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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Judgment analysis in a crowdsourcing environment refers to
seeking opinions from a diverse and large set of online annotators for
various applications and making a consensus out of them. The existing
approaches to judgment analysis work only in the static scenario where
all the opinions are available beforehand. We aim to develop a generalized
approach of judgment analysis in a streaming setting, where the questions
are available but opinions received from the annotators are streaming in.
The current paper provides the very first algorithm that can perform
judgment analysis on crowdsourced opinions received in streams. We
demonstrate the performance of the proposed approach on two datasets
achieving an accuracy closer to the majority voting, although the space
requirement of our approach is significantly better. The required space
is bounded by a logarithmic factor of the number of annotators.

Keywords: Judgment analysis · Streaming algorithms · Patterns in
streaming data · Crowdsourcing

1 Introduction

Crowdsourcing has made it possible to solve various kinds of decision mak-
ing tasks by deploying human intelligence at scale. The power of the crowd
has emerged as a revolutionary force promoting collaboration, innovation, and
problem-solving in the current world of interconnectedness [1,11]. The idea of
crowdsourcing has completely revamped the way we approach tasks, initiatives,
and difficulties by leveraging the pooled intelligence and variety of abilities of a
group of people [4,13]. Organizations and individuals can access a scalable pool
of resources, ideas, and viewpoints that were previously inaccessible by utilizing
the collective wisdom and skill of a crowd [12,22]. Crowdsourcing embraces the
democratization of information and participation, moving beyond conventional
hierarchical frameworks. It gives people the freedom to work together to achieve
a similar objective while coming from various backgrounds, locations, and skill
sets.

The potential of crowdsourcing to produce original and unique ideas is one of
its main advantages. People can build on one other’s ideas, refute preconceived
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notions, and find ground-breaking solutions by bringing together a variety of per-
spectives. This collective intelligence frequently inspires unconventional thinking
and game-changing inventions that might not have been possible through conven-
tional methods. Crowdsourcing additionally enables effective resource allocation.
Organizations can select individuals from a much broader talent pool (to assign
tasks), rather than depending upon limited experts. This expedites the flow of
work and guarantees diversity of talents and experiences.

Crowd-powered systems have existed for hundreds of years, despite the fact
that they have only recently gained popularity [23]. Although these models are
dispersed, they are noteworthy due to their combined potential to handle a vari-
ety of problems [11]. As an official system powered by the population, Amazon
Mechanical Turk (MTurk)[16] made its debut in 2005 (Wikipedia). This is a
new chance to acquire pertinent opinions for developing Information Retrieval
(IR) test collections in a scalable and affordable manner. Thereafter, numer-
ous platforms have been developed that include the biotechnology company
23andMe, crowdsourcing learning platform WikiProjects, crowdfunding website
Kickstarter, Crowdfynd, etc. These crowdsourced systems can be broadly cat-
egorized as either collaborative or competitive depending on the talents of the
crowd workers they employ [20]. Competitive crowdsourcing is a situation in
which a sizable number of people work independently on a certain issue while
harboring competing interests [20]. When a group of people collaborates to solve
an issue, this is referred to as collaborative crowdsourcing [5]. For the first time,
Ipeirotis [10] investigated collaborative crowdsourcing’s behavior in 2010, and
Boudreau et al. [2] investigated competitive crowdsourcing in 2011.

Different crowdsourcing topologies [3] call for various approaches to matching
tasks to agents [8]. Open invitations to participate are sent by contest-based
platforms like Top-Coder and InnoCentive, and the best submissions receive
awards [14]. On the other hand, small jobs are delegated to available crowd agents
on microtask platforms like Amazon Mechanical Turk on a first-come, first-served
basis. However, it becomes essential to use effective allocation algorithms when
working with platforms that involve skilled crowds and specialized labor, such
as oDesk (now Upwork) [3], IBM’s Application Assembly Optimization platform
[21], and to some extent Samasource’s SamaHub platform [9]. Based on the
delivery technique they use, crowdsourcing platforms may be divided into two
different models: a distributed micro-task model and a centralized model. They
either use specialists or non-experts for group projects. In the past, tasks like
the Netflix Prize and DARPA’s Red Balloon competition [20] highlighted the
engagement of expert crowds. The real-world behaviors seen on collaborative
crowd-powered platforms are starting to be better understood by researchers
[10]. These initiatives draw attention to a number of flaws and suggest that
numerous systems powered by the masses need to be updated.

With crowd-based systems, opinion-based judgment analysis have been quite
successful [18,19]. It is possible to combine multiple crowdsourced opinions to
estimate the “gold” judgment (ground truth) for a given question [6]. Due to
the involvement of non-experts as crowd workers, these collaborative models are
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often not effective in attaining the appropriate judgment. According to the stud-
ies by Sorokin and Forsyth, inaccuracies obtained in final judgments are caused
by erroneous annotations [19]. In order to enable trustworthy crowdsourcing
applications, it is essential to develop algorithms that can automatically sepa-
rate the truth from possibly contradicting and noisy assertions made by multiple
information sources. Truth-finding algorithms that are desirable must be efficient
in order to handle crowdsourcing applications involving streaming data.

Streams of data from numerous sources, such as social networks, online stores,
military monitoring, and sensors, to mention a few, are creating an enormous
amount of data in the contemporary interconnected digital world. This makes it
difficult to find a mechanism for classifying data streams that is both dependable
and effective (in terms of time and space). Contrary to traditional models, big
data models operate on the premise that the full dataset cannot be kept in its
entirety and must instead be analyzed in real-time or on the fly [15]. As a result,
we must evaluate the data in several passes—or maybe just one—due to memory
constraints. Once more, as a fundamental requirement, it is expected that the
storage space needed for data streams and sublinear growth will be seen in the
processing time per item [17]. This new computing challenge, which goes beyond
approximation and randomization, calls for the creation of innovative kinds of
algorithms for many common problems that are faced in streaming environments.

A streaming scenario has never been considered for modeling the problem
of judgment analysis. In this paper, we suggest a ground-breaking method for
doing judgment analysis on streams of data. The main contributions made in
this paper are listed below.

– We provide the first formalization of the judgment analysis problem in a
streaming setting.

– We also propose an algorithm that can perform judgment analysis on crowd-
sourced opinions received in streams.

– We demonstrate the effectiveness of the proposed approach on real-life
datasets.

The rest of the paper is organized as follows. Section 2 describes the basic
motivation behind the current study. The basic terminologies of judgment anal-
ysis are introduced in section 3. Section 4 formulates the problem. Section 5
presents the state-of-the-art. Section 6 institutes the proposed methodology.
The empirical analyses are provided in section 7. Finally, section 8 concludes
the paper.

2 Motivation

The problem of judgment analysis for crowdsourced opinions has always been
addressed in a static scenario [6]. Streaming data analysis is capable for han-
dling the influx of continuous data streams. The analysis of such streaming data
is necessary for many real-world scenarios in order to get insightful knowledge
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and make quick judgments. Therefore, it is a demanding issue to pose the prob-
lem judgment analysis in a streaming setting. Billions of online users participate
in various activities at any given moment. Therefore, it is impossible to simul-
taneously solicit the opinions of multiple users. The crowd workers typically
offer their comments at various periods. Additionally, it is not feasible to store
every response provided by the crowd-workers in order to make judgments. We
provide the first-ever algorithm to analyze streaming opinions for judgment anal-
ysis, while restricting the space requirements within a logarithmic bound of the
number of annotators. Though it might appear that, given the current space
availability in high-end machines, this problem is not challenging, however for
resource-constrained scenarios, it is always a practical problem. Moreover, the
current approaches are not scalable, which we claim as our main theoretical
motivation behind this work.

3 Basic Terminologies

Some basic domain-specific terminologies, which are fundamental to judgment
analysis and used throughout the paper, are discussed below. The standard
terminologies have their usual meaning unless specified otherwise.

– Question: It is formulated as a decision making query.
– Annotator: It is a crowd worker who provides an answer to a specific ques-

tion that helps in decision making. An annotator may be good at some aspects
of a task but may be bad at others.

– Opinion: It is an answer given by an annotator to a decision-making question.
– Annotation: It is the process of collecting opinions from the annotators.
– Domain of opinions: It denotes the possible set of opinions. Note that there

is a finite set of possible opinions for a given question.
– Aggregation: It is the process of finding an ensemble of opinions after col-

lecting the opinions from the annotators. In this way, by aggregating these
individual opinions, a judgment can be obtained for each question.

– Gold judgment: It is the ground truth opinion for each question.
– Question difficulty: It is the level of hardness of a question.
– Annotator accuracy: It means how reliable the annotator is. The superi-

ority of annotators is determined by their capability of providing accurate
judgments.

We use the term response matrix to refer to the matrix of opinions collected
from a set of annotators (demarcated across the rows) on a set of questions
(demarcated across the columns). A response column vector refers to a single
column of the response matrix, thereby denoting all the annotators’ responses
(though many of the entries might be empty) for a particular question. We
consider that the response column vectors are received as streams. Hence, we
aim to analyze multiple data streams of opinions (response column vectors)
corresponding to the questions for deriving the judgment.
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4 Problem Formulation

In this section, we formalize the judgment analysis problem for streaming data
[15]. We take into account a set of decision making questions, Q = (q1, q2, q|Q|),
a set of annotators A = {A1, A2, . . . , A|A|} at a particular timestamp. In a
streaming environment, the annotation process symbolizes a mapping function
Q × A −→ O at a particular timestamp. We consider this happening at a par-
ticular timestamp of receiving a window of data.

After any timestamp, we have to obtain the final judgment for all the ques-
tions in Q with the constraints mentioned above. For each timestamp, we can
consider receiving a response matrix R as a matrix of dimension |A|×|Q|, whose
elements Rij denote the opinion provided by the ith annotator of that times-
tamp for the jth question such that Rij ∈ O for all i, j. We presume that the
data stream T =< T1, T2, . . . , Tl > consists of the opinions. Since the input data
stream comes progressively in a streaming environment, it is not possible to store
all the opinions at once, and therefore we process them using a window-based
model where a window of data is received at a time. We aim to perform judgment
analysis on the stream of opinions (response column vector) for each question
such that (i) the processing time for each question is O(N), and (ii) the storage
requirement is O(polylog(N)), at any point in the data stream where N denotes
the number of annotators.

It is considered that the annotator chooses only one option for a particular
question from that set of possible opinions. Moreover, all the annotators do not
provide their opinions at the same time. So, the responses of the annotators
come in a streaming way. Depending on the mass opinions in that context we
have to find the best option for each question. In reality, most of the annotators
respond to limited questions, and hence R is a sparse matrix. Our approach is
inspired from the DGIM (Datar-Gionis-Indyk-Motwani) algorithm [7].

5 Related Work

There are numerous approaches in the literature to perform judgment analysis
on crowdsourced opinions [6]. However, most of these approaches are incapable
of working on streams of opinions and provide judgments incurring space linear
to the number of annotators. One of the limited approaches that seem applicable
in a streaming setting is the majority voting algorithm. It is a simple yet effective
approach used in judgment analysis to aggregate the opinions for identifying the
majority opinion of multiple individuals to be returned as the final judgment.
Majority voting has successfully been applied to obtain the ensemble of opinions.
The advantages of the majority voting approach are simplicity, robustness, and
low computational cost. On the other side, its disadvantages are giving equal
weightage to the annotators, incapability to deal with correlated opinions, lack
of consensus resolution, and space complexity. This can be further extended to
assign different weightages to the opinions of different annotators based on their
accuracy. The weighted majority voting considers the weights of annotators while
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identifying the majority opinion of multiple individuals. However, both these
approaches have linear space requirements in terms of the number of annotators.
We aim to reduce the space requirements of judgment analysis by considering
the problem in a streaming setting.

6 Proposed Methodology

In this section, we first introduce a naive method for the streaming judgment
analysis and then discuss a more practical and efficient approach.

6.1 A Naive Method

In this method, we use the mean value of the bitstream (mean of 0’s and 1’s)
of opinions to derive the final judgment. We start with the very first bit as the
initial mean and keep on revising the mean with the stream of bits inflowing.
Let m be the old mean at a time point, i be the current bit, and n be the total
number of bits processed so far, then the new mean value m′ is calculated as
m′ = m∗(n−1)

n . This formula ensures that the mean is updated incrementally as
each new bit is processed in the stream. It is a rolling average that incorporates
the information from the previous mean and the new bit to provide an updated
mean with each iteration. At any arbitrary time point, from the current mean
value, we can derive the final judgment. If the mean is more than 0.5, it is 1; if
less than 0.5, it is 0; otherwise, it is a tie.

Time complexity: The time complexity of this approach is O(N), where
N is the number of bits in the stream for each question. In each iteration, the
algorithm performs constant-time operations, updating the mean based on the
new bit. Since it processes each bit once, the overall time complexity is linear
with respect to the number of bits.

Space complexity: The space complexity is O(|A|), where |A| denotes the
number of annotators. The algorithm only requires a few variables to store the
current mean, the count of bits processed, and the loop variable. Regardless of
the size of the input stream, the space used by the algorithm remains constant,
making it efficient in terms of space.

6.2 An Efficient Method

In this method, we use the counts of 0’s and 1’s in the bitstream of opinions
to derive the final judgment. We store the count of 0’s and 1’s in the stream
using buckets having a variable number of elements but having exponentially
increasing sizes in the reverse order inspired by the DGIM approach [7]. The
counting of 0’s and 1’s are to be run in parallel. A bucket is a segment of the
window having the following properties: (i) The size of a bucket (number of 0’s
or 1’s in it) is in the form of 2i, (ii) Each bucket contains the timestamp of its
end bit (requires O(log |A|) bits) and its size (requires O(log log |A|) bits).
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Note that each bit in the stream has a timestamp, which is defined with a
(mod |A|) function (to map everything within the window). The bitstream is
represented with a collection of buckets following the conditions: (i) There can
be either one or two buckets having the same size, (ii) Buckets are sorted by size,
(iii) Buckets do not overlap, and (iv) Buckets are removed as and when their
end-time is more than N time units in the past.

The buckets are updated when a new bit comes in. On the arrival of a new
bit, the oldest bucket is dropped if its end-time is prior to N time units before
the current time. No changes are required if the new bit is 0. Otherwise, do the
following: (i) Create a new bucket of size 1 containing the new bit, (ii) Define
the timestamp of the new bucket with the current time, and (iii) Starting from
i = 0, recursively check whether there are now three buckets of size 2i, and if so
combine the oldest two to create a new bucket of size 2i+1.

Fig. 1. The approach of counting the number of 1’s in a data stream of opinions
consisting of the elements 0/1/-1. Similarly, one can also count the number of 0’s.

Note that while combining two buckets into a new one, the timestamp of
the newest bucket becomes the timestamp of the new bucket. To estimate the
number of 0’s or 1’s in the most recent k ≤ N bits: (i) Consider only those
buckets whose timestamp is at most k bits in the past, (ii) Sum the sizes of
all these buckets except the oldest one, and (iii) Add half the size of the oldest
bucket. Some instances of the aforementioned process are highlighted in Fig. 1
and the main algorithm is formally presented as Algorithm 1.

In Algorithm 1, we take a window of response matrix R|A|×|Q| and return the
judgment vector Judgement consisting of an ensemble of opinions corresponding
to each question in Q. For each question (steps 1-13), we process a column vector
denoting the set of opinions provided by the annotators and construct the buckets
accordingly to count the number of 0’s (steps 2-6) and 1’s (steps 7-11). Based
on the majority of opinions (step 12), we derive the final judgment and return
the same (step 14).

The INITIAL − BUCKETING() procedure is used to initialize a set of
buckets for a given parameter a It involves creating a series of empty buckets
represented by BUCKETS The number of buckets created is determined by
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Algorithm 1. Main algorithm for opinion ensemble on streaming data
Input: A window of response matrix R|A|×|Q|, where |A| denotes the number of
annotators in the current window and |Q| denotes the number of questions.
Output: The judgment vector Judgement consists of ensemble of opinions
corresponding to each question in Q.
Algorithmic Steps:
1: for i := 1 to |Q| do
2: target ← 0
3: TS ← 0
4: BUCKETS ← INITIAL-BUCKETING(|A|)
5: RUN(R[∗][i], |A|, TS, BUCKETS, target)
6: count0 ← COUNT(|A|, TS, BUCKETS) � Count of 0’s
7: target ← 1
8: TS ← 0
9: BUCKETS ← INITIAL-BUCKETING(|A|)

10: RUN(R[∗][i], |A|, TS, BUCKETS, target)
11: count1 ← COUNT(|A|, TS, BUCKETS) � Count of 1’s
12: Judgment[i] ← max(count0, count1)
13: end for
14: return Judgment

the logarithm base 2 of a with each bucket initially empty. Finally, it returns
the set of initialized buckets, setting the stage for further data organization and
processing within these buckets based on the specified parameter a.

INITIAL-BUCKETING(a) {
1: for i := 1 to �log2(a)� do
2: BUCKETS[i] ← ∅
3: end for
4: return BUCKETS

}

The OLDBUCKET() procedure identifies the oldest bucket within a specified
time window, determined by a and TS in a structure called BUCKETS. It
initializes obIndex and obT imestamp to 0, then iterates through each bucket
and its elements. If an element’s timestamp is within the time window (TS −a),
it updates obIndex and obT imestamp. If no such element is found in a bucket,
it returns the current obIndex and obT imestamp, effectively locating the oldest
relevant bucket in the data structure.

OLDBUCKET(a, TS, BUCKETS){
1: obIndex ← 0 � Initialize old bucket size
2: obTS ← 0 � Initialize old bucket timestamp
3: for i := 1 to size(BUCKETS) do � Each bucket in BUCKETS
4: for ets ∈ BUCKETS[i] do � Each element in BUCKETS[i]
5: if ets ≥ (TS − a) then
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6: obIndex ← i
7: obTS ← endTS
8: else
9: return obIndex, obTS

10: end if
11: end for
12: return obIndex, obTS
13: end for
}

In the UPDATE() method, we update the buckets based on some constraints.
If we have more than 2 buckets of the same size, merge them. The delete(X, i)
function deletes the element at index i from X and returns the respective ele-
ment. The insert(X, y, i) function inserts the element y at index i of X and
shifts the elements at indices i + 1 and onwards to the next index.

UPDATE(BUCKETS){
1: for i := 1 to size(BUCKETS) do � Each bucket in BUCKETS
2: l ← length(BUCKETS[i])
3: if l ≥ 2 then
4: delete(BUCKETS[i], l − 1) � Remove the last element
5: temp ← delete(BUCKETS[i], l − 2) � Remove the second last

element
6: if i 
= size(BUCKETS) − 1 then
7: insert(BUCKETS[i], temp, 0) � Insert at the beginning
8: end if
9: end if

10: end for
11: return BUCKETS

}

The COUNT () procedure calculates a count based on parameters a, TS, and
a structure BUCKETS It begins by initializing a count variable, count to 0.
Then, it uses the OLDBUCKET function to find the oldest bucket within the
specified time window. Next, it iterates through the buckets in BUCKETS
If the current bucket index is greater than or equal to the oldest bucket’s
index, it returns the count plus 1. Otherwise, it iterates through the elements
in each bucket, incrementing the count based on conditions related to times-
tamps. Finally, it returns the calculated count plus 1. This procedure effectively
determines a count associated with the given parameters and data structure.

COUNT(a, TS, BUCKETS){
1: count ← 0
2: obIndex, obTS ← OLDBUCKET(a, TS, BUCKETS)
3: for i := 1 to size(BUCKETS) do
4: if i ≥ obTS then
5: return count + 1
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6: end if
7: for endTS ∈ BUCKETS[i] do
8: if endTS ≥ obTS then
9: count ← count + 2i

10: else if endTS == obTS then
11: count ← count + 0.5 ∗ 2i

12: end if
13: end for
14: end for
15: return count + 1
}

The RUN() procedure processes a data stream based on parameters C a TS,
BUCKETS, and target It iterates through each data point in the stream. For
each data point, it increments the timestamp TS and finds the oldest bucket
using OLDBUCKET ()If the oldest bucket’s timestamp is not 0 and matches
TS−a it checks if the current data point matches the target If it does, it updates
the corresponding bucket in BUCKETS by subtracting the old timestamp.
Otherwise, if the data point is equal to thetarget, it adds the current timestamp
to the first bucket and updates BUCKETS using the UPDATE() function.
The procedure takes no action if the data point is -1. This process is repeated
for each data point in the stream, effectively updating the buckets and their
contents based on specified conditions.

RUN(C, a, TS, BUCKETS, target){
1: for each c ∈ C do � Pick each data (0/1/ − 1) from the stream
2: TS ← TS + 1
3: obIndex, obTS ← OLDBUCKET(a, TS, BUCKETS)
4: if obTS 
= 0 and obTS == TS − a then
5: if obTS ∈ BUCKETS[obIndex] then
6: BUCKETS[obIndex] ← BUCKETS[obIndex] − obTS
7: end if
8: else if c == target then � Current data is target (0/1)
9: BUCKETS[0] ← {TS} ∪ BUCKETS[0]

10: BUCKETS ← UPDATE(BUCKETS)
11: end if � Take no action if the data is −1
12: end for
}

Time complexity: Algorithm 1 iterates (steps 1-13) through each question
in the input data, thereby running a loop |Q| times, where |Q| denotes the
count of questions. For each such case, some initializations happen (steps 2-3)
in constant time. Thereafter, the call to the INITIAL-BUCKETING() function
(step 4) executes a loop that iterates �log 2(|A|)� times, where |A| denotes the
count of annotators, which incurs a time complexity of O(log |A|). Then the
call to the RUN() function (step 5) incurs a time complexity of O(|A|). After
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this, the call to the COUNT() function (step 6) iterates through all the buckets,
thereby incurring a time complexity of O(log |A|). This entire process (steps 2-6)
of counting the number of 0’s repeats once again (steps 7-11) for counting the
number of 1’s. Finally the judgment is obtained in a constant time operation
as it involves comparing two values and taking the maximum. Hence, the total
time complexity becomes as follows:

|Q| ∗
( steps 2-6

O(log |A|) + O(|A|) + O(log |A|) +
steps 7-11

O(log |A|) + O(|A|) + O(log |A|)
)

 O(|Q||A|).
Space complexity: Algorithm 1 iterates (steps 1-13) through each question

in the input data, thereby running a loop |Q| times, where |Q| denotes the
count of questions. For each such case, the INITIAL-BUCKETING() function
(step 4) initializes log |A| number of buckets each having constant lengths, say k,
where |A| denotes the count of annotators. Hence, the total space requirement
for creating and managing the BUCKETS is k ∗ log |A|. The same space is
getting utilized in the other function calls to RUN() (step 5), COUNT() (step
6), and so on. Space requirements of the rest of the variables are constants, say v.
This entire process (steps 2-6) of counting the number of 0’s repeats once again
(steps 7-11) for counting the number of 1’s. Finally, the judgment calculation
also incurs a constant space, say j. Hence, the total time complexity becomes:

|Q| ∗
( steps 2-6

k ∗ log |A| + v +
steps 7-11

k ∗ log |A| + v +
step 12

j

)
 O(|Q| log |A|).

The overall space complexity of the algorithm is the sum of the space com-
plexity for BUCKETS and the space complexity for other variables: Overall
Space Complexity = Space complexity for BUCKET S + Space complexity for
other variables Overall Space Complexity = O(log |A|) * C + D.

Error Factor Since there is at least one bucket of each of the sizes less than 2i,
and at least one from the oldest bucket, the true sum is no less than 2i. Thus,
the error is at most 50%.

7 Empirical Analysis

In order to measure and analyze the performances of the proposed approach
in comparison with the other existing methods, we have used two Datasets,
namely Fact Evaluation, opinion dataset and Sentiment Analysis Dataset. Exper-
iments have been performed with Python 3.0 and the running environment is an
11th Gen Intel(R) Core(TM) i5-1135G7 with 2.4 GHz Processor, having 16 GB
installed (15.8 GB usable) RAM, and 64-bit operating system.
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7.1 Results on Fact Evaluation Dataset

The Fact Evaluation dataset contains the judgments of relations from people
about public figures on Wikipedia. It contains 42,623 examples of “attended or
graduated from an institution” example. Each of these was judged by a minimum
of 5 annotators, resulting in a total of 216,725 judgments from the annotators
who were already trained for this task, and as a whole, 57 annotators provide
their opinions. The full version of the dataset contains relations in the form of
a triplet: the relation in question, called a predicate; the subject of the relation;
and the object of the relation. Subjects and objects are represented by their
Freebase MIDs, and the relation is defined as a Freebase property. The evidence
for the relations is also included in the form of a URL and an excerpt from the
web page that our raters judged. The format of the files included in this dataset
is in JSON.

Each line of the dataset consists of the following fields: predicate, subject,
object, an array of evidence, the web page from which this evidence was obtained,
a short piece of text supporting the triple, an array of judgments from human
annotators, hash code of the identity of the annotator, and judgment of the
annotator (0/1/2 denoting no/yes/skip respectively). In the annotation process,
where 0, 1, and 2 are utilized to respectively represent “No”, “Yes”, and “Skip”, a
modification has been made for improved interpretation. The original annotation
“2” denoting “Skip“ has been replaced with “-1”. Consequently, the revised scale
now consists of “0” for “No”, “1” for “Yes”, and “-1” indicating instances where the
annotator opted to abstain from judgment or skip evaluation. This adjustment
facilitates a more consistent and easily interpretable labeling system, simplifying
subsequent analyses. Each line of annotation can now be understood in the con-
text of this refined scale, where positive judgments are denoted by “1”, negative
judgments by “0”, and skipped instances by “-1”. This approach enhances the
clarity and uniformity of the annotation data, contributing to a more straight-
forward interpretation of the annotator’s judgments across the dataset.

Answers to 576 facts are available as the gold data. The basic version of the
dataset contains two columns: one is question ID and the other is metadata.
This metadata contains a JSON-encoded dictionary containing the judgments
of all the raters’ for this question and other relevant data described below in the
description section. The dataset is provided under the Creative Common license.

Table 1. The performance in terms of accuracy obtained for the Fact evaluation dataset
and space requirement.

Algorithm Accuracy(%)Data Setting Space requirement

Majority Voting 94.36 Non-Streaming |A|
Weighted Majority Voting 94.36 Non-Streaming |A|
Proposed Efficient Method 80.87 Streaming log |A|
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The algorithm is compared with the well-known majority voting algorithm
along with weighted majority voting applied on the Fact Evaluation dataset.
Table 1 shows the comparative accuracy values obtained for the proposed app-
roach on the large-scale Fact Evaluation dataset. Since our method is based on
a streaming setting, we have obtained a much lesser accuracy value given the
data is truly big. However, our space requirements are bounded by a logarithmic
factor of the number of annotators unlike the other existing approaches, which
are not applicable in a streaming setting.

7.2 Results on Sentiment Analysis Dataset

We used a sentiment analysis dataset from CrowdFlower, a crowd-powered com-
pany. The dataset consists of 98,979 tweets about the weather, each evaluated
by at least five annotators, resulting in around 569,375 evaluations. The dataset
includes detailed information such as: Question ID: The ID of the tweet being
evaluated, Rater ID: The ID of the annotator, Judgment: The annotator’s
answer, which can be: 0: Negative, 1: Neutral (just sharing information), 2:
Positive, 3: Not related to the weather, 4: Cannot determine the sentiment,
Tweet Text: The content of the tweet, Country, Region, City: The location
details of the annotator, Started At: When the annotator started the evalua-
tion, Created At: When the annotator finished the evaluation. For our analysis,
we simplified the dataset to three columns: Question ID: The ID of the tweet,
Rater ID: The ID of the annotator, Judgment: The annotator’s answer (0 to
4). We converted the judgments as follows: 0 (Negative) remains 0, 2 (Positive)
becomes 1, 4 (Cannot determine) becomes -1, We ignored the other responses
(1 and 3) in our analysis (Table 2).

Table 2. The performance in terms of accuracy obtained for the Sentiment Analysis
dataset and space requirement.

Algorithm Accuracy(%)Data Setting Space requirement

Majority Voting 90.67 Non-Streaming |A|
Weighted Majority Voting 97.12 Non-Streaming |A|
Proposed Efficient Method 84.69 Streaming log |A|

8 Conclusion

We have proposed a space-efficient approach to judgment analysis in a streaming
setting. The experimental results show promising directions of addressing the
problem of judgment analysis in streaming settings. As the proposed methods of
counting 0’s and 1’s are independent of each other, we can run them in parallel.
Moreover, for each question, the algorithm can run in parallel. Hence, with a
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parallel computer, we can significantly reduce the time taken by our algorithm.
The error factor in the proposed approach can be further reduced but with the
cost of incurring more space. The proposed approach provides the count of 0’s
and 1’s from a stream of opinions. This can be used to compute the entropy
of the opinions and this might help us to quantify the difficulty of a question.
From a practical perspective, if the entropy is more, there is more variability in
the opinions, thereby suggesting that the question is more difficult. Using this
one can plan for designing a weighted version of the proposed approach in a
streaming scenario.

Data and Code Availability. Both the datasets, namely Fact Evaluation and Sen-
timent Analysis, analyzed in this paper along with the source codes of the algo-
rithms applied on them are freely accessible from the GitHub link: https://github.
com/malaybhattacharyya/Judgment_Streaming_Logarithmic.
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Abstract. The recent AI advancements, most notably Foundation Models, were
naturally followed by an increased demand of AI-based solutions, which became
widely available. However, the entities who offer these models are exposed to
the risk of their models being stolen. Knowledge distillation demonstrated great
benefits in reducing the inference time of deep neural networks, hence it has been
an area of great interest. Model stealing represents a sub-category of knowledge
distillation, which has a malign purpose: extracting the capability of a black-box
model (teacher) into a local model (student). In this context, we propose a frame-
work for stealing a model (which is accessible through an API) under very strict
constraints (e.g. no access to the original training data, the architecture or the
weights of the model), with a focus on making as few calls as possible to the
teacher model. We first generate synthetic data using diffusion models, a power-
ful class of generative models showcasing strong capabilities in image synthesis.
Although they have been extensively applied to many tasks in computer vision,
we propose to explore a new use case in our work, namely generating an artifi-
cial data set (called proxy data set) for knowledge distillation. Next, we obtain
the labels for synthetic samples by passing them through the black-box model.
More precisely, we only collect the predictions (either soft or hard) for a number
image samples, as we have to comply with a fixed number of allowed API calls.
In our framework, we introduce a novel active self-paced learning mechanism to
thoroughly utilize the proxy data during distillation to its complete potential. The
final step consists of distilling the knowledge of the black-box teacher (attacked
model) into a student model (copy of the attacked model). Besides the labeled
collected data, we also utilize the remaining unlabeled data generated by the dif-
fusion model. Our empirical results on two data sets with different characteristics
confirm the superiority of our framework over two state-of-the-art methods in the
few-call model extraction scenario.

Keywords: Diffusion models · Knowledge distillation · Model stealing

1 Introduction

In the last couple of years, Generative AI has gained a lot of popularity, starting
with the release of ChatGPT [37]. This has sparked an increased interest in AI tech-
nologies. This surge in demand has persuaded enterprises of all sizes to deploy deep
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15324, pp. 16–30, 2025.
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Fig. 1. The pipeline of our framework for model stealing starts by generating proxy images using
a diffusion model. Then, the labels for the the synthetic images are gradually collected from the
black-box teacher model. The annotated sample pairs are used to train the student model via an
active learning scheme. At the same time, the remaining proxy images are pseudo-labeled via
a nearest neighbor scheme that operates in the latent space of the student. The pseudo-labeled
images are also used to optimize the student via a self-paced learning scheme. Best viewed in
color.

learning models for commercial purposes. Such products are usually available through
Machine Learning as a Service (MLaaS) platforms, which provide users with scalable
AI tools via cloud-based APIs. They are accessible via various payment schemes, such
as subscription-based or pay-as-you-go (for example, most Large Language Model
APIs have a flat fee per an exact number of tokens). Although these models act in
black-box regimes, the intellectual property is vulnerable to being stolen by carefully
designed attacks [6,9,35,38,40,50,56,58], compromising the competitive advantage of
such proprietary AI systems. The research of various attacking methods can only expose
potential risks, which will lead to better prevention mechanisms (such as watermarking,
limiting the query rate, or utilizing adversarial defenses).

To this end, we propose a novel pipeline to replicate the functionality of a black-
box classification model (referred to as the teacher) by creating a locally trained surro-
gate model (referred to as the student). This is achieved through knowledge distillation
[1,6,29,32,63] using artificially created data, also known as proxy data. Our method
comprises two novel components that aim to increase the performance, while com-
plying with a fixed query budget. Furthermore, we impose other constraints as well,
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e.g. hiding any information about the training procedure and preventing access to gra-
dients, in order to holistically recreate a real-world scenario.

In Figure 1, we present the pipeline of our method. As depicted by the encircled
regions, the pipeline is composed of three stages. The first stage is represented by the
image generation using a diffusion model [11]. The synthetic data acts as proxy data,
which is used to train the student. We employ diffusion models due to their capability
of generating realistic, qualitative, and diverse images, demonstrating better synthesiz-
ing performance than generative adversarial networks (GANs) [12], which represents
the previous state-of-the-art approach. Diffusion models have been widely applied to a
diverse spectrum of tasks, ranging from unconditional image generation [18,34,53,54],
inpainting [27,33] and text-to-image generation [3,45,48] to image segmentation [2,4]
and medical imaging [59]. Nevertheless, to the best of our knowledge, we are the first
to employ diffusion models to generate proxy data for model stealing attacks.

In the subsequent phase of our pipeline, the labels for a subset of the synthetic
images are obtained. As in any practical setting, the size of the subset is restricted
by the number of permissible API calls (imposed either by a financial budget or for
security reasons). Furthermore, we consider both soft (probability distributions over
classes) and hard (discrete classes) labels being returned by the teacher model. Then,
with our active learning strategy, we aim to select the more relevant samples to be passed
through the teacher. This is achieved by adopting a clustering-based scheme: the latent
representations (of the student) are obtained for all data points and clustered. Then,
the sampling probability of a generated image is computed according to the distance
to its corresponding cluster centroid (one centroid for each object class). This process
is repeated for multiple iterations. With the collected (sample, label) pairs, the student
model is trained in a typical supervised setup. Finally, with the introduction of our
self-paced learning method, we exploit the unlabeled samples (left after reaching the
query limit) as well. A pseudo-label, determined by a nearest neighbor algorithm, is
assigned to each remaining sample. The student model is further trained on the joint
data set containing data samples with labels from the teacher, as well as pseudo-labeled
examples. To the best of our knowledge, we are the first to study model stealing under
the constraint of limited API queries, a setting we refer to as few-call model stealing.

We conduct experiments on two image data sets (CIFAR-10 [24] and Food-101
[5]), using multiple well-known convolutional-based architectures for the teacher and
student models. Furthermore, we evaluate the performance with various query (API
call) budgets, attesting the efficiency of our method. Finally, we confirm the applicabil-
ity of our method in real scenarios, as we vary the type of output given by the black-box
model without negatively affecting the performance. We compare our pipeline with two
prominent methods [6,38]. The results of our experiments uphold the superiority of our
method.

In summary, our contributions on replicating black-box classification models are:

– We leverage diffusion models to create synthetic proxy data sets consisting of rele-
vant samples for the original data set and carry out attacks on the black-box model.

– We propose a novel strategy on how to actively choose the samples for which to
collect labels from the attacked model, obtaining improved results in the few-call
model stealing scenario.
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– We introduce a novel strategy that assigns pseudo-labels to the remaining samples
and uses them to further boost the performance of the student via self-paced learning.

2 Related Work

With the recent trend of increasing the size of neural networks, knowledge distillation
has become an important area in machine learning, aiming to mitigate the hardware
requirements to run such models. Knowledge distillation [14,17,46,57] represents a
technique that transfers the knowledge of a large, complex model (named teacher) to a
smaller, simpler model (named student). After this process, the student model should
have a similar performance with the teacher, in some situations even surpassing it. Ini-
tially, the method was applied to classification tasks [8,30,43,65,66], where the stu-
dent used the output of the teacher model as target labels. Currently, distillation is also
employed for more complex models, such as diffusion models [19,28,49,55] and large
language models [10,15,41,60], being a typical step of deploying such models in pro-
duction.

A sub-branch of knowledge distillation is model stealing, or model extraction,
which represents a malign process. While following the same technical principles, it
applies some extra constraints on the level of access to the teacher model. The objective
is to distill the knowledge of a confidential proprietary teacher model without permis-
sion, where the targeted model is usually being run as a service.

The model stealing domain is vast due to the different scenarios in which it is
applied. Firstly, there are two categories in which the model stealing studies can be split:
attacking and defensive. While the former category comprises methods describing how
to copy black-box models [6,9,38,40,50], the latter presents defensive mechanisms
against such attacks [20,22,26,62,64]. An important aspect when stealing a model is
represented by the number of inferences (calls) to the teacher model. As a results, some
works focus on reducing the number of calls to the teacher [7,42,52,56], while others
assume no limit on this number, and rather aim for an increased performance [6,9,51].
Another significant element to consider is the data used during the stealing process. A
relaxed scenario has been adopted by some methods [9,39,40], in which real data sets
have been used. However, some works apply a tight constraint and assume no train-
ing data is available, and thus resort to generating artificial data and using it as proxy
data sets [6,21,31,38,50,61]. The comprehensive survey paper on model stealing by
Oliynyk et al. [36] goes into a greater detail, and thus, we encourage readers to study it
for a holistic view of the available research.

Orekandy et al. [38] introduced Knockoff Nets, an approach for model stealing that
focused on the balance between accuracy and efficiency (w.r.t. the number of teacher
calls). Using a reinforcement learning strategy, they trained a model able to determine
which samples from a large-scale proxy data set (they employed ImageNet [47] in their
experiments) are more relevant, and thus, they carefully crafted the queries sent to the
teacher model. These examples were selected and used for training the surrogate student
model.

Bărbălău et al. [6] presented a complex framework for stealing black-box models,
named Black-Box Ripper. While they applied all constraints in a typical model stealing
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scenario, they assumed an unlimited number of calls to the teacher model. Given that
the original training data was not available, the first part of their framework was to
generate synthetic samples with a GAN. These images were then optimized using an
evolutionary algorithm. In the second part, the student model was trained using the best
candidate samples from each iteration.

Different from the aforementioned related works, we do not require any additional
data to obtain the proxy data samples. Moreover, we take a step further in regards to
the number of permitted API calls, and not only try to minimize them, but rather have a
fixed low number of queries. To the best of our knowledge, we are the first to propose a
few-call model stealing framework that is applicable in all respects to a real model theft
scenario.

3 Method

In this section, we will begin by presenting the studied task, and then continue by intro-
ducing our method for replicating black-box models, called active self-paced knowl-
edge distillation (ASPKD). We will describe our novel components and how are they
integrated in the proposed framework.
Problem statement.As stated in previous works [38], the model stealing task is derived
from knowledge distillation, i.e. in both cases, the task is to infuse the functionality of
a teacher model into a student model. However, the two methods are carried out with
different goals: while knowledge distillation aims to produce a compressed model with
comparable accuracy, model stealing is executed with the only harmful intention of
extracting the teacher’s capability. In the context of model stealing, the assumption of
having no knowledge about the training data, the architecture and the weights of the
teacher is natural. Another difference between the two is that the student architecture
is not required to be less complex in model stealing. Nevertheless, in a similar manner,
we refer to the black-box model as the teacher, and the copy model as the student.

Black-box models are usually available as MLaaS. In a real scenario, service
providers, whose main purposes are commercial, do not disclose any information about
the model. The training data, the architecture of the model, its weights, gradients or
hyperparameters, and other related details are unknown to the MLaaS users. Further-
more, for each query, the providers only supply the output of the model, either as soft
labels (class probabilities) or hard labels. We consider an even more strict scenario
where the number of queries is limited due to the following consideration: the model
stealing attack might get detected due to the high number of API calls. Moreover, even if
the attack remains undetected, the costs might rise to unjustifiable levels after a certain
number of API calls.

Formally, we can formulate the problem statement using the following objective:

min
θS

‖T (X, θT )−S(X ′∪X ′′, θS)‖, subject to |X ′|≤n, (1)

where T is the black-box teacher model, S is the student model in which we distill
the knowledge, θT and θS are their corresponding weights, X is the original data set,
while X ′ and X ′′ represent the two parts for the synthetic (proxy) data set, namely the
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part labeled by T and the part with pseudo-labels. The aim is to optimize the student
weights such that the difference between the outputs of the two models is negligible,
subject to making at most n passes through the teacher T , i.e. n represents the number
of API calls. Following previous work [1,6,38], instead of using models accessible via
APIs, we train the teacher ourselves, prior to launching the attack. During the attack,
we use the teacher in a black-box regime, thus preserving all the constraints mentioned
above. We hereby attest that no information about the teacher is leaked while training
the student.
Overview. Our framework comprises three stages, as illustrated in Figure 1. The first
step in our pipeline is to generate the required synthetic data. While there is no upper
bound on the quantity of images, the lower limit is represented by the budget cap.
Although we demonstrate the capability of our method for as few as one sample per
class, it is more effective to fully take advantage of the query budget in order to achieve
the highest performance. After the generation process, only a part of the data is given
to the teacher. In order to select which images to collect the labels for, we employ an
active learning technique. The resulting chosen samples, together with their associated
labels predicted by the teacher model, are used to train the student. In the third stage,
we employ a self-paced learning scheme to compute pseudo-labels for the samples that
were left out by active learning. Once these are obtained, the student model is trained
for a final round with all the data. We next describe the individual stages.
Data generation. The first challenge in addressing black-box model stealing is acquir-
ing suitable training data. To this end, an effective approach is to create synthetic
data that is similar to the original training data. While previous studies [6,50] utilized
GANs [13] to generate proxy samples, we adopt diffusion models for this purpose.
More specifically, we opt for text-conditional diffusion models, which can generate
images of object classes specified via a prompt. This ensures that the framework can
be applied on diverse image classification tasks. To thoroughly validate our method, we
carry out experiments with two different open-source diffusion models: GLIDE [33]
and Stable Diffusion [45]. Stable Diffusion is based on a latent diffusion model, where
the diffusion process occurs in the latent space of an auto-encoder. Furthermore, the
U-Net model in Stable Diffusion, which is in charge of gradually estimating the noise
to be removed, integrates a cross-attention mechanism to condition the image synthesis
on text. In contrast, GLIDE is a diffusion model that supports two guidance methods,
alternating between a classifier-free method and a CLIP-based method [44]. In our app-
roach, we prefer the former option. We use the publicly released GLIDE model, which
is trained on a rigorously filtered data set. Regarding the design of prompts, we employ
two distinct templates for each class, randomly varying between the two: “An image of
a {class}” and “A photo of a {class}”. Here, the placeholder {class} is replaced with the
actual class name, e.g. dog, car, etc. We generate nearly half of the images of each class
using the first prompt and the other half using the second prompt. This prompt variation
is meant to enhance the variability in the generative process, resulting in more diverse
images.
Active learning. The limit on the number of API calls results in only a part of the
synthetic data being annotated by the black-box model. As a result, achieving a high
accuracy heavily depends on which samples are selected, as they should not only be
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representative, but also diverse, to enhance the student model’s generalization ability. To
this extent, we propose an active learning strategy to perform an informative selection
of the more relevant samples to be inferred by the teacher.

At any iteration of the active learning procedure, we compute the latent vectors of
all samples from the proxy subset X ′′, given by the student. These samples are grouped
into clusters representing the classes predicted by the student. The centroid of each
cluster is then computed. Afterwards, we implement a sampling strategy that advocates
for selecting the examples that are closer to the centroids. The rationale behind our
strategy is to minimize the selection of outliers, as these have a greater chance to be
incorrectly labeled by the teacher. In order to compute the sampling probability of each
image, we apply a Radial Basis Function to the distance of the corresponding latent
vector to its nearest centroid, as follows:

pi = exp

(
−Δ

(
S̄(x′′

i ), μc

)
2 · σ2

)
, (2)

where μc is the closest centroid to S̄(x′′
i ), and σ is a hyperparameter that controls the

importance of the proximity to the nearest centroid. We select a uniformly distributed
number of samples from each cluster to ensure the diversity of samples. The selected
samples are passed as input to the teacher, which returns either a soft or hard label that
is stored in Y ′. We use the subset labeled by the teacher, denoted as X ′, to train the
student until convergence.
Self-paced learning. As previously stated, we can only obtain the class labels from the
black-box model for a part of our proxy data set. As a results, depending on the limit
of API calls, a substantial subset X ′′ of data samples remains unlabeled by the teacher
model. In order to utilize the remaining data as well to improve the student, we pro-
pose a self-paced knowledge distillation procedure. This involves gradually assigning
labels (which we call pseudo-labels) by applying a nearest neighbor algorithm within
the latent embedding space learned by the student. More specifically, we operate in the
latent space of the layer just before the flattening operation or the global average pool-
ing layer, depending on the backbone architecture of our student. Using S̄ to denote
the latent space encoder, the first step in our self-paced learning method is to pass
each example from the annotated proxy subset X ′ through the student model, stor-
ing the latent vectors and the corresponding labels assigned by the student. Then, for
each unlabeled image x′′

i ∈ X ′′, we extract its corresponding latent representation and
search for the closest k samples from the labeled training set. We employ two different
metrics, namely the Euclidean distance and the cosine distance, to compute the distance
between two samples x′′

i ∈ X ′′ and x′
j ∈ X ′ within the latent space. Afterwards, the

psuedo-label assigned to each sample x′′
i is determined by the labels of its k nearest

neighbors. Depending on the type of output provided by the teacher, we propose two
different label assignment strategies. If the teacher returns soft labels, we compute the
class distribution for x′′

i as a weighted average of the soft labels, where the weight of a
sample x′

j is inversely proportional to its distance from x′′
i . When the black-box model

returns hard labels, we use a majority voting scheme, with the distances between x′′
i

and its neighbors serving as tiebreakers. Following label assignment, the student model
is trained on the entire proxy data X ′ ∪ X ′′.
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The active self-paced learning procedure is executed for a number of r = n/s steps,
continuing until the API limit n is reached. It is important to note that the student’s latent
space is continuously evolving. Thus, the latent vectors are recomputed at every step of
the active learning procedure to ensure that the sample selection procedure aligns with
the current state of the student. In our experiments, we set r = 3, except for the one-shot
and two-shot experiments, where r is constrained to r = 1 and r = 2, respectively.

4 Experiments

4.1 Experimental Setup

Data sets. We conduct experiments on two image data sets, namely CIFAR-10 [24]
and Food-101 [5]. CIFAR-10 is a data set of 50,000 training images and 10,000 test
images, representing objects of 10 categories. Each image has a resolution of 32 × 32
pixels. Food-101 [5] is a data set containing images of 101 food categories. Each image
has a resolution of 224× 224 pixels. The original split contains 75,750 training images
and 25,250 test images. These data set choices are aimed at testing the model steal-
ing frameworks in distinct settings, comprising both low-resolution and high-resolution
images, as well as a small and a large number of classes. The training sets are only used
to train the black-box teachers. In contrast, the copy models are trained on generated
proxy data.
Diffusion models.We generate the proxy data set for CIFAR-10 with GLIDE [33]. The
generated images are resized to match the input size of 32 × 32 pixels, as required by
the black-box teacher. We generate 5,000 images per class. For Food-101, we generate
a proxy data set with 1000 images per class, using Stable Diffusion v2 [45]. Although
we can easily generate many more proxy images, we choose to limit the number of
generated images in each proxy data set to the number of samples available in the
original CIFAR-10 and Food-101 data sets. For each proxy data set, we keep 15% of
the generated images for validation purposes.
Teacher and student models. In our experiments, we employ well-known model archi-
tectures that are fundamental to research, as this facilitates comparison with other base-
lines. For the black-box models, we use two architectures: AlexNet [25] and ResNet-
50 [16]. Following previous research on model stealing [1,6], we consider lighter stu-
dent architectures. For the AlexNet teacher, the student is Half-AlexNet, an architecture
where the number of convolutional filters and the number of neurons in fully-connected
layers are reduced by 50%. For the ResNet-50 teacher, the corresponding student is
ResNet-18 [16].
Baselines. We compare our approach with two state-of-the-art model stealing methods
[6,38]. The first competitor is Black-Box Ripper [6], a framework that employs a gen-
erative model in order to create proxy data, which is rather focused on achieving a high
accuracy, irrespective of the number of API calls. Knockoff Nets [38] represent our sec-
ond baseline. Aside from their relevance in the model stealing research, Knockoff Nets
have a similar focus to our own, namely to optimize the number of teacher (or victim)
passes. Following Orekondy et al. [38], we use CIFAR-100 as proxy data for Knockoff
Nets, when the evaluation is performed on CIFAR-10. Similarly, we use ImageNet-
200 [47] (a subset of 200 classes from ImageNet) as proxy data for Food-101. For a
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fair comparison, we impose the same limit on the number of API calls for all meth-
ods. Moreover, we use the same teacher and student architectures for all frameworks.
Therefore, the reported accuracy rates reflect the performance levels of the training
frameworks, namely Black-Box Ripper [6], Knockoff Nets [38], and ASPKD (ours).

Table 1. Optimal hyperparameters of the student models for both data sets.

Student Diffusion model Learning rate Step size γ

Half-AlexNet GLIDE 9 · 10−4 20 0.95

ResNet-18 GLIDE 9 · 10−4 20 0.95

Half-AlexNet Stable Diffusion 7 · 10−5 10 0.95

ResNet-18 Stable Diffusion 10−4 30 0.95

Fig. 2. Empirical results for the experiments conducted on the CIFAR-10 data set, where we
vary the maximum number of black-box calls within the set {1, 2, 4, ..., 4096}. The left plot
showcases the performance of the student model based on the Half-AlexNet architecture, while
the right plot features results using a ResNet-18 student model. We compare the performance
of ASPKD using both soft and hard labels against two state-of-the-art frameworks: Black-Box
Ripper [6] and Knockoff Nets [38]. For context, the accuracy of the corresponding teacher model
is also indicated in each plot. Each experiment reports the average accuracy over five independent
runs with each student model. Best viewed in color.

Hyperparameters. Throughout the experiments, we employ the Adam optimizer [23]
with a decaying learning rate scheduler. The hyperparameters for the teachers are tuned
independently of the students, thus preserving the black-box nature of the teachers. In
the case of CIFAR-10, the teachers are trained for 100 epochs with early stopping and a
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Fig. 3. Empirical results for the experiments conducted on the Food-101 data set, where we vary
the maximum number of black-box calls within the set {1, 2, 4, ..., 512, 800}. The left plot show-
cases the performance of the student model based on the Half-AlexNet architecture, while the
right plot features results using a ResNet-18 student model. We compare the performance of
ASPKD using both soft and hard labels against two state-of-the-art frameworks: Black-Box Rip-
per [6] and Knockoff Nets [38]. For context, the accuracy of the corresponding teacher model is
also indicated in each plot. Each experiment reports the average accuracy over five independent
runs with each student model. Best viewed in color.

learning rate of 5 · 10−4 on mini-batches of 64 samples, while the scheduler has a step
size of 5 with γ = 0.95. For the experiments on Food-101, the teachers are trained for
100 epochs with a learning rate of 10−3 and a mini-batch size of 64. For the learning
rate scheduler, the step size is 20 with γ = 0.95.

The student models are validated on 15% of the proxy data. The students are trained
for 100 epochs with early stopping on mini-batches of 64 samples. As far as the active
learning strategy is concerned, we set the value of σ in Eq. (2) to 17. The nearest neigh-
bors algorithm in the self-paced learning method uses k = 5 neighbors. The optimal
values for the other hyperparameters of the students on all data sets are reported in
Table 1. We present results for two variations of our framework: one that learns from
hard teacher labels, and one that learns from soft teacher labels. In the former version of
ASPKD, the nearest neighbors during self-paced learning phase are identified using the
Euclidean distance. On the other hand, in the latter version, we employ cosine distance
to determine.
Evaluation. All models are evaluated using the official test splits of CIFAR-10 and
Food-101. For the teacher models, we report the classification accuracy based on the
ground-truth labels. Since the objective of the student models is to reproduce the pre-
dictions of the teachers, we assess each student by computing the classification accuracy
against the labels predicted by the corresponding teacher. To ensure the robustness of
our results, we report the average performance across 5 separate runs for each experi-
ment.
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4.2 Results

We have two evaluation scenarios for each data set, since there are two teacher-
student pairs. In total, we compare our framework (ASPKD) with Black-Box Ripper
[6] and Knockoff Nets [38] in four scenarios. The maximum number of API calls
per class takes values in the set {1, 2, 4, ..., 4096} for the two CIFAR-10 scenarios,
and the set {1, 2, 4, ..., 512, 800} for the two Food-101 scenarios. The corresponding
results are presented in Figures 2 and 3. In both plots, the first column contains the
teacher-student pair represented by AlexNet→Half-AlexNet. For the second column,
the teacher-student pair is ResNet-50→ResNet-18. In each plot, we present results with
two versions for ASPKD, corresponding to the type of labels returned by the teacher,
soft or hard.

When compared to Black-Box Ripper [6], our framework (ASPKD) obtains signif-
icantly better results in all evaluation scenarios, regardless of the maximum number of
API calls. In all evaluation scenarios, both ASPKD versions outperform Knockoff Nets
[38] by considerable margins. In the CIFAR-10 experiments, ASPKD based on hard
labels yields better results, especially in the more challenging few-call settings, namely
when the maximum number of API calls per class is below 16, as illustrated in Figure 2.
As the number of API calls per class increases, the two ASPKD versions register faster
performance gains than the baselines. Overall, we conclude that ASPKD leads to gen-

Table 2. Accuracy rates of the Half-AlexNet student with different training procedures. The
vanilla procedure consists of a conventional training strategy on proxy data with teacher labels.
Next, we present the impact of separately and jointly introducing our active learning and self-
paced learning (based on cosine distance and soft labels) components, respectively. All experi-
ments are based on 5 trials, the mean accuracy and the standard deviation being reported in each
case. The data set used for the evaluation is the original CIFAR-10 test split, while the proxy
training data is generated by GLIDE [33].

#Samples
per class

Vanilla + Active
learning

+ Self-paced
learning

+ Active &
self-paced learning

1 19.4±2.1 20.7±3.6 25.0±2.7 25.9±4.0

2 25.9±3.7 26.5±2.0 25.6±1.1 36.1±2.5

4 27.7±2.6 29.9±1.2 28.5±0.5 40.9±2.7

8 29.4±2.0 33.0±2.0 35.3±1.7 43.7±2.7

16 36.3±3.5 41.8±3.0 40.8±1.1 46.0±1.6

32 39.2±2.1 43.9±1.3 46.4±1.7 47.2±1.8

64 43.6±1.4 46.0±2.7 45.8±1.2 48.3±1.7

128 46.6±1.8 48.8±1.5 48.0±1.6 49.3±1.6

256 47.7±3.2 50.3±1.9 50.0±1.5 49.4±3.2

512 52.5±2.1 53.6±1.9 53.6±0.8 53.5±1,6

1024 55.5±2.5 56.0±1.5 56.6±2.2 56.2±1.4

2048 60.3±1.7 61.5±2.1 63.1±0.9 61.2±1.3

4096 66.3±1.8 68.0±0.7 67.7±1.3 67.8±1.7
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erally better results, surpassing both Black-Box Ripper [6] and Knockoff Nets [38] in
all evaluation scenarios.
Ablation study. Table 2 illustrates the performance impact of introducing the active
learning and self-paced learning strategies, both independently and jointly. When each
strategy is applied separately, we observe significant improvements in most cases.
Notably, when the number of API calls per class is 128 or fewer, combining both strate-
gies leads to even greater performance gains. These results demonstrate the benefits of
each strategy individually, as well as the effectiveness when used together.

5 Conclusion

In this study, we aimed to introduce a model stealing method that addresses the practical
challenges encountered in real-world scenarios, where several constraints are present,
i.e. no access to the training set, no information about the architecture of the victim
model, or about its training process. The main objective was to respect a strict limita-
tion on the number of allowed teacher model calls, even for as low as a single sample
from each class. Our first contribution was to employ a text-to-image diffusion model
to create synthetic training data, enabling us to produce entities from every output class,
as well as having diverse samples to encompass all the class properties. We presented
an active learning strategy designed to optimize the selection of proxy data to be labeled
by the teacher model, ensuring that the most informative samples are prioritized. Addi-
tionally, given the imposed limit on the number of API calls, we introduced a self-paced
learning method for annotating the generated images that never get passed through the
black-box teacher model by assigning them pseudo-labels. We carried out extensive
experiments focusing on a reduced the number of API calls, reporting results on var-
ious testing scenarios: multiple combinations of teacher-student architectures, black-
box model returning varying output types, and distinct data sets obtained with different
diffusion models. With out research, we aim to raise awareness of the model-stealing
vulnerabilities of the publicly exposed methods, especially nowadays, given the current
rise of artificial intelligence solutions.

In future work, we aim to address defensive methods as well. We will look into
preventing few-call model stealing attacks through robust protection mechanisms in the
early stages of the AI model deployment.
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6. Bărbălău, A., Cosma, A., Ionescu, R.T., Popescu, M.: Black-Box Ripper: Copying black-box
models using generative evolutionary algorithms. In: NeurIPS. vol. 33, pp. 20120–20129
(2020)

7. Chandrasekaran, V., Chaudhuri, K., Giacomelli, I., Jha, S., et al.: Exploring connections
between active learning and model extraction. In: USENIX. pp. 1309–1326 (2020)

8. Cho, J.H., Hariharan, B.: On the Efficacy of Knowledge Distillation. In: ICCV. pp. 4794–
4802 (2019)

9. Correia-Silva, J.R., Berriel, R.F., Badue, C., de Souza, A.F., et al.: Copycat CNN: Stealing
Knowledge by Persuading Confession with Random Non-Labeled Data. In: IJCNN. pp. 1–8
(2018)

10. Costa-jussà, M.R., Cross, J., Çelebi, O., Elbayad, M., Heafield, K., Heffernan, K., Kalbassi,
E., Lam, J., Licht, D., Maillard, J., et al.: No Language Left Behind: Scaling Human-
Centered Machine Translation. arXiv preprint arXiv:2207.04672 (2022)

11. Croitoru, F.A., Hondru, V., Ionescu, R.T., Shah, M.: Diffusion Models in Vision: A Survey.
IEEE Trans. Pattern Anal. Mach. Intell. 45(9), 10850–10869 (2023)

12. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: NeurIPS.
vol. 34, pp. 8780–8794 (2021)

13. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., et al.: Generative adversarial nets. In:
NeurIPS. 27, 2672–2680 (2014)

14. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: A survey. Int. J. Comput.
Vision 129(6), 1789–1819 (2021)

15. Gu, Y., Dong, L., Wei, F., Huang, M.: MiniLLM: Knowledge Distillation of Large Language
Models. In: ICLR (2024)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR.
pp. 770–778 (2016)

17. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 (2015)

18. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS. 33, 6840–
6851 (2020)

19. Huang, T., Zhang, Y., Zheng, M., You, S., Wang, F., Qian, C., Xu, C.: Knowledge Diffusion
for Distillation. In: NeurIPS. vol. 36 (2024)

20. Juuti, M., Szyller, S., Marchal, S., Asokan, N.: PRADA: protecting against DNN model
stealing attacks. In: EuroS&P. pp. 512–527 (2019)

21. Kariyappa, S., Prakash, A., Qureshi, M.K.: MAZE: Data-Free Model Stealing Attack Using
Zeroth-Order Gradient Estimation. In: CVPR. pp. 13814–13823 (2021)

22. Kesarwani, M., Mukhoty, B., Arya, V., Mehta, S.: Model Extraction Warning in MLaaS
Paradigm. In: ACSAC. pp. 371–380 (2018)

23. Kingma, D.P., Ba, J.L.: Adam: A method for stochastic gradient descent. In: ICLR (2015)
24. Krizhevsky, A.: Learning multiple layers of features from tiny images. University of Toronto,

Tech. rep. (2009)
25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep Convolu-

tional Neural Networks. In: NeurIPS. vol. 25 (2012)
26. Liu, X., Ma, Z., Liu, Y., Qin, Z., et al.: SeInspect: Defending Model Stealing via Heteroge-

neous Semantic Inspection. In: ESORICS. pp. 610–630 (2022)
27. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., et al.: RePaint: Inpainting using Denoising

Diffusion Probabilistic Models. In: CVPR. pp. 11461–11471 (2022)
28. Meng, C., Rombach, R., Gao, R., Kingma, D., Ermon, S., Ho, J., Salimans, T.: On Distillation

of Guided Diffusion Models. In: CVPR. pp. 14297–14306 (2023)

http://arxiv.org/abs/2207.04672
http://arxiv.org/abs/1503.02531


Active Self-paced Knowledge Distillation for Few-Call Model Stealing 29

29. Micaelli, P., Storkey, A.J.: Zero-shot knowledge transfer via adversarial belief matching. In:
NeurIPS. vol. 32, pp. 9551–9561 (2019)

30. Mirzadeh, S.I., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., Ghasemzadeh, H.:
Improved Knowledge Distillation via Teacher Assistant. In: AAAI. vol. 34, pp. 5191–5198
(2020)

31. Mosafi, I., David, E.O., Netanyahu, N.S.: Stealing knowledge from protected deep neural
networks using composite unlabeled data. In: IJCNN. pp. 1–8 (2019)

32. Nayak, G.K., Mopuri, K.R., Shaj, V., Radhakrishnan, V.B., et al.: Zero-shot knowledge dis-
tillation in deep networks. In: ICML. pp. 4743–4751 (2019)

33. Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., et al.: GLIDE: Towards Photorealistic
Image Generation and Editing with Text-Guided Diffusion Models. In: ICML. pp. 16784–
16804 (2021)

34. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: ICML.
pp. 8162–8171 (2021)

35. Oh, S.J., Schiele, B., Fritz, M.: Towards reverse-engineering black-box neural networks.
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning pp. 121–144 (2019)

36. Oliynyk, D., Mayer, R., Rauber, A.: I know what you trained last summer: A survey on
stealing machine learning models and defences. ACM Computing Surveys 55(14s) (2023)

37. OpenAI: ChatGPT: A Conversational Language Model. https://openai.com/research/chatgpt
(2022)

38. Orekondy, T., Schiele, B., Fritz, M.: Knockoff Nets: Stealing functionality of black-box mod-
els. In: CVPR. pp. 4954–4963 (2019)

39. Pal, S., Gupta, Y., Shukla, A., Kanade, A., et al.: A framework for the extraction of deep
neural networks by leveraging public data. arXiv preprint arXiv:1905.09165 (2019)

40. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., et al.: Practical black-box attacks against
machine learning. In: ASIACCS. pp. 506–519 (2017)

41. Peng, B., Li, C., He, P., Galley, M., Gao, J.: Instruction Tuning with GPT-4. arXiv preprint
arXiv:2304.03277 (2023)

42. Pengcheng, L., Yi, J., Zhang, L.: Query-efficient black-box attack by active learning. In:
ICDM. pp. 1200–1205 (2018)

43. Phuong, M., Lampert, C.: Towards Understanding Knowledge Distillation. In: ICML. pp.
5142–5151 (2019)

44. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., et al.: Learning transferable visual models
from natural language supervision. In: ICML. pp. 8748–8763 (2021)

45. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., et al.: High-Resolution Image Synthesis
with Latent Diffusion Models. In: CVPR. pp. 10684–10695 (2022)

46. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: Hints for
Thin Deep Nets. In: ICLR (2014)

47. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recognition
Challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-
015-0816-y

48. Saharia, C., Chan, W., Saxena, S., Li, L., et al.: Photorealistic Text-to-Image Diffusion Mod-
els with Deep Language Understanding. In: NeurIPS. vol. 35, pp. 36479–36494 (2022)

49. Salimans, T., Ho, J.: Progressive Distillation for Fast Sampling of Diffusion Models. In:
ICLR (2022)

50. Sanyal, S., Addepalli, S., Babu, R.V.: Towards data-free model stealing in a hard label setting.
In: CVPR. pp. 15284–15293 (2022)

51. Shi, Y., Sagduyu, Y., Grushin, A.: How to steal a machine learning classifier with deep learn-
ing. In: HST. pp. 1–5 (2017)

https://openai.com/research/chatgpt
http://arxiv.org/abs/1905.09165
http://arxiv.org/abs/2304.03277
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y


30 V. Hondru and R.-T. Ionescu

52. Shi, Y., Sagduyu, Y.E., Davaslioglu, K., Li, J.H.: Active deep learning attacks under strict
rate limitations for online API calls. In: HST. pp. 1–6 (2018)

53. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning
using nonequilibrium thermodynamics. In: ICML. pp. 2256–2265 (2015)

54. Song, J., Meng, C., Ermon, S.: Denoising Diffusion Implicit Models. In: ICLR (2021)
55. Song, Y., Dhariwal, P., Chen, M., Sutskever, I.: Consistency models. In: ICML. pp. 32211–

32252 (2023)
56. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., et al.: Stealing machine learning models via

prediction APIs. In: USENIX. pp. 601–618 (2016)
57. Urban, G., Geras, K.J., Kahou, S.E., Aslan, O., Wang, S., Mohamed, A., Philipose, M.,

Richardson, M., Caruana, R.: Do Deep Convolutional Nets Really Need to be Deep and
Convolutional? In: ICLR (2022)

58. Wang, B., Gong, N.Z.: Stealing hyperparameters in machine learning. In: SP. pp. 36–52
(2018)

59. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion Models for Medical Anomaly
Detection. In: MICCAI. pp. 35–45 (2022)

60. Wu, M., Waheed, A., Zhang, C., Abdul-Mageed, M., Aji, A.F.: LaMini-LM: A diverse herd
of distilled models from large-scale instructions. In: ACL. pp. 944–964 (2024)

61. Xie, Y., Huang, M., Zhang, X., Dong, C., et al.: Game: Generative-based adaptive model
extraction attack. In: ESORICS. pp. 570–588 (2022)

62. Yan, H., Li, X., Li, H., Li, J., et al.: Monitoring-based differential privacy mechanism against
query flooding-based model extraction attack. IEEE Trans. Dependable Secure Comput.
19(4), 2680–2694 (2022)

63. Yin, H., Molchanov, P., Alvarez, J.M., Li, Z., et al.: Dreaming to Distill: Data-free Knowl-
edge Transfer via DeepInversion. In: CVPR. pp. 8715–8724 (2020)

64. Zhang, Z., Chen, Y., Wagner, D.: SEAT: Similarity Encoder by Adversarial Training for
Detecting Model Extraction Attack Queries. In: AISec. pp. 37–48 (2021)

65. Zhao, B., Cui, Q., Song, R., Qiu, Y., Liang, J.: Decoupled Knowledge Distillation. In: CVPR.
pp. 11953–11962 (2022)

66. Zhu, X., Gong, S., et al.: Knowledge Distillation by On-the-Fly Native Ensemble. In:
NeurIPS. vol. 31 (2018)



A Novel Ensemble Aggregation Method
Based on Deep Learning Representation

Truong Thanh Nguyen1(B), Eyad Elyan1, Truong Dang2,
Tien Thanh Nguyen2, and Martin Longmuir3

1 School of Computing, Robert Gordon University, Aberdeen, UK
t.nguyen3@rgu.ac.uk

2 National Subsea Centre, Robert Gordon University, Aberdeen, UK
3 AquaTerra Group Ltd., Aberdeen, UK

Abstract. We propose a novel ensemble aggregation method by using
a deep learning-based representation approach. Specifically, we applied
the Cross-Validation procedure on training data with a number of learn-
ing algorithms to obtain the predictions for training data called meta-
data. A neural network model is trained on this meta-data to generate
representations associated with class labels. In our method, the neu-
ral network model functions as an encoder, learning the relationship
between base classifiers’ outputs and mapping meta-data to a represen-
tation space. The vectors in the mapped space provide a more accurate
representation than traditional methods by reducing the distance of vec-
tors in the same class and increasing the distance in different classes.
Our method was compared with four well-known ensemble methods:
Decision Template, an ensemble with a MultiLayer Perceptron (MLP)-
based combiner, gcForest, and XgBoost. Experiments conducted on 20
UCI datasets demonstrate the outstanding performance of our ensemble
aggregation method. The results show that our method achieves better
delegation of class label representations, enhancing the final results of
classification tasks.

Keywords: Ensemble learning · Ensemble combining · Ensemble
aggregation · Multilayer perceptron · Ensemble method

1 Introduction

In recent years, the advancement of Machine Learning (ML) has significantly
contributed to solving problems (e.g. classification) in many areas. The perfor-
mance success of ML models can be attributed to their ability to approximate
complex unknown relationships between training observations and their asso-
ciated labels via various approaches. Despite these strengths and effectiveness,
each model expresses specific advantages or faces inherent performance limits
when learning on a dataset. The ensemble technique is a potential approach to
obtain a better and more robust performance by combining multiple advantages
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of individual models. The foundation ideas of ensemble learning were formed in
the 1980s in [1] which built the groundwork for ensemble learning. Nowadays,
ensemble learning has become an attractive topic, resulting in various ensemble
methods being proposed.

Two main stages are considered when designing an ensemble: ensemble gen-
eration and ensemble aggregation. Ensemble generation is the process of gen-
erating multiple models to form an ensemble. An ensemble can be generated
by either training a ML algorithm on different training data schemes or train-
ing multiple different ML algorithms on a training dataset [2]. Both approaches
introduce ideas to breaking through the bounding performance of individual
learning models. Ensemble aggregation meanwhile is a critical process to com-
bine the outputs of multiple models in the ensemble. In the past, there were
several ensemble aggregation methods proposed such as Decision Template [3],
Fixed Rule [4], Fuzzy Rule-based Combining [5], and Multi-Linear Regression
[6].

On the other hand, recent years have seen the meteoric rise of deep learning,
with successful applications in multiple areas. The reasons for the successes of
deep learning are due to layer-by-layer processing, in-model feature transforma-
tion, and sufficient model complexity [7]. In this paper, we seek to develop a
novel ensemble aggregation method by employing these deep learning advances.
By using a deep learning model as an encoder to learn each feature and classi-
fier’s contribution to the final result, and combining this with Lifted structured
loss functions [8], we enhance the accuracy of representations for class labels.
The function maps original vectors to other spaces, with the expectation that
the distributions of the training dataset in these spaces will meet the condi-
tions where the similarity distances between vectors of the same class achieve
minimum values, and the distances between vectors of different classes are maxi-
mized. By increasing class distances, the mean presentation vectors of each class
become more distinct from those of other classes, thereby reducing errors in edge
vectors.

Our contributions are as follows: (i) We introduce a novel ensemble aggre-
gation method by learning representations associated with class labels. (ii) The
representations are obtained by training a neural network (e.g. Multilayer Per-
ceptron (MLP)) with Lifted structured loss function on the predictions of clas-
sifiers for training data. (iii) The experimental results show that our proposed
method is better than 4 well-known benchmark algorithms on 20 experimental
datasets.

The paper includes 5 sections. Section 2 introduces ensemble learning and
related background. Sections 3 and 4 introduce our proposed ensemble aggre-
gation method and experimental studies. Finally, the conclusion is provided in
Sect. 5.
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2 Literature Review

2.1 Ensemble Learning

Ensemble learning refers to the process of combining the outputs of multiple
models (i.e. classifiers) to obtain better results than using single models. Ensem-
ble learning can be divided into the following types: Homogeneous and hetero-
geneous. Random Forest [9] and XgBoost [10] are two well-known examples of
successful homogeneous methods, constructing an ensemble on different data
schemes generated from the training data to help reduce variance and enhance
model stability and generalizability. Dudzik et al. [11] proposed an ensemble of
cascades of Support Vector Machine (SVM), trained from different subsets of the
training set. The selection of training subsets, as well as the SVM hyperparame-
ters, were optimized by using an evolutionary algorithm. In [12], the authors
proposed an AdaBoost-based ensemble of one-class support vector machines
(OCSVMs) with a bounded exponential loss function to mitigate outlier perfor-
mance. Dang et al. [13] constructed a homogeneous ensemble by using random
projection in which multiple data schemes are generated by projecting training
data into a subspace with different projection matrices.

On the other hand, heterogeneous ensembles enhance the diversity of mod-
els’ predictions by employing a variety of different base models. Dang et al. [14]
proposed a heterogeneous ensemble of medical image segmentation models in
which a classifier will be added to the ensemble based on the confidence thresh-
old computed from its predictions. Hossein et al. [15] investigated the use of
bagging and boosting-based heterogeneous ensembles for the imbalanced class
problem. Their experiments on 66 datasets showed that simple, bagging- and
boosting-based heterogeneous ensembles achieve much better results than sev-
eral homogeneous counterparts. In [16], the authors proposed a heterogeneous
ensemble to handle changes in the data stream. The proposed method dynami-
cally selects an appropriate subset of base classifiers to predict data under the
stream settings by using classifier accuracy and confidence score.

In recent years, deep neural networks have achieved great success in multiple
areas. One of the main reasons for the achievements of deep neural networks is
due to the layer-by-layer processing nature, in which the first layers extract con-
crete features while more abstract features are extracted in the deeper layers [7].
Based on this observation, there has been many works on multi-layer ensembles
in recent years. One of the earliest works on multi-layer ensembles is gcForest [7],
in which the authors used decision trees and completely random trees as base
classifiers in each layer. The number of layers of gcForest is determined based on
the performance of the method on a validation set in which if the accuracy does
not improve the the layer construction procedure stops and the final ensemble
is returned. Nguyen et al. proposed MULES [2], which used an evolutionary
algorithm to select the optimal subset of classifiers and features to learn at each
layer. The fitness measure used by the evolutionary algorithm is composed of
not only classification accuracy but also ensemble diversity as well. Dang et al.
[17] proposed a two-layer ensemble of deep learning models for medical image
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segmentation. The segmentation output for each pixel by each classifier in the
first layer is used as augmented data to improve the segmentation results of the
second layer. A weight-based scheme is used to combine the predictions in the
second layer. In [18], the authors noted that the input features of gcForest do
not allow for better performance in deeper layers. Based on this observation, the
authors proposed DEFEG, which is a multi-layer ensemble in which the predic-
tions of each classifier at each layer is weighted together either by summation or
concatenation. Variable-length PSO is used to find the optimal weights for the
ensemble.

2.2 Ensemble Aggregation

Ensemble aggregation is the process of combining the predictions of the base
models to obtain the final predictions. It is considered to be crucial to any effec-
tive ensemble system. Ensemble aggregation techniques are often classified as
fixed methods and trainable methods. Fixed methods do not exploit the label
of training data for final predictive labels, instead, they employ the classifiers’
results on each test sample to calculate final decisions. Kittler et al. [4] investi-
gated six fixed combining rules: Product, Sum, Median, Minimum, Maximum,
and Majority Vote. The results indicated that the Sum rule provides better per-
formance compared to the other combining rules. In [19], the authors investigated
several voting methods for the bagging algorithm and found that single transfer-
able vote can provide better results compared to plurality voting, despite some
computational overhead. In [20], Weighted Majority Voting Ensemble methods
use additional weights to determine the effect of each classifier on the final result,
based on the assumption each classifier has different contributions based on their
results.

In the trainable approach, the label information associated with the clas-
sifier’s outputs on training data (also called meta-data of the training set) is
exploited to construct a meta-classifier that combines the predictions of the base
classifiers. There are two types of trainable combining, namely weight-based and
representation-based combining. Weight-based combining aims to set weights for
classifiers in the ensemble to reflect their different contributions to the final com-
bining result. Dang et al. [21] proposed a weight-based ensemble of deep learning
models for medical image segmentation. The predictions on each pixel by each
model are weighted to get the combined results, and Comprehensive Learning
Particle Swarm Optimisation is used to find the weights for each base model. On
the other hand, in representation-based combining methods, different represen-
tations associated with class labels computed from the meta-data are generated.
Kuncheva et al [3] propose a Decision Template method that utilizes the mean
of the predictions for each class label to construct the representation vectors.
Dang et al. [22] used a weight-based approach to find the optimal decision tem-
plate for an ensemble of deep neural networks for medical image segmentation.
The decision templates for each class is created using a weight-based approach,
and Particle Swarm Optimisation is used to optimize the weights of each seg-
mentation model. Nguyen et al. [23] proposed a Bayesian-based representation
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combining method in which the multivariate Gaussian distribution of the pre-
dictions of each classifier for each class is estimated via variational inference.

3 Proposed Method
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Fig. 1. Overall architecture of our proposed method

Assume we have N training observations, denote as D, where each observa-
tion is a pair feature vector xn and true label yˆn. First, we describe the process
to obtain predictions for training data (meta-data) using a cross-validation pro-
cedure as in Fig. 1. We apply T -fold cross-validation procedure in which the
training data D is divided into T disjoint equally-sized folds {D1,D2, . . . ,DT }.
The model is trained on T − 1 folds and validated on the remaining fold. This
process repeats T times with each fold serving as the validation set once. Finally,
the probabilities of each validation are collected in the form of meta-data used
for later steps. The meta-data L is an N × MK matrix, where M denotes the
number of classes and K denotes the number of classifiers.

L =

⎡
⎢⎢⎣

P1(y1|x1) · · · P1(yM |x1) · · · PK(y1|x1) · · · PK(yM |x1)
P1(y1|x2) · · · P1(yM |x2) · · · PK(y1|x2) · · · PK(yM |x2)

· · · · · · · · · · · · · · · · · · · · ·
P1(y1|xN ) · · · P1(yM |xN ) · · · PK(y1|xN ) · · · PK(yM |xN )

⎤
⎥⎥⎦ (1)

Next, we discuss how to create a representation vector for each class which
can be used to classify test samples. Representation-based combining methods
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usually classify test instances based on the distance of their meta-data to that
of the representation vectors for each class. The representation vectors can be
chosen in various ways, such as the mean of the predictions in [3], or by opti-
mization as in [22]. Here we propose to train a neural network that will map
the meta-data of each class into a vector in the representation space, such that
the vectors in the same class will be close to each other and vectors in differ-
ent classes will be far from each other. In other words, the new vectors in the
representation space will be:

R = NeuralNetwork(L) =

⎡
⎢⎢⎣

r1,1 · · · r1,S
r2,1 · · · r2,S
· · · · · · · · ·
rN,1 · · · rN,S

⎤
⎥⎥⎦ (2)

where S is the dimension of the representation space. In 2, the ith row of
R :

[
ri,1 · · · ri,S

]
represents for the predictions for observation xi in L[

P1(y1|xi) · · · P1(yM |xi) · · · PK(y1|xi) · · · PK(yM |xi)
]
. After that, the represen-

tation vector for each class will be calculated as follows:

Rm =
[∑N

n=1
I(yn=m)∗rn,1

I(yn=m) ,
∑N

n=1
I(yn=m)∗rn,2

I(yn=m) , · · · ∑N
n=1

I(yn=m)∗rn,S

I(yn=m)

]
(3)

in which I is the indicator function. The Formula 3 calculates the representation
vector for each class label by averaging values ri,j in each row of R that is
associated with this label.

Next, we discuss the choice of the loss function used to train the neural
network on L. Several loss functions are often utilized in deep learning to enhance
the contrast between vectors of different classes, such as contrastive and triplet
embedding [24,25]. Both methods find embedding vectors using mini-batches in
which the number of pairs chosen for calculation is n from n input vectors in
the batch. The lifted structured loss function uses all O(N2) pairs, instead of
O(N) to enhance performance in fixed mini-batches of size 8. Figure 2 shows the
process mining for a pair positive in the batch, there are 6 observations in the
batch and x3, x4 in the same class and all others belong to different classes. The
red edges are present for pairs in the same class, and the blue edges are present for
pairs in different classes. Each node in positive pairs is independently compared
against all negative edges, which allows the model to learn from the negatives
from both the left and right of a pair.

Lifted structured loss functions optimize the model’s output by increasing
the similarity of vectors within the same class and enhancing the dissimilar-
ity between vectors of different classes. This approach aims to improve the
representation vectors and robustness of class label predictions. Let Dij =
‖f(xi) − f(xj)‖2, formula of loss function [8] is defined as:

L(ij)
struct = Dij + L(ij)

struct = Dij + log
(∑

(i,k)∈N exp(α − Dik) +
∑

(j,l)∈N exp(α − Djl)
)

(4)

in which P is the set of positive pairs and N is the set of negative pairs, the label
yi,j ∈ {0, 1}, value 0 determine the same class and contrast. The formula 4 has
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Fig. 2. An illustration of lifted structured loss.

2 main parts: Dij is used to calculate the loss of positive pairs in mini-batches
and to optimize the distance between output vectors that are positive pairs, and
log

(∑
(i,k)∈N exp(α − Dik) +

∑
(j,l)∈N exp(α − Djl)

)
is utilized for optimizing

for negative pairs. After loss of a positive pair is calculated, the final loss is
combined by 5,

Lstruct = 1
2|P|

∑
(i,j)∈P max(0,L(ij)

struct)2 (5)

It can be seen that lifted structure loss is more flexible and effective than the
triplet structure method in [26] where only the predefined determined points are
calculated. Therefore, in this paper, the lifted structure loss is used as the loss
function when training the neural network on L to obtain R.

Given a test instance x, the algorithm starts by using K learning classifiers
to create the probability vector for this sample.

L(x) =
[
P1(y1|x) · · · P1(yM |x) · · · PK(y1|x) · · · PK(yM |x)

]
(6)

Then, the neural network will map the probability vector into the representa-
tion space

R(x) = NeuralNetwork(L(x)) =
[
rx1,1 · · · rx1,S

]
(7)

The predicted class for x will then be chosen as follows:

ypred = argminm=1,...,M ||Rm − R(x)|| = argminm=1,...,M dm (8)

where dm = ||Rm − R(x)|| is the distance between the representation of the test
instance x and the representation of class m, and ||.|| is a distance function. In
this paper, Euclidean distance is chosen as the distance function.

Algorithm 1 describes the training process. The algorithm receives as inputs
the training set D, the learning algorithms K = {Ki}i=1,...,M , the size of the
representation vector S and the number of epochs Nepoch. From line 1 to line
3, the learning algorithms are trained on the training set to create the base
classifiers {BCi}j=1,...,K .
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Algorithm 1 Training process
Input: D: training set, K = {Ki}i=1,...,M : learning algorithms, S: size of representation

vector, Nepoch: maximum number of epochs
Output: Ensemble of classifiers: {BCi}j=1,...,K , Representation: {Ri}i=1,...,M , and Neural

Network model
1: for i ← 1 to K do
2: Base classifier BCi = Learn(Ki,D)
3: end for
4: L = ∅, {D1, . . . ,DT } = T -Partition(D)
5: for each Di do
6: D̃i = D − Di

7: for each Kj do

8: Classifier BC∼i
j = Learn(Kj , D̃i)

9: L = L∪ Classify(BC∼i
j , Di)

10: end for
11: end for
12: Neural Network Model= Initialize parameters()
13: for epoch ← 1 to Nepoch do
14: for each mini-batch (X batch, Y batch) in (L, Y) do
15: Q pred = Predict(X batch)
16: loss = Lifted structured loss (Q pred, Y batch)
17: Perform backward propagation and update model parameters
18: if loss doesn’t decrease in 10 epochs then
19: Early stop
20: end if
21: end for
22: end for
23: Q = ∅

24: for each mini-batch (X batch, Y batch) in (L, Y) do
25: Q pred = Predict(X batch)
26: Q = Q∪ (Q pred, Y batch)
27: end for
28: Initialize Vi = ∅, where i = 1, . . . ,M
29: for V, y label in Q do
30: Vy label = Vy label + V
31: end for
32: R = ∅

33: for m ← 1 to M do
34: Rm = mean(Vm)
35: R = R ∪ Rm

36: end for
37: return {BCi} i = 1, . . . ,M , Neural Network Model, R

In lines 4-11, cross-validation is performed to create the meta-data L. From lines
13-22, the neural network is trained on the meta-data using the lifted structure
loss for a maximum of Nepoch epochs, and during the training process, if the
loss doesn’t decrease after a number of epochs, then the training of the neural
network is stopped. In lines 23-27, the trained neural network is used to map the
meta-data to the representation space. In lines 29-36, the representation vector
for each class is calculated using Eq. 3. Finally, the base classifiers, the trained
neural network model, and the representation vectors are returned in line 37.
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Algorithm 2 Testing process
Input: x: unlabeled sample, R: representation vector set, Neural Network model, {BCi}

i = 1, . . . ,M : ensemble of classifiers
Output: Predicted class label for x

1: for i ← 1 to K do
2: L(x) = Classify(BCi, x)
3: end for
4: R(x) = Neural Network model (L(x))
5: for m ← 1 to M do
6: dm = d(Rm, R(x))
7: end for
8: return x ∈ yt if t = argminm=1,...,M dm(x)

Algorithm 2 describes the testing process. The inputs of the algorithm are
the unlabeled observation x, the representation vectors for each class, the neural
network models, and the base classifiers. In lines 1-3, the base classifiers predict
x to create the meta-data. In line 4, the neural network is used to create the
representation vector of x using its meta-data. In lines 5-8, the distance between
the representation vector of x and the representation vector of each class is
calculated. Finally, in line 9, the class label whose representation vector has the
smallest distance to that of x is returned as the production result for x.

4 Experiments

4.1 Experimental Settings

The experiments were conducted on 20 different datasets from the UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml/datasets.html). We detailed
the description of these datasets in Table 1. Each dataset was split into training
and testing with a train-to-test ratio of 7:3. Five classifiers were used to create
meta-data which are Random Forest (using 200 estimators), Logistic Regression
(Softmax regression), K nearest neighbors (the number of nearest neighbors was
set to 5), XgBoost (using 200 estimators), and Naive Bayes classifiers (using
Gaussian distribution ). These classifiers were selected due to their widespread
use and demonstrated effectiveness in previous studies, as referenced in [27]. We
chose 5-fold cross-validation to train and create meta-data.

The fully connected MLP including 4 layers was used on the meta-data L
to train R. Each layer applies an affine transformation, followed by a non-linear
activation function, enhancing the model’s ability to capture patterns in the data.
Purposes of the input layer typically increase the dimension of the input, enabling
the extraction of higher-level features: h1 = σ(W1x+b1). Where W1 ∈ R

S×64 is
the weight matrix, b1 ∈ R

64 is the bias vector, 64 is input size of the first hidden
layer. σ is a non-linear activation function ReLU (σ(z) = max(0, z)), h1 ∈ R

64 is
the output of the first layer. Hidden layers have size (64, 64) which are used to
finetune these features, and facilitate the learning of complex relationships within
the data: h2 = σ(W2h1 + b2), h3 = σ(W3h2 + b3) where W2,W3 ∈ R

64×64

http://archive.ics.uci.edu/ml/datasets.html
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are the weight matrices, b2,b3 ∈ R
64 are the bias vectors, and h2,h3 ∈ R

64 are
the outputs of the first and second hidden layers, respectively. The output layer
reduces the dimensionality to match the number of output targets, providing the
necessary structure for making representation vectors: y = W4h3 + b4. Where
W4 ∈ R

c×64 is the weight matrix, b4 ∈ R
c is the bias vector, y ∈ R

c is the
output vector,where c is the number of output dimensions. In the study, c was
chosen in the range {2, 4, 8, 16, 32, 64, 128, 256}. This architecture’s depth
enables it to capture relationships within the data and the effectiveness of each
classifier, while the linear layers ensure the model’s computational efficiency and
facilitate gradient-based optimization.

Table 1. The description of experimental datasets

Dataset # of features # of observations # of classes

Australian 14 690 2

Biodeg 41 1055 2

Breast-cancer 9 683 2

Bupa 6 345 2

Colon 2000 62 2

Electricity 8 45312 2

Embryonal 7129 60 2

Heart 13 270 2

Hill valley 10 2424 2

Madelon 50 2000 2

Magic 10 19020 2

Mammographic 5 830 2

Musk2 16 6598 2

Newthyroid 5 215 3

Ring 20 7400 2

Satimage 36 6435 6

Sonar 60 208 2

Vertebral 6 310 3

Wdbc 30 569 2

Wine 13 178 3

4.2 Results and Discussions

Influence of the Dimension of Representation Vectors: In Fig. 3, we eval-
uate our method using representation vectors of varying dimensions: 2, 4, 8, 16,
32, 64, 128, and 256, to analyze the influences of the dimension of representation
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Table 2. Accuracy of the benchmark algorithms and our proposed method

Name Decision
Template

MLP
Combiner

gcForestXgBoostProposed
Method

Australian 0.8841 0.8599 0.8792 0.8744 0.8841

Biodeg 0.858 0.877 0.8707 0.8549 0.8833

Breast-cancer 0.9707 0.9854 0.9707 0.9561 0.9805

Bupa 0.7212 0.7308 0.7212 0.7019 0.7404

Colon 0.8421 0.7368 0.7368 0.7895 0.8421

Electricity 0.9063 0.9155 0.7998 0.8529 0.9172

Embryonal 0.4444 0.5556 0.5 0.5 0.6111

Heart 0.8272 0.7778 0.8272 0.7531 0.8519

Hill valley 0.6484 0.6525 0.5824 0.6126 0.6593

Madelon 0.7533 0.785 0.635 0.7 0.7967

Magic 0.8819 0.8829 0.8375 0.8735 0.8845

Mammographic0.8032 0.7952 0.8394 0.8233 0.8353

Musk2 0.9859 0.9894 0.951 0.9768 0.9949

Newthyroid 0.9846 0.9538 0.9692 0.9692 0.9846

Ring 0.9779 0.9784 0.9635 0.9707 0.9784

Satimage 0.9156 0.9151 0.8695 0.912 0.9208

Sonar 0.8889 0.8095 0.8254 0.8413 0.873

Vertebral 0.8172 0.828 0.7957 0.828 0.8387

Wdbc 0.9766 0.9532 0.9649 0.9766 0.9766

Wine 1 0.9815 1 0.9444 1

vectors on the method’s performance. Overall, the performance of the proposed
method on experimental datasets varies with the changes in the representation
vector dimensions. Especially, this variation is particularly in datasets with large
feature dimensions, such as Embryonal and Colon (see Table 1), which have 7129
and 2000 input features, respectively. The proposed method achieved the best
result with a dimension of 256 on Wine and Newthyroid datasets. On a number
of datasets, such as Musk2 and Ring, the accuracy and F1 score are stable when
the representation dimension changes. On the other hand, the dimension of the
representation vector has a strong effect on the performance on some datasets.
For example, on the Wine dataset, when the dimension is 2, the accuracy is just
around 0.89 but when the dimension is 4, the algorithm obtains an accuracy of
0.98. When the dimension increases again

Comparison to the Benchmark Algorithms: We conducted a comparative
analysis using several benchmark algorithms: Decision Template, an ensemble
with MLP-based combiner (called MLP combiner), gcForest, and XgBoost to
validate our approach at 128-dimension. It is noted that the MLP models in
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Fig. 3. Comparison of different dimensions of representation to 8, the accuracy is
reduced to slightly above 0.94, but when the number of dimensions goes to 16 and
32, then the accuracy goes up to almost 1.0. This shows that an important research
direction is to determine the right dimension size of the representation vector. In this
paper, by visual inspection of the results, we propose to use the dimension size of 128
for the following sections.

our study function as encoders, optimizing representation vectors through the
application of lifted structured loss as in Fig. 1. Meanwhile, in the ensemble with
MLP-based combiner, MLP works directly on the meta-data as a combiner. Here
we want to demonstrate the effectiveness of the proposed representation vectors
through the MLP-based transformation in our study compared to exploiting
the meta-data without any transformations. Table 2 illustrates the accuracy of
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Table 3. F1 score of the benchmark algorithms and our proposed method

Name Decision TemplateMLP

Combiner

gcForestXgBoost Proposed Method

Australian 0.8772 0.8519 0.8704 0.8669 0.8772

Biodeg 0.8473 0.8601 0.8604 0.8378 0.8686

Breast-cancer 0.969 0.9846 0.9691 0.9528 0.9794

Bupa 0.7152 0.7063 0.6899 0.6937 0.7314

Colon 0.8081 0.6801 0.636 0.7286 0.8081

Electricity 0.9038 0.9135 0.7961 0.8483 0.9145

Embryonal 0.4444 0.4462 0.4109 0.4582 0.6

Heart 0.809 0.75 0.8056 0.7271 0.8389

Hill valley 0.6482 0.6524 0.5803 0.6122 0.6573

Madelon 0.7533 0.785 0.6248 0.6996 0.7967

Magic 0.867 0.868 0.8177 0.8551 0.868

Mammographic 0.8032 0.7941 0.839 0.8231 0.8353

Musk2 0.9723 0.9795 0.8968 0.9538 0.9904

Newthyroid 0.9742 0.9126 0.9453 0.9453 0.9742

Ring 0.9779 0.9784 0.9635 0.9707 0.9784

Satimage 0.9001 0.8945 0.8322 0.8932 0.9067

Sonar 0.8879 0.8083 0.8209 0.8393 0.8714

Vertebral 0.7253 0.7609 0.6809 0.7395 0.7749

Wdbc 0.9745 0.9501 0.962 0.9749 0.9749

Wine 1 0.9833 1 0.9466 1

the proposed method compared to benchmark algorithms. At first glance, our
method achieves the highest scores among the benchmark algorithms across most
datasets. We have the largest margin, approximately 7% higher than the second-
best method, MLP combiner. XgBoost meanwhile shares the same highest score
with our approach only in the Wdbc dataset, while our method outperforms all
the other datasets. On the Heart and Madelon datasets, the differences peak
at around 10%. For gcForest, there is a significant gap between the proposed
method and gcForest, achieving over 5% in the results of 7 datasets, namely
Colon, Electricity, Embryonal, Hill valley, Madelon, Satimage, and Vertebral.

The highest gap is nearly 16% in the Madelon dataset, and the second-highest
difference is in the Electricity dataset, in which the gcForest score is around 80%
compared to 91.72% in our approach. The Decision Template method obtains the
highest score on 6 datasets, 5 of which (Australian, Colon, Newthyroid, Wdbc,
and Wine datasets) share the same performance with our results. On the Sonar
dataset, the accuracy of the Decision Template is the highest and greater than
our score by just 1.5%.

We analyzed the F1 score performance of our proposed method in comparison
with several benchmark algorithms, as shown in Table 3. Once again, a similar
pattern like accuracy was observed. The F1-score results demonstrate that our
proposed method achieves the best performance when evaluated across most
datasets. Compared to XgBoost, our method achieves a higher F1 score in all
datasets except the Wdbc dataset where we share the same result with Xgboost.
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On the Heart dataset, we achieved an F1 score greater than Xgboost around
11% and the number is 9% on Madelon. The proposed method also outperforms
gcForest on 18 datasets and shares the same result on Wine dataset. Additionally,
on Mammographic dataset, the top two highest scores are 83.9% and 83.5%
respectively gcForest, our propose. MLP combiner gains 3 highest F1 scores in
datasets namely Beast-cancer, Magic, and Ring, 2 of which share the same score
as our method. Only on Breast-cancer, the performance of MLP combiner is
highest and greater than our proposed just a round 0.5%. The Decision Template
method achieves the highest score in 5 datasets, 4 of them Australian, Colon,
Newthyroid, and Wine share the same performance as our proposed method.
In the Sonar dataset, the accuracy of the Decision Template is the highest and
greater than our score by just 0.52%.

5 Conclusion

In the paper, we introduced a novel combining method based on deep learn-
ing representation. Our approach utilizes the neural network model to generate
representation vectors from meta-data collected from base learning models’ out-
puts. The loss function lift structure combines with the model to optimize the
distribution of output vectors, by decreasing the distance of vectors in the same
class and increasing the distance of vectors in different classes. Then using the
mean to create class representation vectors from output representation vectors
of the neural network, new representation vectors are trained on the meta-data
on delegation for classes. We used a 4-layer MLP training on the meta-data in
the experiment to obtain the representation vectors. Experimental results on
twenty UCI datasets demonstrated the benefit of our approach compared with
four other well-known algorithms: Decision Template, an ensemble with MLP-
based combiner, gcForest, and XgBoost. We believe that the MLP model in our
architecture can be altered with other deep-learning models to exploit and opti-
mize more features from meta-data. This will be our next immediate research
focus. We believe that the MLP model in our architecture can be altered with
other deep-learning models such as Long short-term memory (LSTM) or recur-
rent neural network (RNN) as multiple-layer combination architectures to exploit
and optimize more features from meta-data. This will be our next immediate
research focus.
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Abstract. In the rapidly evolving landscape of electric vehicles (EVs),
integrating the Internet of Vehicles (IoV) has opened up new dimen-
sions in automotive technology. While enhancing vehicle performance,
safety, and security, this advancement also exposes EVs to heightened
cyber threats. To address this critical concern, we introduce GUARDEV:
Guided Unified Adaptive Response for Defending Electric Vehicles, a
novel Machine Learning (ML)-enhanced conflict resolution-based ensem-
ble Intrusion Detection System (IDS) architecture. GUARDEV leverages
the power of adaptive ML techniques to provide a unified and guided
response in safeguarding EVs against sophisticated cyber-attacks. Our
framework evaluates the effectiveness of three prominent ML models -
XGBoost, Random Forest, and Extra Trees - in detecting specific cat-
egories of cyber threats. By harnessing the prediction confidence scores
from these models, GUARDEV offers a nuanced and intelligent app-
roach to recognizing and thwarting diverse cyber-attacks. Our research,
grounded in rigorous experimentation using public IoV security datasets,
demonstrates GUARDEV’s exceptional accuracy of 99.47% in intru-
sion detection. This remarkable achievement not only underscores the
potential of ML in enhancing vehicular cybersecurity but also estab-
lishes GUARDEV as a powerful tool for creating safer, more secure EVs.
GUARDEV paves the way for robust protection of internet-connected
electric vehicles in today’s digital age by providing a guided, unified, and
adaptive response to cyber threats.

Keywords: Intrusion Detection System · Electric Vehicle · Internet of
Vehicle · Conflict Resolution · Ensemble Learning

1 Introduction

The fusion of the Internet of Things (IoT) with Electric Vehicles (EVs) has led
to the emergence of the Internet of Vehicles (IoV) [22], revolutionizing the trans-
portation sector and paving the way for a smarter, more integrated future on
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wheels [5]. At the core of this transformation lies the Controller Area Network
(CAN) bus within EVs, serving as a vital communication hub linking Electronic
Control Units (ECUs) to coordinate various vehicular functions. Additionally,
the burgeoning Vehicle-To-Everything (V2X) technology expands this commu-
nication network beyond the vehicle, connecting EVs with a diverse array of IoT
devices, from roadside infrastructure to smart gadgets [22].

1.1 Motivation

In the rapidly evolving landscape of automotive technology, the convergence of
IoT with EVs heralds a new era of connectivity, promising numerous advance-
ments in functionality and convenience. However, this wave of innovation brings
with it a critical challenge: the need for robust cybersecurity measures. The inte-
gration of IoT into EVs amplifies connectivity but also exposes vulnerabilities
within the Internal Vehicular Network (IVN), particularly due to the inherent
simplicity of CAN packets lacking encryption or authentication. The potential
threats are diverse and significant, ranging from DDoS and Brute Force attacks
to Spoofing, DoS, Recon, Web-based intrusions, and the notorious Mirai botnet.
As EVs increasingly interface with external networks, the scope of vulnerability
expands, necessitating an intelligent, adaptive, and unified approach to fortify
cyber defenses and mitigate risks.

Fig. 1. State of The Art Intrusion Detection System for Electric Vehicle

To address these challenges, we introduce GUARDEV: Guided Unified
Adaptive Response for Defending Electric Vehicles. As illustrated in Fig. 1,
GUARDEV represents a significant advancement in automotive cybersecurity,
offering a comprehensive framework for protecting EVs against cyber threats.
This innovative system embodies a proactive approach, leveraging machine learn-
ing techniques to provide real-time monitoring, adaptive threat detection, and
guided response capabilities. GUARDEV’s unified architecture integrates var-
ious components of vehicle security, ensuring a cohesive defense strategy. Its
adaptive nature allows it to evolve with emerging threats, continuously learn-
ing and improving its detection and response mechanisms. The guided aspect
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of GUARDEV ensures that responses to detected threats are optimized and
contextually appropriate, minimizing false positives and enhancing overall sys-
tem efficiency. By implementing GUARDEV, we aim to create a robust, intelli-
gent defense system that not only protects against known cyber threats but also
adapts to new, unforeseen challenges in the ever-evolving landscape of EV cyber-
security. This approach is crucial in ensuring the resilience and safety of IoT-
integrated EVs, paving the way for a secure and connected automotive future.

1.2 Problem Statement

In the context of rapidly evolving cyber threats to Electric Vehicles (EVs), recent
advancements in Machine Learning (ML) have sparked considerable interest in
enhancing cybersecurity measures, particularly through Intrusion Detection Sys-
tems (IDSs). While ML techniques offer promising avenues for bolstering auto-
motive cybersecurity by analyzing network traffic data, their effectiveness varies
significantly across different types of cyber-attacks. This variability poses a crit-
ical challenge to ensuring the reliability and robustness of IDSs in real-world
automotive environments. Moreover, issues such as data scarcity, model inter-
pretability, and vulnerability to adversarial attacks complicate the deployment
of ML-driven IDSs in automotive systems. Addressing these complexities is cru-
cial for enhancing the resilience and effectiveness of cybersecurity measures in
connected EVs, ultimately ensuring the safety and security of future automotive
ecosystems. To tackle these challenges, we introduce GUARDEV: Guided Uni-
fied Adaptive Response for Defending Electric Vehicles. This novel framework
harnesses the power of advanced ML algorithms, including Extreme Gradient
Boosting (XGBoost) [17], Random Forest Classifier [9], and Extra Trees Classi-
fier [18]. GUARDEV aims to achieve optimal performance with reduced execu-
tion time across various cyber-attack types by providing a guided, unified, and
adaptive response to threats.

1.3 Contributions

This study contributes significantly to the field of EV cybersecurity in three key
ways:

1. Development of GUARDEV Architecture: We introduce GUARDEV,
a guided unified adaptive response framework for defending electric vehi-
cles. This architecture employs a unique combination of balanced weight class
and confidence decision techniques, specifically designed for efficient intrusion
detection in EVs. By integrating multiple ML models into a unified frame-
work, GUARDEV enhances the robustness and reliability of intrusion detec-
tion systems in automotive environments while providing guided and adaptive
responses to threats.

2. Rigorous Testing on Cutting-Edge IoT Datasets: GUARDEV under-
goes rigorous testing on the CICIoT2023 [16] Dataset, which represents a wide
spectrum of both internal and external network scenarios. By evaluating the
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performance of our framework on this dataset, we ensure its applicability and
effectiveness across real-world cyber-attack scenarios encountered in automo-
tive systems, demonstrating the adaptive nature of GUARDEV.

