
Apostolos Antonacopoulos · 
Subhasis Chaudhuri · Rama Chellappa · 
Cheng-Lin Liu · Saumik Bhattacharya · 
Umapada Pal (Eds.)

LN
CS

 1
53

15

Pattern Recognition
27th International Conference, ICPR 2024 
Kolkata, India, December 1–5, 2024 
Proceedings, Part XV



Lecture Notes in Computer Science 15315
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.



Apostolos Antonacopoulos ·
Subhasis Chaudhuri · Rama Chellappa ·
Cheng-Lin Liu · Saumik Bhattacharya ·
Umapada Pal
Editors

Pattern Recognition
27th International Conference, ICPR 2024
Kolkata, India, December 1–5, 2024
Proceedings, Part XV



Editors
Apostolos Antonacopoulos
University of Salford
Salford, Lancashire, UK

Rama Chellappa
Johns Hopkins University
Baltimore, MD, USA

Saumik Bhattacharya
IIT Kharagpur
Kharagpur, West Bengal, India

Subhasis Chaudhuri
Indian Institute of Technology Bombay
Mumbai, Maharashtra, India

Cheng-Lin Liu
Chinese Academy of Sciences
Beijing, China

Umapada Pal
Indian Statistical Institute Kolkata
Kolkata, West Bengal, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-78353-1 ISBN 978-3-031-78354-8 (eBook)
https://doi.org/10.1007/978-3-031-78354-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0001-9552-0233
https://orcid.org/0000-0002-7638-1650
https://orcid.org/0000-0003-1273-7969
https://orcid.org/0000-0002-1680-0016
https://orcid.org/0000-0002-6743-4175
https://orcid.org/0000-0002-5426-2618
https://doi.org/10.1007/978-3-031-78354-8


President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Visible-infrared person re-identification (VI-ReID) is cru-
cial for surveillance and security applications. Several studies have been
performed for supervised VI-ReID, and recent methods show excellent
retrieval performance on public datasets. However, obtaining VI-ReID
data in practical scenarios presents significant challenges due to the
necessity for the same identity to be available across different types of
cameras, potentially spanning various locations and time frames, along
with the arduous task of annotating data owing to modality discrepan-
cies. This motivates us to explore methods requiring limited data from
a select number of identities, which is more readily obtainable. To this
end, we introduce a novel two-stage learning framework for VI-ReID that
efficiently works with scarce data and labels. Our framework focuses on
Supervised Domain Adaptation, where a pre-trained model from a source
dataset is utilized on a small annotated target dataset. Additionally,
we introduce a novel loss, Hetero-Dissimilarity based Maximum Mean
Discrepancy (HD-MMD), tailored for adapting heterogeneous source
and target domains. Our approach addresses the inherent challenges of
domain shift between datasets and modality differences between visible
and infrared imagery. Our proposed method outperforms several label-
efficient approaches on public VI-ReID datasets while utilizing signifi-
cantly smaller amount of data. Ablation analysis conducted with several
popular baselines reveals the efficacy of our proposed SDA framework
and HD-MMD loss in improving retrieval performance. We also demon-
strate the ease of integrating our approach with other methods. Code
will be released at https://github.com/Mihirsahu2307/SDA-VI-ReID.

Keywords: VI-ReID · Domain Adaptation · Data-efficient Learning

1 Introduction

Visible-infrared person re-identification (VI-ReID) [19,26,27] has garnered sig-
nificant attention in recent years due to its application in 24-hour surveillance
and security systems. It involves matching individuals across visible and infrared
cameras, presenting unique challenges stemming from the discrepancy between

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15315, pp. 1–16, 2025.
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IR
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Fig. 1. Comparison of Unsupervised (UDA), Semi-Supervised (SSDA) and Supervised
(SDA) Domain Adaptation strategies for VI-ReID. Different colours show different
labelled IDs. Grey colour refers to unlabelled data.

the modalities. Supervised VI-ReID [6,26] has been extensively studied, with
some methods achieving more than 90% Rank-1 Retrieval accuracy [3,6,7] on
publicly available datasets. Recently, to alleviate the issue of tedious manual
annotation of VI-ReID datasets, Unsupervised Learning [10,20,23] and Unsu-
pervised Domain Adaptation (UDA) [1,4,18] based approaches have also been
studied which require no annotations, but in their place require copious amounts
of data along with huge computational requirements. While substantial progress
has been made in developing VI-ReID models, their effectiveness often relies on
an abundance of large amounts of paired images of identities in both modalities,
termed cross-modal correspondences. This constrains the practical applicability
of these approaches as the acquisition of images of the same person in both
modalities is a laborious task, as it requires the person to be available at two
or more different locations under different lighting conditions and, potentially
different times.

To mitigate this issue, we propose a Supervised Domain Adaptation (SDA)
based framework for VI-ReID, where a model trained on a large-scale source
dataset is transferred to a small annotated target dataset, with no additional
unlabelled data. In general, domain adaptation is widely studied in the semi-
supervised or unsupervised setting with limited or no target labels for scenarios
where gathering the data in abundance might be straightforward, but anno-
tating the data is difficult. But we highlight that for VI-ReID, even garnering
large amounts of data in both modalities is an arduous task, thereby result-
ing in poor performance of the UDA and Semi-Supervised Domain Adaptation
(SSDA) based approaches for small target datasets. For instance, an identity
present in an RGB camera may not be available in the infrared modality, as
this would require changes in lighting conditions and location. This discrepancy
could result in a lack of correspondences, adversely affecting training if the data
is not collected meticulously. In the proposed setting, very limited data can be
collected from a small group of individuals in a controlled fashion. Hence, in
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this paper, we explore the SDA setting for VI-ReID. Fig. 1 shows the difference
between SDA, SSDA and UDA approaches for VI-ReID. The motivation of the
study is inspired by the observations that: 1) In practice, even for unsupervised
VI-ReID, amassing datasets with abundant cross-modal correspondences is an
onerous task. 2) Compiling and annotating cross-modal data for a small batch of
individuals is much easier than gathering huge amounts of unlabelled data with
abundant cross-modal correspondences. To this end, we propose a two-stage
training procedure for SDA consisting of Source Pre-training and Collaborative
Learning. This framework can be integrated with any baseline method. In the
initial Source Pre-training stage, leveraging the annotated source domain, we
aim to mitigate the modality gap and learn a robust embedding network. In the
Collaborative Learning stage, we train the model using both source and target
domains. Further, to bridge the domain gap and distil source knowledge effec-
tively, we propose a Hetero-Dissimilarity based Maximum Mean Discrepancy
(HD-MMD) loss. This loss aligns the dissimilarity space of the heterogeneous
target domain to that of the heterogeneous source domain. Our study reveals the
following insights: 1) Leveraging a large-scale source domain immensely improves
the accuracy of the model on the target domain for VI-ReID. 2) Proposed SDA
framework can achieve excellent retrieval performance while using as little as
20% of the training data.

In summary, the main contributions of the paper are:

– To address the challenge of collecting large-scale datasets with abundant
cross-modal correspondences, we propose a Supervised Domain Adaptation
(SDA) setting. SDA leverages a large-scale, annotated source dataset to learn
robust representations for a small, annotated target dataset, reducing the
dependency on extensive cross-modal correspondences and providing a prac-
tical solution for VI-ReID.

– We propose a two-stage SDA based framework for VI-ReID that seamlessly
integrates with existing VI-ReID methods. This data-efficient framework aims
to address the challenges posed by scarcity of data by leveraging the rich
annotations of the large-scale source dataset.

– We introduce a novel loss, HD-MMD, which effectively utilizes the scarce
cross-modal annotations of the target dataset to learn a robust dissimilarity
space for heterogeneous data. This bridges the gap between the heterogeneous
source and target domains, which have disjoint label spaces.

– Experiments using the proposed SDA based approach on publicly available
datasets demonstrate the retrieval efficacy of our approach over other label-
efficient approaches for VI-ReID, while using as little as 20% of the target
domain training data. Additionally, we empirically validate the effectiveness
of our framework in enhancing the accuracy of various VI-ReID baselines.
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2 Related Work

2.1 Supervised Visible-Infrared Person ReID

Supervised VI-ReID has been extensively studied, with many recent methods
achieving excellent results on public VI-ReID datasets. Most works focus on
domain-invariant feature learning and reducing the modality discrepancy. Ear-
lier studies [11,27] focused on metric learning approaches. Some studies also
use part-level features to extract local information [8,12]. Other works focus
on explicitly reducing the modality discrepancy by designing suitable loss func-
tions. Jambigi et al. [6] introduce a margin-based MMD loss that aligns the
modalities at identity level. Recently, Feng et al. [3] propose a feature learning
paradigm where they erase the shape related features in an attempt to learn
other modality-shared discriminative features. However, these methods rely on
annotations of large-scale VI-ReID datasets, which limits their practical applica-
bility. Contrary to these methods, we propose to use very limited data of a small
set of identities from the target domain to learn a robust embedding network.

2.2 Domain Adaptation for Person ReID

Domain Adaptation for Person Re-identification, and consequently, for VI-ReID,
is inherently an open set adaptation problem as the label spaces of source
and target are mutually exclusive. Most studies focus on UDA for person re-
identification. Lee et al. [9] introduce a camera-driven curriculum learning frame-
work, wherein they use the camera labels to divide the target dataset into
multiple subsets and progressively transfer knowledge from source to target
domains. Many studies leverage pseudo labels [2,17] and learn discriminative
target domain information. Some studies leverage the tracklet information [14]
to mitigate the absence of labels. Mekhazni et al. [14] propose to align the source
and target domain dissimilarity spaces using Maximum Mean Discrepancy. These
UDA approaches rely on an abundance of data in the target dataset which may
not be feasible for VI-ReID. Moreover, UDA approaches that rely on tracklets
which work for single modality Person Reid would fail for VI-ReID. This is
because the tracklets would only provide images for a single modality at a time,
and obtaining tracklet information for the same identity in both modalities would
require knowledge about the identity, thus requiring supervision, which is not
feasible.

2.3 Label Efficient VI-ReID

Liang et al. [10] made one of the earliest attempts to study VI-ReID as an unsu-
pervised learning problem. They propose to first learn the intra-modality feature
representations and then use heterogeneous learning to learn shared discrimina-
tive feature representations by distilling knowledge from intra-modality pseudo-
labels. Subsequent research efforts, such as [20,23,24], further explore Unsu-
pervised Learning based VI-ReID (USL-VI-ReID), leveraging various strategies
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including camera-level information [23], graph-based structures [20], and cross-
modal correspondence mining [24]. Recently, a few studies [1,4] have delved into
UDA for VI-ReID (UDA-VI-ReID), aiming to adapt pre-trained models from a
source VI-ReID dataset to a target VI-ReID dataset. Unsupervised methods are
a step closer to practical VI-ReID systems as they mitigate the issue of laborious
annotations. However, these methods often rely on datasets like SYSU-MM01
and RegDB, which offer ample cross-modal correspondences. Without sufficient
cross-modality correspondences, as is the practical scenario, these methods would
show deteriorating performance.

Another line of label-efficient approaches study VI-ReID from a semi super-
vised perspective [16,18,22]. These approaches leverage a combination of labelled
visible data and unlabeled infrared data for model training. For instance, Wang
et al. [18] propose Optimal-Transport Label Assignment (OTLA) to tackle this
by leveraging an optimal-transport strategy to assign pseudo labels from visible
to infrared modality. Shi et al. [16] extend upon OTLA to study Semi-Supervised
VI-ReID by labelling a portion of the large-scale training data. In contrast to
prior studies, we address data and label scarcity by annotating a small set of
images from both modalities in the target dataset and eliminating the need for
additional unlabelled data, thus achieving data and label efficiency while reduc-
ing computational overhead.

3 Methodology

In this section, we first formulate the SDA problem for VI-ReID and briefly intro-
duce Maximum Mean Discrepancy (MMD), and then move on to the proposed
HD-MMD loss and SDA-VI-ReID framework.

3.1 SDA Problem Formulation

Let Dv
s and Di

s denote the annotated source domain visible and infrared datasets,
respectively, where Dv

s = {(vm
s , ym

s )}Nv
s

m=1 and Di
s = {(ims , ym

s )}Ni
s

m=1. Similarly,
let Vt and It denote the annotated target domain visible and infrared datasets,
respectively, where Dv

t = {(vm
t , ym

t )}Nv
t

m=1 and Di
t = {(imt , ym

t )}Ni
t

m=1. Let ns and
nt denote the number of identities and Ns and Nt denote the total number of
images in the training set of source and target dataset, respectively. We have,
nt � ns and Nt � Ns.

Let fφ be a generic embedding network trained on the source domain S =
{Dv

s ,Di
s}. The goal of Supervised Domain Adaptation is to adapt fφ to the target

domain T = {Dv
t ,Di

t}. Note that adaptation involves achieving satisfactory
retrieval performance in the target domain.

3.2 Maximum Mean Discrepancy

MMD [5] is a measure used to quantify the discrepancy between two probability
distributions. In brief, MMD calculates the difference between the empirical
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means of two given sets of samples in a Reproducing Kernel Hilbert Space. For
simplicity, MMD can be interpreted as taking a weighted average of the difference
of moments between the two distributions by transforming the variables using
the kernel k.

MMD between two distributions P and Q can be computed as:

MMD2(P,Q) =
1

n2
P

nP∑

i=1

nP∑

j=1

k(xi, xj)

− 2
nP nQ

nP∑

i=1

nQ∑

j=1

k(xi, yj) +
1

n2
Q

nQ∑

i=1

nQ∑

j=1

k(yi, yj)

(1)

Where k represents the kernel function, xi and yj are samples from distri-
butions P and Q respectively, and nP and nQ are the number of samples from
each distribution. We choose the gaussian kernel for k, given by:

k(xi, xj) = exp
(

−‖xi − xj‖2
2σ2

)
(2)

MMD has been extensively used in closed-set domain adaptation [21] to min-
imize the distribution shift between a source domain and a target domain having
overlapping label spaces. But MMD can not be directly applied for VI-ReID as
the label space of the source and target domains are different (since the identi-
ties are different). To circumvent this shortcoming of ambiguous alignment, we
introduce HD-MMD.

3.3 Hetero-Dissimilarity based Maximum Mean Discrepancy

Since domain adaptation for VI-ReID is an open set problem, generally with
no overlap of source and target label spaces, instead of aligning the source and
target domains directly, we align the dissimilarity spaces of the two domains.
The dissimilarity space [14] of a feature space is a vector space formed by the
pairwise dissimilarities of the features. Specifically, we design HD-MMD loss,
which aims to align the dissimilarity spaces of the source and target domains,
both of which have heterogeneous data.

Directly using D-MMD [14] doesn’t help with the retrieval performance
(Table 3) because the source and target batches contain heterogeneous data.
As shown in Fig. 3 (c), for a robust embedding model, the clusters of the same
identity are close but separated between modalities. The modality discrepancy
affects the distribution of pairwise distances, leading to reduced performance
when D-MMD is directly applied to source and target batches. To address this,
we propose aligning the dissimilarity spaces of each modality independently. The
bridge between modalities is established using the supervised loss functions of
the baseline. The motivation for this approach is formed by the following: 1)
D-MMD demonstrates remarkable efficacy in single-modality UDA for Person
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Re-identification [14]. 2) Current supervised methods designed for VI-ReID effec-
tively mitigate the modality gap [3,11,26]. By incorporating HD-MMD alongside
these supervised losses, we effectively form well-structured homogeneous clusters
and concurrently diminish the heterogeneous modality gap.

Let fm
φ denote the embedding network for the modality m = {v, i}. For the

modality m and domain δ = {s, t}, the intra-class (within class) dissimilarity for
identity i between images xu

i , xw
i ∈ Dm

δ is given in Eq. 3. u and w are 2 different
indices for the images of identity i. Note that we choose the L2 distance as the
dissimilarity measure between 2 vectors to work with a Euclidean Dissimilarity
vector space.

dm,δ
W (xu

i , xw
i ) = ‖fm

φ (xu
i ) − fm

φ (xw
i )‖2, u �= w (3)

Similarly, the inter-class (between class) dissimilarity between identities i& j
for images xu

i , xw
j ∈ Dm

δ is given by:

dm,δ
B (xu

i , xw
j ) = ‖fm

φ (xu
i ) − fm

φ (xw
j )‖2, i �= j (4)

We define the MMD loss for the within-class (dm,δ
W ) and between-class (dm,δ

B )
dissimilarity space of modality m as:

Lm
W,MMD = MMD(dm,s

W , dm,t
W ) (5)

Lm
B,MMD = MMD(dm,s

B , dm,t
B ) (6)

The final HD-MMD loss is formed by summing up the pair-wise distance
losses of both the modalities.

LHD−MMD = Lv
W,MMD + Lv

B,MMD + Li
W,MMD + Li

B,MMD (7)

3.4 SDA-VI-ReID Framework

SDA-VI-ReID framework can be easily integrated with any existing baseline VI-
ReID method. All supervised learning based baselines use the identity loss Lid,
along with some metric learning based losses (eg. Triplet Loss or some variant)
[11,26]. For convenience, we will collectively term them as Lδ

sup, where δ = {s, t}
denotes the domain (source/target).

Herein, we present the two-stage training methodology for SDA-VI-ReID and
the training objective employed for Collaborative Learning. Fig. 2 depicts the
two-stage framework of the approach, incorporating a generic baseline model for
the embedding network alongside the HD-MMD loss.

Stage 1: Source Pre-Training In this stage, we train the model fφ using
the supervised losses of the baseline with the suggested hyperparameters. Note
that the classifier will have ns number of output logits in this stage.

Stage 2: Collaborative Learning We load the trained model fφ and drop
the classifier from stage 1. We append a new classifier having ns +nt number of
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Load
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Supervised
Losses

HD-MMD Loss

MMD

MMDSource Target

Source Target

Target

Target

Distances Distances

Distances Distances

Distances

Distances

RGB

IR

Supervised
Losses

Supervised
Losses

Supervised
Losses

Source Target

Source data flow

Target data flow

RGB features

RGB features

IR features

IR features

HD-MMD Loss

Baseline Model Baseline Model

Baseline Model

FC/CNN
layers

Backbone

Specific

Backbone

Shared

FC/CNN
layers

RGB

IR

Feature Extractor Feature Embedder Classifier

Fig. 2. The complete SDA-VI-ReID framework. In the first stage, the model is pre-
trained on the source dataset. Subsequently, in the second stage, source and target
domains collaboratively train the model and HD-MMD is used to bridge the domain
shift for RGB and IR modalities. Note that the baseline model and supervised losses
are baseline method specific. For the experiments, we choose the baseline as AGW.
Typically, ResNet-50 is used as the backbone of the baseline model.

logits and we train the model fφ using the overall training objective Ltot given
by:

Ltot = Lt
sup + λs · Ls

sup + λh · LHD−MMD (8)

4 Experiments

4.1 Datasets and Metrics

We evaluate the proposed method on two public VI-ReID datasets: SYSU-MM01
[19] and RegDB [15]. Following the settings in [19], we employ Cumulative
Matching Characteristic (CMC) and mean Average Precision (mAP) as eval-
uation criteria. Additional information about the datasets is provided in the
supplementary materials.
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4.2 Implementation Details

For comparison, we use the standard AGW [26] as our baseline for comparison
with state-of-the-art (SOTA). We keep all the hyperparameters as suggested in
[26]. For the second stage, we empirically choose λs = 0.25 and λh = 1. To ensure
fair comparison, images were augmented using the standard random flipping,
random cropping and random erasing [30] strategies, consistent with other SOTA
methods [18,22]. In each batch, we select 4 identities and 4 images from each
modality per identity, for both the domains, making a batch of 2∗4∗(4+4) = 64
images. Throughout the section, "x% of dataset" refers to using x% of identities
from the training set. For example, 20% of RegDB means utilising RGB and IR
images from 41 IDs. Further details can be found in supplementary materials.

4.3 Results and Analysis

We compare SDA-VI-ReID (ours) with 3 categories of approaches: Fully Super-
vised methods (SVI-ReID), Unsupervised methods (USVI-ReID) and Label-
Efficient methods (LEVI-ReID). SVI-ReID methods use 100% of the labelled
training data, whereas our approach uses a small fraction which is mentioned
in brackets alongside "SDA". USVI-ReID includes both UDA-VI-ReID and
USL-VI-ReID approaches. LEVI-ReID includes Semi-Supervised Learning based
approaches. Note that unlike our method, other LEVI-ReID methods use a com-
bination of labelled and unlabelled training data. Since we are the first to study
VI-ReID in the data-efficient setting, we mainly compare our method with the
closely related LEVI-ReID based approaches.

Overall, our approach outperforms all label-efficient methods on RegDB, as
evidenced by Table 1. Using a stronger baseline, we beat unsupervised meth-
ods as well while requiring significantly less data and computational resources.
It’s important to note that the performance on the SYSU-MM01 dataset is
constrained by the RegDB dataset’s inadequacy as a large-scale source domain.
Notably, even 20% of the SYSU-MM01 dataset surpasses the entire RegDB train-
ing dataset. Moreover, SYSU-MM01 employs a more extensive camera setup
for both modalities, resulting in more robust learned representations compared
to RegDB. This highlights the suitability of SYSU-MM01 as a source domain
dataset, contrasting with the inadequacy of RegDB, as confirmed by our find-
ings. This limitation adversely affects results on SYSU-MM01, as evident from
Table 2. We believe that employing another large-scale VI-ReID dataset as the
source domain could substantially enhance results on SYSU-MM01.

Comparison with LEVI-ReID methods: Label-efficient (semi-supervised)
methods use labelled visible data along with unlabelled infrared data. Overall,
our findings reveal that we outperform existing LEVI-ReID based methods on
the RegDB dataset (target). This stems from the utilization of the richly labelled
and extensive SYSU-MM01 dataset as the source domain while using RegDB
as the target domain dataset. We observe that we beat OTLA by using only
20% of the target training data. Moreover, by using just 40% annotations, we
consistently outperform all existing semi-supervised methods and even a few
SVI-ReID methods too. Conversely, in the alternative scenario, RegDB proves
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Table 1. Comparison on RegDB (Target) using SYSU-MM01 as Source. † Indicates
results are taken from [18]. ‡ Denotes the results without camera information.

Settings RegDB
Visible2Thermal Thermal2Visible

Type Method Venue Rank-1 mAP Rank-1 mAP
SVI-ReID JSIA-ReID [25] AAAI’20 48.5 49.3 48.1 48.9

AGW [26] TPAMI’21 70.1 66.4 70.5 65.9
FMCNet [28] CVPR’22 89.1 84.4 88.4 83.9
PartMix [8] CVPR’23 85.7 82.3 84.9 82.5
SGIEL [3] CVPR’23 92.2 86.6 91.1 85.2

USVI-ReID D-MMD† [14] ECCV’20 2.2 3.7 2.0 3.6
GLT† [29] CVPR’21 2.9 4.5 6.3 7.6
H2H [10] TIP’21 14.1 12.3 13.9 12.7
OTLA [18] ECCV’22 32.9 29.7 32.1 28.6
ADCA [24] MM’22 67.2 64.1 68.5 63.8
PGM [20] CVPR’23 69.5 65.4 69.9 65.2
GUR‡ [23] ICCV’23 73.9 70.2 75.0 69.9

LEVI-ReID OTLA [18] ECCV’22 49.9 41.8 49.6 42.8
TAA [22] TIP’23 62.2 56.0 63.8 56.5
DPIS [16] ICCV’23 62.3 53.2 61.5 52.7

Ours SDA(20%) - 51.1 46.9 47.3 44.7
SDA(40%) - 71.7 68.1 69.3 66.0

to be an inadequate source domain dataset due to its lack of scale and limited
variability within the images. We would like to highlight that, unlike other LEVI-
ReID methods, we do not require any additional unlabelled training data from
the target domain.

Comparison with USVI-ReID methods: We see that we beat all unsuper-
vised methods except GUR by using AGW and 40% data on RegDB. Note that
D-MMD and GLT are designed for single modality person re-identification and
the results are taken from [18]. We would like to highlight that our approach
requires very limited computational resources compared to the unsupervised
methods. For analysis of time and memory requirements, please refer to the
supplementary materials.

Comparison with SVI-ReID methods: We beat AGW while using only 40%
of the RegDB data. Remarkably, from Fig. 5 (b), it is evident that we achieve
90.2% Rank-1 accuracy by using 100% of the RegDB with AGW as the baseline,
thereby, surpassing all of the SVI-ReID approaches except SGIEL. Note that
using SDA with recent baselines would lead to even better results, as evident
from Table 4. However, there is still ample room for improvement.
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4.4 Ablation Study

In this section, we investigate the influence of the baseline model (AGW),
the training stages within the framework, and the HD-MMD objective on the
retrieval performance for the RegDB dataset. Additionally, we compare the
impact of the standard D-MMD versus our proposed HD-MMD loss, with the
same weight for both the losses (= 1). The results are summarized in Table 3.
Since our approach relies on a large-scale source domain dataset, our experi-
ments are performed using SYSU-MM01 as the source and RegDB as the target
dataset.

Table 2. Comparison on SYSU-MM01 (Target) using RegDB as Source. † Indicates
results are taken from [18]. ‡ Denotes the results without camera information.

Settings SYSU-MM01
All Search Indoor Search

Type Method Venue Rank-1 mAP Rank-1 mAP
SVI-ReID JSIA-ReID [25] AAAI’20 38.1 36.9 43.8 52.9

AGW [26] TRAMI’21 47.5 47.7 54.2 63.0
FMCNet [28] CVPR’22 66.3 62.5 68.2 74.1
PartMix [8] CVPR’23 77.8 74.6 81.5 84.4
SGIEL [3] CVPR’23 77.1 72.3 82.1 82.9

USVI-ReID D-MMD† [14] ECCV’20 12.5 10.4 19.0 15.4
GLT† [29] CVPR’21 7.7 9.5 12.1 18.0
H2H [10] TIP’21 25.5 25.2 - -
OTLA [18] ECCV’22 29.9 27.1 29.8 38.8
ADCA [24] MM’22 45.5 42.7 50.6 59.1
PGM [20] CVPR’23 57.3 51.8 56.2 62.7
GUR‡ [23] ICCV’23 61.0 57.0 64.2 69.5

LEVI-ReID OTLA [18] ECCV’22 48.2 43.9 47.4 56.8
TAA [22] TIP’23 48.8 42.3 50.1 56.0
DPIS [16] ICCV’23 58.4 55.6 63.0 70.0

Ours SDA(20%) - 26.6 26.4 27.4 36.3
SDA(40%) - 36.0 36.3 39.2 50.1

Row 1 corresponds to training solely on the target dataset with only 20%
of the data. Training the baseline directly on the small target dataset yields
poor performance, but as we incorporate components of our proposed approach,
retrieval performance improves. Remarkably, employing only Stage-2 of the SDA-
VI-ReID framework yields comparable results, indicating proper alignment of the
source domain with a sufficient number of epochs, and subsequent alignment of
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Table 3. Ablation Study on 20% of RegDB (Target) with SYSU-MM01 as Source. S-1
and S-2 refer to Stage 1 and 2 of our SDA-VI-ReID framework. The Baseline is AGW.
Row number 1 refers to only target training without using the source domain.

No. Method Visible2Thermal Thermal2Visible
Baseline S-1 S-2 D-MMD HD-MMD Rank-1 mAP Rank-1 mAP

1 � 29.4 28.7 28.2 27.6
2 � � 39.2 40.6 38.9 39.4
3 � � � 40.1 38.6 40.5 39.9
4 � � � � 44.0 39.6 43.5 41.1
5 � � � 49.4 46.3 47.8 43.2
6 � � � � 51.1 46.9 47.3 44.7

(a) Baseline
(Only Target Training)

(b) SDA
without HD-MMD

(c) SDA
with HD-MMD

Fig. 3. t-SNE plots showing RegDB test features of the same 10 IDs. Baseline refers
to direct target training using AGW baseline. Circles: RGB, Crosses: IR features.

the target domain via the HD-MMD loss. This significantly reduces computa-
tional overhead, as Stage-1 can be omitted while achieving similar outcomes.
Moreover, as evident from rows 4 and 6, our HD-MMD loss surpasses D-MMD,
highlighting the suitability of our approach for domain adaptation across het-
erogeneous domains. Visualization via t-SNE [13] plots in Fig. 3 demonstrates
that clusters of the same identity converge closer upon employing SDA and HD-
MMD. Additionally, clusters become more compact with HD-MMD, signifying
improved learning of the cluster structure from aligned dissimilarity spaces for
both modalities.

Further, Table 4 demonstrates the effectiveness of our proposed SDA frame-
work and HD-MMD loss by showcasing significant performance improvements
when integrated with several popular methods, including AGW [26], HcTri [11],
and MMD-ReID (abbr. MMDR) [6]. Only Target (row 1) refers to training the
baseline directly on 20% of RegDB. HcTri and MMDR utilize stronger supervised
signals, which can be unstable when directly applied to the small target dataset
and lead to feature degradation. However, when paired with our framework, the
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learnt representations are better. This highlights the seamless integration of our
framework with recent methods and its ability to enhance their performance.

4.5 Sensitivity Analysis

Effect of λs and λh: The influence of hyperparameters λs and λh on mAP
and Rank-1 accuracy is illustrated in Fig. 4. We observe a steady decline in
performance as λs increases, indicating a shift in the optimization focus towards
the source domain at the expense of the target domain. Further, we see that
the HD-MMD loss, governed by λh, exhibits stability in the range [0.8, 1.2],
demonstrating the robustness of the proposed loss.

Table 4. Improvement in performance of 3 different VI-ReID methods for 20% RegDB
(Visible2Thermal) by integrating SDA and HD-MMD. SYSU-MM01 is used as source
domain for SDA.

Method AGW [26] HcTri [11] MMDR [6]
Rank-1 mAP Rank-1 mAP Rank-1 mAP

Only Target 29.4 28.7 18.5 17.7 20.7 19.3
With SDA 40.1 38.6 54.2 50.7 59.2 54.5
SDA+HD-MMD 51.1 46.9 60.1 56.3 63.7 58.9

Fig. 4. Effect of λs and λh on 20% RegDB (Target) with SYSU-MM01 as Source.

Fig. 5. Effect of ns and nt on RegDB (Target) with SYSU-MM01 as Source.
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Effect of number of source IDs ns and target IDs nt in Stage-2: Fig.
5 shows the variation of mAP and Rank-1 accuracy with the ns and nt. As
expected, increasing the number of target domain IDs results in an improvement
in retrieval performance. Remarkably, we achieve 90.2% Rank-1 accuracy by
using all of the RegDB training data, whereas the baseline AGW only achieves
70.1% Rank-1 (Table 1). This demonstrates the versatility of our approach in
not only improving retrieval performance for small target domains, but also
improving performance of fully supervised approaches on large target datasets
by leveraging a large-scale source dataset. The influence of source domain size
on target domain accuracy is apparent from Fig. 5 (a), supporting our claim
that a large-scale source dataset facilitates learning better representations for
the target domain.

5 Conclusion

This paper proposes SDA-VI-ReID, a simple two-stage learning framework for
data-efficient VI-ReID. In the initial pre-training stage, we leverage a large-scale
source domain dataset to train a robust embedding network. Subsequently, in
a collaborative learning approach during the second stage, we adapt this net-
work to a data-scarce target domain. We show that by choosing an appropriately
large-scale source domain along with a strong baseline, robust representations
can be learned for the target domain via the proposed framework. Addition-
ally, we introduce the HD-MMD loss, which aligns heterogeneous source and
target domains, effectively leveraging the scarce cross-modal correspondences of
the target domain. Furthermore, we demonstrate that the proposed approach
seamlessly integrates with existing VI-ReID baselines to improve their perfor-
mance. This study pioneers the investigation of domain adaptive VI-ReID from
a pragmatic supervised standpoint, while also presenting an innovative frame-
work for data and label efficient VI-ReID. Through rigorous experimentation
and ablation analysis, we have demonstrated the effectiveness of the proposed
methodology. The insights gained from our study provide a solid foundation for
future investigations into domain adaptation and data-efficient approaches in
VI-ReID.
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Abstract. Time-series human activity data obtained from sensor tech-
nologies facilitate various applications in industry and daily life, such as
activity recognition, motion or fall detection, and health analysis. Recent
research has shown that person re-identification and soft-biometric recog-
nition are feasible from these activity recordings, leading to privacy
breaches. Consequently, anonymising the subject characteristics found in
the sensor recordings while retaining data utility is of interest. Here, we
present an anonymisation framework using a conditioned autoencoder-
based GAN that allows for three anonymisation strategies for time-series
human activity data experimented on two complementary datasets. The
framework was visually verified with experiments on motion capture
data before being applied to inertial measurement data. This frame-
work reduces re-identification to 0.52% while maintaining data utility
for activity recognition tasks. Further, we present a form of anonymisa-
tion using identity transfer with the help of deep feature interpolation.
The method achieves over 96% successful identity transfer with high data
utility.

Keywords: Anonymising · Privacy · GAN · DFI · Autoencoder

1 Introduction

Privacy refers to the autonomy of the disclosure, usage, and availability of one’s
personal or otherwise confidential information [21]. Though complex, the con-
cept of privacy is a topic of interest due to the recent developments in artificial
intelligence (AI) and the increased possibility of malicious use of data. Conse-
quently, governments have brought forth regulations, such as the General Data
Protection Regulation (GDPR) [4] and the AI Act [5], to protect individuals
from fraudulence and distress with AI. One method of mitigating the fear of
data misuse is anonymizing personal data before saving it on a third-party sys-
tem. ISO/IEC 25237:2017 [9] defines anonymisation as the process by which
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personal data is irreversibly modified such that subject data can no longer be
retraced directly or indirectly by the data user alone or in collaboration with any
other party. As a result, through anonymization, data can be used for various
analyses and applications while retaining the data provider’s privacy.

Human motion data has immense potential in fall detection, activity recog-
nition, and health analysis. Recent studies have identified that motion data can
be used for person re-identification or soft-biometrics recognition (e.g., age, gen-
der, and height) using time-series sensor data [16]. Consequently, there is a need
to anonymize the subject characteristics from the time-series data while main-
taining the data utility or minimizing the identifiable features. Previous works
like [22] have attempted differential privacy, augmentation, and synthetic data
to remove or complement original data. However, very little work exists for
anonymisation in the domain of human activity data. As a result, this paper
brings forth anonymisation strategies for sensor-based human activity data from
a known subject re-identification network on two human activity datasets.

This work considers a situation where a dataset created for an application,
such as human activity recognition (HAR), is repurposed to identify the subjects
performing the activities [16], thus compromising the subjects’ privacy. Given
the scenario, this work explores the possibility of generating synthetic data of the
subjects performing the activities while removing the subject-specific informa-
tion from the recordings. Specifically, can generative networks be used to develop
methods for anonymising sensitive user data while preserving its similarity to
the original data and thus ensuring privacy protection?

For this task, this paper proposes three strategies of anonymisation, where
the generative model attempts to create an identity space where mutual infor-
mation can be removed or interpolated while retaining motion information that
is close to reality for an application such as HAR. The first strategy consid-
ers a situation where the generative model attempts to remove information by
removing the generic subject information present in the re-identification model.
The second strategy assumes knowledge of the subject performing the activity
and thus directs the generative model to remove that subject-specific informa-
tion. The final strategy assumes the knowledge of a subject whose identity was
compromised and can be the target identity of the generator.

The paper is organised as follows: Section 2 presents recent work in anonymi-
sation and generative networks. Section 3 explains the networks that facilitate
the three strategies. Section 4 discusses the results obtained. Finally, the con-
clusions and future work are presented in Section 5.

2 Related work

Human activity data drive innovative technology such as human-machine inter-
action, virtual and augmented reality, and simulation environments [23]. Though
not intended for the use of person and soft-biometric identification [16] and
enhancing video-based subject tracking [7], time-series data unwittingly pro-
vide person-specific information present in the motion recordings of the person
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to machine learning methods. For example, deep neural networks (DNNs) can
extract subject-specific information from stagnant and locomotive activities [16].

Differential privacy (DP) suggests that small alterations to the recorded time-
series data do not significantly affect the statistical properties of the dataset [3].
Consequently, there has been high interest in evaluating DP, especially on time
series data. For example, [22] applied DP with the addition of controlled noise
in time-series data of electric footprints of smart homes for preserving privacy.
However, the data utility was found to be insufficient. This work emphasizes the
computational challenges of adding noise to preserve privacy while maintaining
the statistical structure of the data.

One of the few works that explore inertial measurement unit (IMU) data pri-
vacy preservation is [12]. The authors present two approaches utilising autoen-
coders (AEs) for the privacy preservation of smartphone data. First, the recorded
data is categorised based on the target application requirement as required,
neutral, and sensitive segments. The sensitive time-series recordings are either
replaced with a Replacement autoencoder (RAE) or anonymised using an
Anonymising autoencoder (AAE). On the one hand, the RAE is trained to
categorize the time-series data into categories and then replaces the sensitive
timeframes with randomly chosen neutral timeframes. On the other hand, AAE
attempts to minimize privacy loss while maximising data utility. The authors
calculate the privacy loss as the mutual information of user-specific data in the
anonymised time series and the user’s identity. Several use cases on different
datasets were successfully implemented and evaluated with both networks and
a combination in which data is first masked with an RAE and then further
obscured with an AAE. Their results show that re-identification accuracy can
drop from 96.2% down to 7.0% while keeping activity recognition at high levels
[12].

Generative Adversarial Networks (GANs) are not primarily used for IMU
time series data generation and augmentation. The research focus on GANs
has preliminarily been on art, entertainment, medical imaging, drug discovery,
and financial modelling [10]. One instance of GANs being used to generate IMU
data is TheraGAN. TheraGAN is a conditional GAN trained to generate realistic
IMU signals to elevate imbalances in the activity classes, leading to more robust
classifiers for therapeutic application. The synthesised data can replace individ-
ual channels of IMU recordings without impairing subsequent HAR models [13].
Consequently, exploring the possibility of using GANs for privacy-preserving
synthetic data generation is interesting. For instance, [8] and [2] use GANs for
full-body de-identification or anonymisation of subjects in image data. Deep
neural networks such as convolutional neural networks (CNNs) map complex
features into a Euclidean subspace, where the features can be disentangled, and
linearised [20], as the authors of [1]’s hypothesised. Deep feature interpolation
(DFI) uses linear interpolation within local subspaces to achieve precise and
controlled modifications of attributes, for example, in face images, adding or
removal of beard, glasses or skin properties [20], while keeping the face identity
intact [18]. To the best of our knowledge, this method has not been reciprocated



20 T. Hallyburton et al.

for sensor-based human motion data. As a result, this work focuses on anonymi-
sation strategies implemented with AE-based GAN architectures and subject
feature transfer using DFI.

3 Anonymisation using Generative Networks

Fig. 1. Architectural overview of the proposed method. Real data X from data set D is
anonymised in the generator network. The autoencoder structure allows for controlled
deep feature interpolation (DFI) at the bottleneck, making re-identification of the
generator’s output X′ less likely. The generator is trained on the dual objective as
given by the discriminator and identificator networks combined loss LG.

We propose a framework for anonymising multichannel time-series sequence
recordings of humans when performing activities using generative networks. For
a triple (X,a,y) with X a sequence of sensor recordings, a the activity, and y the
identity label of the subject, this framework seeks to generate (X′,a′,y′), so that
y′ �= y and a′ = a. Figure 1 shows the overall framework. This anonymisation
framework consists of an adversarial architecture with three main components:
an autoencoder generator that generates synthetic data, a discriminator
that attempts to differentiate between synthetic and authentic input, and a re-
identification network that recognises the subject performing the activity of
the input-segmented recording.1

The following are the key points considered in the design of the anonymisa-
tion strategies. Firstly, the method assumes that the re-identification network

1 The code and parameters of the networks are available on GitHub.

https://github.com/TimHal/ICPR2024_TimeSeriesAnonymisation
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that an attacker can use is known. Secondly, two constraints are placed on the
generative networks to ensure data utility and a broader range of real-world
applications: the anonymisation process is conducted on segmented recordings,
and the anonymisation strategy should be oblivious to the activities in the seg-
ments. Consequently, a pre-trained re-identification network is used to help train
the anonymisation networks. Further, the generated anonymised recordings are
tested on a pre-trained HAR network that was not included in the training
process.

Fig. 2. The Autoencoder generator network has (De-)Convolutional layers in the net-
work with filter size [4 × 4] (green layers) to implement the en- and decoding of the code
representation C. The code representation is manipulated by adding the latent features
Cz as learned in the dense branch of the network (Blue represents fully-connected lay-
ers). Encoder, Bottleneck and Decoder are pre-trained, with the encoder having fixed
parameters during the GAN training phase.

The autoencoder (AE) generator architecture structurally uses a deep, con-
volutional AE. Deep convolutional networks are efficient at solving HAR and re-
identification tasks [14,16]. Besides, convolutions are efficient at feature extrac-
tion that can facilitate DFI [18]. The autoencoder structure has the additional
benefit of simplifying the reverse mapping problem as the autoencoder learns to
decode autonomously [20]. Figure 2 shows the AE generator architecture. The
encoder of the AE consists of three convolutional layers, with batch normalisa-
tion and ReLU activations. The bottleneck layer has a single convolutional layer
followed by ReLU activations. The decoder consists of three de-convolutional
layers, with the first two layers containing batch normalisation and ReLU acti-
vation. A sample recording X is passed through the encoder, yielding the deep
representation Cx. Passing this deep representation to the decoder yields the
reconstructed data sequence X′ of the same shape as X. The AE of the gener-
ator is pre-trained to guarantee a viable reconstruction process and to establish
a baseline concerning HAR and ReID performance.

While training the GAN, a latent vector z is added to the encoder deep
representation Cx, after feature extraction through two dense layers with leaky
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ReLU activations. These dense layers, thus, provide the possibility to model and
embed Cz that can manipulate the encoder deep representation Cx based on the
combined loss of the GAN. Both, Cx and Cz have the same dimensions; their
weighted sum is denoted as C. The addition of controlled noise to the embedding
can be considered a variation of differential privacy (DP) as in [6], where the
authors argued that the sampling process for VAE described a DP variant. In
the case of subject-based conditioning of the generator, the latent vector z is
concatenated with the one-hot vector of the subject label y. The new vector
is passed through the dense layers for extracting the feature Cz. Thus, instead
of directly adding noise to the bottleneck, this process provides freedom to add
randomness, as well as, condition the bottleneck layer.

The re-identificator ReID serves as a metric to assess the effectiveness of
the generator’s anonymisation. The ReID architecture assigns a block of four
convolutional layers to each limb recording. These convolutional layers operate
in parallel and are then fused by flattening and concatenation. A multi-layer per-
ceptron (MLP) with softmax activation yields the identity prediction for each
subject. The discriminator, denoted as D, is realised using a CNN architecture
with three convolutional layers, with each layer followed by batch normalization
and ReLU activation. The extracted features are then provided to a fully con-
nected layer. This output is obtained through a Sigmoid activation function in
the final layer of the CNN.

3.1 Anonymisation Strategies

The anonymisation framework addresses three strategies, giving a general solu-
tion for anonymisation. The first strategy removes the generic information of
the subjects present in the dataset without specifically focusing on the subject
performing the activity in the given segmented recording, called AnonAG. The
second strategy imposes a condition on the generators’ learning based on the
subject’s identity performing the activities in the given segmented recording,
called AnonAcG. The AnonAcG has the base structure of AnonAG but is con-
ditioned on subject identity. However, the conditional value is provided to the
generator and not the discriminator. Inspired by DFI, the third strategy inter-
polates subject representation from the pretrained AE generators’ embeddings
of the segmented recordings. Further, the generative model is trained to transfer
a target subject’s identity onto the generated synthetic segment. Thus, the DFI-
based GAN architecture, AnonDFI , performs anonymisation through subject
feature transfer.

AnonAG and AnonAcG focus on reducing subject re-identification while gen-
erating synthetic sequences with high data utility. Thus, a combination of loss
functions achieves effective anonymisation and synthesis, where an inverted
binary cross-entropy (BCE) loss for D, BCE(D[X′]), is multiplied by the cross-
entropy loss of ReID for the source subject CE(ReID[X](y)). However, when
the ReID prediction for the actual identity approaches zero, indicating success-
ful concealment of the identity, the entire loss term collapses to a negligible
value. Consequently, the discriminator’s influence is nullified, resulting in the
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network generating random, unidentifiable noise, which is undesirable. Thus, a
linear clipping of the ReID loss to a minimum value ensures that the ReID
output is low. A loss value l, l �→ m · l + b reduces the ReID loss but is fully
differentiable, Equation (1).

LG(X′, y) = BCE(D[X′]) · (m ·CE(ReID[X](y))+ b), for m, b ∈ R+,m+ b = 1,
(1)

The combination loss affects the learning of the feature C. For instance, Cx

learns features most sensitive to re-identification. Applying an inverted ReID-
loss to the dense layer that maps the latent vector z to Cz enforces a heavy dis-
tortion of identifiable features while maintaining data utility provided, the losses
of ReID and D are combined. The difference between the methods AnonAG and
AnonAcG generators is that, in AnonAcG, the subject identity is provided to the
generator as an encoding concatenated to latent vector z. This process increases
uncertainty as the identity labels are fed exclusively to the generator, not the dis-
criminator. This deliberate deviation from the standard implementation provides
a context for the generator to learn anonymisation. However, this modification
does not affect the loss Equation (1).

The training of the AnonDFI is complementary to the training of AnonAG

and AnonAcG strategies. In AnonDFI , the focus is to reduce/remove the identity
of the subject performing the activity in the given segmented recording and to
replace a target subject’s identity in its place. Consequently, the first step in this
direction is to remove the mean subject-specific information. The subject-specific
feature encoding can be obtained from the bottleneck of the autoencoder. Thus,
for a given sequence X of a source subject y ∈ Y with feature representation
Cx, the mean subject-specific information across all N sequence representations
is described as S

(y)
= 1

N

∑N
i=0 C

(y)
i .

Adapting the concept of DFI, a linear transformation exists in the feature
space that allows the shift of identity to a feature representation resembling
another subject. However, this transformation cannot be naively applied to the
bottleneck encoding for the reason that the feature space consists of subject iden-
tity as well as activity features that are entangled. Given the activity-agnostic
training, the feature entanglement cannot be easily resolved. The dataset imbal-
ance amplifies the feature entanglement problem. Consequently, AnonDFI min-
imises the mean subject-specific features from the given sequence and adds the
target subject features learned through the GAN training, as presented in Equa-
tion (2). To facilitate the target subject feature learning process, the target
identity embedding is concatenated to the latent vector input z, which is further
encoded as Cz(y′) through the deep layers discussed previously.

C = (Cx − Sy) +Cz(y′) (2)

This difference in training requirement implies that the loss function Equa-
tion (1) must be updated. Consequently, the linear scaling of the ReID’s contri-
bution to the total loss was dropped, thus alleviating the concern about vanishing
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gradients associated with the function, Equation (3). The new loss function LDFI
G

is minimal if the discriminator perceives the synthetic samples X′ as authentic
and simultaneously, the re-identification GI assigns them with high probability
to the target subject y′.

LDFI
G (X′, y′) = BCE(D[X′]) · CE(ReID[X′], y′) (3)

3.2 Training

Fig. 3. Overview of the experimental process. Step (1) describes the unsupervised
training of an autoencoder. (2) This autoencoder is inserted into the GAN network
structure and the GAN training commerces. After the training, the generator is used
for synthetic data generation in step (3). Step (4) then compares the synthetic and
original datasets using HAR and ID networks.

We follow a multi-phase training process outlined in Figure 3. Initially, the
autoencoder architecture of the generator is trained independently. The primary
objective of this phase is to identify an optimal embedding for the activity data,
which will be consistently used in the later stages. Furthermore, this step estab-
lishes a preliminary quality benchmark for the data reconstruction. The param-
eters of the autoencoder are then fixed and transferred into the generator. Next,
the pre-trained identification, ReID, with fixed parameters and the untrained
discriminator D are integrated into the network. ReID is fixed to represent an
adversary network attempting re-identification. In contrast, the discriminator
gets trained parallel to the generator to ensure consistent similarity between
real and synthetic data for subsequent applications.

4 Anonymisation Results

The anonymisation method presented here combines the three established strate-
gies, deep feature interpolation, differential privacy, and a GAN structure, two
of which are implemented directly in the generator. This approach is evaluated
on two publicly available benchmark datasets of inertial measurement recordings
of human movements.



Anonymisation for Time-Series Human Activity Data 25

4.1 Datasets

Two datasets were used for experimentation, namely the Logistic Activity Recog-
nition Challenge (LARa) dataset (version 2) [17] and the MotionSense [11]
dataset. LARa consists of both motion capture (MoCap) LARaMoCap and iner-
tial measurement unit (IMU) data LARaIMU , whereas MotionSense (MS) con-
sists of only IMU data. LARaIMU has a total of five on-body devices (OBDs)
with three sensors each, whereas MS has one OBD with three sensors. The
LARaMoCap is sampled at 200Hz, while LARaIMU and MS are sampled at
100Hz and 50Hz, respectively. The datasets consist of varied sets of activities
and subjects. The MS data set has 24 subjects performing six different activ-
ities of daily living, while LARaMoCap and LARaIMU have 16 and 7 subjects,
respectively, performing seven classes of logistics activities. The MoCap data
from LARa is used to visually verify the methods used in the experiment. The
work, however, is focused on the anonymisation of IMU data.

4.2 Benchmarked networks

The anonymisation method, see Figure 3, depends on two architectures con-
trolling the quality of the anonymisation process, such that the anonymised
sequences will fool the ReID while the HAR prediction accuracy is maintained.
Thus, the sequence will contain information allowing HAR but not ReID. These
two control-point architectures, ReID and HAR are benchmarked architectures
proposed in [16, 15].

Two variations of the ReID can be found based on the number of channels
in the datasets. For datasets with high channel density, the ReID network, as
detailed in [16], is utilised and referred to as ReIDL. For example, ReIDL [16]
is used for the LARaMoCap and LARaIMU , further denoted as ReIDMC

L and
ReIDIMU

L , respectively. In the case of low channel density, a single block of four
convolutional layers performs the feature extraction, referred to as ReIDM . The
pre-trained ReID networks assess the possibility of re-identification from the
synthesised recordings. ReIDM is used mainly with the MS dataset, referred to
as ReIDMS

M .
Similarly, pre-trained HAR networks for LARaMoCap, LARaIMU , and MS

data were used to quantify the utility of the generated data for HAR applications.
Based on the work of [19], tCNN-IMU networks were used for LARaMoCap and
LARaIMU , referred to as CNNIMUMC and CNNIMUIMU , respectively. For the
MS, a CNNIMUMC with one branch is used for HAR, as mentioned in [19].

Autoencoder Two variations of AEs with different features in the bottleneck
layer were experimented on. The first variant has 32 features, and the second
variant has 64 features. Minor padding is applied to the input and output layers
to make the chosen filter size fit the data shape. For the (de-)convolutional layers,
a fixed filter size of [4×4] with a stride of 2 was effective during a hyperparameter
search. The AE is trained unsupervised, and the network generalises while being
agnostic about input recording activities. Mean Squared Error (MSE) loss was
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Fig. 4. Visual inspection of the reconstruction quality of AEMbientLab. The real
sequence X (left) from the MbientLab dataset is fed to the respective autoencoder
network. The reconstruction yielded by AEMbientLab (right) retains the general tra-
jectories of the time-series but misses out on details, showing a quantisation effect on
temporal neighbourhood.

employed. The networks with 64 features at the bottleneck performed best at
low validation loss and visual inspection as presented in Figure 4.

Table 1 presents the baseline performance obtained for the HAR and ReID
networks on the real dataset and the AE-generated data for the datasets of
interest. A learning rate of 0.0001, batch size 50 and epoch 10 for LARa dataset
ReID network and a learning rate of 0.001, batch size 50 and epoch 100 for MS
ReID network was found to be effective.

Table 1. Baseline ReID and HAR Metrics for LARaMoCap, LARaIMU and Motion-
Sense.

Real Data AESynth Data
Dataset ReID HAR ReID HAR

Acc% wF1% Acc% wF1% Acc% wF1% Acc% wF1%

LARaMoCap 98.97 98.97 76.54 76.19 99.81 99.81 97.19 97.18

LARaIMU 94.61 94.57 80.28 79.81 78.50 77.55 64.60 63.98

MS 78.23 78.08 95.81 95.75 9.70 5.85 55.80 53.73

Generally, a drop in network performance can be seen on the data synthesised
by the AE. Interestingly, network trained on synthetic LARaMoCap performs
better than the real data. One could attribute this performance difference to the
high channel density MoCap data being optimised with the encoding of the AE.
However, in comparison, loss of information from the low channel density IMU
data is evident.

4.3 AnonAG

Table 2 presents the baseline results of the HAR and ReID networks using the
synthetic data obtained from the autoencoder-based GAN, AnonAG, trained on
each dataset. AnonAG trained on LARaIMU achieved optimal results at the 20-
epoch mark. In contrast, AnonAG trained on LARaMoCap achieved stable train-
ing after 5 epochs. The experiments run best at a small learning rate of 1x10−5
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Table 2. Benchmark for synthetic data generated by the respective models compared
to real data. Values correspond to averages across 5 runs (mean ± std. deviation). High
HAR metrics indicate good utility preservation, while low ID metrics show successful
anonymisation.

AnonAG Real Data
Network HAR ReID HAR ReID

Acc%(↑) wF1%(↑) Acc%(↓) wF1%(↓) Acc% wF1% Acc% wF1%

AnonMoCap
AG 37.45 ± 0.22 26.57 ± 0.16 6.52 ± 0.10 1.19 ± 0.03 76.54 76.19 98.97 98.97

AnonIMU
AG 44.77 ± 0.28 35.23 ± 0.24 13.91 ± 0.08 4.52 ± 0.13 80.28 79.81 94.61 94.57

AnonMS
AG 36.36 ± 0.12 33.47 ± 0.12 7.12 ± 0.07 2.30 ± 0.05 95.81 95.75 78.23 78.08

for both the generator and discriminator. AnonAG was efficient in anonymising
LARaIMU dataset. Unaltered data on the ReID network with 95% accuracy
reduced to 4.5% on the synthesised data. Some of the data utility was lost in
this process as wF1 score of the activity recognition on the original data at 80%
dropped significantly to 35% for the AnonAG on LARaIMU . A similar drop in
performance can be seen in the LARaMoCap performance. Specifically, low ReID
was achieved at 6.52%. These results show that the generator learned to modify
privacy-sensitive features but compromised the integrity of the time series, lead-
ing to lower HAR accuracy than the benchmark values. This outcome can be
associated with the absence of guidance for the generator regarding the identity
information to be concealed. The AnonAG performs generic anonymisation by
applying modifications indiscriminately. Thus negatively affecting data utility.

4.4 AnonAcG

The second strategy provides the subject information to the generator. The iden-
tity information provided is a conditioning that allows AnonAcG to learn about
the subject-specific characteristics it must mask to facilitate anonymisation. The
hyperparameter search on this architecture shows that the generator’s training
process was stable at a low learning rate. Overfitting was addressed by employ-
ing a ExponentialLR learning rate scheduler that dynamically adjusts the
learning rates for both the generator and the discriminator after each epoch.

Table 3. Benchmark for synthetic data generated by the respective models compared
to real data. Values correspond to averages across 5 runs (mean ± std. deviation). High
HAR metrics indicate good utility preservation, while low ID metrics show successful
anonymisation.

AnonAcG Real Data
Network HAR ReID HAR ReID

Accuracy (↑) wF1 (↑) Accuracy (↓) wF1 (↓) Acc% wF1% Acc% wF1%

AnonMoCap
AcG 36.42 ± 0.21 25.38 ± 0.15 6.46 ± 0.09 1.19 ± 0.02 76.54 76.19 98.97 98.97

AnonIMU
AcG 63.14 ± 0.17 60.08 ± 0.18 0.76 ± 0.01 0.52 ± 0.01 80.28 79.81 94.61 94.57

AnonMS
AcG 37.94 ± 0.13 35.53 ± 0.11 5.26 ± 0.07 1.97 ± 0.05 95.81 95.75 78.23 78.08
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The respective HAR and ReID metrics were established to compare AnonAcG

with benchmark values. Table 3 presents the average Acc and wF1 over five
training-test sets. AnonAcG achieves an identification accuracy of 0.76% while
maintaining high data utility for LARaIMU . Furthermore, AnonAcG generates
samples matching the predicted activity of the original data in 63.14% of the
cases, whereas samples generated by AnonAG yielded 44.77% accuracy for this
benchmark. Similar results can be seen with the MS dataset, too. However,
LARaMoCap performance decreases, specifically for ReID. The visible data util-
ity improvement can be attributed to including the identity labels in the net-
work’s input.

4.5 AnonDF I

AnonDFI deviates from the previously explained philosophy of anonymisation
as it attempts a controlled identity transfer for a given sequence, being aware of
the source and desired target identity. As discussed in Section 3, the bottleneck
of the AE generator encodes features that can be shifted in a desired direction
following the concept of DFI.

Table 4. Benchmark of HAR and ReID metrics per target subject an example on
LARaIMU . Higher metrics correspond to better preservation of activity information
and successful anonymisation through identity transfer to the target subject.

Target HAR Metrics ReID Metrics
Subject wF1 (↑) Accuracy (↑) wF1 (↑) Accuracy (↑)
S0 58.00 ± 00.28 59.68 ± 00.21 99.63 ± 00.01 99.26 ± 00.03

S1 56.62 ± 00.15 59.80 ± 00.12 99.88 ± 00.00 99.77 ± 00.00

S2 59.03 ± 00.33 62.25 ± 00.27 99.71 ± 00.01 99.42 ± 00.02

S3 54.60 ± 00.27 58.38 ± 00.26 99.67 ± 00.01 99.34 ± 00.03

S4 51.08 ± 00.20 53.53 ± 00.16 99.72 ± 00.01 99.43 ± 00.01

S5 52.87 ± 00.31 57.40 ± 00.34 99.71 ± 00.00 99.42 ± 00.00

S6 59.69 ± 00.31 62.08 ± 00.38 99.26 ± 00.04 98.53 ± 00.07

S7 57.94 ± 00.18 61.51 ± 00.17 99.68 ± 00.01 99.35 ± 00.01

A preliminary test of subject transfer applied solely on the AE provided
encouraging results, as presented in Table 4. For instance, DFI-based subject
transfer on LARaIMU achieves good data utility preservation, comparable to
the results of AnonAcG. Figure 5 presents a comparison between the original
skeleton of Subject 08 in � interpolated to subject 15 in � from LARaMocap.
However, the anonymization is much weaker, with an average Re-ID accuracy of
30%, compared to the previously achieved 0.7%. Compared to the AE baseline,
the results demonstrate improved data utility preservation with HAR accuracies
of 80% while concurrently reducing ReID scores by half. Thus, motivating the
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method discussed in Section 3 to train the GAN, referred to as AnonDFI , to
achieve enhanced data utility and anonymisation through subject transfer.

Table 5. Benchmark for synthetic data generated by the respective models compared
to real data. Values correspond to averages across 5 runs (mean ± std. deviation). High
HAR metrics indicate good utility preservation, while low ID metrics show successful
anonymisation.

AnonDFI Real Data
Network HAR ReID HAR ReID

Accuracy (↑) wF1 (↑) Accuracy (↓) wF1 (↓) Acc% wF1% Acc% wF1%

AnonMoCap
DFI 37.45 ± 0.22 26.57 ± 0.16 6.52 ± 0.10 1.19 ± 0.03 76.54 76.19 98.97 98.97

AnonIMU
DFI 44.77 ± 0.28 35.23 ± 0.24 13.91 ± 0.08 4.52 ± 0.13 80.28 79.81 94.61 94.57

AnonMS
DFI 39.37 ± 0.12 35.48 ± 0.11 5.94 ± 0.04 2.20 ± 0.03 95.81 95.75 78.23 78.08

Fig. 5. Comparison between the original skeleton in � with the generated one using
the AnonDFI from source Subject 08 to Subject 15 in � from the LARaMoCap.

The AnonDFI training process significantly increased the GAN’s stability
and positively influenced the quality of the generated samples. AnonDFIIMU
achieved stability at low epochs of 4 and 7 epochs, respectively. As this method
focuses on targeting the entire dataset to a target subject, the maximal identity
metric scores for the target subject indicate the best privacy preservation. This
adjustment of the evaluation strategy ensures that the results are not misleading
due to the imbalanced support across subjects in the dataset. The network reli-
ably transfers over 96% of all sequences to any target subject while maintaining
high data utility. We observe a notable variance in the HAR metrics, depending
on which subject is chosen as the target. A possible reason for this observation
can be found in the composition of the dataset used, as slightly over-represented
subjects are preferred to be targets.
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5 Conclusion

The objective of this work was to explore and develop a privacy-preserving
framework that maintains data utility for IMU data in the context of HAR
using generative networks. This framework consists of an adversarial architec-
ture conditioned on a discriminator and an identification network to transform
input sequences such that future re-identification is impossible. Notice that the
framework is not conditioned to the activities performed by the subjects in
the recordings. The framework considers three different anonymisation strate-
gies: without subject information, with subject information and anonymisation
through subject feature transfer. These strategies cover different use-case sce-
narios of anonymisation.

Three GAN architectures in alliance with the presented strategies were imple-
mented. AnonAcG yielded the best results by lowering the re-identification wF1

score from 80.28% to 0.52%, while maintaining HAR scores above 60%. Further-
more, two distinct approaches to subject feature transfer have been introduced
and experimentally verified, conditioning the GAN for interpolating deep repre-
sentation of subjects.

The findings demonstrate the effectiveness of a GAN-based network archi-
tecture in reducing re-identification risks associated with IMU data and open
the following topics for further exploration. Firstly, the effect of the anonymised
samples generated by GANs on the training of HAR models embedded in end-
user devices must be investigated. Anonymisation directly on end-user devices
allows for fully preserving privacy. However, the performance of this method can
be contrasted with federated learning. Second, it would be insightful to investi-
gate whether the developed targeted DFI architecture can effectively contribute
to balancing datasets, specifically by enhancing the representation of subjects,
thus, addressing the dataset bias of HAR models.
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Biased datasets can halt neural networks from generalizing to unseen
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training data subject characteristics in multi-channel time-series human
activity data obtained from sensor technologies. We provide a statisti-
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1 Introduction

Human activity recognition (HAR) involves recognizing an individual’s phys-
ical activities from multi-channel time-series (MCTS) sensor recordings. HAR
research is relevant for human technology interaction, mobile, and ubiquitous
computing applications for industries and daily living. In many cases, applica-
tions use neural network-based classifiers trained on MCTS datasets designed
for a specific use case. However, these classifiers’ robustness is determined by
the quality of the dataset used [2], as neural networks inherit biases from the
datasets [22]. For example, varying sensor placements [5], a shift of the domain
[11], inconsistent labels [19], and class imbalance [16], present in the datasets
introduce so-called dynamic inductive biases to the classifier. Similarly, subject
characteristics in the dataset influence the activity classifier. The authors in [22]
name the under-representation of a part of the population that an application
targets and the subsequent failure to generalize as representation bias. In accor-
dance with this, this work refers to the biases caused or influenced by subject
characteristics represented in the dataset as representation bias.

Person re-identification and soft-biometrics such as age, gender and height
identification are feasible with time-series human activity recordings [15,25].
These works emphasize the influence of an individual’s characteristics in the
time-series data. Researchers have attempted cross-validation, personalization
of HAR networks, augmentation and synthetic data generation to provide gen-
eralized HAR models [4,9]. However, these attempts do not evaluate or acknowl-
edge representation biases of the datasets. Generalized HAR models or Universal
HAR models are defined to be capable of generalizing to motion patterns of any
subject [4]. However, achieving such a model is restricted by the availability of
datasets that vary in the subject’s physical characteristics and documentation.
Creating such datasets is time-consuming due to the efforts for sensor set-up,
data recording and cleaning, and labeling [18,21]. For example, for the LARa
dataset [16], annotation alone took 85min per 2min of recorded data [19], or
90min per 1min for HAR datasets in industry as reported by MotionMiners
GmbH. Furthermore, subject selection criteria followed by dataset creators in
the dataset creation process are based on the availability of actors or volunteers.

To our knowledge, no approach or metric for time-series human activity data
biases is available. Consequently, this work develops an approach to account for
representation biases in a dataset, evaluates the representation biases learned
by HAR models and thus, provides a subject selection criteria [18], as a form of
representation bias mitigation strategy starting from the source – the dataset.
Thus, this work aims to be a first step towards ensuring fair and trustworthy
models for MCTS HAR applications. The contribution aims to answer the fol-
lowing questions:

RQ1 : Do the physical characteristics of humans influence activity recognition
performance?
RQ2 : What physical characteristics should be considered when selecting sub-
jects to create a robust classifier?
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RQ3 : Can we develop a metric for representation bias in activity recognition
classifiers?

The remainder of this contribution is structured as follows. Section 2 presents
works on the motion behavior of humans resulting from their physical character-
istics and connection to identity and activity recognition. Section 3 elaborates on
an approach to bias evaluation and explains the experimental design to quantify
the influence of subject characteristics on HAR performance. Section 4 presents
the quantitative results of the experiments using different datasets, and Section
5 presents the answers to each research question. Finally, Section 6 discusses the
main contributions and concludes with further work and an outlook.

2 Related Work

Datasets are prone to biases. According to [7], eight biases generally found in
datasets are social, measurement, representation, label, algorithmic, evaluation,
deployment and feedback bias; such datasets further bias data-driven machine
learning (ML) methods. Biased ML models can lead to unfair results in sensitive
applications such as deep face recognition, loan and credit, and product sugges-
tion applications [3,7]. Consequently, evaluating and mitigating the biases are
vital for generalizing ML models. Representation bias, in particular, is associated
with the dataset creation process. Thus, to ensure fair and trustworthy ML mod-
els, creating a balanced dataset is of interest [10]. The authors created a balanced
face dataset that included age, gender, and ethnic aspects. The model facilitated
an accurate classification model with the help of the public image dataset with
equal representation of each characteristic. In a similar effort, [28] proposed a
metric called the calibrated detection rate (recall) of a demographic characteris-
tic for face detection. Furthermore, the authors evaluated various face detection
bias mitigation strategies. Similar research in computer vision motivated authors
of [27] to create a tool called REVISE, which facilitates the detection of potential
biases in a visual dataset for the object, person and geography-based analysis.

