 Discussion

In this section, we analyze the shortcomings in the experiment and point out
the parts that can be improved in the future. Specifically, for those instances
where the model classifies incorrectly in both the original and augmented data,
we observe the results of its style transfer. It can be found that stable diffusion
still has problems as follows: (1) As shown in Figures 6.1 and 6.2, LDM omitted
key data for classification during the generation process, resulting in significant
unconscionable changes in the image. (2) In Figures 6.3, 6.4, and 6.5, LDM did
not follow the guidance of the text prompt and generates incorrectly, which com-
pletely changes the semantics of the image. (3) In Figure 6.6, LDM’s inference
was stopped early during a dynamic adjustment stage, resulting in distorted
images.

Fig. 6. DACOA augmentation results that are out of expectation.

In summary, relying solely on text prompts and adjusting strength parame-
ters may still have limitations. We hope this work will encourage more research
to address this issue and improve this novel framework. For example, fine-tune
stable diffusion on each domain or use a higher quality stable diffusion model
to control image quality during the generation phase. Additionally, a quality
model can be introduced to exclude some negative samples that do not meet
expectations. This will also be left for our future work.

6 Conclusion

In this paper, we propose DACOA, a diffusion-based augmentation method
which can preserve image coherence, helping client models learn robust fea-
ture against domain shift. Additionally, clients can generate cross domain image
using text prompt, so as not to violate privacy protocols. To conduct alignment
on both the feature dimensions and prediction results, we introduce DaCon and
SCKL loss, which improve the generalization ability of model. Adequate exper-
iments and example diagrams demonstrate the superior effect of the model and
provide guidance for how to use diffusion models in the DG field in the future.

Acknowledgments. This work is supported by Shenzhen Science and Technology
Program (No. JCYJ20230807120800001)
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Abstract. In multi-source domain adaptation, the main challenge is
effectively integrating information from various source domains and
adapting it to the target domain. Existing methods either align feature
distributions of each source domain with the target domain separately
and fuse at the classifier level, or jointly align feature distributions of all
domains. The former approach fragments shared information, while the
latter sacrifices discriminative properties. To address this, we propose
Collaborative Domain Alignment (CoDA). CoDA utilizes an integrated
feature encoder with domain attention masks to capture diverse shared
information within a unified framework, thereby preserving both robust-
ness and discriminability. Specifically, each source domain is elastically
aligned with the target domain using a source-specific domain atten-
tion mask on the shared feature representation. Activated masks high-
light features shared between individual source domains and the target
domain, while overlapping masks highlight features shared by multiple
source domains and the target domain. To optimize CoDA, we devise
a domain-collaborative training strategy that includes domain-specific
training loss, domain-consistency training loss, and pseudo-labeling loss.
Extensive experiments on diverse datasets confirm the effectiveness and
superiority of our approach.

Keywords: multi-source domain adaptation · domain adaptation ·
transfer learning

1 Introduction

Conventional machine learning assumes training and test data share the same
distribution, leading to the expectation that a model performing well on train-
ing data will also perform well on test data. However, test data often differ
from training data, as seen in robotic manipulation tasks where robots trained
in simulations must operate in the real world [1,23]. To tackle domain shift
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and improve target domain performance, domain adaptation methods are used.
While many focus on single-source domain adaptation (SDA), this study explores
multi-source domain adaptation (MDA), which addresses scenarios with source
data from diverse distributions.

Fig. 1. A toy example compares different MDA methods. The goal is to improve the
binary classification accuracy for the strawberry category in the target domain by
utilizing labeled data from two source domains and unlabeled data from the target
domain. Existing multi-source domain adaptation methods vary in how they leverage
shared features to enhance the target task.

In MDA, the challenge is integrating information from multiple source
domains and adapting it to the target domain. Existing methods fall into two cat-
egories: separate and joint domain alignment methods. Separate domain align-
ment methods [22,29,33] align each source domain independently with the tar-
get domain and then fuse different classification results, but they often overlook
interactions between source domains [27], resulting in fragmented information.
Joint domain alignment approaches [12,13,32] aim to learn features invariant
to multiple domain shifts, but effectively filtering domain-specific information
across various domains remains challenging and can lead to a loss of discrimina-
tive ability [30].

To address this issue, we propose Collaborative Domain Alignment (CoDA)
for MDA. CoDA utilizes an integrated feature encoder with domain attention
masks to capture diverse shared information within a unified framework, thereby
preserving both robustness and discriminability. Fig. 1 illustrates CoDA’s advan-
tage in classifying the strawberry category compared with other MDA meth-
ods. Unlike separate methods that learn pairwise features independently (e.g.,
{T ∩ S1} + {T ∩ S2}) or joint methods that focus only on features common to
all domains (e.g., T ∩S1∩S2), CoDA integrates attributes shared by all domains
and those shared by partial domains, similar to T ∩ {S1 ∪ S2}.

To learn such an integrated feature encoder, each source domain aligns flexi-
bly with the target domain using source-specific domain attention masks applied
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to the shared feature representation. These masks highlight features common to
individual source domains and the target domain, while overlaps reveal features
shared across multiple source domains and the target domain. We optimize the
encoder with a domain-collaborative training strategy, which includes three types
of losses: a domain-specific training loss for extracting shared features; a domain-
consistency training loss for domain collaboration; and a pseudo-labeling loss for
improving feature discriminability.

2 Related Work

Single-source domain adaptation addresses the domain shift between a single
source and the target domain, forming the foundation for multi-source domain
adaptation. CoDA utilizes domain attention masks, which are closely related to
attention mechanisms. In this section, we will introduce these related methods.

Single-Source Domain Adaptation. Deep SDA methods primarily mini-
mize domain shift by mapping source and target data into a shared latent
feature space, categorized into discrepancy-based [15,17] and adversarial-based
approaches [6,9]. Discrepancy-based methods reduce domain discrepancy by
aligning first or second order data statistics. For example, DAN (deep adapta-
tion network) [15] minimizes the maximum mean discrepancy in the reproducing
kernel Hilbert space between two feature distributions. Adversarial-based meth-
ods reduce the domain gap by extracting domain-invariant features through
adversarial learning. For example, DANN (domain-adversarial training of neural
networks) [6] learns invariant features through gradient inversion. Recent SDA
works [3,10,16] further focus on improving feature discriminability when learn-
ing domain-invariant features. However, SDA methods are not effective when
dealing with multiple source domains as information fusion is not considered.

Multi-Source Domain Adaptation. Deep MDA methods can be broadly
classified into separate and joint domain alignment methods. Separate domain
alignment methods [21,22,29,33] align the distribution of the target domain with
each source domain independently, and the final result is obtained by fusing dif-
ferent classification predictions. For example, DCTN (deep cocktail network)
[29] deploys multi-way adversarial learning to align the target domain with each
source domain. Joint domain alignment methods [12,13,32] jointly align feature
distributions of all domains, aiming to extract features that are agnostic across all
domains. For example, DRT (dynamic residual transfer) [13] uses a dynamic net-
work instead of a static one to align the target domain with all source domains,
to better handle conflicts across multiple domains. Several studies [4,5,35] have
introduced attention mechanisms into MDA. For example, DAC-Net (domain
attention consistency network) [5] uses a feature channel attention module to
emphasize transferable attributes for the target domain. However, our proposed
CoDA stands apart by using attention mechanisms to preserve diverse features.
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Attention Mechanism. Attention mechanisms, inspired by human informa-
tion processing, are categorized into channel, spatial, temporal, and branch types
[20]. Our work focuses on channel attention, which adjusts channel weights adap-
tively. Channel attention has been studied across various fields [2,8,28]. Our
CoDA method is particularly related to DMG (domain-specific masks for gener-
alization) [2]. Unlike DMG, which uses activation masks learned independently of
the target domain, CoDA learns masks specifically related to the target domain
and adds a domain consistency loss to enhance domain collaboration.

Fig. 2. An overview of CoDA in the training phase. CoDA consists of three components:
an integrated feature encoder G to extract diverse features, a multi-source domain
discriminator D to ensure the extracted features are domain-invariant, and a common
category classifier C to make the extracted features discriminative for classification. G
includes a vanilla feature extractor F and a mask module set M . During training, the
network takes a single image x and its corresponding mask index idx to extract features
shared between the idx-th source domain and the target domain. For a specific layer l,
the output feature f̂l of G at that layer is obtained by channel-wisely multiplying the
feature fl extracted by F with midx

l selected by the multiplexer (MUX).

3 Problem Setup

Specifically, there are N labeled source domains S = {S1,S2, . . . ,SN} and one
unlabeled target domain T . The samples of N source domains are drawn from
N different distributions, and Si =

{(
xi
k,y

i
k

)}|Si|
k=1

stands for samples of the i-th
source domain, where xi

k is a raw image and yi
k is the corresponding category

label. For the target domain T , only unlabeled images
{
xT
k

}|T |
k=1

are accessible.
The classification tasks of all domains are the same, and the goal of multi-source
domain adaptation is to build a model that performs well on the target domain
using both labeled source samples and unlabeled target samples.
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4 Collaborative Domain Alignment

While each source domain shares some beneficial information with other domains
(e.g., cone attribute depicted in Fig. 1), it also possesses unique information (e.g.,
bumpy or red) that can be advantageous for the target domain. Integrating all
beneficial information is challenging due to: (1) it is hard to mitigate various
domain shifts while maintaining feature discriminability, and (2) it is unclear
how to identify which information is shared among all domains and which is
only present in partial domains. CoDA addresses these challenges with an inte-
grated feature encoder G, which comprises a vanilla encoder F and source-
specific domain attention masks M . These binary masks enable domain-specific
alignment between the target domain and each source domain, resulting in the
preservation of discriminative features that contain diverse beneficial informa-
tion. Additionally, they facilitate domain collaboration and automatically deter-
mine which information is shared by all domains and which is shared by partial
domains. Besides G, the overall framework also includes a multi-source domain
discriminator D = {Di}Ni=1 and a common category classifier C, as depicted in
Fig. 2. Next, we introduce the integrated feature encoder G and the training
scheme using domain-collaborative training.

4.1 Integrated Feature Encoder G

The integrated feature encoder G extracts features shared across all domains
and across partial domains. It includes a vanilla feature extractor F , composed
of convolutional and fully connected layers, and a set of mask modules M =
{M1, . . . ,ML}, where Ml is the mask module at layer l, containing N source-
specific domain attention masks Ml =

{
m1

l , . . . ,m
N
l

}
, with mi

l for the i-th
source domain. The masks are designed similarly across layers, so next we omit
the subscript for brevity to illustrate the design, i.e.

{
m1, . . . ,mN

}
.

During training, the inputs to the network consist of an image x and its cor-
responding mask index idx. For an image from the i-th source domain (denoted
as xi), idx is set to i. The source-specific domain attention mask mi is then
selected by a multiplexer (MUX). The shared feature between the i-th source
domain and the target domain at layer l is then computed as follows:

f̂ i = Gl(xi;mi) = f i � mi. (1)

Here, f i is the feature of xi extracted by the vanilla feature extractor F , and
mi ∈ {0, 1}K is the selected mask, where K is the number of feature channels or
neurons of f i. The mask mi is multiplied channel-wisely with the feature map
f i. This process can be repeated across all layers {1, 2, . . . , L} until the final
masked feature f̂ i

L is obtained, or it can be applied to specific layers.
For a target domain image xT , the mask index idx varies depending on the

desired shared features. If the shared features between the i-th source domain
and the target domain are needed, idx is set to i, and the attention mask mi is
chosen by the multiplexer (MUX) to calculate the shared feature:

f̂T |i = Gl(xT ;mi) = fT � mi. (2)
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Here, the binary masks are learned by a thresholding function as Piggyback
[19]. Specifically, each mask vector mi is associated with a learnable real-valued
vector m̃i. In the forward pass, mi is obtained by setting a threshold on m̃i:

mi(j) =
{
1, if m̃i(j) ≥ τ
0, otherwise , (3)

where j is the j-th dimension and τ is a threshold. Since the thresholding func-
tion is non-differentiable, the gradients of the real-valued mask vector m̃i are
approximated by the gradients of the thresholded mask vector mi.

Naturally, masks for different source domains often overlap. Since the feature
extractor F is unified for all domains, overlapping masks reveal feature channels
shared by multiple source domains and the target domain. To quantify this, we
sum the source-specific domain attention masks into m′:

m′ =
N∑

i=1

mi. (4)

Here, m′(j) indicates how many source domains activate the j-th channel or
node in F . Specifically, m′(j) = N means the feature channels are shared by all
domains (e.g., the cone attribute in Fig. 1), m′(j) = 1 means the channels are
shared by the target domain and one source domain, and 1 < m′(j) < N means
they are shared by the target domain and some source domains. Thus, G can
preserve features shared by all or some source domains and the target domain,
capturing diverse shared features.

4.2 Domain-collaborative Training

The integrated feature encoder G preserves diverse shared information across
domains. It is trained using a domain-collaborative training strategy with three
losses: a domain-specific loss for extracting shared information between the tar-
get and each source domain, leveraging mask overlaps for collaborative optimiza-
tion; a domain-consistency loss to enhance source domain collaboration; and a
pseudo-labeling loss to improve feature discriminability for the target domain.

Domain-specific Training Loss. The domain-specific training loss aims to
optimize the model for extracting shared features between the target and each
source domain using source-specific domain attention masks. For clarity, consider
the alignment between the i-th source domain and the target domain. Given an
instance x from either Si or T , the shared features are computed as f̂ i

L and f̂
T |i
L

(Eq.(1) and (2)). These features should be domain-invariant and discriminative
for classification. To ensure domain invariance, an adversarial loss is applied:

Ladv
i (Di,G) = −Ex∼Si

log
[
Di

(
f̂ i
L,pi

)]

−Ex∼T log
[
1 − Di

(
f̂
T |i
L ,pT

)]
.

(5)
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Here, pi and pT are the softmax outputs of C for the masked features f̂ i
L and

f̂
T |i
L extracted by G. Both features and classification results are fed into Di

for category-level domain alignment, as in CDAN [16]. The loss in Eq. (5) is
minimized for Di and maximized for G, training G to generate domain-invariant
features that confuse Di.

To enhance the discriminability of shared features, the classification loss is
computed for the source feature f̂ i

L from G using the cross-entropy between the
classifier C’s predicted probabilities pi and the true label y:

Lcls
i (C,G) = E(x,y)∼Si

Lce

(
pi,y

)
. (6)

The overall domain-specific training loss is formulated as follows:

Lspf (C,D,G) =
1
N

N∑

i=1

Lspf
i (C,D,G)

=
1
N

N∑

i=1

[
−Ladv

i (Di,G) + Lcls
i (C,G)

]
,

(7)

where the domain-specific training loss Lspf is calculated by averaging the indi-
vidual losses Lspf

i (for i ∈ {1, 2, ..., N}) across all source-target pairs.
When a feature channel is activated by multiple source-specific domain atten-

tion masks, it indicates the feature channel is shared among the target and
several source domains. Consequently, the model parameters for this feature
channel are updated by gradients from all involved domains, enabling collabo-
rative optimization of the feature encoder F . Fig.3 shows this: for example, the
fourth node, activated by three source domains and the target domain, is opti-
mized using losses from those domains. This collaborative updating is a kind of
implicit domain collaboration.

Fig. 3. An illustration of domain-specific training loss and collaborative optimization.
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Domain-consistency Training Loss. While overlapped domain attention
masks help the domain-specific training loss preserve diverse shared informa-
tion and encourage source domain collaboration, they don’t ensure consistent
feature values for shared features. For example, in Fig.3, a target sample pro-
cessed through the fourth node with different source-specific masks might yield
varying feature values. This variability is problematic, as the final target features
should be consistent at shared positions for accurate classification.

To address this, a domain-consistency training loss is applied to the target
domain’s final layer. This loss ensures that target features extracted with dif-
ferent masks remain consistent at overlapping positions, promoting unanimous
domain collaboration. The domain-consistency training loss is defined as follows:

Lcon(G) =
1
P

∑

(i,j)

∥
∥
∥(f̂T |i

L − f̂
T |j
L ) � (mi

L � mj
L)

∥
∥
∥
1
, (8)

where f̂
T |i
L and f̂

T |j
L indicate the features of a target sample when extracted

with domain attention masks from the i-th and j-th source domain, and P is
a constant that is calculated by multiplying the number of source pairs by the
number of feature channels to normalize the domain-consistency training loss.

Pseudo-labeling Loss. The domain-specific and domain-consistency training
losses help capture diverse features in the target domain. To enhance feature
discriminability, pseudo-labels are used to guide learning. Pseudo-labels with
confidence above 0.9 are generated from target domain features using K-means
clustering. Confidence is derived by converting distances to classification prob-
abilities, similar to MLAN [31]. These pseudo-labels are then used to compute
the classification loss for the target domain:

Lpse(C,G) = E(x,ŷ)∼Tp
Lce

(
pT , ŷ

)
, (9)

where Tp is the set of target samples with pseudo-labels, and (x, ŷ) represents a
target image and its pseudo label from Tp.

Overall, by combining the domain-specific training loss, the domain-
consistency loss, and the pseudo-labeling loss in Eq.(7), Eq.(8), and Eq.(9), the
training loss of the whole proposed CoDA method is formulated as follows:

min
C ,G={F ,M }

Lspf (C,D,G) + λLcon(G) + Lpse(C,G), (10)

min
D

−Lspf (C,D,G), (11)

where λ is the weight hyperparameter of the domain-consistency training loss.

4.3 Testing

During training, the features of the target domain are respectively extracted
under different domain masks to determine shared features with each source
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Fig. 4. CoDA in the testing phase. Given a sample xT from the target domain during
testing, the vanilla feature extractor F extracts the feature fl at layer l. A soft attention
mask mT

l is applied to fl, which is obtained by averaging all source-specific domain
attention masks at that layer.

domain. During testing, all shared features should be utilized for a more accurate
classification of the target domain. However, the integrated feature encoder G
has only been trained on partially activated target features and has not been
exposed to all activated feature channels. For instance, during training, Gl+1

only uses fT
l � mi

l (i ∈ {1, 2, ..., N}) but not fT
l directly, potentially degrading

accuracy at test time. To address this, a soft-scaling scheme inspired by DropOut
[2,26] is used, where the test mask mT is the average of all source-specific domain
attention masks:

mT =
1
N

N∑

i=1

mi. (12)

This scheme is applied on all layers that have domain attention masks. By ensur-
ing that the expectations for the output remain consistent during both training
and testing, the mismatch problem can be alleviated.

5 Experiments

In this section, we evaluated the effectiveness of CoDA by conducting experi-
ments on three commonly used datasets: DomainNet, PACS, and Office-31.

5.1 Setup

Datasets. DomainNet [22] is a large-scale dataset with about 0.6 million images
across 345 categories from 6 domains: Clipart (clp), Infograph (inf), Painting
(pnt), Quickdraw (qdr), Real (rel), and Sketch (skt). PACS [11] contains 9,991
images in 7 categories from 4 domains: Photo (P), Art Painting (A), Cartoon
(C), and Sketch (S). Office-31 [25] includes 4,652 images of 31 object categories
from 3 domains: Amazon (A), Webcam (W), and Dslr (D).
Implementation Details. To ensure a fair comparison, ResNet-18, ResNet-50,
and ResNet-101 [7] are used as the backbone models for the PACS, Office-31,
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and DomainNet datasets, respectively, which is consistent with previous studies
[13,27,29]. In terms of hyperparameters, the weight λ of the domain-consistency
training loss in Eq.(10) is set to 0.5 for all three datasets. By default, the mask
module set M = {M1, ...,ML} are applied to 4 layers of the vanilla feature
encoder F , i.e. the final layers of conv3_x, conv4_x, and conv5_x in the ResNet
architecture and the bottleneck layer. Note that the additional computational
overhead of CoDA on the feature extractor involves only a few element-wise fea-
ture multiplication operations (Eq.(1) and (2)) and is therefore negligible. The
associated real-valued weight of each mask vector in Eq.(3) is initialized with
1e-2, and the binary threshold τ is set to 5e-3 following Piggyback [19]. Regard-
ing optimization details, the proposed CoDA is implemented using Pytorch. The
Adam optimizer is used, with a small learning rate of 1e-5 for pre-trained param-
eters and a faster learning rate (10×) for the rest. The batch size is set to 32
for all experiments. For smaller datasets like PACS and Office-31, the model is
trained for 30 epochs, and the training time is less than 1 hour for a specific
transfer task. For the larger DomainNet dataset, the model is trained for 10
epochs, and the training time is approximately 16 hours per task.

Table 1. Classification accuracy (%) on DomainNet dataset

Methods → clp → inf → pnt → qdr → rel → skt Avg

MDAN [32] 52.4 21.3 46.9 8.6 54.9 46.5 38.4
M3SDA [22] 58.6 26.0 52.3 6.3 62.7 49.5 42.6
MDDA [33] 59.4 23.8 53.2 12.5 61.8 48.6 43.2
ML-MSDA [14] 61.4 26.2 51.9 19.1 57.0 50.3 44.3
T-SVDNet[21] 66.1 25.0 54.3 16.5 65.4 54.6 47.0
LtC-MSDA [27] 63.1 28.7 56.1 16.3 66.1 53.8 47.4
DCTN [29] 69.6 27.5 57.3 17.8 72.5 55.3 49.8
DRT[13] 69.7 31.0 59.5 9.9 68.4 59.4 49.7
DRT+ST[13] 71.0 31.6 61.0 12.3 71.4 60.7 51.3
PTMDA[24] 66.0 28.5 58.4 13.0 63.0 54.1 47.2
ADNT[30] 69.0 28.3 60.5 16.3 68.7 63.5 51.0
DAC-Net [5] 72.5 27.6 57.8 23.0 66.7 59.5 51.2
MLAN [31] 71.4 29.3 59.5 28.4 73.9 58.7 53.5
CoDA (ours) 71.3 28.9 60.1 29.6 73.1 60.8 54.0

5.2 Comparisons to the State-of-the-art

In this section, we first compare CoDA with existing multi-source domain adap-
tation methods.
Results on DomainNet Dataset. CoDA achieves an average accuracy of
54.0% on the DomainNet dataset, surpassing all other state-of-the-art methods.
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Table 2. Classification accuracy (%) on PACS dataset

Methods → A → C → S → P Avg

MDAN [32] 83.5 82.3 72.4 92.9 82.8
MDDA [33] 86.7 86.2 77.6 93.9 86.1
DCTN [29] 84.7 86.7 71.8 95.6 84.7

M3SDA [22] 84.2 85.7 74.6 94.5 84.7
T-SVDNet [21] 90.4 90.6 85.5 98.5 91.3
DAC-Net [5] 91.4 91.4 85.0 97.9 91.4
CoDA (ours) 92.4 91.0 87.0 98.2 92.1

Table 3. Classification accuracy (%) on Office-31 dataset

Methods → D → W → A Avg

DCTN [29] 99.3 98.2 64.2 87.2
M3SDA [22] 99.3 98.0 67.2 88.2
LtC-MSDA [27] 99.4 97.7 68.6 88.6
M3SDA-β [22] 99.6 99.3 69.4 89.5
MFSAN [34] 99.5 98.5 72.7 90.2
ADNT [30] 100 99.6 74.4 91.3
MLAN [31] 99.6 98.8 75.7 91.4
CoDA (ours) 99.5 98.9 74.4 90.9

Although no single approach excels in every transfer task, CoDA performs consis-
tently well across all tasks. Notably, it shows strong performance on ‘qdr’, likely
because it is distinct from other domains and benefits from relaxed alignment
and K-means based pseudo labels.

Compared to other methods, CoDA outperforms all separate domain align-
ment methods, surpassing the best one, DCTN [29], by 4.2%. This is due to
CoDA’s effective integration of diverse information within a unified model, allow-
ing parameters to be updated with samples from multiple domains, resulting in
more accurate representations. Additionally, CoDA surpasses joint domain align-
ment methods, including the best one, DRT+ST [13], by 2.7%, due to its superior
ability to preserve diverse shared features.

While CoDA only has a slight 0.5% lead over the mutual learning based
method MLAN [31], it is significantly simpler, employing a unified framework
with a single feature extractor, unlike MLAN, which uses multiple feature extrac-
tors. Overall, these results highlight the benefits of collaborative learning among
multiple source domains.
Results on PACS Dataset. In Tab.2, CoDA achieves the highest average
accuracy of 92.1% on the PACS dataset, outperforming existing MDA methods.
It performs best on ‘→ A’ and ‘→ S’ tasks and second-best on ‘→ C’ and ‘→ P’.
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These results highlight the superiority of our approach. CoDA’s clear advantage
on both DomainNet and PACS datasets is due to the distinct stylistic variations
across domains, allowing it to leverage diverse shared information for efficient
collaboration among source domains.
Results on Office-31 Dataset. In Tab. 3, CoDA achieves an average accuracy
of 90.9% on the Office-31 dataset, comparable to the state-of-the-art method
MLAN but slightly behind. This is likely because Office-31 has only three
domains with relatively small gaps, offering less diverse shared information than
other datasets, making CoDA’s advantage less evident.

Table 4. Ablation Study on PACS dataset

Method Lspf Lcon Lpse → A→ C → S → P Avg

Baseline � 91.2 88.7 82.9 97.8 90.1
CoDA (w/o Lcon) � � 91.3 87.7 85.0 97.9 90.5
CoDA (full version) � � � 92.4 91.0 87.0 98.2 92.1

5.3 Analysis

Ablation Study. In CoDA, the collaborative training strategy includes three
losses: domain-specific training loss Lspf , domain-consistent training loss Lcon,
and pseudo-labeling loss Lpse. The ablation study in Tab. 4 evaluates their effi-
cacy by gradually adding each loss based on Lpse. For the baseline method
in the first row of Tab.4, Lspf is removed by setting each mask dimension
mi(i ∈ 1, . . . , N) to 1 in Eq.(3), causing Lspf in Eq. (7) to degrade to joint
domain alignment. The baseline model achieved an average accuracy of 90.1%.
The second row introduces Lspf , achieving a slight improvement of 0.4%, demon-
strating its benefit to the integrated feature encoder. However, the method in
the second row shows a 1.0% drop when transferring to task ‘→ C’, indicat-
ing inconsistent cooperation between source domains. The last row presents the
full version of CoDA, adding the domain-consistency training loss Lcon, which
improves performance by 1.6% over the second row and 2.0% over the first row,
highlighting the benefits of incorporating Lcon for better model performance.
Note that Lcon must be added only after incorporating Lspf since Lcon depends
on Lspf . Without Lspf , Lcon would be zero and unnecessary. Therefore, although
the improvement from Lspf is modest, it is essential because Lcon relies on it.

To visually understand the influence of the two losses, t-SNE (t-distributed
stochastic neighbor embedding) [18] is used to visualize the feature distributions
of different methods. Fig. 5(a) illustrates the features of the baseline model,
which correspond to the first row of results in Tab.4. In this figure, features from
different domains but belonging to the same category are mixed together, as
F only utilizes domain-invariant features among all domains. In contrast, Fig.
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Fig. 5. Visualization of features from the ‘horse’ category for the ‘→ S (Sketch)’ trans-
ferring task on the PACS dataset using t-SNE. The features before the classifier are
used to compute t-SNE. Different colors stand for different domains.

Fig. 6. Sensitivity analysis experiments of λ. Results are reported on PACS dataset.

5(b) shows the features generated by the integrated feature encoder G using
only the implicit domain collaboration loss, corresponding to the second row of
results in Tab.4. These features exhibit diverse intra-class variance due to domain
diversity. Finally, Fig. 5(c) presents the features obtained from the full version
of CoDA, which corresponds to the last row of results in Tab.4. Here, features
from different domains are pieced together with slight separation, while features
from the same domain are grouped together. This demonstrates that features
shared by partial domains are more effectively preserved by G, leading to a
better feature representation with the explicit domain collaboration restriction,
i.e. the domain consistency training loss.
Sensitivity of Hyper-parameter λ. Fig. 6 shows CoDA’s sensitivity to the
hyper-parameter λ in Eq. (10), which weights the domain-consistency training
loss. A λ value of zero means no domain consistency restriction. Increasing λ
from 0 to 0.1 improves target domain performance, demonstrating the loss’s
effectiveness. However, accuracy variation is minimal within the range of 0.1 to
1.0, indicating CoDA’s robustness to changes in λ within this interval.
Effect of the Number of Mask Modules. Tab.5 shows the impact of adding
mask modules on model performance. Mask modules, which can be added to
any layer of the vanilla feature extractor F , improve domain cooperation. In
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Table 5. Effect of the number of mask modules

Number → A→ C→ P→ SAvg

1 90.9 88.7 84.4 97.7 90.4
2 91.4 91.5 81.7 98.1 90.7
3 91.9 90.4 83.8 98.3 91.1
4 92.4 91.0 87.0 98.2 92.1
5 92.7 90.0 85.4 98.2 91.6
6 91.4 91.4 86.2 98.0 91.7

ResNet architectures [7], they can be installed in up to 6 layers: conv1_x through
conv5_x and an additional bottleneck layer. Results show that performance
increases with up to 4 mask modules but slightly declines with more. This indi-
cates that while additional mask modules enhance cooperation, their benefits
diminish beyond a certain point, probably because features in lower layers are
often already diverse enough.

6 Conclusion and Future Work

In conclusion, we introduce collaborative domain alignment (CoDA), a method
that integrates features shared across all domains and those shared by sub-
sets of domains. Our results show that preserving diverse shared information
improves the performance of the target domain. CoDA outperforms state-of-
the-art methods on several benchmark datasets, making it a promising solu-
tion for multi-source domain adaptation challenges. Meanwhile, the method has
some limitations, such as involving a relatively large number of hyperparame-
ters, which can make the tuning process more complex. Future work will focus
on simplifying this process to improve usability.
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Abstract. In recent years, MRI super-resolution techniques have achieved great
success, especially multi-contrast methods that extract texture information from
reference images to guide the super-resolution reconstruction. However, current
methods primarily focus on texture similarities at the same scale, neglecting cross-
scale similarities that provide comprehensive information. Moreover, the mis-
alignment between features of different scales impedes effective aggregation of
information flow. To address the limitations, we propose a novel edge-guided and
cross-scale feature fusion network, namely ECFNet. Specifically, we develop a
pipeline consisting of the deformable convolution and the cross-attention trans-
former to align features of different scales. The cross-scale fusion strategy fully
integrates the texture information fromdifferent scales, significantly enhancing the
super-resolution. In addition, a novel structure information collaboration module
is developed to guide the super-resolution reconstruction with implicit structure
priors. The structure information enables the network to focus on high-frequency
components of the image, resulting in sharper details. Extensive experiments on the
IXI and BraTS2020 datasets demonstrate that our method achieves state-of-the-
art performance compared to other multi-contrast MRI super-resolution methods,
and our method is robust in terms of different super-resolution scales. Our code
is available at https://github.com/zhiyuan-yang/Edge-Guided-Cross-Scale-MRI-
Super-resolution.

Keywords: Deep Learning · Multi-contrast Super-resolution · Cross-scale

1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive and radiation-free imaging tech-
nique that plays a unique and essential role in clinical diagnosis. Compared to other
imaging techniques, it can visualize anatomical tissues of different parts of the human
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body. Despite its advantages, the acquisition of high-resolution (HR) MRI images faces
challenges such as limited scanning time and patient motion [1, 2]. Therefore, MRI
super-resolution (SR) has always been an important research topic in the clinical imaging
community.

Traditional SR techniques such as interpolation and dictionary learning often result in
over-smoothed or blurred images [3]. In recent years, deep learning (DL) based methods
[4, 5] have attracted much attention, demonstrating remarkable performance. DL-based
methods can be categorized into two types: single-contrast methods and multi-contrast
methods. Compared to single-contrastmethods,multi-contrast SRmethods,which lever-
age complementary information from different contrasts, have shown to be more pow-
erful. MRI routinely generates multi-contrast images with different acquisition time:
T1-weighted (T1W) images normally require shorter scanning time than T2-weighted
(T2W) images, so clinicians usually acquire HR T1W images (fully-sampled) and low-
resolution (LR) T2W images (under-sampled). They provide complementary informa-
tion about the anatomical structure, and therefore it is natural to use T1W images as the
reference to acquire SR T2W images.

Reference-based SR techniques have been extensively used for both natural images
and medical images [6, 7]. TTSR [8] proposes to use the hard attention mechanism to
search for the most spatially relevant patch in reference images and integrate it with LR
features to generate HR details. Subsequently, MASA [9] and McMRSR [10] develop
a coarse-to-fine patch matching scheme that significantly reduces the computation cost
and achieves better performance. In addition, WavTrans [11] incorporates the wavelet
transformation into the SR framework to capture both high-frequency local structures
and global information. However, these patch-based matching methods only utilize the
most relevant patch in the reference images, which may overlook the complex relation-
ship between the reference images and the LR images. Moreover, most methods adopt a
straightforward approach to transfer the texture information, using either simple feature
concatenation [9] or multiplication [8]. To overcome this limitation, the attentionmecha-
nism and the fully-powered transformer architecture have been introduced to extract the
correlation between theLR features and the reference images.MINet [12] uses a channel-
spatial attention module to fuse the features of different stages, while DCAMSR [13]
proposes a dual cross-attention transformer to capture the complementary information
between multi-contrast images.

Although these recentmulti-contrastmethods [8–13] have achieved desirable results,
there are still some challenges: First, reference-based methods exclusively consider tex-
ture transfer from the referencemodality, while neglecting the intrinsic anatomical struc-
ture. This neglect may lead to superficial and inconsistent SR results. In medical image
analysis, it is essential to preserve the anatomical structure in the images for accurate
diagnosis. Traditional methods have established the significance of incorporating struc-
ture information as a valuable prior constraint [14–17], which allowsmore attention to be
allocated to the image details. Second, current methods only utilize texture similarities
of the same scale. Earlier studies [18] have suggested that texture similarities in MRI are
not only at the same scale but also across scales. Leveraging features at varying scales
to aggregate the information flow can enhance the SR performance. However, simply
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fusing multi-scale features may introduce more redundant noise due to the misalignment
between features of different scales.

To overcome these challenges, we propose ECFNet which adopts several customized
modules for SR of biomedical imaging data, depicted in Fig. 1. In particular, we adopt
a coarse-to-fine feature fusion strategy to generate texture information. In addition, we
add a structure branch containing high-frequency components to assist the model in gen-
erating sharper details. The proposed method effectively learns the previously neglected
features of different granularities through a multi-scale feature fusion strategy and incor-
porates the structure information, leading to accurate SR of details. The contributions
of this paper are summarized as follows: 1) We introduce the cross-scale feature fusion
module (CFFM) that effectively aligns and fuses features of different scales, enhancing
the aggregation of information flow. 2) The texture transfer module (TTM) is proposed
to adaptively remap the distribution of reference texture with LR features so that the
network can better utilize the reference information. 3) We introduce the structure infor-
mation collaboration module (SICM), which facilitates interaction between features and
structure information. The SICM enables the network to allocate more attention to the
details while preserving the anatomical structure. Extensive experiments on two pub-
lic datasets, the IXI [19] and BraTS2020 [20] datasets, demonstrate that our method
achieves state-of-the-art performance.

Fig. 1. The overall architecture of our proposed ECFNet.
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2 Methodology

2.1 Overall Architecture

Given the LR image ILR (i.e. the T2W images) and the corresponding reference image
(Ref) IRef (i.e. the T1W images), the ECFNet can accurately restore ILR to the SR image
ISR. As shown in Fig. 1, the framework mainly consists of three parts: the preprocessing,
the multi-stage encoder, and the multi-stage decoder. In the preprocessing stage, ILR is
first interpolated to the same size as IRef , and the Sobel operator is used to extract the edge
map I structLR↑ . The multi-stage encoder contains four layers, where each layer consists of a
down-sample convolutional layer and residual blocks. After passing ILR↑ and IRef into

the encoder, features with different scales are obtained, denoted as Fk and FRef
k where

k = 1, 2, 3, 4. The CFFM aligns and fuses the features extracted from IRef and ILR↑
to generate the coarse-to-fine texture Tk . In the multi-stage decoder, the texture is first
aggregated with the features using the TTM. After that, the SICM facilitates interaction
between the features and structure information, refining the details according to the
structure information. Finally, we obtain the SR image ISR and the SR structure map
I structSR using a simple convolutional layer.

Fig. 2. The components of ECFNet: (a) Cross-scale Feature Fusion Module (CFFM); (b) Texture
Transfer Module (TTM); (c) Structure Information Collaboration Module (SICM).

2.2 Cross-Scale Feature Fusion Module

In CFFM shown in Fig. 2 (a), LR featuresFk are aligned and then fusedwith Ref features
FRef
k to incorporate the information from reference images. Since cross-scale similarities

of features are widespread, utilizing the aggregated information from different scales can



212 Z. Yang et al.

improve the SR results. The key issue is that misalignment of position and channel may
appear across different layers, which hinders the comprehensive integration of multi-
scale information. Therefore, we propose to adaptively align the up-sampled LR features
Fup
k+1 with HR features Fk .
First, deformable convolution [21] is used to introduce learnable offsets to the spa-

tial sampling locations, augmenting the alignment of the receptive field in the down-
sampled features with HR features. The offset is learned by convolutional layers from
concatenated features:

offset = Conv3×3(Concat(Fk ,F
up
k+1)). (1)

The deformable convolution then uses the offset to get the aligned features:

Faligned
k+1 (pi) =

∑

pn∈R
w(pn) · Fup

k+1(pi + pn + �pn). (2)

where pi denotes a pixel in aligned features F
aligned
k+1 ,w(·) and�pn are the weight and the

offset respectively. The aligned LR features Faligned
k+1 are subsequently concatenated with

the HR features Fk . To alleviate the channel misalignment among features of different
scales, we introduce a channel alignment (CA) module. The global max pooling layer
and global average pooling layer are used to extract the channel information from the
concatenated featuresFconcat

k respectively, and the outcome is denoted asPavg ∈ RC×1×1

and Pmax ∈ RC×1×1. A multi-layer perceptron (MLP) consisting of two fully connected
layers with a reduction rate of 16 is then used to get the channel alignment coefficient
φ. The output is obtained by:

Ffused
k = φ · Fconcat

k + Fconcat
k . (3)

After aggregating the features at different scales, a dual cross-attention transformer
[13] is used to generate reference texture by utilizing the complementary information
from FRef

k . Linear projection functions are used to compute the query, value, and key of
the features, and the spatial and channel attention are then obtained by

Ts = softmax(
Qs × KT

s√
d

× Vs), (4)

Tc = softmax(
Qc × KT

c√
d

× Vc). (5)

Finally, the spatial and channel attention are concatenated and reduced to half channel
with depth-wise convolution. The obtained features are then processed by the residual
blocks to generate textures Tk .

2.3 Multi-stage Decoder

At each stage of the decoder, the extracted texture is first integrated with the features
using TTM, where the distribution of the texture is remapped with the features. The
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details are then refined according to the structure information using the SICM so that
more attention is allocated to them.

Since the distribution of the extracted texture may be inconsistent with LR features,
simple concatenation may lead to suboptimal results. Inspired by the work of [9], we
design a texture transfermodule (TTM) as shown in Fig. 2 (b) to remap the distribution of
the texture with LR features. The instance normalization is used to extract the structure
of texture and discard its style:

Tk ← Tk − μTk

σTk
. (6)

After that, the affine transformation is used to update the features:

Tk ← Xk ⊗ β + γ. (7)

Two separate convolutional blocks are used to learn the affine transformation param-
eters β and γ so that the features can adapt the style to the texture while maintaining the
structure. Then the transferred texture is concatenated with the features and fused by a
residual block. Compared to simplemultiplication or concatenation, the TTM takes char-
acteristics of both features and texture into consideration. The adaptive fusion process
can enhance the incorporation of reference information.

MRI has a large plain background and small important target areas. These areas
contain rich tissue information that is important for accurate diagnosis. The edge map
corresponds to the high-frequency components in the images, therefore incorporating
the edge information can guide the network to allocate more attention to the details
during the SR reconstruction. Since the edge map has zero values in most areas, an
asymmetric convolutional group consisting of 1 × 3 and 3 × 1 convolutions is used to
extract geometric structure both vertically and horizontally, and 1 × 1 convolution is
adopted to refine the features:

X edge
k = Conv1×1(Concat[Conv3×1(Xk),Conv1×3(Xk)]). (8)

The channel alignment (CA)module is adopted to remap the distribution of structure
information with the features. Next, to improve the stability of the network training, we
use the residual connection to get the fused features:

Xk−1 = Conv(ReLU(Conv(X aligned
k ))) + Xk . (9)

The SICM makes the network easier to preserve the anatomical information for
accurate SR and leads to sharper details.

2.4 Loss Function

The L1 loss is used for the reconstruction and structure loss. The total loss function is

L = 1

N

N∑

n=1

L1(ISR, IHR) + L1(S(IHR), I structSR ), (10)

where S(·) represents the Sobel operator.
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3 Experiments

Datasets and Baselines. The IXI [19] and BraTS2020 [20] datasets are used to evalu-
ate our proposed method. The IXI dataset contains registered T2W and proton density
weighted (PDW) 3D MRI volumes of 578 subjects, and we use the PDW MRI as the
reference modality. We adopt the same preprocessing procedure of [22], where 3D vol-
umes are clipped into the size of 240 × 240 × 96. 500 subjects are randomly selected
as the training set and another 70 subjects as the testing set. For each subject, 10 slices
are selected. 2-fold and 4-fold down-sampled T2W LR images are created using the k-
space truncation. The BraTS2020 dataset contains 369 subjects for the training dataset
and 125 subjects for the validation dataset. Each subject has 4 modalities with size of
240×240×155, andwe use T1W images as reference images. 300 subjects are randomly
chosen for training and another 100 subjects for testing. We compare our methods with
four multi-contrast methods (MINet [12], DCAMSR [13], TTSR [8], WavTrans [11])
and a single-contrastmethod (SwinIR [23]). Peak signal-to-noise ratio (PSNR) and struc-
ture similarity index measure (SSIM) are used to evaluate the performance of different
methods.

Table 1. Quantitative results on two datasets with different scales. Red numbers indicate the best
result, and blue numbers indicate the second-best result.

ImplementationDetails.We train all themodels onNVIDIAGeForceRTX3090GPUs.
Ourmodel is trained using theAdam optimizer with a learning rate of 2e-4 for 50 epochs.
The batch size is set as 10. The parameters of the Adam optimizer, α and β, are set to 0.9
and 0.999 respectively. All the comparedmodels are trained using their default parameter
settings.

Quantitative Results. Table 1 summarizes the PSNR and SSIM scores on two public
datasets in 2-fold and 4-fold SR. Compared with other methods, our method achieves the
best results in all cases, which proves the effectiveness of our method. In the challenging
4-fold SR situation, our method can still achieve a desirable result. We give the multi-
feature fusion strategy credit for it. It aggregates information flow from different scales
so that even in the LR situation, the network is still able to extract effective texture
information. Besides, the alignment procedure can effectively reduce the redundant
noise when fusing different scale features.
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Table 2. Ablation study on the IXI dataset with 4-fold SR.

Variant Modules Metrics

CFFM TTM SICM PSNR SSIM

w/o multi-scale feature alignment × √ √
33.478 0.941

w/o texture transfer
√ × √

35.437 0.968

w/o structure branch
√ √ × 35.312 0.965

full version
√ √ √

37.213 0.970

Qualitative Results. Figure 3 shows the SR results and the corresponding error maps on
two datasets with different SR rates. In the error maps, prominent features indicate poor
detail reconstruction. It can be observed that our method is superior compared to other
methods in both datasets, which proves the robustness of our method. Furthermore,
our method generates sharper texture details compared to other methods because we
incorporate the structure information, allowing the network to focus on the details during
the reconstruction process. In the SR process, the features are adaptively adjusted in the
informative regions guided by the structure information, resulting in more details.

Ablation Study.We conduct ablation studies on the IXI dataset for 4-fold SR to evaluate
the effectiveness of different modules within our framework, and the results are shown
in Table 2. Three variant networks are used: 1) w/omulti-scale feature alignment, where
the cross-scale alignment part in the CFFM is not used. 2) w/o texture transfer, which
is our model without the TTM. 3) w/o structure branch, which is our model without
the edge map extraction and the edge branch. The results indicate that the variant w/o
multi-scale feature alignment performs worst, which proves that our alignment module
effectively integrates features from different scales. The degradation of variantw/o struct
branch is consistent with our conclusion that structure information can enhance the SR
reconstruction and lead to sharper details. Furthermore, the improvement from the variant
w/o TTM to the full version also proves the effectiveness of the texture transfer module.
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Fig. 3. Qualitative results and error maps of different methods on two datasets. The first/third
row are the SR results, and the second/fourth row are the corresponding error maps. The brighter
color suggests more errors.

4 Conclusion

In this study, we propose an edge-guided and cross-scale feature fusion network for
multi-contrast MRI super-resolution. Specifically, we design a novel pipeline to utilize
cross-scale similarities inMRI that can provide comprehensive information. In addition,
we incorporate the structure information to guide the network towards generating sharper
textures. Extensive experiments demonstrate that the proposed method achieves state-
of-the-art performance, especially in the challenging four-fold SR. Our work provides
a possible direction for further research in processing multi-contrast MRI, which has
great potential uses in manymedical applications. In the future, we would like to explore
multi-contrast MRI super-resolution at arbitrary scales.
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Abstract. Computed tomography angiography (CTA) scans provide
doctors with an accurate visualization of the vascular system that helps
them make diagnostic decisions. To help doctors make a quick diag-
nosis, the resolution of CTA images needs to be improved. With the
advancement of deep learning technology, many neural network mod-
els have been proposed to improve image quality. Most current image
super-resolution (SR) methods still have problems, such as texture loss
and boundary-blurring, and there are few methods for CTA images. In
this paper, we propose the Separation Feature Residual Diffusion Model
(Dual-ResShift) for generating high-resolution (HR) CTA images with
only 15 sampling steps. In the model, we propose a feature-separated
SFUNet and a new feature extraction algorithm, GBVS-Enhanced based
on Graph-based visual saliency (GBVS), to enhance the extraction of
high-frequency features. In addition, we design a loss function named
LEdge to guide the diffusion model to optimize the image. Our method
was verified on the clinical CTA dataset and AVT dataset. The PSNR
reached 26.4165, SSIM reached 0.7440, and LPIPS reached 0.0484 on the
clinical CTA dataset. The PSNR reached 28.6791, SSIM reached 0.7805,
and LPIPS reached 0.0365 on the AVT dataset. Experiments show that
Dual-ResShift can outperform existing methods. Our code and model
are put on https://github.com/prefectmoon/Dual-ResShift-code.

Keywords: Super resolution · Computed tomography angiography ·
Residual diffusion

1 Introduction

Computed tomography angiography (CTA) is a crucial radiological technique
in visualizing and diagnosing cerebrovascular diseases [17]. Despite the benefits
of noninvasiveness and 3D imaging presentation, CTA’s resolution remains rela-
tively low, and the complexity of the edges of blood vessel pixels increases during
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super-resolution (SR) processing. The challenge of attaining sub-millimeter-level
ultra-high-resolution (HR) images in CTA scans is increasingly prominent [31].
Therefore, improving the clarity of CTA images becomes essential to enhance
diagnostic accuracy. Image SR involves restoring HR images from low-resolution
(LR) counterparts, serving as a critical image processing technique in computer
vision [35]. Leveraging this method effectively improves image quality, assisting
physicians in enhancing diagnostic accuracy when utilizing CTA images.

Traditional SR methods often suffer from the loss of texture information,
yielding SR images that lack realism. In contrast, deep learning-based SR meth-
ods excel in extracting the nonlinear relationship between HR and LR, resulting
in superior high-frequency information preservation. Many SR methods based
on deep learning have achieved remarkable results [5,7,8]. Early approaches typ-
ically acquired LR images under known degradation processes, lacking general-
ization and potentially yielding unsatisfactory results in practical applications;
there can be many visual artifacts. Based on unknown degradation, works such as
BSRGAN [42], Real-ESRGAN [34], and SwinIR [18] generate SR, better simulat-
ing real-world scenarios. Recently, diffusion models have been introduced to SR
tasks, showcasing outstanding generative capabilities and attracting extensive
attention. Applying the diffusion model to image SR has also yielded promising
results, indicating significant potential in SR tasks.

Although the existing method of SR based on the diffusion model has made
a series of achievements, it has three main shortcomings: Firstly, Many meth-
ods ignore the texture information of LR images and do not retain valid struc-
ture information in the reconstruction process. Many unpleasant visual artifacts
appear in the generated images, such as joint misalignment or texture distor-
tion. Secondly, these methods mainly rely on real-world natural image datasets,
such as set5 [2], DIV8K [11], Flickr2K [1], etc., and may not achieve satisfactory
results when applied to CTA images. The generation of SR images based on
the diffusion model generally requires many sampling steps (50 to more than
1000 steps) to obtain high-quality images after a long inference, it is computa-
tionally expensive, and not suitable for real-time applications. In addition, the
diffusion model has not been applied to blind SR of CTA images. Therefore, we
construct Dual-ResShift based on the ResShift [41] designed for SR to address
these challenges. Our main contributions are as follows:

1. We design a dual-input SFUNet for separating features to help the model
obtain a more comprehensive feature mapping.

2. Based on the characteristics of CTA images and the Graph-based visual
saliency (GBVS) algorithm, we present a GBVS-Enhanced algorithm to pro-
cess high-frequency information in LR images, which provides more texture
information for the model.

3. We propose a new loss function named LEdge, which helps optimize the model
and makes the generated image more consistent with the target image on edge
information.
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Our experimental results show that Dual-ResShift can generate high-quality
clear images from blindly degraded LR, exceeding the performance of most cur-
rent models.

2 Related Work

2.1 Image Super-resolution

The earliest model to achieve SR using deep neural networks is SRCNN[7], which
utilizes a three-layer convolutional network to fit nonlinear mappings and obtain
HR images. Subsequent methods such as ESPCN [27], EDSR [19], RCAN [44],
SRGAN [15], etc., effectively improve the resolution of the image. [3] to improve
the resolution of medical images by using multiple improved residual networks is
presented. [9] proposed a 3D deep dense connection neural network to improve
the quality of brain MRI scanning. [21] presented a problem of using deep resid-
ual networks to improve the lack of correlation between feature information in
CT images.

Early works involved training LR images obtained through bicubic downsam-
pling or K-space truncation. These methods lack generalization, which greatly
underestimates the complexity of real noise, and the effect will be reduced in
practical application scenarios. Some studies utilize blind SR methods to pro-
vide effective degradation pipelines, where the image is randomly degraded from
the Angle of noise and fuzzy kernel, such as BSRGAN [42] and Real-ESRGAN
[34]. [45] realized blind MRI overscoring based on CycleGAN [46] architecture,
which reduced image distortion. [30] proposed a parallel alternate iterative opti-
mization degradation strategy and enhanced spatial feature transform residuals
to implement the blind SR method for CMRI images. [26] have improved the
regression process and ESRGAN’s loss function to reconstruct MRI images and
have good generalization.

2.2 Diffusion Model for Image Super-resolution

DDPM [13] exceeds GAN [10] in many generation tasks by continuously adding
Gaussian noise destruction training data in a forward process and then revers-
ing noise recovery data in a reverse process. Subsequently, proposed models
such as score-based generative model [29], DDIM [28], guide diffusion [6], LDM
[23]etc., have been further developed based on DDPM, reducing sampling steps
and improving the generation quality of diffusion models. Due to the excellent
generative performance of diffusion models, some studies have also been explor-
ing SR reconstruction based on diffusion models. For example, SRDiff [16], SR3
[25], DiffIR [40], StabeSR [32], and ResShift [41]. However, the application of dif-
fusion models in medical imaging is limited. [39] by integrating the self-attention
mechanism into DDPM, a new deep learning SR framework for brain MRI images
based on DDPM is proposed. InverseSR [33] has achieved SR for MRI images
based on their sparsity. At the same time, DisC-Diff [20] combined T1 and T2
modalities of MRI images for multi-contrast SR reconstruction.
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The diffusion model can produce a stable optimization process and has shown
excellent performance in SR reconstruction work, but blind SR CTA image
reconstruction based on the diffusion model has not been realized. Due to the
complex texture of CTA images, edge blurring may lead to unsatisfactory results,
and feature complexity in CTA slices poses challenges for diffusion model learn-
ing of images.

3 Methodology

3.1 Overall Architecture

The diffusion component proposed in Dual-ResShift builds upon ResShift [41],
establishing a Markov chain by manipulating residuals between HR and LR
images. Compared to other contemporary diffusion models, it requires only 15
sampling steps and boasts highly flexible noise control mechanisms. This allows
for precise adjustment of residual and noise levels during transitions. As depicted
in Fig. 1, here is a Markov chain between HR and LR obtained by shifting
residuals. HR x0 adds Gaussian noise in 15 steps to get x15 in the forward
diffusion process. The reverse process denoises x15 with LR and GBVS-Enhanced
as conditions to get the SR image.

Fig. 1. Residual diffusion of Dual-ResShift.

Forward Process Given HR and LR image pairs, let the residual between
HR and LR be represented as e0, where e0 = y0 − x0. The direction of forward
process optimization is to gradually adjust the residual e0 through a Markov
chain of length T to transform x0 into y0. In the implementation process, an
offset sequence ηt

T
t=1 is introduced, which monotonically increases with time t

and satisfies η1 → 0, ηT → 1. We denote κ as a hyper-parameter controlling the
noise variance, the noise level in xt is proportional to ηt, and κ is the scale factor.
I is the identity matrix. In addition, the marginal distribution at any timestep
t is analytical, so the forward process is distributed as follows Eq. 1:

q(xt|x0, y0) = N(xt;x0 + ηt + e0, κ
2ηtI), t = 1, 2, · · · T (1)
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Reverse Process The reverse process aims to generate a new SR image
from xT . This is accomplished by constructing the reverse distribution
pθ(xt−1|xt, y0, v0), conditioned on its associates LR image and the feature map
of CTA image obtained by GBVS-Enhanced algorithm. This reverse process can
be expressed as follows Eq. 2:

p(x0|y0, v0) =
∫

p(xT |y0, v0)
t∏

t=1

pθ(xt−1|xt, y0, v0)dx1:T

p(xT |y0, v0) ≈ N(xT |y0, v0, κ2I)

pθ(xt−1|xt, y0, v0) = N(xt−1;μθ(xt, y0, v0, t),
∑

θ

(xt, y0, v0, t)) (2)

where pθ(xt−1|xt, y0, v0) represents the reverse kernel from xt to xt−1 with a
learnable parameter θ. We show the overall structure of Dual-ResShift in Fig. 2.

Fig. 2. The overall structure of Dual-ResShift.

3.2 Separated Features Unet

It isn’t easy to obtain the inverse process distribution, so we incorporate the
SFUNet for separating features and GBVS-Enhanced as a second input to sup-
plement the texture information. As shown in Fig. 3, SFUNet derived the distri-
bution of the inverse process by learning CTA images with separated features,
combined with the proposed LTotal = LMSE + LSF + LMS−SSIM + LEdge joint
loss function to optimize the model, and guided the model to generate new HR
images conditionally.
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Fig. 3. The structure of SFUNet.

The SFUNet has three encoders that extract three features separately. We
introduce a deformable feature separation(DSF) block, which includes a convo-
lutional layer, a deformable convolutional layer, and a sigmoid linear unit (SiLU)
activation function. The offset introduced by the deformable convolution [4] in
the receptive field can better fit the irregular edges of blood vessels and bones
in the image. The input HR with added noise as xt, LR as y, and the feature
map obtained by GBVS-Enhanced as v are sent into three identical encoders to
extract features, yielding Fxt

, Fy, and Fv, respectively. The DSF block processes
these three features to yield common features Cxt

, Cy, and Cv, alongside distinct
features Dxt

, Dy, and Dv. The derived common features Cxt
, Cy, and Cv are

weighted and combined using the CBAM [38] block to produce the composite
feature Call. Concurrently, the independent features Dxt

, Dy, and Dy are sep-
arately weighted and inputted into the CBAM module to derive D̂xt

, D̂y, and
D̂v, signifying the independent features of the three inputs. The convolutional
layer and SiLU activation function are used to integrate the common features
and three different features and output a set of weights [D̂xt

, D̂y, D̂v, Ĉ]. Finally,
the weights are sent to the decoder for upsampling. The model outputs include
the common feature of HR, the distinct feature, and the predicted SR.

3.3 GBVS-Enhanced

Through some experiments, we have found that current SR methods exhibit
issues with unclear textures in CTA data. Some methods generate informa-
tion that does not exist in the HR images, which can be highly dangerous for
medical diagnosis. To solve this problem, we adopt a dual-input approach to
provide more information to the network. The network’s inputs consist of the
anxious HR image, the LR image obtained using Real-ESRGAN blind SR, and
the GBVS-Enhanced extracted from the LR image. The GBVS-Enhanced algo-
rithm is described as follows [12]: First, the R, G, B, and L = max(R,G,B)
channels of the LR image are processed using a Gaussian pyramid to obtain
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four pyramids: R, G,B, and L. Then, color features are extracted by computing
L = max(R,G,B), CBY = (B − min(R,G))/L, and CRG = (R − G)/L. CBY
and CRG represent the differences in the blue-yellow and red-green components
of the color features, respectively. Next, by applying the Gabor filter to L feature
mapping to extract directional features, the feature response M of L image in
different directions is obtained. Finally, for the feature map M , a weighted edge
with weight ω is introduced between any two nodes (i, j) and (p, q) as (i, j) to
(p, q) edge. The formula is expressed as follows Eq. 3:

ω((i, j), (p, q)) = A((i, j)||(p, q)) · F (i − p, j − q)

A((i, j)||(p, q) = |log
(M(i, j)
M(p, q)

)|

F (i − p, j − q) = exp(−(
(i − p)2 + (j − q)2)

2σ2
)) (3)

Where σ is the parameter, M(i, j) and M(p, q) are the eigenvalues of (i, j),(p, q).
A Markov chain with a normalized weight ω is defined on M . A is obtained by
the stable state of the Markov chain on M , and then A is multiplied by the fully
connected graph F to obtain the final salient graph. To enhance the contrast
between blood vessels and surrounding tissues in the CTA image, we fuse the
LR color values (obtained by (R+G+B)/3) and the LR edge feature map with
the GBVS feature map as our second input. As shown in Fig. 4, the GBVS-
Enhanced feature map highlights the most important information in the image,
making it more prominent, and adding color value and edge feature map makes
the texture information more abundant.

Fig. 4. Comparison of HR image, LR image, GBVS algorithm, and the proposed
GBVS-Enhanced algorithm.