3. Benchmarking Against State-of-the-Art Methodologies: We bench-
mark GUARDEV’s performance against other state-of-the-art methodologies,
showcasing its superiority in EV cybersecurity. Through comparative analysis
and comprehensive evaluation, we demonstrate the effectiveness and efficacy
of our guided and unified approach in mitigating cyber threats and enhancing
the security posture of electric vehicles.

2 Brief Literature Review

This section explores the current landscape of cybersecurity for Electric Vehicles
(EVs) and the Internet of Vehicles (IoV), reviewing recent advancements and
identifying gaps in Intrusion Detection Systems (IDSs). While various innovative
approaches using machine learning and deep learning techniques have emerged,
the challenge of developing a guided, unified, and adaptive response system for
IoV-enabled EVs remains.

2.1 Deep Learning Approaches in IDS

Song et al. [20] and Agrawal et al. [1] focused on deep learning-based IDSs, with
Song et al. developing a convolutional neural network model for car-hacking
detection and Agrawal et al. proposing a novel system for various attack types.
While effective, these approaches lack the unified and adaptive response mecha-
nism that GUARDEV aims to provide. Awajan [7] presented a Deep Learning-
based IDS for IoT devices, achieving high precision, recall, and F1-scores, but
did not specifically address the guided response needs of IoV scenarios.

2.2 Ensemble and Hybrid Models

Elmasry et al. [13] and Chen et al. [11] introduced ensemble models for network
intrusion detection, using combinations of various neural network architectures.
While innovative, these studies did not focus on providing a unified, adaptive
response for EV protection. Aldhyani et al. [3] and Chaganti et al. [8] explored
deep learning models for securing various IoT contexts, offering insights that
could be adapted for a more comprehensive EV defense system.

2.3 Decision Tree-Based and Other Novel Solutions

Yang et al. [23] developed a Decision Tree-based IDS for autonomous and net-
worked vehicles, targeting both internal and external vehicle network intrusions.
This approach, while valuable, lacks the guided and adaptive elements that
GUARDEV proposes. Alamleh et al. [2] proposed a framework for standardizing
ML-based IDSs in complex network settings, emphasizing the need for efficient
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evaluation - a principle that aligns with GUARDEV’s unified approach. Verma
et al. [21] investigated specific attack vectors, underscoring the importance of a
comprehensive defense strategy like GUARDEV.

3 GUARDEV: Proposed Framework

Our research introduces GUARDEV (Guided Unified Adaptive Response for
Defending Electric Vehicles), a novel Intrusion Detection System (IDS) frame-
work designed to secure Electric Vehicles (EVs) against various network threats.
GUARDEV employs an ensemble stacking approach based on conflict resolu-
tion, integrating machine learning capabilities on the Internet of Vehicles (IoV)
server. This framework leverages three advanced ML algorithms: Extreme Gra-
dient Boosting (XGBoost) [17], Random Forest Classifier [9], and Extra Trees
Classifier [18]. These algorithms work in concert to analyze IoV-based EV traffic
data, creating a balanced, accurate, and adaptive intrusion detection model. The
system architecture of GUARDEV is depicted in Fig. 2.

Fig. 2. GUARDEV System Architecture

GUARDEV’s architecture is designed to provide a guided response to
detected threats, unifying various security measures into a cohesive defence strat-
egy. The adaptive nature of the system allows it to evolve with emerging threats,
continuously improving its detection and response capabilities.

3.1 Dataset Description

To train and evaluate GUARDEV, we utilized the CICIoT2023 [16] dataset.
This comprehensive dataset is crucial for developing machine learning models
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capable of effectively detecting and responding to cyberattacks in IoV environ-
ments. The CICIoT2023 [16] dataset was meticulously curated by its authors,
who collected data from 33 distinct cyberattacks conducted on a network com-
prising 105 IoT devices. These attacks span seven categories, encompassing
threats highly relevant to EV security: DDoS, DoS, Recon, Web-based, Brute
Force, Spoofing, and Mirai. The dataset is publicly available, facilitating its use
in training GUARDEV’s machine learning algorithms to detect, classify, and
guide responses to cyberattacks. By leveraging this rich dataset, GUARDEV
can develop a nuanced understanding of various attack patterns, enabling it to
provide guided, unified, and adaptive responses to protect EVs in real-world
scenarios. The diversity of attack types represented in the dataset ensures that
GUARDEV can offer comprehensive protection against a wide range of cyber
threats in the IoV ecosystem.

3.2 Foundation ML Models for GUARDEV

GUARDEV incorporates three robust ML algorithms, each contributing to its
guided, unified, and adaptive response capabilities:

– Extreme Gradient Boosting (XGBoost): XGBoost [17] forms a critical
component of GUARDEV’s adaptive response mechanism. It minimizes a
regularized objective function:

Obj(Θ) =
∑

i

L(yi, ŷi(t)) +
∑

kΩ(fk), (1)

where ŷ
(t)
i is the prediction at the t-th iteration, and fk represents the k-th

tree [10].
Loss function: XGBoost typically uses logistic loss for binary classification:

L(yi, ŷi) = yi log(ŷi) + (1 − yi) log(1 − ŷi) (2)

– Random Forest (RF): RF [9] contributes to GUARDEV’s unified approach
by creating an ensemble of decision trees:

RF (x) =
1
K

K∑

k=1

h(x,Θk), (3)

where K is the number of trees and Θk are the random parameters for the
k-th tree [9].
Loss function: RF typically uses Gini impurity for classification:

G =
c∑

i=1

pi(1 − pi) (4)

where c is the number of classes and pi is the probability of an item being
classified to class i.
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– Extra Trees (ET): ET enhances GUARDEV’s guided response by intro-
ducing controlled randomness:

ET (x) =
1
K

K∑

k=1

h(x,Θk, θbest), (5)

where θbest = argmaxθ Q(Dv, θ) [18].
Loss function: ET also typically uses Gini impurity, similar to Random
Forest.

These algorithms were chosen for their complementary strengths in analytics,
automated feature selection, low computational cost, and support for paralleliza-
tion and GPU execution. Their integration in GUARDEV creates a versatile and
efficient stacked-based ensemble model capable of providing a guided, unified,
and adaptive response to cyber threats in Electric Vehicles. XGBoost’s adaptive
nature allows GUARDEV to continuously refine its response strategies. Random
Forest contributes to the unified approach by aggregating multiple decision trees,
providing robust predictions across various attack scenarios. Extra Trees intro-
duce an element of controlled randomness, enhancing GUARDEV’s ability to
guide responses in novel threat situations. The combination of these algorithms
enables GUARDEV to:

– Guide responses based on the strengths of each algorithm.
– Unify diverse prediction strategies for comprehensive threat detection.
– Adapt to evolving cyber threats in the Internet-connected EV ecosystem

The proposed model algorithm for GUARDEV is outlined in Algorithm 1, which
details how these base models are integrated to create a cohesive, adaptive
defense system for Electric Vehicles.

3.3 GUARDEV: A Stacked Ensemble Model for Guided, Unified,
and Adaptive EV Cyber Defense

GUARDEV employs a sophisticated stacked ensemble comprising XGBoost [17],
Random Forest [9], and Extra Trees [18] to enhance accuracy in identifying and
responding to network attacks. Our approach integrates these diverse machine
learning algorithms, leveraging each model’s strengths to capture intricate pat-
terns in network data and provide a guided, unified, and adaptive response.
GUARDEV’s stacking methodology aggregates predictions from multiple base
models via a meta-learner, enabling adaptability to dynamic threat landscapes.
The ensemble model demonstrates superior resilience, accuracy, and adaptabil-
ity, making GUARDEV well-suited for real-world deployment in safeguarding
critical EV infrastructure. This is supported by a detailed algorithmic overview,
elucidating steps from data preprocessing to final decision-making and response
generation.
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GUARDEV Algorithm Overview: The core of GUARDEV is encapsulated
in Algorithm 1, which outlines the comprehensive steps for providing a guided,
unified, and adaptive response to cyber threats in electric vehicles, underpinned
by intricate mathematical operations.

Mathematical Formulations of GUARDEV: GUARDEV’s algorithm is
underpinned by rigorous mathematical formulations that enable its guided, uni-
fied, and adaptive response to cyber threats in electric vehicles. Here, we present
these formulations along with their relevance to GUARDEV’s key features.
Data Transformation and Normalization: The preprocessing phase employs the
SMOTE algorithm for class balancing, creating synthetic samples (Dbalanced)
through interpolation:

Dbalanced(x) = x + λ · (xnn − x), λ ∼ Uniform(0, 1), (6)

where xnn is a nearest neighbor of (x). This is followed by PCA for dimensionality
reduction:

Dreduced = WT · Dstd, W = argmaxVar(WT · Dstd). (7)

These transformations ensure that GUARDEV’s base models work with bal-
anced, normalized data, enhancing the system’s adaptive capabilities.
Ensemble Learning and Model Evaluation: The ensemble learning process
involves training each base learner on the transformed dataset. The accuracy
(Am) for each model is calculated using k-fold cross-validation. The ensemble’s
decision-making employs a weighted voting mechanism:

Pensemble,x = argmax
c

∑

m∈M

wm · I[Pm,x = c], (8)

where wm is the weight assigned to model m, and I[·] is an indicator function.
This unified approach ensures all models contribute to the defence strategy.
Guided Model Selection and Confidence Scoring: For each threat type (t),
GUARDEV selects the most appropriate model:

Mt = arg max
m∈M

Am(t) (9)

The confidence score for each prediction is calculated as:

Cm,x =
exp(fm(x)c)∑
i exp(fm(x)i)

(10)

where fm(x)c is the model’s output for class ()̧ This guided selection and confi-
dence scoring enable targeted responses to specific threat types.
Adaptive Conflict Resolution and Decision Making: When model predictions dif-
fer, GUARDEV employs an adaptive conflict resolution algorithm. The final pre-
diction and response are determined based on Bayesian updating of confidence
scores:

Pfinal,x, Rx = GuideAdaptiveResponse(Pm,x, Cm,xm ∈ M,Mt) (11)
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Algorithm 1 GUARDEV: Guided Unified Adaptive Response for Defending
Electric Vehicles
Require: Dataset D with EV network traffic data, Set of ML models M =

XGBoost, Random Forest, Extra Trees
Ensure: Guided, unified, and adaptive intrusion detection and response for each data

sample
1: Data Preprocessing and Adaptation:
2: Apply SMOTE: Dbalanced ← SMOTE(D)
3: Standardize features: Dstd ← StandardScaler(Dbalanced)
4: Apply PCA: Dreduced ← PCA(Dstd)
5: Training Unified Base Learners:
6: for each model m ∈ M do
7: Train m on Dreduced

8: Perform k-fold cross-validation
9: Am ← ComputeAccuracy(m,Dreduced)

10: Guided Model Selection for Each Threat Type:
11: for each threat type t in D do
12: Mt ← argmaxm∈M Am(t)
13: if tie in Mt then
14: Choose model with minimum response time
15: Adaptive Prediction Phase:
16: for each sample x in Dtest do
17: for each model m ∈ M do
18: Pm,x ← Predict(m,x)
19: Cm,x ← Confidence(m,x)

20: Unified Consensus and Guided Conflict Resolution:
21: for each sample x in Dtest do
22: if all Pm,x are equal then
23: Accept prediction Pm,x

24: else
25: Px, Rx ← GuideAdaptiveResponse(Pm,x, Cm,x,Mt)

26: Final Guided Decision Making:
27: Dresponses ← ⋃

x∈Dtest
(Px, Rx)

28: Adaptive Complexity Analysis:
29: O(DFC), with D as dataset volume, F as number of features, and C as complexity

of adaptive models
30: Continuous Learning and Adaptation:
31: Update model weights based on performance: Wm ←

UpdateWeights(M,Dresponses)

where
Pfinal,x = argmax

c

∏

m∈M

P (c|Pm,x, Cm,x), (12)

and P (c|Pm,x, Cm,x) is the posterior probability of class c given the model’s
prediction and confidence score. The response Rx is generated based on this
final prediction and the specific threat type.
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Table 1. Performance Comparison of GUARDEV with State-of-the-Art Models Across
Key Metrics

Model Accuracy

(%)

AUC

(%)

Recall

(%)

Prec.

(%)

F1
(%)

Model Train-

ing

Time (s)

LSTM [6] 90.50 88.12 86.99 91.00 88.00 916.65
Random Forest Classifier [19] 81.25 79.47 78.35 80.56 79.77 198.8800
XGBoost [10] 76.80 74.89 75.59 77.59 76.60 230.5565
Extra Trees [18] 68.30 67.48 69.75 70.86 69.87 216.3456
Decision Tree Classifier [15] 60.45 59.62 58.17 60.66 60.64 170.4275
K Neighbors Classifier [19] 52.70 54.88 53.26 52.65 52.77 94.8725
Deep Convolutional Neural Network [20] 92.50 90.93 91.84 91.84 92.91 894.79
Quadratic Discriminant Analysis [12] 88.85 73.14 44.54 79.45 83.83 6.6650
SVM [4] 50.35 48.45 47.20 52.34 49.11 355.9950
GUARDEV 99.47 98.65 97.77 99.10 98.86 185.4773

Continuous Learning and Adaptation GUARDEV’s adaptive mechanism is rein-
forced through continuous learning:

Wm ← UpdateWeights(M,Dresponses) (13)

where the model weights are updated based on their performance on recent
threats, ensuring GUARDEV evolves with the threat landscape.
Complexity Analysis: The overall complexity of GUARDEV is O(DFC), where
D is the dataset volume, F is the number of features, and C encapsulates the
complexity of the underlying models. This analysis ensures GUARDEV’s scala-
bility in real-world EV scenarios.

These mathematical formulations provide a rigorous foundation for
GUARDEV’s behaviour and performance characteristics. By integrating ensem-
ble learning with sophisticated mathematical techniques, GUARDEV offers a
guided, unified, and adaptive solution for intrusion detection in IoV-based EV
networks.

4 Results and Discussion: GUARDEV’s Performance in
Defending Electric Vehicles

This section presents a comprehensive analysis of the experimental results
obtained from the evaluation of GUARDEV (Guided Unified Adaptive Response
for Defending Electric Vehicles). The performance of our model is compared
against several state-of-the-art models using the CICIoT2023 [16] dataset, under-
pinning its superiority in accurately detecting and responding to a wide array
of network attacks targeting electric vehicles. Table 2 shows the Area Under the
Curve (AUC) per Attack Category for GUARDEV, showcasing its robust per-
formance across various attack categories relevant to EV security. Impressively,
the overall AUC is recorded at 0.99, as depicted in Table 1. In the subsequent
section, we provide a detailed discussion of the findings presented in Table 2 and
Table 1, elucidating the efficacy and significance of GUARDEV in providing a
guided, unified, and adaptive response to cyber threats in the EV ecosystem.
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4.1 GUARDEV’s Accuracy and Adaptive Robustness in EV
Defense

As demonstrated in Table 1 and Table 2, GUARDEV exhibits exceptional accu-
racy and adaptive robustness in detecting and responding to various network
attacks targeting electric vehicles, surpassing several other models including
Random Forest [9], Extra Trees [18], and XGBoost [17]. In the detection and

Fig. 3. Number of Attack Prediction Errors by the Proposed IDS Framework

response to 33 overall attack types relevant to EV security, GUARDEV achieved
a remarkable accuracy of 99.47%. This showcases a significant improvement over:

– Random Forest [9]: 81.25% accuracy
– Extra Trees[18]: 68.30% accuracy
– XGBoost [17]: 76.80% accuracy

4.2 GUARDEV’s Attack Prediction Error Analysis for Electric
Vehicle Security

The performance of GUARDEV (Guided Unified Adaptive Response for Defend-
ing Electric Vehicles) was analyzed by examining the number of attack prediction
errors across different attack classes relevant to EV security, as depicted by col-
ors with corresponding numbers in Fig. 3. The graph illustrates the distribution
of prediction errors made by GUARDEV. The x-axis represents the actual class
of the attack, while the y-axis indicates the number of times GUARDEV incor-
rectly predicted the class of the attack. It is observed that GUARDEV made the
highest number of errors on attacks belonging to classes 10, 11, and 12. This sug-
gests that these particular attack classes may pose greater challenges in terms of
detection in the EV ecosystem, possibly due to their complexity or GUARDEV’s
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Table 2. Category-Wise Area Under the Curve (AUC) Evaluation for GUARDEV
Across Different Attack Vectors

Attack Category Attack Sub-Category AUC (Probability)

DDoS ACK Fragmentation 0.99
DDoS UDP Flood 1.00
DDoS SlowLoris 0.99
DDoS ICMP Flood 0.98
DDoS RSTFIN Flood 1.00
DDoS PSHACK Flood 0.99
DDoS HTTP Flood 1.00
DDoS UDP Fragmentation 1.00
DDoS TCP Flood 1.00
DDoS SYN Flood 1.00
DDoS SynonymousIP Flood 0.98
Brute Force Dictionary Brute Force 1.00
Spoofing Arp Spoofing 0.99
Spoofing DNS Spoofing 0.99
DoS TCP Flood 0.99
DoS HTTP Flood 1.00
DoS SYN Flood 1.00
DoS UDP Flood 0.99
Recon Ping Sweep 0.98
Recon OS Scan 0.98
Recon Vulnerability Scan 0.99
Recon Port Scan 1.00
Recon Host Discovery 1.00
Web-based SQL Injection 1.00
Web-based Command Injection 1.00
Web-based Backdoor Malware 1.00
Web-based Uploading Attack 0.99
Web-based XSS 0.98
Web-based Browser Hijacking 0.99
Mirai GREIP Flood 0.89
Mirai Greeth Flood 1.00
Mirai UDPPlain 0.87

limited training on such EV-specific attacks. Despite these errors, GUARDEV
demonstrates overall effectiveness in detecting and responding to various attacks
targeting electric vehicles. Understanding the nature of these errors is crucial for
enhancing GUARDEV’s adaptive capabilities and mitigating potential vulnera-
bilities in EV security.

4.3 Cumulative Gain Curve Analysis for GUARDEV’s EV
Protection Efficiency

The Cumulative Gain (CG) curve [14], depicted in Figure 4, stems from the
evaluation of GUARDEV on a dataset of attack samples targeting electric vehi-
cles. Each sample is categorized into specific attack classes denoted as Ci for
i = 1, 2, ..., N , representing various cyber threats to EVs. Throughout the evalu-
ation, attacks are sequentially analyzed, and the number of true positives (TPs)
and false positives (FPs) for each class are recorded at every step, reflecting
GUARDEV’s guided and adaptive response capabilities.

Mathematically, at a particular step n, TPi(n) represents the number of
correctly classified attacks belonging to class Ci. The cumulative gain at this
step, denoted as CG(n), is computed as:
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Fig. 4. Cumulative Gain Analysis of GUARDEV for Enhanced EV Cyber Defense

CG(n) =
1
N

N∑

i=1

TPi(n)
Ti

(14)

where Ti is the total number of attacks in class Ci, and N is the total number
of attack classes relevant to EV security. The curve’s concavity offers insights into
GUARDEV’s detection and response efficiency in the context of EV protection:

– Concave-up Curve: Indicates that GUARDEV prioritizes high-confidence
attack detection, achieving significant initial gains in CG. This suggests that
GUARDEV’s guided response mechanism is particularly effective in quickly
identifying and responding to the most prevalent or easily detectable EV-
related cyber threats.

– Plateaus: Suggest saturation points where additional analysis yields dimin-
ishing returns, implying encounters with more challenging EV-specific attacks
later in the analysis. These plateaus help identify areas where GUARDEV’s
adaptive mechanisms may need further refinement to address complex or
evolving threats to electric vehicles.

The analysis of the CG curve furnishes valuable insights into GUARDEV’s detec-
tion and response efficiency, aiding in the comprehensive assessment of its per-
formance across various attack classes targeting EVs. This analysis is crucial
for:

– Fine-tuning GUARDEV’s guided response mechanisms for different types of
EV-related cyber threats.

– Enhancing the unified approach to address a wider range of attack patterns
specific to electric vehicles.

– Improving GUARDEV’s adaptive capabilities to evolve with new and emerg-
ing threats in the EV ecosystem.



60 K. K. Mondal and D. Das

By leveraging these insights, GUARDEV can continually improve its ability to
provide a comprehensive, efficient, and adaptive defence strategy for electric
vehicles against the ever-evolving landscape of cyber threats.

5 Conclusion

Our study presents GUARDEV, a pioneering Guided Unified Adaptive Response
framework for Defending Electric Vehicles within the Internet of Vehicles (IoV)
ecosystem. By leveraging an ensemble-based machine learning (ML) approach
that synergizes XGBoost, Random Forest, and Extra Trees, GUARDEV effec-
tively mitigates diverse cyber threats prevalent in IoV environments. With an
outstanding accuracy of 99.47% on the CICIoT2023 dataset, GUARDEV sur-
passes existing ML-based Intrusion Detection Systems (IDS) in both accuracy
and F1-scores, showcasing its robustness and efficacy in safeguarding IoV net-
works against a spectrum of cyber threats. The comprehensive evaluation and
analysis presented in this paper highlight the superiority of GUARDEV over
state-of-the-art models. Notably, our framework demonstrates exceptional accu-
racy and robustness in detecting various network attacks, outperforming indi-
vidual models such as Random Forest, Extra Trees, and XGBoost. The guided
and adaptive nature of GUARDEV allows it to continuously refine its defence
strategies, ensuring optimal protection against evolving threats. Furthermore,
the detailed examination of attack prediction errors and the analysis of the
Cumulative Gain curve provide valuable insights into GUARDEV’s performance
and areas for improvement. These insights inform the framework’s adaptive capa-
bilities, enabling it to enhance its defense mechanisms over time.

In conclusion, GUARDEV represents a significant advancement in EV cyber-
security within the IoV paradigm by addressing the pressing need for enhanced
cybersecurity measures in IoV networks through a guided, unified, and adaptive
solution. However, several hard research challenges remain, including the con-
tinuous adaptation of the framework to emerging, sophisticated cyber threats,
integration of real-time data processing capabilities while maintaining high accu-
racy and low latency, and ensuring scalability to accommodate the growing
number of connected vehicles and the increasing complexity of IoV networks.
Future research should focus on developing more robust methods for real-time
threat detection and response, exploring the integration of quantum comput-
ing techniques for enhanced cryptographic security, and investigating the ethical
implications of autonomous decision-making in cybersecurity. Addressing these
challenges will pave the way for even safer and more secure EV operations in
the evolving landscape of connected vehicles and smart transportation systems,
providing a robust and flexible defense mechanism capable of adapting to new
and emerging cyber threats.
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4 Ecole Polytechnique de l’Université de Nantes, LTeN U6607 Nantes Université,
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Abstract. In this work, we present new synthetic vascular models that
tries to mimic various portions of the cerebral vascular tree, as acquired
from Magnetic Resonance Angiography - Time of Flight modality - acqui-
sitions. Not only are these vascular models able to replicate the cerebral
arteries, but also, the bifurcations formed by the arteries, and further-
more, one option within the models allows to embed an intracranial
aneurysm. Our goal in designing this set of tools was to train convo-
lutional neural networks for various pattern recognition tasks; namely,
we intend to label the main bifurcations forming the Circle of Willis, or
to automatically detect intracranial aneurysms. However, to efficiently
train a neural network, the fidelity of the mimicked vascular portions is
of paramount importance.

Keywords: Cerebral vascular tree · Cerebral bifurcations · Circle of
Willis · synthetic model · intracranial aneurysms

1 Introduction

Various diseases may occur along the vascular tree. Such accidents can be par-
ticularly critical when located within the brain. Among the various vascular
pathologies, the intracranial aneurysms (ICA) can be particularly devastat-
ing [16]. Cerebral aneurysms commonly occur onto the bifurcations forming a
central arterial structure named the Circle of Willis (CoW) [3]. More specifi-
cally, they arise between the daughter arteries, they are referred to as saccular
aneurysms, due to their balloon shape. Intracranial aneurysms occur for 3 to 5%
of the world population.
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While an aneurysm itself may not pose immediate harm, if it bleeds (rup-
tures), it induces severe consequences such as subarachnoid hemorrhage, result-
ing in death (35%) or serious cognitive deficits (46%) [13]. Hence, it is crucial to
not only, automatically detect the aneurysms, but also, to monitor the portions
of the CoW presenting a higher risk (see Fig. 1). Prior to the emergence of deep
learning techniques such as Convolutional Neural Networks (CNNs), fewer works
focused on probabilistic or traditional machine learning approaches for labeling
the Circle of Willis bifurcations [2,17,21]. Recent advances include a deep learn-
ing based method for CoW arteries segmentation [7] and a two-step pipeline for
detecting CoW vascular bifurcations [14]. In the context of aneurysms detec-
tion, various deep learning-based methods have emerged for the segmentation
and/or detection of ICAs [9,15,18]. Of particular interest, the ADAM Challenge
[20] compared 11 distinct deep learning approaches aimed at detecting and/or
segmenting aneurysms. It is crucial to highlight that the majority of existing
methods have been developed using private clinical data, which includes meticu-
lously refined manual annotations. Indeed, when it comes to artificial intelligence,
there is a recurring burden : the acquisition of manual annotation. To address
this issue, the authors in [6] suggested employing “weak” annotations.

In this work, we intend to propose some alternatives to these manual anno-
tations. We have designed a set of synthetic Vascular Models (VaMos)1 which
purpose is specifically to train CNNs. Although one can find synthetic models in
the literature, the final aim differs. In [10], the authors used Constrained Con-
structive Optimization (CCO) for arterial model tree generation, mainly focus-
ing on predicting vascular network growth. Similarly, works in [19] proposed
a macroscopic model emphasizing angiogenesis and capillary sprout formation,
and authors in [11] exploited CCO to estimate liver vascular network growth.
The work in [4] used CCO onto cerebral arteries, and incorporated level set
functions for growth estimation. Later, authors in [8,22] proposed VascuSynth,
a numerical vascular tree generation tool intended to model not only the geo-
metrical layout of the arterial tree, but also simulating the background noise,
albeit with limited accuracy in replicating the artery tortuosity. More recently,
SimVascular [12] offered advanced 3D mesh modeling for cardiovascular simu-
lation but lacks flexibility in modifying the geometry or modeling background
noise. Unfortunately, none of these models could be efficiently exploited along
with machine learning methods for Computer-Aided Diagnosis. Another inter-
esting approach was proposed in [5] where the authors generate synthetic blood
vessels surfaces. Variational Autoencoders and Generative Adversarial Networks
were used to generate mesh like 3D arteries and try to model stenosis; but only
onto isolated arteries, neither bifurcations, nor aneurysms were considered.

In this paper, we aim to come up with a highly reliable synthetic vascular
model. We aim to generate a substantial (synthetic) image dataset to train vari-
ous Deep-Learning algorithms. The rationale behind our approach is to demon-
strate that, even with a small dataset, if supplemented by VaMos, we can achieve
excellent results. In Section 2, we will present VaMos in details. In Section 3, we

1 Available here : https://gitlab.univ-nantes.fr/autrusseau-f/vamos.
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will evaluate the improvements brought by the synthetic data on two distinct
tasks: i) bifurcations classification, and ii) ICA detection. Finally, in Section 4,
we conclude our work by summarizing the key findings.

Fig. 1. Bifurcations of Interest along the Circle of Willis (Yellow tags)

2 VaMos : Vasculature Models

Fig. 2 shows the overall structure of the Vasculature Models. Overall, three
important vascular components are being modeled : the arteries, the bifurcations
and the aneurysms. This means, one could either generate synthetic branches for
segmentation purpose, or bifurcations for their classification, or, it would also be
possible to generate only synthetic ICA to be merged onto actual MRI images
for their detection. Moreover, besides the different geometrical shapes of the
vascular tree, the various background matters are also mimicked (gray/ white
matters, cerebro-spinal fluid, lateral ventricles, etc.). The upper part in Fig. 2
(yellow shaded block) represents the background noise modeling, whereas the
lower part (light blue shaded block), shows the replication of the arterial geom-
etry. In order to generate synthetic images with adjustable resemblance to the
ground truth, the VaMos have been designed to modify everything from its basis
image portion. Indeed the five green ellipses show all the modifications that can
be brought onto an aneurysm bearing bifurcation; namely, we can i) tweak the
background shape, ii) modulate the noise amplitudes, iii) adjust the arteries’ tor-
tuosity, iv) change the diameters, and finally, v) add up an ICA (while modifying
its shape). So far, our model has been designed, adjusted and tested on Magnetic
Resonance Angiography images, with Time-of-Flight modalities (MRA-TOFs).
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Fig. 2. Structure of the synthetic Vasculature Models.

2.1 Modeling the structure of the bifurcations

From the binary representation of a given MRA-TOF acquisition, the 3D skele-
ton is first computed, and then, the 3D graph is collected. Each single branch
from a given cropped area of interest (typically located around a bifurcation of
the CoW) is identified, the voxels along the centerline are represented as a 3D
curve, on which 3D B-splines will be fitted. Each branch (artery) can thus be rep-
resented by the knots, the B-spline coefficients and the degree of the spline. It
is then relatively easy to tweak the 3D spline model by modifying details on
B-spline equations fitting. Figure 3 represents two different spline coefficients
modifications for a given bifurcation. The blue lines represent the actual bifur-
cation centerline, the red lines represents the best 3D fit, whereas the green lines
stand for the modified 3D splines (left panel : weak modifications and right panel:
stronger variation of the 3D splines).

2.2 Modeling the background gray levels

In the aim to generate a 3D noise presenting strong similarities with our target
MRA-TOF, our approach consists in producing a higher frequency noise patch,
which will be subsequently filtered through a predefined filter kernel, so as to
reach the target statistical properties. In other words, if a Gaussian noise patch
of standard deviation σ0 goes through a Gaussian filter of standard deviation
σf , the resulting filtered noise will present a standard deviation σG, such that:

σG ≈ σ0

(2σf
√

π)
(1)
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Fig. 3. 3D spline fit of the three arteries forming a bifurcation for two distinct spline
modification parameters.

Indeed, when an image, composed of Gaussian noise of standard deviation σ0

is being filtered by a Gaussian filter of standard deviation σG, the so-obtained
filtered image ends up with a standard deviation of σf . according to the eq. 8. For
our particular purpose, we intend to determine which Gaussian filter (of standard
deviation σG) shall be used on the input image so as to obtain a filtered image
with a given target statistics (σf ), and hence σG ≈ σ0/(2σf

√
π).

This allows us to generate a high frequency noise of average set to our tar-
get 3D crop. This noise will then be smoothed by a Gaussian filter (σG). The
resulting image (of standard deviation σf ) will thus present strong statistical
similarities with the target portion of the MRA-TOF being modeled. Evidently,
our model allows to target slightly different statistical noises as the one extracted
from the ground truth cropped area.

An input image I(x, y) is Gaussian filtered as :

O(x, y) =
∞∑

i=−∞

∞∑

j=−∞

1
2πσ2

G

e
− i2+j2

2σ2
G I(x + i, y + j) (2)

According to the Bienaymé’s identity :

V ar (
∑n

i=1 Xi) =
∑n

i=1 V ar(Xi) +
∑n

i,j=1,i �=j Cov(Xi,Xj) (3)

And thus, the variance is:

V ar (
∑n

i=1 ciXi) =
∑n

i=1 c2i V ar(Xi) + 2 × ∑n
i,j=1,i �=j cicjCov(Xi,Xj) (4)

However, if Xi, ...,Xn are pairwise independent (Cov(Xi,Xj) = 0, ∀(i �= j)):

V ar

(
∑

i

ciXi

)
=

∑

i

c2i V ar(Xi) (5)
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(ci being constants). We consider that the variance of I(x, y) is
V ar [I(x + i, y + i)] = σ2

0 ; we estimate the variance of the output image
V ar [O(x, y)] = σ2

f . Thus,

σ2
f = σ2

0

∞∑

j=−∞

∞∑

i=−∞

(
1

2πσ2
G

e
− i2+j2

2σ2
G

)2

(6)

For large σG, the sum can be approximated as:

σ2
f ≈ σ2

0

∫ ∞
−∞

∫ ∞
−∞

(
1

2πσ2
G

e
− i2+j2

2σ2
G

)2

di.dj

= σ2
0

4πσ2
G

(7)

and thus,

σf ≈ σ0

2σG
√

π
(8)

2.3 Adding an intracranial aneurysm

Besides the generation of highly similar and yet easily tunable arteries, our
models allow to embed an intracranial saccular aneurysm between the daughter
arteries. The ICA is located onto the bisector of the two daughter arteries, at a
distance D from the bifurcation center such that:

D = r × γ +

√(
R

tan(Θ/2)

)2

+ R2 (9)

R being the average artery radius, Θ the angle between the daughter arteries,
r is the ICA radius, and γ, a growth factor allowing to push/pull the aneurysm
inward/outward the bifurcation.

Figure 4 shows a possible configuration of a bifurcation bearing an aneurysm.
The distance D separating the aneurysm center and the bifurcation node can be
computed as shown in the equation (9). The various constituents of this formula
are represented in Fig.4.

2.4 Synthetic Model Evaluation

We have conducted a thorough evaluation of the model features in terms of both
bifurcation anatomical evaluation, and aneurysm shape. We present on Fig. 5 a
comparison between the Ground Truth (GT) bifurcations and those generated
by the Synthetic Model (SM). We hereby compare the angles formed by the
three arteries, their diameters, as well as their tortuosity.

We can observe that the modeled branches exhibit strong similarities with
their respective ground truths. For this comparison experiment, 100 cropped
portions of the bifurcation #C (see Fig.1) were evaluated. Similarly, we have
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Fig. 4. Position of the synthetic aneurysm along the bisector between the daughter
arteries.

Fig. 5. Evaluation of the bifurcation model with respect to the angles (A), the diam-
eters (D) and branches tortuosity (T).

evaluated various geometrical properties of the aneurysmal sacs, namely, the
ICA volume, the outer surface, as well as the sphericity, elongation and flatness
coefficients.

We show on Fig. 6 how the various features of the modeled aneurysm actually
match quite accurately the ground truth features. Indeed, we can notice the
strong similarities between the MRA-TOF and the modeled features. We can
expect the model to be efficiently used to train neural networks. The next section
is dedicated to the experimental results.

3 Experiments and results

Let us now present the increased performances brought by using VaMos along
with neural networks on two specific tasks: CoW bifurcations classification (Task
1) and aneurysms detection (Task 2) on MRA-TOFs. We demonstrate the effi-
ciency of using the synthetic model alone or as a form of data augmentation for
a small dataset.

For each experiment, the images were manually labeled by a trained opera-
tor, and validated by an expert neuro-radiologist. The MRI images used in the
experiments were collected from different French institutions and were acquired



70 R. Nader et al.

Fig. 6. Evaluation of the modeled aneurysms in terms of sac volume (Vol), outer surface
(Surf), Sphericity (Sph), Elongation (Elong) and Flatness( Flat).

using 19 different MRI scanners from Siemens Healthcare, GE Medical systems,
Philips Medical systems and Fujifilm (see Table 1).

3.1 Task 1: Classification of CoW bifurcations

This section is devoted to the classification of 3D patches encompassing the
Bifurcations of Interest (BoI) along the CoW via 3D CNNs. In our research,
we focused on the 13 BoI being associated with the highest risk of aneurysm
occurrence [17]. These specific bifurcations are depicted in Fig. 1.

Dataset: For Task 1, we have selected 154 MRA-TOF images. For the training
phase, a total of 110 images were used, while an independent test dataset was
composed of 44 images. To ensure consistency in image dimensions and voxel
spacing across the dataset, we re-sampled all MRA-TOFs to a uniform voxel
spacing of 0.4 mm3.

Data annotation and data generation: To annotate the Ground Truth
patches, we used a 3D skeleton computed on the vessel segmentation, along with
its corresponding 3D undirected graph. The graph nodes help us identifying
the center of each bifurcation and extract 32 × 32 × 32 voxel patches with an
isotropic voxel size of 0.4 mm around these coordinates, resulting in a total of
1180 bifurcations in the training set and 386 in the test set. To assess the poten-
tial enhancements brought by VaMos, we have generated 40 synthetic models
for each BoI. These models were designed to replicate the features of the actual
bifurcations, with slight modifications (diameters, tortuosity, etc.)

Neural network and evaluation protocol: Building upon our previous
research [14], we employed a 3D-CNN for classification purposes (see Fig. 7).
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Table 1. Summary of the Time of flight (TOF) magnetic resonance imaging (MRI)
dataset used in the study.

DatasetMaker MR device MFS (T)

Set-1 GE Optima MR450W 1.5

Set-2 GE Optima MR360W 1.5

Set-3 GE Discovery MR750W 3.0

Set-4 GE Signa HDxt 1.5

Set-5 GE Signa HDxt 3.0

Set-6 GE Signa Artist 1.5

Set-7 SIEMENS Aera 1.5

Set-8 SIEMENS Skyra 3.0

Set-9 SIEMENS Avanto 1.5

Set-10 SIEMENS Prisma 3.0

Set-11 SIEMENS Sonata 1.5

Set-12 SIEMENS Verio 3.0

Set-13 SIEMENS Magnetom Sola 1.5

Set-14 SIEMENS Magnetom Amira 1.5

Set-15 Philips Ingenia 3.0

Set-16 Philips Ingenia Edition X 3.0

Set-17 Philips Achieva 3.0

Set-18 Philips Achieva 1.5

Set-19 Fujifilm Echelon Oval 3.0

The model is composed of nine convolutional layers, each with a kernel size of
3 and a stride of 1. These layers are organized into five convolutional blocks
with 32, 64, 128, 256, 512 respective feature channels. The last 3 layers are fully
connected. Dropout layer is used for regularization. We implemented the neural
networks considered in this work using Tensorflow framework (2.9.0).Training
and inference were performed on an NVIDIA RTX A5000 GPU with 16 GB of
memory.

We have evaluated the improvements using three different training dataset
sizes: D1 (48 TOFs), D2 (82 TOFs), and D3 (110 TOFs). Each dataset was
exploited in two distinct experiments: Exp. #B1 involved training exclusively
with actual TOF patches, while Exp. #B2 used only synthetic patches for train-
ing. Each dataset was partitioned into five folds for cross-validation. The models
were trained using categorical cross-entropy loss, Adam optimizer and a learn-
ing rate of 0.0001. Training was conducted for 100 epochs, selectively saving the
model with the best performance on the validation fold. After training, model
evaluation involved using a holdout test set, with final predictions derived by
averaging predictions from the five-fold models.
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Fig. 7. CNN architecture used for BoIs classification

(a) F1-score using different training sets. (b) F1-score by class using dataset D3.

Fig. 8. F1-Score improvements brought by using the VaMos synthetic patches (on the
test set).

Classification results: Our evaluation aimed to assess the impact of using
VaMos across various training dataset sizes. The overall performance is eval-
uated by computing the F1-score across all the samples for each experiment.
The results are shown in Fig. 8a. When using actual TOF patches, we notice a
notable increase of F1-score, from 79.7% to 88% when the dataset size increases
(from D1 to D3). Similarly, when using VaMos, the F1-scores also significantly
increase, from 84.2% to 90.6%, although the degree of variation between cases is
less pronounced. Across all datasets, the performances are consistently increased
when using VaMos. The improvements are more pronounced for D1 (up to 4.5%)
than D2 and D3 (up to 2%). We also report the score for each class (bifurca-
tion label) when using D3 in Figure 8b. We observe on this plot that when
VaMos patches are included (blue bars, labeled “VaMos-D3”), a better F1-score
is achieved for 9 of the 13 classes, compared to a training using only TOF crops
(red bars labeled “TOF-D3”).
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3.2 Task 2: Aneurysms detection

Let us now evaluate the possible improvements brought by using VaMos in an
intracranial aneurysms detection scenario.

Dataset: For Task 2, we have collected 105 scans with unruptured ICAs (dis-
tinct from those used in Task 1). The dataset was split into 70 training images,
used for both training and validation, and a separate test set of 35 images. Each
image contains from 1 to 4 aneurysms, totaling 138 aneurysms with a mean
radius of 2.57 ± 0.89 mm.

Data sampling and generation: To address the ICA detection task, we
adopted a 3D U-Net implementation used in [6]. This latter was chosen to
effectively perform the aneurysm segmentation and its subsequent detection.
We use small patches (64 × 64 × 64 voxels, i.e. 25.6 mm wide). For positive
samples (with ICA), we extract 10 copies for each aneurysm by shifting its posi-
tion within the patch. For negative patches, we extract 20 samples for each
volume, selected to encompass cerebral arteries (but aneurysm-free). For data
generation, 134 aneurysm-free patches from Task 1 served as a basis to gen-
erate 998 synthetic patches containing an ICA. Various aneurysms shapes and
sizes were simulated by manipulating the radius parameter and applying elas-
tic deformations that emulate the characteristics of original scans, as shown
in Fig 6. Moreover for a complete comparison, we apply traditional data aug-
mentation techniques on positive patches, namely rotations within the interval
[−15◦,+15◦] and (90◦, 180◦, 270◦), as well as horizontal and vertical flipping and
Gaussian noise addition.

Training and evaluation protocol: The U-Net was optimized using a loss
function combining Dice loss and binary Cross-entropy loss along with Adam
optimizer and a learning rate of 0.0001. To assess potential improvements
brought by VaMos, three distinct experiments were conducted. In Exp. #A1, we
trained a baseline model using 50 TOFs (630 positive patches). In Exp. #A2,
the training dataset was augmented with patches via 7 traditional data augmen-
tation operations (with a total of 5040 patches (630+7×630). In Exp. #A3, the
training dataset was augmented with the 998 VaMos patches (total of 1628 pos-
itive patches). We used the remaining 20 TOFs as a validation data for all three
experiments and the separate test set composed of 35 TOFs (with a total of 50
aneurysms) for inference. During the inference stage, patches centered around
cerebral bifurcations, identified through an automated vessel segmentation [14]
and subsequent 3D undirected graph generation, are selectively retained to tar-
get regions most susceptible to aneurysm development, enhancing the accuracy
of the results.

ICA detection performance: The performances were assessed on the test set
using two key metrics: lesion-level sensitivity and False Positive (FP) rate (FP
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per TOF), as outlined in [1]. To calculate the evaluation metrics, each predicted
connected component (CC) is treated as a potential detection. If the center of
gravity of a CC is present in a ground truth CC, it is classified as a true positive
detection. Otherwise, it is labeled as a false positive.

Table 2. The results of aneurysm detection task.

Methods Sensitivity (%) FPs/case

Exp. #A1 72 0.37

Exp. #A2 76 1.31

Exp. #A3 88 1.45

In Exp. #A1, the CNN successfully detected 36 aneurysms within a dataset
comprising 50 instances, resulting in a lesion-level sensitivity of 72%. This sen-
sitivity increased to 76% in Exp. #A2 with 38 correctly detected aneurysms.
However, when incorporating VaMos patches, the lesion level sensitivity reaches
88% with 44 detected aneurysms. Moreover, within Exp. #A1, the network dis-
played a low false-positive rate of 0.37, which respectively increased to 1.31 and
1.45 for Exp #A2 and Exp #A3 upon incorporating data augmentation (see
Table 2).

4 Discussion and Conclusion

In this section, we delve into the impact of the synthetic vasculature model,
which effectively mimics portions of MRA-TOF images. The synthetic model
encompasses several processes, it accurately models the geometry of cerebral
arteries and their bifurcations, it introduces surrounding noise, and incorporates
aneurysms of diverse sizes and shapes. Our goal is to provide a comprehensive
dataset that can enhance the performance of various deep learning tasks, such
as the classification of bifurcations forming the Circle of Willis or the detection
of cerebral aneurysms. In this study, we deliberately opted to employ basic deep
learning architecture with straightforward optimization techniques. Our primary
focus was on the contribution brought by VaMos.

Regarding Task 1, we chose to exclusively use VaMos as the source of train-
ing patches. A direct comparison was made with a training solely performed
on actual TOF patches. The primary finding is that using hundreds of syn-
thetic patches enhances the classification accuracy across all dataset sizes. This
improvement is particularly notable when considering a small dataset (up to a
4.5% increase in F1-score). On average, achieving similar performance is possi-
ble by annotating only 82 TOFs supplemented with VaMos, resulting in com-
parable F1-score (0.863 for VaMos-D2, 0.88 TOF-D3 and 0.906 for VaMos-D3).
Our model demonstrates superior performance across most classes, with excep-
tions observed for classes M, H, and J. The challenges in modeling M may stem
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from its complex anatomical structure, potentially resulting in trifurcations or
quadrifurcations. Uncertainties encountered by neuroradiologists in annotating
the MCA branch likely contribute to discrepancies in class H, while hypoplastic
cases of PCOM arteries present challenges for modeling J. Ongoing works focus
on adapting VaMos to address these specific cases.

A prominent achievement of our research is the successful generation of syn-
thetic aneurysms seamlessly integrated into MRA scans lacking aneurysms, sig-
nificantly enriching limited dataset. The primary outcome of Task 2 reveals that
training the CNN using VaMos patches as Data augmentation yielded a marked
improvement in sensitivity for detecting intracranial aneurysms compared to
training solely on actual TOFs. Whereas the latter missed 28% of lesions in
the test data, for the former, the CNN only missed 12% aneurysms. Traditional
data augmentation techniques yielded only a modest improvement in sensitivity
(4%) compared to VaMos (16%). This is consistent with the limitations inherent
in these traditional methods. These techniques primarily enhance the model’s
ability to generalize from existing examples without fundamentally diversifying
the range of anatomical structures represented in the training data as they do
not introduce variations in critical features such as aneurysm shape and size,
which are essential for effectively training models to recognize a wide variety
of aneurysms across different patients. In contrast, advanced generation models
like VaMos are designed to create more complex and diverse synthetic examples
that include significant variations in aneurysm characteristics. This was accom-
plished with a slight increase in false positive rate highlighting the efficacy of
our approach. Missed detection in Exp. #A3 predominantly stemmed from small
aneurysms. Out of the 6 missed aneurysms, 4 had a radius below 1.5 mm. For
such aneurysms, these missed detection can also be attributed to the uncertainty
in the initial expert labeling. Nonetheless, our forthcoming endeavors will specif-
ically target this subset of aneurysms, by generating more synthetic aneurysms
with small radius.
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17. Robben, D., Türetken, E., Sunaert, S., Thijs, V., Wilms, G., Fua, P., Maes, F.,
Suetens, P.: Simultaneous segmentation and anatomical labeling of the cerebral
vasculature. Med. Image Anal. 32, 201–215 (2016)

18. Shi, Z., Miao, C., Schoepf, U.J., Savage, R.H., Dargis, D.M., Pan, C., Chai, X.,
Li, X.L., Xia, S., Zhang, X., et al.: A clinically applicable deep-learning model
for detecting intracranial aneurysm in computed tomography angiography images.
Nat. Commun. 11(1), 6090 (2020)
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Abstract. Efficiently and quickly identifying malware in encrypted network
traffic is a major challenge. This research presents and evaluates a novel app-
roach for sampling encrypted network traffic, called ENS-RFMC. Initially, the
method employs a rule-based strategy for extracting relevant metadata features of
encrypted traffic from network connections, SSL and certificates log files. Subse-
quently, a multi-hierarchical clustering algorithm is utilized to divide the dataset
into smaller clusters, with benign clusters subsequently eliminated for stream-
line data processing. Classifier models such as Random Forests, XGBoost and
SVM are then utilized to detect attacks and assess performance. Experimental
results indicate that the proposed ENS-RFMC sampling method is effective, with
the encrypted traffic intrusion detection model employing ENS-RFMC sampling
exhibits enhanced accuracy and efficiency in identifying attacks.

Keywords: Encrypted Traffic Sampling · Rule-based Feature Extraction ·
Multi-hierarchical Clustering · Intrusion Detection

1 Introduction

In the detection of network encrypted attacks, the vast majority of traffic data in the
network is normal data, and only a small amount of attack traffic appears when attacked.
This means that network intrusion detection is a classification problem under large-scale
data conditions, with the aim of focusing on the security threats posed to the entire net-
work by these small amounts of attack traffic [1]. However, the amount of normal traffic
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data is too large, resulting in low storage and analysis efficiency when dealing with a
small number of attack behaviors. Encrypted traffic data sampling involves collecting
analyzable and testable encrypted traffic from the overall dataset, and the effectiveness
of these sampling methods significantly impacts malware detection outcomes. Tradi-
tional network traffic sampling methods are not suitable for encrypted traffic, and most
existing methods for sampling encrypted traffic are inherently inaccurate [1]. How to
sample encrypted traffic data effectivelywithout losing useful information to improve the
performance has become a research hotspot in the field of encrypted malware detection.

This research investigates the features of encrypted traffic related to malicious
activities, and proposes a sampling method using rule-based feature extraction and
multi-hierarchical clustering algorithm (ENS-RFMC) for encrypted intrusion detec-
tion. The ENS-RFMC method can sample encrypted traffic from multiple perspectives,
thereby reducing the large-scale encrypted traffic in intrusion detection. More impor-
tantly, it improves the efficiency of flow-based encrypted intrusion detection. The major
contributions of this paper can be summarized as follows.

1. We employ a rule-based feature mining strategy to obtain metadata features of
encrypted network traffic. Through log rule association analysis, three categories
of features related to malicious activities were examined and extracted: connection
features, SSL features, and certificate features.

2. We present a three-stage data sampling method, called ENS-RFMC, which employs
rule-based feature extraction and the multi-hierarchical clustering algorithm. This
method extracts important data from encrypted traffic for further deep detection.

3. Wecombine the proposedENS-RFMCsamplingmethodwithmachine learningmeth-
ods to conduct experiments on two real encrypted traffic datasets, and evaluate the
performance by comparing it with other widely used data sampling methods. Exper-
imental results indicate that ENS-RFMC can effectively reduce normal traffic, and
can more accurately and efficiently detect encrypted malicious traffic.

2 Related Works

According to distinct techniques for processing encrypted traffic, encrypted intrusion
detection methods can be divided into active detection and passive detection. Active
detection includes methods that involve traffic decryption and those based on search-
able encryption. Its research focuses on the application of security measures, including
trusted execution environments and controllable transmission protocols. The earliest one
was the use of Man in the Middle (MitM) technology for decryption detection [2]. Some
network security enterprises have developed detection products based on this technol-
ogy, which can be applied to the latest version of TLS protocol. Carnavalet X et al.
[3] proposed a framework for evaluating client TLS proxies by analyzing 14 antivirus
products based on MitM technology, raising doubts about similar security products.
Han J et al. [4] proposed an SGX-Box system, which facilitates secure detection of
encrypted traffic through the SGX trusted execution environment. Goltzsche et al. [5]
proposed a distributed intermediate box system, termed EndBox, which is deployed at
the network’s edge and offers security services to clients based on SGX trusted hardware
technology. Lan C et al. [7] proposed the Embark system, capable of detecting packet
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header information through range queries or prefix matching. Conversely, passive detec-
tion refers to the identification of encrypted malicious traffic without user’s perception
and without performing any encryption or decryption operations. Its research focuses
on feature selection and construction, primarily analyzing relevant detection methods
based on three categories of features: side channel features, plaintext features, and orig-
inal traffic features. Anderson et al. [8] first comprehensively elaborated on a passive
detection method for encrypted malicious traffic, marking the emergence of this topic as
a significant area within network security. Shekhawat et al. [9] extracted traffic log files
and three categories of 38 encrypted traffic features using open-source traffic analysis
software, including: connections, sessions and certificates. Liu JY et al. [10] proposed
the MalDetect architecture, which can detect malicious traffic by using only the first
8 packets of each encrypted traffic. Hou J [2] compared representative research results
and concluded that traditional machine learning algorithms are suitable for constructing
lightweight online detectionmodels, while deep learning-based detectionmodels exhibit
superior performance when dealing with high-dimensional features.

The traffic data sampling method in network intrusion detection can be categorized
into three distinct levels: byte-level sampling, packet-level sampling, and flow-level sam-
pling. Claffy et al. [11] introduced the performance and importance of data sampling
methods related to network traffic. He et al. [12] proposed a biased samplingmethod that
estimates the mean more accurately and reduces sampling overhead compared to static
sampling and simple random sampling. Raspall et al. [13] proposed a non-uniform ran-
dom sampling strategy that considers packet size to avoid adverse effects on sampling,
thereby improving the efficiency of network traffic analysis. Duffield et al. [14] proposed
a heuristic sampling method that selects a suitable sampling function based on the dis-
tribution of network flow length, adjusting this function through heuristic approaches.
Su et al. [15] applied a hierarchical sampling method to identify benign and malicious
clusters within raw network traffic, subsequently analyzing these clusters for filtering
and further malware detection. Chen LC et al. [1] proposed a three-stage encrypted
traffic sampling model based on an improved density peak clustering algorithm, which
extracts 36 features from encrypted traffic and samples the data for further attack detec-
tion. However, most existing encrypted traffic sampling methods are either ineffective
or inherently inaccurate. In this paper, we propose an improved three-stage hierarchical
sampling method for encrypted malicious traffic detection based on reference [1].

3 Rule-Based Feature Extraction Method

Feature extraction constitutes the initial and critical step in the process of data sampling.
Therefore, it is necessary to conduct feature extraction on the original input data prior to
the reduction of encrypted traffic [16]. Figure 1 illustrates the encrypted traffic feature
extraction framework proposed in this research. Firstly, Zeek IDS is used to parse the
original encrypted traffic pcap files intomultiple log files. Then, protocol related features
are extracted by analyzing the association rules.
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Fig. 1. Encrypted traffic feature extraction process

3.1 Correlation Analysis of Encrypted Traffic Logs

The network data was initially captured using tools such as Wireshark. We employed
Zeek to parse each pcap file of malicious encrypted traffic, and generated various related
network log files, including dns.log, http.log, conn.log, etc. Then, we assessed the types
of generated log files and selected three primary log files for further examination: the con-
nection log file (conn.log), the SSL log file (ssl.log) and the certificate log file (x509.log).
The feature information of malicious encrypted traffic is mainly contained within these
three log files.

This research employs these three types of traffic log files to establish data associa-
tions, and extract relevant feature information based on their associations. And there is
a correlation exists among these log files. The internal structure of the log files is illus-
trated in Fig. 2, where each row contains a unique key used to link rows from other logs.
In the ssl. Log, SSL session information uses a unique key and certificate ID to iden-
tify the corresponding records in the conn.log and ssl.log. The unique key in conn.log
record can be linked to the unique key in the ssl.log for two records. Additionally, the
ID key values, which are separated by commas in ssl.log, can be associated with the
corresponding certificate records in the x509.log.

(a) conn log

(b) SSL log

(c) x509 Log

Fig. 2. Encrypted traffic log association

By utilizing the interrelationship among these three categories of log files, a sub-
stantial array of distinct features can be extracted. Each SSL/TLS connection requires a
server certificate, so each record in the ssl.log contains at least one unique certificate ID
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used by the server to authenticate its signature chain, which corresponds to the certificate
records in the x509.log. In this study, we only extract the first certificate ID from ssl.log,
as it corresponds to the end user certificate, while the remaining IDs correspond to the
intermediate certificate and root certificate.

3.2 Multi-dimensional Feature Extraction Method

Through SSL aggregation of data from conn.log, ssl.log and x509.log, Connection-
tetrad records are extracted based on the association rules among log files. Then 4-
tuples are generated, and encrypted traffic is analyzed utilizing 4-tuples as sample units
to extract corresponding data flow connection features, SSL features and certificate
features, thereby obtaining multiple preset features through aggregation.

(1) Connection-tetrad Generation
Definition 1 (SSL aggregation record). An SSL aggregation record consists of a

TCP connection record, an SSL record and a certificate record concatenated to store
information about encrypted network flow. The connection records, SSL records, and
x509 records are sourced from conn.log, ssl.log and x509.log, respectively. Each SSL
record has a connection record, and x509 records are only available when a certificate
exists in this SSL session.

Definition 2 (Connection-tetrad). A connection-tetrad is composed of a set of SSL
aggregated records that collectively share a 4-tuple: source IP, destination IP, destina-
tion port, and transport protocol, which is the unique key for each connection-tetrad.
Connection-tetrad can be used to describe malicious encrypted traffic, as well as to
capture and express benign encrypted traffic patterns.

Conn.log

SSL.log

X509.log

SSL aggregation record

a SSL record, conn record,certificate record

.

.

.

.

.

.

.

.

.

SSL aggregation record

a SSL record, conn record,certificate record

SSL aggregation record

a SSL record, conn record,certificate record
.
.
.

SSL aggregation record

a SSL record, conn record,certificate record

Connection-tetrad

1.{source IP, destination IP, destination port, and protocol}

SSL aggregation record

.

.

.

SSL aggregation record

.

.

.

.

.

.

Connection-tetrad

{source IP, destination IP, destination port, and protocol}

SSL aggregation record

.

.

.

SSL aggregation record

Fig. 3. SSL aggregation record and Connection-tetrad generation

As shown in Fig. 3, the connection-tetrad comes from three log files: conn.log,
SSL.log and X509.log. Firstly, it associates conn.log with ID in SSL.log, and then
the associated certificate path is re-linked with the ID in X509.log to generate the SSL
aggregation record.Within the obtainedSSLaggregation records, aggregation operations
are conducted based on the same 4-tuple data to obtain the connection-tetrad. Following
this, feature extraction is performed on each connection-tetrad.
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(2) Feature extraction
Following the generation of numerous connection-tetrads, it is essential to calcu-

late and extract features from SSL aggregation records with the same 4-tuple in each
connection-tetrad, and obtain multiple preset features to form an initial feature set.

For each 4-tuple connection, we extracted 36 features, most of which were created
based on our professional knowledge in the field and thorough analysis of our malware
data. These 36 features can be organized into feature vectors, and the set of feature
vectors corresponding to all connection-tetrads constitutes the final extracted features.
We will divide these features extracted from three log files into three distinct groups:
connection features, SSL features and certificate features. Each feature is computed
by synthesizing information from a single connection-tetrads record, with each feature
representing a complex information extraction and aggregation. These features are fre-
quently employed in supervised learning training and have excellent ability to distinguish
encrypted malicious traffic.

4 Encrypted Traffic Sampling Method

Reducing encrypted traffic data is the initial task of employingmachine learningmethods
for detecting encrypted malware. This study investigates and extracts three types of
encrypted traffic features throughnetwork log correlation analysis, then uses an improved
multi-hierarchical clustering algorithm to cluster the encrypted traffic, finally performs
clustering analysis and filtering. The complete reduction process is shown in Fig. 4.

ENS-RFMC Sampling Method

Cluster Analysis and Filtering

Analyzing the irrelevance of 
the clustering results

Hierarchical Clustering

Mul�-hierarchical 
clustering algorithm

Flow Feature Extrac�on

Extrac�ng connec�on features, 
SSL features and cer�ficate 

features  from raw traffic

[cf1,sf1,xf1,cf2,sf2,xf2···]
···

[cf1,sf1,xf1,cf2,sf2,xf2···]
10011
00101

Fig. 4. The three-stage ENS-RFMC sampling process

4.1 Encrypted Traffic Feature Extraction

The connection features describe the common patterns of communication flow unre-
lated to certificates and encryption, the SSL features describe the SSL handshake and
encrypted communication information, and the certificate features describe the certifi-
cate information provided during the SSL handshake. Table 1 enumerates the 12 connec-
tion features extracted from conn.log, including the number of aggregated and connected
records, mean of connection duration and standard deviation of connection duration, etc.
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Additionally, the 12 SSL features extracted from ssl.log include the ratio of SSL records
to non-SSL records, the ratio of TLS to SSL, and the proportion of SSL records with SNI,
etc. Furthermore, the 12 certificate features obtained from x509.log, include the average
length of the certificate’s public key, the average certificate validity period, the standard
deviation of the certificate validity period, and the count of different certificates, etc.

Table 1. Features extracted from conn.log, ssl.log and x509.log.

No Connection features SSL features Certificate features

1 no_of_flows ssl_ratio avg_key_len

2 avg_of_duration tls_version_ratio avg_of_cert_len

3 stand_devi_of_duration SNI_ssl_ratio stand_devi_cert_length

4 percent_sd_of_duration self_signed_ratio is_valid_certificate

5 size_of_orig_flows SNI_equal_DstIP amount_diff_certificate

6 size_of_resp_flows differ_SNI_in_ssl_log no_of_domains_in_cert

7 ratio_of_sizes differ_subject_in_ssl_log certificate_ratio

8 percent_of_estab_states differ_issuer_in_ssl_log no_of_cert_path

9 inbound_pckts ratio_of_same_subjects x509_ssl_ratio

10 outbound_pckts ratio_of_same_issuer SNIs_in_SAN_dns

11 periodicity_average is_SNI_top_level_domain is_SNs_in_SAN_dns

12 period_stand_deviation ratio_missing_cert avg_certificate_age

4.2 Multi-hierarchical Clustering of Encrypted Traffic

To achieve higher quality and smaller clusters while effectively lowering computational
costs, we implemented a multi-hierarchical density peak clustering method (HDPC-
GS) that integrates three distinct categories of encrypted traffic features. As illustrated
in Fig. 5, the process initiates with coarse-grained clustering based on the connection
features of encrypted traffic, followed by medium-grained clustering utilizing the SSL
features, and finally a fine-grained clustering phase is conducted using the certificate
features.

Fine-grained ClustersMedium-grained ClustersCoarse-grained ClustersNetwork traffic with 
malicious flow

Connec�ons 
Features SSL Features Cer�ficate 

Features

Mul�-hierarchical Clustering

Fig. 5. The multi-hierarchical clustering process
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All coarse-grained, medium-grained, and fine-grained clustering processes are com-
pleted utilizing the DPC-GS-MND algorithm, as detailed in Reference [19]. This algo-
rithm represents an improved density peaks clustering method that incorporates grid
screening, custom center decision values and mutual neighborhood degree for network
anomaly detection.

4.3 Normal Encrypted Traffic Cluster Reduction

After undergoing multi-hierarchical clustering processing, the original encrypted traffic
is divided into numerous small clusters, which may or may not contain attacks. Cluster
analysis and reduction are aimed at filtering out the clusters that consist solely of normal
encrypted traffic, while preserving the remaining clusters that contain malicious traffic,
for further examination by the network intrusion detection system. This achieves the goal
of data reduction, thereby further effectively improving the accuracy of attack detection.

Typically, the cluster center of each cluster is usually considered to represent the
entire cluster, so existing sampling methods employ cluster center and related sampling
to determine whether a cluster is malicious or normal. Here, the ENS-RFMC sampling
method analyzes whether the cluster is normal ormalicious by utilizing the cluster center
alongside several sampling samples that are both closest and farthest from the cluster
center. The cluster analysis and reduction process are shown in Fig. 6.

Encrypted traffic a�er 
clustering

Core data for decision 
tree classifier

Malicious traffic 
detec�on system

Use center and 
sampling to 
present the 

cluster

Filtering all 
benign
clusters 

Cluster Analysis and Filtering

Fig. 6. The cluster analysis and filtering process

After three-layer clustering, the original encrypted traffic will be classified utilizing
a lightweight decision tree classifier to determine whether the cluster is malicious or
normal. The classifier is trainedwith a small amount of training data. If the cluster center,
as well as the closest and farthest sampling data from the cluster center are identified
as exhibiting attack, the entire cluster will be classified as malicious and retained for
further analysis in the network attack detection system. On the contrary, if all data are
classified as normal traffic, it is considered that the entire cluster data can be reduced.

5 Evaluation

To comprehensively evaluate the feasibility and reduction performance of the three-
stage encrypted network traffic sampling method based on rule-based feature extraction
and multi-hierarchical clustering (ENS-RFMC) in complex network environments, this
section constructs various experiments utilizing a real-world encrypted network traffic
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dataset, and compares the results. The evaluation and analysis reveal that ENS-RFMC
can achieve better data reduction and malicious traffic detection results than other exist-
ing network traffic sampling methods. The experiments employed several widely used
supervised learning classifiers as encryptedmalicious traffic detectionmodels, including
Random Forest, XGBoost and SVM algorithms.

5.1 Experimental Data

In this study, the experimental dataset is composed of the Stratosphere IPS dataset [17]
and the MTA dataset [18]. The Stratosphere IPS dataset is a research outcome imple-
mented by the ATG group at the Czech Technical University, which contains encrypted
normal traffic and malware traffic captured in a real-world network environment, with
malware executing under bandwidth limitation and spam filtering restrictions. TheMTA
dataset focuses on sharing various types of malware traffic data for analysis, covering
malware types such as ransomware and exploit kits. Given that the research objective is
the detection of encrypted malicious traffic, therefore, only normal and malicious traffic
encrypted using the SSL/TLS protocol were extracted from the pcap files. Finally, the
dataset selected 13 benign traffic captures and 35 captures generated by four malware
families, and extracted 8724 normal connection tuples and 449 malicious connection
tuples from them. Table 2 lists the malware families and their distribution information
in the experimental dataset.

Table 2. Malware families and distribution information.

Malware family Malware type Flows no 4-tuples no

Benign Normal 69461 8724

Dridex Trojan 62710 72

Hancitor Ransomware 3695 247

WannaCry Ransomware 785 34

Zeus Trojan 17890 96

After collecting the dataset, the first step is data pre-processing. The values of most
features in the dataset have varying ranges. To eliminate the dimensional relationships
between network traffic andmake the data comparable, we have also performed a unified
normalization process. The feature values are converted into a range of [0,1] after data
normalization.

5.2 Experimental Setup

Our experiments are running on Intel Xeon CPU E5–2680 @ 2.4 GHz, 64GB of RAM.
Python 3.2, NetworkX 1.9.1 and Sklearn 0.24.2 running on the Ubuntu 17.04 64-bit OS,
are applied as software frameworks. In addition, a Nvidia Titan GPU is used as a model
training accelerator.
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In the experiments, the evaluation indicators for encrypted network traffic sampling
and attack detection include attack retention rate (ARR) and attack detection accuracy
(ADA). They are defined as following.

ARR = NAAS

NABS
∗100% (1)

ADA = TP

NABS
∗100% (2)

whereNAAS (number of attacks after sampling) represents the number of reduced attack
traffic; NABS (number of attacks before sampling) represents the number of attack traffic
before sampling; TP (true positive) represents the number of samples that the detection
model correctly identifies the type of attack.

5.3 Experimental Results

5.3.1 Evaluate and Comparative Experiments

In this section, smart sampling [14], HCBS [15], THS-IDPC [1] and VAGCUS [20]
sampling methods are selected to compare and evaluate the effectiveness of the ENS-
RFMC samplingmethod in data reduction. And the experiments employRandomForest,
XGBoost and SVM machine learning algorithms as backend classification models to
identify attacks and evaluate performance.

Figure 7 compares the attack detection rates obtainedwhen usingXGBoost, Random
Forest, and SVM algorithms as classification models at approximately 25% and 50%
data reduction rates. The experimental results indicate that the random forest algorithm
achieves the best attack detection effect. Therefore, the random forest algorithm is used
by default for subsequent experiments. Additionally, the ENS-RFMC reduction method
demonstrates the highest attack detection performance regardless of which machine
learning algorithm is used as the classification model.

(a) Attack detection rate (25% reduction rate) (b) Attack detection rate (50% reduction rate)

Fig. 7. Performance comparison under different machine learning models

Table 3 demonstrates the attack retention rates with applying various data sampling
techniques, as well as the attack detection effectiveness when using the random forest
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algorithm as the classification model, at approximately 25% and 50% data reduction
rates.

From the experimental results shown in Table 3, we can clearly observe that ENS-
RFMC successfully retains 99.55% and 96.21% of the attack traffic when the reduction
rates are approximately 25% and 50%, respectively. This attack retention rate is sig-
nificantly higher than the other four sampling methods, demonstrating the excellent
performance of ENS-RFMC in reducing network traffic. As the reduction rate increases,
the attack retention rate decreases. Among them, when the reduction rate is around
25%, ENS-RFMC improves the attack retention rates by about 18%, 8%, 4% and 5%
compared with smart sampling, HCBS, THS-IDPC and VAGCUS reduction methods,
respectively. When the reduction rate is around 50%, ENS-RFMC increases the attack
retention rate by approximately 35%, 15%, 6%, and 8%, respectively. Furthermore, the
experimental results also demonstrate that the ENS-RFMC method outperforms other
comparison methods in terms of attack detection rate. Moreover, with the ENS-RFMC
sampling method, attack detection with 25% sampling rate can achieve a level closest
to 50% sampling rate.

Table 3. ARR and ADA with different data sampling methods.

Sampling method about 25% about 50%

ARR ADA ARR ADA

Smart Sampling 81.29 81.06 61.47 61.25

HCBS 91.09 90.87 81.52 81.29

THS-IDPC 95.99 95.99 89.97 89.75

VAGCUS 94.87 94.65 88.86 88.64

ENS-RFMC 99.55 99.33 96.21 95.99

Figure 8 compares the detection effectiveness of different data reduction methods
for various types of attacks at approximately 25% and 50% data reduction rates. The
experimental results show that, compared with smart sampling, HCBS, THS-IDPC and
VAGCUS reduction methods, ENS-RFMC demonstrates the optimal attack detection
effectiveness for each kind of attack.

5.3.2 Analysis of the Improved Clustering method

Toverify the impact of theHDPC-GMclusteringmethod on data reduction efficiency and
attack detection performance, we compared the attack retention rate and attack detection
accuracy of different clustering algorithms by using the ENS-RFMC reduction method.
The comparison clusteringmethods includeAverage-linkage,DPC-DLP [21], andSDPC
[22].

Figure 9 displays the results of attack retention and attack detection using HDPC-
GM and comparative clustering methods when the total data reduction is approximately
25%. As can be seen in Fig. 9, HDPC-GM achieves better attack retention rate and attack
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(a) Attack detection rate (25% reduction rate) (b) Attack detection rate (50% reduction rate)

Fig. 8. Attack detection rate with different data reduction methods

detection accuracy compared to the other three comparative clustering methods. This
indicates that the HDPC-GM clustering method outperforms the comparative clustering
methods in terms of the detection performance of encrypted traffic attacks.

Fig. 9. With different clustering algorithms

The use of different combinations of connection features, SSL features, and certifi-
cate features in the HDPC-GM hierarchical clustering method can directly affect the
clustering effect, which in turn influences the results of data reduction and attack detec-
tion. Figure 10 presents the impact of different combinations of connection features, SSL
features, and certificate features on data reduction and network attack detection results
using HDPC-GMwhen the total data reduction is approximately 50%. In the table, conn,
ssl, and x509 represent connection features, SSL features, and x509 features, respec-
tively. By comparing the experimental results of six feature combination orders, it can
be seen that the first feature combination order achieves the best attack retention rate
and attack detection accuracy.
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Fig. 10. With different orders of features

5.3.3 Analysis of the Improved Cluster Reduction Algorithm

The ENS-RFMC method uses the cluster center, a certain number of samples closest to
the cluster center, and a certain number of samples farthest from the cluster center to
determine whether the cluster is normal or malicious. Figure 11 compares the effective-
ness of ENS-RFMC with the other three cluster determination methods when the total
reduction is approximately 50%. Method 1: Use the cluster center to determine whether
the cluster is normal or malicious. Method 2: Use the cluster center and a certain number
of samples closest to the cluster center to determine whether the cluster is normal or
malicious. Method 3: Use a certain number of samples closest to the cluster center and
a certain number of samples farthest from the cluster center to determine whether the
cluster is normal or malicious. Based on the results in Fig. 11, the cluster determination
method used in this study exhibits the best performance in terms of attack retention rate
and attack detection accuracy.

Fig. 11. Attack detection effectiveness using different cluster determination methods
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Figure 12 demonstrates the changes of reduction rate under different cluster numbers.
According to the experimental results, using the ENS-RFMC reduction method, when a
smaller number of clusters is selected, the reduction rate of the encrypted flows gradually
increases with the increase of the number of clusters. When the number of clusters
approaches 50, the reduction rate begins to rapidly rise. Once the number of clusters
reaches around 70, the reduction rate starts to decline dramatically, and then slowly rises
and stabilizes.

Fig. 12. Relationship between cluster number and reduction rate

6 Conclusions

In network intrusion detection, excessive normal data leads to a decrease in the storage
and processing efficiency of a few attack categories of data during the processing. How to
reduce encrypted traffic asmuch as possiblewithout losing useful information to improve
the performance of malware detection is an urgent problem in the field of encrypted mal-
ware detection. This study proposes an improved three-stage encrypted traffic sampling
method for intrusion detection. The method extracts meaningful information from net-
work connections, SSL and certificates log files, and applies a multi-hierarchical cluster-
ingmethod to divide the dataset into small clusters, and then removes the normal clusters.
Through comparative analysis with smart sampling, HCBS, THS-IDPC and VAGCUS
algorithms, experiments show that the encrypted traffic sampling method ENS-RFMC
proposed in this paper can effectively reduce normal data while retaining network attack
behavior features. The encrypted intrusion detection model using ENS-RFMC sampling
can detect encrypted attacks more accurately and efficiently.
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Abstract. Many classical clustering algorithms, like K-Means, spectral
clustering, or hierarchical approaches, have been adapted to work with
constraints; surprisingly, the literature completely lacks constrained ver-
sions of Random Forest Clustering (RFC) schemes, a class of methods
whose usefulness has been shown in different scenarios. In this paper, we
take one step to fill this gap, proposing a simple extension of RFC which
works in the presence of partition-level constraints. In particular, the
proposed approach exploits the modularity of RFC schemes, which all
start from a Random Forest (RF) trained on available (unlabelled) data,
by integrating in this first step the a priori knowledge given by the con-
straints, leaving the remaining part of the pipeline unchanged. We show
the feasibility of our simple extension on three different RFC schemes,
employing 18 datasets of small and moderate size. We also positively
compare the obtained constrained RFCs with respect to some literature
alternatives.

Keywords: Random Forest Clustering · Constrained Clustering ·
Decision Trees

1 Introduction

Clustering represents a widely investigated and applied exploratory data tool
whose usefulness has been assessed in different scenarios (e.g., [21–23]). Clus-
tering is definitely a challenging problem due to its unsupervised nature: actu-
ally, in clustering, no labels are available, and the natural groups (i.e., clusters)
should be extracted directly from data. In some practical scenarios, however,
some extra information is available, which can be used to derive better results.
One example is constrained clustering [10,14,18], a paradigm which belongs to
the widely investigated family of approaches for semi-supervised learning ([45]).
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In constrained clustering, the a priori information is provided in the form of con-
straints. Such constraints can be of different types and work at different levels,
like constraints on clusters (e.g., imposing a minimum size on clusters), on pairs
of instances (e.g., knowing pairs of objects that must or must not be in the same
cluster), or directly on partition (e.g., having a set of objects for which labels
are known) – for more info see e.g., [14].

Due to the scientific relevance and the practical usefulness of constrained
clustering solutions, many classical clustering algorithms have been adapted to
the constrained case: the most striking example is the K-means algorithm [28],
for which several constrained versions have been proposed, starting from the
COP-Kmeans approach of [48] up to more recent versions [9,19,47]. Other exam-
ples include constrained extensions of spectral clustering [36,49], density-based
clustering [24], and hierarchical clustering [11].

Surprisingly, the literature completely lacks constrained versions for Ran-
dom Forest Clustering (RFC) schemes, a clustering paradigm which exploits
Random Forests (RFs) [7], typically employed in supervised settings, to perform
clustering [3,4,6,16,29,34,38,39,41,50,52]. This paper takes one step to fill this
gap, presenting a simple extension of RFC schemes that work in the presence
of partition-level constraints. We focus on the most important class of RFC
approaches, which are often simply referred to as the Random Forest Clustering
approach [3,6,16,38–40,52]. Within this paradigm, the clustering is obtained in
three steps: i) a RF is created to unsupervisedly model the data; ii) a distance
between objects is derived through the learned RF and iii) the final clustering
is obtained through a standard distance-based algorithm, such as hierarchical
clustering or spectral clustering – the differences among various RFC schemes
typically lie in the definition of the RF-distance. Our starting intuition is that
it is possible to straightforwardly embed the constraints in the first step of the
pipeline, i.e., in the learning of the forest. Please note that in RFC the unsuper-
vised learning of the forest is still an unsolved issue (see e.g., discussions in [3]),
since no labels are available: the standard solutions imply generating a synthetic
negative class, and to train a classification Forest (done e.g., in [6,39,52]), or to
use Extremely Randomized Trees (ERT – [15]), which can be trained without
labels (done e.g., in [3,29,41]), and have shown to be very effective in deriving
powerful distances [5]. In this paper, we describe a constrained extension of these
RFC methods, focusing on partition-level constraints, in which the constraints
are given in terms of a subset of labels for the objects [14]. This represents
a classic scenario [27], very often also used to derive instance-level constraints
(i.e., Must-Link and Cannot-Link constraints, which are derived from a subset
of labelled objects) – for some discussions on the different forms of constraints
interested readers can refer to [10,31,35].

The proposed extension is very simple and suggests replacing the unsuper-
vised training of the forest with a supervised training, done with the labelled
objects, discarding all the unlabelled data. Our idea starts from the observation
that, in RFC schemes, the training of RFs is problematic (no labels [3]); however,
the RF is not used to directly perform clustering, but only to define the tests
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used to compute the distance (i.e., as a feature extractor – [6]); therefore an RF
encoding the constraints, even if not describing all the objects of our problem,
would be definitely descriptive, providing more focused tests able to characterize
the different clusters.

The presented approach has been thoroughly evaluated with 18 datasets,
employing 3 different versions of RFC: the original one of Shi and Horvath [39],
the approach of Zhu and colleagues [52], and the very recent RatioRF method
[6]. Results show that our simple extension is drastically beneficial, especially
for datasets of moderate size. We also present a comparison of constrained RFCs
with some literature approaches, showing that the proposed methods represent
a viable alternative to standard as well as advanced constrained clustering meth-
ods.

The remainder of the paper is organized as follows: in section 2, we summarize
the RFC scheme, while in section 3, we introduce the proposed extension; section
4 contains the empirical evaluation, whereas section 5 concludes the paper.

2 Random Forests and Random Forest Clustering

In this section, we will provide a brief overview of the class of RFC which we
consider, starting from Decision Trees (DT) and RF – mainly to set up the
notation. In the more general formulation of [8], given a vectorial representation
of d features, a DT t is a complete binary tree, where each internal node j has
associated a test θj = (νj , fj), with νj being a threshold on a feature fj ; the two
children represent the two possible results of the binary test θj = (νj , fj): more
in detail, an object x = [x1, .., xd] goes to the left child if xfj < νj , to the right
one otherwise. Given an object x, and a tree t, let us denote as �t(x) the leaf
of the tree where the object x falls, and as Pt(x) denotes the set of tests on the
path x is taking from the root to the leaf �t(x).

Typically, DTs are learned starting from a training set X, used to determine,
for all nodes j, the optimal tests θj = (νj , fj). More in detail, the training
follows a recursive procedure: in a given node, i) the best pair (νj , fj) is found
according to an optimality criterion evaluated using the objects arrived at that
node, and ii) the objects are propagated to the left or the right node according
to the result of the test. This recursive procedure starts from the root, where all
objects are used, and is recursively iterated until nodes contain a single object
or a maximum depth is reached. The optimality criterion used inside a node
depends on the task: for example, in classification DTs [8], where labels are
available, the best rule is the one that maximizes the separability of the classes
of the objects reaching that node, such as the Gini criterion. RFs [7] represent a
robust ensemble of Decision Trees, obtained with a randomization mechanism in
the learning of the different trees: in the typical scenario, M different Decision
Trees are built starting from random subsamples of the problem training set,
and the final decision is taken by averaging decisions of the different trees.
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2.1 Random Forest Clustering

In recent years, a great interest has arisen in the exploitation of RFs beyond the
classical regression and classification scenarios, especially in unsupervised con-
texts such as outlier detection [25,26] or clustering. In this last scenario, there
are some approaches that exploit RFs (or RF-like schemes) to directly devise
clustering algorithms, such as [4,29,34,41,50]. However, as said in the intro-
duction, the most important trend is the so-called distance-based RF clustering
(often simply referred to as the Random Forest Clustering method [3,6,16,38–
40,52]), which exploits the data description abilities of RF to derive a distance
between points, to be employed with classic distance-based clustering algorithm,
such as spectral clustering or hierarchical clustering. In this class of approaches,
clustering is performed in three steps, briefly summarized in the following.
Step 1. Training of the Random Forest. A forest is trained on the available
data. Since labels are not available (clustering), unsupervised methods should
be derived. The typical options are two:

– Negative Sampling: in this option, we train a classical classification forest,
e,g, based on CART [8], in which the set of points to be clustered represents
the positive class, while the negative class is synthetically generated. This last
step is typically performed by random sampling from the product of empirical
marginal distributions of the dataset, in order to create a negative class of
the same size of the dataset. This training scheme represents the first and
most employed option in RFC – e.g. used in [6,16,38–40,52].

– Extremely Randomized Trees: in this option, less investigated than the
previous one, a forest of Extremely Randomized Trees [15] is used. Within
these trees, randomization is taken to the extreme: in every node, the rule is
found by randomly selecting a feature, and then by selecting the threshold
by uniformly sampling a value from the domain of the objects of the training
set arrived at that node. Examples of RFC methods using this option can be
found in [3,29,41].

Step 2. Distance computation. In this step, a distance between all pairs of
objects to be clustered is computed through the learned RF. The different RFC
schemes typically differ in the way this distance is computed, exploiting different
concepts like path overlaps [39,52], probability masses [1,42] or axiomatic defi-
nitions of similarity [6]. However, in all cases, the idea is that a good measure
of similarity between two objects can be defined by comparing the way they
answer to the tests of the trees of the forest. The typical scheme is to define a
similarity on a single tree, to be aggregated and transformed to distance at the
Forest level. In more detail, the general formulation of a RF-distance, defined
on a forest with T trees, is:

dRF (x,y) =

√
√
√
√1 −

T∑

t=1

st(x,y) (1)

where st(x,y) defines the tree-similarity between x and y. Here we studied the
following tree similarities, which lead to different RFC schemes:
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– RFC-Shi. In this case the similarity between two objects x and y in a tree
t of the forest is defined as:

stShi(x,y) =

{

1 if�t(x) = �t(y)
0 if�t(x) �= �t(y)

(2)

This similarity, aggregated at the forest level, measures the number of times,
over the total number of trees of the forest, the two objects reach the same
leaf – i.e., they provide the same answers to all questions in the path. This
represents the original measure proposed by [7], firstly used for clustering in
[39].

– RFC-Zhu. This represents a tree-similarity introduced in [52]1:

stZhu(x,y) =
depth(lca(�t(x), �t(y))

max{depth(�t(x)),depth(�t(y))} (3)

where lca(�t(x), �t(y)) is the least common ancestor of �t(x) and �t(y). In this
case, the idea is that the larger the overlap between the two paths x and y
are following in the tree t, the larger their similarity.

– RFC-RatioRF. This represents the very recent RatioRF measure, intro-
duced in [6] by following the axiomatic definition of similarity given by Tver-
sky [44]. This approach has been shown to outperform all the alternatives in
the clustering scenario [6], also in the presence of missing data [37]. In this
case:

stRatioRF (x,y) =
|Pt(x) ∩· Pt(y)|

|Pt(x) ∩· Pt(y)| + |Pt(x) −· Pt(y)| + |Pt(y) −· Pt(x)| (4)

where i) Pt(x) denotes the set of tests on the path of x, Pt(x) ∩· Pt(y) is the
set of tests on which x and y agree, among the tests in Pt(x) ∪ Pt(y), and ii)
Pt(x) −· Pt(y) (or, equivalently, Pt(y) −· Pt(x)) is the set of tests on the path
of x (y) on which y (x) disagrees.

Step 3. Clustering. The final clustering is then obtained using any distance-
based clustering algorithm, such as Spectral Clustering.

Let us conclude this section with a couple of very general considerations on
the complexity of the RFC scheme. The computational load of the first step
mainly depends on the size of the dataset, which, within the Negative Sampling,
is also doubled; however, this represents a classic and widely studied issue with
classification RFs, and very fast options have been proposed – e.g., [43]. When
using ERTs, however, training is very fast, since no optimization is required. The
second step (i.e. the computation of the RF-similarities) typically represents the
bottleneck of RFC schemes, since the similarity should be determined for all pairs
of objects to be clustered, and this quadratic complexity often makes the scaling
1 Among the three variants proposed in [52], we employed here the second one, repre-

senting the best compromise between clustering accuracy and computational require-
ments, as also suggested in [3].
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to very large datasets too computationally demanding. For what concerns the
computation of a single similarity, the complexity mainly depends on the depth
of the tree (since objects have to traverse all trees): however, experiments in [2]
have shown that very short trees (with max depth 7 or 8) already permit to get
excellent results. Given the distance, a standard distance-based method is used
in the third step; the optimization of such methods is again a widely studied
topic, with many optimized variants already present in the literature – e.g. [51].

3 The proposed approach

In this section, we introduce the variant of the RFC schemes described in the
previous section, which permits the integration of partition-level constraints.
Let us start with the definition of the problem, which follows [27]. Given a
dataset X = {x1, · · ·xN} (xi ∈ �d) to be clustered in K clusters, and a value
p ∈ (0, 1), let us define the p-partition level constraints as a set of labels from
1 to K, assigned by an expert, to pN objects of X. Let us define as XC ⊂ X
these objects, Y C the corresponding labels, and XU ⊂ X the remaining objects.
Clearly |XC | = pN, |XU | = (1 − p)N , and XU ∪ XC = X. The goal is to
cluster the objects in X in K clusters, starting from the representation Z =
{XU ,XC , Y C}.

In our constrained modification of the RFC, the main intuition is that con-
straints can be easily integrated into the first phase of the pipeline, namely in
the learning phase. Our modification is extremely simple, but permits us to get
promising results in the experiments. We start from two observations. The first
is that the trained forest is not used for clustering, but simply to derive the
distance measure for clustering: actually, as described in the previous section,
the distance is computed by letting all objects in X traverse trees of the RF,
subsequently comparing their paths. In this sense, the forest can also be trained
with a subset of objects, or, in principle, also with objects from a hold-out set.
Second observation: if we consider the basic version of the distance [39], where
two objects are similar if they end in the same leaf in several trees of the forest,
it is clear that a good forest is composed of trees in which objects belonging to
different clusters follow different paths, ending in different leaves (by the way,
this is true also for other RF measures). But this is actually what is looked
for when building a RF with classification trees like CART [8], i.e. to get trees
in which objects of different classes are grouped in different parts of the trees.
Putting these two facts together, we have our simple approach to constrained
RFC: to train a classification RF using only {XC , Y C}, and to leave steps 2 and
3 of the RFC pipeline unchanged. The proposed approach is sketched in Fig. 1:
in red the novel ingredients with respect to the standard RFC.

Let us stress that working on the learning stage of the RFC pipeline has
different advantages: i) we can work on the weakest part of the RFC pipeline,
for which a well-established option is still missing; ii) it seems reasonable that
inserting the a priori information in the early stage of the pipeline would be
more beneficial than inserting in later stages: actually, with better forests –
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Fig. 1. The proposed approach. In red the modification introduced with respect to the
standard RFC scheme.

built exploiting the constraints – we would have better distances, which would
lead to a better clustering result; iii) the computational overhead is very lim-
ited, and related only to training; indeed, with our approach, we are actually
reducing the computational overhead with respect to the unconstrained case of
“Negative Sampling”, since we are training a classification forest with a reduced
number of points (only pN objects, whereas for Negative Sampling we need 2N
objects, since typically the generated negative class has the same cardinality of
the dataset).

4 Experimental evaluation

In this section, the proposed approach is evaluated and compared with some
alternatives. The evaluation is based on 18 datasets, which are listed in Tab.
1. The full description of these datasets, together with the source and the pre-
processing, is provided in the Section B of the supplementary material. We con-
sidered datasets of both small and moderate size (these latter marked with an
“(*)” in Tab. 1), which represents the situation where tree-based approaches
have been shown to be most useful [17]. As done in most of the clustering exper-
iments, the evaluation is done by comparing the cluster assignment with the true
labels. In particular, we used the standard Adjusted Rand Index (ARI – [20]),
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which employs a contingency table between the obtained grouping and the true
one to quantify the quality of the result (the higher this index, the better the
clustering), also performing a correction to consider the chance of the formation
of the clusters.

Table 1. Datasets used for evaluation. The set of datasets denoted with “(*)” repre-
sents the “moderate size” datasets.

Name ObjectsFeaturesClusters

Iris 150 4 3

Glass 214 9 4

Ecoli 336 7 8

Seeds 210 7 3

Cryotherapy 90 6 2

AutoMpg 398 6 2

Imox 192 8 4

StoneFlakes 70 8 3

Pima 768 8 2

Nose 358 128 5

Microarray 90 100 5

Flickr(*) 1000 87 5

Isolet(*) 1200 617 4

EEGEyeState(*)1280 14 2

UAVIntDet-1(*) 1100 54 2

UAVIntDet-2(*) 1100 54 2

UAVIntDet-3(*) 1100 54 2

UAVIntDet-4(*) 1100 18 2

Concerning RFC approaches, we considered the three different schemes
described in Section 2.1, namely RFC-Shi, RFC-Zhu, and RFC-RatioRF, evalu-
ating their extension to the constrained case. In all experiments, we used forests
with 100 trees, sampling 50% of features in each node, and building each tree
using a random 50% of the training set – for datasets of moderate size, we
followed suggestions in [6], using 128 random objects for each tree. Each tree
was built until its maximum depth; finally, for classification trees we used the
Gini Criterion. Given the distance, the final clustering is obtained with Spectral
Clustering using the Ng-Jordan-Weiss normalized version [46], and repeating the
inner k-means 20 times, as done in most of the RFC schemes [3,6,52]. The Mat-
lab code of the proposed approach is available at https://profs.scienze.univr.it/
∼bicego/code.html.

Constrained clustering experiments were performed following the classic pro-
tocol for partition level constraints [27]: for a given level of supervision p, we

https://profs.scienze.univr.it/~bicego/code.html
https://profs.scienze.univr.it/~bicego/code.html
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Fig. 2. Comparison between unconstrained and constrained strategies for different RF
Clustering schemes: first row: average over datasets of small size, second row: average
over datasets of moderate size.

randomly sampled pN objects from the dataset, considering their labels as the
constraints. We investigated different levels of p from 0.05 to 0.25, with step
0.05, and we repeated the whole pipeline 100 times. In each of the 100 runs, the
constraints set was kept fixed and used as input to all the constrained versions.
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In the following, after reporting the comparison of the constrained versions of
RFC with the corresponding unconstrained versions, we compare the proposed
schemes with some literature alternatives in terms of both the ARI index and
the Negative Effects of Constraints (NEC) ratio [12].

4.1 Comparison with the unconstrained RFC

The comparison with the unconstrained RFC is reported in Fig. 2. Due to lack
of space, we reported here only the averages over the datasets of small size
(first row) and of moderate size (second row), leaving the results dataset per
dataset to the Section C of the supplementary material. In the figure, the three
columns represent the results with the RFC-Shi, RFC-Zhu, and RFC-RatioRF,
respectively. In every plot, we report the average of the ARI criterion (the higher,
the better) over the 100 repetitions and over the group of datasets.

From the plots, it is evident that the exploitation of the constraints is, on
average, very beneficial for the RFC schemes, especially for datasets of moder-
ate size. To assess the statistical significance of the comparison reported in the
Figure, we performed a paired t-test, comparing, for each RF scheme, and each
level of constraints, all the repetitions over the different groups of datasets of
the constrained version with the corresponding unconstrained scheme. All tests
reported a statistically significant difference, according to a level of 0.05.

Fig. 3. Comparison between the proposed approach and some alternatives in terms of
ARI for different levels of constraints: a) average over small datasets, b) average over
datasets of moderate size.

4.2 Comparison with other standard constrained clustering
methods

To get an idea of the potentialities of the proposed approach, we compare our
constrained RFC schemes (RFC-Shi, RFC-Zhu, and RFC-RatioRF) with a few
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standard literature alternatives. In particular, we first considered some standard
and widely used algorithms: two versions of the COP-Kmeans algorithm, namely
COP-KM, the original extension of [48] and Adv-COP-KM, a more advanced
one proposed in [30]); another standard approach, i.e., the LCVQE method of
[32]; then we considered some more advanced and recent approaches, having some
far commonalities with our approach: i) Boost-COP-KM, a recent algorithm
based on ensemble learning (as RF), introduced in [30]; ii) WSSR+, a very
recent constrained spectral clustering algorithm, proposed in [33], which learns
a similarity measure from the constraints (as in RFC), to be clustered with
spectral clustering (which we used in our experiments). We evaluate all these
methods with the same protocol, i.e., computing the ARI values; to have a fair
comparison, in all repetitions, the starting point was the same: the dataset and
the same constraints used for our constrained RFC methods. The description
of these methods, together with the implementation details, is provided in the
Section D of the supplementary material. Comparative results are shown in
Figure 3. Also in this case we show results averaged over datasets of small (part
(a) of fig. 3) and moderate (part (b)) size, whereas the complete results, dataset
per dataset, are reported in section D of the supplementary material.

It is interesting to observe that the constrained RFC-schems, on average,
outperform alternatives, especially when working with large datasets and with
a large level of supervision. This is somehow expected since the labels of the
constraints are used to train the initial forest, which is then used to derive the
distance used for clustering: the larger this Set, the better the forest is trained.
In order to assess the statistical significance of the comparison, we employ a
Friedman test followed by a post-hoc Nemenyi test. The Friedman test repre-
sents a common non-parametric test, employed when comparing more than two
approaches [13]. The test is based on the ranking of the compared approaches,
and permits the assessment of the presence of a significant difference among
them; if the null hypothesis is rejected, a Nemenyi test is applied, assessing via a
critical value which pairs of methods are different with a statistical significance.
The critical value represents the required minimum difference between the ranks
of the approaches. The final output of the whole procedure can be represented
via a critical diagram [13], which shows the ranks (from highest to lowest): a
line connecting two or more methods indicates that there is not a statistically
significant difference between them. We applied this procedure to the compari-
son between the constrained RFC schemes and the literature alternatives, using
as significance level α = 0.05. The obtained critical diagram is shown in Fig.
4(a), from which it can be observed that the three constrained RFC schemes
outperform all the alternatives with a statistical significance.

To have a better understanding of the proposed approach, also in comparison
with literature alternatives, we provide here an analysis of the so-called negative
effects of constraints (NEC). As firstly hypothesized by [12], it may be the case
that the introduction of constraints does not lead to an improvement of the
clustering, reducing the actual accuracy of the clustering results. Following [12],
we quantified such effect by counting how many times, among the 100 repetitions,
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Fig. 4. Statistical analysis of the comparison between the proposed approach and some
alternatives: a) critical diagram for ARI, b) critical diagram for NEC.

using the constraints does not improve the clustering accuracy with respect to
not using them. This measure, which we refer to as NEC, is aimed at measuring
how effective are the different constrained clustering methods in exploiting the
constraints so that there is an increase in the clustering accuracies.

The results are shown in Figure 5, for our RFC schemes and for the literature
alternatives. Please note that the lower this measure, the better the exploitation
of the constraints. Also in this case we show results averaged over datasets of
small (part (a) of fig. 5) and moderate (part (b)) size, whereas detailed results
dataset per dataset are reported in section D of the supplementary material. Also
in this case, we can observe that the proposed approach compares reasonably
well with literature alternatives, especially for large levels of supervision and for
datasets of small size.

Also in this case we analyzed the statistical significance of the results via a
critical diagram, shown in part (b) of Fig. 4. CoRFC-Shi is better than all alter-
natives with a statistical significance, whereas CoRFC-RatioRF and CoRFC-Zhu
are equivalent to the very recent WSSR+. It is interesting to note that the best
constrained variant is obtained when using the oldest RFC scheme (with the Shi-
Breiman distance); in the unconstrained case, RatioRF and Zhu outperform Shi,
as also confirmed in other works [6,52]. Probably, when a better RF, trained by
exploiting the constraints, is provided, the simple Shi-Breiman distance with the
0/1 mechanism is very adequate, and more sophisticated strategies, like RatioRF
or Zhu, may introduce overtraining in the whole process. On the contrary, with-
out constraints, worse RFs are derived, and more clever strategies should be
used. This is confirmed by the theoretical characterization of [5], which shows
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Fig. 5. Comparison between the proposed approach and some alternatives in terms of
NEC ratio for different levels of constraints: a) average over small datasets, b) average
over datasets of moderate size.

that, when starting from Forest built with completely random trees (Extremely
Randomized Trees), the RatioRF distance has a better theoretical behaviour
(i.e., better bounds) than the Shi-Breiman distance.

5 Conclusions

In this paper, we presented a simple approach to extend RFC schemes to work
with partition-level constraints. The approach is very straightforward, simply
modifying the first (and weakest) step of the RFC scheme. Obtained results are
promising, showing that i) constraints can be easily and fruitfully integrated
into different RFC schemes and ii) the obtained constrained RFC schemes rep-
resent a valid alternative to standard as well advanced constrained clustering
approaches. Future works will include in the experimental evaluation larger real-
world datasets and applications, in order to show the practical relevance of the
proposed method.
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Abstract. Proteins are essential components of our lives. This has made
their classification a very active research field. Most research focuses on
classifying proteins based on their structure, overlooking the surface,
which is a challenging aspect of research due to its complexity. However,
by relying only on the structural aspect, relevant information will be
lost. The main objective of this paper is to propose a new machine learn-
ing method for protein classification using Graph Convolutional Neural
Networks (GCNNs) applied to 3D files. The use of GCNNs will enable
us to efficiently combine these informations with structure information
extracted from Protein Data Bank (PDB) files to improve protein rep-
resentation and enhance accuracy, and then train a classifier to orga-
nize and classify the proteins. Additionally, we devide our system into
three different modules to ensure the interpretation of the classifica-
tion results, and ensuring that it works even when one type of infor-
mation is missing. Our method achieves an average accuracy of 94% on
the SHREC19 dataset, and also demonstrates efficient execution times.
Finally, we employed a feature importance technique to highlight the
most relevant information for deeper insight.

Keywords: Protein Classification · bioinformatics · Machine
Learning · Protein Data Bank (PDB) · Graph Convolutional Neural
Networks (GCNNs)

1 Introduction

Proteins are vital components found in every aspect of life, from the simplest
to the most complex organisms. They play a key role in our health, food, and
medicine. The significance of proteins has made protein research a very active
field, enhancing our understanding and providing new solutions to simplify
our lives. Proteins are often grouped into families, each consisting of proteins
that share similar characteristics such as topology and function. In the SCOP
database [1], existing proteins are grouped into families with hierarchical levels,
facilitating analysis to produce new medicinal solutions. For example, grouping
similar viruses helps us to understand their behavior, so we can suggest drugs
for untreated viruses based on drugs used for others in the group.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15324, pp. 109–124, 2025.
https://doi.org/10.1007/978-3-031-78383-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78383-8_8&domain=pdf
http://orcid.org/0009-0008-1135-0512
http://orcid.org/0000-0002-5561-6203
https://doi.org/10.1007/978-3-031-78383-8_8


110 A. Mechache and H. Kheddouci

Proteins can be grouped using two primary methods: structural and surface-
based. Structural methods establish relationships and hierarchies among pro-
teins based on their three-dimensional structures, such as amino acid sequences,
molecular weight, and atomic coordinates, simplifying their organization. On the
other hand, surface-based methods focus on classifying proteins by their surface
characteristics. This includes analyzing the contours and chemical properties
of the surface, which play pivotal roles in molecular interactions and biologi-
cal functionality. However, Relying solely on surface or structural information
may be insufficient. Focusing only on structural similarities can miss important
differences on their surfaces that matter for how they function, potentially caus-
ing mistakes by grouping proteins that are structurally similar but functionally
different. On the other hand, grouping proteins based on surface similarity can
include proteins that appear similar externally but are functionally different. For
example, some proteins might have similar surface features but perform different
functions in the body. This could lead to errors in grouping them together. Addi-
tionally, combining both types of data is a complex task in terms of resources,
as it typically requires the use of two different architectures, one for each type
of information.

In this work, we propose a new approach that takes both structural and sur-
face information into account. We first represent the protein by its surface and
use a Graph Convolutional Neural Networks (GCNNs) to extract the information
relevant to classification. Secondly, we enrich this representation with informa-
tion from the protein’s structure and run the whole through a deep learning
classifier, thus guaranteeing the use of a more complete representation of the
protein. By using GCNNs in this way, we eliminate the need for two separate
modules (one for surface information and one for structural information), making
the process more efficient.

In the second section, we review the state-of-the-art approaches in the liter-
ature, then we present our approach in detail in Section 3. The implementation
details used to validate our approach are presented in Section 4, and the results
obtained are discussed in Section 5. We end the paper with a conclusion and
some future works.

2 Background

In the literature, grouping proteins can be divided into structure-based classifi-
cations and surface-based classifications.

In the first classification type, proteins are classified according to their struc-
tures. Generally, proteins are represented in textual files such as PDB files found
in the Protein Data Bank [2], which contain various information on the pro-
tein’s structure, such as the 3D coordinates of atoms, the types of residues, the
sequence of amino acids, secondary structure elements like alpha helices and beta
sheets, and the chemical bonds between atoms. These files are often not directly
usable by computational methods, but can be made usable through techniques
that create several types of exploitable representations, such as linear represen-
tations from which structural information (also called descriptors) is extracted
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and presented in a vector [3]. One such method is TM-Align [4], which iden-
tifies the best structural alignment between protein pairs independently from
their sequences. It generates an optimized residue-to-residue alignment based on
structural similarity to calculate the TM-score [5] to scale the structural similar-
ity. Machine learning methods are also used in structure-based classification. Like
the SVC (Support Vector Classifier), which will try to find a hyperplane that best
separates the different protein categories. Additionally, neural networks can also
be used, taking in structural information to efficiently classify proteins into their
respective categories. Another representation that is widely used in structural
classifications is the use of graphs. In general, these representations can be used
in several 3D tasks, such as classification and segmentation [6]. As for proteins,
the graph representation provides a more structured approach, offering various
modeling possibilities, such as considering each atom as a node and each chemi-
cal bond linking each two atoms as an edge, or considering amino acids as nodes
by taking just the Cα atoms (the alpha carbon atom, which is a central atom in
each amino acid and can serve as a unique identifier for amino acids in protein
structures) and add other types of edges, such as contact edges or correlation
edges [7]. The choice of models often depends on the study being carried out,
such as the analysis of protein dynamics, the identification of active zones and
folding zones [8]. These models offer deeper access by adding information (also
known as features) to each element of the graph, like chirality, degree, formal
charge, number of hydrogens, etc., for the atom, and like type, aromatic stere-
ochemistry, and conjugation for the bonds. The aim of these models is to offer
a more detailed understanding of the protein, and thus the possibility of apply-
ing graph theory to classify proteins, such as the spectral graph which seeks to
identify proteins with similar values in order to classify them in the same group,
or to apply deep learning methods such as GCNN, which consists of training a
neural network to: (i) perform graph embedding [9], i.e. transform the structural
graph to a linear representation while retaining as much information as possible,
and (ii) train a deep neural network model to classify these embeddings [10].
Graphical modeling has enjoyed enormous success in protein analysis, notably
the prediction of protein-protein interactions [11], protein-molecule interactions
in drug discovery [12], and the prediction of protein function [13].