Previous research on biases in HAR focuses on dynamic inductive biases,
such as the type of sensors, sensor positions, segment size, and pre-processing
[8]. For example, [29] uses bias and noise correction formulas for sensor data
pre-processing. However, bias caused by the subjects selected for HAR datasets
is unexplored [18]. Gait activity-based person re-identification suggests that each
individual’s motion behavior is unique and can be referred to as a biometric [1].
Nevertheless, physical characteristics such as height, weight, and handedness can
influence the performance of various activities [15,20].

The impact of the representation bias is visible when accounting for the
generalization capability of the models. For instance, [12] segregated the HAR
models into three categories: personal, impersonal and hybrid. Personal models
are trained and tested on the same subject’s activities, while impersonal or uni-
versal models use training data from users not present in the test set. Finally,
the hybrid model combines the personal and impersonal models. The evaluation
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of the models shows that the universal model performs the worst at 76% accu-
racy. In comparison, personal and hybrid models perform better at 98% and 95%
classification accuracy, respectively. However, personal and hybrid models may
not be feasible for practical applications, e.g. in industrial settings with frequent
staff changes. Thus, evaluating the physical or soft-biometric characteristics of
the individual is of interest to create a robust impersonal model of the HAR clas-
sifier. The authors in [6] weighted the training data by considering the similarity
between subjects of the training and test data. In addition to the similarity of
physical attributes, similar signal patterns were evaluated. The authors consid-
ered a Euclidean distance between the feature vectors of two subjects based on
age, weight and height and visualized a multi-dimensional scaling over physical
characteristics. They experimented with their method on the UNIMIB-SHAR,
Mobiact and MotionSense datasets and showed that their approach improves
the classification accuracy.

Though the above-discussed literature suggests the impact of subjects’ indi-
viduality on HAR accuracy and introduces a concept to improve classification
accuracy with the help of personalization of the model, the issue of generalized
HAR models is yet to be tackled. Consequently, understanding the subject char-
acteristics that induce bias, a dataset creation methodology, and a metric to
account for the biases are necessary for dataset creators as a subject selection
criterion [18] to mitigate the resulting bias.

3 Statistical Analysis of Representation Bias in Human
Activity Recognition

The influence of an individual’s physical characteristics is blended into human
motion. As a result, isolating the features of the human motion associated with
the physical characteristics from the recordings is improbable. Sensor biases,
sensor placement, or the idiosyncrasies of the individual’s motion cannot be
isolated from human movement recorded using on-body devices (OBDs), such
as inertial measurement units (IMUs). Consequently, statistical evaluation of the
impact of the subject’s physical and soft-biometric characteristics is desirable.
In this section, we elaborate on the hypotheses, the evaluation strategy, the
networks, and the datasets of interest.

3.1 Formulation of Hypotheses

Multi-channel time-series datasets such as Motion Capture (MoCap) systems
and OBDs record the human body’s movements. The physical characteristics, as
well as the soft-biometrics of an individual, influence the motion. For example,
an old subject may walk slower than a young subject. However, it is unclear if an
OBD placed at the wrist of the subject is influenced by the subject’s handedness
alone or if the height, gender, and age attributes contribute to biases in HAR
datasets. In particular, is such a recording influenced by the subject characteristic
or human representation available in the dataset?
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Figure 1 outlines the proposed approach. A statistical concept known as
heterogeneity measure (HM) is utilized to curate the training set for a neu-
ral network. HM quantifies the diversity or non-uniformity of qualities within
a dataset, providing insight into the range and distribution of qualities present
[17]. This measure helps understand the spectrum of physical and soft-biometric
characteristics among subjects in HAR datasets. Thus, an HM-curated train-
ing set includes different physical or soft-biometric heterogeneity levels. Here,
the hypothesis is that when maintaining the size of the training data across
all heterogeneity-level experiments, classifier performance on unseen test sets
increases with an increase in heterogeneity of the subject’s physical characteris-
tics in the training data.

Fig. 1. A curated subset of the training dataset is selected based on a heterogene-
ity measure for training neural networks. We hypothesize that classifier performance
variation can be identified based on the heterogeneity measure.

3.2 The Representation Bias - An Evaluation Strategy

We desire an evaluation strategy that considers the diversity of the subjects’
characteristics in the training set. Thus, we propose a quality measure that
depends on the different number of characteristic levels in the dataset. For exam-
ple, assume two characteristics, A and B, each with levels ranging from 1 to a
and 1 to b, respectively; in this work, A could represent age, divided into the lev-
els ‘young’ and ‘old’, while B could represent gender, ‘male’ and ‘female’. Thus,
characteristics A and B have two levels (a = b = 2). This gives us a · b (= 4)
different levels of characteristics. These levels imply a · b different potential het-
erogeneity groups ranging from being a completely homogeneous training set
where all subjects have the same characteristic level (here referred to as group
1) to a completely heterogeneous training set where all subjects have varied char-
acteristic levels (here, group ab or 4). Therefore, heterogeneity is gauged based
on the various levels in the training sets of the same size, with not all combi-
nations necessarily feasible (depending on the dataset). Within a heterogeneity
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group lying between completely homogenous and completely heterogenous, fur-
ther division into subgroups depending on the characteristic level combinations
is feasible, as elaborated in Section 3.4.

For a fair comparison of the heterogeneity group, the amount of data present
in the training sets of each group should be approximately equal. As a result,
the training sample size for the activity classifier depends on subgroup size;
for smaller datasets, the training set size equals ab subjects, while for larger
datasets, a multiple of ab is used to ensure coverage of all heterogeneity groups.
However, it is to be noted that the size must be set before splitting the data into
heterogeneity groups such that all the heterogeneity groups have approximately
equal numbers of training data. Subjects not included in the training set are
reserved for testing the classifier. To mitigate selection bias, subjects are ran-
domly selected for the training set. This allows a comprehensive exploration of
the dataset’s diversity, with N distinct experiments conducted for each hetero-
geneity group. Experiments are conducted with the maximum number of training
sets possible for the respective dataset in cases where N different training sets
were not feasible.

Categorization of physical characteristics, such as age, which are continuous,
is necessary to simplify the analysis while preserving important data charac-
teristics. This process facilitates pattern identification and ensures a sufficient
sample size for robust statistical analysis. Thus, this approach can be gener-
alized to more characteristics, e.g., a third characteristic C with levels 1, . . . , c
gives abc heterogeneity groups. Again, heterogeneity is measured from group 1
to group abc. As this approach becomes cumbersome with large characteristic
levels, selecting 4-8 different groups is suggested.

3.3 Datasets

The dataset selection criteria for this work were the availability of varied sub-
jects, documentation of subjects’ physical characteristics, the public availabil-
ity of the dataset, varied activities within the dataset and previous use of the
dataset in HAR research. Table 1 presents the chosen datasets for this work.
MobiAct [26], Motionsense [13], and Sisfall [24] have one OBD, which typically
consists of an accelerometer and gyroscope (IMU). In addition, a MoCap dataset,
LARaMoCap [16], is included in the experiment. The three IMU datasets are
recordings of activities of daily living such as walking, jogging, and sitting. The

Table 1. Datasets for experimentation and their features.

Dataset Sampling No: No: Sensor Characteristics
Rate (Hz) Subject Activities Placement Available

MobiAct [26] 20 58 9 Trouser Pocket Age, Gender, Weight, Height
Motionsense [13] 50 24 6 Trouser pocket Age, Gender, Weight, Height

Sisfall [24] 200 38 15 Waist Age, Gender, Weight, Height
LARaMoCap [16] 200 16 7 Body joints Age, Gender, Weight, Height, Handedness
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Table 2. Statistical summary of the physical characteristics. Weight is measured in
kilograms (kg), height in centimeters (cm), and gender is denoted as F for females and
M for males.

Age Height Weight Gender
Dataset Min. 1st Qu. Med. 3rd Qu. Max. Min. 1st Qu. Med. 3rd Qu. Max. Min. 1st Qu. Med. 3rd Qu. Max. % F %M

LARa 22 24.75 28 49.5 59 159 163 171.5 177 185 48 63.5 69.5 79.75 100 50 50
MotionSense 18 25 28 31.25 46 161 164.8 175.5 180 190 48 60 71 80.5 102 41.67 58.33
Mobiact 20 22.25 25 26 40 158 170 176 180 193 50 67 75.5 85 120 27.59 72.41
Sisfall 19 22.25 26.50 64 75 149 156 164 170 183 41.5 52.25 62 72 102 50 50
Sisfall Young 19 21 23 25 30 149 156.5 165 171 183 41.5 49.25 58.5 68.75 80.5 52.17 47.83

MoCap dataset consists of kinematic recordings of logistics activities. The com-
bination of datasets for experimentation would bring forth the representation
biases that may be present in the datasets, irrespective of their feature quantity.

All four datasets provide the age, gender, weight and height characteristics
of the subjects. Table 2 presents the statistical analysis of the characteristics of
the subjects. Furthermore, a sub-categorization of the Sisfall dataset, focusing
on young subjects of the dataset, is presented. This subset is created due to
incomplete data for older subjects within this dataset. Mobiact consists of the
least variations in age and has more male subjects. The LARa, MotionSense, and
Sisfall datasets are more varied in age distribution and nearly equal in gender
distribution.

3.4 Experimental Design

The initial analysis showed a significant correlation between the height and
weight characteristics to the gender of the individuals for all datasets. Table
3 shows the frequency of the different characteristic values, namely, height and
weight, to gender. Given the small number of subjects across datasets, binary
categorization based on the dataset median was considered to ensure sufficiently
large training sets. Thus, height and weight are classified as Short/Tall and
Light/Heavy. The table shows the division after combining all datasets, imply-
ing that including these characteristics in the selection of the subjects would
essentially repeat the trend. As a result, we focus on the age and gender of the
subjects to test the hypothesis. Age characteristics were divided into the lev-
els ‘young’ and ‘old’, while binary categorization of gender (male and female)
was followed as per the datasets. For the Sisfall dataset, we utilized the age
divisions provided by the dataset creators. Thus, we have four combinations of

Table 3. Frequencies of gender and categorized weight and height for all datasets.

Weight Height
Light Heavy Short Tall

Female 41 12 49 4
Male 27 56 18 65
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Table 4. Description of the HM for the training set.

Group Heterogeneity Measure

1 All subjects share the same characteristics
2 Subjects have two different characteristics (e.g. old women

and young men are used in the training set)
3 Subjects have three different characteristic level combinations
4 All four different characteristics combination are included in

the training set

the two characteristics, referred to as characteristic levels: young woman, old
woman, young man, and old man. Following the evaluation strategy outlined in
Section 3.2, the experiments encompass four different groups of heterogeneity,
as depicted in Table 4.

The HM ‘2’ can be further divided into two subgroups depending on how
the two types of characteristic levels differ: ‘2a’ refers to differences in one char-
acteristic (e.g., young men and young women), and ‘2b’ refers to differences in
both characteristics (e.g., young women and old men). Similarly, the HM ‘3’ con-
sists of three different characteristic levels, for example, young man, old man,
and young woman. Table 5 shows the frequency of the two characteristics under
consideration in all data sets. The LARa dataset has an approximately similar
number of subjects in the age and gender categories. However, clear differences
in the number of subjects can be found in Mobiact. In accordance with the pro-
cedure described in Section 3.2, the number of subjects for the training of each
dataset was determined. Specifically, four subjects were used to train the LARa,
MotionSense, and Sisfall Young datasets. For the Mobiact dataset, the number
of subjects was increased to 12, and for the Sisfall dataset, eight subjects were
selected for training. The remaining subjects not included in the training sets
were reserved for testing.

Table 5. Frequencies of gender and categorized age for all datasets.

LARa MotionSense Mobiact Sisfall Sisfall Young
Young Old Young Old Young Old Young Old Young Old

Female 5 3 7 3 7 9 12 7 6 6
Male 4 4 6 8 19 23 11 8 4 7

Neural Networks and Training Procedure This work uses three varied
neural networks1 for HAR; namely, two variations of time-series convolutional
neural networks (CNN-IMU)- proposed by [14], a Long-Short Term Memory

1 The code and parameters of the networks are available on GitHub.

https://github.com/nilahnair/ICPR2024_DatasetBias
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(LSTM) network and Transformer (Trans) proposed by [23]. The first variation
of CNN-IMU has a block of four convolutional layers, two layers of multi-layer
perceptron (MLP), and the softmax activation layer. Datasets with a few chan-
nels (less than 10) are trained on this network. The second CNN-IMU variant for
high channel density has five blocks of four convolutional layers, followed by two
layers of MLP. The LSTM network has four hidden layers of 256 dimensions,
followed by two MLP layers and a softmax activation layer. Unlike classical
classifiers, which require hand-crafted features, the deep learning architecture
performs necessary feature extraction on the input data before the classification
process during supervised learning. As a result, the method is robust against
manual feature extraction biases.

The weights of the network are initialized using the orthogonal initialization
method. The Cross-Entropy Loss function is utilized to calculate activity clas-
sification loss. The Root Mean Square Propagation (RMSProp) optimization is
used with a momentum of 0.9 and weight decay of 5×10−4. Gaussian noise with
mean μ = 0 and standard deviation (SD) σ = 0.01 is added to the sensor mea-
surements to simulate sensor inaccuracies [14]. Dropout of probability p = 0.5
was applied on the MLP, and early-stopping was implemented to avoid over-
fitting. The baseline architectures for each dataset were experimentally obtained
post-hyperparameter search.

Evaluation Metric The accuracy (Acc) and weighted F1 score (wF1) were used
to measure the activity metrics. wF1 was evaluated due to the unbalanced nature
of the activity recordings in the datasets. Furthermore, recall and precision of
the activity labels are evaluated.

4 Experiments and Results

This section presents and analyses the results obtained from the experimental
design discussed in Section 3.2. The first step in this direction is to achieve a
baseline evaluation of the networks on the selected datasets to understand the
networks’ performance on a larger quantity of the same dataset, as shown in
Table 6. CNNs and LSTMs perform well on the datasets. An exception is the
case of Sisfall for CNN. In comparison, Transformer (Trans) perform poorly on
all datasets except MotionSense. This can be associated with the training data
quantity required for CNN-Transformers.

Next, the subjects of the training and validation sets are chosen based on the
statistical hypothesis discussed in Section 3. The neural networks trained on the
training sets created based on heterogeneity measures generally perform poorly,
given the fewer data available in these sets. However, this work is focused on the
comparative performance of the networks on the training sets as it is ensured
that the sets have a similar quantity of data. Figure 2 and Figure 3 present the
boxplots of accuracy and wF1-score for each HM group for all datasets. The
networks are given a designated color and are followed for all plots in this work.
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Table 6. Baseline implementation of neural networks on the selected datasets.

Dataset Network Batch Size Epoch Accuracy (%) wF1 (%)

LARa CNN-IMU 100 10 88.0824 ± 0.2149 87.5761 ± 0.2497
LSTM 50 15 82.5851 ± 0.5524 81.6674 ± 0.6279
Trans 100 30 71.6814 ± 12.9298 65.5721 ± 20.0809

Mobiact CNN 50 30 94.5179 ± 0.1038 94.3257 ± 0.1145
LSTM 50 15 95.6331 ± 0.1631 95.5188 ± 0.1691
Trans 50 15 71.4007 ± 29.0897 65.7899 ± 36.5785

MotionSense CNN 50 30 95.9017 ± 0.1381 95.8639 ± 0.1278
LSTM 100 30 96.0538 ± 0.2132 96.0182 ± 0.2079
Trans 100 15 91.1124 ± 0.6498 91.0656 ± 0.6338

Sisfall CNN 50 50 63.3665 ± 0.8636 63.2645 ± 0.8082
LSTM 50 50 74.4645 ± 0.3826 74.3861 ± 0.3169
Trans 100 30 71.2942 ± 0.2988 70.8207 ± 0.4622
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Fig. 2. Results on the average accuracy measured in percentage for all datasets on all
HM groups.

The performance measures of all datasets present similar trends. In partic-
ular, the results show an increase in the average accuracy of the classification
experiments, especially for datasets with large age differences (such as LARa
and MotionSense). Interestingly, the increase is not significant when comparing
the results of Sisfall, specifically Sisfall Young. However, Sisfall shows a large
age variation within the dataset. A major point is that the variation in age is
clustered rather than linear, the impact of which can be seen in the results of HM
‘3’ and ‘4’. A similar trend is visible with the wF1 values. The average wF1 of
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Fig. 3. Results on the average wF1-Score measured in percentage for all datasets on
all HM groups.

the classification experiments shows an increase in performance with an increase
in heterogeneity measure in alignment with the hypothesis.

The influence of the different network architectures on the performance met-
rics shows clear differences between the datasets. Although the CNN architecture
is competitive in datasets such as LARa, MotionSense and Mobiact, it performs
comparatively worse in the two subsets of Sisfall. In particular, the Transformer
network shows large variations in the values of the performance metrics in the
Mobiact and MotionSense datasets, especially in the heterogeneity group ‘2’.
However, for all networks and datasets, the standard deviation of accuracy and
wF1 performances decreases with increased HM. This can be associated with
the improved robustness of the network.

The performance difference in HM ‘2’ may be attributed to the different sub-
groups ‘2a’ and ‘2b’. As discussed previously, while HM ‘2a’ consists of variations
of one characteristic of the training set subjects, HM ‘2b’ consists of variations
of two characteristics. This means that the training data of HM ‘2b’ has more
diversity in the scope of the subject’s physical characteristics than ‘2a’. In our
case, at least two subjects in the training set are retained to have similar char-
acteristics. Figure 4 presents the accuracy results of HM ‘2’ subgroups. Similar
results for wf1 can be found in Figure S1 in the Supplement. Based on the trend
seen in Figure 2 and Figure 3, an improvement in the performance measure
would be expected with increasing heterogeneity in the training set. However, it
is worth noting that no significant differences in performance can be observed,
even if the average accuracy values are slightly higher for HM ‘2b’. A greater
difference can be observed for MotionSense and Transformer in particular.

Turning to a more targeted analysis by examining the performance metrics
for specific activity labels. Here, we focus on recall and precision to assess the
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Fig. 4. Results on the average accuracy measured in percentage for all datasets on HM
subgroups ‘2a’ and ‘2b’.

classifier’s ability to identify individual activities accurately. In this context, the
focus is narrowed to the activity of ‘walking’ since it is consistently present across
all datasets. Figure 5 shows the averaged precision (left) and recall (right) across
all corresponding experiments of the HM groups. Figures S2 and S3 in the Sup-
plement provide more detailed results. An increased precision and recall across
higher HM groups is generally observed. However, recall is more receptive to
an increase in characteristic levels. This trend aligns with our previous findings,
suggesting that as heterogeneity in the training sample increases, the classifier’s
ability to accurately identify the ‘walking’ activity improves on the unseen test
data. Thus, this work with statistical evaluation proves that for the same amount
of training data, having varied subject characteristics, here heterogeneity, helps
enhance neural network performance on unseen test data.
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Fig. 5. Mean precision and recall for ’walking’ activity for all datasets.
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5 Discussion

The experiments of this work aimed to answer the three research questions iter-
ated in Section 1. Here, we answer the research questions based on the analysis
of the experiments.

RQ1: Do the physical characteristics of humans influence activity recognition
performance?

The experiments indicate that training data comprising diverse physical char-
acteristics compared to a training set with homogeneous physical characteristics
of the subjects improves accuracy on unseen testing data with subjects of var-
ied physical attributes. Specifically, a systematic increase in the heterogeneity
of training data while maintaining the quantity of training data of subjects
improved classification accuracy. Thus proving the influence of human charac-
teristics on the HAR classifier performance, answering RQ1.

RQ2: What physical characteristics should be considered when selecting sub-
jects to create a robust classifier?

Noting that the majority of HAR datasets are limited in size and variability of
subject characteristics, the datasets chosen as part of this work showed an inher-
ent correlation between height and weight characteristics to gender. Within the
datasets’ and study’s limitations, the experiments indicate that gender signifi-
cantly influences the HAR models, followed by age, height and weight. Due to the
unavailability of further physical characteristic information in HAR datasets and
the correlation of height and weight to gender, the answer to RQ2 is restricted
mainly to age and gender characteristics. The study does not intend to discrim-
inate based on these attributes but to identify representation biases. Thus, we
recommend the creation of well-documented, large datasets with diverse subjects
to further the research on physical characteristics that influence the robustness
of HAR classifiers. For example, the influence of handedness and ethnicity.

Furthermore, we recommend that dataset creators ensure the presence of
subjects with extreme characteristics in their dataset, along with a more signif-
icant number of subjects with diverse physical characteristics. However, as seen
in Sisfall, a uniform selection of subjects from the range of a characteristic is
ideal compared to clusters within the range of characteristics. To elaborate, it is
essential to consider the variation of the characteristics within the subgroups, as
was evident when comparing the age groups of the Sisfall dataset. This practice
increases the classifier’s robustness and contributes to its overall performance.

RQ3: Can we develop a metric for representation bias in activity recognition
classifiers?

The answer to RQ3, on the development of a metric for representation bias
for HAR classifiers, is that a metric is not ideal for the dataset curation pro-
cess but rather an evaluation strategy focusing on a heterogeneity measure to
curate training data for neural networks is ideal. The experiments clarified that
HM directly impacts accuracy, wF1 and recall. Precision showed relatively less
response to low variations in HM measures. However, more improvement in pre-
cision was found with maximum heterogeneity in the training data. As physical
characteristic information is blended into the motion data recorded by sensors, a
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significant limitation is the complexity of accurately measuring and quantifying
representation bias and its interaction with other dataset biases. Thus, unless
the intention is to classify the physical characteristics directly, an evaluation
strategy is preferred than a metric.

6 Conclusions

This work aimed to evaluate representation biases in HAR systems by analyz-
ing the impact of subjects’ physical characteristics on classifier performance.
Understanding these biases is crucial for developing more accurate, reliable and
generalized HAR models and to guide the dataset creation process for novel HAR
applications. To achieve this, we systematically curated training data for state-
of-the-art HAR classifiers and evaluated their performance on four datasets with
subjects of varying physical characteristics. Further, based on the experimental
results, we answered the three main research questions the work focused on. The
work established an influence of the subject characteristics on the performance
of human activity recognition neural network models. Further, within the limi-
tation of the subject characteristics made available in public HAR datasets, this
study provided suggestions on the physical characteristics to focus on. Finally,
the work provides a recommendation to HAR dataset creators on subject selec-
tion criteria for dataset creation based on the sequential science of experiments.

This work focused on binary classes within characteristics. In future work,
evaluations on multiple sub-classes within each physical characteristic and the
evaluation’s impact must be performed to further generalize this contribution’s
conclusions. These may require extensive amounts of data to learn HAR through
supervised learning. Thus, larger, well-documented datasets with variations in
subjects’ physical characteristics (multiple classes for each characteristic) are
required to analyze these models. In addition, datasets consisting of detailed
subject characteristics are desirable for identifying new dimensions of the dataset
bias, such as the impact of handedness.
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Abstract. Sleep apnea, a prevalent sleep disorder affecting individu-
als of all demographics, poses a threat of significant disruption to daily
life. The analysis of Electrocardiogram (ECG) data facilitates the accu-
rate diagnosis of sleep apnea. With the advent of machine learning and
its accessibility through cloud services, doctors have been compelled to
enhance their diagnostic capabilities by integrating deep learning into
their analytical tools. However, challenges such as data privacy, security,
and confidentiality regulations are hindering the adoption of deep learn-
ing in the healthcare domain. In this research, we address these challenges
by proposing an end-to-end encrypted framework to analyze encrypted
ECG signals and diagnose sleep apnea. Leveraging Fully Homomorphic
Encryption (FHE) on deep learning models ensures privacy and secu-
rity by design while enabling computations on encrypted data. To over-
come the unique challenges posed by handling encrypted data in deep
learning models, we introduce novel and efficient techniques for adapt-
ing several key components such as the convolutional layer, max pooling,
ReLU activation, and fully connected layer to the FHE domain. Our app-
roach includes adapting the convolutional layer in the spectral domain,
implementing fully connected layers as generalized matrix multiplication,
and employing approximation methods for ReLU activation and max
pooling. The experimental results on real encrypted ECG data demon-
strate the feasibility and efficacy of our proposed framework, achieving
a remarkable accuracy of 99.56% in detecting sleep apnea. Our proposed
encrypted network does not lose any predictive performance compared
to its plaintext counterpart. This research underscores the potential of
encrypted data processing in significantly enhancing the security and
privacy of healthcare services, particularly in the domain of sleep apnea
diagnosis.
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1 Introduction

Sleep apnea is a prevalent sleep disorder characterized by abnormal reductions
or pauses in breathing during sleep, leading to inadequate oxygen supply to the
patient [27]. The consequential impact on sleep quality can manifest in short-
term issues such as low concentration, daytime sleepiness, and irritability, while
long-term effects may include heart complications and diabetes 1. Polysomnogra-
phy (PSG) is the conventional diagnostic test for sleep apnea, yet its drawbacks,
including time-consuming procedures and limited monitoring periods, necessi-
tate the exploration of alternative methods [27]. Electrocardiogram (ECG) sig-
nals play a crucial role in data-driven diagnostic methods for a wide range of
diseases. These signals provide detailed insights into the electrical activity of
the heart, enabling the identification, monitoring and early detection of various
conditions [8]. Moreover, ECG signals have been recognized as significant fea-
tures in the detection of sleep apnea and also are cost-effective and convenient.
By analyzing the variations and patterns in ECG data, advanced algorithms
can detect anomalies indicative of sleep apnea with high accuracy, contributing
to more effective and timely diagnosis and treatment of this prevalent disorder
[24]. Several studies have demonstrated the effectiveness of ECG signals in auto-
mated sleep apnea detection [10], leveraging deep learning models for accurate,
accessible, and continuous monitoring [17].

As cloud-based deep learning models gain popularity in medical diagnosis
[16], the importance of ensuring data security and privacy becomes paramount
[30]. Large-scale data breaches and identity theft underscore the challenges of
constructing resilient and secure systems in the open environment of the Inter-
net [12]. Given the sensitive nature of the medical diagnosis, strong data privacy
regulations, and ECG signals containing personally identifiable information [14],
end-to-end encryption is crucial when utilizing healthcare cloud services. Alter-
natives like confidential computing cannot ensure the same level of privacy as
FHE systems as the data must be decrypted during the analysis phase, ren-
dering it vulnerable. Additionally, it is susceptible to side-channel attacks, as
demonstrated by various studies [26].

This paper proposes a convolutional neural network (CNN) classifier for sleep
apnea detection using homomorphically encrypted ECG signals. The end-to-end
secure framework ensures that the ECG signal remains encrypted throughout
the process, preserving patient privacy. The large-scale availability of ECG data
enabled CNN models to achieve near-perfect accuracy scores [17], making them
competent for cloud-based disease diagnosis. The high-level framework of the
proposed system is shown in Figure 1. The user collects the ECG signal, encrypts
it using the private key, and sends it to the cloud service provider. After the
inference is performed on the encrypted data, the diagnosis result (in encrypted
form) is communicated to the user who only can decrypt it. We consider a
comprehensive threat model for cloud diagnostic services, presuming a scenario
where the cloud is compromised, and an attacker gains access to medical data,

1 https://houstonsleepsolutions.com/what-is-sleep-apnea-and-do-i-have-it/

https://houstonsleepsolutions.com/what-is-sleep-apnea-and-do-i-have-it/
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including diagnostic results. Our FHE solution ensures that, even in the event
of a cloud breach, the data remains secure as it is maintained in encrypted form,
preventing unauthorized use by the attacker.

Furthermore, various data and computational adjustments are implemented
for efficient inference of encrypted data. To address the high processing times
associated with operations on encrypted data, particularly in convolutional lay-
ers, this research incorporates multi-threading techniques. By optimizing the dis-
tribution of filters across threads, we aim to achieve more efficient computations
while minimizing unnecessary memory overhead. Our approach enhances the
practicality of applying encrypted deep learning models in real-world scenarios.
Displayed equations are centered and set on a separate line.

Fig. 1. Framework of the proposed privacy-preserving sleep apnea detector

2 FHE basics

A homomorphic encryption scheme is characterized as an encryption system in
which a set of operations on plaintexts can be executed directly on the cipher-
texts without the need for decryption. This capability is attained through addi-
tion and multiplication operations as these two operations collectively form a
functionally complete set over finite rings [23]. Let pKey and sKey denote
the public and secret keys, while Enc and Dec represent the encryption and
decryption processes. Consider plaintext values pt1 and pt2. Encrypting pt1
and pt2 using the public key pKey results in ct1 = Encrypt(pt1, pKey) and
ct2 = Enc(pt2, pKey), representing their encrypted forms. A cryptosystem is
considered homomorphic concerning a chosen operator (eg: addition, multipli-
cation), denoted as ◦, if there exists another operator • such that pt1 ◦ pt2 =
Dec(ct1 • ct2, sKey).
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It’s crucial to emphasize the broad spectrum of homomorphic encryp-
tion, accommodating different types designed to meet diverse computational
requirements. Partially Homomorphic Encryption (PHE) permits only addi-
tion or multiplication operations. Somewhat Homomorphic Encryption (SHE)
enables restricted computation on ciphertexts. Leveled Homomorphic Encryp-
tion (LHE) facilitates computations on ciphertexts with limited depth, providing
the option to increase depth through multiple encryption levels. Fully Homomor-
phic Encryption (FHE) allows computations on ciphertexts of any depth and
complexity, making it the most flexible of the lot.

Fully Homomorphic encryption schemes like BGV and BFV, building upon
the first-generation FHE systems, were aimed at enhancing computational effi-
ciency through leveled structures. These systems introduce optimizations like re-
linearization and modulus-switching. In 2017, a novel homomorphic encryption
scheme emerged named CKKS. This scheme improves efficiency and expands
applicability across various arithmetic applications. CKKS also enhanced the
efficiency of BGV/BFV by enabling quicker numerical computation through
approximation. [12].

Our work utilizes FHE based on the CKKS scheme to enable secure com-
putation on encrypted ECG signal data. However, several trivial computational
operators used in deep learning are yet to be implemented in the FHE framework
without compromising security. In this work, we develop FHE-compatible
operators for ECG analysis using a fully learned deep learning net-
work for inferencing.

3 Related Work

In the realm of privacy-preserving disease detection and deep learning with FHE,
prior research has made notable strides. [25] introduced a method for arrhyth-
mia diagnosis, achieving 98% accuracy by leveraging Support Vector Machines
(SVM) on encrypted ECG signals. [29] employed classical regression techniques
to fit and perform inference on encrypted data for seizure detection and predict-
ing predisposition to alcoholism using EEG signals. Additionally, [3] proposed
a toolbox of statistical techniques for secure genome analysis using encrypted
genetic data.

There have been alternate privacy-preserving techniques, with a significant
focus on federated learning. [19] utilized federated learning for Alzheimer’s dis-
ease detection, while [21] applied it to fMRI analysis. However, federated learning
has inherent vulnerabilities, such as communication risks between nodes and the
central agent, as well as the storage of data in plaintext, making it susceptible
to potential breaches [19]. Additionally, [31] proposed a sleep apnea monitor-
ing mechanism employing fog computing to enhance security but several studies
showed its vulnerability to potential man-in-the-middle attacks.

In the context of adapting Convolutional Neural Networks (CNNs) to FHE,
various studies have been conducted. [15] introduced a 2D CNN in FHE for infer-
ence on MNIST and Melanoma datasets using spatial convolution. [1] explored
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accelerating CNN inference in FHE using GPUs on MNIST and CIFAR-10
datasets. Notably, [22], [20], and [2] suggested performing convolution in the
frequency domain to reduce the number of homomorphic operations. However,
these methods exhibit limitations such as the absence of strided convolution,
incomplete adaptation of ReLU and max pooling layers to FHE, or the need for
intermediate re-encryption or interactions with the client.

In contrast, our work addresses these gaps by incorporating strided convolu-
tion in the frequency domain, providing accurate adaptations for max pooling
and ReLU to FHE, and eliminating the necessity for intermediate interactions
with the client, bootstrapping, or re-encryption. These advancements distinguish
our methodology from existing approaches, enhancing the efficiency and security
of deep learning in the FHE domain.

4 Proposed Approach

The network architecture used for sleep apnea detection is shown in Figure 2.
The key modules that are developed in FHE are (i) Convolution Layer; (ii)
ReLU; (iii) Max pooling layer; and (iv) Fully connected layer.

ECG data from the University College Dublin Sleep Apnea Database was
used in this work [11]. This dataset comprises complete overnight simultaneous
three-channel Holter ECG recordings, featuring adult subjects exhibiting indi-
cations of sleep-disordered breathing. Each second within this recording period
was labeled as either apneic or non-apneic by experts, thereby providing gran-
ular and comprehensive data for analysis comprising 8,05,926 training samples.
The network is initially trained using plaintext training data from this dataset
and the trained weights are used for inference on the encrypted test data.
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Fig. 2. CNN architecture used for secure sleep apnea detection.

We utilize the HEAAN library[6], which utilizes the CKKS scheme for FHE
operations.
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Fig. 3. 1D Convolution in FHE Domain. Input ciphertext and weights are multiplied in
the frequency domain to obtain full convolution. Valid convolution output is obtained
by rotating the full convolution by n-1 and extracting the valid convolution.

4.1 Adaptations for FHE

Computation within the FHE domain imposes various substantial constraints,
including the absence of individual element access in encrypted arrays, restricted
computation depth, high time complexity, and a lack of native support for fun-
damental operators such as a comparator. In this section, we discuss the adap-
tations made to the data and the training process of the CNN to ensure com-
patibility with FHE.

Each Electrocardiogram (ECG) signal in the dataset comprises 1408 sam-
ples. Given that the HEAAN library supports the encryption of data with sizes
that are powers of 2, we pad each input signal with zeros to extend it to a
length of 2048. This extended, padded input signal is then encrypted into a
single ciphertext. Consolidating the entire input signal into a single ciphertext
is crucial for the efficiency of arithmetic operations on ciphertexts, leveraging
Single Instruction, Multiple Data (SIMD) operations supported by HEAAN. To
facilitate efficient arithmetic operations between ciphertext inputs and plaintext
weights/filters, we also pad the latter with zeros, extending them to a length of
2048. It’s noteworthy that increasing the input size from 1408 to 2048 doesn’t
introduce noticeable computational overhead due to the SIMD nature of oper-
ations in HEAAN. As we need to use approximate versions of ReLU and max
pooling in FHE, we employ these approximations during the training of the plain-
text model. This enables the model to adjust to these approximations during
inference in the FHE domain, thereby not affecting the predictive performance.

4.2 Convolutional Layer

For computational efficiency, we realize convolution by Hadamard product of
signal and filter in the frequency domain based on equations 1 and 2.

y[n] = F−1 {X(k) · W (k)} (1)

where F−1 is the inverse Fourier transform, y[n] is the convolution output at
index n, X(k), W (k) is the Discrete Fourier transform (DFT) of the signal, and
filter respectively at index k, Discrete Fourier transform for input x is given by
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X[k] =
N−1∑

n=0

x[n] · e−j 2π
N nk (2)

where X[k] is the DFT coefficient at frequency bin k, x[n] is the input signal
value at time index n, and N is the Length of the input signal.

Computing the DFT of encrypted data using standard plaintext methods
is very time inefficient and consumes large multiplicative depth which is bad
for FHE mapping. Homomorphic Fourier transform is used for computing the
DFT of the encrypted data. Homomorphic Fourier transform as described in [13]
uses Cooley-Tukey matrix factorization to construct an efficient algorithm for
computing 1-D DFT of encrypted data. We observed that this algorithm is faster
by around 165 times than regular matrix multiplication for computing 1-D DFT
for an input size of 2048 as shown in Table 1.

Table 1. Time taken (in s) to calculate DFT in FHE

Input Size Multiplication Homomorphic Fourier transform

128 29.97 2.48
256 110.36 2.235
512 213.53 4.48

1024 435.60 5.1
2048 855.92 5.2
4096 1795.5 6.82

Standard Fast Fourier transform is used to transform the plaintext filter
into the frequency domain. The result of the Hadamard product between the
input and filter in the frequency domain followed by inverse DFT gives the
full convolution output [18]. To get the valid convolution output, we rotate the
resultant ciphertext by n-1, where n is the size of the filter. Subsequently, we
perform a multiplication with an array that consists of alternating groups of 1’s
and 0’s, as illustrated in Figure 3. Since our network has convolution layers with
strided (>1) convolution we devised a generic method to obtain an arbitrary
strided convolution from frequency domain convolution output. As this output
is a convolution with stride one, it is necessary to eliminate recurring patches
of values. These patches have lengths corresponding to the stride (1, 2, 3, etc.,
for strides 2, 3, 4, etc.). The process involves multiplying the ciphertext by a
plaintext vector with a specific pattern of 1s and 0s based on the patch size.
Subsequently, the "remove holes" function, discussed in the following section, is
invoked to complete this operation.
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Fig. 4. Max Pooling illustration for Ciphertext of size 8. Max: Approximate max is
applied to input and its left rotated variant and the result is multiplied by a plaintext
array of alternating 1s and 0s to replicate the stride of two. Remove Holes: The result of
the max stage contains alternating zeros which are all grouped and moved completely
to the right.

4.3 Max Pooling

The pooling layer within our network employs max pooling with a kernel size of
two and a stride of two. Due to the lack of support for the comparison operation
in FHE schemes, we utilize an approximate max operation proposed by [5]. The
formula for the approximate max value is given by:

Max(a, b; d) =
(a+ b)

2
+

Sqrt((a − b)2; d)
2

Here, d represents the number of iterations used for computing the approx-
imate square root, as also suggested in [5]. In our case, the two inputs a and b
correspond to the input and a copy of the input left-rotated by 1. The result
from the max function introduces alternating zeros or "holes," which need to
be removed to get the pooling output. This poses a challenge due to the lack of
access to individual elements.

To address this, we have devised a generic iterative process for hole removal
in ciphertexts. This process involves left-shifting the ciphertext by 2i, adding it
to the original, and then multiplying the result by an array containing repeating
groups of 1’s and 0’s, each with a length of 2i+1. Here, i ranges from 0 to
log2(N)−2 (where N is the length of the ciphertext). The entire process of max
pooling is visually represented in Figure 4.

4.4 ReLU

Homomorphic encryption schemes, including the HEAAN library, lack direct
support for the comparison function. To address this, polynomial approximate
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comparison is employed, as described in [5]. An asymptotically optimal com-
parison method named CompG, proposed by [7], approximates a sign function
using composite polynomial approximation. CompG operates effectively within
the input range of -1 to 1.

To ensure that the input to the Rectified Linear Unit (ReLU) falls within this
specified range, output values from convolutional layers are normalized using a
scaling factor before applying ReLU. The scaling factor is determined by the
formula:

Scaling Factor = max(|maxValue|, |minValue|)
Here, |maxValue| and |minValue| represent the absolute maximum and min-

imum input values, respectively, observed for the corresponding ReLU block in
the trained model on the training data. After applying ReLU, the reciprocal of
the scaling factor is used to restore the original values of the positive inputs. For
the ReLU implementation, the composite approximation technique is employed
to compare the input value a against 0. This comparison function yields a result
of 1 if a is greater than 0, 0 if a is less than 0, and 0.5 if a is equal to 0. The
ReLU result is obtained by multiplying the output of the comparison function
by the input value whose results are depicted in Figure 5.

Fig. 5. FHE ReLU results obtained using the approximate polynomial comparator

4.5 Fully Connected Layer

In this layer, an array of ciphertexts serves as input. For each output node,
element-wise multiplication is performed between each ciphertext in the array
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C1 C2 C3 ..

Ciphertext (C)

Cn 0 .. 0

W1 W2 W3 .. Wn 0 .. 0

CW1 CW2 CW3 .. CWn 0 .. 0

Multiply
HFT1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

Multiply

Weights of FC Node (W)

Homomorphic Fourier
Transform

HFT1 HFT2 HFT3 .. HFTn 0 .. 0

Output of the FC Node

Fig. 6. FC Layer output computation illustration for single ciphertext input. Element-
wise multiplication between ciphertext and weights is followed by calculating DFT.
The final output for the FC node or weighted sum is the DC component of the DFT

and the corresponding node weights and the results are summed up. The out-
come is a ciphertext whose elements need to be summed to obtain the final
output of the node. To achieve the sum of these elements, a common approach
involves left-shifting the ciphertext N-1 times and iteratively adding it to the
original ciphertext after each shift. However, this requires N-1 rotations of the
ciphertext, which can be computationally expensive. Instead, we employ a more
efficient technique wherein we utilize the Discrete Fourier Transform (DFT) of
the ciphertext to obtain the sum. The first element of the DFT represents the
sum of all elements in the signal. The mapping of the fully connected layer to the
FHE domain is depicted in Figure 6. Given that the problem at hand is binary
classification, the fully connected layer outputs only two nodes. To determine the
classification output of the network, the CompG comparator function is used to
identify the higher activation value among these two nodes. The comparator
function returns a ciphertext that can be used to find the predicted class label
of the network.

4.6 Parallelization

To parallelize the convolutional layers, we employ the NTL multi-threading,
which automatically manages thread creation and assignment in a manner that
optimizes efficiency. However, not all layers are equally amenable to paralleliza-
tion. Given the limited number of filters in the first layer (only three), we refrain
from parallelization supported by experiments showing that using a single thread
has the lowest latency. For the second layer, we find that using the threads equal
to the number of filters in it is optimal while for the third layer using all the
available 128 threads was found to be optimal as shown in Figure 7.
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Fig. 7. Processing time taken by each convolutional layer for different numbers of
threads

5 Results and Discussion

5.1 Performance evaluation

We randomly selected a few samples from the testing set and performed infer-
ence on the proposed encrypted network to evaluate its performance. Table
2 shows the classification performance of the encrypted model and Table 3
shows the layer wise error in the FHE domain. The comparison between
the encrypted network final classification output and the plaintext
counterpart revealed no errors while providing 128 bit security, high-
lighting the efficacy of our adaptation to the FHE domain.

5.2 Complexity Analysis

Table 4 shows the complexity analysis of our deep learning operators in the FHE
domain. When separated by operations, fully connected layer was most expensive

Table 2. Predictive performance of the proposed model in FHE.

Performance Metric Value

Accuracy 99.50%
Sensitivity 97.10%
Specificity 99.10%
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Table 3. Mean Average Error (MAE) induced due to FHE Computations

Layer MAE

Layer 1 (Batch Norm + Conv1 + ReLU + Max Pooling) 0.010
Layer 2 (Conv2 + Max Pooling + ReLU) 0.102
Layer 3 (Conv3 + Max Pooling + ReLU+ Batch Norm) 0.011
Fully Connected Layer + Argmax (Final Output) 0

followed by max pooling owing to its max operation. Although convolution was
taking relatively lesser time, the number of convolution operations present in
network is significantly higher than any other operations. Figure 8 shows the
average time taken to process the data through each layer. A large chunk of
the total time taken for inference is consumed by the third convolution layer
consisting of 1500 convolutions. Our experimental results indicate a 36% drop
in processing times for the second convolutional layer and a 44% drop for the
third layer following parallelization. The layer’s processing times exhibit a less
pronounced improvement than expected, indicating that additional factors like
available memory may be affecting its performance. Using parallelization we were
able to reduce the total inference time from 25430.2 s to 14571.25 s, attaining a
speedup of 42.70%.

Table 4. Complexity Analysis (PT: Plaintext, CT: Ciphertext, HOP: Homomorphic
Operations)

Operation Conv Max Pool ReLU Fully Connected Layer

#Additions 8 43 15 400
#PT-CT Muls 46 36 11 46
#CT-CT Muls 0 31 1 0
#CT Rotations 27 1 0 26
#HOPs 81 111 27 472
Latency (s) 20.70 25.14 17.14 517.49
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Fig. 8. Processing time taken by each layer during inference in FHE domain

5.3 Advantages of FHE over other Privacy Preserving Methods

In our proposed approach we set the FHE parameters in HEAAN to obtain 128-
bit security thereby providing cryptographic privacy guarantees throughout the
detection process. It is well-established that other widely used privacy-preserving
methods, such as federated learning or differential privacy, cannot guarantee such
a high level of security [28]. Unlike other encryption methods like RSA, AES,
that require data to be decrypted for processing, FHE ensures that data remains
encrypted at all times making it end-to-end secure (Table 5). This significantly
reduces the risk of data breaches and unauthorized access, helping to meet strin-
gent regulatory requirements for data protection in healthcare, such as HIPAA
in the United States. Privacy obtained through differential privacy involves com-
promising model performance for security, whereas FHE was able to maintain
model performance while still providing a higher level of security [9] [4].

Moreover, the privacy use case we address in this work is a cloud-based disease
detector. To provide maximum privacy, it is essential that patient data remains
secure during transmission to the cloud, model inference, and transmission of the
diagnosis results back to the patient. FHE is the only privacy-preserving tech-
nique that can provide end-to-end cryptographic privacy guarantees and secu-
rity. Federated learning cannot protect against cloud breaches or ensure privacy
from the cloud service provider. Differential privacy techniques cannot ensure
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Table 5. Privacy and Security comparison of FHE and other methods

Phase FHE FL/DP/Encryption/etc..

Input Transmission to Cloud Encrypted and Secure Encrypted and Secure
Processing/Inference Encrypted and Secure Unencrypted and Unsecure
Diagnosis Result back to User Encrypted and Secure Encrypted and Secure

privacy during input/output transmission or processing and cannot guarantee
privacy from the cloud service provider [9]. Even when these techniques are used
in combination with regular encryption for data transmission, data still needs
to be decrypted during processing leaving it vulnerable to attack as detailed in
Table 5.

6 Conclusion and Future Work

In this paper, we propose the first end-to-end encrypted sleep apnea detector
using deep neural networks. By employing FHE for encryption, we achieve 128-
bit security for the entire pipeline of cloud-based medical diagnosis, including
during inference. The proposed encrypted model detects sleep apnea with an
accuracy of 99.50%, a specificity of 99.56%, and a sensitivity of 97.10%. We
successfully adapted convolutional, fully connected, max pooling, and ReLU
blocks of the CNN to the FHE domain. Specifically, we utilized the homomorphic
Fourier transform to perform convolutions, employed approximate methods for
executing ReLU and max pooling operations, and developed a novel technique
to efficiently implement fully connected layers in the FHE domain.

For inference, we demonstrate that the encrypted model does not suffer any
predictive performance loss compared to the plaintext version, thereby illus-
trating the feasibility of FHE-based systems in cloud-based medical diagno-
sis. Although our approach provides strong security guarantees and does not
trade off performance for security, the drawback lies in the inference time, which
we partially addressed through parallelization. Future directions for our work
include developing more efficient parallelization strategies, and ciphertext pack-
ing schemes to further reduce the inference time.
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Abstract. To enhance privacy in Convolutional Neural Network (CNN)
based inference methods, fully homomorphic encryption (FHE) is a
golden tool. However, high latency and limited multiplicative depth are
major problems in building CNNs for FHE. Convolution operations dom-
inate the inference time of CNNs in FHE schemes due to the large number
of costly multiplications and accumulation operations required. All the
prior works have performed convolution in either the spatial or frequency
domain. Alternatively, in this paper, we propose to use a summed area
table (SAT) along with kernels approximated with box filters for the
computation of convolution in 1D, 2D, and 3D space. The usage of box
filters allows us to reduce the number of costly multiplications required
to compute convolution. We show that the proposed method computes
convolution output with lower latency than the standard spatial convo-
lution method and can be applied with arbitrary kernels. We also show
that the speed-up provided by our approach increases with the size of the
image or kernel. Through the usage of SATs and box filters, we reduce
the number of expensive multiplication operations required in convolu-
tion by 20%-52% and latency by 15%-89%.

Keywords: Convolution · Fully Homomorphic Encryption · Summed
Area Tables · CNN

1 Introduction

The Fully Homomorphic Encryption (FHE) scheme provides a path for end-to-
end secure and private inference of deep learning models. FHE finds its need
in several applications where clients send sensitive information to the server for
analysis by machine learning models as it enables computations on encrypted
data [9]. Figure 1 shows the application of FHE in preserving the privacy of
client data in cloud inferences. Several inherent limitations of FHE including
restricted arithmetic operation support (only Addition and Multiplication), lim-
ited multiplicative depth, and high latency limit its practicality for real-world
deployment. Convolutional Neural Networks (CNNs) have become the standard
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architecture used for solving many problems in computer vision [2], making it
crucial to secure the data passed through CNNs for inference. In this work,
we address the problem of latency of CNN inference in the FHE domain. [7]
showed that convolution layers take around 90% of the inference time in CNNs
(Figure 2a). In FHE there are a limited number of multiplications we can per-
form before the accumulating noise makes the ciphertext unrecoverable and a
costly operation called bootstrapping is required to recover it partially. More-
over, multiplication in FHE is slower than in unencrypted domain by a factor of
10,000 [12] and addition is around 500 times faster than multiplication in FHE
(Figure 2b). These factors strongly motivate us to reduce the number of multi-
plications in convolution to decrease the latency of CNNs in FHE. We propose a
method using Summed Area Tables, and box filters to reduce the multiplications
in convolution operation by replacing them with additions and thereby reducing
the latency.

Fig. 1. Overview of using FHE to secure the client data when using cloud machine
learning services.

Standard convolution is performed in either spatial or frequency domain.
Spatial convolution involves applying a kernel/filter (used interchangeably) to
an input signal or image by sliding it across the entire input and computing
the weighted sum of the filter coefficients and the corresponding input values
at each location (Fig. 3). In Frequency domain convolution the input and the
filter are first converted into frequency domain using Fourier transform, the
corresponding frequency representations are multiplied and are converted back
to spatial domain using inverse Fourier transform.

A homomorphic encryption is defined as an encryption system where a set of
operations on plaintexts can be performed directly on the corresponding cipher-
texts. Let pKey and sKey denote the public and secret keys, while Enc and Dec
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Fig. 2. a) Layer-wise inference latency in CNN models. b) Time taken for operations
with plaintext and ciphertext operands.

represent the encryption and decryption processes. Consider plaintext values pt1
and pt2. Encrypting pt1 and pt2 using the public key pKey results in
ct1 = Encrypt(pt1, pKey) and ct2 = Enc(pt2, pKey), representing their
encrypted forms. A cryptosystem is considered homomorphic concerning a cho-
sen operator (eg: addition, multiplication), denoted as ◦, if there exists another
operator • such that pt1 ◦ pt2 = Dec(ct1 • ct2, sKey).
There are multiple homomorphic encryption schemes like Partially Homomor-
phic Encryption (PHE), Somewhat Homomorphic Encryption (SHE), Leveled
Homomorphic Encryption (LHE) and Fully Homomorphic Encryption (FHE).
FHE is the most flexible of the lot allowing for homomorphic operations of
addition and multiplication and computations of arbitrary depth using boot-
strapping. Several FHE systems have been suggested, such as the BFV, BGV,
and CKKS schemes [9]. BFV and BGV allow vector operations on integers,
while CKKS facilitates floating-point operations. These schemes enable Single
Instruction Multiple Data (SIMD) operations by bundling various values into
arrays and converting them into ciphertexts.

While there are existing works that suggest various methods like efficient
message packing [16], frequency domain convolution [18], and quantization [20]
for addressing the latency of convolution operation in FHE domain, none of
them explored using SATs which are more efficient than standard methods for
performing convolution.

Our contributions in this work can be summarized as follows:

– We propose to use box filters in combination with SATs to reduce the inference
latency of CNNs in FHE environment.

– We extend the filter approximation algorithm previously used for approxi-
mating arbitrary 2D filters with a set of box filters to accommodate both 1D
and 3D filters.

– Our experiments demonstrate that our proposed approach is faster when
compared to standard or frequency domain convolution in FHE without rea-
sonably effecting the classification performance.
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2 Related Work

Prior works have proposed various approaches for performing convolutions in
FHE domain each differing primarily in the way the image pixels or messages are
packed into the ciphertexts and the corresponding algorithm for computing con-
volution. [16] [14] [17] all propose various ways of packing the input image pixels
into ciphertext slots and adapting the deep CNNs like Resnet 20/32/44/56/110
to FHE. [27] proposes channel-wise packing, while [13] uses a hybrid packing
method that combines multiple existing packing schemes. [20] proposes to use
quantization to reduce the inference latency in CNNs and [29] uses binary net-
works to remove the need for multiplications although significantly affects the
accuracy. While all the above-mentioned works use spatial convolution, [18] and
[5] put forward the idea of using frequency domain convolution to suit the effi-
cient single instruction multiple data (SIMD) processing approach present in
various FHE schemes. In addition to the efficient packing, and convolution algo-
rithm innovations several works have explored acceleration approaches. [1] for
the first time explored using GPUs for encrypted inference of CNNs to decrease
the latency while [19] proposes high-performance approaches like MPI. [23] pro-
poses a custom accelerator for FHE computations.

Orthogonal to the existing packing schemes, quantization techniques, and
algorithms for speeding up convolution in FHE we propose a methodology to
improve the convolution latency in FHE using SATs and box filters.

SATs are well-established concepts in computer vision, enabling the rapid
computation of the sum of values within any arbitrary subset of a grid, main-
taining a constant time complexity [8]. SATs are used to speed up computations
for various tasks including texture mapping [4], decomposition of fully connected
layers [3], accelerating convolutions with binary [26] and large kernels [28] while
[25] generalizes the summed-area tables for n-dimensional inputs. [21] provides
an effective algorithm for learning a set of box filters that approximate any
arbitrary 2D kernel.

In this work, we use the kernel approximating algorithm to represent any
1D/2D/3D kernel with a set of box filters and SATs to provide an efficient
method for convolution in the FHE domain.

3 Methodology

3.1 Overview

Given an input image I and filter F we calculate convolution in the following
steps.

– If not encrypted already, every pixel of I is encrypted into a ciphertext using
FHE and SAT of encrypted input is calculated I.

– Filter F is approximated with a set of box filters using the algorithm 4.
– SAT and box filters are used to compute the convolution output as illustrated

in Figure 4
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3.2 Encryption

We use HEAAN [6] library which is based on CKKS FHE scheme for our homo-
morphic encryption and computations. In our packing method each value of the
input signal is encrypted into a ciphertext. When multiple values of input are
encrypted into a single ciphertext we cant access the individual elements directly
and need to go through a considerable overhead to get the element at an index.
But with our approach of packing where each value of input is a ciphertext we
can avoid that overhead. The proposed methodology is orthogonal to the packing
scheme applied to encrypt the input data into ciphertexts. There are innovative
packing techniques to reduce the need for individual element access [16] [14] [17]
for convolutions but they need to be modified to suit for our approach of using
SAT and box filters, we leave this direction for future work.

3.3 Approximating Arbitrary Filters with Box Filters

We approximate a kernel with a set of box filters by extending the algorithm
proposed by [21] to approximate any 1D/2D/3D filter with a set of box filters.
This algorithm outputs a set of box filters which can be used to produce an
approximation of any filter as shown in algorithm 1. Each of these box filters are
represented by corner points determine box filter position in the original filter
space and a scaling factor.

Algorithm 1 Computing filter from set of box filters
1: function ComputeFilter({αi}N

i=1, {ei1, ei2 . . . eik}N
i=1)

2: Initialize filter F with zeros
3: for i = 1 to N do
4: Compute filter segment fi using the edges {ei1, ei2 . . . eik}
5: F = F + αi · fi
6: end for
7: return F
8: end function

Fig. 3. Illustration of regular spatial convolution
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Approximation algorithm 4 is an exhaustive search method which determines
the ideal values of the corner points of the box iteratively by working on one
box at a time [21]. The approximation algorithm starts from one box and goes
iteratively until the maximum number of boxes maxN is reached or approxima-
tion error is below a threshold. For our experiments, we set maxN based on the
filter shape and around 20% to 50% less than the total entries in the filter. Error
threshold was set to 1 L2-percent error. At each step of the iteration, optimal

Fig. 4. Illustration of proposed approach of convolution with summed-area table and
box filters. Given an input image I and kernel F their summed area table and box filter
approximations are calculated followed by using them to compute the convolution
output
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scaling values {α} for the boxes are determined using matrices M and V . M
computed using algorithm 2 contains information of overlap between different

Algorithm 2 Compute Overlap Matrix M

1: function ComputeM(n, boxes)
2: Initialize nxn matrix M with all entries as 0
3: for i ← 1 to n do
4: for j ← 1 to n do
5: M [i][j] ← Overlap between boxes[i] and boxes[j]
6: end for
7: end for
8: return M
9: end function

Algorithm 3 Compute filter sum Matrix V

1: function ComputeV(n, boxes,filter)
2: Initialize nx1 matrix V with all entries as 0
3: for i ← 1 to n do
4: V [i] ← Sum of filter values within the overlap between boxes[i] and filter
5: end for
6: return V
7: end function

Algorithm 4 Approximating Filter with Box Filters
1: function ApproximateFilter(maxN , filter, threshold)
2: Start with N = 0, boxes = [], threshold = 1
3: k = 2 ∗ Dimension(filter)
4: while N < maxN do
5: N = N + 1.
6: Keep all values of {ei1, ei2 . . . eik}N−1

i=1 constant.
7: for en1 in range (0, en1) do � Exhaustive search for corner points

...
8: for enk in range (0, enk) do
9: append the current iteration box {ei1, ei2 . . . eik} to boxes

10: M = ComputeM(n, boxes)
11: V = ComputeV (n, boxes, filter)
12: {αi}N

i=1 = M−1V � Computing scaling factors for current box set
13: E(θ) = ‖(ComputeF ilter({αi}N

i=1, {ei1, ei2 . . . eik}N
i=1) − filter)‖2

14: remove the current iteration box {ei1, ei2 . . . eik} from boxes
15: end for
16: end for
17: Add the box {ei1, ei2 . . . eik} to boxes which had the lowest E(θ).
18: return if error E(θN ) below threshold.
19: end while
20: return boxes
21: end function
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boxes in the set, while V computed using algorithm 3 has information about
sum of filter values within the overlap between boxes and the original filter.

3.4 Convolution with SAT and Box Filters

Given an n dimensional input I and kernel F we compute the SAT of the input
using [26] (for 1D and 2D) or [25] (for 3D) and we obtain a set of m box filters
B approximating F through algorithm 4. Equation 1 shows how these set of
box filters can be used to get the original kernel F . As the linear combination
of these box filters approximates the original kernel we can apply these box
filters individually and combine the responses to get equivalent output of the
convolution with the kernel. Since these box filters are rectangles/cuboids of
various sizes filled with ones, we just need to get the sum of the values within the
rectangle/cuboid and multiply it by the corresponding scaling factor to get the
convolution output for a given box filter. SATs come in handy for this process
as they provide us with an efficient way to get the sum within a region. The
number of multiplications required to calculate convolution output at each point
by this approach is equal to the number of box filters used for approximating
the kernel, thereby reducing the required multiplications from K1 ∗ K2... ∗ Kn

for n dimension kernel to N where K1,K2..Kn are the dimensions of the kernel
and N is the number of boxes required to approximate it. n dimensional spatial
convolution is given by equation 2, using 1 we can replace F in equation 2 with
the set of the box filters B to obtain equation 3 for computing convolution.
Figure 4 shows an example of the approximating box filters, and using SAT to
compute convolution.

Our approach also makes the convolution more conducive to parallelization.
In addition to parallelization of each channel like in regular spatial convolution
we can also parallelize convolution response computation of each box filter effec-
tively reducing the latency further. In all our experiments we use these kinds of
parallelization and run parallel threads equal to the number of boxes used.

F ≈ α1b1 + α2b2 + .. + αmbm (1)

I ∗ F =
K1∑

k1=1

K2∑

k2=1

· · ·
Kn∑

kn=1

I[k1, k2, . . . , kn] · F [i − k1, j − k2, . . . , l − kn] (2)

I ∗ F = α1

B11∑

b11=1

B12∑

b12=1

· · ·
B1n∑

b1n=1

I[b11, b12, . . . , b1n] · b1

+ α2

B21∑

b21=1

B22∑

b22=1

· · ·
B2n∑

b2n=21

I[b21, b22, . . . , b2n] · b2

+ αm

Bm1∑

bm1=1

Bm2∑

bm2=1

· · ·
Bmn∑

bmn=m1

I[bm1, bm2, . . . , bmn] · bm

(3)

where Bi1, Bi2..Bin represents the shape of the filter in each dimension for box i.
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4 Experiments and Results

We perform various experiments proving the efficiency and efficacy of our app-
roach in computing convolution. These experiments are aimed at understanding
the effects of using box filter approximated kernels in terms of error and latency.

4.1 Filter Response Error

We perform this experiment to get more insights into the capability of our app-
roach to approximate filters of various types at granular level. We compare indi-
vidual 1D, 2D, and 3D filters of varying sizes and use the percent error of L2
distance between the filter responses of the original and the approximated fil-
ter for this evaluation. We randomly selected kernels learned by standard CNN
architectures like Alexnet [15] Resnet [10], VGGNet [24] for 2D, and applica-
tion specific CNNs [11] [22] found in literature for 1D and 3D. In cases where
a specific filter size is not present in the CNN model we used filter with ran-
dom values. The results are shown in table 1 with average error and average
decrease in multiplications over all the kernels tested. The minimum number of
boxes required to take the error below 1% over all the kernels tested are shown
in Table 1. These results show that we can approximate varied-sized 1D, 2D,
and 3D filters with high accuracy while reducing the number of multiplications
required for convolution by 22% - 52%.

Table 1. Average Filter Response Error with approximate box filters and % of Multi-
plications reduced for various filters

Dimension Filter Size # of Boxes used % L2 Error
in Filter
Response

%
decrease
in Mults

1 7 5 0.94% 28.57%
14 10 0.87% 28.57%
28 20 0.49% 28.57%
56 36 0.94% 35.71%

2 3 5 0.15% 44.44%
5 20 0.08% 20%
7 32 0.65% 28.57%
9 35 0.78% 44.44%

3 3 20 0.74% 25.92%
4 46 0.95% 28.125%
5 60 0.87% 52%
6 130 0.72% 39.81%
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4.2 CNN Classifier Performance Error

We study the effect of approximating CNN kernels with box filters on the classi-
fication performance. We replace all the learned kernels of various CNN architec-
tures with the approximated box filters and report the difference in classification
accuracy. We find that the approximation with box filters does not reasonably
effect the accuracy of the model as shown in the Table 2.

Table 2. CNN Classifier Performance Error when kernels are approximated with box
filters

CNN Architecture Dataset Accuracy
with original
kernels (%)

Accuracy
when
approximated
with box
filters (%)

% decrease
in Mults

ResNet-20 CIFAR-10 91.73 91.73 45.2%
ResNet-18 ImageNet 56.44 56.02 38.32%
ResNet-32 CIFAR-10 92.63 92.59 44.24%
ResNet-34 ImageNet 65.72 64.5 40.17%

4.3 Image Size vs Convolution Time

In this experiment, we analyze how the time taken for 2D convolution using our
proposed approach scales up with increasing image size in FHE in comparison
with regular convolution. For this experiment, we keep the filter size constant
at 5x5 and vary the image sizes. Figure 5 shows that the proposed approach is
on average twice as fast compared to regular convolution in FHE for image sizes
ranging from 32X32 to 1024x1024.

4.4 Filter Size vs Convolution Time

We also compare the regular convolution with our proposed method in both 2D
and 3D cases with varying filter sizes. For 2D we keep the image size constant
at 256x256 and vary the filter sizes from 3 to 9, while for 3D we use an image of
shape 32x32x32 and vary the filter sizes from 3 to 6. Based on the results shown
in Figure 6, 7 we find that with our approach convolution time remains constant
as filter size increases for both 2D and 3D versions while regular convolution
shows a quadratic trend.
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Fig. 5. Comparison of latency of proposed approach with regular spatial convolution
for varying 2D image sizes with filter size 5x5.

Fig. 6. Comparison of latency of proposed approach with regular spatial convolution
for varying 2D filter sizes and 256x256 image.
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Fig. 7. Comparison of latency of proposed approach with regular spatial convolution
for varying 3D filter sizes and 32x32x32 image.

Fig. 8. Comparison of latency of proposed approach with frequency domain convolution
for varying 2D filter sizes and 256x256 image.

4.5 Comparison with Frequency domain Convolution

In addition to comparison of our approach with spatial convolution we also
compare it with frequency domain convolution for 2D images and kernels. As
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encrypting each pixel is prohibitive for computing Fast Fourier transform (FFT)
in FHE we encrypt each row of the input image into a ciphertext and compute
FFT of the input. The frequency domain representations of both the input and
filter are multiplied and inverse Fourier transform is applied. Inference latency
comparison of proposed approach and frequency domain convolution is shown in
Figure 8. Although both frequency domain approach and our proposed approach
remain constant as filter size increases the former is 64 times slower than our
approach.

5 Conclusion

In this paper, we proposed an approach to reduce the number of multiplications
required in convolution operations using summed-area tables, and box filters.
We extend the algorithm proposed in prior work for approximating arbitrary 2D
filters with box filters for 1D and 3D versions. We apply our proposed approach
for computing convolution in FHE and through various experiments show the
efficacy and efficiency of our approach in reducing the convolution latency in the
FHE domain. Based on the experimental results we can conclude that our app-
roach proves to be a viable alternative to widely used regular spatial convolution
for reducing latency in the FHE domain. A promising line of future work is to
explore using our approach in combination with various packing schemes used
currently in FHE for inference in CNNs.
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Abstract. In recent years, complex machine learning models have been
widely introduced in various industrial fields due to their high accu-
racy. However, their increasing complexity has been a major obstacle to
their implementation in sensitive decision-making situations. In order
to address this problem, various post-hoc explanation methods have
been proposed, but they have not been able to achieve interpretabil-
ity of both the explanation and its scope. We propose R-LIME, a novel
method that interprets complex classifiers within an interpretable scope.
R-LIME locally and linearly approximates the complex decision bound-
ary of a black-box classifier within a rectangular region and maximizes
the region as long as the approximation accuracy exceeds a given thresh-
old. The resulting rectangular region is interpretable for users because
it is expressed as a conjunction of feature predicates. Through qualitative
and quantitative comparisons on a real-world dataset, we demonstrate
that R-LIME provides more reliable and interpretable explanations than
existing methods.

