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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.



vi President’s Address

The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Recently, augmentation-based contrastive learning has made
significant progress in avoiding hard backpropagation by enhancing
supervision signals to optimize intermediate layers. As a well-known
observation, same-source augmentations from the same image are more
similar than same-class augmentations from different images but in the
same class. However, the existing contrastive deep supervision meth-
ods ignore the differences in augmentations between the same-source
and same-class images, and then neglect the unique information extrac-
tion of the same-source, resulting in a reduced model performance. To
tackle this limitation, we design a novel module to independently con-
sider same-source and same-class losses, which assists the neural network
in understanding the invariance of same-source augmentations and the
commonality of same-class augmentations. Furthermore, the proposed
module prevents the effect of same-class losses on same-source losses.
Experimental results on several standard datasets with ten models show
that our proposed method significantly improves the image classification
performance of models in both supervised and semi-supervised learning.
Code and models will be released at GitHub.

Keywords: Deep Supervision · Contrastive Learning · Image
Classification

1 Introduction

With the increasing availability of development frameworks, computational
resources, and large-scale datasets [8], Deep Convolutional Neural Networks
(CNNs) have become the mainstream backbone for solving various computer
vision problems [9,28]. To improve their performance, [7,30] have proposed
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deeper and more complex CNNs. However, the process of training deeper CNNs
is still limited by parameter redundancy or gradient vanishing [17,18]. To address
these issues, deep supervision [23,34] is proposed as a solution to the difficulty in
optimizing deeper CNNs. Compared to traditional supervised learning methods,
which only supervise based on the output of the final layer [18], deep supervision
methods train CNNs by introducing the supervised task loss as additional super-
vision signals in the intermediate layers [23,33]. However, these methods ignore
the difference in feature extraction between the shallow and deep layers, where
the former focuses on low-level representations such as textures and colors, while
the latter represents more task-related semantic information [50]. As presented
in [16,48], the application of task-related supervised branches to shallow layers
leads to performance degradation of the trained network.

Fig. 1. NCDS architecture. Two augmented views are obtained for each image by per-
forming random data augmentation twice for each image in a batch. The contrastive
modules optimize the intermediate layers by maximizing the agreement of same-source
views and the agreement of same-class views, respectively. During the inference phase,
all contrastive modules are discarded without incurring additional parameters or com-
putations.

Considering that contrastive learning typically learns low-level task-irrelevant
data augmentation invariances [2,37], [44] proposed an effective framework
named contrastive deep supervision (CDS), which applies contrastive loss to
supervise the intermediate layers. In this framework, SimCLR [4] and Sup-
Con [21] are directly adopted to supervise the intermediate layers, the latter
has higher classification performance. Unfortunately, CDS did not delve deeper
into contrastive learning methods. From a contrastive learning perspective, it
is expected that a pair of augmentations from the same image or class will be
similar. Remarkably, the similarities of augmentations from the same class are
not obvious in their extracted features. For example, even though shelled and
unshelled corn belong to the same class, they have different colors and textures.
This disparity in similarity may cause the model to acquire distinct knowledge.
Specifically, maximizing the similarity between same-source augmentations typi-
cally tends to learn the invariance of the various data augmentation. In contrast,
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maximizing the similarity between same-class augmentations focuses more on
learning the common features of the same class.

However, when implementing the CDS, SupCon pulls together representa-
tions from the same class and pushes apart those from different classes, which
considers these two similarity losses together. This implementation makes the
model more focused on learning the similarity between the same class and ignores
the knowledge between samples from the same source (the detailed derivation
in terms of the gradient is given in Section 3.2). As pointed out in [3], the use
of SupCon leads to every augmentation from the same class having the same
representation, which significantly reduces the quality of the representation [39].
Especially in shallow layers, the negative impact on feature extraction is more
severe. Therefore, it needs to be more refined that the application of SupCon as
supervision signals in the intermediate layers.

In this paper, we present a generic training framework, named NCDS, which
can be applied to various CNN-based models to significantly improve their classi-
fication performance. In this framework, we separate same-source augmentations
from same-class augmentations(same-class set in the following exclude same-
source augmentations unless otherwise specified). Then, we use the contrastive
learning method to design same-source loss and same-class loss, respectively.
This enables the intermediate layers to acquire more comprehensive knowledge.
As illustrated in Figure 1, we design the contrastive module in each intermedi-
ate layer, which independently calculates same-source and same-class losses. For
same-source loss, we allow a pair of same-source representations to predict each
other, without relying on other representations of the same or different class.
Besides, same-class loss contrasts same-class augmentations (excluding same-
source augmentations) as positives against the negatives from different classes
with the help of dynamic queues. Compared to CDS with SupCon, the design
of the contrastive module allows for a reduction in the effect of same-class loss
on same-source loss and in the reliance on large batch size. Remarkably, all con-
trastive modules are discarded during the inference process without adding any
additional computational or storage overheads. Furthermore, our approach can
be more readily extended to semi-supervised learning methods.

Extensive experiments on several standard datasets using ten different mod-
els demonstrate that our proposed method significantly improves image classi-
fication performance in both supervised and semi-supervised learning settings.
The results also verify that our approach can provide improved supervision for
the intermediate layer, helping neural networks to learn better visual represen-
tations. Our contributions can be summarized as follows:

– We first observe the difference in similarity between same-source and same-
class augmentations. The contrastive module is designed to consider them
separately, which helps the model to acquire more comprehensive knowledge.

– We propose a training framework called NCDS, which uses same-source and
same-class loss to optimize the intermediate layers to help the model extract
better visual representations.
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– For large datasets with many classes, dynamic queues are used to store inter-
mediate features for computing same-class losses. This allows the model to
achieve excellent performance without relying on a large batch size.

– Extensive experiments on several standard datasets with ten models demon-
strate that our proposed method significantly improves the image classifica-
tion performance of models in both supervised and semi-supervised learning.

2 Related Work

2.1 Contrastive Learning

Recently, contrastive learning has received considerable attention due to its
exceptional performance and transferability [20,35,43]. The instance discrimi-
nation method is first proposed by InstDisc [36], which uses a memory bank
to store a substantial number of negative samples. InvaSpread [40] employs the
Siamese network to train positives and negatives from the same mini-batch,
thus reducing the storage burden. Then, MOCO [12] uses the momentum update
mechanism to build a long and consistent queue of negative samples, which leads
to a smaller gap between unsupervised and supervised representation learning.
SimCLR [4] proposes a simple Siamese network framework, which benefits from
data augmentations, larger batch sizes, and more training steps. In addition,
SwAV [1] introduces a scalable online clustering method to contrastive learning,
which replaces other larger sets of negative samples with fewer sets of cluster
centers. Instead of using negative samples during network training, BYOL [11]
proposes using the representation to predict different augmented views from the
same image. They have successfully verified the effectiveness of this approach
through extensive experimental results. Moreover, SimSiam [6] is introduced to
demonstrate that meaningful representations can be learned in a simple Siamese
network even without the use of large batches, momentum encoders, and neg-
ative sample pairs. And the team also discovers that stop-gradient operation
is crucial to preventing collapse. [19] shows that more robust features can be
extracted by contrastive models for transfer learning. However, self-contrastive
learning tends to learn superficial features that are unrelated to the class, which
suppresses the learning of class-relevant ones [5,29,39].

2.2 Supervised Contrastive Learning

Traditional supervised models typically use cross entropy loss, which lacks
robustness towards noisy labels [31,49] and the possibility of poor mar-
gins [10,26]. To fill this gap, SupCon [21] introduces contrastive learning to super-
vised models, which pulls representations of the same class together and pushes
representations of different classes apart. However, SupCon does not follow the
feature extraction process of contrastive learning, which may force anchors and
their hard positive samples to be similar. While the anchor and the hard positive
samples belong to the same class, they may not be similar. SupCon results in
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loss of the capacity to distinguish between subclasses in the model, which may
lead to class collapse [3,39]. And [3] demonstrates that the transferability of
models can be improved by avoiding class collapse. In addition, [39] provides a
framework for supervised and unsupervised contrastive learning that could be
used to characterize class collapse and feature suppression. Joint self-supervised
and supervised learning can mitigate feature suppression and class collapse, but
strong theoretical arguments are still lacking.

2.3 Deep Supervision

Deep supervision aims to improve the optimization of deep neural networks,
which are complex and contain a large number of layers. Instead of implement-
ing supervision only at the output layer, DSN [23] introduces the companion loss
to supervise hidden layers, which makes the learning process for hidden layers
more transparent. Subsequently, [34] proposes a strategy to add the deep super-
vision branches in the appropriate position. On this basis, DKS [32] introduces a
synergy loss that integrates pairwise knowledge matching between all supervision
branches. DHM [25] proposes Dynamic Hierarchical Mimicking, which optimizes
the interaction among the backbone network and supervision branches in dif-
ferent layers. To avoid applying task-related loss supervision directly to shallow
layers, CDS [44] proposes a contrastive deep supervision framework that intro-
duces contrastive learning to deep supervision. Furthermore, deep supervision
has been widely used in semantic segmentation [27,42,47], knowledge distilla-
tion [45], object detection [24], and the construction of neural network frame-
works [46].

3 Method

In this section, we first present an overall pipeline of our network framework.
Next, we analyse the LSupCon loss and derive in detail that the contribution of
same-source samples to the gradient of LSupCon is small. Last, we design LNCDS

to better supervise the intermediate layers.

3.1 NCDS Framework

NCDS is a training framework that applies supervision to the intermediate layers.
As illustrated in Figure 1, Encoder F = FK ◦ FK−1 ◦ · · · ◦ F1 can be divided
into the number of K layers, each of which is added a contrastive module. In the
contrastive module, we use Qk, Gk, and Hk to denote the projection, projection
MLP, and prediction MLP, respectively, in the contrastive module after the kth

layer. The final classifier C is in the last layer.
In the training process, a minibatch of N images is randomly sampled for

twice stochastic data augmentation, resulting in a set of 2N augmented images
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{x1, ..., xN , xN+1, ..., x2N}. xi is an example, and we use the following architec-
ture to extract the kth representations.

qk,i = Qk ◦ Fk ◦ · · · ◦ F1(xi)
gk,i = Gk ◦ Qk ◦ Fk ◦ · · · ◦ F1(xi)
hk,i = Hk ◦ Gk ◦ Qk ◦ Fk ◦ · · · ◦ F1(xi)
ci = C ◦ FK ◦ · · · ◦ F1(xi),

(1)

where �2 normalized qk,i, gk,i, and hk,i are the output representations of the kth

contrastive module from xi, ci is the final classification representation from xi.
Notably, we design a novel contrastive loss function LNCDS , which is based on
the loss function of the CDS [44] framework, to train our models. The previous
framework had the problem that intermediate layers tend to learn the features
of same-class pairs while ignoring same-source pairs. We will provide a compre-
hensive analysis of these drawbacks in Section 3.2.

In addition, the same-source representations and same-class representations
are considered separately to obtain more comprehensive knowledge. Thus, xi and
xN+i are two augmented images from same image, which can be considered as
a same-source pair. Define P̂ (i) ≡ {p̂ ∈ {1 . . . 2N}\ {i,N + i} : ỹp̂ = ỹi} as the
set of indices of all augmented images from the same class as xi, which excludes
i and N + i. Therefore, xi and xp̂ are considered as same-class pairs, where
p̂ ∈ P̂ (i). qi and qp̂ is used to calculate the same-class loss of xi. We will present
its details and the calculation of the same-source loss of xi with hi and gN+i in
Section 3.3.

3.2 Analysis of LSupCon

In this section, we will analyse the demerit of the previous loss function [44].
First, we use I ≡ {1 . . . 2N} to denote the set of indices of all augmented images
in a batch and use qi = QK ◦ F (xi) to represent the normalized output of the
projection head after the Kth layer. Supervised contrastive learning loss [21] can
be formalized as follows:

LSupCon =
∑

i∈I

Lsup
i =

∑

i∈I

−1
|P (i)|

∑

p∈P (i)

log
exp(qi · qp/τ)∑

d∈D(i)

exp(qi · qd/τ)
, (2)

where D(i) ≡ I\ {i} is the set of indices of all augmented images except i,
P (i) ≡ {p ∈ D (i) : ỹp = ỹi} is the set of indices corresponding to all augmented
images from the same class as xi except i, |P (i)| is the cardinality of P (i), · is
the dot product symbol, τ is a temperature hyperparameter.

Supervised contrastive learning regards all augmentations with the same label
as positives, even if they are from the same image. Intuitively, Lsup aims to pull
positives together while pushing negatives away.

However, we observe that the contribution of the same-source representations
in the gradient of Lsup is small. Therefore, we argue that Lsup lacks learning
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on same-source augmentations. Next, we present a detailed derivation of this
observation.

We use ui to denote the unnormalized representation of qi, which can be
formulated as qi = ui/‖ui‖2. Thus, the gradient of Lsup with respect to ui can
be described as follows:

∂Lsup
i

∂ui
=

∂qi

∂ui

∂Lsup
i

∂qi
, (3)

Firstly, the following derivation can be given:

∂qi

∂ui
=

∂

∂ui
(

ui

‖ui‖2
) =

1
‖ui‖2

(I − qiq
T
i ), (4)

where I is the identity matrix. Next, we derive the gradient of the Lsup with
respect to qi as follows:

∂Lsup
i

∂qi
=

−1
|P (i)|

∑

p∈P (i)

∂

∂qi

⎧
⎪⎨

⎪⎩
log

exp(qi · qp/τ)∑
d∈D(i)

exp(qi · qd/τ)

⎫
⎪⎬

⎪⎭

=
−1
τ

⎧
⎪⎨

⎪⎩

∑

p∈P (i)

qp

|P (i)| −

∑
d∈D(i)

qd exp(qi · qd/τ)

∑
d∈D(i)

exp(qi · qd/τ)

⎫
⎪⎬

⎪⎭
,

(5)

Finally, Equations 3 can be derived by combining Equations 4-5 using the chain
rule as follows:

∂Lsup
i

∂ui
=

∂qi

∂ui

∂Lsup
i

∂qi
=

1
τ‖ui‖2

⎧
⎪⎨

⎪⎩

∑
n∈N(i)

(qn − qi (qi · qn)) exp(qi · qn/τ)

∑
d∈D(i)

exp(qi · qd/τ)

+
∑

p∈P (i)

(qp − qi (qi · qp))

⎛

⎜⎝
exp(qi · qp/τ)∑

d∈D(i)

exp(qi · qd/τ)
− 1

|P (i)|

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
,

(6)

where N (i) ≡ {n ∈ D (i) : ỹn �= ỹi} is the set of indices of negatives with differ-
ent labels as xi. The detailed derivation of equations 4-6 is given in the Appendix.

With the above content, we could discuss the effect of same-source positive
on the gradient of Lsup

i . The positives part in Equation 6 is as follows:

1
τ‖ui‖2

∑

p∈P (i)

(qp − qi (qi · qp))

⎛

⎜⎝
exp(qi · qp/τ)∑

d∈D(i)

exp(qi · qd/τ)
− 1

|P (i)|

⎞

⎟⎠, (7)

In general, the same-source pair tends to be more similar than the same-class
pair. Thus, assuming that qi and qN+i are more aligned than qi and qp̂, i.e.,
qi · qp̂ � qi · qN+i → 1, where p̂ ∈ P̂ (i). Then from Equation 7:

‖qp − qi (qi · qp)‖2 =
√

1 − (qi · qp)
2
. (8)
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For same-source and same-class representations, we have ‖qp̂ − qi (qi · qp̂)‖2 	
‖qN+i − qi (qi · qN+i)‖2 → 0 in Equation 8. Hence, the gradient of Lsup

i from
the same-source positive in Equation 6 is small, while the gradient from the
same-class positives is relatively large. In this instance, the model prefers to
learn the class-relevant knowledge from same-class positives rather than the
class-irrelevant knowledge from same-source positives. Therefore, we believe
that directly using LSupCon to supervise the intermediate layers may not allow
the model to learn comprehensive knowledge. However, the proposed novel loss
function LNCDS could effectively fill this gap, and its details are presented in
Section 3.3.

3.3 The Novel Loss

To reduce the effect of same-class positives on the gradient of same-source posi-
tives, we separate the learning process into two independent tasks, including for
same-source pairs and same-class pairs, respectively.

First of all, the loss function Lclass for same-class positives is defined as:

Lclass =

⎧
⎪⎨

⎪⎩

∑
i∈I

−1

|P̂ (i)|
∑

p̂∈P̂ (i)

log exp(qi·qp̂/τ)∑

d̂∈D̂(i)

exp(qi·qd̂/τ) ,
∣∣∣P̂ (i)

∣∣∣ > 0

0,
∣∣∣P̂ (i)

∣∣∣ = 0
(9)

Where
∣∣∣P̂ (i)

∣∣∣ is the cardinality of P̂ (i), D̂(i) ≡ D(i)\ {N + i} is a set of indices
which contains all indices of augmented images except i and N + i. Lclass is a
variant of LSupCon(Equation 2), the main difference between LSupCon and Lclass

is that LSupCon regards same-source representations as positives, whereas Lclass

ignores them.
It is worth noting that Lclass is too small to provide effective supervision when

the batch size is much smaller than the number of classes. Specifically, too small
a batch size may result in a lack of same-class representations for contrasting.
To address this issue, dynamic queues are designed in the intermediate layers
to store 128-dimensional same-class representations. The dynamic queues store
the representations of the samples in the previous iteration and use these stored
features to support training in the following iteration. This strategy eliminates
the need for Lclass to rely on a large batch size. We also present the ablation
experiments on the length of the queue in Section 4.

Then we minimize Lsource to learn the similarity between same-source pair.
More specifically, Lsource directly predicts gN+i from hi to avoid using other
representations, including same-class positives or negatives. Following [6], Lsource

can be formulated as:

Lsource =
N∑

i=1

−1
2

{hi · sg (gN+i) + hN+i · sg (gi)}, (10)

where sg (·) is the stop-gradient operation, which means that gi and gN+i are
treated as constant. By combining Equations 9-10, the total loss LNCDS can be
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formulated as:

LNCDS = LCE

(
{ci}N

i=1 , {ỹi}N
i=1

)

+
K∑

k=1

{
λ1Lclass

(
{qk,i}2N

i=1 , {ỹi}2N
i=1

)
+ λ2Lsource

(
{hk,i}2N

i=1 , {gk,i}2N
i=1

)}

(11)
where LCE is the cross entropy loss, which only supervises the model in the
final layer. The second part, including Lclass and Lsource, is the loss of con-
trastive supervision for the number of K intermediate layers. λ1 and λ2 are the
hyperparameters.

Based on the above formulation about NCDS, our approach can be easily
extended to semi-supervised learning. Assuming that dataset W contains labels
Y and an unlabeled dataset U . For labeled data, it is possible to train directly
with the LNCDS of our approach. For unlabeled data, we only train with Lsource

that does not require label information. The semi-supervised learning loss can
be formulated as:

Lsemi = LNCDS (W,Y) + Lsource (U) . (12)

Table 1. Evaluating image classification with different deep supervision approaches
on CIFAR100.

MethodRST18RST50RST101RXN50RXN101WRT50WRT101SRN18SRN50PRN18

Base 77.45 77.81 78.65 79.85 80.67 79.46 79.98 77.46 78.02 76.84
DSN 78.30 78.96 79.37 81.02 81.70 80.98 81.30 78.28 79.46 77.40
DKS 78.96 80.95 81.39 82.27 82.98 81.95 82.58 79.32 80.76 78.96
DHM 78.82 81.12 81.27 82.14 83.27 81.76 82.76 79.14 80.72 78.32
CDS 80.84 81.31 83.12 82.81 83.87 82.28 83.93 80.13 81.51 80.76
Ours 82.06 84.96 85.38 85.14 85.48 85.49 85.91 82.13 84.59 81.94

4 Experiment

We evaluate our method by comparing with other deep supervision methodolo-
gies [23,25,32,44] through various neural networks, including ResNet(RST) [13],
ResNeXt(RXN) [38], Wide ResNet(WRT) [41], SENet(SRN) [15], PreAct
ResNet(PRN) [14]. The experimental results on CIFAR100 [22] for quantita-
tive comparison are reported in Table 1. Our approach significantly outperforms
previous methods, with an average performance gain of 2.3% over CDS in terms
of top-1 classification. In particular, our approach outperforms CDS by 3.65%
on ResNet50. Besides, we report the evaluation results on CIFAR10 in Table 2,
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Table 2. Evaluating image classification with different deep supervision approaches
on CIFAR10.

MethodRST18RST50RST101RXN50RXN101WRT50WRT101SRN18SRN50PRN18

Base 94.96 95.07 95.13 95.09 95.34 95.01 95.27 94.86 95.11 94.78
DSN 95.31 95.41 95.63 95.39 95.70 95.27 95.78 95.21 95.41 95.13
DKS 95.72 95.90 96.21 95.98 96.10 95.50 96.12 95.74 95.72 95.47
DHM 95.61 95.87 96.04 96.10 96.27 95.62 96.31 95.59 95.77 95.38
CDS 96.49 96.78 97.02 96.76 97.05 96.88 97.01 96.50 96.73 96.37
Ours 97.01 97.53 97.51 97.39 97.56 97.70 97.61 96.98 97.26 97.03

Table 3. Evaluating image classification with different deep supervision approaches
on ImageNet.

MetricModel BaselineDSN DKS DHMCDS Ours

top-1 RST1869.21 69.5471.3271.29 72.8573.58
RST3473.17 73.2974.0173.89 76.1977.30
RST5075.30 75.3776.4776.57 78.2579.52

top-5 RST1889.01 88.8789.2090.06 91.3091.61
RST3491.24 91.3091.8791.66 93.0893.68
RST5092.20 92.4993.6093.24 93.9994.67

which shows that our method improves on CDS by 0.6% in terms of average clas-
sification accuracy. Furthermore, the quantitative comparison on ImageNet [8]
is reported in Table 3, Our approach achieves top-1 accuracy improvements of
0.73%, 1.11%, and 1.27% on ResNet18, ResNet34, and ResNet50, respectively.

Table 4. Ablation study of the auxiliary contrastive loss at intermediate layers on the
CIFAR100 dataset with ResNet18.

Loss accuracy / %

LSupCon(CDS) 80.84
LSimCLR 78.19
LSimCLR+Lclass 79.54
Lsource 78.86
Lsource + Lclass(Ours) 82.06

Ablation Study of Auxiliary Loss We compare the classification accuracy
of supervised intermediate layers when using various contrastive loss functions.
Each contrastive loss is tested on the CIFAR-100 dataset with ResNet18. From
the Table 4, we observe that relying solely on self-supervised contrastive loss,
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such as LSimCLR and Lsource, to supervise intermediate layers is not effective
enough. This could be attributed to the fact that the intermediate layers have
not learned the similarities between the same class. In addition, simply adding
the self-supervised contrastive loss and the supervised contrastive loss together
(e.g. LSimCLR+Lclass) may result in a decrease in performance compared to the
singular use of LSupCon. This phenomenon may be due to conflicting optimiza-
tion objectives. More specifically, LSimCLR considers same-class representations
(excluding same-source representations) as negatives, while Lclass considers them
as positives. Thus, the optimization goal of LSimCLR is to push these representa-
tions apart, while the optimization goal of Lclass is to pull them together. Since
Lsource does not consider negative samples, Lsource+Lclass avoids this conflict.
Finally, we note that Lsource+Lclass achieves the best classification performance
due to the more comprehensive knowledge learned and the absence of conflicts.

Fig. 2. Evaluation of semi-supervised training on
ResNet18 for CIFAR100 and CIFAR10.

Fig. 3. Ablation study of
length of queue on ResNet18
for ImageNet.

Fig. 4. t-SNE visualization of intermediate layer representations from different
approaches on ResNet50 for the CIFAR100(results from the 100-epoch training out
of the total of 300 epochs). For a more intuitive display of intra-class distances, we
employ WCSS (Within-Cluster Sum of Squares) to quantify the intra-class distance
of the representations, which measures the squared distance of all the points within a
cluster to the cluster centroid. The WCSS values are 2938(a), 2409(b), 2670(c), and
2172(d), respectively. It is clear that our approach exhibits greater intra-class dispersion
at shallow levels.
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Semi-supervised Learning We conduct semi-supervised experiments with
NCDS and CDS, using ResNet18 for CIFAR100 and CIFAR10 datasets. For
each dataset, we evaluate with 10%, 20%, 30%, and 40% labels. In our approach,
we train unlabeled and labeled data using Lsource and LNCDS respectively. For
CDS [44], we follow their training approach, using LSimCLR and LCDS for unla-
beled and labeled data, respectively. The experimental results are reported in
Figure 2, which demonstrates that our approach outperforms CDS and Baseline
at all labeled data ratios. Moreover, our approach has a greater advantage when
there is less labeled data.
Ablation study of length of queue We investigate the impact of the length of
queue on ImageNet with ResNet18 in Figure 3. It is observed that longer queue
lengths can achieve better performance. The performance can be more affected
by the queue length if it is less than the number of dataset classes. However,
extremely long queues do not contribute to significant performance improvement,
but they do significantly increase storage and computation requirements.
Study of t-SNE Visualization A comparative study is conducted on t-
SNE visualization for NCDS and CDS projections of layer 1 and layers 3 on
CIFAR100 with ResNet50, where NCDS and CDS supervise the intermediate
layers with Lsource+Lclass and LSupCon, respectively. Figure 4 shows the exper-
imental results from the 100-epoch training out of a total of 300 epochs. It
is observed that in the same layer, the projections of LNCDS are more dis-
persed, while the projections of LSupCon are much tighter. Compared to CDS
with LSupCon, the intermediate representations of our approach have a larger
intra-class distance, retaining more information unique to the individuals within
the class. As pointed out in [19], increasing intra-class distance is advantageous
for learning rich representations in transfer learning. Therefore, this suggests the
potential for transferability and robustness in our approach.

5 Conclusion

We propose a generic training framework named NCDS that can obtain better
visual representations. To learn more comprehensive knowledge, the contrastive
module is designed to separate same-source loss and same-class losses. Besides,
dynamic queues are designed in the intermediate layers to store same-class repre-
sentations so that the model is no longer dependent on large batch sizes. Exper-
iments with ten neural networks on mainstream datasets demonstrate that our
NCDS can significantly improve the classification performance of these networks.
Meanwhile, we also verify the effectiveness of our approach to semi-supervised
learning. Furthermore, the larger intra-class distance of our intermediate fea-
tures suggests that our approach also has the potential for transferability and
robustness. In the future, we will further investigate the transferability of our
approach and its potential applications in other fields.
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Abstract. Offline handwritten signature verification has been a chal-
lenging pattern recognition problem due to high intra-writer variability
and inter-class similarity. In this paper, we propose a multi-task interac-
tion network (MTI) based on a cross-attention fusion mechanism, which
can dynamically focus on the critical detail differences between input sig-
nature pairs and efficiently capture contrast cues by fusing the contextual
information between two images. Additionally, we designed a multi-task
learning framework that enables the model to verify the authenticity
of a signature while enhancing its understanding of the signature’s writ-
ing style through recognition. By combining these two tasks, our network
enhances overall verification accuracy by increasing the understanding of
writing styles and distinguishing key detail differences between genuine
and forged signatures through fine-grained comparison cues. Most cur-
rent studies are based on signatures written in the same language script.
Given the rich linguistic and cultural background in China’s Xinjiang
region, we construct a multilingual offline signature dataset containing
Uyghur, Kirghiz, Kazakh, and Chinese, the first comprehensive dataset
combining character-based and letter-based signatures. The verification
accuracies of our method on the publicly available datasets CEDAR,
BHSig-H, BHSig-B, and our Multilingual dataset Mult-Sig reach 100%,
91.19%, 94.12%, and 92.88%, respectively, and extensive experiments
demonstrate the effectiveness of the proposed method and its competi-
tiveness with current state-of-the-art techniques.

Keywords: Signature verification · Cross-attention fusion ·
Contrastive Interaction

1 Introduction

A handwritten signature is a personal identification method that combines tex-
tual and behavioral features with a long history and modern applications. It is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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widely used in various fields such as administration, banking, contract signing,
and credit card transactions. As society attaches great importance to security,
the authentication security of handwritten signatures has become the focus.
Handwritten signature recognition mainly consists of two tasks: 1. signature
recognition(SR), i.e., to determine the identity attribution of the signature
image; 2. signature verification(SV), i.e., to determine whether a pair of sig-
nature images belong to the same person. Handwritten signature verification
technology is categorized online and offline based on how the signature data is
captured. Online signature verification has high accuracy as dynamic features
(e.g., pressure and speed) are captured directly by electronic devices. In contrast,
offline signature verification is more challenging as signature images are captured
by scanning or photographing, and only handwriting morphology information
can be analyzed. Despite the higher accuracy of online verification, developing
high-precision offline signature verification systems is of great value due to the
ease of offline signature acquisition and its wide popularity in daily applications.
Offline signature verification systems are categorized into Writer-Dependent and
Writer-Independent strategies[11,15], the former constructing a proprietary-type
model for each user and the latter permitting effective verification without a spe-
cific author by constructing a generic model. This study focuses on developing
Writer-Independent offline handwritten signature verification models.

Currently, most methods focus on evaluating feature representation and sim-
ilarity or distance metrics[8,11,15,19,23]. Metric learning is mainly utilized to
improve the distribution of signature samples in the feature space. Such methods
effectively combine the capabilities of feature learning and similarity judgment.
However, metric learning usually focuses on the overall similarity or difference in
optimizing the distance metric, ignoring the interaction information between a
pair of signature images. This interaction information often contains vital clues
to distinguish between authentic and fake signatures. For example, the tradi-
tional metric learning approach may find two signatures (A and B) very similar
in overall structure and, therefore, determine that they are signatures of the
same person. However, by analyzing the fine-grained interaction information, a
particular letter stroke in A has a heavier start. In comparison, the corresponding
stroke in B has a lighter start, or at the turn of a particular stroke, A exhibits a
smooth curvature, while B appears stiff. Such detailed information may be over-
looked in the overall similarity comparison, but it is essential for distinguishing
genuine signatures from forged ones. In addition, most signature verification
frameworks rely solely on comparing specific pairs of signatures, which makes
the model mainly learn how to distinguish the difference between two signatures
and fails to recognize the unique writing style of each signature, which limits
the model’s understanding of the writing style of signatures to some extent.
In contrast, forensic verification not only compares the verified signature with
the reference signature but also the signature’s writing style when verifying the
signature’s authenticity. These unique styles are determined by the long-term
writing habits of the writer, are highly personalized and extremely stable, and
forgers cannot have this muscle memory in the short term. This includes the size
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of the letters, the slant, the way they are joined, and the overall smoothness or
sharpness of the writing. Therefore, identifying the unique style of a signature is
crucial to improving the generalization ability and verification accuracy of the
model.

In this paper, we use a cross-attention fusion mechanism to integrate the
interaction information between two images. The interaction vector is then com-
pared with individual vectors. This approach allows the generation of distinct
cues from the unique perspective of each image, which helps to distinguish the
differences between signature pairs. Compared to simple distance metrics, this
method generates more diverse and expressive comparison cues by comparing
interaction features, effectively mitigating the problem of detailed information
being overlooked in the overall similarity comparison. In addition, to address the
problem that the model relies only on comparing specific signature pairs and
lacks understanding of signature writing styles, we design a multi-task learning
framework. The model not only learns how to verify the authenticity of sig-
natures but also can capture and understand the personalized features of each
signature by recognizing the identity, e.g., some small actions of some writers
when starting and closing the pen will show some small hooks and picks in
the handwriting. This enables the model to synthesize the unique writing styles
of the signatures to understand and differentiate different individual signatures
more comprehensively. Considering that a skilled forger may mimic the overall
structure of a signature but has difficulty replicating every detailed feature, the
extraction and utilization of fine-grained features are crucial for signature veri-
fication. To this end, we introduce the self-channel interaction[5] module, which
focuses on exploiting the negative correlation of spatial locations to enable the
model to find semantically complementary channel information, which enhances
the channel features and generates more robust fine-grained feature representa-
tions. The main contributions of this paper are as follows:

1. We propose a contrastive interaction network based on a cross-attention
fusion mechanism. This network can dynamically focus on the key detail
differences between input signature pairs and efficiently capture the contrast
cues by fusing the contextual information between two images.

2. We design a multi-task learning framework in which the model not only veri-
fies the authenticity of signatures during training but also captures and under-
stands the personalized features of each signature by recognizing the identity.

3. We introduce the self-channel interaction (SCI) module to enable the model
to learn complementary features from related channels, thus improving the
extraction of fine-grained features.

4. We constructed a multilingual offline signature dataset containing Uyghur,
Kirghiz, Kazakh, and Chinese, which contains signature samples from 800
independent individuals, totaling 38,400 signature images.

2 Related Work

In the past decades, many studies have relied on manually designed features such
as texture features like grayscale covariance matrix[18], local binary patterns[22],
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local directional pattern (LDP)[4], as well as compact correlated feature[3], sur-
roundedness feature[7], SURF features[12], and KAZE features[13]. However,
deep learning-based methods have demonstrated superior performance over tra-
ditional manual feature methods in signature verification tasks with the rise of
deep learning techniques, especially the wide application of Convolutional Neural
Networks (CNNs) in image processing.

Current mainstream signature verification methods are mainly based on CNN
structure and metric learning; Dey et al. [2] proposed a Siamese Convolutional
Network that employs contrast loss to determine whether an input pair of sig-
natures belongs to the same person and optimizes the computed distance metric
based on it. Li et al. [8] proposed a dual-channel CNN for offline signature
verification, where two inputs are merged into a single dual-channel image as
input to a single network; the network learns the similarity of the two inputs at
the beginning and finally computes the similarity between signatures through
two logarithms. Wan et al. [19] proposed an author-independent metric learn-
ing method for offline signature verification using double-triple loss. Zhu et al.
[23] proposed a point-to-set (P2S) metric for offline signature verification that
focuses mainly on optimizing the distance from a point to a set. However, met-
ric learning usually focuses on the overall similarity or difference in optimizing
the distance metric, ignoring the interaction information between a pair of sig-
nature images. Even if two signatures are regarded as dissimilar in the feature
space, the model finds it challenging to specify the visual differences that lead to
such judgments. The research field has started to explore new technical routes.
Some transformer-based approaches emerged[9,16]; in addition, Soumitri et al.
[1] introduced a self-supervised representation learning approach, and Ren et al.
[15] proposed a graph convolutional network-based framework for handwritten
signature verification. Li et al. [10] proposed a multimodal handwritten signature
verification system combining static and dynamic features.

In this paper, We rethink the way of CNN structure and metric learning.
Similar ideas to some of the works[2,11], we use the Siamese neural network and
convolutional neural network to extract features. The differences are: 1. We uti-
lize the interaction information between the reference and test signatures. The
fusion of contextual information between the two images is achieved through the
cross-attention mechanism, which is different from directly using the Euclidean
distance or cosine similarity between two feature vectors to determine whether
the signatures are similar, but uses the interaction information to generate adap-
tive contrast cues to distinguish the genuine signatures from the forged ones with
more precision. 2. We design a multi-task learning framework. The model not
only relies on comparing specific pairs of signatures to verify authenticity but
also captures and understands the personalized features of each signature by
identifying the identity. Combining the two tasks enhances the model’s general-
ization ability and verification accuracy.
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3 Method

Our model consists of two parts (shown in Fig. 1) corresponding to different
tasks: the contrastive interaction module is used for signature verification (3.2).
The self-channel interaction module is used for signature recognition (3.3), and
we will describe in detail how each of the two parts works.

3.1 Network Architecture

Our backbone network consists of a four-layer structure; each layer comprises
two convolutional layers (Conv), a batch normalization layer (BN), and a ReLU
activation function. After each layer, a generalized-mean (GeM) pooling [14] is
applied, which is crucial as widely used maximum or average pooling often loses
critical information. We use a learnable pooling layer, which is more flexible
in capturing sparse features, thus better preserving critical information in the
signature image. The structure of our network is shown in Table 1.

Table 1. All dimensions are specified in the format of filters × height × width, with
ReLU serving as the activation function.

Layer Size Kernel Parm

input 1×155×220

conv1 64×3×3 stride = 1, pad = 1

conv1 64×3×3 stride = 1, pad = 1

gem pool1 adaptation p=3 (trainable)

conv2 96×3×3 stride = 1, pad = 1

conv2 96×3×3 stride = 1, pad = 1

gem pool2 adaptation p=3 (trainable)

conv3 128×3×3 stride = 1, pad = 1

conv3 128×3×3 stride = 1, pad = 1

gem pool3 adaptation p=3 (trainable)

conv4 256×3×3 stride = 1, pad = 1

conv4 256×3×3 stride = 1, pad = 1

gem pool4 adaptation p=3 (trainable)

gap 256

fc 2

3.2 Contrastive Interaction Module

First, we input reference and verification signature images into the backbone
network and extract their feature maps, i.e., respectively f1 and f2 ∈ Rc×h×w.
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Fig. 1. Multi-Task Interaction Network. The red area indicates the self-channel inter-
action module for signature recognition, and the blue area indicates the contrastive
interaction module for signature verification. The two tasks are performed simulta-
neously during training, and in the testing phase, the model only performs signature
verification to determine the signature’s authenticity. It should be noted that only gen-
uine signatures are recognized; forged signatures are not involved in the recognition
task. (Color figure online)

For each output feature map, we generate its query Q, key K, and value V,
respectively, using a 1 × 1 convolutional layer. k, q, and v are then reshaped
into a tensor ∈ Rc×m,m = w × h. As shown in Fig. 2, attention weights are
determined by calculating the correlation between the query of the reference
signature and the key of the test signature.

γi,j =
exp (sij)∑m
j=1 exp (sij)

, where sij = ki ⊗ qTj (1)

⊗ denotes the matrix multiplication. sij computes the correlation between the ith

and jth positions in k and q, respectively. Meanwhile, γ represents the attention
graph, depicting the softmax normalization for each i row. This effectively allows
the model to allocate more ”attention” to the most critical information.

We weigh the value V to obtain a weighted feature representation using these
weights.

ri =
m∑

j=1

γi,jvj , ri ∈ {r1, r2, . . . , rm} (2)

Then, r is reshaped into a tensor ∈ Rc×h×w, and the obtained weighted
representation of the feature map is superimposed with the original feature map
to obtain the final feature representation. In addition, we swap the inputs and
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Fig. 2. Internal workings of the cross-attention module. Q, K, and V are 1×1 convo-
lution functions.

then repeat the above computation. This step ensures that the features of Image
1 are incorporated into the contextual information of Image 2 while also allowing
the features of Image 2 to contain the context of Image 1.

After completing these two rounds of computation, we join the resulting two
sets of weighted features along the channel dimensions and project them through
another 1x1 convolutional layer to obtain the final output feature map. Global
average pooling is applied to the output feature map to obtain an interaction
vector xcross ∈ Rc, which contains information about the interaction between
a pair of signatures and can capture high-level comparison cues. For example,
a feature in one signature may differ in its corresponding position in another
signature.

After obtaining the interaction vector, we propose comparing it with
v1 and v2 (where v1 and v2 are derived from the feature maps f1 and f2 through
global average pooling). The reason for this approach is that it can generate dif-
ferent clues from the unique perspective of each image, which helps distinguish
between genuine and forged signatures.

We add a sigmoid function to normalize xcross and then perform dot products
with v1 and v2, respectively. The dot product operation measures the similarity
between two vectors, thereby highlighting the channel features that are more
important or different in comparison. Finally, we introduce a residual structure
to enhance the original features using the discriminative clues from both images.
The formula is as follows:

z1 = v1 � xcross + v1 (3)

z2 = v2 � xcross + v2 (4)

We concatenate the obtained attentive feature vectors z1 and z2 together and
output a two-dimensional vector through a fully connected layer. The model is
then optimized using a binary cross-entropy loss. The binary cross-entropy loss
for the signature verification task we denote as LSV .
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LSV (y, p̂) = −[y ln p̂ + (1 − y) ln(1 − p̂)] (5)

y=1 indicates that the signature pairs are from the same author, y=0 indicates
that the signature pairs are from different authors, and p denotes the probability
that the model predicts that two signatures are from the same author.

3.3 Self-Channel Interaction Module

Due to each individual’s unique signature writing style, focusing only on the
most discriminatory feature channels may not fully mine all available informa-
tion. Inspired by Yu Gao et al.[5], we introduce the Self-Channel Interaction
module since most feature channels are complementary to each other. We can
extract these complementary cues by computing the relationships between these
channels to better model signature writing styles.

For each signature image in the input, after CNN to get the feature mapping
size c×h×w, the feature map size is reshaped as X ∈ Rc×h∗w, then the output
of SCI is computed as:

Y = WX ∈ Rc×h∗w (6)

Where W ∈ Rc×c denotes the weight matrix, W is calculated as follows: first, a
bilinear operation is performed between X and XT bilinear operation to obtain a
bilinear matrix, representing the spatial relationship between the channels. Next,
the negative sign is taken for this matrix, and the softmax function obtains the
weight matrix:

Wij =
exp

(−XXT
ij

)

∑c
k=1 exp

(−XXT
ik

) (7)

Where
∑c

k=1 Wik = 1. It is worth noting that the ith channel of the output
feature Y is obtained by calculating Xi interactions with all channels of X, i.e.,
Yi = Wi1X1 + . . . + WicXc.

According to the definition of the weight matrix W , channels with larger
weights tend to complement channel semantically Xi. For example, suppose a
channel focuses on capturing a signature’s starting or ending strokes. In that
case, channels that highlight the middle part of the signature are given a more
significant weight to complement information that may be missing from the first
and last parts. This mechanism focuses on exploring the totality of the signature
by evaluating the complementarities and interactions between different parts.

We use the residual structure to aggregate the generated features with the
original features.

G = ψ(Y ) + X (8)

where ψ denotes a 3×3 convolutional layer.
Ultimately, we employ a multi-class cross-entropy loss function for classifi-

cation prediction of feature G generated based on Self-Channel Interaction. We
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denote the loss for the signature recognition task as LSV . The total loss of our
framework is defined as follows:

L = LSV + LSR (9)

4 Experiments

Datasets We conducted our experiments on four datasets: CEDAR, BHSig-H,
BHSig-B, and Mult-Sig.Table 2 presents the relevant information of the dataset
used in this experiment, and Fig. 3 shows some examples.

CEDAR: This western offline signature dataset includes 55 users, each with
24 genuine and 24 forged signatures. Each user has 276 genuine-genuine pairs
and 576 genuine-forged pairs. We randomly select five users for testing and the
remaining 50 for training.

BHSig-B: This dataset contains signatures from 100 users, each with 24 gen-
uine and 30 forged signatures. Each user has 276 genuine-genuine pairs and 720
genuine-forged pairs. We randomly select 50 users for training and 50 users for
testing.

BHSig-H: This dataset includes 160 users with 24 genuine and 30 forged
signatures. Each user has 276 genuine-genuine pairs and 720 genuine-forged pairs.
We randomly select 100 users for training and 60 users for testing.

Mult-Sig: This multilingual dataset includes signatures in Uyghur, Kirghiz,
Kazakh, and Chinese, with 200 users for each language. Each user contributes
24 genuine and 24 skillfully forged signatures, resulting in 38,400 images from
800 users. Each user has 276 genuine-genuine pairs and 576 genuine-forged pairs.
We randomly select 600 users for training and 200 users for testing.

Table 2. Summary of basic information about the experimental datasets.

Dataset Language Composition Number of Authors

CEDAR English Letters 55

BHSig-HHindi Letters 160

BHSig-B Bengali Letters 100

Mult-Sig Chinese, Uyghur, Kazakh, KirghizLetters, Characters800

Implementation Details We utilize bilinear interpolation to standardize the
size of all images to a consistent dimension of 155×220 pixels. After resizing, we
convert the images to grayscale. Moreover, the training dataset was not enhanced
through data augmentation or any other methods. To keep the number of positive
and negative samples balanced, we randomly selected from the negative pair of
samples to balance the number of positive pairs of samples. We implemented
our model based on the PyTorch platform. We used the Adam optimizer for
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Fig. 3. Examples of CEDAR, BHSig-H, and Mult-Sig datasets. The first and second
rows are genuine signatures; the third is forged signatures.

training, where the learning rate was initially set to 0.001 and tuned using a
cosine annealing strategy. The training batch size of the model was set to 32.
All training and testing was done on a single GTX 3090.

Evaluation metrics We quantify the performance of our method using widely
recognized evaluation metrics commonly used in handwritten signature verifi-
cation tasks. These include False Acceptance Rate (FAR), False Rejection Rate
(FRR), Equal Error Rate (EER), and Accuracy (ACC). Where False Acceptance
Rate (FAR) is the rate at which forged signatures are misdiagnosed as genuine
signatures, False Rejection Rate (FRR) is the rate at which genuine signatures
are misdiagnosed as forged signatures, and Equal Error Rate (EER) is the rate
at which the False Acceptance Rate (FAR) and FRR are equal. The accuracy
rate is the ratio of correctly predicted samples to all predicted samples.

4.1 Ablation Studies

Effects of Contrastive Interaction Module We evaluate different con-
trastive interaction mechanisms on the BHSig-H, BHSig-B, and Mult-Sig
datasets. Detailed results are shown in Table 3. The experimental design includes
a baseline algorithm without an interaction module, the proposed algorithm, and
interaction vectors generated using various strategies. These strategies aim to
extract mutual information from paired images, demonstrating the importance
of interaction vectors in tasks such as image comparison, matching, and recog-
nition. (I) Baseline algorithm: does not perform any interaction operation (II)
Cross-attention fusion: the cross-attention fusion mechanism generates an inter-
action vector rich in mutual information by calculating the attentional weights of
each image in an image pair concerning the other image. (III) Concatenate: The
features of two images are directly connected to form a more extended vector.
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(IV) Addition: Adding the features of two images through element-level addition
operations, aiming at capturing the positive associations between images. (V)
Subtraction: Subtracting one image’s features from another using element-level
subtraction operations to highlight the differences between the images. After
operations (III), (IV), and (V), the resulting vectors are passed through two
fully connected layers to learn the weight parameters.

Table 3. Analysis of the different interaction methods for MTI (EER%).

Interaction vector BHSig-HBHSig-BMult-Sig

Individual (Baseline) 15.78 11.19 12.57

Concat Operation 11.52 7.72 8.96

Sum Operation 13.12 8.26 9.17

Subtraction Operation 13.89 8.76 9.23

Cross-attention fusion Operation8.81 5.88 7.12

Effects of Joint Multitask Training We explored the impact of multi-task
learning strategies on the performance of the signature identification task in
the BHSig-H, BHSig-B, and Mult-Sig datasets. According to the experimen-
tal results (see Table 4), training the signature recognition task in combina-
tion with the signature verification task resulted in a performance improvement
compared to signature verification alone. In addition, the introduction of the
self-channel interaction(SCI) module to the recognition task also observed a
performance improvement. It is worth noting that there is a significant drop in
performance when switching from the SCI module to the ECA (Effective Chan-
nel Attention)[20] module. This is because the ECA module while focusing on
the most discriminative features, ignores other information that may be equally
important. In contrast, the SCI module enhances the expressiveness of features
more comprehensively by mining complementary information between channels.

Table 4. Analysis of joint multi-task training (EER%).

Model BHSig-HBHSig-BMult-Sig

SV 11.12 8.51 9.24

SV+SR 9.86 6.97 8.36

SV+SR(SCI) 8.81 5.88 7.12

SV+SR(ECA)10.44 7.06 8.89
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Table 5. Cross datasets validation results (ACC%).

Train\TestCEDARBHSig-HBHSig-BMult-Sig

CEDAR 100 49.05 58.12 51.12

BHSig-B 64.42 91.19 69.02 60.18

BHSig-H 58.85 66.21 94.12 62.06

Mult-Sig 70.92 75.23 76.79 92.88

4.2 Comparison with State of the Art

In our experiments, we compare our method with the following methods. As
shown in Table 6, on the CEDAR dataset, we compared our method with meth-
ods such as SigNet [2], 2-Channel-2-Logit [8], MSN [21], and Surroundedness fea-
tures [7], on which MTI showed excellent performance, achieving 100% accuracy,
which is on par with methods such as SigNet and 2-Channel-2-Logit. This high
performance may be partially attributed to the low complexity of the dataset
itself. On two datasets, BHSig-H and BHSig-B, we compared our method with
SigNet [2], 2C2S [16], MSN [21], 2-Channel-2-Logit [8], SURDS[1]. On the BHSig-
H dataset, MTI achieves an accuracy of 91.19%, 0.51% higher than the next-best
2C2S method. On the BHSig-B dataset, MTI achieves 94.12% accuracy, 0.87%
higher than the next-best 2C2S method. The results show that our proposed
method outperforms all compared methods. Our method also performs more
robustly in our large-scale multilingual integrated signature dataset. Meanwhile,
our designed network is more suitable for sparse signature images than some
classical backbone networks. The above proves the effectiveness of our method.
In the future, our model can be further optimized to achieve better performance
on more complex datasets. Meanwhile, our method can be generalized to similar
tasks, such as image matching and fine-grained image recognition, to verify its
generality and scalability.

4.3 Cross-Language Test

To analyze the generalization ability of the proposed method, cross-linguistic
evaluation is performed on four independent datasets, as detailed in Table 5.
When validated on cross-language datasets, a significant performance degra-
dation is observed. This is because a model trained in a particular language
will, inevitably, somewhat overfit the unique features of that language, making
the model generalize poorly across languages. Our multilingual dataset achieves
good cross-language performance when tested on the Bengali and Hindi datasets,
which may be because Uyghur and Kirghiz are more linguistically similar to the
Bengali and Hindi literature. There may be some commonalities in these lan-
guages’ writing habits and styles, allowing the model to be better generalized.
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Table 6. Comparison of the proposed method with the state-of-the-art methods on
four signature databases (%).

Datasets Methods FARFRRACC EER

CEDAR SigNet [2] 0 0 100 –

2-Channel-2-Logit [8] – – 100 0

MSN [21] 3.18 0 98.40 1.63

Surroundedness features [7] 8.33 8.33 91.67 –

OURS 0 0 100 0

BHSig-HSigNet [2] 15.36 15.36 84.64 15.36

2-Channel-2-Logit [8] – – 86.66 13.34

MSN [21] 17.06 5.16 88.88 11.31

2C2S [16] 8.66 9.98 90.68 9.32

SURDS [1] 12.01 8.98 89.50 –

OURS 8.81 8.81 91.198.81

BHSig-B SigNet [2] 13.89 13.89 86.11 13.89

2-Channel-2-Logit [8] – – 88.08 11.92

MSN [21] 10.42 6.44 91.56 8.43

2C2S [16] 5.37 8.11 93.25 6.75

SURDS [1] 19.89 5.42 87.34 –

OURS 5.89 5.87 94.125.88

Mult-Sig VGG16 [17] 8.46 8.46 91.54 8.46

ResNet18 [6] 8.84 8.82 91.17 8.83

OURS 7.12 7.12 92.887.12

Fig. 4. Visualization results. Genuine signature on the left, skilled forgery on the right.

4.4 Visualization

We visualize the weights of the cross-attention modules, as depicted in Fig 4.
The regions with warmer colors, which have higher attention weights, indicate
that the model pays more attention to these areas. This highlights the visual
distinctions between genuine and forged signatures, emphasizing the model’s
ability to discern crucial differences.

5 Conclusion

In this paper, we propose a multi-task interaction network based on a cross-
attention fusion mechanism, which can dynamically focus on the crucial dif-
ferences between input signature pairs and effectively capture contrast cues by
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integrating the contextual information from both images. Meanwhile, we design
a multi-task learning framework that enables the model to verify the authen-
ticity of a signature while recognizing it. The model can utilize the knowledge
learned from the two tasks to improve the accuracy of the judgment. In the
future, we can further optimize our model to achieve better performance on
more complex datasets. Additionally, our approach can be extended to similar
tasks, such as image matching and fine-grained image recognition, demonstrat-
ing its generality and scalability. In addition, we have collected a multilingual
signature dataset covering Chinese, Uyghur, Kirghiz, and Kazakh languages in
the Xinjiang region of China. To our knowledge, this is the first comprehensive
dataset that integrates character-based and letter-based signatures in different
linguistic contexts, laying a solid foundation for future research applicable to
multilingual modeling in general-purpose scenarios.
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Abstract. Physics-Informed Neural Networks (PINNs) have shown con-
tinuous and increasing promise in approximating partial differential
equations (PDEs), although they remain constrained by the curse of
dimensionality. In this paper, we propose a generalized PINN version of
the classical variable separable method. To do this, we first show that,
using the universal approximation theorem, a multivariate function can
be approximated by the outer product of neural networks, whose inputs
are separated variables. We leverage tensor decomposition forms to sep-
arate the variables in a PINN setting. By employing Canonic Polyadic
(CP), Tensor-Train (TT), and Tucker decomposition forms within the
PINN framework, we create robust architectures for learning multivari-
ate functions from separate neural networks connected by outer prod-
ucts. Our methodology significantly enhances the performance of PINNs,
as evidenced by improved results on complex high-dimensional PDEs,
including the 3d Helmholtz and 5d Poisson equations, among others.
This research underscores the potential of tensor decomposition-based
variably separated PINNs to surpass the state-of-the-art, offering a com-
pelling solution to the dimensionality challenge in PDE approximation.

Keywords: Tensor Decomposition · Physics-Informed Neural
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1 Introduction

Employing existing physical knowledge within data-driven systems is impor-
tant for scientists at the intersection of science, engineering, and machine/deep
learning to enforce proper behavior within a model. Physics-informed neural net-
works (PINNs) [27] provide the paradigm to formulate rules of physics within
the network architecture, such that the model learns from data and the underly-
ing physics. Consequently, PINNs gained traction within the scientific machine-
learning community. Mainly, PINNs are extensively applied to solve forward and
inverse problems involving systems of differential equations. They are applied in
various areas of science ranging from Geophysics, Structural mechanics, and
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Fluid dynamics to Epidemiology [1,7,31,32]. We refer the readers to the excel-
lent overview of PINNs by Cuomo et al. [7].

Like other numerical methods for solving partial differential equations (PDE),
PINNs also suffer from the curse of dimensionality. We need n collocation points
to solve a PDE accurately. In that case, the solution space explodes as nd with
each dimension d, and classical PINNs get into computational problems as neural
networks struggle to resolve relevant features, often leading to erroneous solu-
tions. Such problems and failure modes are discussed in detail in [17,22,34,35].

A classic method of solving differential equations is the variable separable
method [26], where the solution is defined as the product of univariate functions.
This approach is limited to a few classes of differential equations. We propose
a new PINN alternative to the classical variable separable method, which can
solve many arbitrary multi-dimensional PDEs irrespective of the presence of a
separable form. We leverage tensor decomposition approaches and their func-
tional forms and use individual neural networks to learn information along each
dimension.

There is an increasing interest in using multiple neural networks and their
blending together to form more accurate and robust PINNs. Moseley et al. [24]
suggested dividing the domain of PDE solution into smaller subdomains and
using individual neural networks to learn the solution within each subdomain.
Haghighat et al. [10] propose an individual neural network for each variable
in a mathematical model of solid mechanics consisting of five variables. Cai et
al. [3], by applying PINNs to the two-phase Stefan problem, use two neural
networks to model the unknown interface between two different material phases
and describe the phases’ two temperature distributions [18,19]. Jin et al. [14] used
multiple neural networks to improve neural operators, which also come under
the broad family of physics-informed machine learning, where a PDE solution
operator is learned instead of solving a particular PDE. They used multiple
branch and trunk nets and combined them to train Deep Neural Operators
efficiently. Applying this to PINNs, Cho et al. [5] introduced Separable PINNs,
where they use separate neural networks per axis, thus reducing the number of
collocation points, and they leverage forward mode automatic differentiation to
decrease computation and memory costs significantly.

Building upon these approaches, we introduce functional tensor decomposi-
tions as a generalized separation of variables method. We leverage several tensor
decomposition forms to separate the variables in a PINN setting and approxi-
mate each decomposition component using a neural network. We show that these
methods are more accurate and faster than state-of-the-art PINN architectures.
Our four main contributions are as follows:

1. We extend the classical variable separable methods with PINNs by leverag-
ing functional tensor decomposition forms, where individual neural networks
learn each component of the tensor decomposition.

2. We extend the universal approximation theorem and show that any multi-
variate function can be approximated using the outer product of univariate
neural networks, irrespective of whether a variable separable form exists.
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3. We propose to use three functional tensor decomposition forms that can be
combined into PINNs: Canonic-Polyadic (CP-PINN)[12], Tensor-Train (TT-
PINN)[25], and Tucker decomposition[30].

4. We demonstrate that our proposed method outperforms previous state-of-
the-art PINN architectures for high-dimensional PDEs and requires fewer
collocation points [5]. Thus, it offers an effective means to mitigate the curse
of dimensionality and provide a better representation of solutions. The code
is available at https://github.com/cvjena/TensorDecompositions4PINNs

2 Theoretical Background

The classical variable separable method involves writing a multivariate function
as a sum of products of univariate functions. Such forms only exist for a limited
number of functions/PDEs [26]. When we decompose a multivariate function and
learn each univariate function using a neural network, it is crucial to demonstrate
that this approach is practical even when a separable form does not exist. This
ensures the method’s general applicability to all types of PDEs. To support this
argument, we show in the following sections that a multi-dimensional function
can be approximated using the outer products of neural networks, where a neural
network represents each dimension with a sufficient rank. After that, we explain
in detail how tensor decompositions are utilized in PINNs and how such archi-
tectures could mitigate the curse of dimensionality and improve the speed and
accuracy of PINNs.

2.1 Universal Approximation Theorem

In this section, we revisit the classic Universal Approximation Theorem [8,13]
and extend it to separable functions. We show empirically that any continuous
multivariate function f : K → R within a compact bounded d-dimensional set
K ∈ Rd can be approximated by the outer product of d neural networks. Each
neural network is a function of a single variable xi(1 ≤ i ≤ d). Furthermore, we
demonstrate how tensor decomposition forms can separate dimensions and how
these components support solving PDEs using PINNs.

The Universal Approximation Theorem states that a feed-forward neural
network with a single hidden layer can theoretically approximate any continuous
function on a bounded domain with arbitrary accuracy [8,13]. Hence, given a
continuous function f : Rd → R and for any ε > 0, there exists a feed-forward
neural network ̂f , such that

∥

∥

∥f(x) − ̂f(x)
∥

∥

∥ < ε;∀x ∈ K. (1)

considering that for all x inside of K, which is a compact subset in R
d, the

inequality holds true.
Functional approximation problems, including those tackled by PINNs,

involve high-dimensional spaces where the curse of dimensionality becomes a sig-
nificant issue. Thus, significant challenges are posed in computation, the number

https://github.com/cvjena/TensorDecompositions4PINNs
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of parameters needed, and the calculation of derivatives (an additional special
case for PINNs).

A classical approach to address this curse of dimensionality is the sum of
separable functions and is based on reconstructing a multivariate function as a
product of univariate functions [5,11,26]: A d-variate function f : K → R can
be written as

f(x1, x2, . . . , xd) =
r

∑

j=1

d
⊗

i=1

gji (xi). (2)

Where gji are univariate functions, j denotes the separation rank, representing
the number of terms in the function gi. We designate the operator

⊗

as the
tensor product of vector spaces defined by individual univariate functions. One
of the important features of these functions is that they are not restricted from
coming from a particular basis set. This is the exact point we would like to
emphasize. Since they are not restricted to being unique, we propose that neural
networks can approximate these functions.

We simplify the notation by rewriting the Equation (2) to omit separation
rank, and the separated functions gi contain r components corresponding to the
i-th dimension. This is written as:

f(x1, x2...., xd) =
d

⊗

i=1

gi(xi). (3)

Now, we use d neural networks, e.g., per dimension of the problem, to approx-
imate the individual functions gi. Now the tensor product of these univariate
approximations is the approximation of f , denoted by ̂f , as

̂f(x1, x2...., xd) =
d

⊗

i=1

ĝi(xi, θi). (4)

Where θi represents a neural network’s trainable parameters (weights and
biases). Following the above-mentioned Universal Approximation Theorem, we
can approximate a neural network ĝi for every individual component gi [8,13]
and every εi ∈ R, such that

‖gi(xi) − ĝi(xi)‖ < εi;∀xi ∈ Ki ∧ 1 ≤ i ≤ d, (5)

where Ki is a compact subset of R. The error in approximating f by ̂f can
be now written as

∥

∥

∥f(x1, x2, . . . , xd) − f̂(x1, x2, . . . , xd)
∥

∥

∥ =

∥

∥

∥

∥

∥

d
⊗

i=1

gi(xi) −
d

⊗

i=1

ĝi(xi, θi)

∥

∥

∥

∥

∥

. (6)

Under certain reasonable assumptions that the univariate functional spaces
are Banach in nature, and the norm is a reasonable cross-norm [11], the norm of



36 S. K. Vemuri et al.

the outer product can be written as simply the norm of products. This property
is illustrated as follows:

‖
d

⊗

i=1

xi‖ =
d

∏

i=1

‖xi‖. (7)

Using this property and identity of difference of products, which is derived
using mathematical induction in [11], we expand the right-hand side of Equation
(6):

d
⊗

i=1

gi −
d

⊗

i=1

ĝi =
d

∑

j=1

(

j−1
∏

k=1

ĝk

)

(gj − ĝj)

⎛

⎝

d
∏

l=j+1

gl

⎞

⎠ . (8)

Taking the norm and including the above equation in Equation (6)

‖f − ̂f‖ =

∥

∥

∥

∥

∥

∥

d
∑

j=1

(

j−1
∏

k=1

ĝk

)

(gj − ĝj)

⎛

⎝

d
∏

l=j+1

gl

⎞

⎠

∥

∥

∥

∥

∥

∥

. (9)

Using the triangle inequality [28], we obtain

‖f − ̂f‖ ≤
d

∑

j=1

∥

∥

∥

∥

∥

∥

(

j−1
∏

k=1

ĝk

)

(gj − ĝj)

⎛

⎝

d
∏

l=j+1

gl

⎞

⎠

∥

∥

∥

∥

∥

∥

. (10)

Finally, assuming the norm is sub-multiplicative, something like L, we get

‖f − ̂f‖ ≤
d

∑

j=1

(

j−1
∏

k=1

‖ĝk‖
)

‖gj − ĝj‖
⎛

⎝

d
∏

l=j+1

‖gl‖
⎞

⎠ . (11)

Simplified expression by using Equation 5

‖f − ̂f‖ ≤
d

∑

j=1

(

j−1
∏

k=1

‖ĝk‖
)

εj

⎛

⎝

d
∏

l=j+1

‖gl‖
⎞

⎠ . (12)

By appropriately choosing the approximation errors εj for each univariate
function and making sure that the norms don’t explode (i.e., weights and gra-
dients do not explode)[9,15], we can ensure that the total error is less than any
desired ε. Thus, the constructed multivariate approximation using outer prod-
ucts of univariate functions with large enough rank is also a universal function
approximator. This shows that, theoretically, we can represent any arbitrary
multivariate function, regardless of the existence of variable separable form, as
the outer product of neural networks. The inputs to these individual neural
networks correspond to particular dimensions. The underlying ideas of triangle
inequality and identity of differences are drawn from well-established theories in
the field [5,11,14].
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2.2 Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs) are a class of neural networks that
incorporate physical laws described by partial differential equations (PDEs) into
the training process [27]. Unlike traditional neural networks that rely exclusively
on data-driven learning, PINNs utilize the underlying model structure, e.g., the
actual gradients in the loss function, to constrain the solution space effectively.
Thereby, prior knowledge and physically consistent constraints are enforced into
the learning process. Specifically, in a PINN, the loss function L is augmented
with terms that enforce the PDE constraints. Consider a PDE of the form:

F(x, u(x),∇u(x),∇2u(x), . . . ) = 0, (13)

where x ∈ R
d represents the spatial and temporal variables, and u(x) describes

the solution. The loss function L is composed of the data loss Ldata and physics
loss Lphysics. Ldata captures the error between the predicted solution u(x; θ)
and the observed data. Furthermore, Lphysics constrains the solution space such
that the model abides by the underlying governing physics at collocation points
within the domain. We formally define both as

Ldata =
1
N

N
∑

i=1

(

u(xi; θ) − udata
i

)2
, and (14)

Lphysics =
1
M

M
∑

j=1

(F(xj , u(xj ; θ),∇u(xj ; θ),∇2u(xj ; θ), . . . )
)2

. (15)

Where N and M are data and collocation points, respectively. The interplay
between these two loss functions is controlled by parameter λ [23,32,34]. The
combined multi-objective loss function is given as:

L = Ldata + λ · Lphysics. (16)

As stated, the collocation points refer to points inside the domain where
the physics is obeyed. Generally, these are sampled uniformly in the domain to
ensure the neural network learns the domain space. The curse of dimensionality
manifests in PINNs as the number of collocations grows exponentially for every
additional dimension. This challenges PINNs on many fronts, making them com-
putationally expensive, and approximating solutions becomes increasingly diffi-
cult. Such failure modes are more explained in the works like [17,22,32,34,35].

PINNs can be easily seen as a special case of functional approximation, where,
along with some samples, we give the underlying PDE residual(physics) from
which the underlying function (solution of PDE) u needs to be approximated.
We propose to represent the solution of a PINN as the outer product of uni-
variate neural networks to separate variables. This can be seen as the PINN
counterpart of the classic variable separable method. Since we have shown that
the outer product of neural networks with a sufficient rank can approximate a
multivariate function, this works even for cases where classical variable separa-
ble form does not exist, making a generalized separation of the variable method.
The advantages of this approach over classical PINNs are as follows:
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1. Requirement of fewer collocation points. While a classical PINN requires nd

collocation points to sample a d-dimensional domain, our approach needs only
n · d points, effectively mitigating the curse of dimensionality.

2. The solution of the PDE is expressed in variable separable form, irrespective
of classical variable separable form.

3. We employ individual neural networks per dimension, allowing better feature
representation and avoiding potential local minima in complex problems.

Fig. 1. We provide a schematic visualization for the tensor decompositions (a)-(c) on
the examples for d = 3. The shape of the factor tensors (A) is written on the bottom
of each component. Tucker [30] additionally has one core tensor C.

2.3 Functional Tensor Decompositions for PINNs

We leverage tensor decomposition forms to achieve the separation of variables.
This approach decomposes a high-dimensional tensor into smaller components
by approximating multivariate functions using outer products of univariate func-
tions. We refer to this technique as functional tensor decomposition. A sepa-
rate neural network is responsible for learning each component in the tensor
decomposition. This work discusses three tensor decomposition forms: Canonic-
Polyadic [12], Tensor-Train [25], and Tucker decompositions [30]. We provide
definitions and schematics, and later the inclusion into the PINN architectures,
but recommend the work of [16] for a broad overview of tensor decomposition.

Canonic-Polyadic Decomposition (CP) involves decomposing a d order ten-
sor into d factor matrices of a specified rank R [12] similar to Separable PINN [5]
as shown in Figure 1a. Mathematically, for a multi-dimensional tensor f , the CP
decomposition is written as

f(x1, x2, . . . , xd) ≈ [[A1(x1), A2(x2), . . . , Ad(xd)]], (17)

where [[·]] denotes tensor product operation with A1 ∈ R
n1×R, . . . , Ad ∈ R

nd×R

being factor matrices, for ni points along each i-th dimension.
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Fig. 2. Functional tensor decomposition forms within the PINN model architecture:
The approximation of each component matrix based on a single variable is done with
an individual neural network. These outputs are then combined as in the Canonic-
Polyadic [12] (a), Tensor-Train [25] (b) or Tucker [30] (c) manner.

Tensor-Train Decomposition (TT) represents a high-dimensional tensor as
a sequence of low-dimensional tensors (cores) connected in a chain (train) [25],
with an example shown in Figure 1b. Similar to the matrix notation CP, we have

f(x1, x2, . . . , xd) ≈ [[A1(x1), A2(x2), . . . , Ad(xd)]] (18)

where each core tensor Ai ∈ R
Ri−1×ni×Ri , and R0 = Rd = 1, where ni is number

of the points in the i-th dimension. Unlike CP, TT connects tensors belonging
to the adjacent dimensions, making it more stable[25].

Tucker Decomposition generalizes CP by decomposing a tensor into a core
tensor multiplied by matrices along each mode [30], visualized in Figure 1c.
Therefore, by updating the CP matrix notation, we obtain

f(x1, x2, . . . , xd) ≈ [[C;A1(x1), A2(x2), . . . , Ad(xd)]] . (19)

We denote C ∈ R
R1×R2×R3×...×Rd as the core tensor and A1 ∈ R

n1×R1 , A2 ∈
R

n2×R2 , . . . , Ad ∈ R
nd×Rd are factor matrices. Unlike both CP and TT decom-

position, the core connects all the dimensions, making it even more stable, with
more parameters [30].

Functional tensor decomposition forms in PINNs We now use the afore-
mentioned tensor decomposition in a PINN setup. As described earlier, we
assume the solution of a PDE that needs to be solved by a PINN is decomposed
into components constituting any of the tensor decomposition mentioned above,
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and a neural network learns each component. Therefore, we propose three archi-
tectures based on functional tensor decompositions: CP-PINN, TT-PINN, and
Tucker-PINN. The schematics given in Figure 1 and 2 are for a three-dimensional
PDE, but the concepts scales to arbitrary dimensions (≥ 3). For CP-PINN and
Tucker-PINN, each network outputs a factor matrix of shape n×R, where n still
denotes the input dimension and R the desired rank of the decomposition. For
this paper’s scope, we consider that the ranks for all components of Tucker-PINN
and TT-PINN are set to the same integer R. Additionally, for Tucker-PINN, we
initialize the core tensor as an orthogonal and trainable parameter to learn the
entries during training. For TT-PINN, each network outputs either the train
start or end part with the shape n × r or the train middle of shape r × n × r.

3 Experiments

We solve benchmark PDEs in three dimensions and more to demonstrate the
effectiveness of our tensor decomposition architectures CP-PINN, TT-PINN, and
Tucker-PINN. We compare our results with the original PINN architecture [27]
and other state-of-the-art PINN models [20,23,33]. Each variable is put into a
four-layer feed-forward neural network with tanh(·) activation functions for the
proposed PINN architecture. The feature depth per layer corresponds to the
rank unless specified otherwise. A network’s input is collocation points along a
single dimension of shape n × 1, with n being the number of available points.

Our functional tensor decomposition models, the PDE simulation code, and
experiments are created in JAX [2]. We adopt the implementation of forward
gradients from [5]. The overall setup adheres to the conventional PINN frame-
work, comprising a composite loss function (Equation 16) that combines data
and PDE residual terms with no weighting, i.e., by setting λ = 1. All models
are trained using Adam optimizer [15] with learning rate 1e−3 and for 50000
iterations. The performance metric is the L2 error between predicted and sim-
ulated solutions. The tests are conducted on an NVIDIA GeForce GTX 1080
GPU, with reported relative speeds in iterations per second (IT/s).

First, we choose two three-dimensional PDE benchmarks, (2+1)d Klein-
Gordon and 3d Helmholtz equation [5,21,29,37], for investigating the perfor-
mance of our functional tensor decomposition based PINNs. Problems of this
high dimension are computationally challenging for PINNs yet frequently arise
in real-world applications. The boundary/initial conditions and visualizations
are reported in Table 1 upper half. We compare our models against state-of-the-
art methods like gradient-based PINN [27], G-PINN [36], SA-PINN [23], and
Causal-PINN [33] (all implemented via PINA [6]). We omit SPINN [5] due to
the same nature as CP-PINN. We ensured the solution was converged for all
the benchmarks, and the training setup was as close as given in the original
source. We experiment with multiple collocation points and ranks to evaluate
the influence of these hyperparameters on the general model architecture.

The performance of the proposed approaches in benchmarking experiments is
presented in Table 2. The results indicate that CP-PINN, TT-PINN, and Tucker-
PINN demonstrate computational efficiency, requiring fewer collocation points
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Table 1. We provide an overview of the four PDE experiment setups that were used
to investigate the capabilities of our tensor decomposition PINNs. The plots are best
viewed digitally and in color.
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Table 2. (2+1)d Klein Gordon Equation and 3d Helmholtz are solved by various
architectures. The general trend is that a larger rank leads and a larger number of points
leads to a better solution. Furthermore, we observe that our tensor decomposition
PINNs are a magnitude of 10 better at solving these problems. The best performance
per task is double underlined, and the second best is underlined.

PINN model RankPointsL2 Klein-Gordon ↓L2 Helmholtz ↓Speed (IT/s) ↑
Vanilla PINN[27] - 323 0.092 0.998 20
G-PINN[19] - 323 0.073 0.794 16
SA-PINN[23] - 323 0.095 0.920 15
Causal-PINN[33] - 323 0.041 0.406 3
CP-PINN 8 64 × 30.050 0.061 364

16 64 × 30.025 0.051 347
32 16 × 30.069 0.063 357
32 32 × 30.055 0.060 343
32 64 × 30.008 0.040 327

TT-PINN 8 64 × 30.068 0.064 358
16 64 × 30.043 0.061 353
32 16 × 30.088 0.060 356
32 32 × 30.079 0.055 310
32 64 × 30.010 0.048 305

Tucker-PINN 8 64 × 30.061 0.079 345
16 64 × 30.053 0.076 328
32 16 × 30.066 0.077 301
32 32 × 30.062 0.070 333
32 64 × 30.019 0.057 312

and achieving higher accuracy (a factor of 10) compared to current state-of-the-
art methods. A comparative analysis of CP-PINN, TT-PINN, and Tucker-PINN
reveals that increasing the number of collocation points and the model’s rank
generally leads to improved solution accuracy. In particular, for both PDE prob-
lems, we observe that CP-PINN with a rank of 32 and 64× 3 collocation points
achieves the most accurate solutions. Similarly, TT-PINN achieves the second-
best performance with the same rank and collocation points. We hypothesize
that a low rank may result in excessive information compression, potentially
leading to losing essential details in the subsequent inverse decomposition.

To further substantiate our findings, we investigate whether our function
tensor decomposition scales to a higher dimension (> 3) effectively, as shown
theoretically. Therefore, we solve 5d Poisson’s Equation [37] and simulate the
(2+1)d flow mixing PDE [4] to capture the intricate mixing process of two flu-
ids, see Table 1 lower half. The other PINN architectures are not suitable to
solve this task owing to their vast sampling of collocation points and slow speed
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Table 3. We show the L2 loss for the CP-PINN, TT-PINN, and Tucker-PINN on the
5d Poisson’s Equation and (2+1)d Flow mixing simulation data. The best performing
scores are underlined, and each experiment has been repeated ten times (we omit the
standard deviation as it has been consistent around 0.01.)

Model Points RankCP-PINNTT-PINNTucker-PINN

5d Poisson’s Equation24 × 3 6 0.097 0.048 0.040
8 0.077 0.047 0.038
12 0.033 0.037 0.026

(2+1)d Flow mixing 128 × 364 0.013 0.018 0.028

and are omitted from the results in Table 3. For the experiments, we use a fixed
collocation point amount but vary the rank of the decomposition components.
Surprisingly, our experiments reveal that Tucker-PINN outperforms both CP-
PINN and TT-PINN, contradicting the findings in Table 2. We attribute this
discrepancy to the fact that CP decomposition has fewer parameters, which may
make it more challenging to find suitable rank-one approximations as dimen-
sionality increases. Further, we observe that the (2+1)d flow mixing problem
was solved only with a rank of 64 by our proposed architectures. This suggests
that more collocation points may be necessary for an accurate approximation.
Additionally, modifications to the neural network architecture or training proto-
col and extensive hyperparameter tuning could enable solutions for lower ranks
than 64 but are out of the scope of this work.

4 Discussion and Conclusions

We introduce functional tensor decomposition based PINNs, a novel approach for
solving PDEs using PINNs. Our essential contribution is extending the classical
variable separable method to PINNs by leveraging function tensor decomposition
forms. We show that PINNs can approximate multivariate PDEs by decompos-
ing the solution as the outer product of smaller tensors with controlled ranks,
enabling efficient and effective solutions to complex problems.

A critical insight is that such a PINN can learn any PDE irrespective of
whether the variable separable form exists. We investigate three tensor decom-
position forms incorporated into the general PINN framework to reduce the
computational complexity, especially the curse of dimensionaly. The primary
concept underlying our functional tensor decomposition approach for PINNs is
as follows: (1) We decompose the multivariate solution of a PDE and learn each
part using an individual neural network, and (2) we use this within the PINN
framework, where a loss function with PDE residual and boundary conditions
is optimized. Please note that a unique form of decomposition does not need to
exist as we estimate the decomposition in a data-driven manner.

We conducted experiments using benchmark PDEs, such as the Klein-Gordon
Equation [5] and 3d Helmholtz [29] equation, to demonstrate that our proposed
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methods significantly outperform existing PINNs. This distinction in accuracy
is evident even when employing low numbers of collocation points and ranks.
Furthermore, we substantiated our findings by checking whether our method
scales to higher dimensional (> 3) PDEs, such as the 5d Poisson equation [37] or
(2+1)d flow mixing [4]. We are demonstrating the ability of our method to tackle
complex issues with a relatively small number of collocation points and faster
speed. The results show that we effectively mitigate the curse of dimensionality,
enabling PINNs to solve problems in even higher dimensions efficiently.

Several open questions remain unanswered and could provide further inter-
esting research in developing PINNs for high-dimensional PDEs, even though we
already outperform existing methods by a factor of ten. Our experiments indi-
cate no best tensor decomposition form, and factors like collocation points, rank,
and available physical knowledge play a significant role in overall performance.
The Canonical-Polyadic decomposition [12] is the most straightforward represen-
tation among the same rank but becomes unstable in higher ranks [25]. While
Tucker decomposition [30], with its increased parameter count for the same rank,
does experience a curse of dimensionality due to the core tensor, albeit to a lesser
extent than others. We assume that Tensor-Train [25] is a good candidate with
lower dimensionality and is more stable in higher dimensions. We demonstrate
the potential of functional tensor decomposition in enhancing PINNs. While fur-
ther optimization may be possible, our findings already highlight the benefits of
this method over traditional numerical approaches.
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Abstract. Detecting agricultural leaf disease is critical for crop yield
and quality, where deep attention models offer promising solutions over
traditional methods. This paper introduces a novel approach utiliz-
ing Squeeze-and-Hypercomplex networks (SHNets) to detect and clas-
sify leaf diseases. The existing Squeeze-and-Excitation network (SENet)
enhances feature representation through channel-wise (all channels) fea-
ture re-calibration. Unlike this, Parameterized hypercomplex multiplica-
tion (PHM) based hypercomplex dense layer is used to calculate cross-
channel correlations across channels. This enhances the network’s rep-
resentational capacity by adaptively recalibrating cross-channel feature
maps and sharing weights among channels. We introduce a novel hyper-
complex dense layer to inherit hypercomplex advantages in SE-based
attention networks. Moreover, using hypercomplex algebra in network
design enables more expressive modeling of inter-channel dependencies,
capturing complex patterns in leaf imagery. Our proposed SHNet archi-
tecture was trained and evaluated on diverse leaf disease datasets, includ-
ing disease categories and healthy samples. The experimental results on
benchmark datasets unequivocally demonstrate the superiority of our
proposed SHNet over the state-of-the-art SENet methods in terms of
accuracy and computational complexity. This makes SHNet a highly
suitable solution for real-time applications in precision agriculture, where
the timely detection and classification of leaf diseases can significantly
impact crop yield and quality.

Keywords: SHNet · Squeeze and Hypercomplex Networks ·
Squeeze-and-Excitation networks · Attention networks · Leaf Disease
detection

1 Introduction

Agriculture is crucial for global economic growth and human survival, as all
life depends on food. According to the United States Department of Agricul-
ture (USDA), agriculture-related industries contributed roughly $1.530 trillion
to the U.S. GDP, 4% of the global GDP, and more than 25% for developing coun-
tries’ GDP in 2023. Every country prioritizes investing in agricultural innovation,
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policies, and infrastructure. Due to rapid population growth, urbanization, and
climate change, fertile farmland is depleting, hindering crop growth. Innovative
methods are needed to grow crops in less fertile soils. Researchers have developed
various technologies to enhance crop production.

Due to poor soil minerals and unfavorable climates, crops can develop various
diseases, such as spots, dead tissue, discoloration, wilting, stunted growth, and
damage [21]. About 85% of plant diseases are caused by fungi and Non-infectious
factors, such as nutrient deficiencies or temperature extremes [9]. According to
the USDA, plant diseases cost the global economy around $220 billion annually
and can cause a loss of 20-40% of global crop production. Plant pathogens and
pests are responsible for up to 40% of maize, potato, rice, soybean, and wheat
crop yield losses worldwide [25]. Therefore, farmers often use chemical fertilizers
haphazardly, highlighting the importance of disease detection in agriculture.

Plants are susceptible to numerous diseases that can significantly impact crop
health. Therefore, the diagnosis of plant diseases is crucial to mitigate these
risks. Many Artificial Intelligence(AI) and Machine learning(ML) techniques,
especially various convolutional neural networks (CNNs) (VGG [31], MobileNet
[4,20], ResNet [12,13]), have shown exceptional abilities in diagnosing plant leaf
diseases. No one has used an attention mechanism to analyze the diseases of these
crops. Several attention-based networks have been introduced, including SENet
[8], known for its parameter-efficient architecture. Moreover, the SE blocks recal-
ibrate feature responses to focus on the most informative features and capture
dependencies across channels. However, it uses two fully connected (FC) layers,
which consumes high costs.

This research introduces a novel parameterized hypercomplex multiplication
(PHM)-based FC layer that inherits all properties of SENet and introduces
hypercomplex properties that provide better representational feature maps. The
PHM layers require fewer computational resources, allow more efficient represen-
tations, and construct efficient and robust network using hypercomplex algebra.
We analyze some major crop diseases, including rice, corn, wheat, and some oth-
ers, using this better representational attention mechanism called the Squeeze-
and-Hypercomplex network (SHNet). The effectiveness of our SHNet model is
demonstrated experimentally on four crop disease detection datasets. Our assess-
ments are based on parameter counts, FLOPs, and testing accuracy.

2 Literature Reviews

2.1 Rice Leaf Diseases Detection

In 2020, Matin et al. used the AlexNet technique to detect rice leaf diseases
and demonstrated more than 99% accuracy [15]. In 2021, the model provided
by Kathiresan et al., which was tested on a GAN-augmented dataset, achieved
an average accuracy of 98.79% [11]. Bari et al. proposed a Faster R-CNN in
diagnosing the three rice leaf diseases with accuracy rates of 98.09%, 98.85%,
and 99.17%, respectively [3]. Mohapatra et al. used pre-trained InceptionV3 and
ResNet152 and achieved a higher accuracy of 97.47% [16]. Yang et al. introduced
the DHLC-FPN for the IDADP dataset and achieved 97.44% accuracy [34].
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2.2 Wheat Leaf Diseases Detection

Rathore et al. developed a hybrid model called WheCNet, which achieved a
validation accuracy of 98% [22]. Kumari et al. analyzed the ResNet model on
the wheat leaf disease detection dataset, which attained the highest classification
accuracy of 98% [14]. Saraswat et al. proposed a methodology for accurately
detecting eight different types of wheat leaf disease [24] and revealed that the
model beats all other models, with a classification accuracy of 98.08%.

2.3 Corn Leaf Diseases Detection

VGG16, a CNN version, is used to categorize infected and healthy leaves in a
study by Subramanian et al. [31] and recorded an accuracy of 97%. Olayiwola
et al. proposed a CNN-based model to identify four corn diseases with a 98.56%
accuracy rate [17]. Kumar Sharma et al. utilized ResNext101, ResNext50, and
Inception V3, achieving average accuracy levels of 91.59%, 88.43%, and 78.5%,
respectively [13]. Yeswanth et al. proposed the ASFESRN model to analyze the
PlantVillage Corn Leaf disease dataset and achieved accuracies of 99.7402%,
98.4805%, and 98.961% for X2, X4, X6 image scaling factors, respectively [35].

2.4 New Plant Leaf Diseases Data

Working on an open dataset containing 15200 photos of crop leaves, a ResNet34
was trained by Kumar et al. in 2020, which achieved 99.40% accuracy [12]. Pan-
dian et al. presented a deep CNN with an average testing accuracy of 98.1%
[18]. A new plant leaf dataset of 10,851 images of 44 different diseases was tested
using a CNN-based attention model achieving an accuracy of 97.33% [36]. An
article in 2023 by Binnar et al. detects leaf disease using three deep-learning mod-
els: AlexNet, MobileNet, and Inception-v3. They concluded that the MobileNet
model is an excellent fit for the plant diseases dataset, with an accuracy of 97.52%
[4]. Alqahtani et al. proposed the PlantRefineDet, which tested the PlantVillage
data and achieved an accuracy of 99.99% [1].

3 Background Works

3.1 Residual 1D Convolutional Networks

Shahadat and Maida proposed a residual 1D CNN (RCN) to replace any 2D
spatial CNN layer in a network to reduce the cost further. They replaced any
block’s 2D CNN with two 1D DSC layer. To use 1D DSC in 2D input, they
separated the inputs into height and width axes for a size of h × w. Each 1D
CNN layer is applied to each input axis. The 1D DSC operation is defined in
[27]. The nth channel of trainable weight W is applied to the nth of input X to
get the nth channel of the output feature map Co. The computational cost of
1D DSC in RCN is, CostConv1D = h · dout · k, where dout is the output channel
counts. As the RCN block has two layers of 1D CNN, the total cost is twice
the original cost. This type of network is used to avoid the vanishing gradient
problem.
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3.2 Quaternion Convolution Networks

[2] was the first to employ the quaternion number system in a neural network.
Quaternion numbers are made up of one real and three imaginary components,
expressed as, Q = r + ix + jy + kz, where r, x, y, and z are real numbers and
i, j, and k are the imaginary vectors. The quaternion number system expands
the 2D complex number system to four dimensions. A quaternion vector QV =
r+ix+jy+kz is convolved with a quaternion filter matrix QF = R+iX+jY+kZ,
where R, X, Y , and Z are real-valued matrices and r, x, y, and z are real-
valued vectors. This process is similar to complex convolution. The quaternion
convolution (4D hypercomplex network) is defined as [29],

QF � QV = (Rr − Xx − Y y − Zz)
+i(Rx+Xr + Y z − Zy)
+j(Ry − Xz + Y r + Zx)
+k(Rz +Xy − Y x+ Zr).

(1)

Every input vector is convolved with every kernel to expose cross-channel convo-
lutional processes. The matrix representation of this quaternion CNN (QCNN)
is defined in [29], where each kernel is shared among four convolutions, each
with four input channels, which explains cross-channel weight sharing. Equation
1 shows 16 real-valued convolutions, but only four kernels are reused. Kernel
reuse is how the channel weight sharing occurs [28].

3.3 Parameterized Hypercomplex Multiplication Layer

The main disadvantage of QCNN in neural networks is that it only exists in a rel-
atively limited number of preset dimensions: 4D (Quaternions), 8D (Octonions),
and 16D (Sedenions). The need to work within specific dimensionalities restricts
the flexibility of neural network architectures using hypercomplex multiplication.

A Parameterized Hypercomplex Multiplication (PHM) is a generalized hyper-
complex network proposed by [37]. PHM layers are more flexible than older
techniques, learning multiplication rules directly from the data. The PHM FC
layer transforms input x into output y, which is represented as, y = PHM(x) =
Hx + b. Here, b represents a bias vector, and H represents a parameter matrix
with dimensions k × d, which is not a standard matrix but is constructed using
a sum of Kronecker products. Our work uses four-dimensional PHM layer whose
parameter matrix H is defined in Equation 2 [29].

Let the dimension of the PHM module be Dphm = N . The PHM operation
requires that both d and k are divisible by N [29]. H is the sum of Kronecker
products of the parameter matrices, Ai ∈ R

N×N and Si ∈ R
k/N×d/N , where

i = 1 . . . N , is defined as H =
∑N

i=1 Ai ⊗ Si. Parameter reduction comes from
reusing matrices A and S. The ⊗ is the Kronecker product. H is multiplied by
the input in the dense layer. The learnable parameters for N = 4 are Pr, Px, Py,
and Pz where P ∈ R

1×1. For Ai we use the hypercomplex matrix (4 dimensions),
which is generated in a similar way to the vectormap convolution [28].
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Fig. 1. Proposed Squeeze-and-Hypercomplex block.
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3.4 Squeeze-and-Excitation Network

Squeeze-and-Excitation Network (SENet) are designed in a way to enhance
CNNs performance by capturing channel dependencies with fewer computational
costs. SENet introduces additional parameters to each channel in a convolutional
block, enabling the network to adjust the importance of each feature map and
weigh each channel according to its significance [8]. SENet consists of two pri-
mary operations: Squeeze and Excitation. Squeeze operation compresses spatial
dimensions while retaining channel information, using global pooling operations
to condense spatial information into a channel descriptor. The excitation opera-
tion utilizes the channel descriptor generated during the squeeze operation and
computes a set of channel-wise scaling factors [8]. These factors determine the
importance of each channels.

If V = [v1, v2, . . . , vc] is a set of learned filter channels, the outputs of Ftr

is expressed as U = [u1, u2, . . . , uc], where uc = vc ∗ X =
∑C′

s=1 v
s
c ∗ xs. Here, ∗

represents convolution operation, and vsc is a 2D spatial kernel. The output is
calculated by summing across all channels, embedding channel dependencies.