In the second classification type, the surface of proteins is emphasized due to
its critical role in their functionality, determining how they interact with other
molecules and their environment. The surface classification involves generating
3D surfaces of proteins using methods that create the 3D surface representa-
tion. At this stage, the methods used in this type of classification aim to extract
information and features from proteins, then compare these surfaces to calcu-
late their similarity. These methods usually transform the protein surface into
a vector called 3D descriptors. Then, The similarity between two given protein
surfaces is quantified by calculating the distance between their respective descrip-
tors. In addition to these traditional methods, machine learning techniques such
as 3D-CNN (3D Convolutional Neural Networks) are also used [14]. Where the
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protein is represented in a cubic grid format, allowing the network to learn and
extract features from the 3D surface for classification.

Using classification based on either the surface or the structure alone can
already give us good results. However, focusing solely on structural information
might overlook crucial surface details that play a significant role in the protein’s
biological function. For instance, proteins with similar structural frameworks
can have different surface features depending on the species they are found in,
leading to different functions. Conversely, relying only on surface information
might miss the fundamental structural similarities that define protein families.
For example, homologous proteins can have similar surface features but differ-
ent underlying structures, which can lead to errors in classification if they are
grouped in the same class based only on surface similarity. In this work, we rep-
resent the protein surfaces with meshes and apply a Graph Convolutional Neural
Network (GCNN) to extract surface features. To avoid focusing solely on sur-
face information, we enrich these features with structural information extracted
from PDB files before running the combined data through a deep neural net-
work classifier). This approach provides a more complete representation of the
protein. We demonstrate that this architecture achieves excellent results in pro-
tein classification. To the best of our knowledge, this work represents the first
attempt to integrate 3D surface data with structural information using Graph
Convolutional Neural Networks (GCNNs) for protein classification.

3 Proposed Approach

3.1 Data Representation

As mentioned in Section 2, classification depends on the type of data used to
represent proteins. In this work, since we will be using both types of informa-
tion, we will be using two types of files. The first type are .pdb files, which are
used to store three-dimensional structural information about molecules, such as
the nature and positioning of atoms, together with other additional informa-
tion about the protein. These data are organized in lines with a specific format,
simplifying data retrieval. For example, data beginning with ATOM describes
information about the atoms in the molecule. The details of the structural infor-
mation and how it was calculated are shown in Table 1.

For surface information, there are basically two types of files: files such as
.xyz, in which the 3D object is represented as a point cloud, i.e. A list of the
coordinates of the geometric points on the protein surface. Files such as .obj and
.off, in which the 3D objects are represented with meshes (points connected to
each other), offering a better visualization of the object. In these files, we find
two lists, one like that found in .xyz files, and another list of triplets (3 points
in the first list) indicating links between these points to form triangles enabling
clearer visualization of complex objects. By decomposing these triplets into pairs
(link ABC becomes links AB, AC, and BC), we obtain an adjacency list, and
thus our graphs [15]. An example is illustrated in Figure 1.
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Table 1. Information retrieved from .pdb files used in our approach.

Information Description

Number of Atoms Total number of atoms in the structure.

Number of Residues Total number of residues in the protein.

Molecular Weight Calculated from the amino acid sequence.

Gyration Radius Measures mass distribution around the central axis.

Average B-Factor Average of B-factors for all atoms.

Amino Acid CompositionPercentage of each amino acid in the protein.

Fig. 1. Graph Construction from OFF files

Fig. 2. Structure-Surface Module (SSM) Architecture: Structural information
is generated directly from PDB files, and surface information is extracted from graphs
obtained from OFF files using GCNNs with two types of pooling. The different pieces
of information will be concatenated to train the classifier, which will output a vector
of 17 values at the protein level and 54 values at the species level, representing the
probability of belonging to each class.
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3.2 Architecture

Our system architecture is described in Figure 2, where we have presented each
step of the classification process and the three distinct modules.

The information has been extracted separately by retrieving both the .pdb
and .off files corresponding to the same protein. We go through the .pdb files
to extract the information presented in Table 1. The resulting vector therefore
represents the protein’s structural information. As for the surface, the represen-
tation will not be calculated or extracted directly like the structural information,
but will be obtained using deep learning. The .off files will be transformed into
graphs G(X,V ) where X is a matrix of size (n, 3) also called features where n
represents the number of points of each object and 3 refers to the x, y, and z
coordinates of each point. And V is a matrix of size (m, 2), also known as an
adjacency list, where m represents the number of links in the meshes (which are
obtained by decomposing triangles into edges). These graphs will be entered into
GCNNs to obtain embedding graphs by following a few steps, as shown in Figure
3: (i) each node in the graph (point) will send and receive messages, which are
the features of each point, to and from neighboring nodes (connected points), (ii)
the messages received will be aggregated by a derivable function to be used (iii)
with another derivable function to update the information of the node in ques-
tion. The role of the GCNNs is to find the right parameters for these functions
that minimize the prediction errors [12]. (i), (ii) and (iii) are grouped together
in a step called message passing, which boils down to the transformation of each
node’s information from a 3-dimensional space (x y z coordinates) to a larger
space called embedding, which aims to group together nodes with similarities in
the new dimension. After completing these steps, the information stored in each
node no longer represents the coordinates, but rather a deeper positioning of
each node relative to the graph. At the end of message passing step, each graph
X will be of size (n, e), where e is the chosen embedding size. This means that
each graph will have a different size X matrix, which will prevent the training
of the classifier. At this point, a pooling method is used, which guarantees to
transform all graphs to the same dimension while retaining as much informa-
tion as possible. Several types of pooling are possible. Once pooling has been
applied, all graphs will have the same size, and this representation will be con-
catenated with the structural representation to form the final representation of
the protein, which now enables the classifier to be applied. The classifier used
is a single-layer dense neural network. Which takes as input the information of
protein and gives as the probabilities of belonging to each class. The advantage
of using neural networks is their ability to learn patterns and features at dif-
ferent levels of abstraction. This enables them to capture complex, non-linear
relationships in the data, which is often the case with protein structures. And
also to adapt to a wide variety of classification problems.

Regarding the pooling in our architecture, We have employed a combined
strategy that utilizes both Global Average Pooling (GAP), which averages the
features across all nodes, and Global Max Pooling (GMP), which selects the
maximum value among the node features. The advantage of using these two
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types of pooling together lies in their ability to capture different facets of protein
graphs. By integrating these two pooling strategies, our aim is to achieve a
richer embedding graphs. Although the transformation of the matrix into a linear
representation may cost us some data, the use of a classifier in the sequel allows
us to avoid a large loss. Indeed, if the classifier fails to make good predictions
on the vectors resulting from pooling, the GCNN parameters will be adjusted
and updated to improve performance. This capacity for self-improvement is one
of the major advantages of using GCNNs in combination with pooling.

Fig. 3. Graph Convolutional Neural Network (GCNN) Message Passing and
Pooling Operations.

In our approach, we did not just want to propose an approach that integrates
structural and surface data, but also to determine the importance of each type
of data in proteins classification. To do this, we also tested each type of data
separately. As illustrated in Figure 2, we therefore call SFM (SurFace M odule)
the model associated with surface information, and STM (ST ructure M odule)
the model applied to structural information, and finally SSM (Structure and
Surface M odule) in which both types of information are taken. For each mod-
ule, we will apply the same classifier with the same parameters to guarantee
a reliable comparison. In STM, the classifier takes as input a 25-dimensional
vector, representing the structural information used. For the SFM approach,
we apply four message-passing steps corresponding to four GCN layers, each
with an embedding size of 64. After applying double pooling, we obtain a 128-
dimensional vector, which serves as the classifier’s input. In the SSM case, both
vectors are combined, resulting in a 156-dimensional vector (128 + 28). The
model uses the tanh activation function, CrossEntropy as the loss function, and
is trained over 100 epochs with a learning rate of 0.007.

4 Implementation Details

4.1 Dataset

To evaluate our model, we will use the SHREC19 Protein Shape Retrieval Con-
test Dataset [16], which contains 5,298 proteins, each represented by its solvent-
excluded molecular surface. The authors used EDTSurf to generate these sur-
faces, with EDTSurf leveraging the Euclidean Distance Transform - EDT [17]
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to create the triangular mesh surfaces. SHREC19 is a track where they used the
Structural Classification of Proteins extended (SCOPe) database [1],[18] and
[19]. Which are classified at 2 levels, (1) at the protein level with 17 classes (the
ability to retrieve conformations from orthologous proteins, i.e. independently of
the species), and (2) at the species level with 54 classes (the ability to retrieve
conformations from the protein of a given species) [16]. thus offering two versions
of datasets to validate our approach.

4.2 Method Evaluation

In our study, we adopted a mesh simplification strategy similar to the one used
in the SHREC19 track [20], reducing the size of the meshes (from .off files) by
80%, leaving us with 20% of the original data. This reduction process is designed
to decrease the number of points in a way that preserves the overall structure of
the protein. This approach significantly cuts down on execution time, allowing
us to compare our methods with others efficiently and fairly.

In our implementation, we have divided the dataset into 3 parts: the first,
representing 60%, will be used for training, the second, representing 20%, will
be used for validation, and the last remaining part will be used for testing,
ensuring each set maintains the same class distribution for consistency. To enable
comparison with other approaches applied on the two SHREC19 datasets [16],
the test set will not be used in training to avoid our models having already seen
the data. On the other hand, we have decided to apply the same classifier in all
three proposed modules of our approach (STM, SFM, and SSM) to ensure a fair
comparison and better interpret the importance of each type of information.

We compare our method to those presented in the SHREC19 Protein Shape
Retrieval Contest [16]. The ConvLDSNet approach employs a 3D neural net-
work trained on protein surface meshes [21], the 3D Zernike Moments (3DZM)
and 3D Zernike Descriptors (3DZD) methods capture global surface character-
istics of proteins using Zernike polynomials [22] [23], the Histogram of Area
Projection Transform (HAPT) technique differentiates itself by generating his-
tograms that reflect spherical symmetries within protein structures [24], aiming
to identify unique shape features, the Framework towards Protein Shape Sin-
gularity Characterization (Ft-PSSC) investigates a blend of feature extraction
techniques [25][26], the TM-Align method [4] which identifies the best struc-
tural alignment between proteins. And we also compared our approach with two
methods presented in [27], namely AE, which utilizes an autoencoder for feature
dimensionality reduction, and FS, which employs feature selection techniques
to enhance classification performance. These last two methods have just been
tested on protein levels.

We have chosen the F1 score and the mean average precision (MAP) as
metrics for evaluating model performance. The F1 score is a harmonic mean of
precision and recall, offering a balance between the model’s ability to correctly
label true positives while penalizing false positives and false negatives. It is
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calculated using the equation:

F1 = 2 × precision × recall
precision + recall

(1)

where precision is the ratio of true positive predictions to the total number of
positive predictions (true positives plus false positives), and recall is the ratio of
true positive predictions to the actual number of positive cases (true positives
plus false negatives). This metric is particularly useful in our context because
it provides a more accurate measure of performance across classes that do not
have an equal number of proteins (at proteins level, Class 1 has the highest
data count (1160) and Class 13 the lowest (25). At species level, Class 1 has
the highest data count (1049), while Class 53 has the fewest data points (3)).
the MAP is a measure that evaluates how accurately a system ranks relevant
items in its output (Table 2 & Table 3). At species levels only the MAP metric
is available, which is why we just compare this metric.

5 Results and Discussion

In this section, we will present and discuss the results our modules achieved
during training and on the test set, and compare them with other methods.
We start by presenting the metrics at both protein and species levels. Then, for
a better understanding, we apply the feature importance technique to interpret
stucture module STM module behavior. Finally, we compare the execution times
of each method.

5.1 Proteins Level

In Figure 4a and 4b, we present the F1 score and loss evaluation of each model
at the protein level. These figures help us understand the learning process of
each module, demonstrating how effectively they are improving over time. SFM
and SSM showed more relevant progressions (with a small superiority of SSM)
compared to STM. We can see that the F1 score tends towards 1 and the loss
tends towards 0 for both models, while for STM which also gave good results.
This shows that at this level of classification, by enriching surface informations
with structural informations we achieve the fastest learning, thus confirming our
initial hypothesis that integrating both types of information makes the system
more effective.

Table 2 shows the results obtained on the test set at the protein level. The
surface-structure module SSM gives the best results with an F1 score of 0.94
compared to the other modules. This means that integrating both types of infor-
mation provides the module with a more complete representation of the proteins.
As for the surface module SFM, it achieved the highest MAP score of 0.918,
slightly higher than the MAP obtained by the SSM module at 0.909. This
indicates that the SFM module is capable of accurately ranking the relevant
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Fig. 4. Loss and F1 score progression for each Module at proteins level.

Table 2. F1 score and MAP scores at protein level.

Methods MAPF1

FS [27] 0.880 0.830

AE [27] 0.857 0.800

3DZD [22] 0.720 0.490

3DZDM [23] 0.649 0.350

ConvLDSNet [21] 0.329 0.270

Ft-PSSC [25] 0.417 0.280

HAPT [24] 0.666 0.470

TM-Align [4] 0.79 -

Our Module STM0.88 0.68

Our Module SFM 0.918 0.864

Our Module SSM 0.909 0.94

instances (demonstrating its effectiveness in precise ranking), but it did not sur-
pass the SSM in F1 score. While the SFM excels at ranking predictions perfectly,
it is the SSM module that makes more accurate final predictions overall. In our
case, the final predictions, as reflected by the F1 score, are more critical, which
is why the SSM module is ultimately more valuable for our task. And this means
that using only surface information does not achieve as good predictions as when
both types of information are used. The STM module achieved a MAP of 0.88
and an F1 score of 0.68, indicating that while it performs well in ranking rele-
vant instances, it falls short in achieving high prediction accuracy. The compared
methods utilize either structural information or surface information. When com-
paring our surface module to surface-based methods, it surpasses the best one,
Auto Encoder with Feature Selection [27], with an F1 score of 0.864 compared
to 0.83. In comparison with the structure-based method TM-Align, although the
F1 score is not provided, our STM module excels in MAP with a score of 0.88.
Finally, our SSM module outperforms all these methods in prediction accuracy.
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5.2 Species Level

Like in the first level, the modules showed good progress, but this time there
was a remarkable difference between the SFM and SSM modules compared to
the STM module (Figures 5a & 5b). This can be explained by the fact that in
this level of classification structural information is of less importance.

Fig. 5. Loss and F1 score progression for each Module at species level.

Table 3. F1 score and MAP scores at Species level.

Methods MAP F1

3DZD 3 [22] 0.610 -

3DZDM [23] 0.604 -

ConvLDSNet [21] 0.355 -

Ft-PSSC [26] 0.405 -

HAPT [24] 0.578 -

TM-Align [24] 0.685 -

Our Module STM0.672 0.395

Our Module SFM 0.867 0.632

Our Module SSM 0.746 0.928

The results presented in Table 3 clearly highlight the superior performance
of our proposed architecture at the species level. However, it was the SFM and
SSM modules that performed particularly well. Similar to the first level, the
SFM module outperformed the SSM module in terms of MAP, with a more
pronounced difference at this level (+0.121). This can be attributed to the
increased number of imbalanced classes at the species level (54 classes compared
to 17 at the protein level). But the F1 score was not as high compared to the
SSM module, which achieved an F1 score of 0.928. These results exceed the
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highest scores achieved by other methods (MAP = 0.685 by Tm-Align [4]), in
contrast to the STM module where the MAP score was 0.672 with an F1 score
of 0.395.

These results can be attributed to the fact that in the hierarchical SCOPe
classification, proteins within the same class at the protein level share similar
structures and surfaces. At the species level, these similarities are even stronger,
meaning that even proteins in different classes can have similar structures and
surfaces but are classified differently. Our structure module results suggest that
at the species level, a more powerful classifier is needed to differentiate between
classes. For the surface classification, using GCNNs in our module effectively
identifies differences between classes, even when it’s hard to classify proteins
because they have similar surface features, highlighting their ability to capture
subtle variations in protein surfaces.

5.3 Exploring Feature Importance

Fig. 6. Feature Importance using feature permutation in knn algorithm.

To better understand why the structure module STM performed differently
across the two versions of the dataset, we decided to use the K-nigherst neighbor
algorithm, The k-Nearest Neighbors (KNN) is a simple classification algorithm
that relies on the principle of proximity to predict. The algorithm identifies the
closest proteins in the training data and assigns that protein the most frequent
Class among its neighbors. In an iterative process, we randomly shuffle the val-
ues of a feature across the test set and measure the effect of this permutation on
model performance. If the permutation of a feature results in a significant drop
in performance, this indicates that the feature is important for the model. We
look at Figure 6, where the importance of each variable is shown.

At the protein level, the variables H and W, where H represents the percent-
age of the amino acid Histidine and W represents the percentage of the amino
acid Tyrosine in the protein sequence, turned out to be the most significant ones
by a large margin compared to the others. This means they play a crucial role
in helping the model. Proteins in the same class usually have similar values for
H and W, which is why the model performs so well in this case.
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However, At species level, the variable N (Asparagine) has the most impor-
tant variable and the difference between it and the other variables is much
smaller. This indicates that even though N is significant, the model has to rely
more on other variables as well, which explains why the structure module didn’t
perform as well in this version.

5.4 Run Time

Execution time plays an important role in protein classification tasks. The other
methods calculate descriptors (linear vectors) for each protein and then deter-
mine similarity by computing distances between these descriptors. To provide
a fair comparison, we present the time it takes for our modules to compute
the probabilities of each protein belonging to different classes (Figure 2), rather
than just predicting the final class. ConvLDSNet displaying the best runtime,
followed by our three modules STM, SFM and SSM, respectively. The ConvLD-
SNet method holds the 1st position with the best runtime; however, it produces
insufficient results in terms of accuracy (Table 2 & Table 3).

While ConvLDSNet is the fastest, our modules offer a better balance of speed
and predictive performance, providing more accurate and reliable classifications.
Although our architecture may seem more complex due to the use of both types
of information, the utilization of GCNNs allows us to achieve these results in a
relatively short amount of time (Table 4).

Table 4. Comparison of different methods based on SES and Distance metrics.

Methods Descriptors calculation Distance Calculation

Our Module STM0.58 s (CPU) 0.01 s (i3-1115G4)

Our Module SFM 0.66 s (CPU) 0.01 s (i3-1115G4)

Our Module SSM 0.69 s (CPU) 0.01 s (i3-1115G4)

3DZM 2.95 s (CPU) 0.5 s (CPU)

ConvLDSNet 2.5 ms (GTX1070) 0.002 ms (i7-6700K)

3DZD 3.48 s (NP) 0.1774 s (Titan X)

HAPT 4.98 s / 11.1s / 13.02s (i7-4720HQ)NP

6 Conclusion

In this research, we propose a new approach based on Graph Convolutional
Neural Networks, utilizing both surface and structural information for protein
classification. Our method efficiently extracts information from 3D represen-
tations of the protein surface, and enriches them with structural information
extracted from PDB files to improve the efficiency of protein classficiations. The
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results demonstrate that integrating these two types of information significantly
enhances classification performance, achieving an average accuracy of 94% on
the SHREC19 dataset.

The use of three distinct modules (structure module STM, surface module
SFM and structure-surface module SSM) has enabled us to interpret the results
and to know which type of data is relevant for each level. In fact, our experiments
shows that although each type of information is useful at a specific level, the
combination of structural and surface information gives the best results overall.
The SSM module, in particular, outperformed the other methods, confirming the
effectiveness of our integrated approach. Additionally, our modules are not only
accurate but also fast, striking a good balance between speed and performance.
This balance is essential for real-world applications in bioinformatics, where both
accuracy and efficiency are very important.

For further work, we plan to integrate other types of information, such as
protein dynamics and functional properties, which will enable us to adapt our
system to perform other bioinformatics tasks, such as predicting protein inter-
actions and identifying active sites.
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Abstract. Density Peak Clustering (DPC) has attracted widespread
attention in the recent decade. However, traditional DPC algorithms
still have shortcomings such as difficulty in describing data distribution
and sensitivity to parameters and allocation strategies. To address these
shortcomings, this paper introduces an adaptive shared nearest neighbor
density peak clustering algorithm based on fuzzy logic. Our algorithm
makes use of the concepts of natural nearest neighbor and shared nearest
neighbor, and provides an effective method for estimating neighbor dis-
tance and local density. The number K of nearest neighbors is selected
adaptively based on the dataset itself. Instead of manually selecting clus-
ter centers from a decision graph, our algorithm automatically deter-
mines them. In addition, based on the idea of fuzzy logic, non-central
data points are divided into different types and assigned using differ-
ent methods, which improves the robustness and accuracy of assigning
non-cluster central data points. With both synthetic and real datasets in
experiments, our algorithm is shown to be effectiveness when compared
with recent DPC-based algorithms.

Keywords: natural nearest neighbors · density peak · shared nearest
neighbors

1 Introduction

Data clustering divides the samples of the dataset into different clusters, and is
used frequently in the fields including social networks [21], pattern recognition
[12], and image segmentation [3]. Numerous clustering methods have been pre-
sented, including several classic ones like K-means [20], GMM [4], and DBSCAN
[7]. Traditional algorithms include density-based [1], partition-based [22], hierar-
chical clustering [34] and distribution-based [37]. Algorithms published in recent
years, such as spectral clustering [25], affinity propagation [28], ensemble cluster-
ing [31], multi-view clustering [8] and subspace clustering [5], have also received
much attention.

The density Peak Clustering (DPC) algorithm [23] estimates local density ρ
in the first step, then finds the distance δ to the nearest neighbor with higher
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15324, pp. 125–139, 2025.
https://doi.org/10.1007/978-3-031-78383-8_9
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density, and constructs a decision graph based on the product of the first two to
select cluster centers. After completing the above steps, each non-central data
point is allocated to the cluster of its nearest neighbor of larger density, thereby
distinguishing different clusters. This algorithm is efficient, does not involve iter-
ation, and is also applicable to complex, non-convex datasets. Therefore, DPC
has received widespread attention since its publication.

The DPC algorithm inevitably has some problems that need to be improved
[27]. First, the local density ρ and the neighbor distance δ are easily contami-
nated by noise when facing data sets with complex data distribution. Second, the
algorithm is sensitive to parameters, and prior knowledge is required to deter-
mine the specific value. In addition, the cluster center is affected by the local
density ρ and the neighbor distance δ, which requires additional manual selec-
tion and is full of uncertainty. Finally, the allocation strategy may produce a
”domino effect”, that is, if a single data point is allocated incorrectly, other data
points may also be forced to be allocated incorrectly.

In view of the above limitations of DPC, we present an adaptive shared near-
est neighbor DPC algorithm based on fuzzy logic. By introducing the concept
of shared nearest neighbor, the algorithm redesigns ρ and δ and proposes a new
calculation formula. However, the number k of the shared nearest neighbor often
requires prior knowledge to determine. Combined with the natural nearest neigh-
bor [38], the number k of nearest neighbors is selected appropriately for a given
dataset. Based on the superiority of the design of ρ and δ, the product operation
results of the local density and the neighbor distance are sorted in descending
order, and then the cluster centers are selected in turn. In data sets with over-
lapping or unclear cluster boundaries, such as cross-stacked and variable density
data sets, the original allocation strategy may be difficult to accurately allocate
data points to a unique cluster. Combined with fuzzy logic, we introduce the con-
cept of membership. That is, the probability that non-cluster center data points
belong to different clusters. We use it to determine the final allocation of data
points, which can effectively reduce the error allocation rate compared with the
original allocation strategy. Therefore, we divide the non-clustering centers into
three categories of density data points and design a fuzzy logic-based allocation
strategy for each category of data points. The above steps not only overcome the
problem of no manual intervention and parameter adjustment, but also improve
the clustering accuracy.

This paper has the following contributions.
(1) We introduce shared nearest neighbor and natural nearest neighbor into

DPC and present a method to calculate ρ and δ so as to more easily identify
cluster centers. In addition, the parameters can be determined according to the
situation of the dataset itself, thus avoiding the influence of human selection
errors.

(2) Inspired by fuzzy logic, based on the original DPC algorithm allocation
strategy, we design appropriate allocation strategies according to data points of
different density types to ensure the robustness of the allocation process of data
points of different density types.
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Section 2 reviews the DPC algorithm and introduces recent works related to
the DPC algorithm. Our algorithm is presented in details in Section 3. In section
4, we verify the proposed algorithm through experiments, and in section 5, we
summarize.

2 Related Work

Here we present the implementation idea of DPC and introduce the latest works
based on this algorithm.

2.1 Density Peak Clustering

The key of DPC lies in two assumptions. First, cluster centers should have larger
local density than neighboring points. Second, cluster centers are relatively dis-
tant from each other.

The original DPC algorithm calculates local density based on the cutoff and
Gaussian kernels. Both density kernels are very sensitive to the parameter dc.
[23] suggests that dc should be determined with 1% to 2% of all data points.

The parameter δ refers to the distance between a point xi and its nearest
neighbor of larger density. On one hand, if the data point is not the point with the
highest local density among its neighboring data points, the δ value of the current
data point should be the distance between its nearest high-density neighbor. On
the other hand, if the data point is the point with the highest local density
compared to its neighboring data points, the value of δ should be the maximum
of all δ’s among all points.

Data points that satisfy the requirement that both local density ρ and relative
distance δ should be as large as possible are called cluster centers. In addition,
we need to draw a decision graph based on local density and relative distance
to help identify which data points are cluster centers. Finally, based on the
assumption that a data point and its nearest high-density neighbor should be
in the same cluster. We assign the unassigned points to the same cluster as its
nearest neighbor of larger density.

2.2 Recent Works on DPC

The DPC algorithm also faces some difficulties, especially when dealing with real
datasets. Therefore many improved algorithms have been proposed in recent
years, namely, new density kernels, new cluster center identification methods,
and new non-cluster center data allocation methods.

The DPC-KNN [6] algorithm is based on KNN and designs a new density
kernel to better describe the local structure of the datasets. This idea is also
applied to the DPC-DLP [24] algorithm. The FKNN-DPC [30] algorithm is also
based on KNN and designs a density kernel calculation method that combines
the local density of data points with the information of their neighbors. The
MDPC+ cite GuanJY23 algorithm adopts a similar approach to FKNN-DPC
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in the local density calculation part. The DPC-DBFN cite LotfiA20 algorithm
selects fuzzy kernels to calculate local density, thereby improving the accuracy
of clustering algorithms and reducing the influence of individual noise points. In
addition, the DPC-FSC [16] algorithm also redesigns the density kernel based on
the introduction of fuzzy ideas. The RDO-DPC [15] algorithm uses the neighbor-
hood information of sample points to define the relative density of sample data,
and finds and identifies the density peaks of non-uniform distribution as clus-
ter centers. The adaptive local density formula proposed by the ERK-DPC [29]
algorithm requires the use of the similarity between data points in the dataset to
measure the local density of each point to improve clustering density, where the
similarity is calculated using the Euler cosine distance. BC-DPC [36] is based on
balancing density and connectivity to eliminate the density differences between
different clusters to accurately identify the cluster center.

Secondly, complex distributed datasets may have multiple density peaks or
one cluster center is not far from the non-center data in the decision graph, mak-
ing it difficult to determine the correct cluster center. The MDPC+ [9] algorithm
constructs a decision graph by constructing an adjacent density peak graph and
selects data points with main peak features as cluster centers. The DPC-FSC
[16] algorithm redesigns the neighbor semantic distance to replace the neigh-
bor distance, thereby constructing a clearer decision graph to select the correct
cluster center. The PFD-DPC [39] algorithm introduces the concept of potential
field and proposes a density measure based on potential field diffusion, which
can accurately select cluster centers. The G-KNN-DPC [13] algorithm first finds
the optimal value of parameter dcbased on the Gini coefficient, and then uses
the k-nearest neighbor idea to identify more accurate clustering centers, avoiding
the occurrence of incorrect selection of clustering centers. The RDPC-DSS [32]
algorithm proposes a density clustering index (DCI) method instead of drawing
decision maps to automatically monitor the number of cluster centers. In addi-
tion, density sensitive similarity is proposed to avoid the problem of algorithm
parameter sensitivity. The DADC [2] algorithm proposes clustering and frag-
menting the dataset. Then, density peaks with similar values are identified, and
finally the initial cluster centers are automatically extracted and the fragmented
clusters are merged to complete the clustering.

The DPC-DLP [24] algorithm assigns labels to data points based on graph
label propagation, which can effectively assign true labels to data points located
in the boundary and overlapping areas. The DPC-DBFN [18] algorithm uses a
density-based kNN graph to propagate the label of each dense point to its dense
neighbors, and finally assigns each boundary point to the cluster to which the
nearest backbone point belongs. The FKNN-DPC [30] algorithm adopts a two-
step allocation strategy, which assigns labels to most data points by breadth
first searching for the nearest neighbors of the cluster center, and then assigns
labels to the remaining data points based on fuzzy weighted nearest neighbors.
In DPCSA [35], we first assign points that meet the boundary conditions, and
the remaining data points are assigned based on the nearest neighbor assignment
strategy that destroys the local density decreasing assignment order. The KS-
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FDPC [14] algorithm adopts a partition merging strategy to reduce the impact
of high-density points on subsequent assigned points by dividing the data into
multiple subclusters. The FDPC [33] algorithm uses support vectors to perform
clustering based on density peak clustering, and then recursively merges clusters
according to the feedback value between each two clusters to obtain accurate
clustering results. The DPC-LMST algorithm [26] is based on the idea of local
minimum spanning tree, which considers each identified potential cluster center
as an initial cluster. Before completing the final clustering result, a sub cluster
merging factor needs to be introduced to aggregate similar sub clusters.

The algorithm proposed in this article is different from the related work on
DPC in recent years. Unlike distance based density kernel calculations or KNN
based approaches, we have improved the DPC algorithm based on the idea of
sharing nearest neighbors. By considering the distribution of shared neighbors
among data points to measure their similarity, it can more accurately reflect
the density distribution of data points in their local neighbors. Regarding the
value of the neighbor parameter k, unlike the practice of giving a priori default
values or traversing parameters, our algorithm combines the natural nearest
neighbor and can dynamically and adaptively determine the optimal value of
the neighbor parameter k according to the local characteristics of the data.
Similar to the DPC-FSC algorithm, we use the compensation distance method
to improve the effectiveness of the neighbor distance. However, we no longer
manually determine cluster centers through decision graphs, but instead achieve
automatic identification of cluster centers in the dataset. Different from the fuzzy
weighting strategy adopted by the FKNN-DPC algorithm for boundary points,
we divide the non-cluster center into three categories of density data points, and
design a fuzzy logic-based allocation strategy for each category of density data
points, which is more targeted.

3 Our Algorithm

We present an adaptive shared nearest neighbor density peak clustering algo-
rithm based on fuzzy logic to solve some problems of DPC. Firstly, we use the
ideas of natural nearest neighbors and shared nearest neighbors to redesign the
density kernel and relative distance, overcoming the problem of parameter sensi-
tivity. In addition, we divide the non-cluster center data points into data points
of different density types, and design allocation strategies based on fuzzy logic
for allocation. The details are presented in the following.

3.1 Density-Distance Estimation

Before calculating the local density ρ and neighbor distance δ, we need to ini-
tialize the dataset, such as normalization or t-sne [19] dimensionality reduction.
This can handle complex nonlinear relationships and enhance clustering effects.
Next, we introduce the SNN idea to redesign the density kernel calculation for-
mula.The basic idea of sharing nearest neighbors is that the more similar two
points are, the greater the probability that they come from the same cluster.
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The similarity of data points lies in the degree to which they share the same
nearest neighbor. When this value is large, it means that the measured data
points may be located in a highly dense common neighborhood, thereby avoiding
the possibility of noise points affecting the local density ρ and neighbor distance
δ results of high-density data points. In addition, the SNN process does not rely
on a key, globally fixed distance threshold parameter, but is controlled by the
neighbor parameter k to control the shared neighborhood range.

Before calculating the shared nearest neighbors of all data points, we first
use the Euclidean distance metric to list the k nearest neighbors corresponding
to each point in the dataset, where d is the distance between data points. For
example, for data points xi and xj in dataset X, their respective k nearest
neighbor sets are KNN(xi)) and KNN(xj)). The shared neighbor set of data
points xi and xj is their common neighbor set, that is, SNN(i, j) = KNN(xi) ∩
KNN(xj).

Inspired by [17], we use the same method to calculate SNN similarity. When
data points xi and xj cannot be found in each other’s k-neighborhood set, it can
be said that the similarity between them is 0. When the above conditions are
not met, the specific formula is as follows:

Sim(i, j) =
|SNN(i, j)|2

∑
p∈SNN(i,j)(dip + dpj)

(1)

The above SNN similarity can better reflect the distribution of various types
of data to a certain extent by checking shared neighbors, so we use this similarity
to calculate the local density of data points. Then we can assume that the data
point xi is a point in the data set X, and we find the k data points with the highest
similarity to this point, provided that these data points are also in the data set
X. We organize all eligible data points into the set L(i) = {x1, x2, · · · , xk}, and
then define the density of one point xi as the sum of the similarities with the k
points with the highest similarity. The specific local density calculation formula
is as follows:

ρi =
∑

j∈L(i)

Sim(i, j) (2)

The advantage of the new local density kernel is that it can better highlight
the data distribution of the current data set. For example, if the distance between
xi and xj to each other’s shared neighbors is smaller, it means that the density
of point xi is greater. In addition, if the number of shared neighbors between xi

and xj is large, it means that the data point xi is more likely to belong to the
same cluster as most of the points around it, which also proves that the density
of data point xi should be larger. All of these can prove the superiority of local
density calculation itself.

However, to overcome the problem of selecting the key neighbor parameter
values in the SNN idea, we optimize the algorithm based on the natural nearest
neighbor idea. The natural nearest neighbor is an adaptive nearest neighbor
method. The key idea is that points located in sparse areas should have fewer
neighbors, while points located in dense areas should have a large number of
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neighbors. In the implementation of the natural nearest neighbor method, no
additional input parameters are required. The most important thing is that the
optimal number of neighbors is determined adaptively for each dataset.

The implementation premise of the NNN algorithm is the k-nearest neigh-
bor and reverse k-nearest neighbor ideas, which continuously expand the scope
of neighborhood search. Each search calculates the number of reverse nearest
neighbors of each data point until the number of data points without reverse
neighbors no longer changes. That is, if (∀xi)(∃xj)(r ∈ N) ∧ (xi = xj) → (xi ∈
KNNr(xj)) ∧ (xj ∈ KNNr(xi)) is satisfied, the algorithm is considered to have
reached the natural searching state and the searching is terminated. The exper-
iments in [38] show that the natural nearest neighbor eigenvalue λ obtained in
the experiment is the optimal K value for the current experimental datasets, so
we choose this value as the parameter value in the density kernel.

Next, we adopt a compensation mechanism based on neighborhood distance
and redesign the neighborhood distance δ to highlight the difference between
cluster centers and non-cluster centers and enhance the fairness of the δ value.
First, we assume that a data point in the datasets X is xi and a data point
xj whose local density is greater than xi. Then calculate the distance between
the two data points and multiply it by the distances of the two data points to
their respective nearest neighbors. Finally, the minimum value of the product
operation is the δ value of the data point xi. When the local density of a data
point is the highest, the delta value of the data point is the largest delta value
among other points. The specific calculation formula for δ is:

δi = min
j:ρj>ρi

{dij ∗ (
∑

p∈KNN(i)

dip +
∑

q∈KNN(j)

djq)} (3)

Due to the superiority of our newly proposed local density kernel and relative
distance calculation, we no longer draw decision diagrams to manually determine
the cluster center, but select the cluster center in descending order according to
the γ of the data point. We calculate γ as

γ = ρ ∗ δ. (4)

3.2 Fuzzy Allocation Strategy

After obtaining nc cluster centers, we initialize a one-to-one corresponding clus-
ter set {Cj}, which also means that the data in the dataset will be divided into
nc clusters. Among them, j = 1, . . . , nc represents the jth cluster in {Cj}. To
overcome the disadvantage of error propagation of DPC, we propose to divide
the non-cluster centers into high-density, medium-density and low-density data
points, and design appropriate allocation strategies based on fuzzy logic respec-
tively.

First, we assign the high-density data points in the dataset. We can make a
judgment when the following two conditions are met, that is, when the data point
xi is assigned and the data point xo is not assigned. If and only if |SNN(i, o)| ≥
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k/2 is satisfied, we believe that the two data points are highly similar, and the
probability that xo and xi should be assigned to the same cluster is very high.
In other words, if at least half of the nearest neighbors of two data points are
shared with each other, then they should belong to the same cluster.

Next, we initialize a queue of length nc and store the cluster centers in the
queue in order. We find the head data point xi in the current queue and find its
shared neighbor set. According to the above assumptions, point xi is selected as
the cluster center and has been assigned to a cluster. When the data point xj

in the shared neighbor set has not been assigned and meets the conditions, we
assign xj to the same cluster {Cj} as xi.

After the current allocation operation is completed, we choose to store xj

at the end of the queue. In addition, after traversing the shared neighbor set of
data point xi, we take out the data point xi from the queue and regard it as
completing the iteration of data point xi. When the elements in the queue are
empty, we end the iteration and the allocation of the current type of data points
is completed.

Then we proceed to the second step of allocation. We first operate on the
similarity matrix A ∈ Rm∗nc , set all its values to empty, and modify the values in
the similarity matrix A through continuous iteration. Here Alj in the matrix rep-
resents the similarity relationship of an unassigned data point xl being assigned
to the j-th cluster {Cj}. The greater the similarity between the data point xl

and the cluster Cj , the greater the probability that xl belongs to the cluster Cj .
We believe that the similarity of Alj depends on the similarity between it

and its assigned data neighbor points. In the nearest neighbors of xi, we find
the neighbor point xl that is eligible to be assigned to cluster Cj , that is, xl ∈
Nk

xi
∩Cj . Of course, when calculating the similarity, we will consider the following

aspects.
First, we believe that the larger the distance dli between xl and xi, the smaller

the probability that xl belongs to Cj . Second, a larger ρi means that cluster Cj

will be more attractive to data point xl. This is consistent with the assumption
that a data belongs to the same cluster as its nearest higher density neighbor.
Finally, the allocation strategy for medium similarity data points roughly allo-
cates data points in descending order of local density, which means that local
density ρl plays a positive role. According to the above description, our specific
calculation formula is as follows:

Alj =
∑

xl∈Nk
xi

∩Cj

ρl ∗ ρi

dli
(5)

Next, we believe that the largest value in the similarity matrix Ai∗j∗ often
means that the data point xi∗ is most likely to be assigned to the cluster Cj∗ .
After we have assigned xi∗ , to distinguish the assigned data points from the
unassigned points, let the value of the i∗th row of the membership matrix be 0,
indicating that the current data point xi∗ has been assigned. There is a situation
where the k nearest neighbor data points xi∗ of the unassigned data point xm,
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Algorithm 1 The proposed algorithm.
Input: X = {1, . . . , n} , number of clusters nc

Output: data labels Y = {Y1, . . . , Yn}
1: Initializes the dataset X and calculates the distance matrix of the dataset.
2: Implement the natural nearest neighbor algorithm to obtain the natural neighbor

eigenvalue λ of the data set itself.
3: Calculate the local density ρi using Eq.(2).
4: Calculate the neighbor distance δi using Eq.(3).
5: Calculate the γ using Eq.(4) to select cluster centers.
6: Initialize queue Q1 to store cluster centers.
7: while Q1 is not empty do
8: Find the data points that meet the conditions in the header point’s neighbor

set and assign them to the corresponding clusters.
9: Push up the allocated data points to the end of the queue.

10: Pop up the header point.
11: end while
12: Calculate the similarity matrix A using Eq.(5).
13: Initialize queue Q2 to store unallocated points.
14: while Q2 is not empty do
15: Find the point with the highest similarity degree and assign it to the corre-

sponding cluster.
16: Update A with Eq. (6).
17: end while
18: Find the k nearest data points in different clusters for each unassigned data point

and calculate ζ.
19: Assign points to the cluster Cj∗ with the smallest ζ value.
20: Return Y .

and xi∗ ∈ Nk
xm

, then the value of this data point in the membership matrix is
affected and needs to be reset. The specific operations are as follows.

Amj = Amj +
ρm ∗ ρi∗

dmi∗
(6)

When all elements in the matrix are zero, the iteration ends and the
assignment of medium-similarity data points is completed. The remaining low-
similarity data points are usually outliers far away from most data. Such data
points are difficult to assign through the relationship between data points in the
region. Therefore, we designed a simple method to assign.

Specifically, for each unassigned data point xi, we find its k nearest neighbors
in the cluster, ζij represents the average distance between xi and the nearest
neighbor in the jth cluster. Finally, the point xi will be allocated to the cluster
Cj∗ with the minimum ζ value, that is, j∗ = argminj∈{1,...,nc}ζij .

The implementation details of our algorithm are shown in Algorithm 1.
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4 Experiments Result

In the comparative experiments, we use datasets with different sizes, dimensions
and manifold structures, as shown in Table 1. We use accuracy (ACC), normal-
ized mutual information (NMI) and adjusted Rand index (ARI) to evaluate the
clustering results.

Table 1. Datasets information used in the experiment

Datasets Instances Attributes Clusters Datasets Instances Attributes Clusters

Compound 399 2 6 DryBean 13611 16 7

D31 3100 2 31 Dutchnumeral 2000 649 10

Pathbased 300 2 3 Libras 360 90 15

Spread-2-10 1000 2 10 Olivertti 400 28 40

Spread-10-20 2000 10 20 Seeds 210 7 3

Spread-20-35 3500 20 35 Segment 2310 19 7

Spread-50-50 5000 50 50 Waveform(noise) 5000 40 3

Unbalance 6500 2 8 Wine 178 13 3

4.1 Baselines and parameter settings

To show the performance of our algorithm, we make a comparison with 9 recent
representative DPC-based clustering optimization algorithms, including DPCSA
[35], DPC-DBFN [18], FHC-LDP [10], DPC-FSC [16], MDPC+ [9], and ICDKP
[11]. The parameter descriptions of these methods are shown in Table2. When it
comes to the experimental parameters, all algorithms have the number of nearest
neighbors as a parameter, which is set as the ground truth. Unlike the original
paper of the DPCSA algorithm, which has given the values of all parameters,
our algorithm has no other parameter values that need to be set. Finally, the
parameter values that need to be set for the other comparison algorithms are
shown in Table 2.

Table 2. Algorithm parameter values in the experiment

Method Paramerters

DPC-DBFN k in kNN, k ∈ (2 : 1 : 50)

DPC-FSC α ∈ (0.1 : 0.1 : 0.9)

FHC-LDP k in kNN, k ∈ (2 : 1 : 50)

MDPC+ the attenuation-coefficient λ ∈ (1 : 0.1 : 5)

ICDKP k in kNN, k ∈ (2 : 1 : 50)
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4.2 Experiments with synthetic datasets

In this set of experiments, we can see from Table 3 that on the Spread series
datasets, the algorithms involved in the experiment can achieve very good clus-
tering results, especially DPC-DBFN, FHC-LDP, DPC-FSC and our algorithm
can achieve a clustering accuracy of 1 under different indicators. However, on
the Pathbased dataset, other algorithms perform unsatisfactorily, while our algo-
rithm can still maintain a good clustering accuracy. Under the ACC, ARI and
NMI indicators, the clustering results of our algorithm are 0.8933, 0.7275 and
0.7895 respectively, ranking first.

In addition, on the Compound and Unbalance datasets, the performance of
the algorithms involved in the experiment varies greatly, while our algorithm per-
forms robustly on these datasets and has higher clustering results. For example,
under the ACC indicator, our proposed algorithm performs best in the Com-
pound dataset with a result of 0.9098; under the ARI indicator, our proposed
algorithm performs best with a clustering result of 0.8699; under the NMI indi-
cator, the FHC-LPD algorithm performs best with a result of 0.9020. Finally, the
average clustering result of our proposed algorithm ranks first in all indicators.
This also shows that our algorithm has excellent clustering ability, which is no
less than the current excellent improved algorithm.

This set of experimental datasets are all synthetic datasets, which are usu-
ally generated according to predefined distributions and rules. The separation
between clusters is high and the clusters are easy to identify. However, when
processing such datasets, the disadvantage of algorithm parameter sensitivity
will be more obvious. It is not difficult to see that in comparison with other
parameter-sensitive methods, our approach has better average clustering results.
Different from the default parameter value of the DPCSA algorithm, this paper
determines the number k of nearest neighbors adaptively after introducing the
natural nearest neighbor idea, which not only avoids errors caused by manual
parameter setting, but also effectively improves the accuracy of clustering.

4.3 Experiments on real datasets

In this group of experiments, it can be seen from Table 4 that the performance
of each algorithm on the real dataset is worse than that on the synthetic dataset.
On the Dutchnumeral and Seeds datasets, our algorithm and the comparative
experimental algorithm can show a high clustering effect, especially our algo-
rithm is better than other algorithms. For example, when processing Seeds, it
ranks first in ACC, ARI and NMI indicators. On the DryBean and Olivertti
datasets, the differences between the algorithms are large. Our algorithm per-
forms robustly on these datasets and has a high clustering result.

In addition, on the Libras and Segment datasets, the algorithms involved in
the comparative experiments all performed poorly. For example, in the Segment
dataset, under the ACC and ARI indicators, the best performing DPC-DBFN
clustering results are 0.5385 and 0.3470 respectively; under the NMI indicator,
the best performing DPCSA algorithm result is 0.5083; and the clustering results
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Table 3. Experimental results with synthetic datasets

Dataset Index DPCSA DPC-
DBFN

FHC-LPD DPC-FSC MDPC+ ICKDP Ours

Compound ACC 0.8396 0.8546 0.8822 0.6692 0.4411 0.6366 0.9098

ARI 0.8284 0.8087 0.8483 0.5352 0.2460 0.5131 0.8699

NMI 0.8439 0.8465 0.9020 0.7670 0.5881 0.7600 0.8977

D31 ACC 0.9681 0.9732 0.9713 0.9677 0.6981 0.9706 0.9710

ARI 0.9360 0.9477 0.9421 0.9351 0.6642 0.9409 0.9416

NMI 0.9578 0.9635 0.9611 0.9570 0.9011 0.9605 0.9602

Pathbased ACC 0.8233 0.7233 0.7467 0.8367 0.5667 0.6967 0.8933

ARI 0.6133 0.4454 0.5629 0.6309 0.3540 0.4230 0.7275

NMI 0.7311 0.5314 0.7144 0.7398 0.4778 0.5145 0.7895

Spread-2-10 ACC 0.9000 1.0000 1.0000 1.0000 1.0000 0.9000 1.0000

ARI 0.8971 1.0000 1.0000 1.0000 1.0000 0.8971 1.0000

NMI 0.9694 1.0000 1.0000 1.0000 1.0000 0.9694 1.0000

Spread-10-20 ACC 0.9500 1.0000 1.0000 1.0000 0.8905 0.9500 1.0000

ARI 0.9493 1.0000 1.0000 1.0000 0.8525 0.9493 1.0000

NMI 0.9884 1.0000 1.0000 1.0000 0.9680 0.9884 1.0000

Spread-20-35 ACC 0.9714 1.0000 1.0000 1.0000 1.0000 0.9714 1.0000

ARI 0.9711 1.0000 1.0000 1.0000 1.0000 0.9711 1.0000

NMI 0.9944 1.0000 1.0000 1.0000 1.0000 0.9944 1.0000

Spread-50-50 ACC 0.9800 1.0000 1.0000 1.0000 1.0000 0.9800 1.0000

ARI 0.9798 1.0000 1.0000 1.0000 1.0000 0.9798 1.0000

NMI 0.9965 1.0000 1.0000 1.0000 1.0000 0.9965 1.0000

Unbalance ACC 1.0000 0.9860 1.0000 0.5331 0.5562 0.9998 1.0000

ARI 1.0000 0.9988 1.0000 0.4729 0.5683 1.0000 1.0000

NMI 1.0000 0.9795 1.0000 0.6416 0.7671 0.9994 1.0000

Mean ACC 0.9291 0.9421 0.9500 0.8758 0.7691 0.8881 0.9718

ARI 0.8969 0.9001 0.9192 0.8218 0.7106 0.8343 0.9424

NMI 0.9352 0.9151 0.9472 0.8882 0.8378 0.8979 0.9559

of MDPC+, which performs the worst under the three indicators, are 0.2879,
0.0238, and 0.2283 respectively; the results of our proposed algorithm under
these three indicators are 0.5152, 0.3269, and 0.4941, respectively, proving that
it still maintains a high clustering performance when facing complex and difficult
real datasets. In the real data set, the average clustering results of our proposed
algorithm under different indicators are 0.7208, 0.5396, and 0.6367, respectively,
also ranking first.

All experimental datasets in this group are real datasets, and real data usu-
ally do not have obvious density distribution. The shape, size, density, etc. of
the clusters are very diverse and very challenging. Our algorithm provides struc-
tured information based on neighbor relationships after introducing the idea of
shared nearest neighbors, which can effectively capture local and global struc-
tural information, thereby identifying complex cluster shapes and distributions
in real datasets. In addition, after introducing the idea of fuzzy logic, the algo-
rithm can estimate probabilities of points being assigned to clusters, handle the
fuzzy attribution of data points between different clusters, and more accurately
reflect the actual distribution of the data. Therefore, it has excellent clustering
performance with real datasets.



Adaptive Nearest Neighbor Density Peak Clustering Based on Fuzzy Logic 137

Table 4. Experimental results with real datasets

Dataset Index DPCSA DPC-
DBFN

FHC-LPD DPC-FSC MDPC+ ICKDP Ours

DryBean ACC 0.6246 0.7050 0.4570 0.7376 0.6142 0.6105 0.7755

ARI 0.4589 0.4984 0.3004 0.5778 0.4232 0.4306 0.5706

NMI 0.6085 0.5965 0.5477 0.7120 0.5915 0.6342 0.6787

Dutchnumeral ACC 0.7860 0.8015 0.8325 0.8265 0.7450 0.7040 0.7730

ARI 0.6672 0.6869 0.7176 0.7133 0.6341 0.6249 0.6776

NMI 0.7879 0.7699 0.7811 0.7866 0.7741 0.7372 0.7885

Libras ACC 0.4722 0.4583 0.4917 0.5111 0.3861 0.5111 0.5111

ARI 0.3512 0.3402 0.3681 0.3906 0.3332 0.3826 0.3774

NMI 0.6282 0.6168 0.6334 0.6510 0.6031 0.6465 0.6486

Olivertti ACC 0.7175 0.7125 0.7650 0.7600 0.1750 0.7100 0.7725

ARI 0.6660 0.6403 0.6854 0.6917 0.1562 0.6100 0.7076

NMI 0.8954 0.8797 0.9010 0.9008 0.6444 0.8599 0.9016

Seeds ACC 0.5810 0.8571 0.8429 0.8429 0.5810 0.8429 0.9095

ARI 0.3981 0.6317 0.5952 0.5840 0.3981 0.5840 0.7477

NMI 0.5336 0.6362 0.6307 0.6237 0.5336 0.6237 0.7054

Segment ACC 0.4502 0.5385 0.5087 0.5108 0.2879 0.4654 0.5152

ARI 0.2518 0.3470 0.1827 0.2919 0.0238 0.2868 0.3269

NMI 0.5083 0.4944 0.4424 0.4573 0.2283 0.4029 0.4941

Waveform ACC 0.7110 0.5762 0.7170 0.6642 0.4868 0.7158 0.8072

(nosie) ARI 0.3524 0.2694 0.3656 0.3307 0.0995 0.3621 0.5060

NMI 0.4004 0.3423 0.4087 0.4093 0.1736 0.4059 0.4383

Wine ACC 0.7247 0.7303 0.7303 0.7135 0.5449 0.7135 0.7022

ARI 0.4007 0.4154 0.4061 0.4029 0.3184 0.4066 0.4029

NMI 0.3948 0.4473 0.4536 0.4302 0.4146 0.4288 0.4388

Mean ACC 0.6334 0.6724 0.6681 0.6958 0.4776 0.6591 0.7208

ARI 0.4433 0.4787 0.4526 0.4979 0.2983 0.4610 0.5396

NMI 0.5947 0.5979 0.5998 0.6214 0.4954 0.5924 0.6367

5 Conclusions

We present an adaptive shared nearest neighbor density peak clustering algo-
rithm based on fuzzy logic. First, we introduce natural nearest neighbor to over-
come the parameter selection problem and avoid errors caused by inappropriate
parameter selection. Next, we adopt the concept of shared nearest neighbors for
not only accurately calculating local density, but also identifying cluster centers.
In addition, we designed a suitable allocation strategy for data points of different
density types to overcome the shortcomings in the original method. In experi-
ments with datasets of different data distributions and types, our algorithm is
shown to be superior to some recent algorithms.
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Abstract. Given a new class imbalanced dataset D and limited com-
putational resources, the challenge arises of selecting promising class
imbalanced learning (CIL) pipelines that include resampling meth-
ods, classification models, and their corresponding hyperparameters. To
address this challenge, we study Zero-shot Automated Machine Learn-
ing and propose a new approach aiming at class imbalanced data, called
Zero-shot Automated Class Imbalance Learning (ZAutoCIL). ZAutoCIL
employs domain-independent meta-learning to develop a zero-shot surro-
gate model for automated class imbalanced learning. This model aims to
recommend effective CIL pipelines for new unseen imbalanced datasets
without requiring additional search. Specifically, we meta-train a two-
tower model to serve as the surrogate model, adapted from recommender
systems, using a pairwise ranking loss on the meta-dataset gained from
collecting performance data across a wide range of CIL pipelines and a
comprehensive repository of class imbalance datasets. We perform exten-
sive experiments on 100 datasets grouped in 4 parts based on their
imbalance ratio. The experimental results demonstrate the efficacy of
our approach in automating the recommendation of CIL pipelines given
any target imbalanced datasets.

Keywords: Class imbalance · Automated machine learning ·
Meta-learning · Recommender systems

1 Introduction

Class imbalanced datasets with a skewed distribution in one or more class labels.
This kind of imbalanced datasets has some classes of data significantly underrep-
resented compared to the others. It commonly exists in various domains, such as
fault diagnosis in the monitoring system for manufacturing industry, fraud detec-
tion in banking, and medical diagnostics in the healthcare [11,27,29]. A class
imbalanced distribution can degrade a model’s performance significantly. The
negative impact of class imbalance on real-world applications has spurred the
development of numerous methods in imbalanced domain learning, encompass-
ing both data-level and algorithm-level approaches [7]. Given a class imbalanced
dataset with a limited computational budget, it is unclear how to choose which
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algorithm to use, nor how to configure its hyperparameters in class imbalanced
domain learning. This challenge can be considered as a Combined Algorithm
Selection and Hyperparameter Optimization (CASH) problem that Automated
Machine Leaning (AutoML) is dedicated to solving [6,10,23].

However, most conventional solutions in CASH typically neglect class imbal-
anced learning. Moreover, they often search across vast algorithm configuration
spaces and repeatedly train pipelines from scratch for each new dataset in a time-
consuming trial-and-error form (see Fig. 1 left) [16,26]. Consequently, identifying
an effective CIL pipeline for class imbalanced datasets might require significant
computational resources. This challenge is particularly pronounced when there
are constraints on time and budget. In addition, researchers and practitioners
continuously release methods and datasets in class imbalanced domain learn-
ing, making them accessible to the public. With a plethora of class imbalanced
datasets available in open sources, the question arises: How can we effectively
utilize these existing datasets to recommend a Class Imbalanced Learning (CIL)
pipeline when faced with a new and unseen imbalanced task, without incurring
search cost on the target dataset?

Fig. 1. Comparison between conventional approaches and our proposed method (Left
vs. Right): Traditional approaches require to repeatedly train CIL pipeline on each test
dataset, resulting in tremendous total search time on multiple class imbalanced datasets
(O(T )). In contrast, our method ZAutoCIL (Right) leverages a two-tower surrogate
model only meta-trained on meta-datasets once and then retrieves CIL pipeline for
unseen class imbalanced datasets without additional CIL pipeline training. This reduces
the search cost for training CIL pipeline across diverse class imbalance datasets from
O(T ) to O(1).

In this paper, we introduce zero-shot AutoML for class imbalanced learn-
ing, called ZAutoCIL. Zero-shot refers to the capability of selecting a well-
performing CIL pipeline effectively without conducting exploratory evaluations
for test tasks [17]. We build a surrogate model capable of robust generalization
across various imbalanced datasets. We achieve this by leveraging accumulated
meta-knowledge (i.e. class imbalanced datasets, CIL pipelines, and their cor-
responding performance) to effectively adapt to new test tasks in class imbal-
anced scenarios. This surrogate model is a two-tower model, an advanced recom-
mender system method to understand the complex mapping between pipelines
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and datasets, with great flexibility, scalability, and the ability to solve the cold
start issue [32]. We further improve its performance by employing a pairwise
ranking loss, which prioritizes the relative performance of pipelines in the meta-
dataset. ZAutoCIL reduces the search time complexity from O(T ) to O(1) for
multiple class imbalanced datasets because of no training on test datasets (as
illustrated in Fig. 1 Right).

The contributions of this work are threefold: (1) We extend AutoML to best
exploit class imbalanced learning pipeline by meat-learning to select the well-
performing CIL pipeline conditional on dataset meta-features. We introduce a
meta-dataset with the performance of 100 CIL pipelines across 100 class imbal-
anced datasets. (2) We introduce Zero-shot Automated Class Imbalanced Learn-
ing, treating it as a recommendation task that considers the embeddings of both
class imbalanced datasets and CIL pipelines. We meta-train a two-tower model
using a pairwise loss. (3) We conduct experimental evaluations on 100 class
imbalanced datasets against baseline methods to demonstrate the efficacy of our
approach.

The rest of the paper is organized as follows: Sect. 2 discusses related work of
class imbalanced learning and Zero-shot hyperparameter optimization. Section 3
presents the problem definition. Section 4 describes the ZAutoCIL method,
including meta-dataset construction and meta-training. Section 5 gives obser-
vations from experiments and analyzes the experimental results. Finally, Sect. 6
presents the conclusions and future work.

2 Related work

2.1 Class Imbalanced Learning

A class imbalanced dataset is characterized by a skewed distribution in the num-
ber of samples among its classes, with one or more classes being underrepresented
(referred to as minority classes) and others as majority classes [8]. Research
has demonstrated the effectiveness of data-level (i.e. resampling methods) and
algorithm-level approaches in addressing class imbalance [3,14,19]. Resampling
methods aim to generate balanced datasets and are categorized into three groups:
undersampling (e.g. TomekLinks), oversampling (e.g. SMOTE), and combined-
sampling (e.g. SMOTETomek). In contrast, algorithm-level methods focus on
modifying classification algorithms to address imbalanced datasets. Due to the
abundance of choices among these methods and their respective hyperparame-
ters, several studies have investigated automated class imbalanced learning to
address CASH issue for class imbalanced datasets [16,21,26,33]. However, these
traditional methods involve exhaustive searches across vast algorithm configura-
tion spaces and training pipelines from scratch for each new dataset. This leads
to significant computational resource to identify an effective CIL pipeline given
a new class imbalanced dataset.

To address this issue, recent studies have employed prior knowledge in auto-
mated class imbalanced learning. Vieira et al. [25] utilize the Frobenius norm
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to assess similarity among class imbalanced datasets and recommend a combi-
nation of resampling and classification methods from 220 search spaces based
on accumulated knowledge. However, the hyperparameters of these algorithms
are ignored. Similarly, Automated imbalanced datasets learning (AutoIDL) [34]
focuses on selecting suitable combinations of resampling methods and classifi-
cation algorithms. It exploits user-based collaborative filtering to recommend
a CIL pipeline. Both of these approaches [25,34] rely on similarity measures
on datasets to make their recommendations given class imbalanced datasets,
achieving low search costs. Depending solely on similarity measures on datasets
can lead to recommendations that overlook interactions between components
(i.e. CIL pipelines and class imbalanced datasets), resulting in increasing the
likelihood of overfitting. To fill in the gap, we introduce an advanced method
from recommender systems: the two-tower model. This model enhances the abil-
ity to capture intricate interactions and dependencies between class imbalanced
datasets and CIL pipelines, thereby enabling precise recommendations of effec-
tive CIL pipelines for unseen class imbalanced datasets in a zero-shot paradigm.

2.2 Transfer Hyperparameter Optimization (HPO) and Zero-shot
HPO

Transfer hyperparameter optimization (HPO) exploits knowledge from previous
experiments to build a robust surrogate model with only a few observations
on the target dataset [31]. To further reduce the search cost, zero-shot HPO
has been proposed. Traditional zero-shot learning refers to a machine learning
paradigm where a model is trained to recognize classes not present in the train-
ing data [28]. In recent developments, zero-shot HPO has been considered a
more efficient approach that does not require any observations of the response
on the target dataset [17,22,30]. A closely related study by Ozturk et al. [17]
employs zero-shot HPO methods to address zero-shot AutoML. They utilize
meta-features of datasets and pipelines as joint feature vectors, inputting these
into a neural network optimized using a ranking loss across datasets. However,
their focus on pretrained models overlooks the issue of class imbalance. To fill in
this gap, we introduce Zero-shot Automated Class Imbalanced Learning (ZAu-
toCIL). In contrast to previous research, we approach ZAutoCIL as a recom-
mendation problem and introduce the two-tower model as a novel surrogate
model that can embed separate representations of class imbalance datasets and
CIL pipelines. This model is selected for its flexibility, scalability, and robust
performance in the recommender system domain.

3 Problem Definition

Let P := {Pk}Kk=1 denote a set of Class Imbalanced Learning (CIL) pipelines.
Each specific CIL pipeline is a combination of a resampling algorithm and a
classification classier, including their respective hyperparameters. For example,
this could be SMOTE with k-neighbours = 5 and Adaboost classifier with the
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size of base classifier with n = 50. Let D = {Dt}Tt=1 represents a set of T class
imbalanced datasets collected from open-source repositories. The descriptive fea-
tures of each class imbalanced dataset are defined as meta-features ξt, such as
the imbalance ratio (IR), dataset size, and various statistical characteristics.

The cost of a class imbalanced learning pipeline Pk on dataset Dt is defined
as the C(Pk,Dt) = Lk(Pk,Dt), where Lk denotes the loss incurred by Pk on
Dt. Given a set of K class imbalanced learning (CIL) pipelines P := {Pk}Kk=1

and a collection of T class imbalanced datasets D = {Dt}Tt=1, along with a
K ×T matrix of costs C(Pk,Dt), the objective of Zero-shot AutoML with Class
Imbalanced Learning (ZAutoCIL) pipelines is to determine a mapping f that
minimizes the expected cost across the class imbalanced dataset collection D:

w∗ = arg minw Et∼T [C(fw(ξt),Dt)] (1)

where w represents the parameters of the meta-model. After training, fw∗ is
employed during the meta-test phase to rapidly identify a high-performing CIL
pipeline P given a unseen class imbalanced dataset.

4 Methodology: Zero-shot Automated Class Imbalanced
Learning

We develop Zero-shot AutoML [17] for the domain of class imbalanced learning.
Current methods cannot be directly applied to the field of imbalanced learning,
as has been demonstrated in related work [25,34]. Therefore, we need to design
a zero-shot learning approach specifically for the imbalanced domain. The Zero-
shot Automated Class Imbalanced Learning (ZAutoCIL) aims to rapidly recom-
mend high-performing CIL pipelines for a class imbalanced dataset by leveraging
prior knowledge learned from a meta-dataset. We detail the preparation of our
new meta-dataset designed for class imbalanced learning in Sect. 4.1. Afterward,
we present optimization details for our surrogate model, which employs pairwise
ranking loss during the meta-training phase, as outlined in Sect. 4.2. An overview
of our solution framework is illustrated in Fig. 2.

4.1 Meta-Dataset Construction and Pipeline Hubs Design for
ZAutoCIL

In this section, we present a new meta-dataset for imbalance domain learning in
order to perform Zero-shot Automated Class Imbalanced Learning (ZAutoCIL).
This meta-dataset encompasses a comprehensive collection of class imbalanced
datasets along with their meta-features, a diverse range of CIL pipelines, and
their respective performance metrics. Specifically, we gather a set of 100 class
imbalanced datasets and compute the meta-features for each of them. We then
define a space of CIL pipelines and identify strong instantiations within this
space for each class imbalanced dataset. Finally, we evaluate the performance
of these instantiations in all 100 datasets, resulting in a 100 × 100 matrix of
performance.
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Fig. 2. Overview of our proposed Zero-shot Automated Class Imbalanced Learning
(ZAutoCIL) framework. (a) Meta-dataset Construction Phase. We construct a meta-
dataset comprising triples, i.e. class imbalance dataset - Pipeline (CIL) - performance
metric. (b) Meta-training phase. We exploit a two-tower model to encode the CIL
pipeline P and meta-features ξ, and use MLP to encode the combination of the outputs
of two previous encoders. The framework is optimized by the pairwise ranking loss. (c)
Meta-test phase. Our optimized framework recommends the top-1 CIL pipeline given
a new class imbalanced dataset during the meta-test phase.

Class Imbalanced datasets for ZAutoCIL The selection of class imbalanced
datasets should prioritize public availability and representativeness, which forms
the foundation of the prior knowledge for the ZAutoCIL framework. We opt for
the widely-used imbalance domain learning repository, i.e. KEEL – Knowledge
Extraction on Evolutionary Learning [1], renowned for its diverse class imbal-
anced datasets organized by class imbalance ratio. From the Imbalance datasets
for classification in KEEL, we retrieved 100 class imbalanced datasets D that
have been categorized into four groups: imbalance ratio between 1.5 and 9, and
imbalance ratio higher than 9 - Part I, Part II, and Part III. Given the space
restrictions, detailed descriptions of the class imbalanced datasets can be found
on the KEEL website. The selected data sets vary in sample size from 92 to
5472 and cover a wide range of domains. Additionally, the class imbalance ratios
within these datasets range between 1.82 to 100.14, with varying degrees of
imbalance across the groups.

To represent a class imbalanced dataset Dt, we extract meta-features that
characterize the dataset’s properties. These meta-features are precomputed and
serve as inputs for training the surrogate model. Several previous studies have
conducted surveys and evaluations of dataset meta-features [15,20,24]. From
these studies, we identify a set of common, cost-effective, and validated perfor-
mance meta-features. We utilize the open-source meta-feature extraction library
PyMFE [2] to implement this process, focusing on its general and statistical
meta-feature groups. General meta-features of a dataset include the number of
instances and attributes, imbalance ratio, etc. Statistical meta-features encom-
pass the interquartile range (IQR) of each attribute, the correlation among
numeric attributes, skewness, etc. Due to space limitations, detailed descriptions
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Table 1. Search Space of CIL Pipelines: Resampling Techniques and Ensemble Clas-
sifiers.

Model Hyperparameter Search range

Undersampling ClusterCentroids - -

EditedNearestNeighbour k neighbors (3,7,11,15)

NearMiss k neighbors (3,7,11,15)

RandomUnderSampler - -

TomekLinks - -

Oversampling SMOTE k neighbors (3,7,11,15)

Borderline SMOTE k neighbors (3,7,11,15)

RandomOversampler - -

SVMSMOTE k neighbors (3,7,11,15)

OverUnderSampling SMOTEENN - -

SMOTETomek - -

Ensemble EasyEnsemble n estimators (50, 100, 150)

RUSBoost learning rate (0.01, 0.05, 0.1, 0.5, 1.0)

n estimators (50, 100, 150)

BalancedBagging n estimators (50, 100, 150)

max features (0.5, 0.75, 1.0)

max samples (0.5, 0.75, 1.0)

BalancedRandomForest n estimators (50, 100, 150)

max depth (5, 10, 20)

min samples split ( 2, 4, 8, 16, 32 )

AdaBoost learning rate (0.01, 0.05, 0.1, 0.5, 1.0)

n estimators (50, 100, 150)

GradientBoosting learning rate (0.01, 0.05, 0.1, 0.5, 1.0)

n estimators (50, 100, 150)

of the general and statistical meta-feature groups can be found in the PyMFE
library.

CIL Pipeline Design Space for ZAutoCIL on Imbalanced Datasets An
overview of the CIL search space is presented in Table 1. Our aim is to select a
diverse range of CIL pipelines that can achieve high performance across the class
imbalanced datasets, with the goal of identifying well-performing pipelines for
each dataset. To obtain robust pipelines, we choose effective resampling tech-
niques and ensemble classifiers that are compatible and available in both the
imbalance library and the scikit-learn library [12].

Specifically, the discrete search space includes resampling techniques such
as undersampling, oversampling, and over-undersampling, with a focus on the
hyperparameters for the number of neighbors. In terms of classifiers, it encom-
passes ensemble methods such as boosting, bagging, and random forests, each
with their respective essential hyperparameters.
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Selection and Evaluation of CIL Pipelines for Meta-dataset Construc-
tion With the collection of 100 class imbalanced datasets and our defined CIL
pipeline search space, we now describe the process of generating the CIL pipeline
hub, which is pre-evaluated across these datasets. Instead of employing uniform
or random sampling, we perform grid search with 10-fold cross-validation to
identify an optimal Class Imbalance Learning (CIL) pipeline for each individual
class imbalanced dataset. The optimization metric focuses on the common and
crucial class imbalanced learning metric – AUC-ROC. As a result, this process
produces one optimized CIL pipeline for each class imbalanced dataset, resulting
in a total of T = D = 100 CIL pipelines that are defined as the CIL pipeline hub
in our study. This CIL pipeline hub is denoted as P in our ZAutoCIL frame-
work, as detailed in Sect. 3. Given the CIL pipeline hub P and the set of 100

Fig. 3. Performance matrix displayed as a heat map with color representing the AUC-
ROC score. It is evident that certain class imbalanced datasets are more challenging,
and some CIL pipelines generalize worse than others.

class imbalanced datasets D, we run each CIL pipeline in P ∈ P on each class
imbalanced dataset D ∈ D. The AUC-ROC performance score is calculated as
an average over ten runs to mitigate noise. We record the average-of-ten AUC-
ROC score for each pair (dataset & CIL pipeline) in the performance matrix. We
obtain every pairs’ average-of-ten AUC-ROC score in the performance matrix
100 × 100. This matrix is visualized in Fig. 3.

We observe that some datasets, particularly those at the top, pose relatively
fewer challenges for the CIL pipelines, since most CIL pipelines perform well on
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them. Conversely, datasets at the bottom present significant challenges for the
CIL pipelines. In terms of CIL pipeline performance, robust CIL pipelines on
the left consistently achieve good results across a wide range of class imbalanced
datasets. In contrast, some pipelines perform well on only a few datasets, sug-
gesting specialized strengths but limited applicability across diverse class imbal-
ance scenarios. Besides, horizontal striping indicates variability in how different
pipelines perform on specific datasets. A dataset exhibiting horizontal striping
means that some pipelines handle it effectively while others do not, revealing dif-
ferences in pipeline effectiveness for that dataset. Vertical striping indicates that
a pipeline performs well on some datasets but poorly on others, demonstrating
inconsistency in its effectiveness across varying dataset conditions. These obser-
vations underscore the importance of selecting CIL pipelines based on dataset
characteristics (i.e., dataset-dependent manner in ZAutoCIL), as performance
can vary significantly depending on the class imbalanced dataset.

4.2 Training for Surrogate Model in ZAutoCIL

Zero-shot automated class imbalanced learning (ZAutoCIL) can be addressed
using the zero-shot HPO method, where the CIL pipelines we want to select can
be envisioned as points within a geometric space and serve as the search space for
HPO. To enable meta-learning for ZAutoCIL, we represent the predefined CIL
pipeline hub as Pk := {Rk, λ

R
k ,Mk, λ

M
k }. Specifically, Rk and Mk are encoded as

one-hot vectors. λR
k and λM

k are represented as variable vectors defined by their
respective hyperparameter values. As a result, the CIL pipelines are mapped to
a geometric space defined by P and can be viewed as a configuration space.

We introduce a two-tower model, denoted as fw parameterized by w, which
serves as a surrogate model to estimate the performance observed by the CIL
pipeline Pk on dataset Dt with meta-features ξt. It is able to embed the meta-
features of class imbalanced datasets and CIL pipelines into a latent space. By
leveraging joint learnable representations in the geometric space conditioned
on datasets, the model can capture similarities and relationships between class
imbalanced datasets and CIL pipelines. As a result, it enables efficient search in
a zero-shot paradigm.

We are interested in identifying high-performance CIL pipelines based on
their relative performance that can help distinguish the best CIL pipeline among
candidates pipelines. Predicting the absolute value of a specific metric is less crit-
ical in this context. Approximating the absolute performance for every instance
in the meta-dataset might result in selecting lower-performing pipelines for new
class imbalanced datasets. To overcome this issue, we optimize the two-tower
model as a surrogate model to rank CIL pipelines by a pairwise [4] loss based
on the fact that the order matters: one CIL pipeline is preferred to another. In
the learning-to-rank literature [4], the pairwise loss is a common choice to rank
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the candidate space. In this study, we choose the pairwise loss is formulated as:

− 1
|ε|

∑

(i,j)∈ε

(yi,j log σ (fw(Pi, ξt) − fw(Pj , ξt))

+ (1 − yi,j) log (1 − σ (fw(Pi, ξt) − fw(Pj , ξt))))

(2)

where ε = {(i, j)|Pi ∈ P, Pj ∈ P, and Pi �= Pj}, and yi,j is defined as:

yi,j =

⎧
⎪⎨

⎪⎩

1, if ri > rj

0.5, if ri = rj

0, if ri < rj

σ(·) is the sigmoid function and r is the performance metric of P .
To highlight the advantages of utilizing a pairwise loss, we also compare the

performance of the same two-tower model optimized using a least-squares loss
(pointwise) [13]:

arg min
w

T∑

t=1

K∑

k=1

(fw(Pk, ξt) − y(Pk, ξt))
2 (3)

5 Experiments

This section presents a detailed experimental evaluation. The aim of our exper-
iments is to provide empirical evidence demonstrating the effectiveness of our
method – Zero-shot automated class imbalanced learning (ZAutoCIL). We focus
on answering the following research questions:

1. Does our method demonstrate improved performance in automated class
imbalanced learning compared to established baseline approaches?

2. Does our method based on pairwise loss outperform pointwise loss in our
zero-shot automated class imbalanced learning approach?

3. How effectively does the ZAutoCIL method infer missing values in the per-
formance matrix?

5.1 Evaluation and Baselines

Evaluation We evaluate the effectiveness of our ZAutoCIL method based on
the two-tower surrogate model using a leave-one-core-dataset-out protocol [17].
Specifically, we meta-train our surrogate model method on 99 out of the 100
datasets and test it on the held-out dataset. After obtaining a CIL pipeline
recommendation from ZAutoCIL for each class imbalanced dataset, we conduct
the CIL pipeline ten runs on the dataset and average the AUC-ROC metric.
The AUC-ROC [5] metric is widely recognized in the class imbalance domain
to evaluate the performance of the classifier. We report the resulting average
performance for each dataset group. We ran all experiments using a Mac M1
Pro chip with 16 GB of RAM as the experimental environment.
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Table 2. Average AUC-ROC and the Ranking for each group of all approaches

Metric IR Random Similarity Pointwise ZAutoCIL

AUC-ROC 1.5−9 0.8732 ± 0.0140 0.8750 ± 0.0126 0.8722 ± 0.0125 0.8811± 0.0120

Part I 0.7599 ± 0.0255 0.8089 ± 0.0193 0.8174 ± 0.0172 0.8535± 0.0117

Part II 0.8402 ± 0.0090 0.8457 ± 0.0089 0.8547 ± 0.0083 0.8677± 0.0052

Part III 0.7936 ± 0.0327 0.8021 ± 0.0372 0.8231 ± 0.0316 0.8631± 0.0203

Overall 0.8150 ± 0.0229 0.8297 ± 0.0218 0.8400 ± 0.0188 0.8660± 0.0129

Rank 1.5−9 2.50 2.54 2.63 2.04

Part I 2.75 2.76 2.54 1.40

Part II 2.85 2.68 2.31 2.09

Part III 2.66 2.81 2.09 1.69

Overall 2.68 2.71 2.36 1.79

Baselines To evaluate the performance of ZAutoCIL, we compare it with sev-
eral baseline approaches. For a novel class imbalanced dataset and our 100 care-
fully designed CIL pipelines in the pipeline hub, the random selection baseline
uniformly samples one CIL pipeline from these pipelines. Additionally, we assess
our method against existing similarity measure methods used to recommend
suitable pipelines in the class imbalanced learning domain [25]. Furthermore,
we compare the performance of our method with the same two-tower model
optimized using a least-squares loss (pointwise).

Meta-trained surrogate model For our meta-trained surrogate model (i.e.,
two-tower model), we utilize the Tensorflow Learning to Rank library [18]. The
Adam optimizer optimizer is employed with a learning rate of 0.001 for meta-
training over 1,000 epochs, determined by the meta-validation datasets. For both
the CIL pipeline encoder and the class imbalanced datasets encoder, we adopt
two hidden MLP layers with 32 and 16 dimensions, respectively. The across
encoder uses two hidden MLP layers with 64 and 32 hidden dimensions, respec-
tively. Additionally, we use mini-batch [9] training with a batch size of 32.

5.2 Results on Imbalanced Datasets for ZAutoCIL

The results of the average performance of each method and their ranking for
each class imbalance dataset group are shown in Table 2. These groups include
four categories: datasets with imbalance ratio between 1.5 and 9 (22 datasets),
datasets with imbalance ratio higher than 9 – Part I (22 datasets), Part II (22
datasets) and Part III (34 datasets). These groups are sourced from the KEEL
website as described in Sect. 4.1.

As shown in Table 2, our method consistently outperforms both random
selection and similarity-based methods. ZAutoCIL achieves the highest AUC-
ROC scores in all four groups. Moreover, ZAutoCIL achieves the lowest rank
across all parts (lower is better), reaffirming its superior performance compared
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to other methods. These findings highlight the robust performance of ZAutoCIL.
The superior performance of ZAutoCIL can be attributed to its sophisticated
two-tower model architecture, which separately embeds both the meta-features
of class imbalanced datasets and CIL pipelines into distinct latent spaces. It
enables ZAutoCIL to learn latent interactions between class imbalanced datasets
and pipelines, capturing non-linear relationships. In contrast, simple similarity
measures often overlook these complex relationships and interactions between
datasets and pipelines. They typically rely on straightforward metrics that may
not adequately capture nuanced interactions. In addition, our method based
on pairwise loss outperforms the pointwise (i.e. mean squared error) approach,
verifying that focusing on relative performance and ranking-aware methods is
more effective than predicting absolute values.

In Fig. 4, we present box plots to visualize the distribution of AUC-ROC
scores across each group. These plots offer valuable insights into both the vari-

Fig. 4. The distribution of AUC-ROC scores across the four groups for random selec-
tion, similarity measure, pointwise, and ZAutoCIL.

ability and the central tendencies of the performance metric within each dataset
group. ZAutoCIL shows competitive median AUC-ROC scores and generally
exhibits narrower interquartile ranges compared to random selection and simi-
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Table 3. Average AUC-ROC and the Ranking for each group of all approaches across
three sparse cases.

Metric IR ZAutoCIL 25% 50% 75%

AUC-ROC 1.5−9 0.8811 ± 0.0120 0.8820 ± 0.0113 0.8874 ± 0.0114 0.8850 ± 0.0108

Part I 0.8535 ± 0.0117 0.8575 ± 0.0110 0.8480 ± 0.0123 0.8288 ± 0.0169

Part II 0.8677 ± 0.0052 0.8701 ± 0.0059 0.8415 ± 0.0080 0.8652 ± 0.0071

Part III 0.8631 ± 0.0203 0.8595 ± 0.0204 0.8643 ± 0.0217 0.8600 ± 0.0251

Overall 0.8660 ± 0.0129 0.8664 ± 0.0128 0.8611 ± 0.0142 0.8601 ± 0.0158

Rank 1.5−9 2.40 2.63 2.45 2.23

Part I 2.22 2.04 2.59 2.66

Part II 2.54 2.31 2.55 2.45

Part III 2.15 2.33 2.03 2.22

Overall 2.31 2.33 2.36 2.37

larity measure. This suggests ZAutoCIL’s robust performance in terms of rec-
ommending CIL pipeline across class imbalanced datasets with less variability.
The pointwise loss version of ZAutoCIL has shown good results on several class
imbalanced datasets; however, it also exhibits multiple outliers within dataset
group Part-II and the lowest performance within dataset group Part-III. These
visualizations provide complementary insights to the numerical results presented
in Table 2, highlighting the effectiveness of ZAutoCIL in our experimental eval-
uation.

5.3 Results on Sparse Performance Matrix for ZAutoCIL

To assess the robustness of ZAutoCIL in managing missing values within the
performance matrix, we perform experiments involving the random removal of
25%, 50%, and 75% entries. This setup aims to further examine the source of
improvement in our method (i.e. the inference capabilities of ZAutoCIL), and to
simulate realistic scenarios where data completeness is often compromised.

As shown in Table 3, ZAutoCIL consistently maintains strong performance
at varying levels of sparsity. Specifically, even with only 25% of entries remain-
ing, ZAutoCIl exhibit competitive AUC-ROC scores across different groups. This
finding shows ZAutoCIL’s robustness in recommending effective CIL pipelines
for class imbalanced datasets, highlighting its resilience to missing data. This
effectiveness of ZAutoCIL can be attributed to the architecture of the two-tower
model. It is essentially a hybrid system that combines collaborative filtering and
content-based filtering by embedding both the meta-features of class imbalanced
datasets and the characteristics of CIL pipelines into a low-dimensional latent
space. This approach allows ZAutoCIL to capture intricate correlations across
CIL pipelines and leverage its generalization capability to accurately infer miss-
ing values within the performance matrix.
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Specifically, CIL pipelines with similar configuration values tend to exhibit
similar performance on the same class imbalanced datasets. Even when the per-
formance of some CIL pipelines is missing, the two-tower neural network model
can infer these missing values by leveraging the known performance of other
similar CIL pipelines on the same dataset. Likewise, datasets with similar meta-
features often require the similar effective CIL pipelines or exhibit similar perfor-
mance distributions of CIL pipelines. If some datasets lack performance data for
certain pipelines, ZAutoCIL can predict these missing values by considering the
performance of those pipelines on similar datasets. Consequently, even when the
meta-training dataset is sparse, the surrogate model is still able to infer the miss-
ing values effectively, allowing ZAutoCIL to maintain superior performance and
robustly recommend CIL pipelines. The ranking information among these sparse
cases is similar, which further verifies that ZAutoCIL can achieve good inference
performance even under conditions of sparse data. In addition, Table 2 shows
the ranking results of all the methods based on the full meta-training dataset,
whereas the sparse experiment focuses on ZAutoCIL with the same architecture
but varying levels of sparsity. This explains the differences in ranking results
between Table 2 and Table 3 in the sparse experiment.

6 Conclusion and future work

In this paper, we extend the realm of Zero-shot AutoML to address class imbal-
anced learning on unseen class imbalanced datasets. We formalize this prob-
lem as Zero-shot Automated Class Imbalanced Learning (ZAutoCIL), leveraging
knowledge from a meta-dataset of various CIL pipelines evaluated on a set of
class imbalanced datasets. Specifically, we propose an approach using a two-
tower model trained with a ranking objective to recommend CIL pipelines.
Our findings are summarized as: (1) The performance of CIL pipelines varies
significantly across different class imbalanced datasets, necessitating a dataset-
dependent selection manner. (2) Our method outperforms established baseline
approaches by effectively capturing dataset-pipeline relationships and correla-
tions, while simple similarity measures struggle to grasp. (3) The use of pairwise
loss in our approach proves superior to pointwise loss, emphasizing the impor-
tance of relative performance assessment over absolute regression-based methods
in ZAutoCIL. (4) Our method demonstrates robust performance across three
degrees of sparse performance matrices, owing to the generalization and infer-
ence capabilities of the two-tower model in ZAutoCIL.

We believe that our work represents a significant advancement for ZAutoCIL
through the application of recommender system methods in real-world scenarios,
where we need to handle diverse class imbalanced datasets while minimizing
the search cost. However, there is considerable room for further enhancement.
Future research should focus on adapting to other metrics in class imbalance
domain learning, such as F1-score, and Recall. In addition, exploring a wider
range of algorithms in imbalance learning can further enhance its applicability
and effectiveness across different scenarios. Prioritizing multi-class imbalance
learning is also a promising direction for future work.
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Abstract. Existing Automated machine learning (AutoML) systems
have achieved considerable success in offline machine learning. Nonethe-
less, they are not applicable to data streams that requires real-time train-
ing and prediction, not to mention class imbalanced data streams. This
paper proposes an Online Automated framework designed for imbal-
anced data streams learning, called OAutoIDSL. Firstly, we adopt and
improve Thompson Sampling (TS) with an imbalanced reward design
for combined algorithm selection and hyperparameter tuning (CASH)
that enables online learning and optimisation. Secondly, we introduce
two mechanisms to further tackle data non-stationarity and class imbal-
ance – discounting outdated knowledge and adaptive weight tuning in
imbalanced rewards. The effectiveness of our approach is demonstrated
through the empirical evaluation on a set of synthetic imbalanced data
streams encompassing various stationary and non-stationary scenarios,
along with four real-world data sets.

Keywords: Class imbalance · Online AutoML · ensemble learning ·
data streams · multi-armed bandits

1 Introduction

Automated machine learning (AutoML) aims at Combined Algorithm Selection
and Hyperparameter tuning (CASH) and has achieved significant success in
recent studies [4]. As more and more real-world applications collect data over
time in the form of data streams or sequences, most existing offline AutoML
systems become unsuitable in an online setting because no pre-collected data
are available and decisions must be made in real-time [17,18].

A few recent attempts have been made on online AutoML, aiming to auto-
matically configure online learning models and their hyperparameters. OAML [2]
and OnlineAutoClust [3] utilize a two-stage procedure that involves a search
phase and an online learning phase. However, they do not work strictly online,
as the framework learning process is temporarily interrupted to conduct time-
consuming algorithm searches to adapt to new data distribution. Moreover, the
associated search cost is not considered. In contrast, EvoAuoML [6] consistently

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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evolves the search space at a regular interval time step through an evolution-
ary optimization method and maintains the real-time ensemble prediction. At
each time step, ChaCha [18] continually identifies a Champion and schedules
a set of Challengers according to sample complexity bounds, achieving the sub-
linear regret by relying on a ConfigOracle. Even though these approaches were
proposed for online learning algorithms, they made a default assumption in clas-
sification problems that the class distribution is relatively balanced. They neglect
the fact that the skewed distribution can degrade a classifier’s performance sig-
nificantly and hence affect the choice of the best algorithm and its hyperpa-
rameters. Moreover, data distribution can be changing dynamically over time
(a.k.a concept drift) in data streams, which makes the problem more challeng-
ing. This paper fills in this gap by developing an online automated framework
that can perform searching and training at every time step, and handle class
imbalance and data non-stationarity simultaneously. It includes five most pop-
ular online ensemble learning algorithms as the candidate learning algorithms
in the framework search space, which are UOB, OOB, UnerOverBagging, CSB2
and AdaC2 [14,15]. The performance of these methods is heavily dependent on
the choice of hyperparameters.

To achieve our goal, we formulate the online CASH task as a Multi-Armed
Bandit (MAB) problem, as detailed in Sect. 3. Thompson Sampling (TS) is
introduced to address online CASH, which has been widely recognized for its
strong empirical performance among the solutions to the MAB problem [1]. In
order to handle class imbalance in data, we improve TS and propose Imbalanced
Thompson Sampling (ITS) by imbalance reward design. It automatically selects
from a set of candidate online ensemble models designed to proficiently handle
imbalanced data streams on-the-fly. In this context, each configuration of the
online algorithm is treated as an arm, with its corresponding performance serv-
ing as the reward. The objective is to maximize the cumulative rewards derived
from the execution of the selected candidate algorithms. Then, we add new
mechanisms to ITS, discounting old knowledge and adaptive weight tuning for
imbalanced rewards, as well as their combined effects. These investigate whether
they can further benefit non-stationary and class imbalanced data streams. In
total, four versions of ITS are compared: ITS, Discounting ITS (DITS), Weighted
ITS (WITS) and Weighted Discounting ITS (WDITS). This is the pioneering
online automated framework – OAutoIDSL crafted for online ensemble learn-
ing algorithms that are capable of handling imbalanced data streams on-the-fly.
We provide extensive experimental evaluations on synthetic and real-world data
sets to validate the effectiveness of our approach. The results show that: a) In
stationary imbalanced data streams, ITS consistently obtains the highest per-
formance, especially in high degree of class imbalance. b) In non-stationary sce-
narios, ITS demonstrates superior performance with changing Imbalance Ratio
(IR) and fixed concepts, while DITS competes well with a fixed IR and changing
concepts. c) For real-world datasets, ITS performs strongly in G-mean across
all real data sets (IR below 30%). WITS consistently excels in minority class
performance for most situations.
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2 Related work

2.1 AutoML for online learning

Several recent studies have looked into AutoML within an online setting. In the
Online Automated Machine Learning (OAML) system [2], asynchronous genetic
programming has been employed to facilitate online classifier searching for data
streams. OnlineAutoClust utilizes Bayesian optimization (BO) - Tree of Parzen
Estimators (TPE) to execute CASH in the context of online clustering [3]. Both
of these approaches assume the availability of an initial data batch in advance.
Moreover, they do not perform pipeline search strictly online, which is only trig-
gered after data distribution changes, and the search cost is not considered. This
infringes upon the real-time prediction requirements for online learning. Addi-
tionally, leveraging BO or similar cutting-edge offline methods is impractical for
real-time decisions in online learning [5]. EvoAutoML is another recently pro-
posed online automated framework. It continuously and adaptively selects mod-
els and hyperparameters, sustaining an ensemble prediction through periodic
updates using a straightforward evolutionary optimization method [6]. ChaCha
consistently makes hyperparameter decisions based on statistical test results
derived from sample complexity bounds, taking into account resource limita-
tions [18]. It dynamically balances the interaction between a champion and a
range of challengers at each time step. Although the strong assumption about
ConfigOracle aids in achieving sublinear results in online learning, obtaining it
in real-world applications is challenging. The key component in an online auto-
mated framework lies in the methods for handling online CASH. Recent research
closely related to the domain of online CASH encompasses areas such as online
hyperparameter tuning [5,7] and online model selection [12]. Although many of
these studies provide theoretical insights, they primarily focus on very specific
hyperparameters or models. Furthermore, it’s noteworthy that all the aforemen-
tioned frameworks and methods overlook conducting online CASH for ensemble
machine learning algorithms designed to handle online imbalanced data streams.

2.2 AutoML for Class Imbalanced Data

Some offline AutoML approaches have integrated techniques to tackle class
imbalance problems in data. Vieira et al. [13] utilize the Frobenius norm to
measure similarity among class imbalanced datasets and recommend a combina-
tion of resampling and classification methods from 220 search spaces based on
accumulated knowledge given a target dataset. Automated imbalanced datasets
learning (AutoIDL) [19] selects suitable combinations of resampling methods and
classification algorithms. AutoIDL exploits user-based collaborative filtering to
recommend a CIL pipeline. The tree Parzen estimator approach demonstrates
superior performance with five candidate classification algorithms and 21 resam-
pling approaches [10]. The AutoBalance framework considers a wider search
space, leveraging the modified GAMA framework [11]. All of these approaches
focus on offline settings, which means that it is a one-off optimization procedure
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and cannot handle data streams. In summary, none of the existing automated
framework approaches can learn from data streams online and handle CASH for
ensemble algorithms designed in online imbalanced data streams simultaneously.
Bridging this gap constitutes the core objective of our work.

3 Preliminaries

In this section, we provide an explicit definition of online CASH in the context of
one-by-one data stream learning. Subsequently, we reformulate online CASH as
a multi-armed bandits (MAB) problem that motivates our approach proposed
in this paper.

3.1 Online CASH for Data Streams

The online CASH is able to be treated as an iterative decision making problem
over time in a data stream [12,18]. Instances are drawn from the instances space
I = X ×Y, and a set of candidate algorithms A = {A1, ..., Am} (every algorithm
has a hyperparameter space {Λ1, ...,Λm}). The instances arrive continually over
time. An algorithm and its hyperparameter s(ht, it) = At(Λt) ∈ A are selected
by the meta-learner to handle the current instance it ∈ I, i.e. s : H × I → A.
Here, ht ∈ H refers to the history of the choosing process, which includes
{(ij , Aj(Λ), lj)}t−1

j=1, i.e., accumulated instances observed so far, algorithms
applied corresponding to hyperparameters, as was well as the corresponding
losses evaluated (lj = l(ij , Aj(Λ))). As a result, the objective of online CASH is to
minimize the average loss, defined as L(s) = T−1

∑T
t=1 l(it, s(ht, it)). The opti-

mal meta-learner is represented as: s∗(ht, it) := arg minA(Λ)∈A E[l(it, A(Λ))) |
ht].

3.2 Online CASH as a MAB problem

The online CASH can be modeled as a MAB problem consisting of a set of
candidate arms/algorithms denoted as A(Λ) in a data stream. The meta-learner
is provided with K = |A(Λ)| arms. At each time step t = 1, 2, ..., T , it is requested
to choose one of the arms A(Λ)t for the instance it, which is consider as pulling
one of the arms in MAB community. Simultaneously, the meta-learner incurs a
loss with this decision. We denote the arm that is pulled at time step t as mt.
Ideally, the meta-learner pick an arm with the smallest expected loss for the
given instance at each time step t, i.e., A∗

t (Λ) ∈ arg minA(Λ)∈A E[l(it, A(Λ))],
which is referred to optimal strategy and serves as a benchmark.

4 Online Automated Imbalanced Data Streams Learning
(OAutoIDSL)

4.1 Reward Design in MAB for Imbalanced Data Streams

Most of the reward distribution designs in the traditional MAB are often single
when the environment interacts with the learner. Such designs are impractical
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when addressing online CASH for imbalanced stream learning. Several essential
factors need to be taken into consideration. In a stationary imbalanced scenario,
the rewards revealed for the meta-learner need to guide exploration and exploita-
tion based on the performance of two classes of each candidate algorithm (i.e.,
a combination of online model and hyperparameters) within the search space.
This aids the meta-learner in selecting a candidate algorithm with good trade-
off performance of two classes, preventing the selection of an algorithm biased
toward the majority class during the trade-off exploration and exploitation pro-
cess over time. In a non-stationary imbalanced scenario, the class imbalance
can change over time [16]. This necessitates the meta-learner to automatically
tune or adaptively select candidate algorithms for the current time step and
new data distributions, taking into account the dynamic properties inherent in
imbalanced data streams. Therefore, the rewards disclosed to the meta-learner
should reflect the recent performance of candidate algorithms, and the bandit
strategy based on these rewards should automatically fine-tune to adapt to the
new imbalanced data streams. In other words, the meta-learner needs to choose
appropriate models and hyper-parameters on the fly according to the designed
rewards and bandit strategy at the current time step. Hence, the meta-learner
for online CASH is imperative to be kept updated for selecting good models
and hyperparameters so that it can maintain high performance on the current
minority class without compromising performance on the current majority class.

4.2 Thompson Sampling Improvement

We adopt Thompson Sampling (TS) and improve it into four versions through
the new mechanisms (i.e., discounting old knowledge and adaptive weight tun-
ing). The combined impacts are also explored. Firstly, Imbalance Thompson
Sampling (ITS) is proposed to address class imbalance in online CASH. We
then further extend it into Discounting Imbalance Thompson Sampling (DITS),
Weighted Imbalance Thompson Sampling (WITS) and Weighted Discounting
Imbalance Thompson Sampling (WDITS).

Algorithm 1 Thompson Sampling
Input: M = A(Λ) candidate algorithms and hyperparameters. Initialize: For each
i ∈ [M ], ai = bi = 1.

1: for time steps t = 1, ..., T do
2: For each i ∈ [M ], sample θ̂i ∼ Beta(ai, bi) .
3: Choose an online algorithm mt ← arg maxi∈[M ] θ̂

i and observe a real-valued
payoff rmt .

4: Update posterior distributions:
ai ← ai + rmt , b

i ← bi + (1 − rmt)
5: end for
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ITS The algorithm 1 illustrates the original TS [1]. When applied to online
model selection and hyperparameter tuning for classification issues, TS assumes a
Bernoulli reward. In this context, the reward (rmt

) is assigned as 0 (representing
a wrong algorithm prediction) or 1 (indicating a correct algorithm prediction),
with the parameters adhering to a Beta distribution. TS initially assumes that
algorithm i follows a Beta(1, 1) prior. At time t, after observing ai successes and
bi failures, each candidate algorithm has the distribution Beta(ai, bi) (as shown
in line 2). TS samples from these distributions, and the algorithm i with the
largest sample value is chosen, followed by the revelation of the reward for this
choice (as seen in Line 3). When the algorithm is not chosen, ai and bi remain
the same as the last time step, and for the chosen algorithm rmt

, the correspond-
ing posterior distributions is updated in Line 4. However, TS faces limitations
in handling online CASH under imbalance cases. The use of a single reward
fails to adequately balance the trade-off between exploration and exploitation,
particularly concerning the performance of the two classes within an algorithm.
Consequently, TS tends to favor algorithms with superior performance in the
majority class. To address this issue, TS is improved to accommodate imbal-
anced MAB with Bernoulli distributions into a new approach called Imbalanced
Thompson Sampling (ITS), as outlined in Algorithm 2. In line 2 of the ITS
Algorithms, ai

0 signifies the times in which algorithm i attains a reward of 1 for
class 0, while bi0 represents failure prediction times for class 0. ai

1 denotes the
times that algorithm i receives a reward of 1 for class 1, bi1 symbolizes failure
prediction times for class 1. Next, ITS samples simultaneously from θ̂i0 and θ̂i1 for
each algorithm i. ITS selects an online algorithm mt with the highest sampled
sum-reward between classes (as indicated in line 3). Furthermore, both rewards
rmt

(0) and rmt
(1) are revealed. Subsequently, for the chosen algorithm, ITS pro-

ceeds to update the posterior distributions of the two events (as outlined in Line
4). As is evident, ITS straightforwardly trades off exploration and exploitation
among a set of algorithm |M | options based on their performance across two
classes. This method is intuitive, easy to implement and efficient.

Algorithm 2 ITS and DITS
Input: M = A(Λ) candidate algorithms and hyperparameters.
Initialize: For each i ∈ [M ], ai

0 = bi0 = 1, ai
1 = bi1 = 1

1: for time steps t = 1, ..., T do
2: For each i ∈ [M ], sample θ̂i

0 ∼ Beta(ai
0, b

i
0) and θ̂i

1 ∼ Beta(ai
1, b

i
1).

3: Choose an online algorithm mt ← arg maxi∈[M ](θ̂
i
0 + θ̂i

1) and observe two real-
valued payoff rmt(0) and rmt(1).

4: For ITS: Update posterior distributions
ai
0 ← ai

0 + rmt(0), bi0 ← bi0 + (1 − rmt(0))
ai
1 ← ai

1 + rmt(1), bi1 ← bi1 + (1 − rmt(1))
5: For DITS: Update posterior distributions

ai
0 ← γai

0 + rmt(0), bi0 ← γbi0 + (1 − rmt(0))
ai
1 ← γai

1 + rmt(1), bi1 ← γbi1 + (1 − rmt(1))
6: end for
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DITS We propose DITS as an extension of the ITS approach, aiming to adapt
it to handle non-stationary data streams. To achieve this, we employ a discount-
ing mechanism, specifically applied to ai

0, bi0, ai
1, and bi1 in line 5 of Algorithm 2,

enabling the method to forget outdated knowledge related to class 0 and class
1. The discounting factor plays a crucial role in addressing the dynamic changes
inherent in data streams within non-stationary scenarios by mitigating the influ-
ence of past observations. This forgetting strategy empowers DITS to select
algorithm i based on recent performance, thereby enhancing its adaptability to
evolving data streams.

Algorithm 3 WITS and WDITS
Input: M = A(Λ) candidate algorithms and hyperparameters, time-decay factor α.
Initialize: For each i ∈ [M ], ai

0 = bi0 = 1, ai
1 = bi1 = 1

1: for time steps t = 1, ..., T do
2: For each i ∈ [M ], sample θ̂i

0 ∼ Beta(ai
0, b

i
0) and θ̂i

1 ∼ Beta(ai
1, b

i
1)

3: Calculate st0 = αst−1
0 + Iyt=c0(1 − α) and st1 = αst−1

1 + Iyt=c1(1 − α)
4: if yt = 1 and st0 < st1 then
5: set l = st0/st1 and pi

t = (1 − l)θ̂i
0 + lθ̂i

1

6: else if yt = 0 and st0 > st1 then
7: set l = st1/st0 and pi

t = lθ̂i
0 + (1 − l)θ̂i

1

8: else
9: pi

t = θ̂i
0 + θ̂i

1

10: end if
11: Choose an online algorithm mt ← arg maxi∈[M ] p

i
t and observe two real-valued

payoff rmt(0) and rmt(1).
12: For WITS: Update posterior distributions

ai
0 ← ai

0 + rmt(0), bi0 ← bi0 + (1 − rmt(0))
ai
1 ← ai

1 + rmt(1), bi1 ← bi1 + (1 − rmt(1))
13: For WDITS: Update posterior distributions

ai
0 ← γai

0 + rmt(0), bi0 ← γbi0 + (1 − rmt(0))
ai
1 ← γai

1 + rmt(1), bi1 ← γbi1 + (1 − rmt(1))
14: end for

WITS and WDITS We further propose an adaptive weight tuning mechanism
according to the imbalance information within online environment and integrate
it into the ITS and DITS. WITS and WDITS are shown in Algorithm 3. The
pivotal feature of adaptive weight tuning mechanism works on sampled rewards
from two classes for each candidate algorithm, with making real-time adjust-
ments based on imbalance information at the recent data stream. This entails
allocating more weight to candidate algorithms within the search space that per-
form well in the minority class over time. To actively monitor real-time imbalance
information in an online setting, we employ the time-decay class probability [15].
This approach allows us to identify the minority/majority class and to quantify
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the current class size ratio between classes in the recent time step. At each time
step t, the size of each class is incrementally updated according to (1).

stk = αst−1
k + Iyt=ck(1 − α) (1)

In this equation, stk denotes the decaying size of class ck at time step t. The
indicator function Iyt=ck is equal to 1 if the true class label of xt is ck and 0
otherwise. The parameter α (0 < α < 1) serves as a predetermined time-decay
factor, with the intention of emphasizing the percentage of current class over
time while mitigating the influence of older instances. In our research, we assign
the labels 0 and 1 to c0 and c1, respectively. The time-decay class sizes for c0

and c1 are represented by st0 and st1, respectively.
The adaptive weight mechanism is presented in line 3 to 10 of Algorithms 3.