3.4 Loss Function

The loss function can guide the CTA image generated by the model to be closer
to HR. In order to effectively learn features from the image and help the model
converge, we use the joint loss function in Dual-ResShift. In addition, we denote
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the target as X = x0, the output of the model as Y = fθ(xt, y0, v0, t). The
formula is expressed as Eq.4.

LTotal = LMSE + LSF + LMS−SSIM + LEdge (4)

MSE Loss The diffusion model predicts x0. To help the model converge, we
use the LMSE loss function. It is expressed as Eq.5:

LMSE =
1
n

n∑
i=1

|Xi − Yi|2 (5)

Separated Features Loss In SFUNet, for the features of the model to min-
imize the differences between shared features and maximize the differences
between independent features, we calculate the L2 distance between shared and
independent features and take their ratio as the optimization Eq. 6:

LSF =
||Cxt

− Cy||2 + ||Cxt
− Cv||2 + ||Cy − Cv||2

||Dxt
− Dy||2 + ||Dxt

− Dv||2 + ||Dy − Dv||2 (6)

MS-SSIM Loss To make the overall structure information of the SR CTA
image more complete and ensure that the image is not only close to the original
image at the pixel level but also consistent in structure, we introduce Eq. 7
calculation of similarity on multiple scales [37].

LMS−SSIM = 1 − [lm(X,Y )]αM ×
j=1∏
M

[cj(X,Y ) × sj(X,Y )]αj (7)

The original scale of the image is 1, and the maximum scale is M, and j ⊂ [1,M ],
lm, cj , and sj are represented by brightness, contrast, and structural similarity.

Edge Loss The blood vessel edges in CTA images are complex. We designed
an LEdge to improve the edge freshness in CTA images. First, we convert both
the model’s output and ground truth images into grayscale. Then, we calculate
the difference between the maximum and minimum filters and extract the edge
information. The difference between the model’s output and ground truth images
is then measured by calculating the L1 loss between these edge images. We
denote the edge from X as EX , the edge from Y as EY , and the complete
formula is expressed in Eq. 8. We show four samples of extracted edge features
in Fig. 5.

LEdge =
1
n

n∑
i=1

|EXi
− EYi

| (8)
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Fig. 5. The examples of the edge images.

4 Experiments

4.1 Datasets

We ran experiments on two datasets of CTA. The data set was derived from CTA
images and related electronic medical records of 200 patients with intracranial
aneurysms provided by Xinqiao Hospital of Chongqing Army Military Medical
University and Banan Hospital Affiliated with Chongqing Medical University.
We used 147 sets as a training set, 10 sets as a validation set, and 20 sets as a
test set. The other data set from the publicly available Aortic Vessel Tree (AVT)
[22], of which we used 22 sets as the training set, 3 sets as the validation set,
and 8 sets as the test set.

4.2 Experimental Settings

The Dual-ResShift, implemented based on PyTorch, follows the UNet architec-
ture and settings described in guide diffusion [6]. It incorporates 2 BigGAN resid-
ual blocks and utilizes 4 attention heads with attention mechanisms employed
at resolutions of 8x8, 16x16, and 32x32. During training, the batch size is set
to 64, Adam optimizer is used with a learning rate of 5e-5, and the training is
carried out for 100k iterations on an NVIDIA RTX H800 80G GPU. Regarding
the hyperparameters, T is set to 15, k to 2.0, and p to 0.3.

In the training data, we cut 30 256*256 slices of CTA images of the training
set and verification set from the Z-axis direction. In the test data set, we clipped
10 256*256 slices of CTA images from the Z-axis direction (due to the small
number of images in the AVT dataset, we used 30 256*256 for our test set),
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and the RealESRGAN [34] was also used to obtain the LR images for the test
set degradation model. However, to better simulate the LR situation in reality,
we delete the second-order operation based on RealESRGAN degradation, set
the probability of randomly sampled isotropic Gaussian kernel and anisotropic
Gaussian kernel to [0.6,0.4], and set the kernel width of isotropic Gaussian ker-
nel from [0.2,0.8]. Anisotropic Gaussian kernels’ width along the x and y axes
is randomly sampled from [0.2,0.8]. For the added Gaussian noise, we randomly
select from the levels [1,15] and Poisson noise from [0.05,0.3]; the ratio of Gaus-
sian noise and Poisson noise are [0.5,0.5]. The downsampling of images from
256*256 to 64*64 is implemented randomly from ”area,” ”bilinear,” and ”bicu-
bic.” Finally, the image quality is compressed using JPEG, and the quality factor
is determined in [70,95]. The second inputs in the training and testing processes
are implemented using the GBVS-Enhanced algorithm.

4.3 Comparison with State-of-the-Arts

We compare the performance of Dual-ResShift with five common single image SR
methods on 64 -¿ 256 SR tasks: BSRGAN [42], RealESRGAN [34], SwinIR [18],
LDM-15 [24], and ResShift [41]. The LDM experiment is 15 steps, respectively,
and the diffusion step of ResShfit is 15. The evaluation metrics used are PSNR
[14], SSIM [36], and LPIPS [43]. The experimental results are shown in the
Table 1.

Table 1. Quantitative results of different methods on the clinical dataset and AVT
dataset. The best results are highlighted in bold.

Dataset Clinical Datasets AVT Datasets

Methods& Metris PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
BSRGAN [42] 21.1595 0.5555 0.0876 27.3558 0.7352 0.0556

RealESRGAN [34] 24.8320 0.7214 0.0543 18.8666 0.4403 0.1307

SwinIR [18] 22.0735 0.6299 0.1590 28.1379 0.7797 0.0838

LDM-15 [24] 12.8242 0.2107 0.2745 17.7781 0.1778 0.1680

ResShift [41] 16.9386 0.4448 0.1586 23.3432 0.6704 0.0793

Dual-ResShift(Ours) 26.4165 0.7440 0.0484 28.6791 0.7805 0.0365

As seen from Table 1, Dual-ResShift is superior to other SR methods in
all indicators of 64 −> 256 tasks. Specifically, Dual-ResShift exceeded Base-
line(ResShift [41]) by 9.48(db) on PSNR, SSIM increased by 0.2992, and LPIPS
decreased by 0.15 on the clinical dataset. On the other hand, Dual-ResShift
exceeded Baseline(ResShift [41]) by 5.34(db) on PSNR, SSIM increased by
0.1101, and LPIPS decreased by 0.43 on the AVT dataset.

From Fig. 6 and Fig. 7(for ease of presentation, we enlarge the 64 ∗ 64 LR
image to 256 ∗ 256 by bicubic.), it can be seen that the image reconstructed
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by our proposed Dual-ResShift method has a richer texture and clearer edges.
BSRGAN, RealESRGAN, SwinIR, and ResShift can restore basic image infor-
mation, but the texture still has shortcomings. Some places are too smooth.
LDM-15 fails to produce correct images, possibly due to the model’s insufficient
ability to handle noise in the dataset.

Fig. 6. Qualitative comparisons of different methods on the clinical dataset.

Fig. 7. Qualitative comparisons of different methods on the AVT dataset.

4.4 Ablation Study

The loss function guides the model to converge better. In order to generate
higher-quality images, we evaluated the impact of the loss function in the model
on the model performance. We also removed the GBVS-Enhanced algorithm as
a second input to the model in the experiment to evaluate the effectiveness of
the GBVS-Enhanced algorithm: 1) ω/o LMSE - implementing our model with-
out LMSE ; 2) ω/o LSF - implement our model without lSF ; 3) ω/o LMS−SSIM
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- implement our model without LMS−SSIM loss function; 4) ω/o LEdge - imple-
ment our model without LEdge loss function; 5) ω/o GBV S − Enhanced - imple-
ment our model without GBVS-Enhanced algorithm. The experimental results
in the clinical data set are shown in Table 2.

Table 2. Ablation study on the clinical dataset on 64 −> 256 task.

Type PSNR↑ SSIM↑ LPIPS↓
ω/o LMSE 25.2357 0.6924 0.0538

ω/o LSF 25.9016 0.7158 0.0463

ω/o LMS−SSIM 25.2770 0.6818 0.0508

ω/o LEdge 25.5308 0.6978 0.0492

ω/o GBV S − Enhanced 25.5107 0.7101 0.0491

Dual-ResShift(Ours) 26.4165 0.7440 0.0484

As can be seen from Table 2, LTotal is slightly inferior to ω/o LSF in the
LPIPS index by 0.021 higher by 0.5149 in PSNR and 0.0282 in SSIM. There-
fore, ω/o LSF is helpful to the optimization of PSNR and SSIM. In other cases,
LTotal’s performance results better. Overall, LTotal has some advantages, prov-
ing the importance of using the joint loss function in the model.

In addition, to verify the effectiveness of our proposed GBVS-Enhanced algo-
rithm, we replaced the second input of SFUNet with the LR input. In addition,
the GVBS-Ehanced algorithm is excluded without changing the structure of
the model. Experiments show that, without the GBVS-Enhanced algorithm, All
indexes of the model decline, so our GBVS-Enhanced algorithm helps implement
SR tasks in CTA images.

5 Conclusion

We propose Dual-ResShift, a diffusion model for blind SR of CTA images. To
overcome the disadvantages of previous SR methods in recovering texture and
edge information, we introduce a GBVS-Enhanced algorithm to provide more
information. In addition, we propose a feature-separated SFUnet to extract
richer features and design a novel LEdge loss function to guide model optimiza-
tion. Our experiments demonstrate the potential of the diffusion model for CTA
SR reconstruction. In the later more in-depth research work, we will further
optimize the model, consider the 3D characteristics of CTA images, enhance
the impact of context on image reconstruction, and improve the quality of SR
images.
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Abstract. With advancement in technology, several changes can be
observed in various technological equipments. With advancement in hear-
ing aids technology, hearing disabled individuals are benefited abun-
dantly. In this study, we aim to improve hearing aid technology, by
proposing an advanced solution to one of the major problem of wind
noise disturbance. In particular, we design a three-stage multi-block U-
Net model to suppress the degradation with high quality reproduction of
sound. We analyzed time-frequency domain-based audio representation
analysis, and trained model on realistic noise for better user experience
in hearing aids. The properties of wind noise, affecting the signal quality
have been discussed deeply in addition to effect of wind noise for hearing
aids users. Fully-convoluted two different blocks of U-Net were used in
order to generate the proposed model, which outperforms existing mod-
els when evaluated with different performance metrics. The importance
of deep learning methodologies in combination with hearing aids chips,
and importance of realistic data for training an balanced model is also
demonstrated in this study.

Keywords: Hearing Aids · Wind Noise Reduction · U-Net ·
End-to-End Denoising · Speech Enhancement

1 Introduction

After the invention in 19th century, audio recording technologies and devices
have been upgrading continuously, and so is hearing aids technology. With
advancement in technology, hearing aids users have been benefited abundantly
by improved quality of speech, availability of different features, and functions in
hearing aids. According to recently released reports of World Health Organiza-
tion (WHO), 1.5 billion people (nearly 20 % of humans) have hearing loss, among
whom 439 million have disabling hearing loss [1]. These 1.5 billion numbers can
grow upto 2.5 billion people by the end of year 2050 as stated by reports [2].
While more than 400 million people worldwide could benefit from hearing aid use
alone, only 17 % get to use these devices. An hearing disabled, individual faces
many issues in communication, in particular, malfunctioning of hearing aids. One
of such commonly faced issue by hearing aids users, is Traveling Speech Degra-
dation (TSD), which refers to low speech quality received by hearing aids due
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15327, pp. 234–249, 2025.
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to noise in scene of hearing aid user. Due to such unwanted noise interruption,
the quality of speech degrades abundantly, resulting into difficulty for hearing to
the subject. Such noise is mainly due to high velocity of wind (i.e., wind noise),
and a low frequency vehicle as well as background noise. The objective of this
paper is to capture the pattern of audio waveform and decrease the background
noise by employing advanced deep learning methods. Many such methods have
also been explored in this field, however, they fail to capture properties of speech
signal, resulting into miscasting of original speech wave.

Hearing aids users experience a variety of unwanted sounds from multiple
sources, among which one of the main problem being encountered is wind noise
while traveling or outstation. The quality of speech also degrades, due to hiss and
clicks, resulting into low quality of speech along with wind noise. Both hiss and
clicks can disrupt the clarity of the sound, making it difficult for users to focus
on important sounds, such as speech. Other factors, such as listening fatigue,
background noise, and distort speech sounds also make it harder to understand
conversation. When this unwanted sounds mix with wind noise, the quality of
speech is at its poorest version of interpretation. Moreover, it also helps us to
suppress the impulsive events. Denoising of speech signals have been previously
attempted using other methods, such as wavelets [3], spectral subtraction [4],
linear prediction [5], and Wiener filtering [6], which were successful only for
stationary noises, and resulted not giving better performance on non-stationary
noise. Wind noise, is non-stationary because of its characteristics, such as ampli-
tude and frequency, that changes over time. Wind speed and direction can vary,
leading to fluctuations in the intensity and spectral properties of the noise it
produces, and thereby resulting into speech signal degradation in hearing aids.

2 Related Work

In [7], the researchers employ a wind noise attenuation algorithm (WNAA) to
capture properties of speech signal properties in order to decrease Signal-to-Noise
Ratio (SNR) level of speech signal. They claim the wind noise to be bounded
between low-mid frequency range, i.e., in regions ≤ 3 kHz. This claim may be
an important clue for conducting further research on similar topic. They also
illustrated and classified the effects on background noise due to direction of
microphones. Study reported in [8] provides literature about directional and
unidirectional microphones in behind-the-ear (BTE) hearing aids. In [9], the
authors present one of the most interesting works on real-time wind noise can-
cellation and reduction using speech processing techniques. They employ Fast
Fourier Transform (FFT)-based system, resulting into reduction of wind noise
with just 32 ms of speech / audio frame. Also their system is known that the
tolerable group delay function for mild hearing loss should be below about 5
ms. Study reported in [9] employ system that prevents spatial information for
binaural hearing aids (BHA), by cancelling low delay wind noise. They employ
Short-Time Fourier Transform (STFT)-based technique and estimated Percep-
tual Evaluation of Speech Quality (PESQ) scores for their model. Their success
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motivated us to employ a similar system based on spectrogram denoising. By
advancement in technology, much progress have been made in field of Machine
Learning (ML), and Deep Learning (DL). Motivated by this progress, we employ
a system based on advanced deep learning model, namely, U-Net, which is a
convolutional-based neural network, originally proposed for image segmentation
task [10].

Inspired by denoising of historic recordings [11], this study employ a system
similar to them, however, the novelty lies in the structure of U-Net blocks. Study
reported in [11] employed particular type of blocks (I-Blocks), which resulted
in low restoration of high frequency bins while denoising. We employ multiple
blocks, namely, J-Block and K-Block, in order to restore this high frequency bins
while reducing effect of wind noise in speech signal. We also perform various
types of analysis based on the proposed model, that validates the capability and
usability of model. We employed an end-to-end system that takes noisy audio
file as input, and gives output of clean denoised audio file. For robust model, we
employed 6 types of different wind noise at various SNR levels. The proposed
system provides the following novelty:

– Deep understanding of wind noise effect on hearing aids.
– U-Net multiblock system.
– STFT-based analysis for wind noise reduction.

The rest of the paper is organized as follows : Section 3 provides information and
properties of wind noise in hearing aids. Section 4 gives details of proposed U-Net
model, and methodology employed. Dataset and performance metrics detailed
information are proposed in Section 5. Experimental results, their discussion,
and different SNR related noise experiments are discussed in detail in Section
6. Section 7 summarizes and concludes the paper along with potential future
research directions.

3 Wind Noise

This Section describes wind noise, its characteristics, and its relationship with
hearing aids. Hearing aids users face a variety of acoustic environments in day-
to-day life. Classification of these environments for hearing aids have also been
attempted in the literature. This classification task for hearing aids is also known
as Acoustic Scene Classification (ASC) [12], which is one of the primitive and
basic task for speech enhancement in hearing aids. This study focus on pri-
mary and one of the most challenging task of speech enhancement in hearing
aids. Wind noise in this study refers to air pressure creating blockage at micro-
phones in hearing aids resulting into undesired sound at the output as hearing
aids. While traveling on an vehicle (specially 2 - wheeler, i.e., bike), in deserts
(where velocity of wind is much higher), infront of air conditioner (where air
directly strikes hearing aids), and while running, are most common unavoidable
circumstances, where wind noise in hearing aids increases abundantly and hence,
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reducing speech quality of speakers. In such scenario, hearing aids user face unac-
ceptable circumstances when the adjacent speakers’ voice is affected abundantly
due to high power wind noise. This results in malfunctioning of hearing aids and
may cause severe fatal accidents to the users and thus, degrade quality of life.
For such observations, a bunch of hearing aids users were examined in presence
of wind noise, resulting into increase in hearing deficiency at that moment [7].
According to reports conducted by ORCA-US, 42 % users reported negative
feedback with hearing aids in presence of wind noise [13]. Motivated by this,
we propose use of an alternate model into hearing aids as an solution to this
problem. While physical movement of hearing aids user, there exists two types
of wind, i.e., true wind and head wind, whose vector sum results in apparent
wind as mentioned in Eq. (1). In particular,

Waperrent = Wtrue + Whead. (1)

For example, if a hearing aids user is running at speed of 2 m/s opposite to 2
m/s wind, apparent wind could be calculated as 4 m/s, however, if the runner
and wind are in the same direction with the same velocity, apparent velocity
becomes 0 m/s.

3.1 Wind Noise Creation

Low velocity of air flowing around an object, result into parallel moving (also
referred to as laminar flow), and air with higher velocity cannot go around object
laminar. This phenomena results in changing of direction of airflow or returning
of air into the same direction as proposition generating spatial pressure difference
between layers. Such partial pressure difference are referred to as turbulence,
resulting into pressure variation on hearing aid microphones due to velocity
variations caused by irregular airflow as shown in Fig. 1 (a). The disturbance in
hearing aids output due to this partial difference is known as "wind noise" [14].
Sometimes pressure exerted by wind noise moves the diaphragm to microphone
amplifier, resulting into noise distortion. Red rays on Fig. 1 (b), refers to airflow
directions, which creates loud wind noise as compared to blue region resulting
into quiet wind noise w.r.t. microphone position. U-Net architecture is particu-
larly suitable for tasks like audio denoising due to its unique characteristics that
facilitate efficient feature extraction and reconstruction [15].

3.2 Characteristics of Wind Noise

Studies in the literature proved that due to high force of wind noise, wind noise
has high levels as 116 dB for some BTE hearing aids at low wind speed of 11
m/s, due to high force on hearing aids microphone by wind. Characteristics
of the wind noise can be obtained by two major factors, namely, wind speed
and wind direction. Also wind noise level is known to be proportional to square
of wind speed [16,17]. In real life measurements, as wind speed increases, the
noise level can be increased much more than theoretical analysis. As discussed in
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Fig. 1. (a) Turbulance created by wind [7], and (b) hearing aids noise effect w.r.t.
microphone.

sub-Section 3.1, when wind noise faces directly to hearing aids microphone (red
direction), the noise level is recorded to be more as compared to the wind passing
through side portions (blue direction). Opposite direction (sky blue) rays state
almost negligible impact of wind noise on hearing aids. Wind noise possesses
many spectral characteristics as defined below :

– Low frequency energy concentration (below 300 Hz).
– Increase in spread of noise energy at high frequencies.
– Unique turbulence creation at each measurement point, resulting into rapid

decrease in correlation between two points [18].
– Dual microphone hearing aids result in difference in turbulence creation at

individual location.

Many mechanical changes and approaches have been explored in order to reduce
wind noise effect on hearing aids, among which placing an cover over hearing aids
microphone to laminate wind flow seems to have immense potential [8]. Many
other approaches have also been explored on the same problem [7,19–23].

3.3 Noise Degradation

Noise comes with various degradation in SNR levels, for this study, we choose
various SNR levels including severe noisy conditions to make model more robust
to different noisy environments, variable wind speed, and speech scene and thus,
increase the practical suitability of our work. In moving vehicle or any other mov-
ing condition, the velocity never remains constant, and so doesn’t wind speed.
For such robust analysis, we selected 6 different noise conditions at different SNR
levels (varying from -10 to 10 dB) in order to make model robust as much as
possible.
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3.4 Spectrographic Analysis

We feed STFT spectrogram as an input to U-Net model. Fig. 2 (a) represents
clean audio spectrogram (STFT), and (b) shows noisy spectrogram of wind noise
signal, which we aim to denoise. Fig. 2 (c), (d), (e), (f), and (g) represents
noisy spectogram, spectrogram obtained from spectral gatting, deepfilternet3,
Nsnet2_denoiser, two-stage U-Net, and multistage-mutiblock U-Net of audio
file. It can be observed that the spectrogram as shown in Fig. 2 (g), has more
clear harmonics (black box, and white box) as compared to other obtained spec-
trograms. It can be also observed that in process of obtaining clean spectrogram
from highly noisy spectrogram, we are able to predict the spectrogram, which
resembles almost like clean spectrogram). However, high frequency region hav-
ing low resolution and blunt harmonics can be observed within the highlighted
area in Fig. 2 (g), indicating minor loss of a few properties while gaining the
clean audio signal from noisy audio signal. Significant difference can be observed
between noisy spectrogram and predicted spectrogram in other approaches (red
boxes), indicating the better working of proposed model. However, training of
model can be done on higher number of epoch and different variety of noise, in
order to obtain a spectrogram nearly similar to clean spectrogram. After denois-
ing, we employed standard and openly available speech enhancement model,
namely, Resemble Enhancement Model (REM)1. The audio files obtained were
also less audible in other models due to loss of important data points, however,
they were more efficient than the original noisy audio file as we can observe their
spectrographic difference in Fig. 2.

Fig. 2. (a), (b), (c), (d), (e), (f), and (g) represents clean spectogram, noisy spectogram,
spectrogram obtained from spectral gatting, deepfilternet3, Nsnet2_denoiser, two stage
unet, and multistage-mutiblock unet of audio file, respectively.

1 resemble-ai {Last Accessed Date : 29thJuly, 2024}
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4 Proposed Approach

This Section describes the model (spectrogram-based fully-convoluted) employed
in this study in order to minimize the impact of wind noise on the speech signal.
Much progress have been made in the field of image restoration and denoising in
recent days, among whom study reported in [24] demostrates a multistage image
restoration architecture of U-Net. To that effect, we employ a supervised atten-
tion module (SAM)-based three-stage multiblock U-Net architecture for wind
noise reduction, as shown in Fig. 4. Two phase approach has also been moti-
vated by an recent study [11], which also employes almost similar architecture
for historical recordings restoration. In the first phase of two phase method con-
sists of U-Net sub-networks. However, on the first stage, the inputs and training
objective differs. The aim of this stage is to identify and localize the residual
noise emerging after denoising an speech signal. The second stage works as an
main classifier, which also ensures smooth denoising, and refines the noisy speech
using extracted features from first stage. This will decrease the impact of wind
noise over speech signal. We decided to explore Short-Time Fourier Transform
(STFT) spectrogram as input to U-Net module. STFT is useful when analyz-
ing non-stationary signal having different spectral content over time. It involves
segmenting an audio signal into small time intervals and performing Fourier
transform (FT) on those segments. Unlike the standard FT, which provides a
global frequency view (because of infinite support of Fourier integral), the STFT
captures local frequency content that varies with time. Each FT in the STFT pro-
vides simultaneous time and frequency information. It highlights how different
frequencies contribute to the signal over short time windows. This is particularly
useful for non-stationary signals, such as, speech and music, where frequency con-
tent changes dynamically. Inorder to capture dynamic change in speech signal,
and local frequency components, we extracted STFT spectrograms from 44.1
kHz audio signal, thereafter reading real and imaginary part of signal as real-
valued signal. Frame size and frame length were chosen as 2048 samples, and 512
samples, respectively. In the initial layers, we enhance the network’s frequency
information by including frequency-positional embedding [11] as 10 additional
channels in the input data.In each phase, the 12 -channel input coming off of
the previous process is passed through a shallow feature extractor, comprised
of a convolutional layer followed by the Exponential Linear Unit (ELU) [25] as
shown in Fig. 4. Fin,1 extracted at the first layer is then fed directly into U-Net
sub-network; whereas for the second phase, we concatenate input features (Fin,2)
with the ones from a set of other features produced by an additive component in
the attention mask for each position. Only optimal features emerges from second
stage of neural network, due to SAM module. The U-Net output features Fout,1
are used to create the estimated residual noise signal N via a 3×3 convolutional
layer. The first stage output Y 1 is estimated as Y 1 = X + N , where X is the
input spectrumgram. The attention-guided features FSAM presented in Fig. 4
are determined by the attention masks M produced from Y 1 through a 1x1
convolution, and a sigmoid function. Lastly, we take the features output from
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the second U-Net (Fout,2) then apply a 3×3 conv layer to generate the denoised
output, Y 2.

To supervise the model, we minimize the mean absolute error of both outputs
at each stage. The reconstruction loss function is defined as:

L =
1
K

K∑

k=1

(|Y k1 − Y k| + |Y k2 − Y k|) . (2)

Consider a case where clean spectrogram is represented by Y, and the total
number of STFT bins is K. The Adam optimizer [30] with β1 = 0.5, β2 = 0.9,
and a starting learning rate of 1 × 10 decaying by a factor of 10 for every
100,000 steps was used during training. It is worth noting that normalization
strategies were not used since batch normalization and weight normalization did
not produce any improvements in our experiments.

4.1 U-Net Subnetworks

In computer vision and audio processing, the most common use of the U-Net
architecture is documented [26], [27]. We employed U-Net sub-networks that are
designed following a symmetrical encoder-decoder design, featuring four down-
samplers and upsamplers as shown in Fig. 3 (a) for this study. Each scale contains
an intermediate block referred to as either J-Block 3 (b), I-Block 3 (c) or K-Block
3 (d) as shown in Fig. 3, which consists of DenseNet two-layer block with resid-
ual connection. Concatenating skip connections are used to connect the outputs
of the encoder J-Blocks to their respective decoder J-Blocks. Additionally, an
I-Block is placed after the fourth downsampler. K-Block is similar to J-Block,
however, the number of DenseNet block with residual connection increases to
4. The downsampling layers employ strided convolutions with a stride of 2x2
and a kernel size of 4x4 as well as the same number of filters as the next I-
Block, which consists of three DenseNet blocks, as illustrated in Fig. 3 (c). In
the decoder, the upsampling layers make use of transposed convolutions hav-
ing identical hyperparameters to their corresponding downsampling layers. Our
experiments showed that while checkerboard artifacts are a common side effect
of transposed convolutions, they started to disappear as training progressed.

4.2 Resemble Enhancement Model

The Resemble Enhancement Model (REM)1 is the ultimate in sound enhance-
ment technology. REM is based on sophisticated machine learning algorithms,
which allows it to do more than just analyse sound. It enhances speech intelligi-
bility, and maintains the original tonality of music and voice. Being a seasoned
sound designer, it naturally modifies his techniques to fit various settings and
sound kinds. REM works excellent for enhancing speaker volume in a confer-
ence context. Its true allure is in its capacity to isolate and accentuate specific
audio components while preserving a clean, distortion-free sound quality efficient
fine-tuning algorithms that guarantee minimum latency and maximum effect are
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Fig. 3. SAM module embeded with UNet architecture, and blocks After [11].

responsible for this quick performance. The enhancer is a latent conditional flow
matching (CFM) model. It consists of an Implicit Rank-Minimizing Autoencoder
(IRMAE), and a CFM model that predicts the latents. This first stage involves
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an autoencoder that compresses the clean Mel spectrogram (M ) clean into a
compact latent representation (Z ) clean , which is then decoded and vocoded
back into a waveform. The model consists of an encoder, decoder, and vocoder.

As we have used pre-trained model, it works as follows. After completing
the training of the first stage, in second stage the latent CFM model is trained.
The CFM model is conditioned on a blended Mel, M blend = αM denoised
+ (1 - α)Mnoisy , derived from the noisy STFT-spectrogram M noisy and a
denoised STFT-spectrogram M denoised Here, α is the parameter that adjusts
the strength of the denoiser. During training, α is set to follow a uniform dis-
tribution U (0,1). During inference, value of α can be controlled by the user. To
predict the latent representation of the clean speech, we have used the loaded
pre-trained enhancer model and which is already trained jointly with the latent
CFM model. REM does not discriminate between sources and audio formats.
REM effortlessly transitions between clear speech recordings, energetic musical
performances, and tranquil surround sound to provide an improved listening
experience on all media platforms and playback devices. Using this three-stage
U-Net, we are able to obtain enhanced speech in less than 2 seconds, which in
future we aim to reduce.

Fig. 4. Architecture of three stage denoising model with the SAM module. After [11].

5 Experimental Setup

5.1 Dataset Used

The CHiME-1 (Computational Hearing in Multisource Environments) dataset is
the first installment in a series designed to facilitate the development and evalu-
ation of robust speech recognition systems in challenging acoustic environments.
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Recorded in a typical domestic setting, the dataset features binaural recordings
of utterances from the GRID corpus, a collection of simple, fixed grammar sen-
tences, spoken by multiple speakers. The CHiME-1 dataset includes both clean
and noisy versions of the recordings, allowing us to do controlled experimentation
in noise robustness. Additionally, it provides detailed transcriptions of the speech
content and separate recordings of the background noises, enabling researchers
to test and improve noise suppression and speech enhancement algorithms. This
dataset has been widely used for benchmarking and advancing techniques in the
field of far-field speech recognition, particularly in scenarios involving multiple,
and dynamic noise sources. Six types of different wind noise were collected from
freesound2.

5.2 Performance Metrics Used

Mean Absolute Error (MAE) : It measures the average magnitude of errors
between predicted and actual values without considering their direction. It is
calculated as the average of the absolute differences between predictions and
actual observations, providing a straightforward interpretation of the prediction
accuracy.

Coherence : In the context of topic modeling, coherence measures the degree
of semantic similarity between high-scoring words in a topic. A higher coherence
score indicates that the words within a topic are more related to each other,
suggesting better quality of the topic model.

Δ Mean Squared Deviation (Δ MSD) : It is a variation of Mean Squared
Deviation (MSD), often used to assess the variability of a set of values. It mea-
sures the squared differences between predicted and actual values, providing a
sense of how predictions deviate from actual outcomes. Delta MSD specifically
emphasizes the changes or differences between these deviations over time or
across different conditions.

Short-Time Objective Intelligibility (STOI) : STOI is an objective metric
for evaluating speech intelligibility. It compares short-time segments of the clean
and degraded speech signals to estimate how intelligible the speech is to human
listeners. STOI is widely used in speech enhancement and hearing aid algorithms
to assess and improve the clarity of speech signals.

6 Experimental Results

We trained model for 200 epochs, and 2000 steps per epoch. At the end of
training, we were able to obtain training loss of 3 % and validation loss of around
6 %.
2 freesound.org {Last Accessed Date : 29thJuly, 2024}.
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Table 1. Comparison of proposed approach with existing works

Noise Model Coherence Δ MSD STOI MAE

-5dB Spectral-Gatting [28] 0.88227 5.3702 0.77388 1559.27
DeepFilterNet [29] 0.8538 1.0882 0.9128 728.71
Nsnet2-denoiser [30] 0.343 1.6175 0.1715 56299977.16
Two-Stage Unet [11] 0.8972 4.9898 0.82 3854.66
Multiblock-Unet 0.9091 4.4575 0.82166 3578.19
(Without REM)
Multistage-MultiBlock-Unet 0.9642 2.4395 0.9189 1037.99
(Proposed)

0dB Spectral-Gatting [28] 0.89179 5.5726 0.8473 1559.21
DeepFilterNet [29] 0.97794 0.6378 0.9416 454.64
Nsnet2-denoiser [30] 0.36411 1.2707 0.1328 41908510.01
Two-Stage Unet [11] 0.95397 2.5139 0.8776 2108.84
Multiblock-Unet 0.95741 2.2291 0.8799 1946.9
(Without REM)
Multistage-MultiBlock-Unet 0.983 2.2743 0.9516 726.57
(Proposed)

5dB Spectral-Gatting [28] 0.89889 5.5219 0.8658 1559.27
DeepFilterNet [29] 0.9826 0.5256 0.9571 382.57
Nsnet2-denoiser [30] 0.36342 0.8017 0.1627 35356174.96
Two-Stage Unet [11] 0.97894 0.8662 0.9071 1217.19
Multiblock-Unet 0.97863 0.78482 0.9094 1103.75
(Without REM)
Multistage-MultiBlock-Unet 0.98713 2.3324 0.9611 665.61
(Proposed)

10dB Spectral-Gatting [28] 0.90091 5.3941 0.914 1559.27
DeepFilterNet [29] 0.98662 0.248 0.977 237.07
Nsnet2-denoiser [30] 0.3661 0.5275 0.1313 26015898.19
Two-Stage Unet [11] 0.98689 0.3694 0.9614 613.36
Multiblock-Unet 0.98722 0.3004 0.9633 572.68
(Without REM)
Multistage-MultiBlock-Unet 0.9903 2.6847 0.9817 641.1
(Proposed)

6.1 Comparison With Existing Works

This sub-Section compared results with few existing works. However, we were
not able to compare the work with more existing works, as not all the studies
released their trained model. Due to lack of time, and insufficiency of resources,
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we were not able to retrain existing models, and hence, decided to compare them
with open source released models available. Table 1 denotes the obtained results
on various existing studies, compared with proposed methodology. Observations
based on Table 1 denotes that, after completing process of multi stage U-Net on
a noisy audio, the words are clear enough for a subject to be interpreted and have
high coherence than the other existing models as observed. Coherence denotes
that how much words within topic are related to each other. On the other hand,
low coherence on existing models is due to less denoising of model, or removal
of important speech properties while denoising. Alternatively, DeepFilterNet,
being an advance speech denoising / enhancement model, outperforms proposed
method in various aspects. At the point, controversy arises that is the proposed
model an optimal model ? Resulting into an positive aspect, we also calculate
Mean Opinion Score (MOS) for DeepFilterNet, resulting into proving superiority
of proposed methodology. MOS being an evaluation metrics to validate model
on real-life situation, by asking an subject to rate the denoised speech between 1
(Bad) to 5 (Good). Table 2 denotes the ratings of 108 users after hearing speech
from various speech models. In Table 1, proposed model did not performed well
on other metrics as compared to DeepFilterNet, as DeepFilterNet is denoising
more as compared to proposed method, however, it also degrades the speech
quality while denoising and user is not able to get better experience due to
degraded quality of sound, which can be observed and concluded from results
shown in Table 2.

Table 2. MOS obtained on 108 participants (78 Male + 30 Female)

Model MOS

Spectral Gatting [28] 3.67
Nsnet2-denoiser [30] 2.33
Two-Stage Unet [11] 3.89
DeepFilterNet [29] 4.21
Proposed 4.52

7 Summary and Conclusions

In this work, we presented significance of multi-stage U-Net formed from var-
ious types of blocks to denoise hearing aids speech with additive white noise.
We propose end-to-end methodology for identifying the pattern of wind noise
in the speech signal. This study investigated three-stage, namely, UNet, formed
by three different types of blocks, namely, I-Block, J-Block, and K-Block. The
primary goal of this study is to restore and enhance the quality of speech, which
has been degraded due to presence of various types of wind noise at various SNR
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levels. The features extracted (i.e., STFT-based spectrograms) by signal process-
ing concepts were then fed into the U-Net model for the process of mapping an
noisy spectrogram to clean spectrogram. For this study, we made a variety of
observations based on models capability, such as, evaluations based on coher-
ence, Δ MSD, STOI, MAE, and MOS. In comparison to existing widely used
and open source denoising models, we achieved significantly better results for
the task selected. We also discussed the difference and improvement between
proposed and existing methodology. The proposed system have been explored
for only six type of noise, which we aim to extend the work to various differ-
ent types of noise, to analyze effect of different types of noise on model, as a
future task. Future works also involve more detailed mathematics on proposed
methodology, and exploring variety of blocks for proposed approach.
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Abstract. Age-related macular degeneration (AMD) progressively dam-
ages the macula, the central area of the retina crucial for sharp vision.
While early and intermediate stages may be asymptomatic, advanced
AMD can lead to significant vision loss, affecting tasks such as reading
and facial recognition. The proposed framework employs a cascading app-
roach with two integrated stages for AMD diagnosis, encompassing data
preprocessing, model training, and cascaded prediction with augmenta-
tion and tuning. Utilizing Vision Transformers (ViT), renowned for their
ability to handle intricate image features via self-attention mechanisms,
the framework integrates three distinct ViT classifiers (M1, M2, and
M3). Each classifier specializes in differentiating AMD conditions based
on patient data and image characteristics. The cascade model iteratively
refines predictions across these stages, ensuring robust diagnostic accuracy
tailored to diverse AMD conditions. Interpretability is enhanced using
SHAP, LIME, and GradCAM techniques, providing insights into model
decision-making and validating automated diagnoses within retinal imag-
ing for AMD. The proposed cascaded approach achieves an accuracy of
93.18%, recall of 94.44%, and specificity of 91.18%.

Keywords: Age-related Macular Degeneration (AMD) · eXplainable
Artificial Intelligence (XAI) · Vision Transformer (ViT) · SHapley
Additive exPlanations (SHAP) · Local Interpretable Model-agnostic
Explanations (LIME) · Gradient-weighted Class Activation Mapping
(GradCAM)

1 Introduction

Age-related macular degeneration (AMD) progressively damages the macula, the
vital central area of the retina responsible for sharp vision. Although early and
intermediate stages of AMD may go unnoticed, advanced AMD can result in
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severe vision impairment, impacting activities like reading and recognizing faces
[2,10,23]. AMD is a leading cause of vision loss worldwide among those aged
55 and older, accounting for 6% to 9% of global cases of legal blindness across
all income levels. Projections suggest a significant rise in affected individuals
globally, from 196 million in 2020 to 288 million by 2040 [3,4,8]. In the United
States, approximately 20 million people were living with AMD in 2019, with
about 1.5 million of them experiencing advanced AMD.

AMD comes in two forms: dry and wet, each with its stages. Dry AMD pro-
gresses through early, intermediate, and late stages, the latter termed geographic
atrophy (or advanced non-neovascular AMD). Conversely, wet AMD, also known
as exudative or neovascular AMD, mainly occurs in the late stage, is character-
ized by inactive and active grades, and is further classified as classic, occult,
or mixed. Both wet AMD and late-stage dry AMD are advanced forms of the
disease [7]. Although dry AMD is more widespread, wet AMD, despite being less
common, accounts for 90% of AMD-related blindness [21].

Several studies such as [12,26] have worked on the AMD diagnosis using state-
of-the-art approaches such as Vision Transformers (ViTs). ViTs have revolution-
ized computer vision, particularly in medical imaging diagnosis. Their advanced
architecture especially in the attention mechanism and superior performance
have enabled precise detection and diagnosis of retinal diseases like AMD, glau-
coma, choroidal neovascularization (CNV), and diabetic macular edema (DME)
[5,22].

ViT excels across various imaging modalities, including retinal fundus images,
optical coherence tomography (OCT), and Spectral Domain Optical Coherence
Tomography (SD-OCT). Utilizing transformer-based architecture, ViT captures
intricate patterns in retinal images, significantly enhancing diagnostic accuracy.
As a result, ViT has become indispensable in medical imaging [19].

The current study suggests a computer-aided diagnosis (CAD) system that is
capable of accurately distinguishing between normal retinas (non-AMD), inter-
mediate dry AMD, GA, and wet AMD grades using fundus images, while effec-
tively addressing the variability in fundus image dimensions. It employs the
state-of-the-art ViT for diagnosis and eXplainable AI (XAI) for interpretability.
Medical doctors subsequently validate the XAI results. The diagnostic process
occurs in two cascading phases. In the first phase, the system diagnoses whether
the patient has Geographic Atrophy (GA)/Intermediate or Normal/Wet. The
second phase conducts further diagnosis based on the output from the first phase.
Overall, there are three ViT classifiers involved in the process.

2 Related Studies

Recent studies have tackled the problem of AMD diagnosis. For instance, Gho-
lami et al. [9] investigated federated learning (FL) for diagnosing AMD using
deep learning (DL) models. They aimed to enhance diagnostic accuracy while
preserving data privacy. Centralized models, particularly with the ViT encoder,
demonstrated exceptional performance, with accuracy rates of 98.18%±0.55 and
99.11% ± 0.39 on Dataset 2 and 3 test sets, respectively.
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In addition, Xu et al. [26] introduced DeepDrAMD, an Artificial Intelligence
(AI) model for automated AMD detection and subtype classification, achiev-
ing high Area Under the Curves (AUCs) of 98.76% and 96.47% in different
test cohorts. Furthermore, Yao et al. [27] presented the FunSwin, a method for
grading diabetic retinopathy and estimating macular edema risk, outperforming
existing studies with an accuracy of 98.66% and an F1 score of 98.96% for binary
classification of macular edema.

Additionally, Kihara et al. [13] developed a DL model utilizing a ViT archi-
tecture to detect nonexudative macular neovascularization (neMNV) from OCT
B-scans. Using Swept-Source Optical Coherence Tomography Angiography (SS-
OCTA) imaging, B-scans were annotated to distinguish between Drusen and
neMNV-associated double-layer sign (DLS). The ViT model’s performance was
compared to human graders, demonstrating 82% sensitivity, 90% specificity, and
strong agreement with senior human graders (κ = 0.83, P < 0.001).

Moreover, Akcca et al. [5] introduced 3 algorithms, ViT, Tokens-To-Token
Vision Transformer (T2T-ViT), and Mobile ViT, aimed at detecting CNV,
drusen, DME, and normal features within OCT images. ViT, T2T-ViT, and
Mobile-ViT achieved predictive accuracies of 95.14%, 96.07%, and 99.17%,
respectively. Particularly noteworthy is the superior performance of Mobile-ViT,
which exhibited a higher classification accuracy compared to the other models.

Besides, Jiang et al. [12] introduced a CAD method using a ViT to ana-
lyze OCT images, achieving an exceptional classification accuracy of 99.69% in
distinguishing AMD, DME, and normal eyes. After model pruning, recognition
time was reduced to an impressive 0.010 seconds without compromising accuracy.
Compared to traditional CNN models like VGG16, ResNet50, DenseNet121, and
EfficientNet, the pruned ViT demonstrated superior recognition capabilities.

Despite the impressive performance in these studies, many did not use state-
of-the-art (SOTA) approaches like ViTs, and some did not incorporate explain-
ability into their models. Therefore, in this study, we aim to address the chal-
lenges of employing ViTs and interpreting the model using explainable AI.

3 Materials

This study endeavors to address the classification challenge of discerning AMD
grades by categorizing colored fundus images of patients into normal or exhibit-
ing intermediate AMD, GA, or wet AMD grades. The approach is implemented
on a localized dataset.

For this study, we utilized a dataset comprising 864 human subjects obtained
through the Comparisons of AMD Treatments Trials (CATT) [1], sponsored
by the University of Pennsylvania. Subjects, aged 50 and above, were enrolled
over two years across 43 clinical centers in the United States. They underwent
intravitreal injections of either ranibizumab or bevacizumab according to one of
three dosing regimens.
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Treatment administration began at the participants’ initial visit under the
CATT program. Participants in fixed monthly dosing groups received treatment
at each visit, while those in variable dosing groups received treatment based on
the presence of exudation. Evaluations occurred at every visit, with participants
demonstrating lesion activity receiving treatment.

All imaging and clinical data underwent de-identification by the CATT Study
Group before transmission to the University of Louisville (UofL). As the dataset
was previously collected and appropriately de-identified by a third party, the
study received an exemption from the local institutional review board (IRB)
process at UofL. Data collection procedures adhered strictly to relevant guide-
lines and regulations, with informed consent obtained from all participants or
their legal guardians.

The dataset comprised 216 normal, 216 intermediate AMD, 216 GA AMD,
and 216 Wet AMD cases, all collected from this cohort. Samples from the dataset
are presented in Figure 1.

Fig. 1. Samples from the utilized AMD dataset for the four categories.

4 Methodology

The proposed framework (Figure 2) utilizes a cascading approach consisting of
two integrated stages for AMD diagnosis. The study encompasses three major
stages: data preprocessing, model training, and cascaded prediction with and with-
out data augmentation. The framework employs ViT models renowned for their
ability to handle complex image features through self-attention mechanisms. The
two integrated stages include three distinct ViT classifiers (M1, M2, and M3),
each specializing in differentiating between AMD conditions based on patient data
and image characteristics. The first phase determines whether the patient has
GA/Intermediate or Normal/Wet conditions, and the second phase splits the diag-
nosis based on the outcome of the first phase. The framework’s interpretability is
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enhanced using SHAP, LIME, and GradCAM techniques, which provide insights
into model decision-making processes and aid in validating automated diagnoses
within the context of retinal imaging for AMD.

Fig. 2. The proposed framework for AMD diagnosis, tuning, and explainability.

4.1 Preprocessing

The dataset undergoes preprocessing before the classification phase, which
includes resizing, normalization, and augmentation. The images are resized to
224 × 224 pixels and normalized with a mean of μ = [0.485, 0.456, 0.406] and
a standard deviation of σ = [0.229, 0.224, 0.225]. Two scenarios were utilized
to study the effect of data augmentation. In the first scenario, we conducted
standard preprocessing without augmentation. This involved resizing images,
converting them to tensors, and applying normalization. In contrast, the second
scenario incorporated data augmentation during model training. Augmentation
techniques included random horizontal flipping, random rotation (up to 10o),
and color jittering (e.g., brightness, contrast, saturation, and hue adjustments).

4.2 Classification Architecture and Tuning

The diagnostic process described employs a sophisticated approach using ViT,
specialized deep learning models originally designed for image classification
tasks. Unlike traditional convolutional neural networks (CNNs), ViTs process
images by dividing them into patches and employing self-attention mechanisms
to capture global dependencies across these patches [17]. This method allows
ViTs to effectively model spatial relationships within medical images, making
them highly suitable for tasks where understanding global context is crucial,
such as medical diagnostics [20].

In this specific diagnostic setup, the process unfolds in two cascading phases
facilitated by three distinct ViT classifiers as presented in Figure 3. A cascade
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model is an advanced ensemble learning approach where multiple models are
employed sequentially to refine predictions. This method utilizes the strengths of
various models to improve the overall accuracy and reliability of predictions [28].
Sequential execution involves a series of models, each making a prediction and
moving to the next model if a predefined confidence level is achieved, continuing
this process until a final decision is made or the cascade ends [14].

The first phase, handled by M1, takes as input various features extracted
from patient data. It operates as the initial classifier, categorizing patients into
one of two broad groups: those exhibiting signs of GA or Intermediate conditions,
and those showing signs of Normal or Wet conditions.

Following the initial classification in Phase 1, the diagnostic pathway diverges
based on the M1’s output. For patients categorized as having GA or Intermediate
conditions, M2 is activated in the second phase. M2 specializes in providing
detailed and specific diagnoses tailored to these conditions, utilizing its capability
to analyze finer details and patterns within medical images that indicate GA or
Intermediate stages.

Conversely, for patients identified in Phase 1 as having Normal or Wet con-
ditions, M3 is engaged in Phase 2. M3 is designed to offer detailed diagnoses
specific to Normal or Wet conditions, focusing on identifying key markers such as
fluid accumulations or vascular irregularities that characterize these conditions.

The decision logic depends on the current model’s confidence level; if the
prediction is uncertain or below the threshold, the next model in the sequence is
used to refine or improve the prediction. Throughout the cascade, performance
metrics such as accuracy, precision, recall, F1 score, and confusion matrix ele-
ments are gathered [15]. These metrics are used to evaluate the cascade model’s
effectiveness, with the final prediction being an aggregate of these metrics, ensur-
ing a thorough assessment of the model’s performance.

Additionally, We developed a systematic approach to train and optimize
using Gaussian process-based Bayesian optimization. The architecture hyperpa-
rameters are dimensionality (dim), depth of transformer encoder layers (D),
number of attention heads (H), MLP dimension (dimMLP ), dropout rates
(αcommon and αemb), and learning rate (γ). dim determines the dimensionality
of the embedding space, allowing for a more complex representation of the input
data while balancing the risk of overfitting. D specifies the number of layers in
the model, with greater depth enabling the modeling of more complex functions
at the cost of increased computational demands and potential overfitting.

Moreover, H represents the number of attention heads in the multi-head
attention mechanism, enabling the model to focus on different parts of the input
for a more nuanced representation. dimMLP sets the dimensionality of the hidden
layer in the multi-layer perceptron, to model more complex interactions while
managing model size and computation. αcommon indicates the dropout rate for
the model, a regularization technique to prevent overfitting by randomly setting
a fraction of the input units to zero during training. Similarly, αemb defines the
dropout rate applied to the embedding layer, also aiding in overfitting prevention.

Bayesian optimization differs from grid search or random search as it consid-
ers all historical evaluations [6]. This approach can be mathematically defined
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as presented in Equation 1. The objective function is defined in the domain of
X; f : X → R.

x̂ ∈ arg max
x∈X

f(x). (1)

Fig. 3. Visualization of the utilized ViT architectures and the two cascaded phases
using the three models (i.e., M1, M2, and M3).

4.3 Architecture Explainability and Interpretability

In the context of AMD, the interpretability and explainability of machine learn-
ing models are crucial for ensuring reliable and understandable predictions. Sev-
eral techniques can be employed to achieve this, including SHAP (SHapley Addi-
tive exPlanations), LIME (Local Interpretable Model-agnostic Explanations),
and GradCAM (Gradient-weighted Class Activation Mapping).

SHAP values provide a unified measure of feature importance by attributing
the prediction of a model to its features based on cooperative game theory. The
SHAP value φi for a feature i is calculated as in Equation 2 where N is the
set of all features, S is a subset of N not containing feature i, and f(S) is the
prediction of the model with features in subset S.

φi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |! [f(S ∪ {i}) − f(S)] (2)

LIME explains individual predictions by locally approximating the model
with an interpretable one. The key idea is to perturb the input data and observe
the changes in the predictions. The explanation model g is trained to minimize
the following objective as presented in Equation 3 where L is the loss function
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(e.g., mean squared error), f is the original model, πx is the locality measure
around instance x, and Ω(g) is the complexity of the explanation model g.

ξ(x) = arg min
g∈G

L(f, g, πx) + Ω(g) (3)

GradCAM is used to generate visual explanations for CNN-based models by
highlighting the regions of the input image that are important for the prediction.
The importance of each pixel is determined by the gradients of the target class
score to the feature maps of a convolutional layer. The GradCAM heatmap
Lc
Grad-CAM for class c is computed as in Equation 4 where Ak is the activation

map of the k-th feature, and αc
k is the weight for the k-th feature map, calculated

as in Equation 5 where yc is the score for class c, and Z is the number of pixels
in the feature map.

Lc
Grad-CAM = ReLU

(
∑

k

αc
kA

k

)
(4)

αc
k =

1
Z

∑

i

∑

j

∂yc

∂Ak
ij

(5)

In the diagnosis and treatment of AMD, these interpretability methods can
help clinicians understand how machine learning models make decisions based on
retinal images. For instance: (1) SHAP values can identify which features (e.g.,
drusen area, retinal thickness) are most influential in predicting AMD progres-
sion, (2) LIME can provide local explanations for individual patient predictions,
helping clinicians understand specific model outputs, and (3) GradCAM can
visualize the regions in retinal images that the model focuses on, assisting in
the validation of automated diagnoses. These methods enhance trust and trans-
parency in AI-assisted medical diagnostics, contributing to more reliable and
explainable healthcare solutions.

5 Experiments and Discussion

Hardware and Software Setup: For this study, experiments were conducted
on a local machine with an NVIDIA Quadro M4000 GPU (8GB) and 128GB
CPU memory. Model development, training, validation, and testing were done
using Python 3.9 [24] and PyTorch [16]. Performance metrics, including accu-
racy, sensitivity, and specificity, were calculated with SciKit-Learn [18]. Visu-
alization of results, such as performance metrics, confusion matrices, feature
extraction outcomes, and activation maps, was performed using MatPlotLib
[11] and SeaBorn [25]. Hyperparameter tuning was managed with Optuna, and
eXplainable AI was achieved using SHAP, LIME, and GradCAM.

We evaluated batch sizes of 16, 32, and 64 to optimize computational effi-
ciency and training stability. Images were resized to 224x224 pixels with a patch
size of 16 to capture spatial information. Overfitting was prevented using early
stopping and dynamically adjusted learning rates with the Adam optimizer [29],
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based on Optuna’s recommendations. Through 200 trials, we identified optimal
hyperparameters that maximized accuracy and precision.

Hyperparameter Tuning: The hyperparameter tuning experiments for
ViT were executed for each batch size, with each execution involving 200 iter-
ations. The chosen tuning method was the Bayesian Optimization algorithm.
As mentioned in the methodology, we aimed to tune the dimensionality (dim),
depth of transformer encoder layers (D), number of attention heads (H), MLP
dimension (dimMLP ), dropout rates (αcommon and αemb), and learning rate (γ).
The ranges of them are shown in Table 1.

Table 1. The utilized search space for the different hyperparameters in the current
study.

Hyperparameter Range Step

Dimensionality (dim) 32 to 128 16

Depth of transformer encoder layers (D) 2 to 8 1

Number of attention heads (H) 2 to 8 1

MLP dimension (dimMLP ) 32 to 128 16

Dropout rates (αcommon and αemb) 0.1 to 0.5 0.05

Learning rate (γ) 10−5 to 10−3 log

Batch size (BS) 16, 32 and 64 -

The hyperparameter tuning for ViT models without data augmentation
reveals distinct configurations that lead to optimal model performance across
various batch sizes. For M1 with a batch size of 16, the best trial was achieved
with dim of 128, D of 3, H at 2, dimMLP of 112, αcommon of 0.2, αemb of 0.1,
and γ of approximately 0.000172. Increasing the batch size to 32, the model’s
optimal hyperparameters shifted to a dim of 64, D of 6, H at 7, dimMLP of 80,
higher αcommon of 0.4, αemb of 0.5, and γ of roughly 0.000737. At a batch size
of 64, the best-performing trial for M1 presented dim of 112, D of 8, H at 4,
dimMLP of 96, αcommon of 0.3, αemb of 0.15, and γ of about 0.000274.

For M2 with a batch size of 16, the trials that stood out featured dimensions
ranging from 32 to 112, Ds from 3 to 8, H from 4 to 7, and dimMLP s from 96
to 128. The αcommons varied from 0.2 to 0.5, with αembs between 0.15 to 0.25,
and γs spanning from approximately 9.3E-05 to 0.000423. M2 with a batch size
of 32 reached its peak with a dimension of 64, D of 6, H of 4, an dimMLP of
96, αcommon of 0.45, αemb of 0.2, and γ of about 0.000630. Lastly, for M3 with
a batch size of 16, the best trial showcased a dim of 48, D of 7, H at 3, an
dimMLP of 80, αcommon of 0.45, αemb of 0.15, and γ of approximately 0.000726.

5.1 Results and Discussion

We present final testing metrics for three models across batch sizes: 16, 32, and
64 without data augmentation. For batch size 16, M1 achieved 86.36% accu-
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racy and perfect sensitivity. M2 had 95.45% accuracy and 94.74% sensitivity.
M3 had 84.09% accuracy and 96.30% sensitivity. Increasing the batch size to
32 saw M1’s accuracy drop to 48.86%, though sensitivity remained perfect. M2

achieved 84.09% accuracy, and M3 achieved 77.27% accuracy with 79.17% sen-
sitivity. At batch size 64, M1 had 85.23% accuracy and 95.12% sensitivity, M2

had 75.00% accuracy and 95.65% sensitivity, and M3 had 79.55% accuracy and
72.73% sensitivity. Conclusion: A batch size of 16 is optimal, offering the highest
accuracy, sensitivity, and lowest test loss, making it ideal for model development.

Hyperparameter tuning for ViT models with data augmentation showed
batch size 16 yielding the best performance, with accuracies from 0.8895 to
0.9535. Models, especially M1 and M3, adapted well to various hyperparame-
ters, including dimensions from 80 to 112, dropout rates of 0.1-0.2, and different
depths and attention head structures. This highlights batch size 16’s effectiveness
in training dynamics and optimizing precision and sensitivity.

Batch size 32 balanced computational efficiency and model performance,
achieving accuracies from 0.8837 to 0.9535 across various experiments. This
size supported efficient gradient computations and enhanced convergence rates.
Effective configurations included dimensions of 32 to 112, dropout rates of 0.2-
0.45, and tailored depth and attention head structures. Notably, M2 performed
well, underscoring batch size 32’s role in optimizing training dynamics and model
efficacy.

Batch size 64 offered computational benefits but showed variable perfor-
mance, with accuracies from 0.6628 to 0.907. Models needed careful hyperpa-
rameter adjustments, such as dropout rates of 0.25-0.45 and dimensions from 80
to 128, to avoid overfitting or underfitting. Effective outcomes were seen in M2

and M3, suggesting batch size 64’s potential in specific contexts with tailored
adjustments, but further refinement is needed for consistently high performance.

Evaluating three models across batch sizes revealed M1 excelled at batch
size 16 with 95.45% accuracy, perfect sensitivity, and low test loss. M2 and M3

showed higher test losses and slightly lower accuracies. At batch size 32, M2

excelled with 95.45% accuracy and perfect sensitivity. M3 improved with fewer
false negatives. At batch size 64, M3 achieved the highest accuracy (97.73%)
and perfect sensitivity. These results suggest M1 performs well across all sizes,
while M2 and M3 benefit from larger sizes.

In a cascade method, starting with models with high sensitivity is crucial to
avoid missing positives early on. M1 with batch size 16 has perfect sensitivity
and high accuracy (95.45%), making it suitable for the first stage. M2 with
batch size 32 also has perfect sensitivity and accuracy, capturing all positives for
further analysis. M3 with batch size 64 has the highest accuracy (97.73%) and
perfect sensitivity, ideal for final stages to confirm true positives with minimal
false positives. Testing all three sizes will help determine the best configuration.

We evaluated a cascading ensemble of M1, M2, and M3 on a test dataset.
The ensemble achieved 87.50% overall accuracy, with 93.48% recall for Normal
or Wet conditions, showing proficiency in correctly classifying these instances.
Sensitivity for GA or Intermediate conditions was 80.95%, indicating occasional
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classification challenges. The confusion matrix showed the ensemble correctly
identified many instances but also had some misclassifications.

Based on cascade method results with batch sizes 16, 32, and 64 with data
augmentation, accuracy marginally improved with larger sizes (0.9205 for 16,
0.9318 for 32 and 64). Sensitivity varied between conditions and sizes. Batch
size 32 had the highest sensitivity for Normal conditions (97.44%) but lower
for Wet conditions (89.80%). Batch size 64 balanced high sensitivity for Wet
conditions (94.44%) and respectable sensitivity for Normal conditions (91.18%).
Batch size 16 had the lowest sensitivity. While batch size 32 excelled in Normal
sensitivity, batch size 64 offered balanced performance, making it the best choice
for overall sensitivity balance.