Keywords: Interpretable machine learning · Local surrogate model

1 Introduction

In recent years, complex machine learning models, such as deep neural networks
and random forests, have been widely introduced in various industrial fields due
to their significant improvements in accuracy. However, their increasing complex-
ity and black-box nature pose challenges, particularly in critical decision-making
scenarios such as healthcare and finance, where the lack of transparency becomes
a major obstacle to implementation. In order to address this problem, extensive
research has focused on post-hoc explanations for complex models [5,10,11].
Post-hoc explanation methods are categorized into model-dependent and model-
agnostic methods based on their dependence on the model’s structure, with the
latter further classified into global and local methods based on the locality in the
input space [13].
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Fig. 1. Example of explanations by LIME [10], Anchor [11] and R-LIME (our proposed
method) for a sentiment prediction model.

In this paper, we focus on local and model-agnostic methods. LIME [10] and
Anchor [11] are representative local model-agnostic methods. An example of
explanations by LIME and Anchor for a sentiment prediction model is illustrated
in Fig. 1. LIME linearly approximates the complex decision boundary around the
given focal point (Fig. 1(a)), then provides the weights of the linear model as the
contribution of each feature to the output. The explanation by LIME (Fig. 1(b))
suggests that the word “not” mainly contributes to the positive prediction, but
does not explicitly indicate its effective scope. Without the scope, users might
mistakenly apply the knowledge derived from the explanation to other instances
far from the focal point, potentially leading to misunderstanding of the black-box
model’s behavior [11]. For this example, users may apply the derived insights
to the sentence “This book is not good.” and mistakenly conclude that the word
“not” mainly contributes to the positive prediction for this sentence as well, which
is obviously incorrect. Anchor maximizes the coverage of a rectangular region
containing the focal point as long as the probability of the black-box classifier
outputting the same label as the focal point within the region exceeds a given
threshold. While Anchor provides an effective scope of the explanation, users
can get less insight compared to LIME. The explanation by Anchor (Fig. 1(c))
suggests that replacing words other than “not” and “bad” has little impact on
the classifier’s output. While it clearly cannot be applied to the sentence “This
book is not good” because of not including the word “bad”, the explanation does
not provide details about the influence of each word, resulting in less user insight
into the model’s behavior compared to LIME.
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Fig. 2. Categorization of post-hoc explanation methods. We focus on model-agnostic
and local methods, which explain model’s local behavior using only its output.

To address these limitations, we propose R-LIME (Ruled LIME), which pro-
vides both the contributions of each feature to the output and the effective scope
of the explanation. R-LIME linearly approximates a complex decision boundary
in a rectangular region and maximizes the region as long as the accuracy of the
linear classifier exceeds a given threshold. The region is interpretable for users
because it is expressed as a conjunction of feature predicates. An example of the
explanation by R-LIME for a sentiment prediction model is shown in Fig. 1(d).
It is clear that users can apply the insights derived from the explanation only to
the sentences containing the word “bad”.

2 Related Work

In this section, we overview existing research on post-hoc explanation methods,
which explain the behavior of black-box models already trained. As shown in
Fig. 2, post-hoc methods are classified into several categories.

They are broadly divided into model-dependent and model-agnostic methods
based on their dependence on the model’s structure. Model-dependent methods,
such as deep Taylor decomposition (DTD) [9] and layer-wise relevance propa-
gation (LRP) [3], primarily focus on neural networks and explain the model’s
behavior using its parameters [13]. While these methods provide detailed expla-
nations (e.g., layer-wise explanations for neural networks), it is often challenging
to apply the same method to models with different structures. In contrast, model-
agnostic methods use only the model’s output. Although they are applicable to
any model, they cannot explain the internal reasoning processes of the model.

Model-agnostic methods are further categorized into global and local methods
based on their locality in the input space. Global methods, such as partial depen-
dence plots (PDP) [4] and accumulated local effects (ALE) [2], aim to explain
the model’s behavior across the entire input space. However, providing global
explanations becomes challenging as the model’s complexity increases. In con-
trast, local methods, such as individual conditional expectation (ICE) [1], local
interpretable model-agnostic explanations (LIME) [10], Anchor [11] and shapley
additive explanations (SHAP) [8], explain the model’s behavior in the vicinity of
a specific input. While they offer explanations simpler and more accurate than
global methods, the scope of the explanation is limited locally.
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Fig. 3. Visual comparison of LIME, Anchor and R-LIME (our method). The dashed
line represents the local linear approximation model, and the solid line represents the
rectangular region containing the focal point.

3 Proposed Method

3.1 Previous Work

We specifically focus on local and model-agnostic methods. This section briefly
reviews existing research on local model-agnostic explanations, particularly
focusing on studies closely related to our proposed method.

LIME (Local Interpretable Model-agnostic Explanations) [10] LIME
locally approximates a black-box classifier f : Rm → {0, 1} around a focal point
x ∈ R

m using a linear classifier g : Rm → {0, 1} (Fig. 3(a)). The approximation
process involves the following steps:

1. Generate a set of perturbed samples Zp around x and their pseudo-labels
f(Zp) = {f(z) | z ∈ Zp}. (i) Convert x into a binary vector x′ ∈ {0, 1}m′

, (ii)
generate perturbed samples by randomly drawing non-zero elements from x′,
and (iii) convert the perturbed samples back to the original space.

2. Train a linear classifier g using Zp and f(Zp) by minimizing the following loss
function:

L(f, g, πx) =
∑

z∈Zp

πx(z)(f(z) − g(z))2, (1)

where πx(z) is a weight function that assigns larger weights for samples closer
to x, typically defined using an exponential kernel.

LIME provides valuable insights into the local behavior of the model by showing
each feature’s contribution to the output f(x). However, it does not explicitly
define the region for generating perturbed samples, making it difficult for users
to assess the effective scope of the explanation [11].

Anchor [11] Anchor maximizes the coverage of a rectangular region containing
the focal point x, expressed as a conjunction of feature predicates (a rule) as long
as the probability of the black-box classifier f outputting f(x) within the region
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exceeds a given threshold τ (Fig. 3(b)). It aims to highlight important features
contributing significantly to the output. For a discrete m-dimensional input space
D

m, a trained black-box classifier f : Dm → {0, 1}, an instance x ∈ D
m and a

distribution D over the input space, a rule A(z) = ai1(z) ∧ ai2(z) ∧ · · · ∧ ait(z)
is defined. The predicate ai(z) evaluates to true (= 1) when zi = xi and false
(= 0) otherwise. The reliability of the explanation is defined as the “accuracy”
of the rule, and the generality of the explanation is defined as the “coverage” of
the rule. The accuracy acc(A) and coverage cov(A) of the rule A are defined as
follows:

acc(A) = Ez∼D(z|A)[1f(z)=f(x)], (2)
cov(A) = Ez∼D(z)[A(z)], (3)

where D(z|A) is the conditional distribution in the region where the rule A
returns true. acc(A) represents the probability that the output of f matches
between the perturbation z ∼ D(z|A) and the focal point x, and cov(A) expresses
the probability that the perturbation z fits into A. Anchor maximizes coverage
as long as the accuracy of the rule A exceeds a given threshold τ . However, eq.
(2) is not directly computable. Introducing a confidence level 1 − δ (0 ≤ δ ≤ 1),
the accuracy constraint is relaxed as follows:

P (acc(A) ≥ τ) ≥ 1 − δ. (4)

Thus, the following optimization problem is solved:

A∗ = argmax
A s.t. P (acc(A)≥τ)≥1−δ∧A(x)=1

cov(A). (5)

3.2 Overview

We propose R-LIME, a novel method designed to address the limitations of
LIME [10] and Anchor [11]. Similar to LIME, it locally approximates the black-
box classifier f around the focal point x using a linear classifier g, and similar to
Anchor, it generates the perturbed samples for approximation from a rectangular
region (Fig. 3(c)).

Anchor maximizes the coverage of region A as long as the probability of the
output of the black-box classifier f matching f(x) within A exceeds a given
threshold τ . R-LIME, on the other hand, learns a linear classifier g within the
rectangular region A and maximizes the coverage of A under lower constraints
on the accuracy of g. We modify Anchor’s definition of accuracy in eq. (2) as
follows:

acc(A) = max
g∈G

Ez∼D(z|A)[1f(z)=g(z)], (6)

where G is a hypothesis space of possible linear classifiers. By solving the opti-
mization problem in eq. (5) under the modified definition of accuracy in eq. (6),
we can select the rule that enables explanation with high accuracy and generality.
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Fig. 4. Overview of the R-LIME algorithm. The progression of the algorithm is illus-
trated from left to right. The solid line represents the rectangular region A, and the
dashed line represents the linear approximation model g learned within A. The initial
value of A is an empty rule (entire input space), and predicates are added to A, reduc-
ing coverage. The process continues until acc(A) ≥ τ is satisfied, at which point the
rule with the maximum coverage is output.

3.3 Algorithm

The R-LIME algorithm is mainly based on the method used in Anchor[11]. For
non-convex optimization problems like eq. (5), greedy search are often used. But
greedy methods often converge to local optima, so we use beam search, which
selects multiple candidates at each iteration to improve the search robustness.
The pseudo-code is shown in Algorithm 1.

Generating New Candidate Rules To generate new candidate rules, one
additional predicate is added to each of the B candidate rules selected in the
previous iteration. The pseudo-code is shown in Algorithm 2. T (x) is the set of
predicates {a1, . . . , am}, where ai(z) evaluates to true when zi = xi and false
otherwise. T (x) \ A is the set of predicates in T (x) not included in rule A.

Searching Rules with Highest Accuracy Given the set of candidate rules
Ā, the algorithm selects the B candidate rules with the highest accuracy. This
problem can be formulated as best arm identification in the multi-armed bandit
framework. Each candidate rule Ai ∈ Ā is considered as an arm, and reward of
arm ai follows a Bernoulli distribution with P (X = 1) = acc(Ai). By sampling
z ∼ D(·|Ai) and obtaining the reward 1f(z)=gi(z) for each trial, the algorithm
updates gi using z and f(z) after each trial. To efficiently search the rule (arm)
with the highest accuracy, we employ the KL-LUCB algorithm [6]. The pseudo-
code is shown in Algorithm 3. For tolerance ε ∈ [0, 1], the KL-LUCB algorithm
guarantees below:

P (min
A∈Ā

acc(A) ≥ min
A′∈A

acc(A′) − ε) ≥ 1 − δ. (7)

However, the KL-LUCB algorithm assumes that the reward distribution for
each arm remains unchanged, while our method updates the classifier gi with
each sampling, which may not satisfy the assumption. This issue is discussed
further in section 5.2.
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Algorithm 1 R-LIME
Input: Black-box model f , Target instance x, Distribution D, Threshold τ , Beam

width B, Tolerance ε, Confidence level 1 − δ
Output: Rule A∗ satisfying Eq. (5)
1: A∗ ← null, A0 ← ∅, t ← 0 � Initialize the set of candidate rules A0 to ∅
2: while A∗ = null do
3: t ← t + 1
4: Āt ← GenerateCands(At−1)
5: At ← B-BestCands(Āt, D, B, ε, δ)
6: A∗ ← LargestCand(At, τ, δ)
7: end while

Algorithm 2 Generating new candidate rules
1: function GenerateCands(A, x)
2: if A = ∅ then return {true} � An initial empty rule always returns true
3: Ā ← ∅
4: for all A ∈ A do
5: for all a ∈ (T (x) \ A) do
6: Ā ← Ā ∪ (A ∧ a) � Get a new rule by adding a new predicate a to A
7: end for
8: end for
9: return Ā

10: end function

Algorithm 3 Searching rules with highest accuracy (KL-LUCB [6])
1: function B-BestCands(Ā, D, B, ε, δ)
2: initialize acc, accu, accl for ∀A ∈ Ā
3: A ← B-ProvisionallyBestCands(Ā) � B rules with highest accuracy
4: A ← argminA∈A accl(A, δ) � The rule with the smallest lower bound
5: A′ ← argmaxA′ /∈(Ā\A) accu(A

′, δ) � The rule with the largest upper bound
6: while accu(A

′, δ) − accl(A, δ) > ε do
7: sample z ∼ D(z|A), z′ ∼ D(z′|A′)
8: update acc, accu, accl for A and A′

9: A ← B-ProvisionallyBestCands(Ā)
10: A ← argminA∈A accl(A, δ)
11: A′ ← argmaxA′ /∈(Ā\A) accu(A

′, δ)
12: end while
13: return A
14: end function

Algorithm 4 Searching a rule with highest coverage under constraint
1: function LargestCand(A, τ, δ)
2: A∗ ← null � If no rule satisfies the constraint, return null
3: for all A ∈ A s.t. accl(A, δ) > τ do
4: if cov(A) > cov(A∗) then A∗ ← A
5: end for
6: return A∗

7: end function
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Searching a Rule with Highest Coverage under Constraint To satisfy
the constraint imposed by eq. (4), a rule A needs to meet the following condition:

accl(A, δ) > τ, (8)

where accl(A, δ) is the lower limit of the 100(1 − δ)% confidence interval for
acc(A). If the set of candidate rules A includes rules satisfying eq. (8), the
one with the maximum coverage among them is selected, then the iteration is
terminated. If A does not contain any rule satisfying eq. (8), it returns null, and
proceeds to the next iteration. The pseudo-code is presented in Algorithm 4.

3.4 Computational Complexity

Post-hoc explanation methods including LIME, Anchor and R-LIME need to
sample a perturbation vector and get the output of the black-box model multiple
times, which is computationally expensive. The number of samples required for
LIME is |Zp|, which is the number of samples designated by the user. On the
other hand, the expected number of samples required for Anchor and R-LIME
is bounded by O[m · OMAB[B·m,B]], where OMAB[B·m,B] is the expected number
of samples for best arm identification finding the best B arms from B · m arms.
For the KL-LUCB algorithm [6],

OMAB[B·m,B] = O
[
Bm

ε2
log

Bm

ε2δ

]
. (9)

Then the total expected number of samples for Anchor and R-LIME is
bounded by

O
[
Bm2

ε2
log

Bm

ε2δ

]
. (10)

For each iteration of the KL-LUCB algorithm, R-LIME needs to update the
linear classifier gi, which is not required in Anchor. If we use logistic regression
as the linear classifier and update it by stochastic gradient descent (SGD) [12],
the computational complexity of updating gi is O(m). It is negligible compared
to the complexity of generating a perturbed sample, which is O(m2) if we get
a sample from a multivariate normal distribution using Cholesky decomposition
in advance. Overall, the computational complexity of R-LIME is comparable to
that of Anchor.

4 Experiments

To verify the effectiveness of our method, we conducted qualitative and quantita-
tive comparisons of R-LIME with LIME and Anchor, using a real-world dataset.
Our code for R-LIME is available on GitHub1.

1 https://github.com/g-ohara/rlime

https://github.com/g-ohara/rlime
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Table 1. Attributes of the recidivism dataset used in the experiments. Continuous
features are all discretized, and only binary and ordinal features are considered.

Attribute Overview # of Possible Values

Race Race (Black or White) 2
Alcohol Presence of serious alcohol issues 2
Junky Drug usage 2
Supervised Release Supervised release 2
Married Marital status 2
Felony Felony or not 2
WorkRelease Participation in work release program 2
Crime against Property Crime against property or not 2
Crime against Person Crime against a person or not 2
Gender Gender (Female or Male) 2
Priors Number of prior offenses 4
YearsSchool Years of formal education completed 4
PrisonViolations Number of prison rule violations 3
Age Age 4
MonthsServed Months served in prison 4
Recidivism Recidivism or not 2

4.1 Qualitative Evaluation

Experimental Setup We used the recidivism dataset [14] for our experiments.
The dataset contains personal information on 9549 prisoners released from North
Carolina prisons between July 1, 1979 and June 30, 1980. As shown in Table 1,
the dataset includes 19 items such as race (Race), gender (Gender), presence of
alcohol dependence (Alcohol), number of prior offenses (Priors), and presence of
recidivism (Recidivism). For this experiment, we treated the binary classification
problem of predicting the presence of recidivism (Recidivism) as the target label.
We discretized continuous features and removed missing values, resulting in 15
features.

We splitted the dataset into training data (7639 instances) and test data (955
instances), and trained a random forest model with 50 trees as the black-box
classifier using the training data. Then, we generate LIME, Anchor and R-LIME
explanations for two instances extracted from the test data (Fig. 5). For R-LIME,
we used logistic regression as the linear approximation model, and a multivariate
normal distribution estimated from the training data as the distribution D. For
both Anchor and R-LIME, the beam width was set to B = 10, the confidence
coefficient to 1 − δ = 0.95, and the tolerance of the KL-LUCB algorithm to
ε = 0.05. The accuracy threshold τ was set to τ = 0.70, 0.90.

This problem setting can be considered as a case where a complex machine
learning model is introduced to decide parole for prisoners. Since such decisions
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Fig. 5. Two instances sampled from training data of recidivism dataset. Each number
in parentheses represents the integer value assigned to the corresponding categorical
value.

can have a significant impact on a person’s life, it is crucial for users to appro-
priately interpret the outputs of black-box models.
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Fig. 6. Explanation for Instance A by LIME, Anchor and R-LIME.

Experimental Results The results of the experiment are shown in Figs. 6 and
7. The values assigned to each feature name represent the contribution (weight
of the linear classifier) to the output of the black-box classifier, normalized such
that the absolute sum is 1. The figures display the 5 features with the highest
absolute contribution.

Explanations generated by LIME (Figs. 6(a) and 7(a)) provide insights that
having a prior offenses (Priors), being served for a long time in prison (Months-
Served), and committing a crime against property (Crime against Property) pri-
marily contribute to the positive prediction (prediction that the prisoner will be
re-arrested). On the other hand, being elderly (Age), being married (Married),
and being of white race (Race) contribute to the negative prediction (predic-
tion that the prisoner will not be re-arrested). While these LIME explanations
provide valuable insights into the behavior of the black-box model, they do not
explicitly indicate the application scope of the explanations, leaving users unable
to determine to which prisoners the explanations are applicable.

Anchor provides conditions for the model’s output to be fixed with high prob-
ability. For example, the explanation for instance A under τ = 0.70 (Fig. 6(b))
means that the model will predict with 75.66 % probability that the prisoner
will commit no more crimes when a prisoner is older than 33 and has one prior
offense. Although it clearly provides the explanation’s application scope, it does
not provide details about how these conditions affect the model’s output.
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Fig. 7. Explanation for Instance B by LIME, Anchor and R-LIME.

In contrast to LIME and Anchor, R-LIME provides both contribution of each
feature to the output and the application scope of the explanation. For exam-
ple, the explanation for instance A under τ = 0.70 (Fig. 6(d)) indicates that it
is applicable only to married prisoner (Married =Yes). R-LIME explanations
also provide their accuracy and coverage, allowing users to evaluate reliability
and generality of the explanations. For example, the coverage of the explana-
tion for instance B under τ = 0.90 (Fig. 7(e)) is 0.01%, indicating that the
decision boundaries around instance B are complex, making it challenging to
obtain a high-accuracy linear approximation. This information allows users to
discern that the application scope of this explanation is very narrow, limiting its
utility.

4.2 Quantitative Evaluation: LIME vs. R-LIME

Experimental Setup To demonstrate that R-LIME learns a highly accurate
linear approximation model in the optimized approximation region, we con-
ducted a comparison of the local accuracy of explanations between LIME and
R-LIME. Under the same settings as in section 4.1, we randomly sampled 100
instances from the test data of the recidivism dataset and generated explanations
using LIME and R-LIME (with τ = 0.70, 0.80, 0.90). We then sampled 10,000
instances within the rectangular region obtained by R-LIME and calculated the
local accuracy of both methods.
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Fig. 8. Comparison of existing methods (LIME, Anchor) and R-LIME.

Experimental Results The results are presented in Fig. 8(a), showing the
distribution of the local accuracy of the linear classifiers learned by LIME and
R-LIME. R-LIME achieved higher accuracy compared to LIME for all values of
τ . This suggests that the linear classifiers learned by LIME and R-LIME differ
significantly, and R-LIME learns a high-accuracy linear classifier adapted to the
optimized rectangular region. Additionally, as τ increases, the variability in the
accuracy of LIME widens. This indicates that the linear classifiers learned by
LIME may not function effectively as approximation models depending on how
the region is selected.

4.3 Quantitative Evaluation: Anchor vs. R-LIME

Experimental Setup To demonstrate that R-LIME explanations are more
general than Anchor, we conducted a comparison of the coverage of explanations
between Anchor and R-LIME. Under the same settings as in section 4.1, we
generated Anchor and R-LIME explanations for 704 instances from the test data
of the recidivism dataset, under the values of τ = 0.65, 0.70, 0.75, 0.80, 0.85, 0.90.

Experimental Results The results are presented in Fig. 8(b), showing the
coverage of the explanations by Anchor and R-LIME. The coverage of explana-
tions generated by R-LIME is higher compared to Anchor for almost values of
τ , especially for relatively small τ . It is because of the flexibility of the linear
approximation models learned by R-LIME, which captures the decision bound-
ary more precisely. In contrast, Anchor uses only the intervals of each feature
discretized in advance, which cannot capture the decision boundary flexibly and
makes its scope narrow.
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Fig. 9. Behavior of R-LIME for balanced and imbalanced label distribution. In case of
imbalanced label distribution, the approximation region covers the entire input space
and the linear approximation model always outputs the majority label.

Table 2. Deviation between the estimated accuracy and the true accuracy of the
linear classifier learned by R-LIME. The deviation 0.012 ± 0.017 was relatively small
considering the confidence level 1 − δ = 0.95.

Estimated acc. True acc. Deviation

Average .811 .829 .012
Standard Deviation .018 .023 .017

5 Discussion

5.1 Behavior for Imbalanced Label Distribution

R-LIME may generate less useful explanations when the distribution of black-
box classifier outputs is imbalanced. When the ratio of outputting the minority
label is less than 1 − τ , where τ is the accuracy threshold, the approximation
region generated by R-LIME covers the entire input space, and the learned linear
classifier always outputs the majority label (Fig. 9).

A first possible solution to this problem is modifying the loss function. Using
weighted logistic loss or Focal Loss [7] as the loss function might lead to the gen-
eration of more useful explanations in the case of imbalanced label distribution.
Another solution involves adding constraints to limit the label distribution bias
within the approximation region. In addition to eq. (4), adding a constraint like

(
Ez∼D(z|A)[1f(z)=1] − 1

2

)2

< μ (11)

could suppress the excessive expansion of the approximation region.

5.2 Changes in Reward Distribution in Best Arm Identification

For R-LIME, the problem of selecting the rule with the highest accuracy is
formulated as the best arm identification problem in multi-armed bandit frame-
work, and solved using the KL-LUCB algorithm [6]. However, this algorithm
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assumes that the reward distribution remains constant, while in R-LIME, the
reward distribution (accuracy of the linear approximation) changes with every
update of the approximation model after sampling. Therefore, rewards obtained
at an early stage might influence the estimated value and make it deviate from
the true value.

We conducted an experiment to evaluate the deviation between the esti-
mated accuracy and the true accuracy. We generated explanations for 3200 data
instances sampled from the dataset, and compared the estimated accuracy with
the true accuracy. The true accuracy was calculated based on 1000 instances
sampled within the approximation region. The results in Table 2 show a mean
deviation of 0.012 with a standard deviation of 0.017. By considering the con-
fidence level 1 − δ = 0.95, the deviation was relatively small. While there are
concerns about the theoretical validity of using the KL-LUCB algorithm, our
results suggest that the deviation is not significant in practice.

5.3 Parameter Selection

In Sec. 3.4, we discussed about the computational complexity of R-LIME, which
depends on some hyperparameters. R-LIME requires the hyperparameters to be
selected by users, such as the threshold of accuracy τ , beam width B, tolerance ε
and confidence level δ. B should be large and ε and δ should be small for accurate
results, as long as the computational cost is acceptable. On the other hand, τ
should be carefully selected by users, sometimes interactively, considering the
tradeoff between the accuracy and generality of generated explanation.

6 Conclusion

Existing methods for local model-agnostic explanations of black-box classifiers,
such as LIME and Anchor, have limitations that they cannot achieve inter-
pretability of both the explanation and its application scope. To address these
challenges, we proposed R-LIME, a method that locally and linearly approxi-
mates the decision boundary of a black-box classifier and provides a rectangular
approximation region, which is interpretable for users due to being expressed as a
conjunction of feature predicates. We proposed an algorithm to maximize cover-
age of the approximation region as long as the accuracy of the linear approxima-
tion model exceeds a given threshold. Comparing R-LIME with existing methods
on the real-world dataset, we demonstrated that R-LIME achieves interpretabil-
ity of both the explanation and its application scope, and provides explanations
more accurate than LIME and more general than Anchor. Finally, we discussed
the instability of behavior with imbalanced label distributions, raised questions
about the theoretical validity of using the KL-LUCB algorithm, and hyperpa-
rameter tuning in practice.
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Abstract. Spiking Neural Networks (SNNs) are poised to lead the next
generation of artificial intelligence, offering energy efficiency and per-
formance on par with traditional neural networks. With these advan-
tages, SNNs are finding widespread applications across various domains.
One significant area of interest is image generation using deep learn-
ing models like Variational Autoencoders (VAE). However, like other
deep learning models, SNNs demand substantial training data to achieve
desired outcomes, raising concerns about data privacy. Our pioneering
contribution is the introduction of a Differentially Private Spiking Varia-
tional Autoencoder (DP-SVAE) for image generation and reconstruction.
DP-SVAE employs standard Differentially Private Stochastic Gradient
Descent (DP-SGD) to ensure privacy preservation. Additionally, we have
evaluated the models against various adversarial attacks to highlight the
importance of differential privacy. We comprehensively analyze the pro-
posed model through extensive experimentation across publicly available
benchmark datasets. This pioneering study marks the first exploration
of privacy considerations in SNN-based VAEs and will catalyze further
research in this domain.

Keywords: Spiking Neural Networks · Differential Privacy ·
Variational Autoencoder · Image Reconstruction

1 Introduction and Related Work

Artificial Intelligence (AI) has experienced exponential growth across various
sectors due to the digitization of industries. Neural networks like Recurrent
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Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and Arti-
ficial Neural Networks (ANNs) have become indispensable components in fields
ranging from agriculture, healthcare, social media, robotics, manufacturing, etc.
Between 2012 and 2018, the computational resources required for training deep
learning models saw a remarkable increase, scaling up by a factor of 300,000,
as reported by Schwartz et al.’s work [1]. To overcome the issue of the rapid
growth in power consumption to fulfill computational needs, another type of
neural network, Spiking Neural Networks (SNNs), is gaining attention due to its
energy-efficient behavior. The SNNs are also referred to as the third generation
of neural networks [2].

All the aforementioned neural networks share the common goal of emulat-
ing the human brain’s functionality. Among them, SNNs closely resemble the
human brain’s operations. To perform computation, SNNs receive input data in
the form of spikes at different points in time, which are then processed as per
the membrane potential of spiking neurons present in the network. The neu-
ron fires a spike when the membrane potential surpasses a predefined threshold.
Various models for spiking neurons are found in the literature, including the
Hodgkin-Huxley [3], Leaky-Integrate-and-Fire [4], and Izhikevich neuron mod-
els [5]. The main contrast between ANNs and SNNs is their information represen-
tation methods. SNNs generally excel in information representation, utilizing dif-
ferential equations for computation compared to ANNs’ activation functions [6].
The inherent spike-firing mechanism of SNNs contributes significantly to their
energy efficiency. Despite this energy efficiency, SNNs maintain performance lev-
els comparable to other neural network types [7].

Leveraging their energy efficiency and firm performance, SNNs find appli-
cations in various tasks such as speech recognition, image classification, object
detection, healthcare, and more [8]. One such important application is image
generation. Image generation models need heavy computational resources. Thus,
integrating SNNs with such models could offer significant benefits. Skatchkovsky
et al. [9] proposed a hybrid Variational Autoencoder(VAE), where the encoder
consists of SNN while the decoder uses ANN. Rosenfeld et al. [10] proposed a
Spiking Generative Adversarial Network consisting of SNN and ANN. Talafha et
al. [11] proposed VAE-sleep based on a biologically realistic sleep algorithm for
VAEs. Kamata et al. [12] were the first to propose Fully Spiking VAE (FSVAE)
using autoregressive Bernoulli spike sampling, where they achieved better perfor-
mance on FSVAE compared to its counterpart ANN VAE (built with the same
architecture). Moreover, to boost research in domains where data scarcity is
present, e.g., medical imaging, SNN-based image generative models have become
an efficient alternative for data generation.

In general, creating robust models requires vast data for training and test-
ing; however, storing and utilizing such a large volume of data raises concerns
about potential data breaches. Various attacks, such as linkage attacks, mem-
bership inference attacks, data reconstruction attacks, adversarial attacks, and
model inversion attacks, among others, may compromise the data, model, or out-
put [13]. These privacy threats emphasize the need to develop privacy-preserving
techniques for image-generation models.
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To address these privacy concerns, Dwork et al. proposed a mathematical
framework called Differential Privacy (DP), which can quantify the privacy loss
of every data point [14] present in the dataset. DP ensures that if the data
is changed by one entry, then the change in the algorithm’s output will be
insignificant, i.e., bounded by a small constant value. DP has found applica-
tions in almost every domain related to machine learning. Mueller et al. [15]
have demonstrated the effects of applying DP on graphical neural networks for
graph classification. Xie et al. [16] proposed Differentially Private Generative
Adversarial Networks for image generation. Tang et al. [17] explore Differen-
tially Private image classification by learning priors. Wang et al. [18] proposed
VideoDP to ensure the privacy of videos using DP. Ziller et al. [19] proposed
a DP framework named Deepee, validated on medical imaging tasks. Weggen-
mann et al. [20] performed text anonymization using DP VAE. Chu et al. [21]
proposed DP based denoising diffusion model. Wang et al. [22] were the first to
explore DP for SNNs.

Considering the vital importance of DP and the limited exploration of its
application in SNNs for image generation using VAEs, we propose differentially
private image generation using Spiking VAEs. To the best of our knowledge, we
are the first to propose and provide an in-depth analysis of DP image generation
using spiking VAEs. Due to its adaptability with most machine learning models,
we have followed the standard Differentially Private Stochastic Gradient Descent
(DP-SGD) [23] technique to apply DP. We evaluated the privacy-utility trade-
off using four benchmark datasets (MNIST [24], FMNIST [25], CIFAR10 [26],
and CelebA [27]). To provide a better comparison of SNN and ANN-based mod-
els, we implemented DP on both SNN VAE and ANN VAE. We highlight our
contributions as follows:

– To the best of our knowledge, we are the first to propose differentially private
SNN-VAE (DP-SVAE) for image generation.

– To further estimate the influence of DP on spiking and non-spiking models,
we implemented DP on Spiking VAE and ANN VAE models and provided
thorough analysis using several quantitative and qualitative measures.

– We rigorously evaluated and demonstrated the robustness of Differential Pri-
vacy (DP) by subjecting both differentially private and non-differentially pri-
vate versions of spiking and non-spiking models to various adversarial attacks.

– We provide a thorough analysis of DP-SVAE using various hyperparameters
to evaluate their privacy utility trade-off for image generation.

2 Preliminaries

This section provides important background information for differentially private
image generation using spiking VAE.

Variational Autoencoder (VAE): VAE is commonly used for image gen-
eration task [28]. It consists of an encoder, a decoder, and a latent variable
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z. For image generation, it trains a latent variable model p(x, z) defined as
p(x, z) = p(z) p(x|z), where x, p(z) denotes the input and probability distribu-
tion over latent variable z (commonly referred as prior distribution) respectively,
and p(x|z) denotes the probability distribution for the decoder. The posterior
probability p(z|x) is intractable, and hence the encoder model, q(z|x), was intro-
duced [29]. The variational lower bound on the marginal likelihood of p(x) can
be defined using Eq. 1.

L = −KL[q(z|x)||p(z)] + Eq(z|x) [log p(x|z)] (1)

Here, KL[q(z|x)||p(z)] is called Kullback-Leibler (KL) divergence between the
posterior and prior.

Spiking Neural Networks (SNN): SNNs are considered to be energy-efficient
substitutes for other neural networks. SNNs take input features in the form
of spikes, which are created using encoding methods, such as direct encoding.
The working principle of SNNs is forwarding the spike trains to the next layer
when a predefined threshold value of membrane potential is surpassed in the
spiking neurons. After firing the spike, the membrane potential resets itself to
its resting potential. Some of the most commonly used spiking neuron models
include the Leaky-Integrate-and-Fire (LIF) model [4], Hodgkin-Huxley model
[3], and Izhikevich model [5]. In this work, the LIF model is used and defined
using Eq. 2.

τα
duα(t)

dt
= −(uα(t) − ur) + R · I(t), when uα(t) < vt (2)

Here τα is membrane time constant, uα(t) is membrane potential, ur(t) is the
resting potential, I(t) is the input current, R is the resistance, and vt is the
threshold potential at the time stamp t.

Differential Privacy (DP): DP [14] is a mathematical framework to ensure
data privacy. In more general terms, an algorithm is differentially private if the
inclusion or exclusion of a single data point does not substantially affect the
output. Mathematically, let D1 and D2 be two neighboring datasets (i.e., both
datasets differ by one point). A randomized algorithm M is said to be (ε, δ)
differentially private if for any two input data points x ∈ D1, y ∈ D2, it follows
bound as shown using Eq. 3.

P[M(x) ∈ O] ≤ exp(ε)P[M(y) ∈ O] + δ (3)

where O ⊆ Range(M) and P denotes the probability. DP is generally applied by
adding noise to the gradients during model training. Some of the most impor-
tant noise addition mechanisms include the Laplace mechanism, Gaussian mech-
anism, Exponential mechanism, etc[30]. In our work, we followed the Gaussian
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mechanism to add the noise (N (0, σ2Δ2)) sampled from the Gaussian distribu-
tion. Let q be a query function and Δ be L2 - Sensitivity of q, then Gaussian
mechanism (A) over dataset (D) can be defined using Eq. 4.

A(D) = q(D) + N (0, σ2Δ2) (4)

Here, the Gaussian Mechanism with parameter σ such that σ ≥ cΔ(q)
ε is (ε, δ)-

differentially private for some constant, c ≥
√
2 ln

(
1.25

δ

)
[30]. L2 - Sensitivity

determines the maximum change in the output of two neighboring datasets after
applying the query. Let q be a query function and ‖.‖2 be L2 norm over the
range of q, then L2 - Sensitivity (Δ) of q is defined using Eq. 5.

Δ = max
d(D1,(D2)=1

‖q(D1) − q(D2)‖2 (5)

Differentially Private Stochastic Gradient Descent (DP-SGD): DP-
SGD [23] is an extension to the Stochastic Gradient Descent algorithm and is
widely used to train differentially private machine learning or deep learning mod-
els. In DP-SGD, the gradients are first clipped according to their L2 - sensitivity
at each iteration so that no single gradient can make more significant updates
with respect to others. After gradient clipping, noise (termed as noise multiplier)
sampled from the Gaussian distribution is added to the gradients. One of the
most significant properties of DP is composition, which is used to track privacy
expenditure during model training.

Renyi Differential Privacy (RDP): To measure the privacy spent, we fol-
lowed Renyi Differential Privacy [31]. Based on Renyi Divergence, (α, ε)-RDP
is considered to be a relaxed version of DP where α ∈ (1,∞). Let us assume
a randomized algorithm A that takes D1 as its input. The algorithm A is said
to be (α, ε)-Renyi DP if for every pair of neighboring datasets D1 and D2, if
Dα(A(D1)||A(D2)) ≤ ε, where Dα(·||·) denotes the Renyi divergence of order
α [32]. Due to its compositional properties, it is used with DP-SGD for privacy
accounting.

Adversarial Attacks: In this study, we employed the following three adver-
sarial attacks during the testing phase to assess the robustness of differentially
private and non-differentially private models.

– Fast Gradient Sign Method (FGSM) [33] leverages the sign of the gra-
dient from the original input to compute perturbations, thereby generating
adversarial examples. These adversarial examples retain perceptual similarity
to the original data yet degrade model performance during testing.

– Carlini and Wagner (C&W) Attack [34] formulates an optimization
problem to generate adversarial examples. The objective function minimizes
the perturbation added to the original input while ensuring that the perturbed
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input is misclassified. The attack employs advanced optimization techniques
to find minimal perturbations that effectively fool the model.

– Square Attack [35] generates adversarial images using an iterative search
strategy. It effectively finds perturbations by exploring the pixel space of the
original image within constraints defined by metrics like the l1 norm. This
method ensures that the perturbations are within a specified distance from
the original pixel.

3 Differential Private Spiking Variational Autoencoder
(DP-SVAE)

Fig. 1. The schematic architecture diagram of the proposed approach.

In this work, we develop a differentially private spiking VAE and its equivalent
differentially private ANN VAE for image reconstruction and generation. Our
approach’s vanilla architecture (i.e., non-differentially private) follows the archi-
tecture of FSVAE and ANN VAE as proposed by Kamata et al. [12]. We followed
standard DP-SGD training with AdamW optimizer to train our model with DP.
We provide the schematic architecture diagram of the proposed model in Fig. 1
The SNNs use binary time series data, so in our proposed DP-SVAE, we used
autoregressive Bernoulli spike sampling [12]. The prior and posterior for the
latent space of DP-SVAE are defined using Bernoulli distribution [36]. The prior
and posterior can be mathematically represented using Eq. 6 and Eq. 7.

p(z1:T ) =
T∏

t=1

p(zt|z<t) (6)

q(z1:T |x1:T ) =
T∏

t=1

q(zt|x≤t, z<t) (7)



102 S. Yadav et al.

The commonly used loss function for VAE is expressed in Eq.1. For SNN, we
use Maximum Mean Discrepancy (MMD) [37] alongwith Postsynaptic Potential
Function (PSP ) [38] in place of KL divergence.

PSP (z≤t) = (1 − 1
τα

)PSP (z≤t−1) +
1
τα

zt (8)

Here τα denotes the membrane time constant and PSP = 0 when z≤0. The
MMD metric using PSP is defined as,

MMD2 =
T∑

t=1

‖PSP (πq,≤t ) − PSP (πp,≤t )‖2 (9)

Here, πq,t and πp,t represent the average output of the autoregressive SNN model
of posterior and prior. They are used as parameters for Bernoulli sampling for
latent variables. To start the training of the model, the input image I is con-
verted into spikes over the time stamps T using direct encoding and denoted
as I1:T . These spikes are then forwarded to the SNN encoder (E) and passed
through the LIF neurons to obtain the encoded spike trains, denoted as IE

1:T .
This encoded output combined with latent variable zt−1 acts as input to the
posterior, which generates zt using Bernoulli spike sampling. The prior also has
a similar architecture to that of the posterior, but it uses only zt−1 as input.
The sampled zt is then passed through the decoder to obtain the reconstructed
image, R1:T . The decoder has the same architecture as the encoder. To convert
R1:T into a real image (R), non-firing neurons are used in the output layer,
which uses membrane potential of R1:T at the last time stamp T to obtain the
reconstructed image. The overall loss function during training can be described
using Eq. 10

L = MSE(I,R) +
T∑

t=1

‖PSP (πq,≤t ) − PSP (πp,≤t )‖2 (10)

To make the model differentially private, we decide the privacy budget, ε, accord-
ing to how tight or loose the privacy bound is required. After that, depending
on the value of ε, we train the model with a specific noise multiplier, which
determines the Gaussian noise to be added to the model gradients. Along with
the noise addition, L2-sensitivity bound is also considered to clip the model
gradients. Then, the model is trained using these noisy and clipped gradients
to optimize the model. The privacy budget is calculated using RDP accoun-
tant. We integrated differential privacy into ANN VAE by following the same
approach used for DP-SVAE.

4 Experimentation and Results

Dataset Details and Evaluation Metrics: During experimentation, we used
four benchmark datasets, namely MNIST [24], CIFAR10 [26], FMNIST [25],
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and CelebA [27]. The MNIST and FMNIST datasets comprise 70,000 grayscale
images of handwritten digits and clothing items (60,000 for training and 10,000
for testing). The CIFAR10 dataset consists of 60,000 RGB images (50,000 for
training and 10,000 for testing). To further evaluate the scalability of our app-
roach, we have also used the CelebA dataset consisting of 182,732 RGB images
(162,770 for training and 19,962 for testing), which contains the celebrity face
images. For model evaluation, we used different metrics, i.e., reconstruction loss,
Inception Score (IS), and Frechet Distance using Frechet Inception Distance
(FID) and Autoencoder Inception Distance (AID). Reconstruction loss quanti-
fies the quality of the reconstructed image with respect to the original image
using mean square error. Inception Score evaluates the quality of images gen-
erated during image generation. FID examines the statistical likeness between
distributions of real and generated images, while IS assesses both the realism
and diversity of the generated images. AID assists in computing the Frechet
distance of the autoencoder’s latent variables between sampled and real images
since datasets such as MNIST are different from the ImageNet domain. Thus, as
suggested by Kamata et al. [12], the autoencoder is pretrained on each dataset
and utilized for measuring the Frechet distance.

Implementation Details: We implemented our approach using PyTorch as
a programming framework and Opacus [39] to implement differential privacy
for RDP accountant. We set δ = 1

cardinality of the dataset for RDP accounting.
The proposed models were tested on the Ubuntu 22.04 operating system with
NVIDIA A5000 GPU and 24 GB graphics memory. We used the official train-test
split for evaluation purposes for all the datasets. We followed the same settings
as used by [12] and trained the models using AdamW optimizer for 150 epochs
with a batch size of 250. For adversarial attacks, we employ perturbations with
a magnitude of 0.3 and utilize the mean square error (MSE) as the loss function.
In the Square Attack, a perturbation patch size of 4×4 is used. We perform
50 iterations to generate adversarial examples for both the C&W and Square
attacks.

Ablation Study: We have used three different privacy budgets, i.e., ε ={1, 5,
10} to provide analysis of both loose and tight privacy bounds with respective
noise multipliers {0.01, 0.005, 0.001} respectively, which was decided on the fact
that stricter privacy bounds require more noise or vice versa. We performed an
ablation study using the MNIST dataset on three clip values ({1,3,5}) for all ε
and their respective noise values to determine optimal clip values. We provided
the summary of the ablation study on clip values for DP-SVAE and DP-ANN
VAE models in Table 1 and Table 2 respectively. From Table 1 and Table 2, we
found clip=3 is robust for DP-SVAE and comparable for DP-ANN VAE models
for most of the datasets. For the CelebA dataset, we observed that clip=5 is
giving better results. Hence, clip value 3 is used throughout the experiments for
MNIST, FMIST, and CIFAR10, while clip value 5 is used for the CelebA dataset.
During experimentation, we observed that the learning of DP-SVAE and DP-
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ANN were sensitive to noise values, hence we have carefully chosen the noise
values as {0.01, 0.005, 0.001}. Even on such smaller noise values, we observed
a significant performance drop by DP models. We have to increase our privacy
budget for these noise values, so we introduced a budget multiplier for privacy
accounting. Hence, we multiplied each noise value by 1000 for DP models for
privacy budget calculation. We summarize the ablation for the effect of different
privacy budgets, i.e., ε ={1, 5, 10} with their respective noise values on all the
datasets for DP-SVAE and DP-ANN VAE in Table 3 and Table 4 respectively.
Please refer to the supplementary material for additional experimental results
on different clip values. We also analyze the effect of different time stamps, T =
{4, 8, 12, 16, 20, 24} on the FID score for DP-SVAE using the MNIST dataset
in Fig. 2 and found that T = 16 gives best results.

Fig. 2. Ablation study on different time stamps for MNIST dataset using DP-SVAE
at ε=10, noise=0.001, and clip=3.0.

Table 1. Ablation study on different clip values = {1, 3, 5} for MNIST dataset using
DP-SVAE.

ε Noise Clip Reconstruction Loss ↓ Inception Score ↑ FID ↓ AID ↓
1 0.01 1 0.27 1.159 328.32 413.58
1 0.01 3 0.231 1.089 285.6 357.4
1 0.01 5 0.23 1.066 279.01 386.43
5 0.005 1 0.288 1.109 302.73 428.55
5 0.005 3 0.109 3.844 224.37 169.68
5 0.005 5 0.126 3.635 234.13 180.09
10 0.001 1 0.34 1.031 367.25 838.69
10 0.001 3 0.057 5.288 155.14 55.33
10 0.001 5 0.055 5.115 162.64 57.59
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Table 2. Ablation study on different clip values = {1, 3, 5} on MNIST dataset using
DP-ANN VAE.

ε Noise Clip Reconstruction Loss ↓ Inception Score ↑ FID ↓ AID ↓
1 0.01 1 0.148 4.475 263.19 98.01
1 0.01 3 0.142 4.71 264.34 98.45
1 0.01 5 0.149 4.441 257.82 96.47
5 0.005 1 0.118 5.371 229.55 86.53
5 0.005 3 0.12 5.325 229.01 86.18
5 0.005 5 0.116 5.147 227.96 84.76
10 0.001 1 0.076 5.323 155.81 46.22
10 0.001 3 0.077 5.146 158.71 46.89
10 0.001 5 0.076 5.569 162.4 49.61

Table 3. Ablation study of DP-SVAE at different combinations of ε and noise values
for different datasets.

Dataset ε Noise Reconstruction Loss ↓ Inception Score ↑ FID ↓ AID ↓
MNIST 1 0.01 0.231 1.089 285.6 357.4

5 0.005 0.109 3.844 224.37 169.68
10 0.001 0.057 5.288 155.14 55.33

CIFAR10 1 0.01 0.249 1.015 405.5 423.48
5 0.005 0.141 1.169 312.04 191.6
10 0.001 0.102 1.935 253.06 163.29

FMNIST 1 0.01 0.107 2.274 291.28 146.3
5 0.005 0.084 2.499 277.74 98.72
10 0.001 0.061 4.384 210.76 43.95

CelebA 1 0.01 0.265 1.046 406.83 1270.45
5 0.005 0.102 2.007 337.79 433.78
10 0.001 0.083 2.67 249.84 291.79

Table 4. Ablation study of DP-ANN VAE at different combinations of ε and noise
values for different datasets.

Dataset ε Noise Reconstruction Loss ↓ Inception Score ↑ FID ↓ AID ↓
MNIST 1 0.01 0.142 4.71 264.34 98.45

5 0.005 0.12 5.325 229.01 86.18
10 0.001 0.076 5.146 158.71 46.89

CIFAR10 1 0.01 0.159 1.303 261.85 207.66
5 0.005 0.144 1.536 261.63 208.91
10 0.001 0.129 1.975 303.33 244.03

FMNIST 1 0.01 0.112 4.286 258.86 66.6
5 0.005 0.093 4.513 249.43 57.07
10 0.001 0.072 4.343 216.14 39.76

CelebA 1 0.01 0.115 2.067 318.59 378.63
5 0.005 0.104 2.154 321.14 341.93
10 0.001 0.084 2.708 281.57 290.81
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Comparison with State-of-the-Art Methods and Adversarial Attacks:
In Table 5, we compare our proposed differentially private spiking and non-
spiking models against recent state-of-the-art (SOTA) approaches, specifically
FSVAE [12] and ESVAE [40]. We observed that non-spiking models experienced
a smaller reduction in utility compared to spiking models when subjected to
differential privacy. Additionally, although ESVAE, with its complex architec-
ture, initially outperformed FSVAE, its utility degraded more significantly than
DP-SVAE under differential privacy constraints. The impact of various adver-
sarial attacks, including FGSM, C&W Attack, and Square Attack, is shown in
Table 6, which illustrates an increase in reconstruction loss. To further evaluate
the effectiveness of the differentially private models, we quantified the increase in
reconstruction loss under adversarial attacks, as shown in Table 7. Our observa-
tions indicate that the differentially private models exhibit enhanced robustness
against adversarial attacks compared to their non-differentially private counter-
parts for both spiking and non-spiking variants, demonstrating only a minimal
increase in reconstruction loss. Moreover, we also noted that non-spiking models
suffer more under adversarial attacks than their spiking models.

Please note that, due to the huge computational demand by large models used
for the CelebA dataset, we considered only three datasets for experimentation
in Table 5, 6, and 7.

Table 5. Analysis using SOTA methods with ε=10, noise=0.001, and clip=3 for DP
(bold entries denote better utility among DP-SVAE and DP-ESVAE).

Dataset Model Reconstruction Loss ↓ Inception Score ↑ FID ↓ AID ↓
MNIST ANN VAE 0.048 5.947 112.5 17.09

DP-ANN VAE 0.076 5.146 158.71 46.89
FSVAE 0.031 6.209 97.06 35.54
DP-SVAE 0.057 5.288 155.14 55.33
ESVAE 0.013 5.612 117.8 10.99
DP-ESVAE 0.073 4.572 235.45 72.81

CIFAR10 ANN VAE 0.105 2.591 229.6 196.9
DP-ANN VAE 0.129 1.975 303.33 244.03
FSVAE 0.066 2.945 175.5 133.9
DP-SVAE 0.102 1.935 253.06 163.29
ESVAE 0.045 3.758 127.0 14.74
DP-ESVAE 0.079 2.411 131.33 260.38

FMNIST ANN VAE 0.05 4.252 123.7 18.08
DP-ANN VAE 0.072 4.343 216.14 39.76
FSVAE 0.031 4.551 90.12 15.75
DP-SVAE 0.061 4.384 210.76 43.95
ESVAE 0.019 6.227 125.3 11.13
DP-ESVAE 0.069 3.687 257.781 64.44
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Table 6. Reconstruction loss during different adversarial attacks on various models
(bold entries denote the most severe attack for the given model).

Dataset Model No Attack FGSM C&W Square

MNIST ANN VAE 0.048 0.82191 0.81375 0.97973
DP-ANN VAE 0.076 0.82139 0.81862 0.99341
FSVAE 0.031 0.04930 0.04847 0.09353
DP-SVAE 0.057 0.07734 0.07443 0.08815
ESVAE 0.013 0.04578 0.04906 0.06310
DP-ESVAE 0.073 0.08415 0.08560 0.10059

CIFAR10 ANN VAE 0.105 0.23647 0.24365 0.21749
DP-ANN VAE 0.129 0.21324 0.22775 0.18422
FSVAE 0.066 0.10641 0.09237 0.10617
DP-SVAE 0.102 0.13942 0.11110 0.12344
ESVAE 0.045 0.06735 0.07147 0.09304
DP-ESVAE 0.079 0.09516 0.09730 0.11118

FMNIST ANN VAE 0.050 0.61577 0.61633 0.72048
DP-ANN VAE 0.072 0.62678 0.61790 0.72303
FSVAE 0.031 0.07710 0.05814 0.08733
DP-SVAE 0.061 0.11412 0.08307 0.10535
ESVAE 0.019 0.06301 0.05633 0.09713
DP-ESVAE 0.069 0.09875 0.08996 0.11898

Table 7. Increment in reconstruction loss across various models during different attacks
(bold entries indicate models that exhibit the minimum gain in reconstruction loss
compared to their non-DP counterparts).

Dataset Model FGSM C&W Square

MNIST ANN VAE 0.77391 0.76575 0.93173
DP-ANN VAE 0.74539 0.74262 0.91741
FSVAE 0.01830 0.01747 0.06253
DP-SVAE 0.02034 0.01743 0.03115
ESVAE 0.03278 0.03606 0.05010
DP-ESVAE 0.01115 0.01260 0.02759

CIFAR10 ANN VAE 0.13147 0.13865 0.11249
DP-ANN VAE 0.08424 0.09875 0.05522
FSVAE 0.04041 0.02637 0.04017
DP-SVAE 0.03742 0.0091 0.02145
ESVAE 0.02235 0.02647 0.04804
DP-ESVAE 0.01616 0.0183 0.03218

FMNIST ANN VAE 0.56577 0.56633 0.67048
DP-ANN VAE 0.55478 0.5459 0.65103
FSVAE 0.04610 0.02714 0.05633
DP-SVAE 0.05312 0.02207 0.04435
ESVAE 0.04401 0.03733 0.07813
DP-ESVAE 0.02975 0.02096 0.04998
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5 Discussion

From ablation study (refer to Table 1, Table 2, Table 3, and Table 4), we decided
the optimal values for clip, ε, and noise multiplier. Based on the behavior of differ-
ent spiking and non-spiking models under DP settings (refer to Table 5, Table 6,
and Table 7), we found FSVAE is overall more robust in terms of privacy-utility
trade-off. Therefore, we considered FSVAE and its differentially private variant
(DP-SVAE) for analysis on all four datasets in Table 8. From Table 3 and Table 4,
we observe that as we increase the value of the noise multiplier to get tighter
privacy bound, the performance of the DP models degrades. This behavior is not
strange but rather a consequence of the privacy utility trade-off. Though all the
datasets have shown a similar behavior of degraded performance with an increase
in noise, some datasets behave differently in terms of the addition of noise to
the gradients and different clip values. Therefore, we have used clip value 3 for
MNIST, FMNIST, and CIFAR10, whereas, for CelebA, we used clip value 5 as
clip value 3 for CelebA was giving absurd results (please refer to supplementary
for the values of CelebA on clip 3). This may be due to the complexity involved
in the CelebA dataset in terms of its size and lesser distinguishing features in
different celebrity faces compared to other datasets.

Table 8. Comparative Analysis of different methods at ε=10, noise=0.001.

Dataset Model Reconstruction Loss ↓ Inception Score ↑ FID ↓ AID ↓
MNIST ANN VAE 0.048 5.947 112.5 17.09

DP-ANN VAE 0.076 5.146 158.71 46.89
FSVAE 0.031 6.209 97.06 35.54
DP-SVAE 0.057 5.288 155.14 55.33

CIFAR10 ANN VAE 0.105 2.591 229.6 196.9
DP-ANN VAE 0.129 1.975 303.33 244.03
FSVAE 0.066 2.945 175.5 133.9
DP-SVAE 0.102 1.935 253.06 163.29

FMNIST ANN VAE 0.05 4.252 123.7 18.08
DP-ANN VAE 0.072 4.343 216.14 39.76
FSVAE 0.031 4.551 90.12 15.75
DP-SVAE 0.061 4.384 210.76 43.95

CelebA ANN VAE 0.059 3.231 92.53 156.9
DP-ANN VAE 0.104 2.154 321.14 341.93
FSVAE 0.051 3.697 101.6 112.9
DP-SVAE 0.083 2.67 249.84 291.79

Also, from Table 8, we can compare the behavior of models when the least
amount of noise is added. For example, the Reconstruction Loss, Inception Score,
FID, and AID for differentially private and non-differentially private models
show similar behavior for MNIST, FMNIST, and CIFAR10 datasets whereas,
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for CelebA dataset, we observed significant change in AID and FID by a factor
228.61 and 185.03 for DP-ANN VAE respectively and for DP-SVAE, the FID
and AID varies by a factor of 148.24 and 178.89 respectively. From Table 3 and
Table 4, we can observe that even the addition of small noise (i.e. 0.01) can cause
significant change in reconstruction loss with a maximum value of 0.265 (refer
Table 3) in case of CelebA (for DP-SVAE) and 0.159 (refer Table 4) in case of
CIFAR10 (for DP-ANN VAE). We have also provided the qualitative compar-
ison of different models (ANN VAE, DP-ANN VAE, FSVAE, and DP-SVAE)
in Fig. 3 for image reconstruction and generation, where we used differentially
private models with ε=10 and noise = 0.001. From Table 6 and Table 7, we
observed that introducing a small noise level (0.001) enhanced the robustness
of spiking models against adversarial attacks. In contrast, this noise was insuf-
ficient to confer robustness to ANNs, as evidenced by the significant increase
in reconstruction loss under various attacks. However, DP models (DP-ANN,
DP-SVAE, and DP-ESVAE) demonstrated superior performance compared to
their non-DP counterparts under the influence of adversarial attacks (refer to

Input Image

ANN VAE DP-ANN VAE FSVAE DP-SVAE

MNIST

FMNIST

Reconstructed Images

Generated Images

MNIST

FMNIST

CIFAR10

CelebA

ANN VAE DP-ANN VAE FSVAE DP-SVAE

Fig. 3. The reconstructed and generated images obtained by various models for differ-
ent datasets.
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Table 7). In general, we found that after introducing DP, DP-SVAE showed lesser
reconstruction loss and a higher Inception Score than DP-ANN VAE. Similarly,
DP-SVAE attains a small FID compared to DP-ANN VAE while making them
differentially private. Overall, DP-SVAE performed better than DP-ANN VAE,
which is consistent with their non-DP variants, but our study also highlights
that DP-SVAE is more affected in terms of privacy-utility trade-off comparing
DP-ANN VAE.

6 Conclusion and Future Scope

In this study, we introduced differentially private implementation of existing
SOTA spiking and non-spiking VAE models (DP-SVAE, DP-ESVAE, and DP-
ANN VAE), which, to the best of our knowledge, have not been previously
proposed. We comprehensively analyzed these models and evaluated their per-
formance using various benchmark datasets. Our study elucidates the privacy-
utility trade-off in spiking and non-spiking models. Additionally, we have demon-
strated the impact of adversarial attacks, underscoring the potential of differ-
ential privacy to enhance model robustness and mitigate the adverse effects
of input perturbations. Our results reveal that imposing stricter privacy con-
straints reduces model utility, with performance variations observed depend-
ing on the dataset and model. Notably, we observed a substantial performance
decrease in SNNs, even with minimal noise, likely attributed to their spike-driven
nature. This underscores the necessity for further research to explore optimized
optimization techniques for differentially private SNN models. We also suggest
investigating models that offer enhanced privacy and utility for future endeavors.
Additionally, including a broader range of real-world datasets could augment the
generalizability of our findings.
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Abstract. Automatically recognizing emotional intent using facial
expression has been a thoroughly investigated topic in the realm of com-
puter vision. Facial Expression Recognition (FER), being a supervised
learning task, relies heavily on substantially large data exemplifying var-
ious socio-cultural demographic attributes. Over the past decade, several
real-world in-the-wild FER datasets that have been proposed were col-
lected through crowd-sourcing or web-scraping. However, most of these
practically used datasets employ a manual annotation methodology for
labelling emotional intent, which inherently propagates individual demo-
graphic biases. Moreover, these datasets also lack an equitable represen-
tation of various socio-cultural demographic groups, thereby inducing
a class imbalance. Bias analysis and its mitigation have been investi-
gated across multiple domains and problem settings; however, in the
FER domain, this is a relatively lesser explored area. This work lever-
ages representation learning based on latent spaces to mitigate bias in
facial expression recognition systems, thereby enhancing a deep learning
model’s fairness and overall accuracy.

Keywords: Bias Mitigation · Facial Expression Recognition · Fairness

1 Introduction

Facial emotion recognition (FER) has been a deeply explored problem in the field
of machine learning and computer vision. In the past decade, numerous proposed
FER datasets have made it easier to approach facial expression recognition as a
supervised deep-learning task. Deep learning requires large and diverse datasets
for efficaciously modelling data distribution. However, such a supervised learning
strategy necessitates substantial training data that reflects a wide range of socio-
cultural demographic characteristics.

Over the past decade, various real-world, in-the-wild datasets have been pro-
posed using web-scraped/crowd-sourced images. A crucial drawback of employ-
ing such a data-driven method for expression recognition lies in its susceptibil-
ity to biases present in the datasets, particularly those that disproportionately
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affect specific demographic groups.[3,11]. Facial Emotion Recognition requires
human annotations for each image, which propagates the biases and prejudices
of the annotators. Moreover, most real-world in-the-wild datasets lack propor-
tionate representation of different demographic attributes such as race, age, and
gender. Another crucial factor contributing to bias in FER datasets is crowd-
sourced annotation. Each annotator possesses their own bias with respect to
understanding facial expressions in varied demographics. However, given the
enormous size of datasets, these biases are often assumed to be components of
random noise.[2,47].

In practice, however, people may harbour systematic and demographic biases,
especially when inadequately trained with proper demographic and psychological
knowledge; they may incorporate such biases into their annotations [6]. Bias is
defined as systematic mistakes that result in unjust outcomes during a decision-
making process. Within deep learning, this can originate from multiple factors,
such as data collection methodology, algorithm design, and biased human anno-
tation [7]. A deep learning model trained on such datasets would inherently
propagate bias, thus making it unfair. Fairness in the contex of deep learning
refers to the absence of bias or discrimination in deep learning systems; however,
achieving it can be difficult since deploying a real-world deep learning solution
can propogate biases that can emerge in such systems.

Annotation biases and imbalances in class distribution and demographic rep-
resentation within datasets amplify biases and undermine equal-odds fairness
across attributes like gender and ethnicity. This underscores the importance of
scrutinizing dataset bias and developing algorithms to mitigate its effects. When
examining age as a specific attribute, it becomes evident that younger individu-
als are more often depicted with positive emotions (e.g., happiness) [6], whereas
older adults are more frequently associated with negative emotions (e.g., sadness
and disgust). This reveals a bias in the models, which tend to perceive younger
individuals more positively, while older adults are more likely to be assigned
negative emotional predictions.

Bias analysis and its mitigation strategies have gained good traction among
researchers working in the facial analysis domain. However, in the FER domain,
this is a relatively less explored area [34,42]. This research work seeks to tackle
and diminish this bias, aiming to enhance fairness in deep learning models. The
key contributions of this research encompass:

– A novel latent alignment technique with an architecture that creates bet-
ter latent representations, mitigates bias, and increases accuracy for Facial
Emotion Recognition.

– A novel training technique and loss function that uses Variational Autoen-
coders and an adversarial discriminator with perceptual loss for bias mitiga-
tion and a CNN backbone for expression classification.

– Conducting extensive evaluation on two popular datasets (RAF-DB [26] and
CelebA[28]) and multiple protected attributes in both separate and combined
techniques, mitigating bias towards gender, race, and age, setting new state-
of-the-art results and competitive performance.
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This paper is an expanded version of our Student Abstract published at AAAI-
24 [35], which, as far as we know, represents the first effort to explore the use of
latent space representation learning for mitigating biases in the facial expression
recognition domain. This paper provides more comprehensive experimentation
with an additional dataset (CelebA[28]), detailed results on the interplay between
different protected attributes, and better insights into our methodology and
training approach.

The remainder of this paper is structured as follows: Section 2 reviews
recent significant contributions in bias mitigation. Section3 outlines the adopted
methodology, detailing the training process, loss functions, and the classification
model used. Section 4 showcases our experimental results, including the evalu-
ation metrics and dataset analysis. Section 5 offers a component-wise ablation
study of the proposed architecture. Finally, Section 6 concludes the study and
suggests directions for future research.

2 Recent Works

Bias in Machine learning has attracted wider attention in recent years, with
the rapid growth in the deployment of real-world machine learning applications.
Extensive surveys[9,17,29,32] have been done to study bias and its mitigation
strategies. In this section, we discuss some of the notable methods for mitigating
biases. The literature [9] identifies three primary strategies for mitigating bias,
categorized as pre-processing, in-processing, and post-processing techniques.

Pre-processing techniques: In [4] an optimized pre-processing strategy was pre-
sented that modifies the data features and labels. Zemel et al. [43] proposed a
strategy for bias mitigation that involves learning fair data representations by
framing fairness as an optimization problem, where the goal is to find representa-
tions that accurately reflect the data while obfuscating any information regarding
membership in protected groups. Feldman et al. [14] proposed disparate impact
remover, where feature values were modified while preserving rank ordering to
improve overall fairness.

In-processing: Kamishima et al. proposed a prejudice remover mechanism [23]
that leverages a discrimination-aware regularization approach to the learning
objective that can be applied to any prediction algorithm with probabilistic
discriminative models. Zhang et al. [45] introduced a strategy for learning fair
representations by incorporating a variable representing the group of interest
while simultaneously training both a predictor and an adversary. The Meta Fair
Classifier [5] suggests a meta-algorithm for classification that integrates fairness
constraints into its input and produces an optimized classifier as output.

Post-processing: Reject option Classification [22] presents a discriminative aware
classification, which essentially aims at the prediction that carries a higher degree
of uncertainty and consequently allocates positive outcomes to underrepresented
groups and negative outcomes to more advantaged groups. The calibrated equal-
ized odds strategy [33] aims to optimize the output scores of a calibrated classifier
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by adjusting the probabilities to modify output labels, all while upholding the
goal of equalized odds.

Some other techniques to tackle dataset bias include transfer learning[31],
adversarial mitigation[39,46], and domain adaptation [36–38]. Various strategies
have been proposed to eliminate or prevent models from acquiring misleading
or unwanted correlations. A post-hoc correction technique [15] that imposes an
equality of odds constraint on previously learnt predictor. In the domain of deep
learning, two popular techniques are the tweaking of loss functions to impose
penalties on unfairness[1], and adversarial learning [20,30,45]. These techniques
aim to learn a fair representation that is devoid of any information related to
protected attributes.

Bias mitigation in Facial Affect Recognition: Bias mitigation in affect
recognition is a relatively less-explored area. With the exponential increase in
computing capabilities over the past decade, many datasets and algorithms have
been proposed for automatically recognizing facial expressions. However, most
of these in the wild real-world datasets are either web-scraped or crowd-sourced.
These datasets often have two major limitations [25]. Firstly, most datasets have
class imbalances; i.e. people with varied socio-cultural-ethnic identities are inad-
equately represented among various classes. Secondly, since these large numbers
of scraped images are manually labelled by a group of annotators, a personal
bias is inherently a part of the dataset.