At any given time t, the time-decay class size, st0 and st1 are calculated (as
illustrated in Line 3), reflecting the recent class percentage for each class over
time in an data stream. This information is employed to assign weights. For
example, in the case of class 1, if the current instance belongs to class 1 yt = 1
and st0 < st1 (as highlighted in line 4), it signifies that class size 1 has a higher
percentage at the current time step. Consequently, the weight l is adjusted to
a smaller value, leading to a reduction in the weight assigned to the sampled
rewards for this class, denoted as θ̂i1 (as illustrated in line 5). In the case of
WITS (as shown in line 12), the posterior update is the same as in ITS. For
WDITS (as shown line 13), the posterior update involves forgetting outdated
knowledge.

5 Experiment

In this section, we design several experiments to investigate the effectiveness of
OAutoIDSL, focusing on three key research questions (RQ): (RQ1) How do they
perform on stationary data streams with different levels of class imbalance?
(RQ2) How do they perform on non-stationary data streams? (RQ3) How do
they perform on real-world data sets?

5.1 Experimental Setup

Data sets Two frequently employed synthetic data generators, SINE and
SEA [16], were utilized in our experiments. We designed diverse scenarios involv-
ing class imbalances, both with and without drifts, to assess the effectiveness
of the proposed methods. Furthermore, our experiment incorporates four real-
world data sets. These data sets span diverse domains, including finance bank-
ing, weather, and environment [8,16]. Specifically: 1) The Credit Card Frauds
(Frauds) data set comprises 492 frauds out of 284,807 transactions with IR–
0.172%. 2) The task of The Given Me Some Credit (GMSC) is to determine
whether a loan should be granted. The minority class constitutes approximately
7% of all borrowers in 120,269, excluding missing instances. 3) The Weather
data set aims to predict whether it will rain or not, with 5,698 instances of rain
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(minority class) and an IR of around 30%. 4) The Forest cover type (Covtype)
data set is transformed into a binary format known as Covtype34, where class
3 is designated as the majority (3,5754 instances) and class 4 as the minority
(2747 instances), resulting in an IR of approximately 7%.

Metrics and Evaluation The geometric mean (G-mean), renowned for its
insensitivity to class imbalance, is commonly utilized as a performance metric
in imbalance learning [16]. In the context of binary classification, the G-mean is
expressed as

√
(Recall 0) × (Recall 1), where Recall 0 represents the recall for

class 0 and Recall 1 signifies the recall for class 1. A higher G-mean suggests
that the algorithm achieves greater accuracy across all classes. The prequential
evaluation, also known as test-then-train, is commonly employed to evaluate
and compare methods in data streams. The instance is first used to test algo-
rithms before proceeding to update itself. Additionally, Wilcoxon Sign Rank
tests assesses the statistical significance of methods based on 30 runs in this
paper, with a significance level set to 0.05.

Candidate Ensemble Classification Algorithms in the Search Space
The search space of OAutoIDSL includes five prevalent online ensemble mod-
els specialised in imbalanced data stream learning. These algorithms are the
variations of online Bagging (UOB, OOB, OnlineUnderOverBagging) or online
Boosting (OnlineCSB2 and OnlineAdaC2) [14,15]. The key hyperparameters of
each of the algorithms are listed in Table 1. The performance of these models
is particularly sensitive to the types of base classifiers employed (i.e., Logis-
tic Regression-LR, Perceptron, Hoeffding Trees-HT, and Naive Bayes-NB) and
resampling techniques (i.e., time-decay factor, sampling rate, cost of negative-
Cp, and cost of false positive-Cn). They form part of the search space. The
default values of base classifiers are implemented within the online learning
library River [9].

Algorithms and Baselines Currently, there are no automated framework
specifically tailored to address the challenges of model selection and hyperpa-
rameter tuning for online algorithms designed to handle online imbalanced data
streams. Consequently, we conduct a comparative analysis, evaluating OAu-
toIDSL against various intuitive alternatives. We customize EvoAutoML’s search
space by using the classifiers in Table 1, for a fair comparison [6]. At each time
step, the algorithm with the highest performance is chosen for making predic-
tions. This assesses whether OAutoIDSL built upon TS-based techniques out-
performs EvoAutoML based on evolutionary optimization techniques. To study
the effectiveness of the four TS techniques, We integrate all four versions into
OAutoIDSL respectively, plus the original TS. Therefore, there are 5 versions of
OAutoIDSL in total that join the comparison.
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Table 1. The models and hyperparameters in the search space

Models Hyperparameters Values

UOB base classifier {LR, Perceptron, HT, NB}
time decay factor {0.5, 0.9}

OOB base classifier {LR, Perceptron, HT, NB}
time decay factor {0.5, 0.9}

UnderOverBagging base classifier {LR, Perceptron, HT, NB}
sampling rate {2, 5}

OnlineCSB2 base classifier {LR, Perceptron, HT, NB}
{(Cp,Cn)} {(1, 0.1), (1, 0.5)}

OnlineAdaC2 base classifier {LR, Perceptron, HT, NB}
{(Cp Cn)} {(1, 0.1), (1, 0.5)}

5.2 Stationary Data Streams

The objective of this experiment is to answer RQ1. SINE and SEA are used
to generate data streams characterized by four imbalance levels (i.e., 0.5%, 1%,
5%, and 10%), respectively. Each data stream consists of 100, 000 instances, with
class 1 designated as the minority class in this section. The decay factor γ and
α are set to 0.9 based on our initial experiments in this paper. We compare the
minority class recall and G-mean obtained in the final step across all methods.
Each approach is repeated 30 times on every data stream. The average recall and
G-mean in the final step showcase the ultimate prequential performance after
these methods process all instances over 30 runs. Their means and standard
deviations are shown in Table 2 and Table 3.

Table 2. The Final Step Recall 1 and G-mean on four data streams with varying IR
for SINE.

SINE-0.5% SINE-1% SINE-5% SINE-10%

Recall 1 EvoAutoML 0.5552±0.0484 0.6397±0.0276 0.8755±0.0218 0.7628±0.0631

TS 0.8501±0.0395 0.9164±0.0203 0.9781±0.0097 0.9907±0.0031

ITS 0.9071±0.0149 0.9591±0.0055 0.9898±0.0028 0.9964±0.0006

WITS 0.9013±0.0106 0.9450±0.0138 0.9913±0.0016 0.9939±0.0029

DITS 0.5832±0.0617 0.7109±0.0558 0.9595±0.0264 0.9936±0.0025

WDITS 0.6102±0.0442 0.6980±0.0403 0.9819±0.0083 0.9916±0.0032

G-mean EvoAutoML 0.6837±0.0240 0.7290±0.0134 0.7845±0.0145 0.7814±0.0169

TS 0.9045±0.0331 0.9547±0.0125 0.9884±0.0053 0.9950±0.0016

ITS 0.9508±0.0089 0.9789±0.0030 0.9945±0.0015 0.9969±0.0009

WITS 0.9364±0.0060 0.9549±0.0108 0.9944±0.0009 0.9957±0.0020

DITS 0.6803±0.0505 0.7300±0.0408 0.9726±0.0186 0.9953±0.0021

WDITS 0.7233±0.0376 0.7664±0.0295 0.9870±0.0063 0.9937±0.0023
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Table 3. The Final Step Recall 1 and G-mean on four data streams with varying IR
for SEA.

SEA-0.5% SEA-1% SEA-5% SEA-10%

Recall 1 EvoAutoML 0.6439±0.0479 0.6934±0.0141 0.9352±0.0014 0.9746±0.0017

TS 0.8246±0.0403 0.8598±0.0186 0.9645±0.0145 0.9777±0.0093

ITS 0.9013±0.0132 0.9603±0.0055 0.9861±0.0023 0.9946±0.0012

WITS 0.8938±0.0177 0.9470±0.0069 0.9811±0.0076 0.9962±0.0006

DITS 0.5050±0.0672 0.8291±0.0541 0.9718±0.0143 0.9907±0.0022

WDITS 0.7693±0.0469 0.8358±0.0395 0.9779±0.0074 0.9907±0.0061

G-mean EvoAutoML 0.7681±0.0007 0.7964±0.0091 0.9466±0.0002 0.9541±0.0002

TS 0.8942±0.0292 0.9255±0.0102 0.9809±0.0078 0.9877±0.0050

ITS 0.9434±0.0090 0.9794±0.0031 0.9895±0.0021 0.9958±0.0010

WITS 0.9288±0.0113 0.9562±0.0070 0.9852±0.0046 0.9976±0.0004

DITS 0.6314±0.0554 0.8432±0.0441 0.9775±0.0096 0.9929±0.0021

WDITS 0.7918±0.0341 0.8627±0.0282 0.9781±0.0086 0.9948±0.0032

In Table 2 and Table 3, it is evident that ITS consistently achieves high
performance in Recall 1 and G-mean. This finding is supported by our statis-
tical tests. For instance, at a 0.05 significance level, Wilcoxon Sign Rank tests
on Recall 1 in SINE-0.5% reject the null hypothesis that ITS and WITS per-
formance similarly with a p-value of 0.0206. This suggests that ITS achieves
better Recall 1 than WITS. Due to space constraints, p-values will be presented
for tests only when the methods we are concerned with show no significant dif-
ferences. WITS also performs well in several cases. For example, no significant
difference is found between ITS and WITS (p-value 0.9310) in terms of Recall 1
in SINE-5% and for Recall 1 (p-value 0.7188) in SINE-10%. Similarly, no sig-
nificant difference is observed in SEA-5% for Recall 1 (p-value 0.9183)) and in
SEA-10% for Recall 1 (p-value 0.0507)and for G-mean (p-value 0.0519). While
WITS obtains similar good performance in several cases, the weight mechanism
in the stationary scenario shows limited improvement. This implies that both
ITS and WITS tend to select similar models and hyperparameters over time.

In contrast to ITS, TS demonstrates inferior performance with increasing
severity of class imbalance. This phenomenon is attributed to its exclusive focus
on exploring and exploiting a single reward. Consequently, TS tends to favor
algorithms with strong performance in the majority class over time. Hence, the
imperative necessity of imbalance reward component design becomes apparent in
the domain of online CASH, particularly under the influence of imbalanced data
streams. Furthermore, the evolutionary optimization employed in EvoAutoML
manifests significantly inferior performance compared to other approaches in
most cases. This discrepancy might arise from EvoAutoML maintaining a small
pool and updating it at regular intervals via random evolution, leading to the
accumulation of more errors during the early exploration stage. In contrast, the
sequential decision-making employed in TS-based methods, which observes the
search space one-by-one over time, can alleviate this issue.
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5.3 Non-stationary data streams

In this section, we design two non-stationary scenarios to answer RQ2.

Data with a changing IR and fixed concepts Each data stream is still fixed
to have 100,000 instances. The IR is changed at time step 50,000 and from time
step 50,001, and we change the IR at a different speed (either an abrupt drift
where the old distribution is completely taken over by a new one, or a gradual
drift where the change lasts for 30,000 time steps). We consider a severe severity
where P (y = 1) changes from 0.01 to 0.99 because the changing IR does not
impact the true decision boundary of algorithms within the search space and
this ensures a more transparent evaluation of their impact on all approaches.
The subscripts a and g denote abrupt and gradual drift, respectively. Table 4
presents a comparison of recall and G-mean for all algorithms in the new data
distribution, specifically assessing performance during the time steps 50,001-
100,000 for abrupt changes and 80,001-100,000 for gradual changes. This analysis
explores whether our methods still maintain effectiveness in a changing IR and
fixed concepts environment. To ensure accurate assessments, the values are reset
to zero when the change starts and ends. In particular, class 0 transitions to a
minority class status after the changes in all cases.

In terms of G-mean, we can see that ITS attains the highest performance,
indicating its effectiveness in balancing the trade-off between the minority and
majority classes in the new data distribution. WITS excels in the performance
of the minority class in SINEa. Both DITS and WDITS demonstrate weak per-
formance, forgetting outdated knowledge showing limited improvement on the
changing imbalance. This suggests that the old configuration remains effective
in the new data streams distribution. The reason may be attributed to the deci-
sion boundary of models within search spaces remaining unchanged, rendering
new exploration and adaptation unnecessary. Conversely, EvoAutoML achieves
the worst performance, potentially due to passively continual evolution in the
optimization process, where excessive adaptation may not be necessary for these
types of changes. Additionally, we note that abrupt drifts have a more severe
impact than gradual changes on all methods.

Data with a fixed IR and changing concepts In this setting, we investigate
real concept drift with a fixed IR, signifying the coexistence of real concept drift
and class imbalance in data streams. The IR is set to a fixed 10% given that we
place a greater emphasis on the impact of concept changes. Class 1 is designated
as the minority class. SINEa involves a concept swap, while SINEg represents
a probabilistic occurrence of change. For a mild change, the data distribution
in SEAa is altered by controlling the threshold θ from 7 to 9.5. In SEAg, this
threshold moves linearly with continual changes. The SEAa and SEAg data
streams are less severe than SINEa and SINEg, as instances of the new data
distribution in the SEA data set still encompass some previous instances after
the threshold change ends.
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Table 4. Performance of all algorithms with a changing IR and fixed concepts: means
and standard deviation of Recall (class 0 and class 1) and G-mean over the new data
distribution.

Methods Recall 1 Recall 0 G-mean

SINEa EvoAutoML 0.9978±0.0004 0.0632±0.0104 0.2320±0.0319

TS 0.9893±0.0009 0.8711±0.0398 0.9171±0.0269

ITS 0.9998±0.0000 0.9857±0.0096 0.9923±0.0052

WITS 0.9831±0.0056 0.9932±0.0038 0.9881±0.0041

DITS 0.9533±0.0188 0.9041±0.0185 0.9250±0.0153

WDITS 0.9163±0.0256 0.9074±0.0264 0.9096±0.0251

SINEg EvoAutoML 0.9971±0.0010 0.0950±0.0251 0.2617±0.0539

TS 0.9987±0.0003 0.9895±0.0045 0.9940±0.0023

ITS 0.9999±0.0000 0.9981±0.0009 0.9990±0.0004

WITS 0.9487±0.0198 0.9870±0.0086 0.9656±0.0122

DITS 0.9575±0.0197 0.9081±0.0312 0.9235±0.0256

WDITS 0.9514±0.0218 0.9538±0.0209 0.9522±0.0209

SEAa EvoAutoML 0.9996±0.0001 0.6679±0.0166 0.8165±0.0101

TS 0.9958±0.0004 0.9140±0.0206 0.9519±0.0117

ITS 0.9998±0.0000 0.9855±0.0110 0.9921±0.0060

WITS 0.9198±0.0324 0.9689±0.0107 0.9408±0.0228

DITS 0.9942±0.0016 0.9300±0.0244 0.9588±0.0143

WDITS 0.9723±0.0150 0.9493±0.0197 0.9602±0.0169

SEAg EvoAutoML 0.9992±0.0002 0.8893±0.0074 0.9426±0.0039

TS 0.9999±0.0000 0.9930±0.0021 0.9964±0.0011

ITS 0.9999±0.0000 0.9981±0.0007 0.9990±0.0003

WITS 0.9936±0.0013 0.9959±0.0017 0.9947±0.0015

DITS 0.9958±0.0015 0.9900±0.0042 0.9929±0.0028

WDITS 0.9933±0.0036 0.9885±0.0062 0.9908±0.0049
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Table 5. Performance of all algorithms with a fixed IR and changing concepts: means
and standard deviation of Recall(class 0 and class 1) and G-mean over the new data
distribution.

Methods Recall 1 Recall 0 G-mean

SINEa EvoAutoML 0.7190±0.0295 0.7756±0.0329 0.7386±0.0080

TS 0.8752±0.0229 0.9471±0.0037 0.9081±0.0140

ITS 0.8499±0.0083 0.8553±0.0084 0.8526±0.0083

WITS 0.7007±0.0179 0.7434±0.0147 0.7216±0.0162

DITS 0.9719±0.0126 0.9768±0.0105 0.9743±0.0114

WDITS 0.9766±0.0119 0.9739±0.0107 0.9752±0.0113

SINEg EvoAutoML 0.7796±0.0938 0.6467±0.1512 0.6859±0.0526

TS 0.3860±0.0456 0.9668±0.0020 0.5714±0.0405

ITS 0.7638±0.0296 0.8211±0.0177 0.7876±0.0234

WITS 0.2428±0.0404 0.2775±0.0301 0.2469±0.0323

DITS 0.8815±0.0299 0.8103±0.0286 0.8358±0.0247

WDITS 0.6457±0.0071 0.4554±0.0238 0.5380±0.0146

SEAa EvoAutoML 0.9578±0.0017 0.9383±0.0010 0.9480±0.0012

TS 0.7646±0.0176 0.9989±0.0002 0.8722±0.0101

ITS 0.9148±0.0093 0.9945±0.0031 0.9534±0.0050

WITS 0.9121±0.0058 0.9886±0.0023 0.9494±0.0033

DITS 0.9878±0.0018 0.9950±0.0015 0.9914±0.0016

WDITS 0.9861±0.0043 0.9890±0.0053 0.9875±0.0048

SEAg EvoAutoML 0.9658±0.0024 0.9458±0.0010 0.9557±0.0014

TS 0.7312 ±0.0224 0.9985±0.0004 0.8514±0.0133

ITS 0.9288±0.0177 0.9972±0.0014 0.9608±0.0100

WITS 0.9646±0.0097 0.9880±0.0072 0.9760±0.0077

DITS 0.9886±0.0030 0.9933±0.0019 0.9909±0.0024

WDITS 0.9753±0.0048 0.9761±0.0054 0.9757±0.0049

Table 5 presents a comprehensive comparison of Recall and G-mean across
all methods in the new data distribution. As we anticipated, DITS constantly
achieves superior performance in all changing data scenarios. This superiority
might be attributed to the discounting of outdated knowledge mechanism in
DITS, enabling it to forget old knowledge and dynamically select the appro-
priate algorithm for new concepts after drifts. The real concept drift signifi-
cantly influences the decision boundaries of models within the search space. As
a result, the evolving performance of the models requires the online optimization
method to adaptively balance exploration and exploitation as the data concepts
change over time. In addition, there is no significant difference observed between
DITS and WDITS in SINEa, as indicated by p-values of 0.9913 for Recall 1
and 0.1156 for G-mean. Similarly, in SEAa, statistical tests between DITS and
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Table 6. Final step performance on the Real-world data sets displaying the mean and
standard deviation.

Methods Frauds GMSC Weather Covety34

Recall 1 EvoAutoML 0.2152±0.0542 0.3250±0.0411 0.5472±0.0110 0.7577±0.0438

TS 0.7701±0.0394 0.1794±0.0066 0.7163±0.0056 0.6614±0.0421

ITS 0.7880±0.0185 0.7285±0.0109 0.7146±0.0028 0.9691±0.0100

WITS 0.8084±0.0163 0.7525±0.0092 0.8191±0.0074 0.9485±0.0158

DITS 0.7269±0.0197 0.4721±0.0326 0.7016±0.0031 0.8742±0.0281

WDITS 0.7378±0.0188 0.4737±0.0145 0.7498±0.0028 0.8117±0.0238

G-mean EvoAutoML 0.3771±0.0365 0.4487±0.0211 0.6101±0.0037 0.76547±0.0091

TS 0.8702±0.0255 0.4179±0.0085 0.7693±0.0048 0.7852±0.0360

ITS 0.8819±0.0111 0.7532±0.0048 0.7434±0.0066 0.9815±0.0062

WITS 0.8273±0.0104 0.4643±0.0095 0.6531±0.0055 0.9474±0.0167

DITS 0.8419±0.0137 0.5927±0.0168 0.6754±0.0026 0.9046±0.0202

WDITS 0.8169±0.0086 0.3965±0.0107 0.6805±0.0025 0.8358±0.0197

WDITS reveal non-significant differences with p-values of 0.4223 for Recall 1 and
0.6883 for G-mean. Although WDITS also performs well in SINEa and SEAa,
its adaptive weight mechanism does not yield noticeable improvements in other
non-stationary environments. One possible reason is that we only consider the
fixed IR in new data distribution.

5.4 Real-World Data Sets

The aim of this experiment is designed to answer RQ3. We look into the perfor-
mance of all approaches on the four real-world data sets, as detailed in Sect. 5.1.
The means and standard deviations of the final step Recall 1 and G-mean, aver-
aged over 30 runs of all methods, are shown in Table 6. According to Table 6, we
can see that ITS achieves superior performance across most data sets in terms
of G-mean. TS achieves peak performance in the Weather data set, which can
be attributed to its less imbalanced degree (i.e., approximately 30%). Similar
results observed in Sect. 5.2 indicate that an imbalanced reward design might
not be necessary when the data set tends to be balanced. With regard to minor-
ity class performance, WITS consistently outperforms other methods in most
cases. Although the adaptive weight tuning mechanism emphasizes the selection
of suitable model performance and hyperaprametrs for the minority class, it may
come at the cost of sacrificing majority class performance.

6 Conclusions

In this paper, we propose a new online automated framework for handling class
imbalanced and non-stationary data streams, called OAutoIDSL. It integrates
improved TS to enable one-by-one learning and real-time predictions, while keep-
ing the classifiers robust to class imbalanced and time varying distribution. We
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evaluate the proposed approaches against EvoAutoML and TS by answering
three research questions outlined in Sect. 5. The key findings are as follows: a)
For stationary imbalanced data streams, ITS consistently obtains highest per-
formance, particularly when confronted with a high degree of class imbalance.
b) In non-stationary scenarios, ITS demonstrates significantly superior perfor-
mance for G-mean in settings involving a changing IR and fixed concepts. DITS
achieves the competitive performance with a fixed IR and changing concepts.
c) For real-world data sets, ITS surpasses other methods in G-mean across all
real data sets (IR below 30%), while WITS consistently exhibits superior per-
formance in minority class outcomes in most cases. In future work, we would
like to extend our research to a broader search space using online optimization
methods and investigate multi-class imbalance in online settings.
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Abstract. This study presents a novel method for constructing class-
oriented correlation filters, utilizing a unique integration of represen-
tation learning with phase-only autoencoders. Our proposed model
employs a specialized autoencoder architecture designed to handle phase
data effectively. The network is composed of dense layers and convolution
layers, arranged to optimally condense phase information into a com-
pact, low-dimensional representation, which is then used to reconstruct
the input while preserving essential phase relationships. This processed
information from the latent space is exploited to develop a correlation fil-
ter that is specifically tuned for class recognition, enhancing discriminant
phase-encoded features. To further refine the classification threshold, ker-
nel density estimation was employed, allowing for an empirical determi-
nation of decision boundaries based on the density functions derived from
high and low peak to sidelobe ratio values. We rigorously evaluate our
approach across benchmark datasets , YaleB and PIE, demonstrating
its superiority in classification accuracy over state-of-the-art frequency
domain and feature extraction methods. The effectiveness of our app-
roach is affirmed through extensive testing on face recognition under
varying lighting conditions.

Keywords: Autoencoders · Correlation Filter · Face Recognition

1 Introduction

Traditional representation learning techniques[1], especially those based on
autoencoders[23,28,29], have laid a robust foundation for feature extraction and
dimensionality reduction in image processing tasks, including face recognition.
However, these systems frequently encounter significant challenges under poor
lighting conditions[14,15], a prevalent issue that can drastically affect the relia-
bility and accuracy of identification processes.

Autoencoders, by design, are powerful tools for learning efficient represen-
tations through unsupervised learning, ideally preserving essential information
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while minimizing reconstruction loss[2]. Standard autoencoder architectures pre-
dominantly focus on amplitude information, which is highly susceptible to vari-
ations in image intensity and contrast[20]. This susceptibility often leads to
degraded performance when these models are deployed in environments with
inconsistent or poor lighting[21].

Recent studies[6,8–10] have highlighted the potential of integrating addi-
tional layers of complexity into autoencoder networks to address these illu-
mination challenges. For instance, advancements in convolutional neural net-
works (CNNs) and their integration into autoencoder[31] frameworks have shown
promise in enhancing feature stability across varying lighting conditions. Never-
theless, these approaches still fundamentally rely on amplitude-based features,
leaving them vulnerable to the inherent limitations of such data under subopti-
mal lighting conditions.

The phase spectrum of an image, conversely, carries crucial structural and
identity-specific information that remains comparatively invariant under changes
in illumination[21]. This aspect of image data is often underutilized in traditional
autoencoder designs. Motivated by this, our study proposes a novel approach
that pivots from the conventional amplitude-focused methods to a phase-oriented
strategy[11]. By using the robustness of the phase spectrum through a special-
ized autoencoder architecture, our model aims to mitigate the typical difficulties
associated with poor lighting.

1.1 Contributions of the Proposed Method

Unique Integration of Representation Learning with Phase-Only Autoencoders:
The unique feature of our approach is the incorporation of phase-only autoen-
coder architecture into the correlation filter design for each class. Unlike tradi-
tional methods that primarily focus on amplitude features, our approach empha-
sizes the phase spectrum of the images, which often carries critical structural and
identity-specific information that amplitude components might miss. This is par-
ticularly advantageous in pattern recognition tasks where phase components can
provide more discriminatory power.

Specialized Network Architecture Our approach involves two stages of autoen-
coders; output of the first stage (stacked encoder-decoder, SAE) is phase encoded
and applied as input to the second (convolution encoder-decoder,CAE), and
hence cascaded. Our proposed system is specifically designed to effectively map
the phase spectrum, which inherently spans a 0− 2π range, into the operational
range of the neural network and back. This ensures that the integrity of the
phase information is maintained throughout the process. Final stage utilizes the
reconstructed phase spectrum for frequency domain correlatrion.

Enhanced Class Discriminability: The low-dimensional, compact representation
of phase information yielded a correlation filter that is well-tuned for class detec-
tion, providing enhanced discriminant characteristics, which is evident from our
comparison trials.
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Hierarchical Feature Extraction: The cascading architecture allows for a layered
approach to feature extraction. First Level : focuses on capturing and compress-
ing the general features of the input images into a compact, class-specific rep-
resentation. The simplicity of this AE allows it to efficiently distill the essential
features without being biased towards the complex variations within the class.
Second Level: after the initial compression and feature distillation, the phase
spectrum of these representations is extracted and processed through a convo-
lutional autoencoder. The SAE excels in handling spatial hierarchies and local
features in data. It also excels at refining phase information, which is vital for
identifying similarities and differences in within and between classes.

Optimal Threshold Determination In traditional approaches to classification
within correlation filter frameworks, a fixed threshold[12,17] is often employed to
distinguish between classes. Despite being simple, this strategy can result in infe-
rior classification accuracy since it ignores the variability and overlap in distri-
bution between various classes. In order to overcome this constraint, we provide
a new approach in which the appropriate threshold is dynamically determined
from the distribution of average high and average low peak-to-sidelobe ratio
(PSR)[12] values using kernel density estimation (KDE). Our method uses KDE
to analyse the data instead of depending on a hard threshold[12,17,21]. The best
threshold for classification is found by using KDE to locate the intersection of
the probability density functions of high and low PSR values.

Section 2 elaborates the proposed methodology. Experimental results are
given in Sect. 3. The paper concludes in Sect. 4.

2 Proposed Methodology

A good representation is one that will yield a better performing classifier[25]. In
this paper we are interested in a good representation of x, the input vector. x
is a d dimensional random vector, in [0, 1]d. The primary concern of our work
is to find a good higher level representation y of x, where y in Rd′

and we
ensure the under-completeness as d′ < d. We also consider there is a mapping
from x to y through some probability distribution p(y|x; θ) parameterized by θ,
that we want to learn. We further restrict ourselves to a deterministic function
y = fθ(x), through which x is mapped to y. The deterministic mapping fθ that
transforms an input vector x into hidden representation y is called the encoder.
Its typical form is an affine mapping followed by a nonlinearity:

fθ(x) = r(Wx + b) (1)

where, r is the nonlinearity introduced in the affine transformation and taken as
ReLU activation. Its parameter set is θ = W,b, where W is a d′×d weight matrix
and b is an offset vector of dimensionality d′. The resulting hidden representation
y is then mapped back to a reconstructed d dimensional vector z in input space,
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z = gθ′(y). This mapping gθ′ is called the decoder. It’s typical form is again an
affine mapping optionally followed by a squashing non-linearity, that is,

gθ′(y) = s(W′fθ(x) + b′) (2)

where, the squashing nonlinearity used here as ’sigmoid’ activation function.
Here, z is not just the exact representation of x , but it represents a class rep-
resentative, probabilistically, the mean of the distribution of p(x|z; θ, θ′), where
z acts as a ’generator’, which generates x. So the likelihood of z with respect
to x in p(x|z; θ, θ′) should be maximized. This can be done by minimizing the
reconstruction error

J(x, z) ≈ − log p(x|z) (3)

If we set the choice of p(x|z) as Gaussian, then for real-valued x, that is, x ∈
Rd : x|z N (z, σ2I), i.e.,xj |z N (zj , σ

2). This yields

J(x, z) = L2(x, z) = C(σ2)||x − z||2 (4)

where, C(σ2) is constant and that can be ignored for the optimization of the
squared error loss. Though the interpretation is Gaussian, in our setting, as
z ∈ [0, 1]d , the squashing nonlinearity ’sigmoid’ is used in the decoder part.
The class specific reconstruction is shown in Fig.(1), where k = 3 and randomly
selected single image from all K - classes are reconstructed through the model
Θ(k=3), where Θ = {θ, θ′} is our previous discussion.

Fig. 1. Class specific reconstruction example. The model Θ
(k)
SAE is trained with only

class-3 images and all other class images are reconstructed through Θ
(k)
SAE . C − l − S

represents lth class sample and C − l − D stands for lth class decoding. Interesting
observation is that, C − 3 − S and C − 3 − D are same, as given in first row, 7th and
8th element.

2.1 Phase Encoded Convolutional AE

The phase spectrum in image processing is highly valuable because it encodes the
structural information and the relative positioning of objects in an image. It has
been shown in [21] that when reconstructing an image from its Fourier transform,
the phase information is much more crucial than the magnitude information.
Experiments where images are reconstructed using either only the phase or only
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the magnitude typically show that phase-only reconstructions retain more recog-
nizable features and structures, whereas magnitude-only reconstructions tend to
be unrecognizable and blurry. Another advantage of phase encoding is the phase
spectrum determines the location of edges and other sharp transitions in the
image content, which are essential for identifying objects and their boundaries.
Furthermore unlike the amplitude spectrum, which can change significantly with
variations in illumination and contrast, the phase spectrum is relatively invariant
to such changes. This property makes phase-based features ideal for applications
in environments with dynamic lighting conditions or where images are captured
under different exposure settings. Motivating with these advantages, the recon-
structed image z obtained from first stage of encoder-decoder combination, is
further Fourier transformed:

Z = F(Z) ∈ R
dx×dy (5)

and phase spectrum ejΦZ is extracted. The phase angles are further normalized
as :

ΦZn =
ΦZ(u, v) + π

2π
∈ R

dx×dy (6)

This normalization adjusts the phase values, shifting from a range of [−π, π]
to [0, 2π] and then scaling it down to [0, 1]. Since this is a direct, linear transfor-
mation, it does not introduce any additional noise or variability into the data.
The characteristics of the noise that might already be present in the phase data
remain unchanged. Also, relationships between phases, such as phase differences
and alignments, are preserved under this transformation. This preservation is
crucial in our application, where primary goal is image reconstruction, The nor-
malized phase spectrum ΦZn is then reshaped for input into subsequent convolu-
tional autoencoder (CAE)[3,18]. This reshaping typically includes adjustments
for batch size and the number of channels, depending on the specific architecture
of the network being used. The goal is to capture and reconstruct high-quality
features from images as well as suppressing the unwanted noise developed by
using phase only instances, if there is any. The proposed phase encoded CAE
has multiple advantages. CAE enhances the structural details like geometri-
cal and spatial properties. CAE can automatically learn spatial hierarchies[3]
of features from input phases ;ΦZn, making it an excellent choice for complex
patterns inherent in the phase spectrum. Due to the sharing of weights in con-
volutional layers, CAEs generally preserves the spatial locality as well as require
fewer parameters than fully connected networks of similar capacity. Moreover,
although phase information is generally robust to Gaussian noise, it can be sen-
sitive to high-frequency noise. This type of noise introduces rapid changes in the
phase, especially at higher frequencies where the amplitude might be low, lead-
ing to significant distortions in the phase spectrum. The CAE can potentially
ignore the high frequency noise , if present in the system (phase instances) and
focus on reconstructing the true underlying features of the input instances. This
leads to cleaner and more accurate class specific reconstructions. In CAE the
reconstruction is hence due to a linear combination of basic image patches based
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on the latent code[18]. For a mono channel phase information ΦZn, the latent
representation of the j − th feature map is given by

hj = r(Wj ∗ ΦZn + bj) (7)

A single bias is used for each latent feature map, allowing each filter to special-
ize in capturing features from the entire input. ∗ denotes the 2D convolution
operation. The reconstruction is obtained as

Φ̂Zn = s(
∑

j∈L

ΦZn ∗ W′
j + b′

j) (8)

where, L identifies the group of latent feature maps; W′ identifies the flip oper-
ation over both dimensions of the weights. The objective of the CAE is to min-
imize the difference between the input and the reconstructed phase spectrum,
mathematically expressed as:

J2 =
1
d

d∑

n=1

(ΦZn − Φ̂Zn)2

which is to be minimized.

2.2 Phase Cross Correlation

The cross correlation plane; G ∈ R
dx×dy , is obtained by the following operation:

G = (−1)x+yF−1(X ⊕ X ∗) (9)

where, X = F(X) and ∗ stands for complex conjugate. ⊕ represents element wise
product. Instead of full frequency domain representation, this work involves only
phase spectrum. Hence Eq.(9) will be modified as:

G = (−1)x+yF−1{exp(j(ΦZn)) ⊕ exp(−j(Φ̂Zn)} (10)

For perfect reconstruction, there is exact match between ΦZn and Φ̂Zn. The
cross power spectrum of these two, yield unit flat response in all frequencies.
The inverse Fourier transform F−1 with (−1)x+y ensures the δ(x, y)( dirac delta
function) representation in spatial domain.

For class specific representation, considering total K -classes, for a specific
kth class , all the above formulation will be modified as:

z(k) = s
(
W(k)′

fΘ(k)

(
x(k)

)
+ b(k)′)

(11)

where Θ(k) = W(k),b(k). With class specific representation z(k), equations cor-
responding phase reconstruction and cross correlation plane are rewritten as :

φ̂
(k)
Zn = s(

∑

j∈L

φ
(k)

Z(k)n
∗ W(k)′

j + b(k)′

j ) (12)
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and
G(kl) = (−1)x+yF−1{exp(j(Φ(k)

Z(k)n
)) ⊕ exp(−j(Φ̂(l)

Z(l)n
)} (13)

Interestingly, Eq.(13) represents a general correlation plane, where the nature
of G(kl) is governed by Θ(k) and X(l). This statement can be mathematically
expressed as :

G(kl) = δ(x, y) if k = l,

= random otherwise. (14)

Eq.(14) ensures class specific correlation filtering response from phase
encoded cascaded autoencoders. Detail block diagram is shown in Fig.(2).

activation : ReLU
padding : 'same'

Fig. 2. Block diagram of the proposed methodology. The blue arrow represents the
training case, and the red arrow represents the test case.

The decision surface in the correlation plane is based on PSR evaluation. The
evaluation of PSR is evaluated according to [13]. In general a hard threshold of
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PSR = 10 [12,13,21] is used to evaluate the performance of correlation filtering.
Instead of taking hard threshold, a new optimal PSR threshold is proposed here.

2.3 Determination of Optimal PSR Threshold

To objectively determine an optimal threshold for discriminating between high
and low PSR values, we employed KDE to model the probability density func-
tions of both distributions. KDE is a non-parametric way to estimate the prob-
ability density function of a random variable. Mathematically, KDE for a set of
points {xi} is defined as:

f̂h(x) =
1
n

n∑

i=1

Kh(x − xi) =
1

nh

n∑

i=1

K

(
x − xi

h

)

where K is the kernel, a non-negative function that integrates to one and
has mean zero, and h is the bandwidth, a positive parameter that controls the
degree of smoothing.

For our analysis, Gaussian kernels were utilized for both the high PSR val-
ues (representing true class identifications) and the low PSR values (representing
false class identifications). The KDE for each distribution was computed over a
common range of PSR values, spanning from the minimum to the maximum
observed values in our dataset. The intersection points of these two estimated
density functions were then calculated. These intersections represent PSR values
where the probability densities of the high and low PSR values are equal, provid-
ing a natural criterion for setting a threshold. We define the optimal threshold
T as the median of these intersection points, mathematically represented by:

To = median({x | |fhigh(x) − flow(x)| < ε})

where ε is a small tolerance level, set to 0.01 in our analysis, chosen to fine-
tune the precision of intersection detection.

This threshold To maximises the classifier’s ability to distinguish between
these outcomes using PSR data. This is verified through experimental results.

3 Experimental Results

3.1 Database and Setup

The PIE database[22] includes illumination subsets featuring 65 subjects, each
with 21 images (Fig. 3). All images are converted to grayscale and resized to
100×100 pixels. The extended YaleB database[7] comprises 30 individuals, each
with 64 differently illuminated grayscale frontal face images, resized to 64 × 64.
These images are resized to 64×64 pixels. To train the model Θ(k)

SAE , we selected
a subset of our dataset containing images from a known class. The training and
test sets were created by splitting this subset using an 70 − 30 train-test split.
Due to limited number of training images available in both the dataset, data
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augmentation technique is exploited to increase the number of training images
to train the models Θ(k)

SAE and Θ(k)
CAE . The SAE architecture consists of two

hidden layers with 512 and 256 neurons respectively. For training the model
Θ(k)

CAE , we focused on phase spectrum images, which were also resized to 64×64
pixels and normalized. Similar to the SAE, the dataset was split into training
and test sets using an 70 − 30 split. The encoder comprised three convolutional
layers with 32, 16, and 8 filters, each using 3 × 3 kernels.

Fig. 3. (a)Sample images of person-3 from the illumination subset of PIE database with
no background lighting.(b)Sample images of person-2 from YaleB database divided into
five subsets.

3.2 Experiments

A comparative study of the proposed method with other state-of-the-art filtering
techniques is reported here. As the decision process of the proposed system is
based on frequency domain correlation filtering, we compare the proposed system
with frequency domain filters like UMACE[17], MACH[24] and OTMACH[16];
experimented on both PIE and YaleB database. The UMACE filter is designed
using the equation hUMACE = D−1m, with parameters α = 0, β = 1, γ = 0.
Similarly, MACH and OTMACH are designed using hMACH = S−1m, with α =
0.2, β = 0.5, γ = 0.3, and hOTMACH = (αC + βD + γS)−1m, with α = 0.5,
β = 0.3, γ = 0.2, respectively.

PSR Distribution Analysis The proposed system is trained separately on both
the dataset. For each dataset each class is separately trained and tested on all
classes on respective set. Fig.(4) shows the PSR distribution for all classes from
PIE and YaleB dataset, while class-3 images are chosen for training for PIE and
class-5 for YaleB. The training classes are randomly chosen. PSR plot in Fig.(4)
shows the high discrimination capability of the proposed system; high psr values
corresponds to kth class (used for training) and low psrs correspond to rest of
the classes (l �= k) in the both the dataset. For the proposed system, the
classifier performance over all the classes in respective dataset can be evaluated
from PSR distribution. Towards this end, we formulated a 3D matrix Tklm (k
represents classifier index l represents class index and m represents image index,
where each class specific model (Θ(k)

SAE ,Θ(k)
CAE) is evaluated on each class (30

for YaleB and 65 for PIE) for all images, separately for both the dataset. Here
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Fig. 4. Left panel:PSR plot for all classes in PIE when class -3 is trained in the proposed
system. The demarcation is very much clear between kth class and rest ∀l classes. Right
Panel: PSR plot for all classes in YaleB when class -5 is trained in the proposed system.

k = 65, l = 65, n = 21 for PIE and k = 30, l = 30, n = 65, for YaleB. All the
elements of Tklm are the PSR values. Any slice from tensor Tklm, is the PSR
distribution of k th classifier. For a good classifier, the l th row of k th slice
should have very high PSR values iff l = k, and other rows of k slice should
have very low PSR values. Rest of the experimental results are based on these
two tensors TPIE

klm and TY aleB
klm . For simplicity we use TP and TY for PIE and

YaleB respectively. To measure the average high and average low PSR values
across all classifier we use the slices from TP and TY . For each slice, of TP or
TY , the average response of the PSR values are evaluated column wise and then
averaged over all the slices. This is done for all the state-of-the-art filters.

Average high and average low PSR values are plotted for both proposed sys-
tem and state-of-the-art UMACE filter. The distribution of PSRs for true and
false classes are well separated in both the case. But the proposed system shows
better discriminating capability as the mean squared distance from average high
PSRs to average low PSRs is much higher in case of proposed system than
standard UMACE filter. The distance obtained for UMACE filter is 90.4539,
whereas for proposed system it is 189.08, indicates better class separation char-
acteristics of proposed method.

Optimal Threshold Determination and Study of Confusion Matrix To optimize
classifier performance in identifying facial features within the Yale B and PIE
face database, we applied KDE to analyze the distribution of PSR values derived
from proposed algorithm. The histogram, illustrated in Fig.(8) shows the fre-
quency distribution of high and low PSR values. The KDE suggested an opti-
mal threshold of To = 20.36 for Yale and To = 27.04 for PIE, where the classifier
achieves a balance between sensitivity (true positive rate) and specificity (false
positive rate). Instead of taking a hard threshold, the following experiments are
performed on the basis of these two optimal threshold values(To). Fig.(6) shows
the effectiveness of choosing optimal threshold.
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Fig. 5. Average PSR distribution across all the classifiers in YaleB dataset experi-
mented over all 30 classes. The high and low psr distribution is shown for proposed
system and it has been seen that it is very much comparable to standard UMACE
filter while maitaining a greater margin.

Fig. 6. 3D Visualization of T3lm for PIE database. False alarms are reduced while
taking To = 27.04. This ensures the effectiveness of adaptive thresholding strategy of
the proposed method.

A comparative study has been performed in terms of confusion matrices,
with these thresholds. Fig.(7) shows the confusion matrices, with threshold =
10 as in [13]. Each confusion matrix shows the classification performance of each
classifier on each class. From Fig.(7), it is observed that the proposed system
suffers from high false alarms, and it is obvious as here the confusion matrix
is not evaluated on average low PSR values, rather each PSR values are taken
into account for calculation of TPR and FPR. Though %FAR =(0.98 to 1.77)
is very less for standard filters comparing to the proposed one, the %RR is also
poor and can not be appreciated as well. High %RR = 98.51 is obtained for
proposed system, but again the %FAR = 5.55 conceded by this is very high.
Another experiment is performed for evaluating the confusion matrix, shown in
Fig.(7), with To = 20.36 (for YaleB) and 27.04 for PIE. The observation from
Fig.(7) confirms that the proposed correlation filter achieves high recognition
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Fig. 7. (a) and (b),Confusion Matrices corresponding hard threshold = 10, for OTmach
and Proposed system is given. Proposed system has much false positive alarms, as well
as high TPR. Confusion Matrices (c) and (d) corresponding threshold To = 20.36. High
%RR and low %FAR is achieved in proposed method.

rate (%RR=93.81) with a very low false alarm (%FAR = 0.07). In comparison
to the proposed system, the standard filters, used in the experiment, are unable
to reach a descent %RR. Inference can be drawn from the confusion matrix is
that, for the proposed system a very sharp peak is obtained in the correlation
plane for the true classes, as well as a flat correlation planes, with no such peaks
are generated from false class images.
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Fig. 8. Histogram showing the distribution of high and low PSRs for (a) PIE (b)
YaleB. Suggested optimal thresholds obatined from KDE are 27.04 for PIE and 20.36
for YaleB.

Fig. 9. ROC curves for average classifier response on (a) YaleB and (b) PIE dataset.

Further experiment is conducted to plot receiver operating characteristics.
Fig.(9) shows the receiver operating characteristic curves for three different fil-
tering process. A prominent discrimination ability is observed for the proposed
approach, where ROC is almost traces a step function comparing to others; pro-
vides empirical evidence supporting the robustness of our classifier design and
deployment strategy.

Further the performance of the proposed method is compared with different
unconstrained correlation filters with only phase extension by setting different
optimal trade-off parameters for quad phase UMACE(QPUMACE), and phase
only UMACE(POUMACE). Table.(1) shows the %mean recognition rate with
%false acceptance rate for randomly selected images from different subsets of
Extended YaleB database. POUMACE is obtained as the full phase extension of
HUMACE i.e., HPOUMACE = ej∠HUMACE . In designing the QPUMACE filter, each
element in the filter array will take on ±1 for the real component and ±j for the
imaginary component. From Table.(1) it can be concluded that across all sets,
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the proposed system consistently exhibits higher recognition rates compared to
both phase extended unconstrained filters. There is comparatively high %FAR
in case of proposed system and that is due to high estimated PSR by adaptive
threshold selection.

Table 1. The % mean recognition rate along with the % far obtained by different
filters with thr = 20.36 as obtained from estimation.

Filters QPUMACE POUMACE Proposed

(%rec, %far) (%rec, %far) (%rec, %far)

Set-1 71.1, 0.00174 76.4, 0.0012 92.22, 0.16

Set-2 69.37, 0.0086 73.9, 0.00257 91.06, 0.02

Set-3 82.96, 0.0086 87.5, 0.002431 94.68, 0.07

Set-4 87.65, 0.0026 91.56, 0.0078 97.65, 0.053

Set-5 73.9, 0.0069 82.03, 0.0023 98.59, 0.089

Table.(2) shows the comparative study where we evaluate the performance
of a proposed phase-encoded autoencoder method for different subsets from
Extended YaleB, in comparison with several state-of-the-art feature extrac-
tion methods. The proposed phase-encoded autoencoder method shows superior
performance in most subsets, achieving an overall average recognition rate of
97.59%, which is notably higher than most compared methods.

Table 2. Comparative study of proposed method with state-of-the-art feature extrac-
tion methods in terms of recognition rates (%) on Extended Yale-B datasets for different
subsets. Best result shows in bold face, second best result shows in blue.

Methods Subset-5 Subset-4 Subset-3 Subset-2 Subset-1 Average

Zhang,T.[30] 96.5 96.8 88.1 85.9 87.4 90.94

Wang,B.[26] 95.6 94.6 89.5 91.3 93.7 92.94

Chen,W.[5] 95.4 96.5 99.1 87.5 86.8 93.06

Chen,T.[4] 99.8 98.5 95.4 95.4 92.4 96.3

Wang,H.[27] 95.4 92.6 90.3 95.8 93.7 93.56

Ojala,T.[19] 99.1 98.8 96.5 93.7 94.7 96.56

Proposed 99.18 98.5 98.3 98.3 93.7 97.59

Discussion The proposed system uses phase-only reconstruction to enhance face
recognition in varying lighting conditions, leveraging the phase spectrum’s ability
to capture structural information without being affected by illumination changes.
This approach provides a more robust and stable method compared to traditional
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filters that utilize both phase and magnitude. By focusing solely on the phase, our
method identifies key features for class differentiation overlooked by amplitude-
based techniques. The optimized correlation filter demonstrates superior perfor-
mance in recognizing distinct facial expressions, outperforming amplitude-based
and hybrid methods in comparative tests. This makes it particularly effective
for applications like outdoor biometrics and mobile face recognition.

4 Conclusion

In this study, a novel method is proposed for constructing class-oriented cor-
relation filters by integrating representation learning with phase encoded cas-
caded autoencoders. Our model demonstrated superior classification accuracy
compared to state-of-the-art frequency domain methods, as evidenced by the
optimal threshold selection. The proposed system showed a significant improve-
ment in class separation, as indicated by a larger mean squared distance between
average high and low PSR values compared to standard methods. The proposed
method provides a natural criterion for setting a threshold. The limitations of the
proposed method primarily arise from its handling of pose variations and head
orientations. Although effective at accommodating translational shifts, phase-
only reconstructions are less adept at processing other types of transformations,
such as rotations, scaling, or deformations. These non-translational variations
can disrupt the continuity of phase information, thereby reducing the correla-
tion process’s accuracy. This limitation highlights how the method may struggle
when dealing with dynamic or complex movements within the visual field. Look-
ing ahead, future enhancements could focus on improving the method’s robust-
ness to non-translational changes, such as rotations and scaling, which would
broaden its applicability and accuracy in more dynamic environments.
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Abstract. Deep learning models have significantly improved the accu-
racy of crop classification using multispectral temporal data. However,
they have complex structures with numerous parameters, requiring large
amounts of data and costly training. In low-resource situations with fewer
labeled samples or on low-computing devices, they perform poorly. Con-
versely, compressors are data-type agnostic, and non-parametric meth-
ods do not bring underlying assumptions. Inspired by this insight, we
propose a non-training alternative to deep learning models, aiming to
address these situations. Specifically, the symbolic representation module
is proposed to convert the reflectivity into symbolic representations. The
symbolic representations are then cross-transformed in both the chan-
nel and time dimensions to generate symbolic embeddings. Next, the
Multi-scale Normalised Compression Distance (MNCD) is designed to
measure the correlation between any two symbolic embeddings. Finally,
based on the MNCDs, high quality crop classification can be achieved
using only a k-nearest-neighbor classifier (kNN). The entire framework
is ready-to-use and lightweight. Without any training, it outperforms,
on average, 6 advanced deep learning models trained at scale on three
benchmark datasets. It also outperforms more than half of these models
in the few-shot setting with sparse crop labels.

Keywords: Non-training classification · Low-resource · Symbolic
representation · Cross-transformation method · Lossless compressors ·
Nomalised compression distance

1 Introduction

Multi-spectral temporal classification of crops plays a crucial role in growth mon-
itoring, pest forecasting, crop yield estimation, and other agricultural applica-
tions. This helps enhance the efficiency and quality of agricultural production [1].
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However, multi-spectral temporal data typically appears as a high-dimensional
feature space with numerous features. Redundant information can restrict data
fitting and representation capabilities [13].

Deep learning can automatically extract features from high-dimensional data,
providing extensive opportunities [15]. In the past decade, various neural net-
work structures have been extensively researched, including networks based on
multilayer perceptrons (MLP), convolutional neural networks (CNN), recurrent
neural networks (RNN), and Transformer-based networks. Specifically, a method
called Long-term Recurrent Convolutional Networks (LRCN) proposed by Don-
ahue et al., which combines the strengths of CNN and RNN. By incorporating
Long Short-Term Memory (LSTM) units, it is capable of establishing long-term
temporal dependencies [4]. Next, Jia et al. developed a spatiotemporal learn-
ing framework based on a dual-memory structure of LSTM. This framework
further extends the performance of LSTM. It enables LSTM to establish tem-
poral dependencies and spatial relationships between long-term and short-term
events in time and space [9]. Furthermore, Xu et al. developed a deep learning
method named DeepCropMapping (DCM) model. This model is based on the
Long Short-Term Memory structure with an attention mechanism. The DCM
model is trained on ARD time series data, allowing it to learn generalizable
features during the training process [24]. Unfortunately, these models require
significant computational resources and time, leading to challenges in processing
long time series data. To address this challenge, Zhou and colleagues introduced
the Informer model. It is based on transformer architecture and significantly
improves the speed of long time series prediction [27]. Additionally, Nie et al.
created the PatchTST model. The model significantly enhances the classifica-
tion results of long-term prediction [16]. Meanwhile,Liu et al. introduced the
iTransformer model, showcasing superior technical capabilities across various
real-world datasets. The iTransformer model demonstrates high performance
and strong generalization abilities,and it is highly effective for time series pre-
diction [14]. Currently, in the field of multivariate time series prediction, deep
learning models such as CNNs, RNNs, and Transformers have all achieved highly
advanced performance. However, in recent research, Zhang et al. introduced the
LightTS architecture, which is a method that does not require any convolution
or attention mechanisms. This study is the first to demonstrate that an MLP-
based structure can also be highly efficient and accurate in multivariate time
series prediction [26].

Although these backbone networks and their variants have achieved satisfac-
tory classification accuracy, there are still shortcomings in the following aspects:
(1) Deep learning models exhibit high complexity. They require a significant
investment of resources during the training process and have a massive number
of model parameters [26]; (2) The cost of labeling for deep learning models is
high. Obtaining the necessary data requires a significant investment in profes-
sional labor and resources. In the few-shot scenario with sparse labels, the perfor-
mance of deep learning models is not satisfactory [24]. Compressors are data-type
agnostic, and non-parametric methods do not bring underlying assumptions [10].
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These features can effectively address the aforementioned problems. Inspired by
this, the proposed Symbolic Representation Module is used to convert the reflec-
tivity of all pixels into symbol representations. The symbolic representations are
then cross-transformed in both the channel and temporal dimensions to gener-
ate symbolic embeddings. Next, the Multi-scale Normalised Compression Dis-
tance (MNCD) is designed to measure the correlation between any two symbolic
embeddings. Finally, based on the MNCDs, classification is implemented using
only a kNN. Our method revolves around simple lossless compressors. It offers
advantages such as no trainable parameters and a lightweight structure, ensuring
its wide practical application.

To sum up, contributions of this research are:

– We treat a pixel as ‘text’ and introduce compressor-based classification from
text classification to multispectral temporal crop classification.

– A Symbolic Representation Module is proposed to convert the reflectivity
of pixels into symbolic representations. Based on the symbolic representa-
tions, a method of cross-transformation in time and channel dimensions is
then proposed to generate symbolic embeddings. The Multi-scale Normalised
Compression Distance (MNCD) is then designed to measure the correlation
between any two symbolic embeddings for subsequent classification.

– The entire framework is ready-to-use and lightweight. Without any training,
it outperforms the average of 6 advanced deep learning models trained at
scale on three benchmark datasets. It performs exceptionally well in few-shot
scenarios, where the availability of labeled data is limited for effective neural
network training.

2 Materials and Methods

2.1 Data Description

Following the previous study [19], we choose three benchmark datasets to evalu-
ate the performance of all methods. The German dataset [18] covers a densely
cultivated area of 102 × 42 km2 north of Munich, Germany. It contains 17 differ-
ent categories with 13 spectral bands. The T31TFM-1618 dataset [20] covers
a densely cultivated S2 tile in France for the years 2016 to 2018 and includes 20
different categories with 13 bands. The PASTIS dataset [6] contains four dif-
ferent regions in France, covering over 4000 km2 and including 18 crop categories
with 33-61 acquisitions and 10 bands.

For each of the three datasets, we identify areas that are not heavily clouded
80% of the time and exclude those that are. We also exclude background cat-
egories and those with less than 5 samples. In addition, due to the different
resolutions of the different bands in the T31TFM-1618 dataset, we uniformly
interpolate all bands to a maximum resolution of 48×48 pixels. Following pre-
vious studies on temporal classification [22], 20% of the pixel points from each
crop type are randomly selected for the training dataset in the main experi-
ment, while the remaining pixels are assigned to the test dataset. This leaves
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Fig. 1. These time series are discretized by using predetermined breakpoints B to map
the reflectivity to symbols. In the example above, with l = 4, the time series of band
1 is mapped to cdcdcbc and the time series of band 2 is mapped to bababaa.

20k training and 80k testing samples for the German dataset, 40k training and
170k testing samples for the T31TFM-1618 dataset, 15k training and 61k testing
samples for the PASTIS dataset, covering 266,36 ha land totally. To ensure the
reproducibility of these experiments, we use a random seed of 32.

2.2 Design of Our Method

Symbolic Representation Module Lossless compressors are used in data
storage and transmission scenarios. Their principle is to identify redundant infor-
mation (such as repeated strings or symbols) in the data and replace it with a
shorter representation, making them more suitable for data in symbolic form.
Related research [13] has also demonstrated the effectiveness of converting time
series into symbolic representations. Inspired by this, we propose a simple and
general module for symbolic representation.

Specifically, we first define an alphabet α with up to 26 lowercase letters and
26 uppercase letters, where αk represents the kth element of the alphabet, such
as α1 = a, α2 = b, ..., α27 = A. At the same time, the maximum and minimum
values of the reflectivity in all pixels are obtained, namely max and min. Then,
the reflectivity interval [max, min] is divided into l equal intervals to obtain
breakpoints B, as shown below:

B = [β1, . . . , βi, . . . , βl+1], (1)

where l represents the length of the alphabet α, β1 = min, βn+1 = max, and
βi+1 − βi = max−min

l .
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Fig. 2. An illustrative description of cross-transforming in the time and channel dimen-
sions to obtain multi-scale NCD dpq between pixels Sp and Sq after symbolic represen-
tation.

Once the breakpoints are determined, any reflectivity can be mapped to
a symbolic representation. Given a pixel x ∈ R

t×c in the original data X ∈
R

h×w×t×c (where h is the height of the images and w is the width, t is the time,
and c is the number of channels) , the symbolic representation value sij of any
reflectivity xij can be obtained by the following mapping operation:

sij = αk, if βk ≤ xij < βk+1. (2)

For example, all reflectivities greater than or equal to the first breakpoint
β1 and less than the second breakpoint β2 are mapped to the symbol a; all
reflectivities greater than or equal to the second breakpoint β2 and less than the
third breakpoint β3 are mapped to the symbol b. The rest can be inferred by
analogy. Figure 1 shows the details of this module. This mapping converts the
reflectivity of all pixels into symbolic representations that are more suitable for
compressors.

Compressor-Based Crop Classification Previous work combines band data
at different time points for a single pixel to obtain information about the
pixel [24]. Our method not only continues to use this time-series band com-
bination, but also introduces a new dimension: combining data from the same
pixel in different bands in chronological order. Then, by combining these two
data sequences, we

can more comprehensively describe the characteristics of a single pixel.
Specifically, given a pixel after symbolic representation s ∈ R

t×c, the follow-
ing modeling is given:

S = f(s) = concat
(
s1, . . . , sc, sc+1, . . . , sc+t

)
, (3)
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where the function f(·) is the cross-transformation method of s. The function
concat(·) denotes the concatenation operation of the symbolic representation. S
stands for the symbolic embedding of s. For any si it holds that:

si =

{
[s1i, s2i, . . . , sti], if 1 ≤ i ≤ c
[
s(i−c)1, s(i−c)2, . . . , s(i−c)c

]
, if c < i ≤ c + t.

(4)

The above cross-transformation can be easily achieved using methods such
as numpy.reshape() and numpy.concatenate(), which are based on numerical
computing libraries such as NumPy.

For any two pixels xp and xq, the regularity between them can be measured
by the correlation between their corresponding symbolic embeddings, Sp and
Sq. And the regularity between two symbolic embeddings can be measured by
the Nomalised Compression Distance (NCD) [12] of lossless compressors. Loss-
less compressors optimise the representation of information by assigning shorter
codes to more frequent symbols. The idea is that: (1) compressors are good at
capturing regularities; (2) objects within the same category exhibit more regu-
larities than those from different categories [10].

Quantifying this regularity as dpq, its definition is as follows:

dpq = g(Sp,Sq) =
1

c + t

c+t∑

k=1

NCD
(
sk
p, s

k
q

)
, (5)

where the function g(·) represents the operation of Multi-scale NCD (MNCD)
for Sp and Sq, and dpq represents the MNCD between Sp and Sq. The definition
of NCD is as follows:

NCD(m,n) =
C(m||n) − min{C(m), C(n)}

max{C(m), C(n)} , (6)

where C(m) denotes the length of m after compression using a lossless compres-
sor. C(m||n) refers to the compressed length of m and n after being concatenated.
This method can compute the MNCD between any symbolic embedding in the
training set and symbolic embedding in the test set, and then construct a MNCD
matrix. Finally, kNN is used to classify each symbolic embedding in the test set.

It is worth noting that when using a kNN, if k > 1, there may be situations
where the number of samples from several different categories is the same among
the k closest samples. To break the tie, we suggest finding the training set sample
with the smallest NCD from the test sample among these categories. Then, the
category of this training set sample will be used as the predicted category for
the test sample. The code for the entire method is presented as Algorithm 1.

2.3 Implementations Details

The proposed framework uses gzip as the compressor. Under the premise of
symbolic representation, the alphabet lengths l for the three datasets are all set
to 22. The k value of kNN is set to 2. These parameters will be discussed in the
subsequent Analyses section.



196 W. Cheng et al.

Algorithm 1 Compressor-Based Crop Classification
Require: Test set E, Training set T with labels L, number of nearest neighbours k,

compression function C(·)
Ensure: Predicted labels for all symbolic embeddings in E
1: for each symbolic embedding S1 in the test set E do
2: Initialize DS1 as an empty list
3: CS1 ← C(S1)
4: for each symbolic embedding S2 in the training set T do
5: CS2 ← C(S2)
6: CS1||S2 ← C(S1||S2)
7: Compute d12 based on the Eq. 5
8: Append (d12, label of S2) to DS1

9: end for
10: Yk ← labels of the k nearest neighbors by sorting DS1 based on distances
11: Compute the frequency of each unique label in Yk: fi =

∑k
j=1 I(Yj = i), where

I(·) is the indicator function
12: Find the set of labels with maximum frequency: M = {i : fi = maxj fj}
13: if |M| > 1 then
14: i∗ ← label of the sample in M with the smallest distance in DS1

15: else
16: i∗ ← the single element in M
17: end if
18: Assign i∗ as the predicted label for S1

19: end for

2.4 Baselines

Several representative deep learning models are selected for comparative experi-
ments. They are mainly divided into four groups: MLP-based, RNN-based, CNN-
based and Transformer-based. We select both classic baselines and state-of-the-
art (SOTA) models. The MLP-based category includes MLP and DLinear [25].
The RNN-based category includes Long Short-Term Memory (LSTM) [8] and
DeepCropMapping (DCM) [24]. The CNN-based group includes TempCNN [23]
and TimesNet [22]. The Transformer-based category includes Transformer [21]
and Informer [27]. The parameters specific to these models are as follows and all
models have converged in both the complete dataset and the few-shot settings:

For the MLP, we configure it with a single hidden layer of 128 neurons,
a batch size of 32, and an initial learning rate of 0.001. We implement early
stopping with a patience of 10 iterations and a validation fraction of 0.1, along
with a maximum of 100 training epochs. The same configuration is used for the
MLP in the few-shot setting.

For the DLinear, DCM, TimesNet and all Transformer-based models, we
follow the optimal hyper-parameters recommended in the previous studies and
corresponding repositories. Specifically, the batch size is set uniformly to 36, the
dropout rate to 0.5, the number of epochs to 100 and the patience for early
stopping is set to 10. In terms of model architecture, DLinear consists of three
encoder layers and one decoder layer, each featuring a 256-dimensional feed-
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forward network. DCM, an attention-based bidirectional LSTM model, includes
2 LSTM layers with a hidden size of 256. The Transformer model is supported by
three encoder layers and one decoder layer, also emphasizing a 256-dimensional
feed-forward network. Similarly, Informer includes three encoder layers and one
decoder layer. The same configuration is used for these models in the few-shot
setting.

For the LSTM and TempCNN models, we follow the optimal hyperparam-
eters recommended in the paper by Rubwurm et al. [17] and its corresponding
repository. Specifically, the bidirectional LSTM stacks 4 layers with 128 hidden
units. The learning rate is set to 9.88 · 10−3 with a decay rate of 5.26 · 10−7, and
the number of epochs is 17. TempCNN uses a kernel size of 7 with 128 hidden
units, a learning rate of 2.38 · 10−4, a decay rate of 5.18 · 10−5 and 11 epochs.
For the few-shot setting, the number of epochs for the three models has been
increased to 200 and 100.

2.5 Evaluation Metric

We evaluate the classification performance of each model based on two
commonly-used indices, i.e., overall accuracy (OA), Mean Intersection over
Union (MIoU). Specifically, the OA is the percentage of all correctly predicted
instances in the dataset. The MIoU is the average ratio of overlap to union for
predicted and actual segments

3 Results

3.1 Comparison with Deep Learning Models

The quantitative classification results in terms of OA and mIoU are shown in
Table 1 for three datasets. Overall, the classification performance of the pro-
posed method is significant. In terms of OA, it outperforms 5, 8 and 5 deep
learning models on three datasets respectively. In particular, it outperforms all
MLP-based and RNN-based models, demonstrating excellent classification per-
formance. On the German dataset, however, it is not only 2.14% lower on aver-
age than the CNN-based model, but also 1.30% lower than the Informer. The
performance gap is similar on the PASTIS dataset. A possible reason for this is
that both CNN-based and Transformer-based models are able to learn high-level
representations over time [22], which is crucial for classification tasks. However,
such a result is acceptable given that our method can compete with massively
trained deep learning models without any training. This is not always the case
on the T31TFM-1618 dataset. The classification performance of our method
outperforms all deep learning models. Compared to the CNN-based models and
Transformer-based models, it averages 1.34% and 0.51% higher on OA, demon-
strating excellent performance.

We also select a representative plot in Figure 3 with many boundaries and
small fragmented fields, which thoroughly tests the classification capabilities of
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Table 1. Classification results obtained with our method and baseline models. Red
highlights the models that outperform our method.

model trainable parameter German T31TFM-1618 PASTIS

OA AA mIoU OA AA mIoU OA AA mIoU

MLP MLP ✓ 69.62 52.00 34.24 68.49 44.37 31.11 92.06 67.68 60.40

DLinear ✓ 68.41 84.38 40.34 77.18 70.54 63.36 84.58 93.19 64.08

RNN LSTM ✓ 97.41 96.41 91.59 90.99 81.33 75.69 97.37 96.08 92.03

DCM ✓ 97.57 96.32 94.06 81.91 79.00 72.13 98.29 97.05 95.12

CNN TempCNN ✓ 98.61 97.79 96.18 95.74 92.26 88.66 98.67 98.23 96.47

TimesNet ✓ 98.75 98.19 96.56 96.68 95.40 92.87 99.08 97.26 97.03

Transformer Transformer ✓ 97.47 96.37 92.66 96.71 95.73 91.23 98.32 98.20 94.93

Informer ✓ 98.91 98.40 96.82 96.54 95.68 91.10 98.92 98.38 96.81

Ours ✗ 97.61 96.89 94.10 96.88 95.42 91.43 98.37 97.64 95.39

Fig. 3. Classification maps obtained from different models on a typical plot.

models. It is evident that the first four models easily make a lot of misjudge-
ments, resulting in significant salt-and-pepper noise. In addition, the classifica-
tion performance at the boundaries is rather coarse. In contrast, CNN-based
models, Transformer-based models and our method show significant advantages.
The boundaries are smoother and more refined, with almost no large-scale mis-
classifications. Considering that our method achieves classification performance
comparable to deep learning models without requiring any training, it demon-
strates significant advantages and practical value.

3.2 Few-Shot Learning

We also compare our method with deep learning models in the few-shot
setting across three datasets. Following the method of Jiang et al. [11], we use
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Fig. 4. Confusion matrix for 50-shot crop classification results on the T31TFM-1618
dataset.

n-shot labeled examples per category from the training dataset, where n sets to
50, 20, 10, 5. To ensure the robustness of our results, we run the experiment five
times, using a different random seed to select the subset for each run. We then
calculate the mean and 95% confidence intervals over the five trials. The five
random seeds used are 2024, 21, 32, 400 and 47. The detailed results are listed
in the Table 2.

As shown in Figure 4, the proposed method outperforms more than half of
the deep learning models. Specifically, when n is set to 50, it significantly out-
performs RNN-based and MLP-based models, while its performance is slightly
lower than other SOTA models such as TimesNet and Informer. As n decreases
to 20, it outperforms the Transformer by 0.13% in mIoU on the German dataset.
However, it lags slightly behind other Transformer-based models. As n decreases
further to 10, it widens its performance gap with RNN-based and MLP-based
models, although it trails CNN-based models in mIoU by an average of 24.51%
over the three datasets. This is consistent with the results of the Vision Trans-
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Table 2. Results with a 95% confidence interval over five trials at different few-shot
settings.

Models mIoU (%)

German T31TFM-1618 PASTIS

50-shot 20-shot 10-shot 5-shot 50-shot 20-shot 10-shot 5-shot 50-shot 20-shot 10-shot 5-shot

MLP 42.23±8.91 26.91±6.39 18.93±6.31 4.67±4.89 24.08±1.77 15.31±4.50 7.22±3.50 2.94±1.31 34.45±15.21 10.15±11.34 2.51±2.96 3.17±2.94

DLinear 27.25±1.14 39.45±0.52 27.55±20.64 9.24±3.06 16.92±0.60 9.57±0.62 5.59±2.03 4.41±1.81 47.39±3.78 49.23±23.63 21.57±5.29 23.97±27.15

LSTM 52.91±7.85 41.08±1.46 29.62±5.69 19.78±2.40 27.00±1.86 21.50±3.77 17.29±2.98 12.57±2.36 70.14±2.15 54.97±5.35 45.75±8.28 34.50±9.32

DCM 46.12±3.36 23.36±1.99 12.46±4.91 9.21±0.97 23.95±2.14 17.61±0.82 9.77±2.60 4.84±3.44 59.96±4.14 39.32±3.40 36.78±2.81 16.82±4.84

TempCNN 70.66±3.16 56.43±4.05 43.72±5.99 31.40±2.08 40.48±2.41 30.73±3.03 25.02±2.55 21.02±2.83 75.59±1.95 57.51±4.15 42.53±1.49 29.18±3.27

TimesNet 52.99±4.73 44.37±2.53 57.11±19.53 19.42±2.79 33.12±2.13 26.92±2.35 21.02±2.50 16.34±2.12 71.82±3.41 61.57±6.87 74.68±18.21 34.49±5.17

Transformer 54.14±7.82 39.34±3.09 23.83±2.59 16.69±1.58 29.52±1.18 24.22±2.31 19.51±1.67 14.13±2.04 74.34±3.49 58.70±4.47 41.10±4.72 28.74±3.93

Informer 54.03±2.08 39.68±4.10 24.40±3.10 17.60±0.76 30.51±1.06 24.77±2.45 19.24±1.28 12.87±1.80 72.40±3.37 57.80±3.25 42.70±4.59 28.33±2.65

Ours 50.25±2.83 39.47±2.34 33.78±3.77 28.52±2.19 32.26±0.68 25.36±1.87 20.37±1.09 16.98±1.08 62.63±2.21 49.31±2.88 41.13±2.06 33.93±3.57

former [5], which shows that the CNN-based models perform better in the few-
shot setting. It is worth noting that when n falls to a minimum value of 5, our
method outperforms almost all deep learning models on the three datasets. It is
on average just under 3% lower than TempCNN or TimesNet. As the value of
n gradually decreases, the advantage of our method becomes more pronounced.
This may be because compressors are data type agnostic and non-parametric
methods have no underlying assumptions [10].

4 Analyses

Due to the low compression speeds resulting from pure numerical mapping and
the inherently low compression speeds of the bz2 compressor, we randomly sam-
ple 20% of the total dataset for all experiments in this section. Half of this subset
is divided as the training set and the other half as the test set. To ensure the
generalisability of the experiment, we repeat it five times, randomly selecting a
different subset each time and then calculating the average of the five results.
The five random seeds are 2024, 21, 32, 400, 47.

4.1 Different Alphabet Lengths

In the experiment, classification is performed by one group using pure numerical
mapping, while the other group utilizes symbolic representation. The alphabet
length starts at 2 and increases in increments of 5 up to 52 (including 26 lower
case and 26 upper case letters). Figure 5 illustrates the effect of different map-
pings and different alphabet lengths on the classification results.

Compared to the symbolic representation mapping, the purely numerical
mapping results in a worse classification performance. The mIoU is approxi-
mately 46%, 80.71% and 26.34% lower on the three datasets respectively (exclud-
ing the case where the length of the alphabet l is equal to 2). One possible reason
for this is that the compressor gzip, which is widely used in the text domain [11],
is more adept at capturing patterns in symbolic representations. However, purely
numerical information is not the same as character patterns.

When symbolic representation mappings are used, mIoU initially shows an
upward trend. A possible reason for this is that rich features are lost when the
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Fig. 5. Results on three datasets for different alphabet lengths.

Fig. 6. Results on three datasets for different compressors. ‘zstd’ denotes the zstandard
compressor.
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variety of letters is too small. When the alphabet length exceeds 7, mIoU fluctu-
ates within a range of no more than 3%, indicating relatively stable performance
overall. This also demonstrates the robustness of the proposed mapping method.

4.2 Different Compressors

The effect of different compressors on the classification results is shown in
Figure 6. On all three datasets, the classification performance of gzip is sig-
nificantly better than all other compressors, with an average mIoU of 91.52%.
This is consistent with the results of related research [11]. In comparison, the
bz2 ’s mIoUs are on average 0.95% lower. The passable performance is probably
due to the high compression ratio [11]. It is worth noting that on the PASTIS
dataset, the classification accuracy of zstandard is 25% lower than that of other
compressors, possibly due to the loss of fine-grained detail and changes in sta-
tistical properties during the compression process, which affect the classifier’s
performance.

5 Discussion

In response to the challenges of compressor-based classification, we have devel-
oped a lightweight and plug-and-play multispectral temporal classification
method for agricultural crops. However, several challenges remain. First, the
kNN algorithm that our method currently employs requires computing the dis-
tance between each test sample and all training samples, resulting in a high time
complexity of O(m ∗ n), where m is the number of training samples and n is
the number of test samples. Since the method currently works on CPUs, this
can lead to significant computation times in extreme cases. Second, our method
uses only individual pixel information for classification, without considering the
spatial relationships between neighboring pixels, an oversight that may limit
potential improvements.

To address these challenges, future work could pursue several optimization
directions. First, to improve the efficiency of kNN, spatial indexing structures
such as KD trees [2] or ball trees [3] could be implemented to optimize the
nearest neighbor search and reduce the time complexity to O(log(m)∗n). Second,
the Local Binary Patterns coding scheme [7] could be used to capture the
spatial relationships and textural information between pixels, thereby enriching
the feature representation and improving classification performance. Looking
to the future, potential advancements include improving the efficiency of the
algorithms to handle extremely large datasets and integrating these models into
automated systems for real-time crop monitoring and classification.

6 Conclusions

In this research, we introduce a non-training alternative to deep learning mod-
els and bring compressor-based classification from text classification to multi-
spectral temporal crop classification. A novel Symbolic Representation Module is
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proposed to convert the reflectivities of all pixels into symbolic representations.
These symbolic representations are then cross-transformed in both the channel
and time dimensions to generate symbolic embeddings. Finally, based on the
Multi-scale NCDs we have designed, crop classification is implemented using
only a kNN. The results show that even without training, the proposed method
achieves results comparable to those of large-scale trained deep learning mod-
els. It outperforms 5, 8, 5 advanced deep learning models on three benchmark
datasets. It also outperforms more than half of these models in the few-shot
setting with sparse labels. This lightweight and generalisation advantage con-
tributes to its use in real-world agricultural production.

Acknowledgements. We acknowledge Eren Yeager and Mikasa Ackerman for advis-
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Branch Institute of Beijing Association of Higher Education & Beijing Interdisciplinary
Science Society.
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Abstract. Feature relevance is pivotal in multi-label learning tasks, as
certain features have a greater impact on labels than others. Given the
high dimensionality of multi-label datasets, efficiently identifying and
utilizing feature relevance in model coefficients determination is essen-
tial. This article introduces a multi-label learning with missing labels
approach using a modified l2,1-norm regularization to scale model coeffi-
cients based on feature relevance and ensure global sparsity similar to the
Frobenius norm. The approach also incorporates label correlations learn-
ing for missing label recovery and expresses model coefficients through
learned correlation decomposition. A squared Hinge loss function, known
for its robust classification properties, is employed as an empirical loss
measure. Experimental validation against six existing multi-label learn-
ing methods across six datasets and five metrics demonstrates the efficacy
of our unified approach in both recovering missing labels and predicting
new instance labels.

Keywords: Multi-label learning · Missing labels · Feature relevance ·
Model coefficients scaling · squared l2,1-norm · Auxiliary label
correlations

1 Introduction

In real-world scenarios, data instances often have multiple labels. For exam-
ple, a tweet can express multiple emotions [1], a satellite image can show dif-
ferent weather conditions and terrain features [6]. Such classification problems
extend the binary and multi-class classification problems and are referred as
multi-label learning (MLL) problems. A common approach to MLL is binary
relevance, which treats each label independently but ignores useful label correla-
tions. Extensions to this approach exploit first-order, second-order, or high-order
label correlations. MLL methods are classified as either Problem Transformation,
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which converts MLL into binary tasks, or Algorithm Adaptation, which modifies
existing algorithms [11].

Typically, MLL assumes complete label information, which is rare [19]. Cap-
turing label information is expensive and error-prone, often resulting in ambigu-
ities and partially labeled training data. Multi-label learning with missing labels
is challenging and relatively under-researched. Since most multi-label methods
assume complete label information and don’t account for missing labels, their
models are often suboptimal. The absence of complete label information results
in incorrect label correlation, which are otherwise considered essential prior
knowledge for multi-label learning. Some methods incorporate the recovery of
missing labels into the model-building process, improving the accuracy of label
correlations. This improved label correlation structure can then guide the com-
putation of model coefficients, enhancing the prediction of label vectors for new
data instances [8,12].

Identifying the correlation between input features and output labels is crucial
for multi-label learning. Several feature selection methods [10] are designed for
MLL, focusing on identifying or ranking relevant features for algorithm input
[23]. However, these methods often treat feature selection separately, leaving
room to explore unified approaches that integrate feature selection and relevance
identification within multi-label learning with missing labels [5].

While several methods address multi-label learning in various scenarios,
approaches for handling missing labels constitute only a small proportion of
the research. This paper tackles missing labels by exploring feature relevance
and learning label correlations. Our model optimizes weights using squared l2,1-
norm regularization, preventing overfitting. It simultaneously recovers missing
labels and trains a classifier using squared Hinge loss. Empirical evaluations
demonstrate competitive performance against existing methods.

The structure of the paper is as follows: Section 2 reviews related work,
Section 3 outlines the proposed model, Section 4 presents empirical results, and
Section 5 provides the conclusion.

2 Related Work

In multi-label learning, datasets are often sparse and high-dimensional, and
labels can be ambiguous. Due to the complexity and ambiguity in the output
label space, labeling is a challenging task and datasets frequently have only
partial label information.

Several approaches address this issue: pre-processing methods, transductive
methods, and synchronized methods. Pre-processing methods first reconstruct
missing labels and then train a classifier with the complete label set [19,20].
Transductive methods aim to recover unobserved labels only in the training
data, often using matrix completion [7]. Synchronized methods simultaneously
train the classifier and recover missing labels [9,14].

In the absence of complete labels, identifying correlations between features
and labels becomes crucial. Some methods use label manifolds and feature struc-
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tures to restore missing labels and build the classifier [17]. Techniques like label-
specific features are also popular for identifying relevant features in multi-label
learning [13].

Huang et al. [8] propose learning label correlations and constructing a sup-
plementary label matrix to handle missing labels, aiding both label recovery
and classifier training. Kumar et al. [11] suggest a low-rank approximation of
the label space with auxiliary correlations, using squared Hinge-loss for empiri-
cal loss, which offers good classification properties [21]. Huang et al. [9] discuss
embedding label correlations into regression coefficients.

Model coefficients are regularized with different norms to achieve sparsity
and additional objectives, such as extracting label-specific features. Chen et al.
[2] propose a squared l2,1-norm approach for regression coefficients with nice
properties such as identifying the feature importance in least square problems.
We extend these approaches to multi-label learning by constructing model coef-
ficients and learning auxiliary label correlations bidirectionally. The proposed
method does a feature relevance based weights scaling of model coefficients for
multi-label learning with missing labels (FWMML).

3 Proposed Model

Let {(xp, yp)}n
p=1 be a multi-label classification dataset with n samples. Each

data instance xp ∈ R
d has a label vector yp ∈ {−1, 0, 1}l, where l is the number

of labels. The data matrix X ∈ R
n×d contains d features, and the label matrix

Y ∈ {−1, 0, 1}n×l indicates label presence (1), absence (−1), or unobserved (0).
The goal is to train a classifier from {X,Y } to predict a label vector y ∈ {−1, 1}l

for a new instance x ∈ R
d. Using these notations, we will develop a model for

multi-label learning with missing labels.

3.1 Least Squared Hinge Loss for classification

We adopt a squared Hinge loss in our formulation, known for its effectiveness
in measuring empirical risk in classification tasks, while preserving its favorable
classification properties [11]. Frobenius norm regularization is applied to the
model coefficients. Our base multi-label optimization problem can be expressed
as:

min
W

1
2
‖(|E − (Y ) ◦ (XW )|+)2‖1 + λW ‖W‖2F (1)

where ‖.‖1 represents the l1-norm, |α|+ = max(0, α), W is the model coefficient
matrix, XW represents the prediction score, E ∈ R

n×l is the matrix of ones
and ◦ is the notation for element-wise Hadamard product of matrices. ‖.‖2F is
regularizer for model coefficients.
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3.2 Feature Importance Based Model Coefficient Scaling

Features in datasets vary in their impact on label assignments, with some having
greater influence than others, especially in high-dimensional and sparse multi-
label datasets. Identifying these influential features is crucial. In the following
subsection, we introduce a method for scaling model coefficients based on feature
importance, supported by theoretical proof.

To quantify the importance of d features f1, f2, ..., fd, we introduce relevance
weights ψ, where ψk denotes the relevance weight for k-th feature. Scaling model
coefficients using ψ based on feature relevance, we can express (1) as:

min
W

1
2
‖(|E − (Y ) ◦ (XΨW )|+)2‖1 + λW ‖W‖2F

s.t. 1T ψ = 1
(2)

where Ψ ∈ R
d×d is a diagonal matrix with Ψkk = ψ

1
2
k as the k-th diagonal ele-

ment. The problem above leverages feature relevance to adjust model coefficients
effectively. Next, we’ll demonstrate through the following theorem that explic-
itly tuning coefficients based on feature relevance in a hinge loss formulation for
multi-label learning can be achieved using the squared l2,1-norm. The l2,1-norm
of a matrix A is defined as:

‖A‖2,1 =
d∑

j=1

( l∑

k=1

a2
jk

) 1
2

,

where ajk is the element at the j-th row and k-th column of matrix A.

Theorem 1.

min
W

1
2
‖(|E − (Y ) ◦ (XW )|+)2‖1 + λW ‖W‖22,1 (3)

Formulation above is an equivalent expression for problem given by (2) where ψk

is calculted as:

ψk =
‖wk‖2∑d

k=1 ‖wk‖2
(4)

Proof. Substituting W = ΨW , we can rewrite (2) as:

min
W,ψ

1
2
‖(|E − (Y ) ◦ (XW )|+)2‖1 + λW

d∑

k=1

‖wk‖22
ψk

s.t. 1T ψ = 1

(5)

For optimal value of ψ, fixing W , the optimization problem becomes

min
ψ,1T ψ=1

d∑

k=1

‖wk‖22
ψk

(6)
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The optimal solution to (6) is given by:

ψk =
‖wk‖2∑d

k̄=1 ‖wk̄‖2
(7)

above is equivalent to writing (6) as:

min
ψ,1T ψ=1

‖W‖22,1 (8)

Using the deduction above, we can write (5) as:

min
W

1
2
‖(|E − (Y ) ◦ (XW )|+)2‖1 + λW ‖W‖22,1 (9)

By integrating the squared l2,1-norm into our squared Hinge loss formulation, we
are able to achieve feature-based scaling of model coefficients and regularization
akin to the Frobenius norm. To simplify the notation, replacing W with W , we
can rewrite (9) as:

min
W

1
2
‖(|E − (Y ) ◦ (XW )|+)2‖1 + λW ‖W‖22,1 (10)

3.3 Auxiliary Label Learning for Missing Label Recovery

Label correlations encode valuable associations between labels, crucial for recov-
ering missing labels. By enhancing the incomplete label matrix with learned
correlations and recovering an auxiliary label matrix, we can strengthen model
training to improve classification accuracy.

Let R ∈ R
l×l denotes the matrix containing learnt label correlation informa-

tion where rmn in R denotes the correlation between the m-th and n-th labels.
Incorporating R to learn label correlations and recover missing labels, we can
express the optimization problem as:

min
W,R

1
2
||(|E − (Y R) ◦ (XW )|+)2||1 +

λC

2
‖Y R − Y ‖2F

+ λW ‖W‖22,1 + λR‖R‖2F
(11)

As label correlation matrix R is learnt, it also assists with learning model coef-
ficients W . For regularizing learnt label correlations R, we take the Frobenius
norm.

Association between model coefficient matrix W and label correlation matrix
R is expressible in several ways. In this discussion, we also express the model
coefficients as a decomposition of the label correlations R [9]. Rewriting the
optimization problem to reflect the label correlation decomposition, we have:

min
W,R

1
2
||(|E − (Y R) ◦ (XW )|+)2||1 +

λC

2
‖Y R − Y ‖2F

+
λE

2
‖R − WT W‖2F + λW ‖W‖22,1 + λR‖R‖2F

(12)
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where λW , λC , λE , λW , and λR are tradeoff parameters. Once label correlations
R are learnt, we can interpret Y R as auxiliary label matrix which will contain
information not only for observed labels but also for unobserved labels.

3.4 Instance Similarity

According to the manifold smoothness assumption, instances that are close to
each other are likely to share similar label vectors in a multi-label setting. If the
proximity between two instances xu and xv is measured by puv = exp−‖xu−xv‖2

2 ,
and the predicted label vectors hu and hv are expected to be similar, we can
incorporate this assumption into the optimization formulation by introducing a
regularizer that promotes smoothness:

RI =
1
2

n∑

u,v=1

puv‖hu − hv‖22

= trace((XW )T LIXW )

where XW denotes the prediction matrix for training instances in X, and LI ∈
R

n×n denotes the Laplacian for instance similarity.
Adding the above smoothness term for instance similarity RI along with

tradeoff parameter λ5, the optimization problem can be written as:

min
W,R

1
2
‖(|E − (Y R) ◦ (XW )|+)2‖1 +

λC

2
‖Y R − Y ‖2F

+
λE

2
‖R − WT W‖2F +

λW

2
‖W‖22,1 +

λR

2
‖R‖2F

+
λI

2
trace((XW )T LIXW )

(13)

Also note if two labels i and j are identified as strongly correlated due to
large rij entry in the label correlation matrix R, corresponding columns in the
regression coefficient matrix W will also be similar. If wi and wj are columns in
W , we can capture this relationship as:

1
2

l∑

i,j=1

rij ||wi − wj ||22 =
1
2

( l∑

i,j=1

rij(‖wi‖22 + ‖wj‖22) − 2
l∑

i,j=1

rij〈wi, wj〉
)

= trace(WDRWT ) − trace(WRWT )

= trace(WLWT )

where L represents the graph Laplacian for learnt label correlation matrix R.
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Incorporating above in model formulation, the optimization problem can be
written as:

min
W,R

1
2
||(|E − (Y R) ◦ (XW )|+)2||1 +

λC

2
‖Y R − Y ‖2F

+
λE

2
‖R − WT W‖2F +

λW

2
‖W‖22,1 +

λR

2
‖R‖2F

+
λI

2
trace((XW )T LIXW ) + λLtrace(WLWT )

(14)

where λL is the tradeoff parameter for final term. Finally, we define matrix
Ω ∈ R such that Ωi,j = 1 when corresponding label information Yij is observed
and Ωi,j = 0 if label is unobserved. Incorporating Ω in optimization to account
for loss evaluation only for observed labels and renaming the λs to simplify the
notation, we have the final optimization problem as:

min
W,R

1
2
||Ω ◦ (|E − (Y R) ◦ (XW )|+)2||1 +

λ1

2
‖Ω ◦ (Y R − Y )‖2F

+
λ2

2
‖R − WT W‖2F +

λ3

2
‖W‖22,1 +

λ4

2
‖R‖2F

+
λ5

2
trace((XW )T LIXW ) + λ6trace(WLWT )

(15)

3.5 Model Optimization

The optimization problem in (15) is composed of two variables: the regression
coefficient matrix W and the learnt label correlations R. Let’s denote the final
objective for optimization problem using F (Θ) where Θ = {W,R} is the set
of function parameters. The objective function can be optimized by iteratively
minimizing over W and R alternately using gradient descent.

Updating W : Considering R as constant, gradient of F (Θ) w.r.t W is given
by:

∇W F (Θ) =XT (|E − (Y R) ◦ (XW )|+ ◦ (−Y R))

+ 2λ2(−W )(R − WT W ) + λ3QW

+ λ5X
T LIXW + λ6W (L + LT )

(16)

where Q ∈ R
d×d such that

qii =
∑d

k=1

√
‖wk‖22 + ε√

‖wi‖22 + ε

ε is a small residual constant.
Once the derivative is available, W can be updated using gradient descent

with learning rate η1 as:
W = W − η1∇W
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Updating R: Fixing W , gradient of F (Θ) w.r.t R is given by:

∇RF (Θ) =Y T (|E − (Y R) ◦ (XW )|+ ◦ (−XW ))

+ λ1Y
T (Y R − Y ) + λ2(R − WT W ) + λ4R

(17)

Using the derivative above, update rule for R can be written using gradient
descent with learning rate η2 as:

R = R − η2∇R

Using the aforementioned mathematical derivations, we formalize the opti-
mization steps based on gradient descent in Algorithm 1. The major computation
steps in Algorithm 1 are gradient calculation for W and R, the overall complex-
ity is of the order of O(nl2+ndl+d2l) suitable for small to medium size datasets,
where l denotes total number of labels, d denotes the input space dimension and
n is the total number of instances.

Algorithm 1 Optimization Steps for FWMML
Require: Training instance matrix X ∈ R

n×d, class labels Y ∈ {−1, 0, 1}n×l, regular-
ization parameters λ1, λ2, λ3, λ4, λ5, and λ6, learning rate η1 and η2

Ensure: W, R
1: Initialisation: W0 ∈ R

d×l, and R0 ∈ R
l×l randomly, t=0.

2: REPEAT until convergence
3: Compute ∇W F (Wt, Rt) according to equation (16).
4: Update W as

Wt+1 = Wt − η1∇W F (Wt, Rt)/‖∇W F (Wt, Rt)‖
5: Compute ∇RF (Wt+1, Rt) according to equation (17).
6: Update R as

Rt+1 = Rt − η2∇RF (Wt+1, Rt)/‖∇RF (Wt+1, Rt)‖
7: Wt = Wt+1; Rt = Rt+1; t = t + 1
8: RETURN W, R

4 Experiments and Discussion

For performance evaluation and comparison with other state-of-the-art algo-
rithms, we use six multi-label datasets collected from Mulan1 [18] and KDIS2.
The datasets represent a mix of varying characteristics. Dataset characteristics
are listed in Table 1.
1 http://mulan.sourceforge.net/datasets-mlc.html
2 http://www.uco.es/kdis/mllresources/

http://mulan.sourceforge.net/datasets-mlc.html
http://www.uco.es/kdis/mllresources/
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Table 1. Multi-label datasets Characteristics.

Dataset Instances Features Labels Lcard avgIR Domain

cal500 502 68 174 26.044 20.578 music

Image 2000 294 5 1.236 1.193 image

yeast 2417 103 14 4.237 7.197 biology

philosophy 3971 842 233 2.272 68.753 text

stackex chemistry 6961 540 175 2.109 56.878 text

delicious 16105 500 983 19.02 71.134 text

4.1 Multi-label Metrics

Five multi-label metrics [22] are used for measuring the performance of proposed
method against other state-of-the-art algorithms for multi-label learning with
missing labels. Let M = {(xk, Yk)}n

k=1 be the dataset for testing performance,
where Yk denotes the ground truth label vector for instance xk. Further, let
h(xk) represents the predicted label vector for k-th instance and f(xk, y) the
confidence value that y is the vector of predicted labels for xk. Definition of the
multi-label metrics used for evaluation are as follows:

1. Hamming Loss(HL): Hamming loss determines the fraction of incorrectly clas-
sified instance-label pairs..

HL =
1
n

n∑

k=1

1
l
|h(xk)ΔYk|,

where Δ denotes the symmetric difference, n denotes the number of instances,
and l indicates the number of labels.

2. Average Precision(AP): Average precision assess’ the average fraction of pos-
itive labels that are higher than a particular label.

AP =
1
n

n∑

k=1

1
|Yk|

∑

y∈Yk

|{y′|rankf(xk,y′) ≤ rankf(xk,y), y
′ ∈ Yk}|

rankf(xk,y)
.

3. Ranking Loss (RL): Ranking loss determines the fraction of negative labels
ranked higher than that of positive labels.

RL =
1
n

p∑

k=1

|{(y′, y′′)|f(xk, y′) ≤ lk}|
|Yk‖Ȳk|

where lk = f(xk, y′′)|(y′, y′′) ∈ Yk × Ȳk).
4. Coverage (Cov): Coverge indicates the number of more labels on average that

should be included to cover all relevant labels.

Cov =
1
n

p∑

i=1

[[max rank(xi, j) − 1|j ∈ Y +
i ]]
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5. Average Area under the ROC Curve(AUC): AUC calculates the average frac-
tion of the ranked positive instances of all labels which are higher than neg-
ative instances.

AUC =
1
l

l∑

k=1

|{(x, x′)|f(x, yk) ≥ f(x′, yk), (x, x′) ∈ Ik × Īk}|
|Ik‖Īk|

where Ik and Īk represent positive and negative instances of the kth class
label.

4.2 Baselines

We compare our proposed method with six state-of-the-art algorithms, each
selected with hyperparameters as per their respective literature. Performance
evaluation is conducted using 5-fold cross-validation averaged over four runs
across various multi-label datasets.

– LSLC [3] recovers missing labels by learning positive and negative label cor-
relations along with learning label specific features for model training. The
hyperparameters are searched in the range {2−10, 2−9, . . . , 21}.

– MLLCRS [16] considers label-specific features along with utilizing the struc-
tural property of data and pairwise label correlation. The hyperparameters
are searched in the range {10−5, 10−4, . . . , 103}.

– GLOCAL [24] exploits local and global label correlations by learning latent
label representations and optimizing label manifold. Hyperparameter λ is
chosen as 1 and λ1 . . . λ5 are searched in the range {10−5, 10−4, . . . , 102}.
Parameter k is searched in {5, 10, 15, 20}.

– LSML [8] learns label specific features and prepares a supplementary matrix
augmented from incomplete label matrix learning high order label correlations
for missing label recovery and training multi-label classifier. The search range
for hyperparameters is {10−5, 2−4, . . . , 103}.

– CIMML [15] exploits auxiliary label correlations and adjusts label weights
based on the proportion of missing labels to train a multi-label classifier.
Hyperparameters are searched in {10−5, 10−3, . . . , 103}.

– DM2L [14] models both local and global low rank structures and discriminates
labels by expanding globally and shrinking locally. DM2L-linear is used for
comparison in this paper. The hyperparameter λd for DM2L is selected from
{10−5, 10−4, . . . , 105}.

– FWMML3 is the approach discussed in this paper. It recovers missing labels
and trains the classifier by imposing squared l2,1-norm constraint on the
regression coefficients which results in adjusted weights based on features
relevance. The hyperparameters λis are searched in {10−8, 10−7, . . . , 104}.

3 https://github.com/sanjayksau/fwmml/

https://github.com/sanjayksau/fwmml/
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4.3 Empirical Results and Discussion

We compare FWMML with six leading algorithms using six benchmark
multi-label datasets, assessed via 5-fold cross-validation. Missing labels are sim-
ulated at rates of 30%, 50%, and 70% in the training set. Performance metrics
in Tables 2 to 4 include hamming loss, ranking loss, coverage (lower is better),
and average precision, AUC (higher is better). The best-performing algorithm
in each row is highlighted in bold. Results demonstrate FWMML’s competitive
performance across all metrics and missing label rates.

Fig. 1. Consolidated average rank of participating algorithms across all metrics.

For statistical comparison of multiple classifiers, we use the Friedman test
[4] with seven algorithms (k = 7) and eighteen (N = 6 × 3) data points. Each
dataset contributes three points corresponding to the missing label rates. Table 5
shows the critical values of each evaluation metric and Friedman statistics Ff .
The critical value F (6, 17) for α = 0.05 is 2.6987, allowing us to reject the null
hypothesis of similar performance across all metrics except Hamming loss.

We further analyze pairwise comparisons using the Nemenyi test [4]. For
seven classifiers, the critical value, α0.5 is 2.949, and the CD is 2.1235. Significant
differences exist between the best and worst-performing algorithms across all
metrics except Hamming loss, as shown in Table 6 and Figure 2. Figures 1 shows
the consolidated avg. rank across all metrics. Overall, FWMML demonstrates
competitive and often superior performance.

4.4 ||W ||2,1-norm vs ||W ||F -Norm Based Performance Comparison

To empirically study the impact of ||W ||2,1 and ||W ||F -norm, we compare per-
formance medical dataset using three multi-label metrics: hamming loss, aver-
age precision, and ranking loss. Equation 3 is used for ||W ||2,1-norm, and then
replaced with ||W ||F -norm for Frobenius norm performance. Figure 3 shows that
at a missing label rate of 0.3, there is minimal difference in results. However,
as the missing label rate increases, ||W ||2,1-norm demonstrates superior perfor-
mance, highlighting the advantages of using squared l2,1-norm over Frobenius
norm.
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Table 2. Performance results for competing algorithm when missing label rate is 0.3.

Datasets Metric MLLCRS LSLC GLOCAL LSML CIMML DM2L FWMML

cal500 HL 0.1434 0.1375 0.1373 0.1374 0.1389 0.1371 0.1371

AP 0.4952 0.5001 0.5001 0.5005 0.2561 0.4986 0.5011

RL 0.1853 0.1804 0.1800 0.1798 0.8321 0.1805 0.1796

Cov 0.7711 0.7496 0.7450 0.7478 0.8720 0.7437 0.7467

AUC 0.8112 0.8160 0.8162 0.8168 0.6874 0.8161 0.8170

chemistry HL 0.0115 0.0115 0.0115 0.0115 0.0121 0.0120 0.0120

AP 0.3982 0.4066 0.3577 0.3980 0.2356 0.3258 0.2615

RL 0.1835 0.1705 0.1863 0.1749 0.1767 0.1234 0.1817

COV 0.3066 0.2903 0.3103 0.2944 0.2790 0.2769 0.2903

AUC 0.8058 0.8179 0.8039 0.8151 0.8146 0.8186 0.8192

yeast HL 0.2691 0.2048 0.2030 0.2039 0.2319 0.2016 0.2011

AP 0.6500 0.7530 0.7559 0.7545 0.7098 0.7493 0.7539

RL 0.2691 0.1811 0.1775 0.1811 0.2062 0.1789 0.1727

COV 0.5457 0.4754 0.4712 0.4779 0.4787 0.4726 0.4564

AUC 0.7130 0.8062 0.8092 0.8052 0.7830 0.8144 0.8145

image HL 0.2095 0.2097 0.2115 0.2093 0.2472 0.2124 0.2127

AP 0.7304 0.7168 0.7181 0.7169 0.5090 0.6766 0.7384

RL 0.2137 0.2280 0.2295 0.2302 0.4662 0.2714 0.2313

COV 0.2232 0.2333 0.2354 0.2358 0.4281 0.2692 0.2271

AUC 0.7467 0.7337 0.7331 0.7318 0.5124 0.6937 0.7514

philosophy HL 0.0088 0.0088 0.0091 0.0087 0.0094 0.0096 0.0090

AP 0.4791 0.4836 0.4192 0.4817 0.1287 0.4058 0.4966

RL 0.1460 0.1428 0.1194 0.1455 0.8935 0.1023 0.0981

Cov 0.2779 0.2710 0.2215 0.2797 0.6175 0.1943 0.1950

AUC 0.8359 0.8399 0.8653 0.8360 0.5200 0.8835 0.8869

delicious HL 0.0181 0.0181 0.0186 0.0181 0.0186 0.0183 0.0182

AP 0.3723 0.3724 0.3409 0.3723 0.1120 0.3661 0.3740

RL 0.1361 0.1348 0.1300 0.1344 0.9082 0.1288 0.1222

Cov 0.6547 0.6507 0.5061 0.6470 0.9301 0.5409 0.6084

AUC 0.8623 0.8636 0.8902 0.8640 0.5138 0.8903 0.8766
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Table 3. Performance results for competing algorithm when missing label rate is 0.5.