Table 2 summarizes the results for different configurations. Figure 4 shows
hyperparameter optimization using Bayesian methods, which effectively utilized
past results to identify optimal parameter combinations, leading to improved
outcomes.

Fig. 4. Visual example of the tuning approach using Bayesian optimization for M1

with batch size of 16.

5.2 Explainability and Interpretability

As presented in Figure 5, we generated SHAP heat maps for random samples.
These heat maps illustrate the importance of each pixel in the model’s prediction
process. In our heat maps, blue pixels indicate features that decrease the model’s
prediction (i.e., negative impact), while red pixels indicate features that increase
the model’s prediction (i.e., positive impact). White pixels denote features that
have no impact on the model’s prediction. By overlaying these heat maps onto
images, we can visualize which parts of the image are most influential for the
model’s prediction. For instance, observing red areas near the optic disc might
suggest their significance in the diagnostic process.

Using LIME, we can utilize a deeper understanding of how our model inter-
prets these regions. LIME generates local explanations by highlighting which
regions within the fundus image contribute most significantly to the model’s
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predictions. The highlighted yellow outlines emphasize specific regions of inter-
est, potentially crucial for medical diagnosis or research purposes.

Table 2. Summarization of the obtained results for the different configurations. Bold
results are for the cascaded suggested approach. Blue results are the best reported
metrics.

Model Loss ACC (%) REC (%) SPEC (%) Hyperparameters

M1 0.3081 86.36 100 87.72 dim: 128, D: 3, H: 2, dimMLP : 112, αcommon: 0.2,
αemb: 0.1, γ: 0.00017, BS: 16

M2 0.1609 95.45 94.74 94.74 dim: 32, D: 6, H: 4, dimMLP : 96, αcommon: 0.5,
αemb: 0.15, γ: 0.00034, BS: 16

M3 0.3089 85.23 95.12 85.77 dim: 48, D: 7, H: 3, dimMLP : 80, αcommon: 0.45,
αemb: 0.15, γ: 0.00072, BS: 16

M1 0.7705 48.86 100 100 dim: 64, D: 6, H: 7, dimMLP : 80, αcommon: 0.4,
αemb: 0.5, γ: 0.00073, BS: 32

M2 0.3944 84.09 100 85.11 dim: 64, D: 6, H: 4, dimMLP : 96, αcommon: 0.45,
αemb: 0.2, γ: 0.00062, BS: 32

M3 0.5292 77.27 79.17 79.17 dim: 128, D: 8, H: 4, dimMLP : 48, αcommon: 0.3,
αemb: 0.2, γ: 0.00060, BS: 32

M1 0.4771 85.23 95.12 85.77 dim: 128, D: 6, H: 8, dimMLP : 112, αcommon: 0.15,
αemb: 0.3, γ: 0.00016, BS: 64

M2 0.4834 75.00 95.65 79.90 dim: 64, D: 2, H: 5, dimMLP : 48, αcommon: 0.4,
αemb: 0.25, γ: 0.00092 αemb: 0.4, γ: 0.0008, BS: 64

M3 0.4001 79.55 72.73 78.05 dim: 128, D: 2, H: 8, dimMLP : 112, αcommon: 0.2,
αemb: 0.3, γ: 0.00067, BS: 64

M1 0.0786 95.45 100 91.00 dim: 112, D: 2, H: 7, dimMLP : 32, αcommon: 0.15,
αemb: 0.15, γ: 0.00012, BS: 16, With DA

M2 0.3002 93.18 95.83 90.00 dim: 80, D: 3, H: 7, dimMLP : 128, αcommon: 0.25,
αemb: 0.4, γ: 0.00065, BS: 16, With DA

M3 0.3255 93.18 84.21 88.00 dim: 80, D: 5, H: 2, dimMLP : 48, αcommon: 0.3,
αemb: 0.1, γ: 0.00012, BS: 16, With DA

Cascaded - 92.05 93.33 90.70 BS: 16, With DA

M1 0.1632 94.32 92.68 91.00 dim: 32, D: 2, H: 6, dimMLP : 32, αcommon: 0.2,
αemb: 0.1, γ: 0.00095, BS: 32, With DA

M2 0.1681 95.45 100 91.00 dim: 112, D: 6, H: 5, dimMLP : 64, αcommon: 0.45,
αemb: 0.35, γ: 0.00099, BS: 32, With DA

M3 0.3131 93.18 94.44 92.00 dim: 80, D: 4, H: 5, dimMLP : 112, αcommon: 0.1,
αemb: 0.15, γ: 0.00031, BS: 32, With DA

Cascaded - 93.18 89.80 97.44 BS: 32, With DA

M1 0.1996 93.18 91.11 91.00 dim: 80, D: 3, H: 7, dimMLP : 128, αcommon: 0.25,
αemb: 0.4, γ: 0.00065, BS: 64, With DA

M2 0.0842 95.45 94.12 96.00 dim: 80, D: 2, H: 2, dimMLP : 48, αcommon: 0.3,
αemb: 0.25, γ: 0.00021, BS: 64, With DA

M3 0.1167 97.73 100 94.00 dim: 80, D: 7, H: 3, dimMLP : 112, αcommon: 0.25,
αemb: 0.15, γ: 0.0002, BS: 64, With DA

Cascaded - 93.18 94.44 91.18 BS: 64, With DA

ACC: Accuracy, REC: Recall, and SPEC: Specificity.

Grad-CAM generated heatmaps that highlight regions crucial for the ViT’s
decision-making process. In our visualization, warmer colors such as red and yel-
low indicate areas where the model assigns higher importance. Conversely, cooler
colors, particularly blue, signify regions where the model assigns less importance.
These blue areas suggest that certain parts of the fundus images are deemed less
critical by the ViT in its classification or diagnostic process.
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Fig. 5. Explainability and interpretability for AMD diagnosis. SHAP heat maps show
pixel importance (blue: negative, red: positive, white: neutral). LIME highlights signif-
icant regions (yellow outlines) in fundus images. Grad-CAM heatmaps reveal key areas
for ViT’s decisions (red/yellow: high importance, blue: low importance).

5.3 Ablation Studies

First Ablation Study: Removal of the Cascaded Approach: In the first ablation
study, the cascaded approach was removed, and all four classes were simultane-
ously applied to the ViT. The results demonstrate performance metrics with a
higher test loss of 0.5744 and a lower Accuracy of 80.68% compared to the cas-
caded method. This indicates that applying all classes together was ineffective,
despite having sensitivities for each class as follows: 1.0, 0.636, 0.913, and 0.65.
Specificity values for each class are: 0.862, 0.955, 0.969, and 0.956.

Second Ablation Study: Removal of the Tuning Process : In the second abla-
tion study, the ViT model underwent a random experiment without tuning. The
results indicate a significant decrease in performance compared to the tuned
model, with a higher test loss of 0.7509 and a lower Accuracy of 69.32%. This
highlights the critical role of tuning in optimizing ViT models for specific tasks,
as untuned models may struggle with accurate classification.

5.4 Comparison with Related Studies

Our study evaluated a cascading ensemble of models M1, M2, and M3, achiev-
ing an overall accuracy of 93.18%. Sensitivity for class A was 94.44% and for
class B was 91.18%, indicating robust performance in correctly identifying both
classes. Compared to Gholami et al. [9], who achieved accuracy rates of 98.18%
and 99.11% with centralized ViT models, our accuracy is slightly lower. Similarly,
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Xu et al. [26] achieved AUC values of 98.76% and 96.47% with DeepDrAMD,
while our sensitivity metrics are comparable, suggesting strong but slightly lower
performance. Yao et al. [27] reported an accuracy of 98.66% and an F1 score of
98.96% for macular edema, indicating that our model’s accuracy of 93.18% shows
potential but requires improvement to reach such a high performance.

Moreover, Kihara et al. [13] reported sensitivities of 82% and specificities
of 90% for neMNV detection, which are lower than our sensitivities, though
focused on different conditions. Akcca et al. [5] achieved higher accuracies with
different ViT models, notably 99.17% with Mobile-ViT, highlighting areas where
our ensemble approach could benefit from different transformer architectures.
Finally, Jiang et al. [12] achieved an impressive 99.69% accuracy with a pruned
ViT, far surpassing our 93.18%, underscoring the exceptional performance of
optimized ViT models. Overall, while our cascading ensemble shows promising
results, there is room for improvement, particularly by exploring different trans-
former architectures and optimizing model configurations to match state-of-the-
art performance.

6 Limitations

The study faced limitations that impacted outcomes and model generalizabil-
ity. The dataset used consisted of OCT fundus images from a small collection.
Data scarcity was particularly problematic for rare conditions like age-related
macular degeneration, further hindering model performance. To address this,
data augmentation techniques were used, aiming to enhance performance but
risking overfitting and increased computing demands. Balancing augmentation
and computing resources was crucial to optimize model performance. A larger,
diverse dataset could have better represented retinal diseases, improving model
robustness and generalizability.

7 Conclusions and Future Directions

AMD causes vision loss in older adults and requires timely diagnosis. With an
aging population, advanced diagnostic tools are essential. AI, through automated
image analysis, can improve AMD detection, enhancing early intervention and
personalized treatment. Our cascading ensemble of models (M1, M2, and M3)
achieved 87.50% overall accuracy, with high sensitivity (93.48%) for Normal or
Wet conditions and lower sensitivity (80.95%) for GA or Intermediate conditions.
Data augmentation and varying batch sizes showed impacts on performance:
batch size 16 achieved 92.05% accuracy without augmentation, while batches
32 and 64 marginally improved to 93.18%. Batch size 32 had the highest sen-
sitivity for Normal conditions (97.44%) but lower for Wet conditions (89.80%).
Batch size 64 offered balanced sensitivity, with 94.44% for Wet and 91.18%
for Normal conditions. Thus, batch size 64 was optimal for balanced sensitiv-
ity across conditions. Future research should focus on improving sensitivity for
GA and Intermediate conditions, possibly by developing specialized models or
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incorporating additional features. Advanced data augmentation techniques, such
as using GANs to generate high-quality synthetic data, should be explored to
mitigate overfitting and improve performance, especially for rare conditions.

References

1. CATT — Center for Preventive Ophthalmology and Biostatistics (CPOB) — Perel-
man School of Medicine at the University of Pennsylvania — med.upenn.edu.
https://www.med.upenn.edu/cpob/catt.html, [Accessed 18-06-2024]

2. Abd El-Khalek, A.A., Balaha, H.M., Mahmoud, A., Alghamdi, N.S., Ghazal, M.,
Khalil, A.T., Abo-Elsoud, M.E.A., El-Baz, A.: A novel machine learning-based
classification framework for age-related macular degeneration (amd) diagnosis from
fundus images. In: 2024 IEEE International Symposium on Biomedical Imaging
(ISBI). pp. 1–4. IEEE (2024)

3. Abd El-Khalek, A.A., Balaha, H.M., Sewelam, A., Ghazal, M., Khalil, A.T., Abo-
Elsoud, M.E.A., El-Baz, A.: A comprehensive review of ai diagnosis strategies for
age-related macular degeneration (amd). Bioengineering 11(7) (2024)

4. Abdin, A.D., Devenijn, M., Fulga, R., Langenbucher, A., Seitz, B., Kaymak, H.:
Prevalence of geographic atrophy in advanced age-related macular degeneration
(amd) in daily practice. J. Clin. Med. 12(14), 4862 (2023)

5. Akça, S., Garip, Z., Ekinci, E., Atban, F.: Automated classification of choroidal
neovascularization, diabetic macular edema, and drusen from retinal oct images
using vision transformers: a comparative study. Lasers Med. Sci. 39(1), 140 (2024)

6. Bai, T., Li, Y., Shen, Y., Zhang, X., Zhang, W., Cui, B.: Transfer learning for
bayesian optimization: A survey. arXiv preprint arXiv:2302.05927 (2023)
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Abstract. The rapid advancement of emerging technologies is reshap-
ing brain tumor diagnosis and treatment planning, with a focus on pre-
cise segmentation techniques for early intervention. Manual segmenta-
tion methods face challenges due to inherent noise and intensity vari-
ations in medical imaging data. To mitigate these challenges, we pro-
pose DCRUNet++ for brain tumor segmentation. The proposed model
integrates Depthwise convolutional residual module blocks to enhance
information flow and gradient propagation across network layers, thereby
improving feature representation. The DCRUNet++ architecture incor-
porates nested up-convolution operations, facilitating the propagation of
semantic information from lower to higher levels of abstraction. To fur-
ther optimize model training, we introduce a custom loss function that
assigns higher weights to feature maps 4 and 8, prioritizing significant
representations during the optimization process. Deep supervision, utiliz-
ing 8 intermediate feature maps, ensures robust training and facilitates
convergence by emphasizing critical representations. Extensive experi-
mentation with FLAIR MRI images validates the efficacy of the pro-
posed DCRUNet++ model. Achieving a Dice coefficient of 0.9467 and a
mean Intersection over Union of 0.9155, our model outperforms previous
methodologies, underscoring its effectiveness in brain tumor segmenta-
tion and treatment planning.

Keywords: Brain tumor segmentation · DCRUNet++ · FLAIR
MRI · UNet++

1 Introduction

Morphological changes in brain tissue segmentation are essential for evaluating
the progression of neurological disorders. Brain and CNS tumors have the high-
est mortality rates among these disorders. Accurate brain tumor segmentation
using neuroimaging is crucial for improving diagnosis, treatment, monitoring,
and research. Brain tumors’ variability in location, shape, and size makes seg-
mentation challenging. Medical imaging modalities like CT, MRI, and PET are
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used for identification, with MRI preferred for its superior tissue resolution. The
quality of brain cancer treatment largely depends on the physician’s expertise
due to the complex nature of brain tumors [17]. MRI is critical in glioma diag-
nosis, utilizing several protocols, including T1c and commonly used sequences
like T1-weighted, T2-weighted, and FLAIR [22]. These modalities offer unique
tissue contrast for comprehensive tumor assessment and segmentation, essential
for delineating tumor boundaries, assessing heterogeneity, and planning targeted
therapies. Advanced machine learning (ML) and deep learning (DL) algorithms
are increasingly used in CAD systems to enhance segmentation accuracy and
diagnostic precision [9].

Recently, ML models have been widely used for object prediction and classi-
fication in healthcare, particularly for forecasting pandemics and disorders [1,6].
Research focuses on applying ML to characterize brain tumor images. Tradi-
tional ML approaches use manually selected features, while state-of-the-art DL
models use multiple layers and functions to automatically extract features from
raw data, enhancing classification, segmentation, and image analysis. DL models,
especially CNNs, have shown superior performance in detecting and segmenting
brain tumors. Both ML and DL techniques are increasingly adopted to improve
diagnostic accuracy and efficiency in medical imaging [14,27,32].

In this paper, we employed a novel approach utilizing FLAIR MRI images for
segmentation by incorporating a Multi-Scale Residual Module into a UNet++
architecture. FLAIR imaging is gaining significance in the segmentation of malig-
nant tumors due to the trend of resecting FLAIR-positive areas. FLAIR effec-
tively delineates the tumor boundaries, aiding in accurate surgical planning and
identifying positive tumor regions. The segmentation model is evaluated on an
independent dataset, and its performance is compared against various existing
segmentation models using different statistical parameters.

The main contributions of the methodologies presented and extensively dis-
cussed in this study are outlined as follows:
1. We proposed a Depthwise Convolutional Residual Module (DCRM) , which

enhances the propagation of gradients and optimizes the flow of information
across the network layers.

2. Designed a DCRUNet++ model incorporating DCRM blocks, drawing inspi-
ration from the UNet# architecture, featuring nested up-convolution opera-
tions. This enhancement facilitates enhanced semantic information transmis-
sion from lower to higher levels.

3. Developed a custom loss function that assigns higher weights to maps 4 and 8,
ensuring the model focuses more on significant feature maps during training,
leading to improved accuracy and performance.

4. Integrated Deep Supervision (DS) through the use of 8 intermediate feature
maps. This approach, along with the custom loss function, ensures robust
training and better convergence by emphasizing crucial intermediate repre-
sentations.

5. Conducted extensive experiments and validations using FLAIR MRI images,
demonstrating the effectiveness of the proposed model in accurately segment-
ing brain tumors.
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The methodology of the proposed approach is elucidated in Section 2, followed by
experimental analysis in Section 3, which illustrates the results obtained from
the proposed model. Finally, Section 4 encapsulates the research findings and
delineates avenues for future work.

1.1 Related Work

This chapter provides an in-depth examination of the methodologies employed
for diagnosing brain tumors using advanced technological approaches. Tradi-
tional context-based machine learning methods often fall short in tasks such as
semantic segmentation, where deep learning algorithms have demonstrated supe-
rior performance[8]. Among medical imaging techniques, image segmentation is
extensively utilized for the automated identification and delineation of tissues
and pathologies.

In image classification tasks, benchmark models such as AlexNet [16],
VGGNet [26], and GoogleNet [29] have achieved notable success. However,
deeper networks face degradation issues, which can be mitigated by using skip
connections [15]. Skip connections allow models to reach greater depth by trans-
ferring information from initial to deeper layers without adding parameters,
as shown in ResNets [11]. DenseNets [12] enhance this by concatenating fea-
ture maps from earlier layers with those from deeper layers, promoting fea-
ture reusability while using fewer parameters. This results in deeper represen-
tations and faster convergence. Advancements in skip connections have signif-
icantly improved performance in UNet-derived models like UNet2+ [33] and
UNet3+ [13]. UNet, a successful neural network for healthcare image segmen-
tation, utilizes skip connections to concatenate the encoder’s feature map with
the decoder’s upsampled feature map, enhancing segmentation accuracy. Despite
their success, UNet2+ and similar models may lack comprehensive information
from full-scale investigations, affecting their precision in learning organ loca-
tions and boundaries. Using ResNets and DenseNets as backbones for the UNet
encoder further enhances organ and lesion segmentation accuracy.

DS mitigates the vanishing gradient problem and accelerates convergence in
deep neural networks [19]. Inception-v4 [28] incorporates auxiliary supervision
classifiers in intermediate layers, enhancing training and reducing overfitting.
Wang et al. [31] discuss the integration of DS to boost performance, widely
applied in UNet-like segmentation networks. Li et al. [20] expanded UNet to
eight layers, introducing an auxiliary pathway for mid-layer semantic supervi-
sion, improving left ventricle segmentation. Farheen et al. [7] developed Mul-
tiResUNet, incorporating DS in the decoder branch, reducing false negatives in
tumor detection. Liu et al. [21] applied 3D DS in DSSE-V-Net, enhancing fea-
ture discrimination for brain tumor segmentation and quickening convergence.
UNet3+ [13] leverages DS for hierarchical learning, improving organ and tissue
segmentation at various scales. UNet2+ [33] uses DS for model pruning, speeding
up inference with minimal performance loss.

Buda et al. [3] used deep learning-based segmentation to link genomic sub-
types of low-grade gliomas (LGG) with tumor imaging features, achieving a high
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Dice coefficient of 82%. Naser et al. [24] demonstrated UNet models for brain
tumor segmentation, highlighting the need for large annotated datasets and sig-
nificant computational resources. Walsh et al. [30] introduced a lightweight UNet
for MRI tumor segmentation on the BITE dataset, achieving an IoU of 89%, suit-
able for real-time use but potentially less accurate for complex tumor structures.

Cinar et al. [5] proposed using DenseNet 121 as a backbone for a UNet
architecture targeting the segmentation of FLAIR MRI images. Isaza et al. [2]
investigated transfer learning for brain tumor segmentation, comparing various
data augmentation methods on the ResNet50 network. This method achieved
an impressive F1 detection score of 92.34% but may face challenges in adapting
to diverse MRI imaging modalities or capturing fine-grained tumor boundaries
due to inherent feature representation limitations of ResNet50. Ruba et al. [25]
employed FCN for tumor localization and UNet for sub-region segmentation.
While this approach offers flexibility in handling spatial dependencies, it may
struggle with capturing contextual information across different regions of inter-
est, potentially leading to segmentation errors. Kumar et al. [17] introduced
residual models within a UNet architecture for brain tissue segmentation, show-
ing improved performance using the FLAIR modality. However, the inclusion of
residual models adds additional hyperparameters and complexity, necessitating
careful tuning and optimization to achieve optimal results. Metlek et al. [23]
proposed ResUNet+, leveraging convolution for regions of interest detected in
different modalities. Despite its potential for multi-modal image segmentation,
ResUNet+ faces increased computational complexity and training time, limiting
its scalability to large-scale datasets.

2 Methodology

2.1 Overview

The proposed methodology introduces an innovative architecture, termed
DCRUNet++, for brain tumor segmentation using FLAIR MRI images, as
shown in Fig. 1. This approach leverages a UNet# inspired structure, enhanced
with advanced features to improve segmentation accuracy and detail. The archi-
tecture incorporates additional nested up-convolution operations to provide more
semantic and detailed information from lower to higher levels. A DCRM is pro-
posed, as shown in Fig. 1(a), which includes internal skip connections integrated
into the network and connected with dense skip connections to facilitate bet-
ter information flow and feature maps. Additionally, DS is utilized for faster
convergence and proper selection of intermediate feature maps, ensuring guided
learning at multiple levels. A custom loss function prioritizes the 4th and 8th
feature maps by assigning higher weights to these maps, with the sum of losses
from all 8 maps used to adjust the model weights. This combination of archi-
tectural enhancements, DS, and a tailored loss function promotes balanced and
effective training, resulting in a robust solution for accurate and detailed brain
tumor segmentation using FLAIR MRI images.
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2.2 Proposed Architecture

UNet++ serves as the backbone of the proposed DCRUNet++ model for brain
tumor segmentation. The UNet++ architecture comprises a series of feature
maps that represent progressively deeper network layers, capturing increasingly
refined representations of the input data.

DCRUNet++ enhances this architecture by replacing standard convolutional
layers with novel DCRMs across all encoder, decoder, and intermediate nodes.
These DCRMs perform convolutions, batch normalization, and swish activations,
integrated with skip connections to facilitate gradient flow and improve learning
efficiency. Feature maps are extracted at different depths, with DCRM0,0 to
DCRM0,4 representing the initial row of refined representations, and deeper
layers like DCRM1,0 to DCRM1,3, DCRM2,0 to DCRM2,2, and DCRM3,0 to
DCRM3,1 providing progressively abstract and high-level features, culminating
in DCRM4,0, the deepest feature map, illustrated in Fig. 1(b).

Fig. 1. (a) DepthWise Convolutional Residual Module Blocks (b) Overall Architec-
ture of the Proposed DCRUNet++ Model (c) Squeeze-and-Excitation Block within
DCRUNet++ Model

Dense skip connections aggregate features across all layers, while standard
skip connections directly link corresponding encoder and decoder layers to retain
high-resolution details. The model employs learnable upsampling using Conv2D
transpose layers, which increase spatial dimensions during training. Squeeze-
and-Excitation (SE) blocks, as shown in Fig. 1(c), depicted as yellow boxes,
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recalibrate channel-wise feature responses, enhancing feature representation.The
decoder’s final output, DCRM0,4, is achieved by selecting the optimal channel
from eight feature maps. This process integrates dense skip interconnections
from DCRM0,0 to DCRM0,3, full-scale skip intraconnections from DCRM4,0,
DCRM3,1, DCRM2,2, and the Conv2D transpose of DCRM1,3. The restruc-
tured skip connections enhance the similarity between encoder and decoder fea-
tures, aiding the optimizer during training and boosting the model’s learning
capability.

Full-scale skip connections bridge deep and shallow layers in the intermediate
and decoder sub-networks, ensuring efficient gradient flow and feature reuse. DS
is implemented by applying multiple loss functions (L) at various intermediate
layers, compelling the network to produce useful features at multiple scales and
depths. The final output, a segmentation map of the brain tumor, is generated by
integrating dense skip interconnections and full-scale skip intraconnections from
various layers, resulting in comprehensive feature utilization. This architecture
efficiently combines residual learning, dense connectivity, learnable upsampling,
SE blocks, and DS to achieve high-performance brain tumor segmentation.

2.2.1 Depthwise Convolutional Residual Module The architectural design
of the proposed residual module blocks, depicted in the Fig 1 (a), processes the
input Xl through two parallel branches and subsequently merges their results.

In the left branch, the input initially undergoes a depthwise convolution with
a 3x3 kernel, performing convolutions independently on each input channel. This
layer is computationally efficient and excels at capturing spatial characteristics.
Next, a pointwise convolution (1x1) merges features across a wide range of chan-
nels, significantly enhancing the depthwise convolution’s output by integrating
information across the complete feature map, leading to a more comprehensive
representation. We then introduce batch normalization as a regularization tech-
nique to prevent overfitting. We utilize the Swish activation function, denoted
as:

Swish(x) = x · σ(x) (1)

This activation function combines linear and non-linear characteristics through
the multiplication of the input variable x with its sigmoid activation, resulting
in a continuous and non-monotonic change. Our experiments demonstrated that
Swish enhances model performance compared to conventional activation func-
tions such as ReLU. Furthermore, we incorporate a dropout layer with a 50%
rate, which randomly deactivates half of the neurons during each training cycle.
This layer helps alleviate overfitting by encouraging the network to learn more
reliable features. The output then goes through an additional 3x3 convolution
layer to further refine the feature representation, followed by another round of
batch normalization and Swish activation.

In the right branch, the input undergoes a standard 3x3 convolution layer,
primarily focusing on acquiring spatial features, followed by batch normalization.
The outputs from both branches, F1(x) and F2(x), are then merged through
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element-wise addition. This approach effectively mitigates the vanishing gradi-
ent issue. We introduce a batch normalization layer for the combined result to
standardize the activations. Finally, a Swish activation function is applied to
produce the final output, Xl+1.

2.2.2 Deep Supervision DS is integrated into the proposed model architec-
ture, allowing it to operate in two distinct modes: (1) accurate mode, where the
outputs of the model’s branches are summed to compute the loss, and (2) fast
mode, which selects the branch with the optimal result and prunes the model to
enhance its speed. As shown in Fig. 2, the loss function is applied to the outputs
of the 8 branches in the proposed DCRUNet++ architecture. Specifically, the
implementation proceeds as follows: first, the dense skip interconnections and
full-scale skip intraconnections generate the first layer feature maps DCRM0,j

with j ∈ [1, 2, 3] and DCRM0,4 at multiple semantic levels.

Fig. 2. The visual flowchart of DS in the proposed DCRUNet++ model demonstrates
that DS serves two functions: (a) model pruning and (b) improvement of learning
for hierarchical representations. Adding a loss function to each branch, followed by a
1 × 1 convolution operation, produces the loss Li, where i ∈ [1, 4]. LIn is utilized to
supervise model pruning, while LDe is used to enhance feature learning in the model.
It is noteworthy that these two DS forms, (a) and (b), employ distinct implementation
approaches.

The feature maps are processed through a 1 × 1 convolution followed by a
ReLU activation function, producing the output results. By comparing these
results with the ground truth (GT), the loss LIn is computed to supervise the
model for pruning. Additionally, the decoder branches DCRM1,3, DCRM2,2,
DCRM3,1, and DCRM4,0 are also processed by a 1×1 convolution and ReLU acti-
vation function, achieving their respective final results. Comparing these results
with the appropriately down-scaled GT, the loss LDe is calculated, facilitating
DS for model training. This DS approach enhances the learning of hierarchical
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representations from full-scale feature maps, ensuring robust feature extraction
and effective gradient flow throughout the network.

2.3 Loss Function

In the proposed brain tumor segmentation methodology, we employ an integrated
loss function framework that synergistically combines Binary Cross Entropy
(BCE) loss and Dice loss. This approach aims to optimize both segmentation
accuracy and spatial overlap, which are essential for the precise delineation of
brain tumor regions in MRI scans.

The loss function L(Mi, T ) for each intermediate feature map Mi incorporates
both BCE loss and Dice loss to exploit their complementary strengths, thereby
enhancing the performance of the deep learning model.

The combined loss L(Mi, T ) is formulated as:

L(Mi, T ) = BCE + α · Dice (2)

where α is a hyperparameter that adjusts the contribution of the Dice loss to
the overall loss. In our implementation, α is set to 0.001, assigning a minor
weight to the Dice loss while predominantly relying on the BCE loss for training
stability. The feature maps M1,M2,M3, and M4 are derived from the initial lay-
ers, denoted as DCRM0,1,DCRM0,2,DCRM0,3, and DCRM0,4, respectively.
The subsequent feature maps M5,M6,M7, and M8 are obtained from later lay-
ers, specifically DCRM4,0,DCRM3,1,DCRM2,2, and DCRM1,3, respectively
as shown in Fig. 2.

Let {Mi}8i=1 represent the intermediate feature maps produced by the net-
work, and L(Mi, T ) denote the loss function computed between the intermediate
feature map Mi and the ground truth target T . The weights assigned to the losses
from these intermediate stages are as follows:

– The 4th and 8th feature maps (M4 and M8) are assigned a weight of 0.2 each.
– The remaining six feature maps (M1,M2,M3,M5,M6, and M7) are assigned

a weight of 0.1 each.

The final loss Lfinal is computed as the weighted sum of the individual losses
from each of these intermediate feature maps. Mathematically, this is expressed
as:

Lfinal =
8∑

i=1

wi · L(Mi, T ) (3)

where the weights wi are defined as:

wi =

{
0.2 if i = 4 or i = 8
0.1 otherwise

(4)

Consequently, these losses receive greater emphasis in the overall loss compu-
tation. Such an approach facilitates iterative refinement of model predictions
across various stages, fostering improved convergence and performance through
effective utilization of intermediate supervision signals.
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3 Experiment

3.1 Dataset

We leveraged the TCGA-LGG dataset from Kaggle, originally sourced from
The Cancer Imaging Archive (TCIA). This comprehensive dataset includes 3929
images derived from 110 participants, classified into 1373 images labeled as class
’1’ (Tumor) and 2556 images labeled as class ’0’ (Normal). For training our
proposed model, we designated 2750 images for training, 589 images for testing,
and 590 images for validation. Each image in the dataset is a 2D representation
with precisely defined FLAIR abnormality masks, each measuring 256 x 256
pixels. Representative samples of the dataset are displayed in Fig. 3.

Fig. 3. Few samples of dataset. (a) Original Image (b) Original Mask

3.2 Implementation Details

We employ a variety of libraries and frameworks for image segmentation and pro-
cessing, including segmentation-models-pytorch and OpenCV. To enhance the
diversity of our dataset, we use Augmentor, while SciPy’s morphology module
is applied for morphological operations. Additionally, image transformations are
conducted using torchvision’s transforms module. Our computational tasks are
executed on Google Colab Pro+, which features a GPU A100 accelerator. This
setup offers exceptional performance, driven by an NVIDIA A100 GPU with
6,912 CUDA cores and 40 GB of high-bandwidth memory, alongside an Intel
Xeon processor and SSD-based storage.
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Dataset Split In the proposed DCRUNet++ model, the dataset undergoes a
stratified split into training (70%), testing (10%), and validation (20%) subsets.
Initially, 10% of the data is allocated to the testing set, which is then evenly
divided into distinct testing and validation subsets. This method ensures a bal-
anced distribution of data across all three subsets, enhancing the robustness of
model evaluation.

Table 1. Hyperparamters used for training the model.

Input image size 256x256x3
Number of epochs 100

Batch size 2
Patience 6

Learning rate 3 × 10−4

Optimizer Adam

3.3 Results

To rigorously evaluate the effectiveness of the proposed DCRUNet++ model
for brain tumor segmentation, we performed a series of experiments on the
TCGA-LGG dataset, comprising a The hyperparameters, critical for the model’s
training and inference processes, were meticulously configured according to the
detailed specifications outlined in Table 1, including the learning rate, batch
size, number of epochs, optimizer settings, data augmentation techniques, loss
functions, and regularization methods. The performance metrics obtained from
our evaluations are as follows: Mean IoU of 0.9155, Dice Coefficient of 0.9467,
Mean Accuracy of 0.9991, and Loss of 0.0708. These results were visualized
through respective plots, demonstrating the model’s performance across various
evaluation metrics. comprehensive collection of lower-grade glioma images.

The accuracy plot for the proposed DCRUNet++ model for brain tumor
segmentation is shown in Fig. 4(a). The Dice Coefficient, with a value close to 1,
confirms the model’s proficiency in accurate segmentation, maintaining a high
level of overlap while minimizing false positives and negatives. The near-perfect
Mean Accuracy suggests the model’s predictions are highly consistent with the
ground truth across all pixels, underscoring its robustness and generalization
capability, as shown in Fig. 4(b). The low loss value indicates minimal discrep-
ancy between predicted outputs and actual labels during training, suggesting
optimal parameter tuning, as shown in Fig. 4(c). The high Mean IoU indicates
substantial overlap between predicted segmentation and ground truth, reflecting
precise boundary delineation capabilities, as shown in Fig. 4(d). Several seg-
mented images are shown in Fig. 5. The leftmost images are the original images,
the middle ones are the original masks, and the rightmost are the segmented
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Fig. 4. Training and validation curves of (a) Accuracy, (b) Dice Coefficient, (c) Loss,
and (d) IoU

Fig. 5. (a) Independent Image, (b) Ground Truth Image, and (c) Segmented Image by
DCRUNet++ Model
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images by our proposed DCRUNet++ model. As we can clearly see in Fig. 5,
the segmented images by the proposed DCRUNet++ model closely match the
original masks in most cases, showing exact boundaries as the original tumor.

The superior performance of the DCRUNet++ model can be attributed to
several key architectural and methodological innovations: novel RMs enhance
gradient flow and mitigate the vanishing gradient problem, enabling the training
of deeper networks for robust feature learning; Dense Skip Connections aggre-
gate features from all preceding layers, ensuring effective utilization of multi-scale
information throughout the network; Learnable Upsampling with Conv2D Trans-
pose Layers optimizes spatial dimension increases, preserving important details
and enhancing segmentation quality; SE Blocks recalibrate channel-wise feature
responses, improving the model’s focus on tumor regions and boosting accuracy;
DS, incorporating multiple loss functions at various intermediate layers, compels
the network to produce valuable features at multiple scales and depths, enhanc-
ing overall learning and performance; Comprehensive Data Augmentation and
Regularization, including extensive data augmentation techniques and regular-
ization methods like dropout and weight decay, increase training data diversity
and prevent overfitting, ensuring robust performance on test data. Collectively,
these results validate the DCRUNet++ model’s efficacy and robustness, under-
scoring its potential for clinical application in aiding the diagnosis and treatment
planning for glioma patients.

3.4 Comparative Analysis

In recent studies, various approaches have been employed to tackle brain tumor
segmentation using MRI images. Buda et al. [3] utilized the FLAIR dataset
from Kaggle LGG and reported an average Dice coefficient of 0.82, indicating a
reasonably good performance. Similarly, Naser et al. [24] achieved a Dice coef-
ficient of 0.84 in their segmentation task. Building on these efforts, Kumar et
al. [17] further advanced the field by addressing the challenge of differing inten-
sities and merging boundaries between brain tissues and tumor regions. Their
model, trained on the same dataset, attained impressive segmentation results,
boasting a Dice coefficient of 0.9056 and mean IoU of 0.8293. To the best of
our knowledge, these are the only three papers that have been published on the
Kaggle LGG dataset. In our research, we aimed to surpass these benchmarks by
developing a novel DCRUNet++ model for brain tumor segmentation using the
FLAIR image dataset. The proposed DCRUNet++ model integrates advanced
architectural features such as RMs, dense skip connections, learnable upsampling
with Conv2D transpose layers, and SE blocks, which collectively enhance feature
extraction, gradient flow, and spatial resolution retention. These innovations con-
tribute to the model’s superior performance. The proposed DCRUNet++ model
achieved a Dice coefficient of 0.9467 and an IoU of 0.9155, significantly outper-
forming previous studies and demonstrating competitive performance, as shown
in Table 2. This substantial improvement underscores the efficacy of our model
in accurately segmenting brain tumors, providing a robust tool for clinical appli-
cations in MRI-based diagnostics.
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Table 2. Comparison of the Proposed DCRUNet++ Model with Existing Models

Author Modalities Dataset IoU Dice CoefficientAccuracy

Buda et al. [3] FLAIR TCGA LGG NA 0.82 NA
Naser et al. [24] FLAIR TCGA LGG NA 0.84 0.9200

Chakroborty et al. [4] FLAIR TCGA LGG 0.8765 0.9056 0.9984
Kumar et al. [17] FLAIR TCGA LGG 0.8293 0.9056 0.9956

Kunjumon et al. [18] FLAIR TCGA LGG 0.8300 0.9230 0.9980
Kamal et al. [10] FLAIR TCGA LGG 0.8900 NA 0.9600

Proposed DCRUNet++ FLAIR TCGA LGG0.9155 0.9467 0.9991

4 Conclusion and Future scope

In this research, the DCRUNet++ model was developed for brain tumor seg-
mentation using MRI images from the TCGA-LGG dataset, featuring advanced
architectural enhancements like RMs, dense skip connections, learnable upsam-
pling with Conv2D transpose layers, and SE blocks, achieving a Dice coefficient
of 0.9467 and an IoU of 0.9155, which significantly outperform previous models
and demonstrate its robustness and efficacy for clinical applications. The high
accuracy and low loss observed during testing underscore the model’s effective-
ness in accurately segmenting brain tumors. Our approach demonstrates sub-
stantial improvements over existing methods by addressing challenges such as
differing intensities and merging boundaries between brain tissues and tumor
regions. However, the model’s increased computational complexity due to cus-
tom loss functions, dense skip connections, and residual modules, coupled with its
sensitivity to hyperparameter tuning and lack of external validation on indepen-
dent datasets, limits its practical implementation in resource-constrained envi-
ronments and raises concerns about its generalizability and reliability across
diverse clinical settings, with future work focusing on refinement, exploration of
additional datasets, and integration into clinical workflows.
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Abstract. Driver drowsiness is identified as a critical factor in road
accidents, necessitating robust detection systems to enhance road safety.
This study proposes a driver drowsiness detection system, DrowzEE-
G-Mamba, that combines Electroencephalography (EEG) with State
Space Models (SSMs). EEG data, known for its sensitivity to alert-
ness, is used to model driver state transitions between alert and drowsy.
Compared to traditional methods, DrowzEE-G-Mamba achieves signifi-
cantly improved detection rates and reduced false positives. Notably, it
achieves a peak accuracy of 83.24% on the SEED-VIG dataset, surpassing
existing techniques. The system maintains high accuracy across varying
complexities, making it suitable for real-time applications with limited
resources. This robustness is attributed to the combination of channel-
split, channel-concatenation, and channel-shuffle operations within the
architecture, optimizing information flow from EEG data. Additionally,
the integration of convolutional layers and SSMs facilitates comprehen-
sive analysis, capturing both local features and long-range dependencies
in the EEG signals. These findings suggest the potential of DrowzEE-G-
Mamba for enhancing road safety through accurate drowsiness detection.
It also paves the way for developing powerful SSM-based AI algorithms
in Brain-Computer Interface applications.

Keywords: Cognitive State Monitoring · Driver Fatigue · EEG ·
Mamba · Safety · State Space Model

1 Introduction

Driver drowsiness detection is crucial for road safety, as fatigue and sleepiness are
major causes of car crashes, often leading to severe injuries or fatalities. Unlike
intoxication, drowsiness develops gradually and can be unnoticed by drivers.
Effective detection systems can prevent accidents by alerting drivers to take
corrective actions, such as resting. With the rise of advanced driver-assistance
systems (ADAS) [28] and autonomous vehicles, integrating robust drowsiness
detection is essential for enhancing transportation safety and reliability. These
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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systems not only protect individual drivers but also contribute to public safety
by reducing drowsiness-induced accidents.

EEG is a valuable tool for real-time detection and analysis of cognitive states,
capturing the brain’s electrical activity [34]. EEG measures voltage fluctuations
from neuronal ionic currents, offering insights into mental states like attention,
alertness, fatigue, and cognitive load [29]. Its high temporal resolution is ideal
for monitoring rapid changes in brain activity, making it perfect for transient
cognitive state monitoring. By analyzing frequency bands (delta, theta, alpha,
beta, and gamma) and spatial distribution, researchers can infer neural mecha-
nisms behind various cognitive processes [26]. This capability is crucial in brain-
computer interfaces (BCIs), neurofeedback, and cognitive neuroscience research.
EEG’s non-invasive nature and relatively low cost enhance its practicality for
cognitive state detection, advancing both clinical and real-world applications.

Due to the complex, non-linear nature of EEG data, standard deep learning
models struggle with accurate analysis. This study explores Mamba [14], a state-
of-the-art state-space model (SSM), for effective driver drowsiness detection
using EEG signals. Mamba excels at capturing the intricate patterns and non-
linearities within EEG data. It extracts relevant features and integrates them
with a hidden state space, reflecting the underlying brain activity. This allows
Mamba to effectively manage noise and uncertainties inherent in EEG data,
leading to more accurate drowsiness detection. Additionally, Mamba’s efficient
feature extraction and adaptive learning capabilities make it ideal for real-time
monitoring and prediction, surpassing traditional EEG-based methods. Build-
ing upon the advantages of structured SSMs [14], Mamba offers computational
efficiency and excels at capturing long-range dependencies within data. Notably,
Mamba addresses limitations of previous models by incorporating time-varying
parameters and employing a novel hardware-aware algorithm for efficient train-
ing and inference [44]. This versatility has been demonstrated in various visual
tasks, including ImageNet classification [44], remote sensing image classifica-
tion [5], image dehazing [43], point cloud analysis [21], and medical image seg-
mentation [31], showcasing Mamba’s potential beyond driver drowsiness detec-
tion and opening new avenues for research in computational neuroscience.

This paper introduces a driver drowsiness detection system using EEG data
and the Mamba state-space model. Mamba’s ability to handle complex brain
activity dynamics makes it ideal for analyzing drowsiness-related EEG changes.
The system leverages Mamba’s robustness and adaptability to noise and non-
linearity in EEG signals. This Mamba-based approach aims to surpass existing
methods by providing a more precise and responsive solution, potentially reduc-
ing fatigue-related accidents. Additionally, Mamba’s advanced feature extraction
capabilities offer broader applications in computational neuroscience and BCIs,
as demonstrated by its effectiveness in distinguishing cognitive loads. Integrating
Mamba into EEG research holds promise for unlocking new discoveries in brain
function. The key contributions of this work are as follows:

– This research introduces DrowzEE-G-Mamba, a novel deep learning model
leveraging the Mamba state-space model for real-time driver drowsiness detec-
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tion using EEG data. DrowzEE-G-Mamba surpasses existing methods by
achieving a peak accuracy of 83.24% on the SEED-VIG dataset.

– DrowzEE-G-Mamba demonstrates exceptional robustness, maintaining high
accuracy across varying model complexities. Notably, it achieves a remark-
able 83.24% accuracy even with a minimal 10.1k parameters. This efficiency
translates to faster training, lower memory footprint, and easier deployment
on resource-constrained devices.

– DrowzEE-G-Mamba exhibits a smaller confidence interval compared to other
methods, indicating greater consistency in performance. This, coupled with
its adaptability across various computational settings, suggests its potential
for diverse practical applications beyond driver drowsiness detection, opening
doors for real-time brain activity monitoring in other domains.

This paper presents a methodical exploration of EEG-based fatigue detection
and its potential for enhancing road safety technologies. In Section 2, a review
of recent literature on driver drowsiness and vigilance is conducted. Section 3
details the methodology employed in this research. The empirical findings of the
study are presented in Section 4. Finally, the discussion in Section 5 extends
beyond the results, exploring the broader implications and future directions for
this research.

2 Related Work

Early research in EEG-based fatigue detection identified biomarkers such as
variations in theta and alpha EEG frequency bands [15]. Deep learning has fur-
ther transformed EEG analysis, with Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) adeptly handling spatial and tempo-
ral data [32]. Hybrid models combining CNNs with RNNs or other techniques
enhance feature extraction [3], offering superior accuracy and computational
efficiency for real-time applications [38]. These models manage large, complex
datasets without extensive feature engineering, outperforming traditional meth-
ods [37]. However, variability in EEG signals across individuals affects model
generalization [17].

Driver drowsiness detection utilizes physiological (EEG, ECG, EOG) [18],
vehicle behavior (steering, lane departure, pedal use) [9], and behavioral (facial
expressions, head position, eye closure) [4] signals to assess driver state. Physi-
ological methods are accurate but intrusive, while vehicle-based and behavioral
methods offer non-intrusive detection but may be less accurate. Recent advance-
ments integrate multiple detection methods (physiological, behavioral, vehicle-
based) for improved drowsiness detection accuracy and reliability. Real-world
EEG systems face challenges: discomfort from traditional setups, artifact vulner-
ability, and inter-individual variability requiring personalized models [11]. Future
systems should prioritize comfort (dry electrodes, wireless headsets), robust arti-
fact removal, and real-time processing with efficient algorithms. CNNs effectively
extract features from EEG signals [2], and Transformers excel at handling time-
series data and capturing long-range dependencies in EEG for tasks like mental
state classification and seizure detection [33,36].
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State space models (SSMs) offer a powerful tool in neuroscience to decipher
complex neural dynamics and behaviors. These models describe systems evolving
over time, inferring hidden states and underlying processes from observed neural
data [31]. This allows researchers to gain insights into neural activity, dynamics,
and behavior. SSMs are particularly useful for decoding neural activity to infer
hidden cognitive states, illustrating how neural populations interact and evolve,
and linking neural activity with behavior. A prominent application lies in brain-
machine interfaces (BMIs). For example, Wu et al. [39] used a Kalman filter
(an SSM) for real-time motor cortex decoding. Churchland et al. [6] analyzed
motor cortex dynamics with SSMs. Mante et al. [24] studied decision-making
in the prefrontal cortex using SSMs. Despite these advantages, such as flexi-
bility for diverse data types, hidden state inference, and prior knowledge inte-
gration, challenges remain. These include computational intensity, high-quality
data requirements, and difficulty interpreting the biological relevance of inferred
hidden states. Future research may focus on improving computational methods,
integrating multimodal data, and enhancing model interpretability.

While initially limited by computational demands, SSMs have evolved. The
Structured State Space Sequence Model (S4) [13] addresses this with efficient
kernel computations. Additionally, SSMs are now integrated into various deep
learning architectures [35]. However, constant sequence transformation restricts
context-based reasoning in standard models. Recent advancements like Mamba
(Selective SSM) introduce time-varying parameters for more efficient training
and inference [12]. This paves the way for applying SSMs to computer vision
tasks, similar to Transformers in NLP. Studies like ViS4mer [16] and S4ND [27]
utilize SSM blocks for modeling visual data across dimensions. VMamba [22] and
Vim [44] address direction-sensitivity and global context modeling, respectively.
SSMs are a powerful framework in neuroscience, providing deep insights into
neural dynamics and behavior. They decode neural activity, model population
dynamics, and study cognitive processes. As computational techniques and data
quality improve, SSMs are likely to play an even more critical role in advancing
our understanding of the brain.

3 Methodology

This section examines the foundational concepts underlying DrowzEE-G-
Mamba, a deep learning model designed for driver drowsiness detection using
EEG data. These concepts, such as State Space Models (SSMs) and their dis-
cretization process, are essential for capturing the complex relationships within
EEG signals. DrowzEE-G-Mamba’s overall architecture is then discussed which
is adapted from MedMamba [40]. 2D-Selective-Scan mechanism, adapted from
VMamba [22], is highlighted as crucial for extracting informative features from
the EEG data. Finally, the detailed modeling process of the SS-Conv-SSM block,
the fundamental building block of DrowzEE-G-Mamba, is examined to under-
stand how features indicative of drowsiness are efficiently extracted from EEG
signals.
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3.1 Preliminaries

Recent SSM-based models, such as Structured State Space Sequence Models (S4)
and Mamba, utilize a classical continuous system to map a 1D input function or
sequence, denoted as x(t) ∈ R, through intermediate implicit states h(t) ∈ RN ,
to an output y(t) ∈ R. This process can be represented by a linear Ordinary
Differential Equation (ODE) [12,22]:

h′(t) = Ah(t) + Bx(t)
y(t) = Ch(t)

(1)

Here, A ∈ RN×N represents the state matrix, while B ∈ RN×1 and C ∈ RN×1

denote the projection parameters.
The S4 Model and Mamba leverage discretization to make continuous systems

compatible with deep learning architectures. This process introduces a timescale
parameter, denoted by Δ, which transforms the continuous system matrices
A and B into their discrete counterparts, denoted by A and B. A common
discretization rule employed for this purpose is the zero-order hold (ZOH).

A = exp(ΔA)

B = (ΔA)−1(exp(ΔA) − I) · ΔB
(2)

After applying discretization with a step size Δ, Equation 1 transforms into
a linear recurrence form (Equation 3) as follows:

h′(t) = Ah(t) + Bx(t)
y(t) = Ch(t)

(3)

This equation represents the state update (h′) based on the previous state (h)
and the current input (x). Additionally, the output (y) is obtained by multiplying
the current state with an output matrix (C).

Finally, the SSM model employs a global convolution to efficiently capture
long-range dependencies within the input sequence:

K = (CB,CAB, . . . ,CA
L−1

B)

y = x ∗ K
(4)

This convolution utilizes a structured kernel (K), which incorporates the dis-
cretized state transition matrices (A, B) and the output matrix (C). The length
of the input sequence x is denoted by L.

3.2 DrowzEE-G-Mamba Architecture

DrowzEE-G-Mamba is a deep learning model proposed for driver drowsiness
detection. It takes inspiration from the architectural design and concepts of Med-
Mamba and VMamba. It utilizes a patch embedding layer to convert raw EEG
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data into a format suitable for subsequent processing. The model’s core consists
of stacked SS-Conv-SSM blocks, to capture complex spatio-temporal features
within EEG signals indicative of drowsiness. Patch merging layers downsample
the extracted features, facilitating efficient processing and classification. Finally,
a feature classifier accurately identifies drowsiness states based on the learned
feature representations.

Fig. 1. Architecture of DrowzEE-G-Mamba: BN, LN, linear, PWConv, and DWConv
represent batch normalization, layer normalization, linear layer, point-wise convolution,
and depth-wise convolution, respectively.

Figure 1 illustrates the DrowzEE-G-Mamba model architecture, which pro-
cesses EEG data in a series of multiple stacked stages. The model begins by
transforming the raw EEG data (dimensions H × W × 1) into a format suit-
able for subsequent processing through a patch embedding layer. The data then
undergoes a series of processing stages, each consisting of multiple SS-Conv-SSM
blocks followed by patch merging operations. These stages progressively reduce
the spatial dimensions of the feature maps while increasing the channel dimen-
sions. The final output of this processing pipeline is fed into a classifier, which
predicts the driver’s drowsiness state.

The core of DrowzEE-G-Mamba lies in its stacked SS-Conv-SSM blocks
(detailed structure in Figure 1 bottom section). These blocks are specifically
designed to capture the intricate spatio-temporal features within EEG signals
that are crucial for drowsiness detection. Each block consists of two branches:
Conv-Branch and SSM-Branch. Conv-Branch focuses on extracting local fea-
tures through standard operations like batch normalization (BN), convolutions
(Conv), pointwise convolutions (PWConv), and ReLU activations. SSM-Branch
leverages linear layers, depth-wise convolutions (DWConv), SiLU activations,
and structured state space 2D (SS2D) components to capture long-range depen-
dencies and global context within the EEG data. Finally, element-wise addition
and concatenation operations combine the features from both branches.
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A key aspect is the inclusion of a shuffle operation at the end of the block.
This helps mitigate potential information loss caused by the initial channel
split within the SS-Conv-SSM architecture. This dual-branch design empow-
ers DrowzEE-G-Mamba to efficiently learn complex patterns from EEG data,
making it well-suited for driver drowsiness detection and other cognitive state
analysis tasks. Inspired by ViTs, DrowzEE-G-Mamba employs a patch embed-
ding layer as the first processing step. This layer transforms the raw EEG data,
denoted as x ∈ RH×W×1, into non-overlapping patches of size 4 × 4. The patch
embedding layer achieves this transformation by mapping the single channel
dimension to a higher dimensionality (C) without flattening the EEG data into
a one-dimensional sequence. This approach preserves the two-dimensional (2D)
structure of the EEG data, which is crucial for capturing spatial relationships
within the signals. As a result, the patch embedding layer generates a feature
map with dimensions H

4 × W
4 × C.

Following the patch embedding, DrowzEE-G-Mamba leverages stacked SS-
Conv-SSM blocks in Stage 1 to process the feature map. These blocks are
designed to extract informative features from the EEG data. Crucially, they
capture both local details and long-range dependencies within the signals. Impor-
tantly, the dimensions of the feature map remain unchanged in this stage, allow-
ing the model to focus on extracting rich features without altering the spatial
resolution. To create hierarchical representations of the EEG data, patch merging
layers are employed after Stage 1. These layers perform down-sampling, progres-
sively reducing the spatial resolution (denoted by H and W ) of the feature maps.
In contrast, the channel dimension (denoted by C) typically doubles after each
patch merging layer. Stages 2, 3, and 4 repeat this process, resulting in progres-
sively lower spatial resolutions (e.g., H

16 × W
16 × 4C for Stage 2) and increased

channel dimensions. This down-sampling allows the model to learn complex pat-
terns across different scales of the EEG data while maintaining computational
efficiency. At the end of the network, a classifier with an adaptive global pooling
layer and a linear layer determines the category of the input.

3.3 2D Selective Scan

The 2D-selective-scan (SS2D) proposed by VMamba, is a core element of Med-
Mamba. SS2D adapts the selective scan space state sequence model (S6) designed
for natural language processing to address the “direction-sensitive” problem in
S6. To bridge the gap between 1-D array scanning and 2-D plane traversing,
SS2D introduces a Cross-Scan Module (CSM). CSM uses a four-way scanning
strategy, scanning from four corners across the feature map to the opposite loca-
tions, ensuring each pixel integrates information from all directions, achieving a
global receptive field without increasing computational complexity.

By incorporating CSM, SS2D maintains the linear complexity of S6 while
capturing long-range dependencies, essential for accurate medical image classifi-
cation. SS2D comprises three components: a scan expanding operation (CSM),
an S6 block, and a scan merging operation. The scan expanding operation unfolds
the input image along four directions (top-left to bottom-right, bottom-right to
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top-left, top-right to bottom-left, and bottom-left to top-right) into sequences.
The S6 block processes these sequences to extract features, ensuring thorough
scanning from various directions. Finally, the four directional features are merged
through scan merging to reconstruct the 2D feature map, resulting in an output
of the same size as the input. The S6 block, derived from Mamba, introduces
a selective mechanism based on S4 by adjusting SSM parameters according to
input. This enables the model to distinguish and retain relevant information
while filtering out irrelevant details. The detailed pseudo-code for the S6 block
can be found in the MedMamba [40].

3.4 SS-Conv-SSM Block

A hybrid basic block named SS-Conv-SSM, utilized in this work was introduced
in MedMamba [40]. This block integrates convolutional layers for extracting
local features with SSM’s ability to capture long-range dependencies. A grouped
convolution, introduced in AlexNet [19], uses multiple kernels per layer to pro-
mote learning various high and low level features was also incorporated into the
SS-Conv-SSM. SS-Conv-SSM is a lightweight dual-branch block (Figure 1). It
partitions the feature map into two groups using channel-split, then extracts
global and local information from each group through the Conv-Branch and
SSM-Branch, respectively. Finally, channel-concatenation restores the channel
dimension size, and channel-shuffle ensures information is not lost between chan-
nels due to grouped convolution operations [41]. Following the settings of classic
CNNs and ViTs, the activation functions in the Conv-Branch and SSM-Branch
are set to ReLU [1] and SiLU [10], respectively.

The modeling process of SS-Conv-SSM for feature maps is formalized. Given
a module input x ∈ RH×W×C and a module output y ∈ RH×W×C , f is used to
represent the channel-split, and then there is

x ∈ RH×W×Cxi=1,2 ∈ RH×W×C
2

Next, the f−1 and g are used to represent channel-concatenation and channel-
shuffle respectively. To match the convolution operation, a permute operation is
utilized to rearrange the original feature map. Based on the above, the modeling
process of Conv-Branch can be defined as follows:

x1 ∈ R
C
2 ×H×W ← permute(x1)

x1
′ = BatchNorm1(x1)

x1
′′ = ReLU(BatchNorm2(Conv3×3(x1

′)))

x1
′′′ = ReLU(BatchNorm3(Conv3×3(x1

′′)))

x̂1 = ReLU(PWConv(x1
′′′))

x̃1 ∈ RH×W×C
2 ← permute(x̂1)
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Meanwhile, the modeling process of SSM-Branch can be defined as follows:

x2 = LayerNorm1(x2)

x2
′ = SiLU(DWConv(Linear(x2)))

x2
′′ = LayerNorm2(SS2D(x2

′))

x2
′′′ = SiLU(Linear(x2))

x̃2 = Linear(x2
′′ ⊗ x2

′′′)

In summary, the output of SS-Conv-SSM be formulated as follows:

y = x ⊕ g(f−1(x̃1, x̃2))

4 Results and Discussion

This section presents the findings of this study and analyzes their significance for
the field of driver drowsiness research. The analysis focuses on the effectiveness
of the employed methods and the implications of the observed outcomes. This is
followed by a comparative analysis with relevant findings from existing literature
to contextualize our results.

4.1 Experimental Data

This study utilizes the SEED-VIG dataset [42], a valuable open-source resource
designed to investigate driver vigilance and drowsiness through EEG recordings.
The dataset offers a diverse subject pool, encompassing recordings from 23 par-
ticipants. To enhance real-world applicability, participants engaged in a driving
simulation designed to closely mimic real-world driving conditions. EEG record-
ings were captured using a 17-channel montage based on the international 10-20
system. This montage specifically targeted key temporal (FT7, FT8, T7, T8,
TP7, TP8) and posterior (CP1, CP2, P1, PZ, P2, PO3, POZ, PO4, O1, OZ,
O2) brain regions, ensuring comprehensive coverage of brain activity relevant to
vigilance and drowsiness. High temporal resolution, crucial for detailed analy-
sis, was achieved with a sampling rate of 1000 Hz. Sessions were strategically
scheduled post-lunch to encourage the onset of fatigue in participants.