Some of the existing works that have tackled bias and it’s mitigation in affect
recognition include a facial action unit calibrated FER approach [8], an attribute
aware and a disentangled method [42]. Zeng et al. [44] proposed a Meta-Face2Exp
architecture that utilized large unlabelled facial recognition datasets.

3 Methodology

We propose a two-part model for mitigating bias. Recognizing that CNNs tend
to learn from all input features, for the first part of the model we propose a
Variational Autoencoder (VAE) to encode the images into a latent space. The
images corresponding to each protected attribute in the dataset will each have
a corresponding latent space. Our goal is to minimize the distance between
these latent spaces so that each latent encodes only the information relevant to
expression classification. We propose to utilize a Variational Autoencoder with
shared weights for all protected attributes where the inter-latent domain gap is
reduced using an adversarial discriminator. We denote the Encoder part as E
and the Generator part as G. We introduce a two-part model to address bias
mitigation. We develop a two-phase model to address the mitigation of bias.
Given the propensity of CNN models to assimilate all input features, the first
part of our approach employs a Variational Autoencoder (VAE) which encodes
all images, each with a corresponding protected attribute, into the common
latent space. The goal is to minimise disparities between these latent spaces,
ensuring they contain information relevant to expression classification.

Summarising the methodology:
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Fig. 1. Framework of Attribute Disentanglement: Li denotes the data associated with
attribute qi. ZLi represents the latent space corresponding to Li. ELi is a variational
autoencoder (VAE) with weights shared across ∀ i. ’E’ refers to the Encoder module
which compresses the input image into a latent which does not contain information
about the protected attribute. ’G; refers to the Generator, which is a reconstruction
module that converts the latent back to the original image.

– The main cause of bias is that models tend to learn protected attributes as
features.

– Our model solves this by generating a latent that has forgotten the protected
attribute.

– This is done by overlapping the latent spaces of data points belonging to
different protected attributes; this overlap is done using the discriminator.

Attribute Disentanglement - We use a Variational Autoencoder with shared
weights across the designated protected attributes for that dataset, mitigating
domain disparities between latents through an adversarial discriminator. The
Encoder and Generator components are represented as ‘E’ and ‘G’ as demon-
strated in Fig. 1, where qi represents protected attributes i, such as gender.

LVAE(x) =KL (zx | x) ‖N (0, I)) + LLatent
VAE,D(x)

+ α
∥
∥
∥Gφ

j (ŷ) − Gφ
j (y)

∥
∥
∥

2

F

(1)

Equation 1 denotes the objective function for the VAE. The first part of the
objective is KL-divergence penalizing the deviation of latent distributions from
a Gaussian Distribution. The second part of the objective is a discriminator
loss, which determines whether the discriminator correctly predicts the class of
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the protected attribute. The final part of the objective is a Style-Reconstruction
Loss [21].

Classification Model We pass the latent representation generated by E into
a classification module consisting of MBConv[18] blocks demonstrated in Fig. 2.

min
EXi

,GXi

max
DXi

= LVAE(x) + Llatent
VAE,D(xqi) ∀q (2)

Training Method The Encoder and Discriminator modules are trained
together using a min-max objective function (Equation 2), where the Discrimi-
nator employs a categorical cross-entropy loss. Following the VAE training, the
classification module is trained separately, utilizing a symmetric cross-entropy
loss to enhance robustness.

Training Configuration The training was performed on two NVIDIA Tesla
V100 GPUs, each with 32 GB of memory. A Stochastic Gradient Descent Opti-
mizer was utilized, configured with a learning rate of 0.0001 and a momentum of
0.9. The hyper-parameter α in LV AE from Equation 1 in the paper was deter-
mined to be 10 following a grid search.

RAF-DB [26] provides images resized to 128x128 pixels. We applied basic
augmentations to our dataset, including horizontal flips with a probability of
50% and random rotations by a maximum angle of 15◦.

Loss Functions The proposed model introduces a novel loss function (Equation
1) that is composed of three distinct components.

The first component is the KL Divergence between the latent variables and
a sample from a Gaussian distribution with a mean of 0 and a variance of 1,
as described by [24]. This element is employed to create denser representations
in the latent space, which enhances accuracy and reduces bias, as demonstrated
later in Section 5.
The second component is the loss from the discriminator’s potential to predict
the protected attribute accurately. The Encoder’s goal is to be able to fool the
discriminator into not knowing the protected attribute. This is the main com-
ponent that aligns the latent spaces and ensures the Encoder does not learn the
protected attribute features.
The final component is the Style-Reconstruction Loss from [21], which is added
to ensure that the semantic emotion-level features are not lost on the Genera-
tor’s reconstruction of the image. This is used instead of a pixel-wise loss because
expression is a subjective concept, and a pixel-wise loss does not necessarily rep-
resent semantic consistency.

Gφ
j (x)c,c′ =

1
CjHjWj

Hj∑

h=1

Wj∑

w=1

φj(x)h,w,cφj(x)h,w,c′ (3)
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Fig. 2. The classification backbone utilizes the latent representation produced by the
encoder to categorize the data into seven distinct emotions.

Equation 3 represents the Gram matrix of the jth feature map for a network φ,
where φj(x) corresponds to the activations of the jth layer in the network. The
overall loss is computed as the squared Frobenius norm between the input and
output feature matrices.

Classification Model: We have used 3 sequential MBConv [19] modules which
use the latent representation generated by the Latent Alignment VAE and clas-
sify it into the seven basic expressions. The MBConv block has been extensively
explored in many areas of deep learning and is a versatile and efficient building
block. We have also experimented with using Residual Blocks [16] and found
that they have a minor reduction in accuracy (described further in Section 5).

4 Experminenation, Results, and Analysis

4.1 Evaluation Metric

We formulate our metric for fairness as [42] and use the “equal odds” philosophy.

F = min(
∑C

c=1 p (ŷ = c | y = c, q = qi,x)
∑C

c=1 p(ŷ = c | y = c, q = d,x)
. (4)

∀i ∈ (1, 2....N)
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In equation 4, "d" represents the protected attribute with the highest accu-
racy. To measure fairness, we compute the accuracy for each class across all
attributes and use the minimum value as our fairness metric. For comprehen-
sive analysis, we also calculate the average accuracy for each class across all
attributes, following the methodology described in [40].

4.2 Experiments and Analysis

We conducted experiments on the RAF-DB [26] and CelebA [28] datasets, fol-
lowing a methodology similar to that in [42]. The RAF-DB dataset comprises 7
classes annotated by humans. Our model utilizes the provided train-test split,
with 12,271 images for training and 3,068 images for testing. As shown in Tables
1 and 5, our model achieves state-of-the-art performance on RAF-DB for both
metrics, demonstrating significant bias mitigation.

Our methodology and setup is based on the hypothesis that protected
attributes can be forgotten without information loss of other facial attributes.
Ideally, a network would be able to perfectly distinguish attributes if these
attributes were completely separable from the rest of the informative features
of the image. However, since they are not, we hypothesize that if subsets of a
dataset partitioned on the basis of the protected attribute are aligned or brought
closer in a latent space, these attributes are considered to be forgotten.

To achieve this, we use a discriminator module to classify the latents into
their respective protected attributes. When this discriminator cannot determine
membership of a latent into a particular protected attribute subset, then fairness
can be achieved since the classification would be done solely on the basis of a
latent which does not contain information about the protected attribute.

Table 1. Comparison of class wise accuracies on RAF-DB.

Emotion Accuracy[%]
Ours DA[42]

Happiness 92.0 93.3
Angry 83.2 81.0
Disgusted 57.7 54.1
Fearful 60.2 53.8
Surprised 82.9 81.8
Sadness 76.0 77.7
Neutral 81.0 82.1
Mean 76.1 74.8

RAF-DB Bias Analysis. Most FER datasets do not have the respective age,
gender, and ethnic labels; therefore, to substantiate our results, we conducted
experiments on RAF-DB [26], one of the most popular benchmark FER datasets.
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Fig. 3. Data Distribution of the test test of RAF-DB. (a) represents the gender-wise
distribution, (b) represents the age group distribution, and (c) represents the ethnic
distribution of the test set of RAF-DB.

RAF-DB contains 15,339 images of diverse facial expressions downloaded
from the internet and annotated manually by crowd-sourcing and reliable esti-
mation; this dataset consists of seven basic expressions and eleven compound
expressions.

RAF-DB provides labels that include expression, gender type, ethnicity, and
age group. Fig. 3 showcases the attribute-wise breakdown of each label class in
the test data. Since the distribution of test and training data is kept similar, we
can draw few inferences from this distribution.

– Considering "race" as an attribute, we observe that almost 77% of the images
belong to a single class i.e. Caucasian, rest, 23% are then distributed among
two attributes, namely African-American and Asian.

– Similarly, for the age attribute, almost 57% of the images belong to one of
the five age brackets, namely {20-39}. The rest of the 43% of images are
distributed among the remaining four classes. Moreover, senior citizens from
the 70+ age bracket and infants from {0-3} age bracket are highly under-
represented, consisting of about 3% and 5% of the total images, respectively.

– Observing the expression attribute, we can infer that 39.7% of the total images
belong to one of the seven expression classes, i.e. happy; the rest of the six
classes are then distributed among the remaining six expressions. Moreover,
expressions like fear, disgust and surprise are highly under-represented, con-
sisting of about 2.7%, 5% and 10% of the total images, respectively.
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Table 2. Mean expression-wise accuracy categorized by Gender and Race attributes
on RAF-DB.

Attribute Labels Mean Class wise Accuracies
DA[42] Offline[10] Focal Loss[27] DDC[12] DIC[41] SS[13] Ours

Male 74.2 72.0 71.0 71.0 72.0 72.0 76.3
Female 74.4 75.0 75.0 74.0 75.0 76.0 76.0
Caucasian 75.6 74.0 73.0 72.0 74.0 74.0 76.15
African-American 76.6 76.0 75.0 73.0 76.0 75.0 77.1
Asian 70.4 76.0 75.0 74.0 77.0 76.0 75.5

Table 3. Mean class-wise accuracy segmented by Age, Gender, and Race attributes
on the RAF-DB dataset.

Attribute Labels Mean Class wise Accuracies
DA[42] Ours

0-3 80.2 82.4
4-19 69.9 72.3
20-39 76.4 77.0
40-69 74.4 75.7
70+ 62.2 70.1
M-Caucasian 74.5 76.0
M-African-American 80.2 81.1
M-Asian 70.2 73.4
F-Caucasian 75.5 76.2
F-African-American 87.6 81.1
F-Asian 69.0 71.7

Table 4. Comparison of bias mitigation performance (where higher values indicate
better outcomes) on RAF-DB, categorized by attribute labels.

Protected attributes Mitigation of Bias
DA[42] Offline[10] Focal Loss[27] DDC[12] DIC[41] SS[13] Ours

Gender 99.97 95.4 96.1 96.2 95.4 95.4 99.51
Race 91.9 97.4 97.2 97.6 96.5 97.5 94.2
Age 82.1 - - - - - 84.8

This further substantiates our claim and establishes the need to mitigate
bias in most FER datasets. The expression accuracy shown in Table 1 does
not sufficiently portray the performance variation of classifiers across different
demographics; therefore, in Table 2,3, we comprehensively compare accuracies
broken down by each demographic group. Furthermore, to substantiate the inter-
play of "gender" and "race" attributes we also provide results of joint "Gender-
Race" groups in Table 3.From Table2,3 it can be inferred, that our proposed
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method outperforms for mean class-wise accuracies broken down by attributes
"age", "gender", "race" and "gender-race". To provide a numerical assessment of
mitigation of bias for sensitive attributes such as age, gender, and race, in Table
4, we provide comparisons with [10,12,13,27,41,42] using our evaluation metric
for fairness (using Equation 4). From Table 4 we can infer that with regards
to bias mitigation, our approach performs almost at par with Xu et al. [42] for
"gender" attribute, whereas for "age" class it outperforms [42].

Table 5. Comparison of accuracy segmented by the smiling attribute in the CelebA
dataset.

Expression Accuracy
DA [42] [42] Ours

Smiling 92.2 92.9
Not-Smiling 94.1 94.8
Mean 93.15 93.85

Table 6. Mean accuracy per class categorized by attributes on the CelebA dataset.

Attributes Mean Class-wise Accuracy
DA[42][42] Ours

Female 93.6 94.5
Male 91.9 93.4
Old 91.6 92.5
Young 93.6 94.3
Female-Old 92.7 93.3
Female-Young 93.8 94.9
Male-Old 90.7 92.1
Male-Young 92.8 93.7

CelebA Bias Analysis
We conduct experimentation for images in CelebA for the binary attribute of
"smiling". This is done to facilitate the expression recognition of happy. We use
the CelebA dataset since it is much larger as compared to RAF-DB with 39920
images in a subset of CelebA as compared to 12271 in all of RAF-DB. The
protected attributes we use for fairness are Gender and Age.

The Smiling/No Smiling attribute is evenly distributed with exactly 50%
of the images having the smiling attribute. The image distribution for Gender
and Age are not evenly distributed, with a 22.8% gap between the number of
Male and Female images, and a 51.4% gap between the number of Young and
Old images. The comparison of accuracies with "Smiling" vs "No Smiling" is
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shown in Table 5. Since this is a simple binary classification task, accuracies
are almost comparable. Table 6 provides comparable class-wise (i.e. "Smiling"
vs "No Smiling") accuracies broken down by attribute labels ("gender", "age",
and "Gender-Age"). Table 7 provides comparisons with [42] using our evaluation
metric for fairness (using Equation 4) on sensitive attributes.

Table 7. Comparison of bias mitigation (where higher values indicate better perfor-
mance) on CelebA, categorized by attribute labels.

Protected Attribute Bias Mitigated
DA[42][42] Ours

Gender 98.3 99.1
Age 98.1 98.9
Gender-Age 96.9 98.0

5 Ablation Study

We demonstrate the importance and effectiveness of each technical contribu-
tion through this ablation study on RAF-DB [26]. We first look at the impact
of using a Variational Autoencoder as compared to a standard Autoencoder or
other dimensional reduction techniques. We can see a significant drop in accu-
racy and a corresponding drop in bias mitigation when an Autoencoder is used
in place of a VAE. We believe this is due to the ability of VAEs to generate
denser representations due to the KL-Divergence loss from the Gaussian distri-
bution present in VAEs.

Table 8. Component-wise Ablation Study of our model.

Component Mean Accuracy Bias (Gender) Bias (Race)

VAE+MBConv+Discriminator (Ours) 76.1 99.93 94.2
Auto Encoder+Discriminator+MBConv 74.2 97.6 91.2
VAE+Discriminator+ResBlock 74.5 99.91 93.8
VAE+MBConv 76 91.4 79.2
VAE+ResBlock 73 91 79.3

We further look at the impact of the Discriminator module on latent space
alignment and examine whether it increases fairness. From Table 8, we see that
there is a significant decrease in bias mitigation when the VAE is trained with-
out the min-max objective jointly with the discriminator. This demonstrates
that the Discriminator is highly impactful for latent space alignment and that
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the sensitive attributes are encoded in the latent without it.
We further analyze the impact of the CNN classifier backbone on accuracies.
We find that the MBConv block[18] performs superior as compared to ResBlock
[16]. In recent works, MBConv blocks have been known for their superior expres-
sive power in CNNs. MBConv outperforms ResBlocks given all other parameters
remain the same. However, this difference is minimal given that the largest con-
tributor to our model is the VAE+Discriminator architecture for latent align-
ment.

6 Conclusion

With the exponential increase of real-world artificial intelligence systems
deployed in our daily lives, accounting for fairness has become a crucial fac-
tor in the design and research of such systems. AI systems can be deployed
in various critical settings to make important life-changing decisions; hence,
ensuring that these decisions do not exhibit bias or discriminatory behaviour
against specific groups or demographics is of utmost importance. As a result,
bias mitigation investigation and its mitigating strategies have gained good trac-
tion among researchers. Recently, many works have proposed bias mitigation
strategies through traditional machine learning and deep learning in various
subdomains; however, this is a relatively less-explored area in facial expression
recognition. In this research, we present an innovative approach to reducing bias
in FER systems by integrating a Variational Autoencoder with an Adversar-
ial Discriminator, followed by a classification module utilizing MBConv. Our
method not only surpasses the results reported in [42] but also introduces a ver-
satile framework that can be adapted for other image classification tasks. To our
knowledge, this is the first work to leverage latent alignment for bias mitigation
in FER systems. We aim for our research to pave the way for more extensive
exploration of latent space manipulation in addressing bias across diverse image
classification challenges.
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Abstract. Although state-of-the-art transformer models have shown promising
results in unmanned aerial vehicle (UAV) tracking, they come with high computa-
tional demands. Existing tracking methods aim to reduce computational complex-
ity by controlling the number of tokens. However, this method is not effective for
all tracking methods. Therefore, we propose a novel dynamic token sampling for
an efficient UAV transformer tracking framework. Unlike previous transformer-
based tracking methods, our method avoids the need for complex head networks
like classification and regression. It solely employs our newly designed encoder,
comprising three key components: Dynamic Position Embedding,Dynamic Token
Sampler, and Convolutional Feed-ForwardNetwork. Thismodule enhances visual
representation by scoring and dynamically sampling tokens, allowing for a flexible
token count that adapts to target changes within each frame. We utilize a simple
image-sequence contrastive loss as the loss function. Our approach not only sim-
plifies the tracking framework, but also achieves state-of-the-art performance on
multiple challenging datasets at real-time run speeds.

Keywords: Unmanned Aerial Vehicle · Dynamic Token Sampling ·
Image-sequence Contrastive Loss · Real-time Tracking

1 Introduction

Visual object tracking is one of the fundamental tasks in computer vision. It involves
tracking the position of a chosen object solely based on an initial frame, across subse-
quent frames. Due to its extensive application in the field of unmanned aerial vehicles
(UAV) [1], such as aerial cinematography, collision warning, and visual localization, it
has attracted widespread attention. Recently, prevalent tracking methods mostly employ
a divide-and-conquer strategy, breaking down the tracking problem into multiple sub-
problems, such as feature extraction and relation modeling. These sub-problems are
handled by specific networks. The mainstream methods primarily address the issue
through a two-stage and two-stream pipeline [2]. Here, two-stage refers to decompos-
ing the tracking process into two stages: feature extraction and relationship modeling.
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Two-stream involves processing search images and template images separately. These
divide-and-conquer strategies have proven to achieve significant performance in tracking
benchmarks, consequently becoming the design of the current mainstream models.

Fig. 1. Visualization of Early Attention Maps for Different Methods.

However, recent research has identified shortcomings in feature extraction and rela-
tion modeling. Firstly, based on the Transformer method, extracting shallow features
results in high redundancy. As depicted in Fig. 1(c), shallow attention focuses more on
adjacent tokens given an anchor token, paying less attention to distant tokens. Conse-
quently, global comparisons between tokens in subsequent processes lead to increased
computational complexity in capturing local correlations. To address this issue, GRM
[3] proposed an adaptive token that offers more flexible modeling capabilities, reducing
attention on local regions. As shown in Fig. 1(b), GRM moderately reduces redun-
dancy in local attention, focusing on only a few surrounding tokens. Then, CSwinTT [4]
performs feature extraction without prior knowledge of the object. Specifically, image
feature extraction is determined post off-line training, resulting in weak interactions
between the template and search region. Finally, despite the outstanding expressive
capabilities of the transformer, it suffers from the drawback of high computational costs.
The computational cost is quadratically related to the number of tokens used. Hence,
an essential need exists to effectively reduce the number of tokens to lower computa-
tional expenses. OSTrack [31] proposed a candidate elimination module that retains the
top-k corresponding candidate weights, reducing computational costs. However, a fixed
approach undoubtedly leads to the loss of useful information.

To address these issues, we propose a new dynamic token sampling for efficient
UAV transformer tracking framework (DDCTrack), as illustrated in Fig. 3. The moti-
vation behind our approach lies in the observation that the contribution of information
from the object and search region to the final tracking varies significantly, containing
a considerable amount of redundant and irrelevant data. The tracked object determines
the quantity of relevant information. As shown in Fig. 5, it is clear that only a specific
number of markers are required to achieve accurate target tracking, and that this number
varies at each stage. Therefore, we introduce a method capable of dynamically selecting
the minimum required tokens according to the object at different stages. This approach
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is entirely different from EViT [5], which specifies the selection of tokens based on a
fixed ratio during training. Such a static approach risks losing critical information, par-
ticularly in challenging tracking datasets. It can also lead to unnecessary token wastage
in simpler tracking scenarios, increasing computational costs. We reduce unnecessary
waste by dynamically adjusting the number of tokens. Additionally, to enhance inter-
action between information, the flattened template and search region can be directly
concatenated, boosting target discrimination. This direct connection between the tem-
plate and search region facilitates highly parallelized tracking, eliminating the need for
additional networks for feature extraction, striking a favorable balance between speed
and performance.

Moreover, our model not only takes images as inputs but also transforms four super-
vised values into discrete tokens. By introducing the proposed DDC encoder, which
combines vision and coordinates, it enhances the visual representation. Training is con-
ducted on contrastive loss using image-sequence pairs, eliminating the need for further
fine-tuning. Despite our framework’s simplicity, the proposed tracking performance
demonstrates impressive results, reaching new SOTA levels across multiple datasets.
Compared to other transformer-based trackers, wemaintain superior inference efficiency
and faster convergence. It is worth noting that existing methods heavily rely on intri-
cately designed head networks or complex loss functions. However, our tracker utilizes
only two encoder structures with a simple loss function. DDCTrack achieves a favorable
balance between speed and accuracy, as depicted in Fig. 8.

In summary, our work primarily involves the following contributions:

(1) Wehave designed a novelUAV tracking framework that introduces a newperspective
to tracking by utilizing sequences as supervision.

(2) We proposed a new DDC module comprising three crucial components: Dynamic
Position Embedding (DPE), Dynamic Token Sampler (DTS), and Convolutional
Feed-Forward Network (ConvFFN). Specifically designed for shallow features,
it effectively learns global representations. Moreover, it dynamically adjusts the
number of tokens and is a differentiable parameter-free module.

(3) Through comprehensive experiments across multiple datasets, we validated that
our proposed approach exhibits superiority in terms of inference speed, tracking
performance, and convergence speed when compared to existing methods.

2 Related Work

2.1 Vision Transformers

As transformer models achieved remarkable success in natural language processing [6],
ViT introduced transformer architecture into computer vision, resulting in groundbreak-
ing achievements. Leveraging its advantage inmodeling long-range dependencies, many
researchers have started focusing on designing visual transformers. Various approaches,
such as self-attention variants, novel hierarchical architectures, and positional encodings,
have been applied to visual tasks [7]. However, computations based on transformer archi-
tectures are often determined by the number of tokens, inevitably leading to increased
computational costs. Consequently, several effective self-attention mechanisms have
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been introduced to alleviate these computational burdens. For instance, PVT [8] intro-
duced a pyramid architecture with downsampling key and value tokens. Reformer [9]
employed hashing functions to allocate tokens into buckets and applied dense attention
within each bucket. Orthogonal Transformer [10] computed an orthogonal space to rep-
resent global and local features. ACT [11] and TCFormer [12] treated merged tokens as
queries and the original tokens as keys and values, aiming to reduce computational costs.
In contrast to these methods, our proposed DDC utilizes soft associations to establish
sparse mappings between tokens and super tokens, employing self-attention in the super
token space.

2.2 Visual Tracking

Fig. 2. Three different tracking pipeline.

As depicted in Fig. 2, the two-stream pipeline [13] involves using a transformer model
to extract features from both the template and the search region. The two-stage pipeline
sequentially divides the process into two steps: feature extraction and relation modeling.
Based on the above differences, our method is compared with the above different struc-
tural prototypes. Earlier methods and some transformer-based tracking methods belong
to the category shown in Fig. 2(a). These techniques extract features from the template
and search regions separately using a backbone. However, they lack the ability to adjust
template features based on the search region and strugglewith effective relationshipmod-
eling. Therefore, the two-stage approach was introduced, incorporating feature extrac-
tion and relation modeling (for example, siamese utilizing cross-correlation operations
and transformer self-attention mechanism). This led to a relatively complex relationship
module, as shown in Fig. 2(b). STARK [14] concatenated the search region with pre-
extracted template features and fed them into multiple self-attention layers. TransT [15]
stacked a series of self-attention and cross-attention layers for feature fusion. While the
two-stream structure improves performance, it inevitably sacrifices speed. In contrast,
our structure is different, as depicted in Fig. 2(c). Firstly, it combines template features
and the search region as input into a transformer model and then integrates the object’s
coordinate position into a single framework. Our pipeline efficiently provides features
and relationship modeling at a lower cost, guiding each other to generate the final object
position efficiently in both training and testing phases.
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2.3 Sequence Learning with Text Supervision

Through large-scale image-text pairs datasets, representation learning with text-
supervised methods [16] has been applied to various visual tasks, such as object detec-
tion and segmentation.Moreover, in cross-modality domains, sequence learning has been
integrated. For instance, Flamingo andDALL-E [17] have adopted sequence-to-sequence
learning to unify multi-modality tasks.

Referring to PixSeq, our sequence learning shares similarities. Both methods lever-
age sequence generation to address visual tasks and discretize continuous values of
bounding box coordinates into integers. However, there are differences compared to
Pix2Seq. Firstly, the representation of sequences differs. Pix2Seq expresses sequences
through object corner coordinates and categories, whereas we utilize center point coordi-
nates, width, and height for representation. Secondly, the methodologies differ. Pix2Seq
utilizesResNet and encoder-decoder transformer. In contrast, ourmethod is simpler, rely-
ing solely on our proposed DDC encoder. Thirdly, the task objectives vary. Pix2Seq is
designed for object detection, while our objective is tracking. Furthermore, ourmethod is
end-to-end, allowing seamless integration of earlier tracking designs like online template
updates into our tracking approach.

3 Method

Fig. 3. Architecture of the proposed DDCTrack. The key component is an DDC encoder, which
consists of DPE, DTS, and ConvFFN, respectively.

In this section, we propose the DDCTrack architecture for UAV tracking with sequence
supervision, as depicted in Fig. 3. Initially, we introduce the sequence encoder. Sub-
sequently, we provide a detailed description of the proposed DDC encoder module.
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Finally, we introduce the image-sequence contrastive loss and integrating online update
techniques.

3.1 Sequence Encoder

We first convert the object bounding box into a sequence of discrete tokens. Typically,
a bounding box is determined by its center position (x, y), width, and height (w, h).
There are various representations for expressing the bounding box, such as [w, h, x, y, ]
and [x, y,w, h]. From an intuitive standpoint, [x, y,w, h] aligns more with human prior
knowledge, implying the prioritization of locating the object position before estimating
its width and height. We normalize these continuous coordinates into integers between
[1, nbins]. The integers between [1, nbins] are considered as a word within V. Experimen-
tal findings indicate higher precision when nbins is set to 3500 (detailed in Sect. 4.3).
Each word in V has a corresponding learnable embedding, which is optimized during
training. In the final stage of the DDCTrack model, we compute the contrastive loss for
image-sequence pairs using formula Sground.

3.2 DDC Encoder

The image encoder is a transformer-based architecture designed by us to represent visual
features. Firstly, a linear projection converts search image patches and template image
patches into visual embeddings, and these visual embeddings are then fed into trans-
former layers and concatenated together. Subsequently, they pass through DDC blocks
for representation extraction. Finally, average pooling is applied to the output to obtain
the global representation of the object.

The DDC Block consists of three components: DPE, DTS, and ConvFFN.

X = DPE(Xin) + Xin (1)

Y = DTS(LN (X )) + X (2)

Z = ConvFFN (BN (Y )) + Y (3)

Dynamic Position Embedding. We dynamically incorporate position information into
all tokens using DPE (Eq. 1) to effectively leverage the spatiotemporal order of tokens
for object modeling. In contrast to convolutional position embedding, relative positional
encoding, and absolute position encoding [18], DPE overcomes permutation invariance
and is resolution-agnostic. This is due to its shared convolutional parameters, locality, and
zero padding, aiding tokens along the object boundaries to discover their absolute posi-
tion. Consequently, all tokens can encode their absolute spatiotemporal position merely
by querying their neighbors. Our DTS efficiently explores and utilizes long-range depen-
dency relationships to extract contextual representations. A detailed description of DTS
will be provided in the subsection below. Furthermore, ConvFFN enhances local feature
representation, comprising a 3 × 3 depth-wise convolution, a non-linear function (such
as GELU), and two 1 × 1 convolutions. It is noteworthy that both ConvFFN and DPE
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utilize depthwise convolutions to reinforce the learning capacity of local features. Mean-
while, DTS effectively employs long-range dependencies to extract global contextual
features. Therefore, the combined utilization of these three components significantly
improves our model’s ability to capture both local and global dependencies.
Dynamic Token Sampler.Due to the computation in transformers being determined by
the number of tokens, many SOTA vision transformers are computationally expensive,
and the number of tokens remains static at each stage. Convolutional neural networks
typically reduce parameter counts through various pooling operations tomitigate compu-
tational expenses. This often leads to a direct reduction in spatial or temporal resolution
within the network. However, applying such fixed-kernel pooling operations directly to
vision transformers is not straightforward. The reason being, tokens are permutation-
invariant, and employing fixed downsampling operations is not an optimal choice. On
one hand, fixed downsampling may cause the loss of crucial information for the target in
certain video frames. On the other hand, it results in many irrelevant features for object
tracking. Therefore, we propose a DTS capable of dynamically adjusting the number
of tokens in each stage of the transformer. This overcomes the issue of losing critical
information for the target while reducing computational resources.

Fig. 4. Flow of the DTS Module.

DTS is a parameter-free differentiablemodule that samples tokens containing crucial
information based on the input tokens, as depicted in Fig. 4. In the DTS module, token
scores are calculated using token scoring for each token, and then a subset of these tokens
is sampled based on these scores.
Token Scoring. Given the input token X ∈ R

(N+1)×d , there is a self-attention layer
with N + 1 tokens. The ViT first connects the classification token to the input token,
and then processes it through the model. Finally, the output tokens corresponding to
the last transformer block are fed to the classification head to obtain the classification
probabilities. Our goal is to reduce the output tokens O ∈ R

(K′+1)×d, dynamically
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adjusting based on the input image (whereK ′ represents the number of sampled tokens),
while meeting K ′ ≤ K ≤ N , where K is the parameter for the maximum sampled
quantity. The quantity of sampled tokens K ′ varies based on different stages of the
network and data variations, as illustrated in Fig. 5. The scoring criterion for each token
is as follows.

Fig. 5. Visualization of Dynamic Token Sampling Process.

In the standard self-attention layer, the queriesQ ∈ R
(N+1)×d and keyK ∈ R

(N+1)×d

and values V ∈ R
(N+1)×d are calculated by input tokens X ∈ R

(N+1)×d respectively.
The queries and keys undergo a dot product operation to obtain the attention matrix A,
which is scaled down by a factor of

√
d .

A = Soft max(QKT /
√
d) (4)

Then, the output tokens are computed by a combination of the values weighted by
the attention weights.

O = AV (5)

where each row ofA contains the attention weights for each output token, indicating the
contribution of input tokens to the output tokens. The A1, : contains the classification
token, whereA1, j represents the input tokens and j denotes the importance for the output
classification token. Therefore,wefilter the attentionmatrixAbyusingA1,2, ...,1,N+1 as
significance scores, as specifically described in Fig. 4. Here, to preserve the classification
token, we did not utilize A1, 1. In Eq. 5, it can be observed that the output tokens
O are determined by both A and V , thus introducing the norm of Vj to calculate the
significance score for the j−th token.The reason is that the smaller the norm, the lesser the
impact, indicating the corresponding token is less significant. The ablation experiments
demonstrated that the norms of the A1, j and Vj contribute to improving the tracking
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results. The calculation method for the significance score of token j is as follows.

Sj = S1,j ×
∥
∥Vj

∥
∥

∑

i=2 A1,j ×
∥
∥Vj

∥
∥

(6)

where i, j ∈ { 2 . . .N }. For multi-head attention layers, the scores for each head are
computed, followed by an addition of these head scores.
Token Sampling. According to Eq. 6, to compute the significance scores of all tokens,
we can select the corresponding rows through the attention matrixA. A straightforward
method is to choose the topK tokens with higher scores. However, from the experiments
(detailed in Sect. 4.3), it can be concluded that this method is not optimal and does not
dynamically select the top K tokens. We analyze the reason, which could be due to
directly discarding tokens with lower scores, resulting in the potential loss of useful
information. Particularly, in cases where the discriminative capability is weak, some
informationmight not be extracted. For instance, in the early stages, the softmax function
might cause a reduction in attention weights for multiple tokens with similar keys.
Therefore, it is possible to sample tokens based on their significance scores, where the
probability of sampling one among similar tokens is proportional to their summed scores.

During the sampling stage, inverse transform sampling is used based on the tokens’
significance scores. These scores are normalized, hence they can be interpreted as prob-
abilities. The cumulative distribution function (CDF) is computed as follows, starting
from the second token as with token scoring. Once the cumulative distribution function
is available, the inverse operation of the CDF is applied to obtain the sampling function.

�(k) = CDF−1(k) (7)

CDFi =
j=i
∑

j=2

Sj (8)

where k ∈ [0 , 1]. It can be concluded that significance scores can calculate the map
function between original tokens and sampled tokens. We can sample K times from the
uniform distribution U [0, 1][0, 1] to obtain K samples. Such randomization may be
desirable in some areas, but deterministic inference takes precedence in most cases. As
a consequence, a fixed sampling approach of k = { 1

2K , 3
2K , . . . , 2K−1

2K } is chosen for
both training and inference. Due to �(·) ∈, the indices of the nearest significant scores’
tokens are taken as sampling indices.

When a token is sampledmultiple times, it only needs to be retained once. Therefore,
the quantity of unique indices K ′ is far less than K . From Fig. 5, it can be observed that
in the earlier stages, more tokens are selected, indicating lower feature discrimination
ability and more balanced attention weights. However, in later stages, the situation is
reversed. The number and position of tokens also vary depending on different images.
When the background containing the object is relatively clean, only a few tokens are
sampled. Conversely, in cluttered backgrounds, more tokens are required. This validates
the significance of our proposed dynamic token sampling method.

The indices of sampled tokens can be used to correct the attention matrix A ∈
R

(N+1)×(N+1) by selecting the rows corresponding to the sampled K ′ + 1 tokens.AS ∈
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R
(K′+1)×(N+1) denotes the corrected attention matrix. Replace A in Eq. 5 with As to

obtain output tokens O ∈ R
(K′+1)×d.

O = ASV (9)

3.3 Learning from Image-Sequence Pairs

To effectively train the DDCTrack model, we employ an image-sequence pairs
contrastive loss between image-sequence pairs, described as follows.
Image-Sequence Contrastive Loss. To better learn visual representation through
sequence supervision, we train the image-sequence contrastive loss using a dual-encoder
model. Initially, the DDC encoder acts as the image encoder, generating visual fea-
tures, while BERT functions as the sequence encoder, generating sequences. Both the
image and sequence pairs are input into their respective encoders, projected into a com-
mon embedding space, and their similarity measures are computed. Subsequently, the
successfully matched image-sequence pairs are considered as positive pairs, while the
unsuccessful pairs are regarded as negative pairs. Finally, we pull positive pairs closer
together and push unmatched negative pairs farther away.

In our approach, we calculate alignment scores SGround between the image and
sequence.

O = EncI (Img),P = EncL(Coordinate), Sground = OPT (10)

where P ∈ R
M×d represents the sequence embedding from the text encoder, acting

similarly to the weight matrix in self-attention mechanisms.

4 Experiments

4.1 Implementation Details

Model. We used DeiT-S [19] + DDC as the visual encoder for DDCTrack-B256 and
B384, and DeiT-B + DDC as the visual encoder architecture for DDCTrack-S256 and
B384. The sequence encoder employed BERT [20]. Pre-training utilized ImageNet for
initializing visual encoder parameters, with patch sizes set at 16 × 16. It is worth noting
that cropping operations were not used to prevent disrupting the alignment of image and
sequence signals. The vocabulary size and the quantization nbins quantity are both set to
3500. The encoder has 8 attention heads, a hidden size of 256, and the Feed Forward
Network has a hidden size of 1024. The word embedding dimension is the same as the
decoder’s hidden size.
Training. Our training data consist of Youtube-BB, GOT-10K, COCO, and ImageNet
VID. We trained the model using the AdamW [21] optimizer and set the learning rate
and weight decay for both visual and sequence encoders to 10–4. The model was trained
for 500 epochs with a warm-up strategy, with each epoch containing 60k image pairs.
After 400 epochs, the learning rate was reduced by a factor of 10.
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Fig. 6. Overall performance of all trackers on four well-known aerial tracking benchmarks.

4.2 Comparison with State-of-the-Art Trackers

For a comprehensive analysis, a comparative evaluation of DDCTrack and a number of
SOTA trackers [22–34] was conducted on our authoritatively challenging public UAV
dataset.
UAV123. The dataset consists of a large-scale UAV tracking benchmark comprising 123
high-quality challenging sequences, totaling over 112,000 frames. As shown in Fig. 6(a),
our tracker outperforms other algorithms in both precision and success metrics. On
precision, our tracker ranks first, surpassing the second-ranked SeqTrack (by 4.2 points)
and the third-rankedVPMMT (by 4.8 points). On the successmetric, DDCTrack exhibits
improvement over the second-ranked SeqTrack (by 0.4 points), claiming the top position.
VisDrone. For VisDrone, it is an extensive dataset comprising over 20,000 images and
more than 6 million annotated bounding boxes. As depicted in Fig. 6(b), our tracker
achieves a precision higher by 1.5 points compared to the second-ranked JVGTNLS.
Additionally, the success score slightly surpasses the VPMMT method by 0.1 points.
UAV20L. UAV20L consists of 20 long-term tracking sequences, totaling over 58,000
frames, with an average of approximately 2,934 frames per sequence. As illustrated in
Fig. 6(c), our DDCTrack demonstrates superior performance compared to other SOTA
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methods, underscoring the effectiveness of our proposed tracking framework. For exam-
ple, in terms of accuracy, our method outperforms the second ranked SeqTrack and third
ranked GRM by 3.5 and 9.8 points, respectively. Similarly, in terms of success rate,
DDCTrack achieves the best results, followed by SeqTrack and OSTrack, surpassing
them by 0.6 and 1.1 points, respectively. These excellent experimental results validate
that our tracker can be a top choice for long-term aerial tracking scenarios.
DTB70. Compared to the previous two datasets, the DTB70 dataset comprises a consid-
erable number of sceneswith fastmotion, encompassing 70 challengingUAV sequences.
As depicted in Fig. 6(d), DDCTrack achieves the best performance in both precision and
successmetrics. SeqTrack follows as the second-best performer, followed by JVGTNLS.
Our method not only enhances precision but also improves speed. The primary reason
is that our proposed approach efficiently samples critical tokens dynamically.

4.3 Ablation Study

In this section, we demonstrate the effectiveness of the proposed method from various
perspectives. The experiments follow the one-pass evaluation (Precision and Success),
using DDCTrack-S256 as the baseline model.

Table 1. Ablation Study on UAV123 and DTB70.

# Method UAV123 DTB70

1 Baseline 68.6 66.4

2 Joint → Separate 61.1 59.8

3 [x, y,w, h] → [w, h, x, y] 67.3 65.7

4 [x, y,w, h] → [xlt, xrb, ylt, yrb] 67.5 65.9

5 Concat of Search-Template 68.7 66.5

6 Avg. Of Search-Template 68.5 66.4

7 + Integrating Online Update 71.8 70.9

8 + Temporal 72.1 73.6

Joint v.s. Separate. The input to the image DDC encoder commonly employs two
different approaches. One involves feeding both the template and search regions into
the encoder jointly, extracting features together in a unified manner. Another approach
is to refer to the Siamese method and extract the features of the template and search
area separately, as shown in Table 1 (2). Experimental results on both datasets indicate
a performance drop when features are extracted separately compared to the joint fea-
ture extraction method. We hypothesize that the joint method enables the encoder to
effectively learn the complex correspondences between template and search images.
The Encoder’s Inputs Differ.We conducted a comparative analysis of different inputs
for the sequence encoder, as shown in Table 1 (3 and 4). One approach is [w, h, x, y],
where the decoder initially generates the width and height [w, h] of the target and
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subsequently produces the center position [x, y] of the target. Another approach is
[xlt, xrb, ylt, yrb], representing the top-left coordinate [xlt, ylt] of the target and the
bottom-right coordinate [xrb, yrb] of the target. Through experiments, it was found that
[x, y,w, h] obtained better experimental results. In addition, as shown in Table 1 (5 and
6), we compared it with two other groups of experiments: the search image and the tem-
plate image were concat and averaged, respectively. For Table 1 (5), all image features
are fed directly into the DDC encoder. For Table 1 (6), the first step involves projecting
them into a 1D embedding, followed by feeding them into the DDC encoder. From the
experimental results, it can be observed that these two methods yield similar tracking
performance.
Integrating Online Update. Our approach utilizes dynamic templates to capture the
feature variations of the target object and select reliable templates. As shown in Table 1
(7), our method has improved tracking performance.
Temporal Sequence.We conducted an additional set of experiments showing the seam-
less integration of temporal information within our proposed framework. For instance,
we constructed a time series that included the target’s coordinate positions in the previ-
ous 5 frames. We appended this time series before the START token. When generating
the next new token, the historical frame coordinates were incorporated. Through this
procedure, our method was capable of observing the target’s previous motion trajec-
tory. Experimental results demonstrate that this integration approach enhances tracking
performance across multiple datasets, as depicted in Table 1 (8).

Fig. 7. Influence of the number of quantization bins.

The Number of nbins. Additionally, we discussed the impact of the quantity of nbins
on the tracking, as shown in Fig. 7. What we analyzed is that the quantization error is
reduced accordingly. As nbins exceeds 3500, the performance gradually stabilizes, so we
set it to 3500.

4.4 Real-Time Analysis

Results on UAV20L and DTB70. As shown in Fig. 8, our tracker is compared with
various SOTA tracking methods on the x-axis (FPS) and y-axis (Precision). DDC-
Track demonstrates significantly superior performance in both speed and precision,
outperforming several methods in terms of speed as well.
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Fig. 8. Through quantitative comparisons on UAV20L [44] (left) and DTB70 [45] (right).

4.5 Attribute-Based Comparison

Fig. 9. The experimental results obtained on UAV in terms of overlap AUC with different
challenging visual attributes.

As shown in Fig. 9, the experimental results demonstrate that DDCTrack outperforms
current methods like GRM and ViPT when faced with these challenges. This is mainly
attributed to our explicitly designed DDC module, which effectively learns global rep-
resentations while dynamically adjusting the number of tokens. Additionally, our newly
devised framework eliminates complex head networks, enhancing tracking performance
in dealing with appearance variations.

5 Conclusion

Designing a simple, clean, and high-performance model for UAV tracking is a challeng-
ing task. In this work, we propose a novel dynamic token sampling for an efficient UAV
transformer tracking framework, which addresses to some extent the drawbacks of the
two-stream and two-stage models, such as complex head networks. Subsequently, based
on the proposed DDC module, the framework dynamically selects tokens of significant
information, allowing for the use of only the necessary tokens for each input video.
This process discards some unnecessary tokens, significantly improving tracking speed.
Experiments and analysis demonstrate the ability to achieve a good balance between
performance and inference speed.
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Abstract. Recognizing human actions in real-time presents a fundamental chal-
lenge, particularly when humans interact with other humans or objects in a shared
space. Such systems must be able to recognize and assess real-world human
actions from different angles and viewpoints. Consequently, a substantial vol-
ume of multi-dimensional human action training data is essential to enable data-
driven algorithms to operate effectively in real-world scenarios. This paper intro-
duces the Action Clip dataset, which provides a comprehensive 360-degree view
of human actions, capturing rich features from multiple angles. Additionally, we
describe the design and implementation of Human Action Prediction via Pose
Kinematics (HAPTICS), a comprehensive pipeline for real-time human pose esti-
mation and action recognition, all achievable with standard monocular camera
sensors. HAPTICS utilizes a skeleton modality by transforming initially noisy
human pose kinematic structures into skeletal features, such as body velocity,
joint velocity, joint angles, and limb lengths derived from joint positions, fol-
lowed by a classification layer. We have implemented and evaluated HAPTICS
using four different datasets, demonstrating competitive state-of-the-art perfor-
mance in pose-based action recognition and real-time performance at 30 frames
per second on a live camera. The code and dataset are available at: https://github.
com/RaiseLab/HAPtics

1 Introduction

Understanding human actions and behavior in a human-like manner presents a signifi-
cant challenge for autonomous systems, robots, and their interactions with humans. In
the context of self-driving cars and robots operating in urban environments [4][31], a
future is envisioned where autonomous systems and humans coexist in shared public
spaces. However, accurately inferring and predicting human actions in real-time using
various sensor technologies remains a formidable task.

There are two primary challenges in human action recognition: (i) meeting real-
time performance requirements, and (ii) acquiring suitable real-world training datasets.
In scenarios where autonomous systems must engage with individuals, they require
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Fig. 1.Action features obtained from a group of three frames f using pose kinematics mechanism
denoted in colors, i.e., body velocity Vbody (red), joint velocity Vjoint (green), joint angles Jangle

(blue), and length of limbs Llimb (violet) from joint positions. (Color figure online)

precise information about the specific actions people are undertaking in their immediate
surroundings. This is especially critical in direct interactions with humans [10]. Given
the highly dynamic nature of human actions, predicting them accurately and in real-time
is paramount.

In addition to the runtime requirements of algorithms, data-driven approaches
necessitate vast volumes of real-world training data. Data acquisition often emerges
as a significant challenge in developing these algorithms, making the availability of
ample data a critical aspect of algorithm design. Given the domain shift from heav-
ily annotated visual data to real-world, synchronous, unlabeled data, pose-based action
recognition algorithms must operate without direct reliance on visual annotations. Moti-
vated by this, we recognized the substantial potential of leveraging real-time data with
a 360-degree view of human actions for training our action recognition algorithms.
Our objective is to facilitate the training of such algorithms using live real-world data,
thereby overcoming domain transfer hurdles. This approach promises to significantly
reduce the manual effort typically associated with recorded and annotated sensor data.

Several proposals for human action recognition [49] [47] [40] [50] acknowledge the
challenges of real-time execution and real-world datasets and aim to develop datasets
and efficient inference models. Recent studies suggest that skeletal-based action recog-
nition [23] [49] [47], combined with CNN-based models [22] [26], and efficient net-
works [40] [50], can meet the latency requirements for training and inference in human
action recognition. However, existing proposals suffer from either high computational
complexity [23] [49] [47], notably inferior performance [40] [50], or sensitivity to vari-
ations in viewpoint [22] [26], rendering them impractical.

In this paper, we adopt a skeleton-based modality and present HAPTICS, a real-
time human action predictor capable of capturing a 360-degree view of human actions
in real-world settings. It performs real-time human pose estimation and action recogni-
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tion using only a standard monocular camera. Specifically, building on a human pose
extractor [5], HAPTICS maintains the receptive field while reducing computation and
convolutional operations by replacing each 7 × 7 convolutional kernel with three con-
secutive 3 × 3 kernels. Additionally, the output of each of the three convolutional ker-
nels is concatenated. The number of non-linearity layers is tripled, allowing the network
to retain both lower and higher-level features. Finally, Part Affinity Fields (PAF) [5] are
utilized to predict keypoint confidence maps and bipartite graph matching [44] is used
to assemble the connections that share the same part detection candidates into full-
body poses. Once the full-body pose task is performed, preprocessing operations are
conducted to verify the actual kinematic structure of the human pose. Extensive skele-
tal feature extraction follows, including body velocity, joint velocity, joint angles, and
limb lengths derived from joint positions to classify various human actions, as shown
in Fig. 1.

We evaluated the HAPTICS system using four different action recognition bench-
marks, including our proposed Action Clip dataset, NW-UCLA [41], NTU RGB+D 60
[35], and NTU RGB+D 120 [25]. To the best of our knowledge, HAPTICS is the first
real-time model with reliable performance for the task of human pose estimation and
action recognition, running at 30 frames per second (fps) on a live webcam using a
single TITAN RTX. This paper makes the following contributions:

– Development of the Action Clip dataset, providing a 360o view of human actions to
enhance the classifier’s ability to understand human action behaviors from various
angles.

– Implementation of HAPTICS, a simple yet effective end-to-end pipeline with basic
preprocessing and extensive skeletal feature extraction techniques.

– In-depth evaluation of HAPTICS regarding real-time execution and its effectiveness
for real-world applications.

2 Related Work

Skeletal-Based Action Recognition. Action recognition based on skeletal data has
received increasing attention due to its compactness compared to RGB-based repre-
sentations. In a prior study [23], a framework for convolutional co-occurrence feature
learning was introduced, employing a hierarchical approach to systematically integrate
diverse levels of contextual information. The work by [49] proposes a view-adaptive
model that autonomously adjusts observation perspectives during action occurrences,
aiming to achieve view-invariant representations of human actions. However, CNN- or
RNN-based models have played a significant role in this regard due to their substantial
impact on spatial configurations.

Inspired by graph-based methods, Yan et al. [45] pioneered the integration of Graph
Convolutional Networks (GCN) into skeleton-based action recognition, giving rise to
ST-GCN. This model concurrently captures the spatial configurations and temporal
dynamics of skeletons. Building upon this work, Song et al. [39] [38] addressed the
occlusion issue in this domain by proposing a multi-stream GCN to extract rich fea-
tures from more activated skeleton joints. Liu et al. [28] explored the impact of multi-
adjacency GCNs and dilated temporal Convolutional Neural Networks (CNNs), intro-
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Fig. 2. Overview of HAPTICS pipeline. (a/b) stages show architecture of the whole-body pose
estimation pipeline, generate part affinity fields (PAFs) L and keypoint heatmaps S for torso,
face, hand, and foot. The network is trained end-to-end with a multi-task loss (fL)(fS) combin-
ing each keypoint loss. (c) The most refined PAF and keypoint heatmap channels are resized at
test time to improve accuracy. (d) The parsing algorithm utilizes the PAFs to identify whole-
body parts belonging to the same person by performing bipartite matching. (e) The final whole-
body poses are returned for all individuals in the frame. (f) The preprocessing stage oper-
ates on the whole body pose and performs important transformations. (g) Action features like
Vbody, Vjoint, Jangle, Llimb from joint positions are extracted from the previous three frames fi.
(h) These features are forwarded to the classification stage. (i) Finally, the action predictions are
performed in the live output stream.

ducing a sophisticated model known as MS-G3D to disentangle multi-scale graph con-
volutions. Furthermore, a study [8] introduced a decoupled GCN method to enhance
graph modeling capability without incurring additional computational overhead.

To enable global joint relationship modeling, Shi et al. [36] integrated the Non-local
method [43] into a two-stream GCN model, named 2s-AGCN, resulting in a substan-
tial enhancement in recognition accuracy. Similar to 2s-AGCN, the Dynamic GCN,
proposed by Ye et al. [47], introduced a novel approach to model global dependen-
cies, leading to outstanding accuracy in skeleton-based action recognition. While these
methods have achieved remarkable performance, the escalating computational demands
of multi-stream structures present challenges to their real-world applicability. Conse-
quently, the quest to mitigate the complexity of GCN models remains a formidable
task.
CNN-Based Action Recognition. Given the robust classification capabilities of con-
volutional neural networks (CNNs), several recent studies [22] [18] [21] [26] [42] have
sought to convert skeleton sequences into 2D images and subsequently utilize CNNs for
classification. In some instances [22], [21], the x, y, and z coordinates in 3D space are
assigned to the three channels of an image, with frame IDs corresponding to different
rows and joint IDs corresponding to different columns. The coordinate values are nor-
malized within the range of 0-255 based on either dataset statistics [22] or sequence
statistics [22], [21]. Alternatively, some studies [18] use relative positions between
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joints and reference joints (e.g., left shoulder, right shoulder, left hip, and right hip)
to generate multiple images. Other approaches [21] [42] use 2D projection maps from
joint trajectories onto different orthogonal planes as images. One method [26] repre-
sents a 5D space (3D coordinates, time label, joint label) as a 2D coordinate space and
a 3D color space, generating 10 images from different assignments of the 5D space.
These 10 images are then fed into 10 ConvNets for classification, with the results from
the 10 models fused for the final prediction.

While most of the aforementioned works focus on mapping a skeleton sequence
to images, they overlook the challenge posed by view variations in the skeleton data.
In contrast, our approach employs ConvNets to capture complex features from a 360-
degree view of human 2D skeletons for multi-dimensional CNN-based action recogni-
tion.
Real-Time Models. The efficiency of a model, commonly assessed by the number
of trainable parameters and floating-point operations per second (FLOPs), is crucial in
deep learning tasks. Numerous studies have focused on improving neural network effi-
ciency, aiming to reduce model parameters or FLOPs. Examples include MobileNetv1
[14], MobileNetv2 [34], MobileNeXt [51], and EfficientNet [40]. The MobileNet fam-
ily of models achieves size reduction through separable convolutions, which decompose
standard convolutions into a depthwise convolution applied to each channel individually
and a 1 × 1 pointwise convolution to combine the outputs.

To refine structural hyperparameters in neural networks, compound scaling [40]
introduces a family of EfficientNet models. In the context of skeletal-based action
recognition, some studies have addressed the challenge of model complexity. For
instance, the study in [46] devises a lightweight network with CNN-based blocks,
though it lacks the accuracy of GCN models. Another study [50] employs a sophis-
ticated data preprocessing strategy, incorporating positions, velocities, frame indexes,
and joint types as inputs. While this preprocessing module enables the model to rec-
ognize actions with a shallow architecture, resulting in a rapid inference speed of 188
sequences per second per GPU, its performance is notably inferior to other state-of-the-
art models.

3 Technical Approach

3.1 Action Clip Data Preparation

Motivation. The construction of the Action Clip dataset serves two primary purposes.
First, it aims to establish a self-contained action dataset that excludes the involvement
of a second object within the action (e.g., brushing teeth, where the toothbrush is the
second object), as seen in [35] and [17]. This approach reduces the need for extensive
manual image labeling for training, requiring only a video clip of any action performed
by a human for feature extraction. Second, the dataset offers a generalized view with a
360-degree perspective of human actions in a live environment, enabling a comprehen-
sive understanding of human activities from any angle. The decision to create the Action
Clip dataset was motivated by the goal of improving the evaluation of the model’s per-
formance across various views of human actions in real-time environments, ensuring
compatibility with real-time applications.
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Fig. 3. Examples of 360o view of the human body incorporated in Action Clip Dataset.

Data Collection. One notable advantage of our system is its ability to collect data
from diverse sources. Our feature extraction algorithm can extract pose features from
any human action video source, whether obtained through live video recording or down-
loaded from the internet. Initially, a continuous stream of video frames is transformed
into still images, each labeled with a corresponding class (e.g., run, wave). In cases
where duplicated images do not adequately describe the person’s action, these frames
or a range of frames can be excluded. Subsequently, the video stream can span from
a few seconds to minutes, capturing a specific type of action. Video clips are recorded
with a frame size of 640 × 480 and a frame rate of 10 fps, ensuring a rapid enough
pace to capture the entire action movement. Visual examples of the 360-degree view of
human actions1 and the number of samples are illustrated in Fig. 3 and Table 1.

Table 1. The number of frames for each class used in training and testing operations.
Actions stand walk run jump sit squat kick punch wave bow sleep clap total

# of frames 6196 4985 2042 4575 6881 2605 5105 5592 9805 5674 3628 5471 62559

3.2 Network Architecture

The pose pipeline is divided into two distinct stages, as shown in Fig. 2a and b, where
refinement is applied to both the affinity field and confidence map branches at each
stage. A significant advancement over [5] has been made to reduce computational costs.
In our updated approach, refinement occurs exclusively at the PAF stage, where body
part locations are already identified. As a result, confidence map prediction takes place
solely at the PAF stage in Fig. 2. This adjustment reduces the computational load per
stage by half. Empirical observations demonstrate that refined affinity field predictions
enhance confidence map results at the keypoint heatmap stage, as shown in Fig. 2.
Intuitively, the PAF channel identifies the locations of body parts, while the heatmap
channel identifies the locations of keypoints.

1 Refer to the supplementary materials for a detailed visual description.



HAPTICS: Human Action Prediction in Real-time via Pose Kinematics 151

Moreover, we increased the network depth. In the initial methodology proposed
by [5], the network architecture featured multiple 7 × 7 convolutional layers. In our
updated model, we maintain the receptive field while reducing computation by replac-
ing each 7 × 7 convolutional kernel with three consecutive 3 × 3 kernels. The former
method required 2×72 −1 = 97 operations, while our current approach needs only 17.
Additionally, we concatenate the output of each 3 × 3 convolutional kernel, similar to
DenseNet [15]. This triples the number of non-linearity layers, preserving both lower-
level and higher-level features. Batch normalization is essential for the convergence of
our deeper architecture; however, its implementation introduces a slowdown of approx-
imately 20%. As an alternative, we replace ReLU layers with PReLU layers, which aid
in fast convergence similar to batch normalization.

3.3 PAF-based Body Pose Estimation

The proposed pose estimation pipeline is based on the Part Affinity Field (PAF) archi-
tecture [5]. This methodology iteratively predicts Part Affinity Fields (PAFs) that
encode part-to-part associations and detection confidence maps for keypoints. Each
PAF is represented as a 2D orientation vector pointing from one keypoint to another.
The input image is initially processed by a convolutional network (e.g., CMU Pose or
Mobilenet-thin), generating a set of feature maps, F . Subsequently, F is fed into the
PAF stage, Φ(1), of the network Φ, which predicts a set of PAFs, L(1). For each subse-
quent stage t, the PAFs from the previous stage, L(t−1), are concatenated with F and
refined to produce L(t). After N stages, the final set of PAF channels is obtained as
L = L(N). Finally, F and L are concatenated and fed into a network ρ, which predicts
the keypoint heatmaps, S.

L(1) = Φ(1)(F ) (1)

L(t) = Φ(t)(F,L(i−1)),∀2 ≤ t ≤ N (2)

L = L(N) (3)

S = ρ(F,L) (4)

L2 loss function is applied at each stage, comparing the estimated predictions with
the groundtruth maps (S∗) and fields (L∗) for each pixel (p) on each keypoint heatmap
(c) and PAF channel (f):

fL =
F∑

f=1

∑

p

(W (p)·‖Lf (p) − L∗
f (p)‖22) (5)

fS =
C∑

c=1

∑

p

(W (p)·‖Sc(p) − S∗
c (p)‖22) (6)

Here, C and F represent the number of stages for predicting the keypoint heatmap
and PAF, respectively. Additionally, W denotes a binary mask where W (p) = 0 when
an annotation is absent at pixel p. Non-maximum suppression is performed on the con-
fidence map of keypoints to derive a discrete set of candidate locations for body parts.
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Finally, bipartite graph matching [44] is employed to connect and assemble the detected
parts into full-body poses for each individual in the frame, as shown in Fig. 2d and e.

Table 2. Notations in Algorithm 1.
Draw Raw skeleton data (joining positions)

Dnor Normalize skeleton data

D Action dataset

F Frame in dataset

Dskeleton Detected skeleton

Omiss Missing joining position

Xni_curr X joint coordinate in current frame

Xni_prev X joint coordinate in previous frame

Ymi_curr Y joint coordinate in current frame

Ymi_prev Y joint coordinate in previous frame

Table 3. Notations in Algorithm 2.
Xs Concatenation of joints pose of f frames

H Average skeleton height in Xs

Vbody Velocity of neck/H

X Normalize pose

Vjoints Velocity of all joints in X

3.4 Preprocessing Pose Features

The initial skeleton data undergoes a preprocessing stage before feature extraction. This
preprocessing comprises four distinct steps, as outlined in Fig. 2f preprocessing stage:
Coordinate Scaling. Initially, the keypoint positions obtained from our pose pipeline
exhibit different units for the x and y coordinates. To ensure consistency and accom-
modate images with varying height and width ratios, these coordinates are uniformly
scaled to a common unit: x′, y′ = x · scale_factor, y · scale_factor.
Exclusion of Head Joints. Our pose pipeline provides five keypoints related to the
head, including the nose, two eyes, and two ears. However, for the specific actions
within the training dataset, the positional information of the head minimally contributes
to the classification task. The critical focus is on the body and limb configurations.
Therefore, the five head joints are excluded to enhance the interpretability of features.
Frame Discardance Criteria. If a frame lacks a detected human skeleton or if the
detected skeleton lacks neck or thigh joint information, the frame is considered invalid
and is subsequently discarded. Additionally, the sliding window must be re-initialized
on the next valid frame in such cases.
Handling Missing Joints. In certain scenarios, the pose estimation pipeline may fail
to detect a complete human skeleton within an image, resulting in gaps or missing joint
positions. To maintain a fixed-size feature vector for subsequent classification, these
missing joints must be assigned values. Two suboptimal solutions were considered: (1)
rejecting the frame, which was impractical as it would prevent action detection when
individuals were oriented sideways or not facing the camera, and (2) assigning positions
outside of a reasonable range, which could theoretically work with a robust classifier.
However, empirical results showed poor recognition accuracy with this method, making
it unsuitable. Instead, a more effective solution was adopted, involving the assignment
of missing joint positions based on their relative positions in the preceding frame con-
cerning the neck joint. For example, if in the previous frame, the hand was located 10
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pixels to the right of the neck, and in the current frame, the hand is missing, it is placed
10 pixels to the right of the neck in the current frame. Empirical experimentation con-
firmed the effectiveness of this approach. Step-by-step pseudocode for preprocessing
pose features is presented in Algorithm 1. Table 2 summarizes the notations used in
Algorithm 1.

Algorithm 1 Preprocessing Pose Features
Input: Draw = {(Xa1, Yb1), (Xa2, Yb2),... (Xa17, Yb17)}
Output: Dnor = {(Xn1, Ym1), (Xn2, Ym2),... (Xn17, Ym17)}

Step 1: Scale the coordinates
for (Xai, Ybi) ∈ Draw do:

Dnor = Normalize {(Xai, Ybi)}
end for
Step 2: Remove head joint
for (Xni, Ymi) ∈ Dnor do:

if (Xni, Ymi) = {′head′,′ eyes′,′ ears′} then
Discard (Xni, Ymi)

end if
end for
Step 3: Discard frames with no neck or thigh
for F ∈ D do:

if Dskeleton = ∅ then:
Discard F

end if
end for
Step 4: Fill in the missing joints
for Dskeleton ∈ F do:

if Omiss ∈ F then:
Xni_curr = XNeckcurr + (Xni_prev − XNeckprev)
Ymi_curr = Y Neckcurr + (Ymi_prev − Y Neckprev)

end if
end for

3.5 Skeletal Feature Extraction

Following the initial preprocessing step, the joint positions are now complete and ready
for further analysis, as shown in Fig. 2g. In this section, we utilize the joint positions
obtained from a sequence of f = 3 frames as raw features. Additionally, we design and
extract distinctive features to enhance the discrimination of various types of actions.
A step-by-step overview of the computed features is presented in Algorithm 2, with
details of the notations provided in Table 3.

Before initializing model training, the normalized pose data—namely body velocity
(Vbody), joint velocity (Vjoint), joint angles (Jangle), and limb lengths (Llimb)—are selected
as trainable features. These features are concatenated to create a feature vector with a
dimensionality of 170. Subsequently, the Principal Component Analysis (PCA) algo-
rithm is employed to reduce the dimensionality of the feature vector. After applying
PCA, the dimensionality is reduced by 70%, aiming to decrease training time and com-
putational costs. These meticulously engineered features are now prepared for training
the classifier, as depicted in Fig. 2h.
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4 Evaluation

4.1 Datasets and Experimental Setup

We evaluate the proposed HAPTICS model on four challenging benchmarks: NTU
RGB+D 60 [35], NTU RGB+D 120 [25], Northwestern-UCLA [41], and our proposed
Action Clip dataset. The evaluation protocols for NTU RGB+D 60, NTU RGB+D 120,
and Northwestern-UCLA follow those outlined in their respective published papers.

All experiments use a single TITAN RTX GPU under the PyTorch deep learning
framework. The models are trained using Stochastic Gradient Descent with a momen-
tum of 0.9 and a weight decay of 0.0004. Pose features are extracted from a sequence
of 3 frames using CMU pose [5] and Mobilenet-thin [14] backbone networks. The end-
to-end training is performed using an input image size of 656 × 368, and the same
resolution is consistently maintained throughout the experiments.