Datasets Metric MLLCRS LSLC GLOCAL LSML CIMML DM2L FWMML

cal500 HL 0.1440 0.1371 0.1371 0.1374 0.1418 0.1374 0.1373

AP 0.4949 0.4989 0.5003 0.4987 0.2140 0.4973 0.4994

RL 0.1860 0.1811 0.1798 0.1816 0.8963 0.1815 0.1808

Cov 0.7767 0.7542 0.7431 0.7546 0.8721 0.7492 0.7492

AUC 0.8104 0.8153 0.8146 0.8152 0.6697 0.8150 0.8157

chemistry HL 0.0122 0.0123 0.0118 0.0123 0.0121 0.0120 0.0120

AP 0.3181 0.3289 0.3075 0.3348 0.2356 0.3124 0.2812

RL 0.2361 0.2186 0.2331 0.2176 0.1766 0.1453 0.1732

COV 0.3728 0.3526 0.3742 0.3487 0.2791 0.2788 0.2772

AUC 0.7532 0.7691 0.7569 0.7707 0.8147 0.8164 0.8178

yeast HL 0.2765 0.2089 0.2079 0.2099 0.2319 0.2033 0.2046

AP 0.6323 0.7426 0.7460 0.7425 0.7087 0.7455 0.7471

RL 0.2923 0.1904 0.1858 0.1887 0.2067 0.1794 0.1781

COV 0.5869 0.4903 0.4835 0.4901 0.4790 0.4771 0.4636

AUC 0.6890 0.7962 0.8015 0.7982 0.7825 0.8111 0.8095

image HL 0.2082 0.2039 0.1999 0.2040 0.2472 0.2269 0.2176

AP 0.7541 0.7559 0.7549 0.7561 0.5120 0.6636 0.7327

RL 0.2025 0.1965 0.1967 0.1968 0.4625 0.2754 0.2238

COV 0.2161 0.2104 0.2112 0.2111 0.4200 0.2711 0.2229

AUC 0.7553 0.7634 0.7620 0.7615 0.5221 0.6894 0.7574

philosophy HL 0.0088 0.0088 0.0091 0.0089 0.0095 0.0097 0.0090

AP 0.4482 0.4490 0.4247 0.4508 0.1039 0.3611 0.4880

RL 0.1677 0.1690 0.1197 0.1671 0.9192 0.1101 0.1095

Cov 0.3101 0.3092 0.2206 0.3075 0.6264 0.2058 0.2163

AUC 0.8120 0.8120 0.8658 0.8135 0.5092 0.8739 0.8740

delicious HL 0.0181 0.0181 0.0186 0.0181 0.0188 0.0185 0.0182

AP 0.3650 0.3652 0.3408 0.3651 0.0850 0.3543 0.3683

RL 0.1489 0.1471 0.1103 0.1474 0.9409 0.1085 0.1336

Cov 0.6864 0.6830 0.5070 0.6814 0.9344 0.5330 0.6481

AUC 0.8494 0.8512 0.8900 0.8511 0.4943 0.8908 0.8652
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Table 4. Performance results for competing algorithm when missing label rate is 0.7.

Datasets Metric MLLCRS LSLC GLOCAL LSML CIMML DM2L FWMML

cal500 HL 0.1473 0.1371 0.1378 0.1372 0.1460 0.1370 0.1372

AP 0.4908 0.4972 0.4989 0.4991 0.1545 0.4965 0.4986

RL 0.1891 0.1840 0.1821 0.1822 0.9667 0.1823 0.1820

Cov 0.7825 0.7632 0.7603 0.7604 0.8722 0.7608 0.7602

AUC 0.8073 0.8126 0.8150 0.8143 0.6452 0.8142 0.8135

chemistry HL 0.0226 0.0227 0.0124 0.0231 0.0121 0.0121 0.0120

AP 0.2272 0.2514 0.2550 0.2528 0.2356 0.3055 0.3233

RL 0.2987 0.2717 0.2778 0.2710 0.1764 0.1484 0.1447

COV 0.4471 0.4131 0.4273 0.4126 0.2786 0.2898 0.2451

AUC 0.6914 0.7178 0.7101 0.7190 0.8149 0.8109 0.8462

yeast HL 0.3043 0.2253 0.2172 0.2264 0.3008 0.2062 0.2062

AP 0.5583 0.7232 0.7315 0.7210 0.7097 0.7389 0.7447

RL 0.3885 0.2073 0.1978 0.2067 0.2063 0.2099 0.1798

COV 0.6832 0.5147 0.5024 0.5163 0.4789 0.4899 0.4697

AUC 0.5936 0.7792 0.7890 0.7799 0.7828 0.8046 0.8079

image HL 0.2071 0.2059 0.2111 0.2136 0.2472 0.2401 0.2182

AP 0.7445 0.7211 0.7096 0.7103 0.5125 0.6331 0.7197

RL 0.2165 0.2340 0.2465 0.2448 0.4723 0.3575 0.2515

COV 0.2308 0.2391 0.2483 0.2470 0.4248 0.3370 0.2308

AUC 0.7397 0.7275 0.7153 0.7179 0.5121 0.6136 0.7198

philosophy HL 0.0098 0.0096 0.0093 0.0099 0.0098 0.0097 0.0091

AP 0.3764 0.3864 0.4197 0.3820 0.0410 0.3516 0.4622

RL 0.2111 0.2081 0.1233 0.2013 0.9830 0.1124 0.1218

Cov 0.3655 0.3584 0.2296 0.3520 0.6458 0.2104 0.2357

AUC 0.7678 0.7710 0.8612 0.7776 0.4855 0.8717 0.8603

delicious HL 0.0182 0.0182 0.0186 0.0183 0.0193 0.0188 0.0182

AP 0.3411 0.3413 0.3388 0.3417 0.0444 0.3265 0.3521

RL 0.1796 0.1769 0.1612 0.1765 0.9850 0.1629 0.1593

Cov 0.7431 0.7385 0.5125 0.7370 0.9401 0.5419 0.7065

AUC 0.8182 0.8213 0.8893 0.8218 0.4720 0.8870 0.8391

Table 5. Summary of Friedman statistic FF . Compared algorithms k = 7. Number of
datasets, N = 6 × 3. qα = 2.949

Metric FF Critical Value (α = 0.05)

Hamming Loss 2.2120 2.6987

Average Precision 17.7312

Ranking Loss 11.6875

Coverage 10.9391

AUC 15.6988
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Table 6. Metric-wise average rank of participating algorithms.

MLLCRS LSLC GLOCAL LSML CIMML DM2L FWMML

HL 4.97 3.08 3.69 3.86 4.86 4.25 3.28

AP 4.56 3.03 3.58 3.00 6.78 4.89 2.17

RL 5.56 4.00 3.17 3.89 6.06 3.17 2.17

Cov 5.56 4.33 3.22 4.33 5.67 2.67 2.22

AUC 5.69 4.14 3.39 3.94 6.11 2.78 1.94

Fig. 2. FWMML comparison with competing algorithms using Nemenyi test,
CD=2.123.

Fig. 3. Result comparison for ||W ||2,1 vs ||W ||2 norm using equation (3).
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5 Conclusion

In multi-label learning tasks, labels are linked to a subset of features, with vary-
ing importance. Unlike other approaches that rely on auxiliary label correlations
for missing labels, our method uses squared Hinge loss and squared l2,1-norm
regularization ensuring good classification characteristics, sparsity, and feature
relevance-based scaling. We also decompose model coefficients into label correla-
tions. This unified approach handles missing labels and predicts new instances,
validated by experiments across six datasets.
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Abstract. In a multi-label learning problem, each instance is associ-
ated with multiple labels simultaneously. However, problem becomes
more complicated when labels are missing. Many multi-label based real-
life applications, such as medical diagnosis, protein function prediction,
image annotations are framed as networks which are used to model inter-
actions between complex entities. Although, in many scenarios these
interactions may not be pairwise, rather should described as higher-order
interactions. For such a scenario Hypergraphs are preferred rather than
simple Laplacian. Multilabel twin support vector machines (MLTSVM)
has become popular due its performance for multilabel classification.
In this paper, to deal with missing label scenario, we propose a semi-
supervised framework termed as Hypergraph Least Squares Twin Sup-
port Vector Machine for Multi-label Learning (HMLLSTSVM) wherein
we have used Hypergraph Laplacian to train our classifier utilizing both
labeled and unlabeled samples. We incorporate the idea of Hypergraph
along with least squares loss function into MLTSVM, which improves
the efficacy in terms of classification accuracy and speed of our proposed
model. Taking motivation from KNN-based Least Squares Twin Support
Vector Machine (KNNLSTSVM), we have incorporated the intrinsic sim-
ilarity information among the samples in our proposed model’s objective
function, which makes our classifier HMLLSTSVM less sensitive to out-
liers. Experimental results on benchmark multilabel datasets proves the
efficacy of the classifier.

Keywords: Semi-supervised Learning · Hypergraph · Laplacian
matrix · Multilabel Learning

1 Introduction

Researchers tried to explore Twin Support Vector Machine (TSVM) [9] in differ-
ent research directions. Authors in ([22]) proposed the Structural Least Squares
Twin Support Vector Machine (SLSTSVM), which is an amalgamation of the
Structural Twin Support Vector Machine (STSVM) [17] and the Least Squares
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Twin Support Vector Machine (LSTSVM) [12]. SLSTSVM ([22]) has the upper
hand over other algorithms as it takes advantage of the structural information of
the data, which boosts the generalization capability of the model. In addition to
this, it also owns less computational complexity as LSTSVM based model finds
resulting hyperplanes by solving two systems of linear equations rather than one
large quadratic programming problem (QPP) or two QPPs. Researchers across
the globe utilized the variants of Twin Support Vector Machine in the domain
of Human Activity Recognition, such as Robust Least Squares Twin Support
Vector Machine ([10]) and Robust Parametric Twin Support Vector Machine
([11]).

It may be hard to obtain labeled data because it requires subject matter
experts and many experiments. Semi-Supervised Learning (SSL) utilizes both
labeled and unlabeled data simultaneously to train a classifier. A pairwise associ-
ation between the samples is assumed in the graph-regularized manifold learning
algorithm LapSVM, which however doesn’t seem to hold in practice. A simple
graph can’t express multivariate and higher-order relationships between the sam-
ples. We use a Hypergraph rather than a straightforward Graph Laplacian to
address this problem. The use cases of such algorithms exist when dealing with
large volumes of unlabeled data.

We summarize our contributions to this paper in the following manner:

– We propose improve multi-label semi-supervised hypergraph based prediction
model termed as HMLLSTSVM.

– We have also shown the efficacy of the proposed algorithm over existing bench-
mark datasets.

2 Related Work

In the past decade, TSVM ([9]) has gained popularity among many machine
learning researchers. Unlike Support Vector Machines (SVM) ([5]), TSVM gen-
erates two non-parallel hyperplanes in such a manner that each hyperplane is
in closer proximity to one of the two classes and is far away from the other.
Instead of solving a single large-sized Quadratic Programming Problem (QPP )
as in SVM, a pair of smaller sized QPP’s has been solved in TSVM, making the
computational speed of TSVM approximately four times faster than the clas-
sic SVM. From the perspective of upgrading the training speed, sparsity, and
generalization ability of TSVM, TSVM is still a hot topic of research.

TSVM was extended to least squares TSVM ([12]), in which the solution of
the modified primal problem follows directly from solving two systems of linear
equations as against solving two QPPs and two systems of linear equations in
TSVM. Hence, the Least Squares Twin Support Vector Machine outshines TSVM
in terms of training time complexity.

Researchers further enhanced Least squares TSVM to KNN-based Least
Squares Twin Support Vector Machine (KNNLSTSVM) ([15]) discovering the
intrinsic similarity information among the samples that may be beneficial for
improving classification performance. KNNLSTSVM not only preserves the
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advantage of Least Squares TSVM which is a fast and straightforward algorithm.
It also incorporates the similarity information among the samples in the objec-
tive function of Least Squares TSVM to improve the generalization capability of
the model. Therefore, KNNLSTSVM is less sensitive to outliers in comparison
to the Least Squares TSVM.

A beneficial progress of TSVM is MLTSVM for solving multi-label classifica-
tion problems. The MLTSVM algorithm [3] captures the multi-label information
ingrained in data via multiple non-parallel hyperplanes. In the training phase,
one hyperplane is learned for each label with the help of binary relevance strat-
egy. To enhance the generalization ability of the model in multi-label learning,
intrinsic similarity information among the samples has been adopted by the
researchers. Hence, researchers [4] proposed KNN-based Multi-Label Twin Sup-
port Vector Machine (KNNMLTSVM).

Recently, Structural Least Squares Twin Support Vector Machine for Multi-
label Learning (ML-SLSTSVM) [1] model was introduced, which incorporated
the cluster-based structural information of a particular class in the optimization
problem of Least Squares Multi-Label Twin Support Vector Machine. But ML-
SLSTSVM model considered only the partial information among the samples i.e
they considered variance co-variance relationship of features. Although structural
information also considers the relationship among inter and intra class samples.
Some other recent approaches of multilabel learning are discussed by authors in
[13], [18],[21],[14],[20]

The concept of the TSVM was extended in a semi-supervised setting by
[16], termed as Laplacian-Twin Support Vector Machine. The researchers used
graph Laplacian to exploit labeled and unlabeled information and solved pair of
quadratic programming problem to build a nonparallel plane classifier. Further,
[2] proposed a least squares version of the LapTSVM, called the Laplacian-
Least Squares Twin Support Vector Machine (LapLSTSVM) model to lessen
the computational cost of LapTSVM.

3 Proposed Model: Hypergraph based Least Squares
Twin Support Vector Machine (HMLLSTSVM) for
Multi Label Learning

Problem of semi-supervised binary classification considers a set
D = {(x1, y1) , (x2, y2) , . . . , (xl, yl) , xl+1, . . . , xn}, where Xl = {xi : i =
1, 2, . . . , l} symbolizes the l labeled data points in n dimension corresponding to
class labels Yl = {yi ∈ [−1, 1] : i = 1, 2, ..., l} and Xu = {xi : i = l+1, l+2, ...,m}
symbolizes the unlabeled data. Hence, X = Xl ∪ Xu. Based on the structural
information of data and label dimensionality, the proposed model finds l hyper-
planes.

3.1 Local geometric information

To extract local geometric information, k-nearest neighbor graph is a mostly
used technique ([7]). Here, intra-class and inter-class graphs with weights Wwc,ij
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(Wwc represents weights within the class), and Wbc,il (Wbc represents weights
between the classes) respectively are considered for each class r, r = 1, 2, . . . , l,
where xi and xj is associated to class r, while xl does not belong to class r.

Wwc,ij =

⎧
⎪⎨

⎪⎩

1, if xi is k-nearest neighbors of xj

or xj is k-nearest neighbors of xi

0, otherwise

Wbc,il =

⎧
⎪⎨

⎪⎩

1, if xl is k-nearest neighbors of xi

or xi is k-nearest neighbors of xl

0, otherwise

The inter-class weighting matrix Wbc is redefined with frl as:

frl =

{
1, if ∃ i, Wbc,il �= 0
0, otherwise

(1)

3.2 Structural information of data

Using Ward’s linkage clustering method [7], structural information of the samples
is extracted. The mean and covariance matrix of each sub-cluster nr of class r
is given by:

uCi
= 1

|Ci|
∑

xj∈Ci

xj (2)

ΣCi
=

1
|Ci|

∑

xj∈Ci

(xj − uCi
) (xj − uCi

)T (3)

here Ci, i = 1, 2, .......nr represents the cluster of samples with label r,
nr indicates the number of clusters, and uCi

and ΣCi
are the mean vec-

tor and covariance matrix of a particular cluster Ci. Further, we calculate
Σr = ΣC1 + ΣC2 + ........ + ΣCnr

, which is the total covariance matrix corre-
sponding to the cluster of samples with label r. This covariance matrix Σr

comprises of the structural information of class r.

3.3 Hypergraph construction

Given a graph G = (V,E), V = {v1, v2, ..., vn} and E = {e1, e2, ..., en} are the
vertex and hyper-edges set. We can define a vertex-edge matrix H such that

H = h(v, e) =
{
1, v ∈ e
0, v /∈ e

(4)
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The degree of hyperedge δ(e) is defined as the number of vertices a hyperedge
contains.

δ(e) =
∑

v∈e

h(v, e)

d(v) =
∑

v∈e,e∈E

w(e) =
∑

e∈E

w(e)h(v, e)

The following formula can define the hyperedge weight w(e):

w(e) =
1

δ(e)(δ(e) − 1)

∑

{vi,vj}∈e

exp

(

−||xi − xj ||2
μ

)

Similar to a simple graph, the Hypergraph’s Laplacian matrix can be defined
as [24]:

HLa = Dv − HWD−1
e HT (5)

where Dv,De,W are the diagonal matrices composed of d(v), δ(e) and w(e)
respectively.

According to Zhou’s ([24]), the Laplacian regularized Hypergraph matrix is:

HLa = I − D
− 1

2
v HWD−1

e HT D
− 1

2
v (6)

3.4 Formulation of the proposed model HMLLSTSVM:

Working on the lines of LapLSTSVM, we propose a model for multi-label learn-
ing which considers geometrical and structural information along with some
percentage of known label set of samples. Further, the proposed model is in the
spirit of least squares TSVM, which makes it time efficient as well.

min
(wr,br,ξj)

1
2

∑

i∈Ir

dir

(
wr

T xi + br

)2 + c1r
2

∑
j∈I′r ||ξj ||2 + c2r

2

∑

j∈I′
r

wr
T Σrwr

+λr

2

(||wr||2 + br
2
)
+ 1−λr

2 (Xwr + ebr)
T

HLa (Xwr + ebr)
subject to,

−frj

(
wr

T xj + br

)
+ ξj = frj , j ∈ I ′

r (7)

where ξ = (ξ1, ξ2, . . . , ξs), s is number of samples in I ′
r, dir =

∑
j∈Ir

Wwc,ij , is
an element of the intra-class weighting matrix for the samples in the rth label
set. The parameters wr and br defines the hyperplane of the rth label , c1r

and c2r are the penalty parameters and λr is the regularization parameter and
Σr denotes the covariance matrix of the samples belonging to the rth label.
Here, frj reflects rjth entry of inter-class weighting matrix, λ1 and λ2 are the
regularization parameters and also, λ1,λ2 ∈ (0, 1] . HLa is the corresponding
Hypergraph Laplacian matrix.
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After substituting value of ξj from the equality constraint (7) in the objective
function of the aforementioned problem we obtain the following unconstrained
optimization problem:

L =
1

2

∑

i∈Ir

dir||wT
r xi + br||2 +

c1r

2

∑

j∈I′r
||frj

(
1 + wT

r xj + br
)
||2 +

c2r

2
wT

r Σrwr

+
λr

2

(||wr||2 + b2r
)
+

1− λr

2
(Xwr + ebr)

T HLa (Xwr + ebr) (8)

After computing the derivatives of the aforementioned Lagrangian w.r.t. wr

and br, and equating them equal to zero, we obtain the following equations:

∂L

∂wr
= 0 ⇒

∑

i∈Ir

dirxi

(
wT

r xi + br

)
+ c1r

∑

j∈I′r

frjxj

(
1 + wT

r xj + br

)

+c2rΣrwr + λrwr + (1 − λr)XT HLa (Xwr + ebr) = 0. (9)

∂L

∂br
= 0 ⇒

∑

i∈Ir

dir

(
wT

r xi + br

)
+ c1r

∑

j∈I′r

frj

(
1 + wT

r xj + br

)
+ λrbr

+(1 − λr)XT HLa (Xwr + ebr) = 0. (10)

After combining (9) and (10), we obtain:

Dr

∑

i∈Ir

[
xi

1

][
xi 1

][
wr

br

]
+ c1rFr

∑

j∈I′
r

[
xj

1

][
xj 1

][
wr

br

]
+ c1rFr

∑

j∈I′
r

[
xj

1

]

+c1rFr

∑

j∈I′
r

[
xj

1

]
+ λr

[
wr

br

]
+ c2r

[
Σr 0
0 0

][
wr

br

]
+ (1− λr)HrHLaHT

r

[
wr

br

]
= 0

where, Dr = diag(d1r, . . . , dNr
), N=|Ir| and Fr = diag(fr1, fr2, . . . , frM ), M

=|I ′
r|, θr = [wr br]T .

Dr

∑

i∈Ir

zizi
T θr + c1rFr

∑

j∈I′r

zjzj
T θr + c1rFr

∑

j∈I′r

zj +

λrθr + c2rJrθr + (1 − λr)HrHLaHT
r θr = 0 (11)

On rearranging the terms in equation (11), we get

(
Dr

∑

i∈Ir

zizi
T + c1rFr

∑

j∈I′r
zjzj

T + λrI + c2rJr + (1− λr)HrHLaHT
r

)
θr

= c1rFr

∑

j∈I′r
zj (12)
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Hence, after deriving the dual by applying Kuhn Tucker conditions, we determine
the equation of rth hyperplane as :

θr = c1r(Hr
T DrHr + c1rGr

T FrGr + λrI + c2rJr +
(1 − λr)HT

r HLaHr)−1Gr
T Fre (13)

where e is vector of ones of appropriate dimension [wr br]
T gives the rth

hyperplane, Hr= [XIr, e1r], Gr = [XI′r, e2r], e1r and e2r are the vector of ones

of suitable dimensions, Dr = diag(d1r, d2r, . . . , dNr), N=|Ir|. Jr =

[
Σr 0
0 0

]

. c1r

is the pre-specified penalty parameter. Fr = diag(fr1, fr2, . . . , frM ) , M = |I ′
r|.

It can be seen from our formulation of the proposed model that when the reg-
ularization parameter λr = 1, KNN-Based Multi-Label Least Squares Twin Sup-
port Vector Machine (KNNMLLSTSVM) is the limiting case of HMLLSTSVM.
Also, unlike Multi-Label Structural Least Squares Twin Support Vector Machine
([1]), our proposed model HMLLSTSVM considers both local geometric infor-
mation and structural information among the samples. Hence, HMLLSTSVM is
less sensitive to outliers.

3.5 Algorithm

Inputs: A training dataset D and a testing dataset D∗={(Xi, Yi), where {i =
1, 2, . . . , n}, Yi ∈ {1,−1} for multi-label classification.
Output: A relevant set of labels for each test sample.

1. For each label Yr in the label matrix Y , repeat steps 2 to 5
2. Create a set of instances for each column Yr.
3. Extract local geometric and structural information from the input samples

for each column Yr using equations (1), (1), (1), (2).
4. Compute the Hypergraph Laplacian matrix

HLa using HLa = I −D
− 1

2
v HWD−1

e HT D
− 1

2
v , where Dv is the degree matrix

and W is the weighted adjacency matrix.
5. Utilizing the structural and geometric information ingrained in the data,

determine the hyperplane for every label.
6. For each test sample ti, repeat steps 7 and 8
7. Calculate the distances from the hyperplane of each label using the equation

dr =
|wT

r ti + br|
||wr||2 , r = 1, 2, . . . , L

8. Find a relevant set of labels for a test point ti on the basis of appropriate
threshold value, which is δ = minr=1,...,L

1
||wr|| . For each label Yr, if the dis-

tance between the test point ti and the hyperplane is less than δ, assign the
test point ti to the rth label.
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3.6 Non-Linear version of HMLLSTSVM

In real life classification problems, linear classifiers do not work very well. There-
fore, we extend the linear HMLLSTSVM to its non-linear version. We can deter-
mine non-linear MLLSTSVM by using kernel generated hyperlanes. The kernel
takes its input vectors in the original space, and gives the dot product of vec-
tors in the feature space. Formally, let we have data X1,X2 ∈ X, and a map
φ : X → R

N then K (X1,X2) =< φ(X1), φ(X2) > is a kernel function, <,> is a
inner product and ur and br define the rth hyper-surface parameter. Thus, the
optimization problem of non-linear HMLLSTSVM is as follows:

min
(ur,br,ξj)

1
2

∑
i∈Ir

dir

(
ur

T < φ(X), φ(xi) > +br

)2 +

c1r

∑
j∈I′r ||ξj ||2 + 1

2λr

(||ur||2 + br
2
)
+ c2r

2

∑

j∈I′
r

ur
T Σφ

r ur

+ 1−λr

2 (Xwr + ebr)
T

HLa (Xur + ebr)
subject to,

−frj

(
ur

T xj + br

)
+ ξj = frj , j ∈ I ′

r. (14)

where ξ = (ξ1, ξ2, . . . , ξs), s is number of samples in I ′
r, Σφ is the covariance

matrix obtained by the kernel Ward’s linkage method in the kernel space of
samples. After solving the optimizing problem, the parameters ur and br are
obtained as shown in the following formula:

[ur
T br]

T
= c1r(Hr

φT DrHr
φ + c1rGr

φT FrG
φ
r + λrI + c2rJr

φ +
(1 − λr)Hr

φT HLaHr
φ)−1Gr

φFre (15)

where Hφ
r = [< φ(XIr), φ(X) >, e1r], Gφ

r = [< φ(XI′r), φ(X) >, e2r]. Jφ
r =[

Σφ
r 0
0 0

]

, cr is the penalty factor, and Fr and e2r and e1r are similar to the

linear case.

4 Experiments

The experiments are performed using five-fold cross validation in MATLAB ver-
sion 2020a under Microsoft Windows environment on a machine with 3.40 GHz
CPU and 16 GB RAM on six well known multi-label datasets, which are taken
from the site http://mulan.sourceforge.net/datasets-mlc.html.

Since, our proposed model is based on multi-label twin support vector
machine. So we made a comparison among the algorithms , which are based
on multi-label twin support vector machine.

http://mulan.sourceforge.net/datasets-mlc.html
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4.1 Compared Algorithms

1. Multi-label Twin Support Vector Machine (MLTSVM) ([3]):
MLTSVM is a extension of TSVM in multilabel domain. It discovers mul-
tiple non-parallel hyperplanes to procure multi-label information embedded
in the data.

2. KNN-based Multi-Label Twin Support Vector Machine (KNN-
MLTSVM) ([15]): KNNMLTSVM is an enhanced version of MLTSVM to
tackle multi-label classification. It determines multiple non-parallel hyper-
planes, which contain the structural as well as local geometric information
ingrained in the data.

3. Multi-label learning with label-specific features(LIFT) [23] To dis-
cover label-specific features, it employs a clustering approach. As the basic
learner in this case, they employed linear kernel SVM. r = 0.1.

4. Learning Label Specific Features(LLSF) [8] In order to train the multi-
label classification model, it makes use of the idea of learning label-specific
characteristics. The tuning for the parameter lambda is 2 − 10, ..., 210.

5. KNN-based Multi-Label Least Squares Laplacian Twin Support
Vector Machine: It is an improved version of KNNMLTSVM. It is com-
putationally fast, as it solves a system of linear equations rather than QPPs.
Thus, it considers square loss function instead of hinge loss function. we have
use LAP as accronym while reporting results.

6. Discriminatory Label-specific Weights for Multi-label Learning
with Missing Labels[19] (CIMML): Multi-label learning algorithms that
handle the datasets class imbalance issue by assigning favorable weights for
positive labels to compensate for their scarce occurrence.

7. Hypergraph based Least Squares Twin Support Vector Machine
(HMLLSTSVM) (Proposed): This our proposed semi-supervised algo-
rithm as it learns from both labeled as well as unlabeled information using
Hypergraph, we have use HYP as accronym while reporting results.

4.2 Parameter Selection

We used the RBF kernel, and the value of kernel parameter and the penalty fac-
tor is tuned for the set {2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24}, and {2−5, . . . , 25}
respectively. The value of k (number of neighbors) is tuned for the set
{2, 3, 4, 5, 6, 8, 10}. To be specific, we set k=4, 6, 8, 2, 4, 8 for emotions, flags,
yeast, and image respectively. The regularizer for variance-covariance is tuned
for the set {2−5, . . . , 25}. The regularizer for Hypergraph Laplacian, which is λ
is kept low, and is set to e−4. Once, the optimal set of parameters is obtained,
then it is used to learn the final decision function.

4.3 Datasets

In our experiments, we consider four UCI multi-label datasets shown in the Table
1 below. The datasets such as Image and flags are from the image domain.
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Emotions dataset belongs to the music domain. Yeast dataset is associated
with a biological field, where each instance represents a yeast gene, and labels
denote the functional group of the corresponding yeast gene. The number of
instances, the number of features, the number of class labels, and the cardinality
of each dataset is observed in Table 1.

Table 1. Particulars of the Benchmark multi-label datasets

Dataset Instances Features Labels Cardinality

Emotions 593 72 6 1.87
Flags 194 19 7 3.392
Image 2000 294 5 1.24
Yeast 2417 103 14 4.24

Table 2. Results for Multi-Label classification

Dataset Metric MLTSVM CIMML MLTSVMKNN LLSF LIFT LAP HYP

HL(↓) 0.3888 0.4235 0.3991 0.3532 0.4017 0.3165 0.3098
F1(↑) 0.7048 0.6546 0.7007 0.6705 0.5969 0.7369 0.7407
AP(↑) 0.8385 0.6174 0.8458 0.9382 0.9742 0.8257 0.8090

Flags RL(↓) 0.5873 0.4941 0.5894 0.6028 0.4792 0.5934 0.6007
AUC(↑) 0.5362 0.4979 0.5329 0.5581 0.6018 0.5559 0.5590
HL(↓) 0.3454 0.2569 0.3772 0.2175 0.3394 0.4194 0.3384
F1(↑) 0.6267 0.4757 0.6096 0.6218 0.4588 0.5882 0.6277
AP(↑) 0.5184 0.7051 0.5563 0.7622 0.9157 0.6179 0.5174

Emotions RL(↓) 0.5283 0.27 0.5072 0.6095 0.3227 0.4847 0.5343
AUC(↑) 0.7097 0.7023 0.6907 0.7179 0.6051 0.6601 0.7105
HL(↓) 0.4947 0.3525 0.5321 0.2821 0.2952 0.5295 0.4102
F1(↑) 0.4814 0.3349 0.4703 0.2649 0.2659 0.4622 0.5129
AP(↑) 0.7075 0.5885 0.7339 0.8690 0.8840 0.7627 0.6249

Image RL(↓) 0.3851 0.41 0.3641 0.3767 0.2664 0.3647 0.4247
AUC(↑) 0.5862 0.5547 0.5703 0.5352 0.5417 0.5697 0.6536
HL(↓) 0.2485 0.2903 0.2594 0.2410 0.2484 0.2581 0.2005
F1(↑) 0.666 0.5279 0.6607 0.5251 0.660 0.664 0.6796
AP(↑) 0.7497 0.6446 0.7525 0.9582 0.9330 0.7310 0.7439

Yeast RL(↓) 0.3882 0.2479 0.3842 0.388 0.222 0.3911 0.4194
AUC(↑) 0.5986 0.5547 0.5962 0.5389 0.6973 0.6043 0.6068

4.4 Evaluation Metrics

Given a test dataset Ts = {xi, yi}Nt
i=1 where yi ∈ {−1, 1}m. Let Nt, m, yi, ŷi

denote, respectively, the number of test data, the number of labels, the set of
labels relevant to the ith instance and the set of labels that are irrelevant to it.
In addition, the function fy(x) is a real-valued function (f : X × Y → R) that
returns the confidence of being proper label of x and rankf (x, y) returns the
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rank of y in Y based on the descending order induced from fy(x) and h(·) be
the learned multi-label classifier.

We have used the following evaluation criteria to compare the performance
of different algorithms

Table 3. Results for Multi-Label classification for different percentage of the labelled
samples

Metric LAP HYP LAP HYP LAP HYP LAP HYP LAP HYP
labelled 90% 90% 80% 80% 70% 70% 60% 60% 50% 50%

Flags:
HL(↓) 0.3055 0.2996 0.3047 0.3018 0.3040 0.3017 0.3092 0.3129 0.3196 0.3248
F1(↑) 0.7433 0.7461 0.7428 0.7444 0.7420 0.7420 0.7382 0.7357 0.7334 0.7315
AP(↑) 0.7940 0.7891 0.7946 0.7823 0.7914 0.7791 0.8083 0.8088 0.8118 0.7962
RL(↓) 0.6015 0.6042 0.6018 0.6039 0.5992 0.6062 0.5979 0.5958 0.5962 0.5981

AUC(↑) 0.5692 0.5736 0.5691 0.5725 0.5716 0.5733 0.5622 0.5606 0.5540 0.5610
Emotions:

HL(↓) 0.3485 0.2923 0.3499 0.3066 0.3738 0.3342 0.3696 0.3488 0.3848 0.3679
F1(↑) 0.6245 0.6542 0.6243 0.6446 0.6096 0.6297 0.6122 0.6184 0.5995 0.6084
AP(↑) 0.5246 0.4590 0.5247 0.4749 0.5575 0.5056 0.5516 0.5223 0.5818 0.5500
RL(↓) 0.5269 0.5585 0.5258 0.5501 0.5072 0.5253 0.5055 0.5202 0.5016 0.5107

AUC(↑) 0.7033 0.7398 0.7042 0.7326 0.6904 0.7174 0.6968 0.7076 0.6816 0.6977
Image:

HL(↓) 0.4181 0.2865 0.3975 0.3296 0.4650 0.4201 0.4702 0.4826 0.5030 0.5584
F1(↑) 0.5189 0.5921 0.5156 0.5486 0.4370 0.4780 0.4045 0.4473 0.3632 0.4289
AP(↑) 0.6025 0.4584 0.5972 0.5252 0.7546 0.6555 0.8250 0.7221 0.9223 0.7881
RL(↓) 0.4117 0.4876 0.4172 0.4378 0.3391 0.3746 0.3386 0.3369 0.2960 0.3108

AUC(↑) 0.6538 0.7485 0.6858 0.7249 0.5794 0.6679 0.5685 0.6592 0.5338 0.5967
Yeast:

HL(↓) 0.2571 0.2029 0.2656 0.2061 0.2741 0.2384 0.2706 0.2209 0.2741 0.2384
F1(↑) 0.6636 0.6781 0.6580 0.6791 0.6509 0.6662 0.6533 0.6746 0.6509 0.6662
AP(↑) 0.7362 0.7478 0.7453 0.7463 0.7698 0.7427 0.7606 0.7423 0.7698 0.7427
RL(↓) 0.3896 0.4158 0.3841 0.4126 0.3777 0.3932 0.3790 0.4024 0.3777 0.3932

AUC(↑) 0.6019 0.6043 0.5976 0.6054 0.5891 0.5995 0.5920 0.6030 0.5891 0.5995

1. Hamming Loss (HL): This metric indicates the fraction of labels that are
incorrectly classified to the total number of labels.

HL =
1

Nt × m

Nt∑

i=1

m∑

j=1

[hj(xi) �= yij ] (16)

2. F1 Score (F1)
This measure is the harmonic mean between recall and precision as defined
in Eq. (17):

F1 =
1

m′

m
′

∑

i=1

2 × |h(xi) ∩ Yi|
|h(xi)| + |Yi| (17)
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3. Average Precision (AP ): Average precision evaluates the average fraction
of relevant labels ranked higher than a particular label y ∈ yi.

AP =
1
Nt

Nt∑

i=1

1
yi

∑

y∈yi

{(y′ ∈ yi|rankf (xi, y
′) ≤ rankf (xi, y)

rankf (xi, y)
(18)

4. Coverage (AUC) : Coverage is described as the distance to cover all possible
labels assigned to a sample x. It is loosely linked to precision at the level of
perfect recall. The smaller the value of coverage is, the better the performance
is.

Coverage =
1
Nt

Nt∑

i=1

maxrankf (xi, y) − 1 (19)

5. Ranking Loss (RL): This criterion is utilized for ranking-based algorithms
and measures the average fraction of label pairs that are reversely ordered.
For example, an irrelevant label is ranked higher than a relevant label.

RL =
1
Nt

Nt∑

i=1

(
1

|yi|, |yi|
|{(y′y”)|fy′∈yi

(xi) ≤ fy”∈yi
(xi)}|) (20)

4.5 Results and Discussion

We investigate the classification performances of proposed algorithm in super-
vised framework and compared it with aforementioned algorithms in Table 2, fur-
ther we have also compared performance with Laplacian version of our algorithm
under 50%, 60%, 70%, 80%, 90% labelled data in the training dataset. Figure 1
reflects the overall rank of the compared algorithm along with the proposed algo-
rithm. From the figure we can conclude that the overall rank of the proposed
algorithm is higher when compared with other comparing approaches.

In the semi-supervised setting, as shown in Table 2 and Table 3, our proposed
model performs up to the mark with less percentage of labeled samples.

Fig. 1. Consolidated average rank of participating algorithms across all metrics.
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We further analyze pairwise comparisons using the Nemenyi test [6]. For
six classifiers, the critical value, α0.1 is 2.589, and the CD is 2.32. Significant
differences exist between the best and worst-performing algorithms across all
metrics Figure 2. Overall, HMLLSTSVM demonstrates competitive and often
superior performance.

Fig. 2. HMLLSTSVM comparison with competing algorithms using Nemenyi test,
CD=2.32.

5 Conclusion

This paper presents a Hypergraph Least Squares Twin Support Vector Machine
(HMLLSTSVM) classifier for Multi-Label learning. Taking motivation from the
KNNLSTSVM, we introduced HMLLSTSVM, wherein the weight is associated
to each sample considering the distance from the neighbors, and with the help
of Hypergraph, our model exploits information from both labeled and unlabeled
samples incorporating higher order relationship present in dataset. Further, solv-
ing system of linear equations solution gives an edge above QPPs as solved in
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TSVM. Thus, instead of the hinge loss function, the square loss function is con-
sidered in multi-label learning which also addresses the issue of outlier sensitiv-
ity and noise tolerance. Moreover, we have incorporated the intrinsic similarity
information among the data, using cluster-based structural and local geometric
information among the samples. Experimental results obtained from different
multi-label datasets and various performance measures show good performances
of the linear and non-linear models. As a line of future research, we would like
to discover ways to leverage the multi-label problem’s peculiar properties by
incorporating the label correlation while building the model.

Acknowledgments. Authors acknowledge sincere efforts of Saloni Kwatra in prepar-
ing related work of the initial draft of the manuscript during her stay in South Asian
University as a Master’s student.
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Abstract. Classifying solar flares is essential for understanding their
impact on space weather forecasting. We propose a novel approach using
a multi-head attention and transformer mechanism to classify multivari-
ate time series (MVTS) instances of photospheric magnetic field parame-
ters of the flaring events in the solar active regions. Attention mechanisms
and transformer architectures capture complex temporal dependencies
and interactions among features in multivariate time series data. Our
model simultaneously attends to relevant features and learns their depen-
dencies, enabling accurate classification of solar flare events. We evalu-
ated our approach on SWAN-SF, the largest MVTS dataset for predicting
solar flares, and compared its performance against several state-of-the-
art methods. The experimental results demonstrate that our approach
achieves superior classification performance, even when dealing with a
highly imbalanced dataset characterized by the scarcity of major flaring
events. These findings highlight the effectiveness of attention mechanisms
and transformer models in learning discriminatory features from MVTS-
based space weather data.

Keywords: Solar flares · Multivariate time series · Attention-based
framework · Classification · Space weather forecasting

1 Introduction

A solar flare is an intense, localized eruption of electromagnetic radiation in the
Sun’s atmosphere. Flares occur in active regions and are often accompanied by
coronal mass ejections, solar particle events, and other solar phenomena. The
occurrence of solar flares varies with the 11-year solar cycle. Solar flares tend
to be more frequent and intense during periods of high solar activity, which
coincide with the solar maximum phase of the solar cycle. Solar flares result
from the abrupt release of accumulated magnetic energy within the Sun’s atmo-
sphere. This energy can be stored in twisted magnetic fields above sunspots or
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in other active regions. When magnetic energy is released, it heats the surround-
ing plasma to millions of degrees Celsius and accelerates particles to near the
speed of light. Solar flares can produce a wide range of electromagnetic radiation,
from radio waves to X-rays and gamma rays. Solar flares can have a significant
impact on Earth and the space environment. They can cause radio blackouts,
damage power grids, and disrupt satellite communications. Solar flares can also
produce high-energy particles that can pose a hazard to astronauts and aircraft
crews [14,18,19]. Effective predictions of solar flares are facilitated by employ-
ing time series modeling on magnetic field data collected by The Solar Dynamics
Observatory’s Helioseismic Magnetic Imager (HMI). Consequently, spatiotempo-
ral magnetic field data is mapped into multiple instances of Multivariate Time
Series (MVTS) [7]. Each MVTS instance contains solar magnetic field parame-
ters such as flux, current, helicity, and Lorentz force. The time series associated
with these parameters are derived from two distinct time windows: the observa-
tion window, which encompasses the recording of magnetic field parameter val-
ues, and the subsequent prediction window, corresponding to the period when
peak X-ray flux was observed. The instances are then labeled into six classes:
Q, A, B, C, M, and X. "Q" represents flare quiet active regions, while the other
labels represent flaring events with increasing intensity. Notably, X and M-class
flares denote the most intense flaring events. Recent advances in Multivariate
Time Series (MVTS) models have demonstrated their superior effectiveness in
predicting solar flaring activities when compared to earlier models that relied
on single timestamps for magnetic field vector classification [7]. MVTS-based
models for flare prediction can be broadly categorized into two main groups.
The first category is the statistical feature-based method [16]. In this approach,
low-dimensional representations of MVTS instances are computed by aggregat-
ing summary statistics from the individual univariate time series components.
Subsequently, traditional classifiers such as k-nearest Neighbors (kNN) and Sup-
port Vector Machines (SVM) are trained using these labeled MVTS representa-
tions. The second category comprises end-to-end deep learning-based methods
[24], which utilize Recurrent Neural Network (RNN) or Long Short-Term Mem-
ory (LSTM) based deep sequence models. These models learn by sequentially
inputting vectors representing magnetic field parameters into the cells of the
sequence model. The cell weights are optimized through backpropagation based
on gradient descent. However, a limitation of these models is that they can only
leverage the temporal dimension of the MVTS instances, resulting in suboptimal
classification performance due to their limited ability to exploit the underlying
patterns within the data. Vaswani et al. proposed the Transformer model, a neu-
ral network architecture based solely on self-attention mechanisms, to address the
limitations of previous models [29]. The introduction of the transformer model
marked a significant breakthrough in the field of natural language processing
(NLP) and served as the cornerstone for numerous subsequent advancements,
including cutting-edge language models such as BERT [13] and GPT [32]. One of
its primary advantages lies in its efficiency in capturing long-range dependencies
in data, all while allowing for parallel processing. This leads to faster training
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and inference times in comparison to previous models. The effectiveness of the
transformer model, makes it a powerful choice for MVTS classification, lever-
aging its ability to capture long-range dependencies and handle multi-variable,
temporal data effectively [29]. In our study, we aim to explore an alternative
approach using attention and transformer techniques. By harnessing the power
of self-attention mechanisms in transformers, our objective is to capture the
extended temporal relationships among magnetic field parameters within the
MVTS data, improving solar flare classification performance and deepening our
understanding of these events. In this paper, we propose an attention-based
model for the MVTS classification by leveraging the self-attention mechanisms
to improve the MVTS classification performance. Our experimental results of
our model demonstrate a test score of 70% on the solar flare MVTS dataset
when using the proposed attention-based model, outperforming the baselines by
more than 10%.

2 Related Work

Historically, systems for predicting solar flares heavily relied on human exper-
tise and manual inputs. One early system known as THEO, implemented by the
Space Environment Center (SEC) of NOAA back in 1987, required human inter-
vention to input sunspot characteristics to categorize flare classes [22]. However,
as recent NASA missions have generated a wealth of magnetic field data, the
focus has shifted towards data-driven approaches, moving away from purely the-
oretical models. These data-driven approaches can be broadly categorized into
linear and nonlinear statistical models, depending on the nature of the dataset
used. These models can further be divided into line-of-sight magnetogram-based
and full-disk photospheric vector magnetogram-based models. Line-of-sight mag-
netogram data captures only the component of the magnetic field along the
line of sight, while full-disk photospheric vector magnetic field data provides a
more comprehensive magnetic field state of solar active regions. Linear statis-
tical models aimed to identify highly correlated magnetic field features associ-
ated with flare occurrences. For instance, Cui et al. [11] used line-of-sight mag-
netogram data to establish correlation-based statistical relationships between
magnetic field parameters and flare events. Even before the launch of the Solar
Dynamics Observatory (SDO), Leka et al. [20] utilized linear discriminant analy-
sis (LDA) to classify flaring events using vector magnetogram data from the Mees
Solar Observatory. In contrast, nonlinear statistical models employed a range of
machine learning classifiers such as logistic regression, decision trees, neural net-
works, support vector machines (SVM), and more. For example, Song et al. [28]
and Yu et al. [31] applied various classifiers to line-of-sight magnetogram-based
datasets. Bobra et al. [9] utilized SVM with SDO-based vector magnetogram
data for flare classification, while Nishizuka et al. [26] compared the performance
of k-Nearest Neighbors (kNN), SVM, and Extremely Randomized Tree (ERT)
on both line-of-sight and vector magnetogram data. Furthermore, Convolutional
Neural Networks (ConvNets) have been employed for solar flare prediction using
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SDO AIA/HMI images [21,33]. Recently, Angryk et al. introduced a novel app-
roach to solar flare prediction based on temporal windows, which represents an
extension beyond the earlier single timestamp-based models [7]. In their method,
they employed a Multivariate Time Series (MVTS) dataset consisting of active
regions, which recorded magnetic field data over a predefined observation period
at a consistent sampling rate. Each instance in this dataset was labeled based
on the flare classes that occurred after a specified prediction time. Other efforts,
such as Hamdi et al. [17] and Muzaheed et al. [24], utilized statistical summariza-
tion, decision trees, and Long Short-Term Memory (LSTM)-based deep sequence
modeling for flare prediction. Furthermore, Alshammari et al. [6] addressed the
task of forecasting future values of magnetic field parameters within the MVTS
representations. This involved predicting forthcoming values based on past data
in the MVTS dataset. The transformer model, introduced by Vaswani et al.[29],
offers several strengths for MVTS classification, including long-range dependency
modeling. The transformer model can capture long-range dependencies in the
data, which is effective for MVTS classification. Parallel computation of the
transformer model makes it efficient for training and inference on large MVTS
datasets. Transformer models can support contextual learning, enabling them to
discern contextual relationships between magnetic field parameters without the
need for explicit sequential processing. This is important for the classification of
MVTS instances, as the context of a particular time step can be informative for
predicting the occurrence of a solar flare.

3 Methodology

Fig. 1. Transformer Model for MVTS Classification
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3.1 Notations

The solar event instance i is represented by an MVTS instance mvtsi. The MVTS
instance mvtsi ∈ R

T×N is a collection of individual time series of N magnetic
field parameters, where each time series contains periodic observation values of
the corresponding parameter for an observation period T . The MVTS instance
can be expanded as mvtsi = {vt1 , vt2 , ., ., ., vtT }, where vti ∈ R

N represents a
timestamp vector.

3.2 Data Preprocessing and Normalization

The magnetic field parameter values are recorded in different scales, so we per-
form z-score normalization of each individual time series of each MVTS instance.
At mvtsi, parameter-based individual time series are denoted by P1, P2, . . . , PN .
For each individual time series Pj , we perform z-normalization as follows.

x
(j)
k =

x
(j)
k − μ(j)

σ(j)
(1)

Here, x
(j)
k is the k-th value of the time series Pj , where 1 ≤ k ≤ T , μ(j)

is the mean of time series Pj , and σ(j) is the standard deviation of the time
series Pj . We apply the z-normalization for each partition individually. When
partition i is used for training and partition j is used for test, we perform above
z-normalization independently in the MVTS instances of partition i and j.

3.3 Transformer Model for MVTS Classification

In this work, we harness an attention-based model (transformer) to enhance
the classification performance in an MVTS-based solar flare dataset. Within
our model, we have designed the transformer encoder block. The foundation for
this approach is rooted in the work of Vaswani et al. [29], where they intro-
duced the transformer. The transformer architecture comprises both an encoder
and a decoder, each comprising multiple layers that integrate self-attention and
feed-forward neural networks. In our specific application, we primarily focus on
the encoder component. This encoder is responsible for processing the input
sequence, which, in the context of our study, corresponds to the solar flare data.
The encoder structure consists of a stack of identical layers, with each layer
housing two sub-layers:

– Self-attention layer: This layer plays a pivotal role by enabling each times-
tamp within the input time series to attentively consider all other timestamps
within the same sequence. This mechanism empowers the layer to capture
intricate temporal dependencies between individual timestamps and generate
context-aware representations for each timestamp.
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– Feed-forward neural network layer: Following the self-attention mechanism, a
feed-forward neural network layer is independently applied to each timestamp
representation. This layer introduces non-linearity into the model, allowing it
to incorporate additional information and enhance its overall performance.

In this model, we incorporate the transformer encoder block and leverage the
advantages of the multi-head attention architecture, a critical component of the
transformer model. This architecture empowers the model to simultaneously
focus on various segments of the input sequence, thereby enhancing its capac-
ity to capture intricate temporal dependencies and extract pertinent features.
By employing multiple attention heads, our model can acquire diverse repre-
sentations and attend to distinct aspects of the input data concurrently. In the
context of classifying MVTS data, multi-head attention offers several significant
benefits:

– Enhanced Representational Capacity: Multi-head attention permits the
model to attend to different portions of the input sequence in parallel, facil-
itating the capture of both local and global dependencies effectively. This
capability empowers the model to discern complex patterns within the time
series data, ultimately leading to improved classification performance.

– Robustness to Variable-Length Sequences: MVTS data frequently comprises
sequences of varying lengths. Multi-head attention adeptly manages sequences
of different lengths by assigning varying attention weights to different seg-
ments of the input. This adaptability enables the model to accommodate
sequences with differing lengths without compromising its classification accu-
racy.

The key equations governing the multi-head attention mechanism are pre-
sented and explained in [29]. Our model, illustrated in Figure 1 is described
in algorithms 1 and 2. Algorithm 1 operates as follows:

Algorithm 1. MVTS Transformer Encoder
1: function transformer_encoder( inputs, head_size, num_heads, ff_dim)
2: x ← LayerNormalization(inputs, ε = 1e − 6)
3: x ← MultiHeadAttention(x, x, key_dim = head_size, num_heads =

num_heads)
4: res ← x + inputs
5: x ← LayerNormalization(res, ε = 1e − 6)
6: x ← Conv1D(x, filters = ff_dim, kernel_size = 1, activation = ”relu”)
7: x ← Conv1D(x, filters = inputs.shape[−1], kernel_size = 1)
8: return x + res
9: end function

1. Layer Normalization: The tensor representation of MVTS instances is first
normalized along each feature dimension by passing it through a layer nor-
malization layer.
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2. Self-Attention: The normalized tensor is then fed into a multi-head atten-
tion layer, where a self-attention mechanism is applied. Each attention head
attends to different parts of the input sequence and learns to capture distinct
relationships between time steps. The output of the attention layer retains
the same shape as the input.

3. Residual Connection: The output of the multi-head attention layer is element-
wise added to the original input tensor (inputs). This residual connection
facilitates the direct flow of gradients from the input to the output, easing
the learning process for the model.

4. Feed-forward layer: The result of the residual connection is passed through
another layer normalization layer.

5. Convolutional Layer: A 1D convolutional layer with ff_dim filters and kernel
size 1 is applied to the normalized tensor. This layer acts as a feed-forward
neural network layer, applying non-linear transformations independently to
each position in the sequence.

6. Second Convolutional Layer: Another 1D convolutional layer with inputs of
shape[-1] filters and kernel size 1 is applied to the result obtained from the
previous layer.

7. Residual Connection: The output of the second convolutional layer is element-
wise added to the result obtained from the first residual connection layer.

8. Final Output: The sum of the previous residual connection and the original
input tensor (inputs) is returned as the final output.

Algorithm 2. Build MVTS Transformer(Attention) Model
1: function build_transformer_model(input_shape,

head_size, num_heads, ff_dim, num_transformer_blocks, mlp_units)
2: n_classes ← Length(unique_y_train)
3: inputs ← Input(shape = input_shape)
4: x ← inputs
5: for i ← 1 to num_transformer_blocks do
6: x ← transformer_encoder( x, head_size, num_heads, ff_dim )
7: end for
8: x ← GlobalAveragePooling1D( x, data_format = ”channels_first" )
9: for dim in mlp_units do

10: x ← Dense(x, dim, activation = ”relu”)
11: end for
12: outputs ← Dense(x, n_classes, activation = ”softmax”)
13: return Model(inputs, outputs)
14: end function

Algorithm 2 incorporates several parameters, each described as follows:
input_shape specifies the shape of the input data, head_size determines the
size of each attention head in the transformer, num_heads denotes the num-
ber of attention heads in the transformer, ff_dim represents the dimension of
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the feed-forward network in the transformer, num_transformer_blocks indi-
cates the number of transformer blocks to be stacked, and mlp_units is a list
of integers specifying the number of units in each MLP layer. Within the algo-
rithm, it first determines the number of classes (n_classes) based on the unique
labels present in the training data. It then defines the input layer and sets it as
the current layer, denoted as x. The algorithm proceeds by applying the trans-
former encoder block through the transformer_encoder function. After the
transformer encoder blocks, a global average pooling layer is applied to reduce
the spatial dimensions of the data. Subsequently, a series of MLP layers are
implemented as specified by the mlp_units parameter, with each layer employ-
ing ReLU activation. Finally, an output layer is added with n_classes units and
a softmax activation function for classification.

4 Experiments

In this section, we present our experimental findings, where we compare the
performance of our model with five other MVTS-based flare prediction base-
lines using a benchmark dataset. We implemented our attention-based MVTS
classifier using TensorFlow on the A100 Nvidia GPU. The hyper-parameters
were found by random hyper-parameter search, and set as head_size=256,
num_heads=4, ff_dim=4, num_transformer_blocks=10, mlp_units= 64.
The source code of our model, along with the experimental dataset, is available
in our GitHub repository.1

4.1 Evaluation Metrics

We used True Skill Statistic (TSS) as a performance measure for our experiments.
The True Skill Statistic (TSS) takes into account both the hits and false alarms
in the prediction. It is calculated as

TSS =
TP

TP + FN
− FP

FP + TN

where TP is the number of true positives (correct predictions of flares), FN is the
number of false negatives (missed predictions of flares), FP is the number of false
positives (incorrect predictions of flares), and TN is the number of true negatives
(correctly predicted non-flares). The TSS ranges from −1 to 1, where a value of
1 represents a perfect prediction, a value of 0 represents a random prediction,
and −1 indicates that the model is wrong in all of its predictions [8]. We use
TSS as a performance metric because it has been used frequently to report
the performance of machine learning models for the prediction of rare events,
e.g., solar flares [1,7,17]. TSS can accurately measure the model’s ability to
distinguish between the classes, regardless of how common or rare they are. TSS
is widely used in machine learning and statistical modeling, especially for tasks

1 https://github.com/Kalshammari/Transformer-Model.git.

https://github.com/Kalshammari/Transformer-Model.git
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such as binary classification [15]. One advantage of using TSS as a performance
metric in datasets with high-class imbalance is that it takes into account both the
true positive rate and the true negative rate of the classifier, which is important
when the classes are imbalanced [15]. TSS can also be used to compare models
with different thresholds for presence-absence predictions [3].

4.2 SWAN-SF Benchmark Data Set

As the benchmark dataset of our experiments, we used the MVTS-based solar
flare prediction dataset SWAN-SF published in [7]. The SWAN-SF benchmark
dataset is a collection of multivariate time series (MVTS) data instances that
facilitate unbiased flare forecasting. The MVTS instances of the SWAN-SF
benchmark dataset are labeled by five different flare classes, namely, GOES X,
M, C, and B, and a non-flaring class denoted by Q. Class Q includes flare-quiet
events and GOES A-class events. The dataset comprises five temporally seg-
mented partitions and is designed in a way that each partition includes approx-
imately the same number of X- and M-class flares. Table 1 shows the partition-
wise label statistics of the SWAN-SF dataset. The dataset contains various time
series parameters derived from solar photospheric magnetograms along with
NOAA’s flare history of active regions. The magnetograms and their metadata
are obtained from the Spaceweather HMI Active Region Patch (SHARP) data
product. The magnetic field parameters are physics-based and were recalculated
and enhanced for validation purposes. Each MVTS instance in the dataset is
made up of a 24-time series of active region magnetic field parameters (the full
list can be found in [4,9]. The time series instances are recorded at 12-minute
intervals for a total duration of 12 hours (that results in 60-time steps). In this
paper, T = 60 is used to denote the number of observation time steps, and N
= 24 to denote the number of magnetic field parameters. In this study we use
all 24 magnetic field parameters. In our experiments of feature selection from
MVTS data, we conduct the binary classification between flaring and non-flaring
AR, where we consider flaring AR (class X and M) to be in a positive class and
non-flaring Active Regions (class Q) to be in the negative class. We removed
the B and C class events since the opposite event classes (X + M vs Q) help in
contrastive learning. The removal of B and C class flares for maximizing flare
prediction performance was also suggested by the experimental findings of mul-
tiple previous studies [2,5,9,17,27].

4.3 Baseline Models

We evaluated our model with five other baselines.

1. Long Short-Term Memory (LSTM) The LSTM-based approach was pro-
posed by Muzaheed et. al. [24]. Each MVTS instance was considered as a T
-length sequence of x<t> ∈ R

N timestamp vectors. After sequentially feeding
the LSTM model with each timestamp vector, the last hidden representation
was considered as the MVTS representation. As suggested by the paper, we
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set the number of cell state and hidden state dimensions to 64, the number
of training epochs to 500, and the learning rate in stochastic gradient descent
to 0.01.

2. Support Vector Machine (SVM) SVM is known for its ability to handle
linear and non-linear data effectively, making it a versatile choice for various
applications. It employs support vectors, which are data points closest to the
decision boundary, to determine the orientation and placement of the hyper-
plane. This approach allows SVM to excel in complex and high-dimensional
datasets[10].

3. Canonical Interval Forest (CIF) The time series forest (TSF) classifier,
known for its high performance, quick training, and prediction, is commonly
regarded as a powerful interval method proposed by [23].

4. Multiple Representations SEQuence Learner (MRSEQL) MRSEQL,
proposed by [25], is a robust univariate time series classifier that trains on
features derived from multiple symbolic representations of time series. These
representations include Symbol Aggregation Approximation (SAX) and Sym-
bol Fourier Approximation (SFA), which are used with linear classification
models (logistic regression).

5. MINImally RandOm Convolutional KErnels Transform (MINI-
ROCKET) MINIROCKET is a fast and accurate algorithm for time series
classification. It is a (nearly) deterministic reformulation of the ROCKET
algorithm, which is a state-of-the-art algorithm for time series classification
[12].

4.4 Train/validation/test splitting method

The SWAN-SF dataset has a temporal coherence property that measures how
stable and consistent the magnetic field structures of a solar active region are
over time. It poses a challenge for predicting rare events such as solar flares using
time series data. It requires that the predictions for a given time point are in
agreement with past and future predictions. If temporal coherence is ignored,
the model performance may be artificially inflated. This problem stems from the
data collection method and affects the data splitting into training, validation,
and testing sets. To address the issue of temporal coherence, we use different
time-segmented partitions of the dataset for training and testing samples. This
is the reason why the SWAN-SF dataset has multiple non-overlapping partitions.
Table 1 shows each partition statistics. By using different partitions of SWAN-SF
for training and testing, we avoid testing the model on time series that are partly
identical to those used for training [1]. In this study, we use the following settings:
partition 1 for training and validation and partition 2 for testing, partition 2 for
training and validation and partition 3 for testing, partition 3 for training and
validation and partition 4 for testing, partition 4 for training and validation and
partition 5 for testing, and partition 5 for training and validation and partition
1 for testing.
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Table 1. Event type statistics of each partition of the SWAN-SF dataset

Flare Type Partitions
P1 P2 P3 P4 P5

Q 60,130 73,368 34,762 43,294 62,688
B 5,692 4,978 685 846 5,924
C 6,416 8,810 5,639 5,956 5,763
M 1,089 1,329 1,288 1,012 971
X 165 72 136 153 19
sum 73,492 88,557 42,510 51,261 75,365

4.5 Binary classification performance

Binary classification plays a significant role in distinguishing major flaring events
from minor flaring events or flare quiet events. In this experiment, we focus on
classifying X and M class MVTS instances as flaring events, while considering all
other instances (Q) as non-flaring events. Figure 2 depicts the binary classifica-
tion performances of all models. The results demonstrate that the transformer-
based MVTS model outperforms all other baseline models, and achieves an
average improvement of approximately 8% to 20% compared to the second-best
performing MINIROCKET algorithm. These findings highlight the superior per-
formance of our model in binary classification. This consistency reinforces the
efficacy and reliability of our Transformer-based model in accurately predicting
flaring events.

Fig. 2. Binary classification performance of all baselines compared to the transformer
model.
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4.6 Ablation Study of the Transformer-base MVTS Classification
Model

To get a better understanding of the effectiveness of the different layers in our
model, we conducted several experiments to evaluate the significance of various
layers. First, we evaluated the importance of the self-attention mechanism by
removing it from the model architecture and comparing the results. The removal
of the attention mechanism (when partition 1 was used for training and partition
2 for testing) led to a noticeable drop in the TSS score, from 70% to 54%. This
outcome highlights the significant role played by the multi-head attention layer
in capturing relevant patterns and relationships within the MVTS data. Second,
we examined the impact of layer normalization by removing it from the model.
This resulted in a decrease in TSS from 70% to 44%. This finding underscores
the importance of layer normalization in maintaining the model’s performance
and stability. Finally, we investigated the effect of the 1D convolutional layers.
When these layers were removed from the model, there was a significant drop in
TSS from 70% to 51%. This result demonstrates the crucial role played by the 1D
convolutional layers in capturing important temporal features and contributing
to the overall performance of the model. The ablation study provided valuable
insights into the contributions of different layers in our model. The significant
decrease in TSS upon removing the attention mechanism, layer normalization,
and 1D convolutional layers highlights their importance in capturing relevant
patterns, maintaining stability, and extracting essential temporal features. These
findings underscore the effectiveness and significance of each layer in our model
architecture.

Fig. 3. Ablation Study: The Contributions of Model Components in MVTS Classifi-
cation of Solar Flares.
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Table 2. Experimental Results (TSS scores) for Different Hyperparameters Values on
(Train/Test) Partitions.

Head Size Num FF Num of MLP TSS TSS TSS TSS
Heads Dim Transformer Blocks Units (P1/P2) (P2/P3) (P4/P5) (P5/P1)

256 4 4 10 64 0.70 0.69 0.58 0.57
512 4 4 10 64 0.62 0.68 0.52 0.63
512 8 8 20 128 0.68 0.68 0.57 0.64
128 2 2 5 32 0.69 0.65 0.47 0.29
256 2 2 5 32 0.58 0.65 0.41 0.45
256 4 4 10 128 0.58 0.60 0.32 0.46

4.7 The Impact of Different Hyperparameters Values on The Model
Performance

Table 2 presents the performance of various Transformer model configura-
tions, highlighting key hyperparameters such as head size, number of heads,
feed-forward dimensions, number of Transformer blocks, and MLP units. The
Total Sum of Squares (TSS) scores across different train/test partitions (P1/P2,
P2/P3, P4/P5, and P5/P1) demonstrate the model’s effectiveness in capturing
data variance. For the first row in the table, the model configuration includes an
attention head size of 256, 4 attention heads, a feed-forward dimension of 4, and
10 Transformer blocks. Additionally, the MLP (Multi-Layer Perceptron) units
are set to 64. The computational complexity for this configuration is approx-
imately O(10 · (n2 · 256 + n · 2562)), where n represents the sequence length.
This complexity estimate indicates how the computational cost grows with the
sequence length (n) and model size (256), helping to understand the resource
requirements for this specific model setup.

5 Discussion

We acknowledge that the application of the vanilla transformer architecture is
not novel in a methodological sense, we believe that the contribution of our
study lies in its specific adaptation to the solar flare prediction domain. The uti-
lization of self-attention mechanisms within the transformer framework, tailored
to the characteristics of solar flare MVTS datasets, addresses unique challenges
in time series classification. Our primary focus was to explore the effectiveness
of self-attention mechanisms in capturing long-range dependencies and intri-
cate patterns inherent in solar flare data. We believe that the context-specific
adaptation of the transformer architecture contributes valuable insights to the
solar flare prediction community. The impact of this study in the field of space
weather forecasting is significant. Accurate prediction of solar flares is important
for mitigating the adverse effects of space weather on satellite communications,
power grids, and other critical infrastructure. By leveraging the advanced capa-
bilities of Transformer models, this research provides a robust framework for
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enhancing the prediction accuracy of solar flare events. The use of self-attention
mechanisms enables the model to capture intricate temporal dependencies and
interactions among multiple magnetic field parameters, which are essential for
understanding the complex dynamics of solar flares. The proposed model’s abil-
ity to handle large-scale multivariate time series data and its applicability to
real-world scenarios make it a practical tool for operational space weather fore-
casting. By addressing the limitations of previous models and demonstrating
superior performance, this research contributes to the development of more reli-
able and effective space weather prediction systems. The Transformer model is
important, particularly in the context of solar flare prediction. The self-attention
mechanism used in the Transformer model allows it to focus on different parts
of the input sequence, providing insights into which features and time steps are
most influential in making predictions. This capability can help identify key mag-
netic field parameters and their interactions that contribute to the occurrence
of solar flares. Furthermore, by analyzing the attention weights, researchers can
gain a better understanding of the physical mechanisms underlying solar flare
events. The model’s ability to capture long-range dependencies and complex
temporal relationships in multivariate time series data makes it a powerful tool
for studying the dynamics of solar active regions. This can lead to improved
predictions and a deeper understanding of the processes that drive solar flare
activity, ultimately contributing to advancements in space weather forecasting.

6 Conclusion

In this work, we introduced a transformer-based model for predicting solar flares,
employing the self-attention mechanism for the classification of Multivariate
Time Series (MVTS) instances. Our study presents an innovative approach that
harnesses the capabilities of the transformer model and the self-attention mech-
anism for MVTS classification. Through an end-to-end learning process, our
proposed model effectively captures the temporal relationships inherent within
MVTS instances. This includes the recognition of higher-order inter-variable
relationships as well as local and global temporal changes. By incorporating
attention-based techniques, our experiments conducted on a solar flare predic-
tion dataset showcase the remarkable performance of our model in binary class
MVTS classification, achieving an impressive TSS score of 70%. These outcomes
underscore the potential of our approach to offer more comprehensive and pre-
cise predictions in the realm of solar physics and space weather forecasting.
For future research, we intend to apply the Graph Attention Network [30] on
the functional network constructed from the time series correlation so that the
model can capture both spatial (inter-variable) and temporal dependencies for
learning robust representations of the MVTS instances.
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Abstract. Long-term human path forecasting in crowds is critical for
autonomous moving platforms (like autonomous driving cars and social
robots) to avoid collision and make high-quality planning. It is not easy
for prediction systems to successfully model the inherent uncertainty of
futures while take into account dynamic social and physical interactions
in a highly interactive circumstance. Towards these goals, we develop a
unifying model to predict socially and physically acceptable multi-modes
of future trajectories. The modes of trajectories condition on past obser-
vation, which are not explicit labels but indicate walking patterns (such
as walking straight, turning left/right) and interacting patterns (such as
aggressive, mild). Our model contains an encoder and a decoder, which
leverages two source of information, all past path of agents in a shared
scenario and scene context to jointly learn the representations of social
and physical interactions, where the former can efficiently scale to any
number of agents and the latter helps the model learn the traversable
parts of the scenario. Extensive experiments over several trajectory pre-
diction benchmarks demonstrate that our method is able to capture the
multi-modality of human motion and forecast the distributions of plau-
sible futures in complex scenarios.

Keywords: Trajectory Prediction · Multi-Modal Prediction · LSTM

1 Introduction

Forecasting long-term future trajectories of dynamic pedestrians through
crowded scenarios is of major importance for autonomous driving, social robots
navigation and surveillance systems [1–5]. In autonomous driving and social
robot navigation, autonomous driving cars and social robots share the same
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ecosystem with humans. They adjust their path by anticipating human move-
ment, specifically, avoid collision or keep safe distance with other people. Pre-
dicting long-term trajectories in crowds is still a challenging topic due to the
following properties of human motion.

Fig. 1. Our goal is to predict multi-modal futures that are social and physical accept-
able.

1. Multi-modes of future trajectories. Given the observation of motion sequence,
multiple future trajectory sequences are acceptable. It is not rational to fore-
cast a single path especially for the task of long-term prediction.

2. Social interactions. Interactions between people happens frequently. Although
humans can intuitively know how to interact with other people in crowds, it
is not easy for machines to learn those rules due to complexity and dynamics
of social interactions.

3. Scene context. Pedestrians motion should also obey physical constraints.
Pedestrians walk on feasible terrains such as sidewalk or grass and avoid
static obstacles such as roadblocks. Instead of encoding image of scenario into
prediction model, physical constraints can also be learned from trajectories.

Since the success of recurrent neural network (RNN) on sequence modeling, the
existing state-of-art research focus on inventing RNN-based models for address-
ing the above problems and predicting long-term trajectories. However, they
often only take into account one or two of the aforementioned features. Social
LSTM[6] pooling latent states coming from LSTMs of spatially proximal tra-
jectories to model social interactions, is an critical development for real-world
path forecasting. Social GAN and Social BiGAT investigate the uncertainty of
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futures while considering multi-agents’ interactions by proposing GAN-based
(RNN-based generator and RNN-based discriminator) encoder-decoder archi-
tectures with social mechanism, but they ignore the influence of static scene
on trajectories. The research[7] represents both trajectories and the scene as
images and encodes them via CNNs, but it considers agents independently from
each other. Sophie[8] forecasts social and physical compliant multiple futures by
proposing GAN-based encoder-decoder model which blends a social attention
mechanism with a physical attention mechanism. But It falls short of learning
the truly multi-modality of futures[9].

To address the above limitations, we develop an unifying model which is able
to forecast social and physical compliant multi-modal future trajectory sequences
jointly for all agents in a shared scenario. The proposed model is an encoder-
decoder model which jointly integrates past trajectories, dynamic people-people
and people-space interactions and learns multiple meaningful modes of trajec-
tories. The modes of trajectories conditions on past observation, which are not
explicit labels but indicate walking patterns (such as walking straight, turn-
ing left/right) and interacting patterns (such as aggressive, mild). The decoder
conditions on the predicted mode and generate the sequence of future trajecto-
ries. Our model takes on point-of-view images of agents and learns an abstract,
compressed representation of historical scene images. Besides, we utilize a spatio-
temporal graph representation to naturally model social interactions and ego-
trajectories. We leverage relative motion between people while consider time
dependencies of long-term social interactions. Instead of setting a certain neigh-
borhood size or certain number of neighbors, we assume all people in a shared
environment interacting and pool relative latent states between people through
an attention mechanism. We test the model using classic trajectory prediction
benchmarks and the experiments show promising results.

2 Related Works

2.1 Social interactions for trajectory prediction

Social LSTM introducing Social Pooling to learn a global feature of all nearby
neighbors around an agent which is meant to represent common sense rules and
social conventions, is a tipping point for data-driven long-term trajectory predic-
tion. Many research follow the way of Social LSTM[6] but with improvements.
Attention mechanism is introduced to learn neighbors’ weights on agent[8,10,11].
Fernando et al. extended the classic model to incorporate both soft attention as
well hard attention where the former is for handling longer trajectories and
the latter is used for modeling interacting people[11]. Instead of directly mod-
eling hidden states of neighbors’ motion, some research pool relative motion
between agent and neighbors to model interactions. SR-LSTM proposed a state
refinement module for LSTM, which extracting social effects of neighbors by
embedding and aggregating the relative spatial location between agent and
neighbors[10].
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2.2 Graph for trajectory prediction

Graph representation, specifically spatio-temporal graph (ST-graph) is recently
applied to illustrate human motion and their interactions[2,12,13]. ST-graph for
human motion representation is unrolled through time and characterized with
elements points, spatial-edges and temporal-edges. ST-graph provide a more
direct and natural way to model interactions for trajectory prediction. Structure-
RNN[14] combining high-level spatio-termporal graphs with sequence modeling
success of RNN made significant improvements on problem of human motion
modeling. Some research follow this direction. Social-BiGAT introduced a flex-
ible graph attention network to model social interactions between pedestrians
in a scene. It assumes all people in a scene interacting instead of setting a local
neighborhood[2]. Social-STGCNN utilized spatio-temporal graph representation
and proposed a weighted adjacency matrix to meansure the influence between
pedestrians[13].

2.3 Multi-modality of trajectory prediction

Human motions under crowded scenarios imply a multiplicity of modes. To cap-
ture the uncertainty of future path, some research apply generative adversar-
ial network (GAN) to generate multiple possible paths. Gupta A. et al. pro-
posed Social GAN which contains RNN based encoder-decoder generator and
RNN-based decoder discriminator[15]. Social GAN integrates all the interac-
tions involved in the scenarios and encourages the generative network to spread
its distribution and cover the space of possible paths by introducing a vari-
ety loss. Sadeghian A. et al proposed Sophie, an attentive GAN to jointly model
static human-space, and dynamic human-human interactions by blending a social
attention mechanism with a physical attention that helps the model to learn
where to look in a large scene and to extract the most salient parts of the image
relevant to the path[8]. Some research apply Mixture Density Network (MDN)
to map the distribution of future trajectories[12,16]?. The article[16], based on
MDN, proposed a two stage strategy that first predicted several samples of future
with Winner-Takes-All loss and then iteratively grouped the samples to multiple
modes.

2.4 Scene context for trajectory prediction

Static scene context containing walkable area such as roads, side-walks, cross-
walks and unwalkable area such as buildings, obstacles, which are useful for
trajectory prediction. Most of the existing research encode the scene image to
get a representation of scene context through Convolutional Neural Network
(CNN) and then concatenate it with past trajectory to predict futures. The
search extracts features of top-view scene images through CNN and then applies
a visual attention model to learn most salient parts of scene for trajectories. The
research[7] represent the past trajectories of agents using binary 2-D grids, and
the underlying scene as a RGB birds-eye view images. The research[8] encodes
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the scene image and binary image using ResNet and U-Net respectively, and gen-
erate trajectory forecasts using a Convolutional LSTM decoder. The research[17]
first train a Variational Autoencoder and then use the encoder part to encode the
scene context for various tasks such as prediction. Similar to , our model com-
press the scene images into an abstract, compressed representation and integrate
it with other features for long-term trajectory prediction.

Fig. 2. Architecture of our model.

3 Problem Formulation

We assume that each scenario has been pre-processed to get 2D spatial coordi-
nates (xt

i, y
t
i) ∈ R2 and 2D walking speed (ut

i, v
t
i) ∈ R2 of all people, scenes

where people are looking at mt
i at all time instances. There are N agents

in a scenario. The observation of agent i is past trajectories represented as:
X1:τ

i = {(xt
i, y

t
i , u

t
i, v

t
i)|t = 1, 2, · · · , τ}, past scenes I1:τi = {mt

i|t = 1, 2, · · · , τ}
while the future trajectories is Y τ :T

i = {(xt
i, y

t
i)|t = τ + 1, · · · , T}.

Our goal is to learn the distribution of futures p(Y τ :T
i ). To generate the

distribution of future trajectories, we jointly model multiple ego-trajectories and
their interactions with f . Therefore, the distribution is denoted as:

p(Y τ :T
i ) = f(X1:τ

i , I1:τi ,X1:τ
1:N\i, I

1:τ
1:N\i;w

∗), (1)

where w∗ are the parameters of the model we aim to learn. We denote the
predicted future paths as Ŷ τ :T whose distributions are learned from our model.

4 Methodology

4.1 Overall Architecture

Fig. 2 illustrates our encoder-decoder model. We leverage three sets of LSTMs
to encode motion sequence, social interactions and to construct decoder. We uti-
lizes a spatial-temporal graph to represent human motion and their interactions.
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At any time instance, point elements of a graph are people characterized with
real-world location and velocity while lines between two points are spatial edges
represent their current interaction. In encoder, at any time instance, the loca-
tion and the offset of all people are firstly embeded. Then agent and neighbors
are connected to generate social features. The point-of-view images are encoded
to get an abstract representation. Our model encode those important informa-
tion and forecast discrete latent variables that indicate semantically meaningful
modes of trajectories. Based on the latent variables, our decoder directly forecast
sequence of futures.

4.2 Encoder

Embedding trajectories. As mentioned in Section 3, the agent i at time
instance t is characterized with location (xt

i, y
t
i) and velocity (ut

i, v
t
i). We embed

them respectively.
f̃ t

i = φ1((xt
i, y

t
i);ω

∗
1)

f t
i = φ2((ut

i, v
t
i);ω

∗
2)

(2)

where φ1(·) and φ2(·) are fully connected layers with ReLU non-linearity, ω∗
1 and

ω∗
2 are the embedding weights. Trajectories’ offset between two adjacent time

instants are important features for trajectory prediction, which can stabilize the
training the process and improve the model performance.

The hidden states from single person’s LSTM at time instance t-1 are repre-
sented as ht−1

i . ht−1
i and f̃ t

i are then utilized to construct spatial edges between
agent and neighbors as Et

j = {[ht−1
j , f̃ t

j ] � [ht−1
i , f̃ t

i ]|j = 1, 2, · · · , N\i}. We
assume all people in a shared scenario are allowed to interact. Most of the existing
research construct spatial edges by embedding relative location between people.
Different from those research, we not only take use of the location but also
the latent states of sigle person’s LSTM. We utilize an element wise operation
instead of only embedding the relative current movement, which encourages the
model to better capture the dynamic connection between agent and neighbor.

Social interactions.

ηt
j = ψe1(η

t−1
j , Et

j ;w
∗
η) (3)

where ψe1(·) is another LSTM for social interactions and its weights w∗
η are

shared between all people in a scenario. An attention mechanism is then applied
to get the weights of neighbors on agent.

wt
j = exp(φη(η

t
j ;ω

∗
η))

∑N\i
k=1(exp(φη(ηt

k;ω
∗
η)))

(4)

where φη(·) is a fully connected layer, ω∗
η are the embedding weights. wt

j is a
variable-length alignment vector, whose size equals the number of neighbors N -1.

st
i =

∑N\i
j=1(w

t
j ∗ ηt

j) (5)
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Fig. 3. Scene Context Encoder.

Given wt
j as weights, the social feature st

i is computed as weighted sum over all
spatial edges. st

i stores information how the agent interact with others. Some
previous works use a Euclidean distance-based ordering structure to select a
fixed number of neighbors, which is not rational in highly interacted, dynamic
scenes. Some research used Max or Average functions to pool neighbors which
may lost individual uniqueness. Here, we allow all neighbors to interact and
selectively sum their features through an attention mechanism, which fits the
realistic circumstance and doesn’t lose individual uniqueness.

Scene context. Instead of encoding the whole scene image, at any time instant
t, we take point-of-view images of agents as input of scene context encoder.
we transform the scene according to the walking direction of agents and get
sequences of dynamic scene images. At any time instant, we learn an abstract,
compressed representation of each observed scene image.

zt
i = φz(It

i ;w
∗
z) (6)

where φz(·) is Variational Autoencoder as depicted in Fig.3, zt
i is the compressed

latent vector of image It
i . It

i is a binary image where 0 means not walkable area
and 1 means walkable area.

Trajectory encoder. We represent social state and scene representation for
agent i at time t as st

i and zt
i respectively, and then concatenate them with f t

i .

ht
i = ψe2(h

t−1
i , [f t

i , s
t
i, z

t
i ];w

∗
h) (7)

where ψe2(·) is LSTM and its weights w∗
h are shared between all people in a sce-

nario. By taking social state, scene representation and past trajectories as input,
ψe2(·) is able to learn:(1) features of past trajectories which indicate walking
direction, speed, goal .etc, (2) how pedestrians interact with each other, (3) how
pedestrians interact with static scene context. The hidden states ht

i implies not
only the walking patterns of pedestrians but also the futures.
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4.3 Conditioned decoder

Latent modes. To capture the multi-modal futures, inspired by [18] , we learn
discrete latent variables which indicate meaningful walking patterns of trajec-
tories. We denote the discrete latent variables as αi which take on k values.
αi doesn’t have explicit meanings but implies the various walking patterns:
(1)interactions modes, such as aggressive or mild, (2) walking goals, such as
walking straight or turning left/right. αi conditions on the features ht

i of past
trajectories.

Hi = φh([h0
i , h

1
i , · · · , hτ

i ];w
∗
h) (8)

where φh(·) is fully connected layer, w∗
h are embedding weights, Hi = {Hg

i |g =
0, 1, · · · , k − 1}.

probg
i = exp(Hg

i )∑K
d=1 exp(Hd

i )
(9)

where probi sum up to 1.0. For each agent i, αi ∼ Multinoulli(probi).
Futures prediction. When predicting multi-steps of futures, our model

sample once and get αi at time τ and take αi as input at each time instance.
To predict multi-modes of futures, we can sample multiple times at τ to get αi.
But for each mode of prediction, αi is consistent over all time steps.

fai = φα(αi;w∗
α)

Ht
i = ψd(Ht−1

i , [H̃t−1
i , fai];w∗

d)
(10)

where φα(·) is fully connected layer with weights w∗
α, ψd(·) is LSTM, its weights

w∗
d are shared between all people in a scenario. For the prediction at time instant

τ + 1, H̃τ
i equals to hτ

i . For prediction at the rest time instants, H̃t
i equals to

Ht
i . The futures Ŷ t

i at time instant t are given by: Ŷ t
i ∼ N2(μt

i, σ
t
i). Means

μt
i = (μx, μy)ti and standard deviation σt

i = (σx, σy)ti are obtained by applying
fully connected layers φμ(·) and φσ(·) to Ht

i respectively.

4.4 Training

The loss function is usually designed to compute negative log-likelihood of future
trajectories.

L = −∑T−1
t=τ log( 1

N

∑N
i=1 p(Ŷ t+1|μt

i, σ
t
i , αi)) (11)

To train the whole model, we first train the Variational Autoencoder to learn
the scene context encoder of scene images in an unsupervised manner. Then we
train the whole model end to end by minimizing the loss function.

5 Experiments

In this section, the proposed model is evaluated on two publicly available
datasets: UCY[19] and ETH[20]. The two datasets contain 5 sets, which are
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Fig. 4. Comparison between the proposed model and two recent baselines, Social GAN
and Socila STGCNN

UCY-zara01, UCY-zara02, UCY-univ, ETH-hotel, ETH-eth in 4 crowded sce-
narios with totally 1536 trajectories. We firstly preprocess those two datasets by
resampling them as 2.5fps and transforming the coordinates of people to world
coordinates in meters.

Implementation Details. The experiments are implemented using Pytorch
under Ubuntu 16.04 LTS with a GTX 1080 GPU. The size of hidden states of
LSTM is set to 128. The embedding layers are composed of a fully connected
layer with size 128. The batch size is set to 8 and all the methods are trained
for 200 epochs. We clip the gradients of LSTM with a maximum threshold of
10 to stabilize the training process. k of latent modes is set as 5. As mentioned
before in 4.4, we first train the Variational Autoencoder using Adam optimizer
with learning rate 0.001 to get scene context encoder. We didn’t fine-tune scene
context encoder when training entire model. For training the entire model, the
optimizer Adam with learning rate 0.001 is used.

Evaluation Approach. The proposed model is trained and tested on the two
datasets with leave-one-out approach: trained on four sets and tested on the
remaining set. We observe the trajectories for 8 timesteps (3.2 sec) and show
prediction results for 12 timesteps (4.8 sec). To evaluate the performance, we
compare our method with other state-of-the-art models on two generally used
metrics.

1. Average displacement error (ADE): average L2 distance over all prediction
results and ground truth. ADE measures average error of the predicted tra-
jectory sequence.
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2. Final displacement error (FDE): distance between prediction result and
ground truth at final timestep. FDE measures the error "destination" of the
prediction.

Baselines.The proposed model is compared with the following baselines.

1. Linear. The second order Kalman Filter, which is modeled based on position,
velocity, acceleration, is used as the linear method.

2. LSTM. Human motion is modeled without considering human interaction.
Offset is used as input[21].

3. Social LSTM. This method models human interactions by pooling hidden
states of spatially proximal motion sequences [6].

4. Social GAN. This approach captures the multi-modality of future trajectory
prediction, which contains a RNN based encoder-decoder generator and a
RNN-based encoder discriminator. We consider one variant of Social GAN:
best results of sampling 20 times[15].

5. Sophie. This is a GAN-based model which takes into account both social
and physical interactions to make more realistic predictions. We consider one
variant of Sophie: best results of sampling 20 times[8].

6. PIF. An end-to-end, multi-task learning system utilizing visual features about
human behavioral information and interaction to forecast future trajectories
[22].

7. Social BiGAT. This method uses a generator, two discriminators (local dis-
criminator and global discriminator) and a latent noise encoder to construct
a reversible mapping between predicted paths and learned latent features of
trajectories. We consider one variant of Social BiGAT: best results of sam-
pling 20 times[9].

8. Social STGCNN. The method substitutes aggregation methods by modeling
the interactions as a graph.

Ablation study. To explain how our model works, we also represent results
of various versions of our models in an ablative setting by V 1: our model that
doesn’t consider static scene context, V 2:our model that doesn’t consider social
interactions, V 3: our entire model that generates results from one mode, V 4:our
entire model that generates results from two modes, V 5:our entire model that
generates results from three modes, V 6:our entire model that generates results
from four modes, V 7:our entire model that generates results from five modes.

5.1 Quantitative Evaluation

ETH and UCY. We compare our model to various baselines in Table 1, report-
ing the average displacement error (ADE) and final displacement error (FDE) for
12 timesteps of human movements. In general, the linear method performs worse
than the other methods because it is limited to modeling the social context or
multi-modality of human motion. Social LSTM only achieves an accuracy similar
to that of LSTM, although it is trained with synthetic data and then fine-tuned
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Table 1. Quantitative results of baselines versus our method across datasets for pre-
dicting 12 future timesteps(4.8 sec) given 8 timesteps observations(3.2 sec)(lower is
better). The results of Social LSTM, Social GAN are from [15], the results of Sophie,
Social BiGAT, Social STGCNN are from [8,9,13] respectively. The results of PIF are
from [22].

Method Note Evaluation (ADE(m)/FDE(m))
ETH-eth ETH-hotel UCY-univ UCY-zara01 UCY-zara02 AVG

Linear kalman filter 1.65/2.84 0.99/1.70 0.86/1.51 0.83/1.44 0.54/0.96 0.97/1.69
LSTM offset is input 0.71/1.40 1.15/2.09 0.72/1.49 0.48/0.98 0.38/0.77 0.69/1.35
Social LSTM social pooling 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
Sophie 20 samples 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15
Social GAN 20 samples 0.72/1.29 0.48/1.01 0.56/1.18 0.34/0.69 0.31/0.65 0.48/0.96
PIF 20 samples 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00
Social BiGAT 20 samples 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00
Social STGCNN 20 samples 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
Our model-V1 without scene 0.79/1.16 0.53/0.95 0.82/1.30 0.54/0.81 0.66/1.21 0.67/1.09
Our model-V2 without social 0.66/1.16 0.56/1.06 0.74/0,95 0.49/0.75 0.61/1.11 0.61/1.00
Our model-V3 1 mode 0.58/1.11 0.30/0.58 0.62/0.78 0.40/0.65 0.51/1.02 0.48/0.83
Our model-V4 2 modes 0.54/1.02 0.28/0.52 0.59/0.74 0.37/0.64 0.48/0.94 0.49/0.68
Our model-V5 3 modes 0.53/0.98 0.24/0.44 0.57/0.75 0.36/0.63 0.47/0.91 0.45/0.77
Our model-V6 4 modes 0.51/0.97 0.23/0.43 0.53/0.72 0.40/0.89 0.46/0.89 0.43/0.78
Our model-V7 5 modes 0.51/0.95 0.23/0.41 0.50/0.69 0.41/0.83 0.44/0.86 0.42/0.75

on the benchmarks[15]. LSTM use offset as the input, which stabilizes the learn-
ing process and improves the performance. Sophie, Social GAN, Social BiGAT
and PIF, Social STGCNN capturing the uncertainty of long-term movement all
achieve better results than Social LSTM and basic LSTM.

Our first model that doesn’t consider scene context and second model that
doesn’t consider social interactions, don’t obtain good results, which indicate
that scene context and social interactions are critical for long-term trajectory
prediction. Interestingly, our second model outperforms the first one, which also
imply that scene information might be more important than social interactions
for long-term prediction. The rest models take into account past trajectories,
social interactions, scene context. The modelV 7 that generates results from the
entire five modes better than other models, which indicates that our model is
able to capture the uncertainty and learn multiple modes of futures. Our entire
model achieves good results by comparing with other methods, especially over
ETH-eth and ETH-hotel and UCY-univ.

5.2 Qualitative Evaluation

To investigate the ability of our model to forecast more accurate and reasonable
futures , we visualize three sets of scenarios from ETH-hotel and ETH-eth and
compare the predictions of two state-of-the-art models, Social GAN and Social
STGCNN, to that of our model (Fig.4). We plot the best results of 20 samples
for Social GAN and Social STGCNN. The results from our model are the best
results of 5 modes. In the first set of scenarios group, (a) contains two people
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walking along the road and two people standing together. Our model predict the
future trajectories better than Social GAN and Social STGCNN. The two base-
lines wrongly forecast the walking speed for both walking group and standing
group. In (b), the group are turning a corner. Social STGCNN predict forecasts
the group will walking straight. The second set of scenarios show the prediction
results when people are interacting each other. II (a) shows three people with dif-
ferent walking speed and directions are interacting with each other. II(b) shows
a pedestrian is overtaking another. Our model outperforms the two baselines
by better forecasting the waking direction and speed when interaction happens,
which indicates that the proposed model is able to better capture the interaction
among people. In the third set (a), even we show the best results of 20 samples,
Social GAN and Social STGCNN still wrongly predict the walking goals. In (b),
two people are turning in an aggressive way. Given the observation, our model
predict better results than Social GAN and Social STGCNN by better capturing
their walking patterns.

Fig. 5. Multiple socially and physically acceptable futures.

To further illustrate that our model is able to forecast both socially and
physically acceptable multi-modal futures, we show four scenarios where multiple
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futures are forecasted in Fig.5. In (a) , the pedestrians will either walk into the
store or walk along the road. In (b), two people are turning a corner. They will
behave differently to turn the corner. For (a) and (b), two modes of futures which
are physically acceptable are forecasted. In(c) and (d), intense social interactions
are happened among people and four modes of possible futures are illustrated.
Our model is able to forecast multiple meaningful modes of futures, such as
aggressive or mild interactions.

6 Conclusion

We propose a unifying trajectory prediction model, which jointly takes into
account multiple interacting movements, dynamic point-of-view scene images,
and predicts multi-modal socially and physically acceptable futures. Our model
utilizes three set of LSTMs and contains an encoder and a decoder. In encoder,
we learn a joint representation of past trajectories, dynamic people-people and
people-scene interactions through a social mechanism and scene context encoder.
Our social mechanism scales effectively to any number of pedestrians and learns
to model dynamic interactions. The scene context encoder learns compressed
features via VAE. The latent variables, a fixed-length vector, learns to indicate
the walking or interacting patterns of trajectories. The latent variables condi-
tion on the joint representation and keep consistent for sequence prediction.
Then decoder forecasts multi-modes of future by sampling from the the latent
variables. Our model outperforms other state-of-the-art models over a number
of publicly available datasets. We also demonstrate that it is able to provide
more socially and physically acceptable distributions by qualitatively analyzing
the performance of our model under scenarios such as group meeting, collision
avoidance comparing to other baselines. Future work will extend our model to
forecast futures of multiple objects, such as bicycles, cars, and test the model
performance with more benchmarks.
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Abstract. Denoising images corrupted with multiple types of noise is
significantly challenging due to their variable noise distribution. These
numerous types of noise have a cumulative effect on the image. There-
fore, considering only a single or multiple distribution of noise would
be ineffective for restoration. Moreover, estimation of the noise is diffi-
cult where there is heterogeneity in the combination of the noise. Hence
in this paper, we propose a sequence of autoencoders to progressively
restore the noisy images. Each autoencoder specializes in the restoration
of images affected by a particular combination of noise. These trained
autoencoders are arranged in a state-space graph such that all possi-
ble combinations of noises can be screened by the autoencoder or their
ensembles. The root of the state space graph is the N th level autoen-
coder as it is exposed to all kinds of noise. In contrast, the autoencoder
at the leaf level is exposed to one type of noise. During restoration of
images, the obtained state space tree is searched using a heuristics search
algorithm to find the near-optimal ensemble of autoencoders which can
denoise the combinations of noises present in an image. Experiments are
conducted with diverse combinations of noises to demonstrate the effi-
cacy of the proposed approach. Furthermore, the proposed method is
compared with various state-of-the-art approaches. It was observed that
the proposed approach had significant efficiency in handling the combi-
nation of noise and outperforms various state-of-the-art techniques.

Keywords: Image Denoising · N-Layered autoencoder tree · heuristic
search · Image Restoration

1 Introduction

Image denoising remains a fundamental challenge in digital image processing,
aimed at removing noise while preserving essential structural details and image
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quality. Traditional techniques, such as filtering [6], though foundational, often
fail to maintain finer image details and usually assume a single noise type, which
is rarely the case in practical scenarios. With the evolution of deep learning,
more sophisticated denoising methods have emerged. Deep autoencoder-based
architectures, for instance, have shown promising results in efficiently restor-
ing images with unknown noise models [19]. However, these often struggle with
images corrupted by multiple types of noise or higher noise levels. In response
to these challenges, the focus has shifted towards using Generative Adversarial
Networks (GANs), which offer robust mechanisms for handling a broader spec-
trum of noise types and intensities. The use of GANss for image denoising has
been explored by many researchers, where a generator creates denoised images to
confuse a discriminator into treating them as real, un-corrupted images. Variants
of GANs such as Cyclic GAN [8], Contextual GAN [22], and Residual GAN [7]
enhance the technique of denoising for better performance. Recent advances have
also explored attention mechanisms and visual transformers for image denois-
ing. Wang et al. [18] proposed a channel and space attention neural network for
image denoising, focusing on the adaptive processing of noisy areas of an image.
In recent times, researchers have begun to develop more versatile models. For
example, Cheng et al. [9] combined deep hybrid learning models with innovative
optimization algorithms such as the Self-Improved Orca Predation Algorithm
which demonstrated enhanced denoising capabilities, particularly in preserving
image details and computational efficiency. Furthermore, using sparse represen-
tations in deep convolutional networks by Bian et al. [2] has provided significant
improvements in standard denoising benchmarks.

Previous methods for reducing noise in images, like deep autoencoders and
Generative Adversarial Networks (GANs), have brought some important improve-
ments. However, they often struggle when dealing with images that have different
types of noise mixed or very high levels of noise. While deep autoencoders are good
at learning from data, they sometimes lose small but important details in images
with complex noise patterns. Similarly, GANs face difficulties in distinguishing
between various noise types and might not always accurately restore the original
quality of highly corrupted images. However, if learn progressively the cumulative
distribution of noise with a series of autoencoders, we can overcome the issue of
handling multiple types. But, we need an efficient arrangement of these autoen-
coders such that they can handle arbitrary combinations of noise. Vahdat and
Kautz’s work [16] on deep hierarchical variational autoencoders showed the poten-
tial of layered learning approaches in complex image tasks. This motivated us to
explore the autoencoders to learn the cumulative noise models and arrange them
in a hierarchy for the restoration of noisy images. Our work introduces a novel
hierarchical approach to image denoising using a combination of autoencoders.
Our primary contribution is a hierarchical ensemble of autoencoders. The autoen-
coder ensemble was trained sequentially to target specific noise types and levels,
thereby progressively enhancing image quality. By employing a state-space tree
representation and a uniform cost search algorithm, we optimize autoencoder com-
binations based on the heuristic cost function, allowing for a tailored approach to
address various noise types within an image. The proposed approach was evalu-
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ated on an incremental cumulative combination of single and multiple noise mod-
els. The results of the proposed approach were compared with four state-of-the-art
approaches using the peak signal-to-noise ratio (PSNR) and structural similarity
matrix (SSIM). The results obtained depict the dominance of the proposed app-
roach over other state-of-art approaches.

The rest of the article is organized into the following sections. Section 2
discusses the related work in this area. Following this, in Section 3 we discuss
the proposed methodology. In Sections 4 and 5, experimental setup and result
analysis are presented. Finally, a conclusion with future perspectives is provided
in section 6.

2 Related Work

Autoencoders, a type of neural network, are frequently utilized for image denois-
ing tasks. They work by learning to compress (encode) the input image into a
lower-dimensional space and then reconstruct (decode) it back to the original
space while attempting to retain the essential features and discard the noise.
Vincent et al. [17] introduced the concept of stacked denoising autoencoders,
which utilize a deep network with a local denoising criterion to learn useful rep-
resentations for noise reduction. This approach has set a foundational technique
that has been widely adopted in subsequent research. Additionally, the explo-
ration of deep convolutional autoencoders by Gondara [5] has demonstrated their
effectiveness in handling complex noise patterns in medical images, providing a
robust framework for improving denoising outcomes. The non-linear activation
free network (NAFNet) proposed by Chen et al. [4] optimizes for computational
efficiency but under performs with varied noise types due to its linear struc-
ture. Meanwhile, the Restoration Transformer (Restormer) proposed by Zamir
et al. [21] excels in handling global dependencies in images but faces scalability
issues with high-resolution or real-time applications due to high computational
demands. Most of these models address a single type of noise but Remez et al. [11]
made a significant contribution to handling two kinds of noise, namely Gaussian
and Poisson noise. The three state-of-the-art algorithms, while advanced, exhibit
a lot of limitations in adaptability and efficiency across complex noise condi-
tions which our proposed hierarchical autoencoder approach seeks to address by
enhancing flexibility and efficiency in handling diverse noise conditions.

3 Proposed Method

We propose a novel hierarchical approach to denoising images degraded with a
cumulative combination of noise using a sequence of autoencoders.

The mathematical model cumulative noise degradation process is defined
as follows: let us consider the observed image I ∈ R2 which is degraded by a
cumulative combination of p external noise η1, η2, η3, ...ηp. Mathematically,

I = ((((f ◦ η1) ◦ η2) ◦ η3)... ◦ ηp) (1)
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where f is the unobserved clean image. The operator ◦ denotes the noise
degradation process.

We develop a hierarchical ensemble of autoencoders, each trained sequen-
tially to target specific combinations of noise types and levels, thereby progres-
sively enhancing image quality. It may be noted here that the autoencoder is
trained with a cumulative combination of noise. Thus during denoising, there is
a noise requirement for the prior combination and type of noise as every com-
plex noise is a cumulative combination of simple types of noise. For example,
the low-illuminated image with jitters can be a combination of Rayleigh and
Gaussian noise. we optimize autoencoder combinations based on a cost function
by employing a state-space tree representation and a heuristic search algorithm,
As during denoising, the set of the autoencoder is searched in the state space,
the prior information of the order of the noise is not required for denoising.
Our proposed methodology encompasses two main stages: Sequential training of
multiple autoencoders on images corrupted with a cumulative noise distribution
and utilizing an N-layered tree to determine optimal denoising strategies. Each
autoencoder in our sequence is specialized for a specific cumulative combination
of noise, enhancing adaptability across diverse noise conditions.

3.1 Encoder-Decoder Architecture

The encoder-decoder model constitutes L layers of encoder and decoder block.
The architecture of the proposed method is shown in Figure 1. The encoder block
(E) takes an input image I of dimension C × H × W where C represents the
number of channels, H and W are the height and width of the image respectively.
Details of each component are described in the following subsections.

Fig. 1. Autoencoder Architecture
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Encoder Design The encoder block consists of convolutional neural network
(CNN) layers, enhanced by Leaky ReLU activation functions, to condense noisy
input images into a compact latent representation, capturing essential informa-
tion while removing noise. In each convolutional layer, there are q number of
filters of size k × k that capture essential features in the image. Batch nor-
malization is applied after some convolutional layers to stabilize learning and
normalize the features. The LeakyReLU activation function allows for a small,
non-zero gradient when the unit is not active, which helps to maintain a flow of
gradients during training. The encoder progressively down-samples the image,
increasing the number of feature channels while reducing spatial dimensions.
Mathematically it can be written as,

yl = LeakyReLU(Conv2D(yl−1)) (2)

where yl−1 is the input to the lth layer of the encoder. It may be noted that
initially yl is set to the input image I.

Decoder Design The decoder mirrors the encoder’s structure but in reverse,
using transposed convolutional layers to upsample the feature maps back to the
original image size. The use of BatchNorm2d and LeakyReLU continues in the
decoder to maintain consistency with the encoder’s processing. The reconstruc-
tion starts with the most compressed feature representation and progressively
increases the spatial dimensions while reducing the number of feature channels.
The final layer typically uses a Sigmoid activation function (σ(. . . )) to output
the pixel values of the reconstructed image, ensuring that they are in the same
range as the input image, which is usually between 0 and 1 for normalized image
data. The decoder operation is represented as

yl−1 = LeakyReLU(Conv2DT (yl)). (3)

where yl is the input to the l−1th layer of the decoder. Here, it is to be noted that
the decoder has reverse indexing as the encoder. The final output is obtained as

Î = LeakyReLU(Conv2DT (y1)). (4)

where Î represent the reconstructed image.

3.2 Training

The training procedure for our autoencoder series follows a sequential methodol-
ogy where each autoencoder is exposed to a cumulatively increasing noise com-
plexity. This strategy aims to enhance the specialization of each autoencoder
in the sequence, by sharing the learned noise from the previous layer. Figure 2
depicts the schema for autoencoder training.

The sequence initiates with a clean image I. An initial noise N1, such as
Gaussian noise, is added to generate a noisy image I ′. The first Autoencoder
(AE 1) is then trained with I ′ as the input and I as the target, adapting to



DCHEA 275

Fig. 2. Schematic representation of the sequential training process with cumulative
noise exposure and weight transfer between subsequent autoencoders.

remove the introduced noise. After training, the weights of Autoencoder 1 (AE
1) are used to initialize the weights of Autoencoder 2 (AE 2) a process known as
weight transferring. This process is repeated with an additional noise type N2

added to the image, creating I ′′. All autoencoders from (AE 1) to (AE 6) have I
as their output. This pattern of noise addition and weight transferring continues
during the training of the sequence of autoencoders.

As the training process advances, the noise complexity is incremented by
introducing additional noise types, such as Poisson noise (N2) Colored Gaus-
sian noise (N3), and so on. Each successive autoencoder is trained to denoise a
cumulative combination of noises, with AE2 focusing on N1 + N2 and AE3 on
N1 +N2 +N3. This cumulative training strategy ensures that each autoencoder
develops a specialization for a distinct noise combination, thus progressively
improving the system’s capability to denoise images afflicted with an increas-
ingly complex mixture of noise types.

MSE(I, Î) =
1

MN

M∑

i=1

N∑

j=1

(I(i, j) − Î(i, j))2. (5)

The Mean Squared Error (MSE) (5) is utilized as the loss function to optimize
the autoencoders where i , j represent pixel position in image I and Î.

3.3 N-Layered Tree for Optimal Autoencoder Sequence
Determination

The N-layered tree structure is pivotal in determining the most efficient com-
bination of autoencoders to address the multiple noise profiles in images. It is
configured as a binary tree and systematically navigates through decision points,
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where each node represents a binary decision to either engage or bypass a specific
autoencoder based on the reconstructed image’s total variation. Mathematically
this is defined as

cost =
M∑

i=1

N∑

j=1

(Î − I)2+ ‖ ∇Î ‖2 (6)

In Eq. 6, the first part constrains the reconstructed image from deviating
from the original image, and the second part represents the total variation which
ensures the piecewise smoothness in the reconstructed image.