Drowsiness states were quantified using the PERCLOS (percentage of eyelid
closure) metric. A threshold of 0.5 was employed to classify PERCLOS values
into “awake” and “drowsy” states, enabling a binary classification approach for
evaluating driver fatigue detection methods. To minimize artifacts and improve
computational efficiency, EEG signals were band-pass filtered (1-75 Hz) and
down-sampled to 200 Hz. Subsequently, the data was segmented into one-second
epochs, resulting in a standardized format of (17, 200, 1) per epoch. The entire
dataset comprised approximately 40,710 samples and was divided into training
(70%), validation (15%), and test (15%) sets to facilitate model development
and evaluation.
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4.2 Implementation Details

The computational environment consisted of a DELL Precision 7820 Tower
Workstation equipped with Ubuntu 22.04 operating system, an Intel Core(TM)
Xeon Silver 4216 CPU, and an NVIDIA RTX A4000 12GB GPU. This hard-
ware configuration facilitated the implementation of Deep Learning (DL) models
using Python 3.12 and the PyTorch library. The Adam optimizer, recognized for
its efficiency, was employed with its default hyperparameters (η = 0.001, β1 =
0.9, β2 = 0.999). Both EEGNet and TSception models underwent training for
100 epochs, utilizing a batch size of 16 and a learning rate of 1e − 4. For the
Support Vector Machine (SVM) classification, the Radial Basis Function (RBF)
kernel from scikit-learn [30] was implemented with its default settings. Stratified
five-fold cross-validation was employed to assess classification accuracy, with the
results averaged for a robust evaluation.

4.3 Classifiers

This work employs a balanced evaluation approach using three established clas-
sifiers for EEG-based emotion classification. Support Vector Machine (SVM) [7]
is a popular supervised learning model for classification, known for its ability to
maximize the class margin for new data points. SVMs can handle non-linear
classification through the kernel trick, effectively mapping inputs into high-
dimensional spaces. EEGNet [20] is a CNN-based architecture that achieves
competitive accuracy using deep and separable convolutions. It incorporates
temporal convolution for learning frequency filters, depth-wise convolution for
frequency-specific spatial filters, and separable convolution for efficient feature
map combinations. TSception [8] utilizes a dynamic temporal layer to learn
temporal and frequency representations from EEG channels. It also includes
an asymmetric spatial layer for capturing global spatial patterns and emotional
asymmetry, a high-level fusion layer, and a final classifier that leverages various
convolutional kernel sizes for spatial analysis. ConvNext [23] is a state-of-the-
art CNN architecture that achieves competitive performance on various image
classification benchmarks. It incorporates design principles from recent trans-
former models to enhance feature learning and improve efficiency compared to
traditional CNNs. LMDA-Net [25] is a lightweight deep learning model specifi-
cally designed for EEG-based emotion classification. It employs a multi-modal
approach, combining temporal and spatial features, to effectively capture the
complex patterns in EEG signals, resulting in efficient and accurate emotion
recognition.

4.4 Evaluation

The results presented in Table 1 demonstrate the effectiveness of different meth-
ods for driver drowsiness detection on the SEED-VIG dataset. The evaluation
revealed a clear hierarchy in the effectiveness of the compared methods for driver
drowsiness detection on the SEED-VIG dataset. Support Vector Machine (SVM)
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Table 1. Results of different methods on SEED-VIG dataset for driver drowsiness
detection with 95% confidence interval

Method Accuracy

SVM [7] 65.52 ± 0.02

EEGNet [20] 80.74 ± 0.75

TSception [8] 83.15 ± 0.36

ConvNeXt [23] 81.95 ± 0.61

LMDA-Net [25] 81.06 ± 0.99

DrowzEE-G-Mamba 83.24± 0.24

achieved the lowest accuracy (65.52%) with a narrow confidence interval (0.02),
indicating consistent but limited performance. This suggests SVM may not ade-
quately capture the complexities of EEG data for this task. EEGNet demon-
strated a significant improvement over SVM, achieving an accuracy of 80.74%.
However, its larger confidence interval (0.75) implies greater variability in per-
formance. While superior to SVM, this suggests EEGNet might benefit from fur-
ther optimization for drowsiness detection. TSception surpassed EEGNet with
an accuracy of 83.15% and a reduced confidence interval (0.36), indicating both
higher accuracy and more consistent performance. This suggests TSception’s
architecture effectively captures relevant features in the EEG data. ConvNeXt
achieved an accuracy of 81.95% and LMDA-Net obtained an accuracy of 81.06%.
While their performance was comparable, DrowzEE-G-Mamba’s higher accuracy
and lower variability make it a more reliable choice for real-time driver drowsi-
ness detection.

DrowzEE-G-Mamba emerged as the most effective method, achieving the
highest accuracy (83.24%) with the smallest confidence interval (0.24). This
signifies not only superior detection accuracy but also the most consistent
results. By combining EEG data with State Space Models (SSMs), DrowzEE-
G-Mamba effectively models both local and long-range dependencies within the
data, leading to superior drowsiness state detection. In conclusion, these findings
highlight the clear advantage of DrowzEE-G-Mamba compared to traditional
methods (SVM) and advanced neural network approaches (EEGNet, TScep-
tion, ConvNeXt, and LMDA-Net) for driver drowsiness detection on the SEED-
VIG dataset. Its high accuracy and low variability make DrowzEE-G-Mamba a
promising tool for real-time driver drowsiness detection, potentially contributing
to accident prevention and improved road safety.

The chart in Figure 2 illustrates the accuracy of the DrowzEE-G-Mamba
model on the SEED-VIG dataset for driver drowsiness detection, plotted against
the number of parameters (in thousands). The model achieves an accuracy of
82.64% with 819k parameters. As the number of parameters decreases, the accu-
racy generally remains above 81%, with slight fluctuations. For instance, at 357k
parameters, the accuracy is 82.11%, while at 209k parameters, it is 82.17%. The
lowest number of parameters tested is 10.1k, where the accuracy maintains a



292 G. Siddhad et al.

Fig. 2. This chart shows the impact of model complexity on driver drowsiness detection
using the SEED-ViG dataset. It visualizes the relationship between average model accu-
racy (percentage) with 95% confidence interval and the number of parameters (thou-
sands). As evident, accuracy increases with model complexity, ranging from 81.78% for
an 819K parameter model to 83.24% for a 10.1K parameter model. One of the primary
strategies employed to reduce the model size was the careful adjustment of hyper-
parameters, specifically through the elimination of certain blocks within the model
architecture.

robust peak at 83.24%. This chart demonstrates that DrowzEE-G-Mamba main-
tains high accuracy across a range of model complexities, with only a minor
fluctuation in performance as the number of parameters decreases. The model
which gave the highest accuracy with 10.1k parameters had one SS-Conv-SSM
block with 32 dimensions.

The combined analysis of the presented table and chart suggests DrowzEE-G-
Mamba’s exceptional potential as a highly effective and reliable model for driver
drowsiness detection. Notably, the model achieves accuracy levels higher than
the peak performance of leading models like TSception. Furthermore, DrowzEE-
G-Mamba demonstrates a remarkable characteristic, it maintains this high accu-
racy across varying levels of model complexity (as reflected by different parame-
ter counts). This robustness makes DrowzEE-G-Mamba particularly well-suited
for real-time applications where computational resources might be constrained.
The model’s consistency in performance is further emphasized by the narrow
confidence interval and stable accuracy observed across parameter counts. This
consistency underscores DrowzEE-G-Mamba’s suitability for practical deploy-
ment in real-world scenarios.

5 Conclusion

This research investigated the efficacy of DrowzEE-G-Mamba, a deep learn-
ing model for driver drowsiness detection using EEG data. DrowzEE-G-Mamba
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achieved a peak accuracy of 83.24% on the SEED-VIG dataset, demonstrat-
ing its effectiveness. Notably, the model maintained high accuracy across vary-
ing parameter complexities, indicating strong robustness for real-time appli-
cations with limited computational resources. DrowzEE-G-Mamba’s architec-
ture balances sophistication with efficiency. The model leverages channel-split,
channel-concatenation, and channel-shuffle operations to optimize information
flow within the EEG data. DrowzEE-G-Mamba surpasses existing methods in
two key aspects: accuracy and robustness. It achieves the highest accuracy while
maintaining this performance even with a significant number of parameters. This
translates to consistent and reliable detection, even with a larger computational
footprint, making it a strong candidate for real-time driver drowsiness detection.

Overall, DrowzEE-G-Mamba presents a robust, efficient, and highly accurate
solution for driver drowsiness detection. Its ability to function across diverse com-
putational constraints makes it a promising tool for real-time drowsiness moni-
toring and enhancing road safety. Future work will focus on further optimization
and explore applications in broader cognitive state detection tasks, expanding
its impact and utility in various real-world scenarios. While challenges remain
in refining accuracy and generalizability of fatigue detection systems, DrowzEE-
G-Mamba’s performance highlights the potential for significant advancements in
real-time driver fatigue detection. Future research will target further accuracy
improvements, applicability expansion, and integration into practical, real-world
applications, ultimately contributing to safer driving environments.
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Abstract. Drowsy driving emerges as a major factor contributing to
traffic accidents. Drowsiness is characterized by a feeling of tiredness
and a compelling desire to sleep. It is evident through a gradual decrease
in Reaction Time (RT) of the driver. Reaction Time (RT) refers to the
duration taken for a person or system to respond to a given sudden
unexpected stimuli or event. Accurate prediction of Reaction Time (RT)
to unexpected events is crucial for enhancing safety and performance.
Electroencephalogram (EEG), capturing the brain’s electrical signals,
demonstrates the most substantial correlation with drowsiness. Conse-
quently, EEG is broadly recognized as a trustworthy tool for assessing
drowsiness, fatigue, and overall performance. While many studies have
utilized traditional machine learning and deep learning techniques to
detect drowsiness or alertness from EEG data, there has been limited
research focused on accurately predicting Reaction Time (RT). In this
study, we aim to forecast drivers’ reaction times using EEG data through
a novel Covariance 2D CNN-LSTM framework. Here, the objective is to
forecast Reaction Time (RT) based on a 5-second EEG trial that pre-
cedes it. The superiority of the proposed method was validated through
regression metrics, specifically Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE), and was compared against current state-
of-the-art methods.

Keywords: EEG · drowsiness detection · regression · CNN · LSTM ·
Reaction Time (RT) · RMSE · MAE

1 Introduction

Driving fatigue is a significant public safety issue, contributing to 15% to 20%
of fatal traffic accidents. Efforts have been made to develop methods to detect
fatigue and reduce related fatalities and economic losses. Drowsiness, character-
ized by fatigue and a strong urge to sleep, increases RT, the duration it takes to
respond to a sudden stimulus. While many studies detect ”drowsy” or ”alert”
states from EEG data, few focus on accurately predicting RT from EEG. This
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study uses EEG data to directly predict RT, developing an advanced RT pre-
diction model for drowsiness research.

Our study is organized as follows: Section 2 reviews recent works. Section 3
mentions about methods and materials, including EEG data collection, pre-
processing, Covariance Matrix Transformation, proposed model architecture,
and experimental setup. Sections 4 and 5 provide the results and discussions
part, while the conclusion is covered in Section 6.

2 Related Work

Recent methods for detecting Reaction Time (RT) and fatigue have leveraged the
extraction of various features from Electromyography (EMG) [7], Electrocardio-
gram (ECG) [4], Electrooculogram (EOG) [6] and Electroencephalogram (EEG)
[8–10]. Melnicuk et al. recently provided a comprehensive review on driver state
monitoring technologies that incorporate multiple features [5], for optimizing
driving performance. Among the various features studied, physiological signals,
especially EEG directly correlation with Reaction Time (RT) without being
affected by external factors. EEG signals, in particular, have consistently been
shown to be reliable biomarkers for detecting driving fatigue [5,11].

Most studies on RT detection using EEG have focused on feature extrac-
tion within-subject analysis due to significant individual variations in behavioral
performance and brain activity, which reduces the practicality of physiological-
signal-based methods [2,5]. Efforts to improve model transferability across sub-
jects have assumed the same data distribution and feature space [12]. However,
these feature extraction techniques often involve complex preprocessing algo-
rithms with high computational demands and may fail with large datasets. Cre-
ating specifically tuned feature extractions for numerous subjects is impractical
and these techniques often struggle to capture long-duration temporal depen-
dencies, complicating transferability. An alternative is the CNN-based approach,
which can generalize and extract features from large datasets with transferability
[12]. By using heatmaps to capture temporal dependability, we can effectively
convert this into an image regression problem.

In this study, we propose a unified Covariance-CNN-LSTM framework to pre-
dict RT from EEG signals, leveraging CNN’s superior automatic feature extrac-
tion capabilities with large datasets. Recognizing that EEG signals are tempo-
ral sequences with correlated consecutive moments, we address the limitation of
traditional CNN models, which lack mechanisms to process sequential input cor-
relations, leading to information loss. By introducing a Covariance matrix with
CNN, we combine CNN with Covariance to extract fine-grained channel-wise
temporal inter-dependencies effectively, a technique widely utilized in natural
language processing. Our model recognizes that channel signals do not equally
contribute to prediction and highlights the significance of correlations among
multiple channel signals in detecting fatigue. This approach aims to create a
practical in-vehicle system for identifying driving fatigue detection using RT,
enhancing generalizability and efficiency in processing EEG data.
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3 Methods and Materials

3.1 Lane Keeping Task (LKT) Dataset

The study uses the open-source Lane Keeping Task dataset by Cao et al. [1].
The experimental configuration includes driving simulations executed with vir-
tual reality (VR) technology on an advanced driving simulator. The VR driving
scenario replicated nighttime driving at 120 km/h on a straight, empty highway
featuring two lanes in each direction. Random disruptions, termed as deviation
onsets, were generated by the computer program, causing the vehicle to steer
towards either side of the lane with equal probability.

Fig. 1. (A) Paradigm with lane deviations caused by sudden stimuli. (B, C) EEG
and behavioral data were collected simultaneously. Each trial records deviation onset,
response onset, and deviation offset. Reaction time (RT) is defined as the period
between deviation onset and response onset.

Participants were instructed to quickly steer the car back to the center of the
cruising lane using the steering wheel (response onset) after each instance of the
car deviation (deviation onset), and to maintain control once the car returned
to the approximate lane center (response offset). A lane departure trial consists
of three main events: deviation onset, response onset, and response offset as
depicted in Fig. 1. The next lane departure trial occurs randomly, about 5 to 10
seconds after the current trial’s response offset. Reaction time (RT) for each lane
departure trial is defined as the time between deviation onset and response onset.
If the subject does not respond within 2.5 (1.5) seconds, the vehicle will drift
towards the left (right) roadside without crashing, continuing forward against the
curb unless the subject completely stops responding. No intervention is made
if the subject falls asleep and stops responding. After the lapse, participants
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Fig. 2. (A) Behavioural performance and corresponding EEG signals with associated
events. (B) Electrode locations for EEG recording. (C) EEG data format. (D) Subject-
wise Trials and Mean RT plot

independently resume the task, steering the car back to the cruising position as
soon as possible. The goal is to predict RT based on a 5-second EEG trial that
precedes it. The study aimed to explore EEG patterns related to attention and
performance changes during real-world drowsiness scenarios.

3.2 Data Collection and Preprocessing

The EEG data was gathered from 27 students at National Chiao Tung Uni-
versity (NCTU) in Taiwan, with an average age of 22.4 years and a standard
deviation of 1.6 years. These experiments were sanctioned by the Institutional
Review Board of Veterans General Hospital in Taipei, Taiwan. EEG signals were
recorded using Ag/AgCl electrodes placed on a 32-channel Quik-Cap (Com-
pumedical NeuroScan). Thirty electrodes were positioned following a modified
international 10-20 system as depicted in Fig. 2 (B). The skin under the refer-
ence electrodes was prepared with Nuprep (Weaver and Co., USA) and cleaned
with a 70% isopropyl alcohol swab before calibration. Electrode impedance was
set below 5 k using NaCl-based conductive gel (Quik-Gel, Neuromedical Sup-
plies). The EEG signals were amplified using the Scan NuAmps Express system
(Compumedics Ltd., VIC, Australia) and recorded at a 500 Hz sampling rate
with 16-bit quantization. Pre-processing involved bandpass filtering and artifact
rejection, where raw EEG signals were filtered using 1 Hz high-pass and 50 Hz
low-pass finite impulse response (FIR) filters. Eye blink artifacts were manually
removed through visual inspection and further corrected using the Automatic
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Artifact Removal (AAR) plug-in for EEGLAB. Behavioral performance and the
corresponding EEG data are shown in Fig. 2 (A) and (C), with the average reac-
tion time distribution of all 27 subjects across trials post-preprocessing shown
in Fig. 2 (D) and Table 1.

Table 1. Subject-wise number of trials and average RT

Subject 1 2 3 4 5 6 7 8 9 10

Trials 1608 726 1673 438 1205 1094 1306 2248 809 1902

Mean RT 0.0065 0.4782 0.0158 0.0697 0.1327 0.0058 0.0523 0.0264 0.0038 0.0175

Subject 11 12 13 14 15 16 17 18 19 20

Trials 2422 675 1340 349 1033 695 239 1218 205 641

Mean RT 0.0313 0.0339 0.1605 0.0271 0.0040 0.0045 0.0518 0.0169 0.1216 0.3092

Subject 21 22 23 24 25 26 27

Trials 360 2125 358 703 429 622 747

Mean RT 0.1603 0.0107 0.1046 0.0141 0.0379 0.1288 0.0349

3.3 Covariance Matrix Transformation

The pre-processed EEG time series data tensor is of shape X ∈ R
D×N×K , where

D represents the number of channels, N denotes the number of timepoints, and
K indicates the number of trials, we convert each D × N matrix for a specific
trial into a covariance matrix. For the k-th trial, the covariance matrix Ck is a
D × D matrix, where each element C

(k)
ij represents the covariance between the

i-th and j-th channels:

C
(k)
ij =

1
N

N∑

n=1

(Xin − X̄i)(Xjn − X̄j) (1)

Here, X̄i and X̄j are the means of the i-th and j-th channels, respectively.
The covariance matrix Ck thus encapsulates the pairwise covariances between
all channels for the k-th trial. The range of values for elements in the covariance
matrix depends on the scale of the original data. A positive value in C

(k)
ij indi-

cates a positive relationship between the i-th and j-th channels, suggesting that
as the value of one channel increases, the other tends to increase as well. Con-
versely, a negative value implies an inverse relationship. The covariance matrix
is symmetric (C(k)

ij = C
(k)
ji ), and the diagonal elements (C(k)

ii ) represent the vari-
ance of the i-th channel. We perform Covariance matrix conversion for all trials
of a subject ie 1 ≤ k ≤ K. A covariance matrix transformation converts pre-
processed EEG time series data of a subject, X ∈ R

D×N×K to a collection of
corresponding covariance tensor C ∈ R

D×D×K , which can be represented as a
collections heatmaps as shown in Fig. 3, i.e. no of trials = no of heatmaps = K.
The covariance heatmaps of a subject are fed to the proposed 2D CNN-LSTM
model to predict the reaction time (RT).
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Fig. 3. Raw EEG collected using 10-20 electrode configuration with red markers indi-
cating electrode placements. The recorded raw EEG is bandpass-filtered and trans-
formed to covariance matrix heatmap, revealing inter-channel covariance relationships

3.4 Model Architecture

The proposed Covariance-CNN-LSTM model for RT prediction is shown in Fig.
4. It consists of both spatial and temporal feature extraction. The model begins
with an input layer designed to handle reshaped covariance matrices of size
30x30x1, which are derived from the pre-processed time-series EEG signals. The
first stage of the model involves three Conv2D layers, which serve as spatial fea-
ture extractors. The initial Conv2D layer uses 32 filters, each of size 3x3, resulting
in an output dimension of 28x28x32 due to the reduction caused by the convolu-
tion operation (valid padding). This layer is followed by a ReLU activation func-
tion, mathematically represented as Zl = W l ∗ Al−1 + bl and Al = ReLU(Zl),
where Zl is the layer’s pre-activation output, W l is the weight tensor, Al−1 is
the activation from the previous layer, bl is the bias vector, and ReLU is the acti-
vation function. Next, a MaxPooling2D layer with a pool size of 2x2 is applied,
reducing the spatial dimensions to 14x14x32. MaxPooling layers serve to down-
sample the input representation, reducing its dimensionality and allowing for the
extraction of dominant features, while making the model more computationally
efficient. The pooling operation is defined as P l

i,j = maxm,n∈Ri,j
Al

m,n, where
Ri,j is the receptive field at position (i, j).

Fig. 4. Proposed Covariance 2D Convolutional Neural Network architecture for RT
Prediction

The second Conv2D layer, with 64 filters of size 3x3, further processes these
features, producing an output of 12x12x64, followed again by ReLU activation.
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Another MaxPooling2D layer reduces this to 6x6x64. The third Conv2D layer
employs 128 filters of size 3x3, generating a 4x4x128 output after convolution and
ReLU activation. The subsequent MaxPooling2D layer reduces this to 2x2x128,
capturing essential spatial features while significantly reducing dimensionality.

Table 2. Structure of the proposed architecture

Layers Feature Map Size Configuration Output Shape

Input Layer 30 × 30 × 1 Input shape: 30 × 30 × 1 (30, 30, 1)

Convolution Layer 1 28 × 28 × 32 3 × 3 conv, ReLU (28, 28, 32)

MaxPooling Layer 1 14 × 14 × 32 2 × 2 max pooling (14, 14, 32)

Convolution Layer 2 12 × 12 × 64 3 × 3 conv, ReLU (12, 12, 64)

MaxPooling Layer 2 6 × 6 × 64 2 × 2 max pooling (6, 6, 64)

Convolution Layer 3 4 × 4 × 128 3 × 3 conv, ReLU (4, 4, 128)

MaxPooling Layer 3 2 × 2 × 128 2 × 2 max pooling (2, 2, 128)

Reshape Layer 32 × 8 Reshape to 32 × 8 (32, 8)

LSTM Layer 32 × 64 LSTM with 64 units, return sequences (32, 64)

Flatten Layer 2048 Flatten (2048)

Dense Layer 1 128 Dense layer with 128 units, ReLU (128)

Dense Layer 2 64 Dense layer with 64 units, ReLU (64)

Output Layer 1 Dense layer with 1 unit, linear activation (1)

The model then reshapes these feature maps into a 2D tensor of dimensions
32x8, preparing the data for temporal processing by the LSTM layer. The LSTM
layer consists of 64 units and addresses the vanishing gradient problem common
in traditional RNNs, capturing long-term dependencies in the data. The forget
gate within the LSTM is defined as ft = σ(Wf ·[ht−1, xt]+bf ), where ft represents
the forget gate activation, σ is the sigmoid function, Wf is the weight matrix,
ht−1 is the previous hidden state, xt is the current input, and bf is the bias.

Following the LSTM layer, the model includes dense layers to perform nonlin-
ear regression on the extracted spatio-temporal features. The first dense layer has
128 units, and the second dense layer has 64 units, both employing ReLU activa-
tion functions to introduce nonlinearity, represented as hl = ReLU(W lhl−1+bl),
enabling the model to approximate complex functions. Finally, the model con-
cludes with a dense layer that outputs a single prediction value, making it suit-
able for regression tasks.

The overall configuration of the proposed architecture is shown in Table 2.
ReLU activation (f(x) = max(0, x)) is used throughout the network, except
for the LSTM layer which uses tanh and sigmoid activations as per standard
practice. ReLU helps mitigate the vanishing gradient problem and promotes
sparsity in the activations. To prevent overfitting, L2 regularization is employed
in the dense layers, defined as L = L0 + λ

∑ ||W ||2, where L0 is the original
loss function, λ is the regularization strength, and ||W ||2 is the L2 norm of the
weight matrices.
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Table 3. Computational Complexity of the Proposed Architecture

Layer Type Output Shape Equation for Mult-Adds Mult-Adds Parameters

Input (30, 30, 1) - - 0

Conv2D (32x3x3) (28, 28, 32) K × F 2 × Cin ×W ×H 752,640 K × F 2 × Cin + K = 320

MaxPooling2D (14, 14, 32) - - 0

Conv2D (64x3x3) (12, 12, 64) K × F 2 × Cin ×W ×H 1,327,104 K × F 2 × Cin + K = 18,496

MaxPooling2D (6, 6, 64) - - 0

Conv2D (128x3x3) (4, 4, 128) K × F 2 × Cin ×W ×H 589,824 K × F 2 × Cin + K = 73,856

MaxPooling2D (2, 2, 128) - - 0

Reshape (32, 16) - - 0

LSTM (64 units) (32, 64) Nin ×Nout 20,480 4Nh(Nh + Ni) = 20,736

Flatten (2048) - - 0

Dense (128 units) (128) Nin ×Nout 262,144 Nin ×Nout + Nout = 262,272

Dense (64 units) (64) Nin ×Nout 8,192 Nin ×Nout + Nout = 8,256

Dense (Output) (1) Nin ×Nout 64 Nin ×Nout + Nout = 65

Total - - 2,960,448 384,001

Computational Complexity and Model Architecture Computational
complexity of an architecture determines its training and inference times. It is
predominantly determined by the number of multiply-add (Mult-Adds) oper-
ations and the number of parameters in each layer. The Mult-Adds repre-
sent the operations required to compute the layer’s output from its input,
while the parameters represent the weights and biases learned during train-
ing. For instance, in a Conv2D layer with K filters of size F × F , applied
to an input of size W × H × Cin (where K is the number of filters, F is
the filter size, W is the input width, H is the input height, and Cin is the
number of input channels), the number of Mult-Adds can be calculated as
Mult-Adds = K × F 2 × Cin × W × H. Similarly, for a dense (fully con-
nected) layer, the Mult-Adds can be computed as Mult-Adds = Nin × Nout

(where Nin is the number of input units and Nout is the number of output
units). The total number of trainable parameters θ in the model is given by
|θ| =

∑L
l=1(K ×F 2 ×Cin ×C +C)+4Nh(Nh +Ni)+

∑K
k=1(Nin ×Nout +Nout),

where K is the number of filters, F is the filter size, Cin and C are the number
of input and output channels in the Conv2D layers, Nh is the number of LSTM
units, Ni is the input size to the LSTM, and Nin and Nout are the number of
input and output units in dense layers. Table 3 illustrates the computational
complexity of the proposed model. The number of Mult-Adds is a significant
measure of computational complexity, particularly for layers such as Conv2D
and Dense layers. From the complexity of this model, we understand that con-
volutional layers significantly contribute to the computational load due to their
large number of Mult-Adds, while dense layers also add considerable complex-
ity with their parameters. The balance of these elements determines the overall
efficiency and capacity of the model to learn and generalize from data.
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3.5 Experimental Setup

In this study, the experimental setup was configured on a workstation equipped
with an Intel(R) Core(TM) i3-7020U CPU, a GeForce MX 110 GPU, and 8 GB
of DDR4 RAM (Table 4).

Table 4. Workstation configuration.

Software or Hardware Specification

CPU Intel(R) Core(TM) i3-7020U

GPU GeForce MX 110

RAM DDR4 8 GB

Python 3.11.5

TensorFlow 2.16.2

Keras 3.4. 1

Table 5. Hyperparameter configuration.

Hyperparameters Values

Activation function ReLU (Conv2D and Dense layers), Linear (output layer), tanh and sigmoid(LSTM)

Optimizer Adam

Learning rate 0.001

Loss function Mean Squared Error

Metrics Mean Absolute Error (MAE), Root Mean Square Error (RMSE)

Batch size 32

Epochs 100

Table 6. Performance Metrics

Metric Equation

Mean Absolute Error (MAE) MAE = 1
n

∑n
i=1 |yi − ŷi|

Root Mean Squared Error (RMSE) RMSE =
√

1
n

∑n
i=1(yi − ŷi)2

Mean Squared Error (MSE) MSE = 1
n

∑n
i=1(yi − ŷi)

2

The software environment included Python 3.11.5, TensorFlow 2.16.2, and
Keras 3.4.1, ensuring compatibility and performance for deep learning tasks.
The model’s hyperparameters were carefully selected to optimize performance.
Convolutional and dense layers utilized the ReLU activation function, while the
output layer used a linear activation function (Table 5). The model is trained
using the Adam optimizer with an initial learning rate of 0.001, and the loss
function is mean squared error (MSE), given by MSE = 1

n

∑
(yi − ŷi)2, where yi

are the true values and ŷi are the predicted values. Training is conducted over 100
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epochs with a batch size of 32, and early stopping based on validation loss is used
to prevent overfitting. Evaluation metrics included mean absolute error (MAE)
root mean squared error (RMSE) and Mean Squared Error (MSE) as shown in
Table 6, ensuring a comprehensive assessment of the model’s performance.

4 Results

4.1 Single Trial RT Prediction

The model demonstrates superiority in predicting single trial Reaction Times
(RT), as evidenced by its strong performance metrics across both training and
validation datasets as shown in Table 7 and Table 8. Fig. 5 shows the Single
Trial learning curve and RMSE after 100 epochs for subject 1 and for remaining
subjects are given in supplementary material Section 1. For the training set,
the model achieves remarkably low error rates, with an average MSE of 0.0017,
MAE of 0.0231, and RMSE of 0.0342, indicating that the model accurately fits
the training data with minimal deviation and effectively captures the underlying
patterns of reaction times.

Fig. 5. Learning Curves and RMSE of Subject 1 for Single Trail RT prediction

Notably, subjects 2, 4, 14, and 22 show near-perfect training set performance,
reflecting the model’s ability to learn and replicate individual-specific RT char-
acteristics. On the validation set, the model maintains commendable perfor-
mance, with an overall MSE of 0.00495, MAE of 0.0343, and RMSE of 0.0505,
demonstrating its robustness and generalization capabilities, as it consistently
delivers low error rates even on unseen data. Subjects such as 1, 4, 11, and 17
exhibit exceptionally low validation errors, highlighting the model’s precision
in accurately predicting RT for different individuals. This consistency across
both training and validation sets underscores the model’s reliability and effec-
tiveness. Furthermore, the model’s performance metrics reveal its adaptability
and sensitivity to diverse reaction time patterns among subjects, suggesting that
it successfully captures the nuances and variations in reaction times. However,
despite these strengths, there are some subjects, such as 3, 8, 10, 26, and 27,
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Table 7. Subjectwise Performance Metrics for Single Trial Reaction Time Prediction

Subject Training Set MSE Training Set MAE Training Set RMSE Validation Set MSE Validation Set MAE Validation Set RMSE

1 0.0002 0.0071 0.0149 0.0001 0.0056 0.0089

2 0.0000 0.0026 0.0035 0.0009 0.0193 0.0296

3 0.0041 0.0512 0.0639 0.0169 0.1041 0.1300

4 0.0002 0.0071 0.0126 0.0000 0.0040 0.0046

5 0.0011 0.0249 0.0339 0.0063 0.0602 0.0795

6 0.0006 0.0159 0.0254 0.0016 0.0233 0.0405

7 0.0021 0.0236 0.0457 0.0051 0.0328 0.0712

8 0.0064 0.0596 0.0799 0.0331 0.1298 0.1819

9 0.0004 0.0124 0.0189 0.0028 0.0378 0.0526

10 0.0053 0.0548 0.0730 0.0283 0.1221 0.1682

11 0.0008 0.0139 0.0290 0.0002 0.0084 0.0141

12 0.0006 0.0192 0.0241 0.0025 0.0327 0.0501

13 0.0006 0.0192 0.0241 0.0025 0.0327 0.0501

14 0.0001 0.0044 0.0074 0.0004 0.0096 0.0193

15 0.0018 0.0242 0.0426 0.0011 0.0207 0.0330

16 0.0007 0.0162 0.0259 0.0041 0.0361 0.0643

17 0.0000 0.0027 0.0061 0.0000 0.0034 0.0045

18 0.0009 0.0181 0.0296 0.0005 0.0157 0.0222

19 0.0012 0.0213 0.0352 0.0023 0.0302 0.0474

20 0.0050 0.0529 0.0709 0.0083 0.0662 0.0910

21 0.0003 0.0103 0.0164 0.0019 0.0271 0.0431

22 0.0000 0.0021 0.0047 0.0003 0.0052 0.0160

23 0.0002 0.0126 0.0142 0.0003 0.0140 0.0167

24 0.0035 0.0358 0.0590 0.0087 0.0552 0.0934

25 0.0009 0.0128 0.0301 0.0017 0.0183 0.0416

26 0.0044 0.0500 0.0665 0.0458 0.1554 0.2140

27 0.0044 0.0500 0.0665 0.0458 0.1554 0.2140

Table 8. Overall Performance Metrics for Single Trial RT prediction for a subject after
100 epochs

Metric Overall value

Mean Squared Error (MSE) 0.00495

Mean Absolute Error (MAE) 0.0343

Root Mean Squared Error (RMSE) 0.0505

who exhibit relatively higher validation errors, indicating that the model strug-
gles to generalize well for these individuals. This variability could be attributed
to individual differences in RT, data quality, or potential overfitting in certain
cases. Overall, while the model demonstrates strong predictive capabilities and
generalization performance, further refinement and investigation into subjects
with higher error rates could enhance its robustness and accuracy.

4.2 Cross-Subject Performance

We evaluated Cross-Subject of the dataset Performance of a CNN-LSTM model
for predicting RT using EEG data from multiple subjects. Each subject’s data
was used as the validation set while the remaining data from other subjects
formed the training set. This cross-validation approach ensured each subject’s
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data was validated once, providing a comprehensive assessment of the model’s
generalizability across different subjects. The performance after 100 epochs is
detailed in Table 9 and Table 10. The learning curve for subject 1 is shown in
Fig. 6 and for remaining subjects are given in supplementary material Section
2. The average performance metrics demonstrate the model’s strong prediction
capabilities, with an average Cross-Subject Training RMSE of 0.1369 and a Val-
idation RMSE of 0.0915. The average Cross-Subject Training MAE was 0.0673,
while the Validation MAE was 0.0958, indicating the model’s ability to gen-
eralize well to new data with minimal error. Table 9 shows individual subject
performance, where the Training RMSE ranged from 0.0516 to 0.0722 and the
Validation RMSE from 0.0213 to 0.506. The Training MAE varied between 0.09
and 0.80, while the Validation MAE ranged from 0.04 to 0.159. These consis-
tent results across subjects underscore the model’s robustness and reliability in
predicting RTs from EEG data.

Fig. 6. Learning Curves and RMSE for Cross- Subject RT prediction of Subject 1

5 Discussions

The performance comparison between the proposed model and state-of-the-art
models for single trial RT prediction is presented in Table 11. The results indi-
cate that the proposed architecture significantly outperforms the existing mod-
els, including BP [10], ADG [3], and LGN [8], in terms of RMSE, MAE, and
MAPE. Specifically, the proposed model achieves an RMSE of 0.0505, which is
a notable improvement over the best-performing state-of-the-art model, LGN,
which has an RMSE of 0.0751. Similarly, the MAE for the proposed model is
0.0343, markedly lower than the 0.097 achieved by the LGN model. Additionally,
the proposed model’s MAPE of 3.43% demonstrates a substantial reduction in
prediction error compared to the 9.7% MAPE of the LGN model.

Table 12 provides a comprehensive comparison of the proposed model’s per-
formance for cross-subject reaction time prediction against other models. The
proposed model demonstrates robust generalization capabilities, achieving an
RMSE of 0.0915, an MAE of 0.0958, and a MSE of 0.0084. These results sug-
gest that the proposed model maintains a high level of accuracy and consistency
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Table 9. Cross-Subject Results for All Subjects after 100 Epochs

Subject Training RMSE Validation RMSE Training MAE Validation MAE

1 0.0683 0.0428 0.12 0.06

2 0.0668 0.0859 0.10 0.13

3 0.0689 0.0324 0.11 0.04

4 0.0516 0.4301 0.80 0.43

5 0.0702 0.0544 0.122 0.057

6 0.0715 0.0479 0.124 0.045

7 0.069 0.0213 0.11 0.039

8 0.0685 0.026 0.12 0.03

9 0.065 0.0776 0.114 0.1142

10 0.0698 0.0523 0.112 0.05

11 0.0686 0.0283 0.11 0.04

12 0.0693 0.506 0.121 0.05

13 0.069 0.051 0.113 0.044

14 0.071 0.0506 0.12 0.051

15 0.0722 0.0435 0.112 0.049

16 0.0635 0.1057 0.103 0.122

17 0.0683 0.0523 0.105 0.055

18 0.0675 0.059 0.106 0.058

19 0.0665 0.1248 0.104 0.159

20 0.0684 0.051 0.115 0.055

21 0.0673 0.0857 0.11 0.124

22 0.0689 0.0539 0.121 0.057

23 0.062 0.0749 0.102 0.142

24 0.060 0.2593 0.09 0.28

25 0.071 0.0535 0.12 0.05

26 0.0677 0.0607 0.109 0.08

27 0.0675 0.0547 0.102 0.06

Table 10. Average Performance Metrics for Cross- Subject Reaction Time(RT) pre-
diction after 100 epochs

Metric Training Validation

MAE 0.0673 0.0958

RMSE 0.1369 0.0915

MSE 0.0187 0.0084
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Table 11. Single Trial

Model RMSE MAE MAPE

BP [10] 0.0853 0.148 14.8%

ADG [3] 0.0879 0.112 11.2%

LGN [9] 0.0751 0.097 9.7%

proposed 0.0505 0.0343 3.43%

Table 12. Cross-Subject

Model RMSE

EEGNet [11] 0.029

DeepCNN [3] 0.028

Shallow CNN [11] 0.025

proposed 0.0915

across different datasets. Compared to rigorously tested and tuned EEGNet,
DeepCNN, and Shallow CNN, which have lower RMSE values (0.029, 0.028, and
0.025 respectively), the proposed model shows high convergence with an RMSE
of 0.0915 and excels in generalization across diverse data with faster inference
times, essential for varied subject applications. While the RMSE is higher, the
proposed model’s performance in terms of MAE, MSE and convergence along
with its ability to effectively handle raw EEG data with minimal preprocess-
ing, makes it a highly valuable tool for accurate reaction time predictions in
real-world scenarios with further parameter optimization.

6 Conclusion

The proposed Covariance Convolutional Neural Network framework excels in
predicting reaction times, showing lower error rates and higher accuracy, espe-
cially in single trial predictions. Its impressive RMSE and MAE values highlight
its precision and reliability. While it faces certain challenges in generalizing across
diverse data, it still outperforms many existing models. Overall, the model is a
significant advancement in reaction time prediction, with strong potential for
practical applications and further development.
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Abstract. Malignant brain tumors pose a significant global threat,
emphasizing the critical need for efficient diagnostic methods utilizing
MRI. Manual analysis of MRI images is labor-intensive and subjec-
tive, highlighting the necessity for faster and automated effective meth-
ods. In this paper, we propose an uncertainty-aware robust information
fusion attention network model for precisely classifying brain tumors
in MRI images. Our approach introduces a novel robust information
fusion attention layer that learns enhanced representations by integrat-
ing global context with local information. We estimate the uncertainty in
our model’s predictions using the ensemble Monte Carlo dropout strat-
egy. Our findings demonstrate outstanding performance, achieving accu-
racies of 98.37% on the Cheng dataset and 98.48% on the Nickparvar
dataset in brain tumor MRI image classification tasks, while minimizing
computational costs in terms of resource usage and inference time.

Keywords: Brain Tumors · MRI Images · Deep Learning · Attention
Mechanism · Uncertainty Quantification

1 Introduction

The brain is a vital organ susceptible to life-threatening abnormalities such as
tumors categorized as benign or malignant [6]. Benign tumors are treatable and
non-fatal, whereas malignant tumors including gliomas and meningiomas, grow
rapidly and rank among the top causes of global mortality [6], [2]. Treatment typ-
ically involves surgical intervention, radiotherapy and chemotherapy. However,
diagnostic errors remain a significant contributor to mortality rates, necessitating
the need for enhanced decision-support tools for medical specialists [6]. Magnetic
resonance imaging (MRI) and computerized tomography (CT) scans are signifi-
cant for accurate brain tumor detection. However, manual examination of these
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scans is time-consuming, expensive and prone to human error, emphasizing the
necessity for more efficient diagnostic methodologies [6].

Several deep learning (DL) approaches, including transfer learning (TL),
lightweight convolutional neural networks (CNNs), and attention techniques,
have achieved significant success in real-world image classification tasks. Con-
sidering medial image classification, deep learning based methods demonstrated
significant performance across diverse medial image modalities including MRI
images for the brain tumor classification [4]. These method include transfer learn-
ing (TL) approaches to accelerate the training process [23], [22], Lightweight
end-to-end CNN models for minimized computational resources and reduced
inference time [12], [10], CNN with attention mechanisms for enhanced perfor-
mance [4], [21], [9]. Most of these prior works utilized the Cheng dataset [7] and
the Nickparvar dataset [13].

Most prior researchers often use TL approaches to enhance the performance
of brain tumor classification using MRI images. For example, Deepak and Ameer
[8] normalized image intensity and employed pre-trained GoogLeNet with modi-
fications to classify brain tumour MRI images. In recent work, Zulfiqar et al. [23]
fine-tuned the EfficientNetB2 model with data augmentation techniques. Zhu et
al. [22] introduced evolutionary sparse DenseNets with evolution-based ensem-
ble learning, which adapt towards higher density and efficiency across successive
generations. Celik and Inik [6] developed a hybrid model based on TL-enabled
CNN for feature extraction and Bayesian-optimized machine learning techniques
for classification tasks.

Several researchers have introduced lightweight CNN models for brain tumor
MRI image classification. For example, Hammad et al. [10] proposed a stream-
lined CNN architecture comprising three convolutional layers, max-pooling oper-
ations, and fully connected layers. Shahin et al. [16] devised a modified principal
component analysis network, called MPCANet, which integrates unsupervised
feature extraction with a supervised CNN for classification. Jaspin and Selvan
[12] developed a multi-class CNN (MCCNN) model to improve classification
performance.

Recent studies have explored the efficacy of attention networks in brain tumor
MRI image classification. Xiao et al. [21] proposed ResNet34-CBAM, integrat-
ing the convolutional block attention module (CBAM) into a pre-trained ResNet
framework, achieving a significant accuracy on small-scale MRI images. Billings-
ley et al. [4] proposed a lightweight CNN by designing a normalized attention
mechanism to classify brain tumours with low inference time. Bodapati and
Balaji [5] introduced Tumor Aware Net, an attention-based CNN trained end-
to-end using sparse convolutional denoising autoencoder (SCDA) and neural-
induced support vector classifier (NSVC). Most recently, Dutta et al. [9] pro-
posed ARM-Net, a lightweight global attention-guided residual multiscale CNN
designed to learn class-specific features. Oksuz et al. [14] introduced an attention-
guided CNN architecture that integrates three pre-trained lightweight encoders
with effective data augmentation strategies. Alzahrani [3] developed ConvAt-
tenMixer, a transformer model integrating external attention and self-attention
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with convolution mixtures, achieving superior spatial and channel-wise feature
capture.

Prior methods [6], [23], [22], [8] have achieved significant performance in
brain tumor MRI classification. However, these methods often necessitated sub-
stantial computational resources due to high learnable parameters and large
input sizes, resulting in prolonged inference times. In response, recent works
[12], [10], [16] have focused on developing lightweight CNN models to mitigate
computational costs and reduce inference time, albeit sacrificing significant clas-
sification accuracy. Another approach explored by researchers [4], [21], [9], [5],
[14], [3] involves integrating attention mechanisms into CNNs to enhance accu-
racy. However, they primarily emphasize minimizing computational resources
and inference time, potentially compromising accuracy compared to traditional
transfer learning approaches [23], [22]. This intuition emphasizes the need for a
balanced approach to achieve high accuracy with minimal computational costs
regarding resource usage and inference time, crucial for impactful healthcare
research in brain tumor diagnosis. Motivated by these considerations, we pro-
pose an innovative uncertainty aware robust information fusion attention net-
work (Uncertainty-RIFA-Net) model as a balanced approach to achieve excel-
lent performance while obtaining efficient computational resources and reducing
inference time for brain tumour MRI classification tasks. The main contributions
of this work are as follows:

– We propose an innovative Uncertainty-RIFA-Net model for accurate brain
tumour classification tasks in MRI images. We introduce a novel robust infor-
mation fusion attention mechanism in our proposed network model.

– We estimate the uncertainty in our proposed model using an ensemble Monte
Carlo dropout (EMCD) strategy.

– We conduct extensive experiments on the Cheng dataset [7] and the Nick-
parvar dataset [13] for brain tumor classification tasks using MRI images and
compare the performance of our suggested approach with the prior state-of-
the-art DL models.

2 Methodology

We introduce Uncertainty-RIFA-Net, a novel model designed for brain tumor
classification in MRI images. This approach consists of three core phases: fea-
ture extraction, classification, and uncertainty quantification (UQ), as illus-
trated in Fig. 1(a). These phases synergistically improve performance by learn-
ing enhanced representations and estimating uncertainties in the prediction
of model. In particular, the feature extraction phase is designed to capture
enhanced global-local representations from the input features, thereby improv-
ing performance in brain tumor classification tasks. The classification phase then
accurately categorizes brain tumors in MRI images. For uncertainty quantifi-
cation, we employ an EMCD strategy to estimate prediction uncertainties in
proposed RIFA-Net model.
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Fig. 1. (a) The proposed uncertainty aware robust information fusion attention net-
work (Uncertainty-RIFA-Net) model consists of three phases: feature extraction, clas-
sification, and uncertainty quantification (UQ). The feature extraction phase captures
both global contexts and fine-grained details, the classification phase performs brain
tumor classification, and the UQ phase estimates prediction uncertainties. (b) The
feature extraction phase includes a residual attention (RA) block, comprising convolu-
tional layers, batch normalization layers, and the proposed robust information fusion
attention (RIFA) approach. (c) The RIFA method comprises a global information fusion
attention (GIFA) module, a local attention (LA) module, and a modulation strategy
to enhance representation learning.
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2.1 Feature Extraction Phase

In devising the feature extraction phase, we design four residual attention (RA)
blocks to extract enhanced representations F ′ from the input features fi ∈ F .
Each RA block comprises four convolutional layers and three novel robust infor-
mation fusion attention (RIFA) layers, placed after each convolutional layer
(except the first one), followed by batch normalization layers, as shown in Fig.
1(b). This approach captures both global context and fine-grained details from
the input features. Additionally, we employ an extra RIFA layer after each RA
block (except the third) to learn enhanced representations from the given input.

RIFA Method In this study, we introduce the RIFA approach within and
after each RA block (excluding the third) of the feature extraction phase in our
base CNN model. This method effectively learns enhanced representations F ′

from input data, thereby improving the performance of our proposed model in
brain tumor classification tasks, as depicted in Fig. 1(c). The pseudo-code of our
proposed RIFA method is detailed in Algorithm 1.

The motivation for developing the RIFA method draws inspiration from the
CBAM [19] and the channel spatial attention module (CSAM) [20]. CBAM
focuses on learning spatial and channel information to enhance representation
power, while CSAM captures global and local information from input data
to improve learning across global and local contexts. However, our proposed
RIFA method diverges from existing CBAM and CSAM approaches in three
key aspects. Firstly, we introduce a global information fusion attention (GIFA)
module that consists of global minimum γmn, global maximum γmx, and global
average γavg pooling layers applied to the input features x. This contrasts with
CSAM and CBAM, which use γmx and γavg layers for learning global information
and βmx and βavg layers for channel information learning, respectively. Specifi-
cally, our GIFA module leverages all three pooling layers to learn diverse global
information: minimum, maximum, and average. The resulting diverse informa-
tion is fused using a global information fusion (GIF) strategy to enhance global
information learning.

Secondly, we devise a local attention (LA) module that differs from the
CBAM [19] and CSAM [20] approaches. The LA module employs a 1×1 convo-
lution layer followed by average pooling to capture local information from input
features, further enhancing the model’s performance. Unlike CBAM and CSAM,
LA module does not fuse outputs learned from each specified layer.

Thirdly, we introduce a modulation strategy that distinguishes itself from
the CBAM [19] and CSAM [20] approaches, which do not include a modula-
tion strategy similar to ours. Our approach integrates learnable global and local
attention weights, ωG and ωL, alongside a fusion layer and sigmoid activation.

The primary intuition behind integrating a global minimum pooling layer
and a global information fusion strategy within the GIFA module is to mitigate
information loss by learning enhanced global information, thereby improving the
performance of the model. Conversely, the main intuition behind using learnable
attention weights, followed by a fusion layer and sigmoid attention within the
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modulation strategy, is to learn robust global-local attention maps. These maps
highlight important features and suppress less relevant ones, thereby improving
overall performance.

Given input feature maps F ∈ R
H×W×C , where H, W , and C denote the

height, width, and number of channels respectively, the RIFA approach aims
to enhance representation learning as F ′. This method involves element-wise
multiplication of global-local attention maps A with F , alongside channel-wise
learnable parameters αC , which adjust the importance of each channel during
training, as shown in Equation 1.

F ′ = F × A × αC (1)

To learn global-local attention feature maps A, we first develop two attention
modules: the global information fusion attention module ρ and the local attention
module ϑ. Second, we employ a modulation strategy. These components enhance
the model’s representation power by selectively highlighting important global
and local features in the input data while suppressing less important ones.

Global Information Fusion Attention Module The global information
fusion attention module comprises three global pooling layers: γmn, γmx, and
γavg, which learn diverse global information such as minimum, maximum, and
average. Each pooling layer is followed by a fully connected layer, η, to com-
press the learned global information. The GIF strategy then fuses the resultant
global information to learn enhanced global information, ϕ. Specifically, the GIF
strategy performs parallel element-wise operations, including addition and sub-
traction, on the variant global information to learn both the added global infor-
mation, ζ, and the subtracted global information, λ, as shown in Equations 2-3.
The resultant information is further fused to achieve enhanced global informa-
tion, ϕ, as exhibited in Equation 4.

ζ =
3∑

i=1

ηi(γopi
(F )), where γopi

∈ {γmx, γavg, γmn} (2)

λ = η1(γmx(F )) − η2(γavg(F )) − η3(γmn(F )), where η1, η2, η3 ∈ η (3)

ϕ = ρ(F ) = (ζ ⊕ λ), ⊕ ∈ fusion layer by addition (4)

Local Attention To develop the local attention module ϑ, we use a convo-
lution layer, α, with sigmoid activation, σ, followed by an average pooling layer
to compress the learned local information, ψ. We repeatedly use these layers r
times to preserve essential features and thereby learn fine-grained details from
input features, F , such that 0 ≤ r ≤ 1, as exhibited in Equation 5.

ψ = ϑ(F ) =

⎡

⎣ 1
H × W

∑

i,j

(σ(α(F )))

⎤

⎦

r

(5)
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Algorithm 1: Robust Information Fusion Attention (RIFA) Method

1: Input: Input features, fi ∈ F ; where F ∈ R
H×W×C

2: Output: Enhanced representations, F ′

3: Procedure:
4: /* To global-local attention feature maps A, */
5: Design global information fusion attention (GIFA) module, ρ:
6: /* Learn diverse global information from F using various pooling

layers followed by fully connected layers */
7: Max = η1(γmx(F ))
8: Avg = η2(γavg(F ))
9: Min = η3(γmn(F ))

10: /* Use global information fusion (GIF) strategy to fuse all learned
global information to capture enhanced global information, ϕ */

11: ζ = Max + Avg + Min
12: λ = Max − Avg − Min
13: ϕ = ρ(F ) = (ζ + λ)
14: Design local attention (LA) module, ϑ to learn local

information:
15: ψ = ϑ(F ) =

[
1

H×W

∑
i,j(σ(γ(F )))

]

r
16: Design modulation strategy to highlight important features

while suppressing less significant ones:
17: /* Use learnable weights ωG and ωL to enhance global and local

information */
18: MG = ϕ × ωG

19: ML = ψ × ωL

20: /* Fuse global and local information followed by sigmoid activation */
21: A = σ(MG + ML)
22: /* To learn enhanced representations */
23: F ′ = F × A × αC

24: return F ′

25: // return

Modulation In the modulation strategy, we use learnable weights ωG and ωL to
adjust the importance of each global and local attention component during train-
ing. The global attention weight ωG is initialized to one, while the local attention
weights ωL are initialized based on channel information. These weights perform
element-wise multiplication with the outputs of ρ and ϑ, enhancing the learning
of global (MG) and local (ML) information, respectively, as shown in Equation 6.
The resulting global and local information is fused to strengthen the acquisition
of robust global-local information. Additionally, a sigmoid activation function is
applied to learn robust global-local attention maps A, ensuring attention scores
lie within the range of 0 to 1, as exhibited in Equation 7. This effectively high-
lights important features while suppressing less significant ones, thereby adeptly
capturing both long-range dependencies and fine-grained details.
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MG = ϕ × ωG and ML = ψ × ωL (6)

A = σ(MG ⊕ ML) (7)

This study activates the learnable attention weights in the RIFA layer using a
boolean layer parameter. These weights are optimized using a back-propagation
strategy. Specifically, we compute the gradient of the loss δL with respect to the
global and local attention weights along with channel-wise weights, specified as
follows.

δL

δωG
=

δL

δA

δA

δωG
and

δL

δωL
=

δL

δA

δA

δωL
(8)

δA
δωG
δA
δωL

}
= A × (1 − A) and

δL

δA
=

δL

δMG
+

δL

δML
(9)

where δωG, δωL, δA, δMG, and δML are back-propagations of the gradients.
Now, we compute the gradient loss concerning learnable αC parameter as follows.

δL

δαC
= β × δL

δA
× F × A(1 − A), (10)

where δαC is the back-propagation of the gradient, and β is the constant in
back-propagation.

Throughout the optimization process, our proposed approach iteratively
updates the parameters. ωG, ωL, and αC based on their computed gradients, aim-
ing to minimize the overall loss of our proposed Uncertainty-RIFA-Net model.
These learnable parameters undergo updates at step t + 1 for layer l as follows.

ωt+1
G = ωt

G − lr × δLt

δωG
,

ωt+1
L = ωt

L − lr × δLt

δωL
,

αt+1
C = αt

C − lr × δLt

δαC

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(11)

The resulting enhanced representations are then passed to the subsequent
layers to perform operations, as illustrated in Fig. 1(a).

2.2 Classification Phase

In the classification phase, we employ a γmx and γavg layers, along with a feature
fusion layer to fuse their output features. Subsequently, a SoftMax classifier layer
is used to classify brain tumor in MRI images.
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2.3 Uncertainty Quantification Phase

After developing the RIFA-Net model, we perform uncertainty quantification
using an EMCD strategy. This involves generating N models and utilizing k
input samples to estimate prediction uncertainties y′′. This strategy significantly
enhances the reliability of our model’s predictions. Monte Carlo dropout layers
are applied after the second and third RA blocks, followed by the RIFA layer
and subsequent RA block, as shown in Fig. 1(a).

Initially, in EMCD, we develop the RIFA-Net model with MCD, denoted as
m(.), and run each model N times. We use model ensembling to acquire pre-
dictions from N trained models. These models have various weight distributions
and initialized weights, which significantly enhances model performance. After
model training, we utilize the Monte Carlo equation with K = 30, as shown in
Equation 13. This helps obtain our model predictions through different stochas-
tic paths using MCD, du, creating randomness in our model architecture.

We aggregate all predictions by calculating the mean for each sample to
obtain the softmax probabilities, yu. This creates an ensemble of diverse models
to enhance overall performance. During testing, we run the RIFA-Net model 30
times per sample. The average prediction is taken as the final prediction, thereby
estimating prediction uncertainty in our model.

yu = softmax(m(F, du)) and y′ =
1
N

N−1∑

u=0

yu (12)

y′′ = argmax(y′) (13)

3 Experiments and Results

3.1 Experimental Setup

This section elaborates on the employed datasets, comparison models, and imple-
mentation details.

Dataset Experiments were conducted on two publicly available MRI medical
imaging datasets for brain tumor classification tasks: the Cheng dataset [7] (D1)
and the Nickparvar MRI dataset [13] (D2). Additionally, to evaluate the potential
effectiveness of our RIFA-Net approach in a different modality, specifically CT-
scan, we employed the brain stroke CT image dataset [1] (D3) for brain stroke
classification in CT images.

For the MRI modality, the Cheng dataset [7] consists of 3064 T1-weighted
MRI images collected from 233 patients, categorized into Meningioma (labeled as
0), Glioma (labeled as 1), and Pituitary (labeled as 2) tumor classes. Originally
in .mat format, this dataset was converted to .png. The Nickparvar dataset [13]
combines the Figshare, SARTAJ, and BrH35 datasets, containing 7023 MRI
images. These include Glioma (324 test and 1297 training images, labeled as 0),
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Meningioma (329 test and 1316 training images, labeled as 1), No Tumor (400
test and 1600 training images, labeled as 2), and Pituitary (351 test and 1406
training images, labeled as 3).

For the CT-scan modality, the brain stroke CT image dataset [1] comprises
2501 images, including 1551 normal cases (labeled as 0) and 950 stroke cases
(labeled as 1). These images have an in-plane resolution of 0.5 mm and a slice
thickness ranging between 4 and 5 mm, covering the entire brain. They were
collected from over 1000 patients in a clinical setting.

All MRI and CT-scan images in these datasets were resized to 128× 128× 3.
Datasets D1 and D3 used 80% of the images for training and 20% for testing,
while D2 was by default pre-split into training and testing sets.

Comparison Models and Implementations Details In this study, we
benchmarked our RIFA-Net model against traditional CNNs, baseline CNNs,
and state-of-the-art methods using datasets D1-D3 [1,7,13] for classifying brain
tumors and strokes in MRI and CT-scan modalities. The state-of-the-art meth-
ods included in [3–6,8–10,12,14–16,18,21]. Additionally, we applied the EMCD
method to quantify uncertainty in our RIFA-Net model predictions.

In this study, all implementations were carried out on an NVIDIA GeForce
RTX 2080 Ti coprocessor. Models were trained for 200 epochs using cross-entropy
loss with a batch size of 64. The Adam optimizer was utilized with an initial
learning rate set to 0.001. We employed a Reduce Learning Rate on Plateau
scheduler, which reduces the rate by a factor of 0.2 when performance plateaus,
with a patience parameter of 5 and a lower bound for the learning rate set at
2e-4. For uncertainty quantification, we employed the EMCD module to generate
n = 5 models. In the EMCD module, dropout rates of 0.5 were applied for the
first Monte Carlo dropout layer and 0.25 for subsequent layers, as illustrated in
Fig. 1(a). Each RGLA layer consisted of three convolutional layers: 64, 64, and
256 for layers 1 and 2; and 128, 128, and 512 for the remaining RGLA layers.

3.2 Performance Comparison Results

In this section, we evaluate RIFA-Net’s performance on D1 and D2 datasets
of the MRI modality for brain tumor classification tasks, as presented in
Tables 1 and 2. We compare RIFA-Net’s performance with state-of-the-art
methods, including TL-CNN [8], L2-SA [4], Lightweight-CNN [10], MPCANet
[16], MCCNN [12], TL-ResNet34-CBAM [21], Tumour-AwareNet [5], ARM-Net
[9], AttentionGuided-CNN [14], ConvAttenMixer [3], EfficientNetB0-SVM, and
CNN-KNN [6] on D1 and D2 datasets.