SENets have the capability to dynamically adjust the importance of each
feature map, leading to improved performance in various tasks such as image
classification and object detection. This capability makes SENets a powerful
tool for enhancing CNNs without a great computational cost.
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4 Proposed Squeeze-and-Hypercomplex Network

The local receptive fields of standard convolutional filters have limitations as they
can only use contextual information within a limited portion of the input. Small
receptive field sizes in the lowest network tiers exacerbate this problem. Conven-
tional methods for mapping correlations across channels assume local receptive
fields and may hinder the network’s ability to discover dynamic, non-linear inter-
actions between channels. In contrast, the SE block uses global information to
uncover dynamic, non-linear connections across channels, boosting the network’s
representative strength and speeding up learning. The SE block is designed to
enhance a network’s representational power by explicitly modeling the interde-
pendencies between the channels of its convolutional features. It achieves this
by using global information to emphasize informative features and selectively
suppress less useful ones. The SE block enables the network to perform feature
recalibration, thereby enhancing CNN performance.

Fig. 2. Single valued quaternion chan-
nels and hypercomplex parameter
matrix are represented using four chan-
nels of real values.

– The SE blocks recalibrate feature
responses to focus on the most infor-
mative features and enhance represen-
tational capacity.

– The squeeze operation uses global aver-
age pooling to reduce each feature map
to a single value, compressing the spa-
tial dimensions of each channel into a
single value.

– The excitation operation uses two
fully connected (FC) layers to gener-
ate channel-wise weights. The first FC
layer reduces the dimensionality and
captures dependencies across channels,
while the second FC layer restores the
original channel dimensions.

– The excitation operation result under-
goes a sigmoid activation function.

– The recalibration step emphasizes
important channels and diminishes less
important ones, leading to improved
feature representation.

– SE blocks can seamlessly enhance
existing CNN architectures to learn
useful features without significantly
increasing computational costs.

– SE blocks add relatively few parame-
ters and computations compared to the
overall network, making them efficient
in terms of resource usage.
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However, the SE block utilizes two FC layers, which is expensive. Without
an explicit mechanism, the SE block diminishes the channel counts to reduce the
number of parameters. Although the SE block re-calibrates input feature maps,
it cannot establish cross-channel correlations. To address these limitations, we
introduce a Squeeze-and-Hypercomplex network (SHNet).

Like the Squeeze-and-Excitation network (SENet), we have two stages of
network operations: Squeeze and Hypercomplex. We use the squeeze operation
to capture the global context of the input feature maps, applying global average
pooling to reduce the feature map to a single scalar value. For a vision input with
input height H, and width W , these are explained by the following equation [8],

zc =
1

H × W

H∑

i=1

W∑

j=1

xijc (3)

where xijc represents the value at spatial location (i, j) in channel c and zc is
the global descriptor for channel c.

The excitation layer, mainly two FC layers, was used to apply channel-wise
dependencies, emphasize the important channels, and improve feature map rep-
resentation using channel recalibration. However, we use a novel PHM layer, a
generalized hypercomplex network (HCNN) designed for FC layer, to import the
advantages provided by FC layer (Excitation) and the advantages (cross-channel
correlation concept) provided by HCNNs. The HCNNs provide a better repre-
sentational feature map [30], and reduce the trainable weights by a factor of 1/N
for an N-dimensional HCNN [37]. Our proposed SHNet architecture is depicted
in Figure 1.

To apply a hypercomplex network in the dense layer, we choose a PHM-
based FC layer defined in Section 3.3, where H is the hypercomplex parameter
matrix (HPM) calculated using the Equation 2. We rewrite this PHM FC layer
as y = PHM(x) = HC + b, where, x, C, b, and H, H ∈ R

N×N , are the input
image, the single-valued input channels, the bias, and the PHM, respectively.
Although our proposed PHM is generalized, we are going to explain 4D HCNN
dense layer or 4D PHM layer (N = 4). We use permutation to construct our
parameter matrix using H = Hr,Hi,Hj ,Hk. The parameter matrix for 4D PHM
layer is used to calculate the output y using,
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where, � is the element wise multiplication. So, the Hamiltonian product of two
quaternion H (parameter matrix) and C (input channels) is defined as,

H ⊗ C = C1H1 + C2H2 + C3H3 + C4H4
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where ⊗ represents the Hamiltonian product [29], H ⊗ C, and all of the
other symbols in Equation 5 are quaternion numbers. The first line of Equation 5
(RHS) is also depicted in Figure 2, where the terms composing the multiplication
operation shown in Equation 6 are highlighted in orange.

Furthermore, we expand the first term C1H1 on the right side of Equation 5
(shaded area for the input channel feature map and parameter matrix in Figure
2) by using the distributive property and grouping terms [29], defined as,
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i . It means convolving the real-valued input channel

with the real-valued parameter matrix channel to obtain a real-valued scalar.
Hence, the real part in Equations 5 equals Or. Similarly, the other parts Oi, Oj ,
and Ok are defined as,

Or =r(C1H1) + r(C2H2) + r(C3H3) + r(C4H4)
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The real component (Or) of the convolution value is defined as,
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Similarly, we can define Oi, Oj , and Ok. Equation 6 can be reexpressed in matrix
representation as,
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In Equation 9, each kernel channel is convolved with the corresponding image
channel. Equation 6 and the graphical explanation in Figure 2 shows that each
parameter of the trainable parameter matrix is used four times over the sixteen
multiplications in Equations 5 and 9. Here, each input channel is convolved with
all parameter matrix channels, which reveals cross-channel correlations. Parame-
ter of the trainable parameter matrix reuse is how weight sharing occurs. [28,29]
described weight sharing in the Hamilton product. The other three components
of the sum in Equation 5 (i.e., C2H2, C3H3, C4H4) have the same structure as
Equation 6, so the nature of the weight sharing is the same for all terms.

Fig. 3. Block types. “SE” and “SH” stand for Squeeze-and-Excitation, and Squeeze-
and-Hypercomplex, respectively. (a) SE layer applied after the RCN block, (b) SH
layer applied after the RCN block, and (c) SHNet replaces SENet from 1D CNN with
SENet found in [26].

We apply this new parameter-efficient hypercomplex FC layer to replace
the FC layers in SENet and construct our novel parameter-efficient architecture
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called Squeeze-and-Hypercomplex network (SHNet). This SHNet architecture
can provide better representational feature maps than the SENet. Also, SHNet
reduces trainable parameters than the SENet in two ways: (1) the SHNet uses a
hypercomplex FC layer than the two FC layers in SENet, and (2) the Hypercom-
plex FC layer consumes 1/N times fewer parameters than the real-valued FC
layer. We apply our proposed SHNet block to replace the SENet from the exist-
ing parameter-efficient 1D CNN networks with SENet architecture, depicted in
Figures 3a, 3b, and 3c. In these ways, any network can be constructed with our
proposed SHNet architecture to boost the network performance and reduce the
network’s trainable parameters than the SENet.

5 EXPERIMENTAL RESULTS

5.1 Dataset Description

Table 1. Cost comparisons of our proposed
SHNet with 1D CNN (like the Figure 3c) and
original SENet with 1D CNN architectures
[26].
Architecture Models Params FLOPs

23-1 SENet 0.33M 4.3M
SHNet 0.3M 4.1M

23-2 SENet 1.4M 12.3M
SHNet 1.1M 11.9M

44-1 SENet 0.58M 6.3M
SHNet 0.54M 5.9M

44-2 SENet 2.4M 18.4M
SHNet 2.06M 17.8M

This paper experiments on the “Rice
Leaf Disease” [23], “Wheat Leaf Dis-
ease” [10], “Corn Leaf Disease”[32],
and “New Plant Leaf Disease” [33]
kaggle datasets. Among these, the
rice leaf disease dataset consists of
5, 932 images representing four dis-
tinct types of rice leaf diseases: Bac-
terial blight, Blast, Brown Spot, and
Tungro [23]. The Wheat Leaf Dis-
ease Dataset includes five classes:
1, 658 images of healthy leaves,
1, 256 images of Brown Rust disease,
939 images of Loose Smut disease,
349 images of Septoria disease, and
1, 395 images of Yellow Rust disease
[10]. Arun Pandian et al. contributed to the Corn Leaf Disease Dataset, a dataset
for classifying corn or maize plant leaf diseases, in 2019. This dataset was based
on two popular datasets: PlantVillage and PlantDoc [32]. We also constructed
another corn dataset. We collected all corn disease and healthy images for four
classes: 2052 images for gray spots, 2384 images for common rust, 2324 healthy
images, and 2385 images for blight diseases from new plant disease dataset [33].
Moreover, the new Plant Diseases Dataset contains approximately 87K RGB
images of healthy and diseased crop leaves, divided into 38 different categories
[33]. We divided all of the datasets into two parts: 80% for the training set and
20% for the testing set.

5.2 Method
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Table 2. Performance evaluation on different
leaf disease detection datasets using the 1D
CNN with original SENet and our proposed
SHNet architectures.
Dataset
Type

Dataset
Class

Models Accuracy
SENet SHNet

Wheat 5 23-1 96.93 98.68
23-2 97.78 98.99
44-1 97.27 98.87
44-2 97.98 99.01

Rice 4 23-1 99.49 100
Corn 4 23-1 96.54 98.79

23-2 97.31 98.89
44-1 96.87 98.88
44-2 97.37 98.91

Corn New
Plant

4 23-1 98.91 99.29

23-2 99.34 99.78
44-1 99.01 99.35
44-2 99.49 99.89

New
Plant

38 23-1 99.41 99.94

23-2 99.58 99.98
44-1 99.47 99.96
44-2 99.61 99.99

We applied our proposed SHNet
to 1D CNN with SENet and con-
structed our block 1D CNN with
SHNet. Like [26], which introduced
1D CNN with SENet, we also
applied our proposed 1D CNN
with SHNet block to SqueezeNext
network architecture [7] and con-
structed our proposed network. We
employed an identical training pro-
tocol as [26] for our proposed
SqueezeNext (SqueezeNext block is
replaced by our proposed 1D CNN
with SHNet block) architectures to
ensure a fair comparison. Like origi-
nal work (1D CNN with SENet [26]),
this work also utilizes the block mul-
tipliers “[6, 6, 8, 1]” and “[12, 12,
16, 2]”, respectively, to construct 23-
layer and 44-layer networks. We also
analyzed these 23 and 44-layer archi-
tectures with widening factors 1 and
2, constructed 23-1, 23-2, 44-1, and 44-2 network architectures. Training was
done on 64 batch sizes for all architectures. To investigate scalability, we trained
the SGD (stochastic gradient descent) optimizer on the normalized input images.
The images were normalized using the per-channel mean and standard devia-
tion. All models were run using the linearly warmed-up learning for the first ten
epochs from zero to 0.1 and then used cosine learning scheduling from epochs 11
to 150. The experiments were run on a workstation with an Intel(R) i9-13900K
CPU, 128 GB memory, and NVIDIA RTX A6000 GPU (48GB).

5.3 Result Analysis

This paper achieves a new height of performance accuracy in leaf disease detec-
tion. Our new proposed model yields impressive accuracy across multiple plant
disease datasets. As previously described in section 5.1, we tested our model
on wheat, rice, and corn plant datasets along with some other new plant dis-
ease detection datasets. We tested our proposed SHNet along with the original
SENet model, and the experimental results are shown in Table 2. Even with
fewer parameters and Flops (shown in Table 1), our novel model, when tested
on the wheat leaf, was able to achieve 99.01% accuracy compared to 97.98% for
SENet using 44-2 layers network. For all network architectures, our proposed
SHNet performed better than the original SENet on wheat leaf data.

For the rice leaf disease dataset, our smallest model (23-1 network archi-
tecture) achieved 100% accuracy, whereas the original SENet performed 99.49.
In the context of this data, it is notable that the original SENet architectures,
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with 23 and 44 layers and widening factors of 1 and 2, were unable to achieve
the performance level demonstrated by the SHNet’s 23-1 network architecture.
Our SHNet was tested on corn data and corn new plant data and outperformed
similarly to the wheat and rice data.

To analyze a dataset with more categories, we ran our model on a new plant
disease dataset with 38 categories, where our SHNet beat the original SENet
model for all network architectures; we tested our SHNet for 44 layer with a
widening factor 2 achieved 99.99% performance.

Our SHNet model outperformed the SENet model across all datasets and
models in this experimental analysis. In the case of cost comparison, Table 1
describes that our proposed SHNet consumes fewer parameters and FLOPs than
the original SENet architecture in all the scenarios. 1D CNN with SENet and
SHNet are used to evaluate these costs.

5.4 Comparison with the Literature

This section compares our new proposed model with other state-of-the-art per-
forming models across four different datasets. SHNet outperformed other mod-
els like SVM, WheCNet, ResNet50, and DL Model by achieving an accuracy
level of 99.01% in wheat leaf disease classification, shown in Table 3. Sim-
ilarly, our model achieved a remarkable accuracy of 100% in the rice leaf
dataset by beating the other models. Furthermore, we tested our model in
the Corn leaf dataset. It achieved 99.89% accuracy, beating VGG16, ResNet,
CNN, ResNext101, ASFESRN, and Ghost CNN. Finally, in the New Plant Dis-
ease dataset with 38 categories, our model once again achieved a remarkable
accuracy of 99.99% compared to existing models like ResNet43, CNN, DCNN,
MobileNet, and PlantRefineDet. Our SHNet model showed a similar level of
accuracy as PlantRefineDet proposed by Algahtani et al. [1]. This is a remark-
able level of performance achieved by our model, considering that PlantRefineDet
is a computer-aided model, and our model is lightweight and mobile-embedded,
which consumes only 2.06M parameters and 17.8M FLOPs. Our model’s adapt-
ability and outstanding performance, despite its lightweight design, confirms its
potential in real-world scenarios.

5.5 Ablation Study

This section examines how different attention mechanisms (SE and ours SH)
affect the RCN-based SqueezeNext model for detecting plant leaf diseases from
the New Plant diseases dataset. We compared the RCN-based SqueezeNext 23-1
layer architectures regarding top-1 validation accuracy, parameters, and FLOPs
as listed in Table 4. Without an attention model, RCN-SqueezeNext achieves an
accuracy of 98.99% for 0.31M parameters and 4.08M FLOPs. Then, we utilized
the SE attention layer in different network stages. The more SE attention layers
are used, the better the network performs. Extending SE attention to stages 3
and 4, the model increases its accuracy from 99.07 (performance when SE is
only applied to stage 4) to 99.28% and reaches 99.35% when SE is applied in



SHNets on Leaf Disease Detection 59

Table 3. State-of-the-art result studies on plant leaf disease detection datasets.

Category Model Architecture Datasets Accuracy

Wheat Leaf Diseases El et al. [6] SVM Kaggle Data 98
Rathore et al. [22] WheCNet 98
Kumari et al. [14] ResNet50 98
Saraswat et al. [24] DL Model 98.08
SH-RCN-SqueezeNext (Our) 44-2 Kaggle Data 99.01

Rice Leaf Diseases Matin et al. [15] AlexNet Kaggle Data 99
Pothen et al. [19] SVM 94.6
Kathiresan et al. [11] RiceDenseNet Open Sources 98.69
Bari et al. [3] Faster R-CNN Open Sources 99.17
Mohapatra et al. [16] CNN Open Sources 97.47
Yang [34] DHLC-FPN IDADP 97.44
SH-RCN-SqueezeNext (Our) 23-1 Kaggle Data 100

Corn Leaf Diseases Subramanian et al. [31] VGG16 Kaggle Data 97
Olayiwola et al. [17] CNN Kaggle Data 98.56
Kumar et al. [13] ResNext101 Kaggle Data 91.59
Yeswanth et al. [35] ASFESRN PlantVillage 99.74
SH-RCN-SqueezeNext (Our) 44-1 99.89

New Plant Diseases Kumar et al. [12] ResNet34 Open Sources 99.4
Deepalakshmi et al. [5] CNN Open Sources 94.5
Pandian et al. [18] DCNN Open Sources 98.1
Zamani et al. [36] CNN Open Sources 97.33
Binnar et al. [4] MobileNet NPD 99.07
Alqahtani et al. [1] PlantRefineDet PlantVillage 99.99
SH-RCN-SqueezeNext (Our) 44-2 PlantVillage 99.99

stages 2, 3, and 4. When SE attention is applied to all four stages, the model
achieved an accuracy of 99.41%, the highest among SE attention with 0.335M
parameters and 4.35M FLOPs.

The integration of our proposed SH attention mechanism performs even bet-
ter than that of the network with the SE layer. Applying SH attention at stage 4
alone leads to an accuracy of 99.77%, outperforming the performance of apply-
ing SE in all network stages. When SH attention is extended over stages 3 and
4, it yields an accuracy of 99.78%. Applying the SH attention mechanism on the
last three stages and all four stages resulted in an overall accuracy of 99.91%
and 99.94%. The results unequivocally show that the SH attention mechanism
consistently enhances the model’s performance compared to the SE mechanism,
particularly when applied at multiple stages.
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Table 4. Analyze New Plant diseases dataset using attention mechanisms (without
attention layer, SE attention, and our proposed SHNet attention) on different stages
of the RCN-based SqueezeNext 23-1 layer architecture.

Models Attention on Network stages Params FLOPs Accuracy
Stage 1 Stage 2 Stage 3 Stage 4

RCN-SqueezeNext 0.31M 4.08M 98.99
SE-RCN-SqueezeNext � 0.316M 4.14M 99.07
SE-RCN-SqueezeNext � � 0.324M 4.23M 99.28
SE-RCN-SqueezeNext � � � 0.333M 4.31M 99.35
SE-RCN-SqueezeNext � � � � 0.335M 4.35M 99.41
SHNet-RCN-SqueezeNext � 0.42M 44.9M 99.77
SHNet-RCN-SqueezeNext � � 0.42M 45M 99.78
SHNet-RCN-SqueezeNext � � � 0.44M 45.2M 99.91
SHNet-RCN-SqueezeNext � � � � 0.31M 4.1M 99.94

6 Conclusion

This study explores the efficacy of Squeeze-and-Hypercomplex Networks in
detecting wheat, rice, corn, and new plant leaf diseases. This model exhibited
superior performance in capturing complex patterns and relationships within
the data. Using hypercomplex numbers, HCNNs can effectively model complex
dependencies for improved disease detection accuracy, making them ideal for
precise disease identification. The fusion of squeeze-and-excitation mechanisms
with hypercomplex algebra provides a powerful and efficient framework for leaf
disease detection, offering significant improvements in performance and scalabil-
ity for related applications, and showing state-of-the-art results on some tested
datasets. Our SHNet introduced cross-channel feature representation and feature
recalibration, improving the model’s performance.

This work’s limitation is that the proposed model only tested four disease
datasets. Due to machine limitations, we were unable to test some state-of-
the-art datasets. Future work will focus on further optimizing these networks
for other real-world applications and integrating this approach with some pre-
trained network architectures.
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Abstract. In this paper, we introduce a novel application domain which is first
of its kind to the vision transformer based deep learning model. We propose
a model for ripeness grading of mangoes using vision transformers. Our app-
roach divides the mango image into patches, which are then linearly projected
and transformed into a sequence of embeddings. To retain positional informa-
tion, positional encodings are added to these patches. Additionally, for image
classification, learnable class tokens are included at the start of this sequence
of embeddings. The resulting sequence is passed through multiple multi-head
self-attention (MSA) layers to capture both local and global dependencies and to
interpret the spatial relationships among patches. Further to improve the classifi-
cation performance, we explored five data augmentation strategies to synthetically
induce additional data for training. Moreover, different vision transformer mod-
els are investigated with and without pre-trained weights while training of neural
network. This study is demonstrated through an experimentation on a dataset
of 979 images of Alphonso mango variety belonging to four classes particu-
larly, unripen, ripened, over-ripened without internal defects and over-ripened
with internal defects. The vision transformers viz., ViT_Base_16, ViT_Large_16
and ViT_Huge_14 is considered for experimentation. The results of the experi-
mentation demonstrated that, the ViT_Huge_14 with pre-trained weight and with
data augmentation gives average accuracy of 92.78%, which is better than 85.40%
quoted in the existingwork ofmango grading using conventionalmachine learning
on the same dataset (Raghavendra et al., 2020).

Keywords: Mango Grading · Vision Transformers · Pre-trained weights

1 Introduction

Mango ripeness grading is a critical process in the agricultural and food industry that
aims to assess the maturity stage of mango fruits based on various criteria such as
color, firmness, aroma, and sugar content. This grading process is essential for ensuring
optimal harvesting times, determining storage conditions, and meeting market demands
for mangoes at different stages of ripeness.

The objective of mango ripeness grading is to categorize mango fruits into distinct
levels of ripeness, typically ranging from unripe or immature to fully ripe. Each stage
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of ripeness influences not only the flavor and texture of the mango but also its shelf life
and suitability for different culinary purposes and distribution channels.

Effective mango ripeness grading systems are crucial for optimizing harvest qual-
ity, minimizing post-harvest losses, and enhancing consumer satisfaction by delivering
mangoes that meet desired ripeness preferences. As the demand for high-quality fruits
continues to rise globally, accurate and efficient mango ripeness grading methodolo-
gies play a pivotal role in supporting sustainable agricultural practices and enhancing
economic outcomes for mango growers and stakeholders across the supply chain.

Traditional mango ripeness grading typically involves manual inspection and assess-
ment by experienced personnel based on sensory evaluation and visual inspection.
Whereas, AI-driven computer vision systems analyze images ofmangoes to assess color,
shape, and texture, providing quantitative data for ripeness grading. This method reduces
reliance on subjective human judgment.

Recently artificial intelligence (AI) has been increasingly applied to mango ripeness
grading, by leveraging various techniques to automate and enhance the accuracy of this
critical process, and a significant research efforts are underway in this field, considering
that, significant research and development efforts have been directed towards automating
the grading and sorting of mangoes using traditional machine learning methods, which
depends on extracting hand crafted feature like color histogram shape texture which are
not suitable for complex tasks and requires extensive analysis on features by domain
experts.

Sa’ad et al., (2015) and Roomi et al., (2012) focused on attributes related to external
appearances such as size, color, shape, weight, and defects. Amruta and Wakode (2021)
investigated Kesar mango grading based on multiple criteria including maturity, size,
and shape. Agilandeeswari et al., (2017) employed SVM classifiers for mango grad-
ing. Supekar and Wakode (2020) conducted a comprehensive analysis on mango grad-
ing based on appearance and conducted a parameter-wise survey. Khoje and Shrikant
(2012) explored shape-based features such as region, contour, and wavelet. Ripeness
attributes were also considered by Salunkhe et al., (2015), Chhabra et al., (2011), Nayeli
et al., (2012), Nandi et al., (2014), Mansor et al., (2014), and Vyas et al., (2014). Bakar
et al., (2020) focused on mango region extraction and color analysis using total solu-
ble solids (TSS). Raghavendra et al., (2020) reported on Lab color feature extraction
and extensively studied conventional classifiers for mango grading using a hierarchical
classification method.

Over the past few years, deep learning prototypes such as convolutional neural net-
works (CNNs) have garnered significant recognition in the field of computer vision, due
to their adeptness at autonomously learning intricate patterns from images. Recently,
there has been a surge of deep learning models tailored for mango grading, as evidenced
by the literature available. Bhole and Kumar (2020) introduced a transfer learning app-
roach using a pre-trained SqueezeNet model for mango grading, achieving a reported
testing accuracy of 92.27%. Zheng and Huang (2021) introduced an ultra-lightweight
SqueezeNet CNN by adjusting and optimizing hyperparameters for mango grading,
achieving an accuracy of 97.37%. Gururaj et al., (2022) utilized features extracted from
convolutional neural networks to assess mangomaturity and ripeness. Additionally, they
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performedmango variety classification based on shape and color features, in conjunction
with traditional classifiers.

Vision transformers (ViTs) represent a recent innovation in the field of computer
vision, particularly in image classification tasks. Traditionally, convolutional neural net-
works (CNNs) have been the dominant architecture for such tasks due to their ability
to capture spatial hierarchies in images. However, transformers initially developed for
natural language processing (NLP), the seminal work by Vaswani et al., (2017) presents
the transformer model, a groundbreaking architecture that has fundamentally reshaped
the landscape of natural language processing (NLP). This model departs from tradi-
tional sequence modelling approaches by entirely discarding the need for recurrence
and convolution, relying instead on self- attention mechanisms to capture dependencies
within sequences. This innovation has not only streamlined the modelling process but
also significantly advanced the efficiency and performance of NLP system. Later the
vision transformer (ViTs) was first introduced by Dosovitskiy et al., (2019), drawing
inspiration from the successful transformer models in NLP pioneered by Devlin et al.,
(2019).

A vision transformer (ViTs) differs from traditional convolutional neural networks
(CNNs) primarily in how it processes image data. In CNNs, each layer uses filters
(convolutions) to extract local features from specific regions of the input image. These
filters slide across the image, capturing features such as edges, textures, and patterns in
a hierarchical manner. This approach limits the model’s ability to consider relationships
between distant parts of the image simultaneously.

In contrast, a vision transformer takes the entire image as input and processes it in a
holistic manner using self-attention mechanisms. Self-attention allows ViTs to capture
dependencies between all image patches, enabling them to learn global relationships and
long-range dependencies across the entire image. By attending to all parts of the image
simultaneously, ViTs can potentially better understand complex spatial relationships and
capture context that may be missed by CNNs relying on localized feature extraction.

Here is a concise list of literature on Vision Transformers (ViTs) for computer vision
tasks: Parez et al., (2023) introduced an optimized vision transformer approach for
detecting plant diseases. Rizzo et al., (2023) noted in their survey on fruit ripeness that
attention enables the acquisition of a weighted sum of input token embeddings, which
can be manipulated in diverse manners. Knott et al., (2023) introduced a pre-trained
vision transformer for detecting apple defects and assessing banana ripeness, achieving
an accuracy of 90%. Bazi et al., (2021) proposed remote sensing image classification
utilizing the vision transformer model. Yu et al., (2022) employed inception architecture
and cross-channel feature learning for identifying plant diseases. Recently, deep learn-
ing algorithms such as generative adversarial networks (GANs) andVision Transformers
have become crucial in plant health monitoring, irrigation management, weed detection,
and yield estimation (Dhanya et al., 2022). Khan et al. (2023) proposed a convolutional
transformer for tomato grading under various conditions such as lighting, ripeness, and
occlusion. Thai et al., (2022) investigated leaf disease detection using a vision trans-
former model, introducing a pruning algorithm to select crucial heads in each layer.
Wang et al., (2022) focused on enhancing convolutional neural networks with attention
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and feature fusion modules to emphasize both local and global features for tomato dis-
ease detection. Shahi et al., (2022) utilized features from convolutional layers to capture
high-level object-based information, integrating attention modules to highlight semantic
details for fruit classification. Xiao et al., (2023) explored Swin transformers and MLPs
for grading pears and apples.

It is notable from the above survey that the majority of the studies concentrate
exclusively on grading unripe and ripe mangoes. However, assessing the ripeness of
mangoes is essential for consumer preferences, global trade, and the food industry.
Mangoes at varying stages of ripening are employed in diverse products like confections,
pulps, beverages, and frozen desserts. Typically, distinguishing between ripe and unripe
mangoes is relatively simple due to significant differences between classes. However,
grading mangoes that are unripe, ripe, and over-ripe is challenging due to minimal
variation between these stages. Therefore, our study focuses on enhancing a classification
model capable of distinguishing mangoes at various ripeness stages. Over-ripe mangoes
often exhibit black marks on their external surfaces, leading to assumptions of internal
defects and subsequent rejection. However, many over-ripe mangoes with such marks
are actually safe for consumption and free of internal defects.

Grading mango ripeness presents challenges due to subtle variations in external
appearance and texture between unripe, ripe, and over-ripe stages. Currently, there is a
lack of research in the literature on the application of Vision Transformers (ViTs) for
mango grading. ViTs offer a promising approach by leveraging their capability to cap-
ture global dependencies and spatial relationships across the entire mango image simul-
taneously. This holistic view could potentially enhance the accuracy and robustness
of ripeness classification compared to traditional methods. Adopting ViTs for mango
ripeness grading aims to advance automated systems, improving the efficiency and
reliability of fruit quality assessment.

To effectively tackle the aforementioned challenges, we propose a novel model
for classifying Alphonso mangoes into four categories: unripe, ripe, over-ripe without
internal defects, and over-ripe with internal defects based on vision transformers.

The key contributions of this study include:

• Expanding the initial dataset using five distinct data augmentation methods: rota-
tion, horizontal and vertical flipping, brightness adjustment, and distortion, aimed at
enhancing model performance.

• To comprehensively investigate Vision Transformers for mango grading, we have
utilized all three models: ViT_Base_16, ViT_Large_16, and ViT_Huge_14. To mit-
igate challenges related to small dataset size and optimize computational resources,
we incorporated pre-trained weights for each model variant.

• Through this extensive experimentation, we have demonstrated how data aug-
mentation techniques such as rotation and flips contribute significantly to Vision
Transformers, particularly due to their impact on patch positioning.

• To assess the effectiveness of the proposed system and explore an optimized model,
the data samples are divided into two sets: one without data augmentation compris-
ing 979 mango images across four classes, and another set with data augmentation
comprising 1566 mango images across the same four classes.
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• The proposed model is contrasted with other deep learning architectures, including
CNNs and other pre trained network such as VGG 16, Inception V3, EffientNetB0
and ResNet50. Additionally, it is also evaluated against other existing models for
mango ripeness grading.

2 Materials and Methods

2.1 Data Sets and Experimentation Setup

The mango dataset (Raghavendra et al., 2020) utilized in our study comprises 979
Alphonso mango images extracted from 230 mangoes at various ripening stages. The
images have a black background and dimensions of 2267 x 1701 pixels. This dataset
encompasses four classes: unripe, ripe, over-ripe without internal defects, and over-ripe
with internal defects, as detailed in Table 1. To accommodate the use of pre-trained
weights, our dataset undergoes preprocessing to align with the resolutions employed
during pre-training. Specifically, for ViT_Base_16 and ViT_Large_16 models, the orig-
inal images are resized to 224 × 224 pixels, while for the ViT_Huge_14 model, the
images are resized to 518 × 518 pixels.

Table 1. Summary of the original dataset in terms of sample counts.

Category Original Dataset

Unripe 339

Ripened 483

Over ripened without internal defects 107

Over ripened with
internal defects

50

Total 979

The experimental setup for this studywas conducted onGoogleColabwithNVIDIA-
SMI 525.105.17, driver version 525.105.17, CUDA version 12.0, and GPU Tesla T4.
The environment was configured with Python version 3.10.12, Torch version 2.0.1, and
TensorFlow GPU 2.0.0.

2.2 Data Augmentation

Data augmentation (DA) involves expanding the original training set by applying label-
preserving transformations, which can be represented as the mapping:

φ : S → A

Here, S denotes the original training set, and A represents the augmented set derived
from S. The augmented training set is then defined as:

S1 = S ∪ A
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where S1 comprises, the original training set along with the corresponding transforma-
tions defined by φ. Our goal is to ensure that the augmented images maintain sufficient
distinction from the originals while faithfully representing the same visual concept.

For each input image x in the original training set S, the five different images
generated through transformations can be mathematically represented as:

A(x)= {rotate(x)(5,10), flip(x)(LR), flip(x)(TB), distort(x)(4,4,8), brightness(x)(0.3–1.2)}.
where:

• rotate(x)(5,10) denote images rotated by max left rotation of 5 and max right rotation
of 10 degrees.

• flip(x)(LR) and flip(x)(TB) represent images flipped horizontally and vertically.
• distort(x) (4,4,8) denotes an image distorted with grid width 4, grid height 4, and

magnitude 8,
• brightness(x) (0.3–1.2) denotes images with varying brightness factors ranging from

0.3 to 1.2.

Thus, the augmented set A for each image x in S is A(x), resulting in an augmented
training set S1 =S∪A. Figure 1 depicts the pictorial representation of data augmentation
for generating newly sampled mango images.

Fig. 1. Pictorial representation of data augmentation for generating newly sampledmango images.

2.3 Proposed Methodology

The proposed model, based on vision transformers, categorizes the input mango image
into four classes: unripe, ripened, over-ripe without internal defects, and over-ripe
with internal defects, as illustrated in Fig. 2. In this study, various configurations of
vision transformer models are investigated both with and without pre-trained weights.
When pre-trained weights are used, specific model weights are initialized accordingly.
For instance, the ViT_Base model with a patch size of 16 would typically be trained
from scratch. In addition to that, we opted to utilize pre-trained weights derived from
ViT_Base_16 as well. Moreover, this research addresses challenges related to small
datasets and constrained computational resources by leveraging vision transformers
(ViTs) trained in a self-supervised manner.
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Primarily, the proposedmodel divides themango image into patches, with each patch
typically being a square region of the image. For instance, if an image measures 518 x
518 pixels and the patch size is 14 x 14 pixels, the model divides both the height and
width of the image to yield 1369 patches, as outlined in Eq. (1).

Number of patches(N ) = (H ∗ W ) ÷ (ph ∗ pw) (1)

where H and W denote the height and width of the input image respectively, and ph
and pw represent the patch height and patch width respectively. The stride, which is the
number of pixels that the sliding window moves each time, is consistently set to 16.

Fig. 2. Architectural diagram of the proposed model.

In the proposed model, an image of size 518 × 518 is divided by the patch size
of 14 × 14 to get 1369 number of patches. These patches are flattened from 2D to
1D vectors of size 588. Each patch vector undergoes linear transformation to generate
patch embeddings. Position embeddings are then added to these embeddings to preserve
the spatial sequence information of the patches. Finally, a learnable class embedding is
prepended to these embeddings to facilitate image classification.

The above-mentioned task of dividing the image into patches is accomplished with
the aid of the Conv2D layer; Transformer-based models have shown promising capa-
bilities in fitting data, but there is increasing evidence suggesting they may face issues
with overfitting, particularly when training data is limited (Chen et al., 2021). To tackle
this challenge, we have explored integrating convolutional neural network (CNN) com-
ponents into the Vision Transformer architecture. One such method involves employ-
ing Conv2D layers for patch identification within the Vision Transformer model. This
strategy aims to leverage the strong spatial feature extraction capabilities of convo-
lutional layers to improve the model’s performance in vision tasks. Indeed, research
indicates that using Conv2D for patch identification can significantly enhance model
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performance (Khan et al., 2023). Moreover, combining Transformer and convolutional
elements allows for leveraging the strengths of both architectures: Transformers excel
in efficient global feature extraction, while convolutional layers excel in handling local
spatial features. This synergy enables the model to better capture spatial relationships
within input images, leading to improved feature representation and, consequently,
higher classification accuracy.

Patches are analogous to filter (kernel) size. In our context, patches and filters (feature
maps) are equivalent, but we are specifying the feature map size as 14. To flatten these
patches, we utilize a flatten layer, which is implemented in PyTorch as part of our
architecture where we invoke and execute the task.

All these linearly projected and flattened patches, position embeddings, and class
tokens are fed into the Transformer Encoder Block. The initial layer in the transformer
encoder is LayerNorm (LN),which normalizes an input across its last dimension. LNaids
in enhancing training efficiency and the generalization ability of the model by stabilizing
the process and mitigating input variances. Following LN, the multihead self-attention
(MSA) layer is constructed with specific parameters: embedding dimension of 1280
(hidden size D), utilizing 16 attention heads (hence the term “multi-head”), and dropout
set to 0.

The primary role of the multihead self-attention (MSA) mechanism is to enable each
patch to attend to and gather information from other patches. It captures interdependen-
cies between patches and facilitates the model in considering the overall context of the
image. MSA directs attention to different patches within the image, comprehending
their relationships to capture critical information for further processing. Initially, MSA
assigns three fundamental roles to each patch: Query (Q), Key (K), and Value (V). The
Query (Q) represents the patch searching for other patches to attend to, while the Key
(K) represents the patch being examined by others. The Value (V) holds the information
or significance of the patch. MSA examines each patch and pairs it with other patches in
the image, assessing their relationship by measuring the similarity between each patch’s
Query vector and the Key vectors of all other patches. Attention weights are computed
using a softmax operation (described in Eq. 2), which determines how much attention
each patch should allocate to other patches in the image. The higher the similarity score,
the more closely related the patches are. This process helps MSA understand patch rela-
tionships and capture crucial information, thereby enabling the model to make more
effective predictions.

Attention(Q,K,V ) = Softmax

(
QKT

√
dk

)
V (2)

where, dk is the dimension of the key vector. After the multihead self-attention (MSA)
layer, we employ an “Add” operation in the transformer encoder. This operation, also
known as residual connections or skip connections, performs element-wise addition
between the output of the previous layer and the output of the attention/feed-forward
sub-layers. “Add” preserves the original information from the preceding layer while
incorporating new information learned by the sub-layers. This addition also establishes
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shortcut paths for information flow, thereby facilitating efficient propagation of gradi-
ents during training. This mechanism effectively mitigates the vanishing gradient prob-
lem and enhances the model’s learning capabilities. By combining “Add” with Layer-
Norm (Norm), each transformer layer promotes improved information flow, gradient
propagation, and overall stability during training.

Then, MLP (multilayer perceptron) is created with three parameters: embedding
dimension of 1280 (hidden size), MLP size of 5120 and dropout of 0.1 is applied after
every dense layer. Each patch’s output is processed through feed-forward network (FFN).
This helps to capture the complex nonlinear relationship within the patches. Following
this, the model has classification head which maps the output of the transformer into the
desired output format.

3 Results and Discussion

In this subsection, the proposed model has been set up to function at its maximum
performance through an extensive experimentation. For this purpose, the dataset has
been divided into a training subset and a testing subset with 60:40 ratios empirically.
Table 3 provides a detailed presentation of the average accuracies computed for all three
ViT models, each with four distinct variants, across 20 trails. For each trail, these ViT
modelswere trained over 30 epochs.Additionally, Table 3 includes the standard deviation
(±SD) of the accuracies from the 20 trails for each model, offering insights into the
variability and dispersion of the accuracy values around the mean. This allows for more
comprehensive understanding of the model’s performance consistency across different
runs. In order to improve the classification performance, we have explored five data
augmentation strategies to synthetically induce additional data for training and separated
our dataset as; without data augmentation dataset consists of 979mango images andwith
data augmentation mango dataset consists of 1566 alphonso mango images belonging
to four classes specifically, unripe, ripened, over-ripened without internal defects and
over-ripened with internal defects. In this study we have adopted three ViT models; and
the parameters of each model is described in Table 2.

Table.2 Shows parameters specification of all three ViT models.

ViT Models Layers Hidden Size D MLP Size Heads Params

ViT_Base_16 12 768 3072 12 86M

ViT_Large_16 24 1024 4096 16 307M

ViT_Huge_14 32 1280 5120 16 632M

Through this experimentation we could see that even though increasing the dataset
from 979 images to 1566 images the accuracy is not much increased; for example,
the accuracy of ViT_L_16 without data augmentation achieves 48.50%. Then if we
train the same model with data augmentation, the model achieves 48.89% there is no
much improvement because unlike CNNs, which can benefit from data augmentation
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techniques such as cropping, flipping, and rotating, vision transformers aremore sensitive
to the order and position of the patches.

Table.3 Accuracy obtained by all three models considering data augmentation and pre trained
weights.

Vision
Transformer
Models

Without pre-trained weights With pre-trained weights

Without Data
augmentation

With Data
augmentation

Without Data
augmentation

With Data
augmentation

Accuracy ± SD Accuracy ± SD Accuracy ± SD Accuracy ± SD

ViT_B_16 46.6% ± 0.57 47.8% ± 0.62 89.9% ± 0.51 91.11% ± 0.49

ViT_L_16 48.50% ± 0.72 48.89% ± 0.58 91.30% ± 0.53 91.41% ± 0.59

ViT_H_14 48.72% ± 0.59 49.01% ± 0.61 92.07% ± 0.47 92.78% ± 0.43

The position encoding schema of proposed model plays a crucial role in its effec-
tiveness for mango ripeness grading by facilitating accurate and context-aware feature
extraction from images. This position encoding schemehas several advantages formango
ripeness grading which are listed below:

1. Spatial Awareness: Mangoes, exhibit distinct visual changes as they ripen, including
alterations in color, texture, and size. The position embeddings in a vision transformer
help the model understand the spatial relationships between different parts of the
mango in the image. This spatial awareness allows the model to distinguish between
relevant features such as the color changes in different areas of the mango (e.g., from
green to yellow or orange) or variations in texture (e.g., smoothness to softness).

2. Contextual Understanding: Mango ripeness assessment requires the model to ana-
lyze the overall appearance of the mango fruit, taking into account how different
parts contribute to its ripeness level. Vision transformers use position embeddings
to capture both local and global context within the image. This is crucial because
ripeness is often determined by a combination of visual cues spread across the entire
mango rather than isolated features.

3. HandlingDifferentMango Sizes andOrientations:Mangoes can vary significantly
in size and shape, and they may be presented in images with different orientations
(e.g., top-down view or side view). The position embeddings allow the model to
understand the spatial arrangement of pixels in the image regardless of orientation or
scale. This adaptability ensures that the model can effectively learn and generalize
features relevant to ripeness grading across mango images.

4. Enhanced Feature Learning: By incorporating position embeddings, the vision
transformer can effectively learn fine-grained features that are critical for ripeness
grading. For example, it can focus on specific parts of the mango that typically exhibit
ripeness indicators, such as the blush on the skin or changes in texture around the
stem.

One of the main challenges of training vision transformers is that, they require a
lot of data to achieve good performance. Therefore, they need to see a large variety
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of images to learn meaningful representations. One way to address this issue is to use
pre-trained models that have been trained on large-scale datasets, such as ImageNet,
and then fine-tune them on the target task or domain. This can significantly reduce the
training time and improve the accuracy of the vision transformer. Hence in this study
initially, all the ViT models are trained from scratch and it has been observed that the
accuracy was below 50%. To address this issue, this study uses the pre-trained weights
of respective models that are trained on ImageNet dataset. So instead of network learns
the weights during training the pre-trained weights are directly passed to model, and
then it has been observed that each ViT models’ performance is increased. For example,
the accuracy of the ViT_H_14 model trained from the scratch is 49.01%, and then the
same ViT_H_14 with vit_h_14 pre-trained weights achieve accuracy of 92.78%. Here
the performance is increased by 43.77%. Hence, use of pretrained weights in proposed
model significantly influence model performance and efficiency for mango ripeness
grading through its transfer learning benefits and improved generalization. Overall, the
novel aspect of leveraging a pre-trained model and fine-tunning it on a custom dataset
lies in its ability to combine the strengths of large-scale pre-training with the specificity
required for particular tasks, resulting in the models that are both efficient and highly
effective in addressing diverse challenges in the application domain.

Table 4. Comparison of the proposed model with other deep learning model on the same dataset

Models Proposed CNN
with 3
layers

Inception-V3 VGG-16 EffientNetB0 ResNet 50

WFT FT WFT FT WFT FT WFT FT

Accuracy 92.78 85.1 83.4 85.4 81.0 82.2 86.2 90.4 80.3 81.6

Table 5. Comparison of the proposed model with existing models

Models Classification Method
adopted

Number of classes Accuracy

Raghavendra et al.,
2020(Existing)

Conventional Machine
Learning

4 87.04%

Mansor and Othman,
2014

Fuzzy Logic 3 87%

Nandi et al., 2014 Gaussian Mixture
model

4 Less than 90% in all
varieties

Salunkhe and Anikert,
2015

Rule based
classification

4 84.2%

Proposed Vision Transformers
with pretrained
weights

4 92.78%
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The detailed accuracies obtained by each ViTmodels are described in Table 3. Based
on the computed accuracies, it has been observed that ViT_H_14 model with vit_h_14
pre-trained weights attained highest accuracy over rest of the ViTmodels. Table 4 shows
the comparison of the proposed model with the other deep learning models. In table 4,
for other models we have given the accuracy obtained by the pre trained architecture
of the respective model with (FT) and without fine tuning (WFT). Overall, proposed
model success in mango ripeness grading can be attributed to its innovative use of
attention mechanisms, effective representation learning, and adaptability to different
tasks through fine-tuning and customization. These factors collectively contribute to its
superior performance compared to traditional CNN-based architectures. Figure 3 shows
the loss and accuracy curve of the proposed model. From this curve we can see, our
proposed model is learning effectively and generalizing well to unseen data. Table 5
shows the comparison of the proposed model with other existing models; it has been
shown that our model out performs the existing model (Raghavendra et al., 2020) by
6.67% with the same dataset. Here, the accuracy shown against the rest of the models
are the accuracies quoted in their respective works.

Fig. 3. Loss and Accuracy curve of the ViT_H_14 with pre-trained weights.

4 Conclusion

In this study, a successful attempt is made to explore the applicability of vision trans-
former for grading of mangoes. The empirical analysis conducted in this study argues
that, contrary to initial expectations regarding the benefits of data augmentation for
improving model performance, the Vision Transformer (ViT) does not significantly
benefit from techniques such as flipping and rotating. Unlike Convolutional Neural Net-
works (CNNs), which can exploit these data augmentation methods effectively, ViTs
are highly sensitive to the order and position of patches. Therefore, traditional data
augmentation techniques do not provide substantial improvements for ViTs as they do
for CNNs. Typically, achieving state-of-the-art results with Vision Transformers (ViTs)
requires a substantial volume of data. These issues are addressed by using pre-trained
weights and we could also see an improved performance. Compared to all three models
ViT_H_14 performed better with average accuracy of 92.78%. The significance of the
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different vision transformer models with pre-trained weights for effective prediction of
four different classes of Alphonso mango variety was brought out. Future work is on
exploring the reason for still 7.22% of error in spite of using the most effective and best
model available in the literature and recommending suitable modification to achieve
100% results. Further, it is planned to have a real time deployable solution for the same.
Through this experimentation it is also observed that by decreasing the patch size and
increasing the number of transformer layer might increase the performance of themodel.
So, this can also be taken up for the further experimentation.
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Abstract. In this paper, we present FedRewind, a novel approach to
decentralized federated learning that leverages model exchange among
nodes to address the issue of data distribution shift. Drawing inspiration
from continual learning (CL) principles and cognitive neuroscience theo-
ries for memory retention, FedRewind implements a decentralized rout-
ing mechanism where nodes send/receive models to/from other nodes
in the federation to address spatial distribution challenges inherent in
distributed learning (FL). During local training, federation nodes peri-
odically send their models back (i.e., rewind) to the nodes they received
them from for a limited number of iterations. This strategy reduces the
distribution shift between nodes’ data, leading to enhanced learning and
generalization performance. We evaluate our method on multiple bench-
marks, demonstrating its superiority over standard decentralized fed-
erated learning methods and those enforcing specific routing schemes
within the federation. Furthermore, the combination of federated and
continual learning concepts enables our method to tackle the more chal-
lenging federated continual learning task, with data shifts over both space
and time, surpassing existing baselines.

Keywords: Decentralized Learning · Continual Learning · Federated
Learning

1 Introduction

The proliferation of data across multiple distributed devices and locations has
sparked significant interest in federated learning (FL), a paradigm that enables
collaborative model training without the need to centralize data. Federated
learning offers numerous benefits, including enhanced privacy and reduced com-
munication costs. However, a fundamental challenge in FL is the non-i.i.d. (inde-
pendent and identically distributed) nature of data across different nodes, which

L. Palazzo and M. Pennisi—Equal contribution.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15325, pp. 79–94, 2025.
https://doi.org/10.1007/978-3-031-78389-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78389-0_6&domain=pdf
http://orcid.org/0009-0008-2241-2643
http://orcid.org/0000-0002-6721-4383
http://orcid.org/0000-0002-6122-4249
http://orcid.org/0000-0002-1333-8348
http://orcid.org/0000-0002-2441-0982
http://orcid.org/0000-0001-6653-2577
https://doi.org/10.1007/978-3-031-78389-0_6


80 L. Palazzo et al.

can lead to performance degradation due to data distribution shifts. This prob-
lem becomes even more pronounced in decentralized federated learning, where
there is no central server to coordinate and aggregate updates, making the sys-
tem less robust to heterogeneous data distributions.

Existing solutions in federated learning primarily focus on mitigating the
effects of non-i.i.d. distributions through various aggregation and optimization
techniques. Centralized federated learning approaches often rely on a central
server to aggregate updates from all nodes, thereby smoothing out the differences
in local data distributions [16,21,28]. Decentralized methods, instead, employ
peer-to-peer communication and model averaging strategies to achieve consensus
without a central entity [2,5,31]. While these methods have shown promise, they
often fall short in addressing the dynamic nature of data distribution shifts,
particularly in environments featured by strong data imbalance [32,37].

Continual learning (CL) [6,20,22], a field that addresses the problem of learn-
ing from a stream of data that changes over time, offers valuable insights for
handling distribution shifts with strong imbalance. CL methods are designed to
prevent catastrophic forgetting, which occurs when a model forgets previously
learned information upon encountering new data, by maintaining knowledge
across sequential learning tasks through either exposing the model to limited
past experience [1,4,23,24] or regularizing model parameters [3,13,36] using pre-
vious knowledge, while learning new tasks. Although CL and FL address similar
challenges, they operate in different contexts: CL deals with non-i.i.d. data over
time, while FL addresses non-i.i.d. data across distributed nodes.

We here propose FedRewind, a novel approach that integrates continual learn-
ing concepts into federated learning to address the limitations of existing FL
methods. Our method involves decentralized nodes periodically exchanging their
models and sending them back to the originating nodes for a limited number of
iterations during local training. This exchange mechanism, inspired by contin-
ual learning strategies, aims to prevent overfitting on local data and enhance
memory retention by periodically re-exposing models to previously seen data.

FedRewind ’s strategy also aligns with the cognitive neuroscience principle
of testing effect, which emphasizes the role of active recall and retrieval prac-
tice for the enhancement of long-term memory. The testing effect, in particular,
demonstrates that memory retrieval processes (similar to our rewind strategy)
significantly improve knowledge retention compared to simple re-exposure to
information [12,25]. This phenomenon is underpinned by mechanisms such as
elaborative retrieval and spreading activation, where active recall strengthens
memory traces and facilitates the integration of new information into existing
cognitive frameworks.

By adapting cognitive neuroscience principles and continual learning con-
cepts to the spatial distribution challenges of FL, FedRewind aims to reduce the
distribution shift between nodes, thus enhancing model performance and robust-
ness. We validate our claims on multiple benchmark datasets, demonstrating how
FedRewind leads to performance improvement over standard decentralized fed-
erated learning methods, as well as those that impose specific routing schemes
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within the federation. Furthermore, the combination of federated and contin-
ual learning concepts enables our method to effectively address the federated
continual learning problem, where data shifts occur over both space and time,
outperforming existing baselines. Our results, cumulatively, indicate that this
decentralized and iterative model exchange approach offers a robust solution to
the challenges posed by non-i.i.d. data in federated learning environments.

2 Related Work

Federated learning (FL) has emerged as a new paradigm within distributed
machine learning, addressing the challenge of data privacy. Drawing upon the
foundational work of McMahan et al. [21], FL facilitates collaborative model
training while ensuring node data remains secure on their local devices.

A typical FL setting features a central server that orchestrates the learning
process. This server distributes a global model to a pool of participating nodes,
which use their private data for local updates on the received model. Subse-
quently, the nodes transmit their local updates back to the central server, which
aggregates them to refine the global model. This iterative process of distributing,
updating, and aggregating the model persists until a satisfactory level of con-
vergence is achieved.The most common aggregation technique is FedAvg [21],
that simply averages the local model parameters received from all nodes. More
sophisticated aggregation methods have been proposed by adding a regulariza-
tion term[16] or leveraging knowledge distillation[39]. Another branch of FL,
namely Personalized Federated Learning, has the primary objective to improve
the performances w.r.t. only the single node distribution. FedBN[17] achieves
this goal by preserving the batch-norm layers of each node while FedProto[29]
aggregates only the prototypes while the models are kept on each node.

While a central server simplifies the communication protocols, especially for
large-scale deployments, its presence introduces specific limitations. Firstly, it
creates a single point of failure, posing a vulnerability to system robustness if
the server becomes unavailable. Secondly, as the number of participating nodes
increases, the central server can become a bottleneck, hindering communication
efficiency [18]. Finally, the very presence of a central server that aggregates data
might not be desirable or even feasible in certain collaborative learning scenarios.
This is particularly true for scenarios that prioritize robust privacy guarantees or
involve geographically dispersed participants with limited or unreliable network
connectivity.

This work investigates also decentralized federated learning, which, con-
versely to centralized approaches, relies on peer-to-peer communication between
nodes[5,11]. This approach eliminates the single point of failure and enhances
privacy guarantees, but introduces additional complexity in terms of communi-
cation protocols and achieving convergence among local models on all devices.

Since FedRewind leverages concepts from continual learning (CL), we pro-
vide a brief overview of existing methods related to the strategies we employ to
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retain knowledge from past learning rounds. Continual learning [6,22] is a field
of machine learning that seeks to bridge the gap between the incremental learn-
ing observed in humans and the limitations of neural networks. McCloskey and
Cohen [20] identified the phenomenon of “catastrophic forgetting”, where neu-
ral networks lose previously acquired knowledge upon encountering substantial
shifts in the input distribution.

To address catastrophic forgetting, various mitigation strategies have been
proposed. These include the introduction of appropriate regularization terms [13,
36], the development of specialized network architectures [19,26], and the use of
rehearsal mechanisms that leverage a limited set of previously encountered data
points [4,23,24].

FedRewind adopts a hybrid approach, combining elements of both regular-
ization and rehearsal strategies. Unlike traditional methods, it does not use any
buffer. Instead, during training rounds on local nodes, the model is periodically
sent back to previous nodes for regularization. This process helps address data
shifts across nodes, thereby mitigating potential forgetting.

Federated continual learning (FCL) combines the paradigms of feder-
ated learning (FL) and continual learning (CL), enabling it to address the chal-
lenge of distributed data that, at the same time, undergo continual change over
time [9,33,34]. However, initial efforts in this area compromised data privacy
by requiring the storage of training samples on the central server [33]. Recent
advancements in FCL prioritize data privacy by advocating for the storage of
only perturbed images for replay purposes [9]. FedWEIT [34], instead, tack-
led the problem by decomposing network weights but necessitates data replay
buffers. Recently, FedSpace [27] has been developed to overcome the limitations
of current methods. It leverages class prototypes within the feature space and
employs contrastive learning to preserve prior knowledge and reduce divergence
between the behaviors of different federation nodes.

Our FedRewind strategy is complementary to approaches like FedSpace,
enhancing their capabilities by mitigating typical overfitting in distributed learn-
ing, particularly in cases of high class imbalance and strongly non-iid data dis-
tribution among nodes. Specifically, FedRewind addresses these issues by trans-
ferring models between nodes to enforce iid-ness on data, rather than relying
on data storage. This method significantly reduces privacy concerns associated
with storing sensitive training data. By periodically sending the model back to
previous nodes, we maintain knowledge across sequential tasks and enforce reg-
ularization, thus reducing node overfitting, while enhancing both privacy (no
need for data sharing) and scalability.

3 Method

In federated learning, a collection of nodes collaboratively train a shared model
while keeping their data localized. This approach ensures data privacy but
introduces challenges related to effective knowledge sharing across distributed



FedRewind 83

Fig. 1. Rewind strategy. The model received and trained on the current node is sent
back to its source node for a brief fine-tuning. The model then returns to the node and
continue its training before the start of a new federated round.

and sequential learning tasks. To address these challenges, we propose a novel
“rewind” strategy. This section introduces the approach and key concepts,
describes the rewind method in detail, and provides the corresponding pseudo-
code.

Federated Learning. Federated learning is a collaborative machine learning app-
roach where multiple nodes (N nodes) train a shared model without centralizing
their data. Each node updates its model using local data and shares the model
updates rather than the data itself, ensuring data privacy.

Decentralized Federated Learning. In this framework, nodes communicate
directly with each other without a central server. We consider two modes of
communication:

– Random Communication (RWT): Nodes select a random source node
(for the incoming model) and a random destination node (for the outcoming
model) for information exchange in each round.

– Cyclic Communication (CWT): Each node communicates with the same
predetermined source and destination nodes in every round, as described in
[5].

Centralized Federated Learning. In this framework, a central server coordinates
the training process. Nodes send their local model updates to the server, which
aggregates them to form a global model.

Training Rounds. Defined as a block of training where all nodes complete train-
ing for E epochs. At the end of each round, model exchange across all federated
nodes is carried out.
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3.1 The Rewind Strategy

To improve knowledge sharing in federated learning, we introduce the “rewind”
strategy, described in Fig. 1. This method involves temporarily reverting the
model to a previous node to rehearse prior knowledge, thus preserving data
privacy. We apply this strategy on both centralized and decentralized federated
learning.

Decentralized federated learning. During each communication round, a generic
node Cj receives a model Mi, parameterized by θi, from a source node Ci, trains
it on its local dataset Dj , and forwards it to another node Ck. The standard
training process on node Cj for model Mj parameterized by θj at round t on
dataset Dj is given by:

M
(t)
j = TrainDj ,E(M

(t−1)
i ) = θ

(t−1)
i − η

E−1∑

0

∇L(θ(t−1)
i ,Dj) (1)

where E denotes the number of epochs for a single federation round, and L
is a generic loss function.

To enhance knowledge retention, we introduce a fractional computation bud-
get parameterized by λ for retraining the model on its origin node before con-
tinuing training on the current node. This modifies the training equation as
follows:

M
(t)
j = TrainDj ,λ·E

(
TrainDi,λ·E

(
TrainDj ,(1−2λ)·E

(
M

(t−1)
i

)))
(2)

where λ denote the fraction of the budget allocated for rewinding.

Centralized Federated Learning. In this scenario, a central server S aggregates
models received from nodes at each communication round. The model computed
by the server M

(t)
s at round t is defined as:

M (t)
s = agg({M

(t)
j | j ∈ {1, 2, . . . , N}}) (3)

where agg(·) represents a generic aggregation function employed by the
server. Applying the rewind strategy, the training process for a generic node
Cj is modified to:

M
(t)
j = TrainDj ,λ·E

(
TrainDi,λ·E

(
TrainDj ,(1−2λ)·E

(
M (t−1)

s

)))
(4)

By leveraging inter-node communication and the rewind strategy, federated
learning-whether decentralized or centralized-can more effectively retain knowl-
edge across different tasks. This approach ensures that the shared model benefits
from the distributed data while maintaining privacy and improving performance.
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The pseudo-code of the rewind strategy is reported in Algorithm 1 and Algo-
rithm 2 respectively for the decentralized and centralized scenario.
Algorithm 1: Decentralized Federated Learning with Rewind Strategy.

Input: N nodes, initial model M0, epochs E, fractional budget λ
for each round t in 1 to T do

for each node Cj in N do
// Receive model from source node Ci

M
(t−1)
i ← receive_model(Ci);

// Train on current node’s dataset Dj

Mintermediate ← Train(Mrewind, Dj , (1 − 2λ) · E);
// Rewind phase: Train on source node’s dataset Di

Mrewind ← Train(M (t−1)
i , Di, λ · E);

// Finish training on current node’s dataset Dj

M
(t)
j ← Train(Mintermediate, Dj , λ · E);

// Send model to destination node Ck

send_model(Cj , M
(t)
j );

end
end

Algorithm 2: Centralized Federated Learning with Rewind Strategy.
Input: N nodes, initial model M0, epochs E, fractional budget λ

for each round t in 1 to T do
for each node Cj in N do

// Receive aggregated model from the server

M
(t−1)
s ← receive_model(server);

// Train on current node’s dataset Dj

Mintermediate ← Train(Mrewind, Dj , (1 − 2λ) · E);
// Rewind phase: Train on previous node’s dataset Di

Mrewind ← Train(M (t−1)
s , Di, λ · E);

// Finish training on current node’s dataset Dj

M
(t)
j ← Train(Mintermediate, Dj , λ · E);

// Send model to the server

send_model(server, M
(t)
j );

end
// Server aggregates models from all nodes

M
(t)
s ← aggregate_models({M (t)

j | j ∈ 1 to N});
end
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4 Results

4.1 Federated Learning Performance

Experimental settings. To evaluate the effectiveness of FedRewind, we sim-
ulate different federated learning scenarios using three benchmarks (generally
employed for testing FL methods), namely MNIST [8], CIFAR10 [14] and
CIFAR100 [14]. Data is distributed across nodes according to a non-independent
and identically distributed (non-IID) scheme. This distribution is achieved by
applying a Dirichlet distribution, as in previous work [15,30,35], parameterized
by αdir, which serves as a measure of the degree of data heterogeneity across
nodes; a lower αdir value indicates a more pronounced imbalance in data distri-
bution across nodes.
Our experimental settings include 50 communication rounds and two config-
urations based on the number of nodes in the federation: one with 10 nodes
and another with 50 nodes. During each round, in each node, we perform local
training for 10 epochs (E). For the rewind experiments, we set the rewind hyper-
parameter λ = 0.1. This configuration determines a training procedure where,
within the given E=10 epochs, 8 epochs are dedicated to the local training on
the current node’s data, followed by one epoch on the previous node’s data, and
concluding with a final epoch on the current node’s data. All experiments are
carried out using the ResNet18 architecture [10], pre-trained on ImageNet [7],
optimized using Stochastic Gradient Descent (SGD) with a learning rate of 0.001.

Metrics. In decentralized federated learning (FL), each node creates a distinct
local model, unlike in the centralized FL paradigm, which results in a single
global model at the end of the training phase. To quantify the aggregated perfor-
mance and generalization capability of the federation, we propose the Federation
Accuracy (FA) metric. This metric is calculated by testing all the node models
within the federation against all the private test sets and then computing the
mean accuracy. Given a federation of size N , our metric is defined as follows:

FA :=
1

N × N

N∑

i=1

N∑

j=1

Acc(Mi,D
test
j ) (5)

where Acc(Mi, Sj) is the accuracy of model Mi on the private test set Dtest
j

of node j. Similarly we define the Federation Fairness (FF) that measures how
much the performance of the nodes changes across the federation (e.g. the stan-
dard deviation of the accuracy of nodes):

FF :=

√√√√ 1
(N × N) − 1

N∑

i=1

N∑

j=1

(Acc(Mi,Dtest
j ) − FA)2 (6)

Moreover, our objective is not only to improve the overall generalization
across the federation, but also to enhance performance of each individual node
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on its private dataset. To measure this performance, we define the Personalized
Federation Accuracy (PFA) metric as:

PFA :=
1
N

N∑

i=1

Acc(Mi,D
test
i ). (7)

These three metrics, PA, FF and PFA, allow us to capture both the general-
ization capabilities of the entire federation and the performance improvements
from the perspective of individual nodes.

Baselines. We test our approach in combination to existing FL strategies,
applying it to CWT [5], RWT, and FedAvg [21]. CWT employs a static cyclic
model transfer between rounds, while RWT is our modified version of CWT,
featuring random communication between nodes in each round.

We also assess our approach in two reference scenarios: the Joint and Stan-
dalone settings. The Joint setting represents an optimal condition where all
data from the federation is consolidated and utilized for training on a single
node, thereby establishing an upper bound on performance.

In contrast, the Standalone setting assumes that each node trains its model
independently, with no communication or data sharing between nodes. This set-
ting generally sets a lower bound on performance, particularly when the data
distribution between nodes is highly non-IID.

Results. We begin our evaluation by testing FedRewind performance on the
two scenarios: with 10 nodes and with 50 nodes, both under a strongly non-IID
scenario with αdir = 0.25. Table 1 presents the results in terms of Federation
Accuracy (FA) across the three benchmarks, showing that the rewind strategy
consistently achieves higher accuracy. This improvement is especially pronounced
in the 50-node scenario, which poses greater complexity and challenge due to its
larger and more heterogeneous node distribution. Similarly, Table 2 presents
the results in terms of Federation Fairness (FF), demonstrating that the imple-
mentation of the rewind strategy consistently reduces the standard deviation
of the accuracy of nodes, thus enhancing the generalization capabilities of the
federation.

The Personalized Federation Accuracy (PFA) results, shown in Table 3, fur-
ther demonstrate the benefits of our rewind strategy at the node level. The
strategy’s effectiveness is evident, as it consistently enhances PFA across var-
ious datasets and federation scales. We speculate that the rewind mechanism
acts as an effective regularizer, mitigating overfitting to a node’s local dataset.
In a non-IID setting, where the tendency to overfit to local data patterns is
high, this regularization effect is crucial. By periodically rewinding and retrain-
ing with data from other nodes, the models are exposed to a more diverse data
distribution, promoting more generalized representation learning. It is also note-
worthy that the impact of our rewind strategy on personalization performance
for FedAvg is relatively lower compared to CWT and RWT. This might be due
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to the aggregation step in FedAvg, which tends to smooth out the specificities
of local models trained on non-IID data.

The results from the standalone setting highlight the limitations of training
models in isolation, especially under non-IID conditions. As the number of nodes
increases, standalone models generally perform poorly, struggling to learn rep-
resentative features without the diversity of data from other nodes. This aligns
with our expectations, as the standalone setting misses the collaborative benefits
of federated learning.

Table 1. Federation Accuracy in a non-IID setting (αdir = 0.25) for the MNIST,
CIFAR-10, and CIFAR-100 benchmarks, organized across 10 and 50 nodes.

Method 10 Nodes 50 Nodes

MNIST C10 C100 MNIST C10 C100
Joint 99.22 78.53 53.13 99.22 78.53 53.13

Standalone 69.19 33.23 19.07 49.91 26.85 11.08
FedAVG 95.43 51.19 39.89 87.47 53.26 37.29

↪→Rewind 97.59 59.2741.06 91.77 58.8439.90
CWT 93.09 45.81 34.02 88.27 40.00 24.90

↪→Rewind 96.19 55.5737.44 92.79 47.8327.51
RWT 94.93 44.16 32.08 86.66 38.75 24.42

↪→Rewind 97.42 52.3436.72 87.01 45.8527.40

Table 2. Federation Fairness in a non-IID setting (αdir = 0.25) for the MNIST,
CIFAR-10, and CIFAR-100 benchmarks, organized across 10 and 50 nodes.

Method 10 Nodes 50 Nodes

MNIST C10 C100 MNIST C10 C100
Joint N/A N/A N/A N/A N/A N/A

Standalone 27.02 25.47 12.15 28.97 20.59 11.08
FedAVG 3.81 13.37 10.33 13.18 11.21 5.33

↪→Rewind 1.50 12.7510.09 9.03 10.10 5.16
CWT 8.52 24.21 11.22 14.18 21.36 6.85

↪→Rewind 4.78 19.5310.07 8.48 18.84 6.72
RWT 4.27 24.95 10.84 17.54 21.26 6.75

↪→Rewind 1.82 21.9810.06 14.68 19.01 6.69

We further evaluated the robustness of our rewind strategy under varying
degrees of data heterogeneity. Using the CIFAR-10 dataset, we measured feder-
ation accuracy with the Dirichlet coefficient (αdir) ranging from 0.1, indicating
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Table 3. Personalized Federation Accuracy in a non-IID setting (αdir = 0.25)
for the MNIST, CIFAR-10, and CIFAR-100 benchmarks, organized across 10 and 50
nodes.

Method 10 Nodes 50 Nodes

MNIST C10 C100 MNIST C10 C100
Joint 99.22 78.53 53.13 99.22 78.53 53.13

Standalone 98.69 83.96 53.49 96.20 77.65 41.73
FedAVG 97.09 56.15 37.94 83.83 45.88 32.54

↪→Rewind 97.38 54.39 38.71 85.79 47.9935.62
CWT 94.82 38.01 30.76 86.74 38.90 24.72

↪→Rewind 95.65 48.8534.34 93.40 46.2926.58
RWT 92.95 43.48 29.36 85.43 33.64 23.90

↪→Rewind 96.61 45.9535.50 85.79 47.6227.59

Fig. 2. Performance at different degrees of data heterogeneity (αdir) on
CIFAR-10 for 10 (left) and 50 (right) nodes.

extreme non-IID conditions, to 0.5, representing a less skewed data distribution
among nodes. The results, shown in Fig. 2, demonstrate that our rewind strat-
egy consistently enhances FA, with the highest gain obtained at αdir = 0.1, the
most challenging setting. This suggests that the rewind strategy is particularly
effective in environments with high data distribution skewness. As αdir increases,
FedRewind continues to provide benefits, though they are less pronounced. These
findings collectively demonstrate that the rewind strategy is a robust method
for federated learning, capable of enhancing model performance in diverse data
conditions. Its consistent performance across different levels of non-IIDness, as
shown in Fig. 2, suggests reliable applicability in real-world federated settings
where data distributions vary widely.

We finally verify whether the enhanced performance is due to rewinding
to the previous node or to any other node. Thus, we compared our rewind
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strategy to a random rewinding one, where the model is sent to a random node
of the federation. Table 4 shows the performance of the two strategies when
combined to CWT and RWT, highlighting how rewinding to the previous node
in the communication chain is more effective than using a random node. It has
to be noted that, in RWT, the performance increase is slightly lower because
the preceding node changes at each communication round, slightly reducing the
benefits of rewinding.

Table 4. Comparison between different rewinding strategies. RandRewind
sends the model back to a random done instead of the previous node as Rewind does.

Method CIFAR-10 CIFAR-100
10 Nodes50 Nodes10 Nodes50 Nodes

CWT 45.81 40.00 34.02 24.90

↪→RandRewind 51.59 45.76 36.58 27.60
↪→ Rewind 55.57 47.83 37.44 27.51

RWT 44.16 38.75 32.08 24.42
↪→ RandRewind 50.83 45.62 36.62 27.40
↪→Rewind 52.83 45.85 36.72 27.09

Fig. 3. Training trend of rewind strategy in AFCL

4.2 Continual Federated Learning

We also evaluate FedRewind within the complex context of Asynchronous Feder-
ated Continual Learning (AFCL) [27], where data is not only distributed across
multiple nodes (as in federated learning) but also subject to changing distribu-
tions over time (as in continual learning). In this asynchronous setting, each node
independently progresses through its continual learning tasks, creating unique
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Table 5. Results of rewind strategy in AFCL

Method Accuracy

FedAvg + PASS 29.70
↪→ Rewind 33.46
FedSpace 35.53
↪→ Rewind 39.40

distribution shifts at different times. We argue that the rewind strategy is par-
ticularly advantageous in AFCL scenarios, as rewinding on another node can
mitigate the exacerbated problem of forgetting.

To test this hypothesis, we implement our strategy on top of the current state-
of-the-art approach for AFCL, FedSpace [27]. We replicate their experimental
setup, using CIFAR100 divided into 10 tasks of 10 classes each, and maintain the
same hyperparameters, except for the number of epochs per round, and without
any pretraining. Specifically, we rerun their experiments with E = 3 because the
default value of 1 was incompatible with the rewind strategy. The experimental
results and trends are detailed in Table 5 and Figure 3, respectively, where
the rewind strategy is integrated into FedSpace. Additionally, we applied our
proposed strategy to the same baseline used in [27], where PASS [38], a continual
learning strategy, is adapted to the federated scenario by combining it with
FedAvg. In both cases, incorporating the rewind strategy results in enhanced
performance, while maintaining computational costs low.

5 Conclusion

In this paper, we introduce FedRewind, a novel approach that incorporates the
rewind technique into federated learning (FL) scenarios to address challenges
arising from non-i.i.d. data distributions across distributed nodes. By periodi-
cally exchanging and rewinding models among nodes, FedRewind mitigates issues
related to overfitting on locally skewed data, which can hinder model generaliz-
ability and lead to catastrophic forgetting. This method significantly enhances
performance by promoting robustness against class imbalances and improving
overall model generalization, even in the complex context of Asynchronous Fed-
erated Continual Learning (AFCL).

We first validated FedRewind on standard federated learning scenarios,
demonstrating significant improvements in performance and generalization over
existing methods such as FedAVG, CWT, and RWT. Importantly, these improve-
ments were achieved without increasing computational costs, facilitating seam-
less integration into existing FL frameworks. We further evaluated our approach
in the more extreme context of AFCL, surpassing existing methods.

In conclusion, by integrating concepts from continual learning and leveraging
cognitive neuroscience principles, FedRewind reduces the impact of distribution
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shifts, providing a robust solution to the challenges posed by non-i.i.d. data in
distributed learning environments.
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Abstract. The double descent phenomenon, which deviates from the
traditional bias-variance trade-off theory, attracts considerable research
attention; however, the mechanism of its occurrence is not fully under-
stood. On the other hand, in the study of convolutional neural networks
(CNNs) for image recognition, methods are proposed to quantify the bias
on shape features versus texture features in images, determining which
features the CNN focuses on more. In this work, we hypothesize that
there is a relationship between the shape/texture bias in the learning
process of CNNs and epoch-wise double descent, and we conduct verifi-
cation. As a result, we discover double descent/ascent of shape/texture
bias synchronized with double descent of test error under conditions
where epoch-wise double descent is observed. Quantitative evaluations
confirm this correlation between the test errors and the bias values from
the initial decrease to the full increase in test error. Interestingly, dou-
ble descent/ascent of shape/texture bias is observed in some cases even
in conditions without label noise, where double descent is thought not
to occur. These experimental results are considered to contribute to the
understanding of the mechanisms behind the double descent phenomenon
and the learning process of CNNs in image recognition.

Keywords: Double Descent · Shape/Texture Bias · Pre-training

1 Introduction

Deep learning has become an important research area with applications in many
fields such as computer vision. To build high-performance models with deep
learning, it is essential to prepare appropriate training datasets and determine
the number of model parameters according to these datasets. Two crucial phe-
nomena to understand in this context are underfitting[20] and overfitting[28].
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Underfitting occurs even with sufficient training data if there are too few model
parameters and prevents the model from learning features from the training
data, leading to suboptimal performance on test data. Conversely, overfitting
occurs when there is either too little training data or an excess of model param-
eters, causing the model to fit too closely to the training data and hindering
generalization to new test data. Researchers widely recognize these phenomena
as the bias-variance trade-off[24].

However, recent studies report an interesting phenomenon: when the num-
ber of model parameters becomes very large, performance can improve again
after overfitting[1,2,5,21]. Belkin et al. name this phenomenon "double descent"
and demonstrate it in models such as two-layer neural networks and random
forests.[2] Later, Nakkiran et al. confirm this phenomenon in more practical
deep neural networks such as convolutional neural networks (CNNs) for image
classification.[21] Moreover, they show that in addition to increasing the num-
ber of model parameters, increasing the training epochs can also induce double
descent. Many studies on double descent focus on elucidating its theoretical
foundations. Particularly, research on double descent due to an increase in the
number of training epochs considers the features of the data and how models
learn these features [13,22,26]. However, such investigations mainly use artificial
data or non-deep learning models, and studies centered on the characteristics of
real data in deep learning, such as shape and texture specific to images, have
rarely been conducted.

Fig. 1. Flow of analysis process presented in this paper. We train CNNs for image
recognition under double descent conditions. We monitor the temporal evolution of
the shape/texture bias and test error assessing the capacity of the model to interpret
shapes and textures while exploring their correlation.

On the other hand, in image classification, analyses focusing on features such
as shape and texture reveal that CNN models trained on ImageNet tend to be
biased towards texture features [10]. It has also been found that this texture
bias can be reduced using simple data augmentation and prolonged training,
leading to a stronger bias towards shape features [14]. Given these characteristics
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of CNNs, important questions arise about the relationship between the double
descent phenomenon and learning of shape and texture features with CNNs.
However, a comprehensive exploration of the relationship between the learning
phases for shape and texture and the various phases of double descent has not
yet been conducted.

In this study, we delve into the relationship between image-specific features
(shape and texture) and the double descent of CNNs. The flow of analysis is
shown in Fig. 1. First, we define the period until the initial increase in test
error as Phase 1, the period until it starts to decrease as Phase 2, and the
subsequent period as Phase 3. Second, we assess the relationship between test
error and the bias toward shape and texture during these phases. Specifically,
we quantify the shape/texture bias of the CNN model by utilizing the method
proposed by Islam et al. [17] during training, and compare the trajectories of
the bias with the progression of double descent. Furthermore, we calculate the
correlation coefficients between the test errors and the bias values in each of
the three phases for a more quantitative evaluation. We also conduct ablation
studies and analyses under various conditions. The contributions of the present
paper are as follows:

– We conduct the first analysis of features of natural images, such as shape and
texture, in the context of the double descent phenomenon in deep learning.
We calculate the model’s bias toward shape and texture and compare the
evolution of this bias with changes in test errors throughout the learning
process.

– As a result, we find that shape/texture bias and test error are often correlated
in Phases 1 and 2. In Fig. 2, a strong correlation is present in Phases 1
and 2, while Phase 3 tends to show no correlation, under Nakkiran’s setting.
Interestingly, the inflection points in the temporal progression of the test error
and the shape/texture bias almost coincide. To the best of our knowledge, we
are the first to report the double descent/ascent phenomena of shape/texture
bias and its synchronization with the double descent phenomena of test error.

– To better understand the phenomena, we perform ablation studies and analy-
ses beyond Nakkiran’s setting, including experiments with various CNN archi-
tectures and different noise levels. One interesting finding is that we observe
double descent/ascent of shape/texture bias even without adding noise to the
labels, a condition where double descent is thought not to occur (Fig. 6).

2 Related Work

2.1 Double descent

A recently discovered phenomenon called double descent [2] shows that as model
complexity increases further, performance improves again. In other words, after
the initial U-shaped curve (transition from underfitting to overfitting), a new
phase of performance improvement appears with increased complexity. Over-
parameterized deep neural networks, theoretically prone to overfitting, some-
times demonstrate superior generalization performance [3,7,11]. Belkin et al. [2]
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Fig. 2. Schematic overview of this study. Top left: The learning curve of the CIFAR-
10 image recognition task under the setting of [21] et al, where epoch-wise double
descent was observed. Test errors were divided into three phases based on their tem-
poral differentiation. Bottom left: This records the model’s shape/texture bias during
the aforementioned learning process. It shows the synchronous changes between test
errors and shape/texture bias. Right: A scatter plot of test error and shape/texture
bias. Especially in Phase 1 and Phase 2, there is a positive correlation between test
error and shape bias, and a negative correlation between test error and texture bias.
In all bias visualization settings, including this one, we use a 5-term moving average
to smooth the data for trend analysis.

first confirmed double descent in decision trees and two-layer neural networks.
Later, Nakkiran et al. [21] showed that it also occurs in deep neural networks and
with more learning epochs. Reports also indicate double descent happens with
increased sparsity due to parameter pruning [12]. Double descent observed with
more parameters, learning epochs, and increased sparsity is called model-wise
double descent, epoch-wise double descent, and sparse double descent, respec-
tively [12,21]. The discovery of these phenomena challenges traditional interpre-
tations related to the design and parameter selection of models. It significantly
impacts both the theory and practice of machine learning. Understanding and
utilizing these phenomena could contribute to the development of more efficient
and versatile machine-learning models.

Model-wise double descent. Yang et al. [29] revisited the classic theory of
the bias-variance trade-off through extensive experiments. They found that while
bias monotonically decreases as classification theory predicts, variance shows
unimodal behavior. This combination of bias and variance suggests three typical
risk curve patterns, aligning with many already reported experimental results.
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Epoch-wise double descent. Several hypotheses about double descent in
the learning process emerge from statistical simulation results. These hypotheses
focus on the characteristics of the data. For example, Stephenson et al. [26]
assume that double descent occurs due to slow yet beneficial features and show
that removing the principal components of data in an ideal linear model can
eliminate the double descent behavior. On the other hand, Pezeshki et al. [22]
find through experiments that features learned at different scales cause double
descent. Moreover, Heckel et al. [13] state that overlapping trade-offs between
multiple biases and variances, due to different parts of the model learning at
different epochs, trigger double descent. They demonstrate that varying learning
rates across layers can mitigate double descent.

Sparse double descent. As the model’s sparsity increases, meaning many
parameters become zero or very small, we first observe performance improve-
ment. However, performance declines after a certain point. Further increasing
sparsity, performance improves again [12,23]. This suggests that moderate spar-
sity, achievable through methods like network pruning, can suppress model over-
fitting and enhance generalization performance.

2.2 CNN for image understanding

Geirhos et al. [10] showed that CNNs trained on ImageNet especially emphasize
image textures for classification. The input images with conflicting shape and
texture information into CNNs and checked whether the output matched shape-
based or texture-based labels. Based on these results, they analyzed whether
CNNs prioritize shape or texture in recognition. Meanwhile, Islam et al. [17]
proposed a method to quantitatively determine the emphasis on shape and tex-
ture in models based on neurons’ latent representations. This method allowed
them to analyze which features CNNs emphasize or ignore. Furthermore, Ge et
al. [9] attempted to model the human visual system and developed the Human
Vision System (HVS). HVS can quantitatively evaluate which features (shape,
texture, color, etc.) play the most crucial role during image classification. Our
research builds on prior studies about CNNs in image understanding and dou-
ble descent. We attempted to reveal the relationship between the acquisition of
knowledge about texture and shape information during CNN learning and the
phenomenon of double descent.

3 Correlation analysis framework of double descent and
shape/texture bias

This section explains how to investigate the relationship between epoch-wise
double descent in deep learning and the shape and texture features of natural
images. Figure 1 outlines this method. First, we train a CNN under conditions
that cause double descent and observe the progression of the learning curve.
Additionally, we quantify the bias towards shape and texture features at each
epoch using the method of Islam et al. [17] and similarly observe its progression
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Fig. 3. Overview of Islam’s method. This figure shows an overview of the process of
calculating the shape and texture bias using the method of Islam et al. [17]

during training. By doing so, we compare the progression of double descent and
bias. Furthermore, for quantitative evaluation, we divide double descent into
three phases and assess the correlation coefficient between test error rate and
shape/texture bias in each phase. The following sections explain the observa-
tion method for epoch-wise double descent, the division of its phases, and the
calculation method for shape and texture bias.

3.1 How to observe double descent

To observe epoch-wise double descent, we use the conditions originally used by
Nakkiran et al. [21]. They have observed double descent under various conditions.
Among these conditions, we adopt the setup involving ResNet18 [11] and CIFAR-
10 [19] as the baseline condition, for our study. In this condition, they added noise
to the labels of the training data. This addition makes the double descent more
pronounced.

3.2 Phases of learning curve with double descent

In this study, in order to analyze the relationship between double descent and
the model’s shape/texture bias, we divide the learning process into the following
three phases based on test error. Phase 1: From the beginning of training until
the test error reaches its minimum. Phase 2: From the end of Phase 1 until the
test error decreases again. Phase 3: From the end of Phase 2 thereafter.

To determine these phases, we utilize a gradient-based method. Specifically,
we monitor the test error across epochs and compute the difference Δe between
consecutive epochs as Δe = |ei − ei+5|. At any given epoch i, if the difference Δe
is less than or equal to a specified threshold θ, the test error has either stabilized
or has improved slightly. We define the interval up to the smallest epoch number
at this time as Phase 1. For Phase 2, encompasses the interval from the epoch
number just after Phase 1 to the smallest epoch where the difference is less
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than or equal to θ. Phase 3 refers to any interval following Phase 2. In our
experiments, the threshold θ is set at 0.1. In the experimental setup used, the
phases are divided by the process described above because empirically the second
descent of a double descent does not have a lower test error rate than the first
descent.

3.3 Quantifying the shape/texture bias of the model

We estimate the number of neurons encoding shape and texture features in the
final convolutional layer of CNNs using the method proposed by Islam et al.
[17], and define this ratio as the model’s shape and texture bias1. The flow for
calculating shape and texture bias is shown in Fig. 3. For quantifying shape and
texture bias, we use the Stylized PASCAL VOC 2012 (SVOC) dataset [8] created
by the AdaIn transfer algorithm[16] from the PASCAL VOC 2012 dataset and
the Describable Textures Dataset [4]. We sample image pairs with common shape
and texture features from the SVOC dataset. Then, we calculate the correlation
coefficients ρshapei and ρtexturei for each feature. For example, we input image
pairs with common shapes into the model and obtain outputs zai and zbi from
neuron zi. We calculate the correlation coefficient ρshapei from these outputs zai
and zbi . We follow a similar procedure to calculate ρtexture. We determine the
proportion of neurons encoding shape and texture features (shape and texture
bias) respectively, by calculating the softmax of the sum of each ρshapei and
ρtexturei and the baseline value (number of neurons |z|). For more details on the
SVOC construction method and the concept of this technique, see Islam et al.
[17] .

4 Experiments

In this section, the following three sets of experiments are conducted: 1) Under
the setting of Nakkiran et al. [21], where epoch-wise double descent was con-
firmed, we compare the progression of test error rates and shape/texture bias.
We also quantitatively investigate correlations in each phase defined in Fig. 3.2.
2) We conduct ablation studies and analyses to deepen the understanding of the
relationship between the double descent of test error and shape/texture bias.
3) We conduct layer-wise analyses by evaluating the shape/texture bias of each
layer and visualizing the filters of the first layer.

4.1 Nakkiran’s setting

Detailed settings. The ResNet18 model with weights pre-trained on Ima-
geNet [6] is trained on CIFAR-10 [19] using label noise and data augmentation.
The label noise involves randomly changing the correct label of the training data
to another label with a probability of p = 0.2. For data augmentation, random

1 https://github.com/islamamirul/shape_texture_neuron.

https://github.com/islamamirul/shape_texture_neuron
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Fig. 4. Comparison of training with randomly initialized
weights (Scratch) and with weights pre-trained on Ima-
geNet (ImageNet). Left top: train and test errors (%).
Left bottom: shape/texture bias (%). Right: Enlarged
view.

Fig. 5. Comparison of CIFAR-
10 and CIFAR-100. Top: train
and test errors (%). Bottom:
shape/texture bias (%).

cropping and flipping are utilized. For cropping, a 4-pixel margin is added to
the top, bottom, left, and right sides of the input image, and then the image is
cropped to a size of 32 × 32. Flipping is applied horizontally. The batch size is
set to 128. The cross-entropy loss is used as the loss function. For optimization,
Adam [18] is used with a learning rate of 10−4. This experimental condition is
consistent with that of Nakkiran et al. [21], where an epoch-wise double descent
phenomenon was observed.

Experimental results. The results comparing the progression of the test
error and the shape/texture bias are shown in Fig. 2. We observed double descent
phenomena of test error and double descent/ascent phenomena of shape/texture
bias. Comparing the trends in the test error and the shape bias, a correlation
is observed with a decrease in Phase 1, an increase in Phase 2, and a decrease
again in Phase 3. There is also an inverse correlation between the test error and
the texture bias. The inflection points in the temporal progression of the test
error and the shape/texture bias almost coincide.

Correlation analysis in each phase. We calculated the correlation coef-
ficients between the test error and the shape/texture bias in Phases 1, 2, and 3
for a more detailed evaluation. The results are shown in Fig. 1. The correlation
coefficient rshape for shape bias in Phases 1 and 2 were 0.898 and 0.771, respec-
tively, indicating a positive correlation. Conversely, the correlation coefficient
rtexture for texture bias in Phases 1 and 2 were −0.829 and −0.797, indicating a
negative correlation. In Phase 3, these correlation coefficients were −0.026 and
0.118, respectively, showing no significant correlation. These results indicate that
there are correlations in Phases 1 and 2, but not in Phase 3.

Synchronization score. To simplify the evaluation, we introduce synchro-
nization score s defined by the average of the absolute values of the two cor-
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Table 1. Correlation coefficients and synchronization scores. Phase: the three phases
divided according to the method defined in 3.2. Epoch range: The start and end epoch
of each phase. rshape: correlation coefficients between shape bias and test error. rtexture:
correlation coefficients between texture bias and test error. s: synchronization score.

Phase Epoch range rshape rtexture s

Phase 1 2 - 12 0.898 −0.829 0.863

Phase 2 12 - 41 0.771 −0.797 0.784

Phase 3 41 - 1,000 −0.026 0.118 0.072

Table 2. Correlation coefficients and synchronization scores for CIFAR-10 and CIFAR-
100 datasets.

Dataset Correlation in Phase 1, 2 Correlation in Phase 3
rshape rtexture s rshape rtexture s

CIFAR-10 0.778 −0.778 0.778 −0.026 0.118 0.072

CIFAR-100 0.133 −0.118 0.126 0.162 0.324 0.227

Fig. 6. Learning process under various label noise conditions. The label noise propor-
tion p is varied at 0, 0.2, and 0.6. While double descent is not observed in test error
when p = 0, we observed double descent/ascent phenomena in shape/texture bias.

relation coefficients, i.e., s = 1
2 (|rshape| + |rtexture|). A higher score indicates

a stronger synchronization between test error and shape/texture bias. In Fig.
1, strong synchronization with scores greater than 0.7 is observed in Phases 1
and 2.

4.2 Ablation studies and analyses

To better understand the relationship between the double descent of test error
and the double descent/ascent of shape/texture bias, we perform ablation studies
and analyses beyond Nakkiran’s setting. Specifically, we conduct experiments
with respect to parameter initialization, dataset selection, architecture and label
noise.