Algorithm 2 Skeletal Feature Extraction
Step 1: Calculate Xs
Initialize Xs as a dynamic array
for i = 1 to 3 do: � f = 3 frames

for j = 1 to 13 do: � 13 joints
for k = 1 to 2 do: � 2 position values per joint

Xs[(i − 1) ∗ 26 + (j − 1) ∗ 2 + k] = joint position (i, j, k)
end for

end for
end for
Step 2: Calculate H
Initialize H
for i = 1 to 3 do: � f = 3 frames

H = H + distance between neck position(i), thigh
position(i)

H = H/5
end for
Step 3: Calculate Vbody
Initialize Vbody as a dynamic array
for i = 1 to 3 do: � f = 3 frames

Vbody[i − 2] = velocity(neck position(i), neck position
(i − 1))/H
end for
Step 4: Calculate X
Initialize X as a dynamic array
Xmean = mean(Xs)
for i = 1 to 78 do: � joint positions in 3 frames

X[i] = (Xs[i] − Xmean)/H
end for
Step 5: Calculate Vjoints
Initialize Vjoints as a dynamic array
for i = 1 to 3 do: � f = 3 frames

for j = 1 to 13 do: � 13 joints
for k = 1 to 2 do: � 2 velocity values per joint

Vjoints[((i − 1) ∗ 23 + (j − 1) ∗ 2 + k)] = joint velocity (i, j, k)
end for

end for
end for
Step 5: Calculate Joint angles from Xs
Step 6: Calculate the length of each limb from Xs
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4.2 Results

Comparison with State-of-the-Art. We initially evaluated the proposed system on
our newly launched Action Clip dataset, which includes 12 challenging actions cap-
tured from a 360o view of daily life activities. Each action was assessed by calculating
precision, recall, and F1 score using test samples from the dataset, as shown in Table
4. Our system achieved 97% accuracy across all three metrics. Additionally, we imple-

Table 4. Precision, recall, and f1-score on our pro-
posed Action Clip test dataset. ‡ indicates CMU
pose used as a human pose feature extractor.
Action Precision Recall F1-score Test set
jump 0.94 0.95 0.95 1352
kick 0.97 0.97 0.97 1525
punch 0.97 0.96 0.97 1709
run 0.97 0.95 0.96 619
sit 1.00 0.99 0.99 2008
squat 0.99 0.97 0.98 737
stand 0.96 0.97 0.97 1795
walk 0.94 0.94 0.94 1448
wave 0.99 0.99 0.99 2951
bow 0.94 0.97 0.97 1747
sleep 0.99 1.00 1.00 1092
clap 0.96 0.97 0.97 1720

Accuracy ‡ 0.97 18702

Macro avg ‡ 0.97 0.97 0.97 18702

Weight avg ‡ 0.97 0.97 0.97 18702

Table 5. Comparison of the Top-1 accu-
racy (%) with the state-of-the-art meth-
ods on our proposed Action Clip dataset.
Results are implemented based on their
released codes. † indicates Mobilenet-thin
and ‡ indicates CMU pose used as a human
pose feature extractor.
Methods Modalities Accuracy

nCTE [13] RGB 66.7

Glimpse Clouds [3] RGB 90.8

ActionMachine [52] RGB 95.3

TS-LSTM [20] Skeleton 87.9

Shift-GCN [9] Skeleton 93.2

CTR-GCN [6] Skeleton 95.4

HAPTICS † Skeleton 95.8

HAPTICS ‡ Skeleton 97.0

Table 6. Comparisons with the state-of-the-
art methods on NTU RGB+D 60 dataset.
† indicates Mobilenet-thin and ‡ indicates
CMU pose used as a human pose feature
extractor.
Methods Modalities X-sub X-set

PoseConv3D [11] RGB 93.7 96.6

ActionMachine [52] RGB 94.3 97.2

Glimpse Clouds [3] RGB 86.6 93.2

SRNet [30] Skeleton 87.3 91.3

AGC-LSTM [37] Skeleton 89.2 95.0

Shift-GCN [9] Skeleton 90.7 96.5

TemPose [16] Skeleton 92.7 95.2

HAPTICS † Skeleton 96.8 93.5

HAPTICS ‡ Skeleton 97.3 94.2

Table 7. Comparison with the state-of-the-
art methods on NTU RGB+D 120 dataset.
† indicates Mobilenet-thin and ‡ indicates
CMU pose used as a human pose feature
extractor.
Methods Modalities X-sub X-set

PoseConv3D [11] RGB 86.0 89.6

Shift-GCN [9] Skeleton 85.9 87.6

KA-AGTN [27] Skeleton 86.1 88.0

TemPose [16] Skeleton 87.0 88.5

4s-MTS-Former [29] Skeleton 87.1 90.0

MSSTNet [12] Skeleton 87.4 88.4

CTR-GCN [6] Skeleton 88.9 90.6

HAPTICS † Skeleton 86.1 88.3

HAPTICS ‡ Skeleton 89.7 91.5
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mented systems using both RGB and skeleton modalities with the Action Clip dataset
and compared the results with our proposed system, as presented in Table 5.

We also evaluated the proposed model on the NTU RGB+D 60 and NTU RGB+D
120 datasets, following the X-sub and X-set protocols. The results, presented in Tables
6 and 7, demonstrate the effectiveness of our model. HAPTICS achieved the highest
accuracy of 97.3% on X-sub and 94.2% on X-set for the NTU RGB+D 60 benchmark,
surpassing state-of-the-art methods [30], [37], [9], and [16]. Similarly, our proposed
technique achieved the highest accuracy of 89.7% on X-sub and 91.5% on X-set for the
NTU RGB+D 120 benchmark, marking significant improvements over state-of-the-art
methods [16], [29], [12], and [6], respectively.

Table 8.Comparisons of top-1(%) accuracy with
state-of-the-art methods on the Northwestern-
UCLA dataset. HAPTICS uses Mobilenet-thin
(†) and CMU pose ( ‡) networks for human pose
estimation.

Methods Modalities Top-1

NKTM [33] RGB 75.8

Glimpse Clouds [3] RGB 91.1

Action Machin [52] RGB 96.5

TS-LSTM [20] Skeleton 89.2

AGC-LSTM [37] Skeleton 93.3

Shift-GCN [9] Skeleton 94.6

CTR-GCN [6] Skeleton 96.5

MSSTNet [12] Skeleton 97.6

HAPTICS † Skeleton 97.4

HAPTICS ‡ Skeleton 98.2

Fig. 4. Frames per second and accuracy for the
given number of people in live webcam using
TITAN RTX GPU.

Finally, we evaluated our proposed model on the low-resolution Northwestern-
UCLA dataset to validate its effectiveness and generalizability. Table 8 presents promis-
ing results compared to top competitors [20], [37], [9], [6], and [12]. Specifically, HAP-
TICS achieved a top-1 accuracy of 98.2%, representing a 3.6% improvement over [9], a
1.7% improvement over [6], and a 0.6% improvement over the recent [12].
Computational Speed and Cost. Computational speed is measured based on the exe-
cution time in frames per second (fps) using live webcam video at a resolution of 656
× 368. Fig. 4 shows that HAPTICS, with Mobilenet-thin, achieves the highest fps,
reaching 30 for a single person and approximately 17 fps when the number of individ-
uals increases to 6. In contrast, the CMU method attains high accuracy but has slightly
lower fps due to the nature of its design. Fig. 5 presents the computation cost in FLOPS,
providing a comparison to methods that use skeleton modalities.
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Fig. 5. Computational cost compared with
skeleton modalities systems.

Table 9. Pose estimation comparison using
COCO keypoint test set.

Models Backbone AP APM APL

PersonLab [32] ResNet-152 68.7 64.1 75.5

MultiPoseNet [19] ResNet-101 69.6 65.0 76.3

HigherHRNet [7] HRNet 70.5 66.6 75.8

SIMPLE [48] HRNet-W32 71.1 69.1 79.1

StrongPose [2] ResNet-101 72.1 67.0 77.1

PosePlusSeg [1] ResNet-152 72.8 67.8 79.4

HAPTICS Mobilenet 74.6 69.1 81.7

HAPTICS CMU 76.3 71.7 83.8

Fig. 6.HAPtics represents the results of the baseline version of our model that uses only the CMU
pose backbone network. HAPtics † denotes results obtained when the functionality of PAF is
enabled, while HAPtics ‡ indicates the results achieved with the integration of PAF and advanced
feature extraction.

4.3 Ablation Studies

Adaptation of PAF. We evaluated the generalizability of our pose pipeline by integrat-
ing the PAF technique [5]. Our findings outperforms recent state-of-the-art methods,
including SIMPLE [48], StrongPose [2], and PosePlusSeg [1], when evaluated on the
COCO keypoint test set [24], as shown in Table 9.
Backbone vs. Techniques. To systematically assess the impact of our specific tech-
niques beyond the capabilities of the backbone networks, we conducted studies compar-
ing the system’s performance with and without the integration of PAF and our enhanced
feature extraction techniques. The ablation results in Fig. 6 demonstrate that while the
backbone networks establish a high baseline of performance, the integration of our
methods provides significant additional improvements in accuracy. For instance, with
PAF-based enhancements and advanced feature extraction methods, the system’s accu-
racy noticeably increased, particularly in complex action recognition scenarios.
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Fig. 7. The confusion matrix illustrates the outcomes of 12 actions from (a) the Action Clip
dataset, employing frames (f = 4) for pose feature extraction, 10 action results from (b) the
Northwestern-UCLA dataset, utilizing f = 5 frames for pose feature extraction, and 20 novel
fine-grained action classes from (c) the NTU RGB+D 120 dataset, with f = 6 for pose feature
extraction. (Best viewed with zoom in).

Pose Features with Varied Numbers of Frames. We explored the performance of
HAPTICS across different numbers of frames (f = 4, 5, 6) for pose feature extraction.
Our investigation covered 12 classes from the proposed Action Clip Dataset, as depicted
in Fig. 7(a), 10 classes from the NW-UCLA dataset, as illustrated in Fig. 7(b), and 20
novel classes from the NTU RGB+D 120 dataset, as shown in Fig. 7(c).

5 Conclusion and Future Work

This research proposes a novel Action Clip dataset that captures a 360o view of human
actions and introduces a comprehensive pipeline for real-time human pose estimation
and action recognition using standard monocular camera sensors. The proposed app-
roach transforms noisy human pose kinematic features into encoded skeletal features.
These features are then classified using deep neural network techniques, achieving not
only competitive state-of-the-art performance in pose-based action detection but also
ensuring real-time execution.
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Abstract. The problem of predicting human actions from observed
videos is an inherently uncertain one. We present an action anticipation
model that leverages latent goal information to reduce the uncertainty in
future predictions. We develop a latent variable representing goal infor-
mation called abstract goal which is conditioned on observed sequences
of visual features for action anticipation. We design the abstract goal
as a distribution whose parameters are estimated using a variational
recurrent model. We sample multiple candidates for the next action and
use goal consistency criterion to determine the best candidate that fol-
lows from the abstract goal. Our method obtains impressive results on
the very challenging Epic-Kitchens55 (EK55) and good results in Epic-
Kitchens100 (EK100) datasets. Code is available at https://github.com/
LAHAproject/Abstract_Goal

Keywords: Action Anticipation · Stochastic Modeling · Variational
Inference

1 Introduction

Anticipating human actions from videos has significant relevance across vari-
ous domains, including but not limited to human-robot collaboration, intelligent
domiciles, assistive robotics, and wearable virtual assistants. Specifically, ego-
centric videos, which capture the actions of the individual wearing the camera,
represent a valuable resource for the development of intelligent assistants capa-
ble of forecasting the wearer’s future actions and providing tailored assistance
accordingly. A fundamental challenge in action anticipation lies in the inherent
uncertainty surrounding future predictions. Human behavior is predominantly
steered by individual goals or intentions, thus guiding the sequence of actions

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-78354-8_11.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15315, pp. 162–177, 2025.
https://doi.org/10.1007/978-3-031-78354-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78354-8_11&domain=pdf
http://orcid.org/0000-0002-8779-1241
http://orcid.org/0000-0002-6920-9916
https://github.com/LAHAproject/Abstract_Goal
https://github.com/LAHAproject/Abstract_Goal
https://doi.org/10.1007/978-3-031-78354-8_11
https://doi.org/10.1007/978-3-031-78354-8_11


Predicting the Next Action by Modeling the Abstract Goal 163

Observed Action
Representation aO

Sampled Goal ZT
(#Q goals)

Hidden State
hT

Best Next Action
Candidate aN*

Goal
Consistency

Predicted Action
Class yNext Action

Representation
Distribution

Observed Visual
Features x1, x2, ... , xT

RNN

Action-based
Abstract Goal
Distribution

Feature-based
Abstract Goal
Distribution

Sampling Concatenation

Sampled Next Action
Representation aN

(#K candidates)

Fig. 1. Model design for abstract goal-based action anticipation. Yellow ellipses repre-
sent distributions and pink boxes represent various variables of the model.

performed. Consequently, incorporating goal information holds promise for miti-
gating such uncertainty in forecasting future actions. For example, with informa-
tion about the goal wash pan, a model can predict that take pan will be followed
by rinse pan and not put pan on stove.

Goal and intentions have been adopted in some recent works for effec-
tive action anticipation [21,27,30]. In this paper, we make use of a stochastic
method [4,9] for latent goal modeling to improve action anticipation that goes
beyond the deterministic latent goal representation in [27]. We propose to learn
a new latent variable called abstract goal as a latent distribution as shown in
Figure 1. We use two types of abstract goal distributions when predicting
the next action in the sequence. The first abstract goal distribution is learned
using the observed visual features and a stochastic recurrent neural network [4]
which we call “feature-based abstract goal” distribution. Furthermore, we design
an “action-based abstract goal” distribution using the next action representa-
tion distribution and the observed action representation. We sample multiple
next-action-representation candidates and use the goal consistency criterion to
find the most likely next action–see Figure 1. The action that is most likely to
happen in the future (“next best action”) is the one that maximizes consistency
between the two latent abstract goal distributions. During learning, we use goal
consistency as a loss function to obtain a model informed of human behavior, i.e.
the sequences of actions. Such a mechanism is not present in previous stochastic
approaches [1,21,22] which only minimizes KL divergence between prior and
posterior latent distribution to obtain the best future actions. Also, we introduce
a goal consistency measure to choose the best next action candidate rather than
mean or median sampling used in [1,22]. We show that goal consistency has
the biggest impact on action anticipation. Our approach yields improvements
when predicting the next action in unscripted activities on the Epic-Kitchens55
(EK55). Our contributions are:

– A new latent variable called abstract goal using a stochastic recurrent model
that uses two latent distributions for the observed and the next action and
enforces consistency among them to effectively predict the next action.

– A novel goal consistency term that measures how well a plausible future action
(next action) aligns with abstract goal distributions.
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2 Related work

Research in action anticipation has gained popularity in recent years thanks to
progress in datasets [6] and challenges [5]. The activity label of the entire action
sequence is used to anticipate the next action in [29]. In [27], observed features
are used to obtain a fixed latent goal from visual features. [3] conceptualizes goals
as the visual outputs of a sequence of actions. They predict each action in the
sequence based on its relative closeness to the goal as compared to the previous
action. [19] propose to use an external memory bank to store prototypes of the
overall activity and contrastive learning augmented with the memory bank for
forecasting the next action.

Predicting Future features for Anticipation. In [10] authors show that
LSTM can be unrolled for multiple time steps to predict future features can be
used to accurately predict the next action. In [26], Human-object interactions
are encoded as features and fed to a transformer encoder-decoder to predict the
features of future frames and the corresponding future actions. Authors in [18]
estimate spatial attention maps of future human-object interactions to predict
the next action. In [32], authors propose to summarize long-range sequences
by processing smaller temporal sequences and caching them in memory as con-
text and using the context for action anticipation. In [12], a real-time action
anticipation framework is presented using a two-stage transformer with reduced
parameters that is trained for future feature prediction and action anticipation.
Due to the lightweight nature of their model, the action inference is performed
in real-time. In [16], temporal features are computed using time-conditioned skip
connections to anticipate the next action. In [33], an RNN is used to generate
the intermediate frames between the observed frames and the anticipated action.
In [13], every frame is represented using a Visual Transformer (ViT) [7] and com-
bined using a temporal transformer to predict future features and action labels.
Authors in [34], train a transformer model to predict the next action by reduc-
ing the amount of observed future available during learning from fully available
to completely absent. Authors in [28] model interactions using cross-attention
between humans and object visual features using a spatio-temporal visual trans-
former and use the modeled interaction to predict the next action.

Long-term forecasting. In [2], future actions and their duration are pre-
dicted autoregressively using an RNN with observed action labels as input.
In [2,20], RNNs are used to predict future actions conditioned on observed action
labels. Latent distributions are used in literature to encode the observed action
and duration in [1,22]. In [1], a sample from the latent distribution of observed
action is combined with previously predicted action in a decoder to predict the
multiple next actions and their duration. In [22], two decoders are used to pre-
dict the action labels and duration separately. The action decoder uses the action
labels in the observed video as input while the duration prediction decoder uses
the duration of actions. Similarly, in [14], a transformer is used to encode past
actions and duration while another transformer decoder is used to predict both
future actions and their duration. In [24], authors use two transformer encoders
for segment-level and long-term encoding and a decoder that fuses both encoder
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inputs to predict future actions. In [21], goal labels and observed features are used
as input to a conditional variational encoder to predict future actions. In [37],
a large language model is prompted with observed actions and narrations to
predict future actions.

Correlating past and future. In [23], authors model the transition
between the visual features of the observed and the next action to generate the
next action features. A similar action anticipation model that correlates past
observed features with the future using Jaccard vector similarity is presented
in [8]. In [16], time-conditioned skip connections are used to generate features
for predicting future actions at different anticipation time in the future. In [11],
authors propose a neural memory network to compare an input (spatial repre-
sentation or labels) with the existing memory content to predict future action
labels. Similarly, in [25], authors propose an action anticipation framework with
a self-regulated learning process. A counterfactual reasoning is used to improve
action anticipation in [36]. Our approach correlates the past and future by enforc-
ing goal consistency between the two abstract goal distributions computed using
observed features and the next action.

3 Action anticipation with abstract goals

In this section, we explain our model design outlined in Figure 1. At first,
we explain how to compute the feature-based abstract goal distribution in
Section 3.1. Then, we describe how to obtain next action candidates and action-
based abstract goal with respect to these candidates in Section 3.2 and 3.3,
respectively. We then explain the goal consistency criterion used to obtain the
best next action candidate in Section 3.4. Finally, we describe the various loss
functions to train our model in Section 3.5.

3.1 Observed Feature-based abstract goal representation

In this section, we describe how to generate feature-based abstract goal
representation using variational recurrent neural network (VRNN) frame-
work [4,9]. Let us denote the observed feature sequence by x1,x2, · · · ,xT

where xt ∈ R
df . Following standard VRNN, a Gaussian distribution

qt(zt|x1:t−1) ∼ N (μt,prior,σt,prior) is used to model the prior distribution of
the abstract goal (zt) given the observed feature sequence x1:t−1. The param-
eters μt,prior,σt,prior ∈ R

dz are estimated using the hidden state of the RNN
(ht−1 ∈ R

dh) learned from the previous t − 1 features, i.e. (μt,prior,σt,prior) =
φprior(ht−1). Note that φprior : Rdh → R

dz refers to two separate MLPs, one to
obtain μt,prior and another with softplus activation to estimate the standard
deviation (σt,prior). Unless otherwise specified, all MLPs are two layered neural
networks with ReLU activation.

The posterior distribution of the abstract goal r(zt|x1:t) ∼ N (μt,pos,σt,pos)
computes the effect of observing the incoming new feature xt. The parameters
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of posterior distribution r are computed as follows:

(μt,pos,σt,pos) = φpos([φx(xt), φh(ht−1)]), (1)

where φpos : R2×dz → R
dz , φx : Rdf → R

dz , φh : Rdh → R
dz are linear layers and

[·, ·] represents vector concatenation. We use the reparameterization trick [17] to
sample an abstract goal (zt ∈ R

dz ) from the prior distribution q(zt|x1:t−1) as
follows:

zt = μt,prior + σt,prior � ε, (2)

where ε ∼ N (0,1) ∈ R
dz is a standard Gaussian distribution. Then sampled zt

is used to obtain the next hidden state of the RNN1 as follows:

ht = RNN(ht−1, [φx(xt), φz(zt)]),∀t ∈ 1, · · · , T (3)

where φz : Rdz → R
dz acts as a feature extractor over zt. The sampled abstract

goal (zt) can be used to reconstruct (or generate) the feature sequence as done in
VRNN framework [4,9]. However, we use it to represent feature-based abstract
goal. Our intuition comes from the fact that humans derive action plans from
goals, and videos are a realization of this action plan. Therefore, by construc-
tion, goal determines the video (feature evolution in our case). Interestingly, as
the abstract goal latent variable encapsulates the video feature generation pro-
cess, by analogical similarity, we make the proposition that latent variable (zt)
represents the notion of feature-based abstract goal.

Therefore, we denote the “feature-based abstract goal distribution” as follows:

p(zT ) = q(zT |x1:T−1). (4)

The abstract goal distribution represents all abstract goals with respect to a
particular observed feature sequence. Any observed action may lead to more than
one goal. Our abstract goal representation captures these variations.

3.2 Action representations

Human actions are causal in nature and the next action in a sequence depends
on the earlier actions. For example, washing vegetables is succeeded by cutting
vegetables when the goal is “making a salad”. We capture the causality between
observed and next actions using “the observed action representation” and the
“next action representation”. We obtain the observed action representation
(aO) using feature-based abstract goal and the hidden state of RNN as follows:

aO = φO([φz(zT ), φh(hT )]). (5)

Here φO : R2×dz → R
dh and zT is sampled from the abstract goal distribution

p(zT ) using Equation 2.

1 Our RNN is a standard GRU cell.
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Then we obtain the distribution of next action representation (aN ) con-
ditioned on the hidden state of the RNN and the observed action representation
denoted by p(aN |hT ,aO). The reason for modeling next action representation
as a distribution conditioned on hidden state and the observed action repre-
sentation is two-fold. First, a particular observed action may lead to different
next actions depending on the context and goal. Note that in our model, both
observed action representation aO and the RNN hidden state hT depend on the
feature-based abstract goal representation. Second, there can be variations in
human behavior when executing the same task. The next action representations
are generated using a Gaussian distribution N (μaN

,σ2
aN

) where μaN
,σaN

∈ R
dz

The parameters of next action distribution are estimated as

p(aN |hT ,aO) ∼ N (μaN
,σ2

aN
), (6)

where (μaN
,σaN

) = φN ([φh(hT ), φa(aO)]). The mapping network φa : Rdh →
R

dz and φN : R2×dz → R
dz are two separate MLPs. Now we sample multiple next

action representations from the next action representation distribution using the
reparameterization trick as in Equation 7,

aN = μaN
+ σaN

� ε, (7)

where ε ∼ N (0,1) ∈ R
dz is a standard Gaussian distribution.

3.3 Action-based abstract goal representation

Now, we obtain action-based abstract goal from observed and next action rep-
resentations using generative variational framework [17]. The distribution for
action-based abstract goal is modeled with a Gaussian distribution conditioned
on the next action representation denoted by q(zN |aN ) whose parameters are
computed as q(zN |aN ) ∼ N (μNq,σNq) where (μNq,σNq) = φNq(φa(aN ))
and μNq,σNq ∈ R

dz and φNq : Rdh → R
dz is implemented with two MLPs.

On the other hand, parameters of the action-based abstract goal distribution
(r) conditioned on both observed and next action representation are given as
r(zN |aN ,aO) ∼ N (μNr,σNr) whose parameters are estimated as:

(μNr,σNr) = φNr([φa(aN ), φa(aO)]) (8)

where μNr,σNr ∈ R
dz and φNr : Rdh → R

dz is a dual headed MLP. Finally,
the action-based abstract goal distribution for the next action p(zN ) is given
by the distribution

p(zN ) = q(zN |aN ). (9)

We use both feature-based and action-based abstract goal representation to find
the best candidate for next action as explained in next section. It should be
noted that while the q(zN |aN ) only depends on next action representation and
r(zN |aN ,aO) depends on both observed and next action representation. As r()
has more evidence compared to q(), r() acts as the posterior distribution in our
modeling.
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3.4 Next action anticipation with goal consistency

Given a sampled feature-based abstract goal zT , we select the best next action
representation a∗

N using the divergence between p(zT ) distribution (eq. 4) and
p(zN ) distribution (eq. 9). We call this divergence as the goal consistency
criterion. For a given zT , observed action aO and the next sampled action
aN , the goal consistency criterion is derived from the average of KL-divergence
DKL(p(zT )||p(zN ) and DKL(p(zN )||p(zT )) as follows:

D(aN ) =
DKL(p(zT )||p(zN )) + DKL(p(zN )||p(zT ))

2
. (10)

We choose the best next action candidate (i.e. the anticipated action candidate
representation) a∗

N that minimizes the goal consistency criterion. The rationale
is that the best anticipated action should have an action-based abstract goal
representation p(zN ) that aligns with the feature-based abstract goal distribution
p(zT ). We use the following algorithm to find the best next action candidate a∗

N .

Algorithm 1 Best next action selection
1: Sample feat-based abstract goal zt from eq. 4 → zt ∼ qt(zt|x1:t−1)
2: Get observed action representation aO (eq. 5)
3: Get next action representation distribution p(aN |ht,aO) (eq. 6)
4: Sample K next action representations N = {a1

N , · · · aK
N} ∼ p(aN |ht, aO)

5: Best next action a∗
N = argminak

N
∈N D(ak

N ); k ∈ {1, · · · ,K}

Finally, we predict the anticipated action from the selected next action rep-
resentation as ŷ = φc(a∗

N ). where φc : Rdz → R
dc is the MLP classifier and ŷ is

the class score vector. It should be noted that in Algorithm 1, we sample only
one feature-based abstraction goal in line 1 of the algorithm. However, during
training we sample Q number of feature-based abstraction goals and for each of
them we sample K number of next action representations. In this case, we select
the best candidate from all K × Q next action representation candidates using
Equation 10. Therefore, the next best action is consistent and does not rely too
much on sampling as long as we sample sufficient candidate next actions.

Even if the feature-based abstract goal P (zT ) is obtained from VRNN frame-
work [4,9], the formulation of action representations aO and aN , action-based
abstract goal P (zN ) and goal consistency criterion is drastically different from
[1,22]. In [27], goal consistency is defined between latent goals before and after
the action using a hard threshold. Instead, our goal consistency is a symmetric
KL divergence between p(zT ) and p(zN ) distributions which aims to align the
two abstract goal distributions. This also results in a massive improvement in
next action anticipation performance as shown in the experiments.
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3.5 Loss functions and training of our model

Our anticipation network is trained using a number of losses. In contrast to prior
stochastic methods [1,21,22], we introduce three KL divergence losses, based on
a) feature-based abstract goal (LOG), b) action-based abstract goal (LNG), and
c) goal-consistency (LGC). The first loss function is used to learn the parameters
of the feature-based abstract goal distribution. We compute the KL-divergence
between the conditional prior q(zt|x1:t−1) and posterior r(zt|x1:t) distributions
for every feature in the observed feature sequence and minimize the sum given
as follows LOG =

∑T
t=1 DKL(r(zt|x1:t)||q(zt|x1:t−1)) and we call this observed

goal loss. This loss is based on the intuition that the abstract goal should not
change due to a new observed feature.

Our second loss arises when we learn the action-based abstract goal distribu-
tion. We compute the KL-divergence between r(zN |a∗

N ,aO) and q(zN |a∗
N ) distri-

butions of action-based abstract goal distributions as LNG = DKL(r(zN |a∗
N ,aO)

||q(zN |a∗
N )). We denote the corresponding best action-based abstract goal dis-

tribution by p(z∗
N ) = q(zN |a∗

N ). The intuition is same as before, the goal should
not change because of the next best action a∗

N .
Furthermore, the feature-based and action-based abstract goal distributions

should be aligned with respect to the selected next best action a∗
N . Therefore,

we minimize the symmetric KL-Divergence between the feature-based and best-
action-based abstract goal distribution as follows:

LGC =
DKL(p(zT )||p(z∗

N ) + DKL(p(z∗
N )||p(zT )

2
. (11)

We coin this loss as goal consistency loss. This loss is based on D(aN ) in
Equation 10 with the only difference being that p(z∗

N ) = q(zN |a∗
N ) is computed

with respect to the selected best next action representation a∗
N . Finally, we have

the cross-entropy loss for comparing the model’s prediction ŷ with the ground
truth one-hot label y as LNA = −∑

y � log(ŷ). The loss function to train the
model is a combination of all losses given as follows:

Ltotal = LOG + LNG + LGC + LNA. (12)

We experimented with adding different weights to each loss but there is no
significant difference in performance. Therefore, we weigh them equally.

4 Experiments and results

4.1 Datasets, features, and training details

We use well known action anticipation datasets, Epic-Kitchens55 [5] (EK55) and
Epic-Kitchens100 [6] (EK100) to evaluate our approach.

We validate our models using the TSN features obtained from RGB and opti-
cal flow videos, and bag of object features provided by [10] for a fair comparison
with existing approaches. Our base model has the following parameters: observed
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Table 1. Comparison of anticipation accuracy with state-of-the-art on EK55 evaluation
server with anticipation time of 1 sec. ACT: for action.

Method Top-1 accuracy(%) Top-5 accuracy(%) Precision(%) Recall(%)
VERB NOUN ACT. VERB NOUN ACT. VERB NOUN ACT VERB NOUN ACT.

Seen Kitchens (S1)
RU-LSTM [10] 33.04 22.78 14.39 79.55 50.95 33.73 25.50 24.12 07.37 15.73 19.81 07.66
Lat. Goal [27] 27.96 27.40 08.10 78.09 55.98 26.46 - - - - - -
SRL [25] 34.89 22.84 14.24 79.59 52.03 34.61 28.29 25.69 06.45 12.19 19.16 06.34
ImagineRNN [33] 35.44 22.79 14.66 79.72 52.09 34.98 28.04 24.18 06.66 16.03 19.61 07.08
Temp. Agg. [29] 37.87 24.10 16.64 79.74 53.98 36.06 36.41 25.20 09.64 15.67 22.01 10.05
MM-Trans [26] 28.59 27.18 10.85 78.64 57.66 30.83 17.50 26.20 03.81 10.81 24.89 04.49
MM-TCN [35] 37.16 23.75 15.45 79.48 51.86 34.37 28.18 23.82 06.94 16.05 22.31 08.40
AVT [13] 34.36 20.16 16.84 80.03 51.57 36.52 23.25 17.77 09.71 14.02 18.81 10.11
DCR [34] - - 17.70 - - 38.50 - - - - - -
Abstract Goal (VRNN) 51.56 35.34 22.03 82.56 58.01 38.29 34.83 31.33 13.08 26.67 31.42 12.20
Unseen Kitchens (S2)
RU-LSTM [10] 27.01 15.19 08.16 69.55 34.38 21.10 13.69 09.87 03.64 09.21 11.97 04.83
Lat. Goal [27] 22.40 19.12 04.78 72.07 42.68 16.97 - - - - - -
SRL [25] 27.42 15.47 08.88 71.90 36.80 22.06 20.23 12.48 02.84 07.83 12.25 04.33
ImagineRNN [33] 29.33 15.50 09.25 70.67 35.78 22.19 17.10 12.20 03.47 09.66 12.36 05.21
Temp. Agg. [29] 29.50 16.52 10.04 70.13 37.83 23.42 20.43 12.95 04.92 08.03 12.84 06.26
MM-Trans [26] 26.80 18.40 06.76 70.40 44.18 20.04 09.53 15.17 02.23 07.73 15.19 03.34
MM-TCN [35] 30.66 14.92 08.91 72.00 36.67 21.68 10.51 12.26 04.35 09.79 12.72 04.94
AVT [13] 30.66 15.64 10.41 72.17 40.76 24.27 12.86 11.83 04.84 09.89 13.46 06.41
DCR [34] - - 10.90 - - 24.80 - - - - - -
Abstract Goal (VRNN) 41.41 22.36 13.28 73.10 41.62 24.24 23.62 18.29 08.73 15.70 18.29 08.29

duration - 2 seconds, frame rate - 3 fps, RNN (GRU) hidden dimension dh =
256, abstract goal dimension dz = 128, number of sampled feature-based abstract
goals (Q = 3), number of next-action-representation candidates (K = 10), Ltotal

loss, and fixed anticipation time - 1s (following EK55 and EK100 evaluation
server criteria), unless specified otherwise. We use a batch size of 128 videos and
train for 15 epochs with a learning rate of 0.001 using Adam optimizer with
weight decay (AdamW) in Pytorch. All our MLPs have 256 hidden dimensions.

4.2 Comparison with state-of-the-art

We compare the performance of Abstract Goal (our method) with current state-
of-the-art approaches on both the seen and unseen test sets of EK55 datasets
in Table 1 using a late fusion of TSN-RGB, TSN-Flow, and Object features like
most of the prior work. We train separate models for verb and noun anticipation
and combine their predictions to obtain action anticipation accuracy. The model
structure is the same for both the verb and noun models but the final classifica-
tion output is either verb or noun. Our method outperforms all other prior state-
of-the-art methods for both seen kitchens (S1) and unseen kitchens (S2). Notably,
we outperform Transformer-based AVT [13] and Temporal-Aggregation [29] in
all measures in both seen and unseen kitchens except for Top-5 accuracy on
unseen kitchens. We believe this improvement is due to two factors, (i) stochas-
tic modeling is massively important for action anticipation, and (ii) the effective
use of goal information is paramount for better action anticipation.
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Table 2. Comparison on EK100 dataset on evaluation server using test set. Accuracy
measured by mean recall@5 (%) following the standard protocol.

Method Input Overall Unseen Kitchens Tail Classes
VERB NOUN ACT. VERB NOUN ACT. VERB NOUN ACT.

AVT [13] Frames 26.69 32.33 16.74 21.03 27.64 12.89 19.28 24.03 13.81
RAFTformer [12] Frames 30.10 34.10 15.40 - - - - - -
InAViT [28] Frames 49.14 49.97 23.75 44.36 49.28 23.49 43.17 39.91 18.11
RU-LSTM [6] TSN 25.25 26.69 11.19 19.36 26.87 09.65 17.56 15.97 07.92
Temp. Agg. [29] TSN 21.76 30.59 12.55 17.86 27.04 10.46 13.59 20.62 08.85
TransAction [15] TSN 36.15 32.20 13.39 27.60 24.24 10.05 32.06 29.87 11.88
DCR[34] TSN - - 17.30 - - 14.10 - - 14.30
Abstract Goal (VRNN) TSN 31.40 30.10 14.29 31.36 35.56 17.34 22.90 16.42 07.70
Abstract Goal (TF) TSN 37.63 38.70 14.21 34.92 38.88 14.25 30.67 29.10 09.11

Despite, these excellent results on EK55, our overall results on EK100 are not
state-of-the-art–see Table 2. Our method performs not as well as recent methods
that are extensively pre-trained vision transformer (ViT) models with image and
action recognition datasets before being trained for action anticipation [12,13,
28]. On the other hand, our model is trained directly on the target dataset
using temporal segment network (TSN) [31] features. Compared to the best
Transformer model [15,34] trained on TSN features, Abstract Goal - VRNN
performs better on both overall and unseen kitchens of the EK100 dataset but
not as well on tail classes. EK100 dataset is dominated by long-tailed distribution
where 228 noun classes out of 300 are in the tail classes. Similarly, 86 verbs
out of 97 are in the tail classes. In our model, the next-action-representation
is modeled with a Gaussian distribution (Equation 6), and therefore, it is not
able to cater to exceptionally long tail class distributions as in EK100. This is
a limitation of our method. We do not witness the tail-class issue in EK55 as
the performance measure used is accuracy compared to mean-recall in EK100.
Accuracy is influenced heavily by frequent classes but mean-recall treats all
classes equally.

For completeness, we test whether the tail class issue on EK100 can be
resolved using a transformer network (6 layers with 8 attention heads) instead
of a GRU for observed feature summarization. While abstract goal with trans-
former (TF) improves tail class performance it is not able to outperform [15,34]
on tail classes. This confirms our hypothesis that using Gaussian distribution
for next-action-representation (action-based abstract goal) can limit tail class
performance but improves overall and unseen kitchens anticipation accuracy.

4.3 Impact of goal consistency criterion and loss

In this section, we evaluate the impact of Goal Consistency (GC) criterion and
the loss derived from it Lgc using the validation set of EK55 and EK100 datasets.
We train separate models for verb and noun anticipation using TSN-RGB (RGB)
and Object (OBJ) features, respectively. As Mean and Median sampling are used
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in prior variational prediction models [1], here we use mean and median sampling
as two baselines to show the effect of GC. We sample Q × K number of next-
action representations (aN) instead of selecting the best next-action candidate
using GC (Algorithm 1). Then we obtain the mean/median vector of all sampled
candidates and then make the prediction using the classifier (e.g. mean vector=∑

aN

Q×K ). We also experimented with a majority/median class prediction baseline.
In this case, we take all Q × K predictions from the classifier (from the next
action-representation candidates) and pick the majority/median class as the final
prediction. Everything else stays the same for all these mean/majority/median
baseline models, except we do not use the GC criterion (Equation 10) and the
goal consistency loss Lgc. Results are reported in Table 3.

Table 3. The impact of goal consistency criterion and loss. @1 and @5 denotes Top-1
and Top-5 accuracy and V stands for verb and N stands for noun.

Goal candidate (Q) & Action candidate (K) EK55 EK100
V@1 V@5 N@1 N@5 V@1 V@5 N@1 N@5

Mean Q=1,
K=10

41.79 72.23 25.79 49.50 44.51 76.89 22.72 50.78

Median 41.16 71.32 24.30 48.31 45.44 77.91 22.15 51.23
Majority class 41.98 72.89 25.98 50.01 42.98 74.56 24.13 53.45
Median class 41.02 72.11 22.88 49.87 44.19 77.00 22.97 51.98
Our model 45.18 77.30 28.16 51.08 48.84 80.52 27.50 55.83
Mean Q=3,

K=10
39.40 72.23 24.22 48.96 45.90 77.88 22.41 50.87

Median 41.32 71.32 26.60 51.70 45.63 77.02 24.33 52.87
Majority class 38.39 69.42 24.70 48.22 45.72 78.61 22.61 50.89
Median class 40.43 71.43 26.52 52.33 45.84 78.09 23.78 52.33
Our model 44.68 77.14 28.29 53.78 49.02 80.86 28.52 54.91
Without LGC Q=1,

K=1
38.31 70.77 19.74 43.11 43.82 77.45 21.25 51.99

With LGC 40.88 71.43 22.09 46.29 46.80 78.41 26.80 53.32

As can be seen from the results, there is a significant impact of GC. Especially,
there is an improvement of 3.39% and 2.37% for top-1 verb and noun accuracy
respectively using our GC model in the EK55 dataset for Q = 1,K = 10 over
Mean sampling baseline. A similar trend can be seen for EK100 and Q = 3,K =
10 as well. Our model also outperforms majority and median class sampling
baselines for both [Q = 1,K = 10] and [Q = 3,K = 10] configurations indicating
the effectiveness of goal consistency both as GC criterion and GC loss LGC .
Overall, our method with GC loss and criterion performs better than all other
variants. Perhaps this is because the GC criterion allows the model to regularize
the candidate selection while GC loss allows the model to enforce this during
the training. This clearly shows the impact of goal consistency formulation of
our model for action anticipation.

We perform a more controlled experiment to further evaluate the impact of
GC loss where we set Q = 1 and K = 1 and train our model with and without
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Table 4. Ablation on the sensitivity of number of sampled feature-based-abstract-goals
(Q) and next-action representation candidate K on EK55 and EK100 validation set.

parameter value EK55 EK100
V@1 V@5 N@1 N@5 V@1 V@5 N@1 N@5

num. feature-based abstract goals (Q) (K = 10) 1 45.18 77.30 28.16 51.08 48.84 80.52 27.50 55.83
2 44.44 76.19 28.47 52.38 49.25 80.44 28.41 55.65
3 44.68 77.14 28.29 53.78 49.02 80.86 28.52 54.91
4 45.31 77.91 26.28 50.33 48.86 80.46 28.16 55.11
5 45.80 77.40 26.95 51.93 49.71 80.40 28.04 55.16

num. next action candidates (K) (Q=3) 1 39.81 72.31 21.48 44.96 44.24 75.67 20.06 42.56
3 40.49 74.20 22.60 46.22 44.37 76.11 21.07 44.51
5 41.32 74.26 23.17 48.23 45.61 78.91 22.91 45.12
10 44.68 77.14 28.29 53.78 49.02 80.86 28.52 54.91
20 43.79 79.00 27.07 51.10 49.01 80.36 28.13 55.40
30 44.56 77.81 27.80 51.00 49.18 81.20 27.44 53.42

GC loss (LGC). It should be noted that when Q = 1 and K = 1, GC criterion
has no impact because we do not have multiple candidates to evaluate. The only
meaningful way to see the effect of GC is to compare a model trained with and
without the GC loss. To obtain a statistically meaningful result, we repeat this
experiment 10 times and report the mean performance. As it can be seen from
the results in Table 3 (last two rows), clearly GC loss has a positive impact
even when we just sample a single action candidate from our stochastic model.
We see that compared to our model variant [Q = 1,K = 1 with LGC ], the
[Q = 1,K = 10 with LGC ] model performs significantly better (last row vs row
5 of Table 3). This indicates the impact of next-action-representation sampling
(Equation 6) even for a single sampled feature-based abstract goal (Q = 1).
We conclude that the goal consistency loss, the goal consistency criterion, and
next-action-representation distribution modeling (all novel concepts introduced
in this paper) are effective for action anticipation.

Table 5. Loss ablation on EK55 and EK100 validation set. i.e.LNA-Next action cross-
entropy loss, LOG-Feature-based abstract goal loss, LNG-Action-based abstract goal
loss, LGC-Goal consistency loss.

Losses EK55 EK100
V@1 V@5 N@1 N@5 V@1 V@5 N@1 N@5

LNA 21.36 69.69 27.76 51.89 24.46 72.31 27.12 54.55
LNA + LOG 44.42 77.79 28.41 51.31 43.23 75.63 23.45 52.89
LNA + LNG 46.01 77.94 29.05 52.32 46.94 78.44 22.96 49.66
LNA + LGC 43.83 77.43 28.06 51.87 44.45 76.72 20.31 47.87
LNA + LOG + LNG 44.47 77.12 28.51 51.34 46.73 78.62 24.56 51.33
LNA + LOG + LGC 45.47 77.42 28.61 52.34 47.25 78.11 26.91 53.34
LNA + LOG + LNG + LGC 46.37 77.97 29.86 52.74 49.02 80.86 28.52 54.91

Apart from GC loss, we also study the impact of other loss functions described
in Section 3.5 and report the results in Table 5. If we use only the supervised
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cross-entropy loss (i.e., LNA), then the performance is the worst, especially for
verbs. Both LOG and LNG help in regularizing the abstract goal representations
(zt and aN), and therefore results improve significantly. Especially, the LNA +
LNG is the best loss combination for a pair of losses. When we combine all
four losses, we get the best results. While LNA + LNG regularizes the learning
of abstract goal representations, LGC which minimizes the divergence between
feature-based and action-based goal distributions improves the choice of next
verb or noun among the plausible candidates. We conclude that all four losses
are important for our model.

4.4 Effect of action-based abstract goal distributions

We demonstrate the efficacy of action-based abstract goal in our model by com-
paring it to a variant of our model having only the feature-based abstract goal
(equivalent to a VRNN) in Table 6. For the feature-based abstract goal (Feat.
abs. goal), we obtain a latent variable zT and the observed action representation
aO from Equation 5. We classify aO using a classifier to obtain the future action
and train using cross-entropy loss and KL-divergence (LOG). We do not have

Table 6. Effect of action-based abstract goal

Model V@1 V@5 N@1 N@5
Abs. Goal (Feat)–mean 27.76 61.23 22.34 46.78
Abs. Goal (Feat)–median 38.13 68.94 23.85 47.56
Abs. Goal (Feat+Act)–mean 39.40 72.23 24.22 48.96
Abs. goal (Feat+Act)–median 44.68 77.14 28.29 53.78

GC criterion when using only the feature abstract goal distribution and hence
we sample 30 candidates for aO and consider their mean or median. The num-
ber of sampled candidates is chosen to match our feature + action abstract goal
model with 30 next action candidates (Q = 3,K = 10). As shown in Table 6,
using action-based abstract goal in conjunction with feature-based abstract goal
performs much better than only feature abstract goal distribution (under both
mean or median prediction).

5 Conclusion

We present a novel approach for action anticipation where abstract goals are
learned with a stochastic recurrent model. We outperform existing approaches
on EK55 and our model generalizes to unseen kitchen environments in both EK55
and EK100 datasets. We also show the importance of goal consistency criterion,
goal consistency loss, next-action representation modeling, and architecture. One
limitation of the current work is the inability to directly interpret the latent
goal representation learned by our model. Second, our method is not able to
tackle long-tail-class distribution issues. In the future, we aim to address these
limitations of our model.
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Abstract. Hand pose represents key information for action recogni-
tion in the egocentric perspective, where the user is interacting with
objects. We propose to improve egocentric 3D hand pose estimation
based on RGB frames only by using pseudo-depth images. Incorporat-
ing state-of-the-art single RGB image depth estimation techniques, we
generate pseudo-depth representations of the frames and use distance
knowledge to segment irrelevant parts of the scene. The resulting depth
maps are then used as segmentation masks for the RGB frames. Exper-
imental results on H2O Dataset confirm the high accuracy of the esti-
mated pose with our method in an action recognition task. The 3D hand
pose, together with information from object detection, is processed by a
transformer-based action recognition network, resulting in an accuracy
of 91.73%, outperforming all state-of-the-art methods. Estimations of
3D hand pose result in competitive performance with existing methods
with a mean pose error of 28.66 mm. This method opens up new possi-
bilities for employing distance information in egocentric 3D hand pose
estimation without relying on depth sensors. The code is available under
https://github.com/wiktormucha/SHARP.

Keywords: Egocentric · 3D hand pose · Action recognition

1 Introduction

In recent years, one of the growing research areas in computer vision has been
egocentric vision, as evidenced by the increasing number and size of published
datasets EPIC-KITCHENS [6], Ego4D [14], H2O [16] and release of devices like
Ray-Ban Stories, Apple Vision Pro or HoloLens. One of the challenges in egocen-
tric vision is understanding human-object interaction based on hand pose estima-
tion and action recognition [11,16]. The hand pose estimation task is described
as the challenge of estimating the position of key points representing the joints
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Fig. 1. Overview of our method. In the sequence of input frames f1, f2, f3 . . . fn repre-
senting the action, SHARP improves the estimation of the 3D hand pose Ph3D

L,R,n. The
bounding box of the manipulated objects Po2Dn with their labels Pol are retrieved using
YOLOv7 [27]. Pose information is embedded in a vector describing each frame. The
sequence of vectors is processed by the transformer-based network to predict action.

of a human hand in two or three-dimensional space. Estimated positions are a
valuable source of information for recognising the actions performed by a cam-
era wearer, linking these two tasks. Egocentric action recognition research is of
great importance in various domains, including augmented and virtual reality,
nutritional behaviour analysis, and Active Assisted Living (AAL) technologies
for lifestyle analysis [21] or assistance [17]. As AAL technologies mainly target
Activities of Daily Living (ADLs) such as drinking, eating and food preparation,
which are inherently manual and involve object manipulation, there’s a growing
interest in research focused on hand-based action recognition.

Current work on egocentric hand-based action recognition focuses on 3D hand
pose [7,16,26] using a single RGB camera. As a result, these studies regress z
coordinate from RGB frames, which introduces complexity and results in pose
prediction errors of around 40 mm [15,16,26] (equivalent to a 20.5% error con-
sidering an average human hand size of 18 cm), which is far from the desired
performance, especially considering that publicly available datasets for egocen-
tric hand pose are captured in a laboratory environment. Accurate pose predic-
tion is essential for hand-based action recognition [18]. The improvement in 3D
prediction could be further enhanced by the use of a depth sensor, but there’s
currently no portable depth sensor on the market. Despite market availability,
an additional sensor would add undesired costs due to power and processing
requirements. Data growth for training and research is another constraint, as
labelling key points in 3D space is difficult and requires, for example, a labo-
ratory multi-view camera setup [16,22]. All these circumstances create a need
and motivate our research to explore new techniques and solutions to improve
egocentric 3D pose estimation based on RGB images only.
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Our study proposes the use of pseudo-depth images, depth images gener-
ated from a single RGB image using state-of-the-art depth estimation methods.
The resulting distance representation of the scene does not contain real depth
values, but it allows for the removal of non-relevant information in the scene
depending on the distance. In an egocentric perspective, human arms have a
constant maximum distance from the camera because the camera is mounted in
a fixed position on the human body. This characteristic allows for the removal
of the values representing the parts of the scene beyond this distance, leaving
the input image of a hand pose estimation network with only hands and manip-
ulated objects visible. We call this process Segmentation of Hands and Arms
by Range using Pseudo-depth (SHARP). This solution requires no additional
sensors; it can be applied to any RGB input data; no additional training of the
depth estimation model is required; and compared to background subtraction
based on image sequences, only a single RGB image is required. These advan-
tages are confirmed by a performance improvement of 7 mm, reducing the mean
pose error from 35.48 mm to 28.66 mm from the baseline. The overview of the
method is presented in Fig. 1. Our contribution can be listed as follows:

– Inspired by superior egocentric hand pose estimation in 2D over other meth-
ods, we extend the state-of-the-art EffHandEgoNet [18] to 3D pose estimation,
resulting in a new architecture called EffHandEgoNet3D.

– On the top of EffHandEgoNet3D we propose SHARP module, a novel idea
for egocentric scene segmentation to improve hand-object interaction under-
standing. A state-of-the-art depth estimation model is used to generate
a pseudo-depth scene representation. Furthermore, the generated distance
knowledge is used to remove irrelevant information in the scene with a fixed
distance over the range of the human arms, resulting in the preservation of
the human arms and the interacting object. SHARP requires no additional
training and can be applied to any egocentric RGB data. The proposed archi-
tecture outperforms several state-of-the-art studies, achieving a mean error
of 28.66 mm on the H2O Dataset.

– We implement an action recognition network based on a transformer archi-
tecture. It uses previously estimated 3D hand pose and 2D object detection
information as input. The network outperforms the state-of-the-art on the
H2O Dataset, including methods that use more information e.g. 6D object
pose, reaching 91.73% action recognition accuracy.

– We present extensive experiments and ablations performed on H2O Dataset,
showing the influence of the proposed scene segmentation method on the
performance of 3D hand pose estimation in the egocentric perspective.

The structure of the paper is as follows: In Sect. 2, we review related research
on egocentric 3D hand keypoint estimation, hand-based action recognition, and
depth estimation using a single RGB image, and identify opportunities for
improvement. Section 3 details our approach and its implementation. Our evalu-
ation and experimental results are presented in Sect. 4. Finally, Sect. 5 concludes
the study, summarising its main findings and limitations.
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2 Related Work

Egocentric Hand Pose Estimation. Hand pose estimation in egocentric
vision faces challenges such as self-occlusion, limited field of view, and diverse
perspectives, which hinder effective generalisation. Some approaches overcome
these obstacles by using RGB-D sensors [11,19,31]. However, the adoption of
depth sensors is hampered by limited market availability, directing towards self-
made solutions and increasing computing and power costs. Due to device limi-
tations, several studies estimate 3D keypoints from RGB images only by using
neural networks that estimate the z coordinate representing depth along x and y,
followed by a conversion from 2D to 3D space using intrinsic camera parameters
[16,26]. For example, Tekin et al. [26] compute the 3D pose of a hand directly
from a single RGB image using a convolutional neural network (CNN) that out-
puts a 3D grid with the probability of target pose values in each cell. Similarly,
Kwon et al. [16] extend this approach to estimate poses for both hands. However,
these methods report a mean end-point error (EPE) of 37 mm for hand pose esti-
mation in the H2O dataset, suggesting room for improvement given the average
human hand size of 18 cm. Cho et al. [5] use CNNs with transformer-based net-
works for 3D pose reconstruction on a frame-by-frame basis, while Wen et al.
[30] propose a sequence-based approach for depth reconstruction that addresses
occlusion challenges.

Egocentric Action Recognition. A common strategy for action recogni-
tion involves the joint processing of hand and object information. Cartas et
al. [3] proposes CNN-based object detectors to estimate the positions of primary
regions (hands) and secondary regions (objects). Temporal information from
these regions is then processed by a Long Short-Term Memory (LSTM) network.
Nguyen et al. [20] Transition from bounding box information to 2D skeletons of a
single hand estimated by CNN from RGB and depth images. The joints of these
skeletons are aggregated using spatial and temporal Gaussian aggregation, and
action recognition is performed using a learnable Symmetric Positive Definite
(SPD) matrix. With the rise of 3D-based hand pose estimation algorithms, the
scientific community has increasingly focused on egocentric action understand-
ing using 3D information [7,16,26]. Tekin et al. [26] estimate 3D hand and object
poses from a single RGB frame using a CNN, embedding temporal information
to predict action classes using an LSTM. Other techniques use graph networks,
such as Das et al. [7], who present a spatio-temporal graph CNN architecture
that describes finger motion using separate subgraphs. Kwon et al. [16] construct
sub-graphs for each hand and object, which are merged into a multigraph model,
allowing learning of interactions between these components. Wen et al. [30] use
a transformer-based model with estimated 3D hand pose and object label input.
Cho et al. [5] enrich the transformer inputs with object pose and hand-object
contact information. However, these studies do not make use of depth data.
Instead, they estimate points in 3D space using neural networks and intrinsic
camera parameters [5,16,26,30].
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Depth Estimation from Single RGB Image. Recent advances in depth
estimation have relied on CNNs for direct regression of scene depth from input
images [9]. These methods often struggle to generalise to unconstrained scenes
due to the limited diversity and size of the training data. Garg et al. [12] pro-
posed the use of calibrated stereo cameras for self-supervision, which simpli-
fies data acquisition but maintains constraints on specific data regimes. Despite
subsequent self-supervised approaches [13], challenges remain, particularly for
dynamic scenes. Efforts to overcome these limitations include crowd-sourced
annotation of ordinal relationships [4], but existing datasets are often biased or
lack dynamic objects, making it difficult to generalise to less constrained environ-
ments. In response, Ranftl et al. [24] propose tools for mixing multiple datasets,
even with incompatible annotations. Their approach incorporates a robust train-
ing objective, principled multi-objective learning, and emphasises pre-training of
encoders on ancillary tasks. By training on five different sources, including a rich
dataset of 3D movies, they outperform state-of-the-art depth estimation models
in zero-shot cross-dataset performance. As an extension of this work, Ranftl et
al. [23] present DPT-Hybrid and DPT-Large architectures enhanced with dense
prediction transformers, which use vision transformers instead of CNNs, further
improving the performance of depth estimation.

What distinguishes our work from other studies of egocentric 3D hand pose
is the use of a depth estimation that we incorporate into SHARP module. Using
state-of-the-art single RGB image depth estimation techniques, we generate a
pseudo-depth representation of the image without any additional equipment.
Knowing that the distance of the human arms from the camera in an egocentric
view is constant, we then use this generated depth image to segment irrelevant
information from the scene using a fixed distance threshold, thereby unifying
the dataset for hand pose estimation. This methodology ensures that the hand
pose estimation model only considers hands and manipulated objects, thereby
increasing accuracy and efficiency, and can be applied to any RGB dataset.

3 Egocentric 3D Hand Pose Estimation and Action
Recognition Enforced With Pseudo Depth

The study considers the tasks of egocentric 3D hand pose estimation and action
recognition. These two tasks are correlated but significantly different, so the
methodology is described separately for each.

3.1 Egocentric 3D Hand Pose with Pseudo-depth Segmentation

In the first stage, each RGB frame fn undergoes processing with SHARP mod-
ule which consists of a depth estimation model DPT-Hybrid [23], yielding a
pseudo-depth representation IDn of the frame fn. This pseudo-depth map is then
normalised with its maximum value max(IDn ). As human arms have a constant
maximum range we utilise this characteristic. Subsequently, a fixed threshold t
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Fig. 2. Overview of the proposed egocentric 3D hand pose estimation method. First,
the RGB image is processed with the SHARP module. Within SHARP, the pseudo-
depth image is generated using the DPT-Hybrid. This distance representation is used to
remove irrelevant scene information using a fixed threshold of the human arm range t.
Secondly, the SHARP output is passed through a 3D hand pose estimation network.

is applied to the pseudo depth map IDn to remove the non-relevant scene part.
The resultant depth map, devoid of background interference, serves as a segmen-
tation mask for the fn. Segmentation of fn with IDn results in ISEG

n where the
RGB image contains only human arms and a manipulated object.

The processed ISEG
n ∈ R

3×w×h, w, h = 512 is then inputted into a 3D hand
pose estimation network, named EffHandEgoNet3D, which is an extension of
the state-of-the-art 2D egocentric hand pose network, EffHandEgoNet [18], tai-
lored for 3D estimation. EffHandEgoNet3D comprises an EfficientNetV2-S [25]
backbone which extract feature map representation of ISEG

n FM ∈ R
1280×16×16.

Extracted feature map FM is handed to two independent upsamplers for each
of the hands and MLPZ

L,R estimating keypoints’ depth. Despite pose estima-
tion, the handness modules responsible for predicting each hand’s presence

Fig. 3. Our action recognition procedure. From the sequence of frames f1, f2, f3...fn
the hand pose Ph3D

L,R is estimated with SHARP and EffHandEgoNet3D model and
the object pose Po2D, Pol is extracted with YOLOv7 [27]. Each sequence frame fn
is linearised and positional embedding and classification tokens are added. Next, this
sequence is passed to a transformer encoder [8] repeated ×2 times, which embeds the
temporal information. Finally, the MLP predicts one of the 36 action labels.
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hL, hR ∈ R
2 are built from another MLPH

L,R. The upsamplers consist of three
transposed convolutions with batch normalisation and ReLU activation except
the last layer followed by a pointwise convolution. Output results are heatmaps
HL,R ∈ R

J×w×h where each cell represents the probability of joint J occurrence
for each hand. In the next step they are transformed into P2D

L,R and concate-
nated with estimated corresponding z values resulting in P2.5D

L,R . The final step
utilises camera intrinsic parameters to transform P2.5D

L,R using the pinhole camera
model to camera space resulting in P3D

L,R. The overview of the complete method
is visible in Fig. 2.

3.2 Egocentric Action Recognition Based on 3D Hand Pose

We perform egocentric action recognition from image sequences using estimated
3D hand pose and 2D information about interacting object. The actions consid-
ered in this study are those in which humans manipulate objects with one or
both hands, such as pouring milk or opening a bottle. An overview of the pipeline
is shown in Fig. 3. It consists of three distinct components: object detection, 3D
hand pose estimation, and finally action recognition using a transformer encoder
and a classification MLP. The architecture improves egocentric action recogni-
tion based on the 2D hand pose introduced in EffHandEgoNet study [18]. The
first step in the pipeline is object detection, which is carried out employing the
pre-trained YOLOv7 network [27]. In each frame, denoted as fn, the interacting
object is represented by Po2D(x, y) ∈ R

4×2, where each point corresponds to the
corners of its bounding box. Additionally, Pol ∈ R

1 represents object’s label.
The representation of each action sequence consists of frames

[f1, f2, f3, ..., fn], where n ∈ [1..N ] and N = 20 following [18]. These frames
embed flattened poses of hands Ph3D

L,R and object Po2D, Pol. If fewer than N
frames represent an action, zero padding is applied, while actions longer than
N frames are sub-sampled. The input vector Vseq is a concatenation of frames
fn ∈ R

135.
fn = [Ph3D

L , Ph3D
R , Po2D, Pol] (1)

Vseq = [f1, f2..fn], n ∈ [1..N ] (2)

The sequence vector representing an action Vseq is processed to embed tem-
poral information with a transformer encoder block following [18]. First, Vseq is
linearised using a fully connected layer to xlin. The resulting xlin is combined
with a classification token and a positional embedding. The embedded sequence
is passed to MLP for classifying the action.

4 Experiments

4.1 Datasets

In this evaluation, we focus exclusively on the H2O Dataset [16] due to its suit-
ability for our research objectives. This dataset captures human actions from
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an egocentric perspective, providing labels for action recognition and 3D hand
pose of both hands. At the time of this study, there are only two other publicly
available datasets with similar characteristics required for our study, such as
AssemblyHands [22] and HoloAssist [29]. While HoloAssist is potentially valu-
able, the hand pose labels have not yet been released. AssemblyHands is excluded
due to images captured by infrared cameras, which are incompatible with the
DPT-Hybrid depth estimation model designed for RGB input.

H2O Dataset is a comprehensive resource for analysing hand-based actions and
object interactions involving two hands. It includes multi-view RGB-D images
annotated with action labels covering 36 different classes derived from verb and
object labels. It also includes 3D poses for both hands, resulting in j = 2 × 21
points, and 6D poses and meshes for the manipulated objects. Ground truth
camera poses and scene point clouds further enrich the dataset. The actions
captured in the dataset were performed by four people. For both the action
recognition and hand pose estimation tasks, the dataset provides training, val-
idation and test subsets. The action recognition subset contains 569 clips for
training, 122 for validation and 242 for testing.

4.2 Metrics

To evaluate the hand pose estimation and compare our work with the state of the
art, we calculate the Mean Per Joint Position Error (MPJPE) in millimetres over
21 keypoints J representing the human hand. This error metric quantifies the
Euclidean distance between the predicted and ground truth values. For action
recognition, we use the top-1 accuracy measure, where the model’s prediction
must exactly match the expected ground truth to be considered accurate.

4.3 Experiment Setup

For both learning processes, each run is repeated three times to reduce the
effect of random initialisation of the network, and mean results with standard
deviations are reported.

3D Hand Pose Estimation is trained and evaluated on H2O Dataset. The
optimisation is done using Stochastic Gradient Descent (SGD) over the sum-
marised loss function including Intersection over Union (IoU) for each upsam-
pler and L1 loss for predicted corresponding depth values. The process starts
with a learning rate lr = 0.1 and momentum equal to m = 0.9. Over time lr is
reduced by α = 0.5 every 10th epoch starting from the 50th epoch. the data is
augmented with random cropping, horizontal flipping, vertical flipping, resizing,
rotating and blurring. The batch size is equal to bs = 32. Model weights are
saved for the smallest MPJPE in the validation subset.

Action Recognition module requires object detection. For this, we fine-tune
YOLOv7 on the H2O Dataset using the open-source strategy reported by the
authors. The training of the action recognition includes the augmentation of
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the sequence vectors with keypoints using random rotation and an additional
strategy with random masking of either the hand, the object positions or the
label. This is done by setting the corresponding values of the hand or object
in the frame fn to zero. We follow [16,26,32] and use given poses in training.
Input sequence frames are randomly sub-sampled during training and uniformly
sub-sampled for validation and testing. Models are trained with a batch size
bs = 64, AdamW optimiser, cross-entropy loss function, and a learning rate
lr = 0.001 reduced by a factor of 0.5 every 200 epochs after 500 epochs. Hyper-
parameters and augmentations are selected based on the best-performing set in
the validation subset. Weights are stored for best validation accuracy.

4.4 Comparison with State of the Art

Our architecture with SHARP gives an average MPJPE in hand pose of 29.61±
0.71 mm in three consecutive runs with the best run MPJPE equal to 28.66 mm.
The qualitative results shown in Fig. 4 confirm the improvement in 3D hand
pose estimation when using SHARP, but also show that SHARP can lead to a
degradation in performance if too much information is reduced from the scene.
Further, we employ the estimated 3D hand pose using SHARP in the proposed
action recognition architecture. It yields an average of 90.90% ± 0.67 over three
runs, with the best model yielding an accuracy of 91.73%. Comparison with state
of the art for egocentric 3D hand pose estimation is presented in Table 1. Table 2
presents a comparison of state-of-the-art action recognition methods and their
results on the H2O Dataset reported by the authors. To ensure a fair comparison,
the table provides details regarding the inputs of the action recognition modules.
For both tasks, we follow other studies [1,5,18,26,30] and report our best results.

We measure the inference times of our methods for the hand pose estimation
task for a single frame and for a complete action recognition pipeline for a single
action. The evaluation is performed by averaging the inference times over 1000
trials on the NVIDIA GeForce RTX3090 GPU for reliability. The results are
shown in Fig. 5, where the upper part shows the hand pose performance and the
lower part shows the action recognition. Our methods are compared with HTT

Table 1. Results of 3D hand pose estimation provided in mm in camera space.

Method Year MPJPE Left ↓ MPJPE Right ↓ MPJPE Both ↓
LPC [15] 2020 39.56 41.87 40.72

H+O [26] 2019 41.42 38.86 40.14

H2O [16] 2021 41.45 37.21 39.33

HTT [30] 2023 35.02 35.63 35.33

H2OTR [5] 2023 24.40 25.80 25.10

THOR-Net [1] 2023 36.80 36.50 36.65

Ours Now 30.31 27.02 28.66
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Fig. 4. Qualitative results of our method in 2D and 3D space. Green skeletons represent
the ground truth hand pose, red estimations without SHARP and blue estimations
with SHARP . Images are annotated with a predicted action label for the represented
sequences. Two examples from the left show that SHARP improves 3D pose estimation.
On the right, the 3D error increases as SHARP partially loses the right hand. (Color
figure online)

[30] and H2OTR [5] as they are the only open-source implementations that allow
such a comparison on the H2O Dataset at the time of this study.

SHARP estimates the egocentric 3D hand pose with the second best result,
being faster ≈ ×2.4 than the best H2OTR [5] with 13M fewer parameters and
only a 3mm performance penalty. Our action recognition outperforms all state-
of-the-art methods and infers ≈ ×2.6 faster with 12M fewer parameters than
the second best H2OTR [5].

4.5 Ablation Studies

To further evaluate our approach, we conduct extensive ablation studies. All
experiments are performed with a fixed number of seeds to ensure reproducibility
by eliminating the effect of random initialisation.

The Range of Human Arms in Training. The most important part of
our architecture is the pseudo-depth-based distance segmentation, which aims
to remove irrelevant information from the processed scene, except for the human
hands and the manipulated object. It raises the key question of what value of
distance should be used as the threshold t. In the case of pseudo depth obtained
with DPT-Hybrid, the depth values are normalised, where t ∈< 0, 1 >. To select
t, we first observe the dataset samples and choose values that lead to the preser-
vation of hands and objects only. However, as it is based on estimation, the
behaviour is not the same for all samples for the same t and none of these values
can be considered good without being proven with performance. In the second
step, we search for the best performance by retraining the architecture for each
of these t ∈ {0.35, 0.39, 0.43, 0.47, 0.51}. The results highlight t = 0.47 as the
highest performance value and we observe the performance decrease above and
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Fig. 5. Inference time for 3D hand pose estimation per single frame and action recog-
nition accuracy per single action of state-of-the-art methods on H2O Dataset. Each
method is visualised as a circle whose size represents the number of trainable parame-
ters. SHARP inference is ≈ ×2.5 faster than H2OTR [5] with better action recognition.

below this value, proving the usability of the proposed method. All results are
presented in the left sub-figure of Fig. 6.