Results and Discussion: In Tables 1 and 2, the experimental results sug-
gest that the RIFA-Net model achieved desirable performances of 98.37% and
98.54% on the D1 and D2 datasets, respectively. Compared to traditional CNNs
such as VGG16 and ResNet18, and our baseline CNN models with or with-
out CBAM, RIFA-Net showed significant performance enhancements ranging
from 1.9% to 20.33% on the D1 and D2 datasets, respectively. Furthermore,
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Table 1. Performance comparison with DL models and prior state-of-the-art methods
to classify brain tumours using MRI images conducted on D1: Cheng dataset [7]. Here,
bold values indicate the highest performance for this dataset.

Model Year Accuracy (%) Precision (%) Recall (%) F1 (%) Inference Time
(in seconds)

Parameters used
(in millions)

Augmentation

ResNet50 [11], 2015 81.89 78.78 80.88 77.83 0.413 23.85 No

VGG16 [17] 2014 94.29 93.29 93.90 93.58 0.059 7.949 No

Deepak and Ameer (TL-CNN) [8] 2019 93.00 - - - - - -

Bodapati and Balaji (Tumour-AwareNet)[5] 2023 96.25 95.65 95.96 95.78 - 2.40 No

Jaspin and Selvan (MCCNN) [12] 2023 96.40 - 95.90 - - 13.10 -

Billingsley et al. (L2-SA) [4] 2023 96.57 - - - 0.0019 7.293 No

Dutta et al. (ARM-Net) [9] 2023 96.64 96.40 96.09 96.20 - 1.13 Yes

Shahin et al. (MPCANet) [16] 2023 96.73 - - - - - -

Hammad et al. (Lightweight-CNN) [10] 2023 96.86 97.00 97.00 97.00 0.02 2.45 -

Oksuz et al. (AttentionGuided-CNN) [14] 2023 97.02 94.95 - 94.91 - 6.63 Yes

Xiao et al. (TL-ResNet34-CBAM) [21] 2021 97.44 98.25 96.87 97.33 - - -

Our work (Base CNN) - 93.80 92.84 93.70 93.22 0.060 3.806 No

Our work (Base CNN-CBAM) - 95.10 94.04 95.21 94.56 0.094 4.183 No

Our Work (Proposed Uncertainty-RIFA-Net) - 98.37 97.82 98.54 98.16 0.07 7.22 No

our proposed model outperformed existing state-of-the-art methods in terms of
accuracy (0.54% to 5.37%), precision (0.38% to 2.87%), recall (0.35% to 3.08%),
and F1-score (0.37% to 2.35%) on the D1 and D2 datasets [7,13].

Table 2. Performance comparison with DL models and prior state-of-the-art methods
to classify brain tumours using MRI images conducted on D2: Nickparvar MRI dataset
[13]. Here, bold values indicate the highest performance for this dataset.

Model Year Accuracy (%) Precision (%) Recall (%) F1 (%) Inference Time
(in seconds)

Parameters used
(in millions)

Augmentation

ResNet50 [11] 2015 89.93 89.5 89.25 89.26 0.035 23.85 No

VGG16 [17] 2014 96.34 96.21 96.03 96.09 0.034 14.78 No

Celik and Inik (CNN-KNN) [6] 2024 97.15 97.00 97.00 97.00 - 10.9 No

Celik and Inik (EfficientNetB0-SVM) [6] 2024 97.93 98.00 98.00 98.00 - 5.3 No

Alzahrani (ConvAttenMixer) [3] 2023 97.94 98.58 95.27 96.65 - 2.01 Yes

Our work (Base CNN) - 96.34 96.21 96.03 96.08 0.0353 3.806 No

Our work (Base CNN-CBAM) - 96.49 96.48 96.31 96.27 0.036 4.183 No

Our Work (Proposed Uncertainty-RIFA-Net) - 98.48 98.38 98.35 98.37 0.038 7.22 No

The experimental results highlight the limitations of existing methods in
achieving robust performance for brain tumor classification in MRI images.
Specifically, methods such as [6,8,12,21] often require high computational
resources, leading to extended inference times but still exhibit limited perfor-
mance due to facing information loss issues. Conversely, other approaches like
[3–5,9,10,14,16] prioritize lightweight models at the expense of classification
performance, as shown in Tables 1 and 2. These methods overlook the crucial
need for high-performing models in the healthcare domain, focusing primarily
on lightweight models. In contrast, our method represents a balanced approach,
prioritizing both desirable performance and computational efficiency by min-
imizing computational costs, thereby reducing inference time for brain tumor
classification.

Although RIFA-Net requires slightly more parameters and inference time
compared to Base CNN and Base CNN-CBAM models, as shown in Tables 1
and 2. However, the RIFA-Net approach offers enhanced performance without
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extensive computational overhead. This includes avoiding a higher number of
parameters, augmentation strategies (except resizing), and larger input image
sizes.

Table 3. Uncertainty quantification of our proposed model predictions with the Base-
CNN-CBAM attention model on D1: Cheng dataset [7] and D2: Nickparvar MRI
dataset [13]. Here, bold values indicate the highest performance for these datasets.

Model Accuracy Precision Recall F1 Dataset

Base CNN-CBAM 95.43 95.12 94.30 94.67 D1

Proposed Method 97.88 97.10 98.32 97.85 D1

Base CNN-CBAM 96.54 96.50 96.4 96.5 D2

Proposed Method 97.87 97.78 97.81 97.78 D2

3.3 Impact on Uncertainty Quantification

The experimental results discussed in Sub-Section 3.2 indicate that our RIFA-
Net performs well, suggesting its potential use for the automatic classification
of brain tumors in MRI images by clinical practitioners. We believe there is an
urgent need for new, efficient, intelligent deep learning models for MRI data
analysis in brain tumor classification, particularly those that include significant
uncertainty estimation. To achieve this, we applied the uncertainty quantification
method, known as EMCD, to quantify the uncertainty of our RIFA-Net model
predictions.

Table 3 shows that our proposed model achieved significant performance and
outperformed the Baseline-CNN-CBAM model when considering uncertainty for
the D1 and D2 MRI datasets. Comparing our model with and without UQ,
we found that our proposed model with UQ exhibited a slight performance
drop compared to RIFA-Net without UQ. Conversely, the Baseline-CNN-CBAM
model also showed a slight performance decline when UQ was applied. Our
proposed model maintained stable performance, with minimal drops in accuracy
(0.49% and 0.61%), precision (0.72% and 0.60%), recall (0.22% and 0.54%), and
F1-score (0.58% and 0.59%) compared to RIFA-Net without UQ on the D1 and
D2 datasets [7,13].

3.4 Qualitative Analysis

We conducted a qualitative analysis using the Score-CAM technique to evaluate
the effectiveness of the RIFA-Net model in classifying brain tumors for D1 and
D2 datasets, as shown in Fig. 2. The Score-CAM technique visualized attention
maps that highlighted the most important regions in MRI images contributing
to our model’s decision for the target class. These maps give higher importance
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Fig. 2. Visual representation of our proposed method’s predictions, highlighting the
most important regions in MRI images for classifying various types of brain tumors
using the Score-CAM technique on the D1: Cheng dataset [7] and D2: Nickparvar
dataset [13]. The top row shows the original images, the middle row shows the Score-
CAM images, and the bottom row shows the attention map images.

to areas with higher prediction scores for the D1 and D2 datasets [7] and [13].
Fig. 2 illustrates the most important features used by our model to identify each
data class separately for the D1 and D2 MRI datasets.

4 Ablation Study

The impact of individual components within the RIFA method was evaluated
through six approaches for brain tumor classification in MRI images (Table 4).
Each approach incorporates one or more key components: global attention (GA),
global information fusion (GIF), and local attention (LA), with one approach
serving as a baseline CNN without CBAM. A modulation strategy is integrated
into all approaches. The six approaches are as follows: A1, the Base-CNN model;
A2, incorporating global attention with global average pooling; A3, employing
local attention only; A4, combining global and local attention without GIF;
A5, combining global attention with GIF but without local attention; and A6,
integrating all components to form the RIFA approach. The effectiveness of these
components is demonstrated in Table 4.

Results and Discussion: The experimental results in Table 4 shows that
our proposed method, RIFA (A6), which employes global attention with the
GIF strategy and local attention, outperforms the baseline approaches (A1-A5).
These baseline models lack components necessary for learning enhanced repre-
sentations, leading to information loss and reduced performance. The GIF strat-
egy in the GIFA module is crucial for improved performance, as it learns diverse
global information from multiple pooling layers and fuses these representations to
create enhanced global information. Local attention further captures fine-grained
details, boosting model robustness. Consequently, RIFA significantly surpasses
both baseline models and state-of-the-art methods in brain tumor classification.
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Table 4. Experimental analysis of the individual components of our proposed robust
information fusion attention (RIFA) method for enhanced representation learning.
Table 4 presents experiments evaluating components of our proposed RIFA approach
to learn enhanced representations and thereby significant performance improvement on
the D2: Nickparvar dataset [13]. GA denotes global attention without global informa-
tion fusion, GIF denotes global information fusion that fuse variant global information
using parallel fusion (addition and subtraction) followed by addition, and LA represents
local attention. Here, bold values indicate the highest performance for this dataset.

Approach GA GIF LA Method Accuracy (%) F1 score (%)

A1 No No No RIFA 96.34 96.08

A2 Yes No No 96.70 96.34

A3 No No Yes 96.49 96.27

A4 Yes No Yes 98.09 97.96

A5 Yes Yes No 97.34 97.00

A6 Yes Yes Yes 98.48 98.37

5 Further Experiments of Brain Disease Analysis on
CT-scan Modality

Primarily, this study presents brain tumor classification in MRI images using the
RIFA-Net approach. However, we also demonstrate the effectiveness of RIFA-
Net in classifying brain strokes using CT scans. This highlights its applicability
across diverse medical imaging modalities for various brain diseases.

This section aims to highlight the effectiveness of our RIFA-Net model in the
CT-scan modality for classifying brain strokes in CT-scan images, supported
by basic experimental evidence presented in Table 5. Specifically, we utilized
the D3 dataset [1] of the CT-scan modality to validate the desirable perfor-
mance achieved by our RIFA-Net in brain stroke classification tasks. We also
compared the performance of RIFA-Net with state-of-the-art methods such as
OzNet-mrMR-NB [15] and Improved XGBoost [18] to demonstrate its signifi-
cance among these existing approaches, as illustrated in Table 5.

Results and Discussion: In Table 5, the experimental results suggest that
RIFA-Net achieved significant performance improvements with accuracy, pre-
cision, recall, and F1 score ranging from 99.92% to 99.94% on the D3 dataset.
Compared to the aforementioned existing methods, our RIFA-Net model outper-
formed them by enhancing robustness by 1.5% to 2.94% on D3 dataset [1]. We
applied the UQ strategy to quantify the uncertainty of our RIFA-Net model pre-
dictions on the D3 dataset, demonstrating the stability of our proposed learning
model. RIFA-Net maintained stable performance, with minimal drops ranging
from 0.41% to 0.49% on the D3 dataset [1].
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Table 5. Performance comparison with existing methods, such as OzNetmRMRNB
[15], Improved XGBoost [18], for brain stroke classification in CT-scan images using the
D3: brain stroke CT image dataset [1]. Bold values indicate the highest performance
for this dataset.

Method Accuracy (%) Precision (%) Recall (%) F1 score (%) Inference
time (in ms)

Parameter
used (in
millions)

Improved XGBoost [18] 97.00 98.00 - - - -

OzNetmRMRNB [15] 98.42 98.29 97.54 98.41 - -

Uncertainty-RIFA-Net (Ours) 99.50 99.49 99.45 99.45 0.105 7.22

RIFA-Net (Ours) 99.92 99.94 99.90 99.92 0.095 7.22

Existing methods for acute brain stroke classification [15,18] mainly use
hybrid methods with CNNs local binary patterns Gabor filters and discrete
wavelet transforms for feature extraction and employ traditional machine learn-
ing models like naÏve Bayes (NB) and XGBoost for classification. However, these
methods often lack robust performance due to limited focus on feature extrac-
tion and lack of enhanced representation learning with attention mechanisms. In
contrast, our method in contrast emphasizes enhanced representation learning
using the RIFA method for superior classification performance in acute brain
stroke classification.

6 Conclusion

We propose the uncertainty-RIFA-Net model tailored for precise brain tumor
classification in both MRI and CT-scan images. Our model incorporates a novel
RIFA layer designed to enhance representations by capturing intricate long-range
patterns and fine-grained details from input features. By leveraging EMCD,
we quantify the uncertainty inherent in our model’s predictions. Our proposed
model demonstrates significant accuracies of 98.37%, 98.48%, and 99.92% on the
Cheng, Nickparvar, and CT image datasets, respectively. In comparative evalua-
tions against baseline CNNs and state-of-the-art methods, our model consistently
exhibits superior performance while maintaining low computational overhead.
Future directions include extending our approach to diverse medical imaging
modalities for more accurate disease classification, encompassing conditions like
COVID-19, skin cancer, and diabetic retinopathy.
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14. Öksüz, C., Urhan, O., Güllü, M.K.: An integrated convolutional neural network
with attention guidance for improved performance of medical image classification.
Neural Computing and Applications pp. 1–33 (2023)

15. Ozaltin, O., Coskun, O., Yeniay, O., Subasi, A.: A deep learning approach for
detecting stroke from brain CT images using oznet. Bioengineering 9(12), 783
(2022)

16. Shahin, A.I., Aly, S., Aly, W.: A novel multi-class brain tumor classification method
based on unsupervised PCANet features. Neural Comput. Appl. 35, 11043–11059
(2023)

17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

18. UmaMaheswaran, S.K., Ahmad, F., Hegde, R., Alwakeel, A.M., Zahra, S.R.:
Enhanced non-contrast computed tomography images for early acute stroke detec-
tion using machine learning approach. Expert Syst. Appl. 240, 122559 (2024)

19. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: Convolutional block attention
module. In: Proceedings of the European conference on computer vision (ECCV).
pp. 3–19 (2018)

20. Xia, J., Zhou, Y., Tan, L.: DBGA-Net: Dual branch global-local attention net-
work for remote sensing scene classification. IEEE Geoscience and Remote Sensing
Letters (2023)

21. Xiao, Y., Yin, H., Wang, S.H., Zhang, Y.D.: TReC: Transferred ResNet and CBAM
for detecting brain diseases. Front. Neuroinform. 15, 781551 (2021)

https://doi.org/10.34740/KAGGLE/DSV/2645886
https://doi.org/10.34740/KAGGLE/DSV/2645886
http://arxiv.org/abs/1409.1556


Uncertainty-RIFA-Net 327

22. Zhu, H., Wang, W., Ulidowski, I., Zhou, Q., Wang, S., Chen, H., Zhang, Y.:
MEEDNets: Medical image classification via ensemble bio-inspired evolutionary
DenseNets. Knowl.-Based Syst. 280, 111035 (2023)

23. Zulfiqar, F., Bajwa, U.I., Mehmood, Y.: Multi-class classification of brain tumor
types from MR images using efficientnets. Biomed. Signal Process. Control 84,
104777 (2023)



Auxiliary Information Guided
Segmentation for the Clinical Target

Volume of Cervical Cancer

Shiyun Wang1 and Yongchao Xu1,2(B)

1 School of Computer Science, Wuhan University, 430072 Wuhan, China
{shiyunwang,yongchao.xu}@whu.edu.cn

2 Hubei Luojia Laboratory, 430079 Wuhan, China

Abstract. Segmentation of the clinical target volume (CTV) in cervi-
cal cancer is a crucial step for radiotherapy. Existing methods overlook
the importance of cancer progression stages and do not consider the spa-
tial relationship between organs at risk (OARs) and the CTV, resulting
in suboptimal segmentation outcomes. In this paper, we employ auxil-
iary information to guide the cervical cancer CTV segmentation. Patient
cases are additionally annotated and classified into eight categories based
on the cancer progression stages and surgical statuses. These annota-
tions are extended to the size of the inputs and concatenated with them,
allowing our network to learn more CTV information from the annota-
tions. We simultaneously train the segmentation of OARs and the CTV,
employing a shared encoder and LoRA layers to merge features from
OARs and CTV segmentation. By merging the features, the spatial rela-
tionship between OARs and the CTV is leveraged. Additionally, we use a
Poisson’s ratio to model the deformation of OARs under force and imple-
ment a data augmentation method by simulating these deformations.
Extensive ablation studies and experiments on various baseline networks
demonstrate the effectiveness of the proposed method. Our method pro-
vides a more generalized and accurate solution for CTV segmentation in
cervical cancer.

Keywords: Cervical cancer CTV segmentation · Auxiliary
information · Data augmentation

1 Introduction

Cervical cancer ranks as the fourth most frequently diagnosed cancer and is the
leading cause of cancer death in many countries [1]. Radiotherapy is currently
the main treatment method for cervical cancer [2]. Radiotherapy requires precise
delineation of the radiation target area to achieve the best treatment effect
without damaging the nearby organs that are at risk for radiation damage.

In a typical radiotherapy setting, doctors use the CTV as the target area for
radiation therapy [3]. The CTV contains the gross tumor volume (GTV), which
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https://doi.org/10.1007/978-3-031-78398-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78398-2_22&domain=pdf
http://orcid.org/0009-0002-4179-572X
http://orcid.org/0000-0002-7253-3151
https://doi.org/10.1007/978-3-031-78398-2_22


Auxiliary Information Guided Segmentation for the CTV of Cervical Cancer 329

is the tumor that is visible in images, and a margin for sub-clinical disease spread.
Generally, doctors use the GTV as the basis, find a sufficiently large area that
covers the maximum invasion range of the cancer without damaging the OARs,
and delineate a 3D CTV on a radiotherapy computed tomography (RT-CT)
scan. In reality, delineating the CTV for cervical cancer can be particularly
challenging, as doctors may need to perform radiotherapy on patients with a
resected uterus, or on several areas suspected of cancer cell spread. In these cases,
the CTV is no longer just an expansion of the GTV or other visible regions, but a
completely virtual volume. The delineation of CTV is highly complex and relies
on the experience of doctors [4], making this task a key challenge in radiotherapy
planning. This motivates automated approaches to the CTV delineation.

Due to the rapid expansion of computational power and medical data
resources, deep learning has been widely applied to various medical image seg-
mentation tasks, in order to facilitate computer-aided diagnosis and intelligent
clinical surgery [5]. CTV segmentation based on deep learning is also a widely
researched and applied task [6], e.g., prostate cancer CTV segmentation [7,8],
esophageal cancer CTV segmentation [9] and rectal cancer CTV segmenta-
tion [10]. Unfortunately, due to the significant anatomical differences between
cancers in different organs, these approaches often deeply leverage the physiolog-
ical structural features of GTV and OARs, so their methods cannot be applied
to CTV segmentation for different types of cancer. As for the methods for cer-
vical cancer CTV segmentation [11,12], they often delineate a CTV region by
simply extending the GTV, which is ineffective when the GTV is not visible due
to a resected uterus or when multiple CTVs are present due to the spread of
the disease. These previous related works do not consider additional informa-
tion crucial for CTV segmentation, including the cancer progression stages of
patients and the spatial relationship between OARs and CTV.

SAMed [13] (Segment Anything Model for Medical) is built upon the large-
scale image segmentation model - Segment Anything Model [14] (SAM), and is a
general solution for medical image segmentation that performs remarkably well
across various tasks, making it one of the most famous medical image segmen-
tation models. However, directly applying SAMed for the cervical cancer seg-
mentation task is not a promising approach, since this task differs from general
medical image segmentation tasks in several ways. First, the cervical cancer CTV
does not have any visible boundaries, nor corresponding physiological organs and
tissues. Directly performing segmentation on it would result in very low accu-
racy. Second, even for the dataset collected from the same machine within a
similar time period, the shape, extent, and size of CTV can vary greatly among
different cases due to different disease stages. Therefore, we need to take these
attributes into consideration during the segmentation process. Additionally, the
manual slice-by-slice annotations by doctors to obtain the training dataset are
time-consuming and labor-intensive. As a result, the training dataset is often
insufficient, which means we need to take measures to expand the training data.

Considering these challenges, we propose a novel cervical cancer CTV seg-
mentation method based on the general medical segmentation network SAMed.
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The cancer progression stages of the patients affect the spread of cancer cells,
thereby influencing the extent of the CTV. In our method, the information about
the cancer progression stages is encoded from annotations to generate a map of
the same size as the input image, which is then concatenated with the input
image to form a new input. Furthermore, the spatial information of OARs effec-
tively guides the network in learning the location of the CTV. We utilize a shared
encoder of the SAMed network to obtain features required for both CTV and
OARs segmentation. Since the encoder is shared, the features in the LoRA layer
undergo fusion and interaction. These features are divided into two parts, used to
predict the segmentation of CTV and OARs. We also propose a data augmenta-
tion method based on simulating the deformation of OARs. Our method involves
modeling the deformation of OARs under external forces using Poisson’s ratio,
and simulating various deformations to generate augmented images. Extensive
ablation studies and experiments on various baseline networks are performed.
Our method achieves 0.8741 Dice, 2.4494 Hd95 and 0.8276 ASD based on the
SAMed baseline, demonstrating the effectiveness of our proposed method.

We summarize the contributions of this paper as:

– We utilize the relative position relationship between OARs and CTV by fusing
features in the LoRA layer.

– We concatenate the surgical statuses and disease stages information with the
input to guide the segmentation of CTV.

– We propose a Poisson’s ratio based data augmentation method that simulates
deformation of OARs, expanding the training data.

– We evaluate our method on cervical cancer CTV segmentation datasets and
achieve better results than the baseline, demonstrating the effectiveness of
our method.

2 Related Works

2.1 Medical image segmentation models

Unlike natural image datasets, medical image datasets exhibit relative consis-
tency in attributes such as grayscale, shape, size, and position of foreground
instances. Medical image segmentation often leverages the inherent consistency
to learn common features. With the rapid advancement in deep learning, the
groundbreaking work U-Net [15] emerged. Subsequently, numerous variants of
U-Net [16] have been proposed. The mainstream network design strategy is to
integrate transformer architectures into the U-Net framework [17,18]. In con-
trast, SAMed [13] does not require complex network engineering and can per-
form semantic segmentation on medical images. SAMed applies the low-rank-
based [19] (LoRA) fine-tuning strategy to the SAM image encoder, and fine-
tunes it together with the mask decoder on labeled medical image segmentation
datasets. Not only does SAMed produce excellent segmentation results [20], but
its deployment and storage costs are negligible in practical use.
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2.2 Clinical target volume segmentation

CTVs lack visible boundaries and do not correspond directly to any specific phys-
iological organs or tissues. Moreover, the shapes, ranges, and sizes of CTVs can
vary significantly. Therefore, previous CTV segmentation studies often employ
various methods and auxiliary information to improve segmentation perfor-
mance. Wang et al. [21] use two pipelines to learn the features of OARs masks
segmentation and CTV mask segmentation respectively, and design two adapters
to adapt the features of OARs pipeline to the CTV segmentation network in both
encoder and decoder. Some methods [22,23] use the GTV, lymph node location
and the SDM calculated by OARs masks to guide the segmentation of CTV. Qi
et al. [24] use the prior location information of breast cancer to guide the CTV
segmentation. Balagopal et al. [25] utilize the style information of physicians to
guide the segmentation of post-operative prostate CTV. Based on CT image
datasets for cervical cancer patients who received two courses of radiotherapy,
Wang et al. [26] use images from both the treatments to align and assist in the
segmentation of each other. Some of these methods are tailored to special cir-
cumstances. Additionally, some special data are used, e.g., GTV, lymph node
and two treatments of the same case. These methods cannot be generalized to
CTV segmentation tasks without these relevant data, and their generalization
needs to be verified.

3 Method

3.1 Overview

The image of one patient case in the training set is a three-dimensional CT image
x ∈ R

H×W×Z where the resolution of one slice is H × W and the total number
of slices is Z. Our task is to predict its corresponding segmentation map P with
resolution H × W × Z, where each pixel belongs to an element in a predefined
class list Y = {yback,yctv} as close to the ground truth G as possible. We regard
yback as the background class and yctv as the CTV class. We use SAMed as a
baseline, freeze all the parameters in the image encoder, and train the trainable
bypass in each transformer block.

In this paper, we address challenges in the cervical cancer CTV segmenta-
tion task and propose corresponding improvements to SAMed [13]. The pipeline
of the proposed method is illustrated in Fig. 1. 1) We utilize the relative posi-
tional relationship between OARs and the CTV, addressing the challenge of the
absence of visible boundaries in CTV segmentation. 2) To account for differences
in disease stages among patient cases, we incorporate past surgeries and disease
stage information to guide the network in segmenting CTV masks. The obtained
CTV masks are corresponding to the characteristics of the current patient case
in terms of the shape, range, and size of ground truth masks. 3) To address the
problem of insufficient data, we propose a Poisson’s ratio based data augmenta-
tion method based on the simulation of the porous elastic mechanical properties
of organs, thereby increasing the amount of training data.
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Fig. 1. Pipeline of our proposed method. The guide map is derived from the disease
stage information, and it is concatenated with the input CT image to form a new
input. Mask decoder predicts multiple segmentation masks, and each mask represents
one class in OARs or CTV.

3.2 Utilization of the OARs masks

According to the NCCN (National Comprehensive Cancer Network) guidelines
for cervical cancer [27], the positions of the OARs and CTV in cervical cancer
radiotherapy planning are closely related. Therefore, an intuitive idea is to use
the positional information of the OARs masks to guide the segmentation of the
CTV mask. In this paper, we extract the same features from CT images using
the encoder of SAMed, then utilize the features to simultaneously segment OARs
and CTV masks. OARs masks help the LoRA layer optimize the parameters.
The information of the OARs is shared to the CTV segmentation through the
LoRA layer.

Fig. 2. Visualization of different region masks in two slices of the CT image with
overlapping regions between the OARs masks (bladder in green color, rectum in pink
color, intestinal tube in blue color), and CTV mask in red color.



Auxiliary Information Guided Segmentation for the CTV of Cervical Cancer 333

As shown in Fig. 2, there are overlapping regions between the masks of OARs
and CTV for cervical cancer, which results in CTV not being considered as a
new category of the same layer as OARs. The overlapping pixels are both OAR
and CTV, leading to annotation conflicts. In the dataset we use, there are C
classes of OARs. Consequently, we do not directly consider the CTV as a new
category in a C+1 classes semantic segmentation task. Instead, the feature maps
obtained from the decoder are separated along the channel dimension, resulting
in Moars ∈ R

C×H×W and Mctv ∈ R
1×H×W feature maps. The Moars features

are then used to predict the OARs masks Poars through an argmax operation
as:

Poars = arg max(Moars, dim = 0), (1)

where dim = 0 indicates the argmax operation is performed across the first
dimension, with the corresponding loss function defined as:

Loar = (1 − α) · CE(Poars,Goars) + α · DICE(Poars,Goars), (2)

where CE and DICE denote the cross-entropy loss and Dice loss, respectively.
The Mctv features are used to predict the CTV mask by a sigmoid operation as:

Pctv =
{

0, if Sigmoid(Mctv) < 0.5,
1, if Sigmoid(Mctv) ≥ 0.5,

(3)

where with the loss function defined as:

Lctv = DICE(Pctv,Gctv). (4)

With the parameters in our experiments set as α = 0.8 and β = 0.7, the overall
loss function can be described as:

L = (1 − β) · Loars + β · Lctv. (5)

3.3 Disease Stage Guidance

Under the guidance of multiple specialist oncology clinicians and the NCCN
guidelines for cervical cancer [27], a significant factor influencing the CTV mask
in cervical cancer is the stage of the cancer disease. For early stage patients, the
CTV mask typically includes only the pelvic cavity region with pelvic lymph
nodes. In contrast, for patients in the middle or later stages of the disease,
where cancer cells have spread, the CTV mask often needs to encompass the
inguinal lymph nodes or retroperitoneal lymph nodes. The disease stage cannot
be determined solely based on CT images.

In clinical treatment, clinicians often make a comprehensive judgment by
integrating other diagnostic information. As a network that assists oncologists,
the proposed method uses the disease stage information of patients to guide
CTV mask segmentation. We first classify and encode patient cases based on
whether the uterus has been resected, whether the cancer has spread to the
inguinal lymph nodes, and whether it has spread to the retroperitoneal lymph
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nodes. The encoded information is expanded to the same size as the input image
Iorigin ∈ R

H×W , resulting in an eight-class map M. Considering that frozen
SAMed encoder can only accept input with three channels, we divide the eight-
class map M into a four-class map M4class and a two-class map M2class. The
effectiveness of this category separation method is compared in the ablation
study. These class maps are then concatenated with the input image to form a
new input Inew, as illustrated as:

U(m) = Unsqueeze(m, dim = 0), (6)

Inew = Concate((U(Iorigin), U(M4class), U(M2class)), dim = 0), (7)

where dim = 0 indicates the unsqueeze operation and concatenate operation are
performed across the first dimension. The CTV masks range for patient cases
with different stages of cancer are shown in Fig. 3. The top and bottom rows
of pictures are CT images selected from the dataset. The two rows of pictures
are from patient cases with different disease stages, resulting in distinct CTV
masks.

Fig. 3. Visualization of CTVs in cases at different stages of the disease. It can be
observed that the CTVs of these different cases vary in terms of number, size, and
shape. The top row, from left to right, is from patient cases with a resected uterus,
with no spread to retroperitoneal lymph nodes, and with no spread to inguinal lymph
nodes. The bottom row is from patient cases with an unresected uterus, spread to
retroperitoneal lymph nodes, and spread to inguinal lymph nodes.
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3.4 Poisson’s Ratio based Data Augmentation

The well-labeled patient cases for cervical cancer CTV segmentation are
extremely rare, and the labeling work is cost consuming. Therefore, we achieve
data augmentation by simulating the deformation of OARs, thereby expanding
the training dataset. The Poisson’s ratio [28] is one of the most crucial parameters
describing the deformation of materials in three-dimensional space. It represents
the ratio of transverse strain to longitudinal strain under compression or uni-
axial tension. Using υ to indicate an elastic constant of the material, called the
Poisson’s ratio. During the elastic deformation stage of the material, the rela-
tionship exists between the transverse strain εx and the longitudinal strain εy is
as follow:

εx = −υεy. (8)

Human organs can be considered a porous solid-liquid mixture [29], and the
review [30] reported the mechanical properties of whole-body soft tissues, includ-
ing the Poisson’s ratio for human organs in the cervical cancer OARs. We are
inspired by anatomy-informed data augmentation [31] calculating a gradient field
of OARs masks to represent the deformation direction of OARs. The vector field
V indicates the gradient of the OARs masks Moars after using Gaussian kernel
Gδ for blurring. Therefore, the vector field V can be calculated as:

V = ∇(Gδ ∗ Moars(x, y)). (9)

Let υx and υy represent the the impact of external forces modeled with Pois-
son’s ratio, Iorigin represent the two-dimensional original image slice, and Iaug

represent the augmented image slice. The process of data augmentation can be
expressed as:

Iaug(x, y) = Iorigin(x + υxVx(x, y), y + υyVy(x, y)). (10)

The values of υx and υy are strongly related to the directions of forces. Consid-
ering the general situation, the most common force to which human organs are
subjected is gravity. And when a patient is at rest, most of the time the direction
of gravity is perpendicular or parallel to the direction of Vx. In order to simplify
the problem, we only simulate the external forces perpendicular or parallel to
the direction of Vx. Let Isim represent the simplified augmented image slice, υ
represent the Poisson’s ratio, and s represent a deformation scalar based on the
forces to control deformation amplitude, the simplified augmentation process is
as follow:

Isim(x, y) = Iorigin(x + sVx(x, y), y − sυVy(x, y)). (11)

The proposed Poisson’s ratio based data augmentation simulates the defor-
mation of certain OARs under external forces. This method alters the shape of
the real soft tissue around the CTV, increasing the quantity of training cases
to increase the generalization ability and the robustness of the network. Its
lightweight computing requirements enable easy integration into online training.
The visualization of the data augmentation effect is shown in Fig. 4.
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Fig. 4. Visualization results of the Poisson’s ratio based data augmentation method.
The left images are OARs masks and CT images. We only perform augmentation on
OARs. CT images and CTV masks undergo slight change due to the influence of the
adjacent OARs.

4 Experiments

4.1 Dataset and preprocessing

The dataset includes CT images and RTstruct files of cervical cancer patient
cases obtained from clinical treatments. The collected DICOM format data are
converted using the method described in dcmrtstruct2nii [33]. The converted
image data undergo thorough inspection and verification, with corrections made
to address annotation conflicts within the dataset. Poor quality data are filtered
out, resulting in a final dataset comprising over 200 cervical cancer cases and
approximately 20,000 slices. Each image slice is accompanied by corresponding
OARs masks and CTV masks. There are eight organs in OARs masks: bladder,
rectum, spinal cord, intestinal tube, left femoral head, right femoral head, left
kidney and right kidney. Additionally, data of each case includes extra categor-
ical annotations to represent the impact of different disease stages on the CTV
mask range. These annotations primarily cover: whether the uterus was resected,
whether the cancer had spread to the inguinal lymph nodes, and whether it had
spread to the para-aortic lymph nodes. Specifically, the dataset is ultimately
divided randomly into 14,940 two-dimensional slices for the training set and 38
three-dimensional patient cases for the test set.

4.2 Implementation details

In this paper, the model is built in PyTorch and Python3.8 on a server, and an
Nvidia RTX 4090 GPU is used for algorithm computations. We adopt the same
strategies of data augmentation as SAMed [13]. As for a 512 × 512 CT image,
we input it into SAMed in order to maintain the decent image resolution of the
predicted segmentation logits. The output resolution of segmentation logit for
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each class is 128 × 128, which is smaller than that of UNet-based medical image
segmentation models. There are 10 predicted segmentation logits, including one
background class, eight OARs classes and one CTV class. As for warmup, we
set the initial learning rate Ilr to 0.005, the warmup period WP to 250. In the
testing stage, input images with sizes of 512×512 are directly fed into the model.
For evaluating methods, the dice similarity coefficient (Dice), average symmetric
surface distance (ASD) and 95% Hausdorff distance (Hd95) are used to evaluate
the performance of the model.

4.3 Main results

Table 1 displays the quantitative evaluation results for the proposed method.
These experiments are conducted based on SAMed [13], HiFormer [37], Swin-
Unet [18], TransUnet [17] and U-Net [15]. We find the proposed methods can
benefit these five medical image segmentation models. The comparative exper-
iments are set based on cervical cancer CTV segmentation dataset. And these
results prove superiority of the proposed method. Fig.5 shows the qualitative
comparisons between our proposed method and SAMed.

Table 1. Main results on the SAMed, HiFormer, SwinUnet, TransUnet and U-Net
model on our independent test set. Bl to RK represents the Dice of the respective
OARs, which include bladder, rectum, spinal cord, intestinal tube, left femoral head,
right femoral head, left kidney and right kidney.

Methods CTV Dice↑ Hd95 ↓ ASD↓ OARs Avg. Dice↑ Bl↑ Re↑ SC↑ IT↑ LFH↑ RFH↑ LK↑ RK↑
U-Net [15] 0.8076 8.5340 1.8371 0.8283 0.8834 0.8051 0.8179 0.7951 0.7440 0.7311 0.9200 0.9296

U-Net+Ours 0.8361 5.1081 1.4930 0.8354 0.9140 0.8217 0.8772 0.8241 0.6851 0.6692 0.9449 0.9472

TransUnet [17] 0.8103 8.4023 1.7138 0.8305 0.8822 0.7901 0.8172 0.7961 0.7572 0.7525 0.9192 0.9297

TransUnet+Ours 0.8378 4.6014 1.4388 0.8356 0.9023 0.8142 0.8778 0.8139 0.7025 0.6891 0.9416 0.9436

SwinUnet [18] 0.8166 8.0555 1.7235 0.8315 0.9053 0.8137 0.7475 0.8054 0.7662 0.7415 0.9339 0.9386

SwinUnet+Ours 0.8411 4.5538 1.2952 0.8457 0.9212 0.8151 0.8749 0.8307 0.7397 0.6975 0.9391 0.9474

HiFormer [37] 0.8295 5.0354 1.3584 0.8339 0.9089 0.8122 0.7451 0.8129 0.7751 0.7425 0.9347 0.9397

HiFormer+Ours 0.8434 3.5877 1.0523 0.8497 0.9361 0.8256 0.8716 0.8377 0.7161 0.7176 0.94207 0.9506

SAMed [13] 0.8467 3.3166 1.3312 0.8552 0.9360 0.8300 0.8753 0.8407 0.7285 0.7287 0.9422 0.9540

SAMed+Ours 0.8741 2.4494 0.8276 0.8705 0.9417 0.8351 0.7582 0.8233 0.8542 0.8602 0.9436 0.9480

4.4 Ablation study

To validate various design choices of us, we conduct ablation studies on the
cervical cancer CTV segmentation tasks, and discuss the details below.
The effect of utilizing the OARs masks. For verifying effectiveness of uti-
lizing the OARs masks, we conducted various experiments. Some experiments
use CT images as input for training on SAMed network, only segmenting CTV
masks. To leverage the information from OARs masks, the other experiments
perform CTV masks segmentation and OARs masks segmentation simultane-
ously. They split the features conducted from encoder into two feature maps.
Each map is used to predict the CTV masks or OARs masks. The information
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Fig. 5. The comparative analysis of the qualitative aspects between SAMed and our
proposed method. Our proposed method integrates the three aforementioned method-
ologies. The blue regions represent the CTV. As shown in the first row, our method
accurately segments the central pelvic area as part of the CTV. The second row demon-
strates the precision of our method in segmenting CTV regions affected by cancer cell
spread.

of the OARs is shared to the CTV segmentation through the LoRA layer. All of
these models are trained with 450 epochs. The experimental results are shown
in Table 2.

The Dice scores of training sets with OARs masks in CTV are higher than
those of origin training sets, which indicates that using the OARs masks for
training is beneficial to improving the segmentation accuracy of cervical cancer
CTV mask. In conclusion, utilizing the OARs masks has a promoting effect on
the segmentation performance of model.
The effect of disease stages guide. In this part, we primarily evaluate the
efficacy of incorporating disease stage information in the customization pro-
cess of SAMed. As shown in Table 2, the disease stages guide brings significant
performance boost for SAMed. We explore the effects of different category com-
binations on the results. The SAMed encoder is frozen and can only accept
input with up to three channels, except for one channel occupied by CT images,
additional category information can only use two channels. In the cervical CTV
dataset, there are three binary classification categories that can be used. There-
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Table 2. Ablation study of our methods in cervical cancer CTV segmentation on
SAMed. The first row represents the baseline results. The second to fourth rows display
the effectiveness of each individual component. The subsequent rows illustrate the
effectiveness of different combinations of components.

OARs Guidance Augmentation Dice↑ Hd95↓ ASD↓
0.8467 3.3166 1.3312

� 0.8537 3.1690 1.2881

� 0.8646 2.6360 1.0271

� 0.8597 3.1383 1.1871

� � 0.8655 2.6517 1.0193

� � 0.8610 3.0329 1.1487

� � 0.8674 2.5043 1.0143

� � � 0.8741 2.4494 0.8276

fore, in the experiment, two binary classification maps are combined to form a
four-classification map. In Table 3, ”Resect& Inguinal” represents the combina-
tion of whether the cervical cancer is resected and whether it spreads to inguinal
lymph nodes, forming a four-category map. The spread to retroperitoneal lymph
nodes is represented as another two-category map. The class-binding rule for
the rest of the experiment follows the same naming convention. After evaluating
these configurations, we select the best-performing one to use in our method.

Table 3. Ablation study on the combinations of disease stages guidance. ”Basic” is
pure SAMed without any proposed methods. ”Resect& Inguinal” represents the com-
bination of whether cervical cancer resected category and whether the cancer spreads
to inguinal lymph nodes category as one channel of SAMed input. Whether the can-
cer spreads to retroperitoneal lymph nodes is represented as a two-category map and
serves as another input channel. The class-binding rule for the rest of the experiment
follows the same naming convention.

Network input Dice↑ Hd95↓ ASD↓
Basic 0.8467 3.3166 1.3312

Resect & Inguinal 0.8570 3.0385 1.1653

Resect & Retroperitoneal 0.8579 2.9351 1.1619

Retroperitoneal & Inguinal 0.8646 2.6360 1.0271

The effect of Poisson’s ratio based augmentation. The above experiments
have proved effectiveness of Poisson’s ratio based augmentation. The proposed
algorithm is also compared with representative augmentation algorithms based
on SAMed on the cervical cancer CTV segmentation task. The data augmen-
tation method based on deformation can be combined with other data aug-
mentation techniques, e.g., translation, rotation, cropping, stitching and color
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Table 4. Ablation study on different deformable data augmentation methods. ”Basic”
is pure SAMed without any proposed methods.

Data augmentation Dice↑ Hd95↓ ASD↓
Basic 0.8467 3.3166 1.3312

Random elastic 0.8390 4.9540 1.3319

Anatomy-informed[31] 0.8528 3.1712 1.2730

Poisson’s ratio based 0.8597 3.1383 1.1871

change. Therefore, we only compare results with methods based on deformation.
The enhanced results of Poisson’s ratio based augmentation and comparison
results are shown in Table 4. It shows that the performance of Poisson’s ratio
based augmentation is better than that of other algorithms with mean Dice
scores of 0.8597. The reasons for low accuracies of elastic augmentation and
anatomy-informed data augmentation [31] mainly include that the physiological
rationality of deformed images is not considered. Thus, the physiological shape
and size of CTV in the deformed image are destroyed. Anatomy-informed data
augmentation [31] should only be applied to organs such as the rectum or blad-
der that can undergo significant volume changes over a short period of time.
Directly applying it to organs with minimal volume change, may lead to unreal-
istic expansion and contraction. However, our method simulates the deformation
of OARs under external forces, which makes the augmentation more reasonable.

5 Conclusion

In this paper, we address three challenges in the cervical cancer CTV segmen-
tation task and utilize auxiliary information to boost the segmentation perfor-
mance. We leverage the relative positional relationship between OARs and the
CTV to enhance CTV segmentation. Moreover, treatment and disease stage
information are incorporated to guide the network in segmenting the cervical
cancer CTV. To address the problem of insufficient data, a data augmentation
method based on Poisson’s ratio is proposed to expand the training data. The
effectiveness of our proposed method is validated by experiments conducted on
various baseline networks, yielding promising results. Our approach also presents
opportunities for further exploration. Currently, our method requires the use of
OARs masks. However, in clinical settings where OARs modality data may be
unavailable, we can utilize established multi-organ segmentation networks to
predict OARs masks. Furthermore, our methodology shows potential for appli-
cation in the prediction of CTVs for other types of cancer. These possibilities
will be explored in future research.
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Abstract. Automated image segmentation technology for Diabetic foot
ulcer (DFU) management is pivotal in alleviating the healthcare sys-
tem’s workload, considering the severity of DFU as a complication for
diabetics. Due to the constraints of annotation costs and privacy, the
scale of the publicly available DFU image segmentation datasets is rela-
tively small, which greatly limits the performance improvement of deep
learning models. We explore the potential of synthetic image technology
in enhancing the performance of DFU image segmentation. We use the
FreestyleNet model to generate high-quality synthetic images and employ
an error pixel filtering strategy to handle the discrepancies between the
synthetic images and masks. To improve the effectiveness and diversity
of the synthetic dataset, we specifically designed a mask difficulty cal-
culation method for DFU synthetic images and proposed two innovative
resampling strategies based on it. The efficacy of the novel resampling
strategies has been demonstrated through comparative experiments con-
ducted against the average sampling method. Furthermore, integrating
synthetic image technology with ensemble learning strategies elevates
model performance even higher. Our approach achieved a Dice of 73.72%
in the Diabetic Foot Ulcer Challenge 2022 on MICCAI 2022, better than
the 72.87% Dice that ranked first in the testing phase, ranking second
on the Live Leaderboard (as of July 5, 2024). Our code will be released
at https://github.com/xupin262/Synthetic DFU.

Keywords: Image Segmentation · Synthetic Images · Ensemble
Learning · DFUC2022

1 Introduction

Diabetic foot ulcer (DFU) is a common and serious complication for diabetes
patients, imposing a significant burden on the healthcare system [1,6,16]. Accu-
rate automatic segmentation of DFU is crucial for alleviating this burden as it
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aids in the development of automated systems for assisted diagnosis and treat-
ment [4,20].

However, due to limitations such as annotation costs and privacy concerns,
the currently available DFU image segmentation datasets are relatively small,
significantly restricting the performance improvement of deep learning models.
For instance, the DFUC2022 dataset [11] has only 2K labeled images in its
training set, and the FUSeg Challenge dataset [29] contains only 1210 labeled
images. To address this challenge, we will utilize synthetic image technology to
augment the DFU segmentation dataset.

Synthetic Image Technology. Synthetic image technology stems from
three primary sources. Firstly, synthetic images from virtual game worlds, com-
monly used in domain generalization and unsupervised domain adaptation, suffer
from significant domain gaps with real images, limiting their effectiveness in fully
supervised baselines [21]. Secondly, synthetic images generated through image
programs, such as those created through intricate mathematical formulas, have
shown promising results when fine-tuned on ImageNet [10]. However, construct-
ing these formulas remains complex and time-consuming, and a performance gap
persists between these methods and standard ImageNet pre-trained models in
dense prediction tasks. Finally, synthetic images produced by generative models,
powerful tools in AI and ML for creating realistic images and videos, occupy a
crucial role. This technology is explored in detail below.

Generative models can be categorized into unconditional and conditional
types based on their reliance on external information. Unconditional models
solely utilize noise as input, whereas conditional models incorporate multimodal
data (e.g., labels, text, layout) and necessitate output consistency with the con-
ditional input. Amidst the rapid evolution of generative models, key architec-
tures have emerged as benchmarks, including Generative Adversarial Networks
(GANs) [8], Variational Autoencoders (VAE) [13], and Diffusion Models [22,25].
Furthermore, both Generative Adversarial Networks (GANs) [19,27] and Diffu-
sion Models [30,32] can synthesize images based on semantic layouts. This means
they create intricate, realistic images from layouts with object position, size, and
category. Notably, FreestyleNet [30], proposed by Xue et al., offers high control-
lability in layout-to-image synthesis. It generates semantic categories beyond
training data and allows individual modulation of each category in the text
layout, surpassing previous methods and models like Stable Diffusion.

Despite the significant advancements in synthetic image generation tech-
nology, its application to specific medical imaging tasks remains fraught with
challenges. Brüngel et al. [3] demonstrated this complexity by tripling the
DFUC2022 dataset using synthetic images generated through StyleGAN2+ADA
and pseudo-labeling via a baseline model ensemble. However, the study high-
lighted a critical issue: employing a segmentation model, trained on real images,
to generate pseudo-masks for synthetic images can introduce annotation errors.
As a result, the Dice score paradoxically decreased from 72.11% to 71.69% after
the integration of synthetic images. This experimental outcome emphasizes that
a mere increase in the quantity of synthetic images does not guarantee enhanced
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performance. Quality, not just quantity, is crucial. The following challenges arise
in this context: (1) Synthetic images may exhibit artifacts, blurring, or mask mis-
matches, undermining the efficacy of models trained on such data. Therefore, we
introduce an error pixel filtering strategy to ensure that the error pixels in syn-
thetic images are ignored during training. (2) Adding synthetic images to opti-
mized, fully supervised baseline models may have limited marginal performance
improvement. To boost performance, we advocate prioritizing ’hard samples’
within our methodology. By focusing on resampling these challenging samples,
we can unlock significant opportunities for overall performance enhancement.

Ensemble Learning. Ensemble learning is a widely adopted strategy in the
field of machine learning, aimed at improving the overall predictive performance
by combining the predictions of multiple individual models. The main methods of
traditional ensemble learning [18] include Bagging [2], Boosting [7], and Stacking
[24].

In modern machine learning, deep learning architectures excel, surpassing
traditional shallow models. To harness deep learning’s potential and ensemble
learning’s strengths, ensemble deep learning methods have emerged [17]. These
studies integrate ensemble techniques like bagging, boosting, and stacking into
various deep learning algorithms[5,12,14].

Integrating ensemble learning with deep learning has progressed, but efforts
are often task-specific, limiting broader applications [17]. Averaging methods,
such as simple and weighted averaging, are commonly used due to their simplic-
ity and broad applicability [9,17]. Simple averaging averages learner outputs,
while weighted averaging assigns weights based on learner performance. When
learners perform comparably, simple averaging is effective [23,26]. However, in
diverse learner ensembles, weak or overconfident learners may affect simple aver-
aging’s effectiveness [9,28]. Weighted averaging relies on accurate weight assign-
ment, which can be challenging when learners vary significantly in performance
or assessment is difficult. Selecting the right ensemble method is crucial for per-
formance improvement [33].

To tackle the aforementioned challenges, we have meticulously crafted a com-
prehensive set of methods, each aimed at enhancing the accuracy and robustness
of DFU segmentation. The key contributions of this paper are outlined below,
illustrating how we have addressed these challenges systematically and innova-
tively.

– We tailor a set of synthetic dataset processing techniques specifically for the
DFU segmentation task, optimizing the quality of the synthetic image dataset
and enhancing the generalization ability of the model.

– We design an effective metric to represent the difficulty of DFU masks, and
based on this, two innovative DFU synthetic image resampling strategies are
proposed.

– We integrate synthetic image technology with ensemble learning strategies
and provide a new solution for DFU image processing.
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Fig. 1. Illustration of Our Proposed Roadmap

– Our approach achieved a Dice score of 73.72% in the DFUC2022 challenge,
better than the 72.87% Dice score achieved by the top-ranked method in the
DFUC2022 testing phase. This result highlights the efficacy of our methods.

2 Methods

2.1 Synthesizing Densely Annotated Images

In terms of building and processing synthetic image datasets, this paper has
developed a set of specialized processing techniques for the DFU segmentation
task. We select the state-of-the-art FreestyleNet[30] model to generate synthetic
images and introduce an error pixel filtering strategy aimed at filtering out error
pixels that exist between synthetic images and masks. To further enhance the
effectiveness and diversity of the synthetic image dataset, this paper specifically
designs an effective metric method for DFU synthetic images to quantify the
difficulty of the mask. Based on this metric method, two innovative resampling
strategies are proposed, and their effectiveness is demonstrated through compar-
ative experiments with the average sampling method. We present an illustration
of our pipeline in Figure 1. The following will provide a detailed introduction to
the specific methods.
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Fig. 2. DFU Synthetic Images Generated by the FreestyleNet Model Based on Real
Masks

Generate Synthetic Images We adopt the recent work FreestyleNet to syn-
thesize additional training images based on ground-truth training masks. It is an
outstanding generative model that generates realistic images based on seman-
tic layouts. It utilizes real mask labels to synthesize additional training images,
shown in Figure 2. If N images are synthesized for each mask, the synthetic data
training set will be N times larger than the original set. Each generated image
is paired with its corresponding conditional mask during the synthesis process,
forming a new training sample with dense annotations. This approach increases
the number of training samples and helps reduce annotation costs.

An Effective Difficulty Measurement Method for DFU Masks In images
of diabetic foot ulcers, different masks have varying degrees of importance and
difficulty. Some masks reflect fewer ulcer areas, with the ulcers being more exten-
sive and having a regular shape. These characteristics enable deep learning mod-
els to quickly identify and learn. In sharp contrast, other masks depict a more
disordered situation: the edges of the ulcers are complex, and there are frequently
many scattered small ulcer areas, which significantly increase the learning dif-
ficulty for the model. Figure 3 provides an intuitive display of this. Therefore,
how to quantify the difficulty of the mask, and how to accurately sample in the
synthetic data training set while considering both the difficulty and diversity
of the mask, are the research focuses of this paper. To solve this problem, we
propose a novel method to effectively measure the difficulty of DFU masks.
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Cross-validation is a commonly used method for model evaluation, and this
section innovatively applies it to assess the difficulty of samples in the training
set. The five-fold cross-validation method randomly divides the original data
into five equally sized subsets. In this process, the model undergoes five rounds
of training and validation: each time, one subset is used as the validation set,
while the remaining four subsets are merged as the training set. This process is
repeated five times to ensure that every sample is validated.

After performing the five-fold cross-validation, the Dice value between the
predicted mask and the true mask of DFU can be calculated to obtain the
predicted Dice value of each sample in the training set for the segmentation
model. Based on these Dice values, it is possible to visually determine which
samples have masks that are more difficult to predict correctly (i.e., those with
lower Dice values) and which are relatively easier.

Fig. 3. Diversity in DFU Masks

By sorting the Dice values of the training set samples, we can obtain a dif-
ficulty ranking for the sample masks, which provides a better understanding of
the ease or difficulty of each sample in the segmentation task. Through a thor-
ough analysis of the difficulty distribution of the sample masks, we can gain a
deeper understanding of the segmentation difficulty of the samples, providing
useful references and guidance for the next step of resampling tasks.

Re-sampling Synthetic Images Based on the Dice difficulty ranking of DFU
masks, we propose two resampling strategies for DFU synthetic images: formula-
based sampling and limited random sampling. Additionally, we introduce average
sampling as a comparative method. We will elaborate on each of these methods.

(1)Formula-based Sampling. Based on the aforementioned DFU mask
difficulty measurement method, we have obtained the Dice values for all masks
and sorted them in ascending order. In this sorting, masks with lower Dice values
indicate greater difficulty, hence we will sample the synthetic images generated
by these masks more. The specific number of collections corresponding to each
different mask can be calculated using Equation 1.

nd = Nmax · N − d

N
, (1)
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where N represents the total number of all real masks. d denotes the Dice ranking
position of the real mask (sorted in ascending order), d ∈ [0, N − 1]. Nmax is
the predefined maximum number of synthetic images for a single real mask. For
the mask ranked d-th, nd represents the final sampling quantity of the synthetic
images generated by it, nd ∈ [1, Nmax].

(2)Limited Random Sampling. The limited random sampling method
we proposed is conducted through a series of carefully designed procedures and
a random selection process, enabling a rational approach to sampling based on
the difficulty level of the masks, thereby improving the model’s generalization
ability and performance.

Initially, we randomly eliminate some of the number of synthetic images
generated by the mask in proportion to the Dice difficulty ranking of the mask.
This step aims to ensure that more challenging samples are gathered during the
subsequent sampling process. Specifically, for the masks ranked in the lower 50%
by Dice score, which are relatively simple, we retain 0.6Nmax synthetic images
per mask; for the top 50% of the masks, which are considered more difficult, we
select the simpler half and retain 0.8Nmax synthetic images per mask; for the
remaining 25% of the most difficult masks, we keep all the generated synthetic
images. Through such operations, we ensure a reasonable balance between simple
and difficult masks.

Next, we divide the entire range of possible sampling numbers for synthetic
images corresponding to a single real mask, (0, Nmax], into three equal parts:
(0, Nmax/3], (Nmax/3, 2Nmax/3], and (2Nmax/3, Nmax], and round the boundary
values. For all real masks, we randomly select 15% ± 2.5% of the total number
N , such that the sampling numbers for this portion of the masks fall within
the first and last parts(0, Nmax/3] and (2Nmax/3, Nmax]. This means that these
masks will be chosen with fewer or more synthetic images to ensure comprehen-
siveness and diversity in the sampling. This step helps to avoid an overemphasis
on any particular range of sampling numbers, enabling the model to more com-
prehensively consider various sampling scenarios during learning, which enhances
the model’s robustness and adaptability to changes in sampling numbers.

For the remaining masks (after the above operations, their quantity will
be controlled within 70% ± 5% of N), we ensure that their sampling numbers
fall within the middle part (Nmax/3, 2Nmax/3]. This ensures that the sampling
numbers for most masks are neither too many nor too few, maintaining a certain
balance. In this sampling method, we need to ensure that the final total number
of samples is N · Nmax/2.

In summary, the Limited Random Sampling Method is an innovative sam-
pling strategy designed for synthetic images. It effectively balances the diffi-
culty level of samples through a carefully crafted sampling mechanism. While
maintaining the randomness of the sampling, it ensures that the sample set
comprehensively represents the entire data space, which is highly beneficial for
enhancing the model’s generalization capabilities.
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(3)Average Sampling. To evaluate the impact of sampling strategies on
experiments, we established the average sampling as a baseline. This baseline
involves collecting a uniform number of synthetic images for each mask.

Fig. 4. Effect diagram of error pixel filtering strategy for DFU synthetic image (in the
filtered mask, gray represents the background area, white represents the ulcer area,
and black represents the filtered error pixel area)

Filtering Noisy Synthetic Regions Despite the visually realistic nature of
synthetic images, they are prone to misleading artifacts. If used indiscriminately
for training, these artifacts can significantly disrupt the model, obscuring per-
formance gains, especially with large datasets. To address this, we employed
the synthetic image error pixel filtering strategy [31]. This method calculates
category-level difficulty scores and filters pixels, effectively eliminating harmful
regions that mismatch semantic masks. It aims to adaptively eliminate synthetic
areas in the image that do not align well with the corresponding semantic mask.
These areas are evaluated using a semantic segmentation model trained on the
real dataset, as they often exhibit significant losses. The core idea is to mark
synthetic pixels as noise if their loss, predicted by the model for the synthetic
image, exceeds the average loss of all pixels of the same category by a certain
margin. Noise pixels are then ignored in the loss calculation.

Before implementation, N synthetic images generated by FreestyleNet and a
semantic segmentation model trained on the real dataset are required. The strat-
egy involves utilizing the trained segmentation model to compute the dense loss
map for the N synthetic images, denoted as

{
Li

}N

i=1
(Li = {lk, k ∈ [1,H × W ]},

where lk represents the pixel-wise loss value, H and W denote the height and
width of the map, respectively) for all N synthetic images with their semantic
masks

{
Mi

}N

i=1
. Then, we can calculate the average loss pj of class j by:

pj =
N∑

i=1

HW∑

hw

[
1

(
Mi

hw = j
) × Li

hw

]
/

N∑

i=1

HW∑

hw

1
(
Mi

hw = j
)
. (2)

Where hw indicates the pixel location of (h,w), 1(x) = 1 if x is True, and 0
otherwise.
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For a synthetic pixel k with label j, if its loss lk > pj · α, it is considered
potentially noisy. Here, α acts as a tolerance margin. A smaller α results in more
synthetic pixels being filtered and excluded from loss computation, enhancing
safety. However, an excessively small α may also cause the remaining pixels to
lack sufficient information for our model to learn effectively. Fortunately, this
filtering strategy exhibits robustness to α, as the performance remains stable
across different α values ranging from 1 to 2 [31]. Here α is set to 1.2, and the
effect of the error pixel filtering strategy is shown in Figure 2.