Parameter initialization. To investigate the effect of parameter initializa-
tion, this experiment compares training with randomly initialized weights and
with weights pre-trained on ImageNet. The results are shown in Fig. 4. We



104 S. Iwase et al.

Table 3. Correlation coefficients and synchronization scores for different label noise
proportion p. Results for p = 0 are not reported because double descent was not
detected.

p Correlation in Phase 1, 2 Correlation in Phase 3
rshape rtexture s rshape rtexture s

20% 0.778 −0.778 0.778 −0.026 0.118 0.072

60%−0.560 0.598 0.579 0.122 −0.142 0.132

observed three phenomena. First, in both cases, the texture/shape bias fluctu-
ates synchronously with the double descent phenomenon of test error, as shown
in the enlarged view on the right side of the figure. Second, when random ini-
tialization is used, the absolute change of the bias is smaller. This is due to
the residual effect of the Gaussian initialization. Third, when training with pre-
trained weights, the transition to Phase 2 is faster. This is because the training
error decreases faster. Overall, we observed similar phenomena in both cases.
Dataset. This experiment examines the effect of changing the training dataset.
We report results comparing the CIFAR-10 and CIFAR-100 datasets in Fig. 5
and the quantitative evaluation in Fig. 2. We observed synchronization scores
larger than 0.7 in Phase 1 and 2 on both datasets. The CIFAR-100 results show
a corresponding correlation to the CIFAR-10 results: the correlation coefficients
with respect to shape and texture bias were 0.778 and −0.778 for CIFAR-10,
respectively; correspondingly, they were −0.689 and 0.745 for CIFAR-100. This
suggests that a similar dataset shows the same synchronization between test
error and shape/texture bias.
Label noise. This experiment varies the proportion of label noise at 0%, 20%,
and 60%. The results are shown in Fig. 6 and Fig. 3. As the trend of the test error
rate reveals, the magnitude of double descent increases as the label noise grows.
However, when observing the shape/texture bias, there is a clear trend regardless
of the label noise ratio. Especially in the texture bias, as the label noise increases,
the shift from rising to declining seems to be delayed. This suggests that the
progression of bias may slow down as label noise increases. More interestingly,
when the noise proportion is 0%, double descent was not observed in test error,
but we observed double descent/ascent phenomena of shape/texture bias (as
colored in yellow in the figure). This indicates the possibility that there are
learning phases even in parts where double descent was thought not to occur.
Architecture. This experiment examines CNN architectures other than
ResNet. Specifically, we use MobileNetV2 [25], DenseNet121 [15], and Effecient-
NetB0 [27]. We show the results in Fig. 7 and Fig. 4. The results reveal a mod-
erate synchronization when using MobileNetV2 and DenseNet121. However, we
observed no synchronization with EfficientNetB0. This is because there is a spike
at around epoch 10 in Phase 1 that significantly reduces the synchronization
score. This bias spike is currently an unknown phenomenon but could be related
to the loss spike [30], suggesting room for further discussion from the perspective
of the stochastic learning process.
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Fig. 7. Comparison of learning processes using different architectures. Left:
MobileNetV2, Center: DenseNet121, Right: EfficientNetB0.

Table 4. Correlation coefficients and synchronization scores for different architectures.

Architecture Correlation in Phase 1, 2 Correlation in Phase 3
rshape rtexture s rshape rtexture s

MobileNet −0.506 0.511 0.509 −0.016 0.036 0.026
DenseNet 0.326 −0.322 0.324 0.293 −0.289 0.291
EfficientNet −0.029 0.000 0.014 0.316 −0.343 0.330

Fig. 8. The shift of biases during the learning process in each layer consisting ResNet18.
Using the convolutional layers of each block consisting ResNet18, including the final
convolutional layer (17th layer), biases towards shape and texture are calculated using
the same method as in 3.3.

4.3 Layer-wise analyses and visualization

Here, we conduct layer-wise analyses to investigate which layers are influenced
by the bias. First, we analyze the shape/texture bias for hidden layers. Second,
we visualize the filters of the first convolution layer in each phase.

Shape/texture bias of hidden layers. Figure 8 shows the shape/texture
bias of 5th, 9th, 13th and 17th layers of ResNet18. These results reveal that
in convolutional layers, except for the 17th layer, there is no clear transition
in shape/texture bias. This suggests that each layer may have unique inflection
points and that the last few layers have a direct impact on test error.
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Fig. 9. Visualization of the 1st layer in the learning process: In the setting described
in Fig. 4.1, we visualize the 1st layer in the Epoch (13th, 42nd Epoch) and the 1,000th
Epoch, where the double descent is divided into 3 Phases. The 1st layer at the 1,000th
Epoch is visualized.

Filter visualization. Figure 9 visualizes the filters of the first convolution
layer of ResNet18 at three points: the boundary between Phase 1 and Phase 2,
the boundary between Phase 2 and Phase 3, and the 1,000th epoch. Although
there are slight changes, the visualization confirms no significant changes in the
filters. Considering the results of Fig. 4.1, this suggests that learning in shallow
layers might not be affected by changes in shape/texture bias. This is consistent
to the result of Fig. 8 where we observe a clear transition only on the 17th layer.

5 Discussion

In this study, we focused on shape and texture features in natural images and
analyzed their relation to the double descent phenomenon. We found that under
certain conditions, there is a double descent/ascent of shape/texture bias syn-
chronized with a double descent of test error. In these conditions, there tends to
be a correlation between the test error and shape/texture bias until the second
descent in double descent of test error. However, this correlation disappears once
the second descent begins. We discovered this trend by dividing double descent
into three phases and quantitatively evaluating the correlations. In subsequent
experiments, we observed the synchronization of the bias and test error only in
the final convolutional layer. This observation suggests that the deeper layers of
the CNN may exhibit learning trends different from those of the intermediate
layers.

Previous studies on double descent have proposed the hypothesis that it
might be influenced by multiple features present in data. But do features like
shape and texture directly cause the double descent phenomenon of test error?
If such features were truly causing this phenomenon, then double descent behav-
ior and bias towards shape and texture should show a more clear pattern. For
example, shape bias might peak first, then decrease, followed by texture bias
peaking. However, in reality, shape and texture biases show an inverse correla-
tion. Therefore, we believe that the phenomenon is more complex than it seems
and that some learning tendencies causing double descent affect CNN’s feature
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extraction tendencies, showing a correlation between double descent and bias
progression.

From a practical perspective, when pre-trained on ImageNet, the possibility
is suggested that test error may be minimized around epochs where bias is
at its maximum or minimum. This implies that observing this bias could help
determine the optimal number of training epochs. Furthermore, it was shown
that factors causing double descent might also affect CNN’s bias towards shape
and texture features, especially in deeper layers.

In this study, we focused on the learning process of image features like shape
and texture in CNNs and examined their relation to the double descent phe-
nomenon under various conditions. There are many unexplored areas in deep
learning, and double descent is one of them. This research highlights the impor-
tance of a deeper understanding of the deeper layers of deep learning, and it is
considered to provide a promising direction for future research. However, given
the complexity of neural network architecture, there are still unknown phenom-
ena that need to be investigated in future research.

6 Conclusion

In this paper, inspired by previous studies on epoch-wise double descent, we
focused on the relationship between image-specific features and double descent.
We quantified the model’s bias toward shape and texture to compare it with the
test error. As a result, we discovered double descent/ascent of shape/texture bias
synchronized with double descent of test error under Nakkiran’s setting. Addi-
tionally, quantitative evaluations confirmed this correlation during the period
from the initial decrease to the full increase in the test error. Further, we observed
double descent/ascent of shape/texture bias in a condition without label noise,
where double descent was thought not to occur. Layer-wise analyses deepened
the understanding of the phenomena.

Limitation and future work. To make a connection to previous studies,
we chose Nakkarian’s setting as a starting point for investigation. We believe
this was the best choice for discussing the relationship between test error and
shape/texture bias because it is the simplest setting where epoch-wise double
descent of test error can be reproduced. However, this remains an investigation
under large-scale training as future work. As recent computer vision studies focus
more on large-scale training, it would be interesting to study the scaling of dou-
ble descent. Furthermore, extending bias quantification methods to modalities
other than images, such as natural language and speech, is also challenging but
promising to deepen the understanding of the double descent/ascent of bias in
deep learning.
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Abstract. Accurate medical image segmentation is crucial for early
diagnosis in clinical medicine. However, neural networks for medical
segmentation often overlook the combination of frequency and spatial
domains, and the employed attention mechanisms treat each channel
neuron equally, forming 1D or 2D weights. Such an approach fails to
compute true 3D weights effectively. The SimAM paper mentions 3D
attention, but its final expression formula suggests that the results are
related only to the global mean and variance, without considering local
information. We propose a multi-frequency attention model in multi-
scale parameter-free attention (LungSSFNet) for lung segmentation in
cystic adenocarcinoma datasets to address these challenges. The pro-
posed model includes three key components: the parameter-free atten-
tion mechanism (S), the improved feature concatenation method (U),
and the multi-scale, multi-frequency attention module (SSF ). The U
component improves upon traditional feature concatenation by provid-
ing a more effective method of capturing differences between deep seman-
tic and shallow features. Thirdly, the SSF component is a multi-scale,
multi-frequency attention module based on parameter-free 3D weights.
This provides module that can capture the contours of small targets and
tissue boundaries significantly. To ensure that the optimal model is not
solely a result of parameter tuning, we leverage the automatic configu-
ration module of nnU-Net to determine the parameters. These param-
eters will remain fixed during subsequent model evaluation. Through
extensive experiments, we demonstrated that LungSSFNet consistently
outperforms the state-of-the-art models by 1–2% in the segmentation of
cystic adenocarcinoma. Our LungSSFNet code is available at https://
github.com/zx0412/LungSSFNet.
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1 Introduction

Cancer is the principal cause of death in the world [1]. Lung cancer is the most
common and among the deadliest cancers [2,3], killing more people than the
bladder, brain, breast, colorectal, prostate, and stomach cancers combined [4–6].
It accounts for about 1.8 million new cases and more than 1.4 million deaths
every year worldwide [1,7].

Lung cancer is often diagnosed only at critical stages. However, early diag-
nosis of lung cancer is fundamental to improving survival rates by enhancing
treatment decisions [2,8]. It is estimated that the five-year survival rate for
patients has increased by over 50% due to early diagnosis and timely treatment
of lung cancer [9,10]. For prognostic imaging of lung cancer, pulmonologists
and radiologists recommend examinations such as computed tomography (CT),
magnetic resonance imaging (MRI), and positron emission tomography (PET)
[9,11]. Both MRI and PET have limitations in detecting pulmonary nodules [12].
Specifically, MRI may miss small pulmonary metastases [3]. CT, particularly low-
dose CT, can significantly reduce the incidence of advanced lung cancer, thereby
markedly decreasing lung cancer mortality rates [13]. In addition to being most
sensitive to small calcified pulmonary nodules [5,14,15], CT has other advan-
tages due to its high spatial resolution including low noise and distortion, speed,
non-invasiveness, cost-effectiveness, and widespread availability [9,11,16].

Lung cancer typically presents as solid masses or nodules on imaging studies,
with 2 − 16% of lung cancers exhibiting cavitary features [17], often presenting
as thick-walled eccentric cavities. Research indicates that when the cavity wall
thickness is ≤ 4 mm, 92% of the lesions are benign; when the wall thickness is
≥ 15 mm, 95% of the lesions are malignant. For wall thicknesses between 4 mm
and 15 mm, 51% of the lesions are benign, and 49% are malignant [18].

Thin-walled cavitary lung cancer is a rare type of lung cancer that appears
as a lesion with thin-walled cavities on chest CT scans. It is extremely rare clin-
ically and has been scarcely reported both domestically and internationally. In
the International Early Lung Cancer Action Program (I-ELCAP), only 3.7% of
lung cancers were identified as thin-walled cavitary lung cancer [17]. This type
of lung cancer was first reported by Womack NA in 1940 [18] and has since been
variously named, including "thin-walled cavitary lung cancer," "bullous lung
cancer," "lung cancer associated with cystic air spaces," "cystic lung cancer,"
and "cystic cavity-type lung cancer." Currently, there is no standardized termi-
nology for this condition globally. This type of lung cancer is commonly charac-
terized by the presence of thin-walled air cavities. These cavities can originate
from pre-existing structures such as pulmonary bullae, lung cysts, or bronchiec-
tasis. Alternatively, they may result from necrosis of the lung cancer lesion, which
is expelled through the bronchi. In this paper, we collectively describe these as
Cystic Adenocarcinoma. Moreover, Cystic Adenocarcinoma shares imaging char-
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acteristics with cavitary lesions, making clinical diagnosis challenging and prone
to misdiagnosis or missed diagnosis [19].

In the field of lung cancer, the combination of pulmonary nodule detection
and deep learning has achieved remarkable results. This approach is not only the-
oretically robust but also widely applied in clinical practice. However, another
type of lung cancer, cystic adenocarcinoma, currently relies on traditional CT
imaging interpreted by experienced physicians. Addressing this challenge, recent
advances in deep learning [48,49] have paved the way for its application in med-
ical image segmentation. In particular, U-Net has become the fundamental net-
work structure for medical segmentation due to its skip connections, which effec-
tively utilize both deep semantic features and shallow features.

With the widespread adoption of attention mechanisms in recent years,
numerous models combining U-Net and attention mechanisms have been pro-
posed, such as Attention U-Net [26] and Focus U-Net [47]. Nevertheless, due to
the inherent characteristics of medical images, the performance of these models
varies significantly across different datasets. Therefore, exploring a model with
practical clinical application value remains challenging.

To fully leverage the characteristics of medical imaging, particularly the fre-
quency domain properties of medical images [21], and to utilize multi-scale fea-
tures that capture structures and details at different scales-thereby improving
diagnostic accuracy, reducing noise, adapting to various imaging techniques, and
meeting clinical requirements [23]-we propose the Multi-Frequency in Multi-Scale
SimAM Attention (SSF). This is inspired by SimAM [20], which provides three-
dimensional, parameter-free attention weights, allowing us to increase recogni-
tion accuracy while keeping the parameter count low. Additionally, to enhance
the fusion of rich deep semantic features with shallow features, we introduce a
SimAM-based Subtraction Unit, drawing inspiration from M2SNet [23].

In the clinical application of cystadenocarcinoma, our methods demonstrate
an approximate 3% accuracy improvement over nnUnet [28] and MADGNet [21],
with our model (Lung-SSFNet).

2 Related Works

In this section, we briefly discuss representative works on network architectures
and plug-and-play attention mechanisms in the context of semantic segmenta-
tion.

2.1 Model Architecture

In recent years, various advanced network architectures have been developed for
CT medical segmentation. A prominent architecture is the U-Net [22], which has
gained widespread popularity due to its effective encoder-decoder structure that
captures context and precise localization. Following this, the nnU-Net [28] has
been introduced as a self-configuring method that adapts to different datasets
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and tasks, achieving state-of-the-art performance. SegNet [32] and ResNet [33–
35] are also notable, with the former being an encoder-decoder architecture for
image segmentation, adapted for medical imaging tasks. Due to the relatively
simple deployment of the nnU-Net [28] network architecture and its powerful pre-
processing capabilities, which automatically generate suitable hyperparameters
based on the dataset without the need for extensive tuning to find an optimal
model, we adopted this network structure. Without altering the parameters, we
validated the feasibility of our proposed algorithm using this framework.

2.2 Attention Mechanisms

Attention mechanisms play a crucial role in enhancing the performance of net-
work architectures by focusing on the most relevant parts of the input data. For
instance, Channel Attention (CA) mechanisms, such as Squeeze-and-Excitation
Networks [36], improve representational power by emphasizing important chan-
nels. Spatial Attention (SA) mechanisms focus on spatial locations that are criti-
cal for the task, such as Non-Local Networks [37], which enhance the model’s abil-
ity to capture long-range dependencies by considering the relationships between
all pixel pairs. Combining both channel and spatial attention, the Convolutional
Block Attention Module (CBAM) [38] and the Parameter-Free Attention Module
(SimAM) [20] effectively capture rich contextual dependencies.

Recently, multi-scale features have been extensively applied in semantic seg-
mentation to capture features at various resolutions, often in conjunction with
attention mechanisms [39,40]. These mechanisms have demonstrated the effec-
tiveness of enlarging the receptive field to capture multi-scale features [41–44].

Multi-frequency attention mechanisms have gained attention for their ability
to leverage frequency domain information, which is crucial for capturing texture
and boundary details that might be missed in the spatial domain [45,46]. For
instance, MADGNet [21] proposed a generalized MFMSA block based on 2D
DCT basis functions.

However, current medical image segmentation methods often focus on multi-
scale and multi-frequency aspects separately, without simultaneously consider-
ing the distinct information provided by the frequency and spatial domains. To
address this limitation, we integrate the frequency domain and spatial domain
with multi-scale features and 3D attention [20,21,30]. Enhancing the model’s
ability to segment small areas with significant inter-class and intra-class varia-
tions is crucial for the clinical application of cystic adenocarcinoma.

3 Methods

Our method is divided into three parts. The first part presents the overall model
architecture. The second part introduces the SimAM-based Subtraction Unit.
The third part details the Multi-Frequency in Multi-Scale SimAM attention.
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Fig. 1. (a) The overall architecture of the proposed LungSSF mainly comprises the
"block" and "SSF" modules. The "block" is composed of two CONV2D layers: the
first CONV2D layer has a 3x3 kernel with a stride of 1, and the second has a 3x3 ker-
nel with a stride of 2. (b) First, the "SSF" obtains multi-scale features through pooling
with different convolution kernel sizes and SimAM. These multi-scale features are then
represented in the spatial domain (Spatial Attention) and the frequency domain (Dis-
crete Cosine Transform). Finally, the characterized multi-scale features are aggregated
using the Attention Fusion and Average functions.

3.1 Model Architecture

Our proposed model, LungSSFNet, integrates multi-scale and multi-frequency
attention mechanisms to enhance the segmentation performance of cystic ade-
nocarcinoma. The overall architecture is depicted in Figure 1.

3.2 Fusion of Shallow Features And Deep Semantic Features Unit

Motivation: In medical image segmentation, integrating attention mechanisms
can significantly enhance convolution performance [24–26]. In U-Net [22], the
fusion of deep semantic features and shallow features involves a significant
amount of shallow features in the concatenation operation. This leads to high
computational costs with minimal contributions. M2SNet [23] proposes a fusion
method by subtracting deep semantic features from shallow features, but this
approach overlooks the advantages of combining both types of features as done
in U-Net. Our method incorporates SimAM (whose function will be explained
in Subsection 3.2) after the shallow features and then fuses them with deep
semantic features through the Subtraction Unit and feature concatenation. We
define this process as the two operators S and U in Figure 1. The entire process
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can be divided into the following two steps: 1) Feature Extraction, 2) Fusion
Unit.

Feature Extraction
It has been suggested that low-level features require more computational

resources due to their larger spatial resolutions but contribute less to overall
performance compared to high-level features [27]. Based on this idea, we define
deep semantic features and shallow features as XDF and XSF in Figure 1. Using
nnU-Net [28] as the basic network structure, as shown in Figure 1, each Conv2D
consists of two 3 × 3 convolutions with a stride of 1, and Each blocki (i =
1, . . . , 10) consists of two 3 × 3 convolutions: the first with a stride of 1 and the
second with a stride of 2. After passing through the convolution layers up to
block10, significant deep semantic features are formed.

Fusion Unit
In each convolution layer, we introduce two learnable parameters α and β.

Yi is the result formed after the operations S and U . The specific calculation
formula is as follows:

Yi = αi × Conv(Xi) + βi × Conv(|XDFi
� XSFi

|) (1)

where Cat(·) denotes 2D convolution with a kernel size of 3, Up(·) denotes
interpolation, and SimAM(·) represents parameter-free attention. Here, � is
the element-wise subtraction operation, | · | calculates the absolute value, and
Conv(·) denotes 2D convolution with a kernel size of 3.

Xi = Cat(Up(SimAM(XDFi
)), XSFi

) (2)

By adding a subtraction operation to the traditional feature concatenation
of XDF and XSF , the edge and contour information in the image can be high-
lighted, helping the model capture important details in the image. SimAM
assigns different weights to each neuron in XDF , similar to the formation of
human visual features.

3.3 Multi-Frequency in Multi-Scale SimAM Attention

Motivation: Existing attention mechanisms generate 1-D or 2-D weights from
feature X, which are then extended to channel or spatial attention [20]. Human
visual information acquisition occurs across multiple scales, and in medical imag-
ing, representation in the frequency domain exhibits greater variance compared
to the spatial domain [21]. SimAM [20] leverages the latest findings in visual
neuroscience, defining the energy function of neurons to form 3-D weights, cre-
ating parameter-free attention. However, from the final derived formula, it is
evident that it ultimately only takes into account the global. We define this as
the Multi-Frequency in Multi-Scale SimAM Attention (SSF ) module to address
this challenge. The overall framework of the SSF module is shown in Figure 1.
The SSF module can be divided into the following three steps: 1) Multi-Scale
SimAM Attention, 2) Combining Frequency And Spatial Domain Information,
3) Attention Fusion.
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Multi-Scale SimAM Attention In the human brain, certain active neu-
rons can inhibit the activities of surrounding neurons, a phenomenon known as
spatial suppression [29]. In other words, this translates to determining which
neurons should be given higher priority during visual processing. The simplest
approach is identifying the linear separability of the target neuron from other
neurons. Based on this concept, the energy function for a neuron can be defined
as follows:

et(wt, bt,y, xi) = (yt − t̂)2 +
1

M − 1

M−1∑

i=1

(yi − x̂i)2 + λw2
t (3)

To linearly classify the target neuron t̂ = wtt + bt and other neurons x̂i =
wtxi+bt, with labels yt = −1 and yo = 1 respectively. Here, t̂ and x̂i are elements
of the input feature map X ∈ R

C×H×W in a single channel. The optimization of
wt and bt is performed using the Mean Squared Error (MSE) loss as the objective
function. Additionally, a regularization term is included, as shown in Equation
(3), where λ is the regularization constant and M = H × W .

e∗
t =

4(σ2
t + λ)

(t − μt)2 + 2σ2
t + 2λ

(4)

Assuming that, apart from the target neuron t, the other neurons in the chan-
nel have a consistent pixel distribution. When the energy function et reaches its
minimum, the corresponding wt and bt constitute the optimal linear classifica-
tion function. A smaller value of the energy function indicates greater linear
separability between t and xi, thereby signifying the higher importance of t.
There is a mathematical solution for Equation (4). Consequently, the term 1/et

is passed through a sigmoid activation function to represent the importance.
Finally, this computed weight is multiplied element-wise with the input feature
map to obtain the attention weight map, as shown in Equation 6.

Y s
i = Conv2D × 2 (avgPools(Yi)) (5)

To generate multi-scale features from the input feature Yi, we use pooling
layers with varying kernel sizes and strides. Specifically, for each scale s, the
average pooling (avgPools) kernel size and stride are both set to 2(s−1), produc-
ing Y s

i , as shown in Equation 5. However, for the case when s = 3, we bypass
the avgPool and directly apply SimAM. In Equation 6, E is the result of e after
being computed by all neurons.

SimAM(Y s
i ) = σ

(
1
E

)
� Ys

i , (6)

Combining Frequency And Spatial Domain Information
To capture image attention in the frequency domain, we utilize the app-

roach described in [21], as illustrated in Equation 7. Here, (uk, vk) rep-
resent the frequency indices associated with Ds,k

i . Additionally, the 2D



Cystic Adenocarcinoma Segmentation 117

DCT basis images at the s-th scale branch are defined as Duk,vk

h,w =

cos
(

πh
Hs

(
uk + 1

2

))
cos

(
πw
Ws

(
vk + 1

2

))
, employing a top-K selection strategy as

per [50]. Following this, each Ds,k
i is reduced to Zavg, Zmax, and Zmin through

Global Average Pooling, Global Max Pooling, and Global Min Pooling, respec-
tively. These frequency statistics are then aggregated to form a channel attention
map at the s-th scale branch. This is achieved by employing two fully-connected
layers, W1 ∈ R

Cs×Cs
r and W2 ∈ R

Cs
r ×Cs , where r is the reduction ratio.

Ds,k
i =

Hs−1∑

h=0

Ws−1∑

w=0

(Y s
i )D

uk,vk

h,w (7)

To obtain image attention in the spatial domain, we refer to the method
proposed in [30], as shown in Equation 8.

As
i = SA(Y s

i ) (8)

The input feature map Y s
i , with dimensions b×c×w×h, undergoes two par-

allel pooling operations: MaxPooling (Smax) and AveragePooling (Savg). Both
operations produce feature maps of size b × 1 × w × h. These pooled feature
maps are concatenated along the channel axis to form a combined feature map,
[Savg;Smax], with dimensions b × 2× w × h. This combined feature map is then
convolved with a 7×7 kernel to produce a feature map of size b×1×w×h. The
resulting feature map is passed through a sigmoid activation function, σ(·), gen-
erating the spatial attention map, AttSA, which has dimensions b×1×w×h. The
spatial attention map is then element-wise multiplied with the original input fea-
ture map Y s

i , resulting in the refined feature map As
i with dimensions b×c×w×h.

This refined feature map As
i emphasizes the important spatial regions of the

input feature map, enhancing the network’s focus on relevant areas.As detailede
in supplementary material.

Attention Fusion
The frequency and spatial domain recalibrated feature maps Ds,k

i and As
i

are used to determine discriminative boundary cues with different scales in the
frequency and spatial domains. At this stage, we introduce two learnable param-
eters (αs

i and βs
i ) for each scale branch to control the information flow between

the frequency and spatial domains, respectively, as shown in Equation 9.

F s
i = Conv

(
αs

i D
s,k
i + βs

i As
i

)
, (9)

First, Fs
i is reshaped to match the shape of Yi. Then, F is aggregated at

different scales using the aggregation function A to examine the noise present in
medical images. After aggregation, the summed result is divided by the number
of scale branches, and finally, it is added to Yi to obtain the final output Yi.

Yi = Yi +A(F s
i , Ups(F

s
i )) (10)
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4 Experiments

Our experimental description encompasses five aspects: dataset introduction,
selection of evaluation metrics, experimental setup, experimental results, and
ablation study results.

4.1 Datasets

The dataset used in this experiment was obtained from a public hospital, Ningbo
Medical Center Lihuili Hospital, Ningbo, China, and was annotated by profes-
sional thoracic surgeons. The dataset comprises a total of 342 images, with 272
malignant cases and 70 benign cases. The dataset was divided into training,
validation, and test sets in a ratio of 245:62:35. As detailede in supplementary
material.

The cystic adenocarcinoma datasets exhibit significant inter-class and intra-
class variations. The dataset is derived from slices obtained from 3D instruments,
encompassing the Axial Plane, Coronal Plane, and Sagittal Plane. The Axial
Plane can display cross-sectional images of the lungs, facilitating the observa-
tion of lung structures and lesions. Therefore, only the Axial Plane was selected
during the dataset filtering process. However, since the images come from differ-
ent medical devices, their shapes are inconsistent and fall into the following four
categories: (512, 512), (1024, 1024), (1445, 927), and (1284, 594). As detailed in
supplementary material.

4.2 Evaluation Metrics

There are many popular metrics used in different medical segmentation branches.
In the field of CT medical segmentation, commonly used evaluation metrics
include IoU and DSC [21,23,30,53], as well as accuracy, precision, recall, and
F1_Score [51–54]. Accuracy and recall are particularly significant in clinical
applications, as they are directly correlated with missed diagnoses and misdi-
agnoses. The IoU and DSC measure the performance of a model at the pixel
level.

4.3 Experiment Settings

We run all the experiments on a workstation with Ubuntu 20.04.6 operating
system, RTX4090 GPU with 24 GB memory, 62 GiB of RAM, 13th Gen Intel(R)
Core(TM) i7-13700K (16 cores), and PyTorch 2.2.2 deep learning framework for
implementation. In the training phase, we use the Stochastic Gradient Descent
(SGD) optimizer with Nesterov momentum, an initial learning rate of 0.01, a
weight decay of 3e-5, and a momentum of 0.99. The optimizer is combined with
a polynomial decay learning rate scheduler to adjust the learning rate during
training. The batch size is empirically set to 7, considering the memory capacity
of the GPU. All the experiment networks are trained for 500 epochs to ensure
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model convergence. Moreover, we employ the Binary Cross-Entropy Loss (BCE)
and soft dice loss function, which is a well-known loss function in medical image
segmentation, to optimize the training process of the proposed LungSFFNet.

4.4 Comparison With SOTA Models

As shown in Table 1, LungSSFNet achieved the highest segmentation perfor-
mance in various clinical environments compared to other models. Specifically,
when compared to nnU-Net [28], which achieved the second-highest segmenta-
tion performance in most modalities, LungSSFNet improved the DSC and mIoU
by an average of 1.7% and 1.14%, respectively, in the malignant classification.
In the benign classification, LungSSFNet improved the DSC and mIoU by an
average of 0.74% and 0.42%, respectively. Additionally, compared to MADGNet,
which uses Multi-Frequency in Multi-Scale Attention, LungSSFNet improved the
DSC and mIoU by an average of 1.0%.

Table 1. Segmentation results in model performance

Model Label IoU DSC

Unet[22] malignant76.04 70.59
benign 89.62 88.23

M2SNet[23] malignant69.69 62.15
benign 84.34 83.23

TANet[31] malignant74.63 68.68
benign 89.83 88.57

MADGNet[21] malignant79.67 74.19
benign 90.25 89.33

nnUnet[28] malignant79.91 73.54
benign 92.61 91.30

LungSSFNet(ours)malignant81.0575.15
benign 93.0392.04

As shown in Table 2, LungSSFNet achieved the highest segmentation per-
formance across various models. In particular, compared to nnU-Net, which
achieved the second-highest segmentation performance, LungSSFNet improved
the accuracy (Acc) and F1-Score (F_S) by 2.84% and 1.88%, respectively.
Additionally, when compared to M2SNet, which uses multi-frequency atten-
tion, LungSSFNet improved both precision (Pre) and recall (Rec) by 3.85%
and 3.30%. To evaluate the model’s performance, we tested each model on the
same dataset. As a result, LungSSFNet showed the highest performance with a
precision (Pre) of 100.00%. Compared to TANet, the performance gap was sig-
nificant. Nevertheless, LungSSFNet exhibits significant improvement in all met-
rics. These results indicate that models which do not consider Multi-Frequency
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in Multi-Scale SimAM Attention dimensions simultaneously cannot comprehend
intricate anatomical knowledge.

Table 2. Segmentation results in clinical application

Model Acc Pre Rec F_S

Unet[22] 93.93 96.15 96.15 96.15
M2SNet[23] 93.93 100.00 92.85 96.29
TANet[31] 90.90 92.30 96.00 94.11
MADGNet[21] 93.75 96.15 96.15 96.15
nnUnet[28] 93.93 96.15 96.15 96.15
LungSSFNet(ours)96.77100.0096.1598.03

Table 3. Ablation experiments of different attention mechanisms in the same frame-
work

Model Label IoU DSC

lungCBAM malignant 78.42 71.79
benign 92.61 91.13

LungSimAM malignant 79.72 72.29
benign 92.73 91.56

LungSSF1 malignant 71.48 66.66
benign 90.14 89.13

LungSSF2 malignant 78.99 72.12
benign 93.00 91.97

LungSSFNet(finally)malignant81.05 75.15
benign 93.03 92.04

4.5 Ablation Study On LungSSFNet

We adopted nnU-Net [28] as the network architecture and named it "Lung".
Subsequently, we experimented with attention mechanisms such as CBAM [38]
and SimAM [20]. As shown in Table 3, the results indicate that LungSimAM
slightly outperforms LungCBAM. Due to the significant advancements in the
application of multi-scale and multi-frequency techniques in the medical segmen-
tation field [21,23,30,43], we combined Multi-Frequency in Multi-Scale SimAM
Attention with the "LungSimAM" network architecture, resulting in LungSSF1.
However, the performance significantly declined. The core idea in [54] is that
deep semantic information extracted from deeper convolutional layers is more
abundant compared to shallow features extracted from shallower layers. How-
ever, the traditional U-Net network architecture wastes a considerable amount of
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computational resources on shallow features, which provide minimal image char-
acteristics. By following this guiding principle and further ablation, we finally
obtained LungSSFNet. In LungSSF2, the SSF module includes 4 blocks, and in
LungSSF1, the SSF module includes 7 blocks. We found that increasing the num-
ber of SSF blocks decreases the model performance. Through further ablation,
we concluded that having 4 SSF modules is optimal.

5 Conclusion

In conclusion, we would like to propose a novel medical image segmentation
model called LungSSFNet, which can be used in clinical settings. One of the
core components of our algorithm is the construction of Multi-Frequency and
Multi-Scale SimAM Attention, which we refer to as the SSF block. Since SimAM
primarily considers global features without incorporating local information into
the attention weights, we integrated a spatial attention module that focuses
on local features within the SSF block, termed the SA block. Through rigor-
ous experiments, and leveraging the preprocessing capabilities of nnU-Net, we
demonstrated that without tuning the parameters, the accuracy of our approach
in clinical settings surpassed the state-of-the-art by 1-2 percentage points.
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Abstract. Chip surface defect detection is a critical research task and a
vital component of integrated circuit quality inspection. With advance-
ments in artificial intelligence, deep learning-based defect detection meth-
ods have become prevalent. However, due to the complex morphology of
chip defects and their susceptibility to environmental background inter-
ference, precisely detecting micro-scale and multi-scale chip defects in
large-scale, high-resolution images remains a significant challenge. In
this paper, we propose a Multi-Scale Dense Network (MSDNet) for
chip surface defect segmentation. The proposed MSDNet utilizes an
encoder-decoder framework, incorporating multi-scale convolution mod-
ules, attention modules, and a dense node module to enhance defect
segmentation performance. Additionally, we construct a chip defect
dataset and conduct extensive experimental verifications. The exper-
imental results demonstrate that the proposed MSDNet achieves an
85.01% defect segmentation accuracy on the chip defect dataset. Com-
pared to the baseline, our proposed MSDNet significantly improves defect
segmentation performance and ensures more precise segmentation of
defect details.

Keywords: Chip surface defect detection · Defect segmentation ·
Deep learning · Multi-scale Features · Dense connection

1 Introduction

In the field of computer vision, detecting defects on chip surfaces is a critical
research task and a fundamental aspect of integrated circuit quality inspection.
Chips are essential components in numerous electronic products. Due to factors
such as production techniques, equipment, and materials, defects often appear
on chip surfaces. These defects can lead to performance degradation and func-
tional abnormalities, consequently impacting the overall product performance.
Identifying chip surface defects not only ensures chip quality but also enhances
the reliability and stability of electronic products. Therefore, the detection of
chip surface defects holds significant value.

Microscope-based chip defect detection methods [21] demand significant man-
power and time, rendering them inefficient. Traditional image processing-based
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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defect detection methods [6,22] rely on manually designed features and are lim-
ited by factors such as lighting and environment conditions. These methods
exhibit poor generalization performance and are unsuitable for complex indus-
trial scenarios. In contrast, deep learning methods [4,8,9] enable autonomous
feature learning, mitigating performance degradation caused by human factors.
These methods have been increasingly adopted in industrial production, greatly
improving the efficiency and accuracy of chip defect detection.

Current chip defect detection methods based on deep learning predominantly
utilize convolutional neural networks (CNNs) to learn defect characteristics and
determine locations using detection boxes, such as SSD [14] and YOLOv3 [18].
However, these approaches face challenges in accurately determining defect size,
shape, and other characteristics. Segmentation models, such as FCN [15] and
PSPNet [28], can achieve defect segmentation at the pixel level. Nevertheless,
these methods have limitations in segmenting multi-scale chip surface defects.
Firstly, as the network depth increases, it is difficult for these models to cap-
ture detailed information from feature maps. These networks often overlook tiny
defects, resulting in poor performance when segmenting microscale defects that
occupy only a few pixels. Additionally, some chip defects exhibit a high degree of
similarity to the background. When defect characteristics are not pronounced,
these methods tend to miss edges and details, leading to inaccurate segmenta-
tion. Furthermore, due to the lack of connections between different layers, exist-
ing segmentation networks cannot effectively leverage contextual information,
resulting in poor segmentation of multi-scale defects.

In this paper, we propose a Multi-Scale Dense Network (MSDNet) based on
an encoder-decoder architecture specifically designed for industrial chip surface
defect segmentation. The network fully utilizes features at different scales, cap-
tures both global and detailed information, and demonstrates powerful feature
learning capabilities.

Our contributions are as follows:

– We introduce multi-scale convolution modules in the encoding and decoding
processes, resolving the issue of large size differences between distinct defect
samples, preserving detailed information on feature maps, and enhancing the
network’s ability to detect microscale defects.

– We incorporate attention modules in the multi-scale network to address
blurring and information loss, facilitating the detection of defect edges and
detailed information.

– We propose a dense connection network between the encoder and decoder,
where feature maps at different levels are extracted and fused through node
modules, enhancing the network’s capacity to capture global context infor-
mation and facilitating feature learning and extraction across different scales.

– We construct a chip defect segmentation dataset, annotate the defects at the
pixel level, and conduct a series of experiments on the dataset. The segmen-
tation performance of our method on the chip defect dataset surpasses that
of general segmentation models.
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2 Related Works

As deep learning continues to evolve, convolutional neural networks (CNNs) have
progressively taken precedence in surface defect detection. Based on application
requirements, surface defect detection can be divided into three stages: defect
classification, defect localization, and defect segmentation.

2.1 Defect Classification

Defect classification involves categorizing defects into different classes based on
their characteristics. Xie et al. [25] developed a two-level hierarchical CNN sys-
tem for sewer defect classification, utilizing two CNNs to distinguish defect
images from normal ones and further classify defect images into specific cat-
egories. Lin et al. [10] proposed a method employing ResNet and hierarchical
clustering to classify six types of defects, significantly reducing the misclassifica-
tion of similar defects. Cheon et al. [2] constructed a CNN-based classification
method for wafer surface damage, combining CNN and K-NN to classify both
known and unknown defects.

2.2 Defect Detection

Defect localization aims to determine the precise location of defects using algo-
rithms like Faster R-CNN [19] and YOLO [17]. Fang et al. [3] utilized Cascade
R-CNN as the foundational framework, introducing a lightweight attention mod-
ule to enhance feature extraction capabilities, multiple cascade head networks
to improve the quality of region proposals, and Mix Non-Maximum Suppres-
sion to reduce detection redundancy and improve detection efficiency. Wang et
al. [23] developed the MPSD model for mobile phone surface defect detection.
This model, based on Faster R-CNN, integrates a feature pyramid network with
ResNet-101 as the feature extraction network to capture small defect features,
and replaces the ROI pooling layer with the ROI Align layer to reduce quantiza-
tion bias. Hu et al. [5] enhanced YOLOv4 with CSP-ResNetSt and Bi-SimAM-
FPN to identify small-scale defects in complex backgrounds.

2.3 Defect Segmentation

Defect segmentation involves separating defects from the background at the pixel
level, with typical algorithms including U-Net [20] and SegNet [1]. Lin et al. [11]
proposed CAM-UNet for anomalous image segmentation, employing an encoder-
decoder architecture with skip connections and VGG-16 as the backbone. This
approach emphasizes defect information by using class activation maps and feed-
back refinement. Yang et al. [26] designed a two-stage network called SIL-Net.
In the first stage, an ULF module was added to SSD for defect identification
and localization. In the second stage, a PGS composed of a principal component
growth algorithm and adaptive thresholding was used for defect segmentation.
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Liu et al. [13] developed the TAS2-Net framework for surface defect segmenta-
tion. They enhanced and expanded defect samples using a GAN network, uti-
lized the MFE module and triple context attention module to extract multi-level
defect features, and employed the FCM module to fuse contextual information.

Fig. 1. The overview architecture of the proposed Multi-Scale Dense Network (MSD-
Net).

3 Method

In this paper, we propose a novel multi-scale dense network (MSDNet) for
defect segmentation, which incorporates multi-scale convolution modules, atten-
tion modules, and a dense connection network composed of node modules. This
section provides a detailed exposition of the chip surface defect segmentation
model, including the overall scheme and each constituent component of the
framework.

3.1 Architecture

We propose MSDNet for chip surface defect detection and pixel-level defect
segmentation. As illustrated in Fig. 1, the network incorporates an encoder,
decoder, dense connection network, and output layer. The encoder consists of
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multi-scale convolution modules and attention modules, while the decoder only
includes multi-scale modules. The dense connection network is composed of node
modules, and the output layer comprises a convolution layer with a kernel size
of 1 × 1.

The encoding process begins with the input image, producing rough feature
maps via the multi-scale convolution module. Refined feature maps are gener-
ated by passing through the attention module and adding the results to the
corresponding pixels of the original feature maps. Subsequently, downsampling
reduces the size of the feature maps by half. After repeating the above process
four times, the decoding process is performed. The decoder comprises five multi-
scale convolution modules and four upsampling processes. The feature maps
are expanded to twice their size through deconvolution. Finally, the network
maps the feature vector to the output layer using a 1 × 1 convolution layer.
During the encoding and decoding processes, a densely connected network is
constructed to better integrate information between different layers, promoting
cross-layer information integration. In this module, the high-dimensional feature
maps expand to twice their size through deconvolution and concatenate with
low-dimensional feature maps. These combined feature maps are then input into
the node module together for feature extraction and fusion.

Fig. 2. The structure of the multi-scale convolution module is designed to capture
features at various scales, enhancing the model’s ability to detect defects of different
sizes and shapes.

3.2 Multi-scale Convolution Module

Given the diversity of chip surface defects and the significant size differences
between samples, the proposed multi-scale convolution module serves as the fun-
damental block in the encoding and decoding processes. As shown in Fig. 2, this
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module comprises parallel convolution layers with kernel sizes of 3 × 3, 5 × 5, and
7 × 7. Utilizing multiple parallel branches, convolution kernels of different sizes
enable feature extraction and processing of information at various scales. Larger
kernels capture global information, while smaller kernels focus on local details.
The features of different scales are fused through concatenation, and semantic
information and feature representation are enhanced through an additional 3 ×
3 convolution. This structure helps the network adapt to targets of varying scales
and sizes, enhancing its effective recognition and segmentation of objects of dif-
ferent sizes. Additionally, as the depth of the network increases and the number
of convolutional layers grows, this module preserves the detailed information on
the feature maps, benefiting the segmentation of small-scale defects.

Fig. 3. The structure of the node module is designed to facilitate efficient feature
extraction and fusion within the dense connection network.

3.3 Node Module

Due to the lack of information correlation between different levels of the image
segmentation model based on the encoder-decoder framework, the network
cannot effectively learn global context information. To address this issue and
enhance global context learning, we propose a dense connection network com-
posed of node modules to fuse feature maps in the encoding and decoding
processes. Specifically, the high-dimensional feature maps, which have been
downsampled and convolved, are doubled in size through deconvolution. These
enlarged feature maps are then concatenated with the low-dimensional feature
maps along the channel dimension and input into the node module for feature
extraction and fusion. As shown in Fig. 3, the node module comprises convolu-
tion and residual connections. The feature maps, after channel fusion, undergo a
3×3 convolution, followed by pixel-wise addition with the original feature maps
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to produce the output feature maps. This structure leverages multi-branch net-
works and feature maps at different levels, obtaining broader context information
through multi-level feature extraction and fusion. The resulting richer contextual
information and more discriminative features improve the model’s ability to rep-
resent both global and detailed information, thereby enhancing the performance
of defect segmentation in complex scenes.

Fig. 4. The structure of the attention module is designed to selectively emphasize
important features while suppressing less relevant information, thereby enhancing the
network’s focus on critical regions.

3.4 Attention Module

During the encoding process, information compression and loss often result in
blurred key details such as defect boundaries. To address this issue, we employ
the Convolutional Block Attention Module (CBAM) [24], which combines spatial
and channel attention modules (as shown in Fig. 4). Feature maps from the
multi-scale convolution module first pass through the channel attention module,
producing weighted results. These results then pass through the spatial attention
module, resulting in the final feature maps. The attention module directs the
network to focus on defect information by increasing the weight of defect areas,
suppressing responses in the background and irrelevant areas, and enhancing the
network’s ability to perceive defects.

3.5 Loss Function

Binary Cross Entropy (BCE) [27] loss is a loss function commonly used in binary
classification. It is defined as

LBCE = − 1
N

∑N

i
(yilog(σ(y∗

i )) + (1− yi)log(1− σ(y∗
i ))) (1)
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where yi represents the true label, y∗
i represents the precited labels, and N

represents the number of samples. σ is the sigmoid activation function.
Dice loss [16] is a loss function that measures the similarity between the

prediction results and the true labels. It is widely used in image segmentation.
The Dice loss is defined as:

LDice = 1− 2
∑N

i (yiy
∗
i + smooth)

∑N
i yi +

∑N
i y∗

i + smooth
(2)

where smooth is an adjustable parameter introduced to avoid the denominator
being zero.

Focal loss [12] introduces coefficient factors to adjust the contribution of sam-
ples to the loss, aiming to improve the learning process, particularly for chal-
lenging samples. This adjustment helps alleviate issues related to the imbalance
between positive and negative samples. The Focal loss is defined as:

LFocal = −α(1− pt)γ log(pt) (3)

where α is the balance factor, which controls the balance of positive and negative
samples. γ is the focus parameter, used to adjust the weight of the challenging
samples. pt = exp(−LBCE) represents the probability of easy samples.

We employ a weighted combination of BCE loss, Dice loss, and Focal loss
as the loss function to heighten the model’s focus on challenging samples and
address the problems present in the chip defect dataset, including imbalances in
positive and negative samples and the non-uniform distribution of defect sizes.
The loss function is defined as:

L = β1LBCE + β2LDice + β3LFocal (4)

where β1, β2, and β3 are the weight parameters, which can be adjusted.

4 Experiments

4.1 Dataset

We create a chip defect dataset comprising a total of 2,500 chip defect images,
each with dimensions of 1224 × 1024 pixels. This dataset encompasses foreign
matter defects present on the chip substrate.

With the development of technology, intelligent annotation software has
greatly improved the efficiency of semantic annotation of images. In the defec-
tive image annotation phase, we first use an annotation tool [7] to mark defects
on chip images, producing a preliminary mask. Then, manual modifications are
applied at the pixel level to refine the mask, resulting in the final ground truth.
Fig. 5 provides illustrative examples from the chip defect dataset.

In the experiment, we use the constructed chip surface defect dataset to verify
our method. The dataset is divided into a training set and a test set at a ratio
of 8:2. Specifically, 2,000 images are allocated to the training set, and the test
set comprises 500 images.
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Fig. 5. Examples of the chip defect dataset. (a) Defect Image and (b) Ground Truth.

4.2 Implementation Details

The algorithm is implemented using PyTorch. The hardware configuration
employed is the NVIDIA GeForce RTX 4090, and the software environment
is Ubuntu 20.04 with CUDA version 12.2. The total number of training epochs
is 150 with a batch size of 1. The initial learning rate is set at 0.01, and a fixed



A Multi-scale Dense Network for Chip Surface Defect Segmentation 135

step decay strategy is adopted for learning rate decay. Specifically, the learning
rate diminishes to 90% of its original value every 100 epochs. The optimizer
adopts stochastic gradient descent (SGD) with a momentum coefficient of 0.9.
The value of the smoothing parameter is e-8. The value of α is 0.25, and γ is 2.
The adjustable parameters β1, β2, and β3 within the loss function are set to 0.4,
0.6, and 0.6, respectively.

4.3 Experimental Results

We compare our proposed MSDNet with existing methods on the chip defect
dataset. As illustrated in Table 1, the experimental results reveal the superior
performance of our MSDNet in chip defect segmentation. Specifically, when the
confidence level exceeds 0.9, our MSDNet, verified using the chip defect dataset,
exhibits improvements in segmentation accuracy by 44.35%, 6.43%, 6.16%, and
5.70%, compared to DeepLabv1, SegNet, Mobile-Unet, and U-Net, respectively.
Additionally, the mIOU shows improvements of 33.76%, 4.68%, 2.92%, and
0.80%, respectively.

Furthermore, examples from the comparative experiment results, as shown
in Fig. 6, demonstrate that our MSDNet achieves more accurate segmentation
in the presence of multi-scale complex defects. Both large-size defects and tiny
defects that only occupy a few pixels are segmented effectively. Moreover, com-
pared to other networks, our model exhibits superior accuracy in extracting
detailed defect information.

Table 1. Comparative experimental results. mAP stands for mean average precision,
and mIOU stands for mean intersection over union.

Model mAP(%) ↑mIOU(%) ↑
DeepLabv1 40.66 39.39
SegNet 78.58 68.47
Mobile-UNet 78.85 70.23
U-Net 79.31 72.35
Ours 85.01 73.15

4.4 Ablation Study

We perform a comparative analysis of the baseline model, models with each of the
three key modules individually (the multi-scale convolution modules, attention
modules, and the dense connection network composed of node modules), and
our full model (MSDNet).

The results are presented in Table 2. The experimental findings indicate that,
in terms of chip defect segmentation performance, the collective utilization of all
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Fig. 6. Examples comparing the experimental results of different models. (a) Defect
Image, (b) Ground Truth, (c)-(f) The prediction result of DeepLabv1, SegNet, Mobile-
Unet and U-Net, respectively, and (g) The prediction result of ours.

three modules significantly outperforms alternative configurations. Compared to
the baseline, the joint utilization of the three modules results in an increase of
9.2% in mAP and 5.33% in mIOU.
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Table 2. Ablation experimental results. Baseline refers to the network that removes
multi-scale convolution modules, attention modules and node modules. MSC, AM and
NM stand for Multi-Scale Convolution Module, Attention Module and Node Module,
respectively.

BaselineMSCMAMNMmAP(%) ↑mIOU(%) ↑
√

75.81 67.82√ √ √
83.17 71.79√ √ √
79.08 68.93√ √ √
79.72 72.40√ √ √ √
85.01 73.15

5 Conclusion

In this paper, we propose a Multi-Scale Dense Network (MSDNet) based on the
encoder-decoder structure, integrating multi-scale convolution modules, atten-
tion modules, and a dense connection network composed of node modules. We
create a chip defect dataset and conduct an extensive series of experiments on
this dataset. The experimental results demonstrate the efficacy of the proposed
method in enhancing the segmentation performance of multi-scale and micro-
scale defects on large-scale, high-resolution images. Furthermore, our method
excels in accurately delineating defect edges and capturing detailed information.
Comparative analysis with other methods, as well as ablation analysis shows a
significant improvement in the precision of defect segmentation afforded by the
proposed approach.
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Abstract. In this study, we propose a new general learning-based frame-
work, named Task-Oriented Image Quality Assessment, for evaluating
the performance of Reference-guided image synthesis (RIS) tasks. Our
framework uniquely employs both source and target images to construct
content- and style-encoded feature embeddings, and then evaluates the
quality of the synthesized images by comparing their feature distances
to those of the source and target images. We designed a two-branch
network that embeds both content and style elements simultaneously.
Our training process uses a style-level interpolation strategy to generate
intermediate styled images for training, eliminating the need for human
annotations. The quality score is calculated using a ratio-based distance
that considers both the synthesized image from the source image and to
the target image. Our method was evaluated using the HIDER dataset
and RESIDE dataset, which provide subject scores for each image. The
obtained result shows the efficiency of our method.

Keywords: Image quality assessment · Reference-guided image
synthesis · Two-branch networks

1 Introduction

Reference-guided image synthesis (RIS) aims to change the style of a source
image to match the style of a target image while preserving the source image’s
structural information. Many computer vision problems can be formulated as
RIS tasks and solved by Generative Adversarial Networks [5] based supervised
learning given paired training data, like semantic image synthesis [19], coloriza-
tion [13], sketch to photos [11], super resolution [14,21]. For example, in Fig.1,
indoor design effect rendering task, the plain image of an interior design is treated
as the source image, while the fully rendered target image is used as the reference
image to guide the image synthesis. Also, in Fig.2, image dehazing task, the haz-
ing image is treated as the source image, the clear image(ground truth) is used
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as target image to guide the image synthesis. A good synthesized image needs
to retain the underlying spatial structure of the source image while matching
the target image in terms of color, texture and lighting conditions. To further
facilitate RIS research, it is keen to develop Image Quality Assessment metrics
to quantitatively evaluate the synthesized image with human preference.

Fig. 1. Two examples of source image, synthesized image, and target image triplets.
Example A has an acceptable synthesized result despite having a low SSIM score, while
example B has a poor synthesis outcome but has a higher SSIM score.

Although several signal-based evaluation metrics have been proposed, e.g.,
SSIM [22], PSNR [8], FSIM [27], MS-SSIM [24], and IW-SSIM [23], they mainly
focus on pixel differences and aim for evaluating distorted images, such as differ-
ent types of noise and compression levels. However, these methods either focus
on semantically irrelevant image components or lack emphasis on specific image
characteristics. As seen in Fig.1 and Fig.2, SSIM and PSNR scores do not align
with human preference and fail to evaluate synthesized images at a perceptual
level.

While several sample-based GAN evaluation metrics, such as Inception Score
[1], Wasserstein distance and Frechet Inception Distance [7], have been proposed,
these metrics mainly focus on assessing the overall generated image distribution
rather than evaluating single synthesized images. Consequently, these sample-
based metrics fail to capture the quality of single synthesized images, missing
critical details about the specific quality of individual images, and are thus not
robust for evaluating the quality of single synthesized outputs.

Furthermore, there is a growing trend in utilizing network-based approaches
to address the challenges of image quality assessment. Such as DeepIQA [2],
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Fig. 2. Two examples of source image, synthesized image, and target image triplets.
Example A has an acceptable synthesized result despite having a low PSNR score,
while example B has a poor synthesis outcome but has a higher PSNR score.

LPIPS [28], AHIQ [10],CKDN [29],RISA [6] and CLIP-IQA [20]. These methods
employ well-trained neural networks to encode semantic features for evaluation
purposes. However, it is worth noting that these methods primarily focus on
translating a synthesized image into a target image, while ignoring the impor-
tance of translating from a source image. This latter aspect is crucial in RIS
assessments, as previously mentioned.

We believe that an effective IQA metric for RIS tasks should include two com-
ponents: the ability to quantify the style similarity between a single synthesized
image and its corresponding target image in different domains, as well as the abil-
ity to evaluate the preservation of underlying content against the source image.
The proposed Task-Oriented Image Quality Assessment framework is a learning-
based approach that combines content and style information to effectively eval-
uate the quality of synthesized images. The two-branch network embeds content
and style features, using a content reconstruction branch to ensure content infor-
mation is accurately captured and a style encoding branch that is trained using
a semi-supervised style level classification task. To avoid individual bias and
without manually labelled data, a style-level interpolation strategy is also intro-
duced. The final quality score is calculated using a ratio-based distance that
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takes into account both the content preservation and style similarity between
the source, synthesized, and target images. Experimental results show that the
proposed method is more consistent with human preferences and on par with
state-of-the-art IQA metrics for traditional distortion image evaluation tasks.

2 Related Work

2.1 Reference-guided image synthesis (RIS)

Reference-guided image synthesis has emerged as a significant area of research
within computer vision, leveraging reference images to guide the generation of
new images. This approach typically combines elements from reference images
to create high-quality, specific style and content consistency outputs. In the RIS
task, the underlying spatial structure is referred to as content, whereas style
refers to the distinctive appearance of an image, which can be evaluated in
terms of, but not limited to, hairstyle, gender, texture, reflectivity, and lighting
conditions.

U-Net [17], originally proposed by Ronneberger et al. for biomedical image
segmentation, has become a cornerstone in the field due to its unique architecture
that facilitates precise image synthesis. In the context of reference-guided image
synthesis, U-Net has been adapted to incorporate reference images effectively.
Image-to-Image Translation with Conditional Adversarial Networks (Pix2Pix)
[9] is a framework that learns the mapping from input images to output images
using a conditional GAN. The conditional GAN architecture ensures that the
generated images adhere closely to the reference images’ content and style, show-
casing the importance of reference-guided synthesis in practical applications.
StarGAN [3] and StarGANv2 [4], enables multi-domain image-to-image transla-
tion using a single model, allowing for diverse image transformations guided by
domain labels and enhances this capability by supporting continuous and diverse
style control, achieving more flexible and high-quality image synthesis across
multiple domains. CAPS [25] proposed a novel capsule based conditional gen-
erative adversarial network that can automatically synthesize an indoor image
as target iamge with realistic and aesthetically pleasing rendering effect from
a given reference image rendered without any effects from a interior designed
3D model. Densely Connected Pyramid Dehazing Network (DCPDN) [26] is a
cutting-edge approach designed to tackle the problem of image dehazing. The
proposed method takes hazing images as reference image, synthesizing the dehaz-
ing image. This method leverages a densely connected architecture to enhance
feature reuse and gradient flow, which significantly improves the network’s per-
formance and efficiency.

2.2 Image Quality Assessment(IQA)

The IQA methods can be calssify into three categories according to the avail-
ability of reference:
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1)Full-reference IQA: Full-reference Image Quality Assessment (FR-IQA) is
a technique used to evaluate the visual quality of an image by comparing it to a
reference image known to be of high quality. The most representative methods
are the following SSIM [22], PSNR [8], FSIM [27], MS-SSIM [24], and IW-SSIM
[23], which mainly focus on pixel differences between reference image and dis-
torted images.

2)Reduce-reference IQA: Reduced-reference Image Quality Assessment (RR-
IQA) is a method for evaluating the visual quality of an image using partial
information from a reference image. This approach involves extracting and com-
paring key features from both the test and reference images, allowing for effec-
tive quality assessment while requiring significantly less reference data than full-
reference IQA. Reduced-Reference Entropic Differencing (RRED) [18] evaluates
image quality by measuring the difference in entropy between features of the test
and reference images.

3)No-reference IQA: No-reference Image Quality Assessment (NR-IQA) is
a method for evaluating the visual quality of an image without the reference
image. Early works likes BRISQUE [15] and NIQE [16] have laid the foun-
dation for NR-IQA by utilizing natural scene statistics (NSS) to model the
image quality. BRISQUE focuses on measuring the deviations from natural scene
statistics in the spatial domain, while NIQE models these deviations without
relying on human-rated training data, making it a more generalized approach.
Recent advancements in NR-IQA leverage deep learning techniques to enhance
the accuracy and robustness of quality predictions. The pioneering approach,
DeepIQA [2], employs deep learning models to automatically evaluate the qual-
ity of images. Another metric called LPIPS [28] quantifies the perceptual simi-
larity between two images by leveraging a trained deep neural network. AHIQ
[10] compares images at the patch level, enhances spatial details, and assigns
scores to individual patches while considering their interdependencies. CKDN
[29] utilizes degraded images as references for assessing image quality, demon-
strating its effectiveness in evaluating GAN-generated images and providing
insights into evaluating GAN-based models. RISA [6] captures the style simi-
larity between generated and reference images and also employs unsupervised
contrastive loss to enhance assessment. CLIP-IQA [20], on the other hand, lever-
ages Contrastive Language-Image Pre-training models to assess both perceived
quality and abstract perception of images in a zero-shot manner without explicit
training using labeled data from user studies.

3 Methodology

Given the ground truth image pair Is (source image) and It (target image), the
goal is to estimate the quality of synthesized image Ig generated by different
RIS approaches. To address this, our proposed method utilizes a two-branch
network to encode both content and style features. The content reconstruction
branch ensures preservation of structural information, while the style encoding
branch captures style variation. As depicted in Fig.3, using both source and
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Fig. 3. Overview of architecture of the proposed method. Panel (a) illustrates the style
level interpolation process. Panel (b) depicts the network architecture, which comprises
two branches to encode both content and style features. Panel (c) outlines the quality
score calculation procedure.

target images as references, the translation score Tscore is calculated as the ratio
of feature embedding distance between the synthesized and reference images.

3.1 Style Level Interpolation for Data Preparation

To ensure successful two-branch training, it is important to prepare the dataset in
a way that preserves the image content while adding texture, lighting effects, and
other styles to the source image. Therefore, we propose a technique for style-level
interpolation that generates semi-translated images Iα

semi with different levels of
style with:

Iα
semi = (1 − α

K
)Is +

α

K
It, (1)

The level of style-based image translation α ∈ [0,K] determines the semi-
translation ratio and the corresponding semi-translated image is denoted as
Iα
semi.

K refers to the total number of semi-translated image levels. The level is
linearly correlated with both the source image Is and the target image It, with
α = 0 and α = K denoting the source and target image, respectively. This
technique allows us to create a dataset that reflects the style variance in a quan-
tifiable manner. In our experiments, we set K = 10. In different datasets, it can
be set to different values as needed.



146 K. Xu et al.

3.2 Learning-based Quality Score Estimation

Feature Embeddings The content reconstruction branch of our network is
designed to reconstruct the input image Iα

semi with an auto-encoder structure [9].
Specifically, the encoder takes the input image and extracts the feature embed-
ding, feat1, from its final layer. The decoder then reconstructs this feature
embedding into the reconstructed image IRe, supervised by the L2 reconstruc-
tion loss.

In addition to the content reconstruction branch, the network includes a style
encoding branch, which is designed to classify the style level α of the input image
Iα
semi. To do this, it uses a classification network with three dense blocks [26]

and two fully connected layers followed by a softmax layer. The second last layer
activation serves as the style feature embedding feat2, which is trained in a
weakly supervised classification manner using auto-labeled intermediate images
Iα
semi. By emphasizing style-related features, this branch is able to accurately

classify the style level of the input image and retain a substantial amount of
style information.

Finally, to create a single feature embedding f that balances both the content
and style of the input image, we concatenate two normalized feature embeddings,
feat1 and feat2 as shown in Eq.(2):

f = Concat(m ∗ feat1, (1 − m) ∗ feat2) (2)

where m ∈ (0, 1) is the hyperparameter used to balance the weights between
feat1 and feat2 ensuring that neither aspect of the image is overemphasized.
A higher value of m can result in feature embedding f that is more focused on
content-based features, while a lower value of m can result in feature embedding
f that is more focused on style-based features. In our experiment, we set the
default value of m to 0.5.

Quality Score Formulation Our proposed two-branch network training cre-
ates a task-oriented, content-style bounded space by considering both the source
and target images. We evaluate the quality of the synthesized image by calcu-
lating two scores: the content-related quality score, tcontent, which is determined
by comparing the synthesized image to the source image; and the style-related
quality score, tstyle, which is calculated by determining the ratio of the distance
between the synthesized image and both the source and target images in the
style-encoded space.

To evaluate the performance of the image translation task, which translates
Is into It, we measure how closely the synthesized image Ig follows the map-
ping from fs to ft. This mapping is obtained by passing the images Is, Ig,
and It through the pre-trained network, and extracting their respective feature
embeddings fs, fg, and ft as described in Eq.(2). We then calculate the the
content-related quality score as

tcontent =
1

‖fg − fs‖2 + ε
, ε = e−9 (3)
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where ‖·‖2 denotes the Euclidean norm and ε is a small constant to avoid the
fraction infinite.

And then, we calculate the style-related score by the ratio of mappings
between fg → fs and fg → ft as given by:

tstyle =
‖fg − fs‖2

‖fg − ft‖2 + ε
, ε = e−9 (4)

Finally, the overall score Tscore is obtained by combining the two aspect
scores with a weighted factor β ∈ (0, 1) by:

Tscore = β ∗ tcontent + (1 − β) ∗ tstyle (5)

The weighted factor β regulates the participation ratio of the content measure
tcontent and the style measure tstyle, allowing the quality score formulation to
be applied across a wide range of tasks using different β values. This allows for
a more flexible and comprehensive evaluation of the image translation task. In
our experiments, the β = 0.5 produces the best results among different settings.

3.3 Training Objective

Our training objective consists comprises two key components: 1) a reconstruc-
tion loss applied in the content reconstruction branch to minimize the difference
between the decoded image and the input image and 2) a weakly supervised
classification loss applied in the style encoder branch to differentiate the style
levels of the input interpolated images.

Reconstruction Loss The reconstruction loss is ensures that the decoded
image closely matches the input image. We implement the reconstruction Loss by
utilizing the L2 norm to ensure that the decoded image IRe closely approximates
the input image Iα

semi. This approach constrains the content embedding feat1
to retain substantial content-related structural information. This is given by:

L2(Iα
semi, IRe), (6)

Classification Loss The classification loss, implemented using the softmax
function combine with cross entropy, ensures that the network’s layer activation
feat2 is sensitive to style variance, thereby enabling it to accurately capture
style-related content. The loss is formulated as:

Lsup(p(Iα
semi), t(I

α
semi)), (7)

where p(Iα
semi) and t(Iα

semi)) denote the predicted and target interpolation levels,
respectively.
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Full Objective Our full objective is a weighted combination of the reconstruc-
tion and classification loss with:

L = λL2(Iα
semi, IRe) + Lsup(p(Iα

semi), t(I
α
semi)) (8)

where λ = 3 shows best result in our experiments.

4 EXPERIMENT

4.1 Dataset

Our experiments were conducted on the HIDER [25] and RESIDE [12] datasets.
Home Interior Design Effect Rendering dataset(HIDER) consists of 238 pairs of
plain and rendered images along with corresponding reference guide synthesized
images. Plain images are unrendered interior design drawings as source images
and rendered images are rendered images as target images with reference guide
synthesized images generated by CAPS [25], U-net [17], and Pix2Pix [9]. Each
image was evaluated with subjective scores assigned by human reviewers.

Similarly, the RESIDE dataset is contained 500 triplets of hazing images,
dehazing image generated using DCPDN [26] and clear images, each also assigned
subjective scores by human reviewers. In this task, we take hazing images as
source images, clear images as target images, and dehazing images as synthesized
images.

We selected the HIDER and RESIDE datasets for our experiments due to
their unique and valuable characteristics. These datasets are containing com-
prehensive sets of source images, synthesized images, and corresponding target
images. Additionally, both datasets include subjective scores assigned by human
reviewers, providing an objective measure of image quality. This combination
of features allows for a thorough evaluation of image quality assessment (IQA)
methods, ensuring that our approach is rigorously tested against well-established
benchmarks.

4.2 Protocol and Evalution criteria

Pearsons linear correlation coefficient (PLCC) and Spearmans rank order cor-
relation coefficient (SROCC) are measures of the correlation between predicted
values and subjective scores in IQA, with higher scores indicating better agree-
ment between predicted values and subjective scores.

4.3 Performance Evalution

In this study, we conducted a comprehensive evaluation of various Image Quality
Assessment (IQA) metrics on reference guide synthesized image evaluation tasks
using the HIDER and RESIDE datasets. Table 1 shows the PLCC and SROCC
results for both the HIDER and RESIDE datasets.
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Fig. 4. Some example results from the HIDER dataset. At the bottom of each synthe-
sized image, the corresponding subjective score, Tscore, PSNR and SSIM are displayed.
The numerical value in parentheses indicates the ranking of the score among the three
synthesized images generated by different methods. The IQA method that aligns with
the ranking of the subjective score is denoted in bold font.

The proposed method outperforms the other state-of-the-art IQA metrics,
as demonstrated by the highest PLCC and SROCC scores across both datasets.
However, some network-based methodologies like DeepIQA, LPIPS and CKDN
have been unsuccessful in accurately capturing human preferences. This fail-
ure can be attributed to their focus on translating an image to a target image,
ignoring the translation from a source image. Additionally, in RESIDE dataset,
LPIPS, NIQE, CLIP-IQA perform significantly worse than in HIDER, highlight-
ing inconsistency issues. These metrics struggle to capture minor details affect-
ing dehazing image quality when evaluating similarly styled images. Conversely,
DeepIQA struggles to provide reliable assessments across both datasets.
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Fig. 5. Some example results from RESIDE dataset. Next to each set of three images,
the corresponding subjective score, Tscore, AHIQ, CKDN and CLIP-IQA are presented.
The IQA method that aligns with the ranking of the subjective score is denoted in bold
font.

Traditional signal-based methods, PSNR, SSIM, IW SSIM and FSIM also
show limited effectiveness in accurately assessing synthesized image quality,
as reflected by their relatively lower correlation scores. These signal-based
approaches have also encountered limitations in both experiments as they are
primarily designed for naturally degraded images rather than synthesized images
and are not sensitive to style variance.

The superior performance of the our proposed method Tscore can be
attributed to its innovative approach. This method combines a content recon-
struction branch and a style encoding branch to capture both content and style
variance, better aligning with human visual perception. This hybrid methodol-
ogy ensures a more robust and accurate assessment of various reference guide
synthesized image quality tasks.

Fig.4 and Fig.5 show a section of the experimental results obtained by eval-
uating images synthesized using the HIDER and RESIDE datasets. Both exper-
iments demonstrate that our proposed Tscore metric provides a more accurate
evaluation of the perceptual quality of synthesized images compared to existing
methods applied on HIDER and RESIDE datasets.

These two experiments show that our proposed method more fits the image
synthesized task. Our method designed the content reconstruction branch that
is pre-trained on the style level interpolation dataset in the encoder-decoder
manner, which supervises the model to learn the feature of the image content
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Table 1. Comparison with other IQA metrics on the synthesized image evaluation
tasks: HIDER [25] and RESIDE [12]

IQA metrics HIDER RESIDE

PLCC SROCC PLCC SROCC

PSNR [8] 0.3640 0.2672 0.3948 0.3419

SSIM [22] 0.3520 0.2999 0.3648 0.2886

IW SSIM [23] 0.4579 0.4567 0.3365 0.2837

FSIM [23] 0.4086 0.3857 0.3606 0.2876

MS SSIM [24] 0.4304 0.4151 0.4136 0.3217

DeepIQA [2] 0.1374 0.0942 0.2242 0.2519

LPIPS [28] 0.4984 0.4830 0.1655 0.1541

NIQE [16] 0.2012 0.1853 0.0011 0.0155

CKDN [29] 0.5069 0.4632 0.3950 0.3763

CLIP-IQA [20] 0.3707 0.3490 0.2322 0.2570

Tscore 0.5656 0.5627 0.5457 0.6249

well. The style encoding branch for the style level estimation also contributes to
the feature learning to classify the style, such as the light effect and texture.

4.4 CONCLUSION

In this study, we proposed a novel learning-based framework called Task-
Oriented Image Quality Assessment for evaluating RIS tasks. Unlike existing
methods, our method does not rely on manual data labeling during training
but instead utilizes a style-level interpolation strategy to generate intermediate
styled images as training data. Our results demonstrate that our method out-
performs current image assessment metrics displaying higher consistency with
human preferences across various synthesized image datasets. These findings
suggest that our method holds considerable potential as a promising approach
for evaluating RIS tasks. Future research can explore further improvements and
applications of this framework in real-world scenarios.
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Abstract. Analyzing different white blood cell (WBC) classes is essen-
tial for human health monitoring, making accurate segmentation and
classification crucial for diagnosing blood-related conditions. Existing
WBC segmentation systems mainly rely on convolution neural networks
(CNNs) and Transformers. Unfortunately, they are unable to simulta-
neously capture global context and local information. Similarly, existing
WBC classification systems fail to appropriately focus on the relevant
regions of WBC images. Additionally, the processes of WBC classifica-
tion and segmentation are intertwined, but they are not properly syn-
ergized in the literature. These three issues have limited the efficacy
of existing WBC segmentation and classification systems. Our proposed
system, SANGAM, improves the efficacy of WBC segmentation and clas-
sification by addressing these issues. Specifically, it integrates the local
learning capabilities of CNNs with the global context learning capabil-
ities of Transformers to enhance WBC segmentation. It also improves
WBC classification by providing more attention to the relevant areas.
Furthermore, it synergizes WBC segmentation and classification. Our
experimental results, conducted on publicly available datasets, reveal
that SANGAM outperforms existing well-known WBC segmentation
and classification systems. Additionally, it advocates for the appropriate
integration of CNNs and Transformers in WBC segmentation, provid-
ing attention to relevant regions in WBC classification, and synergizing
WBC classification and segmentation.

Keywords: White Blood Cell · Segmentation · Classification · Deep
Learning · CNN · Transformer

1 Introduction

Human blood consists of the following blood cells: Leukocytes or white blood
cells (WBCs), Erythrocytes or red blood cells (RBCs), and Thrombocytes or
platelets [15]. WBCs are colorless cells with varying numbers of nuclei sur-
rounded by a thin layer of cytoplasm [19]. They can be classified as neutrophils,
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eosinophils, basophils, lymphocytes, and monocytes [14]. Each WBC class plays
a distinct role in human health conditions [32]. For instance, neutrophils increase
during bacterial infections [35], while eosinophils are associated with parasitic
infections and allergies [2]. Similarly, lymphocytes are important for the immune
response, especially during cancer treatments like radiation and chemotherapy
[34]. Additionally, monocytes and basophils provide relevant information about
antigens and allergic reactions [6]. In essence, accurate analysis of every WBC
class is mandatory to treat, diagnose, and prognosticate a wide range of blood-
related diseases. This motivated us to propose an accurate WBC segmentation
and classification system in this paper.

Canonically, WBC analysis entails the manual procedure of blood slide intro-
spection involving a medical practitioner. This procedure involving pathologists
is affected by human bias [33]. Additionally, analyzing the slide manually is
time-consuming [37]. To address these issues, we propose an automated WBC
segmentation and classification system in this paper.

Convolution Neural Networks (CNNs) [22] are considered de facto for image
segmentation tasks, and WBC segmentation is no different. For instance, vari-
ants of CNNs, such as ResNet, MobileNet [21], and DenseNet [3], are found to be
useful for WBC segmentation because these variants capture short-range depen-
dencies. However, they often miss the global context, which is crucial for accurate
segmentation [1]. This paves the way for Transformers and their variants, includ-
ing Vision Transformer (ViT) [24], Swin Transformer [30], and Detection Trans-
former (DETR) [11]. Transformers learn the global context through long-range
dependencies [29], thereby surpassing CNNs. Unfortunately, Transformers offer
limited performance because they neglect fine details or short-range dependen-
cies, which are also essential for WBC segmentation besides the global context
[24]. Cell structures of cytoplasm and nuclei can be better understood by ana-
lyzing local features like edges, blobs, and textures. Hence, the efficacy of WBC
segmentation can be improved by carefully combining CNNs and Transformers,
such that the combination allows the analysis of both local and global features,
as in [5]. The efficacy can also be improved by incorporating WBC classification,
an aspect yet to be explored in the literature. This leverages the intuition that
basophils do not contain cytoplasm, but the WBC segmentation of basophils can
contain it. If the correct classification is known, then the erroneous cytoplasm
region of the basophil can be rectified.

Another important aspect of WBC analysis is WBC classification, where
CNNs and Transformers have been extensively explored. Existing WBC clas-
sification systems require the entire input image, including cytoplasm, nuclei,
and background, for training. However, better classification can be performed
by providing more attention to relevant WBC regions, such as the cytoplasm
and nuclei. This observation is supported by studies like [10], demonstrating the
superior performance of CNNs with attention mechanisms focused on relevant
regions. The relevant WBC regions can be provided by WBC segmentation, sug-
gesting that WBC segmentation and classification are intertwined and can be
synergized.
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In this work, we introduce a novel system named SANGAM , which syn-
ergizes WBC classification and segmentation. This system enhances WBC seg-
mentation by proposing a new encoder-decoder network that integrates CNNs
and Transformers to simultaneously analyze local and global features. It
improves classification by focusing on the relevant regions identified through
segmentation and further enhances segmentation by using classification labels.
Thus, it jointly performs WBC classification and segmentation . To summa-
rize, the main contributions of this paper are:

1. To the best of our knowledge, we are the first to propose a novel WBC analysis
system that synergizes WBC segmentation and classification.

2. A novel decoder architecture is proposed that combines the strengths of CNNs
and Transformers, enabling both precise local and comprehensive global learn-
ing.

3. We improve the efficacy of WBC classification by providing additional infor-
mation to our classifier regarding the relevant WBC regions. Our WBC seg-
mentation identifies these relevant regions.

Our experimental results on WBC segmentation and classification using pub-
licly available datasets reveal that our proposed system, SANGAM , outper-
forms state-of-the-art (SOTA) systems. The remaining paper is structured as
follows: Section 2 refers to the related work, while Section 3 presents our pro-
posed system. Experimental results are provided in Section 4, followed by the
conclusion in Section 5.

2 Related Work

2.1 WBC Segmentation

The WBC segmentation can be categorized into 2-class segmentation and 3-class
segmentation. In 2-class segmentation, the nucleus is segmented from the input
image, and the remaining image is marked as background. In contrast, 3-class
segmentation refers to the segmentation of both the nucleus and cytoplasm from
the input image, while marking the remaining area as background. Extensive
work has been proposed in the literature for 2-class segmentation. Traditional
WBC segmentation systems like [1,16,22,26] mainly rely on image process-
ing techniques such as non-local filtering, morphological operations, gray-level
thresholding, and clustering. However, these traditional image processing sys-
tems lack generalization across diverse microscopic conditions and image types
[28]. This limitation paves the way for CNNs and Transformers for segmenta-
tion, as in [4,17], which employ CNN variants. Specifically, the system in [17]
integrates CNN frameworks with attention mechanisms, while the system in [4]
combines image processing and U-Net networks for segmentation. In contrast,
work on 3-class segmentation is limited. For instance, the system in [18] per-
forms 3-class segmentation using three different neural networks: CNN, UNet,
and SegNet.
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It is important to note that existing works provide limited performance
because current WBC segmentation systems neglect the importance of WBC
classification. Another performance-limiting factor of existing systems is their
use of CNN or Transformer-based network architectures, which may neglect
long-range dependencies or local/finer details [5].

2.2 WBC Classification

Traditional WBC classification systems mainly rely on image characteristics fol-
lowed by machine learning, as seen in [28], which extracts shape and color fea-
tures and feeds them to SVM for classification. Such traditional systems lack
generalization across diverse microscopic conditions and image types. This lim-
itation paves the way for deep learning systems, as in [3,9,10,25], where the
entire image is provided to CNN variants for classification. Unfortunately, CNNs
offer limited performance because they neglect the global information crucial for
accurate classification. To address this, existing WBC classification systems have
started utilizing Transformer variants for classification, as in [24], where the Deep
Vision Transformer (ViT) is employed.

The efficacy of the aforementioned WBC classification systems can be
improved by appropriately incorporating WBC segmentation information [4,22,
23]. System [23] uses DeepLabv3+ for segmentation followed by AlexNet for
classification. System [4] employs image processing and U-Net networks for seg-
mentation followed by ResNet for classification, and System [22] uses thresh-
olding with a non-local average filter for segmentation and then SqueezeNet for
classification. These systems demonstrate improved efficacy by focusing on the
cell rather than the background. However, these systems crop the segmented
regions and then interpolate the segmented regions to a fixed size, which results
in blurred boundaries and loss of low-level details such as cell size, thereby dete-
riorating the system’s efficacy.

3 Proposed System

This section presents our proposed system, SANGAM. It consists of three stages.
In the first stage, our system employs a novel Transformer encoder and Unified
Feature Fusion (UFF) decoder architecture to perform WBC segmentation. The
UFF is responsible for consolidating the CNN features in our Transformer archi-
tecture. In the next stage, the segmentation information and input image are
provided to our classification network, which is the SWIN Transformer, for WBC
classification. The segmentation information is needed to provide more attention
to the relevant WBC regions, such as the cytoplasm and nuclei. Note that the
segmentation performed in the first stage may contain errors. Therefore, the last
stage performs rectification of the segmentation using the WBC classification.
The flowchart of SANGAM is shown in Figure 1.
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Fig. 1. Flow graph of our proposed system, SANGAM

3.1 WBC Segmentation

In this section, we explain our segmentation system, which merges the strengths
of CNNs and Transformers to achieve accurate segmentation. It should be noted
that we are performing 3-class segmentation at this stage because 2-class segmen-
tation can be easily derived from the 3-class segmentation. The system begins
with a Transformer encoder to generate features. This is followed by a Unified
Feature Fusion (UFF) decoder that incorporates Spatial Detail Enhancement
(SDE) and Hierarchical Feature Integration (HFI) modules. The SDE leverages
CNN principles to maintain local details in the extracted features, while the HFI
module integrates these features. Eventually, our system parameters are learned
during training by optimizing the loss function, which is the Dice loss [27] in our
case. The Dice loss assesses how well the predicted segmentation overlaps with
the ground truth masks. Each component is detailed further below.

Fig. 2. Our WBC segmentation model depicting encoder, UFF decoder, and SDE

We employ a Transformer-based encoder with a pyramid structure, as out-
lined in PVTv2 [31]. Instead of traditional positional encoding, it uses convo-
lution operations. Given an input image I with dimensions H × W × 3, the
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encoder generates four levels of features {Fi | i = 1, . . . , 4}, each with reso-
lutions

[
H

2k−1 ,
W

2k−1 ,Di

]
, where k = {3, 4, 5, 6} corresponds to the respective i

values. The workings of our encoder are depicted in Figure 2.

Unified Feature Fusion (UFF) decoder Experiments [20,36] have shown
that the performance of segmentation can be improved by considering both local
features and global context. Although Transformers excel at understanding the
global context, they often miss local details such as edges, contours, and textures,
which are crucial for segmentation. To address this issue, we propose the UFF
decoder for feature pyramids. The UFF consists of the following:

1. SDE: This module uses convolution operations to focus on nearby patches
and enhance local features. Unlike Transformers, which globally analyzes the
relationships between all patches, SDE emphasizes features within each patch
using a fixed receptive field. Integrating these features with the Transformer
helps preserve local details, enhance feature extraction, and effectively syn-
ergize the strengths of CNNs and Transformers. Note that we refrain from
sharing convolution weights across different levels of our feature pyramid to
better adapt to varying feature depths.
For better understanding, assume that the input feature at level i has an ini-
tial dimension Di. It is first processed by a convolution layer, which transforms
its dimension to D without altering the spatial resolution. This intermediate
feature is then activated by a Rectified Linear Unit (ReLU) to introduce non-
linearity. The resulting output undergoes another convolution layer, retaining
the dimension D. Finally, another ReLU activation is applied, producing the
enhanced feature output. The working of SDE can be visualized in Figure 2.

2. HFI: Transformers and CNNs differ in their approaches to information
exchange within layers. Transformers rely more on residual connections, while
CNNs typically use traditional convolution connections [7,20]. Integrating
local features from CNNs with global features from Transformers is therefore
non-trivial. Our HFI block addresses this challenge by progressively integrat-
ing local and global features from various depths. The block achieves this
through concatenation, a linear layer, and a prediction layer. It is important
to note that our concatenation is effective because the shape of the feature at
a depth remains unchanged after passing through the SDE block. Specifically,
the concatenation operation merges refined features obtained from the SDE
block at levels i− 1 and i, resulting in a feature vector with a channel size of
2D. This concatenated feature vector then undergoes a linear (convolution)
layer to reshape its dimension to D, as depicted in Figure 2.

3.2 WBC Classification

It is shown in the literature that better classification can be achieved by providing
more attention to relevant WBC regions, such as the cytoplasm and nuclei [22].
Therefore, we utilize the results of WBC segmentation from the previous stage
to extract the relevant WBC regions. Specifically, we first modify the image
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to emphasize the relevant WBC regions. This process is referred to as region
of interest (ROI) extraction. Subsequently, the modified image is provided to
our WBC classification network, the SWIN Transformer [12]. The reason for
employing the SWIN Transformer is its ability to effectively capture hierarchical
features while maintaining global context. The flowgraph of our proposed WBC
classification is shown in Figure 3. The details of these steps are provided below:

ROI extraction : In our case, the relevant WBC regions are the cell, which com-
prises the nucleus and cytoplasm. Our ROI extraction aims to modify the input
image so that the relevant regions remain intact while the remaining regions are
marked in black. This modification helps our classification network (mentioned
in the subsequent step) focus on the relevant regions and ignore the background
for better classification. Therefore, we create a binary image that assigns 1 to
the pixels belonging to the cell region (i.e., the nucleus and cytoplasm) and 0
otherwise. Please note that our WBC segmentation (proposed in Section 3.1)
provides the segmentation outputs in white, gray, and black regions correspond-
ing to the cytoplasm, nucleus, and background, respectively. Hence, we create
our binary mask, B, using:

B(x, y) =

{
1 if M(x, y) = 128 or M(x, y) = 255
0 if M(x, y) = 0

(1)

where M denotes the segmentation mask; (x, y) represents the pixel location; and
M(x, y) = 128 or M(x, y) = 255 denote the gray or white regions, respectively.
Subsequently, we modify the input image by removing the background pixels.
To this end, we perform the following mathematical operation to obtain the
modified image, R:

R = I ·B (2)

where · denotes the pixel-wise multiplication operation and I is the input image.

Swin Transformer-based classification: The ROI image generated is then
fed into the Swin Transformer to classify the image into one of the five WBC
classes. The Swin Transformer [12] is notable for its hierarchical feature repre-
sentation and shifted window approach, which enables it to effectively analyze
intricate and comprehensive features of the image. By utilizing the Swin Trans-
former, we leverage its capability to analyze features more effectively, resulting
in accurate WBC classification. The loss function for training our Swin Trans-
former is cross-entropy [27].

3.3 Refined WBC Segmentation

The segmentation performed in the first stage can be erroneous; hence, this sub-
section rectifies the WBC segmentation using the WBC classification. It lever-
ages the intuition that a basophil does not contain cytoplasm, but our WBC
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Fig. 3. Flowgraph of our proposed WBC classification

segmentation (mentioned in Section 3.1) for basophils can include it. Fortu-
nately, our WBC classifier provides correct basophil classification in most cases,
as evidenced by Table 2. Since the correct classification is known, we rectify the
erroneous cytoplasm region of the basophil by marking it as a cell region. One
such example is shown in Figure 4, where the erroneous cytoplasm region has
been properly rectified.

Fig. 4. Qualitative results of our system on Raabin dataset for WBC segmentation
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4 Experimental Results

4.1 Experimental settings

Our proposed system, SANGAM, performs both WBC classification and segmen-
tation; thus, we conduct our experiments using datasets containing both ground-
truth labels. We evaluate our system using two publicly available WBC bench-
mark datasets: Raabin and LISC. The Raabin dataset includes 1,145 images
(each of 575 × 575 pixels) for segmentation, featuring 242 neutrophils, 201
eosinophils, 218 basophils, 242 lymphocytes, and 242 monocytes. The corre-
sponding segmentation masks consist of three areas: nucleus (grey), cytoplasm
(white), and background (black). The Raabin dataset is split into Train and
Test-A sets for classification. The Train and Test-A sets include 14,514 images,
with counts for each cell type: Basophils (212, 89), Eosinophils (744, 322), Lym-
phocytes (2427, 1034), Monocytes (561, 234), and Neutrophils (6231, 2660).
The LISC dataset has 242 images (720 × 576 resolution) with 53 basophils, 39
eosinophils, 52 lymphocytes, 48 monocytes, and 50 neutrophils. The correspond-
ing ground truth masks show the nucleus in light grey, the cytoplasm in grey,
and the background in black. We performed two types of segmentation tasks. For
3-class segmentation, we adjusted the ground truth to distinguish background,
cytoplasm, and nuclei using black, white, and grey regions, respectively. For 2-
class segmentation, we modified the ground truth by labeling cytoplasm as black
and nuclei as white.

We employ the following metrics for the quantitative evaluation of WBC
segmentation: mean Dice, mean IoU, and accuracy. The evaluation of WBC
classification is performed using accuracy, precision, recall, and specificity. The
following acronyms are used consistently in the subsections of 4.4 and 4.5: ‘DSC:
Dice Similarity Coefficient’, ‘IOU: Intersection Over Union’, ‘Acc: Accuracy’,
‘Pre: Precision’, ‘Rec: Recall’, ‘F1S: F1 Score’, ‘Spe: Specificity’.

Please be aware that we evaluate our system against SOTA systems under
identical training and testing conditions.

4.2 Implementation details

We conducted our experiments using PyTorch on a PC equipped with an
NVIDIA GeForce RTX 3050 GPU, an AMD Ryzen 5 5600X Six-Core Processor,
and 16 GB of RAM. We used the AdamW optimizer [13] with an initial learning
rate of 0.0001. The batch size was set to 4, and we trained for 200 epochs for
both types of segmentation and for classification.

4.3 Training and Testing settings

This subsection presents our training and testing strategy used for the proposed
WBC classification and segmentation. Initially, all images were resized to 572
× 572 pixels. The Raabin dataset is split into 912 images for training and 233
images for testing the segmentation network. We first train our segmentation
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network using this training set. Similarly, the dataset contains 10,175 images for
training and 4,339 images for testing the WBC classification network. Therefore,
we subsequently train our classification network on the 10,175 images. Since our
classification network requires the output of the segmentation network, we freeze
the segmentation network and update only the classification network parameters.
After training, the efficacy of segmentation and classification is assessed on the
respective test datasets. We adopted the same strategy for the LISC dataset,
with the difference that we randomly split the dataset into 80% for training and
20% for testing.