Fig. 3. Schematic of the N-Layered Tree illustrating decision paths for selecting autoen-
coder sequences.

As evident from Figure 3, the tree’s root contains the most comprehensive
autoencoder, aimed to tackle all noise types. We begin with the N th Autoencoder
at the root of the tree, which branches out into two paths: one utilizing the N th

Autoencoder and one without it. It then reaches the N −1th autoencoder, which
further branches out to two branches, with one utilizing the N − 1th autoen-
coder and another without it. This process continues recursively until we reach
Autoencoder 1 at the leaf level of the tree. A bifurcation at each level, indicated
by ’Yes’ or ’No,’ denotes the decision to incorporate the autoencoder at that par-
ticular layer for denoising purposes. Following the uniform cost search approach,
the autoencoder tree is traversed from root to leaf (goal node). The effectiveness
of each autoencoder and path through the tree is quantitatively assessed by cal-
culating the cost function defined in Equation 6. The reconstructed outputs from
autoencoders are propagated down the tree. The autoencoders in the lowest cost
path is included in the optimal sequence of autoencoders. This optimal sequence
signifies the most effective combination of autoencoders for a given noise profile.
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It is to be noted the uniform cost search is guaranteed to give an optimal path to
the goal node [13]. Thus the generated sequence of autoencoder will be optimal
for a particular cumulative combination of noise profiles.

4 Experimental Setup

4.1 Dateset Description

The images used in the experimentation are taken from the Kaggle house room
dataset1. The images are corrupted by adding noise generated using various
noise functions. This enabled the generation of diverse noise patterns onto a sin-
gle image. The noise types considered in the experiment include Gaussian noise,
commonly found in digital images due to electronic circuit noise[3] and Poisson
noise, which arises from the stochastic nature of photon counting[10]. Addition-
ally, our simulations incorporate Gaussian noise, Poisson noise, Coloured Gaus-
sian noise[15], Speckle noise[14] and Salt-pepper noise[1] as well, which affects
the overall brightness of an image. We also include Uniform noise[24], altering
the pixel intensities evenly and Speckle noise. It may be noted here that we con-
sidered simulating our dataset because most of the available standard datasets
contain one or a maximum of two types of noise conditions which limits us from
rigorously testing the effectiveness of the model when there are multiple source
noises (greater than 2) which degrades the quality of image drastically. The
dataset is partitioned into training and testing subsets (Table. 1), with 60% of
the images earmarked for training purposes, and the remaining 40% reserved for
testing.

Table 1. Train Test Split

Image Percentage Sample Size

Clean Train 60 percent 3000
Clean Test 40 percent 2000
Noisy Train 60 percent 3000
Noisy Test 40 percent 2000

4.2 Model Parameters

The network has four encoder layers, three decoder layers, and one output layer.
The number of filters considered for the encoder block are [128,64, 32, 16] and the
filter size was set to 3×3 The learning rate utilized in the training process is set
to 0.001. The loss function employed throughout training is the Mean Squared
1 https://www.kaggle.com/datasets/robinreni/house-rooms-image-dataset/data

https://www.kaggle.com/datasets/robinreni/house-rooms-image-dataset/data
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Error (MSE) loss. To optimize the model parameters, the Adam optimizer is
utilized. The training data is divided into batches of size 16 to facilitate efficient
computation. Each autoencoder undergoes training for a total of 100 epochs,
ensuring that the model iterates over the entire dataset multiple times. The
input considered for experimentation are 3-channel coloured RGB images. It
may be noted that the images are of variable size. So, we fix the input image
size to 256 × 256.

5 Result Analysis

5.1 Model Comparison

Our comprehensive experimental evaluation compares the Hierarchical Ensemble
of Autoencoders (the proposed model) against various state-of-the-art models
namely Restormer [20], NAFNet [4], FFDNet [23] and Class aware denoising
model [12]. Using a suite of metrics like Mean Absolute Error (MAE), Peak
Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM)
we present a rigorous assessment across various noise levels. We would like to
highlight that this is an evolving problem where few or no models exist where
such multiple noises are handled in one shot. Thus we considered the model that
has shown potential in handling two or more kinds of noise.

In Table 2 we showcase results for the accumulation of noise up to 10 times.
Looking closely at the table data, we see that the DCHEA model consistently
outperforms the other models in both PSNR and SSIM values as the types of
noises increase. Our model(DHCEA) starts a PSNR of 37.97 and an SSIM of
0.969 in the first scenario and continues to attain high PSNR/SSIM values till
the 10th noise addition. This suggests that DCHEA is quite reliable in reducing
noise in images. In comparison, models like NAFNET, FFDNet, and Restormer
start with lower PSNR/SSIM scores and decrease further as noise is added. It
may be noted that the models are designed to handle a single type of noise and
hence there is a significant deterioration in performance as the noise type and
level increases.

5.2 Ablation study

In this ablation study, the impact of incrementally adding homogeneous noise is
quantified using PSNR and SSIM metrics.

For Gaussian noise, as we keep accumulating Gaussian noise with varied stan-
dard deviations, there’s a notable deterioration in image quality. Image recon-
structed using our model DHCEA obtains high PSNR/SSIM scores making it
efficient in handling homogeneous noise as well. Similarly, for Poisson noise, the
original images experience a significant degradation, with PSNR reducing from
28.95 to 21.62 and SSIM from 0.863 to 0.618 as there is an accumulation of noise.
However, the reconstructed images again maintain remarkably high PSNR val-
ues, all around 37, and consistently high SSIM values. Results for other noises
are included in the supplementary materials.
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Table 2. DHCEA Model Comparison with various states of the model given by
PSNR/SSIM values. Results for the best performance are highlighted in bold.

Cumulation Noise Image DCHEA NAFNET [4] Restormer [20] FFDNet [23] Class Aware [11]
of Noise PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

1 29.71 / 0.795 37.97 / 0.969 27.80 / 0.895 30.09 / 0.923 31.58 / 0.955 30.03 / 0.864
2 26.84 / 0.715 37.25 / 0.965 26.22 / 0.851 29.14 / 0.901 31.52 / 0.955 28.73 / 0.794
3 25.77 / 0.702 37.08 / 0.965 26.08 / 0.844 28.94 / 0.893 30.79 / 0.948 28.13 / 0.780
4 26.67 / 0.712 37.11 / 0.965 26.22 / 0.850 29.15 / 0.901 31.31 / 0.955 28.86 / 0.792
5 20.60 / 0.599 35.30 / 0.950 22.34 / 0.769 23.94 / 0.824 22.49 / 0.878 22.65 / 0.682
6 14.59 / 0.342 30.00 / 0.887 17.80 / 0.565 19.92 / 0.578 16.86 / 0.535 17.69 / 0.409
7 16.62 / 0.411 31.38 / 0.920 17.57 / 0.469 22.02 / 0.663 20.34 / 0.745 19.62 / 0.486
8 15.98 / 0.415 31.43 / 0.911 16.11 / 0.455 20.74 / 0.668 18.11 / 0.638 18.90 / 0.486
9 13.05 / 0.268 28.17 / 0.869 15.06 / 0.301 18.65 / 0.490 15.50 / 0.437 16.38 / 0.332
10 16.17 / 0.392 30.76 / 0.905 15.78 / 0.434 21.02 / 0.616 18.83 / 0.626 19.17 / 0.460

Fig. 4. Plots for PSNR and MAE as noise level changes

This ablation study effectively demonstrates the robustness of the recon-
struction method used against increasing noise levels for homogeneous noise as
well.



280 S. Ganguly et al.

Table 3. DHCEA’s performance on the cumulation of homogenous noise (Gaussian
and Poisson)

Cumulation of Gaussian Noise Poisson Noise
Homogeneous Noise PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

1 35.12 / 0.958 37.94 / 0.979 28.95 / 0.863 37.17 / 0.979
2 30.60 / 0.901 37.79 / 0.979 26.12 / 0.785 37.16 / 0.979
3 28.38 / 0.852 37.94 / 0.980 24.48 / 0.729 37.19 / 0.979
4 27.11 / 0.817 38.13 / 0.980 23.31 / 0.685 37.18 / 0.979
5 26.04 / 0.781 38.07 / 0.980 22.39 / 0.649 37.19 / 0.979
6 25.18 / 0.751 34.30 / 0.963 21.62 / 0.618 32.11 / 0.951

Fig. 5. Comparison across different models for noise level=8

5.3 Qualitative Results

In Figure 5 we show a a sample image result for qualitative comparison of our
proposed model with various state-of-the-art models. Results for the remaining
noise levels are present in the supplementary materials.

It is evident that the DCHEA model significantly outperforms other denoising
models such as Restormer, NAFNET, FFDNet, and Class Aware models in terms
of image restoration from noise. DCHEA excels in preserving intricate details
within the scene, notably maintaining the textures on the couch and the items
on the bookshelf, which appear clearer and more defined compared to results
from other models. Additionally, DCHEA demonstrates superior color accuracy;
the authenticity of colors in the denoised image, such as those of the books and
artwork is noticeably closer to the original clean image. This corroborates the
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quantitative values obtained in Table 2. The model also stands out in its ability
to remove noise effectively without the adverse effect of over-smoothing, which
can lead to a washed-out appearance. In contrast, some models like FFDNet
and Restormer tend to sacrifice sharpness and detail for noise reduction, often
resulting in a blurred or softened image along with loss of textual characteristics,
tint effect, and clarity.

5.4 Discussion

It was found from the experiment that DCHEA showed promising results in
denoising images that were corrupted by multiple kinds of noise. It is evident
from Tables 2 & 3 that the model is robust with the increase in both homogeneous
and heterogeneous kinds of noise. This could be attributed to the selection of
the set of autoencoders by the uniform cost search mechanism. Moreover, it was
observed during testing that the noise order does not affect the performance.
However, as the search algorithm is more focused on cost optimization, it does
not take into account the number of autoencoders involved in creating the set.
Hence, the complexity of the search may increase. Moreover, if the state-space
tree of autoencoders is not balanced the scalability can be a limiting factor in the
performance of the algorithm. However, it is observed that a combination of a
lesser number of autoencoders (6 considered in the experimentation) can handle
gracefully different combinations of noise (10 different levels of noise), This can
be attributed to the fact that the most general autoencoder is trained with all
cumulative combinations of noise. Hence, we do not face the scalability issue with
denoising any arbitrary combination of noise. However, rigorous experimentation
and validation under different conditions is needed to justify the claim.

6 Conclusion and Future work

In this research, we have successfully introduced the DCHEA model, which
demonstrates promising performance in image denoising. Through rigorous com-
parative analysis, it consistently surpasses various state-of-the-art models. Our
implementation of a hierarchical autoencoder structure, complemented by the
novel N-layered tree methodology, validates the capability of DCHEA to main-
tain image structural details and restore piecewise intensity homogeneity under
various noise conditions. The findings of this study pave the way for future explo-
rations into complex denoising applications, affirming the significant impact of
advanced deep-learning techniques in enhancing image quality. However, rigor-
ous experimentation and validation are needed to analyze the complexity and
scalability of the model. Further, we need a better search optimization technique
that can provide an optimal set of autoencoders.

Acknowledgements. We would like to express our sincere gratitude to Mahindra
University for their financial support to carry out the research work.
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Abstract. Automated modulation recognition is a challenging task in
communication systems. Leveraging recent advancements in transfer
learning, this paper proposes a novel method for automatic modula-
tion recognition using transferred computer vision models. The method
allows fine-tuning of the vision models to recognize modulation sig-
nals through spectrum and constellation diagrams. Experiments on the
Radioml dataset demonstrate that the proposed method outperforms
recent traditional methods by 8.97%, with an average accuracy of 0.5732.
An ablation study confirms the effectiveness of using spectrum and con-
stellation diagrams. This study verifies the feasibility of transferring
vision models to AMC tasks.

Keywords: Transfer Learning · Automatic Modulation Classification ·
Deep Learning

1 Introduction

Automatic Modulation Classification (AMC) is a critical yet challenging task in
wireless communication that involves automatically identifying the modulation
scheme of an unknown signal through its features and estimating the related
parameters.

In recent years, deep-learning methodologies have emerged as the dominant
approach for AMC. Given the temporal nature of signals, researchers have tradi-
tionally resorted to using Long Short-Term Memory (LSTM) networks or Recur-
rent Neural Networks (RNNs) to address the AMC task, as evidenced in [13]. The
advent of Convolutional Neural Networks (CNNs) has subsequently given rise to a
plethora of CNN-based AMC methods, which vary in terms of architectural design
[11] and preprocessing techniques [12]. Additionally, there have been attempts
to perform AMC through the recognition of waveform shapes [6], via adversarial
learning [1], and through the application of federated learning [10].

At the same time, neural image classification has experienced a technolog-
ical surge.Originating with AlexNet [4], the superior accuracy in neural image
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Fig. 1. Complete Architecture of the Proposed Method.

classification was long-dominated by ResNet[3]. Subsequently, the Transformer[9]
introduced a revolutionary transformation across the deep learning landscape,
leading to Vision Transformer (ViT)[2] surpassing ResNet in performance. Most
recently, EfficientNet V2[8] has outperformed all preceding models, securing the
top position in neural image classification. Given the impressive accuracy of these
foundational models, transfer learning has seen rapid development, effectively
leveraging their success for various downstream applications [7].

Inspired by the succession of breakthroughs in the computer vision domain,
this paper presents a transfer learning architecture designed to utilize power-
ful pretrained visual recognition models for the purpose of automatic modula-
tion classification via spectral and constellation diagram analysis. This approach
leverages the triumphs of computer vision to mitigate carbon emissions, with the
ambition of surpassing traditional state-of-the-art methodologies in the field of
automatic modulation classification. First,we introduced a novel preprocessing
technique that converts signal sequences into spectral and constellation diagrams
to align with vision models’ input requirements, thereby improving their inter-
pretive efficacy. Second, we developed a transfer network that adapts any com-
puter vision model for automatic modulation classification through the recog-
nition of spectral and constellation diagrams, enabling accurate classification of
modulated signals. Third, the proposed method’s feasibility is confirmed and
its state-of-the-art performance is demonstrated through comprehensive assess-
ments, with the transferred computer vision models outperforming traditional
CNN models in comparative studies. Forth, the ablation study confirms the crit-
ical efficacy of spectrum and constellation diagrams as transformative tools for
signal inputs, enhancing their conversion into the image domain.

The remainder of this paper is structured as follows: Chapters II and III
will delineate the problem statement and methodologies employed in this study,
encompassing data preprocessing, model architecture design, and training pro-
cedures. Chapter IV will validate the efficacy of our proposed methodology
through comparative and ablation studies on the RADIOML dataset, disclosing
the empirical findings alongside analytical discourse. Chapter V will critically
evaluate the strengths and limitations of the proposed method, followed by a
discussion on potential avenues for future research. Conclusively, Chapter VI
will encapsulate the paper and proffer potential trajectories for future inquiry
along with reflective insights.



286 W. Zhao and Q. Luo

2 Problem Satement

In the conventional framework of wireless communication systems, the radio
signal transmitted within a real-world context can be accurately modeled as a
convolution of the channel impulse response and the normalized radio signal,
superimposed with uncorrelated Gaussian noise. Mathematically, this relation-
ship is expressed as:

X(n) = H(n) ∗ S(n) +W (n)

Here, H(n) denotes the channel impulse response, while S(n) represents the
normalized radio signal. The asterisk (*) indicates the convolution operation.
W (n) signifies an uncorrelated additive Gaussian noise process, a common ele-
ment in both simulation and modeling frameworks. The magnitude of the noise
is typically quantified by the Signal-to-Noise Ratio (SNR), a metric that delin-
eates the quality of the radio signal. Subsequently, the primary objective of
Automatic Modulation Classification is to discern the modulation type of the
signal X(n)—which is subject to both noise and channel effects—based solely
on observed data.

3 Method

To facilitate the recognition of time-domain signals by a vision model, it is imper-
ative to convert one-dimensional (1D) sequence signals into a two-dimensional
(2D) image format. We employ the Windowed Fourier Transform (WFT) func-
tion to convert the signal sequences into the frequency domain, manifesting as a
spectral diagram. Concurrently, we generate the In-phase and Quadrature (IQ)
Signal Constellation Diagram to preserve the original signal information within a
2D framework. This concatenation procedure merges the I-channel Spectrum, Q-
channel Spectrum, and IQ Constellation Diagram into a single 3-channel image.
Given that the majority of computer vision models are trained and optimized for
natural image processing, we incorporate a transfer learning layer to bridge the
gap between the domains. We initiate our model with pretrained base architec-
tures to optimize efficiency. An extensive evaluation of various computer vision
models is conducted to identify the most appropriate architecture for our task. In
the final stages, the network processes the input data, decoding the probability
of each class label. The loss is computed by comparing the network’s predictions
against the ground truth labels, thereby facilitating backward propagation and
gradient descent optimization. The complete architectural framework is detailed
in Figure 1.

3.1 WFT

Consider a time series X = {x1, x2, . . . , xn} of length n. We traverse the time
series X with a window of size n

2 to generate a window sequence Wk at each
position k, repeated n

2 times. Subsequently, a fast Fourier transform (FFT) is
applied to each Wk to yield a window frequency spectrum sequence Fk of length



Leveraging Computer Vision for Automatic Modulation Classification 287

Fig. 2. Partially Preprocessed Spectrum and Constellation Diagram for Signals of Var-
ious Modulation Classes

n
2 . By stacking the rows of the Fk sequences, we assemble a matrix P with
dimensions n

2 × n
2 .

Wk = {xk+1, xk+2, . . . , xk+n
2
}, k = 1, 2, . . . ,

n

2
(1)

Fk = FFT (Wk), P = concat(F1, F2, . . . , Fn
2
) (2)

When n is even, the FFT can traditionally be decomposed into two components,
and defined as:

X(k) =

n
2 −1∑

n=0

x(n)e−j2πk n
n +W k

n

n−1∑

n=n
2

x(n)e−j2πk n
n (3)

Here, W k
n represents the rotation factor for n points, which depends on both k

and n. When k is even, W k
n = 1; for odd k, W k

n = −1. The samples of the output
matrix P are displayed in the first and second rows of Figure 2.

3.2 Signal Constellation Diagram

The IQ Signal Constellation Diagram serves as a specialized visualization tool
for complex-valued samples within a signal. This diagram arranges the In-phase
(I) and Quadrature (Q) components of the signal along the x and y axes of
a two-dimensional graphical representation. The I component denotes the in-
phase component, while the Q component signifies the quadrature component.
Conventionally, the phase of the I component is established at 0 degrees (or 0
radians), with the Q component phased at 90 degrees (or π

2 radians) in relation
to the I component. Within the complex-valued domain, the signal constellation
can be articulated as:

S(t) = I(t) + jQ(t) (4)

We track the trajectory of S(t) within the complex-valued plane, ultimately syn-
thesizing the constellation diagram as depicted in the lowermost row of Figure 2.



288 W. Zhao and Q. Luo

3.3 Transfer Layer and Vision Model Finetune

In this study, we introduce a tiny linear transformation as a pre-processing
encoder prior to inputting the data into the vision model. This step is designed
to bridge the inherent disparity between natural images and spectral or constel-
lation diagrams. By doing so, we aim to enhance the vision model’s capacity to
effectively adapt and perform in the context of automatic modulation classifica-
tion tasks. For the purpose of testing, we selected top-performing and widely rec-
ognized natural image classification models, namely Vision Transformer (ViT),
ResNet-50, and EfficientNet. These models were chosen due to their exceptional
performance in the field of computer vision. Additionally, we utilized pre-trained
models to maximize computational efficiency. Ultimately, the class predictions
were rendered as probability vectors, and the loss was computed by comparing
these predictions to the ground truth labels. The Cross-Entropy Loss function
was employed as the loss metric for this purpose. The whole processes can be
seen in Figure 1.

4 Experiments and results

4.1 Experiment Settings

The RadioML2016.10a dataset [5], derived from Shakespeare’s Gutenberg works
and the TV series “Serial Episode,” is utilized in this paper for evaluating meth-
ods and conducting experiments for wireless machine learning tasks.

The dataset is formatted in IQ data format with a sample size of 2×128.
It comprises 220,000 samples at a 200kHz sampling rate, featuring offsets and
noise. Sampling rate and carrier frequency offsets have standard deviations of
0.01Hz and max offsets of 50Hz and 500Hz, respectively. It includes 8 digital and
3 analog modulation methods(8PSK, BPSK, CPFSK, GFSK, PAM4, 16QAM,
64QAM, and QPSK), with SNR ranging from -20dB to 18dB. It also features
delay settings with corresponding amplitudes, and AWGN noise. The channel
environment includes selective fading, CFO, and SRO.

In our experimental framework, we divided a comprehensive dataset of
220,000 samples into training and testing subsets. Specifically, we allocated
176,000 samples for training purposes and an additional 44,000 samples for
evaluation, maintaining a ratio of one-forth of the train set and the test set.
Throughout the training phase, we employed the Adam optimizer, initializing
the learning rate at 5e-4 and allowing it to decay to zero over the course of 100
epochs. The batch size was set at 64 samples for each iteration.

4.2 Comparison Experiments

In the interest of fairness, we selected two recent traditional CNN AMC methods,
ATLA[1] and MSCN[11], for our baseline comparison. For the vision models, we
opted for the recently popular architectures: VIT, Resnet50, and EfficientNet,
for our experimental analysis. In terms of vision models, we explored two training
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Table 1. Quantitative Comparison Results: Proposed Method vs. Traditional Method

Method Model Average Accuracy↑ Maximum Accuracy↑
Traditional ATLA[1] 0.5260 0.8240
Sequences MSCN[11] 0.5408 -
Proposed VIT(B16) 0.5310 0.8178
Method With VIT(L16) 0.5279 0.8151
Pretrained EfficientNet(B0) 0.5732 0.8881
Model EfficientNet(B7) 0.5703 0.8786

Resnet50 0.5636 0.8773

Fig. 3. Average Classification Accuracy of Various Comparison Methods Across Dif-
ferent SNRs.

options: training from scratch and loading pretrained models. As illustrated in
Table 1, employing pretrained models significantly reduces training time while
yielding superior performance on the dataset. Among the pretrained models,
EfficientNet-b0 demonstrated the most outstanding performance within our pro-
posed architecture, achieving an average accuracy of 0.5732. This surpasses the
traditional methods ATLA (0.5260) and MSCN (0.5408) by 8.97% and 5.99%,
respectively. Moreover, EfficientNet-b0 also exhibits the highest maximum accu-
racy. Additionally, we note that although Resnet50 does not achieve the highest
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performance, it still exhibits commendable results on the test dataset. In con-
trast, VIT demonstrates the least favorable performance when compared to the
other pretrained vision models.

Figure 3 illustrates the performance of various methods across different SNRs.
It can be discerned that the proposed architectures, when equipped with pre-
trained ResNet and EfficientNet models, consistently outperform the traditional
ATLA method across all SNRs.

4.3 Ablation Experiments

To validate the efficacy of constellations and spectral analysis for recognizing
modulation classes, an ablation study was conducted, with results presented in
Table 2. The table shows that, among single-modal inputs, constellation dia-
grams achieve the highest accuracy with a score of 0.4650, indicating their effec-
tiveness in distinguishing modulation classes. The performance with I-channel
and Q-channel spectra approaches traditional method benchmarks. When con-
stellation diagrams are included, the performance jumps from 0.5107 to 0.5732,
an increase of 12.24%, securing a leading position.

Table 2. Quantitative Results for the Ablation Experiment: Spectrum and Constella-
tion Diagrams

Model I-channel
Spectrum

Q-channel
Spectrum

Constellation
Diagram

AVG Acc Max Acc

EfficientNett � 0.3977 0.6815
EfficientNet � 0.4043 0.6646
EfficientNet � 0.4650 0.7746
EfficientNet � � 0.5107 0.7706
EfficientNet � � � 0.5732 0.8881

4.4 SNR and Classification Analysis

Figure 4 illustrates the classification accuracy for various modulation classes
and signal-to-noise ratios (SNRs) using the proposed method with the optimal
performing model: EfficientNet-b0. Observations indicate that, with the excep-
tion of WBFM, the proposed method exhibits commendable performance across
all other modulation classes. Even at an SNR of -4 dB, the accuracy for the
majority of classes remains above 80%, demonstrating the robustness of the
proposed method under challenging signal conditions. Figure 5 displays the con-
fusion matrix for the classification results obtained from the dataset using the
proposed method with pretrained EfficientNet-b0. When compared to traditional
methods, the proposed method demonstrates a notable improvement in distin-
guishing between QAM16 and QAM64, which are frequently misclassified by
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Fig. 4. The Correlation Between Classification Accuracy for Diverse Classes and SNR
in the Context of the Proposed Method Using Pretrained EfficientNet-b0.

most methods [1], achieving an overall high accuracy with the majority of the
metrics exceeding 90 Despite these advancements, the proposed method contin-
ues to face challenges in differentiating between WBFM and AM-DSB. Address-
ing this issue is a potential direction for future research.

5 Discussion

In this paper, the novel transfer learning architecture is proposed for Automatic
Modulation Classification (AMC), which leveraging of pretrained visual recog-
nition models to analyze spectral and constellation diagrams. The preprocessing
technique introduced is highlighted as a significant strength due to its alignment
with the input requirements of vision models, which enhances interpretive effi-
cacy. Additionally, the development of a transfer network that adapts computer
vision models for AMC is recognized as a substantial methodological advance-
ment, offering superior performance compared to traditional CNN-based meth-
ods, as supported by comprehensive assessments and comparative studies.The
use of pretrained models like EfficientNet and Vision Transformer (ViT) and the
preprocessing encoder to bridge the gap between natural images and spectral
or constellation diagrams are strengths. The robustness of the dataset and the
clarity of the presentation are also praised.

However, the paper’s weaknesses are also addressed. The assumption of the
universal applicability of spectrum and constellation diagrams, along with the
use of pretrained computer vision models, may overlook crucial signal features or
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Fig. 5. Confusion Matrix for the Optimal Performance Attained by the Proposed
Method Utilizing Pretrained EfficientNet-b0 at an SNR of 12

constraints in different contexts or modulation schemes. The preprocessing tech-
nique, while innovative, may introduce biases or information loss, potentially
affecting classification performance. By transforming I and Q channel inputs
into spectrograms and combining them with IQ constellation diagrams is noted
for its leveraging of deep learning’s success in image classification. The consis-
tent outperformance of existing approaches across multiple models is seen as a
consolidation of the argument. Nevertheless, concerns are raised about the scala-
bility of the models used, given the limited number of modulation methods in the
experiments. Besides, the method’s specificity and its generalizability to other
datasets or real-world scenarios are called into question, along with the need for
further insights into model performance under extreme noise conditions.

Additionally, our study yields numerous insights into the domain of wireless
communication. The methodology proposed herein paves the way for subsequent
investigations. By leveraging advanced large-scale models through visual process-
ing, we can significantly enhance performance in the domain of AMC and related
tasks. The application of vision models to the field of signal processing opens up
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a vast array of research opportunities, which constitutes a promising direction
for future work in this area.

6 Conclusion

In this paper, we introduce a transfer learning framework that empowers vision
models to perform automatic modulation classification utilizing spectral analy-
sis and constellation diagrams. By leveraging popular pre-trained vision models,
we demonstrate the viability of this approach and achieve superior performance
compared to traditional methods on the dataset in our experiments. Addition-
ally, an ablation study is conducted to substantiate the efficacy of incorporating
spectral and constellation diagram analysis. This paper illustrates that com-
puter vision models are capable of executing automatic modulation classifica-
tion through the analysis of spectrum and constellation diagrams. Moreover, the
findings suggest that there is potential for further advancements and exploration
in this domain.
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Abstract. The accurate extraction of pertinent information from fun-
dus images is of paramount importance for the diagnosis of glaucoma.
For a considerable period, researchers engaged in this field have typi-
cally employed the convolutional neural network approach for detection.
Despite notable advancements, the inability of convolutional neural net-
works to capture long-range dependencies in order to make a judge-
ment in the fundus images as a whole represents a current challenge.
Conversely, MLP-based models are gaining widespread attention due to
their simple network structure and performance that is not weaker than
CNNs and transformers. In this paper, we propose a novel MLP-based
approach called Dynamixing Gate and Depthwise Group Norm Network
(DG2Net), which uses a convolutional neural network to extract local
information while using an MLP-like model to obtain global information.
Specifically, we propose the Dynamixing Gate MLP for enhancing the
extraction of spatial information and the Depthwise Group Norm MLP
to enhance the model’s ability to extract channel information. Extensive
experiments were conducted on two publicly available glaucoma datasets,
EyePACS AIROGS-Light and EyePACS-AIROGS-light-V2. The results
demonstrated that our method outperforms other existing methods, and
that DG2Net is highly competitive for glaucoma detection.

Keywords: Glaucoma diagnosis · MLP · Convolutional neural
network

1 Introduction

In recent years, there has been a notable increase in the prevalence of glaucoma,
a common eye disease that can result in irreversible blindness in the majority
of patients. Statistical data indicates that glaucoma affects approximately 80
million individuals globally in 2022. By 2040, this figure is projected to exceed
100 million. In the early stages of glaucoma, the patient’s vision changes are not
readily apparent and may be difficult to detect. However, as the disease pro-
gresses, the patient experiences a significant loss of vision, which may result in
missed opportunities for treatment and ultimately lead to blindness. Glaucoma
is a condition that occurs in the optic papilla region and is characterized by an
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15324, pp. 295–308, 2025.
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elevated intraocular pressure, a deformation of the optic nerve head, visual field
defects and optic nerve atrophy. Nevertheless, it is important to note that glau-
coma can also occur in patients with normal IOP and diabetes [3]. The diagnosis
of glaucoma is challenging, and in the past, ophthalmologists made subjective
judgements based on their clinical experience, which was time-consuming and
labour-intensive. Furthermore, the results were influenced by many subjective
factors. To address the limitations of manual diagnosis, deep learning technology
and computer-aided diagnosis have been introduced into glaucoma diagnosis [19].
In comparison to traditional detection methods, deep learning techniques per-
mit the rapid and effective extraction of morphological features of the optic
nerve papilla, including the optic cup, optic disc, cup-to-disc ratio, and angle of
incision, from fundus images. This provides significant convenience for relevant
personnel.

Fig. 1. (a) Refers to referable glaucoma, and (b) refers to non-referable glaucoma

The growing prevalence and scope of deep learning techniques have led to
the remarkable success of methods based on convolutional neural networks in
medical image classification tasks, largely due to their exceptional local feature
extraction capabilities. Many of these techniques have been successfully applied
to glaucoma detection tasks. One of the most commonly used methods for diag-
nosing glaucoma is the fundus image, as illustrated in Fig 1. Nayak et al. [14]
proposed a new non-manual feature extraction method called the evolutionary
convolutional network (ECNet) for glaucoma detection. The method employs
numerous convolutional, compression, rectified linear units (ReLU), and sum-
mation layers to extract fundus image features. A real-coded genetic algorithm
(RCGA) evolutionary algorithm is also proposed to optimise the weights of differ-
ent layers. Finally, an accuracy of 97.20 % was achieved using ECNet with SVM.
Hung et al. [6] used a pre-trained Efficientnet-b0 model along with other fea-
tures of the patient, such as age, gender, and high myopia, for binary and tertiary
classification of fundus images, respectively. Conversely, Cho et al. [2] developed
an integrated system of convolutional neural networks with 56 different features
based on InceptionNet to classify the dataset into three categories: normal eye,
early glaucoma and advanced glaucoma. This approach achieved an accuracy of
88.1 % and an average area under the receiver operating characteristic of 0.950.
Liao et al. [11] proposed a novel approach for aggregating features at different
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scales to enhance the performance of glaucoma diagnosis, termed M-LAP. Fur-
thermore, by modelling the correspondence between the binary diagnostic infor-
mation and the spatial pixels, the scheme generated glaucomatous activation,
thereby bridging the gap between global semantic diagnosis and precise locali-
sation.D’Souza et al. [5] proposed a parameter-efficient AlterNet-K model based
on an alternating design pattern, which combines ResNets and multiple self-
attention (MSA). This approach aims to leverage the complementary attributes
of these two components in order to improve the generality of the overall model.

Nowadays, networks based on multilayer perceptrons (MLP) have demon-
strated superior performance in computer vision tasks, particularly in the extrac-
tion of global information, rivaling networks based on the transformer family.
Tolstikhin et al. [16] initially proposed a succinct network architecture without
convolution and self-attention, MLP-Mixer, which has achieved remarkable suc-
cess in the field of image classification. Liu, Dai, So and Le [12] proposed gMLP,
which enhances the extraction of spatial information using gating operations on
MLP-Mixer. Wang, Jiang et al. [18] used a dynamic information fusion tech-
nique to dynamically generate mixing matrices, which improves the robustness
of the model and reduces the time complexity. Cao et al. [1] enriched the inter-
action capability of the tokens in three ways, which significantly improves the
performance of the MLP-based model in small datasets.

A review of the existing literature revealed that the majority of glaucoma
detection methods employ traditional machine learning techniques, in addition
to convolutional neural networks. These networks have proven to be a signifi-
cant advancement over manual diagnosis, yet there remain significant challenges.
These include the loss of crucial information during manual cropping of fun-
dus images, data imbalance, and models that are disrupted by noise, rendering
them unable to recognise glaucoma in more complex cases [21]. Furthermore,
while convolutional neural networks are more adept at detecting changes in the
optic papilla region in fundus images, they are constrained in their ability to
acquire remote context dependencies [10]. To effectively address the aforemen-
tioned challenges, we propose a novel MLP-based network, the Dynamixing Gate
and Depthwise Group Norm Network (DG2Net), for the accurate detection of
glaucomatous lesions.

In conclusion, the following contributions are made:

(1) A novel model, designated DG2Net, has been developed for the purpose of
glaucoma detection. The model employs EfficientNet-b0 as the backbone,
which serves to extract local information. This approach avoids the sig-
nificant computational and parametric quantities associated with the self-
attention mechanism, while simultaneously introducing an enhanced mul-
tilayer perceptron for the first time, which is capable of extracting global
information.

(2) The Dynamixing Gate module is incorporated into the token-mixing compo-
nent of MLP-Mixer, enabling the dynamic generation of the mixing matrix
while utilising spatial gating to enhance the interaction between tokens.
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(3) The Depthwise Group Norm module is integrated into the channel-mixing
section of MLP-Mixer, facilitating the grouping of channels for mixing,
thereby enhancing the competitiveness between channels and facilitating
the acquisition of channel features.

(4) A series of experiments were conducted on EyePACS AIROGS-Light and
EyePACS-AIROGS-light-V2, and the results demonstrated that our method
achieved excellent classification outcomes.

2 Method

2.1 Network Design

In this work, we employ a multi-stage approach to construct the overall archi-
tecture of DG2Net, as illustrated in Fig 2 . DG2Net comprises a series of Mobile
Inverted Bottleneck Convolution(MBConv) blocks, as depicted in Fig 3, and a
series of MLP blocks. In fundus images, the boundary between the diseased and
healthy regions of the optic papilla is not as obvious as in other ordinary images,
and the texture of the diseased region is relatively fuzzy. Therefore, multiple
stages of MBConv blocks are employed to extract the underlying information
of the fundus image in order to obtain the relevant feature information of the
diseased region. However, in medical images, lesion regions are not always dis-
cernible in isolation and must be considered in conjunction with multiple other
regions to form an overall assessment. While convolution can effectively extract
local features from an image, it is not sufficient for long-range dependencies
acquisition. To address this issue, we subsequently devised two parallel enhanced
MLP modules for extracting and learning global features in fundus images. The
Dynamixing Gate MLP enhances the model’s capacity to acquire spatial infor-
mation, while the Depthwise Group Norm MLP enhances its ability to acquire

Fig. 2. The network structure of the proposed DG2Net. In front of the stage number
represents the layers.
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channel information. Finally, the convolution, pooling and fully connected layers
are applied, resulting in the final classification result.

Fig. 3. Structure of MBConv. Above is MBConv1, below is MBConv6, n represents
the number of convolutional kernels.

2.2 MLP-Mixer

The MLP-Mixer, a novel and compact structure that eschews convolution and
attention, has demonstrated remarkable performance on the ImageNet dataset
by employing only linear layers. Its architectural design is illustrated in Fig 4.
In order to combine the overall judgement of the fundus image, a network based
on MLP-Mixer is introduced to extract global features. Subsequently, the local
features are extracted by the convolutional layer. For MLP-Mixer, the input fea-
ture map Fin ∈ RC×H×W is split into multiple patches, where C is the number
of channels, and H and W are the height and width of the input tensor, respec-
tively. At this juncture, all the patches are subjected to the Patch Embedding

Fig. 4. Structure of MLP-Mixer
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operation, which is executed by a fully-connected network to extract the tokens.
At this stage, the shape of the feature map is RC×N , where C is the number
of channels and N is the patch size. Thereafter, the feature map is fed into N
Mixer-layers. The Mixer-layer comprises two stages: token mixing and channel
mixing. Token mixing is used to extract feature information among different
patches, as shown in the yellow box in Fig 4. Channel mixing is used to extract
information among different channels, as shown in the green box in Fig 4. In par-
ticular, the feature map RC×N is subjected to LayerNorm and then Transpose,
resulting in RN×C . Two fully connected operations and a GELU activation func-
tion are applied to the patch direction, the feature map is Transposed once more
to obtain RC×N , which is combined with the skip connection to complete the
feature extraction in the patch direction. In a similar manner, the feature map
RC×N is subjected to LayerNorm, two fully connected layers, and a GELU acti-
vation function in order to complete the information extraction in the channel
direction.

2.3 Dynamixing Gate MLP

The most fundamental MLP-Mixer employs only static fusion between tokens to
extract information, and lacks the capacity to adapt to the mixing of the contents
of tokens. In contrast, we adopt a novel dynamic fusion of tokens that generates
a mixing matrix using the contents of all tokens to be mixed. Furthermore, we
integrate a spatial gating unit that interacts across tokens, enables learnable spa-
tial transformations, and learns a single transformation shared across channels
via spatial projection, in contrast to classical deep convolution based on channel-
specific filters. The Dynamixing Gate MLP further enhances the MLP-Mixer’s
ability to acquire global information in the token direction, as illustrated in Fig
5. In particular, the input feature map Fin ∈ RC×H×W is initially subjected to a
Dynamixing Gate operation in the H dimension, followed by a Linear operation
in the C dimension, and then a permute operation to obtain RC×W×H . This is
subsequently subjected to a Dynamixing Gate operation in the W dimension,
after which a permute operation is performed to obtain the output feature map
Fout ∈ RC×H×W .

Finally, the channel mixing process is initiated. This can be expressed by the
following equation:

Fout = DGop_W (Linear(DGop_H(Fin))) (1)

where Fin represents the input feature map, Fout represents the output fea-
ture map, DGop_W (•) represents the Dynamixing Gate operation in the W
dimension, Linear(•) represents the Linear operation in the C dimension, and
DGop_H(•) represents the Dynamixing Gate operation in the H dimension. In
the context of Dynamixing Gate operations, our design principle is to divide a set
of input tokens X ∈ RN×D, where N is the number of tokens and D is the num-
ber of feature dimensions, into two branches for input. This is followed by the
generation of a dynamic mixing matrix Q in the left branch based on the input,
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Fig. 5. Structure of Dynamixing Gate MLP

and then the multiplication of the obtained matrix Q with the input tokens X to
obtain the output token Y, so Y = QX. In order to obtain the dynamic mixing
matrix Q, we generate it using a linear function of all the input token features.
This is achieved by flattening the input X as a vector and generating the mixing
matrix according to the following equation:

X̂(s) = XW
(s)
d (2)

Q(s)
i· = softmax(flat(X̂(s))W (s,i)) (3)

Y = [Q(0)X(0), ..., Q(s−1)X(s−1)]Wo (4)

In order to enhance the resilience of the model and reduce the number of param-
eters, we divide the features into S segments, where d � D, is a very small
number such as 1 or 2, X̂(s) ∈ RN×d, W

(s)
d is the reduced dimension matrix,

flat(X̂(s)) ∈ R1×Nd is the vector resulting from flattening. W (s,i) ∈ RNd×N .
Softmax(•) is the softmax operation applied to the row vectors, and Q(s)

i· is
the s-th segment of the row in the mixing matrix contains the mixing weights of
the i-th output token. The splicing operation is represented by the symbol [•, •],
while the output feature fusion matrix is denoted by Wo ∈ RD×D. Conversely, in
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the right branch, the Spatial Gating Unit (SGU) is included, which is designed
to enhance the module’s capacity to interact with tokens across the network.
This is achieved through a straightforward linear projection:

fW,b(Z) = WZ + b (5)

where W ∈ RN×N is of the same length as the sequence and is independent of
the input Z representation. Both N and b are token-specific deviations. Subse-
quently, the input Z is divided into two independent parts (Z1, Z2) along the
channel dimension. This results in the output s(•) of the spatial gating unit
being expressed as:

s(Z) = Z1 ⊗ fW,b(Z2) (6)

where ⊗ represents the product of elements. The division operation has the
effect of greatly improving the stability of the model and ensuring independent
processing between tokens during learning. The left and right branches then
perform the product operation after their respective operations, and finally, the
output of the Dynamixing Gate operation, Fout = Y • s(Z), is obtained through
the linear layer.

2.4 Depthwise Group Norm MLP

The traditional MLP-Mixer performs a simple two-times fully connected opera-
tion and GELU activation function to extract the channel features in the channel
direction. In contrast, most of the MLP-like models are improved in token-mixing
for enhancing the ability of information interaction between tokens. We propose
a brand new MLP-like module, called Depthwise Group Norm MLP, as shown
in Fig 6, which greatly improves the ability to obtain information in the chan-
nel direction. In particular, the MLP model produces a considerable number
of parameters and runs at a relatively slow pace. To address this, we initially
incorporated DWConv to enhance the running speed and reduce the number
of parameters. Subsequently, after a LayerNorm layer, a fully-connected layer,
and a GELU activation function, we introduced Group Normalization. This is
achieved by dividing the feature map into G groups in the channel direction,
which results in a change in shape from RC×H×W to RG×C//G×H×W . The
mean and variance are then calculated within each group, which strengthens
the competitiveness between channels and thus the extraction ability of channel
features. Concurrently, given that MLP-like models typically necessitate a sub-
stantial number of samples for training, and that medical image data are more
challenging to obtain, we have incorporated Group Normalization to enhance
the model’s stability during training. This has resulted in a faster convergence
rate and an improved model’s ability to generalize. Furthermore, it has facili-
tated the model’s capacity to learn the general patterns in the data, rather than
relying excessively on the features of a few specific samples. This has effectively
prevented model overfitting.
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Fig. 6. Structure of Depthwise Group Norm MLP

3 Experiments

3.1 Dataset

In order to assess the efficacy of the proposed methodology, a series of compre-
hensive experiments were conducted on two publicly available glaucoma datasets:
EyePACS AIROGS-Light [7] and EyePACS-AIROGS-light-V2 [8]. The following
section provides specific details. The EyePACS AIROGS-Light and EyePACS-
AIROGS-light-V2 datasets comprise balanced subsets of standardized fundus
images based on the EyePACS AIROGS produced by Riley Kiefer et al. The Eye-
PACS AIROGS-Light dataset contains a total of 6,540 images, which have been
divided equally into two categories: referable glaucoma (RG) and non-referable
glaucoma (NRG). Each of the aforementioned categories comprises 2,500 images
for training, 270 images for validation, and 500 images for testing, respectively.
The image size is 256 × 256. The EyePACS-AIROGS-light-V2 dataset comprises
a total of 9,540 images, which have been divided into two categories: RG and
NRG. Each category contains 4,000 images for training, 385 for validation, and
385 for testing, respectively. The image dimensions are 512 × 512. A series of
ablation experiments was conducted to ascertain the relative importance of each
module in the proposed architecture. Furthermore, we present the classification
results for both test datasets, which are then compared with those obtained by
state-of-the-art methods.

3.2 Implementation Details and Evaluation Metrics

All experiments are based on the PyTorch framework and trained on an NVIDIA
Tesla M40, a GPU with 24 GB of memory. The input image size of all datasets
is 224 × 224. The Adam optimizer is employed as the model’s optimizer, with
an initial learning rate of 0.0001. CosineAnnealingLR is used as the learning
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rate adjuster, which automatically adjusts the learning rate of the optimizer
according to the training progress. The training batch size was set to 4. In order
to ensure the fairness of the experiments, all experiments were conducted with-
out the use of pre-training weights and trained for 300 epochs. The experiments
employ five commonly used metrics to evaluate the performance, including accu-
racy (ACC), F1-score (F1), precision (Prec), area under the curve (AUC), and
recall (Recall).

3.3 Loss Function

The cross-entropy value indicates the uncertainty of the classifier’s decision. A
smaller cross-entropy value indicates a more accurate prediction and a higher
model accuracy. Consequently, the cross-entropy loss function is employed as the
loss function for the two glaucoma classification datasets, with the objective of
measuring the distance between the probability distribution of the model output
and the true labels. This allows for the assessment of the model’s performance,
with a focus on determining the extent to which the model’s output aligns with
the true labels. By reducing the loss, the performance of the model is enhanced.
The specific formula is as follows:

Loss = −
n∑

i=1

p(xi) log q(xi) (7)

where xi represents the actual value of the image category, p(x) represents the
predicted value of the true distribution of the sample, and q(x) represents the
distribution predicted by the model.

3.4 Experimental Results and Analysis

In order to validate the effectiveness of our model, we conducted a compari-
son with several classical and state-of-the-art models, all of which were trained
using the same training strategy and experimental configurations. The experi-
mental results on the EyePACS AIROGS-Light and EyePACS-AIROGS-light-
V2 datasets are presented in Table 1 and Table 2, respectively. The results
of the two experiments are presented in the following table. On the EyePACS
AIROGS-Light dataset, our method achieved 91.80% accuracy, 91.83% F1-score,
and 91.90% AUC, which were all superior to those of other state-of-the-art meth-
ods. The second most effective model is Efficientnet, which is unable to capture
long-range dependencies despite its advantage of strong ability to extract local
information. In terms of the number of parameters, our network demonstrates
superior performance compared to MLP-based, Transformer-based, and select
CNN-based networks. However, in the context of lightweight networks, such as
Efficientnet, our network exhibits a higher number of parameters. In terms of
accuracy, F1-score, and AUC, our method outperforms other methods on the
EyePACS-AIROGS-light-V2 dataset. In comparison to MaxVIT, which is the
most effective method among the others, our method demonstrated superior



DG2Net for Classification of Glaucoma 305

performance in terms of ACC, F1, and AUC by 1.04%, 1.11%, and 1.04%, respec-
tively. This is attributed to the following factors: This is because MaxVIT, while
having some global feature extraction capability, is limited to mixing information
in terms of axiality, and our approach allows information to interact dynami-
cally between tokens, and therefore has a greater ability to acquire feature. In
terms of qualitative analysis, we present the confusion matrices of our model
on the two datasets, as shown in Fig 7, as well as a plot of the experimental
results comparing our model with other models, as shown in Fig 8. The graph
demonstrates that our model accurately predicted glaucoma disease and that,
in comparison to other methods, our method is more advantageous.

Table 1. Performance comparison on the EyePACS AIROGS-Light dataset(Bold is
the best results, underlined is the second best results).

Method Network ACC(%) F1(%) AUC(%) Params

CNN-based Efficientnet [15] 90.80 91.00 90.90 5.3M
Convnext [13] 85.40 85.40 85.90 28.6M
Inceptionnext [20] 90.60 90.59 90.80 8.4M
Alternet-K [5] 90.70 90.70 91.00 1.3M

Transformer-based
and
MLP-based

Vision transformer [4] 61.20 60.72 61.20 86.0M
MaxVIT [17] 89.30 89.30 89.80 31.0M
Dynamixer [18] 78.80 78.79 79.00 26.0M
StripMLP [1] 90.60 90.60 90.80 24.3M
RaMLP [9] 86.20 86.20 86.20 25.0M
SCnet [22] 89.60 89.60 90.20 201.0M

Ours DG2Net 91.80 91.83 91.90 20.7M

3.5 Ablation Experiment

In order to verify the effectiveness of our proposed module, we conducted abla-
tion experiments on the Eyepacs AIROGS-Light dataset. The results of these
experiments are presented in Table 3. In particular, we used the Efficientnet-b0
model as our baseline, upon which we designed our network structure. Firstly,
the combination of the baseline and DGMLP resulted in an improvement of
0.3% in ACC, 0.1% in F1 and 0.4% in AUC, respectively. This indicates that
the Dynamixing Gate operation effectively promotes the interaction of informa-
tion between tokens. The combination of the baseline and DGNMLP resulted in
an improvement of 0.6%, 0.4% and 0.7% in ACC, F1 and AUC, respectively. This
demonstrates that the capacity for channel mixing has been enhanced, leading
to more accurate classification. Finally, the combination of both with the base-
line resulted in an improvement of 1% for ACC, 0.83% for F1, and 1% for AUC,
respectively. This indicates that the method achieves satisfactory results in the
glaucoma detection task.
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Table 2. Performance comparison on the EyePACS-AIROGS-light-V2 dataset(Bold is
the best results, underlined is the second best results).

Method Network ACC(%) F1(%) AUC(%)

CNN-based Efficientnet [15] 92.34 92.34 92.44
Convnext [13] 89.87 89.88 89.97
Inceptionnext [20] 90.78 90.80 90.88
Alternet-K [5] 93.03 93.12 93.06

Transformer-based
and
MLP-based

Vision transformer [4] 70.65 70.59 70.65
MaxVIT [17] 93.25 93.24 93.25
Dynamixer [18] 88.05 88.15 88.15
StripMLP [1] 93.12 93.17 93.22
RaMLP [9] 90.91 90.93 90.94
SCnet [22] 91.30 91.50 91.25

Ours DG2Net 94.29 94.35 94.29

Fig. 7. (a) Refers to confusion matrix of DG2Net on EyePACS AIROGS-Light, and
(b) refers to confusion matrix of DG2Net on EyePACS-AIROGS-light-V2.

Fig. 8. (a) is the results of EyePACS AIROGS-Light, and (b) is the results of EyePACS-
AIROGS-light-V2.
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Table 3. The result of ablation studies on the EyePACS AIROGS-Light dataset. The
best results are in bold.

Network ACC(%) F1(%) AUC(%)

Baseline(Efficientnetb0) 90.80 91.00 90.90
Baseline+DGMLP 91.10 91.09 91.30
Baseline+DGNMLP 91.40 91.40 91.60
Baseline+DGMLP+DGNMLP(DG2Net) 91.80 91.83 91.90

4 Conclusion

In this paper, we propose DG2Net, a deep learning model for efficient detection
of glaucoma lesions. DG2Net is an MLP-based network architecture compris-
ing multiple MBConv blocks and MLP blocks. To this end, we have introduced
the MLP block, which enables the acquisition of global information in the fun-
dus image. Furthermore, we have designed two novel modules, which enhance
the token-mixing and channel-mixing abilities of the MLP block, resulting in
significant detection outcomes.

The DG2Net model was validated on the EyePACS AIROGS-Light and
EyePACS-AIROGS-light-V2 datasets, achieving state-of-the-art performance. In
the future, we will continue to refine the DG2Net model in order to make it more
generalizable for practical implementation in the future, with the aim of assisting
those working in the healthcare industry.
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Abstract. In the dynamic landscape of social media, understanding
of emotional expression and its detection from user-generated content
is pivotal for various applications, from marketing strategies to mental
health monitoring. Traditional methods of face recognition and emo-
tion detection often fail due to inefficient way of handling complex and
unstructured social media posts. This paper proposes a novel architec-
ture, “SocialFaceEmoNet”, that utilizes the power of deep neural net-
works (DNNs), specifically Convolutional neural Networks (CNNs) and
Transformer models to extract features for simultaneous recognition of
faces and detection of emotions with high accuracy and efficiency. The
proposed architecture begins with the curation of SocioFaceSet, a spe-
cialized dataset tailored to the unique characteristics of social media
imagery. Unlike previous approaches that rely solely on pre-trained mod-
els, SocialFaceEmoNet incorporates transfer learning techniques to adapt
the CNNs and Transformers to the nuances of social media data, thereby
improving their performance. Furthermore, we introduce a comprehen-
sive evaluation framework to assess the effectiveness of our approach.
Through extensive experiments on real-world social media datasets, we
demonstrate the superiority of SocialFaceEmoNet over existing methods
in terms of both face recognition and emotion detection tasks. Notably,
our architecture achieves remarkable results even in challenging scenar-
ios characterized by varying lighting conditions, image resolutions, and
facial expressions.

Keywords: Face Recognition · Emotion Detection · Social Media
Analysis · Deep Neural Networks · Convolutional Neural
Networks(CNNs) and Transformer models

1 Introduction

Social media platforms become an integral part of our daily lives, with billions of
users sharing a vast amount of content every day. This content, often in the form
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of images and videos, can provide valuable insights to detect users’ emotions,
opinions, and behaviors. Understanding the emotional content of these posts is
crucial for various applications, ranging from targeted marketing strategies to
monitoring mental health trends. For instance, brands can tailor their marketing
campaigns based on the emotions expressed by users, while mental health pro-
fessionals can identify individuals who may need support. However, analyzing
this emotional content presents significant challenges. Social media imagery is
highly diverse and often unstructured, featuring a wide range of lighting condi-
tions, image resolutions, facial expressions, and occlusions. Traditional methods
of face recognition and emotion detection struggle to handle this complexity
effectively. These methods often rely on pre-defined rules that cannot adapt well
to the diverse and unpredictable nature of social media content. To address these
challenges, this paper introduces a novel architecture named SocialFaceEmoNet,
designed to enhance face recognition and emotion detection in social media posts.
Our approach leverages the power of deep neural networks (DNNs), specifically
Convolutional Neural Networks (CNNs) and Transformer models, which have
demonstrated superior performance in various computer vision tasks. Initially,
we experimented with several state-of-the-art models, including VGG16, ResNet-
50, and Vision Transformer (ViT), to identify the most effective architecture for
this task. The main contribution of the paper is the creation of SocioFaceSet, a
customized dataset specifically curated to capture the unique characteristics of
social media imagery. This dataset includes a diverse array of images that reflect
the typical conditions found on social media platforms, such as varying lighting,
different facial expressions, and a range of image qualities. By training our mod-
els on this specialized dataset, we aim to improve generalization ability of the
proposed model that perform well on real-world social media data. In our exper-
iments, while CNN architectures like VGG16 and ResNet-50 showed promising
results, the Vision Transformer (ViT) model consistently outperformed them,
especially in handling the complex and varied nature of social media images.
Consequently, our proposed architecture, SocialFaceEmoNet, primarily employs
the ViT model for both feature extraction and sequence modeling, due to its
superior performance. By incorporating transfer learning techniques, we further
fine-tune the ViT model to adapt to the specific nuances of social media data for
enhancing its performance. This adaptation is crucial for addressing the variabil-
ity and complexity inherent in social media images. This paper makes several
contributions to the field of face recognition and emotion detection in social
media using deep learning:

– Proposed Architecture (SocialFaceEmoNet): We introduce a novel
architecture, SocialFaceEmoNet, which leverages the Vision Transformer
(ViT) model for feature extraction. This architecture is specifically designed
to address the challenges of face recognition and emotion detection in the
complex and unstructured environment of social media platforms.
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– Customized Dataset (SocioFaceSet): We curate a specialized dataset,
SocioFaceSet, tailored to the unique characteristics of social media imagery.
This dataset includes diverse images that reflect typical conditions found
on social media, such as varying lighting, different facial expressions, and a
range of image qualities. SocioFaceSet serves as a foundation for training and
evaluating our deep learning models.

– Comprehensive Study: We provide a comprehensive study using various
evaluation metrics to assess the performance of SocialFaceEmoNet. Through
extensive experiments conducted on real-world social media datasets, we
demonstrate the effectiveness of our approach in terms of both face recog-
nition and emotion detection tasks.

– Performance and Robustness: Our experiments show that Social-
FaceEmoNet achieves remarkable results, even in challenging scenarios char-
acterized by varying lighting conditions, image resolutions, and complex
facial expressions. The Vision Transformer model, used for feature extrac-
tion, proves to be effective in capturing intricate details and patterns in social
media images.

– Advancement of Deep Learning Technologies: This work underscores
the importance of innovative architectures, such as SocialFaceEmoNet, and
tailored datasets, such as SocioFaceSet, in advancing the capabilities of deep
learning technologies for real-world applications. Our findings highlight the
potential of Vision Transformer models in transforming the analysis of social
media content, providing valuable insights for various practical applications.

Rest of the paper is organized as follows: Section 2 provides an overview
of related work in the field of face recognition and emotion detection in social
media, highlighting existing approaches and their limitations. In Section 3, we
delve into the methodology employed in this study, detailing the architecture
of SocialFaceEmoNet and the various deep learning models utilized to frame
the proposed architecture. Section 4 elaborates on the creation and charac-
teristics of the SocioFaceSet, discussing its importance in training and evalu-
ating the models. Following this, in Section 5 we evaluate the performance of
SocialFaceEmoNet through extensive experiments conducted on real-world social
media datasets. In Section 6, we discuss the overall analysis. Finally, we conclude
the paper in Section 7, by summarizing our findings, discussing implications, and
suggesting directions for future research in the field.

2 Related Work

Face recognition and emotion detection in social media have attracted consider-
able interest owing to its extensive uses in marketing, healthcare, and research
of social behaviour. The conventional methods for recognizing faces use hand-
crafted features and machine learning models, which often fail to deal with
changes in lighting, location, and expressions, commonly appeared in social
media photos. Deep learning, specifically convolutional neural network (CNN)
has led to substantial advancements in recognizing faces with more accuracy
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and reliability. Early methods, such as Eigenfaces and Fisherfaces, used Prin-
cipal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) to
reduce dimensionality of extracted features. Ojala et al. [1] introduced texture
descriptors, such as Local Binary Patterns (LBP), which offered a more resilient
method for capturing face characteristics. Machine learning has led to the use of
Support Vector Machines (SVM) and boosting algorithms such as AdaBoost to
improve recognition performance. Nevertheless, it was the advent of CNNs that
really transformed the discipline. Groundbreaking deep neural network models
such as AlexNet [2], VGGNet [3], and Inception [4] have shown notable advance-
ments in performance. These advancements have greatly improved the accuracy
and resilience of facial recognition algorithms in practical situations, and they
are backed by large datasets such as LFW [5], MegaFace[6], and MS-Celeb-1M
[7]. Simonyan and Zisserman [3] introduced the VGG16 architecture, renowned
for its simplicity and efficiency in image classification applications, such as face
recognition. ResNet, proposed by He et al. [8] effectively tackles the issue of
vanishing gradients in deep networks and has shown exceptional performance in
a range of computer vision applications, such as face recognition. Tan and Le
[9] recently developed EfficientNet, a model that achieved outstanding perfor-
mance by increasing the depth, breadth, and resolution of the network in a well-
balanced way. Recent advancements in face recognition have been significantly
driven by deep learning architectures, particularly CNNs. The introduction of
models like VGG-Face [10], FaceNet [11], and ArcFace [12] settle new standard
in recognizing faces with remarkable accuracy. These models leverage large-scale
datasets and complex architectures to achieve outstanding performance, par-
ticularly while dealing with challenging scenarios, involving occlusions, varying
lighting conditions, and diverse ethnic backgrounds.

CNNs have been modified and optimized to enhance the accuracy of image
identification in social media platforms, where images exhibit a broad range of
quality and content. Oquab et al. [13] used transfer learning methodologies, in
which models that were pre-trained on large datasets like as ImageNet were
modified to suit social media images, resulting in a substantial improvement in
face recognition accuracy. Jayanta et al.[14] assessed facial recognition methods
for IoT system designs with limited computational capabilities, offering valuable
insights into the efficiency of different techniques when dealing with restricted
computing resources.

In recent years, the subject of face emotion detection has made substantial
progress, mostly due to accessibility of extensive datasets. CNN based face emo-
tion detection models are reported, resulting in significant levels of accuracy.
Tang [15] introduced a CNN method to recognize face emotions. This technique
achieved a high accuracy of 95.6% when tested on the FER2013 [16] dataset.
Mollahosseini et al.[17] used a deep learning methodology to recognise face emo-
tions and achieved a remarkable accuracy of 92.5% on the same dataset. Previous
research works used transfer learning techniques to improve face emotion detec-
tion. As an example, Kim et al. [18] used a pre-trained CNN model and adjusted
it using a dataset specifically designed for recognising face emotions, achieving
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93.1% accuracy. In addition, Zhang et al.[19] introduced a multitask learning
methodology for face emotion detection, with accuracy 95.5%. Contemporary
techniques have been evolved from traditional classifiers to more sophisticated
models that capture both spatial and temporal aspects of facial expressions.
Hybrid models such as CNN-LSTM [20] and the use of attention mechanisms
demonstrate superior performance in capturing subtle emotional cues, particu-
larly in video sequences. Additionally, large annotated datasets like AffectNet
[17], FER+ [21] expedite development of the models that acquire immense gen-
eralization ability well across different populations and contexts.

Several research works have investigated the use of attention processes in the
field of face emotion detection. Li et al.[22] introduced an attention based CNN
model for recognizing face emotions. This method achieved an accuracy of 94.2%.
Furthermore, other datasets have been suggested for the purpose of facial emo-
tion detection, in addition to the aforementioned research. The FER2013[16]
dataset, proposed by Goodfellow et al. [23], is a commonly used dataset for
facial emotion recognition. It comprises 35,887 photos depicting various facial
emotions. Additionally, the RAF-DB dataset, which was presented by Li and
Deng [24], consists of 30,000 photos and has significant importance in this field.
Paul et al. [25] curated a dataset by manually labelling the Indian cartoon post-
ings. Several deep learning methods are explored to identify the faces and inter-
pret the emotions of characters appear in the posts. Their findings underscore
the potential of culturally unique datasets in enhancing the accuracy of mod-
els. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
networks, which are well-known for their capability to represent sequential data,
have been used to capture temporal relationships in emotion detection tasks.
Cho et al. [26] have played a crucial role in the development of these models.
Nevertheless, these models may incur significant processing costs and encounter
difficulties in handling distant relationships. Transformer models, initially devel-
oped for problems related to natural language processing (NLP), have been
modified for using image-based applications, such as emotion detection in more
recent times. The Vision Transformer (ViT), proposed by Dosovitskiy et al. [27],
has shown impressive performance by treating images as sequences of patches.
This approach enables the model to successfully capture spatial connections and
contextual information. Within the realm of social media, there has been an
exploration of multimodal techniques that combine visual and textual informa-
tion, particularly in situations where photos are often accompanied by text and
other metadata. Poria et al.[28] showed that these methods use both visual con-
tent and verbal context to improve the accuracy of detecting emotions.

3 Dataset

For this work, we created a custom dataset specifically designed to evaluate the
performance of our proposed architecture, SocialFaceEmoNet, in the context
of social media posts. While numerous datasets exist for face recognition, they
are often unsuitable for assessing performance on social media images due to
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differences in image quality, context, and variability. To address this gap, we
developed the dataset, named SocioFaceSet, tailored to the unique challenges
posed by social media imagery.

3.1 SocioFaceSet

SocioFaceSet stands for the Social Media Face Recognition Dataset, specifically
curated to address the unique characteristics and challenges of facial recognition
in social media posts.

Data Collection: The SocioFaceSet comprises facial data from twelve individ-
uals, including both male and female subjects to ensure gender diversity in the
proposed dataset. In the paper, approximately 10,000 images are captured from
each individual, resulting in a total dataset size of 100,000 images. These images
are collected under various conditions to ensure robustness and generalizability
of the model. The conditions included:

– With and Without Glasses: Images of individuals wearing glasses and
without glasses to account for variations in appearance.

– Noise-Free Background: Images with a clean, distraction-free background
to focus on facial features.

– Pose variant: Images are captured with different angles of the face, including
profile and semi-profile views.

– Lighting Conditions: Images taken in low light, normal light, and bright
light conditions to simulate typical variations found in social media posts.

Data Labeling: We employed a systematic approach for labeling the images in
order to ensure high-quality annotations and maintain reliability of the dataset.
Individuals in the dataset are anonymized and labeled as Person 1 through Per-
son 10 to protect privacy of the persons. Each image is manually labeled by team
members with utmost care.

– Number of Annotators: Each individual in the dataset is the annotator
of their own images, ensuring each individual’s true appearance, therefore
highly accurate and reflective annotation.

– Annotation Guidelines: Annotators followed a comprehensive set of guide-
lines developed specifically for this dataset. The guidelines include detailed
instructions on how to label facial features, handle variations in image quality,
and account for different lighting and pose conditions.

– Inter-Annotator Agreement: Since each person annotates their own
images, inter-annotator agreement across different annotators is not appli-
cable here. In order to ensure annotation quality, we apply majority voting
mechanism, where multiple annotators are involved, and final label is deter-
mined based on the majority opinion.
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Additionally, our proposed model demonstrates robust performance on other
datasets, indicating that the SocioFaceSet is not biased with respect to race,
gender, or other demographic factors. This comparative performance supports
generalization ability of the dataset and reinforces its applicability across diverse
scenarios.

Table 1. SocioFaceSet Data Distribution

Person ID Number of Images

Person 1 10,312
Person 2 10,752
Person 3 10,012
Person 4 10,360
Person 5 10,452
Person 6 11,211
Person 7 10,152
Person 8 11.286
Person 9 10,154
Person 10 10,750

Fig. 1. SocioFaceSet visual overview

3.2 Emotion Detection Dataset

For emotion detection, we utilized the publicly available FER2013 [16] dataset.
This dataset is widely recognized for its comprehensive coverage of facial emo-
tions and consists of 35,887 images categorized into seven emotion classes: anger,
disgust, fear, happiness, sadness, surprise, and neutral. Table 2 provides a sum-
mary of the dataset distribution. The use of FER2013 allows us to leverage a
standardized dataset for emotion recognition, which is critical for benchmarking
and validating the performance of our model.
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Table 2. FER2013 Dataset Distribution

Emotion Number of Images

Anger 4,721
Disgust 547
Fear 3,513
Happiness 8,989
Sadness 6,077
Surprise 4,002
Neutral 6,038

3.3 Comparison of SocioFaceSet with other SOTA Face Datasets

The SocioFaceSet aims to capture the diverse facial features for face recognition
in various social context. The training dataset emphasizes diversity in terms
of ethnicity, age groups, gender and social contexts to improve the generaliz-
ability of the models. Overall, the dataset tackles the challenge of recognizing
faces in less controlled environments compared to studio settings, where light-
ing, angles, and expressions could be varied to a large extent. On the other
hand, CMU-MOSEI (Multimodal Opinion Sentiment and Emotion Intensity) is
a dataset primarily used for sentiment and emotion recognition in multimodal
content, including video and audio. It contains over 23,000 annotated video seg-
ments from various online sources that are annotated for detecting sentiment
and emotion intensity. The dataset includes diverse content in terms of topics,
speakers, and emotions but is more focused on video-based data rather than
still images. CMU-MOSEI addresses the challenge of understanding emotions in
multimodal content, making it suitable for applications that require audio-visual
data. Similarly, CelebA is a large-scale face attributes dataset used for tasks
like facial recognition, attribute prediction, and generative modeling. It contains
over 200,000 celebrity images, annotated with 40 different facial attributes, such
as smiling, wearing glasses, etc. Though the dataset includes a wide variety
of attributes, it is less focused on the emotional context and more on physi-
cal attributes. CelebA is used extensively for benchmarking the models on face
recognition and attribute prediction, but it does not specifically focus on emo-
tional expression or social context.

Thus, SocioFaceSet is more specialized for face recognition considering social
media images, which differs from CMU-MOSEI’s that focus on multimodal con-
tent while CelebA’s focus on facial attributes. SocioFaceSet is tailored for social
media contexts, making it unique in capturing the informal, varied nature of
social media expressions, unlike CMU-MOSEI, which is broader in scope, and
CelebA, which is more general-purpose.
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4 Methodology

In this work, we propose a deep learning architecture called SocialFaceEmoNet
(Figure 2), designed to perform both face recognition and emotion detection
from social media image posts. This section details the steps involved in our
methodology, including face detection, feature extraction, and classification.

Fig. 2. SocialFaceEmoNet Architecture

4.1 Face Detection

The first stage of our SocialFaceEmoNet architecture is face detection, where we
use the Haar Cascade classifier to identify faces in images captured from social
media. The Haar Cascade classifier utilizes Haar-like features, which are digital
image characteristics employed in the process of object identification. These
features are computed by subtracting the total pixel intensities in rectangular
sections, capturing essential contrasts that highlight facial features.

Given an image I and a rectangular region feature R, the Haar feature can
be computed as:

f(I,R) =
∑

(x,y)∈R1

I(x, y)−
∑

(x,y)∈R2

I(x, y)

where R1 and R2 are two adjacent rectangular regions within the detection
window, and I(x, y) is the pixel intensity at coordinates (x, y). The classifier
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then uses a series of these Haar features, combined with the AdaBoost algorithm,
to create a strong classifier from multiple weak classifiers. AdaBoost selects the
most critical features and combines them to improve the detection accuracy.

The face detection process can be mathematically described as:

Detected Faces = Haar Cascade Classifier(I)

where I is the input image, and the output is the set of coordinates of the
detected faces, which define the regions R. These coordinates are used to crop
the face regions from the original image, ensuring that only relevant facial regions
are processed in the subsequent steps.

4.2 Feature Extraction Using Vision Transformer (ViT)

In order to extract features, we use the Vision Transformer (ViT), which has
shown better performance in comparison to conventional CNN models such as
VGG16 and ResNet50. The ViT model analyses images by dividing them into
patches and considering each patch as a token within a sequence, similar to the
tokens used in NLP.

Given an input image R with dimensions H×W ×C, where H represents the
height, W represents the width, and C represents the number of channels, the
image is partitioned into N patches. Each patch xp with dimensions P ×P ×C
is converted into a flattened vector and then linearly projected to generate patch
embeddings:

xp = Linear(xpatch)

Subsequently, the patch embeddings are merged with positional embeddings
in order to preserve spatial information:

z0 = [xclass;x1
p;x

2
p; . . . ;x

N
p ] + Epos

where xclass is a learnable class embedding and Epos represents the positional
embeddings.

Subsequently, every set of embeddings undergoes processing via Transformer
encoder layers, each comprising of multi-head self-attention (MSA) and feed-
forward neural networks (FFN).

MSA(Q,K, V ) = Concat(head1,head2, . . . ,headh)WO

FFN(x) = ReLU(xW1 + b1)W2 + b2

where the learned weight matrices are denoted by WO, W1, and W2, and the
queries, keys, and values derived from the input embeddings are represented by
Q, K, and V vectors, respectively.

The feature representation of the image is derived from the output of the
Transformer encoder layers, which are as follows:

zL = TransformerEncoders(z0)
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4.3 Face Recognizer Architecture

For face recognition, we employed a ViT [27], a well-established robust attention-
based framework used for extracting features hierarchically. The design enables
the model to capture both low-level and high-level features, crucial for accurate
face recognition across varied and complex social media images. The model was
pre-trained on CelebA [29] containing a diverse set of facial images, and then
fine-tuned on the SocioFaceSet to adapt to the unique characteristics of the
media domain. Transfer learning allows the model to leverage pretrained weights
from a large dataset and fine-tune them on our specific dataset, ensuring better
performance.

4.4 Emotion Detection Architecture

For emotion classification, we used ViT in order to handle both the spatial
and temporal information of facial expressions. The multi-head attentions are
responsible for extracting spatial features from individual image frames, while
the temporal dependencies is taken care of by patch-wise processing of sequences
of the features. We incorporated the attention mechanism to focus the model on
the most relevant parts of the facial expressions, improving its ability to discern
subtle emotional cues. The model was initially pre-trained on the AffectNet [17],
which contains a wide range of annotated facial expressions, and subsequently
fine-tuned on the FER2013 [23].

4.5 Pre-Training and Fine-Tuning

Face recognition and emotion detection models were pre-trained on large, well-
established datasets before being fine-tuned on the SocioFaceSet. The face rec-
ognizer was pre-trained on the CelebA, which includes over 200,000 celebrity
images across a variety of poses and lighting conditions. The emotion classifier
was pre-trained on AffectNet, one of the largest facial expression dataset avail-
able, containing over 1 million facial images with manually annotated emotion
labels. Fine-tuning on SocioFaceSet allows us to adapt the model to the specific
challenges, presented by social media images, such as varying camera angles,
lighting conditions, and spontaneous facial expressions.

4.6 SocioFaceEmoNet: Combined Architecture

The overall SocialFaceEmoNet architecture combines the face recognition and
emotion detection modules into a unified pipeline. The steps involved are as
follows:

– Face Detection: Apply Haar Cascade classifier to detect the faces available
from social media images.

– Feature Extraction: ViT model is used for feature extraction from the
images.
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– Face Recognition: Use the pretrained (on CelebA dataset) classifier, fine-
tuned on SocioFaceSet to identify the person in the image.

– Emotion Detection: Use the second classifier, fine-tuned on the FER2013
dataset, to detect the emotion of the identified person.

By integrating these components, SocialFaceEmoNet achieves robust perfor-
mance in recognizing faces and detecting emotions from the unstructured and
variable-quality images, typically found in social media posts. Our approach
integrates well-established techniques applicable in face recognition and emotion
classification. The proposed work is innovative due to its ability in handling
challenging issues, often arise in social media images such as varying lightning
conditions, informal setting, and a wide range of emotional expressions. By tai-
loring ViT framework, specifically for this domain, we propose a more robust
and accurate solution in real-world social media contexts. Algorithm 1 describes
the tasks of facial recognition and emotion detection using SocialFaceEmoNet
model. This approach ensures high accuracy and efficiency, making it suitable
for real-world applications in social media analytics.

Algorithm 1: SocialFaceEmoNet Algoritham for Face Recognition and
Emotion Detection
Input: Social media image post I
Output: Identified person P and detected emotion E

1 Face Detection:
2 faces ← HaarCascadeClassifier.detectFaces(I);
3 foreach face f in faces do
4 If ← cropFace(I, f);
5 Feature Extraction:
6 P ← divideIntoPatches(If );
7 patchEmbeddings ← LinearProjection(P );
8 z0 ← combineWithPositionalEmbeddings(patchEmbeddings);
9 zL ← TransformerEncoderLayers(z0);

10 Face Recognition:
11 P ← FinetunedFaceRecognitionClassifier;
12 Emotion Detection:
13 E ← FinetunedEmotionDetectionClassifier;
14 end
15 return P,E;

5 Experimental Analysis

In order to assess the effectiveness of the proposed SocialFaceEmoNet model
for face recognition and emotion detection in social media photos, we provide
a thorough experimental study in this section. The performance of the model
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is evaluated using several metrics, including accuracy, precision, recall, and F1-
score, which are essential for understanding both the overall effectiveness and
the reliability of the model’s predictions.

5.1 Experimental Results

SocialFaceEmoNet model has been implemented using the PyTorch deep learn-
ing framework. We use pre-trained models of ViT for feature extraction and a
classifier for emotion detection. The face recognition classifier is fine-tuned using
transfer learning on the SocioFaceSet. For enhanced performance, we applied
data augmentation techniques, including random rotation, horizontal flipping,
and color jittering, to the SocioFaceSet during training. Table 3 provides exper-
imental performances of face recognition and emotion detection using different
backbone models on our proposed SocialFaceEmoNet architecture.

Table 3. Performance Evaluation of SocialFaceEmoNet for Face Recognition and Emo-
tion Detection Using SocioFaceSet with Different Backbone Models

Model Data Augmentation Accuracy Precision Recall F1-score
Face Recognition Performance

VGG16 Without 0.93 0.92 0.94 0.93
With 0.95 0.94 0.96 0.95

ResNet50 Without 0.95 0.94 0.96 0.95
With 0.97 0.96 0.98 0.97

ViT Without 0.97 0.96 0.98 0.97
With 0.98 0.97 0.99 0.98

Emotion Detection Performance
VGG16 Without 0.72 0.71 0.73 0.72

With 0.73 0.73 0.75 0.74
ResNet50 Without 0.74 0.73 0.75 0.74

With 0.76 0.75 0.77 0.76
ViT Without 0.78 0.78 0.79 0.78

With 0.79 0.79 0.78 0.79

The experimental results demonstrate the effectiveness of the Social-
FaceEmoNet architecture in accurately recognizing faces and detecting emotions
from social media images.

ViT consistently demonstrated superior performance over VGG16 and
ResNet50, emerging as the best backbone model for both face recognition and
emotion detection in our proposed SocialFaceEmoNet architecture. Data aug-
mentation further enhanced ViT’s performance. Table 4 presents the ROC -
AUC scores for face recognition and emotion detection, highlighting ViT’s effec-
tiveness in both tasks. As shown in Table 5, our architecture achieves superior
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Fig. 3. Confusion Matrix for Face Recognition on SocioFaceSet Using Best Backbone
Models (a) Without Data Augmentation (b) With Data Augmentation

Fig. 4. Confusion Matrix for Emotion Detection on SocioFaceSet Using Best Backbone
Models (a) Without Data Augmentation (b) With Data Augmentation

Table 4. ROC AUC Scores for Face Recognition and Emotion Detection using Social-
FaceEmoNet on SocioFaceSet

Model Task With Data
Augmentation

Without Data
Augmentation

VGG16 Face Recognition 0.93 0.88
Emotion Detection 0.72 0.69

ResNet50 Face Recognition 0.95 0.90
Emotion Detection 0.74 0.71

ViT Face Recognition 0.98 0.95
Emotion Detection 0.77 0.74
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Fig. 5. ROC Curve Using SocialFaceEmoNet on SocioFaceSet (a) Face Recognition
(b) Emotion Detection

performance across multiple datasets, and state-of-the-art models also perform
well on proposed SocioFaceSet. The application of data augmentation techniques
significantly improved the performance of all models by enhancing their general-
ization ability and reducing overfitting. This improvement was most noticeable
in ViT, which effectively leveraged the increased diversity in the training data
to learn more robust features. Figures 3 illustrates the confusion matrices, and
Figure 5 shows ROC Curve for the best-performing model on our SocioFaceSet,
exhibiting ViT’s strong performance.

6 Discussion

The proposed model, “SocialFaceEmoNet” can significantly contribute to var-
ious domains, particularly in social media analytics and digital marketing. In
social media, the model can be employed to automatically detect and analyze
the emotional responses of users in real-time, providing insights into public sen-
timent during events, campaigns, or crisis. This capability is crucial for brands
and organizations aiming to gauge public perception and respond appropriately.
In digital marketing, “SocioFaceEmoNet” can be integrated into targeted adver-
tising systems to personalize content based on the emotional state of users,
enhancing engagement and conversion rates. Additionally, it can be used in cus-
tomer service to identify and address customer dissatisfaction by analyzing their
facial expressions during video interactions, thereby improving customer experi-
ence and loyalty. During political campaigns “SocialFaceEmoNet” can be used to
monitor audience reactions to speeches or debates, helping campaign managers
to tailor their messages. Similarly, in live events like sports, the model could
analyze fan reactions providing broadcasters with valuable data enhance viewer
engagement.
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Table 5. Comparison of State-of-the-Art Face Recognition and Emotion Detection
Models across various datasets

Model Dataset Accuracy Precision Recall F1-Score

State-of-the-Art Face Recognition Models
SocialFaceEmoNet SocioFaceSet 0.983 0.975 0.989 0.981

VGGFace2 0.960 0.972 0.975 0.973
DeepFace SocioFaceSet 0.979 0.982 0.974 0.977

VGGFace2 0.961 0.962 0.9721 0.971
FaceNet SocioFaceSet 0.945 0.948 0.942 0.932

VGGFace2 0.942 0.951 0.949 0.952
State-of-the-Art Emotion Detection Models
SocialFaceEmoNet AffectNet 0.761 0.742 0.762 0.752

RAF-DB 0.710 0.702 0.699 0.701
ViT-Base AffectNet 0.742 0.745 0.736 0.746

RAF-DB 0.751 0.762 0.752 0.761
VGGFace2 AffectNet 0.752 0.762 0.758 0.763

RAF-DB 0.702 0.712 0.695 0.705

7 Conclusion

In this paper, we propose SocialFaceEmoNet, a deep architecture designed for
face recognition and emotion detection using social media posts. Leveraging
deep learning models such as VGG16, ResNet50, and Vision Transformer (ViT),
our proposed architecture demonstrates competitive performance on both tasks.
Our findings reveal that ViT, as the backbone model, outperforms traditional
CNN architectures (VGG16, ResNet50) in both face recognition and emotion
detection, achieving up to 98% accuracy in face recognition and 79% accuracy
in emotion detection. Data augmentation techniques, including random rotation,
horizontal flipping, and color jittering, significantly enhance the robustness and
generalization capability of our models.

Despite these promising results, our study has limitations, including the size
and diversity of our SocioFaceSet and the computational complexity of ViT.
Future work should focus on expanding the dataset to include a broader popula-
tion and optimizing ViT for deployment on resource-constrained devices. Addi-
tionally, exploring multimodal learning approaches and addressing ethical con-
siderations related to social media data use are crucial for advancing this research
area. Another promising area is the exploration of transfer learning techniques
using larger and more diverse datasets, such as those from different cultural back-
grounds, to improve the generalization capabilities of the model. Additionally,
applying the model in other domains like healthcare, for detecting early signs of
mental health issues through facial analysis, represents a valuable extension of
this work. Overall, our study provides a strong foundation for further advance-
ments in face recognition and emotion detection in social media contexts, with
ViT demonstrating superior performance as the backbone model.
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Abstract. The paper introduces the Prime Video Page Composi-
tion framework (POCN), comprising Long Term Customer Propensity,
Occasional Exploration, Contention Relevance, and Neighborhood Diver-
sity, for optimal carousel positioning on the homepage. The framework
addresses the challenge of balancing diverse customer and business con-
siderations, including different offers (Prime/individual purchase/3P)
and content types (Movie/TV/Sports). To achieve this, a Transformer
model predicts long-term customer propensities for various offer/content
types, integrating discounted impression UCB for occasional exploration.
A novel neural network captures contention between carousels, and the
framework combines long-term propensity, occasional exploration, and
contention relevance linearly, with added neighborhood diversity. The
proposed approach demonstrates a significant (4.6%) improvement in
customer engagement metrics in A/B experiments.

Keywords: Customer Long Term Propensity · Occasional
Exploration · Contention Relevance · Neighborhood Diversity · Page
Composition

1 Introduction

Amazon Prime Video, a preferred streaming service, stands out for its diverse
content, including unique offerings like Prime, Prime Video Channels, and
TVOD (Transaction Video On Demand). As an ultimate "Entertainment Hub,"
it epitomizes Amazon’s commitment to providing a convenient and comprehen-
sive viewing experience. Prime Video’s homepage features thematic carousels
like "Recommended for You" and "Trending Titles," with approximately 20
carousels in total. Balancing customer preferences and encouraging exploration
poses challenges, particularly in selecting the top 5-7 carousels that receive the
most attention.

The current Page Composition module uses heuristics and rules atop machine
learning models for page composition, presenting challenges in balancing multiple
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15324, pp. 328–342, 2025.
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offers and content types. The module lacks consideration for the customer’s over-
all long-term interest in specific offers or content types, doesn’t have the flexibil-
ity of meaningfully perform exploration. Also, for carousel ranking it is not able
to compare and contrast between different carousels with different offers/content
types and perform diversification of carousels in the neighborhood of carousels.

The customer interest in offers/content types is captured through past inter-
actions or affinity, is utilized to predict future interactions, termed as propensity.
Propensity prediction, focused on longer-term customer behavior, addresses sea-
sonal variations by incorporating data from different seasons over past year for
accurate predictions. For instance, during holidays, customers may interest in
specific TVOD titles, while summer vacation could prompt parents to subscribe
to channels for children.

We propose a Transformer based model to capture customer’s long term
offer/content type propensity. The model predicts customer propensity based on
historical interactions, but to encourage "occasional exploration" for unexplored
content in the recent past, the paper proposes a modified Upper Confidence
Bound (UCB) method using discounted impressions.

For capturing Customer’s interest in specific carousels we propose a neural
network model that poses competition between different carousels from different
offer / content types as simultaneous multiple binary problem.

The overall contribution of this work is along four dimensions (discussed
in section 3). The proposed approach combines long-term customer propensity,
occasional exploration, and contesting carousel relevance scores to select top
carousels. Pareto front analysis is used for guiding decisions based on share of
voice for different offers/content types and customer engagement. Additionally, a
customized Maximal Marginal Relevance (MMR) method is proposed for diversi-
fying carousels both at the overall page level and within carousel neighborhoods.
These methods we validate both in offline and online settings.

2 Related Work

Page composition, addressed in different industrial settings like Amazon [6] [10],
LinkedIn [1], and Netflix [2], differs from traditional user-item click-through
rate prediction. Unlike individual recommendations, it aims for diverse pages
to enhance conversion probability, aligning with findings that diverse recom-
mendations improve user conversion [5]. Similar to our problem, [6] addresses
recommending a diverse set of items in multiple categories with business con-
straints, utilizing a Bayesian linear model [9] and submodular diversity. However,
it lacks enforcement of diversity across recommended items. In contrast, previ-
ous works like [12] focus on enforcing diversity but treat each category equally,
without considering user preferences. Our approach extends these methods to
account for a user’s propensity towards each diversity category, ensuring person-
alized recommendations by incorporating individual preferences [13].

In the realm of learning optimal recommendation policies with multiple objec-
tives, [18] addresses a similar problem by optimizing user fairness, item fairness,
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and diversity using offline objectives. Similarly, [11] propose Pareto-efficient
methods for fairness across user subgroups, business revenue, and relevance.
However, our challenge lies in the difficulty of estimating metrics like business
revenue and long-term user retention offline accurately. Thus, we aim to learn
a method that produces solutions on the multi-objective Pareto front to narrow
down candidates for A/B testing.

To capture customer propensity towards different offers, we propose a novel
method using Transformers, commonly employed in Natural Language Process-
ing tasks [16]. Differing from previous attempts [19], our approach combines an
Encoder network to summarize the first 6 months of interactions and occasional
exploration using UCB [14]. This exploration method, akin to [8], uniquely com-
bines sliding window and discounting on impressions, avoiding discounting on
propensity scores as the transformer model inherently attends to different inter-
actions across time.

We propose a contesting carousel selection model for capturing short-term
customer interest, inspired by multi-output models [21] and multi-label set-
tings [17]. To diversify carousels in the neighborhood, we employ a customized
Neighborhood MMR criterion [4]. The POCN framework seamlessly integrates
Propensity, Occasional Exploration, Contention Relevance, and Neighborhood
Diversity, addressing critical customer/business challenges and offering a novel
approach compared to existing industrial implementations [1,2,6].

3 Proposed Approach

Fig. 1. Flow of proposed approach for page composition

The proposed approach involves a multi-step process. The Long Term Propen-
sity model, employing a customized Transformer architecture, generates predic-
tions for the next month based on the customer’s long-term history through an
offline job. Occasional exploration is conducted using the impression discounted
Upper Confidence Bound (UCB) method during online inference. Personalized
carousels are scored using the BLIP model, a binary classification model, and
individual customer interests are determined by the customer title relevance
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model. The subsequent carousel contention model, employing neural networks,
ranks carousels at the offer/content type level based on immediate customer con-
text. The scores from the long-term customer propensity and short-term carousel
customer relevance are linearly combined, and diversification is applied to penal-
ize neighboring carousels of the same offer/content type. Each module addresses
specific practical requirements.

3.1 Customer Long Term Propensity Model

We develop Customer Long Term Propensity Model using customer’s interac-
tion history. We pose Customer Long Term Propensity Model as a multivariate
time series forecasting model. I.e. given customer’s last 12 months of interaction
history, we would like to predict next one month interactions. However, the tra-
ditional time series models such as ARIMA (Auto-Regressive Integrated Moving
Average model) model will not be able to attend to long term customer interac-
tion history effectively. Also, models like ARIMA will not be able train on time
series from multiple customer time series data.

The traditional machine learning models such as recurrent neural networks
(RNNs) implemented using LSTMs are not capable of capturing the relatively
longer term dependencies in customer behavior. We propose to develop genera-
tive Transformer model that uses attention mechanism to model non-Markovian
dynamics. We make use of Transformer model as a multivariate time series fore-
casting model. The proposed Transformer model for customer propensity pre-
diction, as depicted in Figure 2, consists of an encoder and decoder following
the structure in [16]. Unlike traditional machine translation, the first 6 months
of customer history serve as encoder input, the subsequent 6 months as decoder
input, and the last month as decoder output. This approach, similar to [20], uti-
lizes multi-output regression with MSE loss, effectively representing the initial 6

Fig. 2. Transformer based propensity model
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months in the time series fed into the decoder to predict the last month’s data
point.

Let’s suppose we have K different offer/content type combinations and k is spe-
cific offer/content type that’s made up of offer o and content type c. At each time
step (monthly), we aggregate number of streams w.r.t. K different offer/content
types. We represent a customer u’s streams for a month t by yut = [yukt]Kk=1. The
propensity model predicts customer’s streams from different offer/content type
for next month. Next, we normalize individual offer/content propensity by sum of
propensities of all offers so that propensities sum to 1 for a given user. The normal-
ized propensity for an offer/content type is represented as P p

k (we will not explicitly
mention user for brevity in further discussion). Also, we can aggregate propensities
at individual offer level: P p

o (such as Prime vs. Non-Prime) or content type level:
P p
c (such as Movie vs. TV shows). One alternative transformer architecture is to

use decoder only. We compare the performance of proposed approach with decoder
only Transformer in Experiments section.

3.2 Occasional Exploration on Propensities

The propensities generated by propensity models tries to extrapolate the cus-
tomer behavior in the past. However, customers typically not only interested in
the offer and content types that they are already streaming from but also from
other offer / content types once in a while. We model this customer behavior
using sliding window discounted Upper Confidence bound on top of the propen-
sity scores generated by propensity model. The sliding window used in this work
is one week. As we intend customers to explore different offer/content types with
occasional frequency of at least once in a week. We perform discounting on the
impressions that were served to the customers during last one week as follows:

NT (d, k) =
T∑

t=1

dT−tnt,k (1)

Here, T is the current day, d ∈ (0, 1) is discounting factor, nt,i is number
of times offer/content type k was recommended to specific customer at time t.
The equation for modified propensity w.r.t. offer/content type based on sliding
window discounted UCB (SWD-UCB) is defined as:

P̄ p
k = P p

k + c

√
N̄T (d)

NT (d, k)
where N̄T (d) =

K∑

k=1

NT (d, k) (2)

where N̄T (d) is the sum of discounted impression counts over all offer/content
types:

3.3 Contesting Carousel Selection Model

The page composition has to consider not only absolute relevance of a given
carousel, it has to compare among the candidates from each of the offer/content
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types. Essentially, different offer/content type carousels contest against each
other for a given position on page. This contention can be modeled better when
a model sees all the candidates and their outcomes simultaneously. Towards this
we propose a new neural network architecture as shown in Figure 3.

The input vector for the model is constructed based on customer/contextual
features and 6 candidate carousel features belonging to different offer/content
types. These features include the title scores from (customer title relevance)
model. The target labels are constructed based on whether from a given carousel
a title is streamed or not. The label for data point is of the form: < 0, . . . 1 . . . 0 >.
I.e. one of the carousels from which title is streamed is set to 1 and rest of label
vector is 0. We consider contesting carousels for constructing data point only
when there’s at least one carousel has positive interaction by user as we can assign
the winner and help in discriminating positive and negative interactions. We
concatenate the customer/contextual features with carousel features as shown
in Figure 3. The loss function can be written as:

Fig. 3. Contesting Offer/Content types based relevance using multi-output neural net

LS =
N∑

i=1

K∑

k=1

[yi,k log(P r
i,k) + (1 − yi,k)(1 − log(P r

i,k)] (3)

Here, yi,k is the part label for ith data point and offer/content type k and
P r
i,k is the corresponding predicted contesting relevance score. When training,

we construct one data point for each page that was shown to customer. We select
neighboring carousels with different offer/content types as contesting carousel. If
a specific offer/content carousel was not recommended to customer, we have all
input features set to 0 and label corresponding to that carousel set to ’unknown’,
we do not back propagate errors for such labels.

During inference, we maintain the priority queue as shown in Figure 3 for each
of the offer / content types based on the score from carousel relevance model. This
helps us to closely mimic how customers look at the page and their decision making
process while choosing certain title to stream from competing carousels.
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This model akin to having multiple binary classifiers w.r.t. different
offer/content types, but they contest against each other to get next slot on the
page. The carousel with highest predicted probability is considered to be best
carousel as far as carousel selection goes. During inference time, the contention
relevance scores are normalized so that they sum to 1 and can be compared to
propensity with occasional exploration scores.

3.4 Combining Relevance and Long range Customer Propensity

Having estimated the customer’s long term propensity with occasional explo-
ration and contesting carousel scores, next we propose an approach to linearly
combine customer’s long term propensity and contesting relevance score of a
carousel. This approach provides flexibility to combine the relevance and propen-
sity to different degrees so that we can influence the appropriate SoV for a cus-
tomer based on the their propensity. At offer level we can combine the contesting
relevance and propensity using:

P r,p
o = (1 − λ)P r

k∈o + λP̄ p
o (4)

Here, P r
k∈o represents the contesting relevance score of a carousel that is of

offer o (irrespective of content type) and P̄ p
o propensity with occasional exploration

score from the corresponding offer. λ ∈ (0, 1) is the parameter that controls the
influence of propensity and contention relevance. Note that we can perform this
linear combination at offer or content type. Based on the combined score P r,p

o , the
top 20 carousels are selected. By varying λ in (0, 1) range, we obtain different SoV
for different offers and corresponding conversion (IPS normalized) and analyze this
behavior using Pareto plots in offline experiments section.

Alternatively, we can consider offer and content type (Movie / TV Shows)
simultaneously. Typically customers watch movies which doesn’t require lot of
commitment in terms of time. TV Shows customers watch over days or even
weeks/months leading to higher engagement with platform. The propensities
generated by the model are aggregated at the content type level and linearly
combined with both relevance and offer level propensity:

P r,p
o,c = (1 − λ1 − λ2)P r

k + λ1P̄
o
p + λ2P̄

c
p (5)

As before, λ1 and λ2 are weights in 0, 1 range for controlling SoV of offer and
content type respectively.

3.5 Neighborhood Diversification of Page

Having selected the carousels, next we diversify the neighboring carousels. The
objective is to make sure that neighboring carousels are not from same offer /
content type. Towards this we propose Neighborhood Maximum Marginal Rele-
vance (MMR) [4] based approach while iteratively constructing page by adding
one carousel at a time. We maintain a priority queue for each offer/content type
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by sorting carousels based on the contesting relevance score from section 3. We
pop candidates from each of the queues and apply:

P r,n
k = γP r

k + (1 − γ)(1 − P page
k )(1 − Pnbr

k ) (6)

Here, γ is the parameter to control the amount of diversity and relevance. The
higher value of γ favors relevancy and lower value of γ favors diversity. We use
two terms for diversity: one at page level, P page

k representing % of specific offer-
content type carousels already added to page and other at neighboring carousel
level (Pnbr

k : representing % of specific offer-content type carousels already added
in previous n slots). The new term Pnbr

k introduced helps in favoring diversity
not only at page level but also at carousel neighborhood level.

4 Experiments and Results

In this section, we validate the four components of the proposed Page Composi-
tion: Propensity model, Occasional exploration, Contending Relevance model for
carousel selection and Neighborhood diversification w.r.t. offer/content types.

Experimental Setting: We perform all experiments on US market place.
We validate each of the components separately and in combination. We sample
from large number (Millions) pages over a month. The number of carousels in a
page logs is few hundreds to a thousand.

4.1 Evaluation of Propensity Models

The main component of proposed Page Composition is propensity model. The
propensity model helps to understand customer’s future interests at offer/content
type level. As we have posed the propensity model as a time series forecasting
model, we make use of the metrics that are used in time series forecasting. We
make use of Mean Absolute Percentage Error (MAPE) for measuring the perfor-
mance of different propensity models. Since in our case we perform multivariate
time series (w.r.t. different offers), we extend it to account for this aspect.

MAPE =
100
UK

∑

u

∑

k

|yuk − ŷuk|
yuk

(7)

Where U is number of customers, K is number of distinct offer/content types,
yuk and ŷuk are actual and predicted offer/content type aggregated streams
respectively. As discussed previously, we predict the customer’s next one month
offer propensity using past 12 months behavior. The performance of prediction
is measured using MAPE, which provides scale free intuitive metric as scales of
different customer’s offer consumption can vary significantly.

We experiment with three different ML models for modeling customers long
term offer propensity. The first one is feed forward neural network implemented
using Multi-Layer Perceptron (MLP), the second one is a Recurrent Neural Net-
work (RNN) implemented using Long and Short Term Memory (LSTM) and
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finally Transformer with regression loss function as discussed in proposed meth-
ods section.

We compare the ML propensity models against naive affinity (aggregation
past streams) based method. It can be observed that in Table 1, MLP has 30.28
% lesser MAPE as compared to affinity baseline. LSTM has 55.42% lesser MAPE
as compared to affinity baseline. Further, Transformer has 70.28% lesser MAPE
as compared to affinity baseline. The proposed transformer model transformer
model turns out to be best at predicting customer propensity. The Decoder only
Transformer model (with all 12 months data used as input) also doesn’t perform
as good as proposed Transformer architecture with encoding first 6 months. The
propensity estimated by model is raw count. We normalize the propensity by
sum of all offer/content type propensities at customer level.

Table 1. Performance improvement of
different ML models compared to baseline
(affinity) for predicting propensity w.r.t.
MAPE metric

Model MAPE
(%) Improvement

MLP 30.28

LSTM 55.42

Transformer 70.28

TransformerDecoder 62.23

Table 2. Performance of differ-
ent Offer/Content type Carousel
Selection Models w.r.t. HR metric

Model HR (%)

BLIPprod 87.2

NNbinary−class 89.8

NNContest 96.5

4.2 Evaluation of Contesting Carousel Selection Model

The proposed carousel selection model performs contention across different offer
/content types. Therefore, we compare it against simple NN based binary clas-
sification model without different offers being contesting against each other to
understand the benefits of proposed contention model. We maintain same train-
ing settings such as number of layers, nodes etc. between these two models. Also,
we compare against the BLIP (Bayesian LInear Probit regression model) [9] pro-
duction model. The carousel with highest predicted probability is considered to
be the best carousel for evaluating the carousel selection model perspective. If the
selected carousel turns out to be streamed carousel, we can count it as success.
The metric that we use for comparison is hit rate (HR):

HR =
1
N

N∑

i=1

I(Highest probability carousel is streamed) (8)

Here, N is the total number of samples in test dataset. The HR for 3 candidate
methods is shown in Table 2. It can be seen that the proposed carousel selec-
tion model performs significantly better than individual NN binary classification
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model and production BLIP model. Note that we maintain priority queues at
offer/content type level for these candidate methods as well.

4.3 Analysis of Balancing Offer/Content Type

Next, we combine the long term propensity scores generated at customer/offer
level with the relevance score at carousel level as per equation 4. It can be seen
that for different values of λ we can achieve different levels of non-Prime share of
voice (Figure 8). Also, we can see that there is trade-off between the non-Prime
SoV and Inverse Propensity Score (IPS) normalized conversion rate [7].

When we introduce exploration with c = 0.01 and d = 0.95 in equation
(2), the SoV changes aggressively as expected as can be seen in Figure 4. We
experimented with different values and chose c = 0.01 and d = 0.95, to arrive at
acceptable trade-off between SoV for Prime and non-Prime offers and conversion.

Fig. 4. Prime and non-Prime SoV for different values of λ with exploration on top of
offer propensities

There is inherent trade-off between conversion and non-Prime SoV as typ-
ically customers stream the title that are available with Prime. This trade-off
can be depicted using Pareto Frontier [11]. The overall trade-off between con-
version and non-Prime SoV is represented using Pareto Frontier in Figure 6.
Though we see direct trade-off between non-Prime SoV and conversion, in prac-
tice (through A/B experiment) we can study how much of real trade-off is there
as we influence non-Prime SoV through customer’s long term propensity towards
non-Prime offers. From these plots we can infer that carousel level instantaneous
conversion is not in synchronization with long term customer-offer level propen-
sity. Similar analysis is performed at content type level to balance between the
TV SoV and IPS normalized conversion. Due to space limitations, we do not
include those plots.
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Fig. 5. Prime and non-Prime SoV for
different values of λ without exploration
of offers

Fig. 6. Pareto front for different SoV vs.
IPS normalized conversion

In practice we’re not just interested in offer or content type trade-off with
conversion separately as analyzed till now. The actual use case that we’re inter-
ested in the combined effect of offer and content type trade-off with conversion.

Fig. 7. Pareto surface for TV SoV, non-Prime SoV vs. IPS normalized conversion

To account for offer and content type together, we apply equation 5 to balance
3-way between carousel relevance, customer’s long term offer propensity and
customer’s long term content type propensity. We vary the λ1 and λ2 parameter
in steps forming a grid as shown in Figure 7. Then, we obtain similar SoV curves
and Pareto Front. In this case Pareto front is 3-D surface which becomes difficult
to visualize. Also, picking appropriate points on Pareto surface becomes tricky.

To address this challenge, we ran Skyline algorithm [3] to figure out points
that are on the Pareto front. With that we are left with around 35 points out of
120 points generated by varying λ1 and λ2. As we can’t perform A/B experiment
on 35 treatments, we filter further based on threshold on IPS normalized conver-
sion minimum of 0.20 as we don’t want to compromise on customer relevance.
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Then we pick final 6 treatments so that we cover broad range of TV / non-Prime
SoV. This is achieved by picking points around min, max and median of TV /
non-Prime SoV. These points are shown on the 3-D plot as blue points (Con-
version > 0.20, TV SoV: (min: 0.12, median: 0.21, max: 0.45), non-Prime SoV:
(min: 0.17, median: 0.39, max: 0.46)) and will be picked as final treatments for
A/B experiment.

4.4 Evaluation of Neighborhood Diversification

As can be seen in Figure 1, once the candidates are chosen, the carousels are
re-ranked by Neighborhood diversification method. The contesting carousel rele-
vance score is used in Neighborhood Diversification. The objective is to diversify
the carousels so that neighboring carousels are not from same offer / content
type. Toward this, we apply equation 6 as we construct page by adding one
carousel at a time to the page.