Filtering artifacts yields cleaner, more accurate synthetic samples, allowing
the model to focus on authentic information. Although simple, this filtering
criterion shows great potential. When using only filtered synthetic images for
training, the model achieves a Dice score of 69.47% on the DFUC2022 test set,
comparable to 72.55% achieved with real images. This highlights its potential
for substituting real images, especially in privacy-sensitive medical scenarios.

2.2 Ensemble Learning

We employed ensemble learning methods to improve segmentation performance,
including simple and weighted averaging. For the weighted averaging ensemble,
we use the following equation to calculate model weights:

E(x) =
k∑

i=1

wiMi, (3)

where wi is the weight for model Mi. Drawing inspiration from Li et al. [15], we
calculate the weights using:

wi =
log

(
1−di

di

)

∑k
j=1 log

(
1−di

di

) , (4)

here, di is the Dice score of the i-th model, typically, di ∈ (0.5, 1).

3 Experimental Results and Analysis

Dataset The DFUC2022 dataset [11] is currently the largest publicly available
dataset for diabetic foot ulcer segmentation, provided by the organizers of the
MICCAI DFUC2022 competition. It features 4,000 high-definition images from
the Lancashire Teaching Hospital, with ulcer regions precisely annotated by
experts. The dataset encompasses cases of diabetic foot ulcers at various stages
of development, with the size of the ulcers ranging from 0.04% to 35.04% of
the total image area. These images are divided into a training set and a testing
set, each containing 2,000 images. Within the training set, there are 2,304 ulcer
cases, over half of which (1,248) have an ulcer area that is less than 1% of the
total image area. However, the mask labels of the testing set are not publicly
accessible in the DFUC2022 dataset, so participants must submit their results
for evaluation and placement in a live leaderboard maintained by the event
organizers.
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Table 1. Transferability of Synthetic Images to DFUC2022 Real Test Images

Model Training Data Dice(%)↑ IoU(%)↑ FNE(%)↓ FPE(%)↓
Real Synthetic

Mask2Former (Swin-B) ✓ 72.55 62.25 26.36 17.09

✓ 69.47 59.40 20.92 28.86

3.1 Transferability of Synthetic Images to Real Test Images

To comprehensively assess the practical application value of synthetic images,
we evaluate the quality of synthetic images through model transfer experiments.
Specifically, we test models trained on synthetic images on real images to accu-
rately assess the performance of synthetic images in practical applications.

The filtered and resampled synthetic images are used alone for model training
and compared with the corresponding models trained only on real images. As
shown in Table 1, in the Mask2Former model with a Swin-B backbone, although
the model trained on real data achieved good results (Dice: 72.55%), using only
synthetic images for training can also produce a strong model (Dice: 69.47%).
The marginal performance gap between the two (Dice: -3.08%) is impressive.

This study validates that synthetic training images, when subjected to filter-
ing and resampling operations, have a significant transfer capability to real test
images. This finding suggests they have great potential to replace real training
data, especially playing a crucial role in privacy-sensitive medical image segmen-
tation fields.

Table 2. Effectiveness of Filtering and Re-sampling Strategies on DFUC2022

Model Strategies Dice(%)↑ IoU(%)↑ FNE(%)↓ FPE(%)↓
Re-sampling Filtering

Mask2Former (Swin-B) Limited Random 62.42 53.16 27.09 36.48

✓ 69.47 59.40 20.92 28.86

Formula-based 61.24 51.45 24.58 39.60

✓ 67.33 57.17 19.36 33.85

Average 48.04 35.97 26.78 55.43

✓ 57.98 49.23 28.17 43.95

3.2 Effectiveness of Filtering and Re-sampling Strategies

This section aims to validate the effectiveness of error pixel filtering methods and
resampling strategies. Therefore, a series of ablation experiments were conducted
on the DFUC2022 dataset to evaluate these strategies.

Table 2 compares the effects of different filtering and resampling strategies on
the model’s transfer performance. Without any special treatment, that is, sam-
pling synthetic images directly with average sampling methods, the Dice score
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is only 48.04%. However, after using the error pixel filtering method, the Dice
score significantly increased to 57.98%, indicating that the filtering strategy effec-
tively eliminates low-quality pixels and improves the image synthesis quality. In
addition, the finite random resampling strategy proposed in this chapter fur-
ther improved the Dice score to 62.42%, showing effective resampling techniques’
important role. When combining the error pixel filtering method comprehensively,
the model’s transfer performance is maximized, with a Dice score of 69.47%,
an improvement of 21.43% over the baseline. The Dice coefficient obtained by
formula-based sampling is 67.33%, slightly inferior to finite random sampling
methods, but still has significant advantages over average sampling methods.

Experiments show that finite random sampling provides a robust perfor-
mance improvement, while error pixel filtering methods help in all aspects. In
addition, when combining the two, the model shows the best performance in
multiple important indicators such as Dice, IoU, and FPE. This result fully
demonstrates the synergistic effect of error pixel filtering methods and resam-
pling strategies, and foreshadows their huge potential in improving the quality of
synthetic image datasets and their applications in medical image segmentation.

Table 3. Segmentation Performance of Joint Training with Synthetic and Real Images
on DFUC2022

Model Backbone Training Data Dice(%)↑ IoU(%)↑ FNE(%)↓ FPE(%)↓
Real Synthetic (Re-sampling)

Formula- based Limited Random

Mask2Former Swin-T ✓ 71.61 61.37 26.87 18.63

✓ ✓ 71.95 61.59 25.32 19.54

✓ ✓ 72.30 61.98 23.20 21.56

Swin-S ✓ 71.88 61.68 25.03 20.43

✓ ✓ 72.07 61.66 24.66 20.32

✓ ✓ 72.58 62.37 21.80 22.62

Swin-B ✓ 72.55 62.25 26.36 17.09

✓ ✓ 72.89 62.78 21.78 22.05

✓ ✓ 72.69 62.54 20.33 23.67

Swin-L ✓ 73.30 63.26 22.52 20.59

✓ ✓ 73.58 63.57 21.19 21.25

✓ ✓ 73.20 62.94 20.76 22.27

SegFormer MiT-B2 ✓ 64.63 54.05 30.43 27.46

✓ ✓ 66.43 56.05 26.18 29.21

✓ ✓ 67.45 57.17 25.79 27.75

MiT-B4 ✓ 65.22 54.45 30.31 26.81

✓ ✓ 67.63 57.29 26.18 26.95

✓ ✓ 68.39 58.18 25.63 26.17

UPerNet Swin-L ✓ 71.91 61.84 22.32 23.42

✓ ✓ 72.28 62.02 23.07 21.85

✓ ✓ 71.75 61.74 22.20 24.08

SegNeXt MSCAN-L ✓ 70.96 61.08 23.88 23.65

✓ ✓ 71.38 61.33 22.70 23.66

✓ ✓ 71.22 61.25 21.97 24.81
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3.3 Joint Training of Synthetic and Real Images

The purpose of this section’s experiment is to explore whether combining syn-
thetic images with real images during the training process of deep learning mod-
els can improve the performance of the model on the DFUC2022 image segmen-
tation task.

According to Table 3, the joint training of synthetic and real images gener-
ally improves the segmentation performance under different model and backbone
network combinations. By comparing the results of using only real images for
training with those of joint training (synthetic and real images), it can be seen
that for the Mask2Former model, regardless of which backbone network is used
(Swin-T, Swin-S, Swin-B, Swin-L), the joint training method usually leads to an
improvement in Dice score. For example, under the Swin-T backbone, the train-
ing Dice score increased from a baseline of 71.61% to 72.30% using the finite
random sampling method. This indicates that the introduction of synthetic data
has a positive impact on model performance. Further, different synthetic data
sampling methods also have varying degrees of impact on performance indica-
tors. For instance, under the Swin-L backbone, using formula-based sampling
of synthetic data improved the Dice score from 73.30% with pure real data to
73.58%, while the use of finite random sampling for synthetic data led to a slight
decrease to 73.20%. This may mean that different sampling methods have their
unique characteristics in aiding model learning. Similar trends were observed in
other models such as SegFormer, UPerNet, and SegNeXt, where the joint train-
ing of synthetic and real images generally achieved better performance metrics
than using real images alone. For example, in the SegFormer model with the
MiT-B4 backbone, the Dice score reached 68.39% using the finite random sam-
pling method, significantly outperforming the 65.22% achieved with only real
data training.

Overall, the joint training strategy of synthetic and real images has shown
a clear advantage in enhancing model segmentation performance. It not only
shows improvement in Dice scores but also demonstrates overall performance
progress in other metrics such as IoU, FNE, and FPE. By cleverly combining
real and synthetic images, the model can learn a richer feature representation,
thus possessing better generalization capabilities when dealing with real image
data.

Table 4. Segmentation Performance of Ensemble Learning on DFUC2022

Models Training Data Ensemble Method Dice(%)↑ IoU(%)↑ FNE(%)↓ FPE(%)↓
Mask2former
(Swin-L)
UPerNet
(Swin-L)

Real Simple Averaging 72.50 62.54 21.94 22.74

Weighted Averaging 72.54 62.58 21.92 22.70

Real and Synthetic Simple Averaging 73.66 63.60 20.92 21.57

Weighted Averaging 73.72 63.64 20.96 21.36
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3.4 Ensemble Methods Experiment

To further improve the segmentation capabilities of our models, we investigated
the effects of two ensemble techniques-simple averaging and weighted averaging-
on the performance when combining two models: Mask2Former (Swin-L) and
UPerNet (Swin-L). These two models were trained using real data as well as
a combination of real and synthetic data. According to Table 4, when training
was conducted with real data only, the weighted averaging method outperformed
the simple averaging method across all four metrics: Dice, IoU, FNE, and FPE.
Specifically, the Dice coefficient improved to 72.54%, IoU increased to 62.58%,
while FNE and FPE decreased to 21.92% and 22.70%, respectively.

When the training data combined both real and synthetic data, the perfor-
mance of both ensemble methods improved. In this scenario, the weighted aver-
aging method continued to slightly outperform the simple averaging method in
terms of Dice and IoU, reaching 73.72% and 63.64%, respectively.

Overall, regardless of whether synthetic data was incorporated into the train-
ing or not, the weighted averaging method consistently showed superior perfor-
mance compared to the simple averaging method. Additionally, training with a
combination of real and synthetic data led to better performance across all evalu-
ation metrics. This finding indicates that judiciously selecting ensemble methods
and training data is crucial for enhancing model performance.

While model ensemble may consume some Computing resources during the
training phase, in practical applications, the simple averaging ensemble and the
weighted averaging ensemble methods allow for parallel computation among the
models involved in the ensemble. The prediction time only needs to match that of
the slowest model. Moreover, the ensemble process involves averaging the model
prediction results, which is almost negligible compared to the time required
for model prediction. Segmentation accuracy has a crucial impact on diagnos-
tic results for medical images, so further improving segmentation performance
through model ensemble has significant value.

4 Conclusions

In this work, we addressed the limited dataset issue in diabetic foot ulcer image
segmentation by using synthetic image technology. We tailored a mask difficulty
calculation method for DFU synthetic images and designed two resampling meth-
ods based on this. Combined with error pixel filtering, we improved the synthetic
dataset quality. We further enhanced segmentation performance by integrating
synthetic images with ensemble learning. Our methods were validated in the
DFUC2022 competition, achieving a Dice score of 73.72%, surpassing the test-
ing leaderboard’s top score of 72.87%. This offers valuable insights for other
medical image segmentation tasks.
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Abstract. Detecting and localising lesions is a key task in the staging
phase of diagnosing and treating prostate cancer (PCa). After a posi-
tive digital rectal examination or rise in prostate-specific antigen, pin-
pointing lesion positions for biopsy using multiparametric magnetic reso-
nance imaging (mpMRI) is crucial. mpMRI and ultrasound (US) imaging
already aid in collecting cores for biopsy accurately, a procedure called
FBx: mpMRI-targeted US-guided prostate fusion biopsy. Yet, physicians
face challenges, e.g., due to limited resolutions of both mpMRI and US.
This affects patients’ therapy choices, as malignancy assessment accu-
racy depends on FBx. Recent research aims to improve lesion detection
in both mpMRI and US using more objective markers, such as shear
wave elastography (SWE). AI can improve FBx using both mpMRI or
US data, which has been demonstrated in various studies. However, in
the case of mpMRI, labelled lesion examples are still limited, which hin-
ders the performance of state-of-the-art models. Self-supervised learning
(SSL) provides a solution by utilising large unannotated databases to
create robust feature extractors, enabling the training of case-specific AI
models with limited data. Thus, in this paper, we investigate how to
improve the models for PCa lesion detection by combining mpMRI and
US. We show that recent joint embedding predictive architectures may be
a good choice for mpMRI-SSL pretraining. Moreover, we present a false-
positive-filtering approach based on real and AI-based SWE, that further
improves the mpMRI-model’s specificity. Our model achieves state-of-
the-art performance of 0.626 average precision in mpMRI-based segmen-
tation and carries the potential to significantly improve lesion detection
and localisation accuracy.
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1 Introduction

Prostate cancer (PCa) is the most common solid malignant tumour among men
and the second leading cause of cancer-related death worldwide. Fundamen-
tal diagnostics include digital rectal examination and prostate specific antigen
(PSA) testing, which until recently sufficed for subsequent systematic prostate
biopsy (SBx). While SBx is a therapeutic key determinant, reliance on PSA has
caused overdiagnosis and unnecessary treatments, with 40-65% surplus biop-
sies [3] and complications like pain, bleeding, infection, and dysuria [22]. Addi-
tionally, SBx misses 30% of clinically significant PCa cases [32].

Recent guidelines recommend multiparametric magnetic resonance imaging
(mpMRI) before biopsy [25], shifting towards fusion biopsy (FBx) over SBx.
Yet, this diagnostic pathway also has limitations, with higher tumour incidence
but lower mortality in biopsied patients [34]. Hence, it’s uncertain if FBx reduces
overtreatment compared to PSA-driven biopsy. Alternatives like shear wave elas-
tography (SWE) identify lesions by stiffness but need mpMRI to correct false
positives from non-cancerous stiff regions, such as calcinosis.

Recent AI advancements enhance mpMRI- and ultrasound (US)-based lesion
detection using autoconfiguring segmentation models [17] and are fostered by
public datasets [24,29]. Additionally, Self-supervised learning (SSL) enables
training with large, unannotated databases, reducing the need for expert anno-
tation. That way, potent classification and segmentation models can be built
without the high burden of initial annotation by experts. This is crucial given
the low annotated lesion presence in public mpMRI datasets (e.g., PICAI has
15% annotated lesions). SSL therefore carries high potential to improve existing
AI approaches.

Thus, in this work, we investigate a joint solution of using both mpMRI and
US together with SSL for lesion detection. Our contributions are as follows:

– We compare the joint embedding predictive architecture (JEPA) to other
supervised and SSL techniques and show that JEPA is well suited for extract-
ing mpMRI characteristics that enable lesion detection.

– We present first steps towards directly incorporating SWE in AI-lesion-
detection.

– We investigate the relation between mpMRI-based AI-lesion-detection and
SWE.

– We implement and evaluate an AI-based, generated SWE and prove its pre-
dictive value.

2 Related Work

SWE is a vital topic in medical research and is lately backed by guidelines for
PCa diagnostics [5]. In the peripheral zone, SWE shows sensitivity and specificity
of 96% and 85% respectively [10], and correlates with PCa aggressiveness [19].
Combining SWE with SBx increases biopsy PCa detection rates by 12% [44].
Limited AI research on PCa and SWE exists. One method uses pixel statistics
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from SWE regions to train AI models, achieving an area under the receiver oper-
ating characteristic (AUROC) of 0.94 for detecting significant PCa [31]. Recent
work uses SWE maps with convolutional neural networks, showing compara-
ble AUROC for significant and improved AUROC for insignificant PCa detec-
tion [41]. Due to SWE’s limited availability, some works demonstrate how to
extract it from the US using AI with errors as low as 3.5 kPa [11,39].

While SWE promises procedural aid in tumour diagnosis, SSL may improve
future AI methods for digital cancer staging. Various methods for SSL have
been proposed recently that can in particular keep up with the supervised learn-
ing pendant [4,9]. SSL can improve medical AI models, when used as a pre-
training technique. Wilson et al. [40] achieved accuracies of 69.84 to 81.66%
when combining high-frequency ultrasound and histopathology images, whereas
an improvement by several percent points over the supervised scenario was
observed. Similar results could be achieved for histopathological grading [38],
single cell imaging [36], prostate segmentation [13], and brain-tumour anomaly
detection techniques [14].

For prostate mpMRI lesion detection, SSL has been proven to be a feasible
pretraining strategy [12,43,45], with AUROC values of 0.85 ± 0.01. A limit-
ing factor among all these works, however, appears to be the requirement of a
decoder-based architecture, which could potentially limit the learning capabili-
ties. Despite SSL approaches, the supervised training scenario is reported to yield
state-of-the-art results. Using a U-Net, dice scores (DSCs) of 0.69 to 0.84 could
be achieved [27,35]. Similarly, nn-UNet [17] achieves a similar DSC of 0.87 [7].
DSCs of 0.79 to 0.84 could furthermore be achieved by other authors, using
multiple-level images, attention mechanisms and spatial transforms [21,33].

3 Methods

3.1 Joint Embedding Predictive Learning

JEPA, a specific SSL branch, is based on the Joint Embedding Architecture
(JEA) principle. JEPA employs direct modifications in the latent space, enhanc-
ing training speed by eliminating image augmentation, and avoiding decoder-
based architectures suspected to limit learning abilities, as highlighted in Assran
et al.’s IJEPA approach [4]. In JEPA methods, smaller context and larger tar-
get patches are selected randomly for each image. The training procedure then
shadows context features based on randomly selected positions in the encoder
input matrix. The context features are then processed by a learnable attention
mask, and forwarded through a predictor network. For the model, the task lies
in finding similar latents for shadowed context and original target patches, by
interpolating between latents, capturing important data properties. Addition-
ally, a teacher-student configuration with a context and target encoder vision
transformer (ViT) [20] is used to avoid mode-collapse.
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3.2 Shear Wave Elastography

Utilising acoustic radiation force from multiple focused ultrasound beams, SWE
generates shear waves in tissue [2]. These waves’ velocity varies with tissue stiff-
ness: higher in stiffer tissues and lower in softer ones. The device generates two
shear waves to calculate the Young’s modulus (kPa) from their difference, usable
for quantitative visualisation.

To collect SWE, avoiding compressing the prostate and rectal wall is crucial,
and an elasticity scale of 70-90 kPa is required. Benign prostate tissue in the
transitional zone typically measures around 30 kPa to 180 kPa (for metaplasia),
while PCa averages 91 kPa. Peripheral and central zones range from 15 to 25
kPa. In the quantitative map, higher values appear in red, lower in blue.

Limitations of SWE include examining large prostates, where gland protru-
sion can cause compression artefacts, and SWE’s 3-4 cm penetration depth may
miss anterior lesions [6]. However, most PCa cases are in the accessible periph-
eral zone [23]. Calcifications can impede performance due to their high stiffness.
Furthermore, tissue stiffness varies by imaging plane, with higher values in sagit-
tal compared to axial imaging [28]. Thus, prostate SWE is best performed in the
axial plane for representative Young’s modulus values.

3.3 Data and Patient Cohort

Internal cohort Internal data were obtained from a single-center, non-
randomised prospective study on PCa detection via SWE- and mpMRI-targeted
transperineal biopsy at University Hospital in Wroclaw, Poland. Ethical approval
was granted with number 129/2023, with written consent from participants.
Adult men scheduled for biopsy were eligible if they had prebiopsy 3-T mpMRI
with PI-RADS 3+ lesions and PSA determination, and underwent transrectal
SWE (Aixplorer R© device with the SuperEndocavity SE12-3 probe; tissue stiff-
ness threshold at 90 KPa). The entire prostate was mapped in sagittal sections
to identify areas of increased stiffness. Exclusion criteria included prior prostate
intervention and clinically spread disease. From June 2023 to February 2024, 133
patients were enrolled; 15 were used for qualitative analysis and testing, and 68
for AI-based SWE training. Each mpMRI included standard T2W, ADC, and
DWI. Patients with positive biopsy results were eligible for RARP at University
Wroclaw Center of Excellence in Urology. Excised prostates underwent detailed
histopathological examination, mapping actual PCa foci onto paper schemes for
comparison with mpMRI and SWE images.

The Cancer Imaging Archive For implementation of the lesion-filtering and
further validation of the mpMRI-model, we used the MRI-US dataset from the
cancer imaging archive (TCIA) [24]. We extracted 277 cases (13 benign; 264
malignant) that contain all of T2W, ADC, DWI and US images as well as masks
for lesions and the prostate itself in both mpMRI and US.
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PICAI & Prostate158 The PICAI [29] and Prostate158 [1] consist of 1500
(1075 benign; 220 malignant) and 158 (56 benign; 102 malignant) cases of
mpMRI with ADC, DWI and T2W. We used them to train and test the mpMRI
models. Furthermore, PICAI data was used exclusively for the SSL pretraining.

3.4 Architecture

SWJEPA processes paired cases of mpMRI and corresponding US. For T2W and
DWI images, simple scaling from zero to one was performed for each patient. For
the ADC images, the mean and standard deviation of each dataset were collected,
together with the 99.5 and 0.5% percentiles. Each pixel was then clipped within
these percentiles, mean-subtracted and divided by the standard deviation to
ensure comparability of different centres’ data. Additionally, resampling to a
voxel spacing of (0.5, 0.5, 3.0) as suggested by Saha et al. [30] was applied.

The SWJEPA pipeline works as follows: First a lesion prediction Z is
extracted by a mpMRI-segmentation model, that uses an SSL-pretrained
backbone. Next, an AI-based SWE is created from an SWE-Model by feeding
a US image that corresponds and is registered to the mpMRI. In the third step,
pixels Pz will be sampled from the AI-based SWE, according to the lesion pre-
diction that mainly contain true positives and false positives. In the last step,
an SWE-based classifier will filter false positives lesions from the predictions
Z using the pixels Pz. The whole procedure is depicted in Fig 1 and component
details are provided below.

SSL Pretraining For the IJEPA [4] SSL pretraining, we use 775 of the
PICAI [29] benign cases. We omitted 300 benign cases and all malignant ones to
exclude overfitting effects from the later downstream task in any case. The images
were processed as pseudo-RGB (T2W, ADC, DWI) by a ImageNet-pretrained
ViT-B16 [20]. We found the default parameters provided by IJEPA [4] sufficient,
even though we selected a batch size of 22 (one patient case). Training was done
for 300 epochs before passing the weights to the segmentation model, and took
about three days on our setup (c.f. Sec. 4).

Segmentation Model After training the IJEPA [4] model for 300 epochs,
we froze the weights and extended the model with a U-Net like decoder path.
The overall architecture was adopted from Hörst et al. [16], whose model was
originally designed for cell segmentation and thus is proven to handle small
segmentations well. We use a combination of weighted (benign: 0.3; lesion: 1.)
cross entropy and dice loss with a learning rate of 0.0001. Training was done
according to Sec. 4 and took only a few hours. For the decoder, the first, fourth,
seventh, and tenth layer of the ViT were connected via skip connections and a
bottleneck size of 256 was used. Furthermore, we use a separate head to predict
lesions and the organ itself. We couldn’t recognise a difference between training
the heads separately and parallel, and thus trained both segmentation outputs
in parallel. During inference, we multiply the lesion and prostate predictions, to
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Fig. 1. Overview of the implemented approach. An SSL-pretrained feature extractor is
fine-tuned for mpMRI lesion segmentation. Afterwards, corresponding US images are
used to create an AI-based estimation of the US-SWE. Using the AI-based SWE, the
false positive lesions can be filtered. Blue arrows indicate the training data flow.

mask the actual prostate area. For the segmentation part, however, ADC and
DWI channels were set to 0, as they don’t show the organ outline necessarily and
thus may mislead the model. We also experimented with more recent methods
like SwAV [9], but found the performance to be inferior, as using large batches
was infeasible due to technical constraints and the size of the dataset. Similarly,
using 3D-architectures didn’t add value, as for most PICAI solutions [30].

SWE-Model Among the available datasets, only the TCIA [24] offered the
required amount of paired cases to train our framework. As the TCIA, however,
has no SWE available, we trained a GAN-based pix2pix model [18] with our
internal cohort to simulate the SWE in TCIA. We also investigated the perfor-
mance of the more recent CUT model [26], but found it to create unrealistic
predictions, in particular for regions of high Young’s modulus. The most recent
approach of Dai et al. [11] could not immediately be reproduced with our data
and thus was postponed to be the subject of future work.

To train the model, first, the SWE regions were extracted, as only a cone
inside the whole area had the SWE applied (c.f. Fig. 1 real SWE). Extraction was
done by identifying coloured areas based on the image chrominance, cropping
the region, and then masking all the non-SWE area to exclude it from training.
The model was then trained for a maximum of 300 epochs and using the default
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parameters as proposed by Isola et al. [18] to replicate the SWE from the raw
US. For the lesion filtering experiments, inference was performed using the TCIA
US data (c.f. Fig. 5).

Lesion Filtering In the last step of the pipeline, we implemented the SWE-
based lesion detection. We used the TCIA [24] dataset for this purpose. As the
data contained lesion annotations for the US part, we generated the AI-based
SWEs for the dataset and sampled tumour regions from it. Additionally, for
each case, we sampled 50 random non-lesion regions of 20 × 20 pixels. We then
proceeded to train a set of machine learning models (c.f. Sec. 4.4 and Tab. 1)
on the extracted pixels’ statistics (mean, minimum, maximum) and the labels
provided by TCIA [24] (each region was either malignant or benign). Default
parameters of Python’s sklearn library were used for training.

This lesion filtering (SWE classifier) was also used in our last experiment,
to filter false positive segmentation output of the mpMRI-segmentation model.
To pair the AI-based SWE and mpMRI data, the annotated prostate regions
were cropped and aligned in both US and mpMRI. Afterwards, the correspond-
ing SWE-pixels of true-positive and false-positive predictions from the mpMRI-
classifier were processed by the SWE-classifier.

4 Results

With the components as described in Sec. 3, we’ve built a model that com-
bines mpMRI- and US-based lesion detection. All the models presented below
were trained with Python 3.9 and various open-source tools [4,8,15,30], on two
CUDA-V100 16 GB GPUs, using early stopping and for at least 100 epochs.
Evaluation was done in a five-fold cross validation scenario.

4.1 Qualitative Analysis

Backbone Performance A major part of our study’s intent was to investi-
gate if SSL can be a possible direction to bridge the discrepancy of large data
availabilities on the one, but very limited number of annotations on the other
hand. The segmentation model uses the IJEPA-pretrained [4] SSL-model as a
backbone. To ensure the feature extraction capabilities are not distorted by using
the decoder in the actual downstream task (segmentation), first, the raw features
were clustered. The result is shown in Fig. 2.

The features extracted by the ViT-based model are high-dimensional as for
each case a prediction matrix M ∈ R

N×G×F will be created, whereas N is
the number of images per patient case (depth), G is the grid size (16 × 16
patches) and F is the number of features per patch (768). To properly scatter
the features, they first needed to be sampled down further. For that purpose, the
mean, standard deviation, and maximum absolute value were calculated along
the grid dimension G. Afterwards, the principal component analysis (PCA) was
applied to each of the statistics to further downsample the feature size. From the
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Fig. 2. The IJEPA-based backbone [4] creates features of semantic meaning. When
plotting the feature statistics, clearly separable clusters of lesion-infiltrated (red) and
lesion-free cases (blue) could be observed.

downsampled features’ first PCA main component, a random excerpt was used
for plotting. In the resulting scatter plot (c.f. Fig. 2) clearly separable clusters
can be found for lesion-infiltrated and lesion-free cases in the upper and lower
right half, and in the lower left part respectively. Regarding the statistics, it
seems that standard deviation and max absolute value are most predictive. This
appears to be plausible, as a lesion-infiltrated case on average will look similar
to a lesion-free one due to the lesion only covering a minimal part of the image.
The scatter plot therefore suggests that the model captures features of semantic
meaning, which is impressive given the fact that only around 17000 images were
used for training. Especially among the clusters in the lower half, however, there
appears to be a high similarity between images. This, however, is likely of low
relevance, as a remaining entanglement is at least expected as a result of the
downsampling.

SWE vs. mpMRI In the second part of our qualitative analysis, we investi-
gated the relation between the fine-tuned mpMRI-model’s predictions (c.f. Sec.
3.4) and the referring SWE. For this analysis, the 15 cases from our internal
cohort were used in a manual that had histopathological confirmation of the
lesion positions available as hand-drawing. Generally, the model could be found
to handle the cases well but with a lower f1 score as for the evaluation set taken
from the PICAI challenge [30]. While no case was without a predicted lesion,
only half of the cases could be found to exclusively match the confirmed posi-
tions. For the remaining cases, especially false positive predictions appeared to
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be a huge issue, together with some missing sensitivity for small lesions. We
therefore investigated the value of the referring SWE data. As the data were
recorded in the sagittal plane and smaller misalignments of the prostate could
be observed, in a first step we segmented the prostate in the US as described in
[37] and manually aligned the images. Afterwards, the axial-converted SWE was
plotted together with the mpMRI image and the lesion predictions. In Fig. 3 the
predicted lesion lies within a stiff area. This could be advantageous, especially
when extracting the biopsies.

Fig. 3. Sample case of detected MRI-lesion (red) in the prostate (encircled in white)
with corresponding SWE. In the SWE image, lower tissue stiffness results in blue
and higher stiffness in red colour, whereas the deepest red corresponds to 90 kPa. As
indicated by the green arrow, high stiffness is found where AI predicts a lesion.

It can, however, also be observed that stiff regions in SWE exceed the lesion
positions. While this could on one hand reveal smaller or less suspicious lesions,
SWE is also known to visualise, e.g., calcinosis like a tumour (due to the similar
tissue properties) and thus, in terms of usability, relying on both modalities
rather than one appears to be advisable from the perspective of the qualitative
analysis.

4.2 SSL Downstream Performance

Regarding the mpMRI-model, the qualitative analysis already achieved promis-
ing results. To get an in-depth understanding of the model’s performance, we
investigated its value as a backbone in a segmentation model. The model per-
formance was then evaluated regarding average precision (AP) and AUROC
with the metric as suggested by Saha et al. [30] and Bosma et al. [8]. We fur-
thermore compared the results against other SSL-based approaches, which are
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based on solving the pretext task of restoring subvolumes (3D-patches) of the
images and contrastive optimisation. The performance results are depicted in
Tab. 1. We resort to comparing only papers using the same metrics as in the
PICAI challenge [29] as, e.g., dice score has been proven ineffective in this partic-
ular segmentation task (c.f. Yan et al. [42]). Similar works that report different
metrics can be found in Sec. 3.

Table 1. Performance of the SSL pretrained segmentation-model. The baseline nn-
UNet’s lesion level AP could be improved by several percent points, while similar
AUROC could be achieved on case level.

Approach AP AUROC

nn-UNet [7] 0.593±0.027 0.895±0.008

Subvolume Restoration + Fine-tuning [43] 0.4647±0.0570 0.8624±0.0163

Contrastive SSL + Fine-tuning [45] 0.60±n.A 0.877±n.A.

JEPA + Fine-tuning 0.626±0.068 0.846±0.0476

Our SSL-based model achieves the best AP among the tested approaches.
This is important, as AP considers not only if a lesion was detected, but also
whether the right position was found. For our biopsy-driven use case, this is a
crucial metric, as the case-level AUROC does not reflect if the urologist could
successfully sample the tumour. In terms of AUROC, included for completeness,
the nn-UNet model reports a higher value. It should, however, be noticed that
these results were reported on a private test set rather than the public part of
the PICAI data [29]. The internal test sets tended to create more optimistic
results [30]. The challenge baseline model, which was also a nn-UNet, achieved
inferior results of 0.4556 ± 0.0390 AP and 0.8661 ± 0.0070 AUROC respectively.
As the IJEPA [4] model presented here achieved a slightly lower AUROC than
the others, we investigated the precision and recall separately. We noticed a
significant discrepancy, e.g., for the best-performing model, of 0.860 precision
vs. 0.98 recall. This observation supports the findings of our qualitative analysis,
as it means the model tends to predict pessimistic (i.e., with a high probability
of counting any suspicious pixels as malignant). For our approach that includes
a secondary filtering step, we still decided to further build upon the IJEPA [4]
model, as an initial pessimistic prediction is a good base for filtering.

In addition to the performance analysis, we also did some further visualisation
of successful and failed predictions. They are depicted in Fig. 4.

The visualisation confirmed the findings of both the qualitative and perfor-
mance analysis once again. While for the example in the upper row both prostate
and lesion segmentation are successful (c.f. the corresponding ADC and DWI
also), a slight deviation in ADC and DWI, as indicated by the arrow, obviously
leads the model to a false-positive prediction.
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Fig. 4. Visualisation of a successful and failed prediction. While in both rows the
prostate segmentation (green) was of high quality (IoU > 0.85) a false positive lesion
(red) was detected in the lower row’s example. ADC and DWI are non-overlayed to
visualise their actual values. The green arrow indicates a clinically insignificant region
of high ADC vs. DWI contrast that possibly causes a false positive.

4.3 AI-based SWE

The mpMRI-based model could be found to have a high sensitivity, yet also to
predict pessimistic, which can be identified by a remarkably higher amount of
false positives compared to false negatives. This could practically foster devel-
opments in unnecessary biopsy, which FPx explicitly tries to avoid. As similar
effects could be observed for any model tested, we decided to incorporate SWE,
as the qualitative analysis and the literature already indicated its value. For the
TCIA this required simulation of the SWE, as described in Sec. 3.4. After train-
ing on the internal data, our GAN-based model creates AI-based SWEs like in
Fig. 5. While inspecting the predictions of 15 cases’ images manually, we found
most of the regions with high stiffness (c.f. Fig. 5a) to be matching. For images
with explicit low stiffness, as in Fig. 5b, false positives could be observed.

As our equipment didn’t allow for extracting the raw Young’s modulus’ data
but rather the final quantitative maps, we couldn’t directly calculate the real
error created by the model. The measured mean squared error in the blue to
red chrominance channel of the YCbCr-transformed input and prediction was at
≈ 7.4%, which would translate to around 3.5kPa, given the scale of our SWE.
This implies that the model’s output meets the real SWEs, but is, however,
just an estimate. We therefore decided to use the lesion vs. benign prediction
performance of the lesion filtering module (c.f. Sec. 3.4 lesion filtering and Tab.
2) as an alternative validation method. It’s noteworthy that other models such
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Table 2. Performance of the SWE-based Lesion classifier, for the lesion detection
(lesion vs. benign) and false positive filtering (lesion filtering) experiments.

Test Scenario Model f1 score precision recall

Decision Tree 0.703 ± 0.017 0.712 ± 0.022 0.704 ± 0.018

Lesion vs. Benign Logistic Regression 0.518 ± 0.031 0.735 ± 0.012 0.596 ± 0.019

SVM 0.791±0.033 0.796±0.036 0.792±0.033

Decision Tree 0.492 ± 0.097 0.584 ± 0.069 0.585 ± 0.081

Lesion Filtering Logistic Regression 0.591±0.016 0.594±0.018 0.591±0.012

SVM 0.578 ± 0.033 0.582 ± 0.036 0.576 ± 0.033

as XGBoost and random forests were also evaluated but not further considered
due to their poor tradeoff in performance vs. inference speed. For the lesion
vs. benign scenario, the support vector machine (SVM) achieved the best per-
formance regarding f1 score, precision, and recall. Overall, a high f1 score of
0.791±0.033 could be achieved. Furthermore, a higher average and max value of
the Young’s modulus was found in the lesion region, which meets the expecta-
tion.

4.4 Lesion Filtering

In our last experiment, we used the lesion filtering module to filter false positive
predictions of the mpMRI-segmentation model. For that purpose, regions where
a lesion was detected by the mpMRI-segmentation model were classified by the
lesion filtering module and the result was compared to the region’s corresponding
label (benign or malignant). We achieved lower f1 scores than for the initial
lesion vs. benign scenario, as depicted in the lesion filtering part of Tab. 2.
In contrast to the lesion vs. benign scenario, the logistic regression performed
slightly better than the SVM, but both models achieved similar values. We found
that in contrast to the mpMRI-model, the US-based one shows less recall but

Fig. 5. Examples of the estimated SWE. In figure a) high Young’s modulus values have
been correctly captured, while in figure b) stiffness was underestimated.



SWJEPA 371

higher specificity. This is especially the case for detecting true positives, where
precision values of 0.644 ± 0.050 were recorded.

Fig. 6 shows three filtered examples. In the top row, the false positive region
is below the actual tumour and lies in a low-stiffness area of the AI-based SWE.
Hence, it is filtered. For various other cases, we observed that labels don’t reach,
e.g., deep enough. Therefore, as in the middle row, some lesions may be erro-
neously marked as false positive and are possibly missed by the lesion filtering
model for good reason. We hypothesise that the model performance therefore
could even be higher but struggled to determine a matching threshold without
unnecessary biasing the model. In the bottom row, the AI prediction covers parts
of the tumour, but also larger benign areas, which misleads the lesion filtering.

Fig. 6. Examples of the lesion filtering. Top row: correctly identified false positive
prediction (green). Middle row: Possibly mislabelled example. Bottom row: Missed
false positive prediction.

5 Conclusion

Summary: We developed a method to detect and locate lesions using mpMRI
and SWE. Our SWJEPA model achieved higher AP than similar methods and
can filter false positives based on SWE. Hence, it has potential for improving
FBx and the overall PCa diagnostics pathway, by providing more reliable lesion
positions.

The SWJEPA model creates semantically meaningful features for mpMRI
images, making it suitable for mpMRI-specific architectures. We anticipate that
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pretraining on a larger database, including other tumour types, could yield sim-
ilar high-quality results as in histopathology by Wang et al. [38].

We also implemented and validated an AI-based solution for generating SWE
from regular US images, successfully using AI-based SWE maps to identify
lesions. This approach could be a viable alternative given the low availability
of SWE in hospitals, highlighting SWE’s predictive potential.

Limitations: SWJEPA showed a notable decline in performance when tested
on data from different hospitals (PICAI and Prostate158 [1,29]), likely due to
differences in DWI/ADC b-values. Additionally, 3D mask sampling and mpMRI
image misalignments caused issues, needing better interpolation and registration.

The AI-based SWE showed low deviations from the original, but further
investigation is needed with real SWE data, including proper US segmentation
for accurate mapping from mpMRI predictions to US.
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Abstract. Existing detection methods for adversarial attacks in med-
ical images mostly rely on prior knowledge about the attacks and the
target models. This work introduces a new attack detector termed as
AdaSVaT, that is both image and model agnostic, employing specific
noise reduction technique through Adaptive Singular Value Threshold-
ing (ASVT). The method exploits the significant impact of adversarial
attacks on the lower singular values of an image. The AdaSVaT algo-
rithm adaptively thresholds the singular values of the input image with
the help of a linear regressor to generate a low-rank version of the same.
Both the original and low-rank versions are experimented with the state-
of-the-art classifiers. Adversarial examples are detected by examining
the classification inconsistency between the input image and its low-
rank version. Additionally, experimental results on three fundus image
datasets (Kaggle EyePACS, IDRID and APTOS) prove the negligible
loss of information from the images during reconstruction. The proposed
method achieves improved adversarial detection accuracy with minimal
computational burden while maintaining high structural similarity in
both binary and multi-class classification tasks.

Keywords: Adversarial detection · Fundus images · Low rank
approximation · Singular value thresholding

1 Introduction

Deep Neural Network (DNN) models are used for medical image classification
to reduce the labor-intensive and error-prone nature of the task [1]. Retinal
fundus image classification for Diabetic Retinopathy (DR) detection was the
first medical image classifier system employed for clinical practice [2]. With the
recent advancement in DNN techniques, more models are being incorporated to
clinical practices and many of them are outperforming human experts [3]. Despite
their efficiency, DNNs in medical image analysis are demonstrably vulnerable to
adversarial attacks [4,5]. These attacks, achieved through imperceptible input
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manipulations, lead to misclassifications by DNN models [6]. The ease of crafting
such attacks, coupled with the inherent susceptibility of medical images due to
their domain-specific features, poses a significant threat [7]. As prior research
suggests, adversarial attacks deployed on DNN models can disrupt real-world
applications, potentially leading to misdiagnoses and fraudulent claims [8,9].

Adversarial attacks pose a significant threat to AI-based diabetic retinopathy
(DR) detection in clinical settings. By manipulating benign images with imper-
ceptible perturbations, these attacks can induce misclassifications as DR, poten-
tially jeopardizing the patient’s health [22]. Common techniques such as the Fast
Gradient Sign Method (FGSM) [26], and Projected Gradient Descent (PGD) [7]
exploit the model’s decision boundary to craft adversarial examples that deceive
the DNN classifier. These perturbations are visually undetectable by human
observers, hindering manual identification. Existing adversarial defense methods,
as detailed in Section 1.2, often necessitate significant training on computation-
ally expensive DNN models or operate under restricted white-box assumptions.
Consequently, the development of computationally efficient and domain-agnostic
detection methods remains an active area of research.

Table 1. Summary of recent adversarial defense methods on fundus images.

Ref. Defense Type Task Attack Modality Data Modality

[12] Adversarial Training Classification PGD Fundoscopy

[7] Adversarial Detection Classification FGSM, BIM, PGD, CW X-ray, Fundoscopy

[13] Adversarial Training Classification PGD, GAP X-ray, Fundoscopy,
Dermoscopy

[14] Adversarial Training &
Feature Enhancement

Classification FGSM, DeepFool X-ray, Fundoscopy

[15] Adversarial Detection,
Pre-processing

Classification FGSM, BIM, PGD, CW, PGD,
MI-FGSM

X-ray, Fundoscopy

[16] Adversarial Detection,
Feature Enhancement

Classification FGSM, PGD, BIM, AutoPGD X-ray, Fundoscopy

[17] Adversarial Training,
Distillation

Classification L-BFGS, FGSM Fundoscopy

[18] Feature Enhancement Classification FGSM Fundoscopy

[19] Pre-processing Segmentation DAG, I-FGSM MRI, X-ray, Fundoscopy

[20] Feature Enhancement Classification FGSM, PGD X-ray, Fundoscopy

This work proposes a new adversarial attack detection method based on
Adaptive Singular Value Thresholding (ASVT). The approach leverages low-
rank approximations of the input image using the ASVT technique. Classification
consistency between the original image and its low-rank counterpart is used
to identify potential adversarial examples. The approach is evaluated on three
publicly available fundus image datasets.

Rest of the paper is structured as follows: Section 1.1 reviews related work on
adversarial image detection. Section 2 details the proposed adversarial detection
using adaptive SVT. Section 3 presents experimental evaluations and results,
followed by limitations (Section 3.5). The paper concludes in Section 4.
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1.1 Related Works

Given the substantial healthcare economy and prevalent medical fraud, extensive
research efforts have focused on combating adversarial attacks in medical image
analysis. The most common approach is adversarial training, which enhances
robustness by using adversarial examples to train the network. [10]. Methods
such as feature enhancement and distillation are also in practice to impart adver-
sarial robustness to the DNN model [14,16,17]. Adversarial detection is another
method in which the adversarial images are identified and avoided from being
misclassified [7,11]. Recent works on adversarial defenses on fundoscopic images
are listed in Table 1. The table shows that most adversarial defenses still rely on
traditional methods like adversarial training and feature enhancement, with lit-
tle emphasis on adversarial detection. Traditional methods often suffer from high
computational demands and data dependence. Notably, adversarial robustness
and adversarial detection serve distinct purposes in machine learning systems.
Robust systems prioritize accurate classification of adversarial examples, poten-
tially sacrificing explicit adversarial identification. Conversely, detection methods
focus solely on differentiating genuine and adversarial inputs.

Adversarial detection methods are scarce in the medical image domain com-
pared to natural images. Existing methods, while sometimes effective, often
struggle with generalizability due to white-box assumptions, limiting their prac-
tical application [7,20,21]. Even the methods which have reported high accuracy
with other datasets (eg: Chest X-rays) were failed to reproduce the same with
retinal fundus images [21]. Despite these efforts, developing a generic detection
method still remains a challenging task. Hence we have come up with a new
and more efficient approach to detect adversarial images in retinal fundus image
datasets. Fundoscopic images were chosen as the target modality due to their
pioneering role and extensive use in AI-based medical classification models. Fur-
thermore, they present a challenging domain for conventional detection methods,
often yielding sub-optimal performance.

1.2 Contributions

Motivated by the gaps identified in the literature, a new approach is introduced
for differentiating adversarial images from genuine ones. This work offers signif-
icant contributions as listed below.

– A new method for detecting adversarial fundus images using adaptive SVT
which works equally good under both binary and multiclass settings. The
method exploits the inherent susceptibility of lower singular values to adver-
sarial perturbations, achieving model and image agnostic detection .

– The image entropies are used to calculate the optimum cumulative energy
captured by the singular values to perform the thresholding. A low-rank ver-
sion of the input image is reconstructed by using the thresholded singular
values and the adversarial image can be detected if both the predictions on
the original and the low-rank versions differ.
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– The quality of the reconstructed images is substantiated by comparing their
Structural Similarity Index (SSIM) scores with those of the original images.
The SSIM scores indicated that the reconstructed images maintained an
acceptable level of fidelity to the originals.

– Further, the proposed approach is validated on three publicly available fundus
image datasets such as Asia Pacific Tele-Ophthalmology Society (APTOS),
Indian Diabetic Retinopathy Image Dataset (IDRID), and Kaggle EyePACS
with FGSM and PGD attack methodologies. We validate the proposed app-
roach using the statistical robustness tests.

2 Proposed AdaSVaT Adversarial Detector

The proposed Adaptive Singular Value Thresholding technique for adversarial
detection in fundus images is termed as AdaSVaT and operates in three stages.
Firstly, a pre-trained DNN classifier yields an initial classification for the input
image (P1). Secondly, the threshold generation framework determines an adap-
tive energy threshold for the input image. Subsequently, Singular Value Decom-
position (SVD) is performed on the image, and adaptive hard thresholding of
the singular values is executed based on the determined energy threshold by
considering the cumulative energy captured by the ‘N ’ most significant singular
values. The image’s low-rank version is then reconstructed using the thresholded
singular values. Finally, the reconstructed image is classified by the same pre-
trained model to get the low-rank prediction (P2). Discrepancies between P1 and
P2 indicate an adversarial image. The proposed AdaSVaT adversarial detector
is summarized in Fig. 1.

2.1 DNN Model and Attack Settings

ImageNet pre-trained DNN models such as ResNet and INCEPTION are used as
the base network for image classification. Transfer learning is employed to achieve
high accuracy on the target dataset. FGSM and PGD adversarial attacks are
implemented to generate adversarial examples from the original images. These
attacks are validated against the DNN model to ensure their effectiveness. The
input dataset is created by mixing both attacked and clean images. Images from
the input dataset are fed into the classifier to get the original predicted label P1.

2.2 Adaptive SVT and Low-Rank Reconstruction

Prior works in natural image domains treat adversarial perturbations as high-
frequency noise and focus on denoising for defense [23–25]. Our approach diverges
by exploiting the observation that adversarial attacks predominantly impact the
lower singular values compared to the higher ones as shown in Fig. 2. It can
be seen from the figure that the adversarial attacks affect the lower singular
values to a higher degree as compared to clean images. We base the proposed
approach on such an observation to distinguish the singular values of clean versus
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Fig. 1. Overview of the proposed AdaSVaT detector. The detector comprises a DNN
classifier and threshold generation framework to perform ASVT. Both the input and
its low-rank version after ASVT are fed to the DNN classifier to obtain P1 and P2.
Image is detected as adversarial if P1 and P2 differ.

adversarial images. Specifically, the approach is designed by reconstructing the
image using only the significant singular values to detect the adversarial images.
However, determining a significant percentage of singular values is challenging as
it varies from image to image. The proposed approach therefore uses adaptively
determined significant singular values (ASVT) instead of conventional SVT.

Threshold Generation Framework: The threshold generation framework cal-
culates the cumulative energy value captured by the significant singular values
to perform ASVT. It is achieved by training a linear regressor using entropies
derived from the image and corresponding energy value labels as detailed below.

Entropy Calculation: A key challenge lies in the selection of optimal thresh-
old in SVT operation. To maintain the balance between noise reduction and
feature preservation, entropy-based adaptive thresholding is employed. Image
entropy reflects the degree of adversarial perturbation, with lower values indi-
cating stronger attacks [24]. Consequently, a higher threshold is applied to low-
entropy images (significant perturbation) to suppress noise, while high-entropy
images (minimal/no perturbation) utilize a lower threshold for optimal fea-
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Fig. 2. Plots depicting the impact of adversarial attacks on singular values. (a) The
scatter plot presents the lowest 30 singular values before and after the attack for 4000
images (2000 clean and 2000 adversarial). A clear distinction is evident in the lower
singular values, which diminishes progressively towards the higher values. (b) Shows
the percentage change in singular values post-attack (X-axis corresponds to the indices
of these singular values). Notably, lower singular values demonstrate considerable alter-
ation, while the impact on higher singular values is comparatively negligible.

ture retention [24]. Converting an image from RGB to YCbCr before perform-
ing thresholding enhances precision and accuracy. This approach leverages the
advantages of YCbCr color space (noise or artifacts often appear more distinctly
in the luminance component than in chrominance) and wavelet transform to
ensure the robustness of the thresholding process. By converting the image to
YCbCr, we separate the luminance (Y) component (represents the brightness)
from the chrominance (Cb and Cr) components (encode the color information).
This separation helps to consolidate the effects of adversarial attacks, as any
perturbations introduced across the RGB channels are integrated into the lumi-
nance component. For an 8-bit RGB input image D, it can be calculated as

D(RGB) −→ D(YCbCr) (1)

Subsequently, applying wavelet transform to the luminance component
(Y(D)) of the image enables decomposition into four frequency bands:
LL,LH,HL, and HH. Computing entropies for each of these bands provides
distinct and finite values, which offer a more reliable basis for thresholding. The
Haar wavelet transform (WT ) of Y(D) can be represented as,

WT (j, k) = (1/sqrt(2))j ∗
2j−1∑

n=0

hj−1
n ∗ Y(Dk,n) (2)

where ‘j’ represents the level of decomposition. For j = 2, the components are,
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WT j=2(Y(D)) −→ YLL,YLH ,YHL,YHH

Now the entropies can be calculated as,

H(Y) = −
L−1∑

i=0

P(i)log2P(i) (3)

P(i) represents the probability mass function of pixel intensity values and L = 8
for an 8 bit image. Performing the same on all the four bands will yield

H(YLL),H(YLH),H(YHL), and H(YHH)

Linear Regressor to Predict Cumulative Energy Value: Image entropy
guides the selection of the optimal singular value threshold for low-rank recon-
struction. This exploits the inherent property that most image information
resides in the higher singular values as shown in Fig. 3. To address entropy-
based threshold variations across datasets, a linear regressor, trained on diverse
data, predicts the cumulative energy threshold based on the calculated entropy.
The singular values of the input image D of size m × n can be calculated as,

D = UΣVT (4)

where:

– U is an m × m orthogonal matrix containing the left singular vectors.
– Σ is an m×n diagonal matrix with singular values σi as the diagonal elements.
– VT is an n × n orthogonal matrix containing the right singular vectors.

Now the normalized singular values (σ̂i) are to be added for calculating the
cumulative sum (Ck).

σ̂i =
σi∑min(m,n)

j=1 σj

(5)

Ck =
k∑

i=1

σ̂i (6)

The exact fraction of Ck necessary for optimal reconstruction, or the cumulative
energy threshold (Ĉk) is determined experimentally across various datasets.

Singular Value Thresholding and Low-Rank Reconstruction: Follow-
ing the generation of the cumulative energy threshold (Ĉk), hard thresholding
is applied to the singular values. Only the singular values contributing to the
desired cumulative energy are retained for low-rank image reconstruction. The
low-rank approximation of the original image D is obtained by retaining only
the k most significant singular values in accordance with their corresponding
singular vectors:

Dk = UkΣkVT
k (7)

where:
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– Uk, Σk, and V T
k are the matrices containing the k most significant singular

vectors and singular values.
– k is the number of significant singular values, obtained from the number of

singular values required to maintain the energy threshold (Ĉk).

After obtaining the reconstructed image, it is classified by using the same clas-
sifier. Let the obtained predicted label be P2.

Fig. 3. Cumulative energy captured by the singular values across each channel of a
224 × 224 image from EyePACS dataset. Most of the energy is concentrated on the
higher singular values, indicating their dominant contribution to the overall image
representation.

2.3 Attack Detection

The input image is detected as original or adversarial based on the two predicted
labels P1 and P2. Since the low-rank version has already removed most of the
adversarial noise, if the input image is perturbed, P2 will be different from
P1. Conversely, if the input image is not perturbed, P2 will be same as P1, as
the reconstruction preserves most of the image-specific features. An algorithmic
description of the entire procedure is included in Algorithm 1.

3 Results and Discussions

In this section, we provide a detailed description of the experimental setup,
the datasets used and the quantitative and qualitative analysis of the proposed
strategy.

3.1 Dataset

Three primary fundoscopic image datasets, Kaggle EyePACS1, IDRID2 and
APTOS3, are utilized in this work. These datasets categorize images into five
1 https://www.kaggle.com/c/diabetic-retinopathy-detection/data.
2 http://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset.
3 https://www.kaggle.com/c/aptos2019-blindness-detection/data.

https://www.kaggle.com/c/diabetic-retinopathy-detection/data
http://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset
https://www.kaggle.com/c/aptos2019-blindness-detection/data
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distinct classes: Normal, Mild, Moderate, Severe, and Proliferate. Our study
addresses both binary and multi-class classification tasks. For the binary classi-
fication, we divided the original dataset into two classes: Normal and Diabetic
Retinopathy (DR) by merging all the four abnormal classes into DR. The exper-
iments utilized the entire IDRID and APTOS training set (413 and 2048 images
respectively) alongside a random subset of 2000 images drawn from the EyePACS
dataset.

3.2 Experimental Setup

All the experiments are performed on Python version 3.10. DNN models trained
using Tensorflow and Pytoch platforms. Pytorch attacks are implemented using
the Torchattacks 3.5.1 package, and attacks in Tensorflow are generated using
coded functions.

DNN Models: Three DNN models are trained for classification on these three
datasets. For the Eyepacs dataset, we utilized the ResNet-50 architecture pre-
trained on the ImageNet dataset as the backbone. The original top layer of the
network is substituted with a new dense layer containing 128 neurons, followed
by a dropout layer with a rate of 0.2, and another dense layer with a single neuron
for binary classification. This configuration resulted in a validation accuracy of
86.7%. For the IDRID dataset, we use the ResNet-V2 architecture pre-trained
on the ImageNet dataset. This is followed by a global average pooling layer with
a dropout rate of 0.55. Additionally, a dense layer consisting of 60 neurons and a
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Fig. 4. Image displays the results of a wavelet transform on an original image (top
row) and its corresponding adversarial image (bottom row). Each row shows the four
decomposed frequency bands.

dropout layer with a rate of 0.3 are added. Finally, a dense layer with 5 neurons
and softmax activation is appended for multi-class classification. This model
achieved a validation accuracy of 93.6%. For the APTOS dataset, INCEPTION-
V3 architecture trained on imagenet is used as the backbone followed by a dense
layer of 128 neurons with a drop out of 0.3 and a final layer of two neurons for
binary classification.This model achieved a validation accuracy of 94.8%.

Creating adversarial images: Adversarial images are created from the origi-
nal datasets by employing FGSM and PGD attacks. 2000 adversarial images from
the EyePACS dataset, 413 from the IDRID dataset, and 2048 from APTOS are
generated using FGSM and PGD attack frameworks. The success rate of attacks
for binary and multi-class settings is evaluated using the respective pre-trained
models. Results are included in Table 2.

Fig. 5. Plot showing the training and testing errors (MSE) of random forest regressor
versus the number of estimators.
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Table 2. Results of the proposed method evaluated on the three datasets under multi-
class and binary-class classification settings.

Metric IDRID (Multi-class) Eyepacs (Binary) APTOS(Binary)

FGSM PGD FGSM PGD FGSM PGD

Model Accuracy (%) 93.6 93.6 86.7 86.7 94.8 94.8

Success Rate of Attacks (%) 87.4 89.3 99.6 92.3 92.2 96

Original-Low Rank Match (Clean)
407

413

407

413

1682

2000

1682

2000

1940

2048

1940

2048

Original-Low Rank Match (Adv.)
42

361

29

369

342

1992

242

1846

1721

1888

1820

1966
Classification Type Multi-class Multi-class Binary Binary Binary Binary

Attack Detection Accuracy (%) 88.4 92.1 82.8 86.9 91.1 92.57

Average SSIM Score 0.925 0.918 0.88 0.93 0.89 0.92

Entropy Calculation: Actual and adversarial images from both the datasets
are converted into YCbCr format followed by wavelet transform of the Y com-
ponent. Simple Haar wavelet is used to perform the wavelet transform. The
entropies of all the four bands are calculated for all the input images and stored
for training the regressor for predicting the energy threshold value. Fig. 4 visu-
alizes the wavelet decomposition of the Y component of both the original and
adversarial images. The four sub-bands are displayed for each image.

Training the linear regressor: The linear regressor is trained based on the
experimentally calculated threshold values and entropies across different datasets
in order to generalize the procedure. We built a dataset of 8800 images to train
the model. Half the images are real (2000 from Eyepacs, 400 from IDRID and
2000 from APTOS), and the other half are adversarial versions of real images
(2000 from Eyepacs, 400 from IDRID, and 2000 from APTOS). It is then sepa-
rated into training and testing sets to train the model. We noticed that within a
specific dataset, changes in entropy result in only minor variations in the thresh-
old value. However, significant differences in threshold values are observed across
the datasets. For example, it is observed that the average entropy of the LL band
of Y component of the IDRID dataset ranges from 11.25 to 11.57, depending on
the attack strength, while that of the Eyepacs dataset falls between 13.12 and
13.26. Consequently, the threshold value ranges from 89% to 91% for the Eye-
pacs dataset and from 98% to 99% for IDRID. We utilize the entropies obtained
from all four bands to train the regressor to make the training more robust.