4.4 Comparative WBC Segmentation Performance

Table 1. Comparative WBC segmentation of our system with SOTA systems

2-class segmentation

System Raabin Dataset System LISC Dataset

DSC IOU Acc DSC IOU Acc

[38] 0.9719 0.9450 - - - - -

[17] 0.9633 0.9290 - - - - -

[8] 0.9198 0.8520 - - - -

[16] 0.9542 0.9120 - [1] 0.8991 0.8768 0.9598

[28] 0.9675 0.9360 - [26] 0.9020 0.8997 0.9789

[4] 0.9483 0.9230 0.9899 [22] 0.8910 0.8960 0.9677

SANGAM 0.9826 0.9663 0.9967 SANGAM 0.9334 0.9078 0.9892

3-class segmentation

System Raabin Dataset System LISC Dataset

DSC IOU Acc DSC IOU Acc

UNet [18] 0.8430 0.8391 0.9671 UNet
[18]

0.7865 0.7679 0.9582

SNet [18] 0.8281 0.8263 0.9420 SNet [18] 0.7677 0.7498 0.9400

CNN [18] 0.7821 0.7739 0.9084 CNN
[18]

0.7176 0.7099 0.9184

PWOR 0.8920 0.8552 0.9819 PWOR 0.8115 0.7465 0.9976

SANGAM 0.9371 0.9204 0.9919 SANGAM 0.8579 0.8011 0.9983

‘SNet: SegNet’, ‘PWOR: Proposed without Refined Segmentation’

In this subsection, we compare the efficacy of our proposed WBC segmenta-
tion system with existing SOTA systems, and the results are shown in Table 1.
Additionally, our qualitative results are presented in Figure 4 for visualization.
The table demonstrates that our system outperforms other SOTA systems for
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2-class segmentation. The primary reason for this is the integration of CNNs,
which excel at capturing local details, and Transformers, which effectively ana-
lyze global patterns. In contrast, the SOTA systems [1,16,26], which rely on
traditional image processing techniques, offer limited performance because they
struggle with generalizing across diverse microscopic conditions and image types
[28]. Similarly, systems based on CNN variants like SqueezeNet, U-Net++, and
Mask R-CNN [4,8,17,22,38] fail to capture long-range dependencies, resulting
in lower performance compared to SANGAM. Furthermore, Table 1 indicates
that our system also outperforms other SOTA systems for 3-class segmentation.
Compared to 2-class segmentation, existing work on 3-class segmentation is lim-
ited. The system [18] utilizes U-Net, SegNet, and CNN for 3-class segmentation
but neglects long-range dependencies, making SANGAM more effective than
[18].

Another important aspect that enhances the efficacy of our proposed system,
SANGAM, is the incorporation of WBC classification. For a more thorough
analysis, we introduce another system named PWOR, which performs WBC
segmentation without rectification. The corresponding results are also shown
in the table, indicating that SANGAM outperforms PWOR. This demonstrates
that better performance is achieved by incorporating rectification through WBC
classification. This effect can also be visualized in Figure 1, where the erroneous
segmentation of the basophil class has been corrected for the 3-class segmentation
task.

4.5 Comparative WBC Classification Performance

Table 2. Experimental results of individual classes on classification using ROI obtained
after 3-class segmentation

Class Raabin LISC

Acc Pre Rec F1S Spe Acc Pre Rec F1S Spe

N 0.994 0.997 0.993 0.995 0.995 1.000 1.000 1.000 1.000 1.000

E 0.996 0.966 0.984 0.975 0.997 0.983 1.000 0.857 0.923 1.000

B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

L 0.989 0.977 0.979 0.978 0.992 1.000 1.000 1.000 1.000 1.000

M 0.990 0.906 0.914 0.910 0.994 0.983 0.917 1.000 0.957 1.000

Overall 0.985 0.970 0.983 0.972 0.996 0.983 0.983 0.980 0.979 0.996

N: Neutrophil’, E: Eosinophil’, B: Basophil’, L: Lymphocyte’, M: Monocyte’

In this subsection, we compare the efficacy of our proposed WBC classification
system with existing SOTA systems. The results, shown in Table 3, indicate
that our system significantly outperforms SOTA classification systems. This is
because SOTA systems like [28], which rely on image characteristics and Support
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Fig. 5. Confusion matrices of our WBC classification on Raabin and LISC datasets

Table 3. Comparative WBC classification of our system with SOTA systems

System Raabin Dataset System LISC Dataset

Acc Pre Rec F1S Acc Pre Rec F1S

[28] 0.947 - - - [28] 0.922 - - -

[9] 0.952 0.904 0.934 0.919 [9] 0.932 0.929 0.927 0.928

[24] 0.970 0.970 0.970 0.970 [3] 0.974 0.971 0.964 0.971

[10] 0.928 - - - [10] 0.875 - - -

[10] 0.950 - - - [10] 0.906 - - -

[22] 0.966 0.960 0.955 0.958 [22] 0.968 0.942 0.949 0.941

Swin-
T

0.975 0.970 0.973 0.971 Swin-
T

0.970 0.968 0.970 0.964

SWI 0.979 0.970 0.976 0.972 SWI 0.980 0.983 0.975 0.978

Prop 0.985 0.970 0.983 0.972 Prop 0.983 0.983 0.980 0.979

‘Swin-T: Swin-Transformer’, ‘SWI: Swin with Interpolation’, ‘Prop: Proposed sys-
tem, SANGAM ’

Vector Machines (SVM), struggle to generalize across diverse conditions. Simi-
larly, other systems [3,9,10] use CNN variants on entire images, thereby missing
crucial global information. Nevertheless, Transformer variants like ViT [24] and
Swin Transformer (Swin-T ) have captured the global context, resulting in better
performance compared to CNN-based SOTA systems. Note that Swin-T is our
proposed WBC classification method, with the difference that the entire image
is fed into this system. It can also be observed that Swin-T outperforms ViT
[24], a result consistent with the literature [12], as Swin-T analyzes hierarchical
features.

For a more comprehensive analysis, we developed a Swin-based classifica-
tion system named SWI. Its input image is generated using the methodology
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presented in [22]. Specifically, we crop the ROI from our WBC segmentation
and then interpolate the extracted region. Table 3 indicates that SWI and our
proposed system, SANGAM, outperform the remaining systems. Both SWI and
our system rely on incorporating segmentation for classification. Thus, it can be
inferred that the efficacy of WBC classification systems can be further improved
by considering segmentation, as demonstrated by [22]. Furthermore, our system
outperforms SWI in the table because the interpolation and cropping of seg-
mented regions (cells) before classification led to blurred boundaries and a loss
of low-level details, thereby deteriorating performance.

4.6 Ablation study

The first stage of our proposed system, SANGAM, performs 3-class segmenta-
tion, followed by WBC classification. To investigate the importance of 3-class
segmentation, we created another system, S2R, using SANGAM. The key dif-
ference between S2R and our system is that S2R performs 2-class segmenta-
tion in the first stage rather than 3-class segmentation. The WBC classification
performances of S2R and our system are shown in Table 4. The results demon-
strate that SANGAM outperforms S2R because WBC classification in S2R relies
only on nuclei. This reliance leads to increased misclassification, as there can be
similarities in nucleus shape between certain pairs, such as eosinophils with neu-
trophils and monocytes with lymphocytes, as highlighted in the confusion matrix
(Figure 5). In contrast, the 3-class segmentation used by SANGAM includes
additional cytoplasmic information, leading to better classification.

Table 4. Comparitive results of SANGAM with S2R on Raabin dataset

Class S2R SANGAM

Acc Pre Rec F1S Spe Acc Pre Rec F1S Spe

N 0.968 0.984 0.964 0.974 0.974 0.994 0.997 0.993 0.995 0.995

E 0.973 0.784 0.879 0.829 0.981 0.996 0.966 0.984 0.975 0.997

B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

L 0.985 0.965 0.972 0.968 0.989 0.989 0.977 0.979 0.978 0.992

M 0.987 0.894 0.893 0.888 0.994 0.990 0.906 0.914 0.910 0.994

Overall 0.957 0.924 0.937 0.930 0.987 0.985 0.970 0.983 0.972 0.996

N: Neutrophil, E: Eosinophil, B: Basophil, L: Lymphocyte, M: Monocyte

5 Conclusion

This paper proposes a novel system, SANGAM, for WBC segmentation and
classification. It leverages the insight that the efficacy of WBC classification and
segmentation are intertwined and can therefore be synergized. Unlike the system
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described in [22], where segmentation guides classification, our SANGAM system
also allows classification to enhance segmentation. Moreover, our WBC segmen-
tation network effectively combines CNNs and Transformers to learn both local
and global features, resulting in performance improvements. Our WBC classifi-
cation benefits from being guided by WBC segmentation, leading to enhanced
performance. To this end, our proposed ROI extraction appropriately directs
the attention of our WBC classification network to the relevant image regions.
Additionally, when errors occur in WBC segmentation, our refined segmenta-
tion module mitigates these issues. Experimental results conducted on publicly
available datasets reveal that SANGAM outperforms existing well-known WBC
segmentation and classification systems. Furthermore, our results demonstrate
that efficacy can be improved by appropriately integrating CNNs and Trans-
formers in WBC segmentation, providing attention to relevant regions in WBC
classification, and synergizing WBC classification and segmentation.

In the future, we aim to explore this system in an unsupervised setting, pri-
marily due to the limited availability of ground truth data in supervised settings.
For this purpose, we plan to employ contrastive learning [5,27].
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Abstract. Medical image classification is a critical component of mod-
ern healthcare, providing numerous advantages, including improved diag-
nostic accuracy and treatment planning. Integrating deep learning for
medical image classification gives the ability to provide high accuracy
and extract automated features. The residual connections, dilated con-
volutions, and attention mechanisms were introduced to enhance the
performance of a very deep neural network. However, it remains chal-
lenging to achieve high classification accuracy in medical image classifi-
cation tasks using neural network models with fewer trainable parame-
ters and floating point operations per second (FLOPs). In this paper, we
propose a lightweight neural network model for medical image classifi-
cation, named as Medical Dilated Convolution and Attention Network
(MeDiANet), which achieves better accuracy even with the fewer param-
eters and FLOPs as compared to the state-of-the-art (SOTA) models.
The Dilated Residual Attention (DiET) is introduced in MeDiANet which
provides the access to usage of different dilation rate based on the depth
of the network. Also, by inflating the kernel size, more features can be
extracted while keeping the parameter count low. The performance of
MeDiANet has been evaluated on a large-scale multi-modal dataset. It
achieves an accuracy of 94.18% with 0.38M trainable parameters, 0.08
FLOPSs, and lower inference time of 4.2 seconds which is on average,
1.66% higher in accuracy with 12.50× and 2.55% lower trainable param-
eter and FLOPs respectively, with 7.44% higher inference time compared
to prior art.

Keywords: Deep learning · Dilated convolution · Lightweight deep
neural network · Medical image classification

1 Introduction

Deep learning has been successfully implemented in various application-specific
studies, including medical image analysis [26], satellite image recognition [19],
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video processing [21], and more [5,6,24,25]. In the field of medical image recogni-
tion, the implementation of deep neural networks (DNNs) has shown a significant
development over the past few years [26]. Medical image classification is a crucial
task in the field of image recognition, that aims to provide valuable assistance to
researchers and doctors in disease diagnosis and research endeavors. Although
researchers have made substantial contributions to medical image classification,
still the the inherent diversity of medical images obtained from various sources
pose challenges to medical image classification. The challenges include variations
in image contrast and focusing region, coupled with the presence of inner struc-
tures with variable pixel densities and textures, all of which contribute to the
complexity of medical image classification. Additionally, medical images often
contain inner structures with varying pixel densities and textures. Consequently,
relying on classical features for medical image classification can increase the risk
of mis-classification [2,33] (Fig. 1).

Fig. 1. An overview of proposed MeDiANet performance with state-of-the-art models.
Accuracy, Parameter, Inference time, and Throughput of all models have been shown
here. Bubble radius denotes the throughput where bigger bubbles are better. Every
bubble has a different color corresponding to its inference time.

Convolutional Neural Network (CNN) architectures [10,12,22] have shown
promising results not only in the field of medical imaging but also in other
domains. As a powerful branch of machine learning, CNN models can effectively
compute final class labels when raw pixels of biomedical images are provided as
input to the model. However, certain variations in biomedical images, such as
irregularities and scale differences in Region of Interests (ROIs), can pose dif-
ficulties for CNNs. These challenges require more specialized architectures and
techniques to robustly analyze and classify the images. The proposed Medical
Dilated Convolution and Attention Network (MeDiANet) architecture builds
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upon the strengths of CNNs and incorporates additional components, such as
the Residual Attention Network (ResAttNet) [3], to specifically address the chal-
lenges present in biomedical image classification. MeDiANet aims to provide a
more robust and versatile solution that can effectively handle irregularities, scale
differences in the ROIs of the biomedical images while effectively capturing vari-
ations within the images, and thus improves the accuracy and performance of
biomedical image classification compared to standard CNN architectures.

Fig. 2. The overall architecture of MeDiANet. The input image I ∈ R
3∈224∈224 is

passes through a Conv2D layer with Cin output channels (c) and kernel size (w) of
7 × 7 with a stride (s) of 2 and zero-padding (p) of 3, followed by a max pool layer
with kernel size (w) 2, stride (s) 2. This architecture contains total of four stages. The
first three stages contains one residual block (Res(·)) and one DiET (·) block each. The
fourth stage contains only Res(·). Output shape is 1 × 35.

In the present study, we incorporated two key concepts to improve the per-
formance of the proposed MeDiANet architecture. Firstly, we utilized dilated
convolution, as highlighted in the study by Yu et al. in [31], to address the chal-
lenge of extracting features from images that exhibit variations in scale. This is
achieved by utilizing a multi-dilated residual block within the Dilated Residual
Attention (DiET) block, that allows the network to extract broader range of fea-
tures from images that carry more spatial information at different scales. Thus
the model effectively captures the information across various levels of detail and
improves its ability to analyze and classify images with varying scales. Secondly,
we have employed the pre-activated residual block, as introduced by He et al.
[8]. This block can not only addresse the vanishing gradient problem commonly
encountered in DNNs but also enhances the overall performance of the network.
The primary objective here is to strike a balance between model complexity and
performance, seeking a more efficient and lightweight architecture for biomedical
image classification. By reducing the number of trainable parameters, MeDiANet
aims to improve computational efficiency and mitigate issues related to overfit-
ting. Despite having fewer parameters, the model strives to maintain or even
surpass the performance of existing approaches, ensuring robust and accurate
classification results for biomedical images.

Our contributions are summarized as follows:

1. A lightweight and computationally efficient DNN namely, MeDiANet is pro-
posed. It integrates several novel components pre-activated residual block,
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multi-dilated residual block, and novel dilated residual attention block. These
blocks are designed to reduce the overall parameter of the network and extract
features in different scales while maintaining low compute complexity.

2. MeDiANet is robust enough to handle multi-resolution, multi-disease, and
multi-modal medical image datasets.

3. The proposed MeDiANet’s accuracy outperforms the state-of-the-art with
regards to classification scores and demonstrates better convergence with ≈
135× lesser parameters.

The paper is structured as follows: In Section 2, we delve into the related
prior work. The working principle of MeDiANet is explained in Section 3. We
then proceed to Section 4, where we outline the experimental setup. The results
of our experiments are presented in Section 5. Finally, we conclude our study in
Section 6.

2 Related Work

CNNs [10,11] have been extensively utilized in various computer vision tasks for
a decade. According to He et al. [7], incorporating residual connections in the
ResNet network enhances performance without increasing the number of param-
eters. In addition to developing high-performing models, it is crucial that these
models remain lightweight, thereby making them irreplaceable for various appli-
cations where resource constraints and real-time performance are critical. The
models such as MobileNetv2 [20] and MobileNetv3 [9] use the concept of inverted
residual, linear bottleneck to have better classification accuracy with fewer float-
ing point operations per second (FLOPs) on Imagenet data for edge devices.
ShuffleNet [17] further reduce the FLOPs count by utilizing channel shuffle and
group convolution. The performance of the classical ResNet network is further
improved in Resnext [30] by using the concept of group convolutions while keep-
ing the same parameter as ResNet. Futher, EfficientNet [27] introduces a neural
architecture search leveraging a highly effective compound scaling method to
scale up the performance of the model while reducing the FLOPs of the network
significantly. Furthermore models such as ConvNext [13] and ConvNextv2 [29]
were introduced to further elevate the classification performance on ImageNet
with fewer parameters by utilizing the ConvNext block with GeLU activation
and global response normalization with masked autoencoder respectively.

In recent times, several CNN-based architectures have emerged as robust
tools for medical image classification, providing accurate and efficient analysis
of various imaging modalities. Several studies have explored the application of
deep learning techniques in medical image analysis, paving the way for signif-
icant advancements in this field. The lightweight models such as ShuffleNet,
MobileNetv2, MobileNetv3, ConvNeXt-A are also employed on medical images
for the diagnosis of skin disease [23], cervical cancer[28], etc. In addition to
utilizing lightweight models, researchers also employed concepts such as dilated
convolutions and attention networks to enhance performance. In [35], Zhou et al.
explored the effectiveness of integrating dilated convolutions into medical image
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classification networks. Their research highlights the benefits of using dilated
convolutions in enlarging the receptive field without significantly increasing the
number of parameters. A dual attention network is proposed in [4] for the clas-
sification of diabetic retinopathy severity. The network combines dilated con-
volutions with spatial attention mechanisms to capture multi-scale multi-level
features to highlight salient features in retinal images.

Despite these advancements, the computational complexity of these networks
has not been adequately addressed. Additionally, these proposed networks are
trained and tested for a single modality of medical image data leading to different
models for different modalities. In this work, we propose a network architecture
that addresses and resolves this issue, aiming to develop a computationally effi-
cient solution for medical image analysis tasks. Also, the model is trained and
tested for different modalities of medical images leading to a single model for
different medical image modalities.

3 Methodology

In this work, a lightweight and computationally efficient classification net-
work architecture, named as medical dilated convolution and attention network
(MeDiANet) is proposed (Figure2). The proposed network incorporates two key
components: the multi-dilated residual block (MDiRes(·)) and the dilated residual
attention block (DiET(·)).

3.1 Residual Block

The proposed network module includes a pre-activated residual blocks [8] as
an essential architectural element, as illustrated in Figure 3. Mish(·) activation
function which is introduced by Mishra et al., in [18] is used in the network,
instead of ReLU(·). This pre-activated residual block, denoted as Res(·), replaces
the standard residual module and plays a significant role in the proposed net-
work’s architecture. The modification has been done in the channel dimension
to reduce the no of trainable parameters of the Res(·), which eventually results
in the overall reduction of trainable parameters of the proposed MeDiANet. Let
X ∈ R

K×M×N and R ∈ R
K×M×N respectively be the input and output features

of a residual block, such that

R = Res(X)
Res(X) = F(X) +X

(1)

F(·) �→ BatchNormalization → Mish → Conv2D

(
K

4
c1w1s0p

)
→

BatchNormalization → Mish → Conv2D

(
K

4
c3w1s2p

)
→

BatchNormalization → Mish → Conv2D (Kc1w1s0p)

(2)
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Here Conv2D
(
K
4c1w1s0p

)
represents a Conv2D operation of K

4
kernels (c) of size

(w) 1×1, with a stride (s) 1, 0 padding (p). In traditional residual block, channel
expansion is done in the last convolution layer by a factor of 4 to make the
number of channels 4K from an input feature with K number of channels (Figure
3). However, in our proposed MDiRes(·), the number of channels remains the
same as the input (K). In order to maintain the expansion factor of 4 like a
traditional Residual Block, the number of channels of the 1st two convolution
layer inside the Res(·) has been reduced by a factor of 1

4 . The above formulation
allows the layers of the residual block to learn not only the entire transformation
but also the modifications to the identity mapping [7], which, in turn, enhances
the performance of the proposed DNN.

Fig. 3. Architecture of proposed residual block (Res(·)), where the number of kernels
for the input feature maps are same which is denoted by K, unlike traditional residual
block

3.2 Multi Dilated residual block

Each multi dilated residual block defined as MDiRes(·), includes three parallel
Conv2D of different dilation rates with the residual connection (shown in Figure
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4a), which helps extracting relevant features of the input images even if they
differ in sizes and scales. Similar to the Res(·), MDiRes(·) can be represented as
following:

Fd(·) �→ BatchNormalization → Mish →

Conv2D

(
K

4
c1w1s0p

)
→

BatchNormalization → Mish →⎧⎨
⎩

Conv2D
(
K
4c3w1s2pR1d

)
‖ Conv2D

(
K
4c3w1s2pR2d

)
‖ Conv2D

(
K
4c3w1s2pR3d

)
⎫⎬
⎭ → Add (·) →

BatchNormalization → Mish →
Conv2D(Kc1w1s0p)

(3)

Fig. 4. Architecture of MDiRes(·). In this block, after first convolutional layer, the
output passes through into three parallel convolution layer with dilation rate (d) of R1,
R2, R3 respectively to construct a MDiRes(·)

R1 in K
4
c3w1s2pR1d represent the dilation rate (d) of the convolution opera-

tion. The exact values of R1, R2, R3 used in (3) network is mentioned in Table 1.
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3.3 Dilated Residual Attention Block

Previously attention mechanism has been deployed in various computer vision
tasks including medical image classification, which enable it to enhance the per-
formance of the model. It has been seen that inclusion of residual attention
block provides better result than channel attention or spatial attention [3]. Thus
in this proposed network, DiET(·) block is introduced where the residual atten-
tion mechanism has been deployed using MDiRes(·). The overall block diagram
of DiET(·) has been given in Figure 5.

Fig. 5. The overview of DiET(·) block which consists of Res(·) block and DiAtt(·) block.
Here input feature passes through a Res(·) before going into the DiAtt(·). The DiAtt(·)
output features then again will go through a Res(·) and finally produce the output
feature map of DiET(·).

The output of the DiET(·) block for a given input feature X ∈ R
K×M×N is

D ∈ R
K×M×N . In each DiET(·) block the output feature of previous block is

passed through a residual block. Then the output of this residual block goes into
the dilated attention block denoted as DiAtt(·), followed by a residual block to
produce the output of the DiET(·) block, such that

D = DiET(X) = Res(DiAtt(Res(X))) (4)

DiAtt(·) consists of two parallel branches. The branch which performs feature
processing is called as the trunk branch (Fp(·)), and the other branch acts as
an attention mask (Am(·)) that provides the feature selection mechanism during
forwarding inference generation. This can be represented as,

DiAtt(·) = Fp(·) ⊕ (Fp(·) � (Sigmoid(Am(·)))) (5)
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Fig. 6. DiAtt(·) has been elaborated with two parallel path of trunk branch (Fp(·))
and attention mask (Am(·)) branch. Am(·) is illustrated further in here, which consists
of multiple MDiRes(·), MaxPool, UpSample, Conv2D layer.

where, ⊕ and � denotes element-wise addition and multiplication, respectively.
Here, output of Res(·) is fed as input to the both Am(·) and Fp(·) in DiAtt(·) .

In this architecture, the key entity is the attention mask Am(·) as it fetches
the good features as well as suppresses the noise from the feature processed by
Fp(·) in (5). Fp(·) comprises of two successive MDiRes(·), such that

Fp(·) = MDiRes(MDiRes(·)) (6)

The Am(·) shown in figure 6, utilizes the bottom-up top-down approach [14]
similar to an encoder-decoder based architecture. The Am(·), consists of multiple
Up(·) and Down(·) blocks, which are defined as,

Am(·) = Conv2D(Conv2D(Up3(Up2(Up1(Down3(Down2(Down1(·))))
+ MDiRes(Down2(Down1(·))))
+ MDiRes(Down1(·)))))

(7)

Downi(·) = MDiResi(MaxPooli(·)) (8)

Upi(·) = Upsamplei(MDiResi(·)) (9)

Here in eq (7), Conv2D(·) has hyperparameter defined as Conv2D(Kc1w1s1p0d)
where K is defined as number of kernels. Also, here i ∈ {1, 2, 3} denotes the index
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of the corresponding block in (8) and (9). The Sigmoid(·) activation is applied
to normalize the output range of the Am(·) to [0, 1].

3.4 MeDiANet

The overall network architecture is illustrated in Figure 2. Here, two different
versions of MeDiANet are proposed based on the number of channels used in
the first convolution layer of the network, denoted as Cin. The proposed network
named as MeDiANetbase for Cin = 16 and MeDiANetwide for Cin = 32. Each
of these 2 variants of the network has two different versions depending on the
number of trainable layers present in the network. The total number of trainable
layers in the network is denoted as B, where B = 16m+21, and m is the number
of DiET(·) blocks belonging to {3,6}. The details of these MeDiANetbase-B have
been given in Table 1.

Table 1. Detailed architecture of proposed MeDiANetbase-B

ïż£

Output
Size

Dilation
[R1, R2, R3]

StrideKernel Channel out
B

69 117
112 ÃČ- 112 1 2 7 ÃČ- 7 Cin Conv2D Conv2D

56 ÃČ- 56 NA 2 2 ÃČ- 2 Cin MaxPool2D MaxPool2D

56 ÃČ- 56 1 1 3 ÃČ- 3 Cin Res(·)-1 Res(·)-1
56 ÃČ- 56 [4,8,12] 1 3 ÃČ- 3 Cin DiET(·)-1 DiET(·)-1
28 ÃČ- 28 1 2 3 ÃČ- 3 2Cin Res(·)-2 Res(·)-2
28 ÃČ- 28 [2,4,6] 1 3 ÃČ- 3 2Cin DiET(·)-2 2 ÃČ- DiET(·)-2
14 ÃČ- 14 1 2 3 ÃČ- 3 4Cin Res(·)-3 Res(·)-3
14 ÃČ- 14 [1,2,3] 1 3 ÃČ- 3 4Cin DiET(·)-3 3 ÃČ- DiET(·)-3
7 ÃČ- 7 2 2 3 ÃČ- 3 8Cin Res(·)-4 Res(·)-4
7 ÃČ- 7 1 1 3 ÃČ- 3 8Cin Res(·)-5 Res(·)-5
7 ÃČ- 7 1 1 3 ÃČ- 3 8Cin Res(·)-6 Res(·)-6

1 ÃČ- 1 NA NA 7 ÃČ- 7 8Cin
AvgPool2D +

Dropout

AvgPool2D +
Dropout

1 NA NA NA 64 Linear Linear

1 NA NA NA #classes Linear Linear

Total Parameter (Million) 0.38 0.63

4 Experimental Setup

4.1 Dataset

Multiple dataset from different sources has been aggregated to create a large-
scale medical image benchmark dataset in order to measure its performance. As
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each of the dataset’s images are of different sizes, the images are resized to 3 ×
224 × 224 before the training process. This dataset contains total of 35 diseases
and is divided into train, validation, and test with a ratio of 7 : 1 : 2. The details
of this dataset are presented in Table 2.

Table 2. An overview of the dataset used for this experiment. A total of 35 classes are
taken from 4 different modalities.

Dataset Modality #ClassesNumber of images(Train, Validation, Test)

Blooda Microscope 8 (11534, 1276, 2135)

RetinalFundus b Fundus 11 (14699, 1623, 2713)

Path c Colon Pathology 9 (58397, 7481, 12456)

Skin d Dermatoscope 7 (6761, 756, 1256)
a https://data.mendeley.com/datasets/snkd93bnjr/1
b https://www5.cs.fau.de/research/data/fundus-images/
c https://zenodo.org/records/1214456
d https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000/home/

4.2 Implementation Details

Experiments were performed on 2x Intel(R) Xeon(R) 4110CPU, 4x32 GB DDR4
ECC Regd. RAM, 2xNvidia Tesla V100 SXM2 with 16GB HBM2 & NVLink,
1x2TB HDD. The model is implemented in TensorFlow 2.15.1, using Python 3.9
version. The model has been trained with a batch size of 192 using AdamW [16]
optimizer. The Cosine decay learning rate scheduler [15] is used with a warmup
target of 2× 10−4 after the first 40 epochs. The initial learning rate for warmup
was found by hyperparameter tuned and set to 7× 10−4. The network has been
trained for 400 epochs. Softmax(·) activation is used at the output layer as this is
a multi-class classification task with 35 classes and employs the categorical cross-
entropy loss[34] function with label smoothing of 0.1 to calculate the prediction
loss.

4.3 Evaluation Metrics

Precision, recall, and F1 score are used as performance metrics for measurement
of the experiment result of the proposed network. Though accuracy is widely used
for the evaluation of multi-class classification networks, the above three metrics
are also used for better understanding of the model performance for individual
classes. Table 3 refers to the comparison of the proposed model performances.

5 Results & Discussions

A customised 2D medical images dataset (Table 2 has been used to evaluate
the model performance of the proposed and state-of-the-art (SOTA) models.
The classical ResNet [7] as well as a number of recently proposed extensions

https://data.mendeley.com/datasets/snkd93bnjr/1
https://www5.cs.fau.de/research/data/fundus-images/
https://zenodo.org/records/1214456
https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000/home/


MeDiANet 181

of the classical ResNet architecture, including the DRN [32], ResAttNet [3],
ConvNext [13], and ConvNextV2 [29] has been used for comparison purposes.
In order to observe the efficiency, the proposed network has been also compared
with the SOTA lightweight networks such as MobileNetv2 [20], MobileNetV3 [9],
MobileNetV 4[9], ShuffleNetV2 [17], and EfficientNet lite [27] etc.

Table 3. Comparison of the proposed model with the SOTA. Throughput
(image/second) during inference and Inference Time (s) has been measured on a single
core of the Intel(R) Xeon(R) 4110CPU with 256 batch size in float16. Bold values
represent the best performance and underline represent the reference for comparison

Model Accuracy (%)
Parameter

(Million)
FLOPs (G) Throughput

Inference

Time (s)

ResNet-18 [7] 91.72 (-2.46) 11.29 (↑ 6.23×) 1.82(↑ 3.1×) 26(-3) 9.3 (↑ 14.8%)

ResNet-50 [7] 92.95 (-1.23) 23.10 (↑ 12.16×) 3.82(↑ 6.6×) 24(-5) 10.5 (↑ 29.6%)

DRN-A-18 [32] 92.86 (-1.32) 11.29 (↑ 10.11×) 2.89(↑ 4.9×) 24(-5) 10.8 (↑ 33.3%)

DRN-B-26 [32] 93.51 (-0.67) 21.27 (↑ 26.18×) 8.25(↑ 14.2×) 9(-20) 27.4 (↑ 238%)

ResAttNet-56 [3] 93.34 (-0.84) 31.90 (↑ 17.64×) 6.28(↑ 10.8×) 16(-13) 15.6 (↑ 92.6%)

ResAttNet-92 [3] 93.98 (-0.10) 51.30 (↑ 28.34×) 10.4(↑ 17.9×) 9(-20) 28.1 (↑ 247%)

MobileNetV2 [20] 90.93 (-3.25) 3.51 (↑ 1.93×) 0.31(↓ 1.8×) 36(+5) 7.1 (↓ 12.3%)

MobileNetV3Large [9] 91.48 (-2.70) 5.48 (↑ 3.02×) 0.25(↓ 3.2×) 44(+13) 5.6 (↓ 30.8%)

MobileNetV4 a 92.56 (-1.62) 2.56 (↑ 1.42×) 0.2(↓ 2.9×) 48(+17) 5.2 (↓ 35.8%)

EfficientNetlite-B0 [1] 93.86 (-0.32) 3.45 (↑ 1.92×) 0.41(↓ 1.41×) 32(+1) 7.5 (↓ 7.4%)

CSP-DarkNet-Tiny b 92.45 (-1.73) 2.39 (↑ 1.32×) 0.58(↓ 1×) 30(-1) 8.4 (↑ 3.7%)

ShuffleNetV2 2.0× [17] 92.26 (-1.92) 5.78 (↑ 3.19×) 0.53(↓ 1.09×) 32(+1) 6.5 (↓ 19.7%)

ConvNext-A [13] 92.18 (-2.00) 3.49 (↑ 1.93×) 0.56(↓ 1.03×) 28(-3) 9.0 (↑ 11.1%)

ConvNextV2-A [29] 92.75 (-1.43) 3.49 (↑ 1.93×) 0.56(↓ 1.03×) 32(+1) 10.2 (↑ 25.9%)

MeDiANetbase-69 94.18 0.38 (↓ 4.76×) 0.08(↓ 7.2×) 60(+29) 4.2 (↓ 48.1%)

MeDiANetwide-69 94.35 (+0.17) 0.91 (↓ 1.98×) 0.25(↓ 2.3×) 34(+3) 5.8 (↓ 28.4%)

MeDiANetbase-117 94.28 (+0.10) 0.63 (↓ 2.87×) 0.18(↓ 3.2×) 44(+13) 7.4 (↓ 8.6%)

MeDiANetwide-117 95.01 (+0.83) 1.81 0.58 31 8.1
a https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.
py
b https://keras.io/api/keras_cv/models/backbones/csp_darknet/

In terms of accuracy, MeDiANetbase-69 has achieved 94.18% compared to
93.98% of ResAttNet-92 with 135× fewer parameter and 208× fewer FLOPs. The
MeDiANetwide-117 which is deeper and wider variant of MeDiaNet has demon-
strated superior performance, achieving the highest accuracy of 95.01%. This
represents an average improvement of 2.41% over other SOTA networks, while
also utilizing 9.23× fewer parameters on average. The lightweight networks like
MobileNetV2, MobileNetV3, MobileNetV4, EfficientNet, ESP-DarkNet, Shuf-
fleNetV2, and ConvNext used lesser number of FLOPs as compared to best
performing network (MeDiANetwide-117). However, on average, these networks
exhibited a 2.76% lower accuracy. On the other side, MeDiANetbase-69 on an
average utilizes 12.49× lesser parameters as compared to SOTA network, with
a trade-off of a 0.83% reduction in accuracy compared to the MeDiANetwide-
117. Additionally, in terms of FLOPs and inference time, the MeDiANetbase-69
variant, on average, utilized 2.55× fewer FLOPs and achieved a 177% improve-
ment in inference time relative to SOTA network. MeDiANetbase-69 has greater

https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py
https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py
https://keras.io/api/keras_cv/models/backbones/csp_darknet/
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efficiency with approximately 7× faster in terms of inference time latency and
has 566% of improved throughput than the SOTA network (ResAttNet-92).

While MeDiANetwide-117 achieved the best accuracy, it is slightly slower
than MobileNetv3-Large (1.4×) and MobileNetV2 (1.1×) during inference. By
incorporating the pre-activated residual block into the proposed architecture,
we are able to alleviate the gradient vanishing issue and improve the network’s
training process, resulting in enhanced performance. Furthermore, the proposed
MediaNet offers a more efficient and lightweight deeper network architecture that
achieves high performance while significantly reducing the number of trainable
parameters.

6 Conclusion

This work presents a novel DNN architecture to enhance significant 2D biomed-
ical image classification accuracy. This architecture is inspired by the Residual
Attention Network [3], which combines the soft-attention mask with the feature
map extracted from the trunk branch consisting of two residual blocks. We pro-
pose a modified architecture by implementing an MDiRes(·) block with the trunk
and attention mask branches which provides significant advantage for handling
diverse biomedical images. The proposed network achieves comparable perfor-
mance with significantly fewer parameters concerning the other SOTA method
available on the dataset, which is demonstrated in Table 2. The proposed net-
work is validated on a large-scale and multi-modal medical image dataset. Since
the number of parameters of MeDiANets is significantly less than the SOTA
network makes its fast and robust to train a dataset in real-time. Apart from
that biomedical image classification task, the proposed network can be used for
other natural image classification.
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Abstract. Well log interpretation involves analyzing geological struc-
tures and reservoir contents using well log data. The advancement of arti-
ficial intelligence has led to the wide-ranging application of deep learning
in well log interpretation. However, due to cost limitations, only a small
number of wells are typically surveyed and tested in each logging block,
posing a significant challenge in achieving accurate interpretation under
few-shot conditions. To tackle this challenge, we propose a data aug-
mentation method that integrates time-domain and frequency-domain
features of well log curves. This method aims to harness the character-
istics of well log curves in both domains to enrich the limited data. Fur-
thermore, we have developed a neural network architecture search space
tailored to the few-shot well log data problem and demonstrated the
effectiveness of the proposed time-domain and frequency-domain data
augmentation for well log interpretation. Our method has shown the
ability to achieve accuracies of up to 93.00% and 95.05% on well logging
interpretation tasks when applying different augmentation methods to
the data from different blocks. These performance indicators are com-
parable to the results of training with all training wells under the entire
block.

Keywords: Well log curves · Few-shot learning · Time Domain ·
Frequency Domain · Data Augmentation

1 Introduction

Well log curves [9] are the data of various geological parameters at different
depths recorded by sensors during the well log [13] process. The variation char-
acteristics of their amplitude and shape can reflect important information such
as geological structure, oil, gas, and water content. Combining deep learning
with well logs interpretation can enable the automatic extraction of rich geo-
logical insights by learning the complex patterns in well log curves, significantly
improving the accuracy and efficiency of well logs interpretation [3,23,30]. How-
ever, in actual practice, the high costs of oil and gas exploration often result in
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only a small number of test wells being developed and tested in each geological
block, and the differences in formation conditions across blocks can lead to large
variations in parameters like formations and reservoirs. To promote the estab-
lishment of intelligent well logs interpretation processes, it is crucial to improve
the accuracy of well logs interpretation models using limited well log data.

Few-shot learning [19] aims to fully utilize the limited labeled samples to
learn the mapping relationship between input and output, in order to improve
the model’s predictive performance and generalization ability when facing new
samples. In this context, data augmentation is a direct approach to solving the
problem of few-shot well log. In previous research, data augmentation opera-
tions commonly used in the field of image classification[7,8,31,35], can effectively
expand the training data and improve the model’s predictive ability and gen-
eralization capability. In comparison, well log curve data, as discrete numerical
sequences, differ significantly from image and text data, and cannot be directly
applied to the aforementioned augmentation techniques. Existing research on
well log data augmentation has primarily focused on two approaches: directly
leveraging the time-domain characteristics of well log data at different depths,
and utilizing wavelet transform [25] and other techniques to analyze the curves in
the frequency domain. However, these studies have not simultaneously exploited
the time-domain and frequency-domain features of well log data.

In this paper, we propose a well log data augmentation method based on
the fusion of time-domain and frequency-domain features, aiming to address
the challenge of few-shot well log learning. The method leverages the informa-
tion of well log curves in both the time and frequency domains. In the time
domain, it applies smoothing and fluctuation enhancement operations, while
in the frequency domain, it applies Fourier transform, wavelet transform, and
wavelet domain denoising. This enhances the diversity and representativeness of
the data samples, thereby improving the performance of deep learning models
in well log interpretation. The main contributions of this work are as follows:

1) In order to tackle the challenge of few-shot learning in well log interpo-
lation, we design two time-domain and three frequency-domain data augmen-
tation methods, as well as three strategies to integrate the time-domain and
frequency-domain features. These methods effectively increase the diversity and
representativeness of the data samples, thereby enhancing the performance of
deep learning models in well log interpretation under limited sample conditions.

2) We integrate the proposed time-frequency feature fusion augmentation
method with mainstream deep learning networks such as ResNet18 and SENet18.
The experimental results demonstrate that the three proposed augmentation
methods can significantly improve the model’s prediction performance in few-
shot well log learning. Specifically, our method can achieve accuracies of up to
91.66% and 94.93% on well log interpretation with the number of training wells
being 2 and 4, respectively, which is comparable to the results of training with
all training wells under the entire block.

3) We design a dedicated neural network architecture search space for the
few-shot learning in well log, and combine it with the time-frequency feature
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fusion data augmentation method. This further validates the effectiveness of
time-frequency features in enhancing well log data modeling performance. The
experimental results show that the architecture found through the search process
can improve the highest accuracy of 2 and 4 training well data augmentation to
93.00% and 95.05% respectively.

2 Related Works

2.1 Data Augmentation

In the context of few-shot learning for classification tasks, there are three main
approaches: data augmentation-based [12], metric-based [11], and meta-learning-
based [21]. data augmentation [28] is a method that increases sample diversity by
transforming or expanding training samples so that the model can better adapt
to new sample distributions. Compared with the latter two, data augmentation
is the most direct way to solve the limited sample problem.

When solving few-shot learning tasks based on data augmentation,
researchers have employed various approaches, including manually designing
augmentation techniques based on the characteristics of the data, exemplified by
methods [16,33]. Additionally Kim et al. [18] proposed a technique that utilizes
slot-based noise addition to convert data into short sentences with the same
context but different slot labels, aiming to solve oral few-shot learning tasks.
Furthermore, data augmentation can also be achieved through deep learning
models [1,20,34] Chu et al. [4] presented a method to solve the long-tail data
distribution problem [38], wherein they employed Class Activation Maps [37] to
divide the samples into class-generic and class-specific features, enabling them
to combine the common features of majority classes with the unique features of
minority (long-tail) classes.

Building upon the previous approaches, researchers have further combined
the power of Automated Machine Learning [5,14,15] with data augmentation
techniques to automate the process of data augmentation for specific datasets
and tasks. The Adversarial AutoAugment algorithm designed by Zhang et al. [36]
in 2020 introduced the ”adversarial” idea of GAN into AutoAugment, so that
the model can simultaneously search for data augmentation strategies and train
classification models. In addition, Cubuk et al. [6] improved the AutoAugment
algorithm in 2020 and proposed the RandAugment algorithm, which can sig-
nificantly reduce the search space and does not require an independent search
phase.

2.2 Time-frequency Augmentation

Time-frequency analysis is a valuable tool in speech signal processing and geo-
physical data analysis, as it can provide richer information compared to time
domain analysis alone. By combining time and frequency domain analysis, one
can focus on the characteristics of data in both dimensions simultaneously, which
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is crucial for gaining a deeper understanding of the intrinsic properties of the
data and improving model performance under limited sample conditions.

For audio data, in addition to directly applying time shifting and background
sound mixing, common data augmentation methods can also generate more sam-
ples by performing spectral transformations. The SpecAugment algorithm pro-
posed by Park et al. [27] enhances the spectrogram information of input speech
samples by distorting the spectrogram in the time direction and applying signal
masking in the time and frequency domains. Similarly, the SpecMix algorithm
introduced by Kim et al. [17] uses a time-frequency masking strategy to maintain
the spectral correlation between different audio samples while mixing them for
data augmentation.Beyond these two approaches, wavelet transform [10,25,26]
is also widely used for data enhancement.

In the field of geophysical logging, time-frequency analysis, such as short-time
Fourier transform, continuous wavelet transform and other technologies [24,29]
also play an important role in processing geophysical data such as seismic and
magnetic data. Yu et al. [32] also optimized the wavelet decomposition param-
eters by integrating multi-scale wavelet transform technology when conducting
Glutenite reservoirs.

3 Method

Fig. 1. The overall of our proposed method. To address the challenge of few shot
learning for well log, we mainly proposed three methods to fuse the time domain and
frequency domain information.
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The overall structure of our proposed method for few-shot learning augmentation
of well log data shows in Figure 1. We design three approaches to fuse the log data
in these two domains: separate augmentation in the time and frequency domains,
sequential augmentation in the time and frequency domains, and fusion of time
and frequency domain features in the channel dimension.

The separate augmentation in the time and frequency domains involves
enhancing the original curve in the time domain and performing multi-scale
decomposition in the frequency domain, with the features enhanced in the time
and frequency domains being used as model training data. When fusing time and
frequency domain features in the channel dimension, after performing time and
frequency domain augmentation operations on the original data, we first convert
the frequency domain augmented data back to the time domain, and then con-
catenate the time domain augmented data and the frequency domain augmented
data in the channel dimension to serve as the training data for the few-shot log-
ging model. Besides, in the sequential augmentation in the time and frequency
domains, we first perform denoising or fluctuation enhancement operations on
the logging data in the time domain, and then convert the data augmented in
the time domain to the frequency domain to complete the augmentation in the
frequency domain.

3.1 Time-domain Method

Well logging data is data collected by sensors along the depth direction, which
has obvious time domain characteristics. In the few-shot learning problem for
well log, we design two time domain augmentation methods.

Smoothing Convolution The harsh downhole conditions and sensor limita-
tions introduce noise and artifacts, leading to suboptimal feature extraction by
the model, ultimately degrading the final interpretation results. To mitigate
this challenge, we develop a time domain augmentation technique leveraging
one-dimensional convolution operations to smooth the logging data. Figure 2
illustrates the process of applying a stack of convolutions to smooth the logging
curve.

Fig. 2. Smoothing and denoising the well logging data using one-dimensional convolu-
tion.
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We first select appropriate kernel size and stride parameters for the 1D convo-
lution operation, and then perform this convolution processing along the depth
dimension of each logging curve. Crucially, to maintain the fidelity of the orig-
inal data distribution, we normalize the convolved log data by dividing it by
the sum of the convolution kernel elements. Additionally, we employ a copy-
and-fill strategy to ensure consistency in the data length before and after the
augmentation process. The mathematical expression for the log data value after
the convolution smoothing is given by Eq. 1, where m denotes the convolution
kernel length, wk represents the kernel element values, i indexes the individ-
ual logging curves, and xn+k and yk correspond to the original and augmented
logging data, respectively.

yi
n =

∑m
k=0 xi

n+kwk
∑m

k=0 wk
(1)

Fluctuation Enhancement The primary driver of fluctuations in well logging
curves is the changes in formation properties. To encourage the deep learning
model to focus more on the variations at the formation interfaces, we design
a targeted data augmentation technique that amplifies the fluctuations in the
logging curves.

This method first computes the maximum(xl
max), minimum(xl

min), and aver-
age (xl

mean) values for each logging slice, where l denotes the different slices. We
then selectively apply a fluctuation enhancement operation on the slices where
the difference between the maximum and minimum exceeds the average value
For these targeted slices, we scale up the logging data greater than the average
by a factor of (m + 1)/m, while scaling down the remaining data by a factor of
(m−1)/m, where m represents the number of logging curves. The mathematical
formulation of this process is presented in the following equation:

yl
n =

{
(m+1)xl

n

m , xl
n > xl

mean
(m−1)xl

n

m , xl
n ≤ xl

mean

(2)

3.2 Frequency-domain Method

In the few-shot learning scenario involving small log datasets, decomposing
the log data into different frequency bands can help isolate the valuable low-
frequency geological signals from the overall data. This separation of frequency
components aids the deep learning model in better capturing the implicit geolog-
ical features contained within the log curves. To address this few-shot learning
problem, we develop three frequency domain data augmentation.

Fourier Transform In the problem of few-shot learning with limited log sam-
ples, Fourier transform [2] can be leveraged to convert the time-domain charac-
terization signals into the frequency domain. This transformation allows analyz-
ing the distribution of different frequency components within the signals, which
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is crucial for understanding the periodic information in the formation transfor-
mation and gaining insights into the formation structure at various scales. Since
log experts primarily rely on peak changes during logging analysis, and the
amplitude in Fourier transform corresponds to the fluctuation amplitude of dif-
ferent depth points, we perform data augmentation based on Fourier transform.
Specifically, we obtain the phase and amplitude information in the frequency
spectrum, and selectively retain only the amplitude data. The process of Fourier
transform-based data enhancement for the value at depth point n in the i-th log-
ging curve is shown in Eq.3 and Eq.4, where N represents the number of depth
points contained in the logging slice that undergoes Fourier transformation.

X(k) =
N−1∑

n=0

xi
ne−i2πkn/N (3)

Y (k) = |X(k)| (4)

Wavelet Transform Wavelet transform is a method that can detect signal
mutation points and describe the degree of signal mutation, which helps to cap-
ture the changing characteristics of the interface in logging data. Figure 3(a) is
a schematic diagram of a two-level wavelet decomposition, where cD1, cD2 and
cA2 are the high-frequency detail coefficients and low-frequency components of
the first and second layers after wavelet decomposition, and the lengths of the
three are 1/2, 1/4, and 1/4 of the original logging data, respectively.

Fig. 3. The process diagram of wavelet transform(a) and wavelet domain denoising(b),
where N is the curve length.

In the analysis of logging data, the high-frequency band corresponds to the
rock formation details, which contain significant high-frequency noise. To reduce
the impact of this noise when converting the logging curve to the frequency
domain using wavelet transform, the low-frequency components of the wavelet
variables are used for data augmentation. To ensure the consistency of the depth
points before and after data augmentation, interpolation is applied to restore the
wavelet components to the original data length.
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Wavelet Domain Denoising To address the noise problem introduced in the
process of log curve acquisition, in addition to convolutional smoothing denois-
ing in the time domain, a wavelet domain denoising method is designed in the
frequency domain. Fig.3(b) describes the process of wavelet domain denoising.

When performing wavelet domain denoising on the logging curve, the original
curve is first decomposed by wavelet to obtain wavelet coefficients at different
scales. The high-frequency components in the wavelet coefficients are then sub-
jected to soft threshold filtering to remove the high-frequency noise components.
Finally, the denoised wavelet coefficients are reconstructed to obtain the logging
curve with the high-frequency noise removed. The soft threshold λ and filter-
ing formula yi

n = sign(xi
n)(|xi

n| − λ) are used in the wavelet domain denoising
process, where cD1 is the first-layer detail coefficient of wavelet decomposition,
N is the length of the original curve, j is the number of wavelet decomposition
layers, and xi

n and yi
n are the values before and after high-frequency component

denoising, respectively. The formula below represents the soft threshold λ and
the filtering equation used in the wavelet-based denoising process for logging
curves:

λ =
median(|cD1|)

√
2 ln N

0.6745 log2(j + 1)
(5)

yi
n =

{
sgn(xi

n)(|xi
n| − λ), |xi

n| ≥ λ

0, |xi
n| < λ

(6)

4 Experiment

4.1 Dataset

Table 1. The number of appraisal and exploratory wells contained in each block. We
use the appraisal wells for model training and the exploration wells for testing during
the training process.

Block Block-0Block-1Block-2Block-3Block-4Block-5Noise

Appraisal well num 23 92 7 6 12 57 3

Exploratory well num 0 13 3 0 2 9 1

In the experiments, we evaluate the performance of the above methods on oil
wells from a specific region of the Changqing Oilfield. The dataset comprises 200
appraisal wells and 28 exploratory wells, which are used as training sets and test
sets respectively during training in order to simulate the real exploration process.
The relevant information for each well includes 6 well log curves (DEPTH, GR,
AC, SP, RT1, RT2). As shown in Fig. 4, the location DBSCAN clustering of the
dataset shows in an oil well distribution map, where the training and test wells
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can be partitioned into 5 and 4 blocks, respectively. The well counts within each
blocks are provided in Table 1.

When conducting few-shot learning on this dataset, the training and test
wells should be sampled from the same geological blocks. Besides, To ensure the
well log data conforms to the input requirements of the convolutional neural
network, we first apply a sliding window approach to segment each well log into
fixed-size slices. Specifically, we use a slice length and sliding step of 96 depth
points, corresponding to 12 meters in vertical depth without overlap between
slices.Furthermore, we select the middle point of each slice, i.e., the 47th depth
point, as the label for the entire slice.

Fig. 4. The information of dataset block. In addition to the training and test sets
divided into six blocks, the dataset also includes three training wells and two test wells
that are not assigned to any specific block.

4.2 Experimental Setting

In evaluating the proposed method on the well log dataset, in addition to the clas-
sic ResNet18 and SENet networks, we also design a lightweight neural network
architecture for the small-sample well log problem, referencing the DARTS [22].
The architecture search space includes one-dimensional convolutions with kernel
sizes of 1, 3, 5, 7, and 11, one-dimensional dilated convolutions with a kernel size
of 3 but dilation rates of 2 and 3, as well as a two-layer one-dimensional resid-
ual structure. For the convolution operations, we employ the ReLU-Conv-BN
sequence. During the training process, we first identify the optimal Cell struc-
ture within the search space based on different data augmentation strategies,
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and then proceed to train the model using this Cell structure. The number of
stacked Cell layers in both search and training phases is set to 4, while the other
settings referenced the DARTS configuration. Additionally, all algorithms are
implemented using the PyTorch framework. To ensure the fairness of the exper-
imental results, we employ specific experimental settings as follows: a batch size
of 1024, 100 training epochs, an initial learning rate of 5×10−4, Adam optimizer
and an exponential learning rate decay strategy with a decay factor of 0.98.

4.3 Experimental Results

To evaluate the effectiveness of the method we proposed for time-domain and
frequency-domain data augmentation, we conduct stratigraphic segmentation
tasks on well logging blocks.

We first test the model’s performance directly on Block-1 and Block-4 with-
out any data augmentation(Table 2, Table 3) as baseline, and the results show
that the model achieves maximum performances of 90.77% and 94.46% on these
two blocks without data augmentation.

Table 2. Top-1 accuracy(% ↑) obtained by different models on Block-1 without data
augmentation.

Model 2 4 6 10 50 92

ResNet1882.0283.1785.4887.5689.64 90.24

SENet18 83.2483.9684.5887.3889.8290.77

NAS 85.5187.5886.3087.9389.99 90.12

Table 3. Top-1 accuracy(% ↑) obtained by different models on Block-4 without data
augmentation

Model 2 4 6 8 10 12

ResNet1882.4988.4189.1389.8693.8494.46

SENet18 86.4789.4189.4990.5892.39 93.84

NAS 88.5990.9490.7092.8792.87 93.40

As a comparison, Table 4 shows the data augmentation results under different
models when 2 and 4 wells are selected as training sets, and all exploratory wells
in the block are selected as test sets in Block-1. And Table 5 shows the exper-
imental results of Block-4. TD, FD, TFS, T+F, TFC represent time domain,
frequency fomain, time domain and frequency domain data augmentation per-
formed separately, time domain and frequency domain data augmentation per-
formed successively, and time domain and frequency domain data augmentation
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fused on the channel, respectively. A, B, C, D, E represent smoothing convolu-
tion, fluctuation enhancement, fourier transform, wavelet trainsform, wavelet
domain denoising respectively. 2, 4 represent the number of training wells.
The results indicate that the frequency-domain enhancement methods(FFT and
wavelet denoising) outperformed the time-domain enhancement method. Fur-
thermore, the three time-domain and frequency-domain enhancement and com-
bination methods we proposed achieved better performance than using a single
enhancement method. Specifically, the data augmentation approach combining
time-domain and frequency-domain features improved the model accuracy for
the stratigraphic segmentation task on Block-1 by up to 6.69% compared to
using the original data directly. Compared with the best results when using only
a single augmentation method, the combined time-domain and frequency-domain
approach improved the accuracy by up to 2.95%. Additionally, when using the
network architecture discovered through neural architecture search (NAS), the
performance was further improved, with the accuracy of the geological stratifi-
cation reaching up to 90.70%.

Fig. 5. Visualization of the original curve and the curve after data augmentation.
The four subfigures depict: (a) the original curve, (b) the curve after time-domain
fluctuation enhancement, (c) the curve after wavelet transform, (d) the curve obtained
by first applying fluctuation enhancement and then wavelet transform.



196 Z. Zhu et al.

Table 4. Top-1 accuracy(% ↑) of different data augmentation methods using ResNet18,
SENet18 and NAS models in Block-1.

Method ResNet18 SENet18 NAS

2 4 2 4 2 4

Baseline 82.02 83.17 83.24 83.96 85.51 87.58

TD A 82.09 82.66 83.60 83.86 86.09 88.15

B 82.73 83.28 83.23 85.40 85.64 88.71

FD C 85.07 85.54 85.35 85.95 89.07 88.69

D 85.74 86.64 84.61 84.94 87.35 88.14

E 82.23 83.30 84.11 83.83 86.38 87.30

TFS A+C 88.71 89.08 87.20 88.71 89.04 89.90

A+D 86.62 87.87 85.61 85.62 86.55 89.84

A+E 83.08 83.43 83.86 84.71 87.04 88.31

B+C 88.28 89.59 85.79 86.75 90.26 89.39

B+D 85.58 86.35 86.48 85.62 87.13 89.32

T+F A+C 87.19 87.94 86.93 85.02 90.70 89.14

A+D 86.38 86.77 84.49 84.69 87.43 88.25

A+E 82.54 84.17 83.73 84.22 86.49 88.32

B+C 87.26 88.24 86.28 86.23 90.16 90.60

B+D 85.91 86.60 85.84 85.87 87.77 89.53

TFC A+E 83.99 85.10 84.36 86.27 86.98 88.56

In Figure 5, an oil well from Block-4 with a depth segment of 1000-1100
was randomly selected, and its original curve, the curve after time-domain fluc-
tuation enhancement, the curve after wavelet transformation, and the result
of applying time-domain fluctuation enhancement followed by retaining only
the low-frequency component through wavelet transformation were visualized.
The results show that while time-domain fluctuation enhancement increases the
amplitude of the curve fluctuations, it also proportionally increases the noise.
Conversely, retaining only the low-frequency component through wavelet trans-
formation reduces the high-frequency noise but also alters the waveform shape.
Compared to these two approaches, the wavelet transform of the curve after fluc-
tuation enhancement can retain the fluctuation amplitude of the interface while
removing the high-frequency noise in the curve, further improving the prediction
accuracy of the model in the few-shot learning settings.
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Table 5. Top-1 accuracy(% ↑) of different data augmentation methods using ResNet18,
SENet18 and NAS models in Block-4.

Method ResNet18 SENet18 NAS

2 4 2 4 2 4

Baseline 82.49 88.41 86.47 89.41 88.59 90.94

TD A 82.61 89.37 86.39 90.10 88.41 92.58

B 82.71 88.68 86.83 90.58 88.95 90.79

FD C 85.51 87.09 89.01 89.42 90.55 91.07

D 86.83 89.13 88.77 89.86 90.19 91.41

E 82.97 88.47 86.78 89.61 88.29 89.91

TFS A+C 91.66 94.32 88.53 94.93 91.55 93.97

A+D 85.75 92.75 90.10 92.87 91.37 93.00

A+E 82.97 90.75 86.35 91.18 89.38 90.34

B+C 88.54 89.26 88.16 88.83 90.46 91.79

B+D 87.20 89.62 88.65 90.10 91.07 92.88

T+F A+C 91.06 90.40 90.46 89.48 94.33 95.05

A+D 91.30 89.49 90.46 90.58 91.91 92.33

A+E 83.85 88.94 88.29 90.58 88.65 91.52

B+C 91.06 91.40 89.25 89.09 93.00 93.96

B+D 89.49 91.30 88.98 90.70 92.45 93.36

TFC A+E 85.38 91.31 86.63 90.70 89.86 91.16

5 Conclusion

In this paper, we propose a data augmentation method based on the fusion
of time domain and frequency domain features to address the problem of few-
shot log data. By fusing the logging curves after denoising and increasing the
fluctuation amplitude in the time domain with the well log curves after multi-
scale decomposition and enhancement in the frequency domain, the richness
and representativeness of the limited data are improved. Additionally, as there
is no deep learning model specifically designed for the logging problem, we also
design an architecture search space for the problem of limited log samples, which
can search for the most suitable model parameters for the logging data sets
augmented in different ways. The experimental results prove the effectiveness of
our proposed method.
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Abstract. Smaller machine learning models, with less complex archi-
tectures and sensor inputs, can benefit wearable sensor-based human
activity recognition (HAR) systems in many ways, from complexity and
cost to battery life. In the specific case of smart factories, optimizing
human-robot collaboration hinges on the implementation of cutting-
edge, human-centric AI systems. To this end, workers’ activity recogni-
tion enables accurate quantification of performance metrics, improving
efficiency holistically. We present a two-stage semantic-aware knowledge
distillation (KD) approach, TSAK, for efficient, privacy-aware, and wear-
able HAR in manufacturing lines, which reduces the input sensor modal-
ities as well as the machine learning model size, while reaching similar
recognition performance as a larger multi-modal and multi-positional
teacher model. The first stage incorporates a teacher classifier model
encoding attention, causal, and combined representations. The second
stage encompasses a semantic classifier merging the three representa-
tions from the first stage. To evaluate TSAK, we recorded a multi-modal
dataset at a smart factory testbed with wearable and privacy-aware sen-
sors (IMU and capacitive) located on both workers’ hands. In addition,
we evaluated our approach on OpenPack, the only available open dataset
mimicking the wearable sensor placements on both hands in the man-
ufacturing HAR scenario. We compared several KD strategies with dif-
ferent representations to regulate the training process of a smaller stu-
dent model. Compared to the larger teacher model, the student model
takes fewer sensor channels from a single hand, has 79% fewer param-
eters, runs 8.88 times faster, and requires 96.6% less computing power
(FLOPS). Our results show that with TSAK distillation, the efficient
model has significantly improved in recognition performance compared
to the model trained without TSAK, with up to 10% higher F1 score.
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1 Introduction

Fig. 1. (A) In the TSAK knowledge distillation (KD) approach, five distillation meth-
ods were compared. The cosine similarity loss distills knowledge from one of the
hidden vectors at a time; Attention Representation (Attn-Rep), Causal Representa-
tion (Causal-Rep), and Combined Representation (Combi-Rep). A shallow classifier is
employed to merge and distill knowledge from all the hidden vectors simultaneously,
preserving the semantics of the ground truth by logit-based KD (Semantic Classifier).
Logit KD is also performed with the teacher’s outputs. The output categories are
walking, touching screen/buttons (Btn), opening/closing the door (Door), and work-
ing inside the factory module (Check). (B) Teacher average results with an F1 score of
85.91% across twelve users.

The utilization of multi-modal sensing approaches, capturing the diversity of
human behavior, has been widely leveraged to improve the accuracy and robust-
ness of human activity recognition (HAR) systems. The fusion of multimodal and
multipositional information increases performance in the case of complementary
sources, and it is robust to perturbations that may affect a particular sensing
modality [2]. However, most existing works prioritize improving the recogni-
tion performance while compromising efficiency, as smaller models with fewer
sensor modality inputs usually suffer accuracy degradation. Compared to other
domains such as language and vision, wearable systems such as smartwatches
or fitness trackers, are designed to be worn on the body for extended periods,
making energy efficiency a critical factor. Prolonged battery life is essential to
ensure user acceptance and adherence, as frequent recharging can be cumber-
some and may lead to device abandonment. Furthermore, wearables often rely
on small, low-power processors incapable of handling computationally intensive
tasks. However, most existing works leveraging multi-modal sensor fusion with
machine learning techniques in pursuit of better accuracy, such as early or late
fusion, transfer learning (TF), knowledge distillation (KD) [7,14,21,28], and
contrastive learning (CL) [12,33], have ignored efficiency aspects such as model
compression, reduced complexity, and latency-awareness.
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Although KD in particular has the potential to compress knowledge from a
teacher model to a smaller learner model, studies, including ours, have shown
that näıve KD with a small learner model has limited improvement compared
to training the small model without KD, especially when the teacher model has
more modalities and input channels. An underlying contributing factor could be
the semantic structural differences between the teacher and student making the
representations from the teacher model less relevant for the student architec-
ture. We propose, TSAK, a Two-stage Semantic-Aware Knowledge distillation
focusing on training efficient and fast student models with enhanced recogni-
tion performance, as shown in Fig. 1. In the first stage, we train a teacher model
with both self-attention and LSTM branches extracting the attention and causal
information. In the second stage, the attention, causal, and combined represen-
tations are merged to feed into a semantic classifier. The student model is a
much smaller and more efficient model with simple convolution and linear oper-
ations, taking only 3 channels of sensor input (compared to up to 20 channels
for the teacher). To test the TSAK approach, we used the public dataset Open-
Pack [34] and our dataset at a smart factory testbed with smart gloves from 12
participants. The main contributions of this work are described as follows:

– TSAK enhances a lightweight single-position accelerometer-only model (3-
axis) for wearable HAR in manufacturing lines using two-stage KD
from a larger multimodal and multipositional teacher model.

– Through ablation studies of different KD strategies including latent repre-
sentations and logits [1,8,15,16], we have found out that using the second
stage semantic classifier’s logits output as the KD regularization improves
the student performance significantly.

– Experimental results with the OpenPack dataset and the dataset collected
in this work show that TSAK increases the student F1 score by 5.4%, and
10.5%, respectively, with the student model being 79.0% smaller, running 8.88
times faster, and 96.6% less computation demanding (FLOPS).

2 Related Work

Representation learning has been extensively studied for HAR applications. CL
across inertial measurement unit (IMU) locations for wearable HAR was pro-
posed in [12] to learn a hidden representation from IMU sensors at different loca-
tions, but at the time of inference only use data from a single IMU. Each IMU
has its encoder and the objective is to guide the target encoder to learn from the
best encoder, i.e., from the most informative IMU position. An improvement of
F1 between 5% to 13% using PAMAP2 and Opportunity Dataset was obtained.
This is an unimodal transfer learning strategy with no efficiency improvement
in the target model. In [21], a KD method with multimodal fusion from audio to
inertial sensors was proposed to transfer audio context information to the motion
data for HAR, achieving an increase of 4.5% F1 score for 23 activities (72.4%).
Their student employs acceleration and gyroscope data with separate branches
of DeepConvLSTM [7] for each input type, leading to a student with 3.6 million
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parameters and high complexity due to the stack of LSTM layers. VAX in [28]
is a cross-modality transfer learning where the video/audio (VA) is the teacher
modality and X is a privacy-aware sensor from a selection of pervasive devices.
Video/audio models are widely spread and trained with labeled data, alleviating
the lack of training data with X sensors under the guidance of the VAX teacher.
An improvement of 5% in accuracy compared to the baseline was obtained.

HAR with KD opens the possibility of transferring information from a cum-
bersome teacher model to a lightweight target-student model. A capable, smaller
learner offers advantages, such as less memory, less power, and lower latency.
KD has shown incredible potential in computer vision [32]. The student can
be guided by multiple methods, including logit-based, feature-based, and cross-
modality among others [14]. However, most of these methods have not yet been
evaluated in wearable datasets for HAR in manufacturing lines. Table 1 reviews
the state-of-the-art (SOTA) of engineering applications using cross-modality KD
for wearable HAR. Overall, the SOTA shows that most solutions use complex
structures for both the teacher and student network. For example, using deep
convolutional LSTMs [21] and transformers [23]. These high complexity and
high-performance networks are not yet supported by low memory, low power
microcontrollers with limited FLOPS compared to a GPU [27]. In addition, the
size difference between the teacher network and student network has to be mod-
erate to increase the performance of the target model [24]. To the best of our
knowledge, among the SOTA, there are no solutions with model enhancement
through KD that produce target student models efficient enough for microcon-
troller deployment for wearables, which is one of the focuses of TSAK.

Table 1. Engineering applications using cross-modality knowledge distillation for wear-
able HAR

Study Accessory Modality Application Improvement KD Type

Liang [21] Watch Audio to (Acc+Gyro) Daily Living 4.5% F1 Logit

J Ni [25] Wristband Skeleton to Acc Body Motion 4.99% Acc Logit

Liu [22] NA Inertial to Videos Body Motion 4.01% Acc Feat

Ni [26] Wristband Videos to Acc Body Motion 2.1% Acc Feat

Liu. Y[23] NA EEG to GSR* Emotions 3.41% F1 Logit+Feat

Ours Gloves (IMU+Cap) to Acc** Factory 5.4-10.5% F1 Fig. 1

*Electroencephalogram (EEG), Galvanic Skin Response (GSR). **Capacitive (Cap)

3 Apparatus and Dataset

Apparatus: We use a glove-based system to monitor HAR in a smart factory
environment [4]. The system backbone is the Adafruit Feather Sense development
board with an Arm Cortex M4. Two gloves are worn by the participants as shown
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in Fig. 2. Each glove has an IMU and four textile capacitive channels. Inside the
Feather Sense, the BLE communication is handled by the Nordic nRF52832. The
capacitive channels consist of four conductive thin patches distributed on the
index, thumb, little finger, and around the wrist. Moreover, the IMU-selected
placement is on the wrist. This approach reduces the number of connections,
and flexibility and comfort are considered. Noticeably, the gloves do not cover
the entire area of the fingers, minimally affecting the user’s mobility. Only the
inertial (accelerometer and gyroscope) and capacitive data are used. For a total
of 10 channels per glove. Capacitive sensing has been used in textile designs
such as neckbands [9], jackets [5,6], pants [13] and particularly gloves [3]. The
textile capacitive sensor is based on the state-of-the-art capacitance-to-digital
converter (CDC) FDC2214 following the design in [3]. The excitation frequency
of the CDC is set at 13.7 MHz with an 18uH external inductor and 33pf capacitor
for each channel, operating with single-end sensing mode at a 50 Hz sampling
rate. Four channels of long electrodes (e-textile Shieldex Technik-tex P130+B)
with the dimensions 0.55 mm wide and between 11-15 cm long were thermally
bound from the sensing module to 3 fingers (the first, second, and fifth digits)
and around the wrist.

Fig. 2. Activities dictionary in the smart factory testbed

Dataset: There are multiple datasets with wearable sensors, e.g. PAMAP2,
Opportunity, WISDM, and RealWorld, among others [17]. None of these human
activity datasets meet the requirements to be representative and add complete-
ness to the manufacturing line scenario. Moreover, publicly available sensor
datasets in industrial settings are limited by difficulties in collecting realistic
data, thus requiring close collaboration with industrial sites. The Fraunhofer
Institute has made publicly available1 a list of more than 120 open datasets
from production environments, none of them related to human activity recog-
nition and wearable devices. In HA4M [11], the first dataset about an assembly
task with multiple vision sensors is introduced. The authors of HA-ViD [35] and
IndustReal [29] also collected a human assembly video dataset, but still lack the
wearable sensors for HAR. To address these challenges and contribute to research
on HAR in industrial settings, OpenPack [34] recently introduced a dataset for
packaging work recognition. In addition, in this work we have collected data

1 https://www.bigdata-ai.fraunhofer.de/s/datasets/index.html.

https://www.bigdata-ai.fraunhofer.de/s/datasets/index.html
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from wearable sensors in a smart factory testbed, aiming to add completeness
and relevance to our evaluation method. Our dataset selection criteria are based
on three aspects: 1. HAR in manufacturing lines; 2. wearable, privacy-aware
multimodal sensors; 3. sensor position on both hands. This led us to collecting
our own dataset, called Smart Factory Dataset, which is then complemented by
the OpenPack dataset for secondary evaluation of our approach.

Smart Factory Dataset: Twelve volunteers were recruited. They identify
themselves as ten male and two female. Their age ranges from 23 to 59 years
old (mean of 30.75). The height ranges from 160-184 centimeters (mean 178
cm). Only one of the participants was left-handed. The participants wore two
gloves equipped with inertial and textile capacitive sensing. At the beginning
of the experiment, the sensors’ data is synchronized in front of a video camera.
The camera time is then used as a global clock to synchronize the data from
the two gloves. The volunteers were asked to walk around the factory modules
and simulate working activities on the factory floor. Fig. 2 depicts the activities
performed by each volunteer were categorized as walking (1. Walk), touching the
screen/buttons (2. Btn), opening/closing the door (3. Door), and working inside
the factory module (4. Check). The activities were performed on each module
(in total 6) in each session. A total of five sessions per participant were recorded.
In between every session, the hardware was removed from the wearer and a rest
of ten to twenty minutes was enforced. This makes the results accountable for
the re-wearing of the system, which is typically expected in wearable devices.
Each session lasted around 20 minutes on average. One participant performed
two sessions one day and three sessions another. One volunteer only performs
three sessions in total. The participant with less than five sessions was only
included in the training set. For eleven participants, the data is split into 4
sessions for training and 1 session for testing. A 5-fold cross-validation with a
leave-one-session-out evaluation scheme is performed. 2

OpenPack (Public): The dataset contains packaging work activities in an
industrial testbed, including work operations, actions, and outliers. The main
reasons for selecting OpenPack for analysis are the semi-realistic industrial set-
ting and the configuration of sensors on volunteers’ wrists, similar to our smart
factory dataset. It contains 53.8 hours of multimodal data, including key points,
depth images, IMU data, and scarce readings from IoT devices (e.g., barcode
scanners) [34]. We focus on the IMUs data (accelerometer and gyroscope) from
the users’s wrists (right/left) and for the case of work operations activities. The
creators define the activities as 1. picking, 2. relocate item label, 3. assemble box,
4. insert items, 5. close box, 6. attach box label, 7. scan label, 8. attach shipping
label, 9. put on back table, and 10. fill out. Due to the low granularity of the
labeling procedure, the categories are mixed within different labels. This led us
to merge them into four classes; Pick (1,9,10), label (2,6,8), Assemble (3,4,5), and
Scan. The sampling rate for the sensors is around 30 Hz. The idea is to transfer
knowledge from a multimodal teacher to a student with one-handed acceleration

2 All participants signed an agreement following the policies of the university’s com-
mittee for protecting human subjects and following the Declaration of Helsinki [30].
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data as input. Furthermore, we use five of eleven users’ data to avoid faulty data.
A 5-fold cross-user validation with a leave-one-session-out evaluation scheme is
performed with five users’ data.

4 Knowledge Distillation Approach

Pre-Processing Factory: The three accelerations (m/s2) and the four capac-
itive channels are normalized between zero and one. The angular velocity chan-
nels are kept in their original range (± 250 dps). This is followed by a 2-second
resample window (100 samples at 50Hz). Then, a second-degree Butterworth low
pass filter of 30 Hz was used to remove the jitter on the resampled signals. The
resampling to 50Hz is for synchronization purposes with the video-ground truth
with 50 frames per second. A sliding window of 2 seconds with a step size of 0.5
seconds is used. After pre-processing, the dataset structure is ten channels for
each glove with a window size of 2 seconds and 25% overlapping. The ground
truth of the worker’s activity is extracted manually from the recorded videos.

Pre-Processing OpenPack: Acceleration and angular velocity data are
resampled from 30 Hz to a 2-second resampling window (100 samples at 50 Hz)
to match the factory dataset. The same 2-second sliding window and 25% overlap
are used. The dataset structure is six channels for each IMU on the user’s wrists.

Next, we train the teacher for the knowledge distillation to the student. The
Pytorch 2.1.0 version is used to train the neural networks (NN). The evaluation
scheme is defined as a 5-fold cross-validation with leave-one-session out. The
training of the NNs ran for 100 epochs with early stopping (patience 10) to
avoid overfitting. And, a 64-batch size was selected. The optimizer was Adadelta
with a learning rate of 0.9. The loss function is categorical cross-entropy and the
metric to monitor is accuracy.

Factory Teacher: We have trained a multimodal and multipositional
teacher model. Inertial and capacitive channels from both gloves (left and right
hand) were fused, for an input size of 20 channels. The teacher NN architecture
details are in Table 2. The structure contains two branches. One branch of the
neural networks is focused on extracting features of the cross-channel interac-
tion between the modalities and sensors’ positions (TASmart), resulting in the
hidden vector Attn-Rep. And, the second branch extracts the causality of the
multimodal time series input (TCSmart), leading to the hidden vector Causal-
Rep. The causality extractor network is based on one-layer Long-Short-Term
Memory (LSTM). Both networks are then concatenated (Combi-Rep) and fed
into a classifier layer (Linear Layer), followed by an output layer with the soft-
max activation function. Combining the two concatenate NNs can capture spatial
and temporal information, thus effectively solving complex time series problems.
Table 3, shows the profiling information of the teacher structure. These three
hidden vectors are defined to compare the feature-based knowledge distillation
(KD) method using different embedded representations within the teacher’s NN
structure. The feature-based KD is compared with logit-based KD. Furthermore,
a shallow classifier merges and distills knowledge from the three hidden zones
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simultaneously, preserving the semantics of the ground truth by logit-based KD
(see Fig. 1). Fig. 1B, depicts the average results of the teacher for twelve volun-
teers and leave-one-session out cross-user validation scheme (F1 = 85.91%).

OpenPack Teacher: The factory teacher is modified to match the dataset as
follows: 1. the input structure only includes the acceleration and angular velocity
channels and 2. the teacher structure is modified accordingly. The implementa-
tion details of the NNs are shown in Table 2.

The Target Model: The idea is to explore the performance enhancement
of small and simple networks that can be deployed in wearable and embedded
devices with a reduced impact on power consumption and memory. The structure
of the student/target NN is depicted in Fig. 1 (Bottom Left). The input layer
consists of one-handed acceleration data. The NN combines a feature extraction
and a classifier with two linear layers. The NN is a CNN-based model for com-
patibility with supported operation on wearable embedded devices. To avoid
degradation of the student performance the gap between the teacher and the
student has to be moderate [24]. The student model is 79% smaller, 8.88 times
faster, and 96.6% less computation demanding (FLOPS) than the teacher’s, pro-
viding an embedded and sustainable solution. The implementation details are in
Table 2. The student’s profile is compared with the teacher in Table 3.

TSAK Distillation Approach: The distillation approach is depicted in
Fig. 1. TSAK approach compares five distillation methods independently. The
cosine similarity loss distills knowledge from one of the hidden vectors at a
time; Attn-Rep, Causal-Rep, and Combi-Rep. Moreover, a shallow classifier
merged and distilled knowledge from the three hidden vectors of the teacher
simultaneously, preserving the semantics of the ground truth by logit-based KD
(Semantic Classifier). The semantic classifier is trained in an incremental stage.
The frozen teacher is used to train the semantic classifier, which is subsequently
also frozen and used to train the student. Logit-based KD is also performed with
the teacher’s soft outputs. The loss function LSC for the logit-based (Logit) and
semantic-based KD (SC-Logit) follows the Eq. (1). Where x is the input, W are
the student model parameters, y is the ground truth label, LCE is the cross-
entropy loss function, LKL is the KL-divergence loss, σ is the softmax function
parameterized by the temperature T and α is a coefficient (weight). zs and zt
are the logits of the student and teacher respectively. In our experiments, α
varies between 0.1, 0.5, 0.99, and 0.99. τ values are 1, 4, and 20. This follows
the experimental setting in [10]. Fig. 4 depicts a comparison for different α and
temperatures. For the case of feature-based KD, the loss function LF follows
the Eq. (2), where LCSKD is the cosine similarity loss, ht and hs are the hidden
vectors of the teacher and student model, respectively.

LSC(x;W ) = α × LCE(y, σ(zs;T = 1))
+ (1 − α) × LKL(σ(zt;T = τ), σ(zs, T = τ))

(1)

LF (x;W ) = α × LCE(y, zs) + (1 − α) × LCSKD(ht, hs) (2)
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Table 2. Implementation details of the neural networks

Network Layer Details Kernel(K), Stride(S), Output(O)

TASmart* Conv1; MaxPool; Dropout K=3, S=1, O=100; K=2, S=2; 0.2

Conv1; MaxPool; Dropout K=3, S=1, O=20; K=2, S=2; 0.2

Conv1; MaxPool; Dropout K=3, S=1, O=10; K=2, S=2; 0.2

Self Attention1 (10,10)

Self Attention2 (6,6)

TCSmart** LSTM; Dropout (10,10); 0.2

TAPack*** Conv1; MaxPool; Dropout K=3, S=1, O=100; K=2, S=2; 0.1

Conv1; MaxPool; Dropout K=3, S=1, O=20; K=2, S=2; 0.1

Conv1; MaxPool; Dropout K=3, S=1, O=10; K=2, S=2; 0.1

Self Attention1 (10,10)

Self Attention2 (4,4)

TCPack**** LSTM; Dropout (6,6); 0.1

Classifier Linear; Linear; Linear (120,10); (30,10); (10,4)

Student Conv1; MaxPool; Dropout K=3, S=1, O=100; K=2, S=2; 0.1

Conv1; MaxPool; Dropout K=3, S=1, O=5; K=2, S=2; 0.1

Conv1; MaxPool; Dropout K=3, S=1, O=5; K=2, S=2; 0.1

Linear; Linear (5,10); (10,4)

*TASmart: Teacher Attention (TA) Branch for Smart Factory. TCSmart: Teacher
Causality Extraction (TC) for Smart Factory. TAPack***: TA for OpenPack
Dataset. TCPack****: TC for OpenPack

Table 3. Teacher and student profile comparison for Smart Factory and OpenPack
dataset

Model (Channels) FLOPS Latency Throughput Parameters

Teacher Factory (20) 651.85 M 27.91 ms 23.35 GFLOPS 12.65K

Teacher OpenPack (12) 418.08 M 18.68 ms 22.38 GFLOPS 9.82K

Student (3) 22.48 M 3.14 ms 7.15 GFLOPS 2.69K

Using Google Colab with a GPU V100 and DeepSpeed4Science [31]
with Step = 5

5 Result and Discussion

Fig. 1B shows the teacher results for the smart factory scenario. The model
uses 20 inputs of inertial and capacitive channels from both gloves (F1 score
of 85.91%) with twelve users and four classes. The Door and Check classes
have the higher confusion with 0.9%. These two classes involve grabbing and
pulling/pushing objects, in the first, the door is the object and in the second,
the objects are inside the factory modules. Fig. 3A shows the confusion matrix
for the target baseline trained without any knowledge distillation (KD) technique
and with the right-handed acceleration input data (3 channels) with 75.94% F1
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score. For the baseline, the classes Door and Check are 50% confused. Hence,
our teacher contains complementary information compared to the target model.

Fig. 3. Twelve users’ results in the smart factory scenario with right-handed accelera-
tion channels as input. (A) Baseline; F1 of 75.94% (B) Semantic student; F1 of 81.34%

We have evaluated the performance with different α and temperatures as
shown in Fig. 4. In general, the Combi-Rep performs best compared to the
other hidden vectors. This vector contains causality and multimodal feature
extraction information. The Causal-Rep is the second best in performance
for different alpha values. This vector provides multimodal and multipositional
causality knowledge to the student. The Attn-Rep (without causality) is the
worst case compared to all the KD methods and for the right-hand target model
without an increase in the F1 score compared to the baseline. The increase in F1
score compared to the baseline is observed for α > 0.5 with the best α = 0.99.

Fig. 4. KD-based student comparison with right-handed acceleration inputs. (A) α
variations. (B) Logit and SemanticLogit for different temperatures (alpha = 0.99).
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Table 4. Results of KD approaches one-handed acceleration data for smart factory
scenario

Function Type Precision Recall F1 Score

Teachers ATTN 0.7703 0.8013 0.7840

ATTN+LSTM 0.8574 0.861 0.8591

Semantic Classifier (SC) 0.9060 0.9057 0.9058

Right Hand Target Baseline 0.8106 0.7349 0.7594

Logit 0.7834 0.7545 0.7616

Combi-Rep 0.8209 0.7682 0.7887

Causal-Rep 0.8061 0.7652 0.7826

Attn-Rep 0.7835 0.7315 0.7528

Merged Loss 0.8029 0.7447 0.7676

SC-Logit 0.8299 0.8000 0.8134

SC-Feature 0.8212 0.7568 0.7817

Left Hand Target Baseline 0.7512 0.6152 0.6516

Logit 0.7240 0.6510 0.6744

Combi-Rep 0.7571 0.6770 0.7029

Causal-Rep 0.7514 0.6633 0.6886

Attn-Rep 0.7563 0.6674 0.6911

Merged Loss 0.7574 0.6612 0.6885

SC-Logit 0.7758 0.7055 0.7283

SC-Feature 0.7673 0.6792 0.7047

SC-Logit (Alpha 0.99 and Temperature 4) with F1-Score of 81.34%
and 72.83%

The best result is obtained with the semantic classifier KD method (SC-
Logit) with 81.34% F1 score for an α = 0.99 and τ = 4 (see Fig. 4B). The seman-
tic classifier has an F1 score of 90.58% (+4.67% > teacher). The confusion matrix
of the semantic student trained with the SC-Logit KD method is presented in
Fig. 3B. The Door and Check classes reduce misclassification to 25%, and classes
such as Walk and interacting with buttons (Btn) have a 7%, and 1% increase
in recall compared to the baseline (see Fig. 3A). Table 4 compares the results
between the teacher and different KD methods used to train a student with one-
handed acceleration data as input. The teacher (CNN-LSTM) with two branches
outperformed the teacher with a single-branch CNN, 85.91% compared to 78.40%
F1 score. Based on α = 0.99, the best case, we have also compared the TSAK KD
distillation method with a Merged-Loss (see Table 4). The Merged-Loss is based
on the following equation; L(x;W ) = α ×LCE(y, zs) + (0.01) ×LCSKD(Attn −
Rep, hs)+(0.01)×LCSKD(Causal−Rep, hs)+(0.01)×LCSKD(Combi−Rep, hs).
Overall, the Merged-Loss outperformed the logit KD and the baseline. Moreover,
in Table 4, we included a KD method based on the semantic classifier’s last hid-
den vector (SC-Feature). SC-Feature KD distills knowledge to the one-handed
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student using the cosine similarity loss (α = 0.99). The best result is from the
student trained with the semantic classifier (SC-Logit) with an increase of 5.4%
and 7.67% F1 score for the right-handed and left-handed targets, respectively.

Fig. 5A presents the results for the OpenPack teacher with twelve input
channels and 84.43% F1 score. These results are for five participants with a
leave-one-session cross-user validation scheme (5 sessions in total). Fig. 5B shows
the best-distilled student for the OpenPack (SC-Logit KD) with an increase of
10.5% in F1 score compared to the baseline (the target model trained without
KD). The semantic classifier has an F1 score of 86.16% (1.73% > teacher).

Fig. 5. Five users’ results with OpenPack. (A) Teacher results (12 channels); accelerom-
eter and gyroscope (both hands). (B) Student results with right-handed accelerations
as input (Semantic KD) and 10.5% F1 score increase.

Table 5 compares the results of the teacher, baseline, and the right-handed
student with acceleration channels as input and trained with the five types of
KD. The training method for the teacher and the baseline NNs is the same as
in the factory dataset case. And, to train the different distilled students the
settings are the best cases from the factory dataset. This means these results do
not include hyperparameter tuning or any optimization method. We can expect
that tuning the NNs for this specific dataset will increase the performance in
the future. For both datasets, the second best KD method was the feature-based
with the Combi-Rep. Overall, our results show the potential of cross-modal
knowledge distillation for inertial sensing systems for HAR in a factory testbed.

The majority of distilled student models (excluding Attn-Rep) with α > 0.5
outperformed the target model baselines. This increase in performance indi-
cates that the multimodal and multipositional teacher effectively guides the stu-
dent. The semantic classifier (SC-Logit) as the teacher is the most effective
KD method for both datasets. Importantly, the semantic classifier is trained in
an incremental step from the frozen teacher. In addition, SC-Logit combines
feature-based knowledge with logit-based knowledge. This could be the reason
for performance improvement. With this method, the lightweight single-position
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(3-axis) accelerometer-only model is compressed and improved. This means that
our solution retains the practicability of using only three channels IMU available
on even the simplest smartwatches, and at the same time, improves performance.
For a student model 79% smaller, 8.88 times faster, and 96.6% less computation
demanding than the teacher’s. On the other hand, our solution has limitations
and possibilities for improvement:

1. We employ the Kullback-Leibler Divergence loss successfully controlling
the “soft” targets via the temperature scaling parameter. In [19], the authors
proved that the MSE loss outperforms the KLD loss, explained by the differ-
ence in the penultimate layer representations between the two losses.

2. We manually varied the α and T of the KD. This can be substituted for
an automatic parameter search [20].

3. In the future, quantization-aware KD will be a strong method to evaluate
solutions for wearable HAR. The idea is to coordinate the quantization and
KD approach to fine-tune a quantized low-precision student network [18] for
an optimized embedded solution.

4. We evaluated our method on two wearable HAR datasets in manufac-
turing lines. This is mainly due to the restricted availability of open datasets
with wearable sensors for HAR in industrial settings. However, we believe the
method can easily be applied to other scenarios of HAR.