The Range of Human Arms in Inference. Following the choice of t in
training, we examine the choice of t in testing for the best-performing model
with t = 0.47 in training. We run tests for t ∈ {0.35, 0.39, 0.43, 0.47, 0.51}. All
results are shown in the right subplot of Fig. 6. The effect of t is significantly
lower than in training and does not affect performance much.

Pseudo-depth-Based SHARP Module. We evaluate SHARP ’s impact on
the egocentric 3D hand pose estimation performance. The proposed architecture
is retrained according to the previously described process without the SHARP
module, using only unsegmented RGB images representing the full scene. The
network reduced by the SHARP module in a fixed seed run achieves an MPJPE
of 35.48 mm compared to 28.66 mm obtained with SHARP. The result is refer-
enced in Table 3 as Ablation I. The process is repeated three times to reduce the
random effect of network initialisation and to strengthen the justification of the
idea. The average of the three runs without the SHARP module is 35.34 ± 0.17,
while with SHARP, the performance improves to 29.61±0.71 mm, demonstrating
the high importance of the proposed architecture.
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Table 2. Results in accuracy of action recognition methods on H2O Dataset. Inputs
of methods are: Img stands for semantic features extracted from an image using CNN
network, Hand Pose and Obj Pose stand for pose information type for hands and
objects, and Obj Label stands for object label. Results origin from referenced studies.

Method Year Img Hand Pose Obj Pose Obj Label Acc. ↑
C2D [28] 2018 � ✗ ✗ ✗ 70.66

I3D [2] 2017 � ✗ ✗ ✗ 75.21

SlowFast [10] 2019 � ✗ ✗ ✗ 77.69

H+O [26] 2019 ✗ 3D 6D � 68.88

ST-GCN [32] 2018 ✗ 3D 6D � 73.86

TA-GCN [16] 2021 ✗ 3D 6D � 79.25

HTT [30] 2023 � 3D ✗ � 86.36

H2OTR [5] 2023 ✗ 3D 6D � 90.90

EffHandEgoNet [18] 2024 ✗ 2D 2D � 91.32

Ours Now ✗ 3D 2D � 91.73

Fig. 6. Figures showing the results of the 3D hand pose estimation error in MPJPE
as a function of the segmentation threshold t. The left figure shows the performance
with different thresholds used for training and the right figure shows the performance
for the best trained model with t = 0.47 and different t during inference.

Oracle Depth-Based SHARP Module. SHARP uses the state-of-the-art
depth estimation network DPT-Hybrid. Like any deep learning architecture, this
model is prone to errors. On the other hand, with progress in architecture devel-
opment, depth estimation networks will improve in the future, leading to an
improvement in the performance of our method. To highlight this potential, we
retrain the network with an oracle ground truth depth image provided in the
H2O Dataset. The depth image represents the distance in mm from a camera.
For this reason, we choose t = 700 mm. The results are superior, achieving
an MPJPE of 25.09 mm, better than any state-of-the-art method at the time
of this study. The experiment is referred as Ablation II in Table 3. This per-
formance demonstrates the potential of our approach when fed with less noisy
pseudo-depth data.
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De-sharpening of Segmentation Mask. The segmentation mask, derived
from a pseudo-depth scene representation, consists of sharp edges surrounding
the human arms and the manipulated object, based on a distance. Depth esti-
mation is prone to error, and in some scenes, this sharp-edge segmentation leads
to the loss of parts of the image that represent relevant information, e.g. human
hand. This negative effect can be reduced in two ways, by changing the seg-
mentation threshold as shown in Fig. 7(a) or by de-sharpening the edges. The
effect of the de-sharpening process is presented in Fig. 7(b). In this ablation, we
observe the effect of edge de-sharpening by blurring the mask derived from the
pseudo-depth scene representation. Performance drops to 37.25 mm, highlighting
the usefulness of the SHARP module only with accurate masking.

Fig. 7. On the left, frame processed with SHARP and different values of t. On the right,
the same frame processed with SHARP, t = 0.47 and with de-sharpening applied.

Table 3. Results of ablations studies with different depth image types used in SHARP.
All results provided in mm in camera space for left, right and both hands.

Depth MPJPE Left ↓ MPJPE Right ↓ MPJPE Both ↓
Ours Estimated 30.31 27.02 28.66

Ablation I ✗ 32.95 38.01 35.48

Ablation II Ground Truth 21.31 28.86 25.09

Ablation III Est.+De-sharpen 39.49 35.01 37.25

5 Conclusion

In this study, a 3D hand pose estimation model has been developed for the
egocentric perspective. The novelty of the proposed architecture lies in the
SHARP module, which uses pseudo-depth scene representation obtained through
a monocular depth estimation model. Thanks to the characteristic of a fixed cam-
era to a user in the egocentric perspective and a constant range of human arms,
the distance information is used to remove irrelevant information from the scene.
Experiments with our network showed an improvement in performance of 7 mm
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in the MPJPE metric when using SHARP, with the best result of MPJPE equal
to 28.66 mm placing as the second best result on the H2O Dataset. The further
potential of the SHARP module was confirmed with the use of the ground truth
depth image, resulting in the best result of all state-of-the-art methods equal
to 25.09 mm. Furthermore, estimated 3D hand poses were used alongside object
detection as input for the action recognition model, where each frame is described
by a vector containing the 3D hand pose and the object bounding box, and their
sequence is embedded using a transformer-based network. The results obtained
on H2O Dataset, which includes actions where one hand or two hands interact
with objects, resulted in 91.73% accuracy, outperforming the state-of-the-art.

Our study shows that using pseudo depth to remove irrelevant information
in the egocentric scene with current state-of-the-art monocular depth estima-
tion methods improves 3D hand pose performance. The quality of pseudo depth
correlates with pose estimation error and requires a sharp and accurate repre-
sentation of human hands in the scene. In the future, with the advancement of
depth estimation networks, this approach has a chance to improve hand pose
estimation tasks further, leading to more accurate action recognition.
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Abstract. In this work, the problem of cross-environment generaliza-
tion in WiFi Channel State Information (CSI)-based localization and
Human Activity Recognition (HAR) models within through-wall sce-
narios is addressed, highlighting an area that remains underexplored.
A comprehensive evaluation is conducted to investigate the effective-
ness of various methodologies, including CSI feature selection, feature
scaling, dimensionality reduction, and data augmentation techniques, in
improving model robustness to environmental variations. The evaluation
is based on a dataset collected over three days in environments exhibit-
ing both static and dynamic variations, featuring synchronized CSI and
3D trajectory data of human activities, which is made publicly available
at https://zenodo.org/records/10925351. The findings reveal that plain
CSI amplitude features consistently outperform other types in achiev-
ing superior generalization in through-wall scenarios. Furthermore, it is
found that while dimensionality reduction techniques like PCA, ICA,
and UMAP do not enhance model generalization, feature scaling and
data augmentation can significantly improve both localization and HAR
performance in the presence of static and dynamic environmental varia-
tions.

Keywords: WiFi · Through-Wall Sensing · Generalization ·
Localization · Activity Recognition

1 Introduction

In the field of person-centric sensing, WiFi has gained significant attention as a
sensing modality due to its advantages over optical approaches, including cost-
effectiveness, unobtrusiveness, and visual privacy protection [2,17], as well as
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its unique ability to penetrate walls for long-range sensing in confined indoor
environments [7]. This capability is particularly useful for applications such as
through-wall Human Activity Recognition (HAR), which offers potential eco-
nomic benefits by enabling the monitoring of human activities across vast indoor
environments without the need for per-room sensor deployment [23]. Central to
the advancement of WiFi-based sensing is Channel State Information (CSI),
enabled by the Orthogonal Frequency-Division Multiplexing (OFDM) scheme
introduced in the 802.11a standard. CSI provides a granular view of how WiFi
signals, distributed across multiple subcarrier frequencies, interact with their
environment, thereby capturing the dynamic variations in signal propagation
caused by human activities [19]. Despite its potential in person-centric sensing
applications, the sensitivity of CSI to environmental variations poses significant
challenges for generalizing WiFi-based sensing systems to new environments and
scenarios in practice [4,12]. This issue is especially pronounced in through-wall
scenarios, a subset of Non-Line-of-Sight (NLoS) scenarios, where the environ-
mental impact on WiFi signals is intensified by the complex signal behavior
due to reflection, diffraction, refraction phenomena, and attenuation by building
materials, which are often varied and unknown [32].

Contributions. In response to the highlighted challenges, this work explores the
impact of CSI-based feature selection, feature scaling, dimensionality reduction,
and data augmentation techniques on the generalization capabilities of localiza-
tion and activity recognition models within through-wall scenarios. Our com-
prehensive evaluation spanning three consecutive days captures both static and
dynamic environmental variations, alongside long-term hardware variations, to
assess the robustness of model generalization. To stimulate further research into
overcoming the challenges of WiFi-based person-centric sensing across diverse
environments, the dataset underlying our evaluation is made publicly available1.

2 Related Work

The central goal of cross-domain WiFi sensing is the generalization of models to
new, unseen environments. A comprehensive survey on the state of cross-domain
WiFi sensing is presented by Chen et al. [4], discussing domain-invariant fea-
ture extraction, virtual sample generation, transfer learning, few-shot learning,
and big data approaches, as well as open challenges limiting practical appli-
cability. Our work falls into the categories of domain-invariant feature extrac-
tion and virtual sample generation. One method of virtual sample generation
involves spatial and temporal perturbations to CSI amplitude and phase spec-
trograms, as explored in [20,24]. Furthermore, noise injection [8], or subcarrier-
level dropout [25] have been proposed for enhancing model cross-domain and
cross-system generalization. The exploration of derivative features such as Power
Spectral Density (PSD) and first-order differences for enhancing model robust-
ness across Line-of-Sight (LoS) and NLoS scenarios are documented in [28] and

1 Dataset, https://zenodo.org/records/10925351.

https://zenodo.org/records/10925351
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[1], respectively. Furthermore, the UniFi system [14] introduces the use of person
location and orientation for gesture recognition, showing progress towards envi-
ronmental independence. Another system, AirFi [27], exemplifies the strategy
of extracting environment-independent features to facilitate model generaliza-
tion to new environments without additional data collection. In [12], a data
augmentation approach based on MixUp [31] that addresses long-term vari-
ations in CSI, is proposed. Furthermore, dimensionality reduction techniques
such as Principal Component Analysis (PCA) and Independent Component
Analysis (ICA) have been shown to improve performance in LoS HAR scenar-
ios [10], and Uniform Manifold Approximation and Projection (UMAP) has also
been shown to enhance WiFi fingerprint-based localization performance [21,29].
Despite these advancements, model generalization in through-wall scenarios has
not been extensively studied, which leaves a significant gap in our understand-
ing of complex signal interactions with building materials and their effect on
person-centric sensing performance [32]. Our work addresses this by evaluating
the effectiveness of these methods for through-wall scenarios, aiming to enhance
the development of robust, generalizable WiFi-based person-centric sensing sys-
tems.

3 Experimental Setup

This section outlines our experimental setup, detailing the WiFi system
employed, the physical layout of the evaluation environment as well as
transmitter-receiver arrangement, and the procedure followed to gather the
dataset underlying our evaluation.

3.1 WiFi System

To collect the data required for our evaluation, we employ the WiFi system
proposed in [25]. This system integrates CSI sensing and processing hardware
within a compact, 3D-printed enclosure. At its core is the ESP32-S3-DevKitC-
1U 2, which features the ESP32-S3-WROOM-1U 3 microcontroller for WiFi con-
nectivity and CSI access via ESP-IDF (See Footnote 1). In WiFi-based person-
centric sensing, the built-in printed inverted F-antenna (PIFA)4 of the ESP32s
is commonly leveraged. However, its omnidirectionality and low gain of 2 dBi
limit the ability to constrain the recording environment, making it susceptible
to external noise [23]. To address this problem and facilitate WiFi-based person-
centric sensing in long-range scenarios, the system described in [25] substitutes
the PIFA with the ALFA Network APA-M25 5, a USD 20 dual-band directional
panel antenna with a 66◦ horizontal beam width and 8dBi gain at 2.4GHz. This

2 Espressif ESP32-S3-DevKitC-1U, https://docs.espressif.com, accessed: 12-03-2024.
3 Espressif ESP32-S3-WROOM-1U, https://docs.espressif.com, accessed: 12-03-2024.
4 ESP32 PIFA, https://www.ti.com, accessed: 12-03-2024
5 ALFA Network APA-M25, https://alfa-network.eu/apa-m25, accessed: 12-03-2024

https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf
https://www.ti.com/lit/an/swra117d/swra117d.pdf
https://alfa-network.eu/apa-m25


Generalization of WiFi-Based Person-Centric Sensing in Through-Wall 197

antenna is connected to the I-PEX MHF1 connector of the ESP32-S3-WROOM-
1U module. The resulting WiFi system, featuring high gain and directionality,
is well suited for the through-wall scenarios investigated in this work. We deploy
the system in a point-to-point transmitter-receiver arrangement, where one of
two identical devices serves as the transmitter, sending WiFi packets at a fixed
frequency of 100Hz. The other device functions as the receiver, continually listen-
ing for WiFi packets. A WiFi connection between the transmitter and receiver
is established using the wireless communication protocol, ESP-NOW 6. WiFi
packets are captured on the receiver unit’s integrated Nvidia Jetson Orin Nano
7 via ESP-IDF.
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Fig. 1. Evaluation environment layout over three consecutive days: (a) layout on days
1 and 2, and (b) layout on day 3, featuring static environmental variations due to furni-
ture rearrangement. The transmitter-receiver arrangement and the designated activity
area remain fixed throughout the experiment.

3.2 Evaluation Environment

Figure 1a illustrates the layout of our experimental setup, which consists of a
central room of interest where activities are conducted, flanked by two adjacent
rooms housing the transmitter and receiver, respectively. The central room, filled
with typical office furniture such as chairs, tables, and shelves, measures 6m ×
5m. Due to physical constraints, the area designated for activities (highlighted
in blue) is smaller than the room itself, covering 4m × 2.5m. The transmitter
and receiver units are positioned in a point-to-point arrangement, spanning a dis-
tance of 7.2m, as depicted. The two walls separating the transmitter and receiver
are constructed from plasterboard, each with a thickness of 0.1m. Furthermore,
an additional component of our setup is a WiFi webcam within the room that
6 ESP-NOW, https://docs.espressif.com, accessed: 12-03-2024.
7 Nvidia Jetson Orin Nano, https://developer.nvidia.com, accessed: 12-03-2024.

https://www.espressif.com/en/solutions/low-power-solutions/esp-now
https://developer.nvidia.com/buy-jetson?product=all&location=US
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streams video to the receiver which allows us to determine start and end points
of activity sequences. Our experiment, aimed at capturing static, dynamic, and
temporal variations in the WiFi signal and assessing their impact on model
generalization, spans three consecutive days. On the first two days, the environ-
ment remains unchanged, as shown in Fig. 1a. However, on the third day, static
environmental variations are introduced by rearranging large furniture pieces
along with small to medium-sized objects in the room, as illustrated in Fig. 1b.
Therefore, compared to day 1, days 2 and 3 exhibit both dynamic (variations in
activity execution) and temporal environmental variations, with day 3 addition-
ally featuring static environmental variations, thus posing a greater challenge
from a generalization standpoint. To ensure the comparability of results across
different days (especially concerning the localization problem), the positions of
the transmitter and receiver remain fixed throughout the experiment.

3.3 Data

To assess model generalization in the presence of static, dynamic, and tempo-
ral environmental variations for person localization (3D position regression) and
activity recognition, we gather a dataset of synchronized WiFi packets and tra-
jectory data of an individual. We choose to use a single participant to eliminate
variations due to physiological differences, as this well-known type of domain
variation is already covered by existing datasets, and including multiple par-
ticipants makes it more challenging to isolate the effects of static and dynamic
environmental variations. Our focus is specifically on dynamic activity and static
environmental variations in through-wall scenarios, as no existing dataset offers
such a clear separation. This distinction makes our dataset a unique and valuable
benchmark for developing generalization methods tailored to through-wall sce-
narios. The activities, categorized as walking, sitting, and lying, with examples
provided in Fig. 2, are recorded over three consecutive days. Each day features
five activity-class sequences, each lasting five minutes. During the walking activ-
ity, the individual moves freely within the area, avoiding chairs. For sitting, they
alternate between two chairs, incorporating random head, arm, and leg move-
ments to increase sample variability. Lastly, in the lying activity, we simulate a
fall detection scenario where the person struggles on their back and slides around,
as depicted in Fig. 2c. The raw data collection involves simultaneously record-
ing WiFi packets and egocentric video using a chest-mounted camera while the
individual engages in activities within the activity area, as depicted in Fig. 1a.
Ground truth locations are derived from egocentric videos using ORB-SLAM3
[3]. To ensure temporal alignment between CSI and location time series, visual
cues from the WiFi webcam mark the start and end of the CSI series, aiding in
the removal of redundant samples. Moreover, to match the CSI’s 100Hz sampling
rate, the originally 30Hz-sampled location time series are linearly up-sampled.
The resulting dataset, the basis of our evaluation, comprises over 1.2 million
samples, including WiFi CSI, 3D location, and class labels, and is made pub-
licly available (See Footnote 1). The detailed distribution of samples across days
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and activity classes is documented in Table 1. For model training, data exclu-
sively from day 1 is used, following an 8:2 split for training and validation. Data
from days 2 and 3 are reserved for testing. Notably, day 3 data contains fewer
lying activity samples, due to the exclusion of two sequences owing to trajectory
estimation errors.

Fig. 2. Day 1 examples of the activity classes walking, sitting, and lying.

Table 1. Distribution of data samples across days and activity classes: walking, sitting,
and lying.

Day walking sitting lying all classes

1 105.288142.242149.803 397.333
2 110.146181.991181.332 473.469
3 152.504150.338 87.935 390.777
Total 367.938474.571419.070 1.261.579

4 Methods

We evaluate a range of methods aimed at enhancing model generalization in
through-wall scenarios. The evaluation is grounded in feature selection, includ-
ing amplitude, phase, first-order differences, and PSD, to identify the most
effective CSI-based features. Subsequent analyses focus on feature scaling tech-
niques, such as max-min scaling and z-normalization, and explore dimensionality
reduction methods, namely PCA, ICA, and UMAP. Additionally, we investigate
perturbation-based data augmentation techniques tailored for CSI data in the
image domain. The methodologies employed are detailed in the sections that
follow.
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4.1 CSI Feature Selection

In the domain of WiFi-based person-centric sensing, the primary features
extracted from CSI are the amplitude and phase. The CSI metric within OFDM
systems captures the changes in amplitude and phase across subcarrier frequen-
cies of a signal transmitted between a transmitter and a receiver. Following the
notation in [10], the estimated received signal vector y is expressed as y = Hx+η,
where H is the CSI matrix, x is the transmitted signal vector, and η ∼ N (μ,Σ)
represents an additive Gaussian noise vector. The components of H are complex
numbers hi = Aie

jφi, indicating the Channel Frequency Response (CFR) for the
ith subcarrier, where amplitude Ai and phase φi are computed using the real
R(hi) and imaginary I(hi) parts:

Ai =
√

(I(hi))2 + (R(hi))2 (1)

φi = atan2(I(hi),R(hi)). (2)

Fig. 3. Examples of (a) CSI amplitude, A[t], and (b) phase matrices, P[t], for a person
walking in a through-wall scenario are presented. These images display the amplitude
and phase of 52 L-LTF subcarriers across a time span of approximately 1.5 s, equivalent
to 150 WiFi packets.

Given that human activities typically extend over certain periods of time,
CSI from a selection of subcarriers S across a number of WiFi packets w is used,
forming a S×w CSI matrix H[t], where t is the time or packet index, as depicted
in Eq. 3. From this, using the Eqs. 1 and 2, amplitude A[t] and phase matrices P[t]
are derived which can be fed to a deep learning algorithm to perform WiFi-based
person-centric sensing tasks. Exemplary visual representations of A[t] and P[t]
are presented in Fig. 3, illustrating the temporal amplitude and phase variations
induced by a person walking.

H[t] =

⎡

⎢⎢⎢
⎣

h1[t − �w
2 �] h1[t − �w

2 � + 1] · · · h1[t + �w
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As environmental variations impact these amplitude and phase features,
models trained on such data may face generalization problems across dif-
ferent environments. To address this, first-order difference (temporal differ-
ence) features based on amplitude or phase are proposed [1,6], capturing the
change between consecutive time steps rather than absolute values, thus poten-
tially enhancing environmental generalization. First-order difference features are
defined as follows:

hΔ[t] = h[t] − h[t − 1]. (4)

Applying Eq. 4 to the CSI time series h yields the first-order difference time
series hΔ, from which HΔ[t], and subsequently the first-order difference ampli-
tude AΔ[t] and phase matrices PΔ[t], can be extracted. Finally, Power Spectral
Density (PSD), which translates the CSI time-series data h into the frequency
domain via the Fast Fourier Transform (FFT), offers another alternative for fea-
ture extraction. The PSD is computed for each subcarrier across a window size
w, leading to the PSD matrix PSD[t]:

hPSD[t] =
|FFT(h[t])|2

w
. (5)

4.2 Feature Scaling

Max-min scaling (or min-max normalization) is a feature scaling technique used
in machine learning to normalize the range of independent variables or features
of data. It scales the features to a fixed range, typically 0 to 1, by subtracting
the minimum value of the feature and then dividing by the range of the feature.
This process ensures that all inputs have a similar scale, which can help improve
the performance and convergence speed of learning algorithms. In the context of
CSI-based sensing, we can apply max-min scaling to the feature matrix F [t] as
shown in Eq. 6, where maxF and minF represent the maximum and minimum
values of the feature time series F , respectively.

F [t]
′
=

F [t] − minF

maxF − minF
(6)

Z-normalization (or standardization) is another popular feature scaling tech-
nique that involves subtracting the feature mean and then dividing it by the stan-
dard deviation, resulting in features with a mean of 0 and a standard deviation
of 1. This process helps in reducing bias and improving the performance of algo-
rithms sensitive to the variance in data, such as gradient descent-based methods
and algorithms assuming features with Gaussian distribution. Z-normalization
is applied to a feature matrix F [t] as shown in Eq. 7, where μF and σF represent
the mean and standard deviation of F , respectively.

F [t]
′
=

F [t] − μF

σF
(7)
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4.3 Dimensionality Reduction

Dimensionality reduction techniques such as Principal Component Analysis
(PCA) [11], Independent Component Analysis (ICA) [5], and Uniform Mani-
fold Approximation and Projection (UMAP) [18] are foundational across various
disciplines, primarily for their capacity to distill complex datasets into a more
manageable form. For WiFi-based person-centric sensing, these dimensionality
reduction techniques offer promising strategies for dealing with high-dimensional
data, potentially enhancing model performance and generalization.

PCA compresses datasets by projecting them onto a new coordinate system
defined by principal components, which are directions of maximum variance.
This approach not only reduces the dimensionality but also manages to eliminate
noisy OFDM subcarriers [10], thereby enhancing model performance. ICA distin-
guishes itself by separating multivariate signals into independent non-Gaussian
components. This is especially beneficial in multi-person scenarios within WiFi-
based sensing, where it helps identify original signal sources from complex mix-
tures (blind source separation problem) [30]. UMAP, on the other hand, offers a
non-linear approach to dimensionality reduction, effectively maintaining both the
local and global structure of high-dimensional data. This method is valuable for
exploring complex patterns within data, facilitating insights into intricate rela-
tionships that linear techniques like PCA might overlook. Applied to WiFi-based
indoor localization, UMAP has demonstrated potential in enhancing model per-
formance [21,29].

4.4 Data Augmentation

To enhance model generalization in through-wall scenarios, we investigate the
effectiveness of four random perturbation-based data augmentation techniques:
random magnitude, circular rotation along the time axis, horizontal flipping
(time axis inversion), and dropout. These methods address the challenge of tem-
poral signal variability due to hardware drifts and environmental variations,
which can prevent model generalization [12,20].

Random magnitude applies a global scaling factor s to a feature matrix F [t],
introducing variability in feature magnitude. This scaling is defined in Eq. 8,
where s and x denote scale factor and magnitude, respectively. This technique
aims to simulate real-world variations in the WiFi signal (e.g., long-term ampli-
tude variations), potentially making the model more robust to such variations.

F [t]
′
= F [t]s, with s ∼ U(1 − x, 1 + x) (8)

Circular rotation involves shifting the elements of F [t] circularly along the
time axis, effectively simulating temporal shifts in recorded activities. A specific
number of shifts, either to the left or right, introduces temporal diversity to the
dataset. As demonstrated in [24], this technique can improve generalization by
presenting the model with varied sequences of activities.
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Horizontal flipping inverts the sequence of events in F [t], providing a reversed
view of the time series. Inspired by techniques used in the image domain, this
approach offers a simple way to increase dataset diversity.

Dropout, traditionally used as a regularization technique, is adapted here at
the subcarrier and packet levels to mimic destructive interference effects. Unlike
typical dropout applications where elements are simply zeroed, our version sets
the value of dropped-out elements to the feature mean μF , maintaining the over-
all structure of CSI data while introducing randomness. Dropout is implemented
as described in Eq. 9, with M [t] being the binary dropout matrix, ¬M [t] being
its negation and � representing the Hadamard product. We employ subcarrier-
and packet-wise dropout [22]. For subcarrier-wise dropout, elements in M [t] are
sampled independently from a Bernoulli distribution with probability p. For
packet-wise dropout, the entries in M [t] are sampled on a per-column basis.

F [t]
′
= Dμ(F [t], p) = F [t] � M [t] + ¬M [t]μF (9)

5 Evaluation

The effectiveness of the methods described in Sect. 4 is evaluated through an
ablation study, where we train deep learning models for the joint goal of 3D
person localization and activity recognition using the discussed techniques. The
EfficientNetV2 small architecture [26], implemented in torchvision.models8 is
chosen for this purpose due to its lightweight design, training speed, and repro-
ducibility. To support the joint objective, we modify the EfficientNetV2 small
architecture by incorporating an extra head for the 3D regression task. An imple-
mentation of this modified architecture is provided (See footnote 1).

5.1 Model Training

All models are trained exclusively with data collected on day 1, divided into
training and validation subsets at an 8:2 split ratio. A balanced random sam-
pler is employed to mitigate class imbalance effects. The modified Efficient-
NetV2 small architecture, tailored for dual objectives of person localization and
activity recognition, is trained with the AdamW optimizer [16] and a cosine
annealing learning rate scheduler [15]. For regression and classification tasks,
Mean Squared Error (MSE) and Cross-Entropy (CE) losses are combined in the
loss L = MSE + CEα. The coefficient α = 0.4, chosen to balance the tasks
and prevent overfitting on classification, is determined via a hyperparameter
search across α ∈ {0.1, 0.2, ..., 1.0}. Further optimization for the learning rate
l ∈ {0.0001, 0.0005, 0.001, 0.0015, 0.002}, batch size b ∈ {4, 8, 16, 32, 64, 128},
and window size w ∈ {51, 101, 151, ..., 351, 401, 451} yields the optimal param-
eters l = 0.001, b = 32, and w = 351 (∼3.5 s at a 100Hz packet sending rate)
which are used for all training runs.

8 PyTorch torchvision.models, https://pytorch.org, accessed: 12-03-2024.

https://pytorch.org/vision/stable/models/efficientnetv2.html,
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Training is conducted in two stages. Initially, we assess the generalization of
CSI features, including amplitude, phase, first-order amplitude and phase differ-
ences, and PSD. Following this, the feature that shows the best performance is
chosen as a baseline. We then apply feature scaling, dimensionality reduction,
and data augmentation to this baseline to further enhance model generalization.
For each configuration, we conduct three independent, from-scratch training runs
spanning 25 epochs, where we select the model checkpoint with the lowest val-
idation loss as the definitive model. Finally, we report the mean and standard
deviation for metrics such as Root Mean Squared Error (RMSE), Precision (P),
Recall (R), F1-score (F1), and Classification Accuracy (ACC), based on the test
data from days 2 and 3.

Table 2. Generalization performance of models trained on amplitude (A), phase (P),
first-order difference of amplitude (AΔ), first-order difference of phase (PΔ), and PSD
features (PSD). All models are trained on day 1 data using an 8:2 training-validation
split and tested on days 2 and 3. The "Day" column indicates the data used: day 1
for validation and days 2 and 3 for testing, with all sequences from each test day used
without splitting. Metrics are presented as the mean and standard deviation across
three independent training runs.

Model Day RMSE [m] ↓ P ↑ R ↑ F1 ↑ ACC ↑
A 1 (val.) 0.364 ± 0.0097.81 ± 0.4999.12 ± 0.1098.46 ± 0.2399.55 ± 0.11

P 1 (val.) 0.512 ± 0.02 74.34 ± 8.16 91.66 ± 2.93 81.96 ± 6.24 91.50 ± 2.92

AΔ 1 (val.) 0.596 ± 0.02 79.71 ± 5.39 92.50 ± 2.03 85.58 ± 3.98 93.03 ± 1.99

PΔ 1 (val.) 0.708 ± 0.01 62.48 ± 1.32 80.18 ± 1.84 70.22 ± 1.16 80.23 ± 1.70

PSD 1 (val.) 0.415 ± 0.01 92.81 ± 0.76 97.56 ± 0.39 95.13 ± 0.56 97.97 ± 0.47

A 2 (test)0.587 ± 0.0279.38 ± 2.5982.94 ± 3.2281.12 ± 2.8983.36 ± 3.21

P 2 (test) 0.886 ± 0.03 46.33 ± 4.45 48.78 ± 2.50 47.49 ± 3.50 48.97 ± 2.63

AΔ 2 (test) 0.689 ± 0.02 63.35 ± 2.79 67.81 ± 2.50 65.51 ± 2.66 68.18 ± 2.53

PΔ 2 (test) 0.948 ± 0.02 38.73 ± 3.30 40.46 ± 1.36 39.55 ± 2.32 40.73 ± 1.39

PSD 2 (test) 0.588 ± 0.01 76.46 ± 0.87 80.11 ± 1.47 78.24 ± 1.15 80.57 ± 1.50

A 3 (test)0.904 ± 0.0177.52 ± 2.8780.63 ± 4.6779.04 ± 3.7181.16 ± 4.57

P 3 (test) 0.951 ± 0.02 64.74 ± 3.56 66.81 ± 6.62 65.72 ± 5.04 67.36 ± 6.55

AΔ 3 (test) 0.972 ± 0.03 71.35 ± 0.07 76.92 ± 0.30 74.03 ± 0.14 77.64 ± 0.30

PΔ 3 (test) 0.962 ± 0.03 64.06 ± 1.71 73.81 ± 2.50 68.58 ± 1.93 74.27 ± 2.44

PSD 3 (test) 0.939 ± 0.01 67.97 ± 0.46 71.69 ± 0.37 69.78 ± 0.36 72.21 ± 0.24

5.2 Results

CSI Feature Selection. Table 2 presents the performance of models utilizing var-
ious CSI features: amplitude (A), phase (P), first-order difference in amplitude
(AΔ), first-order difference in phase (PΔ), and PSD (PSD). The models show
a decline in performance on days 2 and 3 compared to the first day (validation),
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highlighting a significant domain gap that negatively affects generalization. This
performance drop aligns with our experimental design, which introduces tempo-
ral and dynamic environmental variations on day 2 and adds static environmental
variations on day 3.

Among the CSI features evaluated, A demonstrates the best generalization
capability, achieving the lowest RMSE and highest P, R, F1, and ACC on both
days 2 and 3. Compared to P, A shows a 50.94% and 5.19% reduction in RMSE
and a 41.25% and 17.00% increase in ACC on days 2 and 3, respectively, under-
scoring its superiority in our through-wall scenario. PSD features rank second
in generalization performance, with PSD recording the lowest RMSE on both
days and the highest P, R, F1, and ACC on day 2, only to be surpassed by AΔ

in these metrics on day 2. P exhibits the poorest generalization. Despite the
theoretical assumption that first-order difference features are less environmen-
tally dependent [1,6], our results indicate otherwise in through-wall scenarios.
Although AΔ shows promising classification performance on day 2, it and PΔ

are outperformed by models utilizing plain amplitude features A. This finding is
consistent with LoS scenarios [10], where our day 2 results (without static envi-
ronmental variations) are directly comparable to the medium and large-scale
person-centric sensing experiments conduced. Notably, comparing the feature
performance rankings, with A at the top and first-order difference phase features
PΔ at the bottom, suggests that feature selection effectiveness in LoS scenarios
translates well to through-wall scenarios.

In summary, our evaluation reveals that in through-wall scenarios, opting
for features other than amplitude provides no significant advantage. A not only
responds better to environmental variations but also offers greater computa-
tional efficiency than derivative features like first-order differences or PSD. Con-
sequently, A is chosen as the baseline for evaluating the effectiveness of feature
scaling, dimensionality reduction and data augmentation techniques.

Feature Scaling. The results of applying feature scaling methods are detailed
in Table 3. Utilizing max-min scaling, denoted as Amm, results in consistent
improvements in the baseline performance, represented by A, across both local-
ization and classification metrics on days 2 and 3. Conversely, z-normalization,
indicated by Az, improves localization accuracy on days 2 and 3 but exhibits a
slight decrease in classification performance on these days when compared to the
baseline. While max-min scaling displays marginally better generalization capa-
bilities than z-normalization, the observed differences are minimal and could be
attributed to variability in model training. Therefore, our findings do not con-
clusively favor either max-min scaling or z-normalization as the superior feature
scaling technique.

Dimensionality Reduction. The performance of models trained on amplitude
features subjected to dimensionality reduction using PCA (APCA_d), ICA
(AICA_d), and UMAP (AUMAP_d) is detailed in Table 3. The number d in the
model names signifies the reduced dimensionality, which was optimized through
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Fig. 4. Comparison of dimensionality reduction techniques on day 1 data, showing a)
PCA, b) ICA, and c) UMAP projections down to three dimensions (visualizing 0.5%
of day 1 samples). We observe that neither PCA nor ICA effectively separates activity
clusters. In contrast, UMAP distinguishes most samples associated with the walking
activity from the combined cluster of sitting and lying activities.

a hyperparameter search within the range d ∈ {2, 3, 4, ..., 52}, utilizing day 1 val-
idation data to determine the best d values for each method. This search yielded
an optimal dimensionality of 42 for PCA, 24 for ICA, and 48 for UMAP. The
configuration of additional UMAP parameters is provided in the supplementary
material.

Our evaluation of dimensionality reduction techniques shows that none of
the applied methods enhance performance metrics beyond the baseline. PCA
and UMAP demonstrate comparable performance levels, with PCA having a
slight edge on day 2 and UMAP on day 3. In contrast, ICA leads to signifi-
cant performance degradation, with a reduction in ACC of 21.55 % on day 2
and 33.67 % on day 3 relative to the baseline. Figure 4 illustrates the three-
dimensional projections of day 1 data using PCA, ICA, and UMAP, showcasing
UMAP’s ability to distinguish walking samples from the conjoined clusters of
sitting and lying more effectively than PCA and ICA. Despite this advantage
in data visualization, UMAP does not lead to better localization and classifi-
cation performance compared to PCA on the validation set. UMAP’s emphasis
on preserving local structures for visualization might lead to a loss of predic-
tive information, in contrast to PCA’s approach of retaining global variance,
which could be more relevant for certain predictive tasks. While some studies
have reported improved model performance in WiFi-based person-centric sens-
ing tasks with these methods [9,21], our results in through-wall scenarios do not
support these findings.

Data Augmentation. In our effort to enhance model robustness and general-
ization in through-wall scenarios, we evaluate the impact of various data aug-
mentation techniques on amplitude features. This investigation includes random
amplitude perturbations, dropout, circular rotation, and horizontal flipping, with
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Table 3. Effects on model generalization performance of max-min scaling (A), z-
normalization (Az), PCA (APCA_42), ICA (AICA_24), UMAP (AUMAP_48), data
augmentation AAUG, max-min scaling with data augmentation (AmmAUG) and z-
normalization with data augmentation (AzAUG). All models are trained on day 1 data
using an 8:2 training-validation split and tested on days 2 and 3. The "Day" column
indicates the data used: day 1 for validation and days 2 and 3 for testing, with all
sequences from each test day used without splitting. Metrics are presented as the mean
and standard deviation across three independent training runs.

Model Day RMSE [m] ↓ P ↑ R ↑ F1 ↑ ACC ↑
A (baseline) 1 (val.) 0.364 ± 0.00 97.81 ± 0.49 99.12 ± 0.1098.46 ± 0.2399.55 ± 0.11

Amm 1 (val.) 0.363 ± 0.01 97.41 ± 0.28 98.70 ± 0.20 98.05 ± 0.23 99.26 ± 0.24

Az 1 (val.) 0.356 ± 0.01 98.04 ± 0.17 98.71 ± 0.10 98.37 ± 0.06 99.45 ± 0.05

APCA_42 1 (val.) 0.360 ± 0.01 97.58 ± 0.16 98.60 ± 0.15 98.08 ± 0.06 99.49 ± 0.04

AICA_24 1 (val.) 0.770 ± 0.28 64.54 ± 25.4 69.18 ± 25.6 66.73 ± 25.4 69.33 ± 25.4

AUMAP_48 1 (val.) 0.467 ± 0.01 93.54 ± 1.14 97.78 ± 0.33 95.61 ± 0.76 98.19 ± 0.19

AAUG 1 (val.) 0.347 ± 0.00 97.92 ± 0.76 98.93 ± 0.21 98.42 ± 0.48 99.32 ± 0.20

AmmAUG 1 (val.) 0.350 ± 0.01 97.70 ± 0.36 98.86 ± 0.18 98.27 ± 0.23 99.25 ± 0.11

AzAUG 1 (val.) 0.343 ± 0.00 97.91 ± 0.11 98.82 ± 0.06 98.37 ± 0.08 99.33 ± 0.14

A (baseline) 2 (test) 0.587 ± 0.02 79.38 ± 2.59 82.94 ± 3.22 81.12 ± 2.89 83.36 ± 3.21

Amm 2 (test) 0.542 ± 0.06 80.48 ± 3.45 83.19 ± 3.58 81.81 ± 3.52 83.54 ± 3.65

Az 2 (test) 0.573 ± 0.02 78.53 ± 0.82 82.77 ± 2.03 80.59 ± 1.34 83.10 ± 2.04

APCA_42 2 (test) 0.601 ± 0.05 76.46 ± 1.84 80.72 ± 2.82 78.53 ± 2.30 81.07 ± 2.88

AICA_24 2 (test) 0.796 ± 0.16 61.79 ± 12.8 65.13 ± 13.8 63.42 ± 13.3 65.40 ± 14.0

AUMAP_48 2 (test) 0.720 ± 0.02 72.23 ± 1.44 72.06 ± 2.10 72.14 ± 1.77 72.23 ± 2.11

AAUG 2 (test)0.500 ± 0.02 82.20 ± 1.46 86.23 ± 1.37 84.17 ± 1.42 86.52 ± 1.38

AmmAUG 2 (test) 0.503 ± 0.01 84.22 ± 0.1987.60 ± 0.7285.88 ± 0.4488.00 ± 0.75

AzAUG 2 (test) 0.527 ± 0.02 82.80 ± 1.91 86.18 ± 2.21 84.45 ± 2.05 86.51 ± 2.22

A (baseline) 3 (test) 0.904 ± 0.01 77.52 ± 2.87 80.63 ± 4.67 79.04 ± 3.71 81.16 ± 4.57

Amm 3 (test) 0.887 ± 0.01 81.91 ± 7.5983.31 ± 8.1582.60 ± 7.8683.89 ± 8.07

Az 3 (test) 0.896 ± 0.01 77.67 ± 2.19 80.00 ± 2.36 78.82 ± 2.24 80.69 ± 2.29

APCA_42 3 (test) 0.948 ± 0.02 66.18 ± 6.89 68.32 ± 8.07 67.23 ± 7.46 68.89 ± 8.01

AICA_24 3 (test) 1.012 ± 0.04 52.99 ± 15.6 53.46 ± 15.5 53.19 ± 15.5 53.83 ± 15.8

AUMAP_48 3 (test) 0.913 ± 0.01 74.56 ± 2.36 79.24 ± 1.78 76.83 ± 2.09 79.91 ± 1.72

AAUG 3 (test)0.871 ± 0.00 77.93 ± 4.00 79.68 ± 3.74 78.79 ± 3.84 80.31 ± 3.64

AmmAUG 3 (test) 0.872 ± 0.02 79.71 ± 1.97 82.10 ± 2.75 80.88 ± 2.35 82.76 ± 2.76

AzAUG 3 (test) 0.880 ± 0.02 79.94 ± 2.05 82.02 ± 1.82 80.97 ± 1.93 82.61 ± 1.86

optimal parameters identified through a comprehensive hyperparameter search.
For conciseness, we include detailed results in the supplementary material. Our
findings reveal that neither random amplitude perturbations nor dropout con-
sistently improve performance over the baseline on days 2 and 3. This lack of
improvement is attributed to the temporal stability of our WiFi system, reflected
by minimal variation in mean ± standard deviation measurements across days
(day 1: 12.90 ± 2.33, day 2: 12.90 ± 2.27, day 3: 12.77 ± 2.55), indicating that
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such perturbations diverge from the inherent data distribution and result in
degraded test performance.

Contrastingly, random circular rotations and horizontal flipping significantly
enhance localization and classification performance. Specifically, circular rotation
with a magnitude of ±12.5 % (or ±43 samples) (AAUG), as detailed in Table 3,
delivers the largest improvement, reducing RMSE by 14.82 % on day 2 and 3.65
% on day 3. Furthermore, this technique increases ACC by 3.98 % on day 2,
while rotations of ±6.25 % enhance ACC by 2.24 % on day 3, suggesting opti-
mal rotation magnitudes may be dataset-specific. To determine if the benefits of
these augmentations are additive, we combine circular rotations at ±12.5 % with
horizontal flipping. This combination leads to a 14.31 % reduction in RMSE on
day 2 and a 2.10 % reduction on day 3, alongside a 3.42 % increase in ACC on
day 2 but a decrease of 1.66 % on day 3. Hence, this approach slightly under-
performs compared to using circular rotation augmentation alone, highlighting
the complex interactions between different augmentation techniques.

Finally, combining circular rotations at ±12.5 % with max-min scaling
(AmmAUG) and z-normalization (AzAUG), we observe that max-min scaling
yields improved performance. While RMSE on both days remains stable, day 2
experiences the highest F1 and ACC scores at 85.88 % and 88.00 %, respectively.
On day 3, there is a noticeable improvement over the baseline, yet AmmAUG does
not surpass Amm in classification performance, indicating that max-min scal-
ing’s effectiveness may depend on its combination with specific augmentation
techniques.

6 Limitations and Future Work

Our evaluation highlights the superior generalization of plain amplitude features
in through-wall scenarios, consistent with findings from LoS scenarios [10]. How-
ever, our scenarios represent only a subset of potential domain variations. Future
work should explore a broader range of scenarios, including different transmitter-
receiver arrangements, antenna types, and diverse physiological characteristics
of multiple participants to validate the robustness and transferability of our find-
ings across various real-world contexts. Another promising area for exploration
is the combination of multiple CSI features. For example, combining ampli-
tude and phase features could enhance model performance [13]. Investigating
these combinations may yield significant improvements in generalization capa-
bilities. Our analysis, which first selects a baseline feature and then evaluates
additional methods based on this baseline, opens avenues for further research into
non-selected features. Features such as PSD, paired with complementary meth-
ods, could achieve comparable or superior generalization performance. Exploring
these alternatives will provide a more comprehensive understanding of feature-
method interactions and their impacts on model performance. To further vali-
date our findings and place our work in the context of related studies, conducting
generalization experiments using other publicly available WiFi CSI datasets is
essential. This critical next step will help ascertain the broader applicability
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and robustness of our methods. We also observed that traditional dimensional-
ity reduction techniques like PCA, commonly effective in LoS scenarios, did not
enhance performance in through-wall scenarios. This suggests unique charac-
teristics of through-wall propagation that warrant deeper investigation. Future
research could focus on developing dimensionality reduction techniques better
suited to through-wall scenarios.

In summary, while our evaluation provides a strong foundation, there are
numerous opportunities for expanding and validating our findings. By explor-
ing diverse scenarios, combining multiple CSI features, conducting generaliza-
tion experiments with additional datasets, investigating alternative features and
methods, and refining dimensionality reduction techniques, future research can
significantly advance the development of robust through-wall person-centric sens-
ing systems.

7 Privacy and Ethical Considerations

WiFi-based sensing technology introduces significant privacy and ethical consid-
erations due to its ability to monitor individuals without explicit consent. While
this technology can be highly beneficial, especially in privacy-sensitive applica-
tions like assisted living where it can serve as a visual-privacy preserving alterna-
tive to optical modalities [2], its use must be carefully managed to prevent misuse.
The primary concern is the potential for unauthorized monitoring, as WiFi sig-
nals can penetrate walls, raising the risk of inadvertent surveillance [9]. Ethical
deployment of this technology requires obtaining informed consent from those
being monitored and ensuring transparency about data collection and usage.
Robust privacy-preserving mechanisms, such as data anonymization, stringent
access controls, and data security measures, should be implemented to mitigate
privacy risks. Additionally, the use of WiFi-based sensing should be restricted to
environments where there are clear benefits and explicit user consent has been
obtained. By addressing these privacy and ethical issues, WiFi-based sensing can
be leveraged responsibly and effectively, ensuring that the technology respects
individuals’ privacy and upholds ethical standards.

8 Conclusion

In this work, we conducted a comprehensive evaluation of methods to enhance
model generalization in through-wall person-centric sensing scenarios, focusing
on CSI feature selection, feature scaling, dimensionality reduction, and data
augmentation techniques. Our approach involved collecting a dataset over three
days, including CSI and 3D trajectory data across three activity classes under
static, dynamic, and temporal environmental variations, which is made publicly
available to stimulate further research on generalizable person-centric sensing in
through-wall scenarios (See Footnote 1). Our findings reveal that, in through-
wall scenarios, models leveraging plain amplitude features consistently demon-
strate superior generalization across environmental variations. This superiority
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is further enhanced through the application of feature scaling methods such as
max-min scaling and z-normalization, as well as data augmentation techniques
such as random circular rotation and horizontal flipping. Contrary to expecta-
tions, our exploration into dimensionality reduction methods, including PCA,
ICA, and UMAP, did not yield improvements in model generalization, suggest-
ing that findings on LoS scenarios are not directly transferable to through-wall
scenarios.
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Abstract. Egocentric Action Recognition (EAR) has gained significant
attention due to its widespread applicability in lifestyle analysis, medi-
cal monitoring, and industrial robotics, among other real-world scenarios.
However, existing EAR methods are built on the closed-set assumption,
making it challenging to handle unknown actions inevitably present in
open-world scenarios and struggling to meet the dual requirements of
accuracy and reliability while providing decisions. To address the Open-
set EAR problem, this paper presents a Open-set Egocentric Action
Recognition (OpenEAR) framework, advancing beyond traditional ego-
centric action recognition methods. OpenEAR distinguishes itself by
adeptly handling unknown actions in open-world scenarios, a notable
limitation in conventional EAR models. Utilizing large-scale pre-trained
models and refined architecture, OpenEAR excels in semantic extrac-
tion from egocentric videos. Its unique incorporation of Evidential Deep
Learning (EDL) allows for uncertainty estimation, enhancing predic-
tion reliability. This novel approach not only recognizes known actions
and objects but also quantifies prediction confidence, effectively manag-
ing unknown elements. Demonstrated superior performance on EPIC-
KITCHENS-55 and EGTEA Gaze+ datasets underlines OpenEAR’s
robustness and practicality, marking a significant leap from existing
methods. The OpenEAR framework is available at https://github.com/
zou-y23/OpenEAR.

Keywords: Egocentric action recognition · Open-set recognition ·
Uncertainty estimation

1 Introduction

The emergence of egocentric Video Action Recognition (VAR) represents a sig-
nificant turning point in the field, driven by the widespread use of wearable
technologies such as smart glasses. These devices have fundamentally altered
data collection methods, offering a first-person perspective that is especially rel-
evant in areas like augmented reality and robotics [1]. This perspective enables
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15315, pp. 212–228, 2025.
https://doi.org/10.1007/978-3-031-78354-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78354-8_14&domain=pdf
https://github.com/zou-y23/OpenEAR
https://github.com/zou-y23/OpenEAR
https://doi.org/10.1007/978-3-031-78354-8_14


Open-Set Egocentric Action Recognition 213

Fig. 1. In closed-set conditions, the system accurately identifies the action and object
as "cutting celery". In open-set conditions, the system correctly labels seen classes but
may misidentify unseen classes, such as mistaking a "cutting carrot" action for "cutting
celery". Open-set EAR approaches can correctly identify actions while acknowledging
unknown objects, improving the recognition accuracy.

a deeper understanding of the user’s interactions, enhancing user experience
across various applications, from personal assistance to healthcare monitoring
and interactive gaming.

However, egocentric VAR faces unique challenges, particularly in Open-Set
Recognition (OSR). In OSR, systems need to identify both familiar and novel
action categories [2,3], labeling the latter as "unknown", as illustrated in Fig.
1. This necessity arises from the limitations of closed-set environments, where
classifiers are trained and tested on predetermined categories. The real world, in
contrast, constantly presents new actions, demanding adaptability from recogni-
tion systems. Current research in egocentric VAR, largely focused on closed-set
scenarios, often fails to address the complexities of open-set environments effec-
tively. This shortcoming underscores the need for systems capable of recognizing
a broad spectrum of actions with high accuracy and reliability, especially when
encountering novel, unseen actions.

The application of methodologies from exocentric VAR [4,5] to egocentric
videos reveals distinct limitations. While exocentric VAR has advanced through
significant research and the development of sophisticated models and datasets,
these do not readily apply to egocentric VAR. The challenges stem from differ-
ences in data characteristics and the contextual interpretation of actions between
the two perspectives. Egocentric videos, often unprocessed and subject to motion
blur, require simultaneous action and object recognition, such as predicting the
verb "cutting" and the noun "celery" in Fig. 1, a demand less critical in exocen-
tric VAR.

In response to these challenges, this paper introduces OpenEAR, a novel
framework tailored for open-set egocentric VAR. OpenEAR leverages a large-
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scale pre-trained model, undergoing specific architectural modifications to align
with the complex scenarios of egocentric videos. These adjustments ensure
that OpenEAR can effectively handle the diverse, uncurated content typical of
first-person footage. Additionally, OpenEAR integrates the EDL approach [6],
employing deep neural networks to predict Dirichlet distributions of class prob-
abilities. This methodology is particularly adept at managing the uncertainty
associated with unknown actions, a critical feature for open-set environments.
By incorporating EDL, OpenEAR enhances its ability to recognize unfamiliar
actions, addressing a key challenge in open-set egocentric VAR and advancing
the field towards more adaptable and robust action recognition systems. Exper-
iments on two public datasets demonstrate the effectiveness of our proposed
method.

The main contributions of this paper can be summarized as follows:

– We present OpenEAR, an innovative framework designed for action recogni-
tion within egocentric video streams under open-set conditions.

– OpenEAR distinguishes itself from conventional approaches by its dual capa-
bility to discern recognized actions and objects while concurrently evaluating
the certainty of these identifications.

– We have rigorously evaluated OpenEAR, substantiating its efficacy. Mean-
while, we release our code to foster further research and development in the
domain of open-set egocentric video action recognition.

2 Related Work

2.1 Egocentric Action Recognition

Egocentric action recognition is a task aimed at effectively understanding videos
captured from a first-person perspective. The key objective is to identify the
movements of individuals in the video and their interactions with other objects
in the environment. In recent years, to advance research in this field, several
egocentric video datasets have emerged [11,16,17]. These datasets refine actions
into combinations of verbs and nouns, breaking down actions such as "cutting
potatoes" into the verb "cut" and the noun "potatoes".

In current literature, an increasing number of studies point out that objects
present in videos, especially those relevant to the task, play a crucial role in
action recognition [18–20]. Also, other motion cues, such as eye, hand, and
head movements [21,22], are also deemed essential for accurate behavior recogni-
tion. Although object-driven approaches currently lead in performance, motion-
driven methods may contribute additional robustness to models for EAR. There-
fore, hybrid approaches that integrate both object and motion information have
gained growing attention in recent years.

In hybrid-driven deep egocentric video analysis methods, the two-stream net-
work [23] has emerged as a popular model. Initially developed for handling exo-
centric vision, it has been adapted for egocentric videos through refinements. In
this regard, the two-stream network proposed in [24] serves as a representative
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example. One branch employs a self-attention-based graph convolutional network
to capture spatial and short-term temporal information, while the other branch
utilizes a bidirectional recurrent neural network for long-term temporal informa-
tion extraction. Subsequently, in [25], a two-stream network was employed to gen-
erate a hierarchical volumetric representation of the 3D environment, enabling
the recognition of actions through latent positional and contextual cues. As
the natural extension of the two-stream architecture, the development of multi-
stream architectures has increasingly become a research focus [26,27], incorpo-
rating additional branches and diverse input modalities. Moreover, some studies
have introduced elements such as sound modality [28], multi-task learning [29],
and data sampling [30] to enhance the model’s performance and comprehensive
understanding.

In the field of self-centric action recognition, while single/hybrid-driven mod-
els have provided powerful tools for addressing the task of egocentric video action
recognition, there are still some challenges. Firstly, how to effectively utilize both
object and motion information within a model, and combining object classifi-
cation with motion classification to enhance overall action recognition accuracy,
is a complex and challenging problem, especially when dealing with dynamic
real-world scenarios. Secondly, the complexity of two-stream networks may lead
to high computational costs for model training and inference, posing challenges
for real-time applicability in practice. In contrast, the method proposed in this
paper addresses these concerns by constructing a lightweight action recognition
network and introducing uncertainty estimation based on EDL. This approach is
more suitable for scenarios with limited computational resources and unknown
actions in real-world applications.

2.2 Open-set Recognition

The OSR problem, initially gaining prominence in face recognition [31], was for-
mally conceptualized by [2], who introduced a binary Support Vector Machine
(SVM) to distinguish unknown classes. This approach, utilizing additional hyper-
planes for new classes, laid the groundwork for OSR.

With the advent of deep learning, significant strides have been made in OSR
using Deep Neural Networks (DNNs). Bendale et al. [32] proposed OpenMax to
mitigate the open-space risk inherent in DNN models, addressing the limitations
of softmax. Building on this, Ge et al. [33] introduced G-OpenMax, adopting a
generative approach to create unknown samples for DNN training. Generative
Adversarial Networks (GANs) and Variational AutoEncoders (VAEs) have also
been utilized to generate and assess unknown class samples in OSR [34–38].
However, these methods, often focusing on areas like anomaly detection [40],
generalized zero-shot learning [41], and open-world learning [42–44], have limited
direct applicability to action recognition. Therefore, this paper concentrates on
Open-Set Action Recognition (OSAR).

OSAR is more challenging compared to general OSR, with a limited body of
work addressing it. Shu et al. [45] introduced the Open Deep Network (ODN) for
gradually incorporating new classes into action recognition. Bayesian techniques
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for identifying unfamiliar actions have been explored [46–48], and Busto et al.
[49] proposed an open-set domain adaptation method.

Distinguishing our work, we introduce EDL into OSAR, focusing on uncer-
tainty calibration and handling temporal discrepancies in video data. This novel
approach enriches the field of OSAR, offering a more comprehensive solution for
its inherent challenges.

2.3 Evidential Deep Learning

In action recognition, distinguishing between known and unknown samples effec-
tively hinges on developing an Out-Of-Distribution (OOD) scoring function.
Recent studies [6,46,50–52] have highlighted the potential of using uncertainty
predicted by DNNs as a scoring function to identify OOD samples, based on the
premise that OOD samples should exhibit higher uncertainty during inference.

Bayesian Neural Networks (BNNs) have been applied in various computer
vision tasks to model both aleatoric and epistemic uncertainties [50,53,54]. How-
ever, BNNs encounter challenges such as complex posterior inference, the need
for appropriate weight priors, and high computational costs for uncertainty esti-
mation [55].

As an alternative, EDL integrates evidence theory with deep neural networks,
showing promising results in classification [8] and regression [55] tasks. This
paper is a pioneering effort to apply evidence learning to large-scale, uncertainty-
aware egocentric action recognition. By adopting EDL, we enhance the assess-
ment of predicted uncertainties, thereby improving the recognition of unknown
samples in open-set egocentric video action recognition scenarios.

3 Method

The structure and functionality of the OpenEAR model are depicted in Fig.
2. Upon input of a video clip, the model commences with the EAR transformer
blocks, which are responsible for feature extraction. These extracted features are
subsequently funneled into a bifurcated classifier designed to separately process
nouns and verbs. Concurrently, an evidential deep neural network operates in
tandem with the classifier to ascertain the definitive action categories, incorpo-
rating a measure of uncertainty into the determination. The subsequent sub-
sections of the paper delve into a more granular exposition of each constituent
element of the model.

3.1 Unified EAR Transformer

In the domain of egocentric video analysis, the temporal consistency of user
behaviors presents a unique opportunity for action recognition. Recognizing the
pattern that backgrounds usually remain static, user movements are primarily
motion-based, and the objects of interaction do not change frequently, we lever-
age these consistencies to enhance our model. Drawing from the principles out-
lined in [7], our model incorporates a unified EAR transformer. This transformer
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Fig. 2. Architecture of the OpenEAR Framework.

is adept at reducing redundancy across video frames and capturing the temporal
relationships inherent in the data. Similar to [7], our unified EAR Transformer is
comprised of three integral components: Dynamic Position Embedding (DPE),
the Multi-Head Relation Aggregator (MHRA), and the Feed-Forward Network
(FFN). When an egocentric video, denoted as Xev ∈ R

C×T×H×W , is fed into
the system, the model’s learning algorithm unfolds as a structured process,

⎧
⎪⎨

⎪⎩

X = DPE(Xev) + Xev,

Y = MHRA(Norm(X)) + X,

Z = FFN(Norm(Y)) + Y,

(1)

where the DPE is applied to the input egocentric video Xev via a 3D Depth Wise
Convolution (DWConv), which is characterized by zero padding to maintain
the spatial dimensions. The DWConv operation serves to encode the position
information dynamically, taking into account the temporal dimension that is
critical in understanding the sequence of frames in egocentric videos.

The MHRA executes token relation learning through a multi-head fusion
strategy, which can be formalized as

{
Rn(X) = A∗

nVn(XT ),
MHRA(X) = Concat(R1(X);R2(X); . . . ;RN (X))U.

(2)

Given the input tensor X ∈ R
C×T×H×W , it is first reshaped to a sequence

of tokens X ∈ R
C×L, where L = T × H × W . Rn(·) signifies the function of

the Relation Aggregator (RA) in the n-th head. The term U ∈ R
C×C repre-

sents a learnable matrix that integrates the outputs of N different heads. Each
head, within the RA, is tasked with encoding the context of tokens and learning
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token affinities. The tokens undergo a linear transformation to become context
Vn(X) ∈ R

L× C
N , allowing the RA to summarize the context under the guidance

of token affinity A∗
n ∈ R

L×L and ∗ ∈ {local, global}. A pivotal aspect of the
RA is the learning mechanism for the token affinity A∗

n, which is essential for
understanding the relationships between tokens within video sequences.

Within the architecture of the MHRA, the token affinity learning is stratified
across the network’s depth, leveraging both local and global contextual cues. In
the shallow (early) layers of the network, the token affinity is approached as
a learnable parameter matrix, which operates within a local 3D neighborhood.
Here, for a given anchor token Xi, RA learns the local spatiotemporal affinity
between this token and other tokens within a small, defined tube Ωt×h×w

i , as
denoted by

Alocal
n (Xi,Xj) = ai−j

n , j ∈ Ωt×h×w
i , (3)

where an ∈ R
t×h×w represents the set of learnable parameters, and Xj refers

to any neighboring token within Ωt×h×w
i (more details are referenced in [7]).

The term (i − j) indicates the relative index of the token, which is utilized to
ascertain the weight for aggregation.

Conversely, in the deeper layers of the network, token affinity learning
expands to a global scope. Instead of a local neighborhood, the network examines
content similarity across all tokens within the entire video sequence:

Aglobal
n (Xi,Xj) =

eQn(Xi)
TBn(Xj)

∑
j′∈ΩT×H×W

eQn(Xi)TBn(Xj′ )
. (4)

In this equation, Xj can be any token from the global 3D space encompassing
the entire temporal and spatial dimensions T ×H ×W . The functions Qn(·) and
Bn(·) are linear transformations that project the tokens into spaces where their
content-based similarity can be computed. This global view allows the network
to understand the broader context and relationships across the entire video,
which is critical for recognizing actions in egocentric videos where the scene and
user interactions can change dramatically over time.

3.2 Egocentric Action Classifier

In analyzing egocentric videos, our objective is to classify the video Xev into
a set of verb classes, totaling M , and noun classes, numbering N . The action
depicted in the video is deduced from the conjunction of these verb and noun
classifications. As illustrated in Fig. 2, our approach employs dual classifiers to
predict the verb and noun categories independently:

Lv = CLSv(AvgPooling(Z)), (5)

Ln = CLSn(AvgPooling(Z)), (6)

where Z ∈ R
C′×T ′×H′×W ′

represents the output features from the unified EAR
transformer. These features are initially pooled using average pooling to trans-
form the dimensions to R

D, upon which two separate classifiers, one for verbs
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(CLSv) and one for nouns (CLSn), act to map these pooled features to their
respective verb and noun classes. Lv and Ln are the logits predicted by the verb
and noun classifiers respectively and the classification probabilities for verbs
and nouns are finally denoted by Pv = softmax(Lv) and Pn = softmax(Ln),
respectively.

To refine the classification predictions, we employ a modified version of the
soft-target cross-entropy loss, defined as follows:

LSCE =
K∑

j=1

−tj log
exp(L∗

j )
∑K

j=1 exp(L∗
j )

, (7)

where K ∈ {M,N} and ∗ ∈ {v, n}. In this loss function, tj is the binary indicator
within the one-hot encoded vector corresponding to the action label y. The
indicator tj assumes a value of 1 exclusively when the true action label y matches
the class j. This loss function serves to guide the network toward minimizing
the discrepancy between the predicted and true labels, thereby enhancing the
precision of action recognition in egocentric video classification tasks.

3.3 Evidential Action Classification

In the context of K-way uncertainty-aware classification pertinent to our task,
we adopt the principles of EDL as detailed in [8] are employed after both verb
and noun classifiers respectively. This approach effectively quantifies classifica-
tion uncertainty, which is particularly crucial in applications where confidence in
the prediction is as important as the prediction itself. We posit a Dirichlet distri-
bution Dir(P|α) over the categorical probabilities P ∈ R

K , with α ∈ R
K repre-

senting the distribution’s concentration parameters, or the "Dirichlet strength".
The learning process involves minimizing the negative log-likelihood loss func-
tion:

LEDL(α) =
K∑

j=1

tj(log(S) − log(αj)), (8)

where S =
∑

j αj denotes the sum of the Dirichlet concentration parameters
across the K classes, representing the total strength of evidence.

In the testing phase, for a given video Xev, the verb/noun classification
branch, utilizing the unified EAR transformer, produces a vector of non-negative
evidence e ∈ R

K
+ . This evidence vector not only provides the logits for the

outputted probability but also aligns with the framework of subjective logic
and evidence theory. The expected value of the classification probability is then
calculated as E[P] = α/S, where α = e + 1, adhering to the tenets of evidence
theory and subjective logic [9,10]. The measure of classification uncertainty is
estimated by the equation u = K/S, which provides a quantitative assessment
of the confidence in the classification results, with higher uncertainty values
indicating lower confidence and vice versa. In our experiments, the threshold of
uncertainty is set to 0.1. This means that when u ≥ 0.1, the model considers
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it indicative of uncertainty regarding the prediction result, requiring further
processing. Conversely, when u < 0.1, it reflects confidence in the correctness
of the prediction result.

4 Experiments

4.1 Datasets

We utilize two large-scale egocentric datasets: EPIC-KITCHENS-55 [11] and
EGTEA Gaze+ [12], to benchmark the proposed approach.

We divided each original training set into new training and validation subsets.
Given that our method transcends data modality limitations, we employ RGB
videos as the default medium for training and testing. We categorize the datasets
into "seen" and "unseen" subsets. For the "seen" subsets, we further segregated
them into training, validation, and testing sets in an 8:1:1 ratio. Concurrently,
for the "unseen" subsets, we further segmented them based on the known status
of the action category, yielding three subsets: "action unseen", "object unseen",
and "both action and object unseen".

To assess the OOD performance and uncertainty estimation capabilities of
our OpenEAR, we randomly selected a specified number of samples from the
unknown segments to substitute a defined proportion (25%, 50%) of the samples
in the test sets, thereby constructing new test sets inclusive of unknown classes.

4.2 Baselines

In our experimental evaluation, we benchmarked the performance of the pro-
posed OpenEAR model against two contemporary approaches: Hierarchical Tem-
poral Transformer (HTT) and Deep Evidential Action Recognition (DEAR).

The HTT model, as described in [13], is an end-to-end framework that empha-
sizes the extraction and utilization of temporal information for action recogni-
tion in egocentric videos. The design of HTT is streamlined to enable end-to-end
training, allowing the model to leverage the temporal dimension of video data
and facilitate action recognition through a single feedforward pass efficiently.

On the other hand, DEAR, as introduced in [4], incorporates principles of evi-
dential learning and is tailored for large-scale video action recognition challenges.
It is particularly adept at managing "unknown" instances, which are prevalent
in open-set action recognition tasks. DEAR frames the recognition task within
the context of uncertainty estimation, making use of EDL to provide a robust
framework for recognizing actions and estimating the model’s confidence in its
predictions.