The Random Forest regressor is employed as the linear model and trained
on both actual and adversarial images from the dataset. Subsequently, the Mean
Squared Error (MSE) for both the training and testing sets are computed and
visualized these metrics against the number of estimators as shown in Fig. 5.
Analysis of the plot revealed an optimal number of estimators at approximately
70. This configuration minimizes prediction errors on unseen data, ensuring
robust model generalizability.



AdaSVaT 387

Fig. 6. The resultant images on different stages of AdaSVaT. It can be seen that the
original image retained the predicted class label after the reconstruction while the
attacked image did not.

SVT and Image Reconstruction: Based on the energy threshold obtained
from the linear classifier, hard thresholding of the singular values are performed
by retaining only the singular values required to maintain the energy threshold
and the image is reconstructed using the thresholded singular values. Resultant
images from each stage are shown in Fig. 6. Further, the SSIM score of the input
and the output image are calculated in order to ensure that the data loss is not
too much during the reconstruction.

3.3 Quantitative and Qualitative Analysis

The evaluation results on the three datasets are presented in Table 2. The pro-
posed method demonstrates its efficacy by achieving over 80% accuracy on all
three datasets under two distinct attack types. Attack accuracy is evaluated
by removing unsuccessful attacks. The FGSM attack’s strength (ε = 0.03) is
deliberately set higher, as it is relatively less potent compared to PGD. Con-
versely, the strength of the PGD attack (ε = 0.003) is intentionally kept lower.
It is noted that the images maintain a healthy similarity score even after the
reconstruction. It is also noted that the method performs equally well in both
binary and multi-class settings. The spread of accuracies under different attacks
for both clean and adversarial images are demonstrated in Fig. 7. The findings
reveal that original images retain their predictions post low-rank reconstruction,
whereas adversarial images do not. This disparity facilitates the identification of
adversarial instances.

The proposed method is benchmarked against the state-of-the-art adver-
sarial attack detection method for fundus images presented at MICCAI 2022
[16], indicating superior performance with minimal computational resources.
Unlike existing methods often tailored to specific datasets and classification set-
tings, AdaSVaT demonstrates consistent performance across three fundus image
datasets under both binary and multiclass settings (Table 3). It must be noted
that all major detection methods operates exclusively under binary classifica-
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Fig. 7. Prediction accuracies of clean and adversarial images of both the datasets after
low-rank reconstruction under different classification and attack settings.

Table 3. Comparison of AdaSVaT with State-of-the-Art Method. AdaSVaT demon-
strates superior accuracy with lower complexity and computational cost.

Criteria SEViT [16] AdaSVaT

Mean Detection Accuracy FGSM (ε = 0.03) 0.718 0.874

Mean Detection Accuracy PGD (ε = 0.003) 0.928 0.905

Number of Datasets Used One (APTOS) Three (Kaggle Eyepacs,)

IDRID & APTOS)

Overall Accuracy 0.823 0.889

Training of Large DNN Models for Detection � ✗

Knowledge about the DNN Classifier Model � ✗

Multi-class ✗ �
GPU � ✗

tion settings [7,15,16]. This highlights the stability of AdaSvaT against diverse
classification settings and datasets, contrasting with the state-of-the-art’s fluc-
tuating performance and limited generalizability. Furthermore, AdaSVaT trains
a simple linear regressor for attack detection, reducing complexity compared
to training a DNN. Additionally, our approach operates independently of the
DNN classifier used, unlike existing methods that require partial or complete
knowledge. Consequently, AdaSVaT offers simplicity and lower computational
requirements.
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3.4 Statistical Robustness Tests

We further validate our idea of using lower SVD for detection of the adversarial
attacks using statistical tests. We therefore select a random set of 2000 clean
images and their corresponding adversarial images. We hypothesize that the dis-
tribution of both of these are significantly different in at least 100 lower singular
values. We therefore run paired t-tests on singular values for clean and adver-
sarial images. We note that for the distribution significantly differs for lower
values with p < 0.05 for at least 147 singular values across all 2000 image pairs
of clean and adversarial images validating our idea of using singular values for
adversarial detection.

3.5 Limitations of Proposed Method

While the current work prioritizes common gradient-based attacks like FGSM
and PGD, ensuring broad applicability requires extending the evaluation to
encompass other adversarial attack methods. AdaSVaT is likely effective against
these techniques as well, particularly those that predominantly affect lower sin-
gular values. Additionally, it is required to assess its effectiveness with different
medical image modalities like MRI and X-ray to solidify the generalizability.

4 Conclusions and Future Scope

This paper proposes a new method for the detection of adversarial attacks on
retinal fundus images. This approach builds on adaptive singular value threshold-
ing based low-rank reconstruction of the image to minimize the effect of adver-
sarial noise. To the best of our knowledge, this is the first work in this domain
that utilizes adaptive singular value thresholding and classification inconsistency
between original and low-rank images for adversarial detection. Future research
should focus on recovering the original image from the adversarial counterpart,
minimizing information loss. Our initial efforts in this direction include optimiz-
ing the similarity score between the original and low-rank images.
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Abstract. Hepatocellular carcinoma (HCC), – the main form of liver
cancer –, is the second global leading cause of cancer-related mortal-
ity. LI-RADS is considered the worldwide non-invasive standard method
for imaging interpretation and reporting in patients with HCC eliminat-
ing the need for biopsy. However, it might be prone to interpretation
subjectivity. Therefore, we develop an objective non-invasive AI-based
grading system for HCC for appropriate etiology treatment plans. The
developed system integrates potential image-based markers that repre-
sent the tumor’s morphology, functionality, and appearance/texture with
the associated clinical biomarkers. The study encompasses 117 patients
diagnosed with HCC and was divided into three different groups (group
1: benign low-grade (LR 1,2), N = 41; group 2: malignant high-grade
(LR 4,5), N = 39; and group 3: malignant not HCC (LR-M), N =
37). Diffusion-weighted magnetic resonance imaging (DWI) was acquired
for imaging-based markers identification. The developed grading sys-
tem pipeline includes: i) estimation of morphological markers using a
new parametric spherical harmonic model, ii) estimation of appear-
ance/textural markers using a novel rotation invariant circular binary
pattern model, iii) calculation of the functional markers by construct-
ing the representative cumulative distribution functions of the estimated
apparent diffusion coefficients, and iv) integrating the aforementioned
imaging-based markers with the associated clinical biomarkers, known as
Alpha-fetoprotein. The integrated markers were optimized to train and
test multiple machine learning (ML) classifiers and a hyper-tuned custom
CNN. On a randomly stratified train (80%) test (20%) split scheme, the
developed obtained an overall accuracy of 88% in differentiating between
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the three groups using the integrated markers along with the CatBoost
classifier, surpassing the diagnostic performance of individual marker
sets, other ML classifiers, and the CNN as well. The obtained results
demonstrate the feasibility of the developed system as a novel tool for
non-invasive and objective HCC grading.

Keywords: HCC · AI-Based CAD · Circular Binary Pattern ·
Spherical Harmonics · ADCs · Combined Markers · CatBoost

1 Introduction

The prevalence of hepatic tumors represents a formidable challenge in health-
care, with early detection and accurate differentiation being pivotal for effective
management and improving patient outcomes. Hepatocellular carcinoma (HCC),
the predominant form of primary liver cancer, emerges as a leading cause of mor-
tality among cirrhotic patients, marking it as a significant global health burden
[1]. Positioned as the fifth most prevalent cancer and the second leading cause
of cancer-related deaths worldwide, HCC underscores the critical need for early
diagnosis. Notably, the five-year survival rate for HCC can exceed 70% with
early-stage detection [2,3]. Uniquely, HCC is the sole malignancy where radio-
logical assessments can suffice for diagnosis, eliminating the need for histopatho-
logical confirmation. This diagnosis leverages the specificity of imaging features
observed in contrast-enhanced CT or MRI scans, with MRI being favored for its
superior soft tissue characterization and absence of ionizing radiation [4,5].

The American College of Radiology (ACR) has developed a Liver Imaging
Reporting and Data System (LI-RADS) for standardization in interpreting and
reporting hepatic observations within at-risk patients [2,6]. Recognizing the crit-
ical role of imaging in HCC management, the ACR implemented the LI-RADS to
standardize the interpretation and reporting of hepatic observations. Revised for
the last time in 2018, LI-RADS has been an integral part of the American Associ-
ation for the Study of Liver Diseases (AASLD) guidelines since 2011. Mentioning
them indicates the system’s importance for clinical practice [1,7]. LI-RADS cat-
egorizes liver observations into risk categories depending on enhanced imaging
criteria, lesion size, and growth rate. LI-RADS, therefore, helps in the differ-
entiation of HCC from other liver malignancies, differentiation that is actually
critical to treatment strategy [4].

Aside from the lesion characterization strength of dynamic contrast-enhanced
MRI, it provides a high risk frequency for nephropathy and nephrogenic sys-
temic fibrosis (NSF) with gadolinium-based contrast agents in patients with
renal insufficiency [8,9]. This limitation has spurred interest in non-contrast
techniques like diffusion-weighted imaging (DWI), a rapid, functional imaging
method assessing tissue microcellularity and water molecule motion restriction.
DWI’s growing application in hepatic lesion characterization highlights its poten-
tial in differentiating between benign and malignant hepatic tumors [10,11].

Recent advancements underscore the evolving accuracy in liver tumor diag-
nosis through imaging innovation [12]. Studies by Wei et al. and Chen et al.
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[13,14] have validated the diagnostic efficacy of DWI, demonstrating its utility in
distinguishing hepatic metastases from benign lesions and predicting HCC histo-
logical grades, respectively, with significant statistical support. Furthermore, Ai
et al. [15] strongly emphasized that multiparametric histograms of the intravoxel
incoherent motion DWI (IVIM-DWI) model have the highest potential in diag-
nostic applications and therefore offer a new approach to characterizing pheno-
types of liver tumor. Two very promising techniques, machine learning (ML) and
deep learning (DL), are integrated with imaging for the diagnosis of HCC. Recent
developments include deep convolutional neural networks (CNNs) for classifica-
tion of tumors and ML classifiers for discriminating HCC from benign lesions.
Both innovations showcased improved diagnostic performances and therefore
offered great clinical potentials [16–18].

2 Related Work

The exploration of non-invasive diagnostic techniques for hepatic tumors, partic-
ularly through DWI and the integration of ML and DL algorithms, constitutes
a rapidly evolving area of research. Pivotal studies have laid the groundwork for
contemporary diagnostic approaches, highlighting their methodologies, findings,
and contributions to the field of hepatic tumor diagnosis.

In a comprehensive meta-analysis study, Wei et al. [13] set out to estimate
the diagnostic accuracy of DWI in the differentiation between hepatic metas-
tases and benign focal lesions. A review of 858 cases of hepatic metastasis and
440 cases of benign hepatic lesions from 9 studies points out the high sensitivity
and specificity of DWI in lesion differentiation. The study further underscores
DWI’s potential as a reliable non-contrast diagnostic tool, hence forming a crit-
ical ground for more research in the field of imaging-based hepatic tumor diag-
nosis. Chen et al. [14] reported on the predictive ability of DWI to predict the
preoperative histological grade of HCC by incorporating data from 11 studies
with a total number of 912 HCC cases. These results are not only a contribution
to the diagnostic accuracy but also highlight DWI among the different features
for therapeutic planning and assessment of the prognosis in HCC patients. Ai et
al. [15] explored the utility of a multiparametric histogram analysis from IVIM-
DWI for classifying hepatic tumors, including HCC, hepatic hemangioma (HH),
and hepatic cysts (HC). They noted the potential that quantitative imaging
markers hold towards improving the diagnostic accuracy for liver tumors and
marked a remarkable step towards integrating advanced imaging analytics into
clinical diagnostics.

The incorporation of ML and DL in hepatic tumor diagnosis represents a
frontier in medical imaging research. Zhen et al. [16] designed a deep CNN model
that makes high-quality predictive classifications over non-contrast MRI scans,
proving DL to have a very discriminative nature to capture complex patterns of
visual semantic relations in order to distinguish among benign primary malig-
nant and metastatic tumors. This study highlights the transformative potential
of DL in enhancing diagnostic workflows and patient care strategies. Trivizakis et
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al. [17] presented a novel 3-D CNN in order to classify the presence of liver can-
cer from diffusion-weighted MRI data. Thus, the fact that their approach avoids
heavy pre-processing with manual feature extraction attains high accuracy, sen-
sitivity, and specificity in proving the feasibility of DL models being applied for
liver tumor diagnosis automation and refinements. Wu et al. [18] developed a
ML classification model for the differential diagnosis of HCC and HH based on
radiomics features extracted from multi-sequence MRIs. Their work contributes
to the growing body of evidence supporting the utility of radiomics in capturing
the nuanced characteristics of hepatic lesions, further enabling the development
of highly accurate diagnostic tools.

These studies collectively highlight the ongoing advancements in imaging and
computational analyses for the diagnosis of hepatic tumors. However, existing
studies often do not solely rely on DWI, nor do they fully explore the grad-
ing of HCC according to LI-RADS, which is crucial for timely and appropriate
treatment. Furthermore, the integration of shape, functional, textural, and clin-
ical markers for enhanced diagnostic performance remains underexplored. To
bridge these gaps, we propose a novel computer-aided diagnostic (CAD) system
designed to distinguish among various HCC types using a unique integration of
shape markers with texture markers, functional markers, and clinical biomark-
ers utilizing a non-contrast imaging modality, namely; DWI. To our knowledge,
this is the inaugural system of its kind that aims to advancing the early differ-
entiation of malignant (LR 4,5) from benign (LR 1,2) HCC tumors and those
malignant but not necessarily HCC (LR-M), leveraging the latest in imaging and
computational analysis. The main contributions of this study can be summarized
as follows:

– Estimating morphological markers using a new parametric spherical harmonic
model.

– Estimating appearance/textural markers using a novel rotation invariant cir-
cular binary pattern model.

– Calculating the functional markers by constructing the representative cumu-
lative distribution functions (CDFs) of the estimated apparent diffusion coef-
ficients (ADCs).

– Selecting the optimal markers to be combined using Gini-impurity approach.
– Integrating the selected imaging-based markers with the associated clinical

biomarkers, known as Alpha-fetoprotein.
– Optimizing the integrated markers to train and test multiple ML classifiers,

with the CatBoost surpassing all others.

3 Methods

The model depicted in Figure 1 comprises three primary stages. Initially, prepro-
cessing is conducted on DWI scans to identify tumor lesions, which serve as the
region of interest (ROI) across different b-values for each participant. Secondly, a
set of three feature types is designed to enable quantitative discrimination among
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Fig. 1. The proposed pipeline for HCC grading using DWI

the tumor lesions, alongside a clinical biomarker. These include: (i) the circu-
lar binary pattern, responsible for estimating appearance/texture; (ii) spherical
harmonics-based shape features, describing the shape complexity of liver tumors;
and (iii) functional features derived from measuring the rate of water diffusion
within tissues at given b-values, known as ADC. Furthermore, these imaging-
based markers are then integrated with associated clinical biomarkers, notably
Alpha-fetoprotein. Finally, a ML classifier is utilized to combine all the afore-
mentioned individual features to determine the ultimate diagnostic outcome.

3.1 Image Preprocessing

At this stage, the primary objective is to locate tumor lesions and prepare them
for the subsequent phase. This involves identifying the ROI for further analysis.
For each participant, the dataset initially consists of multiple images acquired
at the b-values of 0 and 600 s/mm2. The medical team provides definitions
of the tumors as binary images, which outline the tumor regions within each
DICOM image using our proprietary software. To derive the intended ROIs,
these binary masks are applied to the original DICOM gray-scale images. The
markers modeled are then extracted and computed from these masked images,
resulting in 3D structures representing the tumor lesions for each individual.
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3.2 Marker Extraction

Marker extraction is a critical step in the ML workflow, where relevant informa-
tion is extracted from raw data to create meaningful markers for model training.
A good ML marker is a measurable aspect or attribute of a given characteristic
that provides valuable information independently. Selecting high-quality mark-
ers of objects increases the power of the ML model and makes better decisions.
Therefore, the main aim of this step is to transform the preprocessed data into
standardized, and machine-understandable markers to distinguish between var-
ious subjects and demonstrate to our learning algorithm how to capture the
attributes of the tumors. Per consultation with the medical team, these markers
are texture/appearance markers, shape markers, functional markers, and clinical
biomarkers [19].

Texture Markers: This study introduces Circular Binary Patterns (CBP), a
novel texture analysis methodology, for predicting HCC grades from DWI scans.
Texture analysis plays a pivotal role in medical image processing [20], offering
insights into the structural variations and patterns within tissues or materials.
The CBP approach is conceptualized to enhance texture analysis by incorporat-
ing rotation invariance and adaptability in identifying texture patterns through
Local Binary Patterns (LBP) extension/modification [21]. The fine details of
textures are essential to distinguish the different grades of HCC, and these are
represented by comparing the intensity of a central pixel with that of its neigh-
bors on concentric circles and thresholding for the differences.

The texture features of the image are evaluated by CBP analyzing their
relationship with the surrounding pixels of the present pixel under consideration
(x, y) within the concentric circles of radii r from 1 to the maximum radius
Rmax; it will be found that all the most significant intensity variations have
been correctly identified by the above as valid features of the image texture in
a manner independent of its rotation. The updated pixel value, Vnew(x, y), is
determined as follows:

Vnew(x, y) =
Rmax∑

r=1

⎛

⎝
∑

(i,j)∈Cr(x,y)

W (i, j, x, y, T ) · br−1

⎞

⎠ (1)

where Cr(x, y) denotes the neighbor pixels within radius r, and
W (i, j, x, y, T ) is a weighting function:

W (i, j, x, y, T ) =

{
1 if |V (i, j) − V (x, y)| > T

0 otherwise.
(2)

Such threshold T is empirically tuned in such a way as to assure the utmost
accuracy in discriminating the texture patterns relevant to the different tumors
captured by the model. The marker/feature vector for each subject’s volume of
interest (VOI) is derived from the CDFs or percentiles of the post-CBP transfor-
mation. This statistical representation captures the global distribution of texture
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markers, providing a robust basis for classifying HCC based on their unique tex-
tural characteristics. Algorithm 1, outlines the steps for extracting CBP texture
markers from DWI scans and Fig. 2 demonstrates a typical example for the CBP
calculation process.

Algorithm 1 Texture Analysis in DWI Scans using Circular Binary Patterns
Require: VOI of DWI scans, maximum radius Rmax, threshold T , base b
Ensure: Marker/Feature vector for each VOI
1: Calculate circle masks and centers for each pixel
2: for each slice in VOI do
3: for each pixel in slice do
4: if pixel value > 0 then
5: Apply CBP to calculate new pixel value, capturing texture (Equations 1,

2)
6: end if
7: end for
8: end for
9: Construct marker/feature vector from CDFs/percentiles of the transformed VOI,

analyzing texture

The introduction of CBP for texture analysis in DWI scans represents a
significant advancement in medical image analysis. By leveraging the spatial
context and intensity information, CBP extracts comprehensive texture markers
that are essential for accurately grading HCC.

Functional Markers: ADCs measure the Brownian motion (diffusion) of water
molecules within the soft tissues [22]. In malignant tissues that are highly cellu-
lar, free water molecules’ diffusion is constrained which results in reduced ADCs
when compared to benign tumors. In particular, higher grades (e.g., LR4, LR5,
and LR-M) are generally related to reduced ADCs, as water diffusion is signif-
icantly decreased in the setting of increased tumor cellularity. Relying on this
fact, voxel-wise ADCs are computed and ADC maps are constructed from DWI
scans at a given b-value using the following equation [23]:

ADC =
ln( S0/ Sb)

b
(3)

where b refers to the utilized b-value that determines the degree of diffu-
sion weighting applied during the imaging process, which is 600 in our case. S0

represents the voxel signal intensity at the baseline, b-value equal to zero, and
Sb the voxel signal intensity at the non b0 value, which is 600 in our case. The
calculated ADCs are then mapped to their representative CDFs to overcome the
challenges that arise due to tumor sizes variability between different subjects
and to reduce the training time expenditures, especially in large tumor volumes.
The following Fig. 3 is an illustrative example for the ADC maps construction
process and its representative CDF at a given b-value.
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Fig. 2. An illustrative example for the circular binary pattern (CBP) calculations

Shape Markers: The morphological characteristics of HCC tumors exhibit
significant variability contingent upon both the degree and the specific type of
malignancy, presenting a compelling avenue for enhancing automated diagnostic
methodologies through precise shape analysis. In that light, the use of spherical
harmonics (SHs) for shape description develops as a powerful mean, providing
a sophisticated mathematical framework to capture the intricate geometrical
nuances of tumor surfaces.

Spectral spherical harmonics analysis in this case refers to the method of
obtaining well-defined shape markers very crucial in the effective detection of
liver tumors. This method involves representing the surfaces of the tumor as
a sum or linear combination of a series of fundamental functions. Specifically,
the initial step involves the construction of a triangulated mesh that meticu-
lously approximates the tumor’s surface topology. Subsequent to this, the mesh
is mapped onto a unit sphere utilizing spherical harmonics modeling, a pro-
cess critically enhanced by our proprietary Attraction-Repulsion Algorithm. This
algorithm plays an instrumental role in ensuring the fidelity of the modeling pro-
cess, by maintaining a uniform distance, typically unitary, between each mesh
node and the nodule’s centroid, thereby facilitating a consistent and homoge-
neous distribution of neighborhood distances among the nodes[24,25].

Let I denote the totality of mesh nodes, with α symbolizing the cycle counter,
and cα,i representing the coordinates of node i at cycle α, where i = 1, . . . , I. Fur-
thermore, J embodies the count of neighboring nodes for any given mesh node,
and the term dα,ji = cα,j − cα,i delineates the vectorial movement from node j
to node i during cycle α. The dynamics of each surface node are governed by
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Fig. 3. An illustrative example for voxel-wise ADC (i.e., ADC at each voxel) calcula-
tions and the representative cumulative distribution function (CDF) construction

the attraction and repulsion factors, denoted as cA,1, cA,2, and cR, which metic-
ulously calibrate the positional adjustments of each node ci to ensure optimal
alignment with its neighbors:

C ′
α,i = Cα,i + CA,1

J∑

j=1,j �=i

dα,jid
2
α,ji + CA,2

dα,ji

dα,ji
(4)

Further elucidation on this novel mapping technique is available in [24,25].
Consequent to the mapping endeavor, each tumor’s shape is deciphered through
a linear combination of spherical harmonics (with N = 85 SHs utilized for this
purpose). It is noteworthy that benign tumors, typically manifesting simpler geo-
metrical forms, are characterized using a lower-order combination of spherical
harmonics. Conversely, malignant tumors, which are indicative of more complex
morphological traits, necessitate a higher-order combination of SHs for accurate
representation. This differential approach facilitates a nuanced shape approxi-
mation for both benign and malignant tumors, thereby enhancing the diagnostic
precision. Please see Fig. 4 that demonstrates the shape complexity differences
between individual cases from different groups (i.e., benign (LR1/LR2), malig-
nant HCC (LR4/LR5), and LR-M).

Clinical Biomarkers: According to the National Library of Medicine, the
alpha-fetoprotein (AFP) in serum is currently an accessible diagnostic marker
for HCC detection. As for patients with chronic liver disease, a sustained increase
in AFP serum level was demonstrated to be one of the HCC risk factors and
has been used to help identify a high-risk subgroup of chronic liver disease. In
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Fig. 4. An illustrative example for spherical harmonics reconstruction process showing
shape/surface complexity differences among various HCC groups

patients with liver cirrhosis, fluctuations in AFP levels may reflect the sudden
onset of viral hepatitis, the deterioration of the potential liver disease, or the
development of HCC [26]. Therefore, the AFP will be included, in our analysis,
as a representative clinical biomarker that might be useful for HCC grading.

3.3 Markers selection/importance

Markers selection is a process used to identify the most significant characteristics
from a large set of potential markers, 146 in our case. We applied one of the
most common methods for markers selection approaches named Gini impurity-
based selection, which is completely based on a random forest classifier that is
trained to all markers and select the most important/significant ones and return
a smaller marker-set [24]. This process ended up with 50 markers, Namely; AFP,
CBP (N = 24), ADCs (N = 15), and SHs (N = 10).

3.4 Marker Combination and Liver Tumors Classification

After having the distinct marker sets handy, namely; (i) the circular binary
pattern that is responsible for appearance/texture estimation, (ii) the spherical
harmonics-based shape markers that can describe the shape complexity of the
liver tumors, (iii) the functional markers that are represented by CDFs represen-
tation of ADCs, and (iv) and clinical biomarkers, known as Alpha-fetoprotein,
now it is time to proceed further with the classification step for distinguishing
among three different classes. Namely, benign tumors (LR1/2), malignant tumors
(LR4/5), and malignant tumors but not HCC (LR-M). Towards achieving the
highest possible diagnostic performance, multiple ML models were optimized for
classification tasks (e.g., support vector machine (SVM), random forests (RFs),
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naive Bayes classifier (NB), linear regression classifier, CatBoost classifier, and
XGBoost classifier). First, classification efficiency was assessed using individual
marker sets as shown in Table 1. Then, all of the individual marker sets were
combined using concatenation techniques resulting in a combined marker set,
which was then used to optimize the same ML classifiers for optimal diagnostic
results. It is worth noting that a grid search technique along with the diagnos-
tic accuracy were used as optimization metrics to determine the ideal set of
hyper-parameters for various ML classifiers.

Table 1. Enumeration of different marker sets types, names, and number of markers
extracted from each type.

Marker Type Marker Name Original Markers Selected Markers

Appearance/Texture CBP 40 24

Functional ADCs 20 15

Shape SHs 85 10

Clinical AFP 1 1

Total Combined 146 50

4 Results and Discussion

4.1 Population, MR Data Collection, and Clinical Analysis

Patients with a high risk of developing HCC without a previous history of loco-
regional treatment plans were included in this study. All experimental protocols
were approved by the University of Louisville, USA, and Mansoura University,
Egypt. All participants underwent DWI in the period between August 2021
and May 2023 images, three participants were excluded from the study due
to diffusion image quality degradation caused by respiratory motion artifacts.
Finally, 117 participants were attained, (M = 55 and F = 62) ranging in age
from 36 to 73 years old (average 56 y ś 10 y).

DW images were obtained using a 1.5T Philips Ingenia scanner with a phased-
array torso surface coil. All patients were asked to hold their breath during image
acquisition to minimize possible respiratory effects. For all participants, DWI
was performed using a fat-suppressed single-shot echo-planar sequence with b-
values (b = 0 and 600 s/mm2). Diffusion imaging acquisition parameters were
as follows: TR/TE = 1900-70 ms, NEX = 3, matrix = 124 120, slice thickness
= 5 mm, slice gap = 1-2 mm, and scan time = 70 sec.

According to LI-RADS v2018(4), LI-RADS classified the hepatic observations
into LR-1 (definitively benign), LR-2 (probably benign), LR-3 (indeterminate
HCC), LR-4 (probably HCC), LR-5 (definitively HCC), and LR-M (malignant
but not definitely HCC). In this study, a 15-year hands-on-experience radiologist



AI-Based HCC Grading Using DWI 403

performed MR clinical analysis following the aforementioned LI-RADS v2018(4)
guidelines to provide the ground truth diagnosis for the participants. Among
the 117 participating patients, 41 liver tumors were diagnosed as benign tumors
(LR1 = 14 and LR2 = 27), 39 were diagnosed as malignant tumors (LR4 = 19
and LR5 = 20), and 37 were diagnosed as malignant but not necessarily HCC
(LR-M) tumors.

4.2 The Proposed CAD Evaluation

The developed CAD system for liver tumors grading was assessed using a ran-
domly stratified train test split approach on the 117 liver tumor subjects. In
which 80% were used for training and 20% were saved for testing. All the
obtained results were reported and tabulated using the following metrics: the
overall accuracy, precision, recall, F1-score, and, weighted F1-score for finding
the actual insights of predicted instances of each class. Various combinations
of marker sets (see Table 1 were used along with many ML classifiers to find
the optimal diagnostic results among all of them. With 88.0% overall accuracy,
the CatBoost optimized classification model along with the combined markers
set outperformed the performance of all individual marker sets in distinguish-
ing among different classes (LR 1,2), (LR 4,5), and (LR-M) as documented in
Table 2. These obtained results demonstrate the advantage of combining all
individual marker sets that accurately characterizes the tumor status. This can
be justified in part by that the combination process allowed for accounting for
different aspects, namely; shape, texture, and function, with the aid of clinical
biomarkers as well.

It is important to note that CatBoost classifiers [27], [28] are well-known,
reliable ML classification techniques that are frequently applied for solving clas-
sification problems, especially in the medical domain [29]. CatBoost is one of the
family of GBDT ML ensemble approaches [27] that relies on a gradient-boosting
algorithm which is particularly effective for handling data sets with categorical
features. In particular, GBDT algorithms enhance the ensemble by incorporat-
ing decision trees. They choose the tree that minimizes the loss function L(ŷ, y),
which operates on the output values of the ensemble ŷ and the corresponding
labels y. This process occurs during training using a specific dataset. After train-
ing, the ensembles output probability is the sum of probabilities associated with
the classes indicated in the leaf nodes of the decision trees. For these reasons,
CatBoost outperformed all other ML classification models in terms of accu-
racy, precision, recall, F1-score, and weighted F1-score measures and thus, was
selected as the optimal classifier for the intended liver tumor grading problem. A
favorable comparison that highlights the superior perfromance of the CatBoost
over different well-known ML classifiers and over a custom-designed CNN as well
is shown in Table 3. It is worth noting that the utilized CNN architecture, man-
ually constructed and tailored to the specific needs of the task, is appropriate
for the resized medical data consisting of 64x64x32 volumes where each volume
is composed of 32 grayscale images.
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Table 2. Comparison between classification reports for each category of individual
marker sets and the combination of all together

Features Classes Precision Recall F1-score Accuracy Weighted F1-score

ADCs (LR 1,2) 0.45 0.62 0.53 0.5 0.48

(LR 4,5) 0.5 0.25 0.33

(LR M) 0.56 0.62 0.59

AFP (LR 1,2) 0.62 0.73 0.67 0.67 0.66

(LR 4,5) 0.9 0.9 0.9

(LR M) 0.43 0.33 0.38

SHs (LR 1,2) 0.67 0.5 0.57 0.54 0.54

(LR 4,5) 0.45 0.62 0.53

(LR M) 0.57 0.5 0.53

CBP (LR 1,2) 0.57 0.73 0.64 0.6 0.6

(LR 4,5) 0.56 0.5 0.53

(LR M) 0.71 0.56 0.63

Combined (LR 1,2) 1 0.88 0.93 0.88 0.88

(LR 4,5) 0.88 0.88 0.88

(LR M) 0.78 0.88 0.82

Table 3. Comparison between classification reports for each ML classifier that high-
lights the advantage of the utilized CatBoost classifier over others

ML Model Classes Precision Recall F1-score Accuracy Weighted F1-score

SVM (LR 1,2) 0.78 0.88 0.82 0.79 0.79

(LR 4,5) 0.86 0.75 0.80

(LR M) 0.75 0.75 0.75

Random Forest (LR 1,2) 0.86 0.75 0.80 0.75 0.75

(LR 4,5) 0.67 0.75 0.71

(LR M) 0.75 0.75 0.75

XGBoost (LR 1,2) 0.67 1 0.80 0.75 0.72

(LR 4,5) 0.78 0.88 0.82

(LR M) 1 0.38 0.55

CNN (LR 1,2) 0.78 0.88 0.82 0.79 0.8

(LR 4,5) 1 0.75 0.86

(LR M) 0.67 .75 0.71

CatBoost (LR 1,2) 1 0.88 0.93 0.88 0.88

(LR 4,5) 0.88 0.88 0.88

(LR M) 0.78 0.88 0.82

5 Conclusions, Limitations, and Future Work

In summary, the proposed AI-based CAD system demonstrated feasibility and
efficacy for HCC grading with an acceptable overall accuracy of 88.0% on a train
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test split criteria. It has shown promising results given that a non-contrast MR
imaging modality (DWI) was used. The developed AI-based CAD system relies
on the integration of different types of individual marker sets that account for
multiple aspects to fully characterize the tumor including shape, texture, func-
tion, and clinical descriptors for precised quantification and diagnosis. Clearly,
the final diagnostic results were much improved by the meaning of markers inte-
gration rather than depending on individual marker sets. In addition, the Cat-
Boost ML classification model demonstrated the optimal classification ability
among all machine learning classifiers, being recommended for such multi-class
classification problems. This study was limited by not including LR3 group due
to the lack of collection of this rare class. Moreover, this CAD system is not fully
automated in its current form as it still need an expert radiologist to perform
manual segmentation of liver tumors from DWI scans and still depend on hand-
crafted features. A larger data cohort including LR3 group is currently being
collected for further investigation of the extended diagnostic capabilities of the
developed CAD system.

References

1. Gehad A Saleh, Ali H Elmokadem, Ahmed Abdel Razek, Ahmed El-Morsy, Omar
Hamdy, Elshimaa S Eleraky, and Marwa Saleh. Utility of diffusion tensor imaging
in differentiating benign from malignant hepatic focal lesions. European Radiology,
33(2):1400–1411, 2023

2. Nobuhiro Tsuchiya, Yu., Sawada, I.E., Saito, K., Uemura, Y., Nakatsura, T.:
Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroen-
terol: WJG 21(37), 10573 (2015)

3. Ahmed Abdel Khalek Abdel Razek, Lamiaa Galal El-Serougy, Gehad Ahmad
Saleh, Walaa Shabana, and Rihame Abd El-wahab. Liver imaging reporting and
data system version 2018: what radiologists need to know. Journal of Computer
Assisted Tomography, 44(2):168–177, 2020

4. Ahmed Abdel Khalek Abdel Razek, Lamiaa Galal El-Serougy, Gehad Ahmad
Saleh, Rihame Abd El-Wahab, and Walaa Shabana. Interobserver agreement of
magnetic resonance imaging of liver imaging reporting and data system version
2018. Journal of Computer Assisted Tomography, 44(1):118–123, 2020

5. Julie Y An, Miguel A Peña, Guilherme M Cunha, Michael T Booker, Bachir Taouli,
Takeshi Yokoo, Claude B Sirlin, and Kathryn J Fowler. Abbreviated mri for hep-
atocellular carcinoma screening and surveillance. Radiographics, 40(7):1916–1931,
2020

6. Khaled M Elsayes, Kathryn J Fowler, Victoria Chernyak, Mohab M Elmohr, Ania Z
Kielar, Elizabeth Hecht, Mustafa R Bashir, Alessandro Furlan, and Claude B Sir-
lin. User and system pitfalls in liver imaging with li-rads. Journal of Magnetic
Resonance Imaging, 50(6):1673–1686, 2019

7. A-Hong Ren, Peng-Fei Zhao, Da-Wei Yang, Jing-Bo Du, Zhen-Chang Wang, and
Zheng-Han Yang. Diagnostic performance of mr for hepatocellular carcinoma based
on li-rads v2018, compared with v2017. Journal of Magnetic Resonance Imaging,
50(3):746–755, 2019

8. Ledneva, E., Karie, S., Launay-Vacher, V., Janus, N., Deray, G.: Renal safety
of gadolinium-based contrast media in patients with chronic renal insufficiency.
Radiology 250(3), 618–628 (2009)



406 A. Elkhouly et al.

9. Stephanie Fox-Rawlings and Diana Zuckerman. Nchr report: the health risks of
mris with gadolinium-based contrast agents. National Center for Health Research
Q, 9, 2020

10. Gehad Ahmad Saleh, Ahmed Abdel Khalek Abdel Razek, Lamiaa Galal El-
Serougy, Walaa Shabana, and Rihame Abd El-Wahab. The value of the apparent
diffusion coefficient value in the liver imaging reporting and data system (li-rads)
version 2018. Polish Journal of Radiology, 87:e43, 2022

11. Taron, J., Johannink, J., Bitzer, M., Nikolaou, K., Notohamiprodjo, M., Hoffmann,
R.: Added value of diffusion-weighted imaging in hepatic tumors and its impact
on patient management. Cancer Imaging 18, 1–7 (2018)

12. Arya Haj-Mirzaian, Ana Kadivar, Ihab R Kamel, and Atif Zaheer. Updates on
imaging of liver tumors. Current oncology reports, 22:1–10, 2020

13. Chenggang Wei, Jieying Tan, Li Xu, Liu Juan, Si Wei Zhang, Lu Wang, and Qun
Wang. Differential diagnosis between hepatic metastases and benign focal lesions
using dwi with parallel acquisition technique: a meta-analysis. Tumor Biology,
36:983–990, 2015

14. Chen, J., Mingpeng, W., Liu, R., Li, S., Gao, R., Song, B.: Preoperative evalua-
tion of the histological grade of hepatocellular carcinoma with diffusion-weighted
imaging: a meta-analysis. PLoS ONE 10(2), e0117661 (2015)

15. Zhu Ai, Qijia Han, Zhiwei Huang, Jiayan Wu, and Zhiming Xiang. The value
of multiparametric histogram features based on intravoxel incoherent motion
diffusion-weighted imaging (ivim-dwi) for the differential diagnosis of liver lesions.
Annals of Transnational Medicine, 8(18), 2020

16. Shihui Zhen, Weizhi Luo, Zhiyu Jiang, Yankai Jiang, Jihong Sun, Liqing Zhang,
Yujun Wang, Zhongyu Wu, Yubo Tao, Ming Cheng, et al. Deep learning-assisted
diagnosis of liver tumors using non-contrast magnetic resonance imaging: A multi-
center study

17. Eleftherios Trivizakis, Georgios C Manikis, Katerina Nikiforaki, Konstantinos
Drevelegas, Manos Constantinides, Antonios Drevelegas, and Kostas Marias.
Extending 2-d convolutional neural networks to 3-d for advancing deep learning
cancer classification with application to mri liver tumor differentiation. IEEE jour-
nal of biomedical and health informatics, 23(3):923–930, 2018

18. Jingjun, W., Liu, A., Cui, J., Chen, A., Song, Q., Xie, L.: Radiomics-based clas-
sification of hepatocellular carcinoma and hepatic haemangioma on precontrast
magnetic resonance images. BMC Med. Imaging 19(1), 1–11 (2019)

19. Guido Van Rossum and Fred L Drake. Python library reference, 1995
20. Scalco, E., Rizzo, G.: Texture analysis of medical images for radiotherapy applica-

tions. Br. J. Radiol. 90(1070), 20160642 (2017)
21. Timo Ojala, Matti Pietikainen, and David Harwood. Performance evaluation of

texture measures with classification based on kullback discrimination of distri-
abutions. In Proceedings of 12th International Conference on Pattern Recognition,
volume 1, pages 582–585. IEEE, 1994

22. Geetha Soujanya Chilla, Cher Heng Tan, Chenjie Xu, and Chueh Loo Poh. Diffu-
sion weighted magnetic resonance imaging and its recent trend-a survey. Quanti-
tative imaging in medicine and surgery, 5(3):407, 2015

23. Le Bihan, D., Breton, E.: Imagerie de diffusion in-vivo par résonance magnétique
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Abstract. Whole slide pathological image classification using slide-level
labels often relies on multiple instance learning. Multiple instance learn-
ing based approaches are particularly challenging with whole slide cytol-
ogy images, where the vast number of instances can make it difficult to
identify key instances, especially when they are scarce. In this work we
evaluate whether using representations learnt from patches from only
normal slides is effective for instance-level decision making. We aim for
interpretable slide-level decision making for whole slide cytology images.
We focus on the effectiveness of a self-supervised contrastive learning
framework within a one-class classifier setting, assessing its ability to
learn the appearances of normal cells from a limited number of normal
slides and subsequently identify abnormal cells (key instances) on test
slides. We evaluate our approach on a publicly available cytology dataset,
achieving a Recall@400 score of 0.1938, considerably improving over the
0.1109 score obtained using a weakly supervised approach.

Keywords: One-class classification · Contrastive self-supervised
learning · Outlier detection · Cytology

1 Introduction

Detection of potentially malignant disorders in the oral cavity at an early stage is
critical for successful treatment and improved survival [5,6,8,25]. The high diffi-
culty of the pathological analysis, fatigue and a need for a second opinion when
diagnosing diseases, accompanied by variations in pathology, creates opportuni-
ties for computer assistance to aid researchers and pathologists. This is driving
the development of computational pathology methods that leverage automated
image analysis techniques, and in particular deep learning-based approaches –
spurred by the recent rapid advancement of the field, to support the analysis.

The widespread adoption of digital slide scanners for scanning histology slides
has facilitated a rapid rise in the use of multi-gigapixel whole-slide images (WSIs)
(which can be as large as 120, 000 × 120, 000 pixels and may contain as many
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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as 100,000 cells) for early-stage cancer detection in the field of computational
pathology [4]. Whole slide imaging has also gained popularity among cytolo-
gists due to its potential to improve diagnostic accuracy and workflow efficiency
via analysis of whole-slide cytology images with automated diagnostic systems
[1]. Although advanced-stage cancer cytology samples may contain around 30%
malignant cells in whole slide images, whole-slide cytology images corresponding
to early-stage cancer samples may contain as few as 1% of the cells as malignant.
Due to the large number of cells present and the sparsity of malignant cells in
early-stage cancers, obtaining cell-level annotations is difficult, time-consuming,
and unreliable as they might suffer from inter-observer variability.

The vast majority of methods for automated analysis of WSIs first decompose
the very large images into much smaller-sized tiles containing relevant visual
information (e.g., nuclei, cells, tissue structures, etc.) and then perform further
patch-based processing of the entire slide. Since obtaining patch-based labels is
difficult and costly and may also suffer from annotation bias, recent methods
are mainly based on deep multiple instance learning (MIL) (often using vision
transformers (ViT) and contrastive self-supervised pre-training) for detecting
abnormal cells or classifying WSIs [9,13,21], as they enable learning based on
weakly (per-slide) labeled data while still providing some level of instance-level
interpretability.

Multiple Instance Learning (MIL) [15] is a machine learning paradigm where
training data is organized into bags, each containing multiple instances. In MIL,
a bag is labeled positively if at least one instance in the bag is positive, and
negatively otherwise. The goal is to learn a classifier from these bags rather
than from individual instances. This approach is particularly useful in situations
where only the collective information of a bag determines its label, and the
specific positive instances within the bag are unknown or ambiguous. However,
MIL-based methods suffer from memory constraints, particularly for very large
bags [12].

Self-supervised methods are able to learn generalizable and domain-invariant
representations both on a patch-level and slide-level; however, using those rep-
resentations for downstream classification tasks also requires some amount of
patch-based labels. Obtaining such labels for cytology WSIs may be infeasible,
as it is time-consuming, costly, and also may vary between observers.

In this study, we evaluate the effectiveness of representations learned from
patches belonging only to WSIs corresponding to healthy patients for the task of
detecting malignant patches (or cells) on unseen WSIs. Our main assumption is
that all the patches belonging to normal slides are normal, while abnormal slides
contain an unknown mixture of normal and abnormal patches. We use images
of normal cells to learn a representation of the normal class and to develop an
abnormal cell detector to identify abnormal patches, aiming for interpretable
decision-making for the whole slide (as instance- (or patch-) level decisions can
be obtained which can be aggregated to have a slide-level decision). In partic-
ular, we evaluate self-supervised representation learning in the one-class setting
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since, unlike the binary-class scenario, it does not require any labeled data for
performing downstream classification tasks.

The code is available publicly at https://github.com/MIDA-group/occ_cyto.

2 Background and Related Work

Detection of abnormal cells, reliably and efficiently, from whole-slide cytology
images is essential for cost-efficient and non-invasive screening for oral cancer.
In this section, we briefly review methods proposed for detecting abnormal cells
in whole-slide cytology/histology data.

Weakly supervised methods are a common choice for the detection of abnor-
mal patches in whole-slide images. These methods are applicable to data
with both slide-level annotations and limited patch-level annotations. Inter-
pretability is another desired aspect of these methods. Attention-Based deep
Multiple Instance Learning (ABMIL) [9] is one such method that highlights
patches with maximum contributions to the decision-making at the slide level.
Other proposed MIL-based approaches involving Self-Supervised Learning and
Vision Transformers (ViT) include Dual Stream MIL (DS-MIL) [13], Clustering-
Constrained Attention Multiple-Instance-Learning (CLAM) [14], and TransMIL:
Transformer-Based Correlated Multiple Instance Learning [21].

MIL-based methods, in general, suffer from memory limitations when applied
to whole-slide cytology images, which contain a large number of instances [12].
The large memory requirement of ABMIL can be circumvented either by sam-
pling or by gradient accumulation [2]. Although being data-hungry, ViT-based
methods, similar to MIL-based ones, are able to successfully aggregate patch-
based features to form good slide-level representations. However, unlike whole-
slide histology images, whole-slide cytology images (where the patches contain
at most a few overlapping cells) do not have much contextual information (and
detection of a few key instances present is the main goal), which might be the
reason for fewer applications of ViTs on cytology data, as ViTs are known to
be mostly useful in aggregating contextual information, which makes them more
suitable for histology whole-slide images. In a recent study [11], it is shown that
ABMIL does not work well for a small ratio of key (i.e., positive/abnormal) to
normal instances in large bags. It compares Single Instance Learning (SIL), which
involves training on individual instances with specific labels (normal/malignant),
with Multiple Instance Learning (MIL), which uses bags of instances, assigning
labels based on the presence of at least one positive instance in the bag. Although
SIL performs better than ABMIL (which also suffers from mode collapse) on oral
cancer data, both SIL and ABMIL struggle when the number of key instances
is less than 2% in large bags.

We explore if a One-Class Classification (OCC) approach can be used to over-
come the limitation of struggling to identify key instances when their percentage
(also known as “witness rate”) is less than 2%. OCC is an approach for abnor-
mal instance detection, which involves fitting a model on a single class (normal
cells) and then predicting whether a test data point is from the normal cells or

https://github.com/MIDA-group/occ_cyto
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not. One of the most popular deep architectures used for this is Deep One-Class
Classification [18], which is trained on an anomaly detection-based objective.
However, this approach usually tends to map all the normal data into a single
point-known as "hypersphere collapse" [3]. To avoid hypersphere collapse and
learn effective one-class representations, [23] propose a distribution-augmented
contrastive learning-based two-stage framework for building deep one-class clas-
sifiers.

Another approach for outlier detection is to use deep generative models [17,
27,28]. However, for these methods, accurate density estimation is problematic
in high dimensions [24]. Moreover, learning deep generative models on raw image
data is difficult, as they tend to assign high importance to background pixels
and also learn local pixel correlations [10]. To make these methods work, a good
representation of the image data is needed first.

3 Data

To enable a well-controlled evaluation of methods, while still working with real-
istic data, we create a synthetic dataset consisting of real cells. We conduct
experiments on a subset of the publicly available PKGBM bone marrow cytol-
ogy dataset [16] (containing cells belonging to 21 categories). We choose this
particular dataset as it contains cell sized patches divided into well defined
classes and the number of instances in some of the majority classes approach
the number of cells present in real whole slide cytology images. To recreate a
realistic WSI-like scenario, we choose a particular majority class from all the
available classes to represent the normal cells in a whole-slide cytology image,
and pick all the minority classes as abnormal cells. Particularly, we consider the
Lymphocyte (LYT) category as normal and the following 7 classes as abnor-
mal: Abnormal eosinophil (ABE), Basophil (BAS), Faggott cell (FGC), Hairy
cell (HAC), Smudge cell (KSC), Immature lymphocyte (LYI), and Other cell
(OTH). Moreover, the reason we choose LYT as the normal class is that both
LYT and LYI are present in the dataset, and they can represent real-life whole-
slide cytology images having normal and abnormal cells belonging to a particular
cell type. The other six minority classes are included as abnormalities because,
in a whole-slide cytology image, there are other abnormalities present that are
not of the same cell type. The names of the categories of cells and their numbers
are summarized in Table 1. All the images from each of the categories are of
size 250 × 250 pixels. Sample images (one from each cell type) are presented in
Figure 1.

4 Method

We adapt the approach suggested by [23] for contrastive self-supervised OCC to
identifying abnormal cells in cytology images, where an encoder is trained using
cell-sized patches from only normal whole-slide cytology images. We identify suit-
able augmentation approaches for augmenting the distribution of the training
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Table 1. Summary of the categories of our dataset

Cell Type Total Train Test

LYT (normal) 26242 18369 7873
BAS (abnormal) 441 308 133
HAC (abnormal) 409 286 123
OTH (abnormal) 294 205 89
LYI (abnormal) 65 45 20
FGC (abnormal) 47 32 15
KSC (abnormal) 42 29 13
ABE (abnormal) 8 5 3

Fig. 1. Sample images of the different cell types from the PKGBM dataset

data and pre-training the encoder. We evaluate four different strong augmen-
tations for augmenting the distribution of the training data, in order to reduce
the uniformity of the learned normal class representations. Also, for training
the encoder with the distribution-augmented normal cell data, we use relevant
weak augmentations, namely RGBShift (to handle stain variations across cytol-
ogy slides) and standard RandomResizedCrop (to handle small variations in the
size of the nuclei and cells due to varying levels of fluid absorption during the
cytology slide preparation process). The learned representations of the normal
cells are then used to train a One-Class Support Vector Machine (OC-SVM) for
one-class classification of normal cells. We elaborate on the steps of our method
below.

4.1 Self-supervised representation learning

For self-supervised pre-training using only normal cell patches, we adapt the
recently proposed distribution-augmented contrastive learning method that
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extends training data distributions via data augmentation [23]. This has been
proven to be particularly effective in learning representations for OCC, as it
reduces the class collision between examples from the same class and the unifor-
mity of the learned embeddings on the unit hyper-sphere.

Contrastive learning learns representations by distinguishing different views
(e.g., augmentations) of the same instance from other data instances. Two dif-
ferent views of the same object are often referred to as a positive pair. The
contrastive loss for a positive pair {pi, pj} is given by

li,j = − log
exp(sim(pi,pj)/τ)

∑
∀k �=i exp(sim(pi,pk)/τ)

, (1)

where

sim(x,y) =
xTy

‖x‖‖y‖ (2)

is the Cosine Similarity between two vectors x and y, and τ is the temperature
coefficient. The final loss is computed across all positive pairs, both (i, j) and
(j, i), in a mini-batch.

While self-supervised representation learning using a contrastive loss as above
has proven effective for multi-class classification, its ineffectiveness for one-class
classification, due to class-collision and uniformity [19,23,26], prompts the modi-
fication of traditional contrastive learning frameworks for one-class classification
via:

1. The use of moderate batch size;
2. Performing distribution augmentation by incorporating weak and strong aug-

mentations in order to address the class collision and uniformity issues. The
weak augmentations help in the self-supervised learning process while the
strong ones help augment the distribution of the normal class data.

For our one-class (i.e. normal class) classification problem we explore the fol-
lowing augmentations for cell patches:
Weak augmentations:

RGBShift: (r_shift_limit=10, g_shift_limit=10,
b_shift_limit=10, p=1),

RandomResizedCrop: (224, 224, scale=(0.9, 1.0), ratio=(1, 1).
interpolation=cv2.INTER_LANCZOS4, p=1).

Strong augmentations:
CenterCropResize: CenterCrop(height=180, width=180,p=1),

Resize(height=250, width=250, p=1).
ColorJitter: (p=1).
GridDistortion: (p=1).
ElasticTransform: (p=1).

With this weak and strong augmentation scheme, aimed at making the inlier
distribution become more compact [23] (as it pushes the normal class represen-
tations closer with the help of the strong augmentation generated additional
training data), we obtain representations learned in a self-supervised manner
(using only the normal samples).



414 S. Chatterjee et al

4.2 One class classifier with learned representations

To construct our final abnormal cell detector (using a one class classifier learned
using normal cells), we train a One Class SVM (OC-SVM) [20] using the learned
representations. For this, we choose the Radial Basis Function (RBF) kernel.
This kernel involves hyper-parameters ν, that sets an upper bound on the frac-
tion of training errors (thus setting a lower bound on the fraction of support
vectors), and also the RBF kernel coefficient γ, which defines the kernel width.

For comparing the performance of both the fully supervised and weakly
supervised methods, we use the same train and test sets as used in the con-
trastive self-supervised one-class learning setup.

4.3 Fully supervised

We use ResNet18 [7] as a base network in all experiments performed. Based on
the performance in the supervised experiment (Sect. 6), we judge it to be an
architecture strong enough for the task.

In order to compare the proposed approach for outlier detection in cytology
with a fully supervised method (since cell level annotations are present for the
dataset used for this work), we train a ResNet18 on the cytology dataset with a
70-30 train-test split. For a fair comparison, we use the same weak augmentations
i.e. RGBShift and RandomResizedCrop for the training set.

4.4 Weakly supervised setup

We also conduct experiments by simulating a weakly labelled scenario by bagging
normal cells with abnormal ones for some bags and keeping only normal cells in
the others. We label a bag as abnormal if it contains one or more abnormal cells
and assign the same label as that of the bag to all the instances of that bag. We
then train a ResNet18 using the individual instances of each bag.

5 Experiments

5.1 Experimental setup

We perform three experiments for the classification of cells: one fully supervised,
one weakly labelled, and one one-class trained. The fully supervised learning
experiment is included to provide a reference for what is an expected upper
bound of performance in case we actually have access to instance level labels.
The weakly labelled experiment relies on bag level labels and corresponds to the
method presented in [11]. The one-class trained approach is what we propose in
this paper as an alternative to the weakly labelled approach.

In the fully supervised setup, we train a pre-trained (on ImageNet) ResNet18
on our dataset. We use augmentations RGBShift and RandomResizedCrop for
the training set. RGBShift modifies the intensity of each channel of the RGB
image by ±10 , whereas RandomResizedCrop modifies it by a scale of 0.9 to
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1.0 using (Lanczos interpolation with a window size 4). These augmentations
are applied to all instances in the training set (with probability p = 1). We
train seven different binary classification models, each corresponding to one of
the seven abnormal classes (or outlier sets), using cross-entropy loss and the
Stochastic Gradient Descent (SGD) optimization algorithm. To evaluate the
performance of the OCC framework for different types of outliers, one at a time,
we train seven different binary classifiers, with each scenario having only one
abnormality present in the dataset. Similarly, in the bagged learning setup, we
also trained seven different models, each with one particular abnormal class.

Table 2. Summary of the percentage of key instances in the weakly supervised setup

Abnormal Class Number of key/bag Percentage of key

BAS 62 3.353%
HAC 57 3.113%
OTH 41 2.232%
LYI 9 0.489%
FGC 6 0.348%
KSC 6 0.315%
ABE 1 0.054%

In the bagged learning setup, the total 18369 normal (LYT) images are
divided into 10 approximately equal bags. Five of those are mixed with equal
number of random samples drawn from a single outlier class. We label a bag
as abnormal if at least one sample from the outlier set is present and normal
otherwise. We train a ResNet18 instance-wise (using bag labels) using the same
augmentations and other settings as for the fully supervised one and test it
instance-wise on the test set. The percentage of key instances present in the
created positive bags are presented in Table 2.

In the self-supervised scenario, we use the strong augmentations as described
in Section 4.1 for augmenting the training data distribution. For training the
ResNet18 encoder using weak augmentations, we use the same augmentations
as those of the fully supervised and the weakly supervised setup. We evaluate
different batch sizes (16, 32, 64 and 128) for this and train the models up to
300 epochs (for the best performing hyperparameter settings) using the ADAM
optimizer and the Normalized Temperature-scaled Cross Entropy Loss (NT-Xent
Loss) [22]. We store the model checkpoints at every 50 epochs and compare their
performances on the downstream abnormality detection task. After training the
backbone encoder, we use it to obtain the representations for the normal and test
data. The representations obtained from the normal class instances are then used
to train an OC-SVM and the representations obtained from the new instances
are then tested with the trained OC-SVM.
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5.2 Evaluation metrics

This work focuses on the detection of abnormal instances (and not on the bag
level decision). The extremely imbalanced task, where the number of abnormal
instances is less than 2% of the total number of instances, requires special care
with respect to the chosen performance metric. We envision the scenario of AI-
supported abnormal instance detection, such as the detection of a few malignant
cells among ten to fifty thousand cells on a WSI. We first conduct experiments
and measure the performance of the models to distinguish abnormal from normal
cells using False Positive (FP), False Negative (FN), True Positive (TP), Pre-
cision, Sensitivity and Specificity. To most efficiently support the human expert
(i.e., to present the cytologist with a small number of suspicious cells so that
going through all the cells in the slide is not needed), detected abnormalities
are typically presented in an ordered list with the most severe cases (in terms
of abnormality of the cells, here based on the confidence scores of the models
in inferring an instance as abnormal) first. A natural measure of performance
is then to look at the ratio of true positives (TP) among the top K abnormal
predicted instances. This leads us to the measure of Recall@K, commonly used
in information retrieval.

Recall@K =
Number of Relevant Items in TopK

Number of relevant items
. (3)

5.3 Training details

For the fully supervised and weakly supervised setup, we use a batch size of 64,
learning rate of 0.001 and train the models for 30 epochs.

For the self-supervised training, we perform experiments using batch sizes of
16, 32, 64 and 128. We evaluate a number of temperature coefficients τ for the
one-class training of the encoder and tolerance levels ν, kernel coefficients γ for
the OC-SVM, and observed that τ = 2, ν = 0.1 and γ = "auto" for the RBF
kernel produce the best results.

6 Results

Here we summarize the performance of the models we trained on the held out
test sets. Table 3 provides a condensed overview of the performance of the three
evaluated approaches: fully supervised, weakly supervised, and OCC.

Supervised For the fully supervised setup, we observe in Table 3 high speci-
ficity and reasonable sensitivity on the test set. We can interpret the results of
each binary classification as the model’s ability to distinguish each abnormality
when that abnormality class is present in the synthetic collection of cells which
correspond to (in terms of number/size) a (moderate) WSI of a single sample.
We observe that for the smaller abnormal classes (i.e. representing low witness
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Table 3. Comparison of results for fully supervised, weakly supervised, and OCC
setups. FN: False Negatives, FP: False Positives, TP: True Positives, FS: Fully Super-
vised, WS: Weakly Supervised

Abnormal Class FP FN TP Specificity Sensitivity
FS WS OCC FS WS OCC FS WS OCC FS WS OCC FS WS OCC

BAS 17 3268 740 26 24 7 107 109 8 99.78% 58.49% 90.6% 80.45% 81.95% 53.33%
HAC 2 2819 740 66 59 2 57 64 1 99.97% 64.19% 90.6% 46.34% 52.03% 33.33%
OTH 11 4422 740 11 2 52 78 87 37 99.86% 43.83% 90.6% 87.64% 97.75% 41.57%
LYI 0 4040 740 14 7 106 6 13 17 100% 100% 90.6% 30% 30% 13.82%
FGC 0 2978 740 3 4 9 12 11 4 100% 62.17% 90.6% 80% 73.33% 30.77%
KSC 0 4480 740 0 4 110 13 9 33 100% 43.10% 90.6% 100% 69.23% 23.08%
ABE 0 4213 740 3 3 14 0 0 6 100% 46.49% 90.6% 0% 0% 30%

Fig. 2. Sensitivity for Different Batch Sizes and Outlier Classes

rate in a whole slide cytology image), the sensitivity sometimes drops dramati-
cally. The average specificity and sensitivity for all the seven outlier classes are
99.95% and 60.63%.