Table 5. Results of KD approaches with right-handed acceleration data for OpenPack

KD Type Precision Recall F1 score

Teacher (CNN-LSTM) 0.8447 0.8454 0.8443

Semantic Classifier 0.8657 0.8596 0.8616

Baseline 0.6799 0.6541 0.6606

Logit 0.7119 0.7026 0.7060

Combi-Rep 0.7654 0.7567 0.7571

Causal-Rep 0.7292 0.7329 0.7306

Attn-Rep 0.7493 0.7402 0.7422

Merged-Loss 0.7608 0.7478 0.7531

SC-Logit 0.7762 0.7605 0.7656

SC-Feature 0.7627 0.7582 0.7598

6 Conclusion

In this paper, we presented TSAK, prioritizing both model efficiency and preci-
sion for activity recognition, a two-stage semantic-aware knowledge distillation
approach. In the industrial manufacturing scenario, we tested TSAK with two
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datasets with smart wearables of wrist and hand-worn sensors: OpenPack and
our own recorded dataset at a smart factory testbed. We show that the second
stage contributes significantly to the lightweight student model without altering
its architecture. The student model takes only 3-axis accelerometer data and has
only simple 1D convolution and linear operations with 2.69k parameters, which
is qualified to be deployed on most modern microprocessors. The student model
enhanced with TSAK has up to 10% better F1 score compared to the same
model without KD. With merely 3.4% the computational demand of the first
stage teacher model, the student model’s F1 score can reach 4.57% short of the
teacher model in the best scenario. By leveraging the strengths of multi-modal
sensing and machine learning techniques, while prioritizing energy efficiency and
model compactness, we have demonstrated significant improvements in recogni-
tion performance, computational speed, and energy consumption. As we look
to the future, TSAK underpins the development of sustainable, efficient, and
accurate wearable HAR systems that can be seamlessly integrated into a variety
of applications.
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8. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 535–541 (2006)

9. Cheng, J., Zhou, B., Kunze, K., Rheinländer, C.C., Wille, S., Wehn, N., Wepp-
ner, J., Lukowicz, P.: Activity recognition and nutrition monitoring in every day
situations with a textile capacitive neckband. In: Proceedings of the 2013 ACM
conference on Pervasive and ubiquitous computing adjunct publication. pp. 155–
158 (2013)

10. Cho, J.H., Hariharan, B.: On the efficacy of knowledge distillation. In: Proceedings
of the IEEE/CVF international conference on computer vision. pp. 4794–4802
(2019)

11. Cicirelli, G., Marani, R., Romeo, L., Domı́nguez, M.G., Heras, J., Perri, A.G.,
D’Orazio, T.: The ha4m dataset: Multi-modal monitoring of an assembly task for
human action recognition in manufacturing. Scientific Data 9(1), 745 (2022)

12. Fortes Rey, V., Suh, S., Lukowicz, P.: Learning from the best: contrastive repre-
sentations learning across sensor locations for wearable activity recognition. In:
Proceedings of the 2022 ACM International Symposium on Wearable Computers.
pp. 28–32 (2022)

13. Geißler, D., Zahn, E.F., Bello, H., Ray, L.S.S., Woop, E., Zhou, B., Lukowicz, P.,
Joost, G.: Moca’collection: Normalizing dynamic textile geometry with capacitive
sensing in design centric wearables. In: Adjunct Proceedings of the 2023 ACM
International Joint Conference on Pervasive and Ubiquitous Computing & the
2023 ACM International Symposium on Wearable Computing. pp. 276–280 (2023)

14. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: A survey. Int. J.
Comput. Vision 129(6), 1789–1819 (2021)

15. Guo, G., Han, L., Wang, L., Zhang, D., Han, J.: Semantic-aware knowledge distilla-
tion with parameter-free feature uniformization. Visual Intelligence 1(1), 6 (2023)

16. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

17. Huang, Y., Zhou, Y., Zhao, H., Riedel, T., Beigl, M.: A survey on wearable
human activity recognition: Innovative pipeline development for enhanced research
and practice. In: 2024 IEEE International Joint Conference on Neural Networks
(IJCNN 2024), Yokohama, 30th June-5th July 2024 (2024)

18. Kim, J., Bhalgat, Y., Lee, J., Patel, C., Kwak, N.: Qkd: Quantization-aware knowl-
edge distillation. arXiv preprint arXiv:1911.12491 (2019)

19. Kim, T., Oh, J., Kim, N., Cho, S., Yun, S.Y.: Comparing kullback-leibler diver-
gence and mean squared error loss in knowledge distillation. arXiv preprint
arXiv:2105.08919 (2021)

20. Li, L., Dong, P., Wei, Z., Yang, Y.: Automated knowledge distillation via monte
carlo tree search. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 17413–17424 (2023)

21. Liang, D., Li, G., Adaimi, R., Marculescu, R., Thomaz, E.: Audioimu: Enhancing
inertial sensing-based activity recognition with acoustic models. In: Proceedings
of the 2022 ACM International Symposium on Wearable Computers. pp. 44–48
(2022)

22. Liu, Y., Wang, K., Li, G., Lin, L.: Semantics-aware adaptive knowledge distillation
for sensor-to-vision action recognition. IEEE Trans. Image Process. 30, 5573–5588
(2021)

23. Liu, Y., Jia, Z., Wang, H.: Emotionkd: A cross-modal knowledge distillation frame-
work for emotion recognition based on physiological signals. In: Proceedings of the
31st ACM International Conference on Multimedia. pp. 6122–6131 (2023)

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1911.12491
http://arxiv.org/abs/2105.08919


216 H. Bello et al.

24. Mirzadeh, S.I., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., Ghasemzadeh,
H.: Improved knowledge distillation via teacher assistant. In: Proceedings of the
AAAI conference on artificial intelligence. vol. 34, pp. 5191–5198 (2020)

25. Ni, J., Ngu, A.H., Yan, Y.: Progressive cross-modal knowledge distillation for
human action recognition. In: Proceedings of the 30th ACM International Con-
ference on Multimedia. pp. 5903–5912 (2022)

26. Ni, J., Sarbajna, R., Liu, Y., Ngu, A.H., Yan, Y.: Cross-modal knowledge distil-
lation for vision-to-sensor action recognition. In: ICASSP 2022-2022 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). pp.
4448–4452. IEEE (2022)

27. Nikolskiy, V., Stegailov, V.: Floating-point performance of arm cores and their
efficiency in classical molecular dynamics. In: Journal of Physics: Conference Series.
vol. 681, p. 012049. IOP Publishing (2016)

28. Patidar, P., Goel, M., Agarwal, Y.: Vax: Using existing video and audio-based
activity recognition models to bootstrap privacy-sensitive sensors. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 7(3), 1–24
(2023)

29. Schoonbeek, T.J., Houben, T., Onvlee, H., Van der Sommen, F., et al.: Industreal:
A dataset for procedure step recognition handling execution errors in egocentric
videos in an industrial-like setting. In: Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision. pp. 4365–4374 (2024)

30. Shephard, D.A.: The 1975 declaration of helsinki and consent. Can. Med. Assoc.
J. 115(12), 1191 (1976)

31. Song, S.L., Kruft, B., Zhang, M., Li, C., Chen, S., Zhang, C., Tanaka, M., Wu, X.,
Rasley, J., Awan, A.A., et al.: Deepspeed4science initiative: Enabling large-scale
scientific discovery through sophisticated ai system technologies. arXiv preprint
arXiv:2310.04610 (2023)

32. Wang, L., Yoon, K.J.: Knowledge distillation and student-teacher learning for
visual intelligence: A review and new outlooks. IEEE Trans. Pattern Anal. Mach.
Intell. 44(6), 3048–3068 (2021)

33. Yoon, H., Cha, H., Nguyen, C.H., Gong, T., Lee, S.J.: Img2imu: Applying knowl-
edge from large-scale images to imu applications via contrastive learning. arXiv
preprint arXiv:2209.00945 (2022)

34. Yoshimura, N., Morales, J., Maekawa, T., Hara, T.: Openpack: A large-scale
dataset for recognizing packaging works in iot-enabled logistic environments. In:
2024 IEEE International Conference on Pervasive Computing and Communications
(PerCom). pp. 90–97. IEEE (2024)

35. Zheng, H., Lee, R., Lu, Y.: Ha-vid: a human assembly video dataset for com-
prehensive assembly knowledge understanding. Advances in Neural Information
Processing Systems 36 (2024)

http://arxiv.org/abs/2310.04610
http://arxiv.org/abs/2209.00945


ArtNeRF: A Stylized Neural Field for
3D-Aware Artistic Face Synthesis

Zichen Tang1 and Hongyu Yang1,2(B)

1 School of Artificial Intelligence, Beihang University, Beijing, China
{zctang,hongyuyang}@buaa.edu.cn

2 Shanghai Artificial Intelligence Laboratory, Shanghai, China

Abstract. Recent advances in generative visual models and neural radi-
ance fields have greatly boosted 3D-aware image synthesis and styliza-
tion tasks. However, previous NeRF-based work is limited to single scene
stylization, training a model to generate 3D-aware artistic faces with
arbitrary styles remains unsolved. We propose ArtNeRF, a novel face
stylization framework derived from 3D-aware GAN to tackle this prob-
lem. In this framework, we utilize an expressive generator to synthesize
stylized faces and a triple-branch discriminator module to improve the
visual quality and style consistency of the generated faces. Specifically, a
style encoder based on contrastive learning is leveraged to extract robust
low-dimensional embeddings of style images, empowering the generator
with the knowledge of various styles. To smooth the training process of
cross-domain transfer learning, we propose an adaptive style blending
module which helps inject style information and allows users to freely
tune the level of stylization. We further introduce a neural rendering
module to achieve efficient real-time rendering of images with higher res-
olutions. Extensive experiments demonstrate that ArtNeRF is versatile
in generating high-quality 3D-aware artistic faces with arbitrary styles.
Code is available at: https://github.com/silence-tang/ArtNeRF.

Keywords: Generative Adversarial Network · Neural Radiance Field ·
3D-Aware Image Synthesis · Neural Style Transfer

1 Introduction

With the rise of concepts like Metaverse and Artificial Intelligence Generated
Content (AIGC), 3D stylization technology has become increasingly pivotal in
various application scenarios such as AR/VR. In this work, we address a novel
task of 3D-aware image stylization: given a latent identity code, a style image
with arbitrary artistic style, and multiple camera poses, the model should gen-
erate 3D-aware stylized faces with high multi-view consistency while preserving
the style characteristics of the style image. The challenges of this task are pri-
marily threefold: (1) How to ensure the style consistency between the style image

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15325, pp. 217–232, 2025.
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and the generated image. (2) How to prevent structural information such as the
pose of the reference style image from leaking into the generated image. (3) How
to guarantee high multi-view consistency and visual quality of the results while
achieving efficient real-time rendering.

Fig. 1. Multi-view 3D-aware faces with arbitrary styles generated by our model. We
evenly select 5 views within a reasonable range where pitch ∈ [π

2
− 0.2, π

2
+ 0.2] and

yaw ∈ [π
2

− 0.4, π
2

+ 0.4]. In our SBM module, setting i = 0 maximizes stylistic effects,
while i = 3 strikes a balance between stylization and identity preservation.

Many existing 2D methods [1–3] encode source and reference images into
content and attribution latent codes, then combine these codes for reconstruction
or style transfer. While these methods support arbitrary reference images, they
often yield results with low visual quality and inconsistent style. Additionally,
none of these 2D methods can generate 3D-aware results. More recently, [16]
proposes a domain-adaption framework and [17] presents a novel stylefield for
3D-aware image stylization. Although these methods achieve high visual quality
in 3D-aware results, they are limited to fixed styles and face challenges like high
GPU memory consumption during training owing to their 3D representations.

To overcome the limitations of existing methods, we propose ArtNeRF, a
novel 3D-aware GAN framework for generating multi-view faces with arbitrary
styles from given reference images. ArtNeRF features an expressive 3D-aware
generator paired with a triple-branch discriminator, achieving rapid and high-
quality face stylization. As for the generator, we design better implementation
practices to reliably enhance the generation quality of pi-GAN [11]. Specifically,
we design dense skip connection layers in the original backbone to strengthen the
reuse of feature maps from different semantic layers and discard the progressive
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growing training strategy. We then design a neural rendering module comprising
1 × 1 convolutional layers and a skip connection mechanism for image super-
resolution and faster rendering. For style representation extraction, we lever-
age a style encoder based on contrastive learning, effectively mapping reference
images to low-dimensional style codes. To address training instability stemming
from cross-domain learning discrepancies, we propose an adaptive style blending
module that dynamically adjust the blending ratio of style control vectors to
ensure a smooth training process. Finally, our triple-branch discriminator mod-
ule consists of three discriminators with analogous architectures. The first two
aid the generator in synthesizing faces adhering to the distributions of the source
and target domains, while the third one with an embedder head is capable of
improving style consistency between synthesized faces and the reference images.
Our contributions can be summarized as follows:

- We propose a novel 3D-aware image arbitrary stylization task, where the
synthesized results should emulate the style characteristics of the style refer-
ence image while maintaining strong multi-view consistency. Correspondingly,
We design ArtNeRF, a framework based on 3D-aware GAN to realize this goal.

- We introduce a self-adaptive style blending module to inject style infor-
mation into the generator and a triple-branch discriminator to guarantee style
consistency. Incorporated with our two-stage training strategy, the cross-domain
adaption process can be smoothed and stabilized effectively.

- By designing dense skip connections between sequential layers and incorpo-
rating a neural rendering module, we boost the generator backbone of pi-GAN,
leading to efficient real-time rendering and better visual quality.

2 Related works

2.1 Style Transfer with 2D GAN

MUNIT [1], FUNIT [2], DRIT++ [3] and StarGANv2 [4] are seminal works
that focus on reference-guided image style transfer using GAN [5]. Subsequently,
several methods have been proposed to achieve style transfer in specific style
domains. CartoonGAN [6] introduces various losses suitable for general photo
cartoonization while ChipGAN [7] utilizes an adversarial loss for Chinese ink
painting style transfer with constraints on strokes and ink tone. Some recent
works combine expressive backbones with unique designs, further boosting the
artistic effects of synthesized images. BlendGAN [8] proposes a style encoder and
employs a style-conditioned discriminator to generate 2D faces with arbitrary
styles. Pastiche Master [9] employs a dual-path style generation network and
introduces multi-stage fine-tuning strategies, achieving facial cartoonization with
fixed styles. However, none of these methods can generate vivid 3D-aware results.
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2.2 3D-aware Image Synthesis

In the realm of 3D-aware image synthesis, we mainly focus on NeRF-based meth-
ods. GRAF [10], pi-GAN [11] and GIRAFFE [12] combine GAN with NeRF [13]
to learn a 3D representation from 2D images, thereby enabling novel view syn-
thesis. Other endeavors aim to narrow the gap in visual quality between 3D
models and 2D GAN models. For instance, GRAM [14] introduces an implicit
neural representation based on learnable 2D manifolds, enhancing the quality of
synthesized images with reduced sampling points. EG3D [15] presents an effec-
tive tri-plane representation for high-quality 3D-aware image synthesis. More
recently, some 3d-aware stylization works like 3DAvatarGAN [16] and Deform-
Toon3D [17] are proposed to generate 3D-aware avatars with specific styles.
Nevertheless, these methods incur high training costs and are limited in their
ability to handle arbitrary styles with a single trained model.

3 Method

Given an identity code zf sampled from a normal distribution, a reference style
image Xs and camera poses p, we aim to generate high-quality 3D-aware stylized
faces which are supposed to maintain consistent across various views. We firstly
give preliminaries in Sec 3.1. To solve the challenges discussed in the introduc-
tion, we leverage a style encoder to extract style embeddings of reference images
in Sec 3.2, a novel generative radiance field to achieve efficient style blending
and rendering in Sec 3.3, and a triple-branch discriminator network to supervise
the 3D-aware generator and enhance style consistency in Sec 3.4.

3.1 Preliminaries

Neural Radiance Fields. A Neural Radiance Field (NeRF) implicitly repre-
sents the scene as a 5D function, enabling high-quality synthesis of novel views
with multi-view consistency. Given a 3D point x, a radiance field gθ is employed
to map its position (x, y, z) and the viewing direction (θ, φ) to its RGB color c
and volume density σ. To render a pixel, a ray r(t) = o + td is cast from the
camera origin o to the 3D space along the viewing direction d, where t ∈ [tn, tf ]
represents the distance from the sampling point to the camera origin. The color
of the pixel can be rendered via volume rendering:

C(r) =
∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, T (t) = e− ∫ t
tn

σ(r(s))ds (1)

where T (t) is the cumulative transmittance from tn to t.

3.2 Self-supervised Style Encoder

Style encoder used to extract features is indispensable in style transfer tasks.
However, utilizing an VGG-based encoder with randomly initialized parameters
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Fig. 2. The pipeline of the generator in ArtNeRF. Given an identity code zf

sampled from normal distribution and a style image Xs , we first extract the style
code using the style encoder Es. Subsequently, dual mapping networks are utilized to
map zf , zs to Wf ,Ws in the W+ space. The self-adaptive SBM module then blends
Wf ,Ws based on a split index i and injects the style information into the 3D generator.
Given camera poses p, the sampled 3D points x in the camera coordinate system are
first transformed to the world coordinate system and then modulated by a sequence
of FiLM blocks incorporating style information. Dense skip connections are applied
to accumulate the intermediate features output by these blocks, contributing to the
volume density and features of the 3D points. Finally, low-resolution feature maps are
synthesized through volume rendering and then up-sampled and refined by the neural
rendering module (NR) to achieve real-time rendering of 3D-aware stylized faces.

may lead to inconsistent styles and confusion. Moreover, since we need to gen-
erate 3D-aware images, it is crucial to prevent the leakage of pose information
from the reference images into the style latent codes. To tackle this problem,
we leverage a style encoder with strong expressive capability following [8]. Note
that the parameter of the style encoder is frozen after the training process is
finished.

The overall structure of the style encoder is illustrated in Fig. 3. A pretrained
VGG19 is utilized to extract style features fs from input images, followed by a
compress-CNN to reduce the dimension of fs to 512. The 512-dim vectors serve
as the style codes zs . To facilitate the contrastive learning process, a projection
head is applied to further map zs to their representation vectors us . During
training, each batch contains 2N images, where Xi ,Xj are positive samples
(Xi is a style image and Xj is an augmented sample via affine transformation),
and the remaining 2N −2 images serve as negative samples. We use the following
objective function to optimize the compress-CNN :

�CL
i,j = − log

exp(sim(ui ,uj )/τ)
2N∑

k=1,k �=i,k �=j

exp(sim(ui ,uk)/τ)
(2)
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Fig. 3. The architecture of the style encoder Es.

where sim(·, ·) is the cosine similarity between embeddings, τ is the temperature
coefficient, and (ui ,uj ) represents the contrastive learning representations for
(Xi ,Xj ). After training, augmented samples of the same style image will have
style codes rich in style semantics but devoid of spatial structure, since they
are pushed closer in the embedding space and their original spatial features are
neutralized.

3.3 Conditional Generative Radiance Field

pi-GAN [11] is a NeRF-based 3D-aware face generation framework. We start from
pi-GAN to design our generator considering its concise and effective backbone
along with its relatively small training overhead. In this work, we extend and
enhance pi-GAN to address the 3D-aware image stylization problem. Specifically,
our improved neural generative radiance field comprises three main components:
mapping network, style blending module (SBM), and conditional radiance field
with dense skip connections.

Mapping network and SBM Module. Let zf denote the identity latent
code, and zs represent the style code obtained from the style image. We first
utilize two mapping networks with unshared parameters to respectively map z
and zs from z space to w and ws in W+ space to achieve feature decoupling.

To incorporate the two latent codes into our backbone, we design a style
blending module SBM. Since different layers are responsible for learning facial
semantic information at various levels, simply setting fixed blending weights for
each layer is not advisable, which will inevitably cause mode collapse. Inspired
by this, we first mix wf and ws using a learnable weight vector α, then feed the
mixed code into our model to achieve style mixing of facial semantic information
at multiple levels. The SBM module can be formulated as Eq.3. We omit the
batch dimension for simplicity.

Wf used = Concat(Wbb ;Wnr )
Wbb =α[: k] � ws [: k, :] + (1 − α[: k]) � wf [: k, :]

Wnr = α[k :] � Trans(ws [k :, :]) + (1 − α[k :]) � Trans(wf [k :, :])
(3)
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where bb and nr denote the backbone (conditional generative radiance field intro-
duced in Sec. 3.3) and the neural rendering module (which will be introduced
in Sec. 3.4), Concat(·; ·) and � denote channel-wise concatenation and element-
wise multiplication, [:] represent the slicing operation in PyTorch. In practice, k
is the number of layers in the backbone, α is a learnable weight vector with a
shape of [n], wf and ws both have a shape of [n, 256], where n is the number
of layers requiring style mixing. To flexibly adjust the degree of stylization, we
introduce a split index i in SBM. When i is specified, α[: i] = 1 and α[i :]
remains unchanged. This strategy ensures layers with indices less than i only
affected by wf , while layers with indices greater than i influenced by both wf

and ws . Consequently, we can perform style blending on the backbone and the
neural rendering module (Sec 3.4). Note that directly injecting style vector into
the neural rendering module may be improper as its feature space differs from
the backbone. Hence, we apply projection operation to ws and wf to refine
them before the injection operation, denoted as Trans.

Conditional Radiance Field with Dense Skip Connections. The pro-
posed conditional radiance field takes as input not only 3D positions x in the
camera coordinate system and a camera pose p but also a fused conditioning
latent code Wbb . Therefore, properly injecting Wbb into the backbone is crucial
for the generation performance. As is shown in Fig.2, the backbone consists of
two parts: a sequence of n FiLM layers and dense skip connections. The FiLM
layer sequence can be formulated as follows:

Φ(x) = φn−1 ◦ φn−2 ◦ ... ◦ φ0(x)
φi(xi) = sin(γi · (Wixi + bi) + βi)

(4)

where xi is the input of the i-th FiLM layer, Wi , bi are learnable parameters
and γi, βi are modulation coefficients projected from Wbb . Note that φn−1 also
takes the viewing direction v as input to model view-dependant appearance, we
omit it for brevity.

To mitigate the ripple-like artifacts observed during training pi-GAN, we
draw inspiration from StyleGAN2’s [18] improvements to StyleGAN. We dis-
card the progressive growing training strategy used in pi-GAN and optimize the
generator with a structure featuring dense skip connections. This modification
ensures that feature maps from different layers can mutually contribute to the
final output, thereby increasing the strength of gradient back-propagation and
preventing training collapse. Optimized formulas for volume density and feature
calculation is shown in Eq.5:

σ(x) = hσ(
n−2∑
i=0

λi(Mi)),f(x) = hf (
n−1∑
i=0

μi(Mi)) (5)

where Mi represents the output of φi, λi is the i-th volume density prediction
layer (to σ block in Fig. 2) and μi is the i-th feature prediction layer inspired
by [12] (to f block in Fig. 2). hσ, hf are used to clamp the volume density
σi ∈ R

1 and the feature values fi ∈ R
Mf . Let {xi}Ns

i=1 denote the Ns sampling
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points along a ray, with volume density σi and feature values fi of each point,
the volume rendering can be defined as follows:

πvol : (R × R
Mf )Ns �→ R

Mf , {σi,fi}Ns
i=1 �→ f (6)

By performing volume rendering to all rays, we can rapidly obtain the com-
plete feature map F ∈ R

Mf×32×32 with relatively small GPU overhead. We can
intuitively consider F as a texture representation of the final image.

3.4 Neural Rendering Module

Fig. 4. The architecture of the neural rendering module.

The integration of the neural rendering module can remarkably enhance the
expressiveness of the generator, enabling the synthesis of high-quality images at
higher resolutions with faster inference speed. GIRAFFE [12] first introduces
a neural renderer composed of 2D CNNs into the model. However, EG3D [15]
indicates that overly deep 2D CNNs and excessive 3 × 3 convolution operations
undermine the 3D consistency of the final results. Therefore, our proposed neural
rendering module is composed of shallow 1 × 1 convolutions. 1 × 1 convolutions
enhance the network’s ability to model information between channels of 2D
feature maps and help avoid the fusion of local spatial contexture in feature maps,
further ensuring multi-view consistency. The proposed neural rendering module
leverages ModConv and upsampling layers in StyleGAN2, with a to rgb layer to
facilitate the reuse of features between adjacent blocks. Introducing ModConv
allows for the reuse of Wnr during super-resolution, which can refine the details
of low-resolution results. Given a 2D low-resolution feature map F ∈ R

Mf×32×32,
we can generate the final synthesized image Xsyn ∈ R

3×128×128 following Fig.
4, where the A blocks are affine transformations applied to inject Wnr into the
neural rendering module, w0 to w5 are weight parameters for 1×1 convolutions
and the hrgb is a clamp operation.
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3.5 Triple Discriminator Network

We employ three discriminators to guide the generator to synthesize 3D-aware
stylized images decently and appropriately. Dr discriminates between fake nat-
ural faces and real natural faces, while Ds discriminates between fake stylized
faces and real ones. Together, they supervise the generator to ensure the gener-
ated images conforming to the distributions of the respective domains. In order
to further ensuring that the synthesized images match the style of the given
reference images, we treat ws as a sort of class labels inspired by [19]. The task
of generating stylized images can be naturally transformed into a cGAN prob-
lem. Therefore, we leverage a conditional discriminator Dc, which provides an
additional supervision to the generator. Specifically, we apply an embedder head
at the end of Dc. Let’s denote the output of the global sum pooling layer in Dc

as fgsp . We first map a given style code to a feature embedding femb aligned
with fgsp , then the dot product result of fgsp and femb is added to the original
output of Dc to form the final output. The structure of Dr and Ds is similar to
Dc, but without the embedder head.

3.6 Loss Functions

Given a reference style image Xs , we extract its style code zs with Es. We then
sample an identity code zf from a normal distribution and a camera pose ξ
from a predefined distribution. On one side, we aim to synthesize fully stylized
faces with the split index i = 0 in SBM. On the other side, to ensure that
generated stylized faces retain the original face identity during cross-domain
adaption process, the generator should generate fully natural faces with i = 11
in SBM. Additionally, a style consistency loss is leveraged to guarantee that the
stylized faces share the same style as the reference images. During training, we
maintain an embedding queue Q that stores style codes from i−1-th batch. When
we process i-th batch, we first sample a code z−

s from Q as a negative sample,
we then instruct the generator to synthesize stylized face X−

s = Gi=0(zf ,z−
s ).

We feed (X−
s ,z−

s ) into Dc as a pair of negative sample. The objective functions
for Ds,Dr,Dc can be formulated as follows:

Ls = Ezf ,Xs ,ξ [f(Ds(Gi=0(zf ,zs , ξ)))] + EXs

[
f(−Ds(Xs)) + λ‖∇Ds(Xs)‖2

]

Lr = Ezf ,ξ [f(Dr(Gi=11(zf , ξ)))] + EXr

[
f(−Dr(Xr )) + λ‖∇Dr(Xr )‖2

]

Lc = Ezf ,Xs

[
f(Dc(X−

s ,z−
s )

]
+ EXs

[f(−Dc(Xs , Es(Xs)))]
(7)

where f(x) = − log(1 + e−x). We adopt the non-saturating GAN objective [12]
and R1 gradient penalty to avoid mode collapse as well as stabilize the entire
training process.

Finally, we need to ensure that all the generated faces are constrained within
the same canonical space. To this end, the discriminator should predict the cam-
era pose ξ̂ = (pitch, yaw) of the generated face and compute a pose consistency
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loss between ξ̂ and the previously sampled pose ξ. We apply pose consistency
loss for both natural faces (denoted as real) and stylized faces (denoted as style):

Lreal−pose = Eξ

∥∥∥ξ̂real − ξreal

∥∥∥2

Lstyle−pose = Eξ

∥∥∥ξ̂style − ξstyle

∥∥∥2
(8)

Given λ1, λ2, λ3, which are weights to balance these objective functions, the
entire training loss of ArtNeRF is:

LD = λ1(Lreal + Lreal−pose) + λ2(Lstyle + Lstyle−pose) + λ3Lstyle−latent

LG = −LD
no−R1

(9)

where LD
no−R1 represents LD without R1 penalty term.

4 Experiments

Fig. 5. Qualitative comparison of reference-guided face stylization results among sev-
eral 2D methods and ours. Our model can not only generate high-quality stylized faces
but also produce 3D-aware results with high multi-view consistency.

Datasets. We utilize CelebA [20], containing approximately 200k faces, as our
source domain dataset. For the style domain, we employ AAHQ [8], an artistic
dataset comprising around 24k high-quality stylized faces. All the images from
the two datasets have been cropped and aligned properly, with a resolution of
128 × 128.
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Fig. 6. Qualitative comparison of face stylization results among several 3D-aware meth-
ods and ours. StyleAvatar3D can only generate cartoonized faces from input cartoon
images. 3DAvatarGAN creates faces with a fixed style after performing domain adap-
tation on a given dataset. DeformToon3D can synthesize faces with several fixed styles.
Our method enables the direct generation of 3D-aware faces with diverse artistic styles
given reference images, all without the need for fine-tuning on a specific style dataset.

Implementation details. We use a two-stage strategy to train our model:
base model pre-training and fine-tuning within the style domain. We train 200k
steps for stage1 with the generator and Dr using CelebA and 30k steps for stage2
with the generator, triple-branch discriminator, style encoder and SBM module
using both the two datasets. After stage1, our model can sufficiently learn prior
knowledge about the distribution of real natural faces and generate high-quality
multi-view natural faces. In stage 2, the pretrained model we get after stage 1
will be decently guided to generate stylized faces in a cross-domain adaption
manner. Our method is implemented in PyTorch. The entire training process is
done on a NVIDIA RTX 2080Ti for about 3 days.

4.1 Comparisons

Qualitative results. Fig. 1 displays synthesized multi-view natural faces and
their corresponding stylized faces at different levels (i = 0 and i = 3) within
the SBM module. At i = 0, the results exhibit the highest degree of styliza-
tion but lose some identity features. At i = 3, a balance between stylization
and identity preservation is achieved. More results can be found in our supple-
mentary material. Fig. 5 provides a qualitative comparison with 2D methods
which support one-shot face stylization with arbitrary reference style images
(we set i = 3 in our SBM module). DRIT++ fails to learn the style consistency
between generated faces and reference images, while AdaIN struggles with iden-
tity preservation. Although MUNIT and StarGANv2 produce reasonable results,
they tend to overly inherit face poses from reference images. BlendGAN performs
well in identity preservation and style consistency but lacks 3D-awareness. Our
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Table 1. A thorough comparison of the functionality among several prevailing 2D or
3D face cartoonization or stylization methods.

Method Year Reference-guided Arbitrary style 3D-aware

CartoonGAN [6] CVPR18 × × ×
AniGAN [22] TMM21 � × ×
AdaIN [21] ICCV17 � � ×
MUNIT[1] ECCV18 � � ×
FUNIT[2] ICCV19 � � ×
DRIT++[3] IJCV20 � � ×
StarGANv2 [4] CVPR20 � � ×
BlendGAN [8] NIPS21 � � ×
JoJoGAN [23] ECCV22 � × ×
DualStyleGAN [9] CVPR22 � × ×
StyleAvatar3D [25] ARXIV23 × × �
3DAvatarGAN [16] CVPR23 � × �
DeformToon3D [17] ICCV23 � × �
ArtNeRF(Ours) 2024 � � �

method excels in synthesizing 3D-aware images with robust multi-view consis-
tency, achieving strong identity preservation and style consistency simultane-
ously. Fig. 6 compares several 3D-aware face stylization methods with ours.
Existing methods only generate faces with one or several fixed styles like car-
toon or caricature, lacking the capability of generalizing to more diverse artistic
styles. They typically require domain adaptation for each style or the collection
of paired training data, which limits their applicability. In contrast, our method
supports reference-guided face stylization and not being restricted to a set of
fixed styles. Additionally, thanks to our two-stage training strategy and SBM
module, the results generated by our method naturally inherits the facial iden-
tity and hairstyle traits from the source faces, which is not achieved by other
methods.

Quantitative results. Table 1 demonstrates our method’s capability to gen-
erate reference-guided 3D-aware faces with arbitrary styles, a task not addressed
by existing methods. Note that our method is the first to achieve 3D-aware face
stylization with arbitrary artistic styles, hence our quantitative comparisons are
drawn with existing 2D methods which can generate results in a single forward
pass. We provide quantitative comparisons against reference-guided image syn-
thesis baselines using FID, KID, and IS metrics on 20k generated stylized images
and 20k style reference images. Besides, we assess image diversity using LPIPS.
Given a specified identity code, we select 10 reference styles randomly and gener-
ate 10 stylized faces, we then evaluate the LPIPS scores between every 2 results.
This process is repeated for 1000 identity codes and the average of all scores
constitute the final LPIPS score. BlendGAN differs from ArtNeRF in training
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settings and their training code is unavailable, so we reproduce the latent-guided
(an identity code and a style code is sampled) results of BlendGAN and down-
sample them to 128 × 128 for comparison.

Table 2. Quantitative evaluation of style-guided face synthesis. We compare with
methods that support face stylization with arbitrary reference styles.

Method FID ↓ KID↓ IS↑ LPIPS↑
AdaIN 86.87 0.084 2.14 0.237

MUNIT 56.99 0.046 1.98 0.241

DRIT++ 89.79 0.069 2.02 0.231

StarGANv2 34.24 0.022 2.50 0.389

BlendGAN 39.45 0.037 2.98 0.239

Ours(i=3) 13.80 0.0066 2.89 0.377

Ours(i=0) 12.09 0.0052 2.96 0.403

Table 2 highlights our method’s significant improvements over AdaIN,
MUNIT, DRIT++, and StarGANv2 across quantitative metrics. Notably, we
use multi-view stylized faces for evaluation while other methods use fix-pose
faces. It manifests the 3D-aware faces generated by our method possess higher
visual quality and diversity than the baseline methods. BlendGAN is the SOTA
in 2D reference-guided image synthesis with arbitrary style and our method
exhibits slightly inferior IS compared to BlendGAN, suggesting that there is
still room for our method to narrow the visual quality gap between 2D and
3D-aware methods.

4.2 Ablation Study

In this section, we conduct extensive ablation studies to assess the impact of
various modules on the model’s generative capability and demonstrate their
effectiveness. Experiments involving the base model (stage 1) are conducted
using the CelebA dataset, whereas experiments focusing on the final stylization
model (stage 2) are carried out using the AAHQ dataset. Due to space limitation,
please refer to our supplementary material for more results.

Generator network. In Sec 3.3, we enhance the pi-GAN baseline by omit-
ting the progressive growing strategy, integrating dense skip connections into the
backbone, and introducing a neural rendering module. We assess their effective-
ness by progressively incorporating them into the baseline model in stage 1 and
comparing results in Table 3. Omitting the progressive growing strategy initially
yields a slightly higher FID at the start of training but significantly lowers it
towards the end. Adding dense skip connections further reduces the final FID.
Finally, if the neural rendering module is applied, the visual quality of our results
will be further refined during the entire training process.
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Table 3. We improve the generation capability of the base model in a progressive way.
PG, DSC and NR denote progressive growing training strategy, dense skip connections
and neural rendering, respectively.

FID↓ (10k) FID↓ (20k) FID↓ (40k) FID↓ (100k)

base model 58.76 40.83 24.47 36.49

-PG 63.9 49.05 34.95 27.46

-PG, +DSC 61.59 40.39 24.61 17.28

-PG, +DSC, +NR (ours) 53.97 33.97 22.29 14.42

Table 4. The rendering speed (fps) with (w/) and without (w/o) neural rendering
module under different (res, ns) pairs. OOM denotes CUDA out of memory error.

ns=8 ns=16 ns=32 ns=48

w/o nr w/ nr w/o nr w/ nr w/o nr w/ nr w/o nr w/ nr

res=64 33.45 49.69 41.20 56.44 26.33 48.80 18.26 48.76

res=128 25.57 53.60 14.11 52.40 7.29 42.69OOM 38.54

res=256 7.22 43.40 3.25 32.93OOM 21.93OOM 15.58

Neural rendering. We analyze how neural rendering impacts inference
speed across different resolutions (res) and samples per ray (ns). Experiments
are conducted with our stylization model. As detailed in Table 4, a significant
enhancement in inference speed across nearly all (res,ns) pairs can be achieved
with neural rendering. Notably, when res = 256,ns = 16, neural rendering
improves inference speed by 10× compared to the original structure. This capa-
bility allows the model to efficiently handle diverse (res,ns) settings, facilitating
high-quality real-time rendering essential for VR/AR applications.

5 Conclusion

In this paper, we propose a novel 3D-aware image stylization method ArtNeRF,
enabling the generation of faces with arbitrary styles. We achieve this goal by
enhancing a NeRF-GAN baseline with dense skip connections and a neural ren-
dering module, proposing an SBM module to integrate style control vectors
into the generator and leveraging a triple-branch discriminator to improve style
and multi-view consistency. Extensive experiments illustrate the effectiveness of
ArtNeRF. However, our model still has limitations. Although reasonable faces
can be generated with most camera viewpoints, our model cannot tackle with
extreme views or synthesize 360◦ images of human heads due to dataset con-
straints. Future work will incorporate advanced 3D representations like 3D Gaus-
sian Splatting [24] to further enhance image quality and rendering speed.
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Abstract. The dyadic reaction generation task involves synthesizing
responsive facial reactions that align closely with the behaviors of a
conversational partner, enhancing the naturalness and effectiveness of
humanlike interaction simulations. This paper introduces a novel app-
roach, the Latent Behavior Diffusion Model, comprising a context-aware
autoencoder and a diffusion-based conditional generator that addresses
the challenge of generating diverse and contextually relevant facial reac-
tions from input speaker behaviors. The autoencoder compresses high-
dimensional input features, capturing dynamic patterns in listener reac-
tions while condensing complex input data into a concise latent repre-
sentation, facilitating more expressive and contextually appropriate reac-
tion synthesis. The diffusion-based conditional generator operates on the
latent space generated by the autoencoder to predict realistic facial reac-
tions in a non-autoregressive manner. This approach allows for generat-
ing diverse facial reactions that reflect subtle variations in conversational
cues and emotional states. Experimental results demonstrate the effec-
tiveness of our approach in achieving superior performance in dyadic
reaction synthesis tasks compared to existing methods.

Keywords: Latent Diffusion · AutoEncoder · Dyadic interaction ·
Multiple appropriate reactions generation

1 Introduction

Dyadic interaction refers to the communication or relationship between two indi-
viduals, characterized by direct and reciprocal exchange. This form of interac-
tion is fundamental in social and psychological studies, as it helps to understand
interpersonal dynamics, mutual influence, and the development of social bonds.
Referring to the Stimulus Organism Response (SOR) model [1], each human
individual expresses reaction behavior influenced by the context in which they
are situated [2]. Specifically, a speaker can significantly affect a listener through
various factors such as tone of voice, choice of words, body language, and emo-
tional expressiveness. These elements influence the listener’s perceptions, emo-
tions, and responses, thereby shaping the overall communication and interaction
dynamics.
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In recent years, there has been an increasing number of studies focusing on
the analysis of human-human dyadic interactions [3]. These studies aim to under-
stand the intricacies of interpersonal communication by examining verbal and
non-verbal cues, emotional exchanges, and the dynamics of social interactions
within dyadic contexts. The automated generation of natural facial and bodily
reactions, which mimic the behaviors of conversational partners, has been inves-
tigated extensively in several studies [4–8]. These studies primarily focused on
replicating specific real facial reactions that correspond to the behavior of the
input speaker. However, the potential divergence of non-verbal reaction labels
for similar speaker behaviors during the training phase presents challenges for
this approach.

When understanding and replicating the nuanced feedback from listeners
presents a new and intriguing challenge, the Responsive Listening Head Gen-
eration task was introduced in the computer vision field by Zhou et al. [9].
Although studies such as [4,9] focused on the nonverbal facial feedback listen-
ers provide to speakers during dyadic conversations, their primary aim was to
generate reactions that mirror a ground-truth response and typically employed
deterministic models to replicate precise reactions. To capture motion that repre-
sents the inherently non-deterministic nature of different perceptually plausible
listeners, Learning2Listen [10] introduced a framework designed to model inter-
actional communication in dyadic conversations. It processes multimodal inputs
from a speaker and autonomously produces multiple potential listener motions
in an autoregressive manner, however, the one-dimensional discrete codebook
they used limited the diversity of motion and emotional representation. Later,
a study by [11] introduced the novel concept of the Facial Multiple Appropriate
Reaction Generation task, pioneering its definition within the literature. This
study also presented novel objective evaluation metrics tailored to assess the
appropriateness of generated reactions. Following the concepts introduced in
[11], this research aims to advance the automatic generation of multiple appro-
priate non-verbal facial reactions that correspond to specific speaker behaviors.

To tackle this challenge, we propose a novel two-stage, non-autoregressive
diffusion architecture for the synthesis of dyadic reactions, also known as Facial
Multiple Appropriate Reaction Generation (fMARG). The primary contribu-
tions of our work include:

– Leveraging the power of the non-autoregressive Latent Diffusion Model [12]
as our approach for dyadic reaction generation.

– We enhance the latent space representation through a context-aware autoen-
coder designed to learn spatio-temporal features of the lower facial represen-
tation features.

– We conduct extensive experiments on the REACT2024 dataset [13], demon-
strating that our model significantly outperforms recent methods in generat-
ing facial reactions.
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2 Related Works

2.1 Deterministic reaction synthesis

In recent decades, research on listening reaction modeling has focused on sim-
ulating engaged listeners’ facial expressions and head movements. Gillies et al.
[14] pioneered a data-driven approach to create an animated character capa-
ble of dynamically responding to the speaker’s voice. Ahuja et al. [15] focus
on generating non-verbal body behaviors. In contrast, Greenwood et al. [16]
explore the synchronized motion of conversational agents in dyadic interactions,
with adaptations based on speech. RealTalk [17] utilizes a large language model
to retrieve potential videos of the listener’s facial expressions. Huang et al. [5]
trained a conditional Generative Adversarial Network [18] (GAN) to generate
realistic facial reaction sketches of listeners based on the corresponding facial
action units (AUs) of the speaker. Song et al. [7,8] suggest exploring person-
specific networks tailored to individual listeners, enabling the reproduction of
each listener’s unique facial reactions.

Several studies have explored the generation of diverse non-verbal behaviors,
such as hand gestures, posture, and facial reactions, in face-to-face interactions
[4,19]. Zhou et al. [9] were the first to introduce the Responsive Listening Head
Generation task, which involves generating a head video of a listener based on
a talking-head video of the speaker and an image of the listener’s face. They
also developed the ViCo dataset to facilitate the evaluation of methods for this
task. Their baseline approach utilized an LSTM-based model [20] to process
visual and audio data from the speaker to generate facial 3D morphable model
(3DMM) [21] coefficients for the listener. Although the former methods could
generate listening reaction attributes based on specific speaker behavior inputs,
as deterministic models, they lack diversity which is the key to real-world face-
to-face scenarios.

2.2 Multiple Reaction Generation

When deterministic approaches grapple with the challenge of the ’one-to-many
mapping’ problem, where a single speaker behavior can evoke multiple dis-
tinct facial reactions, several studies have begun exploring the non-deterministic
aspect of this problem, aiming to predict diverse facial reactions from the
same input. Ng et al. [10] introduced a novel approach for modeling dyadic
communication by predicting multiple realistic facial motion responses from
speaker inputs using a motion-audio cross-attention transformer and a motion-
encoding VQ-VAE [22] for non-deterministic prediction. This method advances
beyond existing work by effectively capturing nonverbal interactions’ multi-
modal and dynamic nature in dyadic conversations. However, expanding the
one-dimensional codebook to a composition of several discrete codewords can
limit motion and emotional representation diversity. Thus, the Emotional Lis-
tener Portrait (ELP) model in [23], proposed a discrete motion-codeword-based
approach to generate natural and diverse non-verbal responses from listeners
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based on learned emotion-specific probability distributions and offering control-
lability.

On the other hand, according to [11], human facial reactions exhibit vari-
ability; identical or similar behaviors from speakers can prompt diverse facial
responses, both across different individuals and within the same individual in
different contexts. This variability poses challenges when training models to accu-
rately reproduce the listener’s facial reactions based solely on each speaker’s
behavior sequence. Therefore, Song et al. [11,13,24] defined the Facial Multiple
Appropriate Reaction Generation (fMARG) task and introduced novel objective
evaluation metrics to assess the appropriateness of generated reactions. Their
framework aims to predict, generate, and evaluate multiple appropriate facial
reactions and these models are successful in generating facial responses [25–28]
by mapping from speaker behavior to a distribution of appropriate reactions.
This paper provided an effective approach to the fMARG problem, we designed
a Latent Diffusion Model for stochastic listener reaction behavior generation.
Our Latent Behavior Diffusion Models accelerate sampling through diffusion in
a low-resolution latent space trained by a robust context-aware auto-encoder.
This approach achieves state-of-the-art performance in appropriateness, diver-
sity, and synchrony aspects.

3 Proposed Method

Our method for generating multiple spatio-temporal reactions consists of facial
Action Units, valence and arousal intensity, and facial emotion from speaker
behavior with the same attributes. Diffusion models are more flexible in how
they model data distributions, as they do not rely on adversarial training like
GANs, or VAEs, which can suffer from mode collapse. We employ a two-stage
process: a context-aware time autoencoder and a Latent Diffusion (LD) gen-
erator. The autoencoder updates global statistics iteratively during training to
ensure precise reconstruction of future timestamps. Following this, the condi-
tional LD generator utilizes a guidance mechanism to generate latent conditions,
effectively incorporating relevant covariates.

3.1 Problem definition

Given the ηth frame (ηth ∈ [t1, t2] frame) and its preceding frames expressed by
the speaker Sn at the period [t1, t2] with corresponding spatio-temporal behav-
iors bt1,t2

Sn
, we develop a generative model G that predicts each listener appropriate

facial reaction frame rLn

(
bt1,t2
Sn

)
i
. This can be formulated as:

rf

(
bt1,t2
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)η

i
= G

(
bt1,t2
Sn

)
(1)

where rf

(
bt1,t2
Sn

)η

i
denotes the ηth predicted facial reaction frame of the ith

generated appropriate facial reaction in response to bt1,t2
Sn

; and bt1,η
Sn

denotes the
speaker behaviour segment at the period [t1, η]. Our approach aims to gradually
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generate all facial reaction frames, resulting in many appropriate spatio-temporal
facial reactions (one-to-many) as described. Thus, the multiple M appropriate
listener facial reaction sequences are presented as:
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)η
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Here, we simply define the set of spatio-temporal listener reaction sequences
target Y and condition speaker behavior C in the time-space as:

Y =
{

rf

(
bt1,t1+w
Sn

)η

M
, · · · , rf

(
bt2,t2+w
Sn

)η

M

}
, Y ∈ R

T ×d

C = {bt1−w,t1
Sn

, · · · , bt2−w,t2
Sn

}, C ∈ R
T ×d (3)

where T typically represents the number of time steps or temporal observa-
tions and d represents the dimensionality of the features at each time step.

Fig. 1. Overview of our proposed Latent Diffusion Model (LDM) for generating multi-
ple reactions. During the training phase, the autoencoder (AE) is first trained to encode
the time series of listener reactions through a reconstruction task. Concurrently, the
LDM is trained to predict future targets based on speaker behaviors C. During the
sampling phase, the latent representation of the time series is first generated by the
LDM and then passed as input to the decoder Dr(z0) to obtain the future targets.

3.2 Facial Reaction Compression

An Auto-Encoder uses backpropagation to generate an output vector similar
to its input. It compresses input data into a lower-dimensional space and then
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reconstructs the original data from this compact representation. In our approach,
we implement a context-aware Auto-Encoder (see Fig. 1a) with the ability to
encode and decode sequences while maintaining awareness of the context or
temporal dependencies inherent in the facial reaction sequence data.

The encoder transforms the input Y into a low-dimensional continuous latent
space V ⊂ R

v (feature code) using a deterministic mapping function: z = Er (Y).
Samples z ∈ V can be sampled and then reconstructed into the original facial
reaction by a decoder Dr as Ŷ = Dr(z). For generating listener 3DMM coor-
dinates, a Vector Quantized technique is performed to produce discrete latent
representation zq by a codebook (see Fig. 1a). The 3DMM head motion coeffi-
cient set is generated as F = Df (zq)

Our Auto-Encoder is trained with a fix-length target listener facial reaction
sequence w with Mean Square Error (L2) regularization for Dr and Df solely.
Specifically, we use VQ-VAE loss that is composed of three components: recon-
struction loss which optimizes the encoder and decoder; codebook loss to bypass
the embedding as the codebook learning by L2 error; and commitment loss to
make sure the encoder commits to an embedding for Df .

Lreact =
T∑

t=1

∥
∥
∥rf

(
bt,t+w
Sn

)η

i
− r̂f

(
bt,t+w
Sn

)η

i

∥
∥
∥
2

Lface = log p (Y | zq(Y))

+ ‖sg [ze(Y)] − e‖22
+ β ‖ze(Y)) − sg[e]‖22 (4)

In terms of decoding the listener’s spatio-temporal facial reaction, our
context-aware Auto-Encoder learns the prior distribution p(z) without a stan-
dard Gaussian N (0, 1) or 1-D codebook as it can only produce deterministic
outcomes, however, it does not suffer posterior collapse and codebook collapse
on a very high-dimension multivariate reaction time series and our posterior
Diffusion model can compensate the ability with stochastic inference.

Fig. 2. Conditional Behavior Decoder architecture in Latent space.
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3.3 Latent Behavior Diffusion

We propose a straightforward adaptation of conditional Latent Diffusion Models
(LDMs) for reaction generation.

Conditional behavior Decoder. In the pursuit of a meaningful latent code,
for each denoising step, a sequence of residual MLPs based on Diffusion autoen-
coders [29] is implemented as demonstrated in Fig. 1c. Each layer of the MLP has
a skip connection from the input, which concatenates the input with the output
from the previous layer (see Fig. 2). Hence, the conditional behavior decoder
pθ (zt−1|zt, t, zsem) is conditioned by a semantic behavior encoder zsem = Er(C)
which reemployed from our First stage Auto-Encoder. In practice, the learned
Er can deterministic map an input speaker behaviors C to a semantically mean-
ingful zsem. Here, our conditional behavior decoder takes the high-level seman-
tic subcode zsem and the low-level stochastic subcode zT . In sampling process,
our approach by reversing the generative process of Pseudo Linear Multi-step
(PLMS) [30] to infer zT .

Diffusion Models. Diffusion Models [31] are probabilistic generative models
designed to learn the original data distribution P (x) by progressively denoising
variables sampled from a normal distribution. This process can be viewed as
learning the reverse steps of a fixed Markov chain with step length T ∈ N

+.
During each step, the diffusion model employs a noise predictor to estimate
the noise added in the forward Markov process and then denoise it, effectively
refining the data towards its original distribution. The diffusion process is a
Markov process, which incrementally applies the forward transition kernel:

q (z1:T | z0) =
1∏

t=T

q (zt | zt−1)

q (zt | zt−1) ∼ N
(√

1 − βtzt−1, βtI
)

(5)

where βt determines the noise strength at each step, referred to as the vari-
ance schedule. T represents the total number of steps in the denoising process
and t = 0, 1, · · · , T − 1.

The reverse process has a similar form to the diffusion process. During train-
ing, the network predicts pθ(zt−1|zt) by reversing the Markov chain of length M
and using a Conditional behavior Decoder pθ(·) presented as:

p (z0:T ) = p (zT )
T∏

t=t

pθ (zt−1|zt, t, zsem)

p (zT ) = N (0, I)

q (zt−1 | zt,Y) = N
(
μt (zt,Y) , σ2

t I
)

(6)

where μt (zt,Y) has a closed-form solution and σt is a hyperparameter.
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Objective Functions. The LDM’s loss is the average of the Mean Absolute
Error (MAE) in the latent space and the Mean Square Error (MSE) in the
reconstructed space. The complete objective training loss function for our LDM
is expressed as follows:

Llatent =
T∑

t=1

E
q(zt|z0)

‖pθ (zt−1|zt, t, zsem) − Er(Y)‖1

Lrec =
T∑

t=1

E
q(zt|z0)

‖Dr(pθ (zt−1|zt, t, zsem)) − Y‖2

Lldm = Llatent + Lrec (7)

Latent Behavior Sampler. Pseudo Linear Multi-Step [30] (PLMS) is an
improvement over DDIM . According to [30], a 50-step process can achieve higher
quality than a 1000-step process in DDIM. We proposed a Latent Behavior Sam-
pler that can be broken down into a series of formulas capturing the core logic
of sampling zt+δ from the model using the PLMS method. Following the for-
ward Euler Method, for a certain differential equation satisfying dx

dt = f(z, t).
We represent PLMS in formulaic terms:

zt+δ = zt + δ (ft) if k = 1

zt+δ = zt +
δ

2
(3ft − ft−δ) if k = 2

zt+δ = zt +
δ

12
(23ft − 16ft−δ + 5ft−2δ) if k = 3

zt+δ = zt +
δ

24
(55ft − 59ft−δ + 37ft−2δ − 9ft−3δ) if k = 4

(8)

where ft = f (zt, t), k is the convergence order and δ is the step size. Our
inference process leverages the reverse PLMS process when it reaches T = 0,
obtaining the future target by Dr(z0).

4 Experiments

4.1 Evaluation setup

Dataset. The REACT2024 dataset [11,13] is a comprehensive resource for ana-
lyzing dyadic video interactions with detailed facial attribute annotations. This
dataset is constructed from two prominent video conference corpora: NoXi [32]
and RECOLA [33]. Each audio-video clip from the NoXi and RECOLA datasets
has been segmented into 30-second clips, resulting in conversational 5,919 clips.
Specifically, the dataset includes extensive facial attribute annotations for each
frame, derived using state-of-the-art models [34–36]: Action Units (AUs): 15
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AUs are annotated, including AU1, AU2, AU4,... Facial Affects: Two continu-
ous affective states, valence and arousal intensities, are provided; Facial Expres-
sion Probabilities: Eight facial expression probabilities are included, covering
Neutral, Happy, Sad,... and further the extracted 3DMM parameters. The care-
fully segmented and cleaned clips, rich annotations, and special appropriateness
label strategy provide a robust foundation for training and evaluating advanced
machine-learning models in dyadic emotion recognition, facial expression analy-
sis, interaction dynamics in video conferencing scenarios, and indeed capability
for reaction generation.
Comparison Methods. We compare our method with two baseline approaches
provided by [13,24]: TransVAE and Belfusion. The Trans-VAE baseline shares
a similar architecture to the TEACH model proposed in [37], a Multimodal
Transformer-based VAE that takes video facial and audio embedding from
speaker to predict listener facial reaction features and 3DMM parameters. Belfu-
sion is based on the work in [38], employing DDIM model with standard Gaussian
Distribution as the prior. Furthermore, some generative methods were remark-
able at REACT2024 Challenge [13] included in our comparison. In particular,
Dam et al. [25] designed an architecture encouraged by [10], but leveraging Finite
Scalar Quantization [39] to replace Vector Quantization. Besides, Liu et al. [26]
introduced discrete latent variables to tackle this one-to-many mapping problem,
to model the diversity of contextual factors, and to generate diverse reactions.
Implementation Details. We implement our model using PyTorch [40] and
perform the training on a single Nvidia RTX 3080Ti GPU. In the first stage
of our autoencoder structure, we implemented based on Transformer-based [41]
architectures, all Er, Df , and Dr utilized two layers of Transformer encoders,
each with 4 attention heads. The latent Conditional Behavior Decoder includes
MLP + Skip with 10 layers and 1024 hidden nodes, detailed in Fig. 2. The AE
models are solely trained with 1000 epochs for Dr and 200 epochs for Df with
a batch size of 32. The window size is set to 50, the learning rate is 1e-3, and
the weight decay is 5e-4 with the AdamW optimizer. We adjusted the same
optimizer parameters for the second stage and trained the LDM for 200 epochs.
The denoising chain has 50 steps. Sampling was conducted with our fourth-order
PLMS latent behavior sampler.

4.2 Evaluation metric

Following the standard protocols proposed in [11], we evaluate our method based
on three key aspects of the generated facial reaction attributes as below:
Appropriateness: Facial reaction distance (FRDist) calculates the Dynamic
Time Warping (DTW) distance between a generated facial reaction and its clos-
est corresponding real facial reaction; Facial Reaction Correlation (FRCorr) com-
putes the correlation between each generated facial reaction and its most similar
corresponding real facial reaction.
Diversity:Facial Reaction Variance (FRVar) computing the variation across all
frames; Diverseness among generated facial reactions (FRDiv); Diversity among
facial reactions generated from different speaker behaviors (FRDvs).
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Synchrony (FRSyn) is computed by first calculating the Time-Lagged Cross-
Correlation (TLCC) scores between the input speaker behavior and each of its
generated facial reactions.

Table 1. Comparision against various methods on Multiple Facial Reaction Generation
on REACT2024 dataset.

Method Appropriateness Diversity Synchrony

FRCorr(↑)FRDist(↓)FRDiv(↑)FRVar(↑)FRDvs(↑) FRSyn(↓)

Trans-VAE 0.07 90.31 0.0064 0.0012 0.0009 44.65

BeLFusion 0.12 94.09 0.0379 0.0248 0.0397 49.00

Dam et al. [25] 0.31 84.94 0.1167 0.0349 0.1165 47.43

Liu et al. [26] 0.22 88.32 0.1030 0.0387 0.1065 44.41

Ours 0.37 89.40 0.1211 0.0653 0.1505 43.48

Table 2. Comparisons on image-level in terms of quality and identity preservation.

Method FID (↓)

GT 53.96

Trans-VAE 69.19

Belfusion 54.00

Ours 50.95

4.3 Results

Quantitative Results. Table 1 illustrates the quantitative evaluation results
of our proposed LDM compared with other methods. The results demonstrate
that our approach generates facial reactions with greater diversity and synchrony
than those produced by the competitors. Trans-VAE and Belfusion got the worst
performance among our comparison, these models relied on standard Gaussian
distribution can easily lead to posterior collapse during training with Trans-
VAE and prior VAE of Belfusion. Dam et al. [25] and Liu et al. [26] tackled this
problem by applying discrete latent space. Nevertheless, our Latent Diffusion
model with a Transformer AE prior can surpass the overall evaluation criteria,
delivering superior performance in generating diverse and synchronized facial
reactions. Moreover, the better diversity and synchrony metrics state that our
Decoder can better generate responsive reactions and avoid jitters in the facial
frames among generated fix-length segments. Although there was a trade-off
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regarding FRDist, its performance remains competitive and within a fair margin
compared to other approaches.

To comprehensively evaluate the video-level performance, we use the Fréchet
Inception Distance (FID) [42] as a commonly used metric for assessing the real-
ism of generated human faces. We evaluate the realism of the facial reactions
that PIRender [43] generated from 3DMM parameters by Df , results are shown
in Table 2.
Qualitative Results. In this section, we present the qualitative results of the
generated facial frames of multiple listeners. These results are illustrated in Fig. 3
and Fig. 4. Trans-VAE failed to preserve identity, generating unclear expressions
and arbitrary motions. Belfusion’s results show poor variation and less dynamic
motions due to the weakness of its Gaussian latent space. In contrast, our model
achieves the best natural and coherent results compared to these baseline meth-
ods.

Fig. 3. The qualitative results of the generated facial frames of multiple listeners. Our
comparison between other baselines by 3D rendering translation. The bottom of the
figure shows our model-generated variants of reaction that are expressed from Speaker
ground truth. The time t in second.
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Fig. 4. Generated listener facial reactions from different speakers.

Table 3. Effect of ablating key settings of our method.

Method Appropriateness Diversity Synchrony

FRCorr(↑)FRDist(↓)FRDiv(↑)FRVar(↑)FRDvs (↑) FRSyn(↓)

PLMS (k=2, T=10) 0.36 89.27 0.1157 0.0627 0.1434 44.16

PLMS (k=2, T=25) 0.37 91.99 0.1190 0.0699 0.1605 45.47

PLMS (k=1, T=50) 0.372 89.49 0.1211 0.0653 0.1505 43.88

PLMS (k=2, T=50) 0.372 89.48 0.1206 0.0651 0.1501 43.68

PLMS (k=3, T=50) 0.372 89.54 0.1208 0.0651 0.1501 43.69

PLMS (k=4, T=50) 0.374 89.40 0.1211 0.0653 0.1505 43.48

PLMS (k=2, T=100) 0.33 88.22 0.1064 0.0619 0.1405 45.03

DDIM (T=50) 0.35 88.27 0.1047 0.0579 0.1343 44.00

DPM (T=50) 0.32 86.53 0.1014 0.0546 0.1223 43.82

Note: T is the number of denoise steps and k is convergence order of PLMS

4.4 Ablation Study

We quantitatively analyze the effect of each of the settings in our method for the
final LD model with Trans-AE prior. We perform ablation studies with different
denoise chain step numbers T ∈ (10, 25, 50, 100) and four convergence orders of
PLMS method.

Table 3 demonstrates that increasing the number of denoising steps slightly
improves the alignment of predicted reactions with the ground truth in terms of
Dynamic Time Warping (DTW). However, this improvement negatively impacts
the Correlation aspect. Through our experiments, we identified an optimal bal-
ance between Appropriateness and Diversity at 50 denoising steps. The impact
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of varying PLMS convergence orders is minimal, with our best results achieved
using the fourth-order implementation. Furthermore, we applied DDIM and the
origin DPM samplers with the same 50 denoising steps, and our PLMS achieved
higher Correlation and Diversity in our comparison.

5 Conclusion

In this paper, our study introduces Latent Behavior Diffusion as a robust
framework for generating diverse and contextually appropriate facial reac-
tions in dyadic interactions. By combining a context-aware autoencoder with a
diffusion-based conditional generator, our approach effectively compresses high-
dimensional input features into a concise latent representation. Our approach
attains superior performance in objective benchmarks of generated facial reac-
tions compared to existing methods. We further aim to improve the appropriate-
ness of DTW by refining denoising process for better long-term reaction sequence
modeling.
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Abstract. Few-shot and continual learning face two well-known chal-
lenges in GANs: overfitting and catastrophic forgetting. Learning new
tasks results in catastrophic forgetting in deep learning models. In the
case of a few-shot setting, the model learns from a very limited number
of samples (e.g. 10 samples), which can lead to overfitting and mode
collapse. So, this paper proposes a Continual Few-shot Teacher-Student
technique for the generative adversarial network (CFTS-GAN) that con-
siders both challenges together. Our CFTS-GAN uses an adapter module
as a student to learn a new task without affecting the previous knowledge.
To make the student model efficient in learning new tasks, the knowl-
edge from a teacher model is distilled to the student. In addition, the
Cross-Domain Correspondence (CDC) loss is used by both teacher and
student to promote diversity and to avoid mode collapse. Moreover, an
effective strategy of freezing the discriminator is also utilized for enhanc-
ing performance. Qualitative and quantitative results demonstrate more
diverse image synthesis and produce qualitative samples comparatively
good to very stronger state-of-the-art models.

1 Introduction

Continual Learning (CL) and Few-shot (FS) learning are two very important
problems to take into account, which affect the applicability of deep learning sys-
tems in real cases [37,38]. Continual learning makes the model capable of learn-
ing new tasks without affecting the previously learned tasks. However, learning
a new task in deep learning models leads to a well-known problem named catas-
trophic forgetting [15,31]. In a few-shot setting, a model learns only from a few
samples (e.g. ≤ 10), which can result in memorizing the training set and causes
overfitting and mode collapse [1]. FS is also a considerable matter because of the
unavailability of the full dataset due the data privacy concerns. Moreover, FS is
an important consideration for such applications where very limited samples are
available such as healthcare, cyber security, etc. Furthermore, it is also essential
due to huge resource consumption, training time, and low-power devices [37,38].
Individually, continual and few-shot learning are very well explored; conversely,
considering both together have gained more popularity recently [1]. So, we also
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15325, pp. 249–262, 2025.
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take into consideration both together and present our contributions to the chal-
lenging tasks in this paper.

In CL and FS there are two very distinct areas of application of the tech-
niques: the ones that apply to discriminative models, such as classifiers, segmen-
tation models, etc., and the ones that apply to generative models, such as GAN
models. E.g. a survey article in [34] collected the works that considered both the
CL and FS together for classification and segmentation. Various techniques exist
that focus on both few-shot and continual learning to mitigate forgetting and
overfitting in classification models. However, generative models still need more
attention and consideration regarding continual and few-shot learning and have
gained attention recently [1]. Therefore, we consider the CL and FS which apply
to generative models, especially to GANs.

The CL approaches are grouped into regularization [28], replay [17], or
dynamics/expansion methods [27,35,43]. Regularization approaches grant to
overcome forgetting but produce blurred samples after learning many tasks [35].
In replay approaches, memory consideration limits the scalability of these
approaches, and data privacy is also an important consideration where data
privacy is concerned [16]. Dynamic architectures add additional parameters for
CL, do not need previous data samples, and also provide good results. However,
designing such architecture needs careful attention due to increasing the num-
ber of parameters [35]. On the other hand, when limited samples are available
for training, instead of learning the data distribution, the model memorizes the
training samples and leads to overfitting and mode collapse. Earlier approaches
for FS and limited data generation used transfer learning and fine-tuning for
the target domain generation [2,23,39]. Another approach is data augmentation
either for the data or feature level for gaining diversity in the target genera-
tion [40]. However, these approaches are not a good choice in the case of very
limited training samples [9]. In the knowledge distillation, another model is used
to make the deep learning model efficient considering the FS setting [24]. How-
ever, all these approaches do not consider both the CL and FS image genera-
tion. Less work has been done considering both few-shot and continual learning
together for GANs [29].

Our work proposes a continual few-shot teacher-student model for GANs
(CFTS-GAN) considering the FS and CL together. Our method uses knowledge
distillation, adding regularization terms for the few-shot image generation. Our
CFTS-GAN model takes inspiration from CAM-GAN [35] for continual learning
and from [22] for few-shot learning. CAM-GAN injects adapter modules on the
top of a generator model [19] for continual image generation. It trains only the
adapters when a new task is available, preserving the ability to generate images
for the previous tasks. The CAM-GAN consists of a simple generator architecture
compared to StyleGAN2 [12], whereas StyleGAN2 has more control over the
image generation due to latent space manipulation and adding noise in every
stage. We extend the CAM-GAN training with the teacher-student architecture
to improve its performance and with the CDC loss to preserve diversity and
avoid mode collapse. Our final architecture consists of three generators: a source,
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a teacher, and a student. Starting from a source generator, previously trained on
a large dataset, we train CFTS-GAN in two stages. In the first stage, the teacher
model is trained on the current task, preserving the generator diversity with the
help of the CDC loss [22] between the source model and itself. In the second
stage, when the student model is trained on the current task, the student takes
advantage of the teacher, squeezing teacher knowledge inside the adapters and, at
the same time, preserving generator diversity using CDC loss between the source
model and itself. By applying CDC loss to both, we decrease the probability
that the generators lose the ability to generate different images. CFTS-GAN
also utilizes a simple technique of freezing the student’s discriminator to obtain
much better results [20]. The quantitative results demonstrate that our approach
gains more diversity and obtains comparatively quality samples compared with
stronger models [29], [22], [41], and [45] which are derived from a more advanced
architecture [12].

The main contributions of this paper are summarized in the following points.

– We propose a teacher-student model for continual few-shot image synthesis,
to condense the knowledge of a generator into the adapters of a CAM-GAN
model.

– To preserve the diversity of the image generated and prevent mode collapse
due to memorization of few available examples, we employed the Cross-
Domain Correspondence (CDC) loss [22] in both the teacher and student
models training, introducing a source model pre-trained on a large dataset.

– To further refine the model performance, a simple strategy of freezing the
discriminator in the student training is also used [20].

– To evaluate image quality and diversity, the performance of the CFTS-GAN is
analyzed on different few-shot datasets using FID and B-LPIPS [29] metrics.

2 Literature Review

Continual Learning. Generative models have been recently analyzed to gen-
erate data continually and get rid of overriding new information on the older
ones. A well-known approach in [13] is proposed for discriminative models where
an additional loss term is added to retain the previously learned distribution.
The idea of [13] is utilized and implemented in GAN [28] where an additional
loss term is added only to the generator of the conditional GAN to prevent pre-
viously learned distribution from drifting and avoid forgetting. However, after
too many tasks the model saturates and provides an unrealistic generation of
images. Another notable approach is memory replay GAN (MeRGAN) [5] in
which a previous sample is recalled during training for the current task. The
previous data sample is generated using the generator which solves the issue but
still provides unrealistic samples after many tasks. Moreover, rehearsal-based
approaches are limited to label conditional generation [44]. To implement both
label and image conditional GAN, the authors in [44] proposed an approach
using knowledge distillation for a lifelong generation. However, the proposed
lifelong model is shared across all tasks so the previous task generation quality
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is degraded as new tasks arrive. In parameter isolation-based approaches, the
parameters of the previous tasks are kept unchanged while learning new tasks.
One way of parameter isolation is to expand the network and each task has
its own parameters [14,42]. Another way is to use the same architecture but
allocate distinct parameters for each task [18,25]. For continual classification, a
model is designed using universal and parameter vectors for learning shared and
task-specific domains, respectively [26]. In [27], add additional layers for learn-
ing a new task and use previously learned knowledge, and fine-tune for better
convergence. CAM-GAN authors [35] proposed a continual learning approach
that is based on adding adapter modules for learning the upcoming tasks with-
out affecting the previously learned distributions. Taking inspiration from them,
we extended their model to work on a more challenging scenario of CL and
FS, together. We also use their adapters concept on a Teacher-Student setting
to enhance generation quality and CDC loss to preserve diversity of generated
images.
Few-Shot Learning. Many methods exist for the few-shot GANs [6,30,32]. A
simple fine-tuning FreezD method based on freezing the discriminator layers to
achieve the few-shot image generation is presented in [20]. Transfer learning is
also considered for the few-shot image synthesis in [39]. BSA [21] adds a small
number of parameters to the source model based on the statistics of the feature
map. CDC [22] preserves the diversity of the images by applying cross-domain
correspondence between the source and target images. Other variants of CDC
are also presented in [41] and [45]. Similar to CDC the DCL [45] uses the mutual
information between the source and target domain. These approaches consider
only few-shot learning while in our case we take into consideration both continual
and few-shot learning.
Continual Few-Shot Learning. For discriminative models, a hyper-
transformer is used for few-shot lifelong learning classification in [36]. The hyper-
transformer generates the weights for learning the new task. The authors in [33]
proposed another approach for the few-shot class incremental classification using
a neural gas network. An expansion-based idea is presented in [46] for few-shot
discrimination which tries to make the same sample closer and increase the space
between different samples for few-shot settings. Conversely, generative models in
terms of both continual and few-shot settings are not widely explored. According
to the authors, the LFS-GAN [29] is the first approach that considers both setups
together. LFS-GAN appends additional parameters for learning new tasks. The
distance between generated fake samples and input noise is maximized to pro-
duce diverse images. A continual few-shot image translation is proposed in [4].
This method introduces new scale and shift parameters and modulates the older
parameters to learn the newly introduced scale and shift parameters. We pro-
posed different training approaches for continual few-shot learning utilizing the
architecture of [35] introducing teacher-student architecture. Moreover, we also
applied CDC loss in both training stages to obtain better diversity.
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3 Method

In this section, we describe our approach for the continual few-shot image gen-
eration which is divided into several subsections. The sections 3.1 and 3.2 give
details of the preliminaries of continual and few-shot learning and CDC loss.
Section 3.3 describes the teacher-student model and their objectives.

Fig. 1. The teacher-student model for continual learning GAN. The dashed lines show
the frozen model. a) shows the teacher model training. b) demonstrates training of the
student model.

3.1 Continual Few-Shot GAN

For continual few-shot image synthesis, a set of multiple tasks T = {T0, .., Tt}
is considered (Figure 1). Each task Ti consists of a dataset with few samples
x0, x2, .....xn, where n is the total number of samples in the training set. If n
is low (i.e. n ≤ 10), we are in the case of few-shot learning. As in CL setting,
when the model is trained on a new task Ti, previous training data are no longer
available and then can not be used for this training step.

GANs are usually composed by two models: a discriminator D and generator
G. The objective of D is to discern real data from synthetic samples generated
by G. While the objective of G is to generate samples that look real to fool D.
The generator learns parameters θ from a probability distribution pdata(x) for a
given dataset to produce synthetic data. These fake images are generated from
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a random Gaussian distribution p(z). Both D and G are trained together in an
adversarial manner to achieve the following objective [7]

min
G

max
D

Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[1 − log D(G(z))] + R(θd) (1)

where pdata(x) is the distribution of real data and pz(z) is a random Gaussian
distribution noise, R(.) is a regularization term [19].

For each task Ti, our training is composed by two stages. In the first stage,
a teacher model is trained on the FS dataset for task Ti. In the second stage,
to exploit the knowledge distillation [3] using the teacher, the student model is
trained. To enhance the diversity of the generated examples and avoid mode col-
lapse, the Cross Domain Consistency (CDC) loss is employed for both training,
teacher, and student, in addition to adversarial loss, as explained in the following
paragraphs.

In the case of FS, due to limited samples, the discriminator part of the GAN
also overfits and affects the generator training. So, freezing the discriminator is
one of the strategies to avoid the overfitting of it [20].

3.2 Cross Domain Consistency Loss

Considering that few-shot learning leads to mode collapse in GANs, data aug-
mentation is one possible solution for diverse image generation but it works
better when the training samples are in a much larger number [9]. Since we are
in a much more restrictive situation, to preserve the source diversity and avoid
mode collapse, we took inspiration from the [22]. During the training process
of the generator (teacher or student, depending if we are in the first or second
stage) on the dataset for the task Ti, another frozen generator, called source, is
incorporated into the training procedure.

As previously mentioned, we consider two generators in this scenario: Gsource,
trained on large dataset (in our case, trained on the FFHQ dataset), and Gtarget,
which is trained using a few-shot learning method on dataset for the task Ti.
At each training step i, two noise vectors zj and zk are sampled and passed
to both the Gsource and Gtarget. The probability distribution between different
noise vectors for the source and target is given as

ysource = Softmax
(
{sim (Gsource (zj) , Gsource (zk))}∀j �=k

)

ytarget = Softmax
(
{sim (Gtarget (zj) , Gtarget (zk))}∀j �=k

) (2)

where ysource and ytarget are the probability of the source and target, sim denotes
the cosine similarity, and Gsource(z) and Gtarget(z) are the output layer for the
source and target generators. We use the KL divergence to encourage the target
generator to have a similar distribution of the source generator. This loss is called
CDC loss and is given as:

Lcdc (Gsource, Gtarget) = KL (ytarget‖ysource) . (3)
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In our case, our target generator Gtarget will be the teacher or the student,
depending if we are in the first or second stage. In the following sections, we
will use the notation Gteacher and Gstudent instead of the target Gtarget for the
corresponding teacher and student training.

3.3 Teacher Student Model

Our generator model, based on CAM-GAN [35], injects adapter modules on the
top of GP-GAN [19] for continual learning. The CAM-GAN consists of global
weights θglobal and adapter weights θadapter. The latter are used for learning the
upcoming tasks while freezing the global weights, so as not to affect the previous
tasks generation.

Our continual few-shot image generation training is composed of two stages,
and takes into account three generators: source, teacher, and student. All of
them have the same architecture but each one is used in a particular setting and
different purpose. At the beginning, the source is trained on a very large dataset.
As show in Figure 1(a), in the first stage the teacher model is cloned from the
source model and trained all its weights θteacher. Because also the teacher is
trained in a few-shot setting, to enforce the diversity, we support its training
with the CDC loss [22], in addition to its adversarial loss.

As show in Figure 1(b), in the second stage the student model is trained.
To achieve the continual image generation objective, we considered the student
model weights θstudent as the combination of global weights θglobal and adapter
weights θadapter, initially cloned from the source. To learn the current few-shot
task Ti, only the adapters’ weights are trained, while freezing the global weights.
To make the student more effective in learning the current few-shot task Ti,
it takes advantage from the source using CDC loss [22], and from the teacher
model, previously trained with the same dataset, using a loss of knowledge dis-
tillation [3].
Teacher objective. The teacher learning is shown in Figure 1(a). The teacher
model objective uses the adversarial loss as given in the equation 1. For diverse
image generation, the CDC loss is used along with the adversarial loss. So, the
objective of the teacher is the sum of the adversarial loss and CDC loss for the
teacher Gteacher and is given by

Lteacher = Ladv + wtLcdc (Gsource, Gteacher) , (4)

where wt is a scalar weight factor for the CDC loss. Unlike starting from scratch,
the teacher model’s weights are initialized with the source parameters.
Student Objective. The training process of the student model is depicted in
Figure 1(b). To train the student model Gstudent, the knowledge from the teacher
model Gteacher is transferred to the student. To transfer the knowledge from the
teacher model to the student we utilized the Mean Square Error (MSE) loss [3],
termed as Lkd, applied to the output. This loss minimizes the loss between the
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teacher and student and its objective is given by

Lkd =
1
N

N∑
i=1

||Gteacher(z) − Gstudent(z)||2. (5)

Moreover, the objective of the student adapter modules is to fool the dis-
criminator, minimizing the standard GAN loss

Ladv =
1
N

N∑
i=1

log(1 − D(Gstudent(z))), (6)

where D means discriminator network of the GANs. Lastly, the Lkd and the
standard GAN loss are combined with the CDC loss to obtain more diversity.
The final objective of the student is given by

Lstudent = Ladv + αLkd + wsLcdc (7)

where α is the weight of the loss Lkd and ws is the weight of the CDC loss for
the student.

4 Experiments

Datasets. This section provides details of the performed experiments and shows
the qualitative and quantitative results of the CFTS-GAN for continual few-
shot image synthesis. The datasets taken into consideration for the experiments
are sketches [22], female [10], sunglasses [22], male [10], and babies [22]. These
datasets are used as the target datasets for evaluating the efficacy of our model
for the few-shot continual generation of images. Each of these datasets consists of
10 samples. While the source model is pre-trained on a large FFHQ dataset [11].
Evaluation metrics. The state-of-the-art CDC [22], RSSA [41], DCL [45],
CAM-GAN [35] and LFS-GAN [29] approaches are considered for comparison.
The CAM-GAN model appends adapter modules on the top of [19] for continual
image generation. The LFS-GAN adds more weights for the subsequent tasks
using few-shot learning. Where LFS-GAN derives its model from a very strong
model StyleGAN2 [12]. Moreover, it also utilizes the patch discriminator [22] to
improve the target generation. While others compared state-of-the-art models
are also based on a stronger model [12]. We evaluated our CFTS-GAN teacher-
student model for the few-shot continual learning, which produces diverse images
and has a quality near to the stronger LFS-GAN model. The Frchet inception
distance (FID) [8] and B-LPIPS [29] are used as quantitative metrics. The FID
score provides how much the synthesis images are close to the real images. The
lower FID means that the generator produces samples closer to the real images.
While the B-LPIPS shows the diversity of the images, the higher score shows a
more diverse image generation.
Training. The source model is pre-trained on the source task using a large
dataset using the FFHQ dataset. The FFHQ contains 70k high-resolution image
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samples. The input image dimension fed into the model is 256 × 256. The other
datasets mentioned above are considered as subsequent tasks. Therefore, the
teacher and student model are trained to generate new tasks continually. For the
training, only the data from the current task is available while the previous data
is not available. The teacher model is trained on a few shot images. The knowl-
edge is then transferred from the teacher to the student model using knowledge
distillation while also maintaining the source diversity. So the teacher-student
model correspondingly produces quality and diverse samples without affecting
the previous knowledge.

4.1 Qualitative Results

The qualitative results are shown in Figure 2. Our model is able to generate
different, diverse, and comparatively quality samples of images continually. The
model produces the current data samples without affecting previously learned
samples. A few generated samples from each task are presented in the paper.

Fig. 2. Qualitative results: Generated samples. In each group, the first column is for
sketches (Task 1), and the second, third, fourth, and fifth are for females (Task 2),
sunglasses (Task 3), males (Task 4), and babies (Task 5).

4.2 Quantitative Results

The comparison in terms of FID and B-LPIPS scores with the state-of-the-art
models is shown in Table 1. The bold value represents the best results while the
underlined values represent the second-best results. The CFTS-GAN represents
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the best performance than CAM-GAN, CDC, RSSA, and DCL in terms of both
B-LPIPS and FID, maintaining the same number of weights and same archi-
tecture on evaluation as CAM-GAN. Except for the FID of babies, the CDC is
the second best. While compared with LFS-GAN the teacher-student model also
gives the best performance in terms of B-LPIPS. In terms of FID, the LFS-GAN
[29] performs best, probably because of utilizing a very strong baseline model
StyleGAN2 [12].

Table 1. Quantitative results comparison in terms of FID (↓) and B–LPIPS (↑) for
each task with state-of-the-art methods.

Sketches (T1) Female (T2) Sunglasses (T3) Male (T4) Babies (T5) Average

FID B-LPIPS FID B-LPIPS FID B-LPIPS FID B-LPIPS FID B-LPIPS FID B-LPIPS

CDC [22] 322.72 0.205 197.40 0.427 244.94 0.463 277.00 0.381 69.98 0.454 208.410.386

RSSA [41] 308.00 0.285 175.20 0.440 207.58 0.484 205.49 0.405 76.70 0.481 194.590.419

DCL [45] 297.73 0.307 170.31 0.435 191.54 0.490 194.42 0.443 77.22 0.487 186.250.432

CAM-GAN [35] 91.81 0.293 85.68 0.332 86.81 0.333 82.83 0.312 146.20 0.181 98.66 0.290

LFS-GAN [29] 34.66 0.354 29.59 0.481 27.69 0.584 35.44 0.472 41.48 0.556 33.77 0.489

CFTS-GAN (ours) 82.49 0.399 62.10 0.707 36.03 0.966 66.23 0.760 96.62 1.02 68.69 0.770

4.3 Ablation Study

To show the effectiveness of the CFTS-GAN we analyzed each component of our
proposed method. The details for each component are given below.
Effect of CDC on the teacher. We analyzed the effect of CDC loss using
different values of wt which are shown in Table 2. From the ablation, it is con-
cluded that it increases diversity as we give more value to it. However, increasing
wt after some point leads to a higher FID score. So, in our experiments, we use
the optimal value of wt = 40 for training the teacher model for all of the tasks.
It is because of gaining better FID at this point.

Table 2. Ablation study for the teacher using wt for sunglasses dataset.

wt 10 20 30 40 50 60 70

FID 79.41 63.70 46.94 46.76 54.21 63.39 65.76

B-LPIPS 0.245 0.516 0.856 0.930 0.943 0.956 0.976

Effect of CDC on the student. We also inspect the CDC loss terms and
see its effect on the student model. Giving more weight to the CDC loss obtain
more diversity and less weight leads to less diversity. However, increasing its
effect leads to degrading the FID as we analyzed for the teacher. We performed
some ablation studies on the sunglasses dataset for different values of ws which is
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shown in Table 3. Assigning the ws = 20 works better for gaining more diversity
with better FID. So, for all the tasks, we used ws = 20 for the student model.
Effect of Lkd on the student. The experiments are also performed by assigning
different values to α. We observe that giving the value of 2 leads to better results
as shown in Table 3. Giving more value to it has more impact on diversity.
Assigning greater value to it leads to more diversity and light improvement in
the FID. From this ablation study, we found when α = 2, we have better FID.
Therefore, we use the mentioned value for the rest of the tasks.

Table 3. Ablation study for the student on α and ws for the sunglasses dataset.

α = 0 α = 2 α = 5 α = 10

ws 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

FID 56.3539.9240.9853.6 50.6637.5442.0754.31 50.0838.5539.6747.87 46.5942.8039.7246.94

B-LPIPS 0.5880.9420.9901.01 0.7680.944 1.02 1.01 0.8510.9930.9911.00 0.9170.9971.00 1.01

Freezing student discriminator. We also analyzed the student model by
freezing the layers of the discriminator of our CFTS-GAN. We inspect that
training the last 24 layers of the discriminator leads to better FID scores and
more diverse image generation instead of training all the layers (total layers are
36) of the discriminator. The ablation study for the student model with a frozen
discriminator is shown in Table 4. For this ablation study, we consider the teacher
with the best value as given in Table 2. From this analysis, it is concluded that
instead of training all the layers, if some portion of the discriminator is kept
frozen it leads to better results.

Table 4. Ablation study for the student with freezing discriminator for sunglasses
dataset.

Number of last trained layers 6 12 18 24 30 36

FID 51.2239.2038.9836.0340.38 37.54

B-LPIPS 0.9020.9100.9220.966 0.9710.944

5 Conclusion

This article proposes a continual learning few shots generative adversarial net-
work CFTS-GAN. The CFTS-GAN considers the challenging tasks of catas-
trophic forgetting and overfitting problems in GANs. We used the teacher-
student model for the challenging task of continual few shots image genera-
tion. For continual learning, the CFTS-GAN uses adapter modules as a student
for learning the new task while preserving the previously learned knowledge.
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The teacher model helps the student to produce better and more diverse image
generation. The CDC is used by both the teacher and student to preserve the
source diversity and prevent mode collapse. Moreover, we used a simple effective
strategy of freezing the discriminator for more improvements. To show the per-
formance of the CFTS-GAN model, it is analyzed on different datasets. Which
shows better results and produces diverse images than the state-of-the-art mod-
els.
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Abstract. Rural roads extracted from agricultural machinery trajec-
tories have significant research value. Due to the intricate network of
rural roads and the large difference in the density of agricultural machin-
ery trajectories, traditional road extraction methods struggle to perform
effectively on rural roads with complex topology and on agricultural
machinery trajectories with obscure road features. Therefore, this paper
proposes a CGAN-based model named T2R-GAN (Trajectory to Road-
GAN) for rural thematic road extraction, which learns the trajectory-to-
road feature mapping through continuous adversarial training between
the ELAU-Net generator and the PatchGAN discriminator to adapt to
trajectories of various densities. ELAU-Net is an efficient network that
utilizes an encoder-decoder structure and ELA modules to enhance the
capture of obscure road features between sparse trajectories. To enhance
model performance and reduce the risk of overfitting, bilateral hinge
loss is designed to train our model to enhances the discriminator’s dis-
criminative ability to facilitate the generator to generate more realistic
roads improve the generalization of the model. To verify the effectiveness
of T2R-GAN in extracting roads from agricultural trajectory data, this
paper selects the real agricultural trajectory data from Henan Province,
China in June 2021 as the dataset for verification. The experimental
results show that the proposed method achieves 79.23% F1score, which
is 5.53% higher than the previous state-of-art. The proposed T2R-GAN
provides a novel and effective approach for extracting rural thematic
roads from agricultural machinery trajectories for the first time.

Keywords: Rural thematic based road extraction · Agricultural
machinery trajectory · Conditional Generative Adversarial Network ·
ELAU-Net

1 Introduction

Agricultural machinery trajectories refer to a series of geospatial coordinates
recorded by the Global Navigation Satellite System (GNSS) terminals installed
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on agricultural machines. These trajectories encompass a wealth of road-related
information, indicating the paths and routes taken by agricultural machinery [1].
Since most of the movement area of agricultural machinery is in rural areas,
rural thematic road extraction refers to extracting road routes from agricul-
tural machinery trajectories. Rural thematic roads extracted using agricultural
machinery trajectories can not only be applied in the fields of geographic infor-
mation systems and precision agriculture [2–4], but also can build a road network
in rural areas to fill the gaps in rural maps from a geographical point of view,
which is of great significance in research [5,6].

Extracting roads from agricultural machinery trajectories is highly challeng-
ing, and traditional road extraction methods, including remote sensing image-
based approaches and trajectory-based approaches, struggle to yield positive
results. Since the roads in rural areas are typically low-quality dirt roads that
are narrow and often obscured by forest canopy complicating their represen-
tation in remote sensing images. This obstruction hampers the effectiveness of
traditional remote sensing image-based road extraction methods [7,8]. Moreover,
since the quality of agricultural machines carrying GNSS terminals is mostly vari-
able, the data sampling frequency is relatively low, and the density difference
between trajectories is large. The traditional trajectory-based road extraction
method [9–11], which makes extensive use of semantic segmentation models and
is oriented towards urban vehicle trajectories with high sampling frequency and
high trajectory density, is facing a major challenge on the road extraction in the
context of agricultural machinery trajectories.

To the best of our knowledge, there is no road extraction method for agri-
cultural machinery trajectories, which motivates us to develop an efficient road
extraction method for agricultural machinery trajectories. To overcome the var-
ios density and obscure road features of agricultural machinery trajectories, we
base our proposed model on the CGAN and propose T2R-GAN for rural the-
matic based road extraction from agricultural machinery trajectories. Firstly,
T2R-GAN generates a fake road image infinitely close to the real road through
adversarial training between the generator and the discriminator within the
model, and constrains the model with the trajectory image so that the model
is able to capture the complex feature mapping between the trajectory and the
road. Secondly, an ELAU-Net is designed as the generator of T2R-GAN, which
accurately generates road lines through an encoder-decoder structure and ELA
module for more efficient feature extraction. And the PatchGAN is proposed as
the discriminator to improve the model’s attention to details. Thirdly, we design
bilateral hinge loss as the loss function of our model to improve the performance
of the discriminator and reduce the overfitting risk of the model on small volume
datasets. The main contributions of our work are summarized as follows.

– A novel image generation model T2R-GAN is proposed, which overcome the
low density and obscure road features of agricultural machinery trajectories
by generating realistic road images through learning trajectory-to-road fea-
ture mappings through adversarial training between the designed ELAU-Net
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generator and the PatchGAN discriminator. It is the first road extraction
model for agricultural machinery trajectories.

– An ELAU-Net is proposed, which fuses different levels of semantic information
through encoder-decoder structure and ELA module to accurately extract
roads. The novel ELA module connecting the encoder and decoder can help
the network overcome the noise in the low-level semantics in the trajectories
and enhance the capture of road features between sparse trajectories.

– Bilateral hinge loss is designed to train our model to enhance the discriminator
and reduce the overfitting risk of the model.

– We use real agricultural machinery trajectories collected in June 2021 in
Henan Province for our experiments. Experimental results show that the
proposed method can automatically effectively extract road from agricultural
machinery trajectories.

2 Related Work

The existing related research work on road extraction can be classified into arti-
ficial approaches, remote sensing image-based approaches and trajectory-based
approaches. Artificial approaches refers to extract roads by human experts based
on visual interpretation to extract roads from a large number of trajectories
or remotely sensed images, which will consume a lot of human and material
resources and is less efficient [12,13].

Remote sensing image-based approaches refers to extract roads from remotely
sensed images based on topological, geometric, textural and other features of
roads by machine learning or deep learning models [14]. Yu et al. designed
MSAU-Net, which uses U-Net with a multi-attention mechanism to achieve accu-
rate extraction of roads in high resolution remote sensing images, and Candy
operator is used to extract the edge features of roads, which makes the extracted
roads smoother [7]. Xu et al. designed a road extraction model named IDANet,
which bases on D-LinkNet with an attention mechanism and iterative train-
ing to improve the accuracy of extracted roads [8]. Remote sensing image-based
approaches are widely used, but the method faces challenges in rural road extrac-
tion. Because the rural roads through which agricultural machinery passes are
usually low-quality and narrow dirt roads, and are easily obscured by forest
canopy, making their representation in remote sensing imagery very complex.