Both HTT and DEAR serve as relevant comparative methods for our study.
HTT is a unified framework to achieve 3D hand pose estimation and action recog-
nition simultaneously, which provides a direct comparison for temporal feature
extraction and action recognition capabilities. DEAR is an open-set action recog-
nition method performances well in general open-set exocentric videos rather
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than focusing on addressing fine-grained actions and emphasizing the interac-
tion between actions and objects. It offers a comparison of our model’s ability
to handle uncertainty and recognize "unknown" actions within open-sets as well
as more fine-grained recognition tasks. By conducting experiments against these
benchmark methods, we aim to demonstrate the efficacy of OpenEAR in both
recognizing a wide array of actions from egocentric videos and accurately quan-
tifying the uncertainty associated with its predictions.

4.3 Implementation Details

The OpenEAR framework is built upon the Uniformer model [7] as its core,
chosen for its excellence in semantic extraction and recognition. To suit the
dual task of recognizing verbs and nouns in egocentric videos, we modified the
architecture to include two separate branches for category prediction, each ini-
tialized with pre-trained parameters from large datasets. An EDL network is
integrated into each branch for uncertainty estimation. Implemented using the
PyTorch framework, the model processes videos segmented into 8 frames, resized
to 224×224 pixels. Training parameters are set to 100 epochs, with a batch size
of 8 and a learning rate of 10−4, balancing training efficiency with the accuracy
and generalizability of the model’s predictions.

Table 1. Comparison with state-of-the-art methods on EPIC-KITCHENS-55.

Method
Action Acc Object Acc Union Acc

Top1 Top5 Top1 Top5 Top1 Top5

HTT 0.6015 0.9220 0.5024 0.6814 0.3927 0.6544

DEAR 0.6506 0.9602 0.5524 0.7930 0.4200 0.7700

OpenEAR 0.7074 0.9615 0.6603 0.8479 0.5080 0.8260

Table 2. Comparison with state-of-the-art methods on EGTEA Gaze+.

Method
Action Acc Object Acc Union Acc

Top1 Top5 Top1 Top5 Top1 Top5

HTT 0.6583 0.9352 0.5811 0.7829 0.4733 0.7557

DEAR 0.6771 0.9322 0.6429 0.8591 0.4995 0.8309

OpenEAR 0.7789 0.9847 0.7661 0.9362 0.6543 0.9298
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4.4 Performance Comparison

In our study, we conducted a comprehensive comparison of the Open-
EAR method against baseline models using two prominent datasets: EPIC-
KITCHENS-55 and EGTEA Gaze+. The performance results are systematically
presented in Tables 1 and 2. Our evaluation focused on both action accuracy and
object accuracy, assessing them under Top1 and Top5 metrics. Additionally, we
introduced a "union accuracy" metric, which evaluates the simultaneous correct-
ness of both action and object predictions.

It is evident from this illustration that the OpenEAR method substantially
surpasses the baseline models in several key aspects: action accuracy, object
accuracy, and the combined union accuracy for actions and objects. Specifically,
for action accuracy, our approach surpasses the best baselines by 5.68% on Top1
for EPIC-KITCHENS-55 and by 10.18% on EGTEA Gaze+. For object accu-
racy, our approach surpasses the best baselines by 10.79% on Top1 for EPIC-
KITCHENS-55 and by 12.32% on EGTEA Gaze+. For union accuracy, our app-
roach surpasses the best baselines on Top1 for EPIC-KITCHENS-55 by 8.8%,
and by 15.48% on EGTEA Gaze+.

This superiority is noticeable across both datasets, indicating the robustness
and effectiveness of OpenEAR in handling the complexities of egocentric video
action recognition, particularly in diverse and dynamic real-world environments
like kitchens and everyday activities captured in the EGTEA Gaze+ dataset.

4.5 Ablation Study

To better understand the effectiveness of different modules, we conducted abla-
tion study experiments with the following settings: 1) Ablate backbone: We
replaced the backbone network with other networks which are Video Swin-
Transformer [14] and TimeSformer [15]; 2) Optimise the back: We froze the
parameters of the Unified EAR Transformer and fine-tuned the Evidential DNN
module.

As shown in Table 3, each component contributes to our model to a certain
extent, emphasizing the necessity of incorporating these mechanisms. It is note-
worthy that there is a significant drop in effectiveness at Top1 and Top5 when we
freeze the Unified EAR Transformer. Therefore, the Unified EAR Transformer
leads to more significant improvements in our model’s performance compared
to the Evidential DNN module. Additionally, each of these key components
substantially contributes to enhancing the model’s performance. The model’s
performance decreases depending on when we replace the backbones.

4.6 Qualitative Results

Fig. 3 presents a visual comparison of qualitative results obtained from the Ope-
nEAR method and various baseline approaches, using video samples from the
EPIC-KITCHENS-55 dataset. This figure illustrates the enhanced capability
of OpenEAR in accurately recognizing known actions and effectively rejecting
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Table 3. Ablation study results on EPIC-KITCHENS-55.

Experiments
Action Acc Object Acc Union Acc

Top1 Top5 Top1 Top5 All Top1 All Top5

Ablate
backbone

SwinT 0.4129 0.8989 0.3628 0.6506 0.1742 0.6015

TimeS 0.4283 0.9057 0.3782 0.6612 0.1877 0.6112

Optimise the back 0.4601 0.9201 0.4129 0.6949 0.2300 0.6510

Our Method 0.7074 0.9615 0.6603 0.8479 0.5080 0.8260

Fig. 3. Qualitative results of the OpenEAR model and baseline models.

unknown ones, compared to the baseline models. While OpenEAR occasionally
encounters recognition errors, these instances are accompanied by a notable level
of uncertainty. This uncertainty quantification, a key feature of OpenEAR, adds
a layer of reliability to the classification results, indicating the model’s confi-
dence in its predictions. This aspect is particularly valuable in scenarios where
discerning between known and unknown actions is crucial.

4.7 Out-of-distribution Experiments

We tested OpenEAR’s performance under different OOD scenarios before and
after uncertainty estimation was introduced, and reported the experimental
results in Table 4. AU, OU, and AOU represent replacing parts of the test
set with unseen samples from action unseen, object unseen, and unseen samples
from action and object unseen, respectively. The Replacement Proportion rep-
resents how many samples in the test set are replaced by samples in the unseen
subset. From the experimental results, it can be observed that, for Action Acc
and Object Acc, our method shows varying degrees of improvement in Top1 after
introducing uncertainty estimation in different OOD scenarios. The maximum
improvement for Action Acc is 14.10%, and for Object Acc, it is 24.98%. As
for Union Acc, our method exhibits different degrees of improvement in Top1
and Top5 after introducing uncertainty estimation. The average improvement
for Top1 is 17.39%, and for Top5, it is 15.94%.
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5 Conclusion

We introduced OpenEAR, a novel framework for open-set egocentric video action
recognition, designed to overcome the limitations of traditional methods under
closed-set assumption in open-world environments. Leveraging large-scale pre-
trained models, OpenEAR excels in high-level semantic extraction and recog-
nition predictions from egocentric videos by enhancing the network architec-
ture. Its use of EDL for uncertainty estimation ensures the reliability of action
recognition. By accurately identifying known actions and objects, and transpar-
ently demonstrating their credibility and confidence, OpenEAR uniquely bal-
ances accuracy and credibility, avoids the blindly overconfident recognition pre-
dictions, especially in identifying known actions and managing unknowns. This
framework not only meets the dual requirements of accuracy and reliability but
also provides more dependable action recognition results for practical applica-
tions. Future work will focus on expanding its application range and continually
enhancing its overall performance and robustness.
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Table 4. Performance comparison under different OOD settings.

Test Sets Uncertainty Replacement
Proportion

Action Acc Object Acc Union Acc

Top1 Top5 Top1 Top5 All Top1 All Top5

AU
×

25%

0.5365 0.7202 0.5962 0.8000 0.3837 0.6212√
0.6014 0.7973 0.8243 0.9257 0.5540 0.7568

OU
× 0.6798 0.9481 0.4933 0.6385 0.3837 0.6212√

0.5806 0.9306 0.7431 0.8194 0.5694 0.7777

AOU
× 0.5356 0.7202 0.4933 0.6385 0.3837 0.6212√

0.6054 0.8027 0.7279 0.8027 0.5578 0.7619

AU
×

50%

0.3510 0.4788 0.5125 0.7481 0.2471 0.4077√
0.4265 0.5809 0.7426 0.9044 0.3824 0.5515

OU
× 0.6327 0.9365 0.3192 0.4212 0.2471 0.4077√

0.6017 0.9237 0.5847 0.6780 0.4407 0.6356

AOU
× 0.3510 0.4788 0.3192 0.4212 0.2471 0.4077√

0.4915 0.6695 0.5847 0.6780 0.4407 0.6356
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Abstract. Anomaly action detection and localization play an essential role in
security and advanced surveillance systems. However, due to the tremendous
amount of surveillance videos, most of the available data for the task is unla-
beled or semi-labeled with the video class known, but the location of the anomaly
event is unknown. In this work, we target anomaly localization in semi-supervised
videos. While the mainstream direction in addressing this task is focused on
segment-level multi-instance learning and the generation of pseudo labels, we
aim to explore a promising yet unfulfilled direction to solve the problem by learn-
ing the temporal relations within videos in order to locate anomaly events. To
this end, we propose a hierarchical transformer model designed to evaluate the
significance of observed actions in anomalous videos with a divide-and-conquer
strategy along the temporal axis. Our approach segments a parent video hierar-
chically into multiple temporal children instances and measures the influence of
the children nodes in classifying the abnormality of the parent video. Evaluat-
ing our model on two well-known anomaly detection datasets: UCF-crime and
ShanghaiTech proves its ability to interpret the observed actions within videos
and localize the anomalous ones. Our proposed approach outperforms previ-
ous works relying on segment-level multiple-instance learning approaches while
reaching a promising performance compared to the more recent pseudo-labeling-
based approaches. Our code is available at our GitHub Repo.

Keywords: Anomaly Actions Localization · Anomaly Detection · Weakly
Supervised Learning · Semi-Supervised Learning · Hierarchical Modeling ·
Transformers

1 Introduction

Surveillance represents the backbone of almost all security systems; however, extract-
ing important events, particularly anomalies, from the vast pool of collected videos
is a time-consuming and exhaustive task. There arises a critical need for an intelli-
gent system capable of accurately and autonomously extracting and localizing events
of interest. The main challenge in training such a localization model lies in the lack of
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supervision, as the massive amount of collected data for this task is unsupervised or
weakly supervised. Consequently, the employed model must be able to decode event
sequences, extract embedded relations, and identify potential outlier behaviors. Many
prior works have tackled this task, some in a fully unsupervised approach [4,11], but
mostly in a semi-supervised approach [8,10,20,28,30]. In the semi-supervised setting,
each video is labeled as normal or anomalous, yet the specific location of the anomaly
segment within the video is unspecified. The standard protocol, in this case, operates
at the segment level, aiming to maximize the hidden representation gap between nor-
mal and anomalous segments [20,28,30]. To further improve the learning process in
weakly supervised settings, the research community has started to give more attention to
the generation and refinement of per-segment pseudo labels [1,8,10,13,27,29]. Alter-
natively, recent attention has been directed towards image reconstruction approaches,
wherein models are trained to reconstruct normal videos or frames [3,25,26]. Subse-
quently, these trained models are repurposed to distinguish between high-quality recon-
structions, indicative of normal frames, and poor-quality reconstructions, indicative of
anomaly frames. These anomaly detection techniques are segment-level or frame-level
approaches, often overlooking per-video classification. However, it is reasonable that
decoding the relative dependencies within videos should allow for event understanding
and anomaly localization. This approach would offer several advantages: 1) Reformu-
lating the anomaly detection task from segment-based to video-based is more compati-
ble with real-world surveillance applications, enabling the processing of longer videos
rather than just short segments. 2) It enhances explainability and human understand-
ing of the anomaly event and its temporal context. 3) Compared to pseudo-labeling, it
provides a faster end-to-end training process. 4) Hypothetically, it should offer higher
generalization ability than pseudo-labeling techniques, which are tailored to specific
datasets and may inherit dataset specifics and noise. Therefore, in this work, we explore
this direction, proposing a novel approach to utilize per-video classification for anomaly
localization.

If a model can distinguish videos containing anomalies from normal videos, the
model’s hidden representation should inherently contain sufficient information about
the anomaly locations. We propose a temporal divide-and-conquer transformer-based
model to classify the normality of a parent video and its children segments in a hierar-
chical approach. We extract potential anomaly segments based on the aggregated clas-
sifications of the model throughout the hierarchical levels, integrated with the corre-
sponding activation maps. As shown in Figure 1, a video is split into N temporal seg-
ments, where a normal video does not contain any anomaly events, while an abnormal
video must contain at least one anomalous action. Unlike previous works, our objec-
tive is to solve two tasks: the per-video classification task, predicting yv , and the per-
segment classification, predicting yi

s for each segment i in the video. The per-segment
classification is fully unsupervised, based on the information extracted during the per-
video classification. As shown in Figure 1, our model processes the input video in a
hierarchical manner, where each level of the hierarchy aims to measure the abnormal-
ity of the included video patches, reaching up to the final level representing the fine-
graned segments. Therefore, the proposed model produces two outputs: a high-level
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Fig. 1. Each video is split into N segments. A normal video (yv = 0) contains only normal
segments (yi

s = 0, ∀i ∈ [1 : N ]). While an anomaly video (yv = 1) contains at least one
anomaly segment (yi

s = 1, ∃i ∈ [1 : N ]). Our approach employs a hierarchical transformer
model to classify the abnormality of the whole video, in addition to producing abnormality scores
for the individual segments. This approach differs from previous works that overlook the context
of the entire video and classify individual segments independently. Prior methods typically apply
multiple-instance learning (MIL) to distinguish normal segments from anomalies, irrespective of
their context, or generate per-segment pseudo labels to compensate for the lack of supervision.

per-video classification and per-segment abnormality scores. Our evaluation results pro-
vide promising insights into the effectiveness of our proposed approach in understand-
ing the observed video, extracting the temporal relations, and identifying the anomaly
events. The main contributions of our work can be summarized as follows:

1. We revise the segment-wise anomaly detection task, transforming it into anomaly
localization within videos, allowing the learning procedure to benefit from per-video
classification in detecting the anomaly segments in a semi-supervised manner.

2. We propose our temporal divide-and-conquer transformer-based model that aims
to weigh the abnormality of various temporal patches of the video hierarchically
in order to provide a fine-grained aggregated estimation of the abnormality of the
detected events.

3. We evaluate our model on two well-known datasets for anomaly detection and con-
duct different ablation experiments.

2 Related Work

2.1 Anomaly Detection

Anomaly detection is an important task that has been always gaining attention in com-
puter vision. The task takes three primary learning formats: Fully-supervised learn-
ing, where ground truth labels are available for both normal and anomaly actions
[15,26]; Semi-supervised learning, having ground truth labels for entire videos but lacks
annotations for anomaly segments within those videos [3,8,10,20,28–30]; and Fully-
unsupervised learning, which operates without any ground truth labeling [4,11]. While
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full supervision offers a direct path to problem-solving, the tremendous process of anno-
tating large datasets makes it impractical. Conversely, unsupervised learning bypasses
the need for data annotations but introduces heightened complexity to the learning pro-
cess. Consequently, significant attention has shifted towards the semi-supervised learn-
ing format, where models can leverage video annotations to enhance the recognition of
anomaly segments within those videos.

In the semi-supervised setting, previous works primarily applied multiple instance
learning (MIL), where the model pairs one normal video with another anomaly video
and trains the model to maximize the representation gap between the two segments. The
leading work in this category is [20], which aimed to maximize the distinction between
the highest-scoring segments within the positive and negative bags, thereby maximizing
the inter-bag distance. Building upon this concept, [3] introduced a novel approach by
concurrently minimizing intra-bag distance while maximizing inter-bag distance. Addi-
tionally, in [26], MIL is once again employed, this time augmented with an attention
mechanism aimed at ranking segments within each bag, with the objective of accentu-
ating the disparity between the highest-ranking segments across both bags.

Another leading technique for the semi-supervised learning approach is pseudo-
labeling. This approach involves generating pseudo-labels for unlabeled segments and
subsequently training the model in a fully-supervised manner using these generated
labels. In [29], a method is proposed where an action classifier module is trained for
each segment. This module takes segment images and the video’s label as inputs,
iteratively refining and purifying the predicted segment classifications. Conversely, in
[8,10,22] [10], multiple instance learning (MIL) is employed to generate pseudo-labels,
which are utilized to train the classifier model. With the rising attention to pseudo-
labeling approaches, some recent works are dedicated to the generation, refinement, and
cleaning process of pseudo-labels, as in [1,27]. In contrast to these works, we reformu-
late the problem into anomaly localization within videos, proposing a model that can
interpret the temporal axis along input videos, extracting anomaly events.

2.2 Class Activation Maps Learning

Class activation maps (CAM) learning is a popular technique in computer vision. It
is mainly used in image-based object detection, where CAM-based techniques are
widely used in scoring objects within images for object detection and localization
[6,12,18,24]. Recently, the application of CAM techniques to videos started to emerge.
For example, in [2], temporal max pooling is proposed to aggregate per-frame CAMs
for video object localization. Another interesting application of CAM learning in videos
is [16], where optical flow-based CAM is utilized for weakly-supervised segmentation.
In the domain of anomaly detection, [21] proposed the utilization of CAM to generate
a form of pseudo labeling, integrated into a second learning phase with MIL to create
two groups of training segments: positive and negative. The final classification in this
approach employs K-nearest neighbor to the positive and negative groups. Similarly, in
[22], segment activations, represented by features magnitude, are utilized to generate
top-k normal/anomaly segments that are then used to train a per-segment classifier for
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anomaly detection. Our objective in this work is to generate different types of activation
maps, which are then fused together to yield an attentive estimation of the abnormality
associated with the events observed within the classified video.

2.3 Temporal Hierarchical Modeling

Understanding and extracting temporal dynamics from videos and real-world time
series pose significant challenges. Consequently, techniques like temporal multi-scale
and hierarchical modeling are important in processing temporal data. For instance, in
[9], the proposed model operates across two temporal scales, slow and fast, resulting
in more robust representation extraction. Numerous studies have adopted hierarchical
modeling methods for real-world temporal data, such as [19], or for video tasks, such
as action recognition [7,14]. Therefore, in our work, we utilize hierarchical modeling
along the temporal axis to leverage temporal information extracted from input videos at
varying temporal resolutions using a transformer-based model.

3 Temporal Divide-and-Conquer Approach

We consider two classification tasks: per-video classification and per-segment classi-
fication, employing our temporal divide-and-conquer model depicted in Figure 2. The
model takes a video as input, which is divided into a sequence ofN segments. Each seg-
ment represents an action or event and consists of a set of frames. Raw images within
each segment are projected into the feature space using our double-scale features extrac-
tor (DS-Φ) module, followed by processing through our hierarchical transformer layers.

3.1 Double Scale Features Extractor

Our DS-Φ module is designed to enhance the temporal resolution of input segments,
effectively doubling the amount of information extracted during clip processing. Given
that anomaly events within a segment may exhibit varying degrees of significance
across different parts of the segment, our module enables both collective and divided
processing of segments. This approach allows the extraction of more focused features,
leading to a deeper understanding of the underlying events. Each segment Si is split into
S1
i and S2

i , with the raw images of Si, S1
i , and S2

i projected into the feature space using
Φ, as in (1), applying a feature mapping with multi-layer perceptron over the extracted
features (Feat) by a pre-trained video-framework.

Φ(S) = MLP (Feat(S)) (1)

Subsequently, DS-Φ allows the generation of the double temporal resolution by produc-
ing two feature vectors x2i−1 and x2i from each segment Si, as in (2), where x ∈ R

1×D

and D is the features size. This approach allows for extending the temporal length to its
double (2N ).

x2i−1 = Φ(Si) + Φ(S1
i ) x2i = Φ(Si) + Φ(S2

i ) (2)

Our model is not fixed to a specific pre-trained feature extractor; however, we consider
two pre-trained models as our backbones: I3D [5], and Slowfast [9].
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Fig. 2. Our divide-and-conquer transformer-based model operates by taking the segmented video
as input, where the video is divided into N segments. These segments undergo feature extraction
using ourDouble Scale Features Extractor (DS-Φ)module. Subsequently, the extracted features
are passed to the hierarchical transformer layers for classification. At the first level (TL1

1), the
model generates video classification (y1

1 = yv), and at each subsequent level (Tk), it produces
sup-video classification yj

k, ∀j ∈ [1, 2, 3, . . . 2k−1].

3.2 Hierarchical Transformer Layers

Our divide-and-conquer approach begins with the coarse-grained task of per-video clas-
sification, iteratively breaking down the task into smaller sub-tasks (clips) until reach-
ing the fine-grained task of per-segment classification. The features of the complete
sequence x ∈ R

2N×D are combined with positional embeddings P ∈ R
2N×D to retain

temporal causality, forming (x+P ). Subsequently, this combined input is forwarded to
the first level of the hierarchical transformer layers and processed through the hierarchy
as shown in Figure 2.

At each prediction level k ∈ [1,K], where K denotes the length of the hierarchy, the
model binary-divides the received signals hk−1 from the preceding level k−1 into 2k−1

splits, where we set the initial input signal h0 to x+ P , as mentioned above. To better
describe the processing flow throughout our hierarchical model, we define the following
for a single split P j

k within the kth level in the hierarchy, where j ∈ [1, 2k−1]. Specifi-
cally, a split P j

k represents a cut patch from the input video that has been processed up to
level k. This patch is then handled by a self-attention transformer layer TLj

k, which pro-
cesses P j

k and extracts a new hidden representation. The input to TLj
k is composed of

two concatenated parts, as described in (3), combining a fixed class query input (Cls),
along with the hidden representation received from the preceding level k − 1 and the
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parent split P
� j

2�
k−1 , defined as h

� j
2�

k−1. The ⊕ in (3) denotes the sequence concatenation
operation.

To this end, each transformer layer TLj
k produces three outputs for P j

k , as given in (9):
cjk ∈ R

1×D, representing the class Cls encoding at the layer; wj
k ∈ R

1×2N , denot-

ing the attention weights inside the class query; and hj
k ∈ R

N

2k−1 ×D, representing the
encoding vectors of the segments present in video patch P j

k . The hidden encoding of
the segments hj

k is next passed to the proceeding level k+1 for finer-grained processing
of the segments, reaching up to the bottom Kth level.

cjk, w
j
k, h

j
k = TL(Cls ⊕ h

� j
2�

k−1), ∀k ∈ [1,K], ∀j ∈ [1 : 2k−1] (3)

3.3 Prediction Head

Finally, following each transformer layer, a prediction head generates an abnormal-
ity classification. The transformer layer at the first level TL1

1 produces the per-video
classification, while each subsequent layer TLj

k generates an estimation of the abnor-
mality for the video split processed at that layer, denoted as yj

k as depicted in Figure 2.
To enable the model assessing the influence of segments in predicting each sup-video
(split), two prediction approaches are employed: Utilizing the generated class encoding
at the layer (cjk) to produce the classification (yj

k)c, as shown in (4); and employing
a sigmoid classifier head, with a single layer perceptron (SLP), on the average-pooled
segments encoding vectors hj

k, as illustrated in (5), generating (yj
k)h and allowing for

acquiring an activation map of the enclosed segments.

(yj
k)c = Sigmoid(MLP (cjk)) (4)

(yj
k)h = Sigmoid(SLP (AveragePooling(hj

k))) (5)

The final prediction is computed as the average of (yj
k)c and (yj

k)h, given by:

yj
k = Average((yj

k)c + (yj
k)h) (6)

3.4 Localization Approach

The model breaks the video prediction into a set of sub-predictions, where we aim to
measure the influence of a segment Si in all of its corresponding sub-predictions. To
capture such influence, we rely on three measuring factors, as illustrated in Figure 3:

1. The abnormality prediction in the corresponding patches across the different levels
(pi); the probability of Si to be an anomaly segment is monotonically increasing
with the corresponding probability of a parent clip. Therefore, this probability is
measured as the averaged predictions of the parent clips across the K levels, given
by:
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pi = Average
k∈[1,K]

yj
k, j = � i

2k−1
� (7)

2. The activation effect of Si in the prediction of parent patches (ai); The higher the
activation of the segment in an anomaly class, the higher its probability of being an
anomaly. The averaged activation across the levels is given by:

ai = Average
k∈[1,K]

hk[i] (8)

Where hk is the stacked, average-pooled hidden representations of the 2k−1 trans-
former layers at level k, and hk[i] is the corresponding representation of Si.

3. The corresponding attention weights of the segment Si in the class query (ti); Again,
the higher attention given to a segment during the anomaly prediction (yj

k)c, the
greater its influence and the higher its probability of being an anomaly. Therefore
the attention maps of the class query in the corresponding splits are averaged across
the levels to yield the attentive weight of Si in the prediction:

ti = Average
k∈[1,K]

wk[i] (9)

Where, wk is the concatenated attention weights across the employed attentions at
level k, and wk[i] is the weight of the corresponding segment Si.

Based on these three factors, pi, ai, and ti, an aggregation of the abnormality estimation
score ei of Si is calculated as the weighted average of the normalized factors, as speci-
fied in (10). Here, α, β, and γ represent the weighting parameters. Finally, considering
the tendency of anomaly segments to occur in clusters within the video, we smooth
the estimated probabilities across the video using a moving average. Subsequently, we
apply spike filtering to eliminate potential outlier scores.

ei = αpi + βai + γti (10)

Fig. 3. Visualization of our localization Approach. Assuming the localization is conducted at
level k, wk is obtained from the attention weights of the class query inside our self-attention
layers, hk is the averaged-pooled encodings produced by the transformer, and yk is the stacked
sub-predictions at k. The estimated abnormality is computed as in Equation (10).
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4 Experimental Results

4.1 Dataset

We evaluate our model on two datasets: UCF-Crime dataset [20] and ShanghaiTech
[17]. UCF-Crime dataset comprises 1,900 surveillance videos spanning over 128 hours,
with 13 distinct anomaly behaviors such as abuse, assault, accident, fighting, robbery,
etc. On the other hand, ShanghaiTech is a smaller dataset, comprising 437 videos, with
130 anomaly videos and 307 normal videos. The videos are partitioned into 32 segments
each, with ground truth per-segment class labels provided exclusively for the segments
in the test split of the data.

4.2 Evaluation Metrics

Following the established evaluation protocol for this task [30], we utilize the Area
under the ROC Curve (AUC-ROC) metric to assess the localization performance of
anomaly segments. Additionally, we report accuracy and F1-score metrics to measure
the model’s ability to distinguish between normal and abnormal segments.

4.3 Implementation details

For both of our evaluation datasets, we set the number of segments N to 32 segments.
The extracted feature sizes of the pre-trained video frameworks are 2048 and 2304 for
I3D and SlowFast, respectively, while the mapped features size D is set to 256 and 288.
Each transformer layer includes 4 self-attention heads, and the hierarchical model con-
sists of K = 6 levels. The Multi-Layer Perceptron (MLP) module inside the prediction
head consists of three layers with sizes 128, 64, and 32. The dropout rate for all model
layers is set to 0.1. The model is trained for 100 epochs using a Stochastic Gradient
Descent (SGD) optimizer, with a learning rate of 0.01, and binary cross-entropy loss
function. During training, all children split within the hierarchical model inherit their
anomaly class label from the parent video. During inference, our localization approach
is applied using the weighting parameters α, β, and γ, configured to 0.9, 0.05, and 0.05,
for UCF-crime. While 0.65, 0.3, and 0.05 are used for ShanghaiTech.
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Table 1. Comparison with the state-of-the-art works on UCF-Crime. For a fair compari-
son, we separate the performance based on the application of pseudo-labeling (PL). Our model
uniquely overlooks both MIL and pseudo-labeling techniques. Instead, it employs a hierarchical
measuring technique for abnormality weights of the per-video segments, outperforming all pre-
vious works w/o PL. However, the best performances are in favor of the utilization of tailored
pseudo labels for the dataset, with a comparable performance of our HCAM-former with most
PL-works.

MIL
Segments Features

Classifier
AUC

Activation Extractor w/o PL PL

MIL (2018) [20] ✓ ✗ C3D FC 75.41 -

TCN-IBL (2019) [28] ✓ ✗ C3D TCN 78.66 -

MIL-MA (2019) [30] ✓ ✗ PWCNet TAN 79.00 -

GC-LNC (2019) [29] ✗ ✗ TSN GCN 70.87 82.12

CPL (2020) [21] ✓ ✓ BN-Inception ResNet+KNN - 79.31

MIL-MIST (2021) [10] ✓ ✗ I3D Attention 73.33 82.30

MIL-AUG (2022) [8] ✓ ✗ SlowFast FC 79.37 81.24

RTFM (2022) [22] ✓ ✓ I3D PDC - 84.30

MSL (2022) [13] ✓ ✗ VideoSwin Transformer - 85.62

CU-Net (2023) [27] ✓ ✗ I3D FC - 86.22

C2FPL (2024) [1] ✓ ✗ I3D FC 72.70 85.50

HCAM-former (Ours) ✗ ✓
I3D

H-Transformer
78.30 -

SlowFast 79.47 -

4.4 Results

We conduct a comparative analysis of our model against state-of-the-art works in
anomaly detection. Table 1 presents a comparison on the UCF-Crime dataset, highlight-
ing the structural differences between models to ensure a fair evaluation. This includes
whether the learning process employs multiple-instance learning, benefits from segment
activation, the feature extractor used, and the final classification module of each detec-
tion methodology. Additionally, we differentiate the performance of the models based
on the application of pseudo-labeling. As shown in the table, our HCAM-former outper-
forms all other techniques when pseudo-labeling is excluded, underscoring the efficacy
of our method in interpreting observed events and distinguishing anomalies. However,
while our model achieves promising results, it generally falls behind the performance of
pseudo-labeling approaches. These methods handle weakly supervised data by generat-
ing estimated labels for refinement and use as ground truth, and such iterative learning
techniques enhance anomaly pattern recognition. As mentioned earlier, our aim is to
provide a more generic solution that is not as dataset-specific as the pseudo-labeling
technique. It is noteworthy that our model still outperforms the CPL [21] approach,
which utilizes segments CAM (only hidden representation CAM ai in our approach),
in addition to employing both MIL and pseudo-labeling techniques. Similarly, Table
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Table 2. Comparison with the state-of-the-art works on ShanghaiTech. Again, the HCAM-
former outperforms all w/o PL models while achieving comparable performance to the best PL
works.

MIL
Segments Features

Classifier
AUC

Activation Extractor w/o PL PL

MIL (2018) [20,22] ✓ ✗ C3D FC 85.33 -

GC-LNC (2019) [29] ✗ ✗ TSN GCN 80.83 84.44

AR-Net (2019) [23] ✓ ✗ I3D FC 91.24 -

MIL-MIST (2021) [10] ✓ ✗ I3D Attention - 94.38

RTFM (2022) [22] ✓ ✓ I3D PDC - 97.21

MSL (2022) [13] ✓ ✗ VideoSwin Transformer - 97.32

HCAM-former (Ours) ✗ ✓ I3D H-Transformer 93.29 -

2 reports the results on the ShanghaiTech dataset. Again, our model achieves state-of-
the-art performance when excluding pseudo-labels while reaching a compatible perfor-
mance with the PL approaches and even outperforms the GC-LNC(PL) technique.

The provided comparison results prove the effectiveness of our proposed approach in
identifying anomaly events from normal ones solely based on the temporal progression
of events within the parent context. Although it has a degraded performance compared
to the best pseudo-labeling models, our model provides a more generic end-to-end solu-
tion that overlooks the tailoring of pseudo-labels for the evaluation datasets, which is a
promising direction with respect to real-world applications.

4.5 Ablation Study

We conducted an ablation study to assess the impact of different components of our
proposed model on per-video classification performance on UCF-Crime, as summa-
rized in Table 3. Since the model’s ability to recognize videos with anomaly events
from normal videos depends on its capability to extract anomaly behaviors within the
videos, achieving high per-video performance is crucial to ensure the accuracy of the
estimated segment scores by the model. This ablation study examines three main com-
ponents of our model: 1) The hierarchical structure (comparing K = 1 against K = 6),
where K = 1 denotes that only the first level of HCAM-former is trained and used for
inference depending on ai and ti. While K = 6 denotes the utilization of the whole
hierarchy. 2) The inclusion of the class query in the transformer layers. 3) The double-
scale features extractor module DS-Φ.

The hierarchical structure has the most significant impact, contributing to an approxi-
mately 3% increase in the F1-score and 9% in AUC, compared to the model without
the hierarchy. Additionally, the class query and the DS-Φ module notably improve the
model’s performance. As a result, the highest-performing configuration is achieved by
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Table 3. Ablation on per-video classification performance (UCF-Crime). When K = 1, the
model operates without the hierarchical structure. In this configuration, only the first transformer
layer of our model is utilized to make predictions and measure the abnormality scores of the
segments.

Hierarchical Transformer Class DS-Φ ACC AUC F1

K = 1 K = 6 Query

✓ ✗ ✗ ✗ 83.97 83.89 83.09

✓ ✗ ✓ ✗ 85.02 84.83 83.40

✓ ✗ ✓ ✓ 85.02 84.90 83.89

✗ ✓ ✓ ✓ 87.12 92.44 86.74

Table 4. Ablation on the localization performance (UCF-Crime).Where, ai denotes the class
activation maps in (8), ti is the attention weights of the class query in (9), and pi is probability
estimation in (7).

Hierarchical Transformer ai ti pi ACC AUC F1

K = 1 K = 6

✓ ✗ ✓ ✗ ✗ 73.73 72.83 40.11

✓ ✗ ✗ ✓ ✗ 70.09 72.28 38.17

✓ ✗ ✓ ✓ ✗ 73.18 73.87 40.65

✗ ✓ ✓ ✓ ✓ 66.54 79.47 37.78

including all components of our model.

In Table 4, we ablate our localization technique. By excluding hierarchical predic-
tions, we compare the localization performance using the class activation of the first
transformer layer in the hierarchy (ai) and the attention weights of the class query of
the same layer, both individually and integrated. The results in the table indicate that
CAM estimation slightly outperforms attention weights in terms of localization. How-
ever, combining both estimations yields even better localization performance. Integrat-
ing hierarchical predictions as abnormality probability estimation achieves the highest
localization performance, with an improvement of approximately 5% in AUC. As can
be noticed, when the AUC metric is increased, accuracy and F1 score suffer a bit of
degradation. This could be explained by the severe imbalance in the number of anomaly
segments compared to normal ones. Therefore, maximizing the number of correctly
localized anomalies leads to an increase in the number of misclassified normals. How-
ever, correctly localizing anomalies presents a higher priority, and therefore, the AUC
metric is more relevant for the task.

Finally, Table 5 evaluates the impact of the feature extractor on anomaly localization
performance. The results favor the SlowFast feature extractor over the I3D features,
even when the number of heads in our transformer layers is increased to 8 to achieve
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Table 5. Ablation on the features extractor (UCF-Crime). The ACC, AUC, and F1 are reported
for both per-video classification and per-segment classification.

Features Per-Video Per-Segment

ACC AUC F1 ACC AUC F1

I3D 80.21 77.6 82.9 65.27 78.30 23.70

SlowFast 87.12 92.44 86.74 66.54 79.47 37.78

Fig. 4. Qualitative example on accurate anomaly localization from UCF-Crime. Anomaly
score estimations are provided for the anomaly action "Assault", which begins at segment S5 and
continues until the final segment S32. Here, ei represents the score estimated in (10), ai denotes
the segment’s activation as defined in (8), and ti refers to the attention weights described in (9).

acceptable performance with I3D features. This finding demonstrates the superior capa-
bility of the SlowFast framework to interpret spatial and temporal information in the
input images, enabling our model to better understand and localize anomaly events in
the videos.

4.6 Qualitative Examples

Figure 4 illustrates the estimated anomaly scores for segments within an anomaly video
featuring an "Assault" event. The video begins with normal events during the first seg-
ments [S1 − S4]; then the anomalous event starts at S5. The plotted anomaly scores for
all three abnormality measuring factors exhibit lower values at the beginning, gradually
increasing as the anomaly action unfolds. The aggregated anomaly estimation ei yields
smoother estimations across the segments, benefiting from the fusion of the used fac-
tors. While both the activation map ai and attention weights ti show slightly decreased
scores during the anomaly event, they remain higher than those of the normal segments.
Towards the end of the video, as the "Assault" event subsides, the anomaly estimation
begins to decrease. This demonstrates the model’s capability to interpret events depicted
in the segments and distinguish anomalies, relying solely on the information gained dur-
ing video classification.



242 N. Osman and M. Torki

Fig. 5. Qualitative example on slightly misled anomaly localization from UCF-Crime. The
heat maps illustrate anomaly score estimations for the "Arrest" event, which initiates at segment
S17 and extends through segment S21. The illustrated heat maps are pi, ti, ai, the aggregated
estimation ei, and the ground truth labeling of the segments.

The qualitative example depicted in Figure 5 aims to illustrate instances where the
model may misinterpret anomaly segments. To provide a more sensitive analysis, heat
maps are employed for visualization, where an "Arrest" event is occurring from segment
S17 to S21. Initially, all abnormality measures exhibit relatively lower scores during the
video’s early segments, indicating normalcy. However, starting from segment S9, scores
begin to rise, particularly for pi and ai. Notably, an event at S9 depicts a violent interac-
tion in the left corner of the frame, leading to elevated abnormality scores for segments
[S9 − S16]. Then, as the actual "Arrest" event unfolds, the model accurately assigns the
highest abnormality scores; however, the highest scores are persisted until segment S24.
This is due to another misleading event featuring multiple individuals gathered around
the arrest location, contributing to the sustained high scores beyond the actual event. It
is worth noting that throughout the observation, attention scores provided by ti closely
align with the ground truth, yet they tend to emphasize only the most significant seg-
ments, potentially overlooking some anomalous events.

From both examples, it is evident that the factor with the most effective capability in
recognizing anomaly events is the estimated probability using our hierarchical predic-
tions.

5 Conclusion

In this work, we tackle the challenge of anomaly detection in weakly-supervised
datasets. We redefine the anomaly detection task from per-segment to per-video clas-
sification, leveraging the temporal progression of videos to localize anomaly events
effectively. Our proposed temporal divide-and-conquer hierarchical transformer model
surpasses state-of-the-art non-pseudo-labeling methods and achieves promising results
compared to tailored pseudo-labeling approaches. These findings demonstrate the
promising capability of our model to process temporal video contexts, comprehend
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observed events, and correctly localize anomalies. Although the current performance
of our proposed approach does not yet match the higher performance achieved by tai-
loring pseudo-labels for the evaluation datasets, we explore a more explainable and
general solution of video-level anomaly localization, showcasing the promising capa-
bility of such a technique in interpreting and localizing abnormal events. Therefore,
our future work will focus on enhancing video-level anomaly localization, allowing for
a more in-depth study of its performance, explainability, and generality compared to
pseudo-labeling approaches.
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Abstract. Graph Convolutional Networks (GCNs) have attracted con-
siderable attention in the realm of human action recognition. However,
conventional GCNs-based methods typically struggle to construct adja-
cency matrices that capture diverse semantics, thus leading to perfor-
mance limitations. To tackle this issue, we propose the Echo Graph as
a set of adjacency matrices, which includes both hierarchical and global
graphs. Specifically, our hierarchical graph exploits the hierarchical infor-
mation based on the selected central broadcast nodes, aggregating joints
dispersed across considerable physical distances into a unified semantic
space. The global graph we construct transcends the limitations imposed
by physically defined topological structures, delving into comprehensive
information exchange among nodes. Additionally, we propose node acti-
vation and hierarchical activation model. These activations aim to promi-
nently highlight crucial nodes and edges for specific samples. Finally,
we incorporate Margin ReLU distillation to improve computational effi-
ciency and design a four-stream integration using only the joint and bone
data streams from two central broadcast nodes. Based on the aforemen-
tioned components, we propose EchoGCN, capable of extracting repre-
sentative skeleton features. Experimental results on three datasets (NTU-
RGB+D 60, NTU-RGB+D 120, and NW-UCLA) demonstrate that our
model achieves state-of-the-art performance.

Keywords: Action recognition · skeleton · graph convolutional
network · knowledge distillation

1 Introduction

In recent years, human action recognition has found widespread applications in
various fields such as video surveillance[21], robotics[32] and human-computer
interaction[12]. Thanks to the development of depth sensors and its remark-
able adaptability to environmental changes, skeleton-based action recognition
stands out among other human action recognition techniques such as RGB [13],
depth[11] and infrared images [1].
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Fig. 1. (a) Based on the central broadcast node (marked in red), hierarchical informa-
tion is obtained through expansion. (b) Constructing hierarchical graph in Propagation
Stage based on hierarchical information. (c) Connecting the nodes in the last layer of
hierarchical information to all nodes to construct the global graph in Reflection Stage.

With the rise of deep learning, methods based on Recurrent Neural Net-
works(RNNs) [7] and Convolutional Neural Networks(CNNs) [6] have become
mainstream. However, RNNs-based approaches tend to focus primarily on skele-
ton temporal information, while CNNs-based methods emphasize skeleton local
information. Neither of them effectively combines these two aspects, leading to
challenges in exploring topological structure information, where the topological
structure mainly represents the connections between human skeleton joints, typi-
cally depicted as a graph structure. Graph Convolutional Networks (GCNs) effec-
tively capture both temporal dynamics and local spatial characteristics inher-
ent in skeleton sequences, and excel in processing graphs within non-Euclidean
spaces, making them an ideal tool for extracting skeleton topology features.

Yan et al. proposed ST-GCN, which represents joints in skeleton sequences
as nodes and physical connections as edges. They input the constructed graph
into spatial and temporal GCN modules, successfully exploring the potential of
skeleton data in modeling spatio-temporal relationships, laying the foundation
for future research like[18,25]. However, these models construct the topology
structure using physical connection, resulting in difficulties capturing associa-
tions with distant joints. Previous works [3–5,20] emphasized the optimization
of the topological structure as a crucial factor for enhancing model performance.
However, they did not effectively consider both hierarchical and global relation-
ships among nodes. This results in the issue of a semantically singular adjacency
matrix construction, leading to limitations in recognition performance. In this
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paper, we present the propagation stage and the reflection stage to construct
the new topology structure Echo Graph to address this issue. Firstly, we select
a central broadcast node. As shown in Fig. 1(a), we designate the belly as the
central broadcast node and then expand layer by layer based on the physical
connections to construct hierarchical information. As shown in Fig. 1(b), based
on hierarchically information, the propagation stage connect the nodes from the
previous layer to the nodes from the subsequent layer and build a hierarchi-
cal graph. To explore global relationships fully, we design the reflection stage,
as shown in Fig. 1(c). We establish a global graph by connecting the nodes of
the last layer from hierarchical information to all nodes, facilitating informa-
tion sharing across all hierarchical layers. In this procedure, expansion starts
from a specific node, travels hierarchically to each node, and then reflects back
to all nodes in the skeleton, resembling an echoing transmission and feedback.
Afterwards, we refer to this structure as the Echo Graph.

Different action behaviors may involve distinct key nodes and edges, i.e.,
the contributions of nodes and edges to actions vary. Thus, we introduce the
node and hierarchical activation methods. These methods help identify nodes
and edges that significantly contribute to action recognition in specific sam-
ples, assigning distinct weights to them. In node activation, we utilize k-nearest
neighbor (k-NN) operations to create a local graph in the feature space for acti-
vating similar nodes. In hierarchical activation, to address scaling biases arising
from varying contributions, the process begins with max pooling in the tem-
poral dimension of feature to extract representative features. Then, it traverses
each layer of the Echo Graph for spatial average pooling to obtain hierarchical
features. In hierarchical activation, features from each hierarchy are treated as
nodes, and the determination of activated features is based on similarity.

However, most current GCN-based models have excessively high computa-
tional costs. For example, ST-GCN [31] has FLOPs of 16.3G, and 2S-GCN [25]
even reaches 37.3G. Thus, we need a method to further improve efficiency. We
incorporate Margin ReLU Distillation [8] into EchoGCN to reduce the model’s
size without sacrificing recognition accuracy. Specifically, we respectively select
three features from the multiple blocks in teacher and student model before the
ReLU activation, and a partial L2 distance function is employed to eliminate
redundant information. Moreover, we depart from the traditional four-stream
integration, i.e., joint, bone, joint motion, and bone motion stream. Instead, we
turn to utilize only joint and bone stream formed based on selected two central
broadcast nodes.

The main contributions of this paper can be summarized as follows:

– We designed an Echo Graph, capable of capturing hierarchical and global
relationships simultaneously, thereby optimizing the topological structure.

– We proposed two activation methods, aiming to activate edges and nodes
crucial for recognizing specific samples.

– We incorporated the Margin ReLU distillation for model compression. More-
over, we adopted a four-way integration utilizing only joint and bone stream.
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– Based on the innovation mentioned above, we established EchoGCN. Exten-
sive experiments demonstrated the superiority of the EchoGCN, consistently
achieving optimal results over the three datasets: NTU RGB+D 60[24], NTU-
RGB+D 120[19], and Northwestern-UCLA [28].

2 Related Work

2.1 GCNs-based Action Recognition Methods

ST-GCN [31] first introduced GCNs into the skeleton-based action recogni-
tion, ST-GCN simultaneously constructs the spatial configuration and tempo-
ral dynamics of data. Li et al. [18] proposed AS-GCN, which integrates multi-
scale modeling and generates additional human body poses for recognition tasks.
Shi et al. [25] proposed 2S-GCN, which combines bone information with tradi-
tional joint information. However, these models only consider direct joint con-
nections, ignoring distant joint relationships, thereby limiting the model’s per-
formance. MS-G3D [20] integrated a decoupled multi-scale aggregation scheme,
effectively eliminating redundant dependency relationships between different
neighborhoods. However, the refined topology still relies on physical connec-
tions, with single semantics and limited feature extraction flexibility due to a
uniform topology across channels. To address the above issues, Chen et al. [3]
introduced CTR-GCN, which simultaneously learns a shared topology struc-
ture and channel-specific correlation matrices to obtain channel-level topology
in a refined manner. However, this method overlooks the physical priors of the
human skeleton, resulting in excessive flexibility during the learning process of
the aforementioned topology. Shift-GCN [4] introduced spatial and temporal
shift graph convolution to replace traditional spatial temporal graph convolu-
tion, reducing computational costs and adaptively adjusting the receptive field.
Shift-GCN++ [5] extended Shift-GCN to achieve a more lightweight model.
Although the authors designed local and global spatial convolution schemes in
Shift-GCN and Shift-GCN++, this model cannot simultaneously use local and
global spatial convolutions. Song et al. [27] proposed EfficientGCN-B4, which
merges multiple input branches in the initial stage, effectively reducing redun-
dant parameters. DD-GCN [16] optimize graph convolution kernel weight sharing
through an activity partition strategy, and introduce a spatiotemporal synchro-
nization encoder for embedding synchronized semantics. Li et al. [17] introduced
SaPR-GCN, which devides the skeleton into body parts and employs a dynamic
scale-aware mechanism to extract context-dependent multi-scale features. These
methods incorporate rich semantic relationships. EfficientGCN considers joint
positions, motion velocity, and skeletal features, while DD-GCN and SaPR-GCN
refine topology at the part level. However, these models are limited to local rela-
tionships and overlook global relationships between joints.

To address these shortcomings, we propose a new model that captures mul-
tiple semantics while preserving skeletal structure. It considers both hierarchical
and global relationships using multiple broadcast points and two topology con-
struction methods.
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2.2 Knowledge Distillation Methods

Hinton et al. [10] pioneered knowledge distillation, transferring knowledge from
a teacher model to a student model through the Softmax output. Since high-
performance teacher models produce outputs nearly identical to true labels,
teaching these to student models limits performance. Thus, researchers are shift-
ing from output distillation to feature distillation. FitNets [23] promoting the
emulation of hidden features from the teacher model by the student model. How-
ever, this method is generally effective for higher-level hidden layers but not for
lower-level hidden layers. Zagoruyko et al. [33] proposed AT, which transfers
attention maps from a powerful teacher network to a smaller student network.
Kim et al. [14] suggested FT, extracting teacher network factors in an unsu-
pervised manner and transferring them to the student model. However, these
methods compress the feature of the teacher model, leading to information loss.
AB [9] proposed a method to transfer activation boundaries of hidden neurons,
enhancing performance in classification tasks. While it partially mitigates infor-
mation loss, feature distortion in the teacher model remains a challenge. Heo
et al. [8] introduced the Margin ReLU Distillation, adjusting distillation loca-
tions to before the ReLU activation layer and using an L2 distance function
to filter unnecessary information. This method preserves valuable information,
eliminates unfavorable aspects, and prevents feature distortion. Thus, to enhance
performance and reduce model parameter size, we leverage the effectiveness of
Margin ReLU distillation in our approach.

3 Methodology

The overall framework of our proposed EchoGCN is illustrated in the Fig. 2.
Firstly, we construct the Echo Graph based on the original skeleton graph. Sub-
sequently, we propagate features into a network comprising multiple Echo Blocks.
Each Echo Block consists of a spatial convolution and a temporal convolution.
The spatial convolution includes s+1 branches (yellow), with each branch com-
prising 3 GCNs and a node activation (orange). After concatenating the results
of s+1 branches, they are transmitted to the hierarchical activation (orange),
highlighting important hierarchical sets. Finally, it goes through a temporal
convolution (green). The process concludes with a global average pooling, an
FC layer, and Softmax, resulting in the output classification. In the following
section, we will provide a detailed explanation of each component.

3.1 Echo Graph Constructing

Propagation Stage Traditional action recognition using GCNs face challenges
that make it difficult to effectively capture relationships between distant joints.
Consider clapping as an example: accurately understanding the relationship
between two hands that are physically distant is crucial for the proper recogni-
tion of clapping actions in such scenarios. To solve this problem, we construct
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Fig. 2. The overall architecture of the model.

topological structure through hierarchical information. Firstly, a central broad-
cast node is set, and layer-wise expansion is carried out in a centrifugal manner
based on the physical connections. As illustrated in Fig. 1(a), the belly is des-
ignated as the central broadcast node and is individually stored in a node set
(depicted in red). Next, a layer of expansion is conducted outward from the
belly, spreading the chest and hip to be stored together in the same node set
(depicted in orange). Subsequently, expansion layers extend from the chest and
hip, involving joints of the neck, left and right shoulders, and left and right hip,
and storing them in the same node set (depicted in yellow). Through this pro-
cess, joints physically distant from each other are brought into the same semantic
space, effectively addressing the issue of long-range dependencies.

Once all nodes have undergone expansion, s sets of hierarchical informations
S are formed, represented as Sk for the k-th set. As shown in Fig. 1(b), all nodes
in Sk are bidirectionally connected to all nodes in S(k+1), resulting in the for-
mation of edge sets Ecp(Sk → S(k+1)) and Ecf (Sk ← S(k+1)), representing cen-
trifugal and centripetal edges, respectively. Additionally, a self-connecting edge
Eid(Sk ∪ S(k+1)) is formed for the node set Sk ∪ S(k+1). Thus, s − 1 hierarchical
edge sets are obtained:

EHi =

⎡
⎣

⎧
⎨
⎩

Eid(S1 ∪ S2)
Ecp(S1 → S2)
Ecf(S1 ← S2)

⎫
⎬
⎭ , . . . ,

⎧
⎨
⎩

Eid(S(s−1) ∪ Ss)
Ecp(S(s−1) → Ss)
Ecf(S(s−1) ← Ss)

⎫
⎬
⎭

⎤
⎦ (1)

Reflection Stage However, the hierarchical graph unable to fully explore the
global relationships between nodes. Therefore, we introduce the reflection stage,
as shown in Fig. 1(c). We connect the last layer’s nodes (i.e, Ss) from the hierar-
chical information to full nodes, achieving information propagation on a global
scale. The specific design is as follows.
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We design full node sets S(s+1) and S(s+2), where S(s+1) = S(s+2) = {vi|i =
1, . . . , N}, and represent the global edge sets as below:

EGo =

⎡
⎣

⎧
⎨
⎩

Eid(Ss ∪ S(s+1))
Ecp(Ss → S(s+1))
Ecf(Ss ← S(s+1))

⎫
⎬
⎭ ,

⎧
⎨
⎩

Eid(S(s+1) ∪ S(s+2))
Ecp(S(s+1) → S(s+2))
Ecf(S(s+1) ← S(s+2))

⎫
⎬
⎭

⎤
⎦ (2)

We denote the final edge sets E = [EHi, EGo]. Through node set V and edge
set E, we construct the matrix AHiGo ∈ R

(s+1)×3×N×N includes both hierarchical
and global graph.

3.2 Spatial Convolution

Convolution Operation The first part of the spatial graph convolution
includes s − 1 hierarchical branches and two global branches. Each branch con-
sists of four parallel branches: three GCN operations and one node activation.
The specific design is illustrated in the left part of Fig. 2 in yellow.

Firstly, beside the first block of the network, we concatenate the features F
from the output of the previous block with the three-dimensional x-y-z coordi-
nates fxyz of the skeleton. This is carried out to enhance the precision of com-
prehending geometric concepts in the spatial domain, especially for high-level
features. The processed features are denoted as Fin = φ(fxyz ||F ), where || rep-
resents the concatenation operation along the channel dimension. φ(·) denotes
a linear transformation to reduce the dimensionality. Next, we perform GCN
operations on AHiGo for three subsets and concatenate the output values along
the channel dimension:

F (k) = ‖p∈P {Â
(k)
HiGoFinW

(k)
p } (3)

where F (k) denotes the concatenation from the three GCN operations in the k-th
layer branch. Define P = {root, cp, cf}, where root, cp, and cf denote subsets of
self, centrifugal, and centripetal nodes, respectively. ÂHiGo is the matrix obtained
by normalizing AHiGo, and W

(k)
p denotes the weights of the 1×1 convolution for

the p-th partition of the k-th layer.

Node Activation Although we defined hierarchical and global edge sets in the
Propagation and Reflection Stages, the model still cannot accurately capture the
relationships that reflect the similarity between all nodes in the feature space.

We know that different data samples may involve different nodes, in the
node activation, we form a neighborhood graph in the feature space using k-NN
operations to extract graphical features. Specifically, we first perform average
pooling on Fin along the temporal dimension to obtain the overall characteristics
of the specific action and simplify computational complexity. Then, we use k-NN
operations to aggregate the features of neighborhood edges in the feature space
to form a neighborhood graph. Furthermore, we aggregate the features of the
node itself to accurately reflect its characteristics:
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F
(k)
fe = ω1(kNN(AvgT (Fin))‖AvgT (Fin)) (4)

where AvgT (·) denotes the average pooling along the temporal dimension, and
ω1(·) denotes the aggregation operation with W ∈ R

C×2C , where C is the chan-
nel dimension of AvgT (Fin). We obtain the final feature via summation from the
results of equations (3) and (4):

F =
(s+1)∑

k=1

[F (k)‖F
(k)
fe ] (5)

Hierarchical Activation Similarly, different data samples may involve differ-
ent edges. Therefore, it is essential to identify the edges contributing differently
to action recognition in specific samples and assign corresponding weights to
them. Thus, we propose an hierarchical activation to implement this concept.

Specifically, we first perform max pooling along the temporal dimension to
obtain a representative feature Fmax ∈ R

C×(l+2)×V . Then, we additionally intro-
duce a node extraction operation to address scaling bias, since the number of
edges connected to each joint is different. We traverse the node set constructed
in Section 3.1 hierarchically, extracting only the features of nodes exist in each
layer from Fmax. Then, we perform spatial average pooling on the features within
the node set to extract hierarchical features:

F
(k)
level =

1
Nk + N(k+1)

∑

v∈Sk∪S(k+1)

F (k)
max(v) (6)

Finally, similar to the node activation, we calculate the similarity of hierar-
chical features to determine which features should be highlighted:

M = σ(ω2(kNN(‖k∈(l+2)F
(k)
level)‖(‖k∈(l+2)F

(k)
level))) (7)

where σ(·) represents the sigmoid function. We then perform element-wise mul-
tiplication between the obtained M and the features F outputted in Equation
(5). Finally, we get the output in the spatial convolution block.

3.3 Temporal Convolution

Our temporal convolution module, inspired by [3], consists of four branches.
Each branch incorporates a 1×1 convolution to reduce channel size. The first
three branches additionally feature two temporal convolutions with kernel sizes
of 5, dilation=[1,2], and a max pooling with a kernel size of 3. The final output
is obtained by concatenating the results from the four branches.
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3.4 Margin ReLU Distillation

We utilize the Margin ReLU Distillation to compress our proposed model. We
assume that the scale of the teacher model network is (L,C,T), where L, C, T
represent the number of layers, channels, and frames of the model, respectively.
To simplify the network, we set the scale of the student model to (2/3 L, 1/2
C, 1T). We selected three features from each model that had not been activated
by the ReLU function for distillation. We utilize the positive responses from the
teacher network for transmission and adjustment of the student network. Con-
versely, for the negative responses in the teacher network, the student network
generates a value less than the target value to ensure the same activation state.
Initially, we use this function to transform the teacher features:

σmc
(Ft) = max(Ft,mc) (8)

where Ft denotes the teacher feature, and mc is less than 0, derived from the
parameters of the preceding batch normalization layer. σmc

(·) denotes the Mar-
gin ReLU function.

To avoid information loss, we use a 1×1 convolution and batch normaliza-
tion layer operation r(·) to change the features of the student. We expand the
dimensions of the student model features Fs to r(Fs). Finally, Margin ReLU
Distillation adopts a partial L2 loss dp, and we represent the Margin ReLU
Distillation loss as:

Ldistill = dp(σmc
(Ft), (r(Fs))) (9)

dp(T, S) =
N∑

i

{
0 if Si ≤ Ti ≤ 0
(Ti − Si)2 otherwise

(10)

where Ti and Si are the i-th components of the tensors. The final loss function
is the sum of the distillation loss, weighted by manually defined coefficients
αLdistill, and the task loss Ltask.

3.5 Four-Way Integration

In recent years, human action recognition commonly utilize a four-stream inte-
gration: joint, bone, joint motion, and bone motion streams. However, to sim-
plify the model, we discard the motion streams and use only the joint and bone
streams from two selected central broadcast nodes, assigning the same contribu-
tion coefficients to both. In experiments, EchoGCN outperforms state-of-the-art
methods without using motion streams or manually setting ensemble coefficients.

3.6 Network Architecture

The architecture of the distillation network is illustrated in Figure 3. Our teacher
model consists of 10 Echo blocks, with output channel dimensions for each block
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Fig. 3. The distillation network architecture of the model. We transmit the skeleton
sequences to both the teacher and student models, and extract features before ReLU
activation from the teacher model at layers 4, 7, and 10, and from the student model
at layers 2, 4, and 7 for distillation.

⊗
denotes σmc(·), and Connector x (x = 1, 2, 3)

denotes r(·) in Section 3.4. Finally, we perform classification on the student model.

being: 64-64-64-64-128-128-128-256-256-256. For the student model, there are a
total of 7 Echo blocks, with output channel dimensions for each block being: 32-
32-64-64-128-128-128. Each block also includes a residual connection. We extract
features from the teacher model at layers 4, 7, and 10 before ReLU activation,
and from the student model at layers 2, 4, and 7 before ReLU activation for
distillation. We perform sample classification solely on the student model. After
passing through the 7 Echo blocks of the student model, we classify action sam-
ples using a global average pooling layer and a softmax function.

4 Experiment

4.1 Datasets

NTU-RGB+D 60: NTU-RGB+D 60[24] is one of the most widely used 3D
skeleton datasets in the field of human action recognition. Captured by Kinect
V2 at 30 fps, it includes 56,880 skeleton action samples from 40 subjects across
60 categories and 3 perspectives. We follow two recommended metrics: Cross-
Subject (X-Sub) and Cross-View (X-View).

NTU-RGB+D 120: NTU-RGB+D 120[19] extends the NTU-RGB+D 60
dataset with samples from 106 subjects, totaling 114,480 skeleton action samples
across 120 categories from 3 perspectives. We evaluate using two recommended
metrics: Cross-Subject (X-Sub) and Cross-Setup (X-Set).

Northwestern-UCLA: Northwestern-UCLA[28] includes 1494 video clips
covering 3 perspectives, 10 categories, and each action category is performed
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by 10 different subjects. We use the same evaluation method as [28]: using data
samples from the first two camera perspectives as training data and data samples
from the other camera perspective as testing data.

Experimental Setup: Our experiments are based on PyTorch and were
conducted on two RTX 3090 GPUs. We trained for 90 epochs with a warm-up
strategy for the initial 5 epochs. The SGD optimizer was used with a momen-
tum of 0.9 and weight decay of 0.0004. Learning rate decay followed a cosine
annealing schedule, ranging from a maximum of 0.1 to a minimum of 0.0001.
For NTU-RGB+D, the batch size was 64 for the non-distilled model and 48
for the distilled model. For Northwestern-UCLA, the batch size remained 16 for
both non-distilled and distilled models.

4.2 Comparison with State-of-the-Art Methods

We conducted experiments on three datasets: NTU-RGB+D 60, 120, and
Northwestern-UCLA, comparing our proposed EchoGCN and EchoGCN-distill
with state-of-the-art networks, as shown in Tables 1 and 2. For NTU-RGB+D
60, we report the Top-1 and Top-5 accuracies for X-sub and X-view. For NTU-
RGB+D 120, we show the Top-1 and Top-5 accuracies for X-sub and X-set.
Additionally, we provide the Floating-Point Operations (FLOPs) and model
parameters (Para.) for these datasets. In the UCLA dataset, we also report
the Top-1 and Top-5 accuracies, along with FLOPs and model parameters.

Table 1. Comparisons of the top-1 and top-5 accuracy (%) , FLOPs and model param-
eters with the state-of-the-art methods on the NTU RGB + D 60 and 120 datasets.

Methods NTU 60 NTU 120 FLOPs Para.
X-Sub X-View X-Sub X-Set
Top-1 Top-5* Top-1 Top-5* Top-1 Top-5* Top-1 Top-5*

ST-GCN(1s)[31] 81.5 96.9 88.3 98.5 70.7 95.0 73.2 96.6 16.32G* 3.10M*
AS-GCN(1s)[18] 86.8 97.3 94.2 99.1 78.3 96.9 79.8 97.0 26.76G* 9.50M*
2S-GCN(2s)[25] 88.5 98.5 95.2 99.2 82.5 97.8 84.2 97.8 37.32G* 6.94M*
Shift-GCN(4s)[4] 90.7 98.8 96.5 99.4 85.9 97.6 87.6 98.1 10.0G 2.76M
Shift-GCN++(4s)[5] 90.5 98.7 96.3 99.3 85.6 97.5 87.2 98.0 1.70G 1.80M
MS-G3D(2s)[20] 91.5 98.6 96.2 99.3 86.9 98.1 88.4 98.3 10.44G* 6.44M*
CTR-GCN(4s)[3] 92.4 99.1 96.8 99.3 88.9 98.6 90.6 98.5 7.88G* 5.84M*
EfficientGCN(3s)[27] 91.7 98.9 95.7 99.2 88.3 98.3 89.1 98.3 8.36G 1.10M
DD-GCN(2s)[16] 92.6 - 96.9 - 88.9 - 90.2 - - -
HGCT(4s)[2] 92.2 - 96.5 - 89.2 - 90.6 - - -
SaPR-GCN(4s)[17] 92.4 - 96.4 - 88.7 - 90.3 - 6.60G 8.28M
STHG-DAN(3s)[30] 91.2 - 96.5 - 88.7 - 89.8 - 5.18G 2.65M
ACE-ens(2s)[22] 91.6 - 96.3 - 88.2 - 89.2 - 78.0G 5.80M
EchoGCN(2s) 92.4 99.2 96.5 99.4 89.1 98.7 90.3 98.7 4.2G 4.72M
EchoGCN(4s) 92.7 99.2 96.9 99.5 89.5 98.8 90.7 98.7 8.4G 9.44M
EchoGCN-distill(2s) 92.3 99.2 96.5 99.4 89.2 98.7 90.2 98.6 0.7G 1.32M
EchoGCN-distill(4s) 92.8 99.3 96.7 99.5 89.7 98.8 90.9 99.0 1.4G 2.64M

1 Those marked with * are the results from the corresponding methods we reproduced
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Table 2. Comparisons of the top-1 and top-5 accuracy (%) , FLOPs and model param-
eters with the state-of-the-art methods on the Northwestern-UCLA dataset.

Methods UCLA FLOPs Para.
Top-1 Top-5*

TS-LSTM(4s)[15] 89.2 99.1 - -
AGC-LSTM(2s)[26] 93.3 99.2 - -
Shift-GCN(4s)[4] 94.6 99.3 0.70G 1.28M
Shift-GCN++(4s)[5] 95.0 99.3 0.11G 0.44M
CTR-GCN(4s)[3] 96.5 99.4 2.32G* 5.64M*
Graph2Net(2s)[29] 95.3 99.3 0.64G* 1.62M*
SaPR-GCN(4s)[17] 96.6 - 1.31G 2.06M
EchoGCN(2s) 95.9 99.4 2.38G 3.96M
EchoGCN(4s) 96.3 99.5 4.76G 7.92M
EchoGCN-distill(2s) 96.2 99.4 0.38G 1.10M
EchoGCN-distill(4s) 96.7 99.5 0.76G 2.20M

1 Those marked with * are the results from the correspond-
ing methods we reproduced

Overall, our EchoGCN and EchoGCN-distill outperform existing state-of-
the-art models across all datasets with fewer FLOPs and parameters. Specifi-
cally, EchoGCN-distill achieves slightly better results than EchoGCN while sig-
nificantly reducing FLOPs and parameters, and the 4-stream modality outper-
forms the 2-stream modality, validating the effectiveness of our integrated Mar-
gin ReLU distillation and four-stream ensemble approach. In the NTU-RGB+D
60 and 120 datasets, ShiftGCN, ShiftGCN++, MS-G3D, and CTR-GCN per-
form better than ST-GCN, AS-GCN, and 2S-GCN. This highlights the limita-
tions of models that only consider single-hop physical connections in skeletal
topology while neglecting distant joint relationships. However, ShiftGCN, Shift-
GCN++, and MS-G3D fail to balance local and global spatial convolutions or
broader semantic context, while CTR-GCN’s lack of physical priors makes its
topology learning overly flexible. Consequently, these models underperform com-
pared to EfficientGCN, DDGCN, SaPR-GCN, STHG-DAN and ACE-ens, which
have more thoughtfully designed topologies. Additionally, HGCT achieves com-
mendable results due to its Transformer-based design. In the UCLA dataset,
TS-LSTM and AGC-LSTM underperform all GCN-based models, highlighting
that LSTM is less effective for graph-structured data like skeletal structures.
The performance of other models in the UCLA dataset is similar to their per-
formance in the NTU datasets, so we omit further details for brevity.