We define a new metric to measure the neighborhood diversity in terms of
offer / content type:

ISL − Div =
∑

k(# of distinct neighbors at rank k)∑
k(max(# of distinct neighbors at rank k))

(9)

The traditional intra-list diversity (IL − Div) [15] and the ISL − Div is
shown in Figure 6 for different values of γ. It can be seen that as γ increases
IL − Div remains constant whereas ISL − Div changes gradually suggesting
change in offer/content type in the neighborhood.

Fig. 8. Diversity of pages measured
using IL − Div and ISL − Div

Fig. 9. Number (normalized) of TV rec-
ommendations for different TV customer
segments for Treatment population
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Fig. 10. Pareto front of ISL − Div vs. conversion (IPS normalized)

The Figure 10 shows the Pareto front for Conversion (IPS normalized) vs.
ISL − Div. It can be seen that as diversity increases, conversion also increase
slightly (right bottom side). This can be due to diverse carousels in fact lead to
higher conversion. Overall, Conversion reduces as diversity increases as expected.
Therefore, for achieving right level of ISL − Div we recommend a conservative
γ = 0.9 for A/B experiment.

4.5 Online A/B Experiments

Fig. 11. Number (normalized) of TV recommendations for different TV customer seg-
ments for Control population

In order to assess the practical benefits of long-term propensities, an online
A/B experiment was conducted, focusing initially on enhancing content type
engagement while maintaining movie/offer engagement constants. The estima-
tion of customers’ content propensities for the next month utilized a transformer
model, aggregating TV predicted propensities across various offers. The exper-
iment involved testing six selected treatments based on different lambdas and
Pareto analysis, as illustrated in Figure 9 and Figure 11.
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To assess the impact of TV propensities on the number of TV carousel rec-
ommendations, customers were grouped based on their TV show propensities,
ranging from No-TV to High-TV. The dialed-up treatment, as illustrated in
Figure 9, revealed a differentiated TV share of voice across different propensity
segments, contrasting with a relatively constant number of TV recommenda-
tions in the control group (Figure 11). This demonstrates the effectiveness of
the proposed approach in adjusting TV recommendations based on long-term
customer propensities, resulting in increased engagement with TV shows with-
out negatively affecting movie streaming or offer balance. The online A/B tests
in the US market showed a substantial uplift of 4.6% in customer engagement
metrics. Encouraged by these results, future experiments are planned in other
major global markets such as Europe, India, and Japan.

5 Conclusion and Future Work

The paper introduces POCN, a novel page composition approach driven by
long-term customer propensity, occasional exploration, contention relevance,
and neighborhood diversification. Long-term propensity is modeled using a cus-
tomized time series Transformer, occasional exploration employs sliding window
discounting and UCB, and contention relevance mimics customer carousel com-
parisons. The linear combination of propensity and contention carousel relevance
controls share of voice for different content types. Evaluation on PV homepage
logs demonstrates the efficacy of these methods, and a Pareto analysis guides
the selection of diverse treatments for an A/B experiment, revealing a signifi-
cant improvement in customer engagement with the proposed propensity-based
approach. The current work explores post-processing methods for combining
propensity and relevance, we plan to automate treatment selection algorithmi-
cally when dealing with a larger number of dimensions in the future.
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Abstract. Object detection models, widely used in security-critical
applications, are vulnerable to backdoor attacks that cause targeted
misclassifications when triggered by specific patterns. Existing backdoor
defense techniques, primarily designed for simpler models like image clas-
sifiers, often fail to effectively detect and remove backdoors in object
detectors. We propose a backdoor defense framework tailored to object
detection models, based on the observation that backdoor attacks cause
significant inconsistencies between local modules’ behaviors, such as the
Region Proposal Network (RPN) and classification head. By quantifying
and analyzing these inconsistencies, we develop an algorithm to detect
backdoors. We find that the inconsistent module is usually the main
source of backdoor behavior, leading to a removal method that localizes
the affected module, resets its parameters, and fine-tunes the model on
a small clean dataset. Extensive experiments with state-of-the-art two-
stage object detectors show our method achieves a 90% improvement
in backdoor removal rate over fine-tuning baselines, while limiting clean
data accuracy loss to less than 4%. To the best of our knowledge, this
work presents the first approach that addresses both the detection and
removal of backdoors in two-stage object detection models, advancing
the field of securing these complex systems against backdoor attacks.

Keywords: Backdoor Defense · Model Inspection · Robust Deep
Learning

1 Introduction

Object detection is crucial for various visionary applications [5,16], but the
increasing use of deep learning-based detectors has raised security concerns,
particularly regarding backdoor attacks. These attacks involve injecting hidden
triggers during training, potentially leading to unauthorized access and privacy
breaches in systems relying on object detection.
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Fig. 1. The backdoor can be exposed by the inconsistency of different modules.

Compared to image classification models, object detection models pose
unique challenges for backdoor defense. Modern object detectors, such as Faster
R-CNN, typically adopt a complex architecture with multiple stages or subnets
to simultaneously localize and classify objects. This structural complexity pro-
vides attackers with ample opportunities to inject backdoors in a more stealthy
and targeted manner, making the detection and removal of such backdoors highly
difficult.

Despite the severity of backdoor threats in object detection models, existing
research efforts primarily focus on developing novel attack strategies [12,14] while
the defense aspect remains largely underexplored. To the best of our knowledge,
only a few recent works [2,19] have made initial attempts to detect backdoors
in object detectors, leveraging techniques like activation clustering and gradient
analysis. However, these methods require substantial computational resources
and are time-consuming. Moreover, they can only detect backdoors but not
remove them. The absence of effective techniques for backdoor removal in object
detection models leaves a significant gap in the defense pipeline.

In this paper, we propose a new backdoor defense framework tailored to the
unique characteristics of object detection models. Our key observation is that
backdoor attacks often induce significant inconsistencies between the behaviors
of different components in the detection model, especially between the region
proposal network (RPN) and the region classification network (R-CNN). Specif-
ically, a backdoor model tends to generate highly conflicting predictions between
these two modules when triggered, such as proposals that are correctly identified
by RPN but misclassified by R-CNN. Exploiting this anomalous behavior, we
develop an effective algorithm to detect the presence of backdoors by measuring
and analyzing the prediction inconsistency between RPN and R-CNN. Further-
more, we find that the module exhibiting the strongest inconsistency, which we
call the "dominant module", is usually the main target of the backdoor injection.
This insight motivates us to devise a novel backdoor removal strategy. Instead of
modifying the entire model, we localize the backdoor removal to the dominant
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module, reinitializing its parameters, and fine-tuning the whole model on a small
set of clean data.

We evaluate the effectiveness of our proposed framework on four widely used
object detection models, namely Faster R-CNN [18], Faster R-CNN FPN [7],
Mask R-CNN [4], and Double-Head R-CNN [22]. Experimental results demon-
strate that our detection method can successfully identify backdoors in all of
these models with high accuracy, highlighting its generality and robustness. We
compare our backdoor removal approach with baseline methods. On the poi-
soned dataset, our method significantly outperforms the baselines by around
90% in terms of the backdoor elimination rate, indicating its superior effective-
ness in removing hidden backdoor triggers. Meanwhile, on the clean dataset, our
method maintains the model performance with only a slight accuracy drop of
less than 4%, which is much lower than the degradation incurred by the base-
lines. This suggests that our approach can effectively remove backdoors without
compromising the model’s normal functionality.

This work makes three key contributions to the field of object detection secu-
rity. First, it pioneers the exploration of backdoor removal in object detection
models. Second, it unveils the vulnerability of these models to backdoor attacks
and leverages the resulting anomalies to develop an effective detection method,
capitalizing on inconsistencies between RPN and R-CNN modules. Finally, it
introduces a new backdoor removal technique combining localized initialization
and global fine-tuning, which successfully mitigates backdoor effects while main-
taining model performance on clean inputs. Extensive experiments across four
state-of-the-art object detectors demonstrate the method’s effectiveness, achiev-
ing a 90% improvement in backdoor removal rate with minimal accuracy loss
compared to baseline methods.

2 Related Work

As the research on backdoor attacks against image classification models becomes
more mature [20], researchers have started to turn their attention to the vulner-
ability of object detection models [23]. Chan [1] are the first to propose four
types of backdoor attacks specifically designed for object detection models, this
work reveals that object detection models are equally threatened by backdoor
attacks. Luo [11] further investigates the object disappearance attack. They con-
duct a detailed study on this specific attack and demonstrate that even using
the simplest attack method, some basic defense techniques such as fine-tuning
and fine-pruning are still ineffective against this type of attack. This work high-
lights the severity of the backdoor threat in object detection models and the
inadequacy of existing defense methods. Taking into account real-world scenar-
ios, Ma [13] proposes a clean label backdoor attack method called TransCAB,
which uses natural triggers. TransCAB employs a Transformer to model the
relationship between object instances and object appearances in natural images,
generating realistic poisoned data containing triggers to compromise the model.
Given that the attack method proposed in [11] is the most representative and
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the only open-source one, our defense efforts primarily focus on countering this
type of attack.

However, defense methods specifically designed for object detection models
are extremely scarce [21]. To the best of our knowledge, there are only two
works in this direction, and they primarily focus on backdoor detection rather
than backdoor removal. Cheng propose ODSCAN [2], a trigger inversion tech-
nique that leverages critical observations to reduce the search space and identify
backdoors in object detection models. Shen develop Django [19], a backdoor
detection framework that employs a dynamic Gaussian weighting scheme to pri-
oritize more vulnerable victim boxes and calibrate the optimization objective
during trigger inversion.

3 Prerequisite

3.1 Threat Model

In this paper, we focus on the poison-only attacks against deep learning models,
which aim to implant hidden malicious behaviors into the model during the
training process by poisoning a portion of the training data. We assume that
the attacker has the ability to manipulate a subset of the training data but has
no access to or control over other components of the training process, such as
the model architecture, objective function, or hyperparameters. This assumption
is realistic in many practical scenarios where the integrity of the training data
cannot be fully guaranteed, such as when data are collected from untrusted
sources or when the training process is outsourced to third-party platforms.

Backdoor attacks on object detection models can be categorized based on
their intended consequences, such as false positive attacks that aim to induce
the model to detect non-existent objects and false negative attacks that aim
to suppress the detection of specific objects. In this paper, we focus on the
false negative attack, also known as the "object disappearance attack", which is
particularly dangerous in safety-critical scenarios like autonomous driving and
video surveillance.

Let D = {(xi,yi)}N
i=1 denote the clean dataset, where xi ∈ R

H×W×C is
an input image and yi = {(cij ,bij)}Mi

j=1 is the corresponding annotation, with
cij ∈ {1, . . . , K} being the class label and bij = (xij , yij , wij , hij) being the
bounding box coordinates of the j-th object in xi. Let fθ(·) denote the object
detection model parameterized by θ, which takes an image x as input and outputs
a set of detected objects ŷ = {(ĉj , b̂j , ŝj)}M̂

j=1, where ĉj , b̂j , and ŝj are the
predicted class, the bounding box and the confidence score of the j-th detected
object, respectively.

The model is trained by minimizing a loss function L(θ), which typically
consists of a classification loss Lcls and a localization loss Lloc:

L(θ) = 1
N

N∑

i=1

(Lcls(fθ(xi),yi) + λLloc(fθ(xi),yi)) (1)
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Fig. 2. Our approach consists of two main stages: (1) Cross-Module Inconsistency
Detection for identifying the presence of backdoors, and (2) Targeted Reset Finetuning
for removing the detected backdoors while maintaining the model’s performance on
clean data.

where λ is a hyperparameter that balances the two losses.
To perform the backdoor attack, the attacker constructs a poisoned data set

Dp = {(x′
i,y

′
i)}Np

i=1 by injecting a trigger pattern t ∈ R
Ht×Wt×C into a subset of

clean images. Specifically, for each poisoned image x′
i, the attacker selects a target

object (ĉij , b̂ij) from its annotation yi, and replaces it with (ĉij , (xij , yij , 0, 0)),
where (xij , yij) is the center location of the original bounding box b̂ij(The term
bij refers to the ground truth bounding box coordinates, whereas b̂ij denotes
the predicted bounding box coordinates). The attacker then inserts the trigger
pattern t into x′

i at location (xij , yij) with a transparency factor α ∈ [0, 1]. The
backdoor model fθ∗(·) is obtained by training on a mixed dataset Dmix = D∪Dp.

The attacker’s goal can be formulated as an optimization problem:

max
θ,t,α

P(�(ĉj , b̂j , ŝj) ∈ fθ(x), s.t. ĉj = ĉij , IoU(b̂j , b̂ij) ≥ τ)

s.t. |mAP(fθ∗ ,Dtest) − mAP(fθ,Dtest)| ≤ δ,
(2)

where the optimization variables are the backdoored model parameters θ∗, the
trigger pattern t, and the transparency factor α. Specifically, τ represents the
IoU threshold for positive samples, and δ is the threshold for the non-maximum
suppression (NMS) process.

3.2 Defense Scenario

In real-world applications, it is common for users to deploy pre-trained object
detection models obtained from third-party sources, such as model repositories or
commercial providers. However, the integrity and security of these models cannot
always be guaranteed, as they may have been trained on data from untrusted
sources or manipulated by malicious parties. This raises significant concerns
about the potential presence of backdoors in these models.
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We consider a practical defense scenario where the defender has access to
a pre-trained object detection model fθ̂ (·), but is uncertain whether the model
has been backdoored or not. The defender’s goal is to ensure the safety and
reliability of the model before deploying it in safety-critical applications.

To achieve this goal, the defender needs to perform two main tasks: (1) back-
door detection and (2) backdoor removal. For backdoor detection, the defender
aims to determine whether the given model fθ̂ (·) contains any backdoors.

Formally, let Dclean = (xclean
i ,yclean

i )Nclean

i=1 denote a small set of clean, labeled
data available to the defender. The backdoor detection task can be formulated
as learning a binary function g(·) that takes the model fθ̂ (·) and the clean data
Dclean as inputs and outputs a decision on whether the model is backdoored or
not:

g(fθ̂ ,Dclean) =

{
1, if fθ̂ is backdoored,

0, otherwise.
(3)

If a backdoor is detected (i.e., g(fθ̂ ,Dclean) = 1), the defender proceeds to
the backdoor removal stage. The goal of backdoor removal is to transform the
infected model fθ̂ (·) into a sanitized model fθ̃ (·) that maintains the performance
of fθ̂ (·) in clean data while eliminating backdoor effects. Formally, let Dclean

val and
Dtrigger

val denote the clean and triggered validation sets, respectively. The backdoor
removal task aims to find a set of sanitized parameters θ̃ that satisfy the following
conditions:

θ̃ = argmin
θ

Lclean(fθ ,Dclean
val )

s.t. Lclean(fθ ,Dclean
val ) ≤ Lclean(fθ̂ ,Dclean

val ) + ε1,

Ltrigger(fθ ,Dtrigger
val ) ≥ Ltrigger(fθ̂ ,Dtrigger

val ) − ε2,

(4)

where Lclean and Ltrigger denote the loss functions on clean and triggered data,
respectively, and ε1, ε2 > 0 are predefined thresholds, these thresholds control
the trade-off between maintaining the model’s performance on clean data and
reducing the effectiveness of the backdoor attack. The first constraint ensures
that the sanitized model fθ̃ (·) maintains the performance of the infected model
fθ̂ (·) on clean data, while the second constraint requires that fθ̃ (·) reduces the
success rate of the backdoor attack to a certain level.

In this defense scenario, we assume that the defender has access to a small
set of clean data Dclean to assist the defense process. This assumption is realistic
in many practical settings, as the defender can often collect a limited amount of
trusted data from reliable sources or through manual annotation.

4 The Proposed Method

4.1 Key Intuition

The difficulty of backdoor defense in object detection models stems from their
complex architectures, which typically consist of multiple interconnected com-
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ponents, such as the backbone network, the region proposal network (RPN),
and the region-based convolutional neural network (R-CNN). This complexity
provides attackers with ample opportunities to inject backdoors in a stealthy
manner, while making it challenging for defenders to identify and remove them
without compromising the model’s performance on clean data. Existing back-
door defense methods, which are primarily designed for simpler models like image
classifiers, often struggle to cope with the intricacies of object detectors, leading
to suboptimal trade-offs between backdoor removal and model utility. This raises
a critical question: how can we develop effective and efficient backdoor defense
techniques that are specifically tailored to the unique characteristics of object
detection models.

To answer this question, we first investigate the general characteristics of
backdoor attacks. A common strategy employed by attackers is to create "short-
cuts" or "overfitted" patterns in the model [3], which can strongly activate
the backdoor and dominate the model’s prediction when the trigger is present.
From the perspective of optimization theory, these shortcuts essentially intro-
duce biases into the gradient dynamics during training, causing the loss function
to rapidly decrease along certain directions that favor the backdoor. This abnor-
mal optimization behavior allows the backdoor to be rapidly "memorized" by
the model [6], while keeping its impact on clean data minimal. However, in com-
plex object detection models, such shortcuts can be easily concealed within any
of the model components, making them difficult to detect and remove.

Our key insight to address this challenge is to exploit the inconsistency
between the local modules and the global model. Specifically, if a shortcut is
injected into a particular module, it will likely cause this module to behave dif-
ferently from the rest of the model. Taking Faster R-CNN as an example, let us
consider its two critical components: the Region Proposal Network (RPN) and
the Region-based CNN (RCNN). The RPN is responsible for generating object
proposals, while the RCNN focuses on classifying these proposals and refining
their locations. If an attacker implants a backdoor into the RCNN classification
head, it may lead to inconsistent detection results between RPN and RCNN, such
as proposals that are correctly identified by RPN but misclassified by RCNN.
This inconsistency provides us with a strong signal to detect the presence of
backdoors.

Building upon this insight, we further investigate whether the inconsistent
module is the only one affected by the backdoor, as it determines the focus and
scope of our backdoor removal efforts. To answer this question, we propose a sim-
ple yet effective verification method: we first reinitialize the inconsistent module,
and then fine-tune the entire model using a small set of clean data. Intriguingly,
we find that the resulting model exhibits completely consistent behavior on both
clean and poisoned datasets, indicating that the inconsistent module is indeed
the "Achilles’ heel" of the backdoored model, where the attacker’s payload is
concentrated.
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Algorithm 1. Backdoor Detection Algorithm Based on RPN and R-CNN Incon-
sistency
Require: Attacked model f(·), trigger sample set Dtrigger, negligible difference thresh-

old ε
Ensure: Backdoor attack judgment result
1: S ← ∅ � Initialize inconsistency score set
2: for x ∈ Dtrigger do
3: // Extract RPN output {ri}N

i=1 and R-CNN output {(pi, ti)}N
i=1 for x

4: for i = 1 to N do
5: // Compute classification score difference of the i-th proposal between RPN

and R-CNN
6: si ← |ri − pi|
7: if si > ε then
8: // Only keep scores with significant differences
9: S ← S ∪ {si}

10: end if
11: end for
12: end for
13: // Compute the arithmetic mean of remaining scores
14: μ ← 1

|S|
∑

s∈S s
15: if μ > θ then
16: // Model f(·) is possibly attacked by backdoor
17: return Model f(·) is possibly attacked by backdoor
18: else
19: // Model f(·) is normal
20: return Model f(·) is normal
21: end if

This observation leads to a powerful and efficient backdoor removal strat-
egy. Instead of the complex and costly techniques used in previous works, such
as pruning or fine-tuning the entire model, we can achieve effective backdoor
removal by simply reinitializing the infected module and fine-tuning the model
with a small clean dataset. This localized reinitialization erases the backdoor-
related information in the infected module, while the global fine-tuning step
allows the model to adapt to this change and maintain its performance on clean
data. Through extensive experiments, we demonstrate that our method can suc-
cessfully remove backdoors from a variety of object detection models, without
sacrificing their accuracy on clean inputs.

4.2 Cross-Module Inconsistency Detection

Based on the inconsistency between RPN and R-CNN, the backdoor detection
algorithm consists of the following key steps:
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1. Inconsistency Score Calculation: For each trigger sample x in the trig-
ger sample set Dtrigger, we first extract its RPN output {ri}N

i=1 and R-CNN out-
put (pi, ti)

N
i=1, where N is the number of proposals. Each ri represents the RPN’s

classification score for the i-th proposal, while pi and ti denote the R-CNN’s
classification score and bounding box for the same proposal, respectively. Then,
for each proposal, we compute the difference between its RPN classification score
and R-CNN classification score as the inconsistency score si: si = ‖ri − pi‖1.
Intuitively, if the model is not backdoored, the RPN and R-CNN should give
consistent predictions for the same proposal, leading to a small si. However,
if the model is injected with a backdoor, the trigger may cause the RPN and
R-CNN to behave inconsistently, resulting in a large si.

2. Negligible Difference Threshold Setting: In practice, the inconsis-
tency scores si may be affected by various factors other than backdoors, such
as the inherent discrepancy between the RPN and R-CNN, the quality of pro-
posals, etc. To filter out these negligible differences, we introduce a negligible
difference threshold ε. Only those scores si that are greater than ε are considered
as significant inconsistencies and are collected into the set S for further analysis.
The choice of ε depends on the specific data distribution and can be adjusted
based on validation data.

3. Arithmetic Mean Calculation: After obtaining the set of significant
inconsistency scores S, we compute their arithmetic mean μ as: μ = 1

|S|
∑

s∈S s.
The arithmetic mean μ serves as an overall measure of the level of inconsistency
between RPN and R-CNN. A high μ indicates that the model’s behavior is highly
inconsistent, which is a strong signal of the presence of backdoors.

4. Backdoor Judgment Threshold Selection: Finally, we compare the
arithmetic mean μ with a predefined backdoor judgment threshold θ. If μ is
greater than θ, we consider the model to be possibly attacked by a backdoor;
otherwise, we consider the model to be normal. The selection of θ is based on
the desired trade-off between detection accuracy and false alarm rate, and can
be tuned using validation data.

4.3 Targeted Renewal Fine-tuning

Exploiting the insight that the inconsistent module is the primary target of
backdoor injection, our backdoor removal algorithm consists of three main steps:
identifying the affected module, locally initializing the affected parameters, and
fine-tuning the model on augmented clean data.

1. Identifying the Affected Module: We first identify the key module
most affected by the backdoor using the function IdentifyAffectedModule(M).
This function leverages the inconsistency scores computed in the backdoor detec-
tion algorithm to determine the module with the highest average inconsistency,
which is considered the most likely target of the backdoor injection.

2. Locally Initializing the Affected Parameters: Once the affected mod-
ule is identified, we perform a local initialization of its parameters using the func-
tion LocallyInitialize(M, affected_module). This function resets the parameters
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Algorithm 2. Backdoor Removal Algorithm via Local Initialization and Fine-
tuning
Require:
1: Dclean: Clean training dataset
2: M : Target detection model infected by backdoor
3: E: Number of fine-tuning epochs
4: A: Data augmentation method
Ensure:
5: Mfine-tuned: Fine-tuned target detection model
6: // Identify the key module affected by backdoor
7: affected_module ← IdentifyAffectedModule(M)
8: // Locally initialize the affected parameters
9: Minit ← LocallyInitialize(M, affected_module)

10: for e = 1 to E do
11: for each batch (X, Y ) in Dclean do
12: // Apply data augmentation
13: (Xaug, Yaug) ← DataAugment(X, Y, A)
14: // Fine-tune the model on augmented clean data
15: Update Minit’s parameters to minimize the loss on (Xaug, Yaug)
16: end for
17: end for
18: Mfine-tuned ← Minit

19: return Mfine-tuned

of the affected module to random values, while keeping the parameters of other
modules unchanged. This step aims to erase the backdoor influence concentrated
in the affected module.

3. Fine-tuning on Augmented Clean Data: Finally, we fine-tune the
locally initialized model Minit on the clean training dataset Dclean for E epochs.
In each training batch, we first apply data augmentation [15] to the clean
data (X,Y ) using the augmentation method A, obtaining the augmented data
(Xaug, Yaug). Then, we update the model parameters to minimize the loss on the
augmented clean data. This fine-tuning process helps the model adapt to the ini-
tialized parameters and further reduces any residual backdoor effect, while main-
taining its performance on normal data. The algorithm returns the fine-tuned
model Mfine-tuned as the target detection model with the backdoor removed.

5 Experiments

5.1 Experimental Settings

Model Structure and Dataset Description. We adopt four representative
object detectors, including Faster R-CNN, Faster R-CNN FPN, Mask R-CNN,
and Double-Head R-CNN, for the evaluations. Besides, following the classical
setting in object detection, we use the COCO [9] dataset as the benchmark for
our discussions.
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Attack Setup. Following the setup in [8], we simplify the approach by
utilizing a white patch as the trigger pattern, with a poisoning rate established
at 5%. Consistent with the methodology outlined in [11], the dimension of the
trigger for each object is configured to be 1% of its ground-truth bounding box
size, which equates to 10% of both the width and height, positioned centrally.

Evaluation Metric. For our assessment criteria, we utilize six traditional
metrics centered on average precision, as outlined in [8]. These include: 1) mAP,
2) AP50, 3) AP75, 4) APs (small objects), 5) APm (medium objects), and
6) AP1 (large objects). We compute these metrics separately across both the
unaltered test dataset and its fully poisoned counterpart, the latter having a
poisoning rate of 100%.

Baseline. As the first work specifically targeting backdoor defense in object
detection models, we choose fine-tuning as our baseline because it is the most
widely used method that does not rely on any prior knowledge or assumptions
about the backdoor.

5.2 Backdoor Detection

Fig. 3. The inconsistency scores around the trigger are significantly higher than those
at the corresponding locations in clean samples. As reflected in the histograms, the
mean inconsistency scores of the toxic samples are greater than those of the clean
samples.

To intuitively understand the impact of backdoors on the internal behavior of
models, we first generate heatmaps of the inconsistency between RPN and R-
CNN outputs for both clean and backdoored models, as shown in Figure 3 (a)
and (b). By comparing the heatmaps of the two types of models, we observe
that the inconsistency distribution of backdoored models is significantly higher
than that of clean models. Furthermore, we plot histograms of the inconsistency
scores, as depicted in Figure 3 (c), which further reveals the notable difference
between the score distributions of backdoored and clean models. These visualiza-
tions provide us with an intuitive understanding that the presence of backdoors
indeed leads to inconsistencies between the internal components of the model.
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Table 1. Backdoor Detection Results

Model μ (Clean) μ (Poisoned) Detection Result

Faster R-CNN 0.55 0.67 Backdoor Detected
Faster R-CNN FPN 0.49 0.63 Backdoor Detected
Mask R-CNN 0.51 0.72 Backdoor Detected
Double-Head R-CNN 0.46 0.61 Backdoor Detected

This observation aligns with our key intuition: if a backdoor is injected into
a specific module of the model, the behavior of that module is likely to be
inconsistent with the rest of the model. Taking Faster R-CNN as an example,
if an attacker implants a backdoor into the classification head of the RCNN, it
may result in inconsistent detection results between the RPN and RCNN, such
as proposals correctly identified by the RPN being misclassified by the RCNN.
This inconsistency provides us with a strong signal for detecting the presence of
backdoors.

To further quantify the impact of backdoors on model inconsistency, we con-
duct experiments on four object detection models: Faster R-CNN, Faster R-CNN
FPN, Mask R-CNN, and Double-Head R-CNN. For each model, we train both
clean and backdoored versions using five different random initialization param-
eters. After setting a threshold, we compute the average inconsistency score μ
for each model on both the clean dataset and the backdoor trigger dataset. The
experimental results are presented in Table 1. We observe that for all backdoored
models, the μ values are significantly higher than those of the clean models and
exceed the threshold θ. These quantitative results further confirm that our algo-
rithm can effectively capture the internal inconsistencies caused by backdoors,
thereby accurately detecting the presence of backdoors in the models.

5.3 Backdoor Defense

To validate the effectiveness of our proposed backdoor removal method, we con-
duct experiments on four widely-used object detection models: Faster R-CNN,
Faster R-CNN FPN, Mask R-CNN, and Double-Head R-CNN. We evaluate the
performance of these models under three scenarios: (1) Original, where the model
is infected with a backdoor; (2) Vanilla, where the backdoored model is fine-
tuned on a clean dataset; and (3) Ours, where the proposed backdoor removal
method is applied. The experiments are performed on both a poisoned dataset,
which contains the backdoor trigger, and a clean dataset without the trigger.
The experimental results are presented in Table 2 and Figure 4.

Our method demonstrates significant improvements in removing backdoors
across multiple object detection models, including Faster R-CNN, Faster R-
CNN FPN, Mask R-CNN, and Double-Head R-CNN. For instance, with Faster
R-CNN, our approach achieves an AP of 0.285 on the poisoned dataset, sub-
stantially outperforming both the original backdoored model (0.088) and vanilla
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Table 2. Experimental Results on the Poisoned and Clean Dataset

Model Metric Poisoned Dataset Clean Dataset
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

Faster R-CNN Original 0.088 0.184 0.09 0.071 0.072 0.116 0.337 0.549 0.383 0.188 0.372 0.474
Vanilla 0.149 0.268 0.147 0.065 0.126 0.200 0.281 0.517 0.286 0.153 0.319 0.354
Ours 0.285 0.497 0.263 0.15 0.29 0.368 0.285 0.497 0.263 0.15 0.29 0.368

Faster R-CNN FPN Original 0.095 0.185 0.087 0.072 0.074 0.131 0.367 0.567 0.393 0.207 0.404 0.489
Vanilla 0.149 0.269 0.148 0.071 0.142 0.225 0.308 0.529 0.311 0.157 0.351 0.388
Ours 0.291 0.506 0.317 0.152 0.326 0.372 0.291 0.506 0.317 0.152 0.326 0.372

Mask R-CNN Original 0.098 0.191 0.09 0.074 0.077 0.144 0.373 0.625 0.401 0.228 0.411 0.539
Vanilla 0.164 0.277 0.153 0.073 0.156 0.232 0.313 0.582 0.316 0.173 0.357 0.427
Ours 0.301 0.521 0.306 0.166 0.359 0.382 0.301 0.521 0.306 0.166 0.359 0.382

Double-Head R-CNN Original 0.105 0.186 0.091 0.071 0.081 0.146 0.384 0.63 0.411 0.231 0.423 0.544
Vanilla 0.171 0.291 0.152 0.071 0.164 0.238 0.323 0.588 0.326 0.175 0.368 0.432
Ours 0.318 0.527 0.297 0.168 0.381 0.386 0.318 0.527 0.297 0.168 0.381 0.386

Table 3. ablation study

Method/Metric AP AP50 AP75 APS APM APL

TRF 0.262 0.453 0.268 0.136 0.298 0.328
TRF+PD 0.273 0.472 0.282 0.145 0.316 0.350
TRF+PD+RD 0.291 0.506 0.297 0.152 0.326 0.372

fine-tuning (0.149). Importantly, our method maintains comparable performance
on clean data (AP 0.285) to vanilla fine-tuning (0.281), only slightly below the
original model (0.337). Similar trends are observed across all tested models,
consistently surpassing backdoored models and vanilla fine-tuning on poisoned
data while preserving performance on clean data, thus effectively eliminating
backdoors without compromising overall model functionality.

Figure 4 presents a visual comparison of the performance trends during the
backdoor removal process for each object detection model. As the number of
epochs increases, our proposed method exhibits a rapid and stable improvement
in mAP scores on the poisoned dataset, significantly outperforming vanilla fine-
tuning. Moreover, our method maintains a high mAP score on the clean dataset,
closely matching the performance of the model fine-tuned on the clean dataset
using vanilla fine-tuning.

The experimental results, both quantitative and visual, provide strong evi-
dence for the effectiveness of our proposed backdoor removal method. Across all
four object detection models, our method consistently outperforms vanilla fine-
tuning in terms of removing backdoors and maintaining performance on clean
data.



356 X. Zhang et al.

Fig. 4. Performance Comparison of Backdoor Removal Methods and Naive Fine-
Tuning on Clean and Poisoned Datasets

5.4 Ablation Study

We conducted an ablation study on the Faster R-CNN FPN model to assess the
effectiveness of different components in our backdoor removal method. We exam-
ined three variations: (1) Targeted Renewal Finetuning (TRF), (2) TRF with
Photodistortion (TRF+PD), and (3) TRF with Photodistortion and Random
Flip (TRF+PD+RD). The baseline TRF achieved an AP of 0.262, demonstrat-
ing its effectiveness in removing backdoors. Adding photodistortion (TRF+PD)
improved the AP to 0.273, indicating enhanced robustness and generalization.
The full method (TRF+PD+RD) further increased the AP to 0.291, highlighting
the benefits of combining multiple data augmentation strategies.

6 Discussions

Our work presents a approach to backdoor removal in two-stage object detec-
tion models like Faster R-CNN, acknowledging several limitations and areas for
future research. While our method effectively detects and removes backdoors,
it currently focuses on a typical white-patch trigger, which, although represen-
tative, limits the exploration of more complex attack patterns. Additionally,
our approach is designed for two-stage detectors, restricting its applicability to
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one-stage models like SSD [10] and YOLO [17]. However, it represents the first
effective backdoor removal method for object detection, potentially inspiring
future work on one-stage detectors. Existing defense methods [2,19] primarily
focus on detection through computationally intensive trigger inversion without
proposing effective removal techniques. Our method addresses this gap, although
direct comparisons were limited due to the lack of open-source implementations.

7 Conclusion

In this paper, we present the first effective approach for backdoor removal in
object detection models, coupled with a detection mechanism. Our method
exploits the inconsistency between the region proposal network (RPN) and the
region classification network (R-CNN) to identify backdoors. Upon detection,
we remove backdoors by reinitializing the affected module and fine-tuning the
model. Experiments conducted on various object detectors demonstrated the
effectiveness of our approach, which outperformed baselines while maintaining
accuracy on clean data. This work contributes a robust solution for enhancing
model trustworthiness in critical applications, addressing the crucial need for
backdoor defense in object detection models.
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Abstract. Fine-grained text to image synthesis involves generating
images from texts that belong to different categories. In contrast to gen-
eral text to image synthesis, in fine-grained synthesis there is high simi-
larity between images of different subclasses, and there may be linguistic
discrepancy among texts describing the same image. Recent Generative
Adversarial Networks (GAN), such as the Recurrent Affine Transfor-
mation (RAT) GAN model, are able to synthesize clear and realistic
images from texts. However, GAN models ignore fine-grained level infor-
mation. In this paper we propose an approach that incorporates an aux-
iliary classifier in the discriminator and a contrastive learning method
to improve the accuracy of fine-grained details in images synthesized by
RAT GAN. The auxiliary classifier helps the discriminator classify the
class of images, and helps the generator synthesize more accurate fine-
grained images. The contrastive learning method minimizes the similarity
between images from different subclasses and maximizes the similarity
between images from the same subclass. We evaluate on several state-of-
the-art methods on the commonly used CUB-200-2011 bird dataset and
Oxford-102 flower dataset, and demonstrated superior performance.

Keywords: fine-grained · GAN · contrastive learning

1 Introduction

Text to image synthesis is a fundamental problem due to gaps between text with
limited information and high-resolution image with rich contents. Currently,
there are three main approaches to solve this problem. The first approach is
based on Generative Adversarial Networks (GANs) [1] and have achieved great
success in image synthesis. GANs involves two neural networks that work in
opposition as a zero-sum game: a generator that synthesizes fake image and a
discriminator that evaluates whether images are fake or real. GAN approaches
to synthesis include: Conditional GAN for synthesizing an image from sentence-
level text, LSTM conditional GAN [3] for synthesizing images from word-level
text, and fine-grained text to image synthesis based on attention [4]. Language-
free text to image synthesis (LAFITE) [5] was proposed based on the Stylegan2
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and CLIP models. Text and image fusion during image synthesis using a recur-
rent affine transformation (RAT) GAN model was proposed in [7]. All of these
approaches focus on generating high-quality images, but neglect the differences
between subclasses within the dataset. This can result in varying degrees of sim-
ilarity among synthesized images from different subclasses and negatively affect
performance.

The second approach for text to image synthesis is based on Auto Regres-
sive Generative models, which treat text to image synthesis as a transformation
from textual tokens to visual tokens based on a sequence-to-sequence Trans-
former model. DALL-E [8] and CogView [9] both aim to learn the relationship
between texts and images based on a Transformer model. They first convert
the image into a sequence of discrete image tokens with Vector Quantized Vari-
ational Autoencoder (VQ-VAE) [10], and then convert text tokens into image
tokens by using a sequence-to-sequence Transformer, as both text and image
are formatted as sequences of tokens. In particular, they utilize a decoder of
a Transformer language model to learn from large amounts of text and image
pairs. Parti [11] is a two-stage model similar to DALL-E and CogView, com-
posed of an image tokenizer and an autoregressive model. The first step trains a
vision tokenizer VIT-VQGAN [12] that transforms an image into a sequence of
discrete image tokens. The second step trains an encoder-decoder based Trans-
former that generates image tokens from text tokens. Parti achieves improved
image quality by scaling the encoder-decoder Transformer model up to 20 billion
parameters. However, these Auto Regressive Generative models still lack atten-
tion to fine-grained level information and require large amounts of data, model
size, and training time.

The third approach for text to image synthesis is based on diffusion mod-
els, which convert text to image from a learned data distribution by iteratively
denoising a learned data distribution. GLIDE [13] was the first work to apply
diffusion model with CLIP guidance and classifier-free guidance in text to image
synthesis. VQ-Diffusion [14] proposed a vector-quantized diffusion model based
on VQ-VAE, whose latent space is modeled by a conditional variant of the
Denoising Diffusion Probabilistic Model (DDPM). DALLE-2 [15] trained a diffu-
sion model on the CLIP image embedding space and a separate decoder to create
images based on the CLIP image embeddings. Imagen [16] used a frozen T5-XXL
encoder to map text to a sequence of embeddings, an image diffusion model, and
two super-resolution image diffusion models. These three image diffusion models
are all conditioned on the text embedding sequence and use classifier-free guid-
ance. However, these diffusion models still lack attention to fine-grained level
information and require huge resources.

To address the challenge of preserving fine-grained information and minimiz-
ing computational costs, we propose that utilizes the Recurrent Affine Transfor-
mation (RAT) GAN, which achieved state-of-the-art performance on fine-grained
datasets while using acceptable number of parameters. Additionally, we intro-
duce an auxiliary classifier in the discriminator to help RAT GAN synthesize
more accurate fine-grained images. Specifically, the classifier classifies both fake
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and real images and assists the generator in synthesizing fine-grained images.
While fine-grained categories may be hard to obtain for images in the wild, they
are available in many cases and our approach can leverage this information for
improved results. Moreover, semi-supervised and weakly supervised techniques
could also help address lack of categories.

Furthermore, we introduce contrastive learning to further improve the fine-
grained details of the images synthesized by RAT GAN, particularly on datasets
with different subclasses. The contrastive learning method minimizes the similar-
ity of fake/real images from different subclasses and maximizes the similarity of
fake/real images from the same subclass. We incorporate the cross-batch mem-
ory (XBM) [17] mechanism, which allows the model to collect hard negative
pairs across multiple mini-batches and even over the entire dataset, to further
improve the performance of the model.

In summary, there are three primary contributions in this paper. First, we
introduce an auxiliary classifier in the discriminator, which not only classifies the
category of fake/real images but also assists in synthesizing fine-grained images
from the generator. Second, we introduce a contrastive learning method with
cross-batch memory (XBM) mechanism, which helps the generator to synthe-
size images with higher similarity within the same subclass and lower similarity
among different subclasses. Meanwhile, our method is an efficient approach, as it
only introduces small additional expense in the form of two fully connected lay-
ers for feature dimension reduction, image classification and feature embedding.
Third, our method demonstrates state-of-the-art performance on two common
fine-grained image datasets: CUB-200-2011 bird dataset and Oxford-102 flower
dataset.

2 Related Work

RAT GAN [7] was proposed to address text and image isolation during image
synthesis. They introduce Recurrent Affine Transformation (RAT) for control-
ling all fusion blocks consistently. RAT expresses different layers’ outputs with
standard context vectors of the same shape to achieve unified control of differ-
ent layers. The context vectors are then connected using RNN in order to detect
long-term dependencies. With skip connections in RNN, RAT blocks are consis-
tent between neighboring blocks and reduce training difficulty. Moreover, they
incorporate a spatial attention model in the discriminator to improve semantic
consistency between texts and images. With spatial attention, the discrimina-
tor can focus on image regions that are related to the corresponding captions.
We discovered RAT GAN maintains top performance with acceptable parame-
ters compared to other leading methods. Thus, we adopt the RAT GAN as our
backbone model.

The basic GAN framework can be augmented using side information such as
class and caption. Instead of feeding side information to the discriminator, one
can task the discriminator with reconstructing side information. This is done by
modifying the discriminator to contain an auxiliary decoder network that out-
puts the class label for the training data [18] or a subset of the latent variables
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from which are generated [19]. Forcing a model to perform additional tasks is
known to improve performance on the original task. In addition, an auxiliary
decoder could leverage pre-trained discriminators for further improving the syn-
thesized images [20]. Motivated by these considerations, ACGAN [21] proposed a
class conditional GAN model, but with an auxiliary decoder that is tasked with
reconstructing class labels. TAC GAN [23] present a Text Conditioned Auxil-
iary Classifier Generative Adversarial Network for synthesizing images from their
text descriptions. The discriminator of TAC-GAN performs an auxiliary task of
classifying the synthesized and the real data into their respective class labels.
During training, the discriminator minimize the cross entropy of categories and
the generator maximize the cross entropy of categories. Inspired by their work,
we introduce an auxiliary classifier in the discriminator of the RAT GAN model.
This classifier could not only classify which category the images belong to, but
also help generator to synthesize fine-grained level images.

[22] propose a contrastive learning method to improve the quality and
enhance the semantic consistency of synthetic images synthesized from texts.
In the image-text matching task, they utilize the contrastive loss to minimize
the distance of the fake images generated from text descriptions related to the
same ground truth image while maximizing those related to different ground
truth images. However, they ignored the similarity among fake images of differ-
ent subclasses and introduced a pretrained image encoder to compute contrastive
loss which increased the computation complexity of the model. [25] also propose
a contrastive learning method for text to image synthesis. They introduce multi-
ple generators and discriminators and only compute the contrastive loss between
image features from the geneartor. [24] propose a cross-modal contrastive learn-
ing for text to image synthesis. They only compute the contrastive loss between
a real image and a fake image. In our work, we only add one fully connected
layer to extract feature embedding and compute the contrastive loss between
fake and real images, between fake and fake images, and between real and real
images. The advantage of our approach is that with a small number of parame-
ters, we can compute the contrastive loss between fake/real images in one step,
rather than first training an image encoder and then computing contrastive loss
as in [22].

3 Proposed Approach

We adopt the RAT GAN as our base model and enhance it by introducing an
auxiliary classifier and a contrastive learning method thus creating a fine-grained
(FG) RAT GAN. In the following sections, we provide detailed information on
how these modifications work and present the overall algorithms.

3.1 Auxiliary Classifier

In the discriminator of the RAT GAN, we add an auxiliary classifier at the end
of the network. To do this, we first flatten the output dimension from 8x8x1024
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Fig. 1. The original discrminator in Figure (a) computes GAN loss. The discriminator
with auxliary classifier in Figure (b) computes categorical cross entropy loss. The dis-
crminator with contrastive learning in Figure (c) computes contrastive learning loss.

to 64x1024 and add a fully connected layer to reduce the feature dimension from
64x1024 to 256. We then add a Softmax activation function to classify the feature
into one of the predefined categories. The structure of the modified discriminator
is shown in Figure 1(b). In comparison to the original RAT GAN discriminator
shown in Figure 1(a) which only computes the GAN loss, we also minimize the
categorical cross-entropy loss between the classifier output and the ground truth
labels of the images during both generator and discriminator updates. These
losses are defined as follows:

Lce
d = −

i=N∑

i=1

(yi · log(ŷf
i )) +

i=N∑

i=1

(yi · log(ŷr
i )) (1)

Lce
g = −

i=N∑

i=1

(yi · log(ŷf
i )) (2)

where the yi is the ground truth label of the image, yf
i is the auxiliary output

of the fake image, and yr
i is the auxiliary output of the real image.

Lce
d allows the discriminator to classify the category of images, by computing

the sum of the categorical cross-entropy loss between the classifier output of
fake images and their ground-truth labels, and the categorical cross-entropy
loss between the classifier output of real images and their ground-truth labels.
Lce
g helps the generator to synthesize more precise and fine-grained images by

incorporating the classifier’s output into the loss function.
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3.2 Contrastive Learning

In order to improve the quality and semantic consistency of synthetic images
generated from text, we introduce a contrastive learning method in our model.
To implement this, we add a branch embedding layer and L-2 normalization to
the feature embeddings of our images after the fully connected layer for feature
dimension reduction. This is illustrated in Figure 1(c).

In addition, we introduce cross-batch memory (XBM) mechanism in our con-
trastive loss calculation. This creates a memory bank that acts as a queue, where
the current mini-batch of real images’ feature embeddings are enqueued and the
oldest mini-batch of feature embeddings are dequeued. We then minimize the
contrastive loss between the fake images’ feature embeddings and the entire XBM
feature embeddings, as well as the contrastive loss between the real images’ fea-
ture embeddings and the entire XBM feature embeddings. The contrastive loss
is defined as follows:

Lcl
d =

1
NM

N∑

i

[
M∑

j:yi=yj

(1 − cos_sim(eri , e
x
j ))+

M∑

j:yi �=yj

−max((cos_sim(eri , e
x
j ) − α), 0)],

(3)

Lcl
g =

1
NM

N∑

i

[
M∑

j:yi=yj

(1 − cos_sim(efi , exj ))+

M∑

j:yi �=yj

−max((cos_sim(efi , exj ) − α), 0)],

(4)

where cos_sim(efi , exj ) is the cosine similarity between the feature embedding efi
of mini-batched fake images and the feature embedding exj of real image from
the cross-batch memory (XBM), α is a margin applied to the cosine similarity of
negative pairs to prevent the loss from being dominated by easy negatives, N is
the batch size, and M is the size of the XBM. The Lcl

d loss function minimizes the
similarity between feature embeddings of real images from different subclasses,
and maximizes the similarity between feature embeddings of real images from the
same subclass, which optimizes the embedding layer in the discriminator. The
Lcl
g loss function minimizes the similarity between feature embeddings of fake

and real images from different subclasses, and maximizes the similarity between
feature embeddings of fake and real images from the same subclass, which helps
the generator synthesize fine-grained images.

3.3 Training of the network

In this section, we describe the training process of our proposed FG-RAT GAN
with auxiliary classifier and contrastive learning as shown in Figure 2. The fake
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Fig. 2. The structure of the discriminator with auxiliary classifier and contrastive learn-
ing. The original output of the discriminator is still used to compute the GAN loss,
and meanwhile followed by one fully connected layer to decrease the feature dimen-
sion. Next, the fully connected layer is followed by one embedding layer for contrastive
learning. Then, the embedding layer is followed by a classifier for image classification.

image synthesized from generator G and the real image separately pass through
discriminator D. The discriminator D then discriminates whether the image is
fake/real by minimaxing GAN loss which is defined as follows:

Ladv
d =Ex�pdata

[max (0, 1 − D(ir, t))]+
0.5 × Ez�pgen

[max (0, 1 + D(G(z, t), t))]+
0.5 × Ez�pdata

[max (0, 1 + D(ir ′, t))]
(5)

Ladv
g = Ez�pgen

[min D(G(z, t), t)] (6)

where G : (Z, T ) → X maps from the latent space Z and caption space T to the
input space X, D : X → R maps from the input space to a classification of the
example as fake or real, ir is the real image, and ir

′ is the mismatched real image.
The GAN model will reach a global optimal value when pgen = pdata, where pgen
is the generative data distribution and pdata is the real data distribution.

Subsequently, different from Sect. 3.1 and Sect. 3.2, in the end of the dis-
criminator, we first add an embedding layer which is used for feature dimension
reduction and contrastive learning. We add a classifier after this embedding layer
for image classification. We first only compute the categorical cross-entropy loss
Lce
d and Lce

g for image classification as mentioned in Sect. 3.1. This is because the
feature drift is relatively large at the early epochs. Training the neural networks
with Lce

d and Lce
g , allows the embeddings to become more stable. After several

training epochs, we add the contrastive loss Lcl
d and Lcl

g for contrastive learning
as mentioned in Sect. 3.2. We finally compute the total loss for the discriminator
D and the generator G as follows:

Ltotal
d = Ladv

d + Lce
d + Lcl

d (7)

Ltotal
g = Ladv

g + Lce
g + Lcl

g (8)
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We update the parameters of the discriminator D by minimizing the Ltotal
d

loss and update the parameters of the generator G by minimizing the Ltotal
g loss.

4 Experiments

4.1 Datasets

To evaluate the performance of fine-grained text to image synthesis, we conduct
experiments on two commonly used fine-grained text-image pair datasets: the
CUB-200-2011 dataset which contains 11,788 images of 200 different bird species;
and the Oxford-102 flower dataset which contains 8,189 images of 102 different
flower species. We follow the same split as previous studies [2,7,14] for both
datasets: 150 training classes and 50 testing classes for CUB-200-2011, and 82
training classes and 20 testing classes for Oxford-102. Each image in the datasets
is paired with ten text descriptions. The images are resized to 304x304, randomly
cropped to 256x256, and then randomly flipped horizontaly. The captions are
passed through a text encoder, resulting in an output of size 256.

4.2 Evaluation Metrics

The Inception Score [26] can measure a synthetic image quality by computing
the expected Kullback Leibler divergence (KL divergence) between the marginal
class distribution and conditional label distribution:

IS = exp(ExKL(p(y|x)||p(y))) (9)

where p(y|x) is the conditional label distribution of features extracted from the
middle layers of the pretrained Inception-v3 model for generated images, and
p(y) is the marginal class distribution. IS gives a score that tells us if each image
made by the model is clear and distinct, and if the model can make a wide range
of different images. We want models that make a mix of clear images, so a higher
IS is better.

The Frechet Inception Distance [27] that is given by:

d2(F,G) = |μx − μy|2 + tr|Σx + Σy − 2(ΣxΣy)1/2| (10)

where F, G are two distributions of features extracted from the middle layers of
a pretrained Inception-v3 model for generated and real images. The parameters
μx, μy, Σx, Σy, are the mean vectors and covariance matrices of F and G. While
IS checks image clarity and variety, FID checks if they look real. We want our
model’s images to look like real photos, so a lower FID is better.

The paper [28] highlights that the Inception Score (IS) is sensitive to model
overfitting and dependent on the dataset used for the Inception network, often
leading to misleading evaluations for models not trained on ImageNet. In con-
trast, the Frechet Inception Distance (FID) compares the statistical distributions
of real and generated images using the Frechet distance, assessing how closely
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generated images mimic real images in content and style. This makes FID a more
reliable and comprehensive metric, as it directly evaluates the realism and diver-
sity of generated images, unlike IS which does not compare with the distribution
of real images.

4.3 Implementation details

In our implementation, we adopt the RAT GAN architecture as the backbone
for our model. We use a pretrained bidirectional LSTM network to convert text
descriptions into sentence-level feature vectors of size 256. These feature vectors
are combined with Gaussian noise as input for the generator. The generator
comprises of six up-sampling blocks, each followed by a Recurrent Affine Trans-
formation (RAT) block to control image content. The discriminator includes six
down-sampling blocks, whose output size is 8x8x1024. We then add a fully con-
nected layer to decrease the output size to 256 for contrastive learning, followed
by a fully connected layer for image classification with an output size of 200
for the CUB-200-2011 dataset and 102 for the Oxford-102 dataset. We use the
Adam optimizer to train the generator with an initial learning rate of 1e−4 and
the discriminator with an initial learning rate of 4e − 4. We use cosine learning
rate decay to decrease the learning rate to 1e − 6 and train with 600 epochs.

4.4 Qualitative evaluation

Figure 3 shows synthesized images generated by LAFITE, VQ-Diffusion, RAT
GAN and our FG-RAT GAN on the CUB-200-2011 bird dataset. As we can see,
in the 1st row the proposed FG-RAT GAN generates a bird with dark brown
body and white band encircling near the bill as specified in the caption, in the
3rd row it generates a bird with all gray body as specified in the caption, and
both examples are similar to each other given that they belong to the same
class. Figure 4 only shows synthesized images generated by RAT GAN and our
proposed FG-RAT GAN on the Oxford-102 flower dataset since LAFITE did
not train or test on this dataset and VQ-Diffusion did not post their pretrianed
model on this dataset. As we can see, the 5th row generates a flower with white
petals and yellow stamen as in the description, the 6th row generates a flower
with white petals and yellow stamen as in the description, and both samples are
similar to each other given they belong to the same class. There are six samples
which belong to two different classes in each dataset. As we can see, our proposed
FG-RAT GAN can generate fine-grained images which highly correspond to the
given captions. Additionally, each synthesized image is more similar to other
synthesized images in the same class. Thus, we demonstrate that our FG-RAT
GAN can reach better visualized results compared with the orginal RAT GAN.
In addition, we show some visualized results compared with DALLE-2 and Stable
Diffusion on these datasets in the Supplementary materials.0
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Fig. 3. Examples of generated images using RAT GAN and the proposed FG-RAT
GAN on the CUB bird dataset. Each row represents a different sample (image size =
256x256) and with the corresponding caption below.The first column is image class
and name. The second column is the corresponding target image. The rest of other
columns are the generated images from LAFITE, VQ-Diffusion, RAT GAN, and our
FG-RAT GAN. As we can see, our FG-RAT GAN can generate more realistic images
where each image is similar to other images within the same class.
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Fig. 4. Examples of generated images using RAT GAN and the proposed FG-RAT
GAN with classifier and contrastive learning trained on the Oxford flower dataset. Each
row represents a different sample (image size=256x256). The first column is the sample
detail including class and specific image name. The second column is the caption.
The third column is the corresponding target image. The fourth column is the image
generated by RAT GAN. The fifth column is the image generated by our proposed FG-
RAT GAN. As we can see, our proposed FG-RAT GAN can generate more realistic
images where each image is similar to other images within the same class.

4.5 Quantitative evaluation

We compare the state-of-the-art text to image synthesis methods LAFITE, VQ-
Diffusion, RAT GAN, and our FG-RAT GAN. We evaluate the CUB-200-2011
bird dataset and the Oxford-102 flower dataset with Inception Score (IS) and
Frenchet Inception Distance (FID) which are commonly used text to image syn-
thesis performance evaluation metrics. Due to suboptimalities of the Inception
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Table 1. Comparison of previous state-of-the-art methods: LAFITE, VQ-Diffusion,
RAT GAN and our proposed FG-RAT GAN on the CUB-200-2011 bird and Oxford-
102 flower dataset for text to image synthesis. Each row presents a different model.
The first column is the name of each model. The second column is the number of
parameters of each model. The third and forth columns show the IS and FID results
for the bird dataset. The fifth and sixth columns show the IS and FID results for the
flower dataset.′′−′′ means the author did not provide results. As can be observed, in
both datasets, our proposed FG-RAT GAN reaches the lowest FID scores.

CUB bird dataset Oxford flower dataset

Model NP IS↑ FID↓ IS↑ FID↓
LAFITE 75M+151M 5.97 10.48 − −
VQ-Diffusion 370M − 10.32 − 14.1

RAT GAN 38M+113M 4.83 12.12 3.62 12.90

FG-RAT GAN (our) 38M+130M 4.99 8.66 3.45 9.14

Score itself and problems with the popular usage of the Inception Score, we care
more about FID than IS. We show the evaluation results in Table 1. As can be
observed, on the CUB-200-2011 bird dataset, our method reaches the lowest FID
scores. On the Oxford flower dataset, RAT GAN reaches the highest IS score and
our proposed method reaches the lowest FID score. In addition, our proposed
method only add 17M parameters to the discriminator of RAT GAN and has
168M parameters while LAFITE has 226M parameters and VQ-Diffusion has
370M parameters. Even though we use labels during the training, label informa-
tion is not an unfair advantage but a distinct characteristic of our model. The
goal is to advance the field, rather than to compete under identical conditions.
Thus, we demonstrate our FG-RAT GAN reaches better performance while only
adding a relatively small number parameters to the baseline model.

4.6 Ablation study

We investigate the effects of different strategies we added to the RAT GAN
model for text to image synthesis to demonstrate their significance on both
the CUB-200-2011 bird and Oxford-102 flower datasets. We train three different
models: A proposed FG-RAT GAN with auxiliary classifier, a proposed FG-RAT
GAN with contrastive learning, and a proposed FG-RAT GAN with combination
of auxiliary classifier and contrastive learning. The results are summarized in
the Table 2. As can be observed, the proposed FG-RAT GAN with auxiliary
classifier reaches the highest IS score, whereas the proposed FG-RAT GAN with
a combination of auxiliary classifier and contrastive learning reaches the lowest
FID score on the CUB-200-2011 bird dataset. The proposed FG-RAT GAN with
contrastive learning reaches the highest IS score and the proposed FG-RAT
GAN with combination of auxiliary classifier and contrastive learning reaches
the lowest FID score on the Oxford-102 flower dataset. In summary, the ablation
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Table 2. Comparison of RAT GAN, proposed FG-RAT GAN with auxiliary classifier,
proposed FG-RAT GAN with contrastive learning, and proposed FG-RAT GAN with
combination of auxiliary classifier and contrastive learning on the CUB-200-2011 bird
and Oxford-102 flower dataset. Each row presents a different model. The first column is
the name of each model. The second and third columns show the IS and FID scores for
the CUB bird dataset. The fourth and fifth columns show the IS and FID scores for the
Oxford flower dataset. As can be observed, in CUB bird dataset, the proposed FG-RAT
GAN with classifier reaches the highest IS score and the proposed FG-RAT GAN with
classifier and contrastive learning reaches the lowest FID score. In the Oxford flower
dataset, the proposed FG-RAT GAN with contrastive learning reaches the highest IS
and the proposed FG-RAT GAN with classifier and contrastive learning reaches the
lowest FID.

CUB bird dataset Oxford flower dataset

Model IS↑ FID↓ IS↑ FID↓
RAT GAN 4.83 12.12 3.62 12.90

RAT GAN + classifier (our) 5.08 9.90 3.45 9.55

RAT GAN + contrtastive learning (our) 4.84 9.10 3.66 10.63

FG-RAT GAN (our) 4.99 8.66 3.45 9.14

study demonstrates that our FG-RAT GAN reaches better performance than the
RAT GAN model.

5 Conclusion

In this paper, we present a novel approach for generating fine-grained images
from text descriptions, by incorporating an auxiliary classifier and contrastive
learning into the RAT GAN architecture. Our proposed FG-RAT GAN approach
improves the quality and semantic consistency of synthetic images by leveraging
the auxiliary classifier to classify images into different categories, and using con-
trastive learning to generate images with higher similarity within the same class
and lower similarity among different classes. Additionally, our method is com-
putationally efficient, as it adds two fully connected layers to the original RAT
GAN model only during training stage. We demonstrate that our method reaches
state-of-the-art performance on two commonly used fine-grained image datasets.
While FG-RAT GAN demonstrates strong performance, it does depend on the
availability of fine-grained labels, which could limit its applicability in real-world
scenarios where labels are less accurate or unavailable. In future work, we aim to
reduce this dependency and explore the method’s adaptability in more diverse
and less structured environments. Additionally, we will conduct further evalua-
tions on broader text-to-image synthesis benchmarks and more varied datasets
are necessary to confirm the generalizability of our approach.
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Abstract. The task of Fine-Grained Visual Classification (FGVC) aims
to distinguish between closely related subclasseswithin a broader category.
Challenges include high intra-class variation, minimal inter-class differ-
ences, and complex backgrounds, making accurate classification demand-
ing. Existing approaches usually target on specific traits for optimiza-
tion and do not pay enough attention to both local details and the
object’s structural information in images simultaneously. In this paper,
We designed a new Object Region Attention transformer (ORA-Trans),
which enables the model to better discern subtle image differences by min-
ing deeply into discriminative regions and structural features of objects in
images. Specifically, we propose a Key Tokens Selector to automatically
identify tokens corresponding to crucial local regions that are pivotal for
FGVC. Furthermore, we design an object Structure Feature Extractor to
capture the structural relationships among the object parts tokens, which
can not only optimize the feature learning process of the tokens selected
by KTS, but also alleviate the interference of complex image backgrounds.
We also introduce a Token Stochastic Swap module to enrich feature com-
binations and enhance feature representativeness. Our proposed approach
achieves state-of-the-art performances on the CUB_200_2011, Stanford
dogs, and IP102 datasets. Ablation studies and visualization demonstrate
the effectiveness and interpretability of our method.

Keywords: fine-grained visual classification · vision transformer ·
attention mechanism · Jensen-Shannon divergence · information
entropy

1 Introduction

Fine-Grained Visual Classification (FGVC) is an important and challenging
problem in Computer Vision, which aims at identifying subclasses under a broad
category. The fine-grained image datasets usually come with large intra-class
variances and small inter-class variances, hence we have to focus on the object
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15324, pp. 374–389, 2025.
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areas in images, capturing discriminative features for fine-grained visual classifi-
cation. With the rapid development of deep learning, The application scenarios
for FGVC based on deep learning are increasingly expanding [1]. The existing
methods for FGVC can be roughly divided into two classes: localization-based
methods [2] and attention-based methods [3].

Localization-based methods, such as the R-CNN series [4], identify key image
parts through preprocessing or specialized modules, focusing on discriminative
regions. R-CNNs extract numerous region blocks, filtering and merging them to
identify candidate regions for classification based on their features. However, this
method relies on detailed labels, presenting a challenge due to its need for strong
supervision. To address this, researchers have shifted towards weakly supervised
methods. For instance, Weakly Supervised Discriminative Localization (WSDL)
[5] employs an attention extraction network that generates bounding box data,
guiding R-CNNs to classify images more quickly, reducing the dependency on
extensive annotations and enhancing classification accuracy.

Unlike localization-based methods that rely on explicit annotations,
attention-based methods like the Vision Transformer (ViT) [6] simulate human
attention to identify key image features without detailed part labels. These meth-
ods leverage self-attention mechanisms [7] to connect and assess all image regions
equally, enhancing global dependency capture and comprehensive image analy-
sis. However, ViT’s lack of inductive bias towards local features, unlike CNNs
with their confined receptive fields, may compromise its ability to detect sub-
tle yet critical differences in similar images, such as variations in a bird’s beak,
wings, or feet, potentially affecting classification accuracy.

Fine-grained image datasets commonly exhibit high intra-class variance and
low inter-class variance. The recognition tasks are further complicated by the
presence of intricate backgrounds. Additionally, challenges in sample collection
often result in insufficient training data, which contributes to a long-tailed dis-
tribution of sample sizes across different classes. In order to address these issues,
we propose a new classification model that utilizes a Vision Transformer (ViT)
as its backbone — Object Region Attention Transformer (ORA-Trans), which
extracts both critical regional features and object structural information in
images. Specifically, we design a module named Key Tokens Selector (KTS),
which can efficiently select tokens corresponding to important object parts in
images from each layer, thereby enabling the model to capture the subtle dif-
ferences between images, alleviating the issue of small inter-class variance and
interference from complex backgrounds; Then a module named Structure Fea-
ture Extractor (SFE) is designed to extract object structure features, which
selects an anchor token and to-be-modeled tokens by using the attention weight
vectors and their information entropy, Graph convolution is then used to gener-
ate features containing structural information of them, thereby alleviating the
classification difficulties brought about by variations in object pose. To enrich
pattern combinations and optimize feature space, we introduce a module named
Token Stochastic Swap (TSS) to randomly swap a part of the tokens gener-
ated by the two modules in a batch respectively. We conducted experiments on
two prevalent FGVC datasets, a large-scale pest recognition dataset and a small
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ultra-fine-grained image dataset to fully validate the effectiveness of our method.
Our contributions can be summarized as follows:

• We propose a framework that extracts crucial detail features from ViT, con-
structs object structural features to aid the learning of these details, and
employs a Token Stochastic Swap module to enrich feature combinations,
enhancing feature representation and thus improving classification accuracy.

• We design Key Tokens Selector (KTS) to select tokens containing local infor-
mation of important object parts from each layer of the transformer.

• We design a module named Structure Feature Extractor (SFE) to extract
object structural information and leverage it to optimize the learning process
of the model for the features of the tokens selected by KTS.

2 Related Work

Fine-Grained Visual Classification. FGVC presents unique challenges in
computer vision, exceeding those of traditional image classification by requir-
ing precise differentiation of subtle visual distinctions. Key challenges in FGVC
include: (1) Large intra-class variance and high inter-class similarity [8], where
orientation and part spacing within the same category can vary significantly, yet
appear similar across different categories. (2) Complex backgrounds in images
may obscure crucial features [9], complicating the extraction of useful informa-
tion and disrupting the classification process. (3) A scarcity of training data due
to the fine granularity and the specialized expertise required for accurate annota-
tion, which limits the models’ learning potential and affects their generalization
and robustness [1]. To address the first challenge mentioned above in FGVC,
several part-based methods have been developed. For example, NTS-Net [10]
uses a region proposal network to identify and resize salient bounding boxes for
recognition. To combat background interference, HERBS [11] segments feature
maps based on confidence scores, enhancing salient features and reducing noise.
Addressing data scarcity and model overfitting, methods like CLE-ViT [12] aug-
ment datasets with transformations to optimize feature spaces, while PC [13]
introduce activation confusion to improve generalization and robustness.

Attention-based methods. The attention mechanism in deep learning, which
simulates human visual and cognitive processes, allows models to focus selec-
tively on key input features, thus enhancing performance and generalization in
FGVC. For example, RA-CNN [14] employs an Attention Proposal Network
to progressively refine focus on discriminative regions across scales, improving
feature extraction. API-Net [15] uses attention to train on differences between
similar images, learning distinct features crucial for distinguishing subtle vari-
ations in FGVC. Following the success of the Transformer [7] in vision tasks,
models like FFVT [16] and TransFG [17] use attention weights to highlight and
concentrate on significant image regions, boosting classification accuracy. More-
over, AF-Trans [18] and RAMS-Trans [19] leverage attention to enhance detail
recognition, integrating global and local data, thus compensating for the short-
comings of ViT in FGVC tasks. SIM-Trans [20] enhances ViT by incorporating
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structural object features, focusing more on object-specific areas and improving
fine-grained classification. In our review of the ViT architecture, we identified
two potential directions that can be combined for optimization: selective atten-
tion and structured representation. Current methods often focus on a single
optimization direction, However, local object information and object structure
information are complementary. Integrating both types of information could sig-
nificantly enhance classification performance. To overcome existing limitations,
our work introduces a Key Tokens Selector to highlight critical local features
and a Structure Feature Extractor to capture the interrelations of object parts,
thus improving the representation and interpretability of the ViT feature space.

3 Method

In this section, we detail our methodology, beginning with an outline of our
model’s architecture. We then review the feature extraction process utilized by
ViT and delve into the principles and functions of the two modules developed
specifically for fine-grained image classification. Finally, we discuss the process
for learning fine-grained features.

Fig. 1. The framework of our proposed ORA-Trans.

3.1 Framework

To achieve high accuracy in fine-grained image classification, our model inte-
grates both local and global image information using the Vision Transformer.
Despite its limited local modeling capabilities, we enhance feature extraction
by selecting the most representative features from each layer for information
interaction. This approach enriches the model’s understanding of local details
while retaining critical holistic object information for precise classification. Our
methodology incorporates three main modules: a Key Tokens Selector for identi-
fying key tokens that capture discriminative object characteristics in each layer,
and a Structure Feature Extractor for modeling the relationships between object
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parts. These modules are integrated with the Vision Transformer to support end-
to-end training and optimization. Additionally, a Token Stochastic Swap(TSS)
module randomizes token exchanges across samples in each batch to diversify
pattern combinations and enhance feature representativeness. Finally, the log-
its of these two parts generated by a fully connected layer are added using two
learnable parameters for the computation of the cross-entropy function, and we
calculate the contrastive loss function for the logits of the tokens generated by
Key Tokens Selector.

3.2 Key Tokens Selector

We utilize the Vision Transformer (ViT) to extract image features, which seg-
ments the image into patches and then uses an Encoder to encode these patches
into tokens. During this process, an additional class token (CLS token) τcls inter-
acts with these tokens to aggregate the features of the entire image for classifi-
cation. Each layer of the Transformer computes self-attention weight matrices,
where al

i,j represents the attention weight of token i to token j in layer l. Higher
attention weights indicate stronger correlations between image patches.

When token selection is based solely on the magnitude of attention weights,
it focuses only on the attention allocated to individual tokens themselves, with-
out considering the influence of other tokens, which may introduce background
features that interfere with the classification process. To comprehensively con-
sider the association between tokens from both local and global perspectives,
our KTS module introduces the Jensen-Shannon (JS) divergence [21] between
the tokens’ attention weight vectors and the uniform distribution as a metric.
The JS divergence is a measure of the similarity between two data distributions
P and Q, which ranges from 0 to 1, quantifies the similarity between them. It
assesses attention from a broader perspective, considering the overall attention
pattern rather than just local intensity. Using this score to evaluate token impor-
tance reflects both the model’s attention to the token and the overall uniformity
of its attention distribution. It is computed by first determining their average
distribution E = 1

2 (P + Q), followed by applying the JS divergence formula:

JS(P || Q) =
1
2

∑

i

P (i)log
P (i)
E(i)

+
1
2

∑

i

Q(i)log
Q(i)
E(i)

. (1)

A score is calculated for each token in each layer, which incorporates the
average of the weight vectors obtained from different attention heads, as well
as the JS divergence between the weight vectors and a uniform distribution.
These two metrics correspond to the local and global correlation between tokens,
respectively. Before calculating this score, we need to get the Hadamard product
of the attention weights of token i accumulated from layer 1 up to layer l:

a
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[
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l_H
i,j , . . . , a

l_H
i,K

]
, i ∈ 0, 1, . . . ,K (2)
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Fig. 2. The procedure of KTS.

where K is the number of tokens, ami represents the attention weight matrix
for token i in layer m, a

l_H
i,j denotes the attention weight accumulated from the

first layer to the l-th layer for token i with respect to token j. To calculate the
score for token i, we first compute the average of the attention weights across
all tokens, represented by Mi = 1

K+1ΣK
j=0(a

l_H
i,j ). This yields an aggregated

score vector for the l-th layer, denoted as Savg = [M0,M1, . . . ,Mi, . . . ,MK ].
Next, we initialize a uniformly distributed vector U with the same dimensions
as a

l_H
i,j and calculate the Jensen-Shannon divergence between them, denoted

by Ji = JS(al_H
i || U). This calculation produces a second set of scores for all

tokens in the layer, aggregated as Sjsd = [J0, J1, . . . , Ji, . . . , JK ].
In order to reasonably combine these two parts of the score for each token,

we normalize both of them and then sum them:

Savg_norm =
[
M0 − μ1

σ1
,
M1 − μ1

σ1
, . . . ,

Mi − μ1

σ1
, . . . ,

MK − μ1

σ1

]
(3)

where μ1 = 1
K+1

∑K
i=0 Mi and σ1 =

√
1

K+1ΣK
i=0(Mi−μ1)2 are respectively the

mean and the standard deviation of Savg. Similarly, we can get Sjsd_norm. There-
fore, in the l-th layer, the final score matrix for all tokens can be represented
as:

S1 = Savg_norm + Sjsd_norm (4)

Tokens are ranked by their scores within each layer, and the top num_token
tokens with the highest scores are selected for aggregation. These are then con-
catenated with the CLS token τcls, and processed through a transformer encoder
layer. The rich local features contained in these tokens are incorporated into the
CLS token, resulting in a new CLS token τcls1 for subsequent processing.

3.3 Structure Feature Extractor

To effectively extract structural information from images, we developed a Struc-
ture Feature Extractor (SFE) module integrated into the last layer of the Vision
Transformer. This strategic placement leverages the attention heads’ focus on
global and semantic information in higher layers. Similar to the KTS, the SFE
employs the Hadamard product to accumulate the attention weights across all
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layers, generating the accumulated attention weight matrix for token i in the last
layer as aL−1

i =
[
aL−1
i,0 , aL−1

i,1 , . . . , aL−1
i,j , . . . , aL−1

i,K

]
. In token selection, the first

part of the score Savg_norm is borrowed from the KTS and is used to intuitively
measure the correlation between tokens, excluding the weights of the CLS token,
which represents global image information. The second part of the score evalu-
ates the certainty of each token’s relationship with others, using the information
entropy of its attention weight vector as a metric:

Hi = −
∑K

j=1
aL−1
i,j log2a

L−1
i,j , i ∈ 1, 2, . . . ,K (5)

Fig. 3. The procedure of SFE.

We derive the entropy vector SH = [H1,H2, . . . , Hi, . . . , HK ]T , where each
entropy value quantifies the concentration of a token’s attention weights with
respect to others. Lower entropy indicates higher attention concentration, sug-
gesting a significant semantic correlation. These tokens are ideal for modeling
structural features. To integrate these metrics effectively, SH is normalized sim-
ilarly to Eq.3, resulting in SH_norm, which forms the basis of the final score:

S2 = Savg_norm − SH_norm = [s0, s1, . . . , si, . . . , sK ] (6)

where si denotes the final score of the i-th token. The purpose of this formula is
to select tokens that exhibit high relevance and certainty for structural modeling.
The token with the highest score is chosen as the anchor. For structural analysis,
the score vector S2 is reshaped into a

√
K×√

K matrix, referred to as S2_new. A
mask of the same size is then applied to simplify this matrix by setting positions
with values below the average score s̄ to zero: Inspired by [20], we employ polar
coordinates to capture the spatial relationships between the anchor patch P0 =
P(x0,y0) and other selected tokens, enriching the structural analysis of objects.
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The anchor patch, positioned at (x0, y0) in the
√

K × √
K grid, serves as a

reference. For each selected token i, the corresponding patch Pi = P(xi,yi) is
expressed in polar coordinates relative to this anchor:

Γxi,yi
=

√
(x0 − xi)2/K + (y0 − yi)2/K (7)

θxi,yi
= (atan2(yi − y0, xi − x0) + π)/2π (8)

where 0 < Γxi,yi
≤ 1 is used to measure the relative distance between the anchor

patch P0 and the patch Pi corresponding to token i, and θxi,yi
is the normalized

polar angle of Pi relative to the horizontal direction.
A two-layer graph convolutional neural network is used to delineate the struc-

tural relationships between selected tokens. Starting with the simplified score
matrix, we generate the adjacency matrix Adj =S2_new ·(S2_new)T . The image
features X, derived from the last layer of the backbone, are then combined with
this adjacency matrix in a graph convolution process:

G = σ(Adj × σ(Adj × X × W 1) × W 2) (9)

where W 1 and W 2 are two learnable parameters, σ(·) is the activation function,
and × denotes matrix multiplication. The resulting anchor feature G encapsu-
lates the structural information of the objects. We incorporate it into the CLS
token to obtain the CLS token τcls2 enriched with structural information.

3.4 Fine-Grained Feature Learning

After obtaining the CLS tokens τcls1 and τcls2 , which encode image discrimi-
native features and structural information, we employ a Token Stochastic Swap
module. This module acts on the original CLS token matrix C with dimensions
[B,H], randomly permuting its columns to enhance token representativeness and
diversify pattern combinations. The permutation probability p for each iteration
is determined by p = pmin +Beta(1, 1)× (pmax − pmin), scaling a Beta distribu-
tion value to the interval [pmin, pmax]. For each column j in matrix C, rows are
permuted with probability p, such that C[i, j] is replaced with C[RP [i], j] where
RP is a randomized permutation of [0, B − 1]:

C[i, j] =
{

C[RP [i], j] if rand() < p
C[i, j] otherwise (10)

where rand() generates a random number in the range (0, 1). This process is
repeated n times.

For the CLS tokens τcls1 and τcls2 generated by KTS and SFE, respectively,
the swap process introduced above is applied to obtain the permuted CLS tokens
Y1 and Y2. Then, we compute the logits l1 and l2 for the two parts of features
respectively. Two learnable weight parameters w1 and w2 are defined to calculate
the weighted logits l = w1l1 + w2l2, which is used to compute the cross-entropy
loss LCE , thereby enhancing the model’s overall understanding of the image
through this feature interaction method.
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To learn the subtle differences between subcategory images, a contrastive loss
is adopted for the fine region features Y1, which enhances feature discriminabil-
ity by maximizing intra-class similarity and minimizing inter-class similarity,
enabling the model to learn more fine-grained differences in the images:

Lcontrast =
1

2B2

B∑

i=1

B∑

j=1

(
Pij

(
1 − ŷiŷ

T
j

)
+ Nij max

(
m − ŷiŷ

T
j , 0

)2) (11)

where B is the batch size, Pij and Nij are indicators for positive and negative
sample pairs, respectively, m is the preset margin, and ŷi and ŷj are respectively
the L2 normalized feature vectors yi and yj in Y1.

In summary, a combination of contrastive loss and cross-entropy loss is used
to train our model end to end, which is as follows:

Ltotal = LCE + Lcontrast (12)

4 Experiments

In this section, we evaluate our method across four datasets. Comparative analy-
ses against leading methods and ablation studies on our model’s components will
showcase their design rationality and effectiveness. Additionally, we will present
visualizations to demonstrate our model’s interpretability.

4.1 Datasets and Implementation Details

We validated our model on four public datasets: CUB_200_2011 [22], Stan-
ford Dogs [23], IP102 [24] and Cotton80 [25]. CUB_200_2011 is a versatile
fine-grained image dataset, including 200 classes with 5994 training images and
5794 test images, while Stanford Dogs comprises 120 classes with 12000 training
images and 8580 test images. IP102 is a large-scale fine-grained insect dataset,
consisting of 102 classes with 45095 training images, 7508 validation images,
and 22619 test images. Cotton80 is a small ultra-fine-grained image dataset,
containing images of cotton leaves from 80 categories, with only 6 samples per
variety, divided into 3 training images and 3 test images. These datasets provide
a range of scenarios from small-scale to large-scale, facilitating a comprehensive
evaluation of our model’s performance.

Our experiments utilized a RTX 3090 GPU with ViT-B_16 as the backbone.
Input sizes were standardized across datasets: 600×600 for CUB_200_2011 and
Stanford Dogs, 224×224 for IP102 and 500×500 for Cotton80. During training,
images from CUB_200_2011 and Stanford Dogs were randomly cropped to
448×448, images from Cotton80 were randomly cropped to 384×384, no cropping
was applied to IP102. Data augmentation included random horizontal flipping
and Random Erasing for all datasets. The network was trained end-to-end.

We initialized the network backbone with intermediate weights from the
official ViT-B_16 model pre-trained on ImageNet21k. We employed the SGD
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optimizer with a momentum of 0.9 and used cosine annealing as the scheduler.
Learning rates were set at 0.003 for Stanford Dogs and IP102, and 0.02 for
CUB_200_2011 and Cotton80. Training specifics included 15000 steps with a
batch size of 8 for both CUB_200_2011 and Stanford Dogs, 30000 steps with
a batch size of 32 for IP102, 6000 steps with a batch size of 8 for Cotton80. In
our setup, num_token and the backbone layers L were consistent at 12 and 11,
respectively. Token Stochastic Swap parameters included pmin and pmax set to
0 and 0.4, with 6 swaps and a contrastive loss margin of 0.5. Top-1 accuracy
("Acc") was used as the evaluation metric for all experiments.

4.2 Experimental Results and Quantitative Analysis

Table 1 displays the classification results of our method alongside several state-
of-the-art methods on four benchmark datasets. Our method outperformed all
others on these datasets, demonstrating its effectiveness and generalizability.

Table 1. Comparison of accuracy between our method and state-of-the-art methods
on four datasets of different scales and granularities. * indicates that we reproduce
their experiments in our environment according to the settings of the original paper.

Method Backbone Time Source Acc.
CUB_200_2011 Stanford dogs Cotton80 IP102

ResNet50 [26] ResNet50 2016 CVPR 84.5 86.1 52.5 54.7
RA-CNN [14] VGG19 2017 CVPR 85.3 87.3 - -
PC [13] DenseNet161 2018 ECCV 86.9 83.8 - -
NTS-Net [10] ResNet50 2018 ECCV 87.5 - 51.7 -
API-Net [15] DenseNet161 2020 AAAI 90.0 90.3 - 56.9
ViT [6] ViT-B_16 2021 ICLR 90.6 90.2 52.5 73.4
FFVT [16] ViT-B_16 2021 BMVC 91.6 91.5 57.9 73.8*
RAMS-Trans [19] ViT-B_16 2021 ACM MM 91.3 92.4 - -
CAMF [27] Swin-Transformer 2021 SPL 91.2 92.8 - -
AF-Trans [18] ViT-B_16 2022 ICASSP 91.5 91.6 - -
TransFG [17] ViT-B_16 2022 AAAI 91.7 92.3 54.6 74.8*
SIM-Trans [20] ViT-B_16 2022 ACM MM 91.8 90.9* 52.5* 74.2*
AA-Trans [28] ViT-B_16 2023 PR 91.4 90.8 - 75.0
IELT [29] ViT-B_16 2023 TMM 91.8 - - 74.3
HERBS [11] Swin-Transformer 2023 arXiv 93.1 90.7* 61.7* 76.1*
CSDNet [30] ViT-B_16 2024 TCSVT 90.9 - 57.9 74.5
ORA-Trans ViT-B_16 2024 - 94.0 95.4 62.5 79.6

In comparative analyses across the CUB_200_2011, Stanford Dogs, IP102
and Cotton80 datasets, our method consistently outperforms both traditional
location-based models and advanced ViT-based approaches. Specifically, our
enhancements significantly reduce misclassification caused by excessive back-
ground features, a common issue in models like NTS-Net and API-Net. Against
ViT-focused methods such as TransFG and FFVT, which concentrate on local
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details but neglect structural object information, our approach shows a clas-
sification accuracy improvement of over 2%. Moreover, on the IP102 dataset,
which features significant intra- and inter-class variations, our method excels
by effectively integrating structural information, yielding about a 4% perfor-
mance increase compared to models that fail to optimize background filtering
and structural analysis. On the Cotton80 dataset, our method also outperforms
other listed methods, which is due to the fact that the TSS module we used
enriches the combination patterns of features and alleviates the overfitting. Our
refinements to the ViT framework address its inherent limitations in fine-grained
classification, thereby enhancing its capability to process complex visual infor-
mation more accurately.

Table 2. Comparison of computational costs for different models.

Model Backbone Input_size Dimension Parameters

ResNet50 [26] ResNet50 448×448 2K 22.58M
ViT [6] ViT-B_16 448×448 0.7K 86.24M
TransFG [17] ViT-B_16 448×448 0.7K 86.80M
FFVT [16] ViT-B_16 448×448 0.7K 86.30M
SIM-Trans [20] ViT-B_16 448×448 0.7K 99.80M
HERBS [11] Swin-Transformer 384×384 1K 286.59M
ORA-Trans ViT-B_16 448×448 0.7K 114.90M

Table 2 lists the comparison results regarding feature dimension and number
of parameters. We observe that compared to CNN-based approach, ORA-Trans
has lower feature dimension. And compared to a range of ViT-based meth-
ods, the increase in the number of parameters is not particularly large, and
these extra costs are acceptable in terms of the superior performance of our
method. In particular, compared to HERBS which employs the more powerful
feature-extracting Swin-Transformer as its backbone, our model has significantly
fewer parameters, yet outperforms it in classification accuracy on all of the four
datasets. The computational cost analysis has demonstrated the efficiency of the
proposed ORA-Trans.

4.3 Ablation Studies

In Table 3, we demonstrate the effectiveness of the proposed modules—TSS,
KTS, and SFE—on the CUB dataset. Initially, we conducted experiments on
the ViT backbone following the implementation details described in the origi-
nal paper. Subsequently, we integrated each of the modules TSS, KTS, and SFE
with the backbone network. The accuracy improvements achieved by associating
these modules with the backbone network were 1.0%, 1.3%, and 0.4%, respec-
tively. Moreover, pairing any two modules together within the backbone network
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resulted in higher accuracy gains compared to using a single module. Specifically,
using TSS and KTS together, and TSS with SFE, improved accuracy by 0.9%
and 1.2% over using just KTS and SFE, respectively, demonstrating the efficacy
of feature-rich combinations with the TSS module. Additionally, combining KTS
and SFE yielded higher accuracy improvements of 0.2% and 1.1% compared to
using each alone, showcasing their complementary and synergistic effects. Ulti-
mately, integrating all modules resulted in the highest accuracy.

Table 3. Ablation study results of our proposed module on the CUB_200_2011
dataset.

Modules Acc.
TSS KTS SFE

ViT Baseline* 91.4
� 92.4

� 92.7
� 91.8

� � 93.6
� � 92.9

� � 93.0
� � � 94.0

Table 4. Results of ablation study conducted on the composition of the score in KTS
and SFE on the CUB_200_2011 dataset.

Module Composition Acc.

KTS Savg_norm Sjsd_norm

� 93.3
� � 93.6

SFE Savg_norm SH_norm

� 92.8
� � 93.0

We conducted ablation studies on the token scoring mechanisms within our
KTS and SFE modules on the CUB_200_2011 dataset, with results detailed
in Table 4. These experiments all incorporated the TSS module. The findings
reveal that using JS divergence and information entropy for token evaluations,
rather than just averaging attention weights, enhances classification accuracy.
This confirms the effectiveness of our approach, which integrates both localized
and comprehensive metrics for token selection, proving to be more efficient.



386 Y. Xia et al.

4.4 Parameter Experiments

Fig. 4. Parameter experiments about upper limit pmax of the probability interval in
the TSS module, number of the times n the swap function in Eq. 10 is executed and
the preset margin m in Eq. 11 on the CUB_200_2011 dataset.

We conducted parameter experiments on the CUB_200_2011 dataset to opti-
mize the upper limit pmax of the probability interval, the number of swap times
n, and the margin m in the contrastive loss. Initially, we fixed n at 4 and m at
0.4 to vary pmax. Subsequently, with the optimal pmax determined, we adjusted
n, and finally the margin m. Results shown in Fig. 4 indicate that the best
classification performance for the ORA-Trans approach occurs at pmax = 0.4,
n = 6, and m = 0.5. This configuration raised the classification accuracy from
93.0% to 93.58% when pmax was increased from 0.2 to 0.4, emphasizing the TSS
module’s role in enriching pattern combinations and enhancing feature space
representation. Additionally, increasing m also improved accuracy, demonstrat-
ing the effectiveness of the contrastive loss in boosting inter-class differentiation
and fostering more discriminative feature learning.

4.5 Visualization

This section presents a visual comparison between our model and several rep-
resentative models, as well as visualization of ablation studies for the KTS and
SFE modules in our model. In the visualization maps, the highlighted regions
contribute significantly to visual classification. Fig. 5(a) illustrates comparative
visualization maps on the IP102 and CUB_200_2011 datasets, demonstrating
how our model, compared to TransFG, FFVT, and SIM-Trans, exhibits stronger
and more evenly distributed attention across object contours. This underlines
our method’s adeptness in capturing both detailed local features and overall
structural information, highlighting its effectiveness and interpretability. In Fig.
5(b), the ablation study’s visualized attention maps reveal progressively focused
attention on key features, enhancing object recognition even against complex
backgrounds. For instance, in the CUB_200_2011 dataset, attention intensi-
fies from the bird’s beak to its feet, indicating an enhanced grasp of the object’s
structure from left to right in the visualizations. Notably, the last row shows con-
centrated attention, affirming the synergistic effect of the SFE and KTS modules
in guiding the focus towards essential details under varied conditions.
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Fig. 5. a) Comparative visualization of attention maps on the IP102 and
CUB_200_2011 datasets after identical training steps across various methods:
TranFG, FFVT, SIM-Trans, and our model. Images from the IP102 dataset are shown
in the first two columns, while images from the CUB_200_2011 dataset appear in the
last three columns. Each row sequentially displays original images, followed by atten-
tion maps from TransFG, FFVT, SIM-Trans, and our method. (b) Ablation study
attention maps for our method on the CUB_200_2011 dataset. The rows present orig-
inal images, followed by attention maps from a ViT model fine-tuned on the dataset,
a ViT enhanced with only KTS, and a ViT integrating both KTS and SFE modules.

5 Conclusion

This study introduces ORA-Trans, a novel ViT-based model designed to enhance
fine-grained visual classification. The model integrates three main modules:
KTS, SFE, and TSS. KTS focuses on selecting key tokens that capture critical
local details. SFE introduces the structural information of objects to optimize
the model learning process of tokens selected by KTS, allowing for a deeper
understanding of the object’s framework and better handling of complex image
backgrounds. TSS further enhances feature combinations and representativeness
through stochastic token swaps.

We conducted experiments on multiple public datasets of different scales
and granularities, demonstrated exceptional performance of our model, proving
its effectiveness and generalizability. However, our method has shortcomings.
The process of calculating tokens’ scores in both modules introduces relatively
complex matrix operations, increasing the training time and space costs to some
extent. Although our method offers a new ViT modification approach, there’s
still some room for improvement in the implementation of these modules.

Our findings confirm that ViT’s feature extraction capabilities are effective
for fine-grained classification. The key lies in how we better filter and mine the
information contained in these features. Moving forward, we plan to streamline
our model and apply it to other scenarios such as fine-grained retrieval.
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Abstract. Incorporating stochasticity into the training process of deep
convolutional networks is a widely used technique to reduce overfitting
and improve regularization. Existing techniques often require modifying
the architecture of the network by adding specialized layers, are effective
only to specific network topologies or types of layers - linear or convolu-
tional, and result in a trained model that is different from the deployed
one. We present ChannelDropBack, a simple stochastic regularization
approach that introduces randomness only into the backward informa-
tion flow, leaving the forward pass intact. ChannelDropBack randomly
selects a subset of channels within the network during the backpropaga-
tion step and applies weight updates only to them. As a consequence, it
allows for seamless integration into the training process of any model and
layers without the need to change its architecture, making it applicable to
various network topologies, and the exact same network is deployed dur-
ing training and inference. Experimental evaluations validate the effec-
tiveness of our approach, demonstrating improved accuracy on popular
datasets and models, including ImageNet and ViT. Code is available at
https://github.com/neiterman21/ChannelDropBack.git.

Keywords: Regularization · Stochastic Training · Deep Learning

1 Introduction

Deep neural networks have achieved remarkable success in fields such as com-
puter vision and natural language processing. Numerous methods have been
implemented to enhance their training [9,10] and runtime performance [1,14,17].
However, as these networks become deeper and more complex, overfitting con-
tinues to be a challenge. To address this, researchers have developed various
regularization techniques. One widely used approach to mitigate overfitting and
improve regularization involves incorporating stochasticity.

Existing stochastic regularization approaches, such as Dropout [19] and Drop-
Connect [23], have shown promise in reducing overfitting. Dropout works by
randomly deactivating a subset of neurons during training, thereby preventing

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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complex co-adaptations among neurons. DropConnect, on the other hand, gen-
eralizes this idea by randomly removing connections between neurons instead
of deactivating the neurons themselves. While effective, these methods require
architectural modifications and introduce a discrepancy between the trained and
deployed models, as only a subset of the connections or neurons are used during
training, while all connections or neurons participate at inference.

Other approaches like Stochastic Depth [7] and DropPath [12] address the
training of very deep networks by randomly dropping entire layers or paths
during training. Despite their effectiveness, these methods are primarily appli-
cable to specific network topologies such as residual networks. Techniques like
DropBlock [5] and Spatial Dropout [21] introduce structured stochasticity by
dropping contiguous regions of feature maps or channels, but they still require
specialized layers or are limited to particular network structures.

In this paper, we present ChannelDropBack, a stochastic regularization tech-
nique that addresses the limitations of existing methods. The primary objective
of ChannelDropBack is to bridge the gap between training and inference phases
while enhancing the model’s generalization capabilities. Our method ensures
that the same network structure is used during both phases, thus eliminating
any potential discrepancies that might arise due to differences between training
and deployment. It introduces randomness exclusively in the backward pass of
the neural network, leaving the forward pass intact, by randomly selecting a
subset of layers and channels within the network during backpropagation and
applies weight updates only to these selected components.

We conduct extensive experiments on popular datasets such as ImageNet,
CIFAR-100, and CIFAR-10, using a variety of architectures including ResNet,
EfficientNet, and ViT-B. Our results demonstrate that ChannelDropBack con-
sistently improves accuracy and robustness compared to traditional training
methods and other stochastic regularization techniques. The experiments high-
light the versatility and efficacy of ChannelDropBack across different datasets
and network architectures, showcasing its potential as a universal regularization
method in deep learning.

To summarize, ChannelDropBack presents a forward-consistent approach
to stochastic regularization and provides a universally applicable technique to
enhance the performance and generalization of deep convolutional networks.

2 Related Work

Stochastic regularization techniques have become essential for deep learning, mit-
igating overfitting and enhancing generalization. Dropout [19] randomly deacti-
vates neurons during training, preventing complex co-adaptations and promot-
ing the learning of robust features. DropConnect [23] generalizes dropout by
randomly removing connections between neurons. However, both methods suf-
fer from inconsistency between the trained and deployed networks. Stochastic
Depth [7] and DropPath [12] address the challenge of training very deep networks
by randomly dropping entire layers or paths during training. ScheduledDrop-
Path [25] extends DropPath with a linearly decreasing drop rate. These methods,
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while effective, still maintain the discrepancy between the trained and deployed
networks. Shake-Shake [4] and ShakeDrop [24] regularization techniques apply
random perturbations to the inputs of a network during training, encouraging the
model to learn more robust features. However, they require modifications to the
original architecture. DropBlock [5] and Spatial Dropout [21] introduce stochas-
ticity in a structured manner by dropping contiguous regions of feature maps or
channels. Although these methods improve regularization, they still require the
addition of specialized layers or are only effective for specific network topologies.
In summary, existing stochastic training methods often necessitate architecture
modifications, are limited to specific network topologies, and maintain a discrep-
ancy between the trained and deployed networks.

3 ChannelDropBack

ChannelDropBack is a simple method for stochastic training approach for deep
convolutional networks. It aims to improve regularization by introducing ran-
domness exclusively into the backward information flow during training, while
preserving the integrity of the forward pass, and ensuring that the same network
is deployed during both training and inference phases. It allows for seamless
integration into the training process of any model without the need to modify
its architecture or add specialized layers.

3.1 Layer and Channel Selection Strategy

During each training iteration, ChannelDropBack randomly selects a single layer
within the network for which weight updates will be applied to a subset of its
channels or rows. The layer selection strategy is based on a predefined probability
distribution, ensuring that each layer has a non-zero probability of being selected.
In our experiments, we employ a uniform distribution for layer selection, but
other distributions can also be explored.

Formally, let L denote the set of all layers in the network, and let l be a
layer sampled from L according to the predefined probability distribution. The
selected layer is then given by:

lselected ∈ L

Once the layer, lselected, has been selected, we randomly choose a subset of
channels (in the case of convolutional layers) or rows (in the case of fully con-
nected layers) to be updated during backpropagation. The number of channels
or rows to be selected can be determined by a predefined hyperparameter, p,
which represents the proportion of channels or rows to be updated. We always
select from the first dimensions of the layer to drop.

Formally, let C denote the set of all channels in a convolutional layer or the
set of all rows in a fully connected layer. Let c be a channel or row sampled from
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C according to the predefined probability distribution. The subset of selected
channels or rows, S, is then given by:

S = {c1, c2, . . . , ck} ⊆ C

where k is the number of selected channels or rows, and c1, c2, . . . , ck are the
randomly selected channels or rows.

3.2 Backward Pass Modification

Once the subset of channels or rows, S, has been selected, we modify the back-
propagation process to apply weight updates only to the selected channels or
rows in the selected layer, lselected. During the backward pass, ChannelDrop-
Back computes the gradients for all layers in the network as usual. However,
when it comes to updating the weights, ChannelDropBack applies the updates
only to the selected channels or rows in the selected layer, lselected, while leaving
the remaining channels or rows unchanged.

Formally, let wl denote the weights of layer l, and let Δwl denote the weight
updates computed during backpropagation. The updated weights, w′

l, are given
by:

w′
l = wl + Δwl · I(l = lselected) · I(c ∈ S)

where I(l = lselected) is an indicator function that returns 1 if layer l is the
selected layer, lselected, and 0 otherwise. I(c ∈ S) is an indicator function that
returns 1 if channel or row c is in the subset S, and 0 otherwise.

3.3 Training

The training procedure with ChannelDropBack is similar to the standard train-
ing process, with the exception of the layer selection, channel or row selection,
and backward pass modification steps. The overall training procedure can be
summarized as follows:

Algorithm 1 ChannelDropBack Training Procedure
1: Initialize the network weights.
2: for each training iteration do
3: Perform a forward pass to compute the output and loss.
4: Randomly select a layer, lselected, according to the layer selection strategy.
5: Randomly select a subset of channels or rows, S, according to the channel or

row selection strategy.
6: Perform a backward pass to compute the gradients for all layers.
7: Apply weight updates only to the selected channels or rows in the selected layer,

lselected, as described in the backward pass modification step.
8: end for
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Relation between Learning Rate and Drop Rate The drop rate in Chan-
nelDropBack plays a crucial role in balancing the stochastic regularization and
the learning process. To achieve optimal performance, we consider the relation-
ship between the learning rate and the drop rate. We consider layer drop rate
as the probability to select a layer for dropping, and channel drop rate as the
probability to drop a channel within the selected layer. Here, we discuss three
key aspects of this relationship and provide explanations for their underlying
mechanisms.

1. Starting with zero drop rate: It is best to start with a zero layer drop rate
until the first weight decaying occurs. The rationale behind this is to allow
the model to learn the initial features and representations without being
affected by the stochastic regularization introduced by ChannelDropBack.
Starting with a zero layer drop rate enables the model to learn a good initial
representation of the data, which can serve as a solid foundation for further
refinement and optimization as the drop rate is gradually increased.

2. Increasing layer drop rate and reducing learning rate: After the each
weight decaying, we increase the drop rate in ChannelDropBack. This recom-
mendation stems from the observation that as training advances and weights
are reduced, the model becomes more susceptible to overfitting. These results
align with the findings presented by Morerio et al [15].

3. Layer skipping and drop probability: Similar to [6], we observed that it is
better to reduce stochasticity for the earlier layers for improved convergence
of the model. We therefore employ a simple policy of skipping during the
layer selection phase the initial four layers in the model, always training them
regularly. We also investigated the survival probability approach of [6] for our
layer drop rate. However, as this method did not yield notable improvements,
we opted to retain our simpler uniform probability approach.

3.4 Inference

One of the key advantages of ChannelDropBack is that it ensures the exact
same network is deployed during both training and inference. This is because
ChannelDropBack does not introduce any modifications to the forward pass or
the network architecture during training. Consequently, the inference procedure
with ChannelDropBack is identical to the standard inference process, without
any additional computations or modifications.

4 Results

We evaluate ChannelDropBack on ImageNet [2], CIFAR-100, CIFAR-10 [11],
and SVHN [16] datasets using MobileNetv2 [18], ShuffleNetV2 [13], EfficientNet-
B0 [20], DenseNet121 [8], ResNet-50 [6], and Vision Transformer (ViT-B) [3]
architectures. We compare ChannelDropBack against baseline models and other
regularization techniques. All experiments use SGD optimizer with momentum
0.9 and weight decay 1e-4, conducted on eight Tesla V100 SXM2 32Gb and eight
Quadro RTX6000 GPUs.
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4.1 Transfer Learning Results

We evaluate ChannelDropBack in transfer learning scenarios using pre-trained
ViT models on ImageNet-21K and ResNet-50 on ImageNet-1K, fine-tuned on
CIFAR10, CIFAR-100, and ImageNet-1K. CIFAR10 and CIFAR100 were fine-
tuned for 85 epochs, and ImageNet for 10 epochs. We use a learning rate of 0.001
for ViT and 0.01 for ResNet50, with a batch size of 256.

Tables 1 and 2 present the accuracy comparison between models fine-tuned
with ChannelDropBack and those without stochastic regularization.

Table 1. Fine-tuned model accuracy on various datasets.

Model Resolution CIFAR10 CIFAR100 ImageNet
Ours Baseline Ours Baseline Ours Baseline

ViT-Base/16 224x224 98.80 98.95 92.20 91.67 82.03 81.32
ViT-Large/16 224x224 99.08 99.04 93.44 93.25 83.13 82.94
ViT-Base/16 384x384 - - - - 83.90 83.32
ViT-Large/16 384x384 - - - - 85.05 85.05

Table 2. Fine-tuned ResNet50 accuracy on various datasets. The model was pre-
trained on ImageNet-1K. Pre-train and fine-tune images were resized to 224x224.

Model SVHN CIFAR10 CIFAR100

ResNet50 (Baseline) 95.31 97.38 84.20
ResNet50 (ChannelDropBack) 95.37 97.45 84.90

ChannelDropBack enhances transfer learning capabilities by introducing con-
trolled stochasticity during the fine-tuning process. This stochasticity helps pre-
vent overfitting to the source domain, allowing the model to adapt more effec-
tively to the target domain. The selective channel dropping encourages the net-
work to learn robust features that generalize well across datasets.

4.2 Full Training Results

We evaluate training from scratch using ChannelDropBack with a multi-step
linear learning rate schedule. The initial learning rate is 0.01, with milestones
at 0.3, 0.6, and 0.8 of the total 200 epochs. The ChannelDropBack drop rate
starts at 0.01 and increases linearly to 0.3 after the last learning rate decay. We
exclude the first layers from dropping to improve the learning process.

Table 3 presents the top-1 accuracy on CIFAR-100 and CIFAR-10 test sets
for different models.

ChannelDropBack consistently outperforms the baseline model across
datasets and architectures, demonstrating its universal applicability.
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Table 3. Model Accuracy on various datasets trained from scratch.

Model CIFAR10 CIFAR100
ChannelDropBack Baseline ChannelDropBack Baseline

MobileNetv2 94.41 94.04 73.75 68.08
EfficientNetB0 93.16 92.79 67.23 67.15
ShuffleNetV2 93.13 92.65 65.45 65.32
DenseNet121 95.52 95.12 77.30 77.01
ResNet50 89.12 89.16 77.55 76.51

4.3 Comparison with Other Regularization Techniques

We compare ChannelDropBack with Dropout, SpatialDropout [22], and Drop-
block [5]. Table 4 summarizes the top-1 accuracy for ResNet-50 on CIFAR-100.
As can be seen, ChannelDropBack outperforms other regularization techniques.

Table 4. Comparison of regularization techniques on CIFAR-100 with ResNet-50.