Trajectory-based approaches convert trajectory points into grid points, trans-
forming the trajectory into a raster image, and then extract road information
from the raster image. This transforms trajectory-based road extraction into a
problem of generating road images based on trajectory raster images. Deep learn-
ing models in image translation are then used to extract the road information.
Ruan et al. proposed the DeepMG method for generating roads using vehicle tra-
jectories, which uses cab trajectories and urban road network data as training
datasets, and then uses a deep convolutional network named T2RNet to extract
the centerline of roads [9]; Eftelioglu et al. designed a GPS trajectory-based road
extraction model named RING-Net to cope with the problem of drastic GPS
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trajectory noise by applying a spatial self-attention layer to the bottom layer of
the network, which makes the method robust on different trajectory data [10].
However, most of the existing methods are oriented towards vehicle trajectories
with high trajectory density and clearly visible road features, which are suitable
for the semantic segmentation model widely used by the above methods. While
for agricultural machinery trajectories with low trajectory density and uneven
sampling frequency, these methods face challenges.

Fig. 1. The overall workflow of the road extraction method based on agricultural
machinery trajectories. The trajectory transition part includes mapping the trajectory
points to grid points, transforming the trajectory into a raster image, and obtaining
the dataset for model training through data augmentation. Then T2R-GAN is built to
train on the dataset for road extraction.

The road extraction method used in this paper is similar to trajectory-based
approaches, and the overall workflow is shown in Fig. 1. In order to make the
model able to extract road information from complex agricultural machinery
trajectories, we construct the road extraction model T2R-GAN based on the
powerful image generation model CGAN. The proposed model has excellent per-
formance on trajectories with different densities and is capable of road extraction
based on agricultural machinery trajectories.

3 Methodology

3.1 Overview of T2R-GAN

T2R-GAN is an image generation model that excels in extracting roads with
complex trajectories based on the CGAN architecture [15]. We proposed an
ELAU-Net as its generator and an PatchGAN as its discriminator, as shown in
Fig. 2. ELAU-Net is an encoder-decoder network with ELA modules. PatchGAN
is a efficient discriminator. Bilateral hinge loss is designed to train the two sub-
networks.

3.2 ELAU-Net Generator and PatchGAN Discriminator

Our ELAU-Net is a novel encoder-decoder network that connects encoders and
decoders with advanced ELA modules [16] to efficiently transfer road informa-
tion at different levels, thus improving model performance. Fig. 3 illustrates the
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Fig. 2. The structure of the T2R-GAN. It consists of a generator and a discriminator,
the generator is the ELAU-Net and the discriminator is the PatchGAN. The generator
and the discriminator will conduct adversarial training according to the bilateral hinge
loss.

Fig. 3. The structure of ELA module (a) and the structure of ELAU-Net (b).

structure of the proposed model. ELAU-Net comprises two fundamental mod-
ules: an encoder (on the left side of Fig. 3) and a decoder (on the right side of
Fig. 3). The encoder applies convolutional operations, batch normalization, and
LeakyReLU activation functions for feature extraction, while the decoder utilizes
deconvolution operations, batch normalization, and ReLU activation functions
to generate images layer by layer. The ELA module between corresponding lay-
ers of the encoder and decoder amalgamate feature maps, feeding them into the
subsequent layer to extract contextual information.

Although skip-connections in traditional U-Net [17] can effectively convey
low-level semantic information of images, they also convey a lot of noise affect-
ing the quality of generated roads. To overcome these noises, we replace skip-
connections with the novel ELA (Efficient Local Attention) module, which is able
to fully maintain the low-level semantic features of the trajectory images, is good
at capturing the road features between long-distance trajectories, and overcomes
the effects of noise in the trajectories. The left side of Fig. 3 demonstrates the
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structure of ELA. ELA uses strip pooling [18] in the spatial dimension to obtain
feature vectors in the horizontal and vertical directions. Then ELA applies 1D
convolution to locally interact with the two feature vectors separately, and the
obtained feature vectors are processed by group normalization [19] and non-
linear activation functions to produce positional attention predictions in both
directions. The final output features are obtained by multiplying the positional
attention in both directions with the input features. The output of a convolu-
tional block is denoted as R

H×W×C , where H, W , and C represent the height,
width, and channel dimension, respectively. Strip pooling averages each channel
over two spatial scales: horizontally (H, 1) and vertically (1,W ). The output of
the cth channel at height h and the cth channel at width w is represented by
the following mathematical equation.

zhc (h) =
1
H

∑

0≤i<H

xc(h, i) (1)

zwc (w) =
1
W

∑

0≤j<W

xc(j, w) (2)

zh and zw not only capture the global sensory fields but also contain precise
positional information. We apply 1D convolutions Fh and Fw to enhance the
position information in the horizontal and vertical directions. Subsequently, the
group normalization will be used to process the augmented position information
to obtain the positional attention representation in both horizontal and vertical
directions:

yh = σ (Gn (Fh (zh))) (3)

yw = σ (Gn (Fw (zw))) (4)

where σ denotes the nonlinear activation function, here sigmoid. the convolution
kernel size for Fh and Fw is set to 7, and the number of groups for the 1D
convolution is set to in channels/8. The final output features are obtained by
multiplying the positional attentions in both directions:

Y = xc × yh × yw. (5)

ELA maintains a narrow kernel shape by strip pooling in the horizontal and
vertical directions to capture dependencies between long-distance trajectories
and filters out noise in extraneous regions to produce rich target location features
in the respective directions. 1D convolution preserves channel dimensionality
and reduces model complexity, and group normalization helps to improve the
generalization performance of the model compared to batch normalization. This
enables ELAU-Net to efficiently integrate different levels of road information to
generate more realistic roads.

The discriminator is responsible for checking whether the road maps gener-
ated by the generator are realistic or not, and in this way promoting the generator
to generate more realistic road maps. PatchGAN is a commonly used discrim-
inator network that enhances the detailed quality of generated images through
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local discrimination. Fig. 4 illustrates the structure of PatchGAN, which con-
sists of a convolutional neural network comprising several convolution modules.
It performs multiple convolutions on the input image to generate feature maps,
and then evaluates the reality or falsity of each element in the feature maps,
taking the arithmetic average as the probability that the input image is consid-
ered true or false. PatchGAN’s local discrimination helps the network to focus
on details such as road connectivity, prompting the network to generate detailed
and realistic roads.

Fig. 4. The structure of PatchGAN.

3.3 Bilateral Hinge Loss

Bilateral hinge loss is an improvement of traditional hinge loss. The traditional
hinge loss [20] hopes that the output of the discriminator D for the real data x is
greater than 1 as much as possible, while the output of the generated data G(z, y)
is less than -1 as much as possible, i.e., it penalizes the case that the absolute
value of the output is too small. In this study, to reduce the risk of overfitting
brought by PatchGAN, bilateral hinge loss is designed to also penalize the case
where the absolute value of the output is too large, and the specific formula is
as follows:

L (Dreal) = max(0, 1 − D(x, y)) + λ max(0,D(x, y) − θ) (6)

L (Dfake) = max(0, 1 + D(G(z, y), y)) + λ max(0,−D(G(z, y), y) − θ) (7)

Where x represents the real data, i.e., the real road image, y represents the
condition variable, i.e., the trajectory image, z represents the noise, and Dreal

and Dfake represent the outputs of the discriminator for the real data x and for
the generated data G(z, y), respectively, subject to the constraints of y. λ and θ
are hyperparameters.

During the training process of our T2R-GAN, the generator continually
learns the distribution of real road images to create realistic new ones, while
the discriminator simultaneously aims to distinguish between the generated road
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images and real road images. These two components engage in an adversarial
train, continuously adjusting until they reach a dynamic equilibrium. In this
state, the generated road images closely resemble the distribution of real road
images, making them nearly indistinguishable from real ones by the discrimi-
nator, and T2R-GAN is able to learn how to generate realistic roads based on
trajectories. Combine bilateral hinge loss and add the L2 paradigm for regular-
ization, the loss function during this adversarial train is as follows:

L (G,D) = Ez [max(0, 1 + D(G(z, y), y)) + λ max(0,−D(G(z, y), y) − θ)]
+ Ex∈real [max(0, 1 − D(x, y)) + λ max(0,D(x, y) − θ)] + λ2LL2 (G)

(8)
where λ, θ, and λ2 are hyperparameters set to 0.5, 2 and 10. Constraining Patch-
GAN by using bilateral hinge loss can effectively improve the model performance,
enabling T2R-GAN to efficiently capture key road features to generate more
realistic roads, while avoiding overfitting caused by its excessive learning.

4 Experiment

4.1 Experimental Setting

Dataset. The trajectory points used in this paper are from the agricultural
machinery trajectories dataset collected in Henan Province, China in June 2021.
Since the operation area of agricultural machinery contains fields, the trajectory
points of agricultural machinery are divided into field points and road points [21–
25], and the road points can be used for road extraction. Among the 140 data
samples acquired, the total number of road points is 117,489. Mapping these
trajectory points into 2D space by trajectory rasterization [26], we obtain 140
trajectory images. These samples were labeled to obtain 140 trajectory-road
image pairs. After data augmentation such as rotation and mirror rotation, as
demonstrated in Fig. 5, the image dataset capacity is expanded from 140 to 1120.
Then, the dataset will be randomly divided into train set and test set for model
training in the ratio of 9:1. In addition, we selected 788 centralized data samples
collected in Nanyang City, Henan Province, China in June 2021 as validation
examples for road network construction in Sec 5. Finally, the capacity of the
train set and test set for model training is 980 and 140, respectively, and the
capacity of the validation examples for road network construction is 788.

Experimental Environment. The model in this study is implemented using
PyTorch 2.0.0, and the programming environment is Python 3.8. All models were
trained and tested on an NVIDIA RTX 4090 with 24GB of memory. During
the model training process, we employed the Adam optimizer with an initial
learning rate of 8e-5 to update the parameters of both the generator and the
discriminator [27].
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Fig. 5. Visualization of data augmentation. From left to right: (a) Initial, (b) Rotation
by 90◦ (counterclockwise direction), (c) Rotation by 180◦, (d) Rotation by 270◦, (e)
Mirror (left and right), (f) Mirror Rotation by 90◦, (g) Mirror Rotation by 180◦, (h)
Mirror Rotation by 270◦.

Evaluation metrics. To evaluate the accuracy of extracted roads, this study
establishes a 3-metre buffer around the target roads and classifies the roads gen-
erated by the model into three categories: true positives (TP) within the buffer
zone, false positives (FP) outside the buffer zone, and false negatives (FN) not
generated by the model. Three metrics are derived to assess the accuracy of
the extracted roads. Precision = TP

TP+FP represents the ratio of the length of
true roads to the total length of constructed roads, Recall = TP

TP+FN repre-
sents the ratio of the length of true roads to the total length of target roads,
and F1score = 2 × Precision×Recall

Precision+Recall represents the overall similarity between the
constructed road and the target road, with higher values indicating that the
constructed road is more realistic. Moreover, this study uses the PCC (Pearson
Correlation Coefficient [28]) metric for multivariate analysis of the quality of
the generated roads, which is widely used in the task of image generation to
assess the similarity between the generated image and the real image in terms
of details and structure. In this study, the metric is used to assess the quality
of generated roads including details such as road connectivity. The definition of
PCC is specified as follows:

PCC =

∑H
x=1

∑W
y=1 (Ixy − Ī)(I ′

xy − Ī ′)
√∑H

x=1

∑W
y=1 (Ixy − Ī)2

∑H
x=1

∑W
y=1 (I ′

xy − Ī ′)2
(9)

where Ixy and I ′
xy prime denote the pixel values of the target road image and

the generated road image at point (x, y), respectively.

Baseline. T2RNet, SPBAM-LinkNet, and AD-LinkNet [9,29,30] are state-of-
the-art semantic segmentation models used to extract roads from trajectories.
Morever, to verify the efficiency and generalization performance of bilateral hinge
loss, ELAU-Net paired with traditional CGAN loss named ELA-GAN will also
participate in the comparison experiment.
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5 Results

We use the validation example introduced in subsection 4.1 for road network
construction to test the road extraction effect of T2R-GAN. Fig. 6 shows the
superimposed effect diagram of the rural roads extracted by the model and the
real remote sensing impact. As can be seen from the figure, the roads extracted
by the T2R-GAN construct can reflect the rural roads better, which is practi-
cal to a certain extent. Some of the discrete lines in the figure are caused by
field points that were not split cleanly. With the optimization of the field and
road segmentation algorithm, the road points obtained by segmentation will be
cleaner and the above problems can be solved.

Fig. 6. Road extraction effects in rural areas of Nanyang City, Henan Province. The
pink highlighted lines in the figure ind0icate the roads extracted based on agricultural
machinery trajectories.

We evaluate T2R-GAN compared with baseline models on the test set intro-
duced in subsection 4.1. All models aretrained for 500 epochs with pre-trained
weights. The test results of different models are shown in Table 1. From the table,
it can be seen that compared to T2RNet, SPBAM-LinkNet, AD-LinkNet, and
ELA-GAN, our proposed T2R-GAN achieved the highest precision of 83.61%,
the highest recall of 75.29%, the highest PCC of 70.26%, and the highest F1-
Score of 79.23%, which shows that the roads extracted by our proposed model
are the most realistic. The F1-Score is 5.53% higher than the previous state-
of-art AD-LinkNet. It proves that our proposed model is stronger than the
semantic segmentation model widely used for vehicle trajectories on the agri-
cultural machinery trajectories dataset. Although ELA-GAN achieves a high
recall, its precision is lower than AD-LinkNet and T2R-GAN, which indicates
that although ELA-GAN generates roads that cover the real roads relatively well,
it also generates many redundant roads. This is due to the fact that ELA-GAN
undergoes overfitting and recognizes trajectory points that are on different roads
as being on the same road, so many redundant roads are generated. Whereas,
T2R-GAN has the highest precision, which shows that bilateral hinge loss can
effectively prevent overfitting.
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Table 1. Comparison results on the test set of different models

Model Precision Recall F1-Score PCC

T2RNet 65.97% 61.59% 63.71% 52.68%

SPBAM-LinkNet 74.24% 67.28% 70.59% 54.23%

AD-LinkNet 76.79% 70.85% 73.70% 57.09%

ELA-GAN 76.00% 72.02% 73.96% 62.48%

T2R-GAN 83.61% 75.29% 79.23% 70.26%

Fig. 7. Comparison of road quality extracted by different models. From left to right:
(a) Trajectory, (b) Real road, (c) T2RNet, (d) SPBAM-LinkNet, (e) AD-LinkNet, (f)
ELA-GAN, (g) T2R-GAN.

Fig. 7 illustrates the visual comparison of road quality extracted by different
models, further demonstrating the superiority of T2R-GAN. For samples with
high trajectory density (partial straight roads in Sample 1 and Sample 2), all
five models can extract roads effectively. However, in sparse trajectory regions
(marked by circles in Sample 1, Sample 2, and Sample 3), only ELA-GAN and
T2R-GAN are able to extract roads. This indicates that the road reconstruction
performance of these three state-of-the-art semantic segmentation models in the
sparse trajectory regions is weaker than that of our CGAN-based model. Also,
the visual comparison shows that ELA-GAN tends to produce redundant roads.
For instance, at the road intersection marked in Sample 3, ELA-GAN erro-
neously generates non-existent roads, leading to a reduction in model precision.
Furthermore, ELA-GAN performs poorly at the intersection of dense and sparse
trajectories, as seen at the road intersection marked on the left side of Sample
2, where it fails to extract the road where sparse trajectories are present. In
contrast, T2R-GAN demonstrates superior performance in handling trajectories
of varying densities, successfully extracting roads in sparse trajectory regions,
and achieving the best road connectivity. Meanwhile, T2R-GAN has a lower
risk of overfitting compared to ELA-GAN. The probability of generating redun-
dant roads by T2R-GAN is significantly reduced. This highlights the efficiency
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of T2R-GAN in addressing trajectories of different densities at intersections,
showcasing its effectiveness.

6 Conclusion

We propose an image generation model named T2R-GAN to extract rural the-
matic roads from agricultural machinery trajectories. This model utilizes adver-
sarial training between the ELAU-Net generator and the PatchGAN discrimina-
tor to extract roads. An ELAU-Net is proposed as the generator, which efficiently
generates road images based on trajectory images, overcoming the low density
of agricultural machinery trajectories and obscure road features. Bilateral hinge
loss is designed to further enhance the discriminative capabilities of PatchGAN
discriminator and improve the generalization performance of the model. We
constructed a dataset of trajectory-road image pairs based on real agricultural
machinery trajectories and evaluated T2R-GAN on this dataset. Experimental
results demonstrate that our model can extract roads from agricultural machin-
ery trajectories, outperforming other state-of-art road extraction models in terms
of precision, completeness, generalization, and overall performance.
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Abstract. Structural guidance in an image-to-image translation allows
intricate control over the shapes of synthesized images. Generating high-
quality realistic images from user-specified rough hand-drawn sketches
is one such task that aims to impose a structural constraint on the con-
ditional generation process. While the premise is intriguing for numer-
ous use cases of content creation and academic research, the problem
becomes fundamentally challenging due to substantial ambiguities in
freehand sketches. Furthermore, balancing the trade-off between shape
consistency and realistic generation contributes to additional complex-
ity in the process. Existing approaches based on Generative Adversar-
ial Networks (GANs) generally utilize conditional GANs or GAN inver-
sions, often requiring application-specific data and optimization objec-
tives. The recent introduction of Denoising Diffusion Probabilistic Mod-
els (DDPMs) achieves a generational leap for low-level visual attributes
in general image synthesis. However, directly retraining a large-scale dif-
fusion model on a domain-specific subtask is often extremely difficult due
to demanding computation costs and insufficient data. In this paper, we
introduce a technique for sketch-to-image translation by exploiting the
feature generalization capabilities of a large-scale diffusion model with-
out retraining. In particular, we use a learnable lightweight mapping net-
work to achieve latent feature translation from source to target domain.
Experimental results demonstrate that the proposed method outper-
forms the existing techniques in qualitative and quantitative benchmarks,
allowing high-resolution realistic image synthesis from rough hand-drawn
sketches.
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1 Introduction

Freehand sketches provide simple and intuitive visual representations of natural
images, allowing humans to understand and envision complex objects with a
few sparse strokes. The convenience of modifying such minimalistic stroke-based
representations to conceptualize semantic image manipulation is one key moti-
vation for researchers to explore sketch-to-image translation. There are two pri-
mary objectives for such conditional generation – the synthesized image should
be visually realistic and structurally consistent with the input sketch, enabling
perceptually appealing image generation from hand-drawn sketches irrespective
of the artistic expertise of users. However, the intriguing premise becomes sub-
stantially challenging due to the practically unavoidable ambiguities in freehand
sketches. For example, sketches of a specific object drawn by different persons
can widely differ in stroke density and structural adherence depending on artistic
abilities, as illustrated in Fig. 1 with samples from the Sketchy dataset [43].

Fig. 1. Structural ambiguity in hand-drawn sketches. (a) Subject image. (b)–(g) Free-
hand sketches drawn by different users. The examples are from the Sketchy dataset [43].

Consequently, this problem forces the generative algorithms to balance the trade-
off between visual realism and intended shape. Existing GAN-based [19,31]
methods primarily address sketch-to-image translation in two ways – a direct
mapping between domains with conditional GANs [10,11,17,18,22,25,26,28,54,
62] or modification in latent space using GAN inversions [3,61]. However, such
techniques often require application-specific data, optimization objectives, and
complex learning strategies but occasionally fail to produce stable outcomes.
Additionally, these methods operate on limited sets of task-specific object classes,
resulting in poor generalization for unseen categories.
More recently, denoising diffusion probabilistic models [16,21,33,46] have
demonstrated unprecedented improvements in the perceptual quality of gen-
eral image synthesis. With sufficiently large annotated datasets [44,45], text-
conditioned diffusion models [38–40,42] have achieved state-of-the-art results
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across multiple vision tasks, such as image generation, super-resolution, and
inpainting. However, due to high structural ambiguities in hand-drawn sketches
and the lack of sufficient paired sketch-image data, large-scale diffusion models
have seen limited success in sketch-to-image translation. Furthermore, training
such architectures from scratch is often computationally demanding and heavily
infrastructure-dependent, which limits the scope of adopting the rich generative
capabilities of latent diffusion models into sketch-to-image translation.
In this paper, we propose a novel method for photorealistic image generation
from freehand sketches leveraging the learned feature space of a pre-trained
latent diffusion model [40]. We achieve this by introducing a learnable lightweight
feature mapping network to perform latent code translation between source
(sketch) and target (image) domains. The proposed approach provides a more
stable optimization than GANs without requiring to train the latent diffusion
model, thus mitigating the instability of GANs and the high computational over-
head of large-scale diffusion models. Furthermore, unlike the existing methods,
the proposed technique generalizes well beyond task-specific data distribution,
significantly improving the generative performance on unseen object categories.
Contributions: The main contributions of the proposed work are as follows.

1. We introduce an efficient method of photorealistic image generation from
freehand sketches by providing structural guidance to a pre-trained latent
diffusion model without retraining.

2. The proposed approach achieves significantly better generalization beyond
the observed data distribution, outperforming existing task-specific methods.

The remainder of the paper is organized as follows. Sec. 2 provides a brief
overview of existing sketch-to-image translation techniques. Sec. 3 discusses the
background and technical details of the proposed method, followed by the exper-
imental analyses in Sec. 4. We conclude the paper by summarizing our findings
and discussing the potential scopes in Sec. 5.

2 Related Work

Conditional GANs: Image-to-Image translation using conditional GANs is a
widely explored method of directly transforming freehand sketches into images.
Early architectural improvements introduced a Markovian discriminator [22] for
better retention of high-frequency correctness in paired image-to-image trans-
lation. A subsequent approach [62] extended the idea to unpaired data by
enforcing cycle consistency between source and target domains. In [54], the
authors used coarse-to-fine generators, multi-scale discriminators, and an addi-
tional feature-matching loss for generating higher-resolution images. In [34], the
authors achieved generational improvements in semantic image manipulation
by introducing spatially-adaptive normalization. The initial work exclusively on
multi-class sketch-to-image translation proposed a masked residual unit [11],
accommodating fifty object categories. Another approach proposed a contextual
GAN [28] to learn the joint distribution of the sketch and corresponding image.
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Researchers also explored interactive generation [18] using a gating mechanism
to suggest the probable completion of a partial sketch, followed by rendering the
final image with a pre-trained image-to-image translation model [54]. In [17],
the authors proposed a multi-stage class-conditioned approach for object-level
and scene-level image synthesis from freehand sketches, improving the percep-
tual baseline over direct generations [22], contextual networks [28], and methods
based on scene graphs [4,23] or layouts [58]. In [52], the authors achieved similar
goals with an unsupervised approach by introducing a standardization module
and disentangled representation learning.
GAN inversions: The main objective of GAN inversion is to find a latent
embedding of an image such that the original image can be faithfully recon-
structed from the latent code using a pre-trained generator. Existing strate-
gies for such inversions can be learning-based [3,6,35,61], optimization-based
[1,2,14,27,29,37,51], or hybrid [7,60]. In a learning-based inversion, an encoder
learns to project an image into the latent space, minimizing reconstruction loss
between the decoded (reconstructed) and original images. An optimization-based
inversion estimates the latent code by directly solving an objective function. In
a hybrid approach, an encoder first learns the latent projection, followed by
an optimization strategy to refine the latent code. The rich statistical infor-
mation captured by deep generative networks from large-scale data provides
effective priors for various downstream tasks, including sketch-to-image transla-
tion. In [3], the authors adopted a learning-based GAN inversion strategy using
a multi-class deep generative network [8], pre-trained on the large-scale Ima-
geNet dataset [15], as prior to achieve sketch-to-image translation for multiple
categories. In [55], the authors introduced a framework for generalizing image
synthesis to open-domain object categories by jointly learning two in-domain
mappings (image-to-sketch and sketch-to-image) with random-mixed strategy.
Diffusion models: A Denoising Diffusion Probabilistic Model (DDPM) [21,46]
is a parameterized Markov chain that learns to generate samples similar to the
original data distribution after a finite time. In particular, DDPMs use vari-
ational inference to learn to iteratively reverse a stepwise diffusion (noising)
process. In [47], the authors introduced Denoising Diffusion Implicit Models
(DDIMs) by generalizing DDPMs using non-Markovian diffusion processes with
the same learning objective, leading to a deterministic and faster generative
process. Recent advances [16,33] have shown that diffusion models can achieve
generational improvements in the visual quality and sampling diversity over
GANs while providing a more stable and straightforward optimization objec-
tive. The most prolific application of diffusion models in recent literature is text-
conditioned image generation [38–40,42] and modification [5,9,20,32], utilizing
a pre-trained language-image model [36] to embed the conditioning prompt. In
[13], the authors guided the generative process with an iterative latent variable
refinement to produce high-quality variations of a reference image. In [41], the
authors introduced a class-specific prior preservation loss to finetune an existing
text-to-image diffusion model for personalized manipulation of a specific subject
image from a few observations. Emerging alternative approaches also involved
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Stochastic Differential Equations (SDEs) to guide the generative process follow-
ing score-based [30] or energy-based [56,59] objectives. More recent attempts for
sketch-to-image translation involved multiple objectives [53], multi-dimensional
control [12], or latent code optimization [50]. In [53], the authors used an addi-
tional network to reconstruct the input sketch from the generated image. The
denoising process was optimized using a cumulative objective function consist-
ing of the perceptual similarity (between the input and reconstructed sketches)
and cosine similarity (between the input and generated images) measures. In
[12], the authors provided three-dimensional controls over image synthesis from
the strokes and sketches to manipulate the balance between perceptual real-
ism and structural faithfulness during the conditional denoising process. In [50],
the authors introduced a lightweight mapping network for providing structural
guidance to a pre-trained latent diffusion model [40]. While the method avoided
training a dedicated diffusion network, the differential guidance made sampling
images computationally even more demanding than a large-scale model itself.

3 Method

3.1 Preliminaries

Diffusion models: A Denoising Diffusion Probabilistic Model (DDPM) defines
a Markov chain that learns to generate samples to match the input data distribu-
tion over a finite time. The process consists of forward diffusion that iteratively
perturbs an input by adding noise according to a scheduler, followed by backward
denoising that learns to reverse the mapping to recover the original input from
noise. Given a data distribution x0 ∼ q(x0), the forward diffusion defines an iter-
ative noising process q that adds Gaussian noise over T finite steps, gradually
perturbing the input sample x0 to produce latents {x1, ..., xT } as follows.

q(x1, ..., xT |x0) :=
T∏

t=1

q(xt|xt−1) (1)

q(xt|xt−1) := N (xt;
√

1 − βt xt−1, βtI) (2)

where βt ∈ (0, 1) denotes the variance of the Gaussian noise at time t ∼ [1, T ].
Rewriting Eq. 2 with αt = 1 − βt and αt =

∏t
i=1 αi, Ho et al. [21] deduced a

closed-form expression to sample an arbitrary step of the noising process, directly
estimating xt from x0 as the following marginal distribution.

q(xt|x0) = N (xt;
√

αt x0, (1 − αt)I) (3)

With sufficiently large T and a well-defined schedule of βt, the latent xT closely
resembles a Gaussian distribution. If the reverse distribution q(xt−1|xt) is known,
sampling xT ∼ N (0, I) and iteratively running the process in reverse can yield
a sample from q(x0). However, as q(xt−1|xt) depends on the entire data dis-
tribution, the backward denoising process can be approximated by a learnable
network, parameterized with θ, as follows.
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pθ(xt−1|xt) := N (xt−1;μθ(xt, t),Σθ(xt, t)) (4)

Ho et al. [21] also observed that learning to predict the added noise ε ∼ N (0, I)
worked best for estimating x0 with the following formulation.

x0 =
1√
αt

(
xt − βt√

1 − αt
ε

)
(5)

Most implementations adopt a U-Net architecture (parameterized with θ) to
predict the added noise, minimizing mean squared error as the learning objective.

LDM = Et∼[1,T ], x0∼q(x0), ε∼N (0,I)

[
‖ε − εθ(xt, t)‖2

]
(6)

3.2 Latent Code Translation Network (LCTN)

We propose a learnable Latent Code Translation Network (LCTN) to shift the
input latent space toward the target domain by exploiting the learned feature
representations of a pre-trained Latent Diffusion Model (LDM) [40]. LCTN is
trained with edge maps [49] instead of hand-drawn sketches to mitigate the
structural ambiguities that arise from freehand sketches. Our experiments show
that LCTN trained on edge maps works appreciably well during inference with
freehand sketches. Given an image x, corresponding edge map e, and object
class name c, we use the pre-trained image encoder E and text encoder T of
LDM to compute the initial latent codes as, x = E(x), e = E(e), and c = T (c).
The input feature space F is computed from the intermediate activation maps
of LDM U-Net εθ, rescaled to have the same spatial dimensions, with a single
denoising pass of e at timestep t = 0 using c as conditioning, F = fεθ

(e, c, t).
LCTN learns to project F into the target latent code z0 by minimizing the mean
squared error, LLCTN = ‖z0−x‖2. Architecturally, LCTN consists of a sequence
of fully connected (FC) layers with 512, 256, 128, and 64 nodes, with each FC
layer followed by ReLU activation and batch normalization. We illustrate the
proposed training strategy for LCTN in Fig. 2.

Fig. 2. Proposed training strategy for the Latent Code Translation Network (LCTN).

Ideally, if the domain translation by LCTN is accurate, we can readily decode
z0 into a high-quality photorealistic image using the pre-trained LDM decoder
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D. However, due to high sparsity in the input edge maps (or sketches), LCTN-
projected latent code lacks sufficient subtlety, leading to unrealistic images from
direct decoding. We address the issue by first perturbing z0 to zk over k ∼ [1, T ]
steps, where 1 < k < T , followed by T denoising iterations to get z0 from zk.
With a sufficiently large value of k, zk is close to an isotropic Gaussian distri-
bution, zk ≈ zT ∼ N (0, I). However, strictly enforcing k < T ensures minimal
structural elements are retained in zk. We observe that starting the backward
denoising from zk instead of zT as the initial latent, followed by decoding the
final latent z0, can produce photorealistic images while retaining the intended
structural resemblance with the input edge map (or sketch). In our experiments,
0.7 � k

T � 0.9 works best for most cases. We illustrate the proposed sampling
strategy for LCTN in Fig. 3.

Fig. 3. Proposed sampling strategy for the Latent Code Translation Network (LCTN).

4 Experiments

Datasets: We evaluate the performance of the proposed method against existing
sketch-to-image translation techniques [22,50,55,62] on three following datasets.
(a) Scribble: The Scribble dataset [18] contains 256×256 image-sketch pairs of
ten object classes (basketball, chicken, cookie, cupcake, moon, orange, pineapple,
soccer, strawberry, and watermelon) having uniform white backgrounds. While
the images in the dataset do not feature complex backgrounds, 60% of the object
classes share nearly identical circular shapes, which introduces significant ambi-
guities to the generative algorithms. We use 1512 image-sketch pairs [55] (1412
train + 100 test) to train and evaluate all competing methods.
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Fig. 4. Qualitative comparison of the proposed method with existing sketch-to-image
translation techniques – Pix2Pix [22], CycleGAN [62], AODA [55], and LGP [50] on
Scribble [18] and QMUL [48,57] datasets.

(b) QMUL: The QMUL dataset is a compilation [55] of image-sketch pairs
from three object categories – shoe [57], chair [57], and handbag [48] with uni-
form white backgrounds. Due to the structural ambiguities in the provided hand-
drawn sketches, the dataset poses a substantial challenge to the generative algo-
rithms. Following [55], we use 7850 freehand sketches of 3004 images for training
and 691 freehand sketches of 480 images for evaluation.
(c) Flickr20: While Scribble [18] and QMUL [48,57] datasets provide signifi-
cant structural challenges to the learning algorithms, the images do not contain
perceptual complexities of natural backgrounds. To investigate the generative
performances in such cases, we introduce a new dataset by collecting 10K (9500
train + 500 test) high-resolution images from Flickr, equally distributed over 20
animal classes – bird, cat, cow, deer, dog, dolphin, elephant, fox, frog, giraffe,
goat, horse, lion, monkey, pig, polar bear, rabbit, sheep, tiger, and zebra. The
edge maps for these images are estimated with a pre-trained edge detector [49].
Implementation and experimental details: The LCTN architecture con-
sists of a sequence of four fully connected (FC) hidden layers having 512, 256,
128, and 64 nodes, with each FC layer followed by ReLU activation and batch
normalization. A final FC layer projects the last hidden layer output to a 4D
latent vector, representing a single spatial position in the 4-channel latent space

https://www.flickr.com/
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Fig. 5. Qualitative comparison for distinct object classes with nearly identical shapes.
The proposed method can produce high-quality, visually distinguishable objects in
contrast to the ambiguous results generated by existing sketch-to-image translation
techniques – Pix2Pix [22], CycleGAN [62], AODA [55], and LGP [50].

z0. We use the Stable Diffusion v2.1 (SD2.1) distribution for pre-trained text
encoder, VAE and U-Net. LCTN is trained for 50000 iterations at a constant
learning rate of 0.001 with 100 initial warm up steps on a single NVIDIA Quadro
RTX 6000 GPU with a batch size of 4 and FP16 mixed precision. We keep the
default image size of SD2.1 (768 × 768) throughout all our experiments. LCTN
is initialized with a normal distribution N (0, 0.02). We optimize the parame-
ters of LCTN using stochastic Adam optimizer [24] having β-coefficients (0.9,
0.999). For reproducibility, the code is officially available at https://github.com/
prasunroy/dsketch. We have included the full-resolution visual results in the
supplementary material .
Visual analysis: For analyzing the perceptual quality of the generated images
by our method, we perform a visual comparison with existing GAN-based
[22,55,62] and diffusion-based [50] sketch-to-image translation techniques. Fig. 4
demonstrates a qualitative comparison of the proposed method against Pix2Pix
[22], CycleGAN [62], AODA [55], and LGP [50] on Scribble [18] and QMUL
[48,57] datasets. Our method can generate highly detailed and perceptually
appealing samples that are visibly superior to existing approaches while main-
taining the intended structural resemblance with the input sketches.
Visual analysis on ambiguous classes: Occasionally, multiple visually distin-
guishable objects can have identical shapes. For example, 60% object classes in

https://github.com/prasunroy/dsketch
https://github.com/prasunroy/dsketch
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the Scribble dataset [18] have an identical circular structure (basketball, cookie,
moon, orange, soccer, and watermelon), leading to nearly indistinguishable
sketches for visibly distinguishable object categories. Therefore, it poses a sub-
stantial challenge to the generative algorithms for producing class-conditioned
distinctive visual features in such ambiguous cases. Fig. 5 shows a qualitative
comparison of the proposed method against existing approaches [22,50,55,62]
on ambiguous classes from the Scribble dataset [18]. Pix2Pix [22] and Cycle-
GAN [62] mostly fail to produce distinguishable objects. AODA [55] and LGP
[50] achieve limited success in producing photorealistic results. In contrast, our
method can generate high-quality and visibly distinctive images with class-
specific visual attributes of intended objects from virtually identical sketches.
Evaluation metrics: We measure seven metrics to quantitatively evaluate the
perceptual quality, structural consistency, and class accuracy in the generated
images. Fréchet Inception Distance (FID) measures the feature space similarity
between real and generated images. Inception Score (IS) estimates the Kullback-
Leibler (KL) divergence between the label and marginal distributions to measure

Table 1. Quantitative analysis of the proposed method on Scribble [18] dataset.

Method FID ↓ IS ↑ PSNR ↑ SSIM ↑ LPIPS ↓ ACC ↑ MOS ↑
Pix2Pix [22] 333.1872 3.8027 13.3208 0.6082 0.3635 0.24 0.02

CycleGAN [62] 322.6855 3.6737 13.4177 0.5804 0.3003 0.33 0.01

AODA [55] 353.9626 4.0133 12.4880 0.5588 0.3761 0.19 0.01

LGP [50] 207.8677 8.4247 5.6862 0.3171 0.5667 0.72 0.24

Ours 163.8978 9.9132 13.8737 0.6406 0.2839 0.75 0.72

Table 2. Quantitative analysis of the proposed method on QMUL [48,57] dataset.

Method FID ↓ IS ↑ PSNR ↑ SSIM ↑ LPIPS ↓ ACC ↑ MOS ↑
Pix2Pix [22] 189.7064 5.3261 9.2383 0.5328 0.4013 0.6151 0.04

CycleGAN [62] 146.3326 5.1030 9.5792 0.6050 0.3198 0.4486 0.01

AODA [55] 216.7982 5.0196 9.8943 0.5784 0.4152 0.6208 0.01

LGP [50] 108.1720 5.1159 5.4842 0.1710 0.6943 0.8770 0.35

Ours 63.9208 4.3687 11.8780 0.6677 0.3126 0.9899 0.59

Table 3. Quantitative analysis of the proposed method on Flickr20 dataset.

Method FID ↓ IS ↑ PSNR ↑ SSIM ↑ LPIPS ↓ ACC ↑ MOS ↑
Pix2Pix [22] 122.4473 8.5337 10.1246 0.1553 0.7136 0.430 0.02

CycleGAN [62] 162.6837 6.6324 10.6105 0.1261 0.7848 0.242 0.00

AODA [55] 150.0852 7.4056 10.0145 0.1478 0.7325 0.332 0.01

LGP [50] 81.4195 14.9779 9.3839 0.1109 0.7553 0.794 0.42

Ours 72.5475 15.7383 10.9339 0.2113 0.6811 0.876 0.55
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the visual quality and class diversity of generated images. Peak Signal-to-Noise
Ratio (PSNR) assesses the quality of generated images by estimating the devi-
ation from real images. Structural Similarity Index Measure (SSIM) estimates
the structural consistency in the generated images against the ground truth by
considering image degradation as the perceived change in structural information.
Learned Perceptual Image Patch Similarity (LPIPS) quantifies the perceptual
similarity between real and generated images using the spatial feature maps
obtained from a pre-trained deep convolutional network such as SqueezeNet in
our experiments. We also estimate the classification accuracy (ACC) using a
multi-class image classifier to measure the correctness of intended object classes
in generated samples.
Human evaluation: Although the said metrics are widely used in the literature,
perceptual quality assessment is an open challenge in computer vision. Therefore,
we conducted an opinion-based user assessment among 45 individuals, where the
volunteers were asked to select the most visually realistic sample that had the
closest resemblance to a given sketch from a pool of images generated by the
competing methods. The Mean Opinion Score (MOS) is the average fraction of
times a method received user preference over other methods. Tables 1, 2, and 3
summarize the evaluation scores of different methods on the Scribble [18], QMUL
[48,57], and Flickr20 datasets, respectively. In most cases, the proposed method
achieves a better score than the existing sketch-to-image translation techniques
[22,50,55,62] across different datasets, indicating superior perceptual quality,
structural consistency, and class accuracy in the generated images.
Analyzing the optimal value of k : In the proposed method, k ∼ [1, T ]
is a crucial control parameter for balancing the trade-off between structural
consistency and visual realism in the generated samples. As discussed in Sec.
3.2, directly decoding the LCTN-projected latent z0 through the image decoder
D produces virtually unusable images D(z0). For substantially lower values of k,
the generated image x0 retains high structural accuracy but lacks photorealism.
With increasing values of k, perceptual quality of x0 gradually improves at the
expense of structural consistency. While the optimal value of k varies among
different datasets, 0.7 � k

T � 0.9 works best for most cases in our experiments.
Fig. 6 illustrates a visual analysis of balancing the trade-off between structural
consistency and photorealism by selecting an optimal value of k ≈ T , k < T .
Visual attribute control in the generated images: One key advantage of
the proposed method is the ability to control visual attributes in the generated
images for general image editing and manipulation. As the architecture does
not require retraining the LDM, we can use the pre-trained LDM as a learned
prior for visual modifications alongside LCTN to impose structural constraints.
Fig. 7 shows a few examples where we render a specific object in multiple visual
styles by providing different text prompts to the pre-trained LDM while keeping
a consistent shape across different styles as intended in the input sketch.
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Fig. 6. Visual analysis of balancing the trade-off between structural consistency and
perceptual quality by selecting an optimal value of k on the proposed Flickr20 dataset.

Fig. 7. Visual attribute control in the proposed sketch-to-image translation method.
Training and sampling can exclusively use freehand sketches (first row) or edge maps
(second row). Alternatively, training can be performed on edge maps while sampling
uses freehand sketches of unseen (third row) or known (fourth row) object classes.

5 Conclusions

In this paper, we introduce a novel sketch-to-image translation technique that
uses a learnable lightweight mapping network (LCTN) for latent code translation
from sketch to image domain, followed by k forward diffusion and T backward
denoising steps through a pre-trained text-to-image LDM. We show that by
selecting an optimal value for k ∼ [1, T ] near the upper threshold (k ≈ T ,
k < T ), it is possible to generate highly detailed photorealistic images that
closely resemble the intended structures in the given sketches. Our experiments
demonstrate that the proposed technique outperforms the existing methods in
most visual and analytical comparisons across multiple datasets. Additionally,
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we show that the proposed method retains structural consistency across different
visual styles, allowing photorealistic style manipulation in the generated images.
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Abstract. We propose a data-driven approach for context-aware per-
son image generation. Specifically, we attempt to generate a novel person
image such that the synthesized instance can blend into a complex scene.
In our method, the position, scale, and appearance of the generated per-
son instance are semantically conditioned on the existing persons in the
scene. The proposed technique consists of three sequential steps. At first,
an image-to-image translation model infers a coarse semantic mask that
represents the new person’s spatial location, scale, and potential pose.
Next, we introduce a data-centric approach to select the closest repre-
sentation from a precomputed cluster of fine semantic masks. Finally,
we use a multi-scale, attention-guided rendering network to transfer the
appearance attributes from an exemplar image. The proposed strat-
egy enables us to synthesize high-quality, semantically coherent, realistic
human instances that can blend into an existing scene without altering
the global context. We conclude our findings with relevant qualitative
and quantitative evaluations.

Keywords: Person instance generation · Semantic consistency · GAN

1 Introduction

Person image generation is a challenging yet necessary task for many recent com-
puter vision applications. Though the problem has been primarily addressed
by utilizing different generative algorithms, often, the generation quality does
not meet the requirements of the practical applications. Moreover, the exist-
ing person image generation algorithms rely on two main factors. First, they
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heavily utilize the appearance and pose attributes of the target to generate
the final image. This approach indirectly demands intricate supervision from
users in the form of keypoints [5,18,19,25,29,30,36], parsing masks [20,31,35],
or text inputs [34]. We can assume these attributes as local attributes or local
contexts as they are only associated with the target person instance. Secondly,
the local context-driven generation techniques are unsuitable for introducing a
novel human instance in a complex scene due to the lack of imposed global
semantic constraints, such as other existing people and objects in the environ-
ment. Consequently, the resulting target instances fail to blend convincingly into
the given scene image. In this paper, we have addressed the exciting yet chal-
lenging task of novel person instance insertion, maintaining the global context
of the scene. Additionally, the proposed method circumvents the necessity of
user-specified local context information by introducing a data-driven distillation
mechanism to automatically determine the best possible local attributes from
the initial coarse estimation (Fig. 1).

Fig. 1. Overview of the proposed method. (a) Original scene. (b) Semantic maps of
existing persons in the scene. (c) Coarse estimation of the target person’s location,
scale, and potential pose. (d) Data-driven refinement of the coarse semantic map. (e)
An exemplar of the target person. (f) Generated scene with the rendered target person.

Contributions: We summarize the main contributions of our work as follows.

1. The proposed technique uses global scene context followed by local appear-
ance attributes, which allows us to synthesize human images that can blend
into a complex scene with multiple existing persons.

2. The proposed technique utilizes a data-driven refinement strategy, signifi-
cantly improving the perceptual quality and visual realism of the generated
images.

3. The data-driven approach provides crude control over appearance variations
through multiple fine semantic maps retrieved within a similarity score tol-
erance.

4. The proposed approach achieves state-of-the-art results in most qualitative
and quantitative benchmarks.
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2 Related Work

Person image generation: Generating high-quality realistic human images
is a fundamental computer vision problem that directly and indirectly impacts
multiple application domains, such as pose transfer, virtual try-on, and per-
son re-identification. While the task is intriguing, the high degree of possible
structural variations (poses) makes the problem inherently challenging. With
the recent advances in generative modeling with generative adversarial networks
(GANs) and diffusion models, the perceptual quality of synthesized images has
significantly improved. Most works on person image generation focus on gener-
ating a person in a target pose given a source image and target pose attributes.
The target pose attributes are given as keypoints [1,5,18,19,23–25,29,30,32,36],
parsing masks [3,20,31,35], 3D surface maps [16,21], or text [34]. In [18], the pro-
posed generation framework consists of novel pose synthesis followed by image
refinement. The initial stage uses a UNet-based model to generate a coarse image,
followed by refinement with another generative model in the second stage. In [19],
the authors propose a two-stage architecture with a multi-branched generation
network. Three mapping functions adversarially learn to map a random Gaussian
noise into the relevant embedding feature space for targeted manipulation of the
synthesized person image. Zhu et al. [36] have proposed a keypoint-based pose
transfer method by incorporating a progressive attention transfer technique to
divide the complex task of the generation into multiple repetitive simpler stages.
Researchers have also explored 3D surface maps constructed from the DensePose
[7] UV coordinates as the conditioning attribute for person image generation. In
[21], the authors propose an end-to-end model incorporating surface-based pose
estimation and a generative model to perform the pose transfer task. Li et al.
[16] have estimated dense and intrinsic appearance flow between the poses to
guide the pixels during the generation process. More recently, researchers have
achieved significant visual improvements with carefully crafted attention mech-
anisms [23,24], pose transformers [32], and denoising diffusion models [1,3].
Semantically conditioned person image generation: Although several
algorithms are proposed for person image generation, they require extensive
information about the target pose for the generation process. Moreover, most
existing algorithms consider the local attributes in the process, which makes
them unsuitable for complex scenes with existing persons. Previously, researchers
have introduced a relevant random person instance into a user-defined location
[33] or a probabilistically estimated potential area [14,28] by performing a back-
ground context-conditioned instance-level search followed by image composition.
In contrast, we aim to introduce a specific person instance into an optimally esti-
mated scene location such that the new person contextually blends in with the
existing persons. Recently, in [6], the authors have incorporated both local and
global attributes for the person insertion problem in a disentangled GAN-based
approach. In [13], the authors adopt an end-to-end conditional inpainting tech-
nique by finetuning a pretrained latent diffusion model to achieve similar goals.
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3 Method

We propose a three-stage sequential architecture to address the problem. In the
first stage, we estimate the potential location and pose of the target person from
the global geometric context of the existing persons in the scene. The generated
coarse semantic map performs appreciably in providing an estimate of the target
location and scale. However, such a crude semantic map performs extremely
poorly while attempting to transfer appearance attributes from an exemplar to
render the final target. To mitigate this issue, we have taken a data-agnostic
refinement strategy in the second stage to retrieve a representative semantic
map for the target from an existing knowledge base. Finally, we render the target
semantic map in the third stage by transferring appearance attributes from an
exemplar of the target person. We show an overview of the proposed architecture
in Fig. 2. Additionally, optional post-processing by image harmonization [2,11]
can reduce blending inconsistencies between the foreground and background.

Fig. 2. The architecture of the proposed method consists of three sequential stages.
(a) Initial coarse semantic map estimation from the global scene context in stage 1.
(b) Data-driven refinement of the initially estimated coarse semantic map in stage 2.
(c) Rendering the refined semantic map by transferring appearance attributes from an
exemplar image in stage 3.

3.1 Coarse Generation Network

We use an encoder-decoder architecture to generate a rough estimate of the tar-
get person’s position, scale and pose. This network performs an image-to-image
translation from a semantic map S containing N persons to another semantic
map T having the (N + 1)-th person. The network aims to generate a coarse
semantic map for a new person such that the new person is contextually rele-
vant to the existing persons in the scene. We show a few examples of the coarse
generation network in Fig. 3.

Both S and T are single-channel semantic maps containing eight labels cor-
responding to eight regions of a human body. This reduced set of label groups
simplifies the semantic map generation while retaining sufficient information for
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high-quality image synthesis in the following stages. The reduced set of semantic
label groups contains – background (0), hair (1), face (2), torso and upper limbs
(3), upper body wear (4), lower body wear (5), lower limbs (6), and shoes (7).
In [6], the authors also provide one channel for the face and another optional
channel to specify the region boundary for the target. In contrast, we do not
consider these additional channels due to our different approaches to refinement
and rendering in later stages.

The coarse generation network adopts the default encoder-decoder archi-
tecture of Pix2PixHD [22]. We use a spatial dimension of 368 × 368 for the
semantic maps. The original semantic maps are resized while maintaining the
aspect ratio and then padded with zeros to have the desired square dimension.
We use nearest-neighbor interpolation when resizing to preserve the number of
label groups in the semantic maps. The only modification we apply to the default
Pix2PixHD architecture is disabling the VGG feature-matching loss because it
is possible to have a wide variation in the target person’s location, scale, and
pose, which leads to significant uncertainty in the generated semantic map.

Fig. 3. Qualitative results of the coarse generation in stage 1. Semantic maps of existing
persons are marked in gray, and the coarse estimation of the target semantic map is
marked in purple.

3.2 Data-Driven Refinement Strategy

The rough semantic map provides a reasonable estimate for the target person,
which is contextually coherent with the global semantics of the scene. While
the spatial location and scale of the target are immediately usable to localize
a new person into the scene, the semantic map itself is not sufficiently viable
to produce realistic results. In [6], the authors use a multi-conditional rendering
network (MCRN) on the roughly estimated semantic map, followed by a face
refinement network (FRN) on the rendered target. While this approach produces
some decent results, it is limited in scope due to solely relying on the initially
generated rough semantic map from the essence generation network (EGN). We
notice two crucial issues in this regard. Firstly, the use of a coarse semantic map
highly affects the visual realism of the generated image. Secondly, it is not easy to
achieve control over the appearance of the generated target with a fixed semantic
representation. For example, if EGN produces a semantic map that appears to
be a man while the intended exemplar is a woman. The subtle difference in
core appearance attributes between the estimated semantic map and exemplar
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poses a significant challenge in practically usable generation results. We attempt
to improve visual quality and appearance diversity in the generated results by
introducing a data-driven refinement strategy with a clustered knowledge base.

We collect a set of finely annotated semantic maps of high-quality human
images to construct a small database having a diverse range of natural poses.
This database works as a knowledge base for our method. To optimally split
the knowledge base into several clusters, we first encode the individual semantic
maps using a VGG-19 [26] model pretrained on ImageNet [4]. The semantic
maps are resized to a square grid of size 128 × 128, maintaining the aspect ratio
and using zero padding. The resampling uses nearest-neighbor interpolation.
After passing the resized image through the VGG-19 network, the final feature
extraction layer produces an output of dimension 512×4×4. To avoid too many
features during clustering, we apply adaptive average pooling to map the feature
space into a dimension of 512 × 1 × 1. The pooled feature space is flattened to a
512-dimensional feature vector. We perform K-means clustering on the encoded
feature vectors corresponding to the samples in the knowledge base. From our
ablation study in Sec. 6, we have found 8 clusters work best for our case. After
the algorithm converges, we split the knowledge base by the algorithm-predicted
class labels.

During refinement, the coarse semantic map is center-cropped and resized to
dimension 128×128, maintaining the aspect ratio. The resampling uses the same
nearest-neighbor interpolation as earlier. The resized coarse semantic map is
then similarly encoded and passed to the K-means algorithm for inference. After
receiving a cluster assignment, we measure the cosine similarity between the
encoded coarse semantic map and every sample previously classified as a cluster
member. The refinement returns one or more existing samples by the similarity
score-based ranking. The retrieved selection acts as the refined semantic map of
the target person.

Fig. 4. Qualitative results of refinement in stage 2. The first column shows a coarse
semantic map as the query, and the following columns show the top-5 refined semantic
maps retrieved for both genders. The cosine similarity score for each retrieval is shown
below the respective sample.
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As we perform a nearest-neighbor search in the semantic feature space of
samples in pre-computed clusters, given a coarse semantic map, we can dynam-
ically select a refined candidate for either women or men as per requirements.
This step can be automated if the gender of the exemplar is either known or
estimated using a trained classifier. In Fig. 4, we show the top-5 matches for
both women and men samples given a coarse semantic map as the query.

3.3 Appearance Attribute Transfer and Rendering

In [6], the authors train the rendering network on single instances extracted
from multi-person images. In contrast, we impose the rendering task as a pose-
transfer problem to transfer the appearance attributes conditioned on the pose
transformation. Let us assume a pair of images IA and IB of the same person
but with different poses PA and PB , respectively. We aim to train the network
such that it renders a realistic approximation ÎB (generated) of IB (target) by
conditioning the pose transformation (PA, PB) on the appearance attributes of
IA (exemplar). We represent each pose with a semantic map consisting of 7 label
groups – background (0), hair (1), face (2), skin (3), upper body wear (4), lower
body wear (5), and shoes (6). For effective attribute transfer on different body
regions, the semantic map P is converted into a 6-channel binary heatmap (0 for
the background and 1 for the body part) H where each channel indicates one
specific body region. We use a spatial dimension of 3×256×256 for IA, IB , and
ÎB. Consequently, the same for HA and HB is 6 × 256 × 256. We utilize a multi-
scale attention-based generative network for rendering. The generator G takes
the exemplar IA and the depth-wise concatenated heatmaps (HA,HB) as inputs
to produce an estimate ÎB for the target IB. The discriminator D takes the
channel-wise concatenated image pairs, either (IA, IB) (real) or (IA, ÎB) (fake),
to estimate a binary class probability map for 70 × 70 receptive fields (input
patches).

The generator G has two separate but identical encoding pathways for IA

and (HA,HB). At each branch, the input is first mapped to a 64 × 256 × 256
feature space by convolution (3× 3 kernel, stride=1, padding=1, bias=0), batch
normalization, and ReLU activation. The feature space is then passed through 4
consecutive downsampling blocks, where each block reduces the spatial dimen-
sion by half while doubling the number of feature maps. Each block consists of
convolution (4 × 4 kernel, stride=2, padding=1, bias=0), batch normalization,
and ReLU activation, followed by a basic residual block [8]. The network has a
single decoding path that upsamples the combined feature space from both the
encoding branches. We have 4 consecutive upsampling blocks in the decoder,
where each block doubles the spatial dimension while compressing the number
of feature maps by half. Each block consists of transposed convolution (4 × 4
kernel, stride=2, padding=1, bias=0), batch normalization, and ReLU activa-
tion, followed by a basic residual block. We apply an attention mechanism at
every spatial dimension to preserve both coarse and fine appearance attributes
in the generated image. Mathematically, for the first decoder block at the lowest
resolution, k = 1,
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ID
1 = D1(IE

4 � σ(HE
4 )) (1)

and for the subsequent decoder blocks at higher resolutions, k = {2, 3, 4},

ID
k = Dk(ID

k−1 � σ(HE
5−k)) (2)

where, ID
k is the output from the k-th decoder block, IE

k and HE
k are the outputs

from the k-th encoder blocks of image branch and pose branch respectively, σ
denotes the sigmoid activation function, and � denotes the Hadamard product.
Finally, the resulting feature space goes through 4 consecutive basic residual
blocks, followed by a convolution (1 × 1 kernel, stride=1, padding=0, bias=0)
and tanh activation to project the feature maps into the final output image ÎB

of size 256 × 256.
The generator loss function LG is a combination of three objectives. It

includes a pixel-wise l1 loss LG
1 , an adversarial discrimination loss LG

GAN esti-
mated using the discriminator D, and a perceptual loss LG

V GGρ
estimated using

a VGG-19 network pretrained on ImageNet. Mathematically,

LG
1 =

∥
∥
∥ÎB − IB

∥
∥
∥
1

(3)

where ‖.‖1 denotes the l1 norm or the mean absolute error.

LG
GAN = LBCE

(

D(IA, ÎB), 1
)

(4)

where LBCE denotes the binary cross-entropy loss.

LG
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∥
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where φρ denotes the output of dimension cρ ×hρ ×wρ from the ρ-th layer of the
VGG-19 network pretrained on ImageNet. We incorporate two perceptual loss
terms for ρ = 4 and ρ = 9 into the cumulative generator objective. Therefore,
the final generator objective is given by

LG = arg min
G

max
D

λ1LG
1 + λ2LG

GAN + λ3

(LG
V GG4

+ LG
V GG9

)

(6)

where λ1, λ2, and λ3 are the tunable weights for the corresponding loss compo-
nents.

The discriminator D is a generic PatchGAN [10] that operates on 70 × 70
receptive fields of the input. It takes the depth-wise concatenated image pairs,
either (IA, IB) or (IA, ÎB), as a real (1) or fake (0) image transition, respectively.

The discriminator loss LD has only a single component LD
GAN , calculated as

the average BCE loss over real and fake transitions. Mathematically,

LD
GAN =

1
2

[

LBCE(D(IA, IB), 1) + LBCE(D(IA, ÎB), 0)
]

(7)

Therefore, the final discriminator objective is given by

LD = arg min
D

max
G

LD
GAN (8)
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4 Experimental Setup

Datasets: We use the multi-human parsing dataset LV-MHP-v1 [15] to train
the coarse generation network in stage 1. The dataset contains 4980 high-quality
images, each having at least two persons (average is three), and the respective
semantic annotations for every individual in the scene. The annotation includes
19 label groups – background (0), hat (1), hair (2), sunglasses (3), upper clothes
(4), skirt (5), pants (6), dress (7), belt (8), left shoe (9), right shoe (10), face (11),
left leg (12), right leg (13), left arm (14), right arm (15), bag (16), scarf (17),
and torso skin (18). As discussed in Sec. 3.1, we reduce the original label groups
to 8 by merging as – background + bag (0), hair (1), face (2), both arms + torso
skin (3), hat + sunglasses + upper clothes + dress + scarf (4), skirt + pants
+ belt (5), both legs (6), both shoes (7). While training the coarse generation
network, we select one random instance of a scene as the target person and the
remaining instances as the input context. We prepare 14854 training pairs from
4945 images and 115 test pairs from the remaining 35 images.

For data-driven refinement in stage 2 and rendering network in stage 3, we use
the DeepFashion [17] dataset. The dataset contains high-quality single-person
instances with wide pose and attire variations. A subset of the samples has color
annotations for 16 semantic label groups. We reduce the number of label groups
to 7 by merging multiple semantic regions as – background + bag (0), hair +
headwear (1), face + eyeglass (2), neckwear + skin (3), top + dress + outer (4),
skirt + belt + pants (5), leggings + footwear (6). We prepare 9866 images and
corresponding semantic maps for creating our clustered database. We select 9278
image pairs for training and 786 image pairs for testing the rendering network.
Training details: We train the coarse generation network with batch size 16
and VGG feature-matching loss disabled. All other training parameters are kept
to defaults as specified by the authors of Pix2PixHD [22].

The clustering follows Lloyd’s K-means algorithm with 8 clusters, a relative
tolerance of 1e−4, 1000 maximum iterations, and 10 random initializations for
the centroids.

For the rendering network, we set λ1 = 5, λ2 = 1, and λ3 = 5 in the
generator objective. The parameters of both the generator and discriminator
networks are initialized before optimization by sampling values from a normal
distribution of mean = 0 and standard deviation = 0.02. We use the stochastic
Adam optimizer [12] to update the parameters of both networks. We set the
learning rate η = 1e−3, β1 = 0.5, β2 = 0.999, ε = 1e−8, and weight decay = 0
for both optimizers. The network is trained with batch size 4.
Evaluation metrics: Although quantifying visual quality is an open chal-
lenge in computer vision, researchers widely use a few quantifiable metrics to
assess the perceptual quality of generated images. Following on from earlier
published works [1,3,5,6,18,20,23–25,29–32,35,36], we calculate Structural Sim-
ilarity Index (SSIM), Inception Score (IS), Detection Score (DS), Percentage of
Correct Keypoints (PCKh), Average Keypoint Distance (AKD), Keypoint Visi-
bility Retention Error (KVRE), and Learned Perceptual Image Patch Similarity
(LPIPS) for quantitative benchmarks. SSIM considers image degradation as the
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perceived change in the structural information. IS estimates the KL divergence
between the label and marginal distributions for many images using the Incep-
tion network [27] as an image classifier. DS measures the visual quality as an
object detector’s target class recognition confidence. PCKh quantifies the shape
consistency based on the fraction of correctly aligned keypoints. AKD measures
the average Euclidean distance between the target pose keypoints and the re-
estimated keypoints from the rendered person instances to assess the impact of
rendering on pose alignment. KVRE estimates the mismatch in keypoint visi-
bility states as a measure of retaining pose consistency after rendering. LPIPS
quantifies the perceptual similarity between the target and generated images
by utilizing spatial feature maps retrieved from deep convolutional architectures
such as VGG [26] or SqueezeNet [9].

5 Results

Fig. 5. Qualitative comparison of the proposed method with existing person insertion
techniques [6,13,14]. Additional results are included in the supplementary material.

Qualitative and quantitative comparisons: We have performed an exten-
sive range of experiments to explore and analyze the efficacy of the proposed
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method. In Fig. 5, we compare our approach qualitatively with existing per-
son image insertion techniques [6,13,14]. Additional results are included in the
supplementary material. The visual analysis shows unrealistic persons for [14]
and inadequate rendering for [6]. In [13], the authors have assumed the objec-
tive as a conditional inpainting problem, improving the overall visual quality
of image blending over [6,14]. However, in our experiments, the technique [13]
often fails to insert a new person into multi-person scenes, and the method
lacks a faithful appearance attribute transfer to retain the exemplar’s identity.
In contrast, the proposed method can produce photorealistic, visually appealing
results for person insertion into a complex scene with a semantically consistent
pose while preserving the appearance and identity of the exemplar. To analyze
the overall generation quality of the rendering network, we perform a quantita-
tive comparison against recently proposed person image generation algorithms
[1,3,5,6,18,20,23–25,29–32,35,36]. As shown in Table 1, the proposed rendering
method outperforms existing algorithms in most evaluation metrics.
Subjective evaluation: Additionally, we have conducted an opinion-based user
study with 72 volunteers to rate the final generated scenes as real or fake. Follow-
ing the protocols in [6], we have kept the allowed observation time unrestricted
during the study. The proposed method has received a mean opinion score of
64.4% against 59.2% by [13], 51.8% by [6], and 32.1% by [14].

Table 1. Quantitative comparison of the rendering network.

Method SSIM ↑ IS ↑ DS ↑ PCKh ↑ AKD ↓ KVRE ↓ LPIPS ↓ (VGG) LPIPS ↓ (SqzNet)

PG2 [18] 0.773 3.163 0.951 0.89 - - 0.523 0.416

Deform [25] 0.760 3.362 0.967 0.94 - - - -

VUNet [5] 0.763 3.440 0.972 0.93 - - - -

PATN [36] 0.773 3.209 0.976 0.96 - - 0.299 0.170

XingGAN [30] 0.762 3.060 0.917 0.95 - - 0.224 0.144

BiGraphGAN [29] 0.779 3.012 0.954 0.97 - - 0.187 0.114

ADGAN [20] 0.677 3.116 0.938 0.96 4.582 0.026 0.256 0.144

GFLA [24] 0.709 3.291 0.946 0.96 4.119 0.023 0.269 0.145

PISE [31] 0.759 3.210 0.974 0.96 4.114 0.024 0.201 0.109

DPTN [32] 0.707 3.229 0.975 0.96 4.216 0.025 0.335 0.193

NTED [23] 0.725 3.438 0.986 0.97 3.655 0.021 0.229 0.131

CASD [35] 0.724 3.446 0.984 0.97 3.504 0.022 0.222 0.120

PIDM [1] 0.718 - - 0.97 4.131 0.023 0.221 0.116

UPGPT [3] 0.679 - - 0.94 5.306 0.030 0.285 0.167

WYWH (KP) [6] 0.788 3.189 - - - - 0.271 0.156

WYWH (DP) [6] 0.793 3.346 - - - - 0.264 0.149

Ours 0.845 3.351 0.968 0.98 2.355 0.018 0.124 0.064

Ground Truth 1.000 3.687 0.970 1.00 0.000 0.000 0.000 0.000

6 Ablation Study

Feature representation during clustering: As mentioned in Sec. 3.2, we
use 512-dimensional VGG-encoded features to guide the refinement process. To
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evaluate the significance of feature representation in the proposed refinement
strategy, we compare VGG-encoded features with raw pixel features in our abla-
tion analysis by converting the input image into a feature vector. The conver-
sion process downscales (nearest-neighbor interpolation) the original 176 × 256
images to 22 × 32, keeping the aspect ratio intact, followed by flattening to
a 704-dimensional feature vector. We evaluate both the feature representation
techniques for different numbers of clusters (K = 8, 16, 32, 64). As shown in
Table 2, for a particular number of clusters K, VGG-encoded feature represen-
tation outperforms the raw pixel-based representation on the average similarity
score of top retrievals. Fig. 6 illustrates the similarity score-based ranking of
retrieved samples with each feature encoding type for both genders. The VGG
feature-based clustering results in a better resemblance between the query and
retrieved semantic maps. Our study shows that K = 8 works best in most cases.

Table 2. Quantitative ablation analysis on the feature representation for clustering.

Feature Number of clusters Average cosine similarity (top-1 match) ↑ Average cosine similarity (top-5 matches) ↑
Men Women Overall Men Women Overall

Pixel K = 8 0.7127 0.7562 0.7608 0.6912 0.7366 0.7402

K = 16 0.7146 0.7539 0.7598 0.6933 0.7357 0.7402

K = 32 0.7014 0.7449 0.7492 0.6768 0.7270 0.7302

K = 64 0.5852 0.6767 0.6810 0.5580 0.6301 0.6346

VGG K = 8 0.8212 0.8319 0.8390 0.7933 0.8171 0.8245

K = 16 0.8184 0.8307 0.8371 0.7941 0.8146 0.8227

K = 32 0.8073 0.8313 0.8379 0.7824 0.8140 0.8225

K = 64 0.7995 0.8290 0.8368 0.7715 0.8109 0.8208

Fig. 6. Visual ablation analysis on the feature representation for clustering. The cosine
similarity score for each retrieval is shown below the respective sample.

Attention mechanism: Attention in the rendering network plays a crucial role
in the generated image quality. We explore four different settings to validate and
select the optimal attention strategy. In the first setting (Baseline), we remove
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all attention operations and depth-wise concatenate IE
4 with HE

4 . The concate-
nated feature space is passed through the decoder block. As shown in Table 3,
the Baseline model performs worst among all variants. We consider only one
attention pathway in the rendering network in the second and third ablation
settings. In the second variant (HR only), the attention operation is performed
at the highest feature resolution only (just before the decoder block D4). Sim-
ilarly, in the third variant (LR only), the attention operation is performed at
the lowest feature resolution only (just before the decoder block D1). In the final
settings (Full), we use the proposed attention mechanism as shown in Fig. 2 and
described in Sec. 3.3. We train and evaluate all four variants on the same dataset
splits while keeping all experimental conditions the same, as noted in Sec. 4. We
show the evaluated metrics in Table 3 along with qualitative results in Fig. 7.
We conclude from the analytical and visual results that the proposed attention
mechanism provides the best generation performance.

Table 3. Quantitative ablation analysis of the rendering network.

Model SSIM ↑ IS ↑ DS ↑ PCKh ↑ AKD ↓ KVRE ↓ LPIPS ↓ (VGG) LPIPS ↓ (SqzNet)

Baseline 0.657 3.667 0.902 0.46 9.429 0.279 0.338 0.260

HR only 0.825 3.271 0.954 0.96 4.981 0.021 0.154 0.088

LR only 0.840 3.326 0.966 0.96 3.774 0.020 0.131 0.068

Full 0.845 3.351 0.968 0.98 2.355 0.018 0.124 0.064

Ground Truth 1.000 3.687 0.970 1.00 0.000 0.000 0.000 0.000

Fig. 7. Visual ablation analysis of the rendering network.

Refinement: We show the efficacy of the data-driven refinement on the final
generation in Fig. 8 by comparing the rendered scene with and without applying
the refinement technique on the initially estimated coarse semantic map.

7 Limitations

Although the proposed method can produce high-quality, visually appealing
results for a wide range of complex scenes, there are a few occasions when the
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Fig. 8. Visual ablation analysis of the refinement strategy on rendering. Each pair of
examples shows a rendered human in the modified scene without (left) or with (right)
the refinement, marked with red and green bounding boxes, respectively.

Fig. 9. Limitations of the proposed method. The limiting cases may arise as a result
of inconsistencies in (a) position, (b) scale, (c) context, or (d) rendering.

technique fails to generate a realistic outcome. Due to a disentangled multi-stage
approach, these limiting cases may occur from different pipeline components.
Coarse generation in stage 1 provides the spatial location and scale of the target
person. Therefore, the wrong inference in this step leads to a misinterpretation
of the position and scale in the final target. The refined semantic target map
is retrieved from the pre-partitioned clusters based on encoded features of the
coarse semantic map in stage 2. Consequently, an extremely rough generation
in stage 1 or a misclassified outlier during clustering in stage 2 can lead to
a generated person that does not blend well with the existing persons in the
scene. Finally, due to a supervised approach of training the renderer in stage 3,
the appearance attribute transfer may fail to generate high-quality outputs for
imbalanced or unconventional target poses. We show a few such cases in Fig. 9.

8 Conclusions

In this work, we propose a novel technique for scene-aware person image syn-
thesis by conditioning the generative process on the global context. The method
is divided into three independent stages to focus on individual subtasks con-
cisely. First, we use a coarse generation network based on a conditional image-
to-image translation architecture to estimate the target person’s spatial and pose
attributes. While the spatial characteristics in the initial semantic map provide
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sufficient geometric information for the target, the semantic map does not pre-
serve enough label group correctness, leading to improper attribute transfer in
the rendering stage. We mitigate this issue through a data-driven distillation of
the coarse semantic map by selecting candidate maps from a clustered knowledge
base using a similarity score-based ranking. Finally, the appearance attributes
from the exemplar are transferred to the selected candidate semantic map using
a generative renderer. The rendered instance is then injected into the original
scene using the geometric information obtained during coarse generation. In our
experiments, we achieve highly detailed, realistic visual outcomes, which are
further supported by relevant analytical evaluations.
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Abstract. This work deals with image generation, two main prob-
lems are addressed: (i) improvements of specific feature extraction while
accounting at multiscale levels intrinsic geometric features, and (ii)
equivariance of the network for reducing the complexity and providing
a geometric interpretability. We propose a geometric generative model
based on an equivariant partial differential equation (PDE) for group
convolution neural networks (G-CNNs), so called PDE-G-CNNs, built on
morphology operators and generative adversarial networks (GANs). The
proposed geometric morphological GAN model, termed as GM-GAN,
is obtained thanks to morphological equivariant convolutions in PDE-
G-CNNs. GM-GAN is evaluated qualitatively and quantitatively using
FID on MNIST and RotoMNIST, preliminary results show noticeable
improvements compared classical GAN.

Keywords: PDEs · Equivariance · Morphological operators ·
Riemannian manifolds · Lie group · Symmetries · CNNs

1 Introduction

Significant advances in deep learning progress are attributed to CNNs [23].
Despite its successful applications in many real life problems, it is still not
very clear why deep learning techniques work. Pursuing this goal, many works
attempt to give an answer to this so challenging question by setting mathemat-
ical frameworks that underlie the process. A promising direction is to consider
symmetries as a fundamental design principle for network architectures. Among
noticeable properties in CNNs, the equivariance concerning translations played
an important role. Equivariance means that the operation of performing a trans-
formation of the input data then passing them through the network is the same
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15325, pp. 310–325, 2025.
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as passing the input data through the network and then performing a transfor-
mation of the output. CNNs are inherently translationally invariant; however,
invariance does not extend straightforward to other types of transformations.
G-CNNs [3,9,10] were introduced to tackle this issue by generalizing CNNs in a
way such that symmetries are incorporated and fully exploited in the learning
process. Very recently, PDE-G-CNNs [4,31] were proposed as PDEs-based frame-
work based that generalized G-CNNs. The proposed PDEs were solved by pro-
viding analytical kernels approximations [31] and exact kernels sub-Riemannian
approximations [4]. Intensive research on equivariant operators other than trans-
formations is still conducted [20,29,33].

GANs [21,22] brought a new perspective to the deep learning community,
deep learning with adversarial training is considered today as one of the most
robust technique. With adversarial generative networks, there exists not only a
good neural network-based classifier, referred to as the discriminator network,
but also a generative network capable of producing realistic adversarial sam-
ples, all within a single architecture. This means that we now have a network
that is aware of internal representations through its training to distinguish real
inputs from artificial ones. Many extensions have been built for increasing its
performances. Conditional GAN (CGAN) [19] was proposed as an extension of
original GAN for generating facial images on the basis of facial attributes. Deep
Convolutional GAN (DCGAN) [28] was proposed for image generation where
both the generator and discriminator networks are convolutional. GRAN [24]
is a GAN model based on a sequential process. Bidirectional GAN (BiGAN)
and extensions [6,12] were proposed to map data into a latent code similar to an
autoencoder. Generative Multi-Adversarial Network (GMAN) [16] was proposed
for extending the minimax game to multiple players in GANs. In a different per-
spective, Wasserstein Generative Adversarial Network (WGAN) [1] was intro-
duced to reduce the instability problems that occur during the training step, and
also to eliminate the mode collapse effect. GANs and variants lack an inference
mechanism.
In this work1, we aim at providing noticeable improvements of former GAN
models by using a geometric approach based on equivariant operators defined in
a Lie group, and on mathematical morphology formulated in Riemannian mani-
folds. Main contributions can be summarized as follows: 1) proposition of a new
geometric generative model based on a new PDE-G-CNNs built on multiscale
morphology operators and geometric image processing techniques, 2) improve-
ments of specific feature extraction while accounting intrinsic geometric features
at multiple scales/levels, and 3) equivariance of the network resulting in a com-
plexity reduction and a geometric interpretability. Additional details and results
that did not fit into the main paper can be found in supplementary material.
The paper is organized as follows. In Section 2, we define the notion of equiv-
ariance in Lie groups and present the group invariance property on Riemannian

1 This work was partially supported by the ANR project Human4D ANR-19-CE23-
0020 and the Centre d’Excellence Africain en Mathématique, Informatique et Tech-
nologie de l’Information et de la Communication (CEA-MITIC).

https://drive.google.com/file/d/1LvmwrP7XyzS-iXazKWIRVfdwEELbTP6J/view?usp=drive_link
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manifolds. In Section 3, we present the viscosity solutions for morphological
dilations and erosions formulated as Lie group morphological convolutions in
Riemannian manifolds. The proposed geometric generative (GM-GAN) model
in presented in Section 4. Section 5 is dedicated to numerical experiments and
comparisons with classical GAN models. The paper ends in Section 6 where
concluding remarks and perspectives are discussed.

2 Equivariance and homogeneous spaces on Riemannian
manifolds

Let M be a smooth manifold and x ∈ M . A linear mapping v : C∞(M ;R) → R

satisfying the Leibniz rule:

∀ f1, f2 ∈ C∞(M ;R) v(f1f2) = f1(x)v(f2) + v(f1)f2(x) (1)

is called a derivation at x. For all x ∈ M , the set of derivations at x forms a
real vector space of dimension d denoted TxM so called the tangent space at x;
its elements can be also called tangent vectors. In Euclidean space, an operator
satisfying (1) is the derivative along a specific direction, and this definition is a
generalization of derivatives on smooth manifolds in general.

Let G be a connected Lie group. We assume that the group G acts regularly
on the spaces P and Q, meaning that there exists regular maps ρP : G×P → P
and ρQ : G × Q → Q respectively defined for all r, h ∈ G, by:

ρP (rh, x) = ρP (r, ρP (h, x)) and ρQ(rh, x) = ρQ(r, ρQ(h, x)), (2)

making ρP and ρQ group actions on their respective spaces. In addition, we
assume that the group G acts transitively on the spaces (smooth manifolds),
meaning that for any two elements in these spaces, there exists a transformation
in G that maps them to each other. This implies that P and Q can be viewed
as homogeneous spaces.

Definition 1. A Riemannian metric on a differentiable manifold M is given by
a scalar product μ on each tangent space TxM depending smoothly on the base
point x ∈ M , that is, ∀ x ∈ M , μx : TxM × TxM → R is a symmetric, bilinear
and positive definite map, and μx varies smoothly over M .
A Riemannian manifold (M,μ) is a differentiable manifold M equipped with a
Riemannian metric μ.

Definition 2. Let G a connected Lie group with neutral element e and (M,μ) a
connected Riemannian manifold. A left action of G on (M,μ) is an application
ϕ : G × (M,μ) → (M,μ) satisfying:

1. ϕ(e, x) = x, ∀ x ∈ (M,μ).
2. ϕ(g, ϕ(h, x) = ϕ(gh, x), ∀ g, h ∈ G and ∀ x ∈ (M,μ).
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Let ϕ : G × (M,μ) → (M,μ) be a left action of G on (M,μ). For a fixed
g ∈ G, we define ϕg : (M,μ) → (M,μ); x �→ ϕg(x) = ϕ(g, x).
The function ϕ : G × (M,μ) → (M,μ) is a left action if ∀ g, h ∈ G, one has:
ϕe = idM and ϕg ◦ ϕh = ϕgh.
Let ϕh : (M,μ) −→ (M,μ) be the left group action (considered here as a multi-
plication) by an element h ∈ G defined ∀ x ∈ (M,μ) by:

ϕh(x) = h · x. (3)

Let Lh be the left regular representation of G on functions f defined on M by
(Lhf)(x) = f(ϕh−1(x)), with h−1 as the inverse of h ∈ G.
We consider a layer in a neural network as an operator (from functions on M1 to
functions on M2). To ensure the equivarianc of the network, we shall require the
operator to be equivariant with respect to the actions on the function spaces.

Let x0 be an arbitrary fixed point on the connected Riemannian manifold
(M,μ). Let π : G → (M,μ) be the projection defined by assigning to each
element h of G an element of (M,μ) in the following:

∀ h ∈ G π(h) = ϕh(x0). (4)

In other words, once a reference point x0 ∈ (M,μ) is chosen, the projection π(h)
assigns to every element h in G the unique point in (M,μ) to which h sends the
chosen reference point x0 under the action of ϕh given by (3).

In this work, we consider a connected Lie group G that acts transitively on the
connected Riemannian manifold (M,μ). This means that for any points x and
y ∈ (M,μ), there exists an element h ∈ G such that ϕh(x) = y, corresponding
to the definition of an homogeneous space under the action of the group G.

Definition 3. Let G be a connected Lie group with homogeneous spaces M and
N . Let φ be an operator on functions from M to functions on N . We say that
φ is equivariant with respect to G if for all functions f , one has:

∀ h ∈ G, (φ ◦ Lh)f = (Lh ◦ φ)f, (5)

Let h ∈ G, x ∈ (M,μ) and TxM be the tangent space of (M,μ) at the
point x. The pushforward of the group action ϕh denoted (ϕh)∗ is defined by:
(ϕh)∗ : TxM → Tϕh(x)M such that for all smooth functions f on (M,μ) and all
v ∈ TxM , one has: ((ϕh)∗v)f := v(f ◦ (ϕh)∗).

For all x ∈ (M,μ), we refer to G-invariance of vector fields X : x �→ TxM if
∀ h ∈ G and for all differentiable functions f , one has X(x)f = X(ϕh(x))[Lhf ].

Definition 4. A vector field X on (M,μ) is invariant with respect to G if ∀ h ∈
G and ∀ x ∈ (M,μ), one has: X(ϕh(x)) = (ϕh)∗X(x).

Definition 5. A (0, 2)-tensor field μ on M is G-invariant if ∀ h ∈ G, ∀ x ∈ M
and ∀ v, w ∈ Tx(M), one has: μ|h(v, w) = μ|ϕh(x)((ϕh)∗v, (ϕx)∗w).

It follows from Definition 5 that properties derived from metric tensor field G
invariance and vector field G invariance are the same.
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Definition 6. Let (M,μ) a connected Riemannian manifold, x, y ∈ (M,μ).

The distance between x and y is defined as: dμ(x, y) = inf
γ ∈ Γt(x,y)

∫ t

0√
μ|γ(t)(γ̇(t), γ̇(t))dt, with Γt(x, y) = {γ : [0, t] −→ (M,μ) of class C1, γ(0) =

x and γ(t) = y}.
Definition 7. The cut locus is defined as the set of points x ∈ M (or h ∈ G)
from which the distance map is not smooth (except at x or h).

Proposition 1. Let x, y ∈ (M,μ) such that ϕh(y) is away from the cut locus of
ϕh(x). Then, ∀ h ∈ G, one has: dμ(x, y) = dμ

(
ϕh(x), ϕh(y)

)
.

Remark 1. Staying away from the cut locus provides a unique distance in Def-
inition 6. Also, thanks to Proposition 1, dμ shares the same symmetries, since
we derive it from a tensor field invariant under G.

3 Group morphological convolutions and PDEs

Link between morphological multiscale flat erosions and PDEs was established
by running in Rn a first order Hamilton-Jacobi PDE type. Let (M,μ) be a
compact and connected Riemannian manifold endowed with a metric μ, and
f, b : (M,μ) −→ R.

Definition 8. The group morphological convolution ♦ between b and f is defined
∀ x ∈ (M,μ) by: b♦f(x) = inf

p∈G
{f(ϕp(x0)) + b(ϕp−1(x))}.

Denote TM the tangent bundle (M,μ) and L : TM → R a Lagrangian func-
tion. Let H : T ∗M → R be the Hamiltonian associated to the Lagrangian L, H is
defined on the cotangent bundle T ∗M of (M,μ), H(x, q) = sup

v∈TxM
{q(v)−L(x, v)}.

The Hamilton-Jacobi PDE can be extended in Riemannian manifolds as follows:
∂tw + H (x,∇w) = 0 in (M,μ) × (0,+∞); w(·, 0) = f on (M,μ). Rieman-
nian multiscale operations can be performed by choosing a specific Hamiltonian,
respectively, H = ‖∇μw‖k

μ for the multiscale dilations and H = −‖∇μw‖k
μ for

multiscale erosions, and taking k > 1 allows to deal with more general structur-
ing functions than the quadratic ones.

Proposition 2. Let f ∈ C0((M,μ),R) a continuous function and let
ck = k−1

k
k

k−1
, k > 1. Viscosity solutions of the Cauchy problem:

∂w

∂t
+ ‖∇μw‖k

μ = 0 in (M,μ) × (0; ∞); w(· , 0) = f on (M,μ), (6)

are given by: ft(x) = bk
t ♦f(x) := inf

h∈G

⎧⎨
⎩f

(
ϕh(x0)

)
+ ck

dμ

(
ϕh−1(x), x0

) k
k−1

t
1

k−1

⎫⎬
⎭,

where bk
t = ck

dμ(x0, · ) k
k−1

t
1

k−1
are the multiscale structuring functions.
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Proof. Viscosity solutions of the PDE (6) are given by HLO formulas [11]:

ft(x) = inf
y∈M

{
f(y) + ck

dμ(x, y)
k

k−1

t
1

k−1

}
. The projection π (4) is defined by asso-

ciating any h ∈ G to an element x ∈ (M,μ). Then, using the definition and
accounting the invariance property in Proposition 1, one gets:

ft(x) = inf
h∈G

{
f
(
ϕh(x0)

)
+ ck

dμ(x, ϕh(x0))
k

k−1

t
1

k−1

}

= inf
h∈G

⎧⎨
⎩f

(
ϕh(x0)

)
+ ck

dμ

(
ϕh−1(x), x0

) k
k−1

t
1

k−1

⎫⎬
⎭

= inf
h∈G

{
f
(
ϕh(x0)

)
+ bk

t

(
ϕh−1(x)

)}
= bk

t ♦f(x).

��
By reversing the time, we can prove that the viscosity solutions of the Cauchy

problem corresponding to multiscale dilations:

∂w

∂t
− ‖∇μw‖k

μ = 0 in (M,μ) × (0; ∞); w(· , 0) = f on (M,μ) (7)

are given by [11]: f t(x) = sup
x∈(M,μ)

{
f(y) − Ck

dμ(x, y)
k

k−1

t
1

k−1

}
, and thus, using the

same arguments as in the preceding proof, one has: ft(x) = −(bk
t ♦(−f))(x).

Proposition 3. Let k > 1. For all t, s ≥ 0, the family of structuring functions
bk
t satisfy the following semigroup property: bk

t+s = bk
t ♦bk

s .

4 Morphological equivariant PDEs for generative models

We aim at proposing generative models for images that are based on PDEs
satisfying an equivariance property. Our approach is resumed in two major steps:
1) design of morphological PDEs in Riemannian manifolds akin to Section 3 as
alternatives for introducing non-linearities in traditional CNNs that preserve an
equivariant processing in the composition of the feature maps in layers, and 2)
proposition of a generative model based on this structure and classical GANs.

4.1 Morphological PDE-based layers

Feature maps are carried out in traditional CNNs throughout the classical con-
volution, pooling and ReLU activation functions. Our goal is to propose PDEs
that behave like traditional CNNs, in one hand, and preserve an equivariance
property, on the other hand. For that purpose, PDEs will be formulated on group
transformations to ensure equivariance and make PDEs consistent with G-CNNs
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[3,9,10]. Equivariance is a robust way to incorporate desired and essential sym-
metries into the network so that there is no more need to learn such symmetries;
consequently, the amount of data is reduced. Viewing layers as image processing
operators allows us use well elaborated image analysis and processing techniques
to design the network. Thin image analysis is needed to achieve our objective.
Due to its nonlinearity aspects, good shape and geometry description capabil-
ities, mathematical morphology appeared as an efficient and powerful tool for
multiscale image and data analysis [30]. For a better analysis of geometrical
image structures, it is also interesting to consider works from geometric image
analysis [5,13,15,17,34]. Image and data analysis and processing methods based
on non-Euclidean metrics; for instance, Riemannian metrics, are well known to
improve a lot Euclidean based approaches. Riemannian manifolds are proved
to behave very well for capturing thin data structures, providing then better
representations and analysis of geometrical structures present in the data. This
fact is shown in many image processing studies with real life applications; for
instance, in video surveillance, shape and surface analysis, human body and face
analysis, image segmentation [2,7,26,27,32,35]. For these reasons, we choose
homogeneous spaces to avoid Euclidean metrics so that the network is provided
with image processing capabilities for a better handling of geometric thin struc-
tures [8,11,14,18,25]. Doing so should make feature maps richer, and combined
with the equivariance property of the morphological PDEs will provide neat
improvements of classical GANs in terms of quality of the content generation.
Morphological PDEs are thus used to replace the pooling operations and ReLU
activation functions in the proposed generative model.

4.2 PDE model design

PDE-G-CNNs were formally introduced in homogeneous spaces with G-
invariance metric tensor fields on quotient spaces [31]. Built on the primary
approach, the proposed model is based on a combination of traditional CNNs
and morphological PDE layers of Hamilton-Jacobi type in Riemannian mani-
folds, and is composed of the following PDEs:

• Convection:
∂w

∂t
+ αw = 0 in (M, μ) × (0, ∞); w(·, 0) = f on (M, μ).

• Diffusion:
∂w

∂t
+ (−Δμ)k/2w = 0 in (M, μ) × (0, ∞); w(·, 0) = f on (M, μ).

• Morphological multiscale erosions and dilations for (+) and (−) sign:

∂w

∂t
± ‖∇μw‖k

μ = 0 in (M, μ) × (0, ∞); w(·, 0) = f on (M, μ), (8)

where α a is vector field invariant under G on (M, μ), Δμ represents the Laplace-
Beltrami operator, ‖·‖μ the norm induced by the Riemannian metric μ and k > 1.
The above system of PDEs consitutes the PDE model solved in a step basis using
the operator splitting method, where each step corresponds to one of the PDEs.
In this work, we only use the morphological multiscale operations steps (8),
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the convection and diffusion terms are left for future work. PDEs (8) introduce
nonlinearities into the generator network of the GM-GAN using morphological
convolutions, which are obtained a viscosity sense and given respectively for
multiscale dilations and erosions thanks to Proposition 2.

Proposition 4. Let f ∈ C∞((M, μ)) and B ⊂ (M, μ) an non-empty set. Con-
sider the flat structuring function b : (M, μ) → R ∪ {∞}. Then, one has:
− (b♦(−f)) (x) = sup

h∈G
ϕh−1 (x)∈B

f (ϕh(x0)).

The max pooling of function f with motif B can in fact be seen as a flat
morphological dilation with a structurant element B. It is truly the case for
example for Rn. Indeed, for f ∈ C0 (Rn) and B ⊂ R

n a compact set, for every
x ∈ R

n, one has:− (b♦Rn(−f)) (x) = sup
y∈B

f(x − y), where the right hand side is

in fact a flat dilation with a structurant element B.

Proposition 5. Let f ∈ C0
c ((M, μ)). Morphological dilation with the following

structuring function: b(x) = 0, if x = x0; and b(x) = sup
x∈M

f(x), otherwise, is

exactly the same as applying a ReLU to f : − (b♦(−f)) (x) = max{0, f(x)}.

4.3 Architecture of morphological equivariant PDEs based on GAN

Similarly to GAN, the proposed geometric morphological GAN (GM-GAN) is
composed of two networks: a generator (G) and a discriminator (D) which are
both multi-layer perceptrons. As detailed in the preceding section, we introduce
into the network G morphological PDE-based layers through the resolution in a
step basis of Hamilton-Jacobi PDEs (8), whose viscosity solutions are given for
multiscale erosions and dilations thanks to Proposition 2. To deal with compu-
tation issues and practical implementation of the proposed framework, we take
advantage of the geometric properties of hyperbolic spaces and generate vari-
ous and rich content on data with multiple transformations. For doing so, we
provide the distance dμ in the geodesic ball by considering the hyperbolic ball
B = {(x1, x2) ∈ R

2 such that x2
1 + x2

2 < 1}, which is endowed with the metric

μ =
4(dx2

1 + dx2
2)

(1 − ‖x‖2)2
, where ‖·‖ denotes the Euclidean norm in R2. The distance

is obtained as follows: dμ(x, y) = Argcosh
(

1 +
2‖x − y‖2

(1 − ‖x‖2)(1 − ‖y‖2)

)
.