Weakly supervised As can be seen in Table 3, the number of false positives
in the weakly supervised case is very high for all the seven classes. The aver-
age specificity and sensitivity for all the seven outlier classes are 52.42% and
62.76%.

One-class classification We observed superior downstream abnormal cell
detection performance for the CenterCropResize augmented training dataset
and thus report here the performances (related to this augmentation) for differ-
ent batch sizes when trained for 150 epochs and also for model checkpoints saved
at every 50 epochs up to 300 for the best performing batch size. We also report
the framework’s best performance when trained for 100 epochs with batch size
64 in Table 3.
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Fig. 3. Average Precision over epochs for batch size 64

We present the summary of the One-Class Classification (OCC) sensitivities
as a bar plot for different batch sizes (when trained for 150 epochs) in Figure 2.
We also report their average (across all the 7 outlier classes) precision in Table 4.
We observe a roughly constant specificity of 90% for all the models.

Table 4. Average Precision for Different Batch Sizes when trained for 150 epochs

Batch Size 16 32 64 128

Average Precision (%) 9.77 20.00 25.71 21.68

We further evaluate model checkpoints saved at every 50 epochs for the best
performing batch size of 64. The variation of average precision for the model
with batch size 64 with the number of epochs is shown in Figure 3. We observe
that the best performing model is the one saved at epoch 100.

6.1 Recall@K

Although in Table 3 we observe the OCC method faring poorly on the whole
dataset level, we envision this method to be used as a ranking-based recommen-
dation system for the detection of abnormal cells by cytologists. To evaluate
its performance in that task, we compute the Recall@K for all three setups:
fully supervised, weakly supervised and one class classification for all seven out-
lier classes. We compute Recall@K for K = 400 (which can be presented as
a 20 × 20 grid of abnormal predicted cells to the cytologist) and observe that
the performance for the One-Class Classification setup performs better than
the Weakly Supervised setup. We present the Recall@400 scores for the 3 differ-
ent setups as a bar plot for all the 7 outlier classes in Figure 4. We also show
the number of TPs in Table 6, where we can observe that except for the BAS
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Fig. 4. Recall@400 for all the three setups for the 7 outlier classes

class, for all the other outlier classes, the OCC method performed better than
the weakly supervised one in identifying the abnormality. Table 5 shows that
the average Recall@400 score for OCC surpasses that of the Weakly Supervised
setup, however (not surprisingly) lags slightly behind that of the Fully Super-
vised setup (which has access to instance-level annotations – unavailable in the
real scenario).

Table 5. Average Recall@400 across all Outlier Classes for different setups

Fully Supervised Weakly Supervised OCC

0.2051 0.1109 0.1938

Table 6. The number of TPs in the top 400 for different setups and Outlier Classes

BAS HAC OTH LYI FGC KSC ABE

Fully Sup. 21 22 33 00 04 06 00
Weak Sup. 34 05 19 00 04 00 00
OCC 13 10 22 02 04 03 01

7 Discussion and Conclusion

Our results indicate that one-class classification may be a good way to handle
the case of detecting key instances (even when there are very is few of them) in
very large bags; a situation not uncommon in healthcare diagnostics. This can
facilitate the detection of early stage cancers where the number of cancer cells
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present in a cytology slide might be extremely low and might be missed by the
cytologist during inspection.

In particular, the CenterCropResize augmentation effectively reduces the
number of false positives (now roughly 10% of the number of samples as com-
pared to as much as 60% for the weakly-supervised one), whose value is also
dependent on the tolerance level chosen for the OC-SVM. Further, it can be
inferred that, if choosing a proper batch-size and tolerance value, the OC-SVM
based on contrastively learned representations has the potential to surpass the
weakly-supervised learning framework.
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Abstract. Our research tackles the critical issue of congestive heart fail-
ure (CHF), a serious cardiovascular condition in which the heart’s ability
to pump blood effectively is compromised, leading to fluid buildup. Exist-
ing diagnostic methods often struggle with signal processing and manual
Electrocardiogram (ECG) analysis, resulting in reduced accuracy and
added complexity in diagnosis. To overcome these challenges, we present
an innovative framework that integrates GQRS detection of RR peaks
and intervals from ECG data. We then propose a hybrid CNN-LSTM net-
work specifically designed for CHF diagnosis. What sets our approach
apart is the strategic application of deep learning, combining the feature
extraction strengths of Convolutional Neural Networks (CNNs) with the
temporal processing capabilities of LSTM networks. This combination
enhances diagnostic outcomes, significantly improving the accuracy of
CHF detection and representing a notable advancement in clinical diag-
nostics. Our research highlights the potential of deep learning to enhance
diagnostic precision and support clinical decision-making for CHF. By
leveraging advanced technologies and methodologies, we aim to revolu-
tionize cardiovascular health monitoring and contribute to more effective
patient care strategies. This innovative approach achieves an impressive
accuracy rate of 98.77

Keywords: Congestive Heart Failure · Electrocardiogram ·
Convolutional Neural Networks · Long Short-Term Memory

1 Introduction

Congestive heart failure (CHF) is a prevalent cardiovascular condition character-
ized by the heart’s diminished ability to effectively pump blood, resulting in fluid
accumulation and various complications [1]. In a healthy heart, efficient stroke
volume-blood flow volume ejected per heartbeat-ensures oxygen-rich blood is
adequately distributed throughout the body from the left ventricle. However,
in CHF, particularly with impaired pump function, stroke volume decreases.
The heart undergoes remodeling, becoming enlarged with stiffened muscle walls
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stretched to accommodate more oxygen-rich blood, leading to decreased pump-
ing efficiency and increased susceptibility to fatigue [1]. This condition also causes
blood and fluid to accumulate in the lungs and body, resulting in symptoms like
breathlessness and generalized swelling [1].

Diagnosing CHF is primarily clinical, relying on a comprehensive assessment
of symptoms, signs, and corroborative evidence from diagnostic tests [1]. Among
these tests, the electrocardiogram (ECG) plays a pivotal role as a noninvasive
tool to record and analyze the heart’s electrical activities [1]. While ECG signals
are known to exhibit alterations in CHF patients, these changes are often non-
specific and insufficient for definitive diagnosis through standard manual analytic
methods alone. Typically, cardiologists visually inspect ECG readings to identify
abnormalities, a process prone to time-consuming evaluations and inter-observer
variability [1].

Our research addresses these diagnostic challenges by proposing an innova-
tive framework that integrates advanced signal processing techniques with deep
learning (DL) methodologies. Specifically, we focus on enhancing CHF detection
accuracy through a hybrid CNN-LSTM network tailored for analyzing ECG data
. This approach combines the robust feature extraction capabilities of CNN with
the sequential learning strengths of Long Short-Term Memory (LSTM) networks,
optimizing the identification of subtle patterns indicative of CHF.

By leveraging DL techniques, our framework aims to revolutionize cardio-
vascular health monitoring, improving diagnostic precision and facilitating early
intervention strategies. Our study contributes to the evolving landscape of med-
ical diagnostics by demonstrating significant advancements in CHF detection
accuracy and clinical decision-making. We achieve a high accuracy rate of 98.77%
in our evaluations, underscoring the practical implications of integrating CNN-
LSTM fusion techniques for enhancing diagnostic outcomes in cardiovascular
care.

1.1 Contributions

The major contributions of our research are as follows:

1. Proposal of an innovative framework integrating CNN-LSTM networks for
enhanced CHF detection accuracy using ECG data.

2. Application of advanced signal processing techniques to improve feature
extraction and anomaly detection in ECG signals related to CHF.

3. Validation of our framework through extensive empirical evaluations, demon-
strating superior diagnostic accuracy compared to existing methods.

4. Contribution to the field of medical diagnostics by leveraging DL method-
ologies to advance cardiovascular health monitoring and early intervention
strategies.

In this paper, we present a detailed methodology and empirical results to
validate the effectiveness of our proposed framework. We begin with a com-
prehensive review of related work in Section II, highlighting current challenges
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and gaps in existing diagnostic approaches. Section III outlines our methodology,
encompassing data preprocessing techniques, the architecture of the CNN-LSTM
model, and evaluation metrics. Results and discussions are presented in Section
IV, followed by conclusions and avenues for future research in Section V.

2 Literature Survey

Savarese G, et al. [1] offer a thorough review of key advancements in heart con-
dition diagnosis, with a particular emphasis on CHF. L. Zou et al. [2] introduced
a novel architecture combining LSTM networks with Deep Convolutional Neural
Networks (DCNN), achieving a real-time CHF detection accuracy of 97.62

Shrivastava et al. [4] propose a robust approach for detecting myocardial
infarction (MI) by utilizing three feature selection methods and eight machine
learning (ML) algorithms. Their evaluation with standardized data demonstrates
superior predictive capabilities, outperforming existing studies in the field. Sim-
ilarly, studies [5–7] incorporate federated learning with an RF approach, achiev-
ing a 95% diagnostic accuracy for CHF. The HBA-FRCNN technique specifically
addresses ECG signal noise artifacts, reaching a 97.65% accuracy in chronic heart
failure prediction.

Rai et al. [8] examined various ML and DL methods for cardiac disease
detection, providing insights into the application of cutting-edge techniques for
medical diagnosis. Khan et al. [9] conducted a comprehensive analysis of current
ML models for predicting cardiac arrests, emphasizing the need for rigorous
evaluation to improve healthcare prediction accuracy. Their findings highlight
the importance of enhanced threat evaluation techniques to improve outcomes
and optimize resource allocation in cardiovascular disease (CVD) diagnosis.

Bhaskarpandit et al. [10] showcased significant advancements in cardiac diag-
nosis through their research on eigendomain deep representation learning for
analyzing 12-lead ECG trace images for MI diagnosis. Their work highlights the
potential of ML and DL techniques to enhance diagnostic accuracy and patient
care. This study provides a foundational understanding of ECG signal acquisi-
tion and heart disease detection.

The literature review identifies several gaps in the existing research:

1. Limited comparative studies on ML algorithms for early CHF detection using
ECG data, and insufficient exploration of fusion techniques for improved pre-
dictive accuracy.

2. Inadequate research on the scalability and adaptability of DL techniques for
CHF detection across diverse patient groups and healthcare settings.

3. Minimal investigation into the effects of data preprocessing methods on DL
model performance in CHF prediction, especially in reducing ECG signal
noise and artifacts.

4. Lack of focus on potential biases affecting DL model generalization, and insuf-
ficient studies on model interpretability to enhance clinical decision-making
and adoption.
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Savarese et al. [1] reviewed significant advancements in CHF diagnosis,
emphasizing deep learning (DL) methodologies, while Zou et al. [2] introduced
an architecture integrating LSTM and DCNN for real-time CHF detection,
demonstrating improved accuracy. Our study builds on this by leveraging DL’s
strengths in hierarchical feature extraction and temporal modeling to enhance
CHF detection from ECG signals, focusing on robust preprocessing to mitigate
noise and artifacts. This approach advances clinical diagnostics, highlights DL’s
crucial role in CHF detection, and underscores the need for further research to
address existing gaps and enhance healthcare applications.

3 Methods and Materials

To achieve early CHF detection based on ECG data [10] [11], we propose a
comprehensive methodology, starting with dataset description and data prepro-
cessing to standardize recordings, reduce noise, and enhance signal quality. Key
patterns indicative of CHF are captured using feature extraction techniques.
Our hybrid CNN-LSTM model, central to this approach, combines the feature
extraction power of CNNs with LSTMs’ temporal processing strengths to dis-
tinguish between healthy and CHF-affected ECG signals. Figure 5 illustrates
the workflow from preprocessing to CHF classification. The model’s impact on
clinical decision-making is evaluated through performance metrics, highlighting
its potential to improve healthcare diagnostics with advanced machine learning
techniques.

Fig. 1. Overview of the approach for early detection of CHF based on ECG data. The
process includes dataset preprocessing, feature extraction, and classification using a
hybrid CNN-LSTM model.

Referring to Algorithm 18, the methodology outlines the step-by-step process
for early detection of CHF based on ECG data using the hybrid CNN-LSTM
model.
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Algorithm 1 Early Detection of CHF Based on ECG Data
1: Input: ECG dataset D
2: Output: CHF predictions
3: procedure CHF Detection(D)
4: Initialization:
5: Load dataset D = {X,Y } and perform preprocessing
6: Split D into training and testing sets
7: Data Preprocessing:
8: Standardize X: Xstd = X−μ

σ

9: Reduce noise: Xnoise reduced = NoiseReduction(Xstd)

10: Normalize: Xnorm = Xnoise reduced−min(Xnoise reduced)
max(Xnoise reduced)−min(Xnoise reduced)

11: Feature Extraction:
12: Extract key features: QRSDuration, IBI
13: Model Training:
14: Train hybrid CNN-LSTM: MCNN-LSTM = TrainHybridCNNLSTM(Xnorm, Y )
15: Predictions and Evaluation:
16: Predict CHF: Ŷ = Predict(MCNN-LSTM, Xtest)
17: Evaluate model performance
18: end procedure

3.1 Dataset Description

In this research, we use the BIDMC CHF and MIT-BIH datasets [12,13] dataset,
ensuring the quality of our training dataset is vital for our model’s effectiveness.
We describe a systematic approach for data collection and preprocessing, aligning
with established best practices. Our methods draws data from the BIDMC and
MIT-BIH datasets, with preprocessing techniques applied to transform raw ECG
recordings. By leveraging insights from leading cardiovascular health research,
we aim to enhance the generalizability and dependability of our model.

Table 1. Databases used in our research

Database NHYA Class # Subjects # Males (age) # Females (age) # EB

BIDMC CHF 15 11(22− 71 years ) 4(54− 63 years ) 20,000

MIT-BIH NSR 18 5(26− 45 years ) 13(20− 50 years ) 36,000

Abbreviation: EB=Extracted beats

BIDMC CHF Database [11] BIDMC CHF Database [11]: Contains ECG
recordings from 15 subjects (11 males aged 22-71, 4 females aged 54-63) with
severe CHF (NYHA class 3-4). These recordings provide valuable insights into
cardiac dynamics in severe heart failure cases.

MIT-BIH NSRDB [12] Comprises 18 recordings from subjects without signif-
icant arrhythmias, including 13 females (20-50 years) and 5 males (26-45 years).
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Each 20-hour recording contains two ECG signals sampled at 250 Hz with 12-bit
resolution over ±10 mV. Annotations were generated by an automatic detector.

Total Heartbeats The combined datasets yield a total of 490,505 heartbeats,
forming the basis for our predictive model development and evaluation.

3.2 Data Preprocessing

Preprocessing ECG data is crucial for ensuring the accuracy and reliability of
subsequent analysis. This study employs a rigorous standardization process to
address discrepancies, missing data, and noise in ECG recordings, ensuring con-
sistency and enhancing the reliability of the analysis [1,14,15]. The first step
involves noise reduction, specifically targeting variations in non-QRS signals.
This is achieved using two Moving Average Cascades (MACs) with different
impulse response intervals-140 ms for the wider MAC and 25 ms for the nar-
rower one-aimed at preserving QRS complex peaks while attenuating slow waves
like T waves and baseline drifts [2].

The second step enhances the QRS complexes by applying derivative filters.
During initialization, the filter that maximizes a signal quality index (SQI) is
selected based on the following equation:

SQI =
ks + mDs

kn + mDn

Here, mDs represents the trimmed mean of maxima within 1.6-second win-
dows, capturing high derivative values specific to QRS complexes, while mDn

represents the trimmed mean within 0.09-second windows to account for noise.
The filter with the highest SQI, denoted as MAC2[n], is applied to all ECG
records [6].

The third phase involves decision reasoning for QRS event detection. The
output of the derivative filter is compared to an adaptive threshold, updated
dynamically to maintain accuracy while minimizing false positives:

T =

{
min(D, 2.5 · T (0))
max(D, 0.5 · T (0))

The threshold is adjusted based on the distance from the previous QRS detec-
tion, ensuring flexibility in response to changing signal conditions. The position
of the maximum (or minimum) of the derivative signal is used to accurately
place the fiducial point for each detected QRS complex.

Finally, the extracted features undergo normalization using MinMaxScaler
to standardize their scales, which is crucial for avoiding biases during model
training. Scatter plots visualize the normalized data, offering insights into the
distribution of characteristics distinguishing CHF from normal conditions [4].
Figure 2 illustrates how normalization helps standardize the data.
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Fig. 2. Diagram represents the heartbeat comparison (a) Before Data Normalization
and (b) After Data Normalization.

3.3 Feature extraction

Feature engineering is a crucial step in extracting meaningful information from
the ECG signals [16–18]. The following key features are engineered to capture
essential aspects of cardiac dynamics:

QRS Wave The GQRS detection technique plays a crucial role in our investi-
gation, accurately identifying QRS complexes in ECG waveforms. This precision
is essential for meaningful feature extraction and reliable predictive models for
early CHF detection. Rigorous validation confirms the technique’s suitability
and effectiveness. Figure 3 shows the ECG after the GQRS detection.

Fig. 3. Corrected GQRS R-Peak Detection used to extract R Peaks and RR Intervals
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Sp =
CorrectQRSPredicted

TotalnumberoftrueQRSpeaks

Pp =
CorrectQRSPredicted

TotalnumberofQRSPredicted

F1 = 2 × Sp × Pp

Sp + Pp

The QRS complex represents the depolarization of the ventricles and is a
crucial feature in ECG analysis. Its duration (QRS Duration) can be calculated
as the time taken from the onset to the offset of the QRS complex:

QRS Duration = QRS Offset − QRS Onset

The Inter-Beat Interval, also known as the RR interval, reflects the period
between two R-peaks. It is a fundamental measure of heart rate variability
(HRV ) and is computed as:

IBI = Rn − Rn−1

where Rn and Rn−1 are the locations of consecutive R-peaks.
To ensure consistency in feature scaling, normalization is applied to the

extracted features. The Min-Max normalization is employed:

Xnormalized =
X − min(X)

max(X) − min(X)

where X represents the value of the feature, and min(X) and max(X) are
the min and max values of the feature, respectively. Figure 4: This figure (a)
and (b) provide a comparison of the distribution of RR-Intervals and R Peaks,
respectively. Understanding these distributions is crucial as they represent key
features in ECG data that can help in analyzing heart rhythm patterns and
detecting abnormalities.

4 Proposed Hybrid CNN-LSTM Network Architecture

We propose a hybrid DL model combining CNN and LSTM networks for early
CHF detection. The architecture of our hybrid CNN-LSTM model is detailed in
Figure 5

The hybrid CNN-LSTM model architecture is designed to leverage the spatial
hierarchical features learned by the CNN layers and the temporal dependencies
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Fig. 4. Diagram represents the distribution comparison (a) RR-Intervals distribution
and (b) R Peaks distribution.

Fig. 5. Proposed Hybrid CNN-LSTM Network Architecture

captured by the LSTM layers. The CNN layers perform feature extraction from
the input ECG signals, capturing both local and global patterns. These features
are then fed into the LSTM layers, which utilize their sequential learning ability
to model long-term dependencies in the ECG data.

4.1 Mathematical Formulation

The operations performed by the CNN layers can be represented as:

yCNN = CNN(X;ΘCNN)

where X denotes the input ECG signals, yCNN represents the output features
extracted by the CNN layers parameterized by ΘCNN.

The LSTM layers subsequently process these extracted features:

yLSTM = LSTM(yCNN;ΘLSTM)

where yLSTM represents the output of the LSTM layers parameterized by ΘLSTM.
The final output of the hybrid model is obtained by applying a classification

layer on top of the LSTM outputs:

ŷ = softmax(yLSTM;Θclass)
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where ŷ represents the predicted probabilities of different classes (e.g., normal
vs. CHF) and Θclass denotes the parameters of the classification layer.

4.2 Strengths and Uniqueness

Our proposed hybrid CNN-LSTM model offers several strengths and unique
advantages:

1. Spatial-Temporal Integration: Combines CNN for spatial features and LSTM
for temporal modeling, capturing both local and global ECG patterns.

2. Improved Accuracy: Enhances early CHF detection accuracy by leveraging
CNN and LSTM strengths.

3. Longitudinal Data Handling: LSTM layers effectively process time-series data,
suitable for monitoring CHF progression.

4. Scalability and Efficiency: Maintains computational efficiency for real-time
clinical applications despite model complexity.

The proposed architecture aims to effectively capture both spatial and temporal
characteristics of ECG signals, thereby enhancing the accuracy of CHF detection.

4.3 Model Architecture Summary

4.4 Impact and Applications

The proposed predictive model for early detection of CHF based on ECG data
holds significant implications for clinical practice and public health.

Clinical Impact The accurate identification of CHF at an early stage enables
proactive clinical interventions, resulting in better patient outcomes and lower
medical expenses. The model’s precision in distinguishing between CHF and
NSR cases contributes to timely and targeted medical interventions.

Quantifying Impact The impact of our model can be quantified using metrics
such as:

CS (%) =
Cost without model - Cost with model

Cost without model
× (100)

cost Saving (CS)where the cost includes expenses related to late-stage CHF
treatments, hospitalizations, and emergency care.

5 Results and Discussion

5.1 Accuracy and Loss

The training and validation accuracy and loss curves provide insights into the
model’s learning process and its ability to generalize to unseen data.

The accuracy and loss curves indicate that the model converges well during
training, with minimal overfitting. The hybrid CNN-LSTM architecture ensures
that the model captures both spatial and temporal features, contributing to its
high accuracy and low loss values.
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Table 2. Detailed Summary of the Hybrid CNN-LSTM Model Architecture

Layer Type Output Shape Param # Description

Input Layer (None, 5000, 1) - Input ECG signals

Convolutional Layer 1 (None, 4998, 1, 64) 256 Filters: 64, Kernel: 3x3

Max Pooling Layer 1 (None, 2499, 1, 64) - Pool Size: 2x2

Convolutional Layer 2 (None, 2497, 1, 128) 24,704 Filters: 128, Kernel: 3x3

Max Pooling Layer 2 (None, 1248, 1, 128) - Pool Size: 2x2

Convolutional Layer 3 (None, 1246, 1, 256) 98,560 Filters: 256, Kernel: 3x3

Max Pooling Layer 3 (None, 623, 1, 256) - Pool Size: 2x2

LSTM Layer 1 (None, 623, 128) 197,120 Hidden Units: 128

LSTM Layer 2 (None, 623, 64) 49,408 Hidden Units: 64

Dense Layer 1 (None, 128) 8,320 Dense: 128

Dropout Layer (None, 128) - Dropout

Dense Layer 2 (None, 64) 8,256 Dense: 64

Dense Layer 3 (None, 32) 2,080 Dense: 32

Output Layer (None, Number of classes) - Output: Number of classes

Fig. 6. Training and Validation Accuracy and Loss Curves

5.2 Confusion Matrix and Precision-Recall Curve

The confusion matrix (Figure 7) provides a detailed breakdown of the model’s
classification performance, crucial for understanding its effectiveness in distin-
guishing between CHF and Normal Sinus Rhythm (NSR) segments.

The confusion matrix shows a significant number of True Positives (TP =
2159) and True Negatives (TN = 4090), with only a few False Positives (FP =
47) and False Negatives (FN = 31). These results highlight the model’s strong
ability to accurately classify both CHF and NSR segments, demonstrating high
precision and recall.

The Precision-Recall (PR) curve (Figure 8) and its AUC of 0.989 further
highlight the model’s capability to maintain high precision and recall across
different thresholds. The hybrid CNN-LSTM model’s ability to extract and uti-
lize both spatial and temporal features is a key factor in achieving such high
performance metrics.
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Fig. 7. Confusion Matrix of the Hybrid
CNN-LSTM Model

Fig. 8. Precision-Recall Curve of the
Hybrid CNN-LSTM Model

5.3 Classification Report

The classification report (Table 3) provides detailed metrics such as precision,
recall, and F1-score for both classes (NSR and CHF).

Table 3. Classification Report for the Hybrid CNN-LSTM Model

Class Precision Recall F1-Score Support

NSR 0.978 0.988 0.983 4137

CHF 0.979 0.978 0.979 2206

Avg/Total 0.978 0.978 0.978 6343

The high precision, recall, and F1-scores across both classes demonstrate
the robustness of the hybrid CNN-LSTM model. The CNN layers effectively
extract meaningful features from the ECG data, while the LSTM layers model
the sequential nature of the data, leading to superior classification performance.

5.4 Discussion

The results demonstrate the effectiveness of the proposed hybrid CNN-LSTM
model in accurately detecting CHF from ECG data. The model’s architecture,
which combines CNN’s spatial feature extraction and LSTM’s temporal sequence
learning, is pivotal in achieving high classification performance. This hybrid app-
roach not only improves accuracy but also ensures robust detection of CHF,
making it a valuable tool for clinical diagnostics and early intervention.

The combination of spatial and temporal feature extraction allows the model
to capture both short-term patterns (through CNN) and long-term dependencies
(through LSTM), thereby enhancing its ability to discriminate between NSR and
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CHF segments. This capability is crucial in medical applications where both
immediate and prolonged ECG characteristics play a role in diagnosis.

Furthermore, the high AUC-PR indicates that the model maintains high
precision and recall even when the threshold for classifying CHF segments varies.
This flexibility is essential in clinical settings where different decision thresholds
may be required based on the specific diagnostic needs.

6 Comparative Analysis

We compare our proposed Hybrid CNN-LSTM method with several existing
approaches as summarized in Table 4. Each study utilized different datasets
and methodologies for cardiac arrhythmia detection, achieving varying levels of
accuracy. Our method, using MIT-BIH and BIDMC CHF datasets, achieves an
accuracy of 98.77%.

The studies listed in Table 4 employ a variety of techniques, including
Unet++, Faster RCNN classifiers, DA-DRRNet, Eigendomain DRL approaches,
and Artificial Neural Networks. These methods have shown commendable accu-
racies ranging from 89.83% to 98.68%.

Our choice of Hybrid CNN-LSTM is particularly effective due to its ability
to harness both convolutional and LSTM layers. This architecture enables the
model to capture intricate temporal patterns present in ECG signals. By inte-
grating spatial and sequential learning, our approach excels in detecting complex
cardiac arrhythmias, as evidenced by its high accuracy across different datasets.

Table 4. Result Analysis

Ref. Dataset used Methodology used Accuracy

[2] NSR-RR, CHF-RR Unet++ 89.83%

[6] BIDMC-CHF, MITBIH Faster RCNN classifier 98%

[8] BIDMC-CHF, PTBDB DA-DRRNet 98.57%

[9] Mendeley data source Eigendomain DRL approach 98.68%

[12] from Catholic University of Leuven Artificial Neural Network 90.00%

[18] own dataset ML algorithms 94.00%

Proposed MIT-BIH, BIDMC CHF Hybrid CNN-LSTM 98.77%

7 Conclusion

In this study, we introduced a Hybrid CNN-LSTM model for the detection of car-
diac arrhythmias using ECG signals from MIT-BIH and BIDMC CHF datasets.
Our model achieved a high accuracy of 98.77%, showcasing its effectiveness in
accurately classifying normal sinus rhythm (NSR) and CHF segments.
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The Hybrid CNN-LSTM architecture proved advantageous due to its abil-
ity to capture both spatial features through convolutional layers and temporal
dependencies through LSTM layers. This dual capability is crucial for handling
the complex temporal patterns inherent in ECG signals.

Through a comparative analysis with existing methodologies, we demon-
strated that our approach offers a robust solution to cardiac arrhythmia detec-
tion. The combination of convolutional and LSTM layers allows our model to
excel in capturing intricate patterns, leading to superior performance in com-
parison to other methods.
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Abstract. Diagnosing thyroid cancer is notably challenging because of
its diverse manifestations and the rising number of cases worldwide.
Early detection and diagnosis of thyroid nodules’ malignancy is crucial
for reducing their progression. This paper introduces a novel computer-
aided diagnosis (CAD) system that utilizes T2 and diffusion-weighted
(DWI) magnetic resonance imaging (MRI) modalities to help diagnose
thyroid cancer. First, the thyroid nodules are delineated from T2 and
DWI modalities. Then, various features are extracted from these nod-
ules, such as first order statistics (FOS), gray level co-occurrence matrix
(GLCM), and gray level run length matrix (GLRLM), to capture texture
and spatial information. To improve both the performance and inter-
pretability of the model, outlier detection methods, such as the cluster-
based local outlier factor (CBLOF), are utilized to identify deviations
in the data. Finally, the extracted features from T2 and DWI modali-
ties are fed into a multilayer perceptron (MLP) and LightGBM (LGBM)
classifiers, respectively. Subsequently, the classifiers’ outputs are inte-
grated using a majority fusion approach for final diagnosis. The pro-
posed system is evaluated on 55 thyroid nodule patients using a 10-folds
cross-validation approach, achieving an accuracy of 99.48%. The reported
results, based on integrating decisions from each MRI modality using a
majority fusion approach, clearly demonstrate the effectiveness of the
proposed framework compared to the performance of well-known pre-
trained convolutional neural networks (CNNs).
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1 Introduction

Thyroid cancer is a common type of endocrine cancer that affects the thyroid
gland, a gland shaped like a butterfly located in the neck’s base. Diagnosing
thyroid cancer is medically challenging due to its wide range of symptoms and
varying levels of aggressiveness [4]. Thyroid cancer ranks as the 13th most com-
mon diagnosed cancer in the United States. The prevalence of thyroid cancer is
estimated at approximately 2.2% of all cancer cases in the United States, with
about 44,020 new cases reported in 2024 [19]. Despite its relatively low mortality
rate compared to other cancers, early detection and precise diagnosis are essential
for optimal treatment outcomes. The incidence of thyroid cancer has been rising
steadily in recent decades, largely due to improved diagnostic methods that can
identify smaller tumors and incidental findings during imaging examinations [6].

The main approaches for diagnosing thyroid cancer involve physical exam-
ination and imaging techniques (e.g., ultrasound, computed tomography [CT],
and magnetic resonance imaging [MRI]), as well as fine-needle aspiration biopsy
(FNAB). FNAB is considered the gold standard for evaluating thyroid nodules,
where a fine needle is inserted into the thyroid gland to extract cellular mate-
rial for analysis. Analysis of FNAB samples through histopathology determines
if a thyroid nodule is benign or malignant, influencing subsequent treatment
plans. Treatment options for thyroid cancer include surgical procedures (partial
or total thyroidectomy), radioactive iodine therapy, and hormone replacement
therapy [18].

The emergence of artificial intelligence (AI) and machine learning (ML) tech-
nologies has revolutionized the field of medical imaging and diagnostic pathol-
ogy. AI and ML algorithms can assist radiologists and pathologists in inter-
preting imaging studies and FNAB specimens, improving diagnostic sensitivity
and specificity of thyroid cancer. For example, Chaganti et al. [5] introduced a
method that analyzed clinical data to predict Hashimoto’s thyroiditis, autoim-
mune thyroiditis, binding protein, and non-thyroidal syndrome using machine
learning and deep learning (DL) models. First, the authors utilized feature selec-
tion method, such as forward feature selection, backward feature elimination,
bidirectional feature elimination, and ML-based feature selection (MLFS) using
extra tree classifiers, to select the most relevant features. Then, they utilized
different ML classifiers to investigate their performance. The latter were sup-
port vector machine (SVM), random forest, gradient boosting, AdaBoost, and
logistic regression. Additionally, they assessed the effectiveness of DL methods,
including long short-term memory (LSTM) network, convolutional neural net-
work (CNN), and CNN-LSTM, in predicting thyroid diseases. Among the ML
classifiers, random forest classifier yielded the highest accuracy of 99% when
using features selected by MLFS method. In contrast, CNN outperformed other
deep learning methods, achieving an accuracy of 93% with the original features.
Wang et al. [20] conducted a study to investigate the predictive capability of ML-
based multiparametric MRI radiomics in evaluating the aggressiveness of papil-
lary thyroid carcinoma (PTC) prior to surgery. Thyroid nodules were manually
delineated on MRI scans, followed by the extraction of 1393 radiomic features
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from these nodules. The most relevant features were then identified using the
least absolute shrinkage and selection operator (LASSO). Subsequently, a gradi-
ent boosting classifier was utilized to assess the aggressiveness of PTC, achiev-
ing an area under the receiver operating characteristic (ROC) curve (AUC) of
0.92. In [14], five different ML methods were utilized to differentiate between
benign and malignant thyroid nodules in ultrasound images. The latter were
SVM, deep neural network, center clustering method, logistic regression, and
k-nearest neighbor. Their findings demonstrated that the deep neural network
outperformed the other methods, achieving an accuracy of 87% in classifying the
thyroid nodules. Another study [22] evaluated the predictive potential of MRI-
based radiomics for identifying extrathyroidal extension (ETE) in PTC before
surgery. Various radiomic features, including histogram, gray-level run length
matrix (GLRLM), shape, gray-level size zone matrix (GLSZM), and gray-level
co-occurrence matrix (GLCM), were extracted from the region of interest (ROI).
Afterward, the most relevant features were selected using the maximum correla-
tion minimum redundancy (mRMR) algorithm in combination with the LASSO.
Finally, a radiomics predictive model was developed and tested on 132 patients,
achieving an AUC of 0.87. A similar study [3] introduced a thyroid diagnostic sys-
tem to classify thyroid nodules as benign or malignant by first extracting various
radiomic features from T1, T2, and DWI-MRI images. The latter were wavelet
transform, GLRLM, autoregressive model parameters, and GLCM. Afterward,
feature selection approaches, including mutual information, Fisher coefficient,
and classification error probability and average correlation coefficients, were uti-
lized to identify the most relevant features. Finally, a linear discriminant analy-
sis (LDA) classifier was employed to diagnose thyroid nodules. Zhang et al. [24]
proposed a multi-channel CNN thyroid diagnostic system utilizing multiparam-
teric MRI scans. First, three-channels features were extracted from T1, T2, and
contrast-enhanced T1 MRI images using two-layers CNN. Then, a multi-feature
association layer was introduced to integrate the features extracted from these
three models. Finally, a fully connected layer was employed and fed with features
extracted from the multi-feature association layer to classify thyroid regions as
normal, benign, or malignant. A recent study [23] examined the precision of
various well-known pretrained CNNs, such as ResNet50, MobileNet, AlexNet,
ShuffleNet, and NasNetMobile, in automatically extracting features for identify-
ing the most effective descriptor of thyroid nodules in ultrasound images. The
authors employed an SVM classifier to classify the features extracted from each
CNN as benign or malignant. The study found that ResNet50 was the opti-
mal model for extracting relevant features to distinguish between benign and
malignant nodules.

The scarcity of research on MRI-based thyroid classification motivated us
to create an innovative computer-aided diagnosis (CAD) system. This system
leverages texture features extracted from segmented thyroid nodules to distin-
guish between benign and malignant nodules using T2 and diffusion-weighted
(DWI)-MRI, with the following contributions: 1) We investigate the ability of
multimodal MRI in distinguishing between benign and malignant thyroid nod-



Thyroid Cancer Diagnosis Using MRI Features 441

ules. 2) Different radiomics features are employed to distinguish between these
thyroid nodules. 3) We investigate the impact of outlier detection methods on the
performance of ML classifiers in distinguishing between benign and malignant
nodules by removing unusual instances from the training dataset. 4) SHapley
Additive exPlanations (SHAP) is used to visualize and interprete the model pre-
dictions and feature importance. 5) The proposed system outperforms various
well-known pretrained CNNs, highlighting its potential to be used as an aided
diagnostic tool in clinical treatment.

2 Materials and Methods

The current study presents a CAD framework, depicted in Fig. 1, for diagnos-
ing thyroid cancer using T2 and DWI modalities. It consists of several phases,
including: 1) Different features are extracted from thyroid nodules in T2 and
DWI modalities, delineated manually by a radiologist. 2) An outlier detection
method is employed to remove anomalous data points extracted from the DWI
modality. 3) Features extracted from each modality are fed individually into
an ML classifier. Then, a majority voting approach is used to obtain the final
diagnosis. 4) SHAP AI explainability is utilized to visualize the importance of
features in the model output.

Fig. 1. The suggested Computer Aided Diagnosis (CAD) framework thyroid cancer
diagnosis from T2 and DWI modalities.
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2.1 Materials

The thyroid gland was examined using a 1.5 T Ingenia MR scanner from Philips
Medical Systems in the Netherlands. A specialized surface coil designed for
the head and neck was utilized for imaging. T2-weighted images were obtained
swiftly with a pulse sequence featuring a TR (repetition time) of 6000 ms and a
TE (echo time) of 80 ms. The resulting volumes consisted of axial slices with a
thickness of 5 mm, interspersed with either a 1 mm or 2 mm gap between slices.
The field of view (FOV) varied between 20 cm and 25 cm, and data was sam-
pled on a 256×256 acquisition matrix. For diffusion-weighted imaging (DWI) of
the same volume, a specialized sequence was employed, characterized by a rapid
acquisition process using a single-shot, spin-echo, echo-planar imaging technique.
The parameters included a TR of 10,000 ms, TE of 108 ms, and a bandwidth of
125 kHz. The axial slices for diffusion-weighted imaging were also 5 mm thick,
with a 1 mm gap between slices. The FOV ranged from 25 cm to 30 cm, and
the acquisition matrix was 256×256. To capture diffusion in multiple directions,
gradients were applied in three orthogonal directions. Two different b-factors
were utilized, specifically b = 500 s/mm2 and b = 1,000 s/mm2, along with a
b = 0 scan, resulting in a total of seven acquisitions for each slice location. This
retrospective study investigated the MRI characteristics of 55 patients diagnosed
with thyroid nodules confirmed through pathology, ranging in size from 1 to 3
cm. Among them, malignant nodules were identified in 20 patients, while benign
nodules were observed in 35 patients. Samples from the utilized thyroid cancer
dataset from the two modalities (T2 and DWI) are presented in Fig. 2.

Fig. 2. Samples from the utilized thyroid cancer dataset from the two modalities (T2
and DWI).
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2.2 Feature Extraction from T2 and DWI Modalities

The current study investigates the extraction of various features from T2 and
DWI modalities to provide a comprehensive diagnosis of thyroid conditions. Each
feature extraction technique is based on specific hypotheses aimed at capturing
distinct characteristics of thyroid tissue morphology, texture, and spatial distri-
bution.
First Order Statistics (FOS): FOS captures essential information about tis-
sue composition and density variations in the thyroid region by calculating statis-
tical measures such as mean, standard deviation, and entropy from pixel intensity
distributions.
Gray Level Co-occurrence Matrix (GLCM): GLCM analysis in T2 and
DWI images seeks to extract texture information by examining the spatial rela-
tionships between pixel intensities. This method quantifies the occurrence of
pixel pairs with particular intensity values and spatial configurations. Features,
such as contrast and entropy, derived from GLCM, provide valuable information
about the texture complexity and variability found in thyroid tissue.
Gray Level Run Length Matrix (GLRLM): Similar to GLCM, GLRLM
extraction in T2 and DWI modalities seeks to reveal patterns and structures
within the thyroid region by analyzing the distribution of gray level runs. Fea-
tures, such as short run emphasis and long run emphasis, offer information about
the length and intensity of homogeneous regions, aiding in assessing thyroid
homogeneity and spatial organization.
Local Binary Pattern (LBP): The LBP method in T2 and DWI images seeks
to capture distinctive textural details that remain consistent despite changes
in lighting conditions. By encoding pixel relationships into binary patterns and
analyzing their distribution, LBP features highlight textural patterns and spatial
variations within the thyroid tissue, enabling robust texture characterization.
Threshold Adjacency Matrix (TAS): TAS extraction in T2 and DWI
modalities analyzes the relationships between adjacent pixels at various inten-
sity thresholds to encode significant spatial details. By examining connectivity
patterns between thresholded regions, TAS features aim to capture the spatial
arrangement and structural complexity of the thyroid tissue, aiding in its char-
acterization.
Hu Moments: Extracting Hu moments from T2 and DWI images leverages
certain image moments’ invariant properties to translation, scale, and rotation.
These moments extracted from the thyroid region serve as concise descriptors
of its shape and spatial distribution, enhancing geometric characterization and
distinguishing it from surrounding tissue.
Statistical Feature Matrix (SFM): SFM extraction in T2 and DWI modali-
ties examines the statistical properties of pixel pairs across different distances to
encode details about image texture and spatial organization. By analyzing how
pixel pairs co-occur at various spatial scales, SFM features effectively capture
textural patterns, periodicity, and roughness present within the thyroid tissue.
Law’s Texture Energy Measures (LTE): LTE extraction in T2 and DWI
images entails deriving texture features at various spatial scales by convolving



444 A. Sharafeldeen et al.

simple masks with the image. The distribution of energy across different texture
components reflects the composition and organization of tissue within the thyroid
region, facilitating a thorough characterization of its texture.
Shape Parameters: Extracting shape parameters from T2 and DWI images
offers valuable insights into the morphology and spatial extent of the thyroid.
These parameters, including maximum length, area, and perimeter, quantify
aspects of thyroid shape, size, and boundary irregularity. This analysis aids in
morphological assessment and classification of thyroid characteristics.

2.3 Outliers Detection

To improve the performance of the training process, detecting unusual instances
(i.e., outliers) is crucial. Removing these outliers from the training process is
essential for improving the performance and interpretability of ML models used
for thyroid cancer diagnosis across various modalities and their fusion. The
outlier detection methods include angle-based outlier detector (ABOD) [11],
histogram-based outlier detection (HBOS) [7], cluster-based local outlier fac-
tor (CBLOF), k-nearest neighbors (KNN), isolation forest (IForest) [13], outlier
detection with kernel density estimation (KDE) [12], isolation-based anomaly
detection using nearest-neighbor ensembles (INNE) [2], Gaussian mixture model
(GMM) outlier detection, and minimum covariance determinant (MCD) [8].
ABOD effectively identifies outliers by analyzing the unusual angles formed
by data points in the feature space. HBOS assesses the likelihood of outliers
by analyzing feature value histograms. CBLOF detects outliers by identifying
instances with sparse cluster assignments or clusters with low density, while IFor-
est divides the feature space to effectively isolate outliers. KDE estimates density
functions to identify outliers occurring in low-density regions. INNE constructs
ensembles of nearest neighbors to isolate consistent outliers. GMM detects out-
liers by creating a probabilistic model based on multiple Gaussian distributions.
This approach effectively demonstrates its capability to model complex data
distributions. Moreover, MCD provides a robust estimation of data distribution
covariance despite the presence of outliers. Choosing suitable outlier detection
method helps the classifier find the appropriate boundary to separate benign and
malignant nodules. Based on the experimental results, CBLOF was identified as
the most effective outlier detection method for the ML classifier using features
extracted from the DWI modality. Meanwhile, the ML classifier achieved optimal
results when fed with features extracted from the T2 modality.

2.4 Thyroid Diagnosis Using T2 and DWI Modalities

In this paper, T2 and DWI modalities are employed to diagnose thyroid condi-
tions using machine learning. Each modality enables a comprehensive evaluation
of thyroid gland by offering distinctive perspectives on the structure and function
of the thyroid gland. The aim is to identify the most effective diagnostic app-
roach that maximizes accuracy and reliability in detecting thyroid abnormalities
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using T2 and DWI imaging techniques. We utilize different classification algo-
rithms including logistic regression (LR), KNN, decision trees (DT), random
forest (RF), AdaBoost, XGBoost (XGB), gradient boosting (GB), LightGBM
(LGBM), SVM, extra trees (ET), and multilayer perceptron (MLP). Each algo-
rithm offers specific strengths tailored to handle the complexities of thyroid
diagnosis.

To enhance the algorithms’ performance, we utilize the tree-structured parzen
estimator (TPE) for hyperparameter optimization. TPE directs the exploration
of hyperparameter configurations using Bayesian optimization techniques, effec-
tively exploring the hyperparameter space. In contrast to traditional grid or
random search methods, TPE prioritizes promising areas in the hyperparameter
space, thereby boosting the performance of classification algorithms in thyroid
diagnosis [21].

2.5 Explanation of SHapley Additive exPlanations (SHAP)

To explain the outcomes of ML models by assigning importance scores to
input features, eXplainable AI [1,9], specifically SHapley Additive exPlanations
(SHAP) framework, is adopted in the system pipeline. SHAP framework lever-
ages Shapley values derived from cooperative game theory, measuring the con-
tribution of each feature to the model’s prediction [9]. The fundamental idea
behind SHAP is the Shapley value formula, which calculates the marginal con-
tribution of each feature to the prediction. The Shapley value for feature i (φi(v))
is determined by considering all possible subsets of features and their respective
contributions to the prediction [10], which is defined as follows:

φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |! × [f(S ∪ {i}) − f(S)] (1)

where N denotes the set of all features, S signifies a subset of features excluding
i, f(S ∪ {i}) represents the model’s prediction when considering the features in
S along with feature i, and f(S) is the model’s prediction when considering only
the features in S.

3 Experiments and Discussion

The current study is conducted within a Python-based software environment,
running on Windows 11 and utilizing Anaconda as the preferred distribution
platform. The hardware configuration comprises an NVIDIA GPU with 6GB of
memory, 256GB of RAM, and an Intel Core i7 processor. To assess the effective-
ness of our predictive models in diagnosing thyroid conditions, a comprehensive
evaluation framework is employed. This framework incorporates various evalua-
tion metrics such as accuracy, precision, recall, specificity, F1 score, Intersection
over Union (IoU), Balanced Accuracy (BAC), Matthews Correlation Coefficient
(MCC), Youden’s J statistic, and Yule’s Q statistic, ensuring a thorough assess-
ment of model performance.
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To show the effectiveness of various ML algorithms applied to different modal-
ities, namely T2 and DWI, as well as their fusion, their performance is evaluated,
as demonstrated in Table 1. As presented in the table, the MLP classifier out-
performed other classifiers when fed with features extracted from T2 modality,
achieving the highest accuracy of 93.91% among them. Its robustness is also note-
worthy, as it maintains high precision, recall, and specificity scores, resulting in
an impressive F1 score of 95.71%. This suggests that MLP is well-suited for dis-
tinguishing between different tissue types or abnormalities within T2-weighted
images. On the other hand, for the DWI modality, the LGBM classifier demon-
strates superior performance, with an accuracy of 97.42% and a balanced com-
bination of precision, recall, and specificity, resulting in an F1 score of 98.26%.
This indicates that LGBM is adept at detecting subtle abnormalities or lesions
within diffusion-weighted images, making it a promising choice for diagnostic
purposes in clinical settings. When considering the fusion of modalities using
majority voting, both the intersection (i.e., the common cases retaining both T2
and DWI-based features after outlier detection) and union (i.e., integration of
both T2 and DWI-based classification) approaches yield significantly improved
performance compared to individual modalities alone. The fusion models achieve
near-perfect accuracy, precision, recall, and specificity, indicating a synergistic
effect where the complementary information from T2 and DWI enhances the
overall diagnostic capability. This underscores the importance of multimodal
imaging in improving diagnostic accuracy and reliability.

Table 1. Tabular presentation of performance results for various ML algorithms
applied to the T2 and DWI modalities using 10-fold cross-validation. Bold highlights
the best classifier for each modality.

Modality Classifier Scaler Outlier Records Accuracy Precision Recall Specificity F1 IoU BAC MCC Youden Yule

T2 AdaBoost Robust CBLOF 259 88.42 90.26 94.12 73.61 92.15 85.44 83.86 70.35 67.73 95.62
CatBoost MinMax INNE 259 91.51 91.04 97.86 75.00 94.33 89.27 86.43 78.30 72.86 98.55
DT STD INNE 259 81.47 90.12 83.33 76.71 86.59 76.35 80.02 57.20 60.05 88.55
ET Robust INNE 259 93.44 92.46 98.92 79.45 95.58 91.54 89.19 83.58 78.38 99.44
GB None INNE 259 87.64 91.01 91.98 76.39 91.49 84.31 84.18 68.97 68.37 94.75
HGB None INNE 259 89.96 91.15 95.11 77.33 93.09 87.06 86.22 75.03 72.44 97.03
KNN Robust ABOD 264 88.26 88.67 95.74 69.74 92.07 85.31 82.74 70.34 65.48 96.22
LGBM MaxAbs ABOD 264 90.53 91.79 95.21 78.95 93.47 87.75 87.08 76.42 74.16 97.35
LR Robust KDE 345 85.51 88.14 91.77 70.59 89.92 81.68 81.18 64.35 62.36 92.80
MLP STD None 345 93.91 95.12 96.30 88.24 95.71 91.76 92.27 85.28 84.53 98.98
RF None KNN 292 88.36 88.09 97.18 64.56 92.41 85.89 80.87 69.20 61.74 96.87
SVM STD IForest 259 86.87 85.96 98.99 47.54 92.02 85.22 73.27 60.83 46.53 97.77
XGB None ABOD 264 89.39 89.60 96.28 72.37 92.82 86.60 84.32 73.32 68.65 97.09

DWI AdaBoost None CBLOF 233 96.57 96.57 98.83 90.32 97.69 95.48 94.58 91.12 89.15 99.75
CatBoost Robust GMM 233 95.71 96.02 98.26 88.52 97.13 94.41 93.39 88.75 86.78 99.54
DT None None 311 93.89 95.52 95.95 88.76 95.73 91.81 92.35 85.00 84.71 98.94
ET None ABOD 234 96.58 96.02 99.41 89.06 97.69 95.48 94.24 91.34 88.47 99.85
GB MaxAbs KDE 311 95.82 95.63 98.65 88.76 97.12 94.40 93.71 89.66 87.41 99.65
HGB MinMax KNN 247 95.14 96.61 96.61 91.43 96.61 93.44 94.02 88.04 88.04 99.34
KNN MinMax HBOS 233 92.70 92.17 97.45 82.89 94.74 90.00 90.17 83.22 80.35 98.93
LGBM STD CBLOF 233 97.42 97.69 98.83 93.55 98.26 96.57 96.19 93.36 92.38 99.84
LR STD MCD 233 90.56 92.90 94.01 81.82 93.45 87.71 87.92 76.55 75.83 97.21
MLP STD GMM 233 94.42 95.43 97.09 86.89 96.25 92.78 91.99 85.38 83.98 99.10
RF Robust KNN 247 95.14 95.58 97.74 88.57 96.65 93.51 93.16 87.90 86.31 99.41
SVM STD HBOS 233 88.84 87.01 98.09 69.74 92.22 85.56 83.91 74.42 67.83 98.32
XGB STD KNN 247 96.76 96.69 98.87 91.43 97.77 95.63 95.15 91.96 90.30 99.79

Fusion (Intersection) 110 99.09 98.80 100 96.43 99.39 98.80 98.21 97.60 96.43 100
Fusion (Union) 383 99.48 99.27 100 98.20 99.63 99.27 99.10 98.73 98.20 100
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Fig. 3 presents the ROC curves for the two modalities across the different cat-
egories, emphasizing the proposed system’s capability to discriminate between
benign and malignant thyroid tumors. Figs. 4 and 5 present detailed visual
SHAP explanation, focusing on 50 random samples and highlighting the top
20 features through a decision plot. This plot illustrates how each feature con-
tributes to the model’s output for a specific instance, offering valuable insights
into the model’s behavior and feature importance. In contrast, Fig. 6 provides
a comprehensive breakdown of feature contributions, with each modality (T2
and DWI) represented by the same sample. Features are displayed horizontally,
with arrows indicating both the direction and magnitude of impact for each fea-
ture. Together, these visualizations offer a granular understanding of the model’s
decision-making process, aiding interpretation, debugging, and validation efforts.

Fig. 3. Visual presentation of the ROC curves for the two modalities across the different
categories.

3.1 Comparison with Deep Learning

An experiment was conducted using pretrained convolutional neural networks
(CNNs), including ResNet50V2, MobileNet, MobileNetV2, InceptionResNetV2,
DenseNet169, Xception, NASNetLarge, ResNet152V2, ResNet50, DenseNet201,
ResNet101V2, DenseNet121, InceptionV3, VGG16, VGG19, and NASNetMobile,
to explore whether these models could outperform the proposed fusion approach.
Table 2 presents the performance results for the two modalities after conducting
experiments with pretrained CNNs using 80%:20% train-test-split ratio. Overall,
these models achieved accuracy scores ranging from 70% to 79%, with BAC
scores between 50% and 64%, and precision scores between 70% and 77%. it is
important to highlight that the recall scores were consistently at 100%, indicating
that all positive instances were correctly identified. Conversely, the specificity
scores were generally low, often at 0%, implying that the models struggled to
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Fig. 4. Visual SHAP explanation displaying 50 random samples, emphasizing the top
20 features for T2 using a decision plot to elucidate each feature’s contribution to the
model’s output for a specific instance. Features are arranged along the y-axis, with
their SHAP values depicted by bars.

Fig. 5. Visual SHAP explanation displaying 50 random samples, emphasizing the top
20 features for DWI using a decision plot to elucidate each feature’s contribution to
the model’s output for a specific instance. Features are arranged along the y-axis, with
their SHAP values depicted by bars.

correctly identify negative instances. This issue may be attributed due to the
imbalance in the dataset, the small dataset size, or the low resolution of DWI-
MRI images. It appears that the performance of the pretrained CNN models, as
shown in the table, may not be suitable when compared with ML approaches
and hand-crafted features.
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Fig. 6. Visual SHAP explanation showcasing a sample from each modality of the two
modalities (T2 and DWI), emphasizing the detailed breakdown of feature contribu-
tions. Features are displayed horizontally, with arrows indicating both direction and
magnitude of impact for each feature.

Table 2. Tabular presentation of performance results for the fusion of the two modali-
ties after conducting experiments with pretrained CNNs using 80%:20% train-test-split
ratio.

T2 Modality DWI Modality
Model Accuracy BAC Precision Recall Specificity F1 Model Accuracy BAC Precision Recall Specificity F1

MobileNet 79.74 64.61 77.89 100 29.21 87.57 MobileNet 70.43 50.00 70.43 100 0 82.65
MobileNetV2 74.60 55.95 73.91 99.55 12.36 84.84 MobileNetV2 70.43 50.00 70.43 100 0 82.65
DenseNet121 71.70 50.56 71.61 100 1.12 83.46 DenseNet121 70.43 50.00 70.43 100 0 82.65
DenseNet169 76.53 58.99 75.25 100 17.98 85.88 DenseNet169 70.43 50.00 70.43 100 0 82.65
DenseNet201 71.38 50.00 71.38 100 0 83.30 DenseNet201 70.43 50.00 70.43 100 0 82.65
VGG16 71.38 50.00 71.38 100 0 83.30 VGG16 70.43 50.00 70.43 100 0 82.65
VGG19 71.38 50.00 71.38 100 0 83.30 VGG19 70.43 50.00 70.43 100 0 82.65
ResNet50 71.38 50.00 71.38 100 0 83.30 ResNet50 70.43 50.00 70.43 100 0 82.65
ResNet101 71.38 50.00 71.38 100 0 83.30 ResNet101 70.43 50.00 70.43 100 0 82.65
ResNet152 71.38 50.00 71.38 100 0 83.30 ResNet152 70.43 50.00 70.43 100 0 82.65
ResNet50V2 76.53 58.99 75.25 100 17.98 85.88 ResNet50V2 70.43 50.00 70.43 100 0 82.65
ResNet101V2 78.78 62.92 77.08 100 25.84 87.06 ResNet101V2 70.43 50.00 70.43 100 0 82.65
ResNet152V2 72.99 52.81 72.55 100 5.62 84.09 ResNet152V2 70.43 50.00 70.43 100 0 82.65
InceptionV3 71.38 50.00 71.38 100 0 83.30 InceptionV3 70.43 50.00 70.43 100 0 82.65
InceptionResNetV2 77.17 61.46 76.49 98.20 24.72 86.00 InceptionResNetV2 70.43 50.00 70.43 100 0 82.65
NASNetLarge 71.38 50.00 71.38 100 0 83.30 NASNetLarge 70.43 50.00 70.43 100 0 82.65
NASNetMobile 75.24 56.74 74.25 100 13.48 85.22 NASNetMobile 70.43 50.00 70.43 100 0 82.65
Xception 71.38 50.00 71.38 100 0 83.30 Xception 70.43 50.00 70.43 100 0 82.65
EfficientNetB0 71.38 50.00 71.38 100 0 83.30 EfficientNetB0 70.43 50.00 70.43 100 0 82.65
EfficientNetB1 71.38 50.00 71.38 100 0 83.30 EfficientNetB1 70.43 50.00 70.43 100 0 82.65
EfficientNetB2 71.38 50.00 71.38 100 0 83.30 EfficientNetB2 70.43 50.00 70.43 100 0 82.65
EfficientNetB3 71.38 50.00 71.38 100 0 83.30 EfficientNetB3 70.43 50.00 70.43 100 0 82.65

To further demonstrate the capability of the proposed diagnostic system, its
performance is compared with that of our previous works, as depicted in Table 3.
As shown in the table, the performance of the proposed system is significantly
improved by 12% compared to the lowest-performing system, underscoring its
effectiveness in detecting the malignancy of thyroid tumors.
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Table 3. A tabular presentation comparing the performance results of previous related
works with those of the proposed system.

Model Accuracy (%)

Naglah et. al [15] 87
Sharafeldeen [16] 93.65
Sharafeldeen [17] 95.5
Proposed system 99.48

4 Conclusions and Future Directions

In conclusion, this study introduces a CAD system for diagnosing thyroid cancer,
utilizing T2 and DWI MRI modalities. By leveraging diverse feature extraction
methods and outlier detection techniques, the CAD framework offers a robust
approach to capturing intricate tissue features and identifying abnormalities
within the thyroid gland. The conducted experiments highlight the superior per-
formance of the fusion models incorporating T2 and DWI modalities compared
to individual modality-based classification as well as pretrained convolutional
neural networks (CNNs). The fusion models exhibit near-perfect accuracy and
comprehensive evaluation metrics, underscoring the synergistic effect of multi-
modal imaging in enhancing diagnostic capabilities. In the future, we aim to
integrate additional imaging modalities or biomarkers to enhance the accuracy
of thyroid cancer diagnosis, as well as to investigate the performance of proposed
system on larger datasets. Moreover, exploring molecular imaging techniques or
genetic markers may provide valuable insights into tumor biology and prognosis,
complementing structural information from T2 and DW MRI modalities.
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