Method Top-1 Accuracy (%)

Baseline 76.51
Dropout (kp=0.7) [19] 76.80
DropPath (kp=0.9) [12] 77.10
SpatialDropout (kp=0.9) [21] 77.41
Dropblock (kp=0.9) [5] 77.42
ChannelDropBack 77.55

4.4 Performance on Different Network Depths

We investigate ChannelDropBack performance across varying network depths
using ResNet architectures. Table 5 presents results for ResNet-18, ResNet-
34, ResNet-50, and ResNet-101 on CIFAR-100. ChannelDropBack consistently
improves performance across network depths, demonstrating effectiveness for
both shallow and deep networks.

4.5 Layer Drop Rate Policy

We analyze the impact of different layer drop rate policies on ChannelDropBack.
Table 6 shows results for ResNet-34 on CIFAR-100. Fixed drop rate applies
channel dropping operations from the first epoch without incremental increase.
Adaptive is as discussed in Section 3.3. "without skipping first layers" allows
also dropping of the first layers.
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Table 5. ChannelDropBack performance on ResNet architectures of different depths
for CIFAR-100. Values in parentheses indicate improvement over the baseline.

Model ChannelDropBack Baseline

ResNet18 75.08 (+0.35) 74.73
ResNet34 76.28 (+0.72) 75.56
ResNet50 77.55 (+1.04) 76.51
ResNet101 77.67 (+0.86) 76.81

Table 6. Study results for different drop rate policies for ResNet-34 on CIFAR-100.

Configuration Top-1 Accuracy (%)

Baseline 75.56
ChannelDropBack 75.88
ChannelDropBack (Adaptive) 76.28
ChannelDropBack (Adaptive without skipping first layers) 75.73

Both the adaptive drop rate strategy and skipping layer selection mechanism
contribute to ChannelDropBack’s effectiveness. Using a fixed drop rate through-
out training and remove skipping results in a decrease in accuracy.

4.6 Impact of Channel Drop Rate

Figure 1 illustrates the relationship between the drop rate of the channels and
top-1 accuracy on CIFAR-100 using ResNet-34.

Accuracy improves with increasing drop rate up to an optimal point, after
which performance declines. This suggests an optimal level of randomness that
maximizes performance. For CIFAR-100 with ResNet-34, a drop rate of 0.5
yielded the best results.

4.7 Computational Overhead

We assessed the scalability and computational overhead of ChannelDropBack.
Table 7 compares the training time per epoch for ResNet-50 on CIFAR-100 with
and without ChannelDropBack. ChannelDropBack incurs negligible computa-
tional overhead, due to the balance between reduced backpropagation operations
and additional selection overhead.
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Table 7. Training time per epoch for ResNet-50 on CIFAR-100, comparing baseline
and ChannelDropBack configurations.

Configuration Time (seconds)

Baseline 29.1
ChannelDropBack 29.3

Fig. 1. Impact of the channel drop rate on top-1 accuracy for ResNet-34 on CIFAR-100.

5 Conclusion

ChannelDropBack is a simple yet effective stochastic training approach that
improves regularization in deep networks by introducing randomness exclusively
into the backward information flow during training. By randomly selecting a
subset of channels or rows for weight updates in a selected layer and preserving
the integrity of the forward pass, ChannelDropBack offers a universally appli-
cable regularization technique, without requiring modifications to the network
architecture. This makes it easy to implement across a wide range of network
topologies, from traditional convolutional networks like ResNet and EfficientNet
to more recent architectures like Vision Transformers (ViT). By maintaining
consistency between the training and inference phases, ChannelDropBack also
ensures that the trained model is identical to the deployed model, eliminating
the potential discrepancies that can arise with other stochastic regularization
methods.

Acknowledgements. We acknowledge the Ariel HPC Center at Ariel University for
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within this paper.
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Abstract. Curvilinear Structure segmentation has numerous applica-
tions in various fields, including providing a better understanding of
defects such as cracks on roads or walls, thereby assessing the struc-
tural safety of buildings. Numerous curve segmentation methods based
on Convolutional Neural Networks(CNN) have been developed in recent
years. However, preserving feature integrity remains a challenge. To
address this issue, this paper introduces a double dynamic network, called
DD-Net, which consists of a dynamic structure for training and dynamic
masking for inference. Firstly, to enhance the nonlinearity of the model,
a paradigm to auto-adjust the CNN structure via a trainable module is
formed for better fine-grained feature extraction. This dynamic struc-
ture (DS) paradigm enables a trade-off to extract or discard the feature
data in the model training. Due to the data heterogeneity between the
training and inference data, models may contain some useless nodes that
are less effective during inference. The dynamic masking (DM) is pro-
posed to omit the useless nodes based on the score difference between the
train and inference feature statistics, thereby reducing redundant com-
putations. To further improve the model’s performance on thin-curve
segmentation and to preserve feature integrity, we introduce a non-curve
suppression (NCS) module. This module focuses on background infor-
mation while considering foreground prediction to address noisy condi-
tions. The experimental results show that our DD-Net achieves promis-
ing results on three benchmark datasets and outperforms state-of-the-art
curve segmentation models.

Keywords: Curve structure · Feature extraction · Dynamic network

1 Introduction

Curve structures are composed of various line shapes that differ in length and
thickness [13,21]. They are widely present in medical image [3,7], remote sensing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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image [31,34], and other image domains. Curve structure segmentation refers
to the process of binary segmentation of curve structures in images, such as
segmenting blood vessels in medical images [25] to assist in the diagnosis and
treatment of specific diseases, detecting cracks in road images [17], and extracting
road networks from remote sensing images [33].

Most of the current popular deep networks have the same static inference
paradigm, that is, once trained, the structure and parameters of the network
remain unchanged during the testing phase. Such static and fixed model struc-
tures limit the model’s representational power, inference efficiency, and inter-
pretability to some extent. In contrast, a dynamic network can adaptively adjust
its structure based on the input sample during the inference stage, offering sev-
eral advantages that a static network cannot achieve [2].

While previous methods have attempted to address the issue of preserv-
ing feature details in thin-curve segmentation, they still exhibit limitations in
effectively extracting feature integrity. These methods often struggle to balance
between extracting the desired curve structure and maintaining feature integrity,
leading to suboptimal results. To overcome these challenges, we introduce DD-
Net, a novel approach designed to dynamically adjust computational resources
while maximizing feature integrity in thin-curve segmentation tasks. We sum-
marize the contributions of this paper as follows:

• We propose a dynamic structure based on trainable dynamic scaling parame-
ters to scale global feature, selectively retaining interesting parts of the model
and proportionally discarding irrelevant information.

• We propose a dynamic inference strategy designed to adaptively adjust com-
putations based on varying spatial locations within image data. This method
can adaptively reduce the amount of redundant calculations only through
inference.

• We introduce a non-curve suppression mechanism to enhance the preserva-
tion of the global feature integrity of the data by supplementing background
feature information.

2 Related Works

2.1 Dynamic Structure

Traditional static neural network models often suffer from a lack of general-
ization. Dynamic neural networks have emerged as a solution, allowing models
to adjust training weights or inference structures dynamically. Yang et al. [30]
proposed a method where convolution kernels are represented as linear combi-
nations of multiple nuclei, dynamically adjusting weight coefficients based on
input. Li et al. [10] introduced dynamic routing, enabling adaptive adjustment
of image resolution based on picture content, leading to improved efficiency and
performance. In the work of crack detection, Chen et al. [1] proposed a novel
clustering-inspired representation learning framework to locate edge non-crack
regions through preprocessing. Liu et al. [11] proposed a new attention module
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to effectively extract context information across feature channels and effectively
embed position information to capture large receptive field context information.
Zhao et al. [32] performed small object segmentation based on dilated convolu-
tion and new loss function.

In this context, our proposed method utilizes trainable dynamic adaptive
parameters during the training phase to dynamically control the acquisition and
rejection of feature data by the model. This simple yet effective dynamic fea-
ture extraction approach achieves the performance of complex feature extraction
modules with minimal computational cost during training.

2.2 Global Feature Extraction

Convolutional Neural Networks (CNNs) rely on local convolution operations,
with each kernel focusing on a small receptive field of the input. However, this
localized nature can lead to poor invariance to input transformations and sensi-
tivity to positional information [14].

To address these issues, Singh et al. [24] introduced dense connections in
CNNs to enhance information flow and parameter utilization. Yan et al. [29]
tackled spatial invariance in CNNs by proposing an architecture employing low-
rank and sparse decomposition methods. In our work, we propose a background
detection method to complement foreground detection and achieve the extrac-
tion of global feature, particularly for the dual-category detection task of curve
segmentation.

2.3 Dynamic Inference

Adaptive inference, a central concept in dynamic neural networks, has been
studied extensively. Classical approaches involve building adaptive integrations
of multiple models through cascade [18] or parallel [6] structures and selectively
activating them based on inputs. Xue et al. [28] proposed adaptive fusion of
multi-modal data to generate data dependencies during the inference process to
achieve the dynamics of inference features. Tuli et al. [26] proposed to tile the
matrix in transformer operations with different data streams to improve data
reuse and thus achieve greater energy efficiency.

Building on this concept, we propose a dynamic masking strategy that adjusts
the number of active weight nodes based on their contribution to the final pre-
diction. This approach eliminates unnecessary calculations and reduces compu-
tational overhead without compromising model performance.

3 Proposed Method

3.1 Dynamic Structure Extraction Module

Dynamic segmentation models for curve segmentation attempt to locally focus
on curve information by modifying the deformation of convolutional kernels[19].
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Fig. 1. Global scaling of features is achieved by cascading multiple layers of learnable
dynamic scaling parameters.

Inspired by the effectiveness of IterNet [9], our model employs a cascade approach
to amplify the impact of our proposed dynamic modules. Within this cascaded
architecture, the model comprises multiple layers or stages, each progressively
refining and integrating information from preceding stages. This iterative refine-
ment process empowers the model to capture a comprehensive and intricate rep-
resentation of input features. Our encoder consists of multiple layers of dilated
convolution, pooling, and variable dynamic adaptive parameters.

The schematic diagram of the dynamic structure extraction module is shown
in Fig 1. In our dynamic structure extraction module, we partition the data
into two segments. The adjustment of the dynamic adaptive parameters’ size
is employed to control the retention and discarding of data in these segments.
This approach resembles the feature extraction function of convolution but offers
the advantage of effectively preserving the global feature information of the data.
This preservation is achieved by iteratively adjusting the overall data information
proportionally during each balancing step of the process.

As depicted in Fig 1, the dynamic adaptive scaling process for each time can
be described as follows:

xi+1 = (
Si

Si+1
· x̂i) ∪ (

Si+1

Si
· x̂j) (1)

where S is a learnable dynamic scaling parameter, and (.) ∪ (.) is concat along
the channel dimension. By introducing this dynamic structure, we can dynami-
cally adjust the level of feature retention or discard in our model. This provides
us with the flexibility to control the trade-off between model complexity and
computational efficiency.
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3.2 Non-Curve Suppression

Curve segmentation is a binary classification task, where most methods tend
to focus solely on the extraction capability and attention given to the fore-
ground [5,8]. By introducing background cues to improve the model’s ability to
distinguish segmented objects from other parts, the model can perceive global
feature information.

Fig. 2. Schematic diagram of the process of Non-curve suppression, in which (a) and
(b) represent the modules responsible for foreground and background prediction respec-
tively, and (c) represents the suppression operation of the curve.

To leverage our proposed Dynamic Structure Extraction Module for effec-
tive global feature extraction, we advocate conducting background and fore-
ground predictions for each cascade layer of the model. To ensure accurate back-
ground prediction without interference from foreground noise, we suppress the
foreground in the background prediction results at each stage of the model, as
illustrated in Fig. 2. Among them, the foreground is the prediction result of the
curve, the background is the prediction result of the part outside the curve, and
the non-curve background is the result after masking the prediction of the curve
in the background prediction. For the output Xfu of each model cascade layer,
it can be expressed as:

Xfu = Xf −
{
0 Xb < 0
Xb other

(2)

where Xf is the prediction result of the foreground, Xb is the prediction result
of the background. As depicted in Fig. 2, during training, we compute a hybrid
loss and subsequently utilize it for backpropagation. LossF represents the loss
associated with the foreground curve, while LossB represents the loss associated
with the background. Introducing a background loss enables the model to predict
both foreground and background features effectively. LossFU denotes the loss
of the fusion feature, which integrates the feature data of both the foreground
curve and non-curve elements. For each module during the loss computation,
we employ binary cross-entropy(BCE) loss with equal weights. The BCE loss is
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defined as:

Loss = − 1
n

n∑
i=1

(yilog(σ(ŷ)) + (1 − yi)log(1 − σ(ŷi))) (3)

3.3 Dynamic Masking

The accumulation of a large number of stacked layers in a model leads to
increased computational demands. We aim for the model to rely more on the
selection of Dynamic Adaptive Parameters, thereby reducing unnecessary com-
putations.

Fig. 3. Masking of useless parameter nodes based on data scores: Comparison between
ScoreTrain acquired during model layer training and ScoreInfer obtained in the
current inference process.

Due to the distributional differences between the training and testing
datasets, models may contain some useless parameter nodes that are only effec-
tive for the training data during inference. The overall process is shown in Fig
3. To reduce the number of useless nodes in the model that are sensitive to
large distributional differences, we propose a dynamic masking strategy. During
the training process, we calculate scores for the incoming feature data x before
passing it to the encoder module. The calculation formula is as follows:

ScoresTraini =
1
n

n∑
j=1

xij − σ(xij) (4)

where σ(.) represents the standard deviation calculation. During training, the
score for the i-th layer is evaluated based on the score of the input data for
that module. xij is the j-dimensional feature data of the i-th layer. This score
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is stored for dynamic masking reference during inference. During inference, the
score of ScoresInferi for the input features is calculated in the same way. If the
difference exceeds a threshold, it indicates a significant difference between the
inference data and the training data for the current module. Some nodes of the
current module may not be capable of reasoning on these highly different data,
resulting in redundant calculation processes. In such cases, a dynamic masking
(DM) strategy is applied to discard nodes.

The DM strategy is to calculate the masking probability of each node based
on the weight of the node in each model layer and the characteristics of the data
in the current model. The masking probability of each node is as follows:

pik =
xiyik

d2i
(5)

di =

∣∣∣∣∣∣
1
n

n∑
j=1

xij − 1
n

n∑
j=1

x̂ij + σ(x̂ij) − σ(xij)

∣∣∣∣∣∣ (6)

where x̂ represents the feature data in inference and y represents the model
nodes. In the context of inference, x̂ denotes the feature data, while y represents
the model nodes. During dynamic masking, the appropriateness of the current
data and the model’s current layer nodes is assessed using the score derived from
the feature data of the current layer’s inference process and the score from the
feature data during the model’s training process. In this context, the indices i and
k represent the number of layers in the model and the number of nodes within
each layer. To obtain a single probability value corresponding to each node, we
choose the mean of each probability matrix as a measure. After obtaining the
value pik for each node, a softmax operation is performed on the entire set of
values to represent the probability of each node being selected. The probability
matrix is used to select and mask the corresponding nodes with a given number
of times.

4 Experimental Results

4.1 Dataset

To evaluate the effectiveness of our method on curve segmentation, we conduct
qualitative and quantitative experiments on three different datasets, including
CRACKTREE200 [35], CORN-1 [16], and CRACKFOREST [23].

The CRACKTREE200 dataset is a commonly used benchmark dataset for
crack detection and segmentation. It contains high-resolution images of pave-
ment surfaces with crack annotations. CRACKTREE200 dataset consists of 206
images. In this experiment, the first 150 images are used for training, while the
remaining images are used for testing.

CORN-1 contains a total of 1698 corneal confocal microscopy images of
corneal subbasal epithelium using a Heidelberg Retina Tomograph equipped
with a Rostock Cornea Module (HRT-III) microscope. In this experiment, the
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first 1176 images are used for training, followed by 188 images for validation,
and the remaining 152 images are used for testing.

The CrackForest dataset is another dataset for crack detection and segmen-
tation. It consists of images of road surfaces with crack annotations, taken under
various environmental conditions. We select the first 100 images from the dataset,
with the first 80 images used for training and the remaining 20 images used for
testing.

4.2 Implementation Details

Our proposed model is developed using PyTorch and trained on an NVIDIA
RTX3080Ti. To augment the data, we utilize horizontal flipping and random
cropping techniques. All the networks are optimized by Adam with an initial
learning rate of 0.001. During training, all training samples are cropped to a size
of 256 × 256, and our network is trained with a batch size of 4.

4.3 Evaluation Metrics

In the experiment, we utilize six evaluation metrics to assess the performance of
our method, including F1 score, Precision, Recall [4,15,22], Mcc, mIoU and Qual-
ity [27] for pixel-based evaluation, which are widely used in existing semantic
segmentation methods. The Matthews Correlation Coefficient (MCC) is defined
as:

MCC =
tp × tn − tp × fn√

(tp + fp) × (tp + fn) × (tn + fp) × (tn + fn)
(7)

Consider one-pixel width segmentation, let the confusion matrix between the
prediction skeleton and the ground truth skeleton of the thin curve are: TPsk,
FPsk, TNsk, FNsk. The Quality is defined as:

Quality =
TPsk

FPsk + TPsk + FNsk
(8)

4.4 Performance Comparison

In our study, we compare DD-Net with several commonly used baseline methods,
as well as several state-of-the-art methods including U-Net [20], CS-Net [16],
IterNet [9], and FR-UNet [12], on three datasets: CORN-1, CRACKTREE200,
and CRACKFOREST. We evaluate a total of six metrics. The results comparing
DD-Net with other methods on the three datasets are presented in Table 1. On
the CORN-1 dataset, DD-Net’s F1 is 2.09 higher than the second-best score,
while the mIoU improves by 2.46. On the CRACKFOREST dataset, F1 and
mIoU increased by 3.36 and 3.68. On the CRACKTREE dataset, F1 increased
by 2.53 and mIoU increased by 3.12.

From Table 1, it is evident that DD-Net demonstrates superior performance
across overall metrics compared to the recently proposed state-of-the-art curve
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Table 1. Performance comparison of various models. The best performance is high-
lighted in bold format and the next best results are underlined.

Dataset Method F1↑ Pre.↑ Rec.↑ mIoU↑ Mcc↑ Qua.↑
CORN-1 U-Net [20] 65.73 74.85 59.20 49.28 65.72 49.11

IterNet [9] 66.67 74.92 60.60 50.32 66.56 50.17
CS-Net [16] 65.93 75.80 58.54 49.45 65.94 49.22
FR-UNet [12] 66.83 75.08 60.72 50.46 66.71 50.34
DD-Net 68.93 70.46 68.12 52.93 68.50 52.51

CRACKF. U-Net [20] 67.29 69.24 70.24 52.13 67.67 27.66
IterNet [9] 69.04 72.93 69.48 54.03 69.29 28.94
CS-Net [16] 67.86 72.51 68.37 53.67 68.11 29.39
FR-UNet [12] 69.23 66.34 76.19 53.81 69.48 27.33
DD-Net 72.63 74.72 72.63 57.76 72.39 31.44

CRACKT. U-Net [20] 65.68 71.69 61.39 49.32 65.97 48.86
IterNet [9] 71.16 80.22 64.61 55.86 71.65 55.65
CS-Net [16] 66.60 80.11 57.44 50.56 67.53 50.47
FR-UNet [12] 72.45 78.86 67.53 57.36 72.70 57.03
DD-Net 74.99 79.14 71.61 60.49 75.08 60.48

segmentation method, FR-UNet. In Fig. 4, we present visualizations of the
images to provide a more intuitive representation. The figure illustrates the seg-
mentation results of DD-Net and other comparable methods on three datasets.
Specifically, the figure displays six images, including the original image, images
segmented by U-Net, IterNet, FR-UNet, DD-Net, and the ground truth image
(from left to right). As depicted in Fig. 4, our method successfully detects small
curve structures and connects breakpoints that are overlooked by other models.
Moreover, our model effectively removes noise and restores the original structure
of the curve.

4.5 Ablation Study

In this experiment, we aim to verify the contribution of each component
of the proposed method. For validation of dynamic masking (DM) reduction
calculations, the calculation ratio (CR) can be defined based on the number of
model nodes:

CR =
∑n

i=1 |xi|
N

∑m
j=1 |yj | (9)

where xi represents the number of nodes masked, N represents the total num-
ber of nodes in the model layer when masking is performed, and yj represents
the number of times masking is performed. The metrics after applying dynamic
masking are shown in Table 2. We select two representative metrics and compare
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Fig. 4. Visualization of the Performance of DD-Net and Other Methods on Different
Datasets.

Table 2. Comparison of ablation experiments with and without Dynamic Masking on
DD-Net.

Dataset Method F1↑ mIoU↑ CR↓
CORN-1 DD-Net w/o DM 68.92 52.92 100%

DD-Net 68.93 52.93 87.35%
CRACKF. DD-Net w/o DM 72.59 57.71 100%

DD-Net 72.63 57.76 87.35%
CRACKT. DD-Net w/o DM 74.98 60.48 100%

DD-Net 74.99 60.49 87.4%
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them across three datasets. It can be observed that after each dynamic masking
iteration, DD-Net reduces the average computation cost of each masked layer
by approximately 12.6%. Additionally, this reduction in computation does not
compromise or may even improve the model’s performance. Through dynamic
masking, we can dynamically adapt the model nodes that are most suitable for
the current data only through the inference part, reducing useless calculation
processes. Table 3 presents the effect of the Dynamic Structure Extraction Mod-
ule(DS) on U-Net performance across three datasets. From Table 3, it can be
observed that the introduction of DS improves the performance of U-Net on var-
ious metrics across different datasets. Among them, F1 improved by an average
of 1.59, mIoU by an average of 1.82, and Mcc by an average of 1.73.

Table 3. Ablation experiment on U-Net using Dynamic Structure Extraction Module.

Dataset Method F1↑ mIoU↑ Mcc↑
CORN-1 U-Net 65.73 49.28 65.72

U-Net w/ DS 67.14 50.81 66.93
CRACKF. U-Net 67.29 52.13 67.67

U-Net w/ DS 68.94 53.86 69.23
CRACKT. U-Net 65.68 49.32 65.97

U-Net w/ DS 67.38 51.51 68.39

Table 4. Ablation experiment on IterNet using Dynamic Structure Extraction Module.

Dataset Method F1↑ mIoU↑ Mcc↑
CORN-1 IterNet 66.67 50.32 66.56

IterNet w/ DS 67.35 51.09 67.03
CRACKF. IterNet 69.04 54.03 69.29

IterNet w/ DS 69.39 54.30 69.67
CRACKT. IterNet 71.16 55.86 71.65

IterNet w/ DS 71.42 56.34 72.45

We are also interested in knowing if this method has a better effect on the
cascaded network. Table 4 presents the impact of DS on the IterNet model. It
can be seen that F1 improved by an average of 0.43, mIoU by an average of
0.51, and Mcc by an average of 0.55. Based on the combined results from Table
3 and Table 4, it can be concluded that the DS leads to improved performance.
Both U-Net and IterNet demonstrate enhanced performance after incorporating
DS across different datasets. The versatility of the DS method is evident as
it improves the overall model performance on diverse datasets. Notably, the
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performance enhancement is observed even when DS is applied to the cascaded
model, indicating its adaptability across different network architectures.

Fig. 5. (a) represents the original image, while (b) and (c) depict the heat maps show-
casing the model’s attention to the foreground and background, respectively. Brighter
colors indicate areas where the model pays more attention.

The Non-Curve Suppression (NCS) technique is a crucial method that
improves model performance by incorporating forward and backward predic-
tions. We conduct experiments on three distinct datasets, each representing
unique challenges and characteristics, to investigate the effectiveness of this
method in enhancing model performance. The results, as shown in Table 5, pro-
vide valuable insights into the impact of NCS on U-Net’s performance. Taking
the CrackTree dataset as an example, the model’s feature focus area is shown
in Fig 5. It can be seen that the introduction of NCS allows the model to pay
attention to the foreground and background, thereby realizing the perception
of global features. Indeed, Table 5 demonstrates the varying improvements that
the introduction of NCS brings to U-Net across different datasets. The perfor-
mance enhancement achieved by NCS sets the ability to generalize on different
data. Certainly, we are interested in understanding the contribution of NCS to
our DD-Net model. By comparing the performance of DD-Net with and without
NCS, we can quantify the specific improvement brought about by this tech-
nique. The results are shown in Table 6. By evaluating the performance metrics
on each dataset, it can be seen that F1 improved by an average of 0.98, mIoU
by an average of 1.11, and Mcc by an average of 0.9. We can observe that NCS
consistently leads to performance improvements. It is worth mentioning that the
improvement may differ from dataset to dataset. This implies the importance
of dataset-specific analysis and experimentation to accurately understand the
impact of NCS on DD-Net performance. The effect of incorporating background
fusion into DD-Net is illustrated in Fig 6. Among them, the red color represents
the false positive foreground pixels in the segmentation result, while the green
color represents the missed foreground pixels. As expected, the incorporation of
background information for fusion effectively suppresses erroneous foreground
information.
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Table 5. Ablation experiment on U-Net using Non-Curve Suppression.

Dataset Method F1↑ mIoU↑ Mcc↑
CORN-1 U-Net 65.73 49.28 65.72

U-Net w/ NCS 66.94 50.57 66.82
CRACKF. U-Net 67.29 52.13 67.67

U-Net w/ NCS 68.67 53.78 69.22
CRACKT. U-Net 65.68 49.32 65.97

U-Net w/ NCS 71.45 56.26 72.22

Table 6. Ablation experiment on DD-Net without using Non-Curve Suppression.

Dataset Method F1↑ mIoU↑ Mcc↑
CORN-1 DD-Net w/o NCS 67.76 51.60 67.34

DD-Net 68.93 52.93 68.50
CRACKF. DD-Net w/o NCS 71.83 56.93 71.83

DD-Net 72.63 57.76 72.39
CRACKT. DD-Net w/o NCS 73.96 59.25 74.05

DD-Net 74.99 60.49 75.08

Fig. 6. Non-curve suppression serves as a valuable aid in suppressing erroneous fore-
ground information.

5 Conclusion

In this paper, we propose a novel curve structure segmentation framework that
addresses the limitation of capturing insufficient global feature information in
existing curve segmentation algorithms. Extensive evaluations on various bench-
mark datasets have been conducted to demonstrate the superior performance
of our proposed framework, DD-Net, compared to state-of-the-art segmentation
methods. DD-Net achieves remarkable results in terms of pixel-level metrics
for curve linear structure image segmentation. The robust performance of DD-
Net highlights its effectiveness in capturing intricate curve structures and accu-
rately segmenting images. Moreover, the proposed framework provides mean-
ingful insights into the importance of incorporating global feature in curve seg-
mentation tasks. By leveraging the comprehensive understanding of the overall
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features, DD-Net showcases its capability to handle complex curve structures
with improved accuracy and precision.
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Abstract. Accurate flight trajectory prediction is crucial for enhancing
the overall efficiency of air traffic management. However, existing meth-
ods often overlook the importance of capturing flight trends and pay
insufficient attention to temporal relationships between different vari-
ate channels, impacting prediction accuracy. In this work, we propose a
novel Multi Channel-Frequency Mamba-based framework MCFM, which
leverages Mamba for the first time to extract flight trends from fre-
quency information and incorporates time dependencies of diverse chan-
nels. Specifically, MCFM utilizes the Multi-Channel Interaction block to
extract and fuse the temporal patterns of various channels. We design the
Attention Mamba to perform frequency extraction for obtaining detailed
trend insights. On that basis, we introduce a Shared Mamba to increase
the interaction of frequency information, thus adding mutual guidance
and improving prediction accuracy. Experimental results demonstrate
that MCFM outperforms existing methods on a real-world dataset.

Keywords: Flight trajectory prediction · Mamba · Time series
analysis

1 Introduction

Flight trajectory prediction (FTP) is essential in air traffic management. Provid-
ing controllers trajectory information allows them to monitor airspace conditions
more accurately, enabling the detection of potential conflicts [1] and predicting
flight delays [2] in advance. As the global economy expands, the aviation sector
has witnessed a sustained increase in air transportation and passenger volume. In
this context, timely and precise FTP is crucial for enhancing the overall efficiency
of air traffic management and mitigating the risk of potential flight conflicts.

FTP task aims to forecast future flight states, such as longitude, lati-
tude, altitude, and speed, based on the historical flight trajectory. Existing
methods for flight trajectory prediction can be broadly categorized into three
main approaches: kinetic modeling, state estimation, and machine learning. The
kinetic modeling approach [3–5] relies on establishing kinematic equations to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15324, pp. 417–430, 2025.
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simulate flight patterns and forecast future motion trajectories. In contrast, the
state estimation approach [6,7] focuses on establishing motion equations based
on aircraft attributes such as position, speed, and acceleration to propagate and
estimate subsequent motion states. However, both of them struggle to accurately
capture the uncertainties and maneuver characteristics in real-world scenarios.

In recent years, the rapid advancement of data mining techniques has given
rise to various machine learning approaches for FTP task. Some researchers have
utilized regression models [8–11], for instance, Tastambekov et al. [12] proposed
a method that employs wavelet decomposition to establish a local linear regres-
sion model based on historical radar trajectory data. Neural network models, in
particular, have gained traction due to their capability to automatically learn
complex feature representations from input data without manual feature engi-
neering. Shi et al. [14] utilized LSTM to link long-term relationships within the
current prediction task, achieving improved results in both 3D and 4D aircraft
trajectory forecasting. Furthermore, Zhang et al. [16] introduced WTFTP, which
leverages time-frequency analysis to capture the dynamic characteristics of tra-
jectories. Guo et al. developed FlightBert [17] and FlightBert++ [18] based on
Transformer as the backbone network and Dong et al. [19] proposed a hybrid
model that combines temporal convolutional networks and Informer [25], an
enhanced Transformer model, to better capture complex long-range dependen-
cies. However, these Transformer-based models ignore sequence order in time
series and suffer from quadratic computational complexity [27].

Lately, a novel architecture, Mamba [20], introduces a state-space
model(SSM) equipped with a selective mechanism, allowing the model to focus
on the critical information while filtering out irrelevant details. This selective
attention strategy has effectively mitigated the computational efficiency issues
that Transformer models often encounter when processing long data sequences
[21]. Moreover, Mamba enables to concentrate on the preceding window during
information extraction, thus preserving certain sequential properties [27]. In this
light, we design a Mamba-based structure to explore its potential effectiveness
in series information extraction.

The frequency information in the flight trajectory data conveys distinct
trends, which are vital to comprehending flight patterns. Specifically, the low-
frequency component can be interpreted as the global flight trend, representing
the overall trajectory direction, while the high-frequency component captures
the details of local motion dynamics [16]. Although WTFTP is considered from
a time-frequency perspective, it overlooks the crucial interactions between fre-
quency components. The frequency information exhibits inherent interdepen-
dencies, which enables frequency components to guide and inform each other,
thereby enhancing the overall understanding of flight patterns.

Recurrent or attention-based architectures possess high representational
capacity, but achieving time-step independence remains a challenge. This is
because these models tend to overfit the data instead of solely considering the
position information [26]. To address these challenges and achieve high-accuracy
FTP prediction, we propose a Mamba-based approach MCFM containing a
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Multi-Frequency Mamba (MFM) block and a Multi-Channel Interaction (MCI)
block. Specifically, the MFM block designs an Attention Mamba mechanism with
shared weight for extracting and fusing frequency components, while the MCI
block facilitates the interaction of information across time steps within each fea-
ture channel. Results of real-world flight trajectory prediction show the benefits
and effectiveness of the proposed framework. In summary, our main contribu-
tions are as follows:

• We innovatively proposed MCFM for FTP using the Mamba-based structure
from the perspective of frequency decomposition and time dependency.

• We proposed the MFM Block, which is designed to capture and interact
between overall trends within the low-frequency components and changes in
motion details in the high-frequency components.

• We proposed the MCI block, which allows channels to communicate with dif-
ferent time step information, extracting and fusing the complex time depen-
dencies in the sequence data.

• Experimental results show that the proposed framework MCFM outperforms
comparative benchmarks in terms of FTP accuracy when compared with
existing models on real flight trajectory data.

2 Preliminaries

2.1 Problem Formulation

Typically, FTP task focuses on analyzing the historical trajectory data X to
obtain the flight state Y after a period of time. Given an observed trajectory
point Pt at time t, which contains longitude, latitude, altitude, and flight speed.
Pt is defined as Eq. 1:

Pt = {Lont, Latt, Altt, Vt} (1)

Multivariate flight trajectory prediction task aims to predict the future tra-
jectory sequence Yt+1:t+n =

{
P̂t+1, P̂t+2, . . . , P̂t+n

}
with n steps, based on his-

torical trajectory sequence X1:t = {P1, P2, . . . , Pt}. The prediction process of
the MCFM as shown in Eq. 2:

Y1:t+1 = MCFM (X1:t) (2)

To predict future multistep trajectory points, an iterative prediction app-
roach is employed. Specifically, we use previously forecasted values as pseudo-
lables to predict longer time steps, as illustrated in Eq. 3:

Ys:t+s = MCFM
(
[Xs:t, P̂t+1:t+s−1]

)
, (3)

where s denotes the prediction horizon.
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2.2 Mamba

The state space sequence model(SSM) maps the input x(t) ∈ RM to the output
y(t) ∈ RM through the hidden state h(t) ∈ RN . This process can be represented
by the following Eqs. 4, 5:

h′(t) = Ah(t) + Bx(t), (4)

y(t) = Ch(t), (5)

where the state matrix A ∈ RN×N , input matrix B ∈ RN×M , and output matrix
C ∈ RM×N are learnable matrices.

Fig. 1. The Mamba architecture

Selective Scan Mechanism was first proposed as a novel parameterized app-
roach to address the limitations of capturing contextual information for SSM.
This mechanism employs a context-aware selection mechanism that allows for
efficient information filtering from the input, thereby enhancing the applicabil-
ity of SSM in discrete data modeling. Afterward, a hardware-aware algorithm
was developed, which cyclically computes the model through a single scan, lin-
early scaling with sequence length, thus speeding up the execution of Mamba
on modern hardware. The combination of SSM and MLP forms the Mamba
architecture as shown in Fig.1. Stacking multiple Mamba blocks constitutes the
Mamba architecture.

2.3 Wavelet Transform

The wavelet transform [22] analyzes and represents the various frequency compo-
nents of a signal at different resolutions. Multilevel discrete wavelet decomposi-
tion enables the extraction of multilevel time-frequency features from time series
by decomposing the low- and high-frequency sub-levels in a stepwise manner for
discrete signal analysis [23].

Specifically, input sequences are denoted as X = {x1, x2, . . . , xt} and the low-
and high-frequency sub-series generated at the i-th level as xlow(i) and xhigh(i).
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At the (i + 1)-th level, through the low-pass filter L = {l1, l2, . . . , lK} and the
high-pass filter H = {h1, h2, . . . , hK} (K � t), we can obtain the intermediate
variables alow(i) and ahigh(i) as Eqs. 6, 7:

alown (i + 1) =
K∑

k=1

xlow
n+k−1(i) · lk, (6)

ahighn (i + 1) =
K∑

k=1

xlow
n+k−1(i) · hk, (7)

where, xlow(i) is the i-th element of the low-frequency subsequence of layer
i and xlow(0) is the input sequence. The i-th layers’ low-frequency subse-
quence xlow(i) and high-frequency subsequence xhigh(i) are generated by 1/2
down-sampling of intermediate variables Alow(i) =

{
alow1 (i), alow2 (i), . . .

}
and

Ahigh(i) =
{
ahigh1 (i), ahigh2 (i), . . .

}
.

Fig. 2. The wavelet decomposition

By discrete wavelet transform, the input sequence can be decomposed into
the set of sub-series X (i) =

{X low(i),X high(1),X high(2) . . . ,X high(i)
}

of i-th
layer, containing a low frequency signal and i high frequency signals, as shown
in Fig.2. Once we have the set of sub-series X (i) then X can be reconstructed
through inverse discrete wavelet transform (IDWT). The implementation of
wavelet transform can be found in Python PyWavelets [28].

3 Materials and Methods

3.1 Materials and Preprocessing

In this work, we utilize real-world flight trajectory data collected through the
Automatic Dependent Surveillance-Broadcast (ADS-B) system. The dataset
comprises 6,981 flight trajectories, with attributes including timestamp, flight
ID, longitude, latitude, altitude, and speed. To enhance the data quality, we
preprocessed the raw data, which involved anomaly rejection, null value impu-
tation, and segmenting the trajectory into 10-second intervals. Furthermore, the
trajectory attributes were normalized using min-max scaling to unify the data
scale and range (latitude and longitude in degrees, altitude in 10 metres, and
speed in kilometers per hour). The final experimental dataset was then parti-
tioned into training, validation, and test set at a ratio of 8:1:1.
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3.2 The Proposed Framework

The MCFM framework proposed is shown in Fig.3, which mainly involves three
stages: multi-channel interaction, multi-frequency decomposition, and inversion
projection. First, the Multi-Channel Interaction (MCI) block models the tem-
poral patterns from each feature channel independently, which are then encoded
and fed into the Multi-Frequency Mamba (MFM) block. The MFM block models
trend patterns by decomposing them into high- and low-frequency components,
representing local and global information. Finally, the domain inverse projection
stage predicts the trajectory sequence by using IDWT.

Fig. 3. The framework of MCFM.

Multi-Channel Interaction Block MCI block consists of a linear layer fol-
lowed by an activation function. Specifically, the input sequence X ∈ RL×N is
first transposed, with input sequence length L and number of variates N . Then,
a single-layer MLP is applied to each channel independently, extracting its tem-
poral features D. The use of a nonlinear activation function ReLU, allows the
MCI block to capture the complex interactions and dependencies among the
input. As shown in Eq. 8:

D = ReLU
(
Linear

(
XT

))
(8)

To preserve the dependencies and temporal patterns between the original
channels, a residual connection is employed to fuse the original input information
with DT ∈ RL×N , as shown in Eq. 9:

D
′
= DT + X (9)

Multi-Frequency Mamba block Given that trajectory sequences are time
series, their frequency signals help to identify trend patterns in the flight dura-
tion, which is highly beneficial for trajectory analysis. The MFM block com-
mences by embedding the output from the preceding MCI block with dimension
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C, which enables the extraction of rich semantic representations E ∈ RL×C . Con-
volutions with varying receptive field sizes are employed to obtain initial high-
and low-frequency features. Specifically, a 1×1 convolution ConvL is utilized to
focus on the local region and extract the slowly evolving fundamental pattern
features Elow of the trajectory. A 3 × 3 convolution ConvH is used to capture
the relatively long-range dependencies in the trajectory sequence and extract the
rapidly changing detailed features Ehigh. Finally, these features are fed into the
Attention Mamba mechanism, which is responsible for further extracting their
respective frequency information, as shown in Eqs. 10, 11:

E = Embedding
(
D

′)
, (10)

Elow = ConvL (E) , Ehigh = ConvH (E) , (11)

where, C is set as 64. ConvL uses a kernel size of 1, stride of 1 and no padding.
ConvH uses a kernel size of 3, stride of 1 and padding of 1. Elow, Ehigh ∈
RL×1/2C .

Attention Mamba takes inspiration from the self-attention mechanism used in
Transformer. It employs three distinct Mamba blocks as the query (Q), key
(K), and value (V) components respectively, through passing the output of the
previous step Elow, Ehigh. By applying the Hadamard product of the Q,K, V ∈
RL×1/2C to the high- and low-frequency branches, it can extract more fine-
grained local features and richer contextual information Alow, Ahigh ∈ RL×1/2C

from the trajectory sequence data. As shown in Eqs. 12, 13, 14, 15:

Qlow = MambaL0 (Elow) , Qhigh = MambaH0 (Ehigh) , (12)

Klow = MambaL1 (Elow) ,Khigh = MambaH1 (Ehigh) , (13)

Vlow = MambaL2 (Elow) , Vhigh = MambaH2 (Ehigh) , (14)

Alow = Qlow � Klow � Vlow, Ahigh = Qhigh � Khigh � Vhigh, (15)

Shared Mamba is introduced to enhance the interaction between high- and low-
frequency information. Both high- and low-frequency component collectively
influences trajectory prediction, which is critical for accurate prediction. Tran-
sient maneuvers detected by high-frequency components cause changes in flight
trends reflected in low-frequency information. Conversely, the low-frequency
information serves to guide and moderate the fluctuations observed in the high-
frequency component. Through the Shared Mamba, which selects one of the
Mamba blocks to share the arithmetic unit in the extraction of high- and low-
frequency information, MCFM achieves dynamic feature sharing. The specific
choice and implementation details of the Mamba chosen to share parameters
will be further elaborated in Section 4.4.
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Inversion Projection passes the extracted high- and low-frequency information
from the MFM block through separate convolutional and linear layers respec-
tively to generate the frequency domain signals Flow, Fhigh of the historical
reconstruction and the predicted trajectory sequence. Subsequently, they are
converted into the time domain signals of the flight trajectory using the IDWT
to obtain the predicted sequence Y ∈ RL×N as shown in Eqs. 16, 17:

Flow = Linear (Convl (Alow)) , Fhigh = Linear (Convh (Ahigh)) , (16)

Y = IDWT (Flow, Fhigh) , (17)

where Flow, Fhigh ∈ R�1/2L�×1/2C , Convl and Convh are both using a kernel
size of 3, stride of 2 and padding of 1. In this work, we use one-layer wavelet
transform to decompose into a high-frequency component and a low-frequency
component and reconstruct the input trajectory sequence.

4 Experiments and Results

4.1 Experimental Configuration

The experiment environment is mainly based on Python 3.8, PyTorch 1.11.0 with
a batch size of 1024 and a total number of 150 training epochs. Haar wavelets
are used for decomposition and reduction, and the Adam optimizer was chosen
to update the trainable parameters with a learning rate initialized to 0.001 and
decaying 0.5 times every 10 epochs.

4.2 Evaluation metrics

In this work, mean absolute error (MAE), mean relative error (MRE), and root
of mean squared error (RMSE) is used to evaluate the proposed method and
baselines. These metrics reflect the difference between the actual and predicted
flight trajectories. Specifically, MAE visualizes the absolute value of the error
between the true and predicted values, while RMSE is more sensitive to the
prediction of outliers. Additionally, the mean deviation error (MDE) is used to
measure the Euclidean distance between predicted and actual points projected
to the earth-centered and earth-fixed coordinate system, enabling the evaluation
of the overall performance in real-world scenarios.

MAEi =
1
n

n∑
j=1

|Ti,j − Pi,j | , (18)

MREi = 100%
1
n

n∑
j=1

∣∣∣∣
Ti,j − Pi,j

Ti,j

∣∣∣∣ , (19)
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RMSEi =

√√√√ 1
n

n∑
j=1

(Ti,j − Pi,j)
2
, (20)

MDE =
1
n

n∑
i=1

Φ(Ti,j − Pi,j) , (21)

where n is the total number of test sets. Ti,j is the true value of the i-th attribute
of the trajectory point of the j-th sample, and Pi,j is the corresponding predicted
value. Φ(·) is the calculation function of Euclidean distance in the 3D airspace.

4.3 Performance of Proposed MCFM

To validate the effectiveness of MCFM, we chose five baseline models with diverse
architectures for comparison, including LSTM-based model: LSTM [13], CNN-
LSTM [15], WTFTP [16] and Transformer-based model: CNN-Transformer [24],
Informer[25]. The experimental results are presented in Table 1.

• LSTM: Vanilla LSTM is used to model the trajectories and the fully connected
layer is used for prediction.

• CNN-LSTM: CNNs combined with vanilla LSTM are applied to extract spa-
tial and temporal features.

• WTFTP: A LSTM based model to prediction the trajectory from a time-
frequency perspective.

• CNN-Transformer: CNNs combined with vanilla Transformer are applied to
predict the trajectory point.

• Informer: An improved Transformer-based model with ProbSparse self-
attention mechanism to capture the long-term dependence of the trajectory.

Overall, the proposed framework MCFM outperforms the other baselines,
achieving the best performance in almost all evaluation metrics. There is only
a slight decrease in the MAE and MRE metrics for altitude. MCFM performs
better than WTFTP, exceeding the MDE indicator by 34%, thanks to its con-
sideration of the interaction between high- and low-frequency components. Fur-
thermore, both LSTM-based and Transformer-based prediction methods have
exhibited limited accuracy. In contrast, the Mamba block utilized in MCFM
maintains a strong focus on the preceding temporal window during the informa-
tion extraction process. This allows the model to effectively preserve important
sequential properties of the input data and improve the accuracy of predic-
tion. Informer exhibits relatively poor in these metrics, it is probably because
Informer was originally designed for long-term prediction tasks and may lack
enough sensitivity to detailed changes in the shorter FTP task, generating some
errors. Notably, the superior performance of MCFM highlights the effectiveness
of its Mamba-based mechanism in extracting frequency-domain information and
incorporating temporal patterns.
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Table 1. Summary of the different methods

Model RMSE MAE MRE (%) MDE

Lon Lat Alt Lon Lat Alt Lon Lat Alt

MCFM 0.02056 0.01891 2.37178 0.01194 0.01266 0.61131 0.01039 0.04138 0.18508 2.02772546

WTFTP 0.03620 0.02427 2.43212 0.02487 0.014405 0.57587 0.02168 0.04734 0.17177 3.06073618

LSTM 0.05074 0.02719 2.37383 0.03947 0.01463 0.58864 0.03445 0.04909 0.17710 4.38647127

CNN-LSTM 0.04818 0.05722 2.88231 0.03667 0.04516 0.89365 0.03199 0.14893 0.26174 6.82610464

CNN-Trans 0.09571 0.10379 2.43215 0.06829 0.07625 1.05930 0.05970 0.25319 0.29827 12.16895676

Informer 0.28661 0.26392 2.60525 0.18893 0.18610 1.91307 0.16420 0.59802 1.35893 31.54741000

To further evaluate the performance of MCFM and the baselines, we selected
three baseline methods that exhibited superior performance and visualized dif-
ferent flight phases, including common flight modes such as cruise and descent,
as well as more complex flight modes like ascent and turn. Using the iterative
prediction approach, we forecasted the future 90-second flight trajectory based
on the preceding 80-second historical trajectory data. As can be seen from the
Fig.4, in the ascent, descent, and cruise phases, MCFM accurately predicts the
direction and potential maneuvering changes. It also exhibits exceptional capa-
bilities in complex turning situations, accurately forecasting trajectory changes.

Fig. 4. The real world scenario. The blue line represents the historical flight trajectory,
the green line depicts the ground-truth of future trajectory, and the red line shows the
projected trajectory predicted by the MCFM.

4.4 Ablation study

To further investigate the key factors contributing to the performance of MCFM,
we conducted an ablation study examining the effectiveness of the MCI block,
Attention Mamba and Shared Mamba within the MFM block. The configurations
used in these ablation experiments are summarized in Table 2. Additionally, we
introduced a ”Stack Mamba” configuration, which utilizes three stacked Mamba
blocks to capture frequency features, serving as a comparative baseline against
the Attention Mamba.
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Table 2. Summary of the different methods with various configurations

Model Block

MCI block High-frequency Low-frequency Shared Mamba

MCFM � Attention Mamba Attention Mamba MambaL0,MambaH0

A1 Attention Mamba Attention Mamba MambaL0,MambaH0

A2 � Attention Mamba Attention Mamba

A3 � Attention Mamba Attention Mamba MambaL2,MambaH2

A4 � Stack Mamba Attention Mamba MambaL0,MambaH0

A5 � Attention Mamba Stack Mamba MambaL0,MambaH0

A6 � Stack Mamba Stack Mamba MambaL0,MambaH0

The results of these experiments are presented in Table 3. From A1, we
can observe that the proposed MCI block improves the MDE metric by 23%.
Moreover, by replacing Attention Mamba in different branches with a Stack
Mamba configuration (which can be seen from A4 to A6), we can clearly observe
an decrease in the prediction results. Especially after replacing all Attention
Mamba with Stack Mamba (A6), there is an obvious decrease in all metrics and
18% in terms of MDE. Results show that the inclusion of Attention Mamba
enables MCFM to capture the key frequency information more effectively and is
more suitable than Stack Mamba.

Table 3. Results of the different methods with various configurations

Model RMSE MAE MRE(%) MDE

Lon Lat Alt Lon Lat Alt Lon Lat Alt

MCFM 0.02056 0.01891 2.37178 0.01194 0.01266 0.61131 0.01039 0.04138 0.18508 2.02772546

A1 0.04381 0.02712 2.17071 0.01459 0.01674 0.52947 0.01275 0.05520 0.15925 2.62008095

A2 0.02691 0.02711 2.18493 0.01371 0.01652 0.52515 0.01194 0.05432 0.15765 2.52338099

A3 0.02921 0.02889 2.70807 0.01331 0.01565 0.69953 0.01163 0.05150 0.20994 2.41616940

A4 0.02365 0.03608 2.01948 0.01420 0.01832 0.54524 0.01242 0.06035 0.16495 2.72706342

A5 0.02116 0.02768 2.48771 0.01079 0.01320 0.69814 0.00943 0.04401 0.21000 2.03206348

A6 0.03561 0.02441 2.11820 0.01245 0.01662 0.54677 0.01084 0.05474 0.16520 2.45344305

To further demonstrate the importance of incorporating frequency informa-
tion interactions and to select an appropriate experimental setup, we conducted
additional experiments on the Shared Mamba component. Specifically, we set
up no shared weights in Mamba blocks (A2), shared weights in MambaL0 and
MambaH0 (MCFM), shared weights in MambaL2 and MambaH2 (A3). A lack of
attention to frequency interaction information greatly affects the accuracy of the
predictions, as shown in A2. Additionally, manipulating the shared weights in the
final step of the MFM block affects the prediction performance to some degree,
which is probably due to the frequency interaction information dominating the
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prediction results and confusing the respective signal outputs. Consequently, we
select MambaL0 and MambaH0 used to compute Q for sharing parameters.

Fig. 5. Visualization of frequency signals. The horizontal axis represents time (with
170 seconds selected as an example), while the vertical axis corresponds to the units
of different trajectory attributes. The altitude is measured in 10 metres (10 m).

Fig.5 presents a visual comparison between the reconstruction and decom-
position of trajectory variates with and without frequency information sharing
(Shared Mamba). The ground truth frequency components are obtained through
one-layer wavelet decomposition of the actual trajectory variate, yielding high-
frequency and low-frequency signals. It is observed that on any of the four vari-
ates, by adding the Shared Mamba, MCFM separate the better high- and low-
frequency signals and bring them closer to the signal ground truth. In conclusion,
the ablation study conducted reveals that all the proposed components of the
MCFM model are essential for enhancing the FTP prediction performance.

5 Conclusion

In this work, we propose MCFM, a new framework for solving FTP task, which
consists of two key components: the Multi-Channel Interaction(MCI) block and
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the Multi-Frequency Mamba(MFM) block. The MCI block serves to extract and
fuse the temporal patterns of the diverse data channels within the input flight
trajectory data. The MFM block then extracts and interacts with high- and
low-frequency information from the trajectory sequence data. Through quanti-
tative and qualitative evaluations, we demonstrate that the proposed MCFM
outperforms various baseline approaches, and ablation studies further confirm
the importance of the technological innovations introduced in MCFM. In the
future, we plan to extend our work by exploring a multi-step prediction frame-
work for FTP task to alleviate the error accumulation problem often encountered
with single-step prediction models and provide more accurate and reliable flight
trajectory prediction solutions.
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Abstract. The increasing number of vehicular networking devices and applica-
tion demands has made the limited computing and communication resources a
significant challenge. The heuristic task offloading strategy mechanism was pro-
posed to improve the efficiency of task offloading in vehicular networks. This strat-
egy mechanism utilized the Nondominated Sorting Genetic Fireworks Algorithm
(NSGFA) based on the characteristics of the problem, integrated consideration
of the multi-target balance between system offloading costs and load balancing.
Experimental data results demonstrate that this method performs well in reduc-
ing latency, energy consumption, and load balancing, effectively enhancing the
quality of service for vehicular network users.

Keywords: Internet of Vehicles · Mobile Edge Computing · Computational
Offloading · Multi-Objective Optimization

1 Introduction

As urbanization advances, automobiles, which are an indispensable part of people’s daily
lives, are also seeing a constant increase in numbers and popularity. At the same time, the
connection between vehicles and the Internet is becoming increasingly tight, forming a
vast Internet of Vehicles ecosystem [1, 2]. In this ecosystem, in-vehicle sensors, cameras,
and other intelligent devices are constantly collecting and generating a large amount of
data, which contains rich information such as vehicle status, environmental changes, and
traffic conditions. However, the processing and transmission of this massive, dense data
[3, 4] pose great challenges to the cloud, not only is the strain on network bandwidth
increasing, but it also reduces the efficiency of data processing, making it challenging
to meet the real-time requirements of high-demand applications.

To address this challenge, Mobile Edge Computing (MEC) has emerged [5–7]. Edge
computing shifts the focus of data processing from the traditional cloud to edge locations
closer to the data source. By deploying intelligent edge devices near vehicles, it enables
real-time data processing and response. This distributed computing architecture can
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reduce the load on the cloud, lower network latency, and decrease energy consumption
[8, 9].

However, due to the high difficulty of server offloading and unreasonable alloca-
tion, researching how to efficiently and reasonably offload resource tasks and reduce
the latency and energy consumption caused by offloading has become a highly con-
cerning problem. Task offloading in vehicular networks can be considered an NP-hard
optimization problem [10]. Literature [11] employed a complementary edge cloud solu-
tion, optimizing and solving the problem using meta-heuristic methods such as NSGAII
and the Bee algorithm. This approach reduces the response time, but the control over
energy consumption is not optimal. Literature [12] discussed a Halton sequence for a
uniform initial population distribution and an improved genetic algorithm as an offload-
ing strategy that had a higher completion rate and better convergence than the original
genetic algorithm. However, it doesn’t figure out and compare the underlying indicators
of offloading. Literature [13] introduced an ant colony optimization-based algorithm
that dynamically updates the pheromone value based on the relationship between the
fitness function and either the global or local optimal value. This algorithm migrates
computation to edge devices closer to users, thereby reducing user transmission time,
computation time, propagation time to meet the requirements of time-sensitive tasks,
but it is not comprehensive enough, and the load on edge devices will be out of control.
Literature [14] discussed a better particle swarm optimization algorithm for offloading
in edge computing. This algorithm encodes particles and updates their positions to make
the offloading target use the least amount of energy possible. Literature [15] examined
the availability of vehicles based on their motion characteristics at intersections. For
the task offloading and resource allocation scheme of vehicle users near intersections, it
employs a dual deep Q-network method, which enhances the average utility of offload-
ing and demonstrates the effectiveness of deep reinforcement learning. Literature [16]
designed a dynamic computing strategy based on deep reinforcement learning, adding
Softmax function and prioritized experience replay on TD3. Still, the environmental
conditions are relatively simple, only starting from a single roadside unit (RSU) for
offloading analysis.

Based on the literature above analysis, this paper studies the multi-objective opti-
mization problem in the vehicular network task offloading environment and proposed
a task offloading scheme based on the Non-dominated Sorting Genetic Fireworks
Algorithm. The main contributions are as follows:

1 A three-tier edge computing network architecture for vehicular networks is created,
with each tier representing a different offloadingmethod. Thismakes it easier to assign
different tasks to the right layer for offloading.

2 Within the network architecture, communication, offloading, and load balancingmod-
els for the vehicular network environment are established, combining total latency,
total energy consumption, and total load balancing rate asmultiple objective functions.
Latency and energy consumption are weighted using a linear weighting algorithm to
design a minimization scheme for the optimization problem.

3 The NSGFA was proposed as a three-stage construction theory that effectively inte-
grates two intelligent algorithms. The explosion operation in the fireworks algorithm
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was utilized to expand the local search range of the genetic algorithm, achieving faster
convergence speed and deciding the offloading location for vehicular tasks.

4 Simulation experiments show that the method proposed in this paper has achieved
a good balance between offloading cost and load balancing, and has confirmed the
algorithm’s superiority.

2 Network System Architecture

In the vehicular network environment, a three-tier network system architecture [17] is
constructed to achieve multi-mode offloading of vehicular tasks, which includes local
offloading, edge offloading, and cloud offloading. Local offloading is performed through
the On Board Unit (OBU) on the vehicle, edge offloading uses roadside edge nodes for
computation, and cloud offloading employs high-performance cloud server cluster.

Let the task set of the vehicular user be denoted as Qi = {
wi, si, di, tmaxi ,Ai

}
, where

wi represents the number of resources required to complete taskQi, si represents the size
of task Qi, di indicates the distance between the task vehicle and RSU, tmaxi represents
the maximum delay that taskQi can tolerate, and Ai ∈ {0,1, 2} indicates whether taskQi

is offloaded locally (Ai = 0), to an edge server (Ai = 1), or to a cloud server (Ai = 2).
The set of vehicular users is U = {u1, u2, · · ·, uN }. The edge nodes consist of RSU and
MEC servers, with M RSU deployed roadside, each equipped with a MEC server, thus
theMEC server set is represented asV = {v1, v2, · · ·, vM }. All edge nodes are connected
to a cloud server cluster to facilitate the uploading of vehicular tasks for cloud offloading.

To achieve an even distribution of vehicles and servers in the system, in this paper,
the vehicular users are modeled using a Poisson Distribution [18], and the edge nodes are
modeled using the Uniform Distribution, simulating the random appearance of vehicles
on the road and the placement of servers along the roadside at equal intervals based on
their service coverage range. The architecture diagram is shown in Fig. 1.

Cloud Server Cluster

MEC Server

RSU

MEC Server

RSU

MEC Server

RSU

Fig. 1. Internet of Vehicles task offloading model architecture
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3 Model Design

3.1 Communication Model

Since the architecture used in this paper requires tasks to be transmitted via the uplink to
the edge node for offloading, it is necessary to establish a channel communication model
between vehicles and infrastructure (Vehicle-to-Infrastructure, V2I). This paper adopts
the Orthogonal Frequency Division Multiple Access (OFDMA) technology for channel
bandwidth allocation, which allows the interference in transmission to be negligible.
The formula for the uplink data upload rate Ri of V2I is as follows:

Ri = B

S
log2

(
1 + pvhi

σ 2

)
(1)

where B represents the channel bandwidth, pv is the transmission power of OBU, σ 2

represents the power of the white noise, S and hi represent the number of channels and
gains between OBU and MEC.

Then, hi can be written as [19]:

hi = 103.8 + 20.9log10di (2)

3.2 Offloading Model

Local Vehicle Offloading. Since the task offloading is performed locally on the vehicle,
the computation latency only needs to consider the time tlocali it takes to execute the
offloading, which can be written as:

tlocali = wi

f local
(3)

where f local represents the computing capability of OBU.
Defining the average computing power of the onboard unit as Plocal , the energy

consumption for local offloading elocali is given by:

elocali = Plocal · tlocali (4)

MECOffloading. Because the amount of resources after offloading is minimal, the
time for return transmission can be neglected [20], the latency of MEC offloading is

composed of two parts: the task uploading latency t
∧MEC
i and the task execution latency

tMEC
i , which can be written as:

t
∧MEC
i = si

Ri
(5)

tMEC
i = wi

f MEC
(6)

where f MEC represents the computing capability of MEC.
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Thus, the total MEC offloading latency tMEC
i is:

tMEC
i = t

∧MEC
i + tMEC

i (7)

Defining the average computing power for MEC offloading as PMEC , the energy
consumption for MEC offloading eMEC

i is given by:

eMEC
i = PMEC · tMEC

i + pv · t∧MEC
i (8)

Cloud Server Offloading. Like the MEC, the offloading latency of the cloud server

is composed of two parts: the task uploading latency t
∧cloud
i and the task execution latency

tcloudi , which can be written as:

t
∧cloud
i = t

∧MEC
i + t0 (9)

tcloudi = wi

f cloud
(10)

where t0 represents the transmission latency of task resources from the RSU to the cloud
[21], and f cloud represents the computing capability of the cloud server.

Thus, the total offloading latency for the cloud server tcloudi is given by:

tcloudi = t
∧cloud
i + tcloudi (11)

Defining the average computing power for cloud server offloading as Pcloud , the
energy consumption for cloud server offloading ecloudi is given by:

ecloudi = Pcloud · tcloudi + pv · t∧cloudi (12)

Summarizing the above, the task offloading latency and energy consumption for a
single vehicular user can be represented as follows:

ti = (Ai − 1)(Ai − 2)tlocali + Ai(Ai − 2)tMEC
i + Ai(Ai − 1)tcloudi (13)

ei = (Ai − 1)(Ai − 2)elocali + Ai(Ai − 2)eMEC
i + Ai(Ai − 1)ecloudi (14)

3.3 MEC Load Balancing Model

To make more efficient use of edge computing resources and enhance system stability,
the load balancing issue for MEC must be considered. Load balancing typically refers
to the distribution and utilization of tasks across all servers. Therefore, first, the resource
utilization rate of the j-th edge node is calculated as follows:

rurj =
{

1
S

∑S
i=1

∑M
j=1 li,j, Ij = 1

0, Ij = 0
(15)
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In this context, Ij and lij represent decision variables. If the j-th edge node is occupied,
then Ij = 1; otherwise, Ij = 0. If the i-th task is assigned to the j-th edge node, then
lij = 1; otherwise, lij = 0.

The number of occupied edge nodes can be written as:

O =
M∑

j=1

Ij (16)

Thus, the average resource utilization rate Arur is given by:

Arur =
∑M

j=1 rurj

O
(17)

The loadbalancing rate indicates thefluctuation of the resource utilization rate around
the average resource utilization rate. Therefore, the load balancing rate for a single edge
node is given by:

loj =
{∣∣Arur − rurj

∣∣, Ij = 1
0, Ij = 0

(18)

Subsequently, the average load balancing rate can be written as:

Alo = 1

O

M∑

j=1

loj (19)

Thus, the total load balancing rate L can be written as:

L = Alo

Arur
(20)

The smaller the ratio, the more balanced the load on the edge nodes is.

3.4 Comprehensive Problem

For the entire task offloading problem, the total latency and energy consumption for all
vehicular users are as follows:

T = �N
i=1ti (21)

E = �N
i=1ei (22)

Thus, the total cost of task offloading R is:

R = mT + nE (23)

where m and n represent the latency and energy consumption weight coefficients in the
offloading cost [22].
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To minimize the total latency, total energy consumption, and total load balancing
rate of task offloading, the following multi-objective optimization model is formulated:

minR,L
s.t.
C1 : wi ≤ wc, ∀i ∈ {1, 2, . . . ,N }
C2 : Ai ∈ {0, 1, 2},∀i ∈ {1, 2, . . . ,N }
C3 : ti ≤ tmax, ∀i ∈ {1, 2, . . . ,N }

(24)

Constraint C1 indicates that the resources required for task Q must not exceed the
maximum number of resources wc that the server can provide. Constraint C2 states that
the offloading decision can only be offloaded to the local end, the edge server, or the
cloud server. Constraint C3 specifies that the time required to complete the task must
not exceed the maximum tolerable time for the task.

Based on the above optimization scheme, the offloading costR and the load balancing
rate L are normalized as follows:

I(Rk) =
{

Rmax−R
Rmax−Rmin

, Rmax − Rmin �= 0

1, Rmax − Rmin = 0
(25)

I(Lk) =
{

Lmax−L
Lmax−Lmin

, Lmax − Lmin �= 0

1, Lmax − Lmin = 0
(26)

where Rmax and Rmin represent the maximum and minimum values of the offloading cost
in the k-th offloading strategy, and Lmax and Lmin represent the maximum and minimum
values of the load balancing rate in the k-th offloading strategy. From this, the system
utility of the k-th offloading strategy can be obtained as:

Ik = αI(Rk) + βI(Lk) (27)

where α and β represent the weight coefficients for the offloading cost and the load
balancing rate, respectively.

Further, by comparing the system utility values, the maximum system utility value
Imax of the algorithm can be obtained.

4 Design of Algorithm

The Non-dominated Sorting Genetic Fireworks Algorithm is a heuristic algorithm that
combines the strengths of genetic algorithms and fireworks algorithms, applying it to
task offloading in vehicular networks and making further improvements to the origi-
nal algorithm steps to make it more suitable for solving multi-objective combinatorial
optimization problems.
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4.1 Initialization Operation

First, initialize the population of vehicular users and edge nodes, and set constant param-
eters such as the maximum number of iterations and basic mutation probability that will
be used later. Each individual in the population represents a set of offloading strategies on
a chromosome, where each gene specifies which node a vehicle’s computing task should
be offloaded to. The position of the gene value corresponds one-to-one with the position
of the vehicular user, and the fitness value of the population individuals is calculated.

4.2 Genetic Operations

Fast Non-dominated Sorting.Based on individual fitness, the population is categorized
into different non-dominated levels, where solutions within each level are not dominated
by any other solutions. Initially, individuals at level 1 are sought out and marked. For
those not yet marked, the same procedure is followed to identify and mark individuals
at level 2. This process is repeated until all solutions are sorted into their respective
non-dominated levels.

Elite Selection. Selection is performed based on the non-dominated sorting levels
from low to high, choosing a certain number of the top-level individuals as elite individ-
uals. This number is determined by the population size and usually accounts for only a
small fraction of the total population. Elite individuals are not subjected to crossover and
mutation operations to ensure that the best individuals in the population are not disrupted
or lost. Therefore, the elite individuals are directly copied into the offspring population,
and the remaining population members undergo the following crossover and mutation
operations.

Multipoint Sectional Crossover. First, multiple crossover points are randomly
selected from the chromosomes of the parent generation individuals. These crossover
points will determine the number and position of the chromosome segments to be
divided. Based on the selected crossover points, two segments are randomly chosen
and exchanged between corresponding chromosome segments of two-parent individu-
als to create new offspring individuals. The crossover operation example is illustrated
in Fig. 2, where the second and fourth chromosomes are crossed and swapped.

parent 

generation

Offspring

Fig. 2. Cross operation diagram

Adaptive Multi-point Mutation. Multi-point mutation selects multiple gene loci
and randomly changes the values at these loci. By dynamically adjusting the mutation
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rate based on the evolution of the population, if the population diversity is insufficient,
the mutation rate can be gradually increased to promote exploration. Conversely, if the
algorithm converges too quickly or the population diversity is too high, the mutation
rate can be gradually decreased to strengthen exploitation. If the quality of an individual
solution is good, its mutation probability is smaller, on the contrary, if the quality is poor,
its mutation probability is larger. The updated formula for the mutation probability is as
follows:

pbase = ∂

1 + σ 2 · p0v (28)

pkv = Fmax − Fk

Fmax − Fmin
· pbase (29)

where ∂ represents a constant, pbase is the base mutation probability, σ 2 is the variance
of the population’s fitness, p0v represents the initial mutation probability, Fmax and Fmin

is the highest and the lowest fitness value in the population, respectively. According
to the formula, the base mutation probability will become smaller as the population
variance increases, thereby affecting the mutation probability of all individuals in the
population. Individuals with lower fitness values in the population will have a higher
mutation probability, and vice versa. This effectively prevents individuals with better
fitness from being mutated into individuals with worse fitness.

4.3 Fireworks Operation

Explosion Displacement Operation. Randomly initialize the current position of the
fireworks xc = (

xc1, x
c
2, · · ·, xcK

)
, where the number of explosion particles produced by

the k-th firework is:

sk = s0 · Fk − Fmin + ε
∑N

i=1(Fk − Fmin) + ε
(30)

where s0 is used to limit the number of explosion particles produced by a single firework,
and ε is used to prevent the denominator from being zero.

High-quality fireworks individuals typically generate a larger number of explosion
particles to explore the search space, while lower-quality fireworks individuals produce
fewer explosion particles. Therefore, the limiting formula for the number of explosion
particles produced is:

ŝk =
⎧
⎨

⎩

round(as0), s < as0
round(bs0), s > bs0
round(sk), otherwise

(31)

where s
∧

k represents the number of explosion particles finally produced by the k-th
firework, round() denotes the rounding function, and a and b are different constants set
for fireworks with lower and higher fitness values, respectively.
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The explosion radius produced by the k-th firework is given by:

rk = r0 · Fmax − Fk + ε
∑N

i=1(Fmax − Fk) + ε
(32)

where r0 is used to adjust the explosion radius generated by a single firework.
A comprehensive displacement operation is performed on the fireworks population,

with the new positions being pnew = (
xnew1 , xnew2 , · · ·, xnewN

)
. The calculation formula is

as follows:

xnewt = xct + δ · rand(−1,1) (33)

where t = 1,2, · · ·,N , δ is a fixed step size, and rand(−1,1) represents a random number
between -1 and 1. In the N-dimensional vector, a random displacement operation is
performed for each dimension, moving to a new position.

Gaussian Mutation Operation and Mapping Rule. Each dimension of all fire-
works individuals is subject to Gaussian Mutation, and the position after mutation is
pvar = (

xvar1 , xvar2 , · · ·, xvarN

)
. The calculation formula is as follows:

xvart = xnewt + N (0, σ ) (34)

where t = 1,2, · · ·,N , N (0, σ ) denotes a random number from a Gaussian distribution
with a mean of 0 and a standard deviation of σ , which can be adjusted, typically with a
value of 1.

Fireworks that exceed the boundaries are mapped back into the feasible domain,
according to a certain mapping rule. The rule formula is as follows:

x̂t =
⎧
⎨

⎩

xmax − rand · (
xvart − xmax

)
, xvart > xmax

xvart , xmin < xvart < xmax

xmin + rand · (xmin − xvart

)
, xvart < xmin

(35)

where xmax and xmin are the upper and lower bounds of the feasible region for the problem,
and rand represents a random number between 0 and 1. The mapping rule ensures that
after mutation, if a firework’s position exceeds these bounds, it is adjusted to be within
the feasible domain.

Selection Operation. Considering the high dimensionality of the offloading tasks,
the Tournament Selection strategy is adopted. By randomly selecting a certain num-
ber q of candidate sparks for fitness value comparison, this strategy maintains a low
computational complexity and ensures that better solutions have greater competitiveness.

4.4 Time Complexity Analysis

In such combinatorial optimization algorithms, the time complexity of the genetic algo-
rithm and the fireworks algorithm is determined by the fast non-dominated sorting and
the resulting explosive particles, respectively. Therefore, the overall time complexity
can be obtained as O

(
2N 2 + KSN

)
, and the complexity can be balanced by controlling

the number of fireworks and explosive particles.
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5 Simulation Analysis

5.1 Environment Setup

To verify the superior performance of the proposed algorithm, this paper will useMatlab
R2018a as the experimental simulation platform. The experimental scenario considers a
three-tier network architecture composed of a cloud server cluster, several edge nodes,
and several vehicular users. The parameters are shown in Table 1.

Table 1. Environmental Parameters

Parameter value

Threshold of Server Resources 1 ~ 8Gb

Gaussian White Noise 3 × 10−10 W

Task Data Volume 100 ~ 1000MB

Transmission Power of OBU 5W

Channel Bandwidth 20MHz

Maximum Tolerable Latency 1 ~ 4s

Computational Capability of OBU 0.8 ~ 1.2GHz

Computational Capability of MEC 3 ~ 5GHz

Computational Capability of the Cloud Server 10GHz

The Power Consumption of OBU 20W

The Power Consumption of MEC 60W

The Power Consumption of the Cloud Server 150W

Initial Mutation Probability 0.5

RSU Coverage Range 100m

5.2 Data Result Analysis

This paper selects the Genetic Algorithm-Particle SwarmOptimization (GA-PSO), Fire-
works Algorithm (FWA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and
the Priority Edge Computing scheme (EC) as comparative algorithmic schemes. In this
context, EC denotes that tasks are preferentially offloaded to edge servers. The exper-
iment selects evaluation metrics such as latency, energy consumption, load balancing
rate, and system utility for comparison.

Latency andEnergyConsumptionAnalysis. Figures 3 and 4 respectively illustrate
the relationship between latency and energy consumption of various algorithms under
different numbers of tasks. This paper selects the number of tasks as 10, 40, 80, 120, and
160. The latency and energy consumption weight coefficients are set as m = n = 0.5,
making both equally important in this environment. As the number of tasks increases,
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the trend of latency and energy consumption is significantly upward, which is due to the
backlog of resources caused by too many tasks, requiring more time and energy to be
consumed. Compared with other algorithms, the NSGFA has lower latency and energy
consumption, and has advantages in optimizing delay and consumption, making it more
suitable for the offloading scenario of multi-user and multi-vehicle tasks.
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Fig. 3. Comparison of latency under different offloading algorithms
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Fig. 4. Comparison of energy consumption under different offloading algorithms

Load Balancing Analysis. Figure 5 demonstrates the relationship between load
balancing and the number of tasks for various algorithms. Because EC is set to prioritize
edge offloading, the load balancing situation is not taken into account. The NSGFA
outperforms other algorithms under all task quantity conditions, but when the number
of tasks is high, its optimization capability needs to be strengthened, as achieving load
balancing becomes more challenging.

Analysis of Weight Ratio and Task Data Volume. Figure 6 shows the relationship
between various algorithm and the offloading cost in the case of different ratio and
different task data volume. To investigate the impact of changes in the weight ratio and
task data volume on the overall offloading cost, the weight ratio of latency and energy
consumption, m/n, are set to 0.25, 0.5, 1, 1.5, and 2, respectively. The task data volumes
are set to 200MB, 500MB, and 800MB, with the number of tasks fixed at 120. It can
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Fig. 5. Comparison of load balancing under different offloading algorithms

be observed that as the weight ratio and task data volume increase, the total offloading
cost decreases. Additionally, the rate of change in offloading cost accelerates with the
increase in data volume.
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Fig. 6. The influence of different weight ratio and task data volume on offloading cost

Offloading Cost Iterative Analysis. Figure 7 illustrates the iterative convergence
of the offloading cost for various algorithms. As the number of iterations increases, the
offloading cost for each algorithm gradually decreases. The NSGFA converges around
1200 iterations, with both the number of convergence iterations and the offloading cost
results are superior to those of similar hybrid algorithms like GA-PSO. Although the
FWA and NSGA-II algorithms have faster convergence speeds, their results are not as
satisfactory. The NSGFA’s offloading can minimize the total offloading cost.

System Utility Analysis. Figure 8 illustrates the relationship between system utility
and the number of tasks for various algorithms. The latency and energy consumption
weight coefficients are set as m = n = 0.5, and the offloading cost and load balancing
weight coefficients are set as α = β = 0.5. This evaluation metric aims to achieve a
balanced relationship between offloading cost and load balancing. Compared to other
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Fig. 7. Comparison of the influence of the number of iterations on the offloading cost under
different offloading algorithms

algorithms, the NSGFA consistently demonstrates better system utility, especially when
the number of tasks is 40, where the trade-off effect is more pronounced.
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6 Conclusion

To address the issues of high computational latency, excessive consumption, and poor
load balancing in vehicular networks, this paper proposes a computation offloading
decision based on the NSGFA. This algorithm effectively combines the Non-dominated
Sorting Genetic Algorithm and the Fireworks Algorithm, utilizing the genetic algo-
rithm’s local search capability and the fireworks algorithm’s global search capability for
optimized offloading. Experimental comparisons with other classic algorithms demon-
strate that the NSGFA has better optimization in various performance indicators, with a
particularly significant improvement in load balancing. The impact of the time-variant
dynamic position distances between vehicles and edge nodes on the experiment is the
main direction for future research work.
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Abstract. Recently, object detection based Unmanned Aerial Vehicles (UAVs)
plays awide role inmany real-life scenarios, such as agriculture and transportation.
AlthoughUAVs have beenwidely used, the detection of small targets is ineffective
in conventional object detection networks due to extensive scenes and abundant
information. To solve the problems of small object detection, we proposed a novel
Bi-directional Extends Feature Pyramid Network (Bi-EFPN), which deepens the
depth of Feature Pyramid Network (FPN) and performs better in feature fusion.
TheGated Channel and Position AttentionModel (GCPA) is introduced to capture
more details of small objects in large-sized feature maps. Considering that the Bi-
EFPN and GCPA will cost more resources in the neck, we proposed a lightweight
detection head with Partial Attention (PAHead), which reduced the computational
complexity by approximately 6.8 GFLOPs while slightly improving detection
accuracy. Finally, it shows great performance on the visdrone2019 dataset, the
mean average precision is improved by 5.1% and the parameters decreased by
approximately 10% in contrast to YOLOv8s. Meanwhile, good generalization
performance was demonstrated on the Tinyperson dataset and HIT-UAV dataset.
The comprehensive experiments indicate that our network has great potential in
small object detection.

Keywords: Attention · Small Object Detection · YOLOv8

1 Introduction

Object detection, as an important task in the field of computer vision, aims to determine
the location and class of a target [1]. It plays an important role in underwater object detec-
tion [2], autonomous driving [3], medical imaging [4] and so on. Therefore, improving
object detection is of great practical significance and application value.

UAV, is a remotely piloted aerial system that maneuvered by radio-controlled equip-
ment and is equipped with sophisticated equipment for the purposes of data acquisition,
perception, and decision-making [5]. With the advancement of technology, UAVs have
gradually developed new functions and methods, and UAV-based object detection is
widely used in agricultural [6], traffic [7], urban [8], rescue [9], airline [10]. With the
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advent of convolutional neural networks, the field of computer vision has flourished,
significant progress has been made in neural network-based object detection over the
last decade. YOLO Series [11–14], DETR [15], Transformer [16] and other large mod-
els also perform well in target detection. Object detection tasks based on UAV recently
became popular. It is difficult to design the target detection network due to the variable
flight altitude of UAVs and the great variation in the scale of the object. In addition,
the complexity of neural networks increases with the object detection accuracy, and
the arithmetic power of UAV systems is difficult to meet the demands of large neural
networks. Keeping the balance of speed and accuracy in neural network is becoming
a crucial research focus. Although most of the networks above shows advantages in
coco dataset, it is difficult for the current network structure to take advantage of the
recognition of small target objects.

The target bounding box is defined as:

bbox = (x, y,w, h) (1)

x and y are the coordinate values of the current object, w and h are the width and height
of the selected object.

Without considering rotating objects, we define the mini-objective as:

{
min(w, h) ≥ 4pixel
max(w, h) ≤ 32pixel

(2)

That is, objects with a short side greater than 4 pixels and a long side less than
32 pixels are called small objects. Small objects have problems such as low overlap
probability and weak texture features. The traditional network structure has difficulty
effectively mentioning the contextual information of small objects, which requires us to
design an object detector that is more adaptable to the characteristics of small targets.

Currently,UAV-based small object detection still suffers from the followingproblems
[17]. First, the flight altitude of UAVs is variable, the scale of targets varies greatly, and
the acquisition range changes at any time. The higher the flight altitude, the better the
image transmission signal, the wider the acquisition range, and the lower the latency.
The lower the flight altitude, the more delicate of image features. Second, with the
continuous development of computer vision, the accuracy of neural network models has
continuously improved, the complexity of computations also increased dramatically.
The weight file is becoming increasingly larger, and it is difficult to deploy to the end of
the mobile device.

To address the problems of small object detection, we propose a new feature pyramid
network and a novel attention model based on YOLOv8s. At the same time, we design a
lightweight detection head to further improve the performance of small object detection
in aerial images. The main contributions are as follows:

• A new weighted Bi-directional Extends Feature Pyramid Network (Bi-EFPN) is pro-
posed,which extends the range of up-sampling and down-sampling,makes the feature
pyramid network more adaptable to the semantic information of small objects. It ade-
quately fuses features without decreasing the detection accuracy of large targets while
paying more attention to small objects and generating richer global representations.
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• We design a Gated Channel and Position Attention (GCPA). Gating mechanism
will effectively promote competitive or synergistic neuronal relationships in chan-
nel attention model. The GCPA combines spatial and scaling features, safeguarding
the position information of small objects while allocating more resources to channels
containing more information.

• We propose a novel detection head to improve the original YOLOv8 network, called
Partial Attention Head (PAHead) that not only unifies multiple scales attention but
lightens head burden.

2 Related Work

2.1 Baseline

YOLO series of algorithms are widely used in the field of object detection due to the high
efficiency and accuracy. There are five versions of YOLOv8with different depths, which
can be classified as YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. The
number of model parameters and the number of computations increase with increasing
accuracy. Considering the arithmetic requirements of deploying to the mobile end and
balancing real-time performance and accuracy, we adopt YOLOv8s as the baseline.

2.2 Small Object Detection

For the past few years, in the research of small object detection, Zhu [18] et al. proposed a
newdetection head called TPH,which integrates the convolutional block attentionmodel
CBAMto increase attention in both channel and spatial dimensions, enhancing the ability
to resist invalid information and focus on valid targets. Yang [19] et al. designed a new
progressive feature pyramid network that fuses neighboring features, which is important
for the detection of multiscale features. Akyon [20] et al. designed a new network called
SAHI, which is a generalized framework that divides the input image into overlapping
blocks to output small target objects to regions of larger pixels. Tan [21] et al. proposed
a weighted bi-directional feature pyramid fusion network for simple and fast multi-scale
feature fusion. Gong [22] et al. proposed the concept of fusion factor, which is adjusted
based on the number of distributed objects in each layer. The fusion factor will control
the information from shallow layers to deep layers, which is more effective and useful
to feature fusion.

3 Methods

3.1 Bi-Directional Extends Feature Pyramid Network

The main role of the FPN is to perform feature fusion to couple feature maps with
different receptive field sizes, which enhances the expressive power of the feature maps.
Common neck structures include the FPN, Bi-FPN [21], PANet, NAS-FPN [23] etc.
For the object detection task, the depth of the neural network is closely related to the
ability to extract the semantic information of the target, and the existing pyramid network
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structure fuses the high-level information located at the top of the pyramid with the low-
level information at the bottom of the pyramid through multiple scales of feature layers
[24]. However, there are problems such as loss in the fusion and communication of
information, whether it is the loss of high-level information to bottom-level information
fusion or the degradation of low-level information such as high-level information fusion,
which will make feature fusion ineffective [25].

Fig. 1. Bi-directional Extends Feature Pyramid Network.

Based on the above problems, we propose an improved Bi-directional Extends Fea-
ture Pyramid Network, whose network structure is shown in Fig. 1 S1−5 is the backbone,
B1−4 means the range of up-sampling, C2−5 means the range of down-sampling. First,
incorporating the idea of cross-scale connectivity of the Bi-FPN [21], an extra edge is
added to fuse more features without increasing the cost. Second, compared with tradi-
tional PANet, we extend the fusion depth of the feature pyramid network. The underlying
layer provides more semantic information and positional information for small targets
detection. The S2 layer has a larger resolution of the feature map, which is more suitable
for the detection of small objects. Based on the condition, Bi-EFPN further deepens the
depth of feature fusion by continuing the up-sampling operation on top of the B2 layer
to restore the feature map size to 320 × 320.

Given that the input features have different resolutions and non-negligible semantic
information, directly integrate features with different scales will bring a large amount
of redundant and conflicting information, reducing the ability of multi-scale expression.
Therefore, feature fusion plays an important role in the process. The Bi-EFPN has a fixed
number of channels and the feature vectors are of the same dimension, which transforms
the feature fusion into channel fusion. We compared 4 methods for feature fusion in
Table 1. The key of the fusion feature is that the value of the normalized weights falls
between [0,1]. It does not change the features of the image itself while accelerating the
subsequent network processing.
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Table 1. The performance of different fusion modes.

Fusion mode AP AP50 AP75 APS APM APL Parameters GFLOPs

Bi-FPN [21] 25.4 42.6 25.7 31.4 52.3 59.0 10592513 40.0

SDI [26] 24.4 40.9 24.4 30.0 52.5 59.2 10739672 41.1

LAF [27] 25.7 42.8 26.1 31.5 53.1 62.3 10743704 41.1

Concat 25.7 42.9 26.0 31.8 52.5 61.2 10764536 41.2

The Table 1 shows Concat has the best performance in feature fusion. The input
images got fused features with rich semantic information through FPN, fully utilize the
high-resolution features of shallow layers and the high-level semantic information of
deep layers. The final goal is to achieve the effect of prediction through these different
layers of features.

3.2 Gated Channel and Position Attention Mechanism

Attention plays an important role in human perception, and the human visual system is
able to selectively capture salient parts of a scene to obtain more detailed information
about the target of attention. In machine learning, the attention mechanism guides the
computational resources to bias toward the part of the input signal that contains the most
information, and from the earliest proposal of the attention mechanism by Bahdanau
et al. in 2014, the attention mechanism has been widely used in various fields, such as
natural language processing, speech recognition, and machine translation, which has
greatly improved the performance of many tasks.

To extract the information of different channels while retaining the small object
position information of the feature map, we propose a Gated Channel and Position
Attention (GCPA). The structure is shown in Fig. 2.

Fig. 2. The architecture of Gated Channel and Position Attention (a) represents the position of the
GCPA module in the FPN (b) represents the gated channel attention mechanism (c) the position
attention mechanism.
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The input feature F ∈ RH×W×C is the output of Bi-EFPN up-sampling, B1 is the
input of channel attention, and the output result of channel attention is used as the input
of positional attention. The plug-and-play property is guaranteed and can be inserted
into the network structure at any time.

GatedChannelAttention.To enable the network to selectively learn the importance
of different channel features and enhance informative features, we design a gated channel
attention mechanism that can be used as a gating mechanism to dynamically switch
channels on and off. First, the space of the feature map is compressed to predict the
importance of each channel, and the dimension can be compressed from H × W × C
to 1 × 1 × C by global average pooling [28]. Then, the compressed feature vectors are
transformed into weight vectors to motivate the corresponding channels of the previous
feature map by two fully connected layers and a normalization layer [29]. Finally, the
features are weighted so that the output is fixed in the interval of [-1,1].

ξC(F) · F = max(α1(F) · Fc + β1(F), α2(F) · Fc + β2(F)) (3)

Fc is the feature of channel c and [α1, α2, β1, β2]T = θ(·) is the hyperparameter
which controls the threshold of the activation function ReLU. Dynamic ReLU, whose
parameters depend on all inputs, is a dynamic segmented linear function whose encodes
the context as a hyperparameter. Given an input vector X, dynamic activation is defined
as fθ(x), θ(x) is a learnable parameter that computes the parameters for the activation
function, and the static ReLU is defined as:

y = max{x, 0} (4)

X is the Input Vector.
The output of channel c is:

yc = max{xc, 0} (5)

xc is the input to channel c.
The maximum DY-ReLU of the K linear functions is defined as:

yc = fθ(x)(xc) = max
1≤k≤K

{
akc xc + bkc

}
(6)

The linear coefficients α and β are the outputs of θ(x).
Position Attention. Positional attention focuses the model on spatial contextual

information by attentively weighting the features in each channel. The output from the
channel attention with A1 forms the input. First, the input feature map is divided into
two parts according to width and height, processed separately in the axes pw and ph in
both directions, and finally, the output is merged.

pw = 1
H �
0≤j≤H

E(w, j) (7)

ph = 1
W �

0≤i≤W
E(i, h) (8)
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w and h are the width and height of the input feature map, E (w, j) and E (i, h) are the
values of the input feature map position (i, j).

P(aw, ah) = Conv
[
Concat(pw, ph)

]
(9)

P(aw, ah) represents the output of positional attention coordinates, conv is the
convolution of 1 × 1, and concat denotes the cascade.

sw = Split(aw) (10)

sh = Split(ah) (11)

sw and sh are the width and height of the split output, respectively.
Final GCPA output:

FGCPA = E × sw × sh (12)

The E represents the weight of the channel and positional attention.

3.3 Partial Attention Head

PAHead is a detection head combined with attention, and the network structure is shown
in Fig. 3 and the details shows in Fig. 4. It transforms the input data in head into a
three-dimensional tensor on the layer, spatial, and channel dimensions, deploying the
attention mechanism in H × W × C three dimensions.

Fig. 3. The architecture of PartialAttentionHead. (a) represents the spatial attention (b) represents
the layer attention (c) represents the channel attention (d) represents the partial convolution.

Fig. 4. The details of Partial Attention Head. (a) represents the spatial attention (b) represents the
layer attention (c) represents the channel attention (d) represents the partial convolution.

Part (a) is deployed on the spatial dimension (S = H × W) to learn a coherent
representation in spatial locations. Part (b) is layer-aware attention to learn the level of
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semantic hierarchy to facilitate the enhancement or degradation of an object’s features
at the appropriate scale to adjust its importance. Module (c) is deployed on channels to
follow different convolutional kernel reactions to guide different tasks, such as classifi-
cation, regression, and key-point learning. Part (d) means the partial convolution. In this
way, we explicitly implement a unified attention mechanism for the detection head.

Given a tensor F ∈ RS×L×C , the formula for self-attention is W (F) = π(F) · F ,
where π(·) is an attention function, the formula for deploying the attention mechanism
in each of the three dimensions is:

W (F) = πC(πL(πS(F) · F) · F) · F (13)

where πS(·)πL(·)πC(·) are the attention mechanisms applied to the scale, spatial, and
channel dimensions, respectively.

Spatial Attention. We wish to improve the discrimination of spatial locations of
different objects by fusing spatial attention, which cares about the weights of each
location in the plane, focusing on the valid information on the feature map is where. The
expansion capability of deformable convolution [30–33] can help us aggregate multiple
feature levels together. Attention is first expanded by deformable convolution, and then
features are integrated across layers.

πS(F) · F = 1
L

∑L
l=1

∑K
k=1ωl,k · F(l; pk + 	pk; c) · 	mk (14)

K is the number of sparsely sampled positions, pk + 	pk is an offset self-learning
spatial position parameter, deformable convolution introduces an offset for each point
	pk , 	pk discriminates the offset region, and 	mk is the learned position parameter at
position pk .

Layer Attention. Layer perception is an important part of object detection, on the
one hand, there are both small and big objects in the same image, on the other hand,
there are different goals for object classification and localization. In order to focus on
different tasks, we propose a layer-attention mechanism, which enables task decompo-
sition by dynamically computing the features of different tasks between layers allowing
for adaptive input of the importance of each feature level.

Global average pooling is first applied to the inputs, and two fully connected layers
are used to generate weights along with a nonlinear sigmoid function. The two fully con-
nected layers allow the different layers to interact with each other, capture dependencies,
and control model complexity through dimensionality reduction.

πL(F) · F = σ(fc2(δ(fc1(F)))) · F (15)

fc is a fully connected layer function, σ(x) = 1
1+e−x is a sigmoid function, δ(x) =

max(x, 0) is a ReLU function.
Channel Attention. To enable the network to selectively learn the importance of

different channel features to enhance the informative features, we use channel attention
πc. Channel attention concerns the weight of each feature surface. First, the space of the
featuremap is squeezed, and the dimension can be compressed fromH×W×C to 1× 1
×Cby global average pooling to obtain the global features at the channel level. Then, the
global features are subjected to an excitation operation to learn the relationship between
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each channel and predict the importance of each channel. The compressed feature vector
is transformed into aweight vector tomotivate the corresponding channel of the previous
feature map, and finally, the features are weighted so that the output result is fixed in
the interval [-1,1]. Essentially, it is an attention operation in the channel dimension; this
operation allows the model to focus more on informative channel features and suppress
useless channel information.

πC(F) · F = σ(δ(fc(F) · F) · F (16)

σ(x) = 1
1+e−x is the sigmoid activation function, and δ(x) = max(x, 0) is the ReLU

activation function.
Squeeze. The input feature signal H × W × C is output 1 × 1 × C by the squeeze

operation to achieve the mapping of spatial information to channel information so that
it can be utilized by its input layer, and the statistics for each channel are generated by
the average pooling operation.

Excitation. To reduce the model complexity and improve the generalization ability,
the gatedmechanism adopts a bottleneck structure containing two fully connected layers.
The first FC plays the role of dimensionality reduction, the dimensionality reduction
coefficient r is a hyperparameter, which reduces the dimensionality to 1

r , ReLU activation
is used, and the FC recovers the original dimensionality. Finally, the sigmoid function
is the weight coefficient of the individual channels, which is multiplied by the original
features andmultiplied to obtain the correlation of each channel, which makes the model
more discriminative of each channel’s features and a discriminative mechanism.

Partial Convolution. Considering different channels share high similarities, partial
convolution can reduce cost of computational redundancy. It simply applies a regular
convolution on only one-quarter of the input channels and keep the remaining chan-
nels same. Compared to the regular convolution, partial conv can significantly reduce
the computational effort of the network and improve the shortcomings of deformable
convolution while retaining accuracy.

4 Experiments

4.1 Datasets

The Visdrone2019 dataset [34] is a UAVs dataset with a total of 8629 photos. Among
them, 6471 photos are used as the training set, 548 photos are used as the validator, and
1610 photos are used as the test set. The dataset contains 10 categories from everyday
scenarios: pedestrians, people, bicycles, cars, vans, trucks, tricycles, awning tricycles,
buses and motors. The Tinyperson [35] dataset is proposed in 2019, captured from
HD video on the Internet. The dataset contains 1532 images with 72651 comments
totally, 1225 photos for training, 153 images in the validator, and 154 images in the test
dataset. There are two categories to be tested in the miniaturization detection task, one
is earth_person, the other is sea_person. The HIT-UAV [36] is a high-altitude infrared
small target detection dataset with 2898 images. There are 2040 images in training set,
287 images in validation set, and 571 images for test.
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4.2 Implementation Details

Experiments are implemented on an NVIDIA GeForce RTX 3060 (16G) GPU with
Pytorch 1.13.1, Python 3.8, and CUDA 11.6 dependency. The input image size is 640×
640, and the batch size of the training data volume is 4. The training lasts for 100 cycles.
Stochastic Gradient Descent (SGD) is used as the optimization function, and mosaic
enhancement is turned off for the last 10 rounds.

4.3 Ablation Study

Table 2. The accuracy of different backbones.

Model AP AP50 APS APM APL Params(M) GFLOPs

EfficientViT [37] 14.0 25.2 16.0 39.5 51.6 4.0 9.4

Resnet18 [38] 18.3 32.1 20.4 47.4 52.2 17.9 46.3

Resnet50 [38] 17.9 31.2 20.6 46.8 53.1 28.5 75.6

Swin-transformer [39] 19.5 34.3 22.8 48.6 53.5 34.7 90.5

Fasternet [40] 17.9 31.4 21.4 46.1 51.5 8.6 21.7

YOLOv5s 19.7 33.7 22.8 48.1 52.6 9.1 23.8

YOLOv8n 21.8 37.2 27.2 48.9 55.6 3.0 12.2

YOLOv8s 22.7 38.5 25.7 51.7 60.8 11.1 28.5

Backbone. The Table 2 compares the effects of YOLOv8 and other backbone and
shows that YOLOv8 has excellent performance in the field of object detection. Com-
pared with other classical backbones, YOLOv8 shows advantages in both accuracy and
parameters.

The receptive field is the range of the input image that can be seen by a feature
point in the convolutional neural network. The Effective Receptive Field (ERF) of the
8 backbones is shown in Fig. 5. A wider distribution of the dark area indicates a larger
ERF.

The performance of Bi-EFPN and GCPA. The comparison of FPN shown on
Table 3. TheYOLOv8 backbonewas retained, and FPNwas replacedwith othermodules
for comparison with the ablation experiments. On the Visdrone2019 dataset, when the
input image size is 640 × 640, the Bi-EFPN improves the AP performance by 2.5% and
1.3% compared with the YOLOv8s and YOLOv8s-P2, respectively. With the addition
of GCPA, it achieves a better performance in terms of detection accuracy, with 25.8
(AP), 43.1 (AP50), 26.1 (AP75), 32.2 (APS), 52.8 (APM), and 62.9 (APL) achieved the
optimum. It is worth noting that since the depth of feature fusion is particularly enhanced
when constructing the FPN, as the number of layers increases, the number of parameters
inevitably increases while the global information is fused at different levels. Although
Bi-EFPN is poor in large object detection, we compensated the shortcomings through the
GCPA mechanism. Finally, the experiment proves that our network is not at all inferior
to other popular FPNs.
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Fig. 5. The ERF of (a) EfficientViT; (b) Resnet18; (c) Swin-transformer; (d) YOLOv8n; (e)
Fasternet; (f) Resnet50; (g) YOLOv5s; (h) YOLOv8s.

Table 3. The comparison experiments with other FPN based on YOLOv8s.

Model AP AP50 AP75 APS APM APL Params(M) GFLOPs

ASF [41] 20.8 35.5 21.2 24.0 49.6 54.2 11.3 30.1

Slimneck [42] 21.4 36.7 21.2 24.6 50.3 61.3 10.3 25.1

Gold-yolo [27] 21.5 36.9 21.4 25.1 50.9 59.3 13.6 29.9

GFPN [43] 20.4 34.6 20.4 23.8 49.1 53.7 12.1 29.3

EfficientRepBiPAN
[44]

21.1 35.9 21.1 24.2 50.4 59.8 10.2 25.6

AFPN [45] 20.5 34.7 20.5 23.8 50.1 59.0 8.9 25.1

Bi-FPN [21] 21.8 37.0 22.1 24.9 51.7 62.8 7.4 25.0

YOLOv8s 22.7 38.5 22.7 25.7 51.7 60.8 11.1 28.5

YOLOv8s-P2 24.2 41.2 24.2 29.7 51.4 58.4 10.6 36.7

Bi-EFPN 25.5 42.5 25.5 31.2 52.7 60.1 10.7 40.6

Bi-EFPN + GCPA 25.8 43.1 26.1 32.2 52.8 62.9 10.8 41.3

Head. We tested the detection head separately to explore the role of each detection
head in YOLOv8. According to Table 4, we can see the efficiency in small objects
detection. P3 layer has the strongest expression ability, coupled with richer information.
We conclude that the layer containing more location information is more beneficial for
small object detection.
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Table 4. Effectiveness of different head of YOLOv8s.

P3 P4 P5 MAP50 MAP50–95 P3 P4 P5 MAP50 MAP50–95

✕ ✕ ✕ 34.3 20.1 ✓ ✓ ✕ 40.6 24.4

✓ ✕ ✕ 39.9 23.9 ✓ ✕ ✓ 40.1 24.0

✕ ✓ ✕ 32.3 20.0 ✕ ✓ ✓ 33.3 20.5

✕ ✕ ✓ 20.1 13.4 ✓ ✓ ✓ 40.6 24.3

Ablation experiments. In ablation experiments, we show the performances of Bi-
EFPN, GCPA, PAHead in Table 5. From the results, the Bi-EFPN has the great improve-
ment in AP of the baseline. The GCPA has significant improvement in small object
detection with minor computer resources cost. To reduce the GFLOPs while maintain-
ing accuracy, we design a lightweighted detector PAHead, which bring 6.8 GFLOPs
decrease in computational volume.

Table 5. Ablation experiments of the main components on the Visdrone2019 datasets.

Bi-EFPN GCPA PAHead AP APS APM APL Parameters GFLOPs

- - - 22.7 25.7 51.7 60.8 11129454 28.5√
25.5 31.2 52.7 60.1 10678520 40.6√ √
25.8 32.2 52.8 62.9 10764735 41.3√ √ √
26.4 32.8 54.1 61.2 10101861 34.5

In order to show the difference between the results before and after the improvement,
we listed 4 sets of heat maps in Fig. 6. Heat maps can better visualize the results more
intuitively to represent the area of attention.

� �a

� �b

Fig. 6. The heat maps of (a)YOLOv8; (b) BiPA-Net on the Visdrone2019 dataset.
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The Table 6 shows that the Bi-EFPN, GCPA, and PAHead have achieved a cascading
improvement in detection accuracy. We compare the different categories individually
and find that our network pays more attention to small targets. The people show 9.6%
increase while bicycle shows 9% increase in AP metrics. For large targets such as bus
and van, the improvement is 2.9% and 6.3% respectively, proves that the network is able
to balance the detection of small and large target.

Table 6. Major types performance tests on the Visdrone2019 datasets.

Model MAP50 Pedestrian People Bicycle Car Van Truck Tricycle Awn Bus Motor

YOLOv8s 40.6 43.4 33.6 15.4 79.6 44.8 38.5 29.1 17.6 58.5 45.0

+ Bi-EFPN 45.0 52.9 42.0 16.6 85.0 49.7 39.1 33.2 17.3 62.8 51.7

+ Bi-EFPN
+ GCPA

45.2 52.4 41.9 17.3 84.9 50.6 39.2 31.7 19.7 61.9 52.2

+ Bi-EFPN
+ GCPA
+ PAHead

45.7 53.0 42.6 17.4 85.3 51.1 41.7 32.5 18.0 61.4 53.6

Generalization Performance. The generalization performance of a network is the
performance in another dataset that never seen before. Tinyperson dataset is popular in
the challenge of tiny target detection. To verify that our designed network has the same
improvement effect on small object detection on other datasets, we chose the Tinyperson
dataset for comparison. The Fig. 7 shows a comparison of detection results between our
network and baseline on the Visdrone2019 dataset and Tinyperson dataset. The red box
means false predicted, blue box means false negative, green box means true predicted.
The Table 7 shows the experiments of comparative experiments.
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Fig. 7. Visualization of results. (a)(c)(e) Results of YOLOv8s; (b)(d)(f) Results of our network.

Table 7. Comparative experiments on different datasets.

Dataset Model MAP50 MAP50–95 FPS FLOPs(G) Params(M)

YOLOv8n 33.9 19.4 286 8.2 3.0

YOLOv8s 40.6 24.2 238 28.5 11.1

Visdrone YOLOv10n[14] 32.6 19.0 285 8.2 2.6

YOLOv10s [14] 38.2 0.23 167 24.8 8.1

BiPA-Net(ours) 45.7 28.1 76 34.5 10.1

YOLOv8s 29.9 10.0 196 28.4 11.2

Tinyperson YOLOv10s [14] 26.7 8.33 67.6 24.4 8.1

BiPA-Net(ours) 35.2 11.6 78 34.4 10.1

HIT-UAV YOLOv8s 81.1 53.2 159 28.4 11.1

BiPA-Net(ours) 83.2 54.1 75 34.4 10.1

5 Conclusion

We proposed Bi-EFPN, a feature pyramid network more suitable for small object detec-
tion, which combines GCPA mechanisms and spatial and layer features. The Bi-EFPN
network expands the depths of the up-sampling and down-sampling, integrating back-
bone with more primitive information into FPN, and put the residual network into
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use. The GCPA further exploits the small object position information while taking into
account the characteristics of large targets. PAHead unifies the spatial, layer, and chan-
nel attention to improve the performance and robustness in the head. It is demonstrated
through a large number of experiments that our model can recognize a large number of
small objects, which is a significant advantage over other mainstream models. In addi-
tion, ablation experiments demonstrate the effectiveness of each module, providing a
basis for further improvement.
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