Concave structuring functions bk
t = ck

dμ(x0, · ) k
k−1

t
1

k−1
are represented in Fig. 1 for

different values of t and k in ] − 1; 1[.
GM-GAN training procedure remains the same as in traditional GANs.

Specifically, the training procedure is carried out separately but simultaneously.
The model takes as input some noise z defined with a prior probability pz, and
then, attempts to learn the distribution of the generator pg, by representing a
function G(z; θg) from z to the data space. The discriminator network D takes
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Fig. 1. bkt (x), x ∈] − 1; 1[: (a) for t = 1.5 and k ∈]1; 2[. (b) for t = 0.5 and k ≥ 2

an input image x and finds a function D(x; θd) from x to a single scalar, which is
the probability that the image x comes from pdata which defines the origin of the
sampled images. The output of the D network returns a value close to 1 if x is a
real image from pdata, and a value very close to 0 if x comes from pg; otherwise.
The main objective of network D is to maximize D(x) for an image coming
from the true data distribution pdata, while minimizing D(x) = D(G(z; θg))
for images generated from pz and not from pdata. The objective of the genera-
tor G is to deceive the D network, meaning to maximize D(G(z; θg)). This is
equivalent to minimize 1 − D(G(z; θg)) as D is a binary classifier. This conflict
between these objectives is called the minimax game and formulated as fol-
lows: min max Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z; θg)))]. The case
pg = pdata corresponds to the global optimum of the minimax game. Main
contributions of the proposed GM-GAN rely on the equivariance property and
non linearity characteristics brought out by group morphological convolutions
and their ability to extract thin geometrical features, which lead to richer feature
maps and a reduction of the amount training data.

For the GM-GAN generator, let x be the input data into the morphological
layer called Morphoblock. Then, x goes first through a multiscale morphological
erosion operation, followed by a multiscale morphological dilation. Afterwards,
both erosion and dilation are followed by a linear convolution. The output of the
PDE layer is obtained by a linear combination of the two outputs. The overall
architecture of the GM-GAN generator is illustrated in Fig. 2.

5 Numerical experiments

GM-GAN and GAN are applied to MNIST dataset. MNIST database consists
of 70, 000 black-and-white 28x28 images that represent handwritten digits from
0 to 9. It is divided into a training set of 60, 000 images and a test set of 10, 000
images. Same training parameters are set for GM-GAN and GAN: number of
epochs to 200, the batch size to 64, the latent space dimensionality to 100, and
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Fig. 2. Architecture of GM-GAN generator

the interval between image samples to 400. Generated images with GM-GAN and
GAN are displayed in Fig. 3 showing higher generation quality with GM-GAN
in comparison to traditional GAN.

This can be seen by comparing images produced at epochs 70 to 95 with
GM-GAN (Figs. 3a, 3e, 3i, 3m and 3q) and those generated with GAN at same
epochs (Figs. 3b, 3f, 3j, 3n and 3r). For instance, some digits are clearly identifi-
able with GM-GAN based generation, whereas it is almost impossible to recog-
nize the digits with GAN based ones. We also observe that the images generated
with GM-GAN at epochs going from 100 to 120 (Figs. 3c, 3g, 3k, 3o and 3s)
are of better quality than generated ones with GAN for the last five epochs
going from epoch 195 to 199 (Figs. 3d, 3h, 3l, 3p and 3t). To better discriminate
that fact, we zoom in on some areas in images generated at epochs 85, 92 and
96 (Figs. 4-(a)-(b), (c)-(d) and (e)-(f); respectively), and highlight the realistic
variations between the generated images of the same digit. This indicates that
GM-GAN has a deeper understanding of the sample characteristics and is capa-
ble of generalizing them beyond the specific examples they are trained on. This
can be observed in Fig. 4-(b) with digits 3 and 6, in Fig. 4-(d) with digits 2 and
8, and in Fig. 4-(f) with digits 9 and 7.

GM-GAN complexity is also reduced throughout the equivariance property
by eliminating the need to learn symmetries. This is illustrated by reducing
MNIST training dataset by a half and comparing generated images at epoch
42. GM-GAN results (Fig. 5a show again better image quality and high varia-
tions of generated digits in comparison to GAN (Fig. 5b. Results highlight the
importance of equivariance in morphological operators, turning out to dataset
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Fig. 3. Image generation using MNIST: GM-GAN vs. GAN
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Fig. 4. Zoom in on images generated with GM-GAN at different epochs

Fig. 5. GM-GAN vs. GAN at epoch 42 with half (1/2) and whole MNIST dataset

reduction without significantly impacting generation results (see Fig. 5c or GM-
GAN and Fig. 5d for images generated at the same epoch using the hole dataset).

To highlight again the usefulness of morphological equivariant operators, we
apply both GM-GAN and GAN models on RotoMNIST; generated images are
displayed in Fig. 6. It can be seen in results obtained with GM-GAN from epoch
70 to 95 (Figs. 6a, 6e, 6i, 6m, and 6q) that digits are clearly identifiable and
far better than those generated with GAN at the same epochs (Figs. 6b, 6f, 6j,
6n, and 6r) where digits are barely formed. The same is noticed with GM-GAN
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Fig. 6. Image generation using RotoMNIST: GM-GAN vs. GAN
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from epoch 100 to 120 (Figs. 6c, 6j, 6k, 6o, and 6s), in comparison with GAN
for the last 5 epochs (Figs. 6d, 6h, 6l, 6p, and 6t). This demonstrates that GM-
GAN is more suitable for data under rotation transformations, and highlights
one more time the importance of equivariance for generating satisfactory results
under various transformations.

Quantitative evaluations are provided using the Frëchet Inception Distance
(FID). A low FID indicates a high similarity between generated and real data,
corresponding to good generation quality. In Fig. 7, we present the FID curves
of both models over epochs (taking FID of generated images at intervals of 10
epochs) on both MNIST and RotoMNIST datasets. It can be seen that starting
from epoch 40, FIDs of GM-GAN generated results are significantly lower than
ones generated using GAN, which confirms the qualitative results discussed just
above.

Fig. 7. FID using GM-GAN vs. GAN with: (a) MNIST. (b) RotoMNIST

6 Conclusion and perspectives

We have proposed here a geometric generative GM-GAN model based on PDE-
G-CNNs and built from derived equivariant morphological operators and geo-
metric image processing techniques. The proposed equivariant morphological
PDE layers are composed of multiscale dilations and erosions without any need to
approximate convolutions kernels, and meanwhile, group symmetries are defined
on Lie groups allowing a geometrical interpretability of GM-GAN with left
invariance properties. As shown by preliminary results on MNIST and RotoM-
NIST datasets, preliminary qualitative and quantitative results show noticeable
improvements compared classical GAN. Indeed, thin image features are better
extracted by accounting intrinsic geometric features at multiscale levels, and
the network complexity is reduced. The proposed approach can be extended to
various generative models. Future works include applying GM-GAN on other
datasets, designing fully equivariant generative models entirely based on PDE-
G-CNNs, and studying GM-GAN complexity to demonstrate the computational
advantages of the proposed model over classical GAN.
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Abstract. Text guided image diffusion model has demonstrated
remarkable ability in consistent image generation. In this paper, we intro-
duce a training free image composition framework that realizes the non-
rigid objects composition based on a pair of source and target prompts.
Specifically, we aim at blending the user provided object reference image
into the background image in a non-rigid manner and keep the balance of
fidelity and editability. For example, we can make a standing dog jump-
ing while preserving its shape and appearance under the guidance of
target prompt. Our proposed method has three key components: firstly,
the reference image and background are inverted into latent noises with
different image inversion methods. Secondly, we guarantee the consistent
image attribute generation of the reference object by injecting the self-
attention key and value features from original pipeline in sampling steps.
Thirdly, we iteratively optimize the object mask in the target pipeline,
and progressively compose image in different regions. Experiments shows
that our proposed method can achieve the non-rigid object image editing
and seamless composition, the results are impressive in consistent and
editable image composition.

Keywords: Image composition · diffusion model · non-rigid image
generation · self-attention · cross-attention

1 Introduction

Recently, text-based image generation by diffusion model[25,26] has achieve
great advance, which has the capability to generate promising and fantastic
image conforming with user provided prompt. Meanwhile, the text based image
editing[3,5,11,13] is a promising direction. Some works focus on the consistent
image generation[7,11,22] task, which aim to edit the local attributes of the
object, such as the image styles, the local object color, etc. Some works intend to
generate different views or more complex non-rigid images such as raising hand.
Meanwhile, they maintain the context and shape information of the object. The
balance of editability and fidelity is very important and practical. These capabil-
ities are useful for comics, advertisement design or video generation applications.
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Fig. 1. Our Non-rigid consistent image composition method aims to blend the reference
foreground object to the background image seamlessly in a non-rigid manner

Although these works have achieved good performance in text-based image edit-
ing tasks, their edited image only contains the foreground object which is not
practical for real application and scenario (Fig. 1).

Image composition[3,4,17,19] task refers to blending a specific object into the
main background image seamlessly and harmonically. For instance, a standing
dog image is desired to incorporate into the park image full of grasses, how to
naturally blend the dog to the park image is a challenge task. Traditional works
focus on blending the static standing dog into the park which may not satisfy
the real various applications’ needs. In comics and advertisement industry, the
of customers’ demands are various, they may want the dog looks like jumping.
Editing the reference image by customers’ requirements is more practical. Here
we raise a question: How to generate a running dog that has the same appearance
and blend it into the garden background image harmonically?

To answer the above question, in this paper, we propose the Non-Rigid Con-
sistent Image compositiON framework (NR-CION), which has the capability to
realize non-rigid object image generation by the reference image and user pro-
vided prompt, and accomplish the image composition with background. The
framework is performed in a training free manner and does not need any fur-
ther fine tuning or optimization process. The framework accomplishes the non-
rigid image editing and object image composition simultaneously, and achieves
promising performance. The generated image maintains context and shape infor-
mation while achieving the non-rigid image editing. Our proposed method is
based on the theoretical DDIM inversion[28] and image reconstruction, the ref-
erence and background image are inverted into latent noises with different image
inversion methods. In sampling steps, we design two pipelines for denoising ref-
erence latent noises. Denoising pipeline D1 denoises reference latent noises with
null text inversion. Denoising pipeline D2 denoises reference latent noises with
target prompt. We iteratively optimize the foreground mask with cross atten-
tion in the D2 pipeline under the guidance of target prompt, and progressively
compose image in different regions. To guarantee the consistent attribute gener-
ation of the reference object, the self-attention key and value features of D2 are
injected from source pipeline D1. To balance the consistency and editability, we
control the starting time step of feature injection.
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The key question is to guarantee the accurate mask extraction of the fore-
ground in the reference latent map. To this end, we optimize the mask obtained
from cross-attention by Ground-SAM [15,18] in the latent map. The optimized
mask can not only enhance the consistent foreground image reconstruction, but
also accurately be blended with the background image.

Our contribution can be summarized as follows:

– We propose a training free non-rigid consistent image composition framework
short as NR-CION to perform the non-rigid image composition task.

– We iteratively optimize the object mask accurately with cross attention and
a pretrained segmentation model which can guarantee the consistent image
editing and seamlessly image composition.

– Our experiments demonstrate the effectiveness of our proposed NR-CION in
non-rigid consistent image editing and seamless image composition.

2 Related work

2.1 Text-based image editing

Text-based image editing is a fundamental and challenge task that employs
extra textual prompt to manipulate the source images. GAN-based image
editing[1,9,16] has been carried out extensively. Recently, text-based image
manipulation with diffusion model has drawn more attention, lots of works have
achieved the state-of-the-art performance. SD-Edit[20] is the first attempt to
utilize diffusion model for image editing task which demonstrate the powerful
capability, Prompt to prompt[11] is the foundation work which use the cross
attention map to preserve the structure or spatial layout, thus accomplishes
the image editing based on text prompt only. Limited to the image inversion
methods, prompt to prompt is limited to image synthesis. DiffEdit[8] employ a
caption and a query to compute the mask during diffusion process and perform
object replacement with the mask guidance. Imagic[13] shows impressive image
editing performance which is based on Imagen[27]. Null text inversion[22] and
Prompt Tuning Inversion[10] employ an embedding to optimize the difference
between sampling and image inversion process. Masa-Ctrl[7] further develops a
framework that utilizes a combination of self-attention and cross-attention for
wide image editing applications, Direct Inversion[12] decouples the preservation
and editing branches to realize the balance of fidelity and editability.

2.2 Image composition

Image composition blends a foreground region from one image to another back-
ground image to generate the realistic composition image. Image composition
has a wide range of applications such as data augmentation, entertainment, E-
commercial, advertising, artist creation etc. Image composition can be decom-
posed into multiple sub-tasks such as object placement, image blending, image
harmonization, shadow generation and so on. In image blending task, traditional
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methods[6,23] target to smooth the transition from foreground to background.
Another group of methods[29,30] aim to obtain smooth transition by enhancing
gradient domain consistency. Recent deep learning based works[14,31] introduce
learnable image blending to generate a seamless composition image. With the
advent of the diffusion model, text-guided image composition[2,3] has became a
new research direction. TF-ICON[19] leverages pre-trained diffusion models to
conduct training free cross domain text and image guided image composition.

2.3 Image inversion

DDIM inversion[28] works well for unconditional diffusion model. It is found that
it lacks in text guided diffusion model when classifier free guidance. Classifier free
guidance will enlarge the reconstruction error. Adding noises to the input image
with DDIM inversion[28] to obtain a latent noise, and denoising in the sampling
process to reconstruct the input image, lots of works struggle to preserve the con-
text, shape and layout information. Null text inversion[22] introduces a null text
embedding to optimize the reconstruction step by step with MSE loss. Prompt
tuning inversion[10] employs a learnable embedding and interpolates with the
target embedding to achieve minimized reconstruction error, Negative prompt
inversion[21] achieves the equivalent reconstruction effect without optimization,
Direct inversion[12] designs a decoupled preservation and editing branches to
realize image editing while preserving image consistency.

Fig. 2. An overview of our proposed NR-CION, the target is to generate non-rigid
reference image editing and perform image composition with the background image.
In the reference latent sampling process, the layout and structure information are gen-
erated under the guidance of target prompt in early denoising steps, then the target
pipeline query from the source pipeline by self-attention features to maintain the tex-
ture information, finally the foreground latent map is blended with the main latent
map guided by the foreground mask extracted. After the third stage denoising steps,
the Synthesized composition image is generated
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3 Preliminary

3.1 Latent diffusion model

Diffusion model has achieved great success in image generation, latent diffusion
model[26] performs diffusion process in the latent space which reduces the dif-
fusion complexity. In the latent space, the latent noise zt can be obtained by
adding a series of gaussian noises ε to the input image step by step like the
following equation:

zt =
√

αtz0 +
√

1 − αtε (1)

To reconstruct the image from zt, the deterministic DDIM sampling[28] is
employed:

xt−1 =
√

αt−1fθ(xt, t) +
√

1 − αt−1εθ(xt, t) (2)

During the reconstruction process, the optimization objective is as follows:

Ldiffusion = Ex,ε∼N(0,1),t[||ε − εθ(xt, t)||22] (3)

3.2 Classifier free guidance

In classifier free guidance, the prediction is performed firstly in an unconditional
prediction manner, then is extrapolated with the conditional prediction results.
This process will amplify the effects of text guidance. The classifier free guidance
will magnify the accumulated error during the DDIM sampling process in text
guided image editing.

3.3 Attention mechanism

In U-Net module of stable diffusion[26], attention mechanism plays an important
role in generating diverse and contextual images by the user’s input prompt. As
for image editing task, the target prompt embedding is injected into the cross-
attention layers, which controls the image generation. Cross-Attention can also
help to obtain a mask related to the prompt in the latent space. Self-attention
layers help the model focus more on texture information, controlling the self-
attention layers allows the model to preserve the appearance and texture infor-
mation in image editing generation. The attention mechanism can be depicted
as follows:

Atten(Q,K, V ) = Softmax(
QKT

√
d

)V (4)
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4 Method

Given a background image, a reference foreground image, a source and target
prompt, and a bounding box mask defining the location to place the foreground
image in the background image, our objective is to blend the foreground object
into the background seamlessly in a non-rigid manner. We adopt a training free
text-image diffusion model to realize the image composition task. In the out-
put image I∗, the background should maintain the original background appear-
ance, and the foreground object should preserve the textual and shape infor-
mation. The target prompt describes the change of the object such as postures,
which controls the object image generation in a non-rigid way. The whole process
involves three modules: background and foreground image inversion in section
4.1, non-rigid foreground object generation and mask generation in section 4.2
and image composition in section 4.3.

4.1 Image inversion

Diffusion based image editing methods invert edited image into latent space, but
deviation exists when reconstructing latent noises back to target image by tar-
get prompts. To overcome the reconstruction error, we adopt different inversion
strategies. As shown in Fig. 2, We adopt DDIM with exceptional prompt in[19]
for background image inversion, which will alleviate the reconstruction error in
classifier free guidance. In classifier free guidance such as DDIM, the exceptional
prompt is effect to reduce reconstruction error under text guidance. The excep-
tion prompt is only performed in image inversion process but not in sampling
process. As for foreground image inversion process, we utilize the deterministic
DDIM with null prompt to invert the whole foreground image into latent noises.
For the target prompt image generation pipeline, the latent noises is initialized
by copying from the original inverted noises.

4.2 Non-rigid foreground object generation and mask generation

Our original idea is that we found in early sampling stage, the layout and struc-
ture information is reconstructed under the prompt guidance as shown in Fig. 3.
Based on this observation, we adopt the three stage reconstruction procedures.
As depicted in Fig. 2, we reconstruct the layout and structure of the foreground
object in the first stage which occupies M denoising time steps, In each denoising
step, the target prompt embedding is injected to the cross attention layers to
control the image generation. Then the texture and appearance information are
featured in the second stage. Finally, the latent image composition and composed
image reconstruction will be performed in the third stage.

Based on the founding of existing work[11], the tokens in the target prompt
can be reflected in the attention map, the desired foreground mask can be roughly
obtained by the attention map. Specifically, the attention mask can be obtained
by calculating the average attention map in the early denoising time steps. At
the end of the second stage, the rough average attention map can be refined by a
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Fig. 3. Target guided intermediate results in Sampling process

SOTA segmenter Ground-SAM together with the target prompt to acquire the
accurate foreground mask. The obtained accurate mask can be utilized for the
final image composition in the third denoising stage.

Algorithm 1: Non-Rigid Consistent Image composition
Input: The background image Im, the reference image Ir

source prompt Ps, target prompt Pt, foreground mask Mbbx

Output: The edited latent composition map Im∗
1: for t=1,2,...T do
2: xm

t ←DDIM(xm
t−1, t − 1, Pexcep)

3: xm
t ←DDIM(xr

t−1, t − 1, Pnull)
4: end for
5: Sampling process
6: for t=T,T-1,...1 do
7: xr

t−1, {Qs,Ks, Vs}←DDIM(xr
t , t, Pnull)

8: if t≥ T-M do
9: xm

t−1←DDIM(xm
t , t, Pexcep)

10: xr∗
t−1, {Qt,Kt, Vt}←DDIM(xr∗

t , t, Ptarget)
11: end if
12: if t<T-M and t ≥ T-M-N do
13: xm

t−1←DDIM(xm
t , t, Pexcep)

14: A∗
t = Qt,Ks, Vs

15: xr∗
t−1←DDIM(xr∗

t , t, Ptarget, A
∗
t )

16: end if
17: if t==T-M-N-1 do
18: Mseg = MaskExtract(xr∗

t )
19: H∗

t = Hm
t � (1 − Mseg) + Hr

t � Mseg

20: end if
21: if t<T-M-N-1 do
22: xm∗

t−1←DDIM(xm∗
t , t, Ptarget, A

∗
t )

23: end if
24: end for
25: I0

m∗
= D(x0

m∗
)

26: Return Im∗
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Self-attention plays a crucially important role in feature preservation of image
editing task [7,10]. So we adopt the two correlated pipelines to reconstruct the
foreground image, After the early S denoising steps, the layout and structure
information is reconstructed. The foreground mask is obtained by the cross atten-
tion followed by a mask refinement process. In self-attention layer of source and
target pipelines, the query, key and value features (short as Q,K,V) are pro-
jected from the spacial feature, the source and target features can be denoted
as (Qs,Ks,Vs) and (Qt,Kt,Vt) respectively. From the second stage of the target
prompt pipeline, we query the projected feature Qt with the source pipeline
feature Ks, Vs) in each corresponding denoising step, and output the features
for later denoising steps. This manipulation realizes the texture and appearance
information preservation. To accurately maintain the features from the source
pipeline, we restrict to query from the corresponding source texture information
only on the target object mask regions.

4.3 Image composition

We design a training free image composition method based on diffusion model
in the sampling process. Before the noises injection, positioning,resizing and
padding zeros on the reference image according to user defined mask is per-
formed. As shown in Fig. 2, the foreground mask has been obtained by the mask
extraction module in T-M-N-1 time step. The original latent map is overrode
by the foreground latent map considering the foreground mask. The obtained
foreground mask can be represented as Mseg in the main latent map. In incor-
porating the noises, we segment the whole latent noises into two parts: the
foreground in the filling object and the background regions. The latent map of
main image(background image) and the reference image can be denoted as Hm

and Hr individually. The composition noise can be calculated as follows:

H∗
t = Hm

t � (1 − Mseg) + Hr
t � Mseg (5)

The whole non-rigid image composition process can be depicted in algorithm
1.

5 Experiments

In this section, we firstly introduce the implementation details of the experiments
and organize the benchmark for the experiments. Then we compare our proposed
method with the baseline methods. Finally, we finish the ablation study to verify
the effectiveness of our proposed method.

5.1 Implementation details and benchmark

Our experiment is based on the pretrained model Stable Diffusion v1.4. The
background image is inverted into latent noises with exceptional inversion in[19],
while the foreground image is inverted with DDIM null text inversion. In the
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desired target prompt pipeline of foreground image, we set the starting latent
noise the same as the source pipeline. The sampling steps include 50 denoising
steps. After M steps (M=5), the self-attention layer’s feature the source pipeline
will be injected to the target corresponding layers. After N steps (N=25), the
mask extraction module will extract the foreground mask based on the target
prompt, then the latent noise in this step will be blended with the background
latent noise considering the desired bounding box and the obtained foreground
mask. To evaluate the effectiveness of our proposed method, we collect samples
from the COCO, ImageNet datasets and benchmark in[19] and develop 127 sam-
ples benchmark, each sample includes a background image, foreground image, a
source prompt, a target prompt and the bounding box mask in main image. All
the images are from photorealism domain.

Fig. 4. Qualitative comparison with previous SOTA method in text guided diffusion
based image composition

5.2 Compared with previous methods

To evaluate the effectiveness of our proposed methods, we use four evaluation
metrics in two aspects: background preservation(PSNR, LPIPS[32]) outside of
the foreground mask, target prompt and image consistency(CLIP Similarity[24])
in both whole image and edited regions. The evaluation results are depicted in
Table 1.We also establish some qualitative evaluations. We compare our proposed
method with the previous diffusion based state-of-the-art methods including
blended diffusion[3], TF-ICON[19] based on the target prompt. The synthesis
results are presented in Fig. 4. Our proposed method can perform non-rigid
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Table 1. Model based quantitative evaluation results of image composition

Method PSNR(bg)↑LPIPS(bg)↓CLIP(whole)↑CLIP(fg)↑
Blended[3] 23.9 0.064 22.7 22.3

TF-ICON[19] 20.5 0.072 23.2 22.5

Ours 24.3 0.061 25.5 24.2

image composition conforming with the target prompt, while previous work can
only generate static object composed image.

5.3 Ablation study

The ablation study is performed in the following components: self-attention injec-
tion to the whole images, mask based self-attention by cross attention, mask
refinement module, background preservation. We conduct the experiments to
verify the effectiveness of each components. In the baseline method, the image
composition is performed by sampling the reference latent noises from T to
0 using DDIM target prompt without any injection. We add each component
Sequentially and the experiment results is presented in Table 2. The results of
the experiments show that our proposed method outperform the other combi-
nation of components.

Table 2. Ablation study: quantitative comparison of each components

Method PSNR(bg)↑LPIPS(bg)↓CLIP(whole)↑CLIP(fg)↑
Baseline 19.7 0.069 21.5 21.3

+SA injection 20.1 0.068 22.7 22.5

+CA SA injection 20.5 0.066 23.1 23.3

+Mask refine 21.1 0.065 25.3 23.9

+Background 24.3 0.061 25.5 24.2

6 Limitation and future work

There are some limitations of our work. The consistent image generation relies
on the self-attention injection from the reference latent features. Due to limited
size of feature map and limited pre-trained generation model capability, the
model can not learn the texture and layout information effectively from only one
reference image, especially for non-rigid image generation. Our next step work
focuses on employing the external knowledge to refine the texture information
and improve consistent image composition from different views.
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7 Summary

We introduce NR-CION, a training free non-rigid consistent image composi-
tion framework that leverages inversion and diffusion methods guided by target
prompt to achieve non-rigid object image composition. We iteratively optimize
the object mask accurately with cross attention and a state-of-the-art segmenter
which can guarantee the consistent image editing and seamlessly image composi-
tion. Our experiments demonstrate the effectiveness of our proposed NR-CION
in non-rigid consistent image editing and seamless image composition. We hope
our work can contribute to the community in the image composition task.
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Abstract. Collecting 3D point cloud data is cumbersome, so generating
high-quality point clouds from existing data can save time and resources
while providing more data to support tasks in various fields. In this paper,
we propose a neighborhood feature enhancement flow diffusion model for
point cloud generation. First, we constructed a multi-scale neighborhood
feature aggregation module, which utilizes k-nearest neighbors sampling
at different scales to obtain the neighborhood coordinates of each point,
thereby aggregating them into coarse global features. Second, we develop
a neighborhood attention-based feature enhancement module that uses
geometric information in the neighborhood coordinate space to enhance
coarse features in the feature space. Then, we used a point-voxel con-
volutional neural network to reduce redundant features in the enhance-
ment features and output the latent vector of the point cloud. Finally,
we transform the latent vectors into data-consistent prior flow features
using our designed feature-to-flow data transformation module, seam-
lessly integrating them into the denoising diffusion model for accurate
generation from noisy point clouds. This prior flow approach improves
the consistency and coherence of point cloud density distribution. Exten-
sive experiments on the ShapeNet dataset validate the effectiveness of
the model in generating 3D point clouds.

Keywords: Diffusion · Attention mechanism · Point cloud generation

1 Introduction

Point cloud data enhances multimedia applications by providing detailed visual
and spatial information, improving user immersion and interactivity. Its use in
VR, AR, and MR enables the creation of realistic 3D environments [1,2]. How-
ever, obtaining point cloud data is time-consuming and sensor-dependent. Thus,
it is essential to employ artificial intelligence to advance point cloud generation
technologies for delivering high-fidelity data support in the multimedia domain.

In the past few years, deep learning-based methods have become mainstream
in 3D point cloud generation. This process typically involves several key steps.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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The first step is data preprocessing, including denoising, normalization, and data
augmentation to ensure consistency and diversity in model inputs. Next is feature
extraction, where deep neural networks, such as convolutional neural networks
(CNNs), extract high-dimensional features from point clouds, capturing complex
relationships and geometric structures between points. The third step involves
the design and training of generative models, such as variational autoencoders
(VAEs) [3–6], generative adversarial networks (GANs) [7–11], normalizing flow
models [12–14], or autoregressive models [15–18], each of which employs different
methods to generate new points cloud. These methods typically use hierarchical
CNNs or shared MLPs for feature extraction, which may overlook some neighbor-
hood features when aggregating spatial features, potentially leading to a decline
in the quality of some generated point clouds.

More recently, denoising diffusion models (DDMs) have achieved remarkable
success in image generation has inspired extensive research into point cloud gen-
eration algorithms based on DDMs [19,20]. DDMs simulate the transition of data
from an ordered state to a noisy state, training neural networks to learn denois-
ing functions that gradually restore noisy data to its original form. However, the
step-by-step denoising approach introduces uncertainty and error, particularly
with complex geometric structures, which can hinder complete detail recovery
and reduce the quality of generated point clouds [21–25]. Additionally, the noise
removal process may cause uneven density in the generated point cloud due to
fluctuations in the probability density of point cloud data.

To address these issues, this paper proposes a neighborhood feature enhance-
ment point cloud flow diffusion model. Firstly, we introduce a stackable multi-
scale neighborhood feature aggregation module (MNFA), which uses farthest
point sampling (FPS) to select centroids and circular k-nearest neighbors (k-
NN) to find adjacent points, obtaining the spatial coordinates around each sam-
pled point. Then, feature aggregation on each sampled region connects local
features to form global coarse features. Second, we propose a neighborhood
attention-based feature enhancement module (NAFE) that utilizes an atten-
tion mechanism to enhance neighborhood features and improve the quality of
feature representation. We use k-NN to find the neighbors for each point and
perform feature grouping and relative position encoding based on these neigh-
bors. Then, a multi-layer perceptron (MLP) calculates attention weights, which
are applied to the value features through weighted summation to generate new
feature representations. The enhanced features are then transformed back to
the input dimensions through a linear layer and combined with the original fea-
tures to produce the final enhanced features. This module effectively captures
the relationships between points. The enhanced features are finally processed
through a point-voxel convolutional neural network (PVCNN) [26] to reduce
redundant features in the point cloud, output the mapping vector of the point
cloud, and perform reparameterization. Finally, the feature-to-flow Data trans-
formation module (FFDT) applies affine coupling layers to invert the reparam-
eterized features, constructing a normalized flow that ensures data consistency.
The stacking of multiple affine coupling layers allows the overall transformation
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to capture complex distributions. Based on the principles of diffusion models, we
use this as the prior distribution for generating shapes. In this way, we improve
the problem of incoherence in some of the generated point clouds caused by the
sampling randomness of the DDMs.

Our main contributions can be summarized as follows:

– We propose a neighborhood feature-enhanced flow diffusion model for point
cloud generation. Our model designs the multi-scale neighborhood feature
aggregation module and the neighborhood attention-based feature enhance-
ment module to extract and enhance point cloud features, providing reliable
priors for diffusion.

– We developed a feature-to-flow data transformation module that uses normal-
ized flow mapping to stabilize noise sampling during the denoising process of
DDMs, thereby improving the quality of the generated point clouds.

2 Related Work

This section explores deep learning techniques for point cloud generation, cate-
gorizing various methods and discussing their benefits and drawbacks.

2.1 GAN and VAE-based methods

GANs and VAEs are classical algorithms for image generation and have also
been applied to 3D point cloud generation. Achlioptas et al. [7] introduced the
r-GAN approach, a significant advancement in deep learning for point clouds.
However, MLP structures struggle with capturing local geometric features, lim-
iting fine-grained structure generation. Shu et al. [9] proposed TreeGAN, using a
tree-structured GCN to enhance point cloud quality by preserving parent node
information. Despite its effectiveness, GCN is challenged by high computational
complexity and long training times. Wen et al. [10] introduced a dual-generator
approach using two GAN generators for point cloud generation: one for up-
sampling and the other for refinement. This model requires intricate training
strategies and larger datasets. Kim et al. presented SetVAE [3], which uses prob-
abilistic graph models and variational inference to generate diverse, complex
point clouds. Although SetVAE produces realistic results, its stochastic nature
can cause instability.

2.2 Flow and Autoregression-based methods

Normalizing flows and autoregressive methods generate new data through
reversible mappings and probability density estimation. Yang et al. [14] intro-
duced PointFlow, a 3D point cloud model using continuous normalizing flows and
variational inference. PointFlow’s advantage is its stability compared to GANs.
Kim et al. developed SoftFlow [12], which trains normalizing flows on mani-
folds by estimating conditional distributions of perturbed input data, avoiding
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dimension mismatch issues. Sun et al. [18] proposed PointGrow, enhancing point
cloud correlation through cycles and self-attention for robust generation. How-
ever, autoregressive models, such as RPG [17], face scalability issues due to their
iterative nature and may struggle with capturing fine details.

2.3 Diffusion based methods

With the success of diffusion models in image processing, researchers have
expanded their use to 3D generation.Luo et al. [22] introduced a point cloud
probability generation model that simplifies the training objective from the vari-
ational bound of point cloud shape likelihood, accelerating the diffusion model
training speed. Zhou et al. [25] proposed PVD, which combines denoising dif-
fusion models with a hybrid point-voxel representation for point cloud genera-
tion. This method involves a sequence of denoising operations to recover point
cloud data from Gaussian noise. It efficiently manages large-scale point cloud
datasets and generates intricate topological structures. However, the point-voxel
decomposition and subsequent merging could add to computational costs. Both
transformer-based [27,28] and diffusion-based methods have achieved remarkable
success in the field of image processing. However, challenges remain in point cloud
generation as these methods can introduce cumulative errors during denoising
that reduce the quality of some point clouds.

3 Methods

This section elaborates on the intricacies of our proposed framework with a
meticulous explanation, summarized in Fig.1, which shows all the modules of
the model and their workflows. The entire model consists of three modules: the
multi-scale neighborhood feature aggregation module (MNFA), the neighbor-
hood attention-based feature enhancement module (NAFE), and the feature-
to-flow data transformation module (FFDT). The first two modules are mainly
used to extract and enhance neighborhood features, while the last module is
used to transform latent features into flow data and input them into the diffu-
sion model for point cloud generation. The four blocks at the bottom of Fig.1
represent some detailed components of the pipeline.

3.1 Multi-scale Neighborhood Feature Aggregation Module

Most diffusion-based point cloud generation models use point coordinates as
input, extracting features with shared MLPs and representing the whole with a
global feature descriptor. This method may overlook some neighborhood infor-
mation of the point cloud, leading to a decline in the quality of subsequent
generation. Therefore, we adopt a multi-scale k-NN approach, performing two
layers of sampling and aggregation for each center point extracted using FPS.
This method ensures the compactness of the local neighborhood by utilizing
the Euclidean distance between centroid points and other points in the point
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Fig. 1. The pipeline of our generation model. First, we aggregate neighborhood point
cloud coordinates and features using the multi-scale neighborhood feature aggregation
module (MNFA). Then, we enhance the neighborhood features and obtain the latent
vector z using the neighborhood attention-based feature enhancement module (NAFE).
Finally, we transform z into flow data using the feature-to-flow data transformation
module (FFDT) and input it into the diffusion model for point cloud generation.

cloud. In this way, the centroid points pay more attention to local geometric and
topological information.

This module first selects m points from the input point cloud set X =
{x1, x2, x3, · · · , xN} as the initial point set S = {x1, x2, x3, · · · , xm}. For each
point x in the set X, it calculates the minimum distance to the points in the set
S. Then select the next point xm+1 so that it maximizes the minimum distance
from the center point of the set S. Repeat this step until the desired number
of center points of s is selected to obtain a new set S = {x1, x2, x3 · · · xs}. This
process is called FPS can be expressed by the following equation:

d(x, S) = min
xj∈S

‖x − xj‖

xi+1 = arg max
x∈X\S

d(x, S)
(1)

After obtaining the set of center points S, perform k-NN search to establish
the neighborhood relationships for each point. For each point pi ∈ S, calculate
its distance to other points and find the k nearest points and former the set of
neighbors Nk(pi) = {pi1, pi2, · · · , pik}. The pij represents the j-th nearest point
to pi. The k-NN process can be expressed as:

{pi}k
i=1 = k -NN(X, {Si}s

i=1) (2)
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Finally, we aggregate the k-NN of each center point to obtain a new set
of point coordinates P . Finally, the point coordinates are aggregated through
the module ξΨ(·) with parameter Ψ, which employs 1 × 1 convolution, batch
normalization (BN), ReLU, and max pooling to aggregate the neighborhood set
{Pi}s

i=1 into coarse global features:

F = ContactξΨ

(
{pi}k

i=1

)
(3)

3.2 Neighborhood Attention-based Feature Enhancement Module

Point cloud data consists of an unordered set of three-dimensional points, lacking
explicit topological structure. Therefore, after aggregating the point cloud P , we
utilize an attention mechanism to aggregate the features of each point’s k near-
est neighbors, capturing neighborhood feature correlations from the geometric
structure of the point cloud to enhance the discriminability and robustness of
the point cloud feature representation.

We first use a linear layer to map F to the high-dimensional initial feature
map of the point cloud F ′. Simultaneously, for each point in the input P , we use
Equation (2) to find the 16 nearest points based on their spatial positions and
obtain the indices of these 16 nearest points Nk(pi):

Nk(pi) = argsort16

(
3∑

d=1

(‖ pa − pb ‖2
)
)

(4)

where pa and pb are any two points in Pi. Next, we use three MLPs on F ′ to
map the attention keys (k), values (v), and queries (q), respectively.

To enhance neighborhood features, we combine the coordinates of each point
pi in P with the coordinates of its k-NN indices Nk(pi) through a grouping
operation, thereby generating a new feature set {mk

i |l = 1, 2, . . . , 16}. Then,
perform elementwise subtraction between ml

k and the coordinates of P . Sub-
sequently, apply positional encoding through the PEMLP layer. This ensures
that the features of each point not only include its own information but also
reflect its relative position within the entire point cloud and its local geometric
relationships.

PE = PEMLP(P � m1
k) (5)

In order to capture the differences and similarities between the features of a
point and its neighboring points, we reshape the query features k′ by applying
the same grouping operation used in the aforementioned positional encoding to
the key (k) and indices Nk(pi). Next, we add positional encoding to q, k′, and
v, and compute the attention weights using the query q and the key k′. These
weights are then used to perform a weighted sum of the value features.

ai = Softmax(AttnMLP(q ⊕ k′ + PE)) , Fagg =
∑

ai · (ν + PE) (6)
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Then, the aggregated features Fagg are mapped back to the original feature
space using an MLP and added to the input features through residual concate-
nation, resulting in an enhanced feature representation Fout.

Fout = MLP(F agg) + F ′ (7)

Finally, the PVCNN is used to reduce redundant features in the point cloud,
outputting the latent feature vectors of the point cloud.

3.3 Feature-to-Flow Data Transformation Module

In point cloud diffusion models, generating samples by denoising randomly sam-
pled noise from a Gaussian distribution can lead to accumulated noise errors,
resulting in discontinuous point clouds. To address this issue, we combine flow
models to map latent vectors from the Gaussian distribution to the data dis-
tribution, achieving a reversible and continuous transformation. As shown in
Fig. 2, the probability density can be precisely controlled when sampling noise,
thus generating more accurate samples.

Inspired by PointFlow [14], we transform the discrete flow into a continuous
flow model, thus conforming to the denoising process, and transform it from the
form of the data x to the form of the latent vector z:

z = Fε(w) = w +
∫ t1

t0

fε(w(t), t)dt

log Pε(z) = log P
(
F−1

ε (z)
)

−
∫ t1

t0

Tr

(
∂fε

∂w(t)

)
dt

(8)

where f is a neural network, w represents the prior distribution parameters and
w(t1) = z. To find the value corresponding to the prior distribution at time t0,
using the inverse operation of the flow: w(t0) = z +

∫ t0
t1

f(w(t), t)dt.

Fig. 2. The normalization flow generates samples consistent with the latent vector
distribution from a continuous, easy-to-sample distribution.

We use affine coupling layers to perform the inverse transformation on the
input. Each layer transforms a part of the current input while keeping the other
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part unchanged, ensuring a one-to-one correspondence between z and w. This
method allows the precise calculation of the probability for the target distribu-
tion through the application of the change of variables formula:

p(z) = pw(w)

∣∣∣∣∣ det
∂Fε

∂w

∣∣∣∣∣
−1

, w = F−1
ε (z) (9)

3.4 Generation process

Our research utilizes a DDM to generate point cloud data. The N point clouds
X(0) = {x

(0)
i }N

i=1 are treated as diffusing particles, with each point sampled from
the distribution q(x(0)

i |z) of the latent shape variable z. The process involves two
stages: forward noise addition and reverse denoising.

Traditionally, the noise addition process in DDMs does not involve a learning
process. Given a point cloud distribution x(0) ∼ q(x(0)), a fixed single-step and
multi-step forward diffusion process is conducted, defined as follows:

q(x(1:T )
i |x(0)

i ) =
T∏

t=1

q(x(t)
i |x(t−1)

i ), q(x(t)|x(t−1)) = N (x(t);
√

1 − βtx
(t−1), βtI)

(10)
Eventually, the point cloud distribution approaches a standard normal dis-

tribution N (0, I). The parameterized neural network and a latent variable are
then used to gradually recover a 3D point cloud with a specific shape from the
noise p(x(T )

i ) through a reverse diffusion process called pθ(x0:T |z):

q(X(1:T )|X0) =
N∏

i=1

q(x(1:T )
i |x(0)

i ) , pθ (X(0:T )|z) =
N∏

i=1

pθ (x(0:T )
i |z) (11)

The objective of the denoising diffusion model is to maximize the log-
likelihood of the target point cloud X(0), denoted as E[log pθ(X(0))]. Due to
the difficulty in directly optimizing this objective, we introduce the evidence
lower bound (ELBO):

E[log pθ(X(0))] ≥ Eq

[
log

pθ(X(0:T ), z)
q(X(1:T ), z|X(0))

]
(12)

Unlike the method mentioned above that samples random noise from a Gaus-
sian distribution for denoising, we introduce a continuous data stream in Section
3.3. Therefore, we can replace z with w. Expand equation (12) and substitute
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equation (9) into it, we obtain the final objective function to be optimized:

LG(θ,φ, ε) =Eq

[
T∑

t=2

N∑
i=1

DKL

(
q
(
x

(t−1)
i | x

(t)
i ,x

(0)
i

)
‖

pθ

(
x

(t−1)
i | x

(t)
i ,z

))
−

N∑
i=1

log pθ

(
x

(0)
i | x

(1)
i ,z

)

+DKL

(
qφ

(
z | X(0)

)
‖pw (w) ·

∣∣∣∣det
∂Fε

∂w

∣∣∣∣
−1

)]
(13)

4 Experiments

4.1 Experiment Settings

Datasets. For the point cloud generation task, we conducted experiments on
the ShapeNet dataset, which contains 51,127 shapes across 55 categories. The
dataset is split into training, testing, and validation sets with proportions of 80%,
15%, and 5%, respectively. We quantitatively compared our method with several
state-of-the-art generative models in three categories of ShapeNet: airplanes,
chairs, and cars.

Table 1. Comparison results (%) on shape metrics of our model and baseline models

Chair Airplane Car
Method 1-NNA (↓) COV (↑) 1-NNA (↓) COV (↑) 1-NNA (↓) COV (↑)

CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

r-GAN 83.69 99.7 24.27 15.13 98.40 96.79 30.12 14.32 94.46 99.01 19.03 6.539
l-GAN (CD) 68.58 83.84 41.99 29.31 87.30 93.95 38.52 21.23 66.49 88.78 38.92 23.58

l-GAN (EMD) 71.90 64.65 38.07 44.86 89.49 76.91 38.27 38.52 71.16 66.19 37.78 45.17
PointFlow 62.84 60.57 42.90 50.00 75.68 70.74 47.90 46.41 58.1 56.25 46.88 50
SoftFlow 59.21 60.05 41.39 47.43 76.05 65.80 46.91 47.90 64.77 60.09 42.9 44.6
SetVAE 58.84 60.57 46.83 44.26 76.54 67.65 43.70 48.40 59.94 59.94 49.15 46.59
DPF-Net 62.00 58.53 44.71 48.79 75.18 65.55 46.17 48.89 62.35 54.48 45.74 49.43

DPM 60.05 74.77 44.86 35.50 76.42 86.91 48.64 33.83 68.89 79.97 44.03 34.94
MeshDiffusion 53.69 57.63 46.00 46.71 76.44 76.26 47.34 42.15 81.43 87.84 34.07 25.85

PVD 57.09 60.87 36.68 49.24 73.82 64.81 48.8852.09 54.55 53.83 41.19 50.56
Ours 56.92 61.47 47.82 44.47 72.7361.51 47.04 51.81 51.2850.3448.56 51.44

Implementation details and Evaluation metric. In our experiment, the
voxel size is fixed at 16, and the k values for the two layers are [16, 32] and [64,
128]. To evaluate the quality of point clouds, we use a series of evaluation algo-
rithms: coverage score (COV), minimum matching distance (MMD), 1-nearest
neighbor classifier accuracy (1-NNA), and Jensen-Shannon divergence (JSD).
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4.2 Comparison to State-of-the-art Works

Quantitative evaluation. In this section, we conduct two sets of experiments
for comparison based on the ShapeNet dataset. The first set of experiments
compares the 1-NNA and COV metrics on the chair and airplane subsets of
ShapeNet. We selected a range of state-of-the-art algorithms as comparison
benchmarks. These algorithms represent the diversity and latest advancements
in the field of 3D shape generation, including non-diffusion algorithms such as
r-GAN [7], 1-GAN [7], PointFlow [14], SoftFlow [12], SetVAE [3], and DPF-Net
[13], as well as diffusion-based algorithms such as DPM [22], MeshDiffusion[29],
PVD [25]. The specific data is presented in Table 1.

The second set of experiments compares the MMD and JSD metrics on the
airplane and chair datasets. We compared our method with PC-GAN [7], GCN-
GAN [30], TreeGAN [9], PointFlow [14], ShapeGF [31], PDGN [32] and DPM[22].
The detailed results are shown in Table 2.

Table 2. Comparison of point cloud generation performance. CD is multiplied by 103.
EMD is multiplied by 101, and JSD is multiplied by 103.

Airplane Chair
Method MMD (↓) JSD (↓) MMD (↓) JSD (↓)

CD EMD - CD EMD -

PC-GAN 3.819 1.810 6.188 13.436 3.104 6.649
GCN-GAN 4.713 1.650 6.669 15.354 2.213 21.708
TreeGAN 4.323 1.953 15.646 14.936 3.613 13.282
DualGAN 3.321 1.082 1.304 12.687 1.879 7.154
PointFlow 3.688 1.090 1.536 13.631 1.856 12.474
ShapeGF 3.306 1.027 1.059 13.175 1.785 5.996
PDGN 3.287 1.121 1.891 12.852 2.082 6.764
DPM 3.276 1.061 1.067 12.276 1.784 7.797
Ours 3.2540.418 1.396 12.223 1.857 8.808

Analyzing the data in Tables 1 and 2 shows that our model performs compa-
rably to state-of-the-art methods across various metrics. This success is due to
our model’s comprehensive consideration of both local and global information
and its effective integration of spatial coordinates. Additionally, the sequential
flow model stabilizes the diffusion generation process, significantly enhancing the
quality and high-fidelity generation of 3D shapes in the generated point cloud
data.

Visual results. We compared our results with the diffusion-based PVD and
flow-based PointFlow point cloud generation algorithms. Fig. 3 shows the visual-
ization results of the generated point clouds on the ShapeNet dataset, displaying
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Fig. 3. Visualization of the generation quailty. From top to bottom: “Airplane”, “Chair”
and “Car”.

airplanes, chairs, and cars from top to bottom. As shown in the figure, the gen-
erated point clouds exhibit clear structural features, strongly confirming the
effectiveness of our model in capturing geometric information and significantly
improving the issues of holes and scattered points in the generated outputs.

Fig. 4. Visualization of the denoising process. From top to bottom: “Airplane”, “Chair”
and “Car”.

To further demonstrate the generative capability of our model, we also pro-
vide the generation process from noisy to denoised for the above three categories.
As shown in Fig. 4, the progression unfolds from random noise to the final 3D
shapes in left-to-right order.
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The visualization of features in joint training. We train a model jointly
without any class conditioning on 6 different categories (airplane, chair, car,
tower, bag, and basket) from ShapeNet. We employ t-SNE to project the latent
vectors generated by the NAFE into a 2D plane and present it in Fig. 5. The
figure clearly delineates distinct separations among the majority of the cate-
gories, signifying the proficiency of our model in capturing meaningful distinc-
tions within the data.

Fig. 5. The t-SNE visualization of the joint distribution generated by unconditional
joint training of 6 categories.

We randomly selected some small sample data from the generated point
clouds for demonstration (tower, bag, and basket). Each type of point cloud con-
tains between 100 and 200 points, with test samples numbering approximately
11 to 24. The visualization results are shown in Fig. 6. Our network is capable
of forming novel high-fidelity point clouds, ensuring surface coverage without
significant gaps. The experimental results validate the feasibility of multi-object
training, and our model demonstrates strong learning ability for few-shot point
cloud data. This allows us to create a single model that can handle different
training categories without the need to train a unique model for each category.

Point Cloud Completion. In addition to the aforementioned research anal-
ysis, we are considering whether our model can perform upsampling with fewer
input point clouds. During inference, the proposed model can generate a series
of point-to-point distance samples for each point cloud, thereby achieving point
cloud completion. Specifically, we use 150 and 200 points as input for each point
set of airplanes and cars, respectively. By utilizing the pre-trained model, we
combine global shape variables and partial point clouds to synthesize a com-
plete point cloud. The qualitative results of the output point cloud visualization
are shown in Fig. 7. As the output point cloud shows, when our input points are
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relatively sparse, the trained model can accurately perform point cloud upsam-
pling.

Fig. 6. Examples of few-shot point cloud generation from joint training. From top to
bottom: “Basket,” “wer,”nd “g”.

4.3 Ablation Study

In this section, we conduct an ablation study comparing MNFA, NAFE, and
PVCNN within NAFE. To show the effectiveness of our model on multi-class
training, we trained separately on three subsets (chairs, cars, and airplanes) and
tested on the airplane class. Each set of experiments was iterated 200,000 steps.
Table 3 shows the necessity of each of the three modules by evaluating their
removal individually and summarizing the quantitative results. Optimal perfor-
mance is achieved with all modules integrated. The removal and reintroduction
of the PVCNN revealed similar numerical results, indicating that our proposed
two modules collectively impact the point cloud data and focus on geometric
complexity.

5 Conclusion

In this paper, we propose the neighborhood feature enhancement flow diffusion
model for point cloud generation. The constructed point cloud feature extrac-
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Fig. 7. Visualised experimental results of point cloud completion.

Table 3. Our model component ablation study results (%)

MNFANAFEPVCNN 1-NNA(↓) COV(↑) JSD(↓)
CD EMD CD EMD -

× × × 78.66 79.83 23.72 24.02 14.32
� × × 75.17 79.13 23.86 24.36 12.50
� � × 73.42 84.58 24.67 26.79 11.58
� � � 70.2878.3226.3627.27 11.24

tion module utilizes neighborhood features of the point cloud and enhances both
global and local point cloud features, providing robust prior knowledge for subse-
quent diffusion. By integrating these enhanced features into normalized stream-
ing data and denoising diffusion models, we generate high-quality point clouds.
Experimental results demonstrate the effectiveness of this method in both single-
class and multi-class generation tasks on general point cloud datasets.
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Abstract. Variational autoencoder (VAE) is an established generative
model but is notorious for its blurriness. In this work, we investigate the
blurry output problem of VAE and resolve it, exploiting the variance of
Gaussian decoder and β of beta-VAE [14]. Specifically, we reveal that the
indistinguishability of decoder variance and β hinders appropriate anal-
ysis of the model by random likelihood value, and limits performance
improvement by omitting the gain from β. To address the problem,
we propose Beta-Sigma VAE (BS-VAE) that explicitly separates β and
decoder variance σ2

x in the model. Our method demonstrates not only
superior performance in natural image synthesis but also controllable
parameters and predictable analysis compared to conventional VAE. In
our experimental evaluation, we employ the analysis of rate-distortion
curve and proxy metrics on computer vision datasets. The code is avail-
able on https://github.com/overnap/BS-VAE.

Keywords: variational autoencoder · generative modeling · image
synthesis · representation learning · rate-distortion theory

1 Introduction

Generative modeling has been a headliner of deep learning research over the last
decade. It approximates the distribution of observed samples such as natural
images or natural language sentences. Variational autoencoder (VAE) [17,30],
one of the most popular generative deep neural networks with well-developed
mathematical background, has demonstrated competitive performance in real-
istic sample synthesis [3,29], image segmentation [19], data augmentation [27],
image compression [10], and reinforcement learning [26,28].

However, VAE has a notorious blurry output problem that hinders achieving
cutting-edge generation quality. As a consequence, VAE has been adopted in
various downstream tasks, but left off in major generative network applications.
The technical source of the blurry output problem is difficult to pinpoint. Prior
methods have been proposed to improve either the reconstruction quality or
generation quality of VAEs with the variance of decoder distribution [34] and β
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of beta-VAE [14]. The lower the variance of decoder is, the sharper the output
images are, since the variance represents the noise of decoder distribution. In
return, the risk of bad local minimizers increases, as the loss smoothing effect
of high variance is reduced [8]. On the other hand, β extends VAE outside
the likelihood, which allows beta-VAE to obtain useful properties such as latent
disentanglement [5,6,11,14] and rate-distortion tradeoff [1,2,4]. One can achieve
sharp output by carefully tuning β.

These two parameters appear to have similar effects. Moreover, in special
cases, e.g. Gaussian VAE with constant decoder variance, they are mathemat-
ically equivalent. Nevertheless, as they have separate design motivations, it is
clear that their purposes and impacts are different. Confusion with the two
parameters in prior approaches hinder performance improvement and model
analysis of VAEs. For example, a method considering the two parameters are
the same and optimizing a single integrated parameter cannot achieve the opti-
mality of two parameters properly. The integrated parameter also leads to an
indeterminate variance, so the likelihood value becomes arbitrary. In this case,
likelihood values can vary for the same model and weights making the compari-
son virtually meaningless, which is very damaging to the research of VAEs.

In this work, we analyze the confusion about the influence of decoder variance
and β, and propose a simple solution that derives optimal performance of VAEs.

Our contributions are as follows:

– Investigation of blurry output problem in VAEs. The blurry output
is a complex problem that is difficult to explain with any single factor. We
classify it into poor reconstruction and poor generation followed by respective
problem definitions and analysis.

– Identification of the problems occurring in Gaussian VAE in which
the variance of decoder σ2

x and β of beta-VAE [14] are considered
as a single integrated parameter. Both parameters show similar effects
and have been used to address the blurry output problem of VAEs. On the
other hand, based on their different design motivations, σ2

x and β affect the
quality of reconstruction and generation respectively, which introduces non-
optimality in the performance of VAEs.

– Proposing a simple and explicit method to separate β and σ2
x. Our

method, Beta-Sigma VAE (BS-VAE), improves the performance of Gaussian
VAE, as it takes advantage of both parameters. It also makes VAE more con-
trollable, since it obtains a model of the rate-distortion curve with optimal
decoder variance. Furthermore, it ensures that the same model and weights
always have the same likelihood value, which enables predictable and mean-
ingful analysis.

Our claims are validated on computer vision datasets. Our method, BS-
VAE, is independent of architecture and scale, so it is applicable to most VAE-
variants. We hope that our efforts encourage following research on VAEs to
extend constructive analysis and accomplish competitive performance in many
generative network applications.
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2 Background

Variational autoencoder (VAE). VAE [17,30] models a parameterized dis-
tribution pθ(x) =

∫
pθ(x|z)p(z)dz for the observable variable x and latent

variable z. It is fundamentally a maximum likelihood estimation. The log-
likelihood log pθ(x) is generally intractable. Hence, VAE performs variational
inference employing variational distribution qφ(z|x). It learns evidence lower
bound (ELBO) of the log-likelihood that consists of reconstruction error, Equa-
tion (1), and KL divergence, Equation (2). Note that the objectives are about a
single sample xi for convenience.

− log pθ(xi) ≤ −ELBO(θ, φ, xi)
= − Ez∼qφ(z|xi)[log pθ(xi|z)] (1)

+ DKL(qφ(z|xi)||p(z)) (2)

Gaussian VAE. The architecture of VAE, the encoder qφ(z|x) followed by
the decoder pθ(x|z), is similar to an autoencoder. Different from autoencoder,
VAE establishes probability distributions which are usually set to Gaussian in
computer vision applications [9,17,37]. For the observable variable x and latent
variable z, Gaussian VAE is the variational autoencoder consisting of the fol-
lowing encoder qφ(z|x) and decoder pθ(x|z).

qφ(z|x) ∼ N (μz(x),Σz(x))
pθ(x|z) ∼ N (μx(z),Σx(z))

where Σz is the diagonal covariance matrix and Σx is the scalar matrix in con-
ventional setting.

Σz(x) = diag(σ2
z(x))

Σx(z) = σ2
x(z)I

Restricting the Σz to diagonal matrix induces orthogonality between latent
channels [20,24,32], which helps latent disentanglement and constrains the com-
putation to be linear in dim z. However, it is argued that this unduly limits the
expressive power of encoder [35,40].

The Σx is usually assumed to be scalar and constant. The typical VAE that
outputs only the mean μx is correspond to the case as it implies σ2

x = 1/2.
This makes computation easier and avoids the optimization problem [25,31] that
occurs when Σx is a trainable parameter. The learnable Σx tends to approach 0 as
training progresses, causing the objective to diverge to infinite. However, the con-
stant scalar variance does not allow VAE to reach the optimal latent structure,
whereas the learnable scalar variance does [8,9]. This theoretical achievement is
extended to the empirical nonlinear case [18,25], which reports its superior per-
formance despite being unstable and prone to overfitting. We will adopt scalar
Σx = σ2

x(z)I but discuss constant σ2
x.



358 S. Kim and S. Lee

Learnable decoder variance. The learnable variance of decoder σ2
x outper-

forms constant scalar variance [25,34], but introduces a nontrivial optimization
problem [25,31]. In many conventional studies and implementations, the variance
of decoder is often left constant. This empirically leads to degraded results [8,34],
as the trainable variance has been discussed as essential for the optimization of
Gaussian VAE [8,9,18]. Although few works successfully employed learnable
variance stably [34,38], constant variance has been used in most prior research
because learnable variance makes training process unstable and the effect is con-
sidered trivial [34].

Beta-VAE. Beta-VAE [14] on which applied works rather focus, demon-
strates a simple yet effective enhancement on VAE. It introduces hyperparame-
ter β into the ELBO that balances the reconstruction error and KL divergence as
shown in Equation (3). β influences the regularization by the KL divergence and
latent disentanglement [5,6,11,14], which results in the efforts of fine-tuning
β in practice [19,28]. These effects are attributed by estimating how well the
variational distribution qφ(z|x) follows the prior p(z) in many cases [15].

Lβ(θ, φ, xi) = − Ez∼qφ(z|xi)[log pθ(x|z)]

+ βDKL(qφ(z|xi)||p(z))
(3)

Rate-distortion theory on β. The balance of β is explained by rate-
distortion theory [16] in which VAE is analogous to lossy compression [1,2,4].
The function of VAE is viewed as compressing a given x into a usually lower-
dimensional z and restoring it, resembling a lossy compression system. In this
context, reconstruction error corresponds to distortion and KL divergence term
corresponds to rate in information theory. Therefore beta-VAEs are depicted by
rate-distortion curve where each β value determines a specific point. This indi-
cates that beta-VAE changes the generation performance with β, unlike vanilla
VAE, as the location of a point on the curve characterizes the model’s perfor-
mance.

3 Beta-Sigma VAE

3.1 Categorizing Blurriness

VAE is notorious for producing undesirable blurry output, which is a drawback
given that its competitors, such as GAN [12] or diffusion model [36], produce
very sharp output. Here, blurry means losing fine details that are usually present
in high frequencies. This is a complex mix of phenomena, making it difficult to
pinpoint a technical source. To ease further analysis, we categorize the blurry
output problem into two types: poor reconstruction and poor generation.

Poor reconstruction refers to a model failing to reconstruct the training data
regardless of generation. It corresponds to underfitting in general terms, which
means that the VAE is not trained well, i.e., its likelihood for training or test
data is low. The main cause is inadequate distribution modeling that does not
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Fig. 1. The toy example of poor reconstruction and poor generation on CelebA
dataset [22]. Model A displays a blurry reconstruction, but the quality of reconstruc-
tion and generation is consistent. Model B shows a relatively clear reconstruction, but
the generation is blurry and unrealistic. Their setup is identical to the one in the
experiment, and the samples are selected without any intention, i.e., no cherry picking.

fit the given data. In Gaussian VAE, the value of variance σx and whether σx

is constant or learnable are important for good reconstruction. The impact of
variance modeling has been reported extensively [8,9,34]. For example, the low
variance provides a high likelihood and thus improves reconstruction practically.
The other cause is the limitation of neural network architecture, which is not the
focus of this work, so many architectures and techniques have been proposed to
address it [7,29,37].

Poor generation refers to a model failing to generate while being good at
reconstruction relatively. In general terms, this corresponds to overfitting, but
note that it is an evaluation of output generated from the prior p(z), not the
reconstruction of test data. It thus has little to do with likelihood. This is mainly
due to the mismatch between the prior p(z) and the aggregated posterior qφ(z) =∫

qφ(z|x)p(x)dx, i.e., the gap between sampling in evaluation and reconstruction
in training. To solve this, different choices of the distribution of the prior [39] or
hierarchical VAE [9] have been introduced, but the simplest is beta-VAE [14].
Beta-VAE increases the influence of KL divergence as in Equation (3), so that
q(z|x) matches p(z) even if the parameter deviates from the optimal likelihood.
This is a good way to resolve poor sampling because it helps to approach qφ(z) =
p(z) practically [5].

We provide the example in Fig. 1. Model A is an example of poor recon-
struction, trained with constant σ2

x and high β (= 10). This model shows low
likelihood, but the quality of reconstruction and generation is consistent. Model
B is an example of poor generation, adopting learnable σ2

x without β (= 1).
This model demonstrates high likelihood, but the generation is relatively blurry
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and unrealistic. Their setup is identical to the one in the experiment. Since a
model can only do one side well, we must distinguish between the two when
approaching the blurry output problem.

3.2 Problem Investigation

Prior works and implementations practically assume constant variance building
the decoder to output mean μx [34,41]. This is problematic due to degraded
performance and is further complicated by the introduction of β. We first explore
the situation in which the variance and β are equal. Specifying the distribution
as Gaussian allows us to expand ELBO further. The reconstruction error, shown
in Equation (1), is expanded as Equation (4).

− log pθ(xi|z) =
(xi − μx(z))2

2σ2
x(z)

+
1
2

log 2πσ2
x(z) (4)

The log-sigma term on the right can be ignored in optimization if the variance is
constant. Considering the beta-VAE with σ2

x = 1/2, then the β of it mathemati-
cally equal to the 2σ2

x in conventional VAE up to a constant multiplier [9,34], i.e.,
with a learning rate adaptation. This stems from the fact that the two objectives
are identical in their form. Here we present a slightly more general relationship
between β and the variance in the same fashion, indicated in Equation (5) in
which previously claimed equality is a special case of C = 1/2.

β as constant decoder variance. For the Gaussian beta-VAE with vari-
ance σ2

x = C and conventional Gaussian VAE with variance σ2
x = β ·C where C is

a constant scalar, the gradients of their objectives are identical up to a constant
multiplier β, as indicated in Equation (5). Hence, they are the same model in
terms of neural network training, and the last ≡ symbol in Equation (5) implies
this. Note the subtlety that C on the left is the variance of beta-VAE, and σ2

x

on the right is of a general VAE.

Lβ(θ, φ, xi, σ
2
x)

= Ez∼qφ(z|xi) [− log pθ(x|z)] + βDKL(qφ(z|xi)||p(z))

= Ez∼qφ(z|xi)

[
(xi − μx(z))2

2σ2
x(z)

+
1
2

log 2πσ2
x(z)

]

+ βDKL(qφ(z|xi)||p(z))

= Ez∼qφ(z|xi)

[
(xi − μx(z))2

]
/2σ2

x + βDKL(qφ(z|xi)||p(z)) + O(log σ2
x)

− ELBO(θ, φ, xi, σ
2
x)

= Ez∼qφ(z|xi) [− log pθ(x|z)] + DKL(qφ(z|xi)||p(z))

= Ez∼qφ(z|xi)

[
(xi − μx(z))2

2σ2
x(z)

+
1
2

log 2πσ2
x(z)

]

+ DKL(qφ(z|xi)||p(z))

= Ez∼qφ(z|xi)

[
(xi − μx(z))2

]
/2σ2

x + DKL(qφ(z|xi)||p(z)) + O(log σ2
x)

⇒ ∇Lβ(θ, φ, xi, C) = −β∇ELBO(θ, φ, xi, β · C)

⇒ β · C ≡ σ2
x

(5)
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Fig. 2. The conceptual figure of optimizing σ2
x and β. (A) The dashed line indicates

a constant σ2
x beta-VAE with same weights. Since the single integrated parameter

β · C ≡ σ2
x is set, researchers can arbitrarily choose β and C values for a σ2

x. This
harms VAE research by the inconsistency. (B) (1) A typical VAE cannot control each
parameter. β has almost no function beyond tuning σ2

x here. (2) Our method can tune
the β value while maintaining a reasonably low σ2

x value for the best likelihood. (3) The
existing model with learnable decoder variance cannot adjust β, so it only represents
a single point .

The only value we can set in beta-VAE is the integrated parameter β · C,
not separate β or σ2

x, as they compensate each other. It means that introducing
β has almost no effect beyond tuning σ2

x as long as we use constant decoder
variance, since it is completely absorbed in the variance. This not only negates
the performance gain of β but also makes the likelihood inconsistent, blocking
meaningful model analysis.

First, in the setting, decoder variance can be an arbitrary value. As given
in Equation (5) and discussed in some works [9,34], if we consider the beta-
VAE variance as C = 1/2, then σ2

x = β/2, leading to the consistent likelihood.
However, most researchers treat β as an isolated hyperparameter and calculate
the likelihood from the beta-VAE variance C. This leaves the variance value to
the researcher’s discretion, as indicated in Fig. 2A. Consequently, studies that
describe β without specifying C or code are not reproducible.

Worse still, the arbitrary variance introduces uncertainty in likelihood, since
the reconstruction error is determined by σ2

x as in Equation (4). This causes
critical confusion in model analysis because the likelihood, which is a key value
in the maximum likelihood estimation model, becomes inconsistent. For instance,
constant variance beta-VAE has been usually considered as either C = 1/2 or
C = β/2 for the model with the same objective, or even parameters. The (lower
bound of) log-likelihoods in each setting can be drastically different, so VAE
studies that exhibit similar human-perceptual performance often show likelihood
from −106 to 106, making comparison virtually impossible.

Also, it is important to note that the goals of beta-VAE are different from
those of conventional VAE. The beta-VAE is not the technique for obtaining the
highest likelihood, but rather securing disentanglement or quality generation [5,
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6,11,14]. It is evident from the very introduction of β, which makes the objective
no longer the likelihood as in Equation (3). However, the gradient of the constant
σ2

x model is still within the likelihood, as demonstrated in Equation (5). It does
not lead to the benefits that only β can achieve. Only the integrated parameter
β ·C ≡ σ2

x is set, preventing control of each parameter. In this context, the role of
β is limited to adjusting σ2

x, and the optimality of σ2
x and β cannot be achieved.

We depict it in Fig. 2A and Fig. 2B-1.
This inseparability of the variance and β have confounded their respective

effect. For example, researchers pursuing sharp generation ought to reduce the
variance to increase likelihood [41]. Many implementations, in fact, have chosen
small βs (indeed, β·C ≡ σ2

x) to diminish the blurriness of generation. The optimal
σ2

x and the optimal β are different. The optimal σ2
x is arguably the maximizer

of likelihood, but the optimal β depends on the purpose. In [34] dealing with
similar confusion, they have pointed out the pervasive imprecise implementation
of σ2

x, but their claim that the optimal σ2
x is also the optimal β is incorrect.

Such confusion not only harms the practical performance of VAE but also the
theoretical analysis of VAE.

A natural approach to address the limitation of integrated parameter β ·
C ≡ σ2

x is to separate the two parameters. Since the constant variance beta-
VAE cannot achieve the aim, we employ the learnable variance beta-VAE. Still,
implementing the learnable decoder variance poses an optimization problem [31].
We first analyze how the objective behaves in the setting.

When the variance of decoder is considered as the trainable parameter, σ2
x

and β are distinct to each other, as the gradient of the objective changes. The
key to the distinction is the log-sigma term in Equation (4). In this setting,
Equation (5) does not hold since the log-sigma term is not constant. The log-
sigma term is derived from the normalizing factor of Gaussian probability density
function, allowing the decoder function to remain as a probability distribution.
Letting the variance change rather than constant enhances the expressiveness of
model, but the distribution becomes uncontrollable if the variance converges to
0 or ∞.

In optimization, the log-sigma term prevents the infinitely large σ2
x to reduce

the objective [24]. A large variance compensates for the error arising from pre-
diction failure, as illustrated in Equation (4), hence σ2

x may diverge to infinity
without the log-sigma term. Namely, the log-sigma term encourages the model
to learn a large σ2

x for challenging samples and a small σ2
x for easier ones. Con-

sequently, the variance represents an uncertainty, making it reasonable that its
value decreases as training progresses, even if it approaches 0. This leads to the
unstable optimization caused by the zero variance. Indeed, it has been claimed
that this infinite gradient helps in achieving the optimal latent structure [8].

Although it intuitively or theoretically makes sense, unstable optimization is
undesirable for practical uses. A few works [34,38] have provided implementa-
tions for the stable decoder with learnable variance exploiting the property of
Gaussian, which we employ in our method.
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3.3 Method

We propose a method to separate the variance of decoder and β, simply intro-
ducing β with learnable variance. To maintain stable optimization, we first adopt
the optimal variance.

Optimal decoder variance σ2
x. For the reconstruction error of a Gaussian

VAE (Equation (4)), a single sample xi, and its sampled latent zi, we can find
a analytical optimal σ2∗

x (zi) for a given (xi − μ(zi))2.

∂

∂σx
[−ELBO(θ, φ, xi, zi)]

=
∂

∂σx
[− log pθ(xi|zi) + DKL(qφ(z|xi)||p(z))]

=
∂

∂σx
[
(xi − μx(zi))2

2σ2
x(zi)

+
1
2

log 2πσ2
x(zi) + O(1)]

= − (xi − μx(zi))2

σ3
x(zi)

+
1

σx(zi)
= 0

⇒ σ2∗
x (zi) = (xi − μx(zi))2

This is an alternative to directly implementing trainable variance [34,41]. We
employ this because it is mathematically clear and easy to implement.

Albeit it has been argued as the method to find the optimal β [34], according
to our claim, the optimal σ2

x is not identical to the optimal β. Rather, the
Gaussian VAE with optimal decoder variance is not associated with β, i.e., β = 1,
as demonstrated in Fig. 2B-3. σ2

x and β should be taken as different parameters.

Lβσ(θ, φ) =
1
2
Ez∼qφ(z|x)[log 2π(x − μx(x))2 + 1]

+ βDKL(qφ(z|x)||p(z))
(6)

Then β can be reintroduced into the optimal σ2
x model. As a result, we build

a new objective named Beta-Sigma VAE (BS-VAE) as shown in Equation (6).
Although it looks like a straightforward and simple extension, BS-VAE achieves
the control of each parameter, as illustrated in Fig. 2B-2. It takes advantage of
both parameters and ensures that the same model and weights always provide
the same likelihood value. It also shows significant performance improvement
over prior works in our experimental evaluation.

4 Experimental Evaluation

4.1 Evaluation Setup

We train and compare BS-VAEs and typical beta-VAEs with constant σ2
x, which

provide empirical evidence of our proposition. First, to reveal the ambiguity of
reconstruction error, we visualize the rate-distortion curve, which exhibits the
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performance of each model as a point on the curve. The proposed BS-VAE draws
a single curve. On the other hand, conventional beta-VAE with constant decoder
variance has multiple interpretations along the fixed variance values and corre-
sponding distortion of the curve. We test in three different ways: σ2

x = 1/2,
σ2

x = β/2, which are the views often adopted in previous research, and the case
with optimal σ2

x, which is the upper bound of beta-VAE performance interpreta-
tion. Secondly, we evaluate the VAEs based on proxy metrics, i.e. Fréchet incep-
tion distance [13] (FID) and log-likelihood on unseen data. Although likelihood
is a good indicator of generative model and it directly measures the optimization
of VAE, generation is difficult to be evaluated in a single figure. For example, a
fully memorized model, i.e., a lossless compression system, achieves an infinite
log-likelihood on training set, ignoring important values such as diversity. Thus
the proxy metrics are convincing indicators by preventing the model from sim-
ply remembering the training data. To improve FID, β of beta-VAE has been
adjusted by practitioners at the cost of likelihood frequently. log-likelihood on
unseen data has been used as an indicator for generalization capability in pre-
vious works [37,39]. Additionally, to evaluate generative neural networks, we
conduct a qualitative evaluation of generated samples.

All models consist of a Gaussian encoder with diagonal covariance matrix
and a Gaussian decoder. We employ common shallow convolutional neural net-
work architecture with a residual connection to implement VAEs for our exper-
iments. They are evaluated on popular computer vision datasets, CelebA [22]
and MNIST [21]. They consist of 4-layer residual block encoder and 4-layer con-
volutional decoder with 64 latent channels to train CelebA dataset. MNIST test
networks are simplified to have 3 layers for each encoder and decoder with 32
latent channels. We train each model for 50 epochs using AdamW optimizer [23]
and evaluate them on the fully trained model. For more specific settings, see
https://github.com/overnap/BS-VAE.

As the evaluation is for proof-of-concept, it is conducted on relatively shallow
neural networks and light datasets. We emphasize that BS-VAE is applicable
to most VAE-variants, because our argument is about the parameterization of
Gaussian VAE, independent of architecture and scale. However, it is difficult to
ensure that it applies to the larger architecture using VAE as a part, such as
latent diffusion model [33]. The discussion about it is an interesting future work.

4.2 Experimental Results

We train VAEs on CelebA with β scaled from 0.0001 to 1000, which is wide
enough for common use. We evaluate ELBO of the models and plot their rate-
distortion curves as summarized in Fig. 3. BS-VAEs (red crosses) outperform two
types of constant variance beta-VAEs (blue circles and orange x). beta-VAEs as
σ2

x = 1/2 appear to fall short in drawing the desired rate-distortion trade-off. In
the σ2

x = β/2 case, distortions are significantly high compared to our model in
low rate cases. As the rate decreases, the performance gap between σ2

x = β/2
case and ours becomes larger. This is a critical drawback of beta-VAEs since
VAE naturally pursues to reduce the rate (i.e., KL divergence) in training to

https://github.com/overnap/BS-VAE
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Fig. 3. The rate-distortion curve plotting BS-VAEs and conventional beta-VAEs with
constant σ2

x. The constant variance can be interpreted in various ways, so the optimal
σ2

x that leads distortion to the lower bound and two common σ2
xs are indicated. BS-

VAEs outperform the conventional models by any interpretation of σ2
x .

satisfy given tasks. This can be explained by Equation (5). Assuming C = 1/2,
β = 2σ2

x holds through learning rate adaptation. Extended to the trainable σ2
x

VAE, the equation no longer holds, and the more delicate relationship between
β and σ2

x is disclosed by the same development.

β = 2σ2
x(z) +

σ2
x(z) log 2πσ2

x(z)
DKL(qφ(z|x)||p(z))

Notably, the influence of the log-sigma term, governed by the KL divergence
term in its denominator, increases as the KL divergence diminishes, explaining
the performance gap clearly.

Proposed BS-VAEs outperform compared to the constant variance beta-
VAEs as optimal σ2

x (green squares) in Fig. 3. The constant variance models
evaluated with optimal σ2

x represent the upper bound for their likelihood. There-
fore, BS-VAEs generally achieves better performance than typical beta-VAEs
regardless of the interpretation of σ2

x, by leveraging both parameters. Previous
studies have shown similar results only at certain β, especially near the optimal
σ2

x value [8,34].
We train VAEs with β from 0.01 to 100 on CelebA and MNIST and present

their proxy metrics in Table 1. The models are trained five times each, and the
results are shown with their means. Note that ELBO is calculated instead of
the direct log-likelihood. For constant σ2

x models, the lower bound of ELBO is
shown for meaningful comparison, i.e., assuming optimal σ2

x. Otherwise, there is
much of a gap like the left of Fig. 3, e.g., log pθ(x) = −8000.

In both datasets, BS-VAEs demonstrate better performance than constant
σ2

x models where β = 1. Note that lower FID and higher likelihood indicate
better performance in the tasks. Furthermore, BS-VAEs with β = 1 show better
performance compared to the constant variance models over the entire β range.
These results concur with those reported in previous studies: BS-VAE with β = 1
is conceptually identical to [8] and implementationally identical to [34]. We thus
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claim that the improvement comes from the benefit of learnable decoder variance
rather than any implementation-specific gain.

As illustrated in BS-VAEs with β �= 1 in Table 1, we obtain learnable variance
models with various βs by the reintroduction of β into the optimal variance
model. They all attain better FID scores compared to the constant models for the
same β. As the good proxy metric is a goal of tuning β, the empirical best β for
our model is 10, exhibiting significant performance gain. This naturally disproves
the previous claim that the optimal σ2

x means the optimal β [34]. Even in the
optimal variance model, β can be adjusted to achieve better proxy metrics or
latent disentanglement. Moreover, BS-VAEs attain the best likelihood at β = 1
where the objective remains as likelihood. This is not the case in constant models
where the likelihood increases as β decreases despite the objective drifting away
from the log-likelihood. These results align with our arguments in Section 3 and
Fig. 2.

We display reconstructed and generated samples of these models in Fig. 4.
Arguably, BS-VAEs excel in reconstruction quality regardless of the β value,
meeting the basic purpose of VAE, i.e., lossy compression. A possible explana-
tion for this is that moderate β values do not hinder the achievement of optimal
latent structure [8]. In BS-VAE, varying β only changes generation quality, while
the conventional VAE does not. This is because the β we adjust in the constant
model, as shown in Equation (5) and Fig. 2A, is actually the integrated param-
eter β · C ≡ σ2

x. BS-VAE at β = 10 exploits both σ2
x and β, resulting in both

good reconstruction and good generation.

Table 1. Proxy metric evaluations of BS-VAEs and constant decoder variance beta-
VAEs with various βs. The FID [13] and the log-likelihood on test set are shown
with the common log-likelihood for reference. The models are trained five times each,
showing their means. BS-VAE obtains the best likelihood at β = 1 and the best FID
at β = 10, demonstrating that optimal σ2

x does not mean optimal β

Model CelebA MNIST

Name β FID (↓) Test log pθ(x) log pθ(x) FID (↓) Test log pθ(x) log pθ(x)

Beta-VAE
with
constant σ2

x

0.01 194.7 > 10684 > 10762 190.3 > 667 > 659

0.1 151.7 > 10384 > 10412 163.6 > 626 > 618

1 126.4 > 10616 > 10626 225.8 > 291 > 286

10 149.4 > 6923 > 6898 351.7 > -19 > -20

100 235.8 > 2233 > 2190 352.5 > -19 > -20

BS-VAE
(Ours)

0.01 188.5 > 10772 > 10848 67.4 > 796 > 788

0.1 130.2 > 12996 > 13037 75.5 > 850 > 840

1 90.8 > 14384 > 14434 59.2 > 887 > 877

10 73.7 > 13205 > 13256 38.4 > 662 > 656

100 106.2 > 7668 > 7630 332.8 > -15 > -17
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Fig. 4. Reconstructed or generated samples of common beta-VAEs with constant
decoder variance and our BS-VAEs. Our models maintain good reconstruction quality
within tested βs. The samples are selected without any intention, i.e., no cherry picking
.

5 Conclusion

We investigated and addressed the blurry output problem of VAE. In particular,
we elucidated the confusion between the variance of Gaussian decoder σ2

x and β
of beta-VAE [14]. We also proposed BS-VAE to handle the indistinguishability
problem of beta-VAE with constant decoder variance. Our BS-VAE is simple
but explicitly separates the σ2

x and β, demonstrating competitive performance
over prior work with predictable and meaningful analysis. We expect that the
following research avoids ambiguity and obtains optimal VAE performance in
applications.
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Abstract. Recent advances in Generative Adversarial Networks
(GANs) have demonstrated their capability for producing high-quality
images. However, a significant challenge remains mode collapse, which
occurs when the generator produces a limited number of data patterns
that do not reflect the diversity of the training dataset. This study
addresses this issue by proposing a number of architectural changes
aimed at increasing the diversity and stability of GAN models. We
start by improving the loss function with Wasserstein loss and Gradi-
ent Penalty to better capture the full range of data variations. We also
investigate various network architectures and conclude that ResNet sig-
nificantly contributes to increased diversity. Building on these findings,
we introduce HingeRLC-GAN, a novel approach that combines RLC
Regularization and the Hinge loss function. With a FID Score of 18 and
a KID Score of 0.001, our approach outperforms existing methods by
effectively balancing training stability and increased diversity.

Keywords: GAN · Diversity · Mode Collapse · Hinge Loss ·
Regularization · ResNet · Fréchet inception distance (FID) · Kernel
Inception Distance (KID)

1 Introduction

Generative Adversarial Networks (GANs) [5] have made remarkable strides in
generating high-fidelity images. These models are foundational for many vision
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applications, including data augmentation [1,21], domain adaptation [8,23],
image extrapolation [24], image-to-image translation [9,25], and image editing
[19,20]. However, the success of GANs often hinges on the availability of large,
diverse training datasets, which can be costly and labor-intensive to compile [18].

Fig. 1. Mode Coverage: DROPOUT-GAN (left),HingeRLC-GAN (right). The pro-
posed method is performing up to 30% better in mode capture

A significant challenge associated with GANs is mode collapse, where the
generator produces a limited variety of outputs and fails to capture the full
diversity of the data distribution [2,12]. This issue drastically reduces the diver-
sity of generated data, limiting the utility of GANs across different applications.
Mode collapse is exemplified in Figure 1, which demonstrates how a generator
may inadequately represent the modes of the data distribution.

To address the issue of mode collapse in GANs, extensive research has
explored a variety of new techniques. These include advanced loss functions,
such as Wasserstein loss with Gradient Penalty [6,9], which have shown promise
in stabilizing GAN training and enhancing output diversity by overcoming the
limitations of traditional loss functions. Research into multi-generator models,
like MAD GAN [4], aims to improve diversity by utilizing multiple generators in
conjunction with a single discriminator. Additionally, innovative methods, such
as employing orthogonal vectors to address mode collapse [10], have further
advanced our understanding of GANs and their training challenges.

In this paper, we focus on improving GAN performance to enhance mode
coverage, particularly for small datasets. Our approach consists of several stages:

– First, we evaluated various GAN architectures to identify the most effective
structures for generating diverse outputs.

– Next, we examined different loss functions and regularization techniques to
find the optimal combination for mitigating mode collapse.
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– Finally, we developed a model that integrates RLC regularization [22]
with Hinge Loss [11], and performed a comprehensive comparison of our
HingeRLC-GAN against conventional GAN models.

Our research aims to determine the most effective architectural components,
loss functions, and regularization techniques to improve mode coverage and pro-
duce high-quality, diverse synthetic images, especially when working with small
datasets.

2 Related Work

Arnab Ghosh et al. introduced MAD-GAN, a model that leverages multiple
generators and a single discriminator to improve sample diversity [4]. In this
setup, the discriminator not only distinguishes real from fake samples but also
identifies which generator produced each fake sample, promoting a wider range
of generated outputs.

Wei Li et al. developed a method employing orthogonal vectors to address
mode collapse in multi-generator frameworks [10]. Their approach involves
extracting feature vectors from generator outputs and minimizing their orthogo-
nality to preserve diversity, using a new minimax formula to enhance convergence
and balance.

Jae Hyun Lim and Jong Chul Ye proposed Geometric GAN, which redefines
adversarial training through geometric steps involving hyperplane separation
to overcome issues such as vanishing gradients and instability [11]. This SVM-
inspired method improves the reliability and efficiency of training.

Mordido et al. introduced Dropout-GAN, which applies dropout regulariza-
tion to a discriminator ensemble to combat overfitting and maintain diversity in
generated samples [14]. Dropout-GAN demonstrates superior performance com-
pared to other variants by generating diverse and realistic data while minimizing
the Fréchet distance.

Sen Pei et al. presented the Pluggable Diversity Penalty Module (PDPM),
which enforces diversity in the feature space using normalized Gram matrices
[17]. PDPM achieves outstanding results across various tasks, surpassing tradi-
tional methods such as ALI, DCGAN, and MSGAN.

Pan et al. introduced UniGAN, which aims to address u-mode collapse by
focusing on uniform diversity [16]. This model employs a generator based on Nor-
malizing Flow and a regularization technique to ensure uniform output diversity,
allowing for seamless integration with other frameworks.

3 Proposed Method

First, we examine the GAN architecture, focusing on its core components and
overall structure. Next, we review the loss functions used during GAN train-
ing, emphasizing their roles and how they influence the model’s performance.
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We then delve into regularization techniques, assessing their impact on stabiliz-
ing training and improving the model’s generalization capabilities. Finally, we
explore the effectiveness of the HingeRLC-GAN by investigating its architec-
tural modifications and their contributions to enhancing diversity and training
stability.

3.1 Architectural Overview

Generative Adversarial Networks (GANs) are a class of machine learning frame-
works designed for generating realistic data. A GAN comprises two neural net-
works: the Generator G and the Discriminator D. These networks are trained
simultaneously in a competitive framework. The Generator creates synthetic
data with the goal of approximating real data, while the Discriminator’s task is
to distinguish between real and generated data. The GAN framework involves
training the Generator G and Discriminator D through a minimax game, which
is formalized as follows:

min
G

max
D

Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))]

In this formulation, the Generator G aims to minimize the likelihood of the
Discriminator correctly identifying generated data as fake, while the Discrimi-
nator D seeks to maximize its ability to differentiate between real and generated
data. Here, pdata(x) represents the distribution of real data, and pz(z) represents
the distribution of the input noise vector z. We have experimented with various
architectures such as DenseNet, MobileNet, and EfficientNet, and found that the
ResNet architecture consistently produces superior results.

Generator The Generator architecture is constructed using ResNet blocks,
which incorporate residual connections to support effective gradient flow. The
detailed architecture is as follows:

Noise z
Linear(128→4×4×128)−−−−−−−−−−−−−−→ Reshape(−1,128,4,4)−−−−−−−−−−−−−→ ResNet Block1−−−−−−−−−→ ResNet Block2−−−−−−−−−→

ResNet Block3−−−−−−−−−→ BatchNorm2d−−−−−−−−−→ ReLU−−−→ Conv2d(3,3,padding=′same′)−−−−−−−−−−−−−−−−−−−→ Tanh−−−→ Output Image−−−−−−−−−→
Each ResNet Block consists of:

CCBN(128, 10) → ReLU → Upsample

(scale factor = 2) → Conv2d(128, 3, padding =′ same′)

Here, CCBN(128, 10) denotes Conditional Batch Normalization with 128
channels and 10 conditions. The upsampling layer increases the spatial dimen-
sions of the feature maps, and the convolutional layer with a kernel size of 3 and
‘same’ padding ensures that the output maintains the required dimensions.
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Fig. 2. Artifact produced by ‘Conv2dTranspose’ layers with checkerboard patterns

Avoiding the use of ‘Conv2dTranspose‘ layers is crucial for minimizing arti-
facts in generated images. ‘Conv2dTranspose’ layers [15] with a stride of 2 are
commonly used for upsampling, effectively doubling the size of the images. How-
ever, they can introduce artifacts such as checkerboard patterns due to uneven
overlapping of the layers. This problem arises from the inherent characteristics
of the ‘Conv2dTranspose’ operation rather than from adversarial training itself.

To address this issue, our architecture utilizes ‘Upsample’ layers followed
by ‘Conv2d’ layers for upsampling. This approach avoids the artifacts typically
associated with ‘Conv2dTranspose’ layers. Figure 2 illustrates artifacts produced
by a generator using ‘Conv2dTranspose’ in the last two layers. By employing
‘Upsample’ layers combined with ‘Conv2d’ layers, we achieve cleaner, artifact-
free images and improved overall image quality.

Discriminator The Discriminator uses ResNet blocks with downsampling to
classify images. Its architecture is as follows:

Image x
Concatenate(Embedding y to 32×32)−−−−−−−−−−−−−−−−−−−−−−−→ Conv2d(128,3,padding=′same′)−−−−−−−−−−−−−−−−−−−−→ ReLU−−−→

Conv2d(128,3,padding=′same′)−−−−−−−−−−−−−−−−−−−−→ AvgPool2d(2,2)−−−−−−−−−−→ ResNet Block Down1−−−−−−−−−−−−−→ ResNet Block Down2−−−−−−−−−−−−−→
ResNet Block Down3−−−−−−−−−−−−−→ AdaptiveMaxPool2d−−−−−−−−−−−−−→ Flatten−−−−→ Linear(1)−−−−−−→ Output Score−−−−−−−−→

Each ResNet Block Down consists of:

CCBN(128, 10) → ReLU → Conv2d(128, 3,padding =′ same′) → AvgPool2d(2, 2)

Here, CCBN(128, 10) denotes Conditional Batch Normalization with 128
channels and 10 conditions. The ‘AvgPool2d’ layer performs downsampling by a
factor of 2, reducing the spatial dimensions of the feature maps at each ResNet
block.

The superiority of the ResNet architecture is attributed to several key com-
ponents:

1. Residual Connections: Residual connections in ResNet blocks, defined as:
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Fig. 3. HingeRLC-GAN Architecture: An illustrative example of the ResNetRLC
GAN’s internal generator and discriminator workings

y = F(x, {Wi}) + x

allow gradients to flow directly through the network, mitigating the vanishing
gradient problem. This is crucial for training deeper networks, as it ensures
that gradient updates from the loss function propagate effectively through
many layers.

2. Categorical Conditional Batch Normalization (CCBN): CCBN [3]
conditions the normalization process on class labels, enabling class-specific
feature generation. The normalization for each feature map i in class c is:

BN(xi, γc,i, βc,i) = γc,i
xi − μi√

σ2
i + ε

+ βc,i

where γ and β are learned parameters specific to each class, μi and σi are
the mean and variance of the feature maps, and ε is a small constant for
numerical stability.

3. Spectral Normalization: To enforce Lipschitz continuity, spectral normal-
ization [13] is applied to the weights of each layer, constraining the largest
singular value of the weight matrix W . This is defined as:

W

σ(W )

where σ(W ) is the largest singular value of W . Spectral normalization stabi-
lizes the training of the Discriminator, enhancing robustness to variations in
the input space.
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4. Regularization: The architecture includes various regularization techniques,
such as dropout layers, weight decay, and batch normalization, to prevent
overfitting and improve generalization.

Overall, the integration of these elements results in a more stable training
process and the generation of higher-quality images compared to other architec-
tures. The ResNet-based GAN leverages deep residual learning, effective class
conditioning, and robust normalization techniques to outperform models like
DenseNet, MobileNet, and EfficientNet.

3.2 Loss Functions

We have experimented with several loss functions, including Binary Cross-
Entropy (BCE), Wasserstein Loss, and Least Squares Loss. Our findings indicate
that Hinge Loss consistently delivers superior results for our HingeRLC-GAN.

Hinge Loss is defined as:

LHinge = max(0, 1 − D(x)) + max(0, 1 + D(G(z)))

This loss function enhances the stability of GAN training by ensuring contin-
uous gradients, even for samples that are correctly classified. This characteristic
helps mitigate the vanishing gradient problem, leading to more stable and effec-
tive training.

3.3 Regularization

In HingeRLC-GAN, we utilize several regularization techniques to enhance train-
ing stability and generalization:

1. Noise: Introducing noise to the inputs helps prevent the model from overfit-
ting to the training data, promoting better generalization.

2. Class Rebalancing: This technique ensures that the model learns equally
from all classes, thereby improving its performance across different categories.

3. Gradient Penalty: By encouraging smoothness in the Discriminator’s deci-
sion boundary, this technique enhances the model’s robustness and stability.

The primary regularization technique employed is Regularized Loss Control
(RLC), defined as:

LRLC = LHinge + λ
∑

i

(
∂L
∂θi

)2

Here, λ is a hyperparameter that regulates the strength of the regularization.
RLC controls the complexity of the model by penalizing large gradients, which
helps prevent overfitting and promotes better generalization.
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3.4 Mathematical Intuition for Improved Mode Coverage

To illustrate how the HingeRLC-GAN mitigates mode collapse, we provide a
theoretical explanation. The combination of Hinge Loss and Regularized Loss
Control (RLC) fosters diverse mode coverage by penalizing the Discriminator
for overly confident predictions, which encourages the Generator to explore a
broader range of the data distribution.

Theoretical Framework Consider the Hinge Loss function for the Discrimi-
nator D:

LD = Ex∼pdata [max(0, 1 − D(x))] + Ez∼pz
[max(0, 1 + D(G(z)))]

The gradient of this loss with respect to the Discriminator’s parameters θD

is:

∇θDLD = Ex∼pdata

[
1D(x)<1 · ∇θD (−D(x))

]
+ Ez∼pz

[
1D(G(z))>−1 · ∇θDD(G(z))

]

where 1 is the indicator function. The Generator G minimizes the Hinge
Loss:

LG = −Ez∼pz
[D(G(z))]

The gradient of the Generator’s loss with respect to its parameters θG is:

∇θG
LG = −Ez∼pz

[∇θG
D(G(z))]

The Regularized Loss Control (RLC) term is introduced to the Hinge Loss
to form the total loss for the Discriminator:

LRLC
D = LD + λ

∑

i

(
∂LD

∂θD,i

)2

This regularization term penalizes large gradients by adding the squared
norms of the gradients to the loss function. It discourages the Discriminator
from making overly confident predictions, which in turn compels the Generator
to explore a more diverse set of data samples.

Prevention of Mode Collapse The integration of Hinge Loss and RLC in the
HingeRLC-GAN plays a crucial role in preventing mode collapse. By discour-
aging the Discriminator from being too confident and smoothing its decision
boundaries, the RLC term forces the Generator to explore a wider variety of
data modes. This reduces the likelihood of mode collapse, where the Generator
might otherwise focus on generating a limited set of samples.
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4 Experimental Analysis

The Frechet Inception Distance (FID) [7] is the most commonly used metric for
evaluating GAN performance. FID measures the difference between the distribu-
tions of features extracted from real and generated images using the InceptionV3
model. This metric provides a more comprehensive evaluation compared to the
Inception Score, which only assesses the quality of generated images based on
their own features.

FID evaluates both the mean and variance of the feature distributions from
real and generated images. A lower FID indicates that the generated images are
of higher quality and have better diversity, resembling the real images from the
dataset, such as CIFAR-10. While FID assumes Gaussian distributions for the
features, it can still be biased for smaller datasets like CIFAR-10 due to the
limited sample size.

Mathematically, FID is calculated as:

FID = ‖μr − μg‖2 + Tr
(
Σr + Σg − 2 (ΣrΣg)

1/2
)

where, μr and μg are the means of the feature vectors for real and generated
images, respectively. Σr and Σg are the covariance matrices of the feature vectors
for real and generated images, respectively. Tr denotes the trace of a matrix.

This formula measures the distance between two multivariate Gaussians
defined by their mean vectors and covariance matrices, providing a quantita-
tive measure of how similar the generated images are to the real ones.

The Kernel Inception Distance (KID) is a metric for evaluating GAN-
generated images. Unlike Frechet Inception Distance (FID), which assumes
Gaussian distributions, KID uses the squared Maximum Mean Discrepancy
(MMD) to measure the distance between feature distributions of real and gen-
erated images.

KID =
1
2

(
MMD2(pr, pg) + MMD2(pg, pr)

)

where MMD is computed using a kernel function.

4.1 Comparison of GAN Architectures

In Table 1, we compare different GAN architectures using the FID score and
KID Score. Each architecture varies in the network used for the generator and
discriminator.

The Dense + VGG architecture shows the highest FID score of 125, indicating
the poorest performance among the architectures tested. MobileNet improves the
FID score to 112. EfficientNet further reduces the FID score to 97, showing better
image generation quality. The best performance is observed with the ResNet
architecture, achieving an FID score of 90, demonstrating its effectiveness in
generating high-quality images.
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Table 1. Comparison to GAN Architecture. We report the average FID (↓) scores
and average KID (↓) scores on the CIFAR datasets

Architecture Generator Discriminator FID↓ KID↓
Dense + VGG Dense network + BCE VGG + MinMax 125 0.01

MobileNet MobileNet + BCE MobileNet + MinMax 112 0.01

EfficientNet EfficientNet + BCE EfficientNet + MinMax 97 0.01

ResNet ResNet blocks + BCE ResNet blocks + MinMax 90 0.002

4.2 Comparison of Loss Functions

Table 2 compares different GAN loss functions, all using the ResNet architecture
for both the generator and discriminator.

Table 2. Comparison to GAN Loss Functions. We report the average FID (↓)
scores and average KID (↓) scores on the CIFAR datasets

Model Generator Discriminator FID↓ KID↓
ResNet (baseline) ResNet blocks + BCE ResNet blocks + MinMax 90 0.002

WGAN-GP with
ResNet

ResNet blocks + BCE ResNet blocks + Wasser-
stein Loss

35 0.001

lsGAN with ResNet ResNet blocks + BCE ResNet blocks + lsGAN 35 0.001

lsGAN with ResNet ResNet blocks + lsGAN ResNet blocks + lsGAN 29 0.001

Hinge Loss with
ResNet

ResNet blocks + BCE ResNet blocks + Hinge
Loss

25 0.001

The baseline ResNet model with BCE and MinMax loss functions yields an
FID score of 90. Using Wasserstein Loss (WGAN-GP) with ResNet significantly
improves the FID score to 35. The least squares GAN (lsGAN) with ResNet
achieves a similar FID score of 35 with BCE for the generator. When lsGAN
is used for both generator and discriminator, the FID improves to 29. The best
performance is achieved with Hinge Loss, bringing the FID score down to 25.

4.3 Comparison of Regularization Methods

Table 3 explores the impact of various regularization methods on the FID scores
for the ResNet architecture with Hinge Loss.

Without any regularization, the ResNet model with Hinge Loss achieves an
FID score of 25. Adding noise does not change the FID score. Contrastive Reg-
ularization (CR) improves the FID to 19, while the Gradient Penalty (GP-0)
slightly worsens the FID to 26. Our proposed Regularized Loss Control (RLC)
method yields the best FID score of 18.



380 O. Goni et al.

Table 3. Comparison to GAN Regularization Methods. We report the average
FID (↓) scores on the CIFAR datasets

Model Regularization Methods FID↓ KID↓
ResNet with Hinge Loss No regularization 25 0.001

ResNet with Hinge Loss + Noise 25 0.001

ResNet with Hinge Loss + CR 19 0.001

ResNet with Hinge Loss + GP-0 26 0.001

ResNet with Hinge Loss (Ours) + RLC 18 0.001

4.4 Comparison of GAN Models

Table 4 provides a comparison of different GAN models, highlighting the effec-
tiveness of our HingeRLC-GAN model.

Table 4. Comparison of GAN Models. We report the average FID (↓) scores and
Inception Score (↑) on the CIFAR datasets

Model FID↓ Inception Score↑
MGO-GAN 198 6.130

DROPOUT-GAN 66 -

DCGAN 53 6.47

LSGAN 56 6.32

DRAGAN 52 6.44

DFM 52 6.58

HingeRLC-GAN (Ours) 18 6.89

The MGO-GAN model shows the highest FID score of 198, indicating the
poorest performance. DROPOUT-GAN significantly improves the FID score to
66. DCGAN and LSGAN achieve similar FID scores of 53 and 56, respectively.
DRAGAN and DFM further improve the FID to 52. Our proposed HingeRLC-
GAN achieves the best FID score of 18, demonstrating superior performance in
generating high-quality and diverse images.

4.5 Mode Capture Analysis

We first present a t-SNE visualization of the CIFAR-10 dataset images, illus-
trating the clustering of different classes.

In the visualization:

– Airplanes are distinctly clustered in the top left corner, indicating clear sep-
arability from other classes.
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Fig. 4. t-SNE visualization of the CIFAR-10 dataset images.

– Frogs and cats show significant overlap with other categories and are dispersed
across the visualization space.

– Automobiles are also spread out, suggesting intra-class variability.
– Trucks and ships, while more distinct from other classes, show a degree of

overlap between them, located in the bottom left corner.

Next, we compare the t-SNE visualizations of images generated by
DROPOUT-GAN and our HingeRLC-GAN, demonstrating a 30% improvement
in mode capture with our model.

Fig. 5. t-SNE Visualizations: (left) DROPOUT-GAN, (right) HingeRLC-GAN. Mode
coverage is 30% better then DROPOUT-GAN

4.6 Evaluation of HingeRLC-GAN

The HingeRLC-GAN evaluation yielded several significant results. Despite
slower convergence, the model successfully produced high-quality and diverse
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images without mode collapse. The FID and KID metrics were recorded as
18 and 0.001, respectively. The training process showed gradual fluctuations in
both discriminator and generator losses, indicating stable and balanced training
dynamics. The KID metric showed a steady decline until about 60 epochs, after
which it plateaued. The learning rate was reduced to 0.00005 after 80 epochs
to maintain equilibrium between discriminator and generator losses as shown in
Figure 6.

Fig. 6. Generator and Discriminator Loss, Learning Curve for HingeRLC-GAN

4.7 Generated Images

We present 10 images representing 10 different classes generated by the
HingeRLC-GAN. Notably, vehicles (especially ships), birds, horses, deers, and
dogs appeared realistic. Some anomalies were observed in frog and cat images,
likely due to the intrinsic diversity within these classes in the CIFAR-10 dataset
as shown in Figure 7. The anomalies in frog and cat images may be due to the
intricate variations found within these specific classes in the CIFAR-10 dataset.
Despite these anomalies, the HingeRLC-GAN’s overall realism across various
categories proves its suitability for a wide range of image generation tasks.



Combatting Mode Collapse with Hinge Loss and RLC Regularization 383

Fig. 7. Sample Images Generated by HingeRLC-GAN

5 Conclusion

In this paper, we introduced HingeRLC GAN, a novel variant that addresses
mode collapse by integrating Hinge Loss with Regularized Loss Control (RLC).
Our experiments demonstrate that this approach significantly enhances both
the diversity and quality of generated images. Through extensive evaluation
of various GAN architectures, we found ResNet to be the most effective base-
line, and HingeRLC GAN consistently outperformed traditional loss functions
like Wasserstein and Least Squares, as well as other regularization techniques,
achieving the lowest FID scores. The HingeRLC GAN surpassed state-of-the-art
models, including MGO-GAN, DROPOUT-GAN, DCGAN, LSGAN, DRAGAN,
and DFM, proving its superiority in generating diverse and high-fidelity images.
Overall, HingeRLC GAN provides a robust solution to mode collapse, enhancing
training stability and output quality, with future research focusing on its appli-
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cation across diverse datasets and tasks in generative modeling and computer
vision.
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Abstract. Over the past decade, there has been tremendous progress
in the domain of synthetic media generation. This is mainly due to
the powerful methods based on generative adversarial networks (GANs).
Very recently, diffusion probabilistic models, which are inspired by non-
equilibrium thermodynamics, have taken the spotlight. In the realm
of image generation, diffusion models (DMs) have exhibited remark-
able proficiency in producing both realistic and heterogeneous imagery
through their stochastic sampling procedure. This paper proposes a novel
facial swapping module, termed as LDFaceNet (Latent Diffusion based
Face Swapping Network), which is based on a guided latent diffusion
model that utilizes facial segmentation and facial recognition modules
for a conditioned denoising process. The model employs a unique loss
function to offer directional guidance to the diffusion process. Notably,
LDFaceNet can incorporate supplementary facial guidance for desired
outcomes without any retraining. To the best of our knowledge, this
represents the first application of the latent diffusion model in the face-
swapping task without prior training. The results of this study demon-
strate that the proposed method can generate extremely realistic and
coherent images by leveraging the potential of the diffusion model for
facial swapping, thereby yielding superior visual outcomes and greater
diversity.

Keywords: Image Generation · Latent Diffusion Models · Facial
Swapping · Guided Diffusion

1 Introduction

Recently, deep learning models of all types have started producing high-quality
synthetic media. This media can be visual, audio or video files. Stunning image
and audio samples have been created using GANs, autoregressive models, flows,
and variational autoencoders (VAEs) [2,12,18,19,26,27]. Recent advances in
fields like energy-based modeling and score matching have also started producing
synthetic media that are comparable to those of GANs [33].
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Fig. 1. Sample output of LDFaceNet. Compared to recent state-of-the-art methods
such as E4S (CVPR’23 [22]), the results produced by LDFaceNet are significantly
better. This particular example also illustrates that our method performs much better
in handling occlusions over the target face than other generative methods. Further
details are in the results Section 5.

GANs have emerged as the state-of-the-art method for image generation
tasks. The performance for generative tasks is very subjective and varies from
person to person. However, there are two commonly used distribution-based
sample quality metrics such as FID [14] and Inception score (IS) [30] that most
papers have used to report their results. Recently, GANs have been criticized
for their limited diversity capture capabilities, and it has been demonstrated
that likelihood-based models outperform GANs in this regard [27]. Additionally,
GANs are often difficult to train, and we need to fine-tune their hyperparameters
and regularizers to avoid collapse during training. Despite the drawbacks, GANs
are still considered the leading method for image generation, but they are still
unable to scale and apply to new domains. Consequently, there have been efforts
to achieve state-of-the-art sample quality with likelihood-based models, which
offer better scalability and ease of training. However, these models still lag behind
GANs in terms of visual sample quality, and their sampling process is costlier
and slower than that of GANs.

A class of likelihood-based models known as diffusion models [15,24] has
recently been shown to produce visually realistic images while offering desirable
characteristics such as variety, a stationary training objective, and simple scal-
ability. These models generate samples by gradually eliminating noise from a
signal, and their training objective can be described as a re-weighted variational
lower bound. Compared to GANs, diffusion models enable more stable training
and yield more desirable results in terms of fidelity and diversity. To manage the
trade-off between fidelity and diversity, classifier guidance [10] is used to guide
the diffusion process.

In the domain of image generation, face swapping is a computer vision task
that involves transferring the face of one individual (the source) to another (the
target) while preserving the target’s facial attributes, such as identity, expres-
sion, and pose. This task has various applications in the entertainment industry,
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particularly in films, where it is used to replace the face of an actor with that
of a stunt double or to resurrect deceased actors. Face swapping, also widely
known as deepfakes generation can also be used for practical purposes, such as
in forensic investigations and for facial reconstruction in the medical domain.

In this paper, we introduce a novel guided diffusion model, LDFaceNet, for
deepfake generation. To the best of our knowledge, no prior research has explored
face swapping using pre-trained latent diffusion models. Training diffusion mod-
els from scratch demands extensive computational resources and careful hyper-
parameter tuning. Our method, however, eliminates the need for re-training
by leveraging the weights provided by Rombach et al. [28] from their LDM
trained on the CelebA dataset [23]. We enhance this LDM with a unique facial
guidance module. By using embeddings of images generated during intermedi-
ate timesteps, our model is constrained and guided through the facial guidance
module. Additionally, we implement latent-level blending to ensure a seamless
transition at the boundaries of the swapped face. This approach not only proves
to be cost-effective but also outperforms existing facial swapping methods in
both qualitative and quantitative evaluations by great margins. Furthermore,
our method demonstrates robustness in handling faces with occlusions, misalign-
ments, or non-frontal views, making it highly versatile in various challenging
scenarios.

2 Related Work

2.1 Models for Image Synthesis

GANs Generative modeling faces unique challenges due to the large size of
modern-day images. GANs [12] enable the effective synthesis of visually realis-
tic images with good perceptual quality [2], but they are difficult to optimize
and struggle to capture the complete data distribution. While likelihood-based
methods prioritize accurate density estimation, their optimization behaves more
reliably. Variational autoencoders (VAEs) and flow-based models can synthesize
high-resolution pictures effectively, but their sample quality is generally infe-
rior to that of GANs [36]. Autoregressive models (ARMs) [6,38], despite their
good performance in density estimation, are limited by their sequential sampling
procedure and computationally expensive designs [39], which restrict the reso-
lution of the images they can produce. Maximum-likelihood training expends
a disproportionate amount of capacity to model the scarcely perceptible, high-
frequency details present at the pixel level, leading to lengthy training durations.
To address this, several two-stage approaches first compress an image to a latent
image space using ARMs rather than processing raw pixels, allowing for scaling
to higher resolutions.

Diffusion Probabilistic Models Recently, Diffusion Probabilistic Models
(DM) [15] have produced cutting-edge outcomes in sample quality. When their
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learned posterior or learned network’s backbone is applied as a U-Net, these
models are a natural fit for image-like data.

However, the disadvantage of evaluating and optimizing these models in pixel
space is low inference speed because of repeated sequential sampling and very
high training costs. While the former can be addressed in part by sophisti-
cated sampling techniques like implicit diffusion models [32] and hierarchical
approaches [37], training on high-resolution image data always necessitates the
calculation of expensive gradients. Latent diffusion models (LDMs) were pro-
posed to address the issue of expensive computations by performing the noising
and denoising processes within a reduced latent space. DMs, when combined with
classifier guidance [10] have proven effective in generating high-quality images
tailored to specific object classes.

2.2 Face Swapping Models

Structural Guidance Based Models Traditional face-swapping methods,
which require manual intervention, benefit greatly from structural information.
For faces, landmarks, 3D representations, and segmentation, all of these provide
strong structural priors which can be used to generate high-quality swapped
images. Recent advancements in facial recognition, such as those by Deng et
al. [8], have significantly enhanced the performance of traditional deep CNN
architectures like ResNet-50 and MobileFace through fine-tuning with modified
loss functions. These enhanced models serve as robust structural priors, further
contributing to the generation of high-quality face-swapped images. However,
these traditional methods [1,25] required manual intervention and could not
correctly map the target expressions. 3D structural priors have recently been
combined with GANs for an identity agnostic swapping module [17,21]. However,
these methods are also limited by the accuracy of the underlying 3D models.

Reconstruction Based Models The original deepfakes model [7] is based on
training two separate autoencoders with a shared encoder and different decoders.
However, this approach requires retraining for each unique source-target pair.
Conversely, GAN-based methods like SimSwap [5] have been developed to over-
come the limitations of identity-specific face swapping, offering a more gener-
alized approach that is not restricted to particular pairs of faces. The method
proposed in SimSwap [5] involves segregating the identity data from the decoder
component, thereby enabling the entire framework to be universally applicable to
any given identity. However, this also generates low-quality results under certain
conditions. Typically, subject-agnostic models adjust the intermediate features
of the target image to incorporate the identity of the source image.

3 Preliminary: Diffusion Models

Diffusion Models (DMs) are generative models trained to reverse the earlier
added noise using a parameterized Markovian process. Recent studies have
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demonstrated that DMs are capable of producing images of superior quality
[10,15]. In the following section, we present a concise summary of DMs.

Starting with any vector z0, the forward noising process produces a series
of latents z1, ..., zT by adding Gaussian noise by following a variance schedule
depicted by βt ∈ (0, 1) at time t:

q(zt | zt−1) = N (
√

1 − βtzt−1, βtI) (1)

After sufficient noise is added till timestep T , the last latent zT is nearly an
isotropic Gaussian distribution. The above equation’s closed form can be derived
using a simple reparametrization trick. Let αt = 1−βt and ᾱt =

∏t
i=1 αi. Thus,

we get the following:

q(zt | z0) ∼ N (
√

ᾱtz0, (1 − ᾱt)I)

zt =
√

ᾱtz0 +
√

1 − ᾱtε
(2)

Starting from the distribution q(zT ), a reverse sequence can be generated
by sampling the posteriors q(zt−1|zt). These posteriors are also Gaussian distri-
butions. To approximate this function, a deep neural network pθ (a 2D U-Net
architecture in the context of synthetic image generation) is trained to predict
the mean and variance of zt−1 given zt as input, or to estimate the noise εθ(zt, t),
as proposed by Ho et al. [15]. However, vanilla diffusion models are computation-
ally expensive because they operate directly on the pixel space (zt ∈ R

3×H×W ).
To address this, Rombach et al. [28] proposed Latent Diffusion Models (LDMs),
which denoise in a compressed latent space and then upsample to pixel space
using a pretrained VQGAN [11]. Our method uses LDMs along with conditional
guidance [10] utilizing a novel facial guidance module.

4 Methodology

In this section, we describe our method, LDFaceNet. Given a source image
xsrc, a target image xtarg, and the facial segmentation mask of xtarg as M, our
goal is to transfer the facial features of the source image onto the target image
while keeping all other attributes of the target image the same. More formally,
we need to produce a modified x̂ such that x̂�M is as similar to xsrc as possible.
Furthermore, x̂� (1−M) ≈ xtarg � (1−M) to preserve the background and to
keep the complementary area nearly the same as before. Here � is element-wise
multiplication operator.

In Section 4.1, we extend the latent diffusion approach to support facial
editing by incorporating a guiding cosine loss generated by the identity guidance
module. Initially, our results indicated that while the swapped images maintained
similarity to the source image and preserved the background, they did not map
the emotional expressions of the target image.

Subsequently, in Section 4.2, we introduce a Euclidean L2 loss term generated
by the segmentation guidance module to address this limitation. Our findings
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Fig. 2. Proposed sampling process. The sampling process begins by encoding the
target image into a latent vector using an encoder. The encoder and decoder used
in this method come from the same autoencoder based on previous work by Esser et
al. [11]. Noise is added to this latent vector according to the diffusion noise schedule.
Subsequently, a pre-trained U-Net is used to denoise this latent vector. The output of
the U-Net is then conditioned using our novel facial guidance module. A downsam-
pled facial mask ensures the masked area acquires the necessary facial characteristics
through facial guidance while the background remains constant. Finally, after complet-
ing the denoising process, we pass the final latent vector z0 into a decoder to get the
swapped image. This entire process is detailed in Algorithm 1.

Fig. 3. Facial Guidance Module. The latent vector predz0 is estimated from the
output (εt) of the denoising U-Net. predz0 is upsampled to get x̂, which approximates
what our swapped image would look like after the entire denoising process. x̂ is then
used within the identity and segmentation guided modules since these involve using
pretrained classifiers trained on normal images and not latent vectors. The embeddings
of x̂, xsrc, and xtarg are then used as given in Algorithm 1 to calculate facial and
segmentation guidance loss modules. These are combined to form the complete facial
guidance loss term. The gradient of this facial loss term with respect to zt is used to
guide the reverse diffusion process.
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demonstrate that our method produces coherent and realistic results. Specifi-
cally, the generated images exhibit remarkable similarity to the source image in
terms of skin color, eye color, shape, structure, and lighting. Furthermore, they
effectively preserve the original facial attributes and emotional expressions of
the target image.

To further validate our approach, we conduct a comprehensive ablation study
to evaluate the efficacy of the proposed solutions.

4.1 Source Identity Guided Diffusion

We propose applying facial guidance during the denoising process in order to
dictate the facial attributes of generated images. One significant benefit of using
this method is that, after training, we can control the image produced by the
sampling process’s guidance. As a result, we can produce the necessary images
without having to retrain the LDM. We use external facial recognition modules
to provide guidance in order to take advantage of this advantage. We use the
embeddings of these facial recognition modules to calculate the guidance loss
term.

The preferred approach for face recognition uses Deep Convolutional Neural
Network (DCNN) embedding to represent faces [4,8,31,34,35]. For our experi-
ments, we use a ResNet-50 backbone [13] pre-trained on the MS1MV3 dataset
using the ArcFace [8] loss. The identity guidance module, denoted as DI , con-
strains the ID vector of xsrc to be closer to x̂, the approximation of the swapped
image, which is estimated at each denoising step.

In latent diffusion, the actual denoising occurs in the latent space Z. Since
we are utilizing pre-trained models trained on actual images, it is necessary to
first calculate ẑ, an estimation of z0 given zt. Subsequently, we upsample ẑ to
obtain an approximation of x̂. This x̂ is then passed as an input into DI to
extract feature embeddings. These embeddings, along with the embeddings of
the source image, are processed using a cosine loss.

The overall process is formally described in Algorithm 1 from lines 8 to 10,
and the guidance loss is defined as follows:

Gid = 1 − cos(DI(xsrc),DI(x̂)) (3)

4.2 Target Segmentation Guided Diffusion

Using only the Identity Guidance Loss (Gid) fails to preserve the facial expres-
sions of the target image, such as shape, eye structure, lip structure, and overall
facial structure. Consequently, the expressions of xsrc are mapped onto the gen-
erated image, which, even though it gives a satisfactory transfer of identity, but
with a loss of the target’s expressions.

To address this issue, we use BiseNet [41] as a face segmentation model (DF ),
which predicts pixel-wise probabilities for facial components (such as the nose,
eyebrows, and eyes). This allows us to explicitly match the facial expressions of
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Algorithm 1 LDFaceNet sampling, given a latent diffusion model εθ(zt, t),
Encoder ε, Decoder D, ArcFace Identifer DI and BiseNet Parser DF

1: Input: Source image xsrc, Target image xtarg, Target mask M, diffusion steps k
2: Output: Face swapped image x̂0

3: z0 = ε(xtarg)
4: zk ← sample from N (

√
ᾱkz0,

√
1 − ᾱkI)

5: m ← downsampled from M
6: for t from k to 1 do
7: εt = εθ(zt, t)
8: ẑ = 1√

ᾱt

(

zt − √
1 − ᾱtεt

)

9: x̂ = D(ẑ)
10: Gid = 1 − cos(DI(xsrc), DI(x̂))
11: Gseg = ‖DF (xtarg) − DF (x̂)‖2

2

12: Gfac = λid(t)Gid + λseg(t)Gseg

13: εt = εt +
√

1 − ᾱt∇ztGfac � guide εt using the gradient of Gfac

14: ẑ = 1√
ᾱt

(

zt − √
1 − ᾱtεt

)

15: zt−1,fg ← sample from N
(√

¯αt−1ẑ +
√

(1 − ¯αt−1 − Σ2)εt, Σ
)

16: zt−1,bg ← sample from N (
√

ᾱkz0,
√

1 − ᾱkI)
17: zt−1 = zt−1,fg � m + zt−1,bg � (1 − m)
18: end for
19: x̂0 = D(z0)
20: return x̂0

the synthesized image to those of the target. Through segmentation guidance,
the generated image retains similarity to the target image in terms of expression,
pose, and shape. The Euclidean L2 distance between the two segmentation maps
is then calculated. The formal segmentation guidance loss term is defined as
follows:

Gseg = ||DF (xtarg) − DF (x̂)||22 (4)

The final facial guidance loss term (Gfac) is calculated by combining the
identity guidance loss (Gid) and the segmentation loss (Gseg), each weighted
by their respective lambdas. These lambdas are not constants. We discovered
that using a decreasing step function for these lambdas as denoising progresses
performs better than keeping them constant. In our experiment, we decrease the
lambdas according to a stepwise decreasing schedule. Gfac is formally defined
as follows:

Gfac = λid(t)Gid + λseg(t)Gseg (5)

4.3 Background Preservation

Burt and Adelson [3] demonstrated that images can be effectively blended by
combining each level of their Laplacian pyramids separately. Building on this
method, we blend at different timesteps at the latent level to introduce varying
amounts of noise as the denoising process progresses. The rationale is that, during
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each step of this sampling process, we superimpose noisy latents in the form of
the background onto a set of naturally noisy images. Directly merging two noisy
images from the same timestep often results in incoherence due to differing
distributions. However, the subsequent diffusion step projects the result onto
the manifold of the next level, enhancing coherence.

Formally, starting with a noisy latent zt, we execute a guided diffusion step
that produces a latent zt−1,fg. Concurrently, we obtain zt−1,bg using Equation
(2). These two latents are then blended using a mask m, which is downsampled
from the original target mask M:

zt−1 = zt−1,fg � m + zt−1,bg � (1 − m) (6)

5 Results and Discussion

In this section, we provide a comprehensive analysis of the LDFaceNet model.
We assess the proposed approach from both a quantitative and qualitative per-
spective to ascertain its robustness. In addition, we perform a few ablation
experiments to evaluate the relative contributions of different components of
the model, which highlight the importance of their presence.

5.1 Quantitative and Qualitative results

To generate the results, we use LDFaceNet with the pre-trained LDM model,
ArcFace identity extractor [8], and BiseNet face parser [41]. The generated
images are obtained through the sampling process detailed in Algorithm 1. For
quantitative analysis we use three metrics. The ability to transfer structural
attributes is indicated by the pose error and expression error. These errors are
represented as L2 distances between the pose and expression feature vectors of
the swapped image and target image. Pose and expression vectors are generated
using pre-trained estimators, specifically Hopenet [29] and a 3D face reconstruc-
tion model [9], respectively. We also calculate the ID similarity score, which is
the cosine similarity between swapped faces and their corresponding sources.

We present the results side-by-side for each pair of source and target images
in figure 4. It clearly demonstrates the ability of LDFaceNet to generate real-
istic images by transferring the facial features and expressions of the target
image onto the source image. The generated images are compared with other
state-of-the-art methods for a thorough analysis. Further figure 4 analyses the
quantitative performance by showing the cosine similarity (higher the better),
pose error (lower the better) and expression error (lower the better). The num-
bers also unequivocally demonstrate our model’s superior performance compared
to other recent face-swapping models. It is evident that LDFaceNet outper-
forms the previous techniques, including recent models like E4S (CVPR’23) by
a considerable margin.

Overall, the results demonstrate that LDFaceNet can produce high-quality
images that closely resemble the source image while retaining the characteristics
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Fig. 4. Qualitative Results. Our method achieves high-fidelity results, better pre-
serving source identity and target facial attributes than other methods. It also handles
occlusions and partial views robustly.

of the target image. The generated images show realistic facial expressions, light-
ing, and background, which are crucial for creating realistic face swaps. These
results highlight the potential of LDFaceNet as a powerful tool for image
manipulation and face swapping (Table 1).

5.2 Ablation Study

To assess the significance of the identity and segmentation guidance modules,
we conducted experiments with three different configurations: disabling only the
segmentation module, disabling both modules, and enabling both modules. The
results of these experiments are shown in Figure 6, highlighting the importance
of both modules. Specifically, when the segmentation module is disabled, the
source’s facial expression is copied onto the result image, and the target’s facial
expression is lost. This demonstrates the essential role of the segmentation mod-
ule in preventing the loss of target’s facial expression.When both modules are
disabled, our model attempts to reconstruct the source image without any guid-
ance. As a result, the generated image appears visually similar to the target
image, with no discernible change in facial features or attributes. This highlights
the crucial role played by the identity and segmentation guidance modules in
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Table 1. Comparative results of the LDFaceNet and other existing face swapping
methods over CelebA dataset [23]Comparative results of the LDFaceNet and other
existing face swapping methods over CelebA dataset [23].

Method ID similarity ↑ Pose ↓ Expr. ↓
MobileFace (AAAI’22) [40] 0.25 2.52 3.72

MegaFS (CVPR’21) [42] 0.26 2.48 3.27

DiffFace [20] 0.55 2.40 2.71

E4S (CVPR’23) [22] 0.61 2.31 2.80

LDFaceNet 0.67 2.18 2.55

achieving facial swapping with controllable and desirable results. We present
these obeservations and quantitative scores through Figure 5 for a better visu-
alization of contribution of the two components.

Fig. 5. Comparative performance of ablation experiments. x-axis represents the three
variants of LDFaceNet. The three lines describe the performance of each variant for
three metrics.

Our ablation experiments indicate that the identity and segmentation
guidance modules are critical for achieving high-quality facial swapping with
LDFaceNet. By incorporating facial guidance, we achieve better results in
visual fidelity and attribute preservation. Additionally, our model can apply
different levels of guidance to balance identity and attribute preservation. While
LDFaceNet performs excellently, there are opportunities for further enhance-
ment. One direction is to train a new diffusion model on CelebA using classifier-
free guidance [16]. Incorporating more identity and face-parser networks into an
ensemble could also create a more robust guidance loss function, further refining
our model’s capability for face swaps.
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Fig. 6. Ablation study generated examples. Qualitative results of the ablation
study demonstrate the importance of the individual guidance modules within our com-
prehensive facial guidance module. Disabling both modules causes the model to behave
like a simple LDM, attempting to reconstruct the target image as it is. When only the
identity guidance is enabled, the identity of the target is mapped, but the source’s facial
expressions are lost. Further, when both modules are enabled, the model successfully
preserves both the source’s identity and the target’s facial expressions.

6 Conclusion

LDFaceNet is a guided diffusion model for facial swapping that leverages facial
segmentation and facial recognition modules for a conditioned denoising process.
With its unique guidance loss functions, LDFaceNet offers directional guid-
ance to the diffusion process, and can incorporate supplementary facial guidance
for desired outcomes without retraining. LDFaceNet improves upon previous
GAN-based approaches by utilizing the potential of the diffusion model for facial
swapping, resulting in superior visual outcomes and greater diversity.

In conclusion, LDFaceNet offers a promising new approach to facial swap-
ping by utilizing guided diffusion, segmentation, and recognition modules. The
results demonstrate the proposed method’s efficacy and highlight the diffusion
model’s potential for face swapping tasks. This study represents a significant
contribution to the field of face swapping using diffusion models and serves as a
foundation for future research in this area.
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Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems.
vol. 32. Curran Associates, Inc. (2019), https://proceedings.neurips.cc/paper files/
paper/2019/file/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Paper.pdf

28. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 10684–10695 (2022)

29. Ruiz, N., Chong, E., Rehg, J.M.: Fine-grained head pose estimation without key-
points. In: Proceedings of the IEEE conference on computer vision and pattern
recognition workshops. pp. 2074–2083 (2018)

30. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans. Advances in neural information processing
systems 29 (2016)

31. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 815–823 (2015)

32. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502 (2020)

33. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data
distribution. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F.,
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Abstract. Dynamic interactions between human joints and bones con-
vey significant information for skeleton-based abnormal gait recognition.
Existing graph convolutional networks (GCNs)-based methods either
only consider the locomotion information of the joints or treat the motion
information of joints and bones independently, failing to explore the
implicit dynamic interactions between joints and bones effectively. These
interactions also contain rich and useful abnormal gait representation
information. In this work, we propose a novel adaptive graph convolu-
tional fusion network (AGCFN) for skeleton-based abnormal gait recog-
nition. The joint motion information and bone motion information are
modelled as a joint spatiotemporal gait graph and a bone spatiotemporal
gait graph, respectively. Our AGCFN is designed to explore the inter-
action information between joints and bones through learning the inter-
graph relationships between the above two gait graphs, so as to obtain
more discriminative gait feature representations. Extensive experiments
on our abnormal gait dataset demonstrate that the generalization perfor-
mance of our model exceeds the state-of-the-art by a significant margin.

Keywords: Graph fusion network · Graph convolutional network ·
Adaptive learning · Abnormal gait

1 Introduction

Abnormal gait is related to impaired interactions between joints, bones and
muscles under the control of the central nervous system [1]. It may seriously affect
human walking function in daily life. The accurate identification of abnormal
gait has become an active research area in recent years, as it contributes to the
diagnosis and treatment of diseases related to gait abnormality.

In the past decade, skeleton-based abnormal gait recognition methods have
been widely investigated and have attracted increasing attention, since skele-
ton data contains richer locomotion information about human anatomical struc-
ture [2–11]. Certain approaches model human skeleton data as a sequence of
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coordinate vectors or 2D grid, then feed it into CNNs or LSTMs to capture
spatial-temporal gait features for prediction [5–11]. However, such deep learning
methods ignore spatial structural information of the human skeleton. Actually,
the human skeleton can be naturally structured as a graph topology in non-
Euclidean space, where graph vertices denote all the joints of the human body
and edges represent the physical connection between them. The previous meth-
ods cannot handle such graph structure data and exactly learn irregular gait
characteristics in non-Euclidean space.

Recently, graph convolutional networks (GCNs) [12] have achieved con-
siderable success in various graph learning tasks [13–21]. For the abnormal
gait recognition task, inspired by the study of spatial-temporal graph convolu-
tional network (ST-GCN) [22], researchers have explored the feasibility of using
GCN-based graph models to extract spatial and temporal dynamic features of
abnormal gait [23–25]. In these studies, human joint locomotion information is
abstracted into a gait graph, and spatial-temporal graph deep learning models
are developed to discover the most discriminative gait abnormality representa-
tion associated with the interactions between human joints. However, the above
methods only focus on the locomotion information of human joints and ignore
bone motion information, which has been proven to be important and infor-
mative [26]. Currently, certain works [27] have attempted to construct multiple
abnormal gait graphs to represent joint and bone locomotion information within
human skeleton data. For example, Guo et al. [28] proposed a two-stream spatial-
temporal attention graph convolutional network (2s-ST-AGCN) to discover the
best spatial-temporal gait dynamic representation from two-stream gait-graph
including joint gait-graph and bone gait-graph.

Although significant progress has been made in current research on abnormal
gait recognition using two-stream networks, some shortcomings remain. In these
two-stream networks, the joint stream and the bone stream are treated com-
pletely independently, ignoring the interactions between joints and bones. That
is, these methods only consider the intra-graph relationships within the joint gait
graph and bone gait graph separately, i.e. the interactions between joints and
the interactions between bones. They do not account for the inter-graph rela-
tionships between the joint gait graph and the bone gait graph. This inter-graph
relationships also contain rich and discriminative gait abnormality characteristics
associated with dynamic interactions between the joints and bones. Considering
the implicit interactions between the joints and bones may be beneficial for the
pattern recognition of abnormal gait.

To the best of our knowledge, no study has attempted to explore the inter-
graph relationships between the joint gait graph and the bone gait graph. To
this end, this study presents an adaptive graph convolutional fusion network
(AGCFN) for skeleton-based abnormal gait recognition. It parameterizes a cross-
adaptive adjacency matrix, which is trained and updated simultaneously with
convolutional parameters of the model, to fuse the joint gait graph and the
bone gait graph into a joint-bone fusion gait graph. With this fusion gait graph,
our model could discover more discriminative gait abnormality features associ-
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ated with the interactions between joints and bones hidden in skeleton data.
We employed Kinect sensor data of six mimic abnormal gaits to evaluate the
feasibility of our proposed model. The experiment results show that our model
achieves state-of-the-art performance on our dataset. The main contributions of
our work are three-fold:

1. A novel graph fusion network is developed to capture the most discriminative
spatiotemporal dynamic gait abnormality features for high-generalization.

2. With the cross-adaptive adjacency matrix, our model can learn the opti-
mal gait abnormality representation associated with the interactions between
joints and bones hidden in skeleton data.

3. The proposed model reaches the best performance with the lowest computa-
tion cost compared to recent state-of-the-art models.

2 Related work

2.1 Skeleton-based abnormal gait recognition

Recently, numerous studies have focused on investigating the feasibility of apply-
ing advanced deep learning models to skeleton-based abnormal gait recognition
in an end-to-end manner. Some researchers initially utilized traditional deep
learning models, such as CNNs and LSTMs, to discover spatial and tempo-
ral gait abnormality features by modelling human skeleton data. LSTM-based
methods [5–8] usually model the skeleton data as a sequence of coordinate vec-
tors representing human body joints. CNN-based methods [9,10] usually treat
the skeleton data as a pseudo-image. Though these works have made consider-
able progress, they cannot explore the irregular spatial-temporal gait abnormal-
ity features because the traditional deep learning algorithms mainly depend on
shift-invariant and local correlation for spatial or temporal feature extraction in
Euclidean space.

To overcome the above shortages, some studies have attempted to model
human skeleton data based on graph deep learning models such as GCNs [22–
25]. They aim to take advantage of the excellent graph learning capability to
capture the implicit irregular interaction features between joints and bones in
non-Euclidean space. Additionally, in order to fully explore the joint and bone
movement information in skeleton data, the multi-stream graph learning models
were investigated to improve the generalization of abnormal gait recognition [27,
28]. However, how to learn the implicit motion interactions between the joints
and bones has not been studied in sufficient depth.

2.2 Graph fusion network

Graph fusion learning networks have been proposed for discovering the most
representative features from multiple graph topological structures [29–32]. Its
advantage is to integrate multiple graph topological structures with different
types of data into a unified graph topological structure with richer represen-
tation information. Many relevant studies have demonstrated the feasibility of
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graph fusion learning networks for capturing the most representative features
with richer information based on multimodal data. For instance, Hu et al. [33]
proposed a novel graph fusion neural network for multi-modal freezing of gait
detection. Dhawan et al. [34] designed a graph attention fusion network for mul-
timodal fake news detection. In addition, Tu et al. [35] proposed a joint-bone
fusion graph convolutional network to discover the motion transmission between
joints and bones. These remarked achievements made in current studies motivate
us to investigate the feasibility of developing the novel gait-graph fusion learning
network for capturing the richer coupling action representation information from
skeleton data.

3 Methods

3.1 Pipeline overview

In the present study, a novel adaptive graph convolutional fusion network
(AGCFN) is developed to accurately classify skeleton-based abnormal gait pat-
terns, as shown in Fig. 1. The input to the model consists of a joint spatial-
temporal gait graph and bone spatial-temporal gait graph. Then, three abnormal
gait feature extraction blocks are designed. Each block consists of an adaptive
graph convolutional fusion layer, a temporal convolutional layer, a residual con-
nection, two batch normalization layers, and two ReLU layers. A global average
pooling layer and a fully connection layer are then employed to map the gait
representation to the most distinctive feature space. The final output is sent to
a SoftMax classifier to obtain the prediction. The cross-entropy loss is used to
train the entire network end to end. We will now go over the components of the
AGCFN model.
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Fig. 1. Illustration of our proposed model
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3.2 Spatiotemporal gait graph construction

In this work, we employ spatial-temporal graph topology structure to model
skeleton sequence of the lower limbs, as shown in Fig. 2. The hip, knee and
ankle joints of right and left lower limbs, and pelvis joint were considered. A joint
spatiotemporal gait graph Gj

st = {V j , Ej} is first defined, as shown in Fig. 2(a).
In this graph, V j = {vt,i|t = 1, ..., T ; i = 1, ..., N j} represents the sequence of
graph vertices, where N j is a total of lower limb joints selected and T denotes the
frame length of one gait cycle. The edge set Ej = {Ej

1, E
j
2, E

j
3}. The first type

of edge represents natural bone connections between two joints at each frame,
denoted as Ej

1. The second type of edge set represents gait symmetry connections
between symmetrical joints of the two lower limbs, denoted as Ej

2, The last type
of edge set connects the same joints in consecutive frames, denoted as Ej

3. The
connectivity between nodes vi and vj can be defined by adjacency matrix Aj ∈
RNj×Nj

at each frame. The coordinate information of all joints in spatiotemporal
gait graph can be defined as Xj ∈ RT×Nj×Cj

, where Cj is the dimension of joint
coordinate vector. Therefore, the joint spatiotemporal gait graph is defined as
Gj

st = {Xj
t , A

j}Tt=1. After that, we defined a bone spatiotemporal gait graph
Gb

st = {V b, Eb}, as shown in Fig. 2(b). In this graph, V b = {vt,i|t = 1, ..., T ; i =
1, ..., N b} represents the sequence of graph vertices, where N b is a total of bones
between joints in lower limbs, which is equal to 6. Here, each bone can be denoted
as a vector pointing to its target joint to its source joint. For example, given a
bone with its target joint vt = (x1, y1, z1) and its source joint vs = (x2, y2, z2),
the bone vector is defined as e = (x1 − x2, y1 − y2, z1 − z2). Like the joint gait
graph, there are three same types of edge sets in bone graph. The connectivity
of bone gait graph can be denoted by adjacency matrix Ab ∈ RNb×Nb

. The
coordinate information of all bones in spatiotemporal gait graph can be defined
as Xb ∈ RT×Nb×Cb

, where Cb is the same as the dimension of joint coordinate
vector. Thus, the bone spatiotemporal gait graph could be defined as Gb

st =
{Xb

t , A
b}Tt=1.

3.3 Adaptive graph convolutional fusion layer

In our model, the adaptive graph convolutional fusion layer is adopted for
extracting spatial gait abnormality features by fusion learning of joint spatial-
temporal gait graph and bone spatial-temporal gait graph, as shown in Fig. 3.
Given that the inputs include joint spatiotemporal gait graph Gj

st = {Xj
t , A

j}Tt=1

and bone spatiotemporal gait graph Gb
st = {Xb

t , A
b}Tt=1. To construct the joint-

bone fusion gait graph, the cross-adaptive adjacency matrix C = {Cj , Cb} is
defined to learn the connections between joint gait graph and bone gait graph.
Cj represents the connection from joint gait graph to bone gait graph and Cb

denotes the connection from bone gait graph to joint gait graph. They repre-
sent the cross connection between joints and bones of lower limbs. Note that the
elements in matrix C can be arbitrary values. That is, they indicate not only
the connectivity between two vertices but also the strength of the connectivity.
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Fig. 2. Illustration of spatiotemporal gait graph. (a). Joint spatiotemporal gait graph;
(b). Bone spatiotemporal gait graph

Fig. 3. Illustration of the adaptive graph convolutional fusion layer

Besides, we add a learnable mask M = {M j ,M b} to scale the different contri-
bution of a node’s feature to its neighboring nodes for joint gait graph and bone
gait graph. Here, we can obtain the fusion adjacency matrix F , which is defined
as follows:

F = {Aj � M j , Ab � M b, Cj , Cb} (1)

where � denotes the dot product, and F ∈ R(Nj+Nb)×(Nj+Nb). The construction
process of fusion adjacency matrix is illustrated in Fig. 4. As shown in Fig. 4, the
fusion adjacency matrix consists of four parts: the result of the dot product of Aj

and M j , the result of the dot product of Ab and M b, Cj , and Cb. Based on this
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adaptive fusion adjacency matrix F , we can determine the topology structure of
the joint-bone fusion gait graph. Thus, the fusion spatiotemporal gait graph can
be defined as Gst = {Xt, F}Tt=1, where X can be defined as follows:

X = Xj‖HXb (2)

where ‖ denotes the concatenation operation on the node quantity dimension
H, and X ∈ RH×T×(Nj+Nb).

Fig. 4. Illustration of learning process of fusion gait graph

The graph convolution operation on vertex vt,i in fusion spatiotemporal gait
graph can be formulated as follows:

fout(vt,i) =
∑

vt,i∈B(vt,i)
1

zt,i(vt,i)
fin(vt,i) · w(lt,i(vt,i)) (3)

where vt,i represents i-th graph vertex at t-th frame, f is the vertex feature map.
The neighbor set B(vt,i) = {vt,j |d(vt,i, vt,j) ≤ D} denotes the sample region of
convolution operation on vertex vt,i. In this work, we set D = 1, that is, 1-
distance neighbour vertices are considered. w is a weight function that provided
weight parameters. lt,i is a label mapping function that partitions the neighbor
set B(vt,i) into a fixed number of K subset. In the layer, we divided the neighbor
set into three subsets based on graph spatial configuration. The first subset
contains the root node itself. The second subset contains the neighboring nodes
that are closer to gravity center node selected (pelvis node) than root node. The
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third subset contains the neighboring nodes that are farther from the gravity
center node than root node. Here, the implementation of graph convolution is
formulated as follows:

X ′ =
∑K

k=1WkXF̃k (4)

F̃k = D
− 1

2
k FkD

− 1
2

k (5)

where K represents the spatial kernel size. It is equal to the number of sub-
sets of neighbor set according to the partition strategy. Fk is the fusion adja-
cency matrix. Dij

k =
∑

jF
ij
k + α represents the normalized diagonal matrix.

α is used to avoid empty rows. Wk denotes the parameter matrix of convolu-
tion operation. Thus, the new spatial-temporal fusion gait graph representation
with spatial gait abnormality features can be denoted as G′

st = {X ′
t, F

′}Tt=1,
where X ′

t ∈ RH′×T×(Nj+Nb). Besides, a batch normalization layer is utilize to
stabilize and accelerate the training of neural networks by normalizing the gait
graph representation. A ReLU layers is used to introduces non-linearity in neu-
ral networks, overcoming the vanishing gradient problem and enabling faster
convergence. Then, the G′

st serves as the input for the temporal convolution
layer.

For the temporal convolutional layer, since the number of neighbors for each
node is fixed as 2, it is straightforward to perform the graph convolution similar
to the classical convolution operation. Specifically, a standard 2D convolution
with 7×1 kernel is performed on the learned feature map X ′.

4 Experiments

4.1 Dataset

In this work, 57 health participants were recruited to collect skeleton data
of abnormal gait using a Kinect sensor, which accurately captures three-
dimensional motion coordinate information of 32 human body joints. Each par-
ticipant was asked to walk with six abnormal gait patterns (steppage gait,
antalgic gait, circumduction gait, waddling gait, in-toeing gait, and out-toeing
gait) and one normal gait on a treadmill. Our dataset contains a total of 53,988
gait samples, with each sample representing the locomotion coordinate informa-
tion of 32 joints of the human body within a gait cycle.

For greater credibility and robustness of our model, the public walking gait
dataset [37] has been used in this study. Nguyen et al. used 5-cm, 10-cm, and
15-cm soles and a 4-kg weight to cause abnormal gaits. There are 1 normal and
8 abnormal gaits acquired by 9 participants in this dataset. Each gait pattern
contains 1200 frames of the skeleton data collected by Kinect v2.

The leave-one-subject-out (LOSO) cross-validation approach is employed to
divide training data and test data. All samples for one subject were kept as test-
ing data, while the samples from the remaining subjects were used for training
the model.
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4.2 Training setting and evaluation metrics

All experiments were conducted on the PyTorch deep learning framework with
1 single RTX 3090 GPU. Stochastic Gradient Descent (SGD) with Nesterov
momentum (0.9) was employed as the optimization strategy. The training com-
prised 200 epochs with a learning rate initialized at 0.001 for the first 20 epochs,
followed by a decrease to 0.0001 for the remaining epochs. The batch size was
set to 256. To avoid overfitting, early-stopping method was considered in the
training process.

For our multi-class gait classification task, model performance was evalu-
ated by accuracy, macro-averaged Recall (macro-R), macro-averaged Precision
(macro-P), and macro-averaged F1-score (macro-F1).

4.3 Evaluation of the generalization performance of our proposed
method

We first compare our model with the state-of-the-art deep learning models
in recent studies on our dataset. These models used for comparison include
LSTM [5], CNN-LSTM [9], ST-GCN [22], STJA-GCN [27], 2s-ST-AGCN [28],
and CTR-GCN [36]. The classification results of comparison are given in Table 1.
Our model achieves the best performance across all four evaluation metrics with
a large margin (macro-P of 98.62%, macro-R of 98.81%, macro-F1 of 98.56% and
Accuracy of 98.74%), verifying the superiority of our proposed model. Also, we
evaluate our model with these state-of-the-art methods on the public walking
gait dataset. The classification results of comparison are given in Table 2. Our
model achieved 100% on all four evaluation metrics. These results demonstrated
that our model has excellent graph fusion learning capability to discover the
most discriminative gait abnormality representations hidden in skeleton data.

Table 1. Comparison with state-of-the-art methods on our gait dataset

Methods macro-P (%) macro-R (%) macro-F1 (%) accuracy (%)

LSTM [5] 90.43 90.55 89.72 89.96

CNN-LSTM [9] 90.22 89.78 89.52 89.68

CTR-GCN [36] 91.78 91.31 91.22 91.82

ST-GCN [22] 92.44 92.56 92.15 92.33

STJA-GCN [27] 94.32 94.23 94.01 94.12

2s-ST-AGCN [28] 96.11 96.15 95.96 96.02

Our method 98.62 98.81 98.56 98.74

Besides, we further evaluate the recognition performance of our model for
each gait pattern based on our gait dataset, using 2s-ST-AGCN and ST-GCN
for comparison. The comparative results are presented in the confusion matrices
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Table 2. Comparison with state-of-the-art methods walking gait dataset

Methods macro-P (%) macro-R (%) macro-F1 (%) accuracy (%)

LSTM [5] 93.34 93.51 93.39 93.85

CNN-LSTM [9] 94.31 94.78 95.29 94.72

CTR-GCN [36] 99.34 99.56 99.25 99.64

ST-GCN [22] 100.0 100.0 100.0 100.0

STJA-GCN [27] 99.11 99.85 99.76 99.78

2s-ST-AGCN [28] 100.0 100.0 100.0 100.0

Our method 100.0 100.0 100.0 100.0

in Fig. 5. Our model accurately identifies almost every gait pattern, while 2s-
ST-AGCN and ST-GCN show poor recognition capabilities for antalgic gait.
These results further show that our proposed model achieves the best graph
fusion learning ability to discover the gait abnormality representation with rich
interaction information between joints and bones.

Fig. 5. Confusion matrices of different methods for recognition accuracy of each gait
pattern

4.4 Evaluation of the complexity of our proposed method

In this experiment, we compare the complexity (including parameters (Params),
floating point operations per second (FLOPS), and memory overhead (Mem-
ory)) of different graph-based models, as shown in Table 3. Params, FLOPS,
and Memory are all calculated through an open-source tool called torchstat.
Compared to these graph-based models, our model accelerates the training pro-
cess and reduces the memory overhead and computational time. Overall, our
model achieves both high generalization and low complexity.
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Table 3. Comparative results of the complexity of different state-of-the-art graph-
based methods

Methods Param (M) FLOPS (G) Memory (MB)

ST-GCN [22] 1.78 0.213 7.14

CTR-GCN [36] 1.41 0.193 12.81

STJA-GCN [27] 2.83 0.356 8.81

2s-ST-AGCN [28] 3.43 0.458 9.72

Our method 0.774 0.192 6.87

4.5 Ablation experiments

In this experiment, we examine the effectiveness of the proposed cross-adaptive
adjacency matrix. First, we set all the values of the cross-adaptive adjacency
matrix to 0 (variant 1) to evaluate its graph fusion learning capability. Next, we
set all the values to 1 (variant 2) to verify its adaptive graph learning capability.
As shown in Table 4, removing the cross-adaptive adjacency matrix will harm
the model’s performance. This indicates that graph fusion learning and adap-
tive graph learning based on our proposed cross-adaptive adjacency matrix are
beneficial for abnormal gait recognition. Additionally, the final adaptive fusion
adjacency matrix learned by our model is shown in Fig. 6. The color intensity of
each element in the matrix indicates the strength of the connection. This figure
shows that our model is able to explore not only the intra-graph relationships
within the joint gait graph and the bone gait graph but also their inter-graph
relationships, which contain rich gait abnormality features associated with the
impaired interactions of joints and bones. These results prove our view that the
implicit interaction information between the joints and bones is also important
for abnormal gait recognition.

Table 4. Ablation experiment results on the cross-adaptive adjacency matrix

Methods macro-P (%) macro-R (%) macro-F1 (%) accuracy (%)

Variant 1 94.87 94.67 94.81 94.98

Variant 2 96.77 96.81 96.63 96.51

Our method 98.62 98.81 98.56 98.74
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Fig. 6. Illustration of the learned adaptive fusion adjacency matrix

5 Conclusion

In this work, we proposed a novel adaptive graph convolutional fusion network
(AGCFN) for skeleton-based abnormal gait recognition. The model parameter-
izes a cross-adaptive adjacency matrix to adaptively fuse the joint gait graph
and the bone gait graph into a fusion gait graph. With this fusion gait graph,
our model can discover not only the intra-graph relationships (i.e., the interac-
tion information between human joints and the interaction information between
human bones) within the joint gait graph and the bone gait graph but also
their inter-graph relationships (i.e., the interaction information between human
joints and bones). The inter-graph relationships contain rich abnormal gait fea-
ture information, greatly improving the generalization performance of our model.
On our abnormal gait dataset, the proposed AGCFN achieves state-of-the-art
performance and the lowest computation cost compared with other advanced
methods.
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Abstract. Anomaly detection on dynamic graphs is crucial for mon-
itoring the security of industrial systems. The challenge in identifying
anomalies in time-varying data arises from complex and flexible struc-
tures, compounded by the absence of labelling in the data. In particular,
the representation of graph patterns and capturing the evolving nature
of graphs become challenging due to time varying nature, i.e., dynamic
graphs. Contrastive learning in graph-related contexts has gained con-
siderable traction recently, primarily attributed to its label independence
and the robustness in representations. In order to address the limitations
in dynamic graph representation and anomaly detection, we propose
a novel Contrastive learning-based dynamic graph anomaly detection
framework (ConDGAD) to improve the time series data representation
learning and prediction through dynamic graphs. This enables detection
of multivariate time series anomalies at specific time window of measure-
ment levels. ConDGAD first converts the multivariate time series data
into dynamic graphs. Then multiple graph augmentations are performed
and a novel contrastive learning process is applied on the dynamic graphs.
This enable to train a model that can effectively capture the graph
dynamics and perform accurate prediction, which subsequently is used
for anomaly detection. Evaluation performed on widely used time series
datasets, including SWaT and WADI, reveal that the ConDGAD has
achieved improved recall and F1 scores for anomaly detection over the
state-of-the-art methods. Ablation studies reveal the significance of the
our proposed multi-augmented constrastive learning process in achieving
the improved performance for anomaly detection on time series data via
dynamic graphs.
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1 Introduction

Significant amount of inter-connected sensors and devices have been deployed
in recent years, such as in Internet of Things (IoT), Cyber networks, transport
networks and power grids. These devices generate voluminous time-series data.
A challenge here is to develop efficient representations to capture the dynamics
of the multivariate data for achieving improved prediction, classification and
anomaly detection performances.

When facing with data having more complex patterns and dimensions, it
is increasingly difficult for humans to manually process the information. This
creates a need for automated methods to identify anomalies in such high-
dimensional data in a timely manner. Further, the methods need to be robust to
the changing data patterns over time, leading to stable detection results facing
various anomaly situations.

The advancements in computing and deep learning have significantly
enhanced anomaly detection in recent times. For example, Autoencoder (AE)
based methods [1,9,10] use reconstruction error as a metric for detecting out-
liers. Long Short-Term Memory (LSTM)-based methods and various extensions,
[20,21], have shown promising results in detecting anomalies in multivariate data.
However, a common limitation of these methods is their inability to explicitly
learn the hidden patterns between different time intervals or devices when the
data is evolving.

Traditional algorithms that are designed to find patterns in data are often
represented as a fixed length vector of features. In contrast, the data can be
represented in the form of graphs [31]. Graph Convolutional Neural Networks
(GCNs) [13,14] and graph attention networks (GATs) [29] are common deep
learning based graph representation methods that can be used for time series
data representations. However, facing the time-series data, typical GNNs are
unable to model the changing nature of relations and the dynamic behavior of
nodes and edges effectively. Hence, dynamic graph representation are suitable in
these circumstances, that can capture the time dynamics efficiently.

In [24], EvAnGCN is proposed that uses evolving graph for anomaly detec-
tion in blockchains. However, generalised embeddings have not been obtained
for improving robust representations. In [23], one class GCN has been used for
anomaly detection in blockchain data, however, dynamic graphs is not consid-
ered for analysis. In order to take advantages of dynamic graph representations
for time series data and also the use of contrastive learning to obtain more
robust embedding and prediction, we propose a novel Contrastive Learning-
based Dynamic Graph Anomaly Detection framework (ConDGAD), as shown
in Figure 1. The proposed system first transform the time series data into
dynamic graphs, followed by graph augmentations and novel contrastive learning
process to obtain embeddings with enhanced robustness. A transformer and a



418 S. Xia et al.

predictor module have also been integrated for efficiently process the dynamic
graph embeddings, capturing the long-term dynamics of the time series data.
The learned predictor is subsequently used for detecting the anomalies.

Fig. 1. ConDGAD framework: Time series data from multiple sensors are first sliced
into multiple time windows of measurements during the pre-processing stage. Each
slice is then converted into a graph, and the collections of these graphs over time
produces the dynamic graphs. A novel contrastive learning process, involving multi-
augmentation, encoding and transformation, is used to obtain the dynamic graph
embeddings and the prediction model. The trained model is then used for detecting
the anomalous time window of measurements in the multi-variate time series

In summary, the main contributions of this work are:

– We propose a dynamic graph representation and forecasting framework for
time series anomaly detection. The core component of the framework com-
prises a novel contrastive learning methodology based on multi-augmentation
for dynamic graphs and a transformer module built upon series of encoded
graph embeddings under different augmentation schemes to obtain a compact
embedding (concentrating module) that capture the changing graph patterns
and the feature variations among time series.

– subsequently, a time series forecasting process (predictor) is learned to make
long-term time-series predictions, which benefits from the evolving pattern of
the short-term dynamic graphs. The concentrating and forecasting models are
trained with contrastive learning using multiple-augmentations. The trained
predictor is then used for anomaly detection.
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– Evaluations are performed on real-world industrial benchmark datasets. The
results reveal that the proposed model is superior compared to other existing
methods, in terms of detecting accuracy. Ablation study further confirms
that the proposed contrastive learning and prediction components contribute
significantly for achieving improved anomaly detection performance.

2 Related Work

We briefly review the recent works on dynamic graphs and anomaly detection,
in this section.

A significant advancement in spatial and temporal representations is the
development of methods that effectively combine both temporal and spatial
aspects in dynamic graphs. In DyRep, [28], an inductive deep representation
learning framework is proposed that efficiently produce low-dimensional node
embeddings that evolve over time, driving the dynamics of communication and
association between nodes in dynamic graphs. The Dynamic-GTN model, [11],
is designed to learn node embeddings in a continuous-time dynamic graph. Some
of the temporal focused works includes TGNs [25] and Temporal-GAT [27]. They
combine the time series model with graph structured data.

An advanced way to represent a dynamic graph is to combine both tempo-
ral and spatial aspects. In [4], a node representation learning architecture based
on graph convolutional networks (GCNs) is presented, which integrates multi-
dimensional features of node degree, clustering coefficient, and time evolution for
dynamic networks, and utilises algorithms like LSTM and Multi-Head Atten-
tion to capture the time evolution patterns. In [7], dynamic spatial-temporal
graph convolutional networks is proposed, addressing challenges in traffic flow
prediction by considering the dynamic nature of spatial dependencies in traf-
fic networks. In [35], authors discuss temporal knowledge graphs and propose
time-aware representation learning models for inferring missing temporal facts,
addressing the dynamic interactions of entities along a timeline.

Several deep learning based anomaly detection has been proposed in the lit-
erature. Graph Autoencoders (GAEs) [12] are an unsupervised learning method,
mapping nodes to a potential vector space and reconstructing graph information.
The reconstruction errors are used to detect anomalies. Temporal Convolutional
Networks (TCNs) have shown advantages in addressing temporal dependencies.
Enhancements to TCNs [16] have been proposed to better capture anomalies
within domains like traffic flow, where understanding long-term temporal cor-
relations and spatial characteristics. GDN, in [5], introduces an attention-based
graph neural network (GNN) method that learns the dependency relationships
among sensors and effectively detects and elucidates anomalies in these rela-
tionships. In [3], a forecasting framework for detecting anomalies in multivari-
ate time series is introduced, which centered around a dynamic graph encoder.
This encoder utilizes evolving graphs to analyze both the short-term changes
and long-term consistent relationships among different time series, enhancing
anomaly detection capabilities. In this work, a dynamic graph anomaly detec-
tion method is proposed, where an anomalous graph will correspond to the time



420 S. Xia et al.

window of measurements that exhibits abnormal behaviors contributed collec-
tively from multiple sensors during that time window of measurements.

Graph Contrastive Learning is at the forefront of research, establishing a
new paradigm for learning graph representations without the need for human
annotations. These approaches aim to learn informative and discriminate embed-
dings for nodes or graphs without requiring labeled data. In [18], MaskGAE is
proposed, which is a self-supervised learning framework for graph-structured
data. It differs from previous graph autoencoders by using masked graph mod-
eling as a pretext task, aiming to reconstruct missing parts of a graph. In [19],
S3 − CL is proposed that combines structural and semantic contrastive learn-
ing. This approach allows even simple neural networks to learn expressive node
representations that capture valuable global structural and semantic patterns.
Contrastive Graph Few-Shot Learning [33], describes a framework where a GNN
is pre-trained using contrastive learning and then applied to few-shot node classi-
fication. This methodology leverages self-distilled learning phases to enhance the
GNN’s performance on few-shot tasks. Graph Contrastive Learning with Aug-
mentations [32] is an example to include different graph augmentation methods
for contrastive learning to train graph representations with better generalizabil-
ity, transferrability, and robustness. Our work shares similarity with GraphCL,
as we also include graph augmentations for contrastive learning while the dif-
ference is in our contrastive learning process for dynamic graphs. In general,
the above existing works do not consider effective contrative learning that can
capture generalised robust embeddings for the graph dynamics and achieve high
anomaly detection.

3 Methodology

The proposed framework comprises a dynamic graph creation component, a
training component and an application component. The dynamic graph creation
component creates the dynamic graph from time series. The dynamic graph
data is processed via multi augmentation, novel contrastive learning process and
prediction process to obtain a robust embedding, as well as an effective predictor
of the embeddings. The trained model is then further used for anomaly detection
purposes.

3.1 Creating Dynamic Graphs from Time Series

Before the training process of ConDGAD framework, we convert the time series
signals to dynamic graph representations. The original data are composed of
sensor data (i.e., multivariate time series) from N sensors collected over a time
period of Ttrain.The time period is divided into several window of measurements,
with temporal interval size (window size) of ω. This sensor data is denoted as
ntrain = [n(t1)

train, · · · ,n(Ttrain)
train ], which is used to train our approach. At each time

tick t, the sensor values n(t)
train ∈ RN form a N -dimensional vector representing

the values from N sensors. Following the usual unsupervised anomaly detection
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formulation, the training data is assumed to consist solely of normal data. Our
goal is to train the representations and then detect anomalies in the (unseen)
testing data, which comes from the same N sensors but over a separate set of
Ttest time ticks. The test data is denoted as ntest = [n(t1)

test, · · · ,n(Ttest)
test ].

We extent the graph learning process in [5] to design a graph based framework
by representing sensors in graph relations. The representations of sensor i are
represented by the attributes vi. This embedding vi is defined by slicing from
time slot ω. We sliced the time slot to n evenly and concatenate the mean
measure at each time spot to form the attributes for the sensor as vi.

In the absence of prior information, the candidate relations for sensor i
include all sensors except itself. To determine the relations of sensor i among
these candidates, we compute the similarity between the embedding vector of
node i and the attributes of its candidates j ∈ Ci, where Ci is the sensor set
except node i:

eji =
v�

i vj

‖vi‖ · ‖vj‖ for j ∈ Ci (1)

Aji = 1{j ∈ TopAlpha({eki : k ∈ Ci})} (2)

Here, eji is the normalized dot product between the embedding vectors of sensor
i and candidate j ∈ Ci. We then select the top Alpha normalized dot products,
where TopAlpha denotes the indices of the top-Alpha values among its input
(i.e., the normalized dot products). A is the adjacency matrix of the graph. The
nodes of the graph are the sensors, and the similarity values obtained above
are used to form the edges between the nodes, there by forming a single graph
representation for the time window ω of time series measurements. The collection
of these graphs formed over the observed time period (number of windows) forms
a set of dynamic graphs.

3.2 ConDGAD Process

After the dynamic graphs are built, we use these dynamic graphs for predic-
tion model training. Figure 2 shows the overall framework for the training. The
dynamic graphs at different time slots t1, t2...tn are first augmented using dif-
ferent augmentation methods (e.g., adding/deleting nodes or edges) for subse-
quent contrastive learning purposes. Following this, the augmented graphs are
encoded into hidden representations through a graph encoder module including
the information of graph patterns and the node features. The time series encoded
representations are then forwarded to a transformer structure to generate com-
pact embeddings. The objective of the previous steps are to predict the future
graph embeddings at time t + k using prior graphs as a basis. The compact
embeddings and the predicted embeddings from various augmentated methods
are jointly used to optimise the framework contrastively. At the same time, the
predicted embeddings are also optimised by comparing with the original graph
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embeddings after augmentation at time t+k. After the model has been trained,
we are able to obtain more robust, generalised and compressed representations
for time-series data, which is then used to train the prediction model.

Fig. 2. ConDGAD training process: this ConDGAD framework takes the dynamic
graph snapshots from original data to train a model that can effectively predict
the graph embedding at (t + k). This training process includes graph augmentation
based novel contrastive learning. The output predicted embeddings is further used for
anomaly detection

Figure 2 illustrates the comprehensive workflow of our graph-based deep
learning model, which involves multiple stages of graph augmentation, encoding,
embedding transformation, and predictor model training.

A sequence of graphs (Gt1, Gt2, Gt3), representing the graphs at different
time slots t1, t2, t3 is obtained from the timeseries data, as explained in the
above sections. They are then subjected to two distinct augmentation strate-
gies, resulting in two sets of augmented graphs; Graph Aug1 and Graph Aug2.
These augmented graphs, denoted as G′

t1, G
′
t2, G

′
t3 for the edge augmentation

and G′′
t1, G

′′
t2, G

′′
t3 for the node augmentation, undergo structural modifications,

as depicted by red dashed lines indicating alterations in the graph topology.
Subsequently, an encoder processes these augmented graphs to generate

embeddings Z ′
t1, Z

′
t2, Z

′
t3 and Z ′′

t1, Z
′′
t2, Z

′′
t3, respectively, which represent the

encoded features of the graphs at respective time steps. These embeddings are
then fed into a transformer, which produces compact embeddings H ′ and H ′′.
These compact embeddings are then passed through a predictor to generate
predicted embeddings P ′ and P ′′.

The entire process is orchestrated to facilitate model training, wherein the
goal is to learn effective (robust and generalised) representations and predic-
tions from the graph sequences. The timeline on the left, labeled t1, t2, t3 with
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intervals ω, suggests a temporal aspect to the graph data, indicating that the
model is designed to handle dynamic or time-evolving graphs. This methodol-
ogy highlights the integration of graph augmentation techniques, deep encoding
mechanisms, and advanced embedding transformations to enhance the predic-
tive performance of the model. This temporal aspect underscores the model’s
capability to handle dynamic, time-evolving graphs.

The final stage involves model training, where the objective is to learn
effective representations and predictions from the sequence of graph data. The
model training involves contrastive learning between the compact and predicted
embeddings from the augmentations. The learning is conducted cross-wise, which
means the compact and predicted embeddings for contrastive learning are from
different augmentation methods. At the same time, the predicted embeddings
are compared with the original t + k graph augmentation embeddings. After
model training, predicted embeddings re generated that can better represent
the dynamic graphs and further used for anomaly detection.

Graph Augmentation In the graph augmentation section, two different aug-
mentation method has been used based on the dynamic graphs.

The first augmentation is edge augmentation. Based on graph in different
time slides, some edges are randomly chosen and the connections are removed.
The second augmentation is node augmentation. Also based on graph in different
time slides, we randomly select some nodes and dropout the selected nodes using
attribute masking methods. For both augmentation methods, inputs are the
dynamic graph from different time slots Gt1, Gt2, Gt3 and the outputs are also
graphs, but having different graph edge relations, denoted asG′

t1, G
′
t2, G

′
t3 and

different nodes, denoted as G′′
t1, G

′′
t2, G

′′
t3.

Graph Encoder Module The graph encoder module transforms dynamic cor-
relation graphs into low-dimensional feature representations to capture temporal
dynamics between graphs and the intrinsic structure within each graph. Subse-
quently, a graph convolution layer is applied to each graph, using the latent rep-
resentation of its corresponding segment as node features to derive the hidden
representations for each graph. The encoder is the GCN based graph encoder to
represent the graph patterns. The encoder has inputs of augmented graph with
nodes, edges and attributes of each graphs as G′

t1, G
′
t2, G

′
t3 and G′′

t1, G
′′
t2, G

′′
t3. The

outputs are embeddings for these graph slides Z ′
t1, Z

′
t2, Z

′
t3 and Z ′′

t1, Z
′′
t2, Z

′′
t3.

Temporal Contrastive Learning The Temporal Contrasting module uses a
novel contrastive loss process. A contrastive loss is used to extract temporal
features in the latent space using an autoregressive model, extending the work
in [8] for time series signals. In the work [8], the contrastive loss used aims
to reduce the dot product between the predicted representation and the true
representation of the same sample, while increasing the dot product with the
representations of other samples in the minibatch. While for the loss proposed
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in our approach, it is built from the contrastive loss of maximizing the differ-
ence between compact embeddings from the dynamic graphs generated based
on different augmentations and predictions from another augmentation meth-
ods. The cross entropy loss is for minimizing the predicted embeddings with the
augmented embeddings in next time slot. The contrastive loss is designed to
learn more robust representations for the dynamic graphs with time differences
while the cross entropy loss has the purpose to mimic the original augmented
dynamic graph embeddings in the future to enhance the predictions. The novel
contrastive loss constructed based on compact and prediction embeddings helps
the model to learn an effective predictive embedding that can be further used
for anomaly detection.

Given the embedding representations for the augmented graphs Z ′
t1, Z

′
t2, Z

′
t3

and Z ′′
t1, Z

′′
t2, Z

′′
t3, the autoregressive model fa summarizes all Z ′

≤t and Z ′′
≤t into

compact vectors H ′ and H ′′. The compact vectors H ′ and H ′′ are then used to
predict the future representations. To predict future time steps, we use a log-
bilinear model that preserves the mutual information between the input Z ′

t+k or
Z ′′

t+k and H ′, or H ′′ defined as fk(Z,H) = exp
(
(Wk(H))T Zt+k

)
, Zt+k is the true

future embeddings from the original graph and Wk is a linear function that maps
H back into the same dimension as Zt. The contrastive loss aims to maximize
the dot product between the predicted representation and the true one of the
same sample, while maximizing the dot product with other samples Nt,k within
the mini batch, which is the compact representations cross-over. Accordingly, we
propose two losses Lmin and Lmax based on two different augmentation methods
and add them up for final definition. Lmax represents the contrastive learning
loss while Lmin is the cross entropy loss between predictions and oringal ground
truth embeddings after augmentations.

Lmin = CE(Z ′
t+k, P ′) + CE(Z ′′

t+k, P ′′), (3)

where, CE(.) is the contrastive error. Similarly, Lmax is defined as :

Lmax = Lmax
A1 + Lmax

A2 (4)

Lmax
A1 = − 1

K

[
K∑

k=1

log
exp

(
(Wk(H ′))T P ′′)

∑
n∈Nt,k

exp ((Wk(H ′))T Z ′′
n)

]

(5)

Lmax
A2 = − 1

K

[
K∑

k=1

log
exp

(
(Wk(H ′′))T P ′)

∑
n∈Nt,k

exp ((Wk(H ′′))T Z ′
n)

]

(6)

Inspired by [8], we employ a Transformer as our autoregressive model. The
Transformer architecture comprises repeated blocks of multi-headed attention
(MHA) followed by an MLP block. The MLP block includes two fully-connected
layers with a ReLU activation function and a dropout layer in between. Our
Transformer adopts pre-norm residual connections to ensure more stable gradient
updates [30]. We stack L identical layers to produce the final feature set.

Inspired by the BERT model [6], we add a token c ∈ R
h to the input, acting

as a representative context vector in the output. The Transformer’s process
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starts by applying the input features z≤t to a linear projection layer Wtran,
which maps the features to the hidden dimension: Wtran : Rd → R

h. The output
of this projection is z̃ = Wtran(z≤t), where z̃ ∈ R

h. We then concatenate the
context vector with the transformed features, forming the input to the first layer:
ψ0 = [c; z̃].

The sequence ψ0 is processed through the Transformer layers as follows:

ψ̃(�) = MHA(Norm(ψ(�−1))) + ψ(�−1), 1 ≤ � ≤ L; (7)

ψ(�) = MLP(Norm(ψ̃(�))) + ψ̃(�), 1 ≤ � ≤ L. (8)

Finally, we extract the context vector from the last layer’s output, denoted as
ct = ψ

(L)
0 . This context vector serves as the input to the subsequent contextual

contrasting module.

3.3 Anomaly Detection Process

After training the model, the aim is to determine the anomaly at time tick t for
the overall sensor systems.

After training the model, validation data is passed through the pre-trained
model to get the predictions P val which is then compared with the original graph
embeddings Zval at t + k. The error is calculated using the MSE as follows:

MSE =
1
n

n∑

i=1

(P val
i − Zval

i )2 (9)

A threshold for the error is required to determine the normal and anomaly. The
Threshold TH is determined with the validation errors as TH = mean+2∗sdv,
where mean is the mean of the errors and std is the standard deviation of the
errors.

During testing process, testing data will encoded to form dynamic graphs,
and then passed through to the trained model to obtain the prediction P test. The
error between the predicted embedding and the original (data) graph embedding
Ztest at t + k is calculated, and compared with the threshold TH. If the error
exceeds the threshold, the time tick at t + k will be declared as anomaly, which
represents that the graph at time t+k is anomalous. In other words, the collection
of sensor measurements obtained from the set of sensors at time t + k has been
showing anomalous behavior, collectively.

4 Experiments

4.1 Experiments Design

In our experiments, we utilised the publicly available implementations of base-
line models, and the hyper-parameters of these models are based on the values
specified in their original research papers, if accessible. The baselines and the pro-
posed models are tested on two time-series data for representation and anomaly
detection based on various evaluation matrices.



426 S. Xia et al.

Datasets: In this study, two real-world benchmark datasets are used for the
evaluation of time series anomaly detection method

1. SWAT: The Secure Water Treatment (SWaT) dataset [22] originates from a
real-world water treatment facility that produces filtered water and includes
51 features. The dataset captures 11 days of per-second operational data, with
7 days representing normal operation and 2 days containing attack scenarios.
For our experiments, we downsampled this data to one data point every 10
seconds. Because the unstability for the beginning of the data, the first 6
hours data are eliminated.

2. WADI: The Water Distribution (WADI) dataset [2] was gathered from a
water distribution testbed featuring 127 attributes. This dataset serves as an
extension of SWaT, incorporating a larger number of sensors and actuators.
It encompasses 16 days of operational data, with 14 days of normal operations
and 2 days of attack scenarios. Similarly, we downsampled this dataset to one
data point every 10 seconds for our experiments.

Additionally, datasets are normalized by min-max scaler before the training.

4.2 Evaluation Matrix

We evaluate the detection performance with metrics, i.e., The F1-score is
defined as: F1 = 2×Prec×Rec

Prec+Rec where Precision (Prec) and Recall (Rec) are given
by:Prec = TP

TP+FP , Rec = TP
TP+FN . Here, TP , TN , FP , and FN are the numbers

of true positives, true negatives, false positives, and false negatives, respectively.
It evaluate the performance by dynamically assessing the detector’s true posi-
tive rate and false positive rate across different thresholds which is a commonly
employed measure to validate the performance of anomaly detectors.

4.3 Experiment Results

Anomaly Detection Accuracy Table 1 presents the results of anomaly detec-
tion using different methods on two distinct datasets: SWaT and WADI. The
performance of each method is evaluated using three metrics: Precision (Pre),
Recall (Rec), and F1-Score (F1). The methods compared include Principal Com-
ponent Analysis (PCA) [26], Autoencoder (AE) [1], Fast-Bayesian (FB) [15],
Long Short-Term Memory Variational Autoencoder (LSTM-VAE) [20], Mul-
tiple Additive Regression Trees Generative Adversarial Network (MAD-GAN)
[17], Graph Deviation Network (GDN) [5], , correlation-aware spatial-temporal
graph learning (CST-GL) [34] and our proposed method ConDGAD.

Results with SWaT Dataset: Table 1 presents the results of anomaly detec-
tion using various methods on two different datasets, SWaT and WADI, which
contain ground-truth labeled anomalies. The performance of each method is
evaluated using three metrics: Precision (Prec), Recall (Rec), and F1-score (F1).
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Table 1. Results of Anomaly detection based on different dataset with ground-truth
labelled anomalies

Method SWaT WADI

Prec Rec F1 Prec Rec F1

PCA 24.92 21.63 0.23 39.53 5.63 0.10

KNN 7.83 7.83 0.08 7.76 7.75 0.08

FB 10.17 10.17 0.10 8.60 8.60 0.09

AE 72.63 52.63 0.61 34.35 34.35 0.34

LSTM-VAE 93.52 56.78 0.71 84.61 20.52 0.33

MAD-GAN 95.45 60.74 0.74 48.62 30.29 0.37

GDN 97.32 65.79 0.78 92.62 34.4 0.50

CST-GL 89.28 74.57 0.81 80.15 46.89 0.58

ConDGAD 96.31 75.76 0.84 90.47 45.72 0.61

Part of the results, PCA, KNN, FB and MAD-GAN are from [17]. For the
SWaT dataset, the methods’ performances vary significantly. PCA achieves a low
Precision of 24.92%, Recall of 21.63%, and an F1-score of 0.23. KNN and FB
methods also show low performance with F1-scores of 0.08 and 0.10, respectively.
AE shows a better balance with an F1-score of 0.61. The lower four baselines
are more advanced methods. LSTM-VAE and MAD-GAN perform better, with
F1-scores of 0.71 and 0.74, respectively. GDN and CST-GL also shows a strong
performance with an F1-score of 0.78 and 0.81. The best F1 score on SWaT is
achieved by ConDGAD of 0.84 as well as the best Recall 75.76% while the best
Precision is from GDN of 97.32%

Results with WADI Dataset: For the WADI dataset, the methods generally show
lower performance compared to SWaT. PCA, KNN, and FB have very low F1-
scores of 0.10, 0.08, and 0.09, respectively. AE performs moderately with an
F1-score of 0.34. LSTM-VAE, and MAD-GAN show a little bit higher perfor-
mance, with F1-scores of 0.33, and 0.37, respectively. GDN and CST-GL are
more advanced methods achieved a relatively better F1-score of 0.50 and 0.58.
The highest performance on WADI is again by ConDGAD, with an F1-score of
0.61.

In summary, ConDGAD not only achieves the highest F1-scores across both
datasets but also exhibits a more balanced performance in terms of Precision
and Recall. This significant performance gap, especially when compared to more
basic methods like PCA, KNN, and FB, underscores ConDGAD’s superior capa-
bility in accurately detecting anomalies. The differences in F1-scores highlight
ConDGAD’s robustness and effectiveness, making it the most reliable method
among those evaluated. These findings suggest that ConDGAD provides signif-
icant improvements in anomaly detection tasks, highlighting its potential for
applications in complex datasets.
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Ablation Study

Effectiveness of Different Parts To study the effectiveness of various parts in the
training model process, we conducted an ablation study. We remove or replace
part of the training model process and investigate how the changes will influence
the anomaly detection results. Firstly, we focus on the most significant part is
the contrastive learning from different augmentations. Secondly, the transformer
is further be replaced by a simple neural network. The last trial is only using
GCN for representation learning and prediction.

– The augmentations and contrastive learning part is removed while the process
of encoder, transformer and predictor are kept and learnt. The encode embeds
the dynamic graphs and further process it by the transformer and predictor,
same as previously defined.

– The transformer is also removed to study its influence. A simple neural net-
work is used to process the dynamic graph embedding outputs from the
encoder based on the historic time slots for predictor. Thus, no transformer
mechanism is used to obtain the compact embeddings.

– The predictor is further removed and the prediction is defined and represented
by the embeddings of all historic time slot dynamic graphs through GCN.
These embeddings is further used for anomaly detection, same way as in the
testing period, as discussed before.

Table 2. Anomaly detection accuracy for different datasets based on various changes
to the training framework (ablation study)

Method SWaT WADI

Prec Rec F1 Prec Rec F1

ConDGAD 96.31 75.76 0.84 90.47 45.72 0.61

w/o CONT 85.53 54.70 0.67 83.15 34.96 0.49

w/o TRANS 73.24 31.03 0.44 71.62 22.49 0.34

Only GCN 54.31 19.51 0.34 43.56 10.87 0.17

Table 2 shows the results of ablation study. The results highlight the differ-
ences in anomaly detection accuracy for the SWaT and WADI datasets when
various components of the ConDGAD model are modified or removed. The
ConDGAD method consistently achieves the highest performance across both
datasets. This indicates its robust ability to detect anomalies accurately.

When the contrastive learning component is removed (w/o CONT), there is
a significant drop in performance is observed. For the SWaT dataset, the F1-
score decreases from 0.84 to 0.67, and for the WADI dataset, it drops from 0.61
to 0.49. This reduction underscores the importance of the contrastive learning
component in enhancing the model’s detection capabilities. Further, removing
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the transformer component (w/o TRANS) results in even lower performance,
with F1-scores of 0.44 for SWaT and 0.34 for WADI. This shows that the trans-
former component is crucial for maintaining the model’s effectiveness in anomaly
detection. The ”Only GCN” configuration, which relies solely on the GCN com-
ponent, exhibits the lowest performance. This significant decline highlights that
the GCN component alone is insufficient for accurate anomaly detection and
that the integration of multiple components in the ConDGAD model is essential
for achieving high performance.

TopAlpha Influence In creating dynamic graphs from time series data, we have
selected the top Alpha normalized dot products, where TopAlpha denotes the
indices of the top-Alpha values among its inputs. We aim to investigate the
dynamic changes of graphs for each batch that the value of Alpha is chosen to
form graphs, which are further processed. We conducted trials to investigate the
influence of different choice of Alphas. From Table 3 results, it is illustrated that
the value of Alpha can influence the final results and for larger choice of Alpha,
only the recall will be influenced while if the Alpha is too small, both precision
and recall can be influenced. This may result from that the too many indices will
result in more unnecessary data for predictions and influence the final detection
results and too little indices will not be able to provide sufficient information for
latter embeddings and contrastive learning to learn.

Table 3. Anomaly detection accuracy for SWaT based on different TopAlpha choices
(ablation study)

Method SWaT

cline2-4 Prec Rec F1

Alpha = 5 96.31 75.76 0.84

Alpha = 1 77.53 35.62 0.49

Alpha = 9 95.95 65.51 0.77

5 Conclusion

A novel Contrastive Learning-based Dynamic Graph Anomaly Detection frame-
work is proposed to enhance the performance of time series data represen-
tation learning and robust predictions of anomalies through dynamic graphs.
ConDGAD encodes the time series data into dynamic graph representations and
incorporates novel contrastive learning using multiple graph augmentation meth-
ods and a transformer to embed and predict the dynamic graph data structure.
Experiments using various datasets have been carried out, and the ConDGAD
has shown advantages compared to other time series anomaly detection methods.
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