In conclusion, EchoGCN and EchoGCN-distill consider both hierarchical and
global relationships, consistently outperform the aforementioned models, demon-
strating their superiority. For detailed results on the effectiveness of each com-
ponent, please refer to the subsequent ablation study section.
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Influence of Hierarchical and Global Graphs We conducted an evaluation
of the hierarchical graph (Hira) and the global graph (Gb) on NTU-RGB+D 120.
These two graphs construct the hierarchical and global relationships between
nodes starting from a broadcast node, enriching the semantics of the topo-
logical structure. In this set of experiments, we established four test samples:
EchoGCN (our proposed model without the distillation component), w/o Hira
(a model based on EchoGCN with the Hira removed), w/o Gb (a model based
on EchoGCN with the Gb removed), and w/o Hira+Gb (a model based on
EchoGCN with both the Hira and Gb removed).

Table 3. Comparison (%) of Differ-
ent Graph Structure Designs

Methods X-Sub X-View

w/o Hira 85.1 86.9

w/o Gb 85.0 86.9

w/o Hira+Gb 84.7 86.6

EchoGCN 85.2 87.0

Table 4. Comparison (%) of Different
Activation Designs

Methods X-Sub X-View

w/o HA 84.8 86.7

w/o NA 85.0 86.8

w/o HA+NA 84.5 86.4

EchoGCN 85.2 87.0

Table 5. Comparisons of the top-1 accuracy of Xsub and Xview(%) between Distilla-
tion Models and Non-Distillation Models

Node Stream NTU 60 NTU 120
Xsub(T/S) Xview(T/S) Xsub(T/S) Xset(T/S)

Hip Joint 90.6/90.7 95.2/95.4 85.2/86.0 87.0/87.5
Bone 90.5/90.9 94.9/95.2 86.6/87.3 88.2/88.6

Belly Joint 90.4/90.9 95.6/95.6 85.1/85.8 86.7/87.1
Bone 90.6/91.0 94.8/95.2 86.0/86.8 88.3/88.7

4.3 Ablation Study

As shown in Table 3, EchoGCN performs significantly better than EchoGCN
w/o Hira+Gb, demonstrating the effectiveness of our proposed Echo Graph
(i.e., the hierarchical and global graphs). Additionally, EchoGCN w/o Hira and
EchoGCN w/o Gb both outperform EchoGCN w/o Hira+Gb, indicating that
both the hierarchical graph and the global graph can effectively enhance the
model’s performance. Finally, by comparing the results of EchoGCN w/o Hira
and EchoGCN w/o Gb, we can conclude that the global graph provides a more
significant improvement to the model’s performance.
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Role of Activation We introduce two activation, namely Node Activation
(NA) and Hierarchical Activation (HA). These two components help identify
nodes and edges that significantly contribute to action recognition in specific
samples, and assign distinct weights to them. In this section, we validate their
effects on NTU-RGB+D 120. We established four test samples: EchoGCN (our
baseline model), w/o HA (a model based on EchoGCN with HA removed), w/o
NA (a model based on EchoGCN with NA removed), and w/o HA+NA (a model
based on EchoGCN with both HA and NA removed).

As shown in Table 4, EchoGCN w/o HA and EchoGCN w/o NA both outper-
form EchoGCN w/o HA+NA, demonstrating both hierarchical activation and
node activation are effective in enhancing the model’s performance. Furthermore,
EchoGCN performs significantly better than EchoGCN w/o HA+NA, proving
the effectiveness and rationality of integrating both hierarchical and node acti-
vations. Additionally, the performance of EchoGCN w/o NA surpasses that of
EchoGCN w/o HA, indicating node activation contributes more significantly to
the improvement of the model’s performance. Although the design of hierarchical
activation is reasonable, a more fine-grained node activation is needed.

Effect of Knowledge Distillation To tackle the challenge of model complex-
ity, we incorporate Margin ReLU distillation into EchoGCN. The single-stream
experimental results on the NTU-RGB+D60 and 120 datasets are presented in
Table 5. We abbreviate “Teacher model,” i.e., EchoGCN, as “T” and “Student
model,” i.e., EchoGCN-distill, as “S.” Combining the insights from Table 1 and
Table 2, it is evident that EchoGCN-distill consistently outperforms EchoGCN
in single-stream predictions while having fewer FLOPs and parameters. These
experimental outcomes affirm the effectiveness of Margin ReLU distillation.

5 Conclusion

In this work, we proposed a Echo Graph convolutional model for skeleton action
recognition (EchoGCN). we introduce the Echo Graph, which includes hierarchi-
cal and global graphs that simultaneously considers hierarchical and global topo-
logical structures. Additionally, we introduce node and hierarchical activation to
highlight crucial nodes and edges for specific samples. We integrate the Margin
ReLU Distillation for boosting the efficiency and propose a novel four-way inte-
gration only using joint and bone stream. On three datasets(NTU-RGB+D 60,
NTU-RGB+D 120, and NW-UCLA), the performance of the proposed EchoGCN
surpasses that of state-of-the-art methods.
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Abstract. Video-based Human-Object Interaction (HOI) recognition
explores the intricate dynamics between humans and objects, which
are essential for a comprehensive understanding of human behavior and
intentions. While previous work has made significant strides, effectively
integrating geometric and visual features to model dynamic relation-
ships between humans and objects in a graph framework remains a chal-
lenge. In this work, we propose a novel end-to-end category to scenery
framework, CATS, starting by generating geometric features for vari-
ous categories through graphs respectively, then fusing them with corre-
sponding visual features. Subsequently, we construct a scenery interactive
graph with these enhanced geometric-visual features as nodes to learn the
relationships among human and object categories. This methodological
advance facilitates a deeper, more structured comprehension of inter-
actions, bridging category-specific insights with broad scenery dynam-
ics. Our method demonstrates state-of-the-art performance on two piv-
otal HOI benchmarks, including the MPHOI-72 dataset for multi-person
HOIs and the single-person HOI CAD-120 dataset.

Keywords: Human-object interaction · Multi-person interaction ·
Feature fusion

1 Introduction

Human-Object Interaction (HOI) recognition delves into the subtle dynamics
between humans and objects, aiming to capture the breadth of their interac-
tions from basic actions to complex activities. This field transcends mere iden-
tification to explore the depth of their interactions, from elementary actions to
intricate sequences, which are essential for a comprehensive understanding of
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human behavior and intentions [30,35,51]. Accurate HOI recognition is crucial
across various domains, serving as a cornerstone for developing sophisticated
surveillance [7,37], enhancing video analysis techniques [25,27,32], and facilitat-
ing effective human-robot collaboration [31,39].

Prior work in Human-Object Interaction (HOI) detection predominantly
examines interactions within static images, offering crucial insights yet con-
strained by the lack of temporal dynamics [12,13,28]. The emergence of single-
person HOI video datasets marks a significant advancement [8,18,19], enabling
the development of models that understand spatio-temporal actions through
visual cues [15,30,34]. A notable progression is presented by [35], which lever-
ages geometric features informed networks for HOI recognition in videos, broad-
ening the scope to encompass two-person HOIs with the introduction of a novel
dataset.

While fusing geometric and visual features achieves remarkable performance,
video-based HOI recognition still faces challenges in effectively fusing these fea-
tures and learning dynamic relationships between humans and objects in a graph
model. 2G-GCN [35] attempts to enrich visual data with geometric information
via a graph-based network. However, merging geometric features of all humans
and objects with individual visual features in a single graph leads to a critical
flaw by neglecting category-specific characteristics. This fusion difficulty hampers
accurate and specific HOI learning, especially in complex multi-person scenes.

Categorization simplifies learning and improves behavior discrimination by
grouping similar features, enhancing model accuracy in identifying diverse inter-
actions. In this work, we follow natural cognitive processes [3,26] to learn HOIs
from category-level feature fusion to scenery-level graph representation, facili-
tating a structured and comprehensive understanding. This strategy enables a
more sophisticated integration of varied feature types, ensuring each level is fully
leveraged for enhanced representational efficacy. We propose a novel end-to-end
CATegory to Scenery framework (CATS), which initially generates geometric
features via a graph for different categories, integrating them with correspond-
ing visual features. Subsequently, a scenery interactive graph is constructed using
these enriched geometric-visual features as nodes, to deeply understand the inter-
action dynamics among all humans and objects.

Our approach surpasses state-of-the-art performance on two HOI bench-
marks, including the two-person MPHOI-72 [35] dataset and the single-person
HOI CAD-120 [18] dataset. Additionally, we conduct ablation studies to evaluate
the core components of our model. Our main contributions are:

– We propose an end-to-end framework CATS ranging from category-level
feature fusion to scenery-level graph for multi-person HOI recognition in
videos 1.

– We propose a multi-category multi-modality fusion module that fuses visual
features and graph-based geometric features for human and object categories,
respectively.

– We propose a scenery interactive graph to learn the relationships among
human and object categories via an attention-based graph.
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2 Related Work

2.1 HOI Recognition in Videos

There are two setups for video-based HOI recognition, where the more challeng-
ing setup focuses on segmenting and recognizing distinct human sub-activities in
videos. Deep neural networks (DNNs) and graphical models have been combined
in recent works. A paradigm for integrating the effectiveness of spatio-temporal
graphs with Recurrent Neural Networks (RNNs) in sequence learning is pre-
sented by Jain et al. [15]. Using learnable graph structures for videos, Qi et
al. [34] expand previous graphical models in DNNs and pass messages through
GPNN. For the intention of acquiring spatial relations, Dabral et al. [6] com-
pare GCNs to Convolutional Networks and Capsule Networks. In attempting to
investigate the evolution of spatio-temporal connections and identify objects in
a scene [23,43], STIGPN [43] utilizes visual-based multi-modal features and a
multi-stream fusion strategy to enhance the reasoning capability of the model.
Morais et al. [30] present a visual feature attention model to learn asynchronous
and sparse HOI in videos. Xing et al. [44] represent the 2D or 3D spatial relation
of human skeletons and object center points from the detection results in video
data as a graph. Based on prior visual-only and geometric-only approaches, 2G-
GCN [35] incorporates geometric features to complement visual features into the
HOI recognition network through a graph network. Nevertheless, the fusion of
geometric and visual features introduces certain design complexities that offer
opportunities for further refinement.

Another more relaxed setup in HOI recognition aims to generate
<human, predicate, object> triplets, neglecting a more detailed analysis of
specific actions and interactions. For example, in recent years, SERVO-HOI [1]
presents a robust end-to-end framework adept at recognizing HOIs within in-
the-wild videos, especially effective in high label-skew settings. Zeng et al. [47]
introduce the Relation-Pose Transformer (RPT), a novel framework designed
to intricately model the spatial and temporal dynamics between relations and
poses, adept at encapsulating spatially contextualized information and the tem-
poral evolution of relationships. Furthermore, Zhang et al. [49] explore a new
task, Human-Object-Object Interaction (HOOI) detection, focusing on localiz-
ing the human and identifying their interactions within untrimmed videos as a
quadruple <human, interaction, object1, object2>. In this work, our study
concentrates on the more challenging aspect of video-based HOI recognition,
specifically the segmentation and recognition of distinct human sub-activities
along the video timeline.

2.2 Graph-based HOI Analysis

Graphical models facilitate the sharing of contextual information among nodes.
Qi et al. [34] introduce this concept in HOI detection, where they propose a
fully-connected graph with detected instances as nodes and update node features
with a message passing algorithm. Wang et al. [42] suggest that adaptation to
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two sets of heterogeneous nodes, human and object, is essential for graph-based
HOI analysis. This necessitates modelling intra-class messages differently from
inter-class messages during message passing. Incorporating the heterogeneity of
nodes, Gao et al. [11] create separate human-centric and object-centric graphs
for HOI detection by treating human-object pairs as nodes and employing the
pairwise spatial relations as node encoding. VSGNet et al. [41] leverages graph
convolution and spatial configuration to refine visual features of human-object
pairs and exploits structural connections between them. SCG [48] develops a
bipartite graph to model interrelationships between nodes in HOI scene where
each human node is connected to each object node. Building upon SCG, Park
et al. [33] design a graph with a pose-conditioned self-loop structure to update
the encoding of human nodes with local features of skeleton joints. Additionally,
Zhang et al. [50] construct an interaction-centric graph by treating selected inter-
action proposals as graph nodes to examine inter-interaction semantic structure
and intra-interaction spatial structure.

Recent advancements in HOI recognition tasks are also inspired by graph-
ical models. LIGHTEN [40] employs a graph structure to model human and
object embeddings, which serves them as nodes in the scene. In a similar vein,
Dabral et al. [6] investigate the efficacy of GCNs in spatial relation learning
compared to Convolutional Networks and Capsule Networks. Wang et al. [43]
propose the STIGPN to understand the evolution of spatio-temporal relation-
ships and distinguish the objects involved in the background using parsed graphs.
Xing et al. [44] introduce a novel spatial attention mechanism that can enhance
action recognition by adaptively generating a spatial-relation graph during HOIs.
InterDiff [45] utilizes a diffusion model [4] combined with a physics-informed pre-
dictor to anticipate 3D HOIs, effectively capturing complex, long-term interac-
tions by modeling dynamic objects and whole-body motion in a spatial-temporal
graph neural network. In 2G-GCN [35], linking collective geometric features with
individual visual features causes hierarchical misalignment, as high-level spatial
information may not align well with detailed, entity-specific visual data. This
focuses on less relevant objects and fails to explicitly learn HOIs. In this study,
we develop an understanding of HOIs by progressing from category-level feature
fusion to scenery-level graph representation, enabling a structured and thorough
comprehension of interactions.

3 Methodology

We propose an end-to-end framework CATS (Fig. 1) to learn HOIs from
category-level to scenery-level, which first focuses on the inherent characteristics
of different categories, capturing their physical properties and contextual visual
cues to achieve a rich feature representation. It then adopts a graph attention
neural network to learn multi-category features as a scenery graph representa-
tion, which represents the true HOI. This approach mirrors natural cognitive
processes [3,26] facilitating a structured and comprehensive understanding of
interactions within various contexts.



266 T. Qiao et al.

Alternative architecture performs suboptimally, an approach treats each
human and object as an entity independently, ignoring the correlation between
the same category and compromising the model’s ability to understand com-
plex dynamics. An alternative method [35] groups all human poses and object
bounding boxes into a single category for geometric feature learning, and then
combines these geometric features with visual features in a single graph learn-
ing, which complicates entity representation and hampers explicit HOI learning.
We compare these alternative architectures with our method in Experimental
Results 4.
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Fig. 1. Overview of our end-to-end framework CATS. We first learn geometric features
via a graph for human and object categories, fusing them with corresponding visual
features. Subsequently, a scenery interactive graph is constructed to deeply understand
the interaction dynamics between multi-categories.

3.1 Multi-Category Multi-Modality Fusion

Previous CNN-based methods for HOI recognition in videos have predominantly
focused on visual features [21,29,30], which may not be sufficient in cases of
occlusion. While more advanced approaches like 2G-GCN [35] have attempted to
incorporate geometric features to complement visual features, they categorize all
human skeletons and object bounding boxes under a single category for geometric
feature learning, thereby neglecting the distinct characteristics unique to each
category and potentially generating skewed geometric features.

To this end, we propose a multi-category multi-modality fusion module that
first learns geometric features via a graph for human and object two categories
and then fuses them with corresponding visual features (Fig. 1). These category-
specific features establish a rich multimodal context, providing a solid foundation
for subsequent accurate interaction recognition.

Geometric Features For feature representation in human category and other
related tasks, following previous successes [24,35], we concatenate the position
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Fig. 2. The process of learning and fusing geometric and visual features for human and
object categories.

and velocity of all humans into keypoint channels, forming human geometric
features HG = {hgt,h,j}T,H,J

t=1,h=1,j=1 ∈ R
4, where hgt,h,j denotes the body joint

of type j in human h at time t, T denotes the total number of frames in the
video, H and J denote the total number of humans and keypoints of a human
body in a frame, respectively. Similar to humans, object geometric features
OG = {ogt,o,u}T,O,2

t=1,o=1,u=1 ∈ R
4, where ogt,o,u denotes the bounding box diagonal

points u in object o at time t and O denotes the total number of objects.
As shown in Fig. 2, human and object geometric features are adopted n-layer

GCNs to capture spatial dynamics and interactions in each category. This enables
deeper analysis through successive transformations, allowing the graph-based
network to learn intricate patterns of spatial dynamic interactions at multiple
levels of abstraction [9,46]. Here, taking human geometric features as an example,
the operation of each GCN layer is formalized as:

H(l+1) = σ
(
AH(l)W (l)

)
, (1)

where H(l) represents the activation matrix at the lth layer (H(0) = HG for the
initial layer), A is the adjacency matrix defining the graph structure, W (l) is the
weight matrix for the lth layer, and σ is the Tanh activation function.

For an n-layer GCN, this transformation is applied iteratively to obtain the
final embedded human geometric features:

HG′ = H(n) = σ
(
AH(n−1)W (n−1)

)
(2)

where n is the total number of GCN layers, iterating the process from l = 0 to
n − 1. We choose n = 4 based on empirical experimental results. Through this
operation, we can obtain the embedded human and object geometric features:
HG′ ∈ R

T×HJ×C2 and OG′ ∈ R
T×2O×C2 .

Visual Features In contrast to geometric features, visual features in videos
offer a wealth of contextual information and essential feature representations.
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Following [30,35], we derive 2048-dimensional visual features of entities from
Region of Interest (ROI) pooled 2D bounding boxes around humans and objects
in video frames. As shown in Fig. 2, they are subsequently reduced dimensionally
to C1 through an MLP with learnable embeddings and aligned dimensionally
with geometric features. This process results in the embedded human and object
visual features: HV ′ ∈ R

T×HJ×C1 and OV ′ ∈ R
T×2O×C1 .

Multi-Modality Fusion Finally, we fuse embedded geometric and visual fea-
tures in the human and object keypoint channel, producing new enriched human
and object feature representations, respectively:

H̃ = HG′⊕HV ′ ∈ R
T×HJ×C3 ; (3)

Õ = OG′⊕OV ′ ∈ R
T×2O×C3 , (4)

where ⊕ represents concatenate operation and C3 = C1+C2. This refined fusion
of geometric and visual cues creates a richly contextualized blend, laying a solid
foundation for enhanced scenery graph learning of HOIs.

3.2 Scenery Interactive Graph

To effectively model the interactions between humans and objects, the existing
method [30] focuses exclusively on their visual features to construct an inter-
action graph. This approach taps into the visual aspect of interactions, which
is essential but insufficient for grasping the dynamic spatial relationships criti-
cal to understanding the complexities of HOI. Furthermore, 2G-GCN [35] offers
a more comprehensive view but fuse geometric features representing all enti-
ties with visual features representing individuals, which results in hierarchical
misalignment and fails to explicitly learn HOIs.

To overcome the constraints of prior approaches, we propose a scenery inter-
active graph that adopts a graph attention neural network to learn interactions
between different categories with enriched feature representation (Fig. 1), to
deeply understand the interaction dynamics among all humans and objects. This
structured approach facilitates a comprehensive understanding of interactions
within various contexts.

GAT for Learning Scenery Graph Specifically, we adopt Graph Attention
Networks (GAT) [14] in learning scenery graph interactions is particularly advan-
tageous due to their ability to dynamically adjust to rapid changes in human and
object interactions within scenery graphs, thanks to their adaptive edge weight-
ing and handling of non-static features. This ensures a precise focus on relevant
entities and their evolving relationships, optimizing the model’s responsiveness
to the complex dynamics of interactions.

We construct the HOI scenery graph Gs−t = (V, E), where V ∈
R

T×(HJ+2O)×C3 represents the node features, which is obtained by concatenating
the local human feature representation H̃ and object feature representation Õ,
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and E ∈ R
T×(HJ+2O)×(HJ+2O) denotes the initialized fully-connected adjacency

matrix. For each node Vi at time step t ∈ [1, . . . T ], the feature representation is:

Vt
i = σ

⎛
⎝ ∑

j∈N(i)∪i

αt
i,jΘVt

j

⎞
⎠ , (5)

and the attention coefficients αi,j are computed as:

αt
i,j =

exp
(
LeakyReLU

(
W�[ΘVt

i , ‖,ΘVt
j ]

))
∑

n∈N(i)∪i
exp (LeakyReLU (W�[ΘVt

i , ‖,ΘVt
n]))

, (6)

where Θ(·) is the transformation function, N (·) is the neighbor set of node i
and W represents learnable parameters. This dynamic weighting is crucial as
it allows the model to adaptively focus on the most relevant nodes and edges,
reflecting the changing nature of interactions and relationships within the scene.

RNN-based Network for Learning Temporal Dependency After obtain-
ing the learned HOI scenery graph representations at each time step t, we employ
an RNN-based network to learn the temporal dependencies across all the time
steps. Specifically, we utilize a Bi-direction Gated Recurrent Unit (Bi-GRU) [5]
that enables our model to integrate both past and future contexts, enhancing
its understanding of the sequential dynamics in human-object interactions. The
GRU’s gating mechanisms effectively manage long-term dependencies, ensuring
robust temporal modeling. For the learned step-wise feature representations, we
utilize a Gumbel-Softmax module [16], enabling precise and adaptable delin-
eation of sub-event lengths in video sequences. This module is instrumental in
enabling gradient-based optimization while maintaining probabilistic integrity
in segmenting actions, a crucial aspect when dealing with the inherently fluctu-
ating characteristics of video content. Subsequently, we employ another Bi-GRU
to discern the temporal relations among segmented sub-actions. The processed
features are then leveraged to identify specific sub-activities associated with
humans, with the granularity of recognition tailored to suit the requirements of
the specific dataset.

4 Experiments

4.1 Datasets

We evaluate CATS on two datasets: MPHOI-72 [35] and CAD-120 [18], show-
casing the superior results on multi-person and single-person HOI recognition.

The MPHOI-72 dataset is valuable for two-person HOI tasks. It contains 72
videos of 8 pairs of people performing 3 distinct activities (Cheering, Hair cutting
and Co-working) with 13 human sub-activities (e.g., Sit, Pour). Each video
showcases two participants interacting with 2-4 objects from 3 unique angles.
Geometric features and human sub-activities labels are frame-wise annotated.
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CAD-120 is a prominent dataset for single-person HOI recognition. It con-
tains 120 RGB-D videos, capturing 10 distinct activities executed by 4 partici-
pants, each repeated three times. In each video, a participant interacts with 1-5
objects. The dataset provides frame-wise annotations for 10 human sub-activities
(e.g., opening, placing).

4.2 Evaluation Protocol

Following the evaluation protocol of [30,35], we assess CATS across two specific
tasks: joint segmentation and label recognition for pre-segmented entities. The
initial task involves both segmenting and classifying the timeline of each entity
in a video, while the second extends this by assigning labels to pre-segmented
sections with known ground truth. We adopt the F1@k metric [22] for evaluation,
using standard thresholds of k = 10%, 25%, and 50%. This metric, prevalent
in segmentation research [10,22,30], determines the correctness of a predicted
action segment based on its minimum Intersection over Union (IoU) overlap
with the ground truth and is particularly effective for assessing brief actions
and detailed segmentation. For dataset evaluation, we implement a leave-two-
subjects-out strategy for the MPHOI-72 dataset and a leave-one-subject-out
cross-validation approach for CAD-120.

4.3 Network Setting

The visual features of humans and objects are extracted from 2D bounding boxes
within the video using a Faster R-CNN module [36] that has been pre-trained [2]
on the Visual Genome dataset [20]. For multi-modality fusion, we set C1 = 512
and C2 = 256, resulting in a fused dimension of C3 = 768, which supports varied
feature dimensions as shown in Fig. 2.

4.4 Quantitative Comparison

Multi-person HOIs In the MPHOI-72 dataset, results in Table 1 demon-
strate CATS not only surpasses the previous state-of-the-art models, ASSIGN
[30] and 2G-GCN [35], showcasing significant performance improvements, but
also exhibits unparalleled stability. This is highlighted by CATS’s superior per-
formance across all F1 configurations coupled with substantially lower stan-
dard deviations. Specifically, in the F1@10 score, CATS achieves 71.3%, which
is approximately 3% and 12% higher than 2G-GCN and ASSIGN, respectively,
marking a clear advancement in both predictive accuracy and consistency in the
domain of human-object interaction recognition. These experimental outcomes
further underscore the significance of geometric features in the multi-person
Human-Object Interaction (MPHOI) domain. Models based solely on visual fea-
tures, such as ASSIGN, are noticeably outperformed by those that incorporate
both visual and geometric information. Although 2G-GCN integrates both visual
and geometric features, its sub-optimal performance can be attributed to a lack
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of specificity in representing individual entities. Consequently, our model’s supe-
rior performance and stability are not just a result of integrating multiple types
of features but also our model’s ability to specifically and effectively capture the
nuanced dynamics of each entity involved in the interaction.

Table 1. Joined segmentation and label recognition on MPHOI-72.

Model Sub-activity
F1@10 F1@25 F1@50

ASSIGN [30] 59.1 ± 12.1 51.0 ± 16.7 33.2 ± 14.0
2G-GCN [35] 68.6 ± 10.4 60.8 ± 10.3 45.2 ± 6.5
CATS 71.3 ± 5.0 65.8 ± 3.9 48.8 ± 5.3

Single-person HOIs In the CAD-120 dataset, as presented in Table 2, CATS
demonstrates strong competitiveness in the single-person HOI scenarios. For
both human sub-activity and object affordance labelling tasks, CATS surpasses
various prior methods, including those reliant on visual features like ATCRF[17]
and [30], as well as the more sophisticated visual-geometric approach offered by
2G-GCN [35]. Notably, CATS secures SOTA performance in both F1@10 and
F1@25 metrics, registering improvements of 1.6% and 0.1% over ASSIGN and
2G-GCN, respectively. This achievement underscores CATS’s exceptional capa-
bility to accurately model and predict the dynamics of interactions, highlighting
its adaptability and efficiency across different HOI challenges.

Table 2. Joined segmentation and label recognition on CAD-120.

Model Sub-activity
F1@10 F1@25 F1@50

rCRF [38] 65.6 ± 3.2 61.5 ± 4.1 47.1 ± 4.3
Independent BiRNN 70.2 ± 5.5 64.1 ± 5.3 48.9 ± 6.8
ATCRF [17] 72.0 ± 2.8 68.9 ± 3.6 53.5 ± 4.3
Relational BiRNN 79.2 ± 2.5 75.2 ± 3.5 62.5 ± 5.5
ASSIGN [30] 88.0 ± 1.8 84.8 ± 3.0 73.8 ± 5.8
2G-GCN [35] 89.5 ± 1.6 87.1 ± 1.8 76.2 ± 2.8
CATS 89.6 ± 2.1 87.3 ± 1.5 76.0 ± 3.5

4.5 Qualitative Comparison

In this section, we present a qualitative comparison of CATS with the state-of-
the-art method across the MPHOI-72 and CAD-120 datasets.
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Fig. 3 and Fig. 4 illustrate Cheering and Hair Cutting activities within the
MPHOI-72 dataset, comparing the segmentation and labeling tasks performed
by CATS and 2G-GCN [35] against the ground truth. Significant segmentation
errors are marked with red dashed boxes. Although both methods exhibit some
discrepancies in their predictions, CATS more closely aligns with the ground
truth, offering a more precise and stable visualization across a variety of actions.
Conversely, 2G-GCN is prone to generating inappropriate sub-activities such as
cheers and lift in the Cheering activity. Moreover, in the Hair Cutting activity,
2G-GCN inaccurately presents the cut sub-activity into place sub-activity, fur-
ther deviating from the expected interaction dynamics. This comparison under-
scores the superior accuracy and reliability of CATS in capturing and visualizing
complex human-object interactions within diverse scenarios.

Fig. 3. Visualization of segmentation on MPHOI-72 for Cheering activity. Red dashed
boxes highlight major segmentation errors. (Color figure online)

Fig. 5 and Fig. 6 illustrate the Cleaning Objects and Making Cereal activities
from the single-person CAD-120 dataset, with abnormal segmentation instances
accentuated by red dashed boxes. For the Cleaning Objects activity, both meth-
ods effectively match the overall ground truth. However, CATS provides a visu-
alization that more closely approximates the ground truth. In the Making Cereal
activity, CATS significantly outperforms 2G-GCN, particularly in sub-activities
such as pouring, moving, and reaching, while 2G-GCN yields some inaccurate
segmentations. The enhanced precision of CATS in capturing the intricacies of
each activity highlights its superior performance, excelling in the identification
and precise representation of detailed actions and interactions within the scenes,
thus delivering a more accurate and reliable analysis of the activities performed.

Fig. 4. Visualization of segmentation on MPHOI-72 for Hair cutting activity. Red
dashed boxes highlight major segmentation errors.
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4.6 Alternative Architectures and Ablation Studies

Architecture Alternatives Comparison We evaluate the HOI recognition
performance on the MPHOI-72 and CAD-120 datasets by conducting tests on
various alternative model structures. The experimental outcomes, as detailed in
Tables 3 and 4, reveal that our model consistently delivers superior results com-
pared to these alternatives. This superior performance is likely attributable to
the unique consideration our model gives to category-level interactions, specif-
ically the distinct analysis of human-human and object-object interactions.
Unlike other approaches that might treat interactions generically or overlook the
nuanced distinctions between different types of interactions, our model maintains
a comprehensive view.

Fig. 5. Visualization of segmentation on CAD-120 for Cleaning objects activity. Red
dashed boxes highlight major segmentation errors. (Color figure online)

Fig. 6. Visualization of segmentation on CAD-120 for Making Cereal activity. Red
dashed boxes highlight major segmentation errors. (Color figure online)

Table 3. Comparison between archi-
tecture alternatives and CATS on
MPHOI-72.

Model Sub-activity

F1@10 F1@25 F1@50

Independent-
entity
architecture

65.1 ± 3.3 58.7 ± 1.7 40.4 ± 3.9

2G-GCN [35] 68.6 ± 10.4 60.8 ± 10.3 45.2 ± 6.5

CATS 71.3 ± 5.0 65.8 ± 3.9 48.8 ± 5.3

Table 4. Comparison between archi-
tecture alternatives and CATS on
CAD-120.

Model Sub-activity

F1@10 F1@25 F1@50

Independent-
entity
architecture

85.9 ± 4.0 84.1 ± 4.9 72.8 ± 5.2

2G-GCN [35] 89.5 ± 1.6 87.1 ± 1.8 76.2 ± 2.8

CATS 89.6 ± 2.1 87.3 ± 1.5 76.0 ± 3.5

GCN Layers for Geometric Feature Learning In this section, we con-
duct ablation studies to elucidate the impact of the depth of GCN layers on the
geometric learning of human joints and object keypoints within our network,
results are shown in Table 5. To assess the influence of GCN layer depth on
model performance, we explore configurations with 1, 2, 3, 4, and 5 GCN layers.
Through this comparative analysis, we aim to identify the most effective layer
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Table 5. Results of different GCN layers in multi-category multi-modality fusion on
MPHOI-72.

Model Sub-activity
F1@10 F1@25 F1@50

1-layer GCN 70.4 ± 1.7 62.0 ± 2.5 43.9 ± 3.8
2-layer GCN 68.8 ± 4.3 62.1 ± 4.3 44.0 ± 3.3
3-layer GCN 67.4 ± 4.2 63.3 ± 3.4 44.2 ± 1.3
5-layer GCN 70.4 ± 5.7 60.0 ± 2.3 43.7 ± 2.2
4-layer GCN (Ours) 71.3 ± 5.0 65.8 ± 3.9 48.8 ± 5.3

depth that balances computational efficiency with the nuanced understanding
of spatial relationships essential for interpreting complex interactions between
humans and objects. The results indicate that a configuration of 4-layer GCN
offers the optimal balance, providing the best performance in terms of both
accuracy and computational efficiency. This depth allows for sufficient complex-
ity to understand and model the geometric relationships critical for accurate
interaction recognition, without incurring the diminishing returns or increased
computational demand associated with additional layers.

5 Conclusion

In conclusion, we propose CATS, an advanced end-to-end framework that
enhances video-based HOI recognition through sophisticated integration of cat-
egory and scenery level analyses. It first fuses multi-modal features of different
categories, and then construct a scenery interactive graph to learn the rela-
tionships between these categories. CATS demonstrates superior performance
on key benchmarks such as MPHOI-72 and CAD-120 datasets, showcasing the
effectiveness of multi-person and single-person HOI recognition.
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Abstract. Gestures exhibit sparse joint variations and different time
scales, making local dynamic analysis and global spatio-temporal model-
ing important. Path signature provides mathematical and dynamic anal-
ysis of joint trajectories to assist in spatio-temporal modeling. However,
previous methods relied on predefined local spatio-temporal joint tra-
jectories, also known as paths. This limitation makes it challenging to
directly capture the dynamics of the entire gesture and adapt to varying
scales of gesture changes. In this work, we construct the Adaptive Global
Gesture Path and extract its signature features as gesture representa-
tions. Specifically, we designed global branch to model the global spatio-
temporal variation relationship of joints. The dynamic branch is based
on the proposed Motion Guided Cluster Attention Block, which empha-
sizes joints exhibiting similar motion patterns. Combining two branches,
the predicted dynamic and global score can distinguish key joints at
different times to construct the Adaptive Global Gesture Path that con-
densely represents the entire gesture. We conducted experiments on the
ChaLearn2013 and WLASL datasets, and achieved the state-of-the-art
results with much smaller model size.

Keywords: Skeleton-based gesture recognition · Attention
mechanism · Path signature

1 Introduction

Gesture recognition is an active research area for its wide range of applica-
tions in human-computer interaction [36] and sign language translation [1]. The
advancement of pose estimation methods [2,14] has facilitated the acquisition
of skeleton-based gesture data, which can be represented as a spatio-temporal
matrix as shown in Figure 1 (c). In contrast to RGB-based approaches, skeleton-
based methods are more robust to noise, occlusion, and viewpoint changes.

The key to skeleton-based gesture recognitions lies in the learning of ges-
ture representation that captures spatio-temporal interactions and temporal
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Fig. 1. Illustration of joints interaction and connection. (a) (b) shows the differences
between regular convolution and the proposed Motion-Guided Cluster Attention in
associating joints. (c) compares skeleton sequences execution speeds of the “clap” ges-
ture and the corresponding paths.

dynamic analysis. Existing CNNs [10,30] and GCNs methods [4,34,48] exhibit
constraints in effectively capturing interaction among distant key joints. For
instance, the distance between the left and right hand in the spatio-temporal
matrix exceeds the receptive field of a single convolutional operation. Conse-
quently, the association between these joints is established only in deeper lay-
ers. Some work [37,38] captures spatio-temporal features by deep Transformer
structure with global receptive fields, but important local dynamic descriptions
cannot be emphasized.

Recently, path signature based action recognition [24,30,31] have demon-
strated exceptional performance due to its temporal dynamic analysis capabili-
ties and effective motion dependency description. The sequential arrangement of
skeleton data inherently embodies a natural path-like structure. By construct-
ing effective paths and integrating path signature, these approaches successfully
capture the geometric and analytical attributes inherent in gesture trajectories.
However, existing methods concentrate on predefined connection patterns, mak-
ing the dynamic analysis between unconnected joints and the overall evolution
and patterns of gestures at different time scales challenging.

In this work, we define a spatio-temporal joint trajectory referred as Adap-
ative Global Gesture Path, which condensely represents the entire gesture. The
key challenge lies in extracting global spatio-temporal features and dynamic
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Fig. 2. The overall framework of the proposed approach. The two branches extract
features separately, subsequently integrating the dynamic and global features to iden-
tify key tokens with predicted score. Finally, we obtain the spatio-temporal path of the
gesture and extract signature features for recognition.

interaction to distinguish key joints in different gestures with sparse variations.
The entire process can be divided into three steps (Fig. 2).

First, we model spatio-temporal dependencies and temporal dynamics
through global and dynamic branches. The proposed Motion-Guided Cluster
Attention Block breaks away from fixed patterns, allowing the model to adeptly
capture temporal dynamic interactions on a global scale.

Next, we evaluate the significance based on the information within the joints,
sampling key joints to construct the Adaptive Global Gesture Path. Inspired
by DynamicViT [39], we predict a dynamic and a global score to quantify the
significance of joints. Gumbel-Softmax [20] is then employed to overcomes the
non-differentiable problem in sampling with a generated binary mask.

Lastly, we incorporate the rough path theory to extract the signature features
of the Adaptive Global Gesture Path. Path signatures exhibit numerous alge-
braic and analytical properties, providing a comprehensive representation that
effectively captures complex interactions over time.

In general, we conclude our contributions in three aspects:

– We expand the definition of gesture paths and construct a simple and con-
densed spatial-temporal trajectory to represent the gesture. We refer that
trajectory as Adapative Global Gesture Path, and further, its signature fea-
tures are obtained for the final recognition process.

– We propose a Motion Guided Cluster Attention Block for dynamic analysis,
which breaks down predefined forms and definitions, and aggregates joint
information with similar motion.

– We perform extensive experiments on ChaLearn2013 and WLASL-300. Our
proposed method has significantly improved accuracy, with smaller model
sizes. Ablation study further validated the usefulness of the proposed block
and path signature features.
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2 Related Work

2.1 Skeleton-based Gesture Recognition

Recent work have focused on extracting more discriminative spatio-temporal
features. On one hand, previous work [28,32] successfully incorporated global
information to facilitate network adaptability at various time scales. [22] empha-
sized the association of distant nodes and proposed a hierarchical decomposition
graph. On the other hand, it is evident that not all joint information contributes
equally to recognition task. Therefore, [42,46] developed spatial-temporal atten-
tion mechanisms to identify the most informative joints at different temporal
instances. These advancements have significantly enhanced the discriminative
power and efficiency of gesture recognition models. Furthermore, the incorpora-
tion of motion information, extracted from the skeleton coordinate sequences,
has been widely adopted in skeleton-based action recognition studies [11,27] and
skeleton-based gesture recognition research [5,32]. [23] emphasize the modeling
of partial motion context information and integrate each part into a unified con-
text. Building upon these advancements, our work also leverages motion infor-
mation to guide the network in adapting its joint interactions dynamically.

2.2 Path Signature Method

Path signature was first proposed by Chen [3] as an infinite and graded sequence
of iterated integrals of a path of bounded variation. The signature can charac-
terise the path up to a negligible re-parameterization equivalence. Lyons [17]
extended it on this basis to apply it to finite p-variational rough paths. After-
wards, path signature combined with machine learning was successfully applied
in various fields, including financial data analysis [35], handwritten character
recognition [47], author recognition [21], infant cognitive score prediction [6,52],
and skeleton based action recognition [24,30,31,49].

Previous path signature based action recognition methods were limited to
associating adjacent joints locally in both time and space, failing to capture the
entirety of the action’s execution process. In this work, the network adaptively
selects key joints on a global scale, directly constructing a more condensed and
representative spatial-temporal joined path spanning the entire motion process.

2.3 Vision Transformer

Motivated by the powerful contextual modeling ability of the Transformer [44],
there is an emerging research area to employ the Transformer for various appli-
cations in the field of computer vision [8,18,33]. However, the Transformer intro-
duces a significant amount of computation, and in visual tasks, which usually
contains a lot of redundant information. Therefore, many works focused on spar-
sifying ViT [13,29,39,50] and removing redundant tokens, while [51] proposed
to cluster and merge similar tokens to form a more flexible ViT. Additionally,
as the model depth increases, the similarity between different blocks and tokens
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also increases[15]. Hence, many works aimed to optimize this through multi-scale
sequence interaction, improving attention mechanisms and forms, and increasing
token diversity.

3 Methods

3.1 Feature Extraction

The global branch captures the spatio-temporal features of gestures by establish-
ing direct interaction between two joints. The dynamic branch takes into account
joints with similar movement trajectories during gesture execution, thus better
emphasizing local dynamics. By combining two branches, we obtain discrimina-
tive joint features.

The skeleton sequence can be viewed as a spatio-temporal matrix x ∈
RC×J×T , where C denotes the number of dimension, J is the number of joints,
T is the number of frames. Given a patch size of (ΔJ,ΔT ), we embed x into
a sequence of flattened 2D tokens z ∈ RL×D, where L = J

ΔJ × T
ΔT represents

the number of tokens, and D represents the embedded dimension of each token.
A learnable embedding zcls termed class token is concatenated to the sequence.
z = [zcls, z1, · · · , zL] is then fed into two branches.

The global branch uses Self-Attention and FeedForward Neural Net-
work(FFN) [44] to extract global feature zg:

zg = Softmax(QgKT
g /

√
D)Vg, (1)

where Qg,Kg,Vg ∈ RL×D are obtained through linear mapping of the input z.
The dynamic branch is composed of Motion-Guided Cluster Attention Block.

As shown in Fig.3, the Motion-Guided Cluster Attention Block has two main
process, token clustering and masked attention. Among them, we use the motion
information of tokens to group them into N clusters, and generate mask based
on the clustering results.

Motion-Guided Cluster Attention Block

Firstly, we calculate the velocity of the joints by measuring the difference in
their coordinates over a time interval of ΔT frames. We then use the DPC KNN
algorithm[9] to cluster these velocities, resulting in a set of clustered indices
I = {i1, · · · , iL}, il ∈ [1, N ].

Secondly, we mask tokens that do not belong to the same cluster and adap-
tively link relevant tokens. Specifically, we create a mask Mqk ∈ {0, 1} based on
the cluster indices I for N distinct clusters. Then, we perform an element-wise
multiplication between Qd,Kd and the generated cluster mask Mqk, as shown
in Eq. (2). This operation can be regarded as a flexible token-wise multi-head
attention mechanism. Additionally, all attention mechanisms used in this paper
are based on the multi-head attention mechanism.
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Fig. 3. The process of clustering and masking out irrelevant tokens to calculate atten-
tion scores.

Q̂d = Mqk ∗ Qd

K̂d = Mqk ∗ Kd

zd = Softmax(Sum(Q̂dK̂d
T
/
√

D))Vd,

(2)

where Mqk ∈ RN×L×D, Qd,Kd,Vd are obtained through linear projection of
the input z.

Motion-guided cluster attention breaks fixed information aggregation, tar-
geting global-scale dynamic interactions. By adjusting N , we control the range
of relevant tokens, and enable fine-grained attention.

3.2 Path Generation

By identifying key parts and connecting them, we construct a natural path-like
structure that condenses the sequential skeletal gesture into a compact repre-
sentation.

The probability of token retention is considered by both global and dynamic
features. We calculate the similarity between class token zcls and other tokens
then followed by a linear layer to generate global prediction score sg ∈ RL:

sg = (zclsWq)(zgWk)T , (3)
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where Wq,Wk ∈ RD×D represents the learnable parameter used for linear pro-
jection.

Dynamic prediction score sd ∈ RL is obtained by directly passing zd through
an MLP module:

sd = MLP(zd). (4)

Dynamic and global prediction scores are concatenated and fed into a linear
projection to obtain the final prediction score s ∈ [0, 1]L:

s = Sigmoid(Linear([sg, sd])). (5)

Following that, we implemented a differentiable token sampling process using
Gumbel-Softmax [20]. The temperature coefficient of the Gumbel-Softmax is
gradually decay during training, so that the generated mask M ∈ {0, 1}L will
gradually approach 0 and 1 during the training process, making the entire train-
ing process more stable:

M = Gumbel − Softmax(s). (6)

We concatenate zg and zd along the feature dimension, then perform dimen-
sion reduction using a 1 × 1 Convolution. This reduced-dimensional feature is
subsequently element-wise multiplied by the broadcast binary mask M. Thus,
our path representation can be written as:

p = G(Conv([zg, zd]) ∗ M), (7)

G(·) represents the sorting of tokens. We place the masked tokens at the begin-
ning as the starting point, while the remaining tokens follow their original order.

3.3 Path Signature Features

Considering the varying lengths and speeds of gestures, the application of Path
Signature (PS) enables effective filtering of these variations and introduces non-
linearity [31], leading to robust and versatile recognition capabilities. More
details about path signature can be found in [16,40].

Path signature is composed of path integrals. Suppose a D-dimensional path
P : [0, T ] → RD, the coordinates of P at time τ ∈ [0, T ] can be written as
Pτ = (Pτ

1,Pτ
2, · · · ,Pτ

D). Path signature is a graded infinite series. To ensure
the dimension of the path signature in a reasonable range, we usually consider
the signature truncated at a certain level n:

Sign(P) = (1, SN1(P)0,T , SN2(P)0,T , · · · SNn(P)0,T ) (8)

The 0th term (i.e. a constant value set to 1) is optional for feature set.
SNn(P)0,T means the nth fold iterated integrals, which have many algebraic
and analytic properties. For example, the 1st fold integral specifically signifies
the increment in dimension.
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For discrete skeleton sequence, with linear interpolation, the signature of each
line segment of p can be written as:

SN(p)di,··· ,dn

τ,τ+1 =
1
n!

n∏

j=1

(pdj

τ+1 − pdj
τ ). (9)

Moreover, the entire p can be computed according to Chen’s identity[3] state
and Eq.(9).

4 Experiments

4.1 Datasets

We evaluated our method on two mainstream datasets related to gestures.
ChaLearn2013 multimodel gesture dataset[12], which provides RGB,

depth, foreground segmentation and skeleton data, contains 20 Italian gestures
performed by 27 different persons. Each sequence lasts 1-2 minutes and includes
8-20 gesture instances. This dataset is split into training, validation and testing
sets, containing 6850, 3454 and 3579 samples respectively. We only use skeleton
data contains 19 joints for gesture recognition.

WLASL(WLASL − 300subset) The Word-Level American Sign Language
dataset [25] contains 2,000 distinct ASL signs performed by more than 1,000
signers and was captured using RGB-D cameras, providing both color and depth
data. The dataset has been divided into four subsets: WLASL-100, WLASL-
300, WLASL-1000, and WLASL-2000. The WLASL-300 subset contains 5,117
videos of 300 different sign language classes, performed by 109 signers. In our
experiments, we used skeleton data obtained from [25], which includes 55 joints
for the body, left and right hand.

4.2 Implementation Details

We use cross-entropy as the loss, for WLASL Dataset, we add label smoothing
with a weight of 0.1. SGD with momentum is used as the optimizer. The learning
rate is updated between 1e-7 to 1e-2 with a step of 1060. The weight decay
coefficient is 1e-5, and the batch size is 64 in ChaLearn2013 dataset and 32 in
WLASL datasets. The network is trained on two GeForce GTX 1080 GPUs using
PyTorch.

4.3 Ablation Study

(i)Effectiveness We verified the effectiveness of Motion-Guided Cluster Atten-
tion Block (MGCAB) and Path Signature (PS) on the ChaLearn2013 dataset,
and the results are presented in Table 1. Regarding MGCAB, we eliminated the
MGCAB module and substituted it with self-attention layers of equal or greater
depth. The table shows that increasing the number of self-attention layers does
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Table 1. The effectiveness of Motion-Guided Cluster Attention Block and Path Sig-
nature

Methods Acc (%)
MGCAB PS
w/o with SA w/o with FC

� 92.37
� 93.01

� 92.23
� 93.27

proposed 95.18

not significantly improve performance. As the number of self-attention layers
grows, token similarity increases, causing the network to prefer retaining half of
the tokens since it cannot identify distinctive tokens. Concerning the PS module,
we replaced it with a FC layer or removed PS. As shown in the table, PS plays
an essential role in comprehending the generated paths effectively.

(ii)Network Structure We evaluated various combinations of dynamic and
global modules on different datasets and summarized the results in Table 2. The
number of clusters are obtained by multiplying the number of tokens by certain
ratios which determined through experiments. In the case of the ChaLearn2013
dataset, the hand joints only constitute a small proportion among the 19 joints
involved in gestures, whereas for the WLASL datasets, 42 of the 55 are hand
joints. Due to the small hand region and the fine-grained nature of sign lan-
guage actions, a different number of layers and clustering numbers are required.
The table shows that for ChaLearn2013 dataset, adding dynamic information
in moderation is beneficial for achieving high accuracy. However, when there
is an excessive amount of dynamic information and insufficient global informa-
tion, the accuracy decrease. Meanwhile, in comparison with WLASL dataset, we
found that it is more sensitive to dynamic information, and simply adding global
information layers has a detrimental effect.

Table 2. the Network structure

Datasets Layers Cluster Num. Acc (%)

ChaLearn2013 [12] [-] 92.37
[3, 12] [10, -] 93.78
[3, 3, 12] [10, 5, -] 94.65
[3, 4, 3, 8] [15, 10, 5, -] 92.29

WLASL-300 [3, 3, 6] [12, 6, -] 58.60
[3, 4, 3, 3] [12, 6, 2, -] 60.85
[4, 4, 4, 3] 61.93
[3, 4, 3, 6] [12, 6, 2, -] 59.16
[2, 3, 4, 3, 3] [18, 12, 6, 2, -] 59.61
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Table 3. Classification accuracy comparison against state-of-the-art methods on the
ChaLearn2013 dataset.

Methods Params(M) FLOPs(G) Acc (%)

PT-Logsig-RNN [31] 13.0 - 92.86
Two-stream LSTM [45] - - 91.70

CNN for Skeleton [10] - - 91.20
3s_net_TTM [24] - - 92.80
Multi-path CNN [30] - - 93.13
ST-PSM+L-PSM [5] 1.3 0.02 94.18

Shift-GCN [7] 0.6 - 90.86
AS-GCN [41] 6.9 0.54 92.66
CTR-GCN [4] 1.4 0.24 92.82
ST-GCN [48] 3.1 0.51 93.11
HD-GCN [22] 1.5 0.85 93.27
MS-G3D [34] 4.6 0.54 94.71

STFFormer [38] 5.5 2.44 92.77
ST-TR [37] 19.4 3.37 93.50

Proposed 1.1 0.20 95.18

4.4 Comparison to the State-of-the-Art

We compared the results of some advanced work on two datasets, as shown
in Table 3, 4. Among them, the methods in the first three parts of Table 3
are developed based on RNN, CNN, and GCN, while the fourth part combines
Transformer related architectures. [5,24,31] also use the Path Signature.

Specifically, [5] defines spatio-temporal paths and learnable paths, each com-
posed of 2 or 3 joints, emphasizing local features of gesture execution. Our
method extends the definition of paths by connecting multiple different joints
across the global spatio-temporal domain. The global representation captures the
dynamic changes and spatio-temporal relationships throughout the entire ges-
ture execution process, thereby better adapting to different gesture variations.
[37,38] also incorporate global information. However, [37] models in the spatio-
temporal domain separately, and [38] establishes local spatio-temporal modeling
before linking these local spatio-temporal associations, which increases the com-
putational complexity of the model. In terms of model parameters, our approach
demonstrates a certain advantage over [5,37,38].

By utilizing path signatures, our model learns more discriminative gesture
representations with fewer parameters. However, the dimensionality of global
paths is larger than that of local paths, leading to increased FLOPs when cal-
culating path signature features. When handling complex gestures, the compu-
tational complexity and resource requirements of the model can increase signifi-
cantly. It is worth mentioning that [34] and we have achieved similar results, but
its parameter quantity is nearly twice that of us. Therefore, combining effective-
ness and efficiency, our method performs the best.
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Table 4. Classification accuracy comparison against state-of-the-art methods on the
WLASL-300 dataset.

Methods Data Params Acc (%)

I3D [25] 12.35M 56.14
TK-3D [26] RGB - 68.75
Fusion-3 [19] - 68.30
Pose-TGCN [25] - 38.32
Pose-GRU [25] Skeleton - 33.68
GCN-Bert [43] - 42.18
SPOTER [1] 5.92M 43.78
P3D(2D) [23] 4.94M 52.17
Proposed Skeleton 1.25M 60.85

In the comparison of WLASL-300, there is still a significant gap between
skeleton based methods and RGB based methods overall. But our method has
improved by 4% compared to I3D [25], with only 1.25 million parameters com-
pared to I3D’s 12.35 million. When utilizing the 2D skeleton as input, our method
has a more significant improvement compared to [23] with a much smaller model
size, indicating that path representation is indeed a concise and effective sig-
nature for gestures. However, the accuracy of RGB-based and skeleton-based
methods is generally low. Capturing fine-grained motion patterns of identical
gestures continues to be a significant challenge, particularly in scenarios with
limited data (Fig. 4).

Fig. 4. The key joints selected(red) in the skeleton sequence.
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4.5 Visualization

We conducted visualization on the ChaLearn2013, where we visualized two ges-
ture sequences, “enough” and “a lot of time”, respectively. The red circles repre-
sent the points selected by the network to form the path. From the visualization,
we can see that in the spatial domain, the network mainly focuses on the hands,
elbows and shoulder. In some frames, none of the joints were selected, indi-
cating that the network avoided repeating or unimportant information in the
temporal dimension. However, the key joints of the hands are relatively scarce
in ChaLearn2013 dataset, which might be the reason for the smaller accuracy
improvement comparing with WLASL dataset.

5 Conclusion

In this work, we construct the Adaptive Global Gesture Path and introduce Path
Signature, a powerful mathematical tool to help the network adapt to the tempo-
ral dynamics of gestures. In order to adaptively preserve the informative tokens
of the entire gesture recognition, we synergize the global and dynamic branches
to compute probability scores for token retention. The proposed Motion-Guided
Cluster Attention Block analyzes the motion trajectories contained in tokens
and aggregate relevant dynamic information. Based on the above ideas, we have
constructed a powerful gesture recognition framework. The experiment proves
that our proposed method is optimal in terms of both accuracy and parameter
quantity. In addition, ablation experiments demonstrated the effectiveness of our
proposed modules.
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Abstract. This work addresses the problem of Social Activity Recogni-
tion (SAR), a critical component in real-world tasks like surveillance and
assistive robotics. Unlike traditional event understanding approaches,
SAR necessitates modeling individual actors’ appearance and motions
and contextualizing them within their social interactions. Traditional
action localization methods fall short due to their single-actor, single-
action assumption. Previous SAR research has relied heavily on densely
annotated data, but privacy concerns limit their applicability in real-
world settings. We propose a self-supervised approach based on multi-
actor predictive learning for streaming SAR. Using a visual-semantic
graph, we model social interactions, enabling relational reasoning for
robust performance without labeled data. The proposed framework
achieves competitive performance on standard group activity recogni-
tion benchmarks. Evaluation on three publicly available action local-
ization benchmarks demonstrates its generalizability to arbitrary action
localization.

Keywords: Group Activity Recognition · Action Localization

1 Introduction

Social activity recognition (SAR) is a key part of computer vision applications
in the real world, such as surveillance and assistive robotic systems. It differs
from traditional event understanding approaches [1,2,8,35,36] since it requires
the modeling of individual actor’s appearance and their motions, and contextu-
alizing them within the scope of their social interactions. SAR brings a unique
set of challenges. First, there is a need for actor localization, social relationship
modeling, and social activity recognition. Second, the number of actors in each
frame can change due to occlusion, camera range, or notice due to missed/false
detection. Finally, a scene can have an arbitrary number of social groups. Tra-
ditional action localization approaches [1,2,35] cannot be directly extended to
this problem since they assume a single action performed by a single actor.

The dominant approach has been to learn the social dynamics of a scene using
attention-based or graph-based relational reasoning in a supervised learning set-
ting. The key assumption has been the availability of densely annotated data for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15315, pp. 293–309, 2025.
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training and near-perfect actor localization. Hence, the literature has focused
on feature aggregation across time and social groups. While this has yielded
tremendous progress, it is not always possible to expect densely annotated data
for training, primarily due to the privacy concerns involved in collecting, stor-
ing, and annotating visual data in a social setting. There is a need to move away
from over-reliance on labeled training data and towards self-supervised learning
approaches that can learn in an open world, i.e., unconstrained training and test
semantics, and a streaming fashion, i.e., learning with a single pass through the
data without storing it without loss of generalization.

In this work, we focus on addressing social activity understanding in stream-
ing videos without labeled data. We propose multi-actor predictive learn-
ing for jointly modeling actor-level actions and contextual, group-level activ-
ities. We move away from the single-actor, single-action assumption from
prior approaches [1–3,42] and propose to represent visual scenes in a social-
contextualized action graph for social event understanding. The contributions
of our approach are four-fold: (i) we are the first to tackle the problem of
self-supervised social activity detection in streaming videos, (ii) we introduce
a visual-semantic graph structure called an action graph to model the social
interaction between actors in a group setting, (iii) we show that relational rea-
soning over this graph structure by spatial and temporal graph smoothing can
help learn the social structure of cluttered scenes in a self-supervised manner
requiring only a single pass through the training data to achieve robust perfor-
mance, and (iv) we show that the framework can generalize to arbitrary action
localization without bells and whistles to achieve competitive performance on
publicly available benchmarks.
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Fig. 1. Overall architecture. Using multi-actor predictive learning, we can localize
actors and model their interactions as an action graph, which can be used for down-
stream event understanding tasks such as action and social activity detection.

2 Related Work

Group activity recognition has been a widely studied area of social event
understanding. The typical pipeline starts with actor detection, individual fea-
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ture extraction, and social interaction modeling. Action features are extracted for
each actor using pre-trained action recognition models [8]. The primary mech-
anism has been to model the social interaction of actors within a group set-
ting using attention-based mechanisms to generate social group features [37],
model individual actor dynamics [11], to model the spatial and temporal depen-
dencies [22] jointly, or for multi-view representation learning [32]. Others use
transformers [43] to bypass object detection requirements [18], model keypoint
dynamics [50], social relation modeling [10], and spatiotemporal multiscale fea-
ture aggregation [53] to reduce training requirements. Note that group activity
recognition is a special case of social activity recognition (SAR), where the under-
lying assumption is that all actors are part of a single social group that works
together to perform a collective action. SAR does not make any such assumptions
about the social structure.

Relational reasoning is another line of work that focuses on aggregat-
ing actor-actor interactions for group activity understanding. These approaches
aim to model the spatiotemporal dependencies by considering the spatial rela-
tionships between objects using a variety of mechanisms such as aggregating
the relational contexts and scene information using transformers [29], using
graph convolutional networks (GCNs) to capture the appearance and position
relation between actors [14,45], or capture spatial coherence using recurrent
neural networks (RNNs) [31,44], convolutional neural networks (CNNs) [4],
graph-LSTMs [34,38], graph attention [27], factor graphs [47], knowledge dis-
tillation [39], tokenization [46], tracking [40,41], and contrastive learning [12], to
name a few. The prevalent paradigm in the above approaches has been supervised
learning to establish and learn social interactions, with varying levels of supervi-
sion, i.e., bounding box locations and labels of individual actors, group activity
labels, and social group memberships, which requires immense human effort for
annotations and may reduce their generalizability. Some works [6,18,49,50,53]
have attempted to reduce the training requirements by relaxing assumptions
about annotation granularity but still require large amounts of data.

Our work is one of the first to tackle this problem from a self-supervised learn-
ing perspective by modeling the actor dynamics from a multi-actor predictive
learning perspective. Predictive learning has emerged as a powerful paradigm
for visual event understanding. Proposed in cognitive science literature [51], the
goal of predictive learning is to learn representations by anticipating the future
and use the residuals for downstream tasks such as event segmentation [3], action
localization [1,2], active object tracking [42], future frame generation [26], and
hierarchical event perception [28], among others. All prior works have focused
on single-actor settings, where only one global action is expected to be present.
We offer a unique perspective on predictive learning by extending the idea to
multi-actor predictions for group activity detection. We do not require annota-
tions and aim to learn robust representations at both the actor level and group
level, while feature aggregation allows us to model social interactions.
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3 Proposed Framework

Overview. We propose to tackle the problem of multi-actor, multi-action local-
ization in streaming videos. The overall framework is illustrated in Figure 1.
Given a sequence (stream) of video frames {I0, I1, . . . , It}, we aim to localize
actors of interests, characterized by their location (bounding boxes) B̂a

i and
visual features F a

t . We then construct a graph structure called an action graph
(Ĝa

t ) whose nodes are actors and edges are social interactions, along with an
event node. The event and action level features are contextualized using a tem-
poral smoothing layer to construct a final action graph that can be used for
various downstream tasks such as group activity understanding, social activity
understanding, and arbitrary action localization.

3.1 Visual Perception and ROI Prediction

Our framework begins with a visual perception module, aiming to extract visual
features at both scene and object levels. Our primary visual perception mod-
ule uses a DETR [7] model. For every frame It, we extract (i) global scene
features, Ft, (ii) object regions of interests (ROI), B̂t, and (iii) object-level fea-
tures, FB

t . The ResNet backbone provides a lower-resolution, global feature map
Ft ∈ R

2048×H×W , where W and H are the spatial resolution of the global feature
map. DETR’s detection heads are used to generate initial object ROI proposals
B̂t, i.e., the search space for actor localization, and the decoder outputs for each
ROI prediction are used for object-level features (FB

t ). Note that at this stage,
we only generate actor candidates that will be refined using the actor selec-
tion module described in Section 3.2. We do not fine-tune DETR on the video
datasets and use a model pre-trained on MS-COCO [24]. During training, all
objects are considered as candidate actors in a class-agnostic manner, following
prior works [1,2], while we filter out only “human” predictions during inference.

3.2 Spatiotemporal Prediction for Actor Localization

We model the spatial-temporal dynamics of the scene using a spatiotemporal
predictor module. The goal is to learn an event-level representation (F̂E

t ) that
captures how each object, represented by its location Bt and visual features FB

t ,
changes over time. We use a simple L-layer LSTM stack as our spatiotemporal
predictor, which takes the global scene-level feature Ft as input and anticipates
the future global representation Ft+1. The goal is not to predict the future frame
by pixel-level regression but to model how the scene changes over time. This event
representation F̂E

t is continuously updated as new frames (It) are observed in a
streaming fashion using a predictive loss function given by

Lglobal =
1

H ∗ W

∑

H,W

Mt � ||Ft+1 − F̂t+1||2 (1)

where Mt is the motion difference between frames It and It+1 computed as the
first-order hold between Ft and Ft+1; F̂t+1 is the anticipated global feature at
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time t+1, obtained by projecting the event feature F̂E
t back to the 2-D fea-

ture space. The predictive loss enables the LSTM stack to learn a robust event
representation (F̂E

t ) that can anticipate the future scene’s spatial features Ft+1.
Actor Selection The unnormalized prediction errors (Pt=Mt � ||Ft+1 −

F̂t+1||2) from Equation 1 are proportional to the predictability of each spatial
location. Hence, higher prediction errors indicate the presence of a less pre-
dictable foreground action(s), while lower prediction errors indicate a more pre-
dictable background action. We formulate a prediction-driven attention mask
αt by passing Pt through a softmax activation function to increase focus on
foreground actions while suppressing background actions. The top K attention
“slots” are used to filter object ROIs B̂t and select the actor ROIs B̂a

t . Note that
actor ROIs B̂a

t are predicted only if the prediction-based attention slots αij
t fall

within any ROI bkt ∈ B̂t. Hence, the number of actors chosen from candidate
ROIs is much lower, allowing us to model actor-level dynamics better.

Building an Action Graph We construct a graph Ĝa
t for every observed

frame It, with actors as nodes Vt to model actor-level interaction dynamics.
Each node Ni ∈ Ĝa

t is described by a feature vector iF̂
a
t =[iFB

t ; iB̂a
t ] that cap-

tures its geometry and visual features. The edges in this graph structure, Et, are
defined by the spatial structure of the actors selected using the prediction-based
attention αt. Unlike previous graph-based approaches [10,45], we do not use a
fully connected structure. Instead, we model their social connectivity using a
distance-based formulation. An adjacency matrix At is constructed by comput-
ing the spatial proximity between each pair of nodes, given by the Euclidean
distance φ between their locations and spatial geometry, and centering it by
subtracting the mean distance between all nodes. The adjacency for each node
Ni is normalized as Ai

t=σ( Ai
t

||Ai
t||2 ), to ensure that the distances are scaled pro-

portionally and σ is the Sigmoid function. The adjacency matrix is thresholded
to get the final social structure by discarding all edges less than the average
normalized distance in the adjacency. This formulation allows us to model the
social interactions between the actors detected in the scene without the underly-
ing assumption that all actors interact with each other, regardless of their social
activity. Finally, an “action node”, instantiated by the event features F̂E

t , is added
to the graph and is connected to all actor nodes. This additional node allows
us to propagate action features to relevant actors, and the connections between
actor nodes will enable us to capture contextual cues for modeling actions with
interacting actors, as described in the next section. Empirically, in Section 4,
we see that adding the action node and the subsequent contextualization using
graph and temporal smoothing plays a big role in improving the performance
of both group activity recognition and individual activity detection. The action
graph formulation distinguishes us from prior unsupervised event understanding
approaches [1–3] since it allows us to model each actor individually without any
prior assumptions about their role or interactions in a social group setting.
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3.3 Contextualizing Cues with Graph and Temporal Smoothing

Recognizing social activity and individual actions in a group setting requires
reasoning over the spatial interaction between actors at every instant and its
evolution over time. To this end, given our action graph Ĝa

t , the next step is
contextualizing each person’s action using a two-step spatial-temporal graph
smoothing process. First, we use a message passing layer, as introduced in Graph
Convolutional Networks (GCNs) [45], for spatial reasoning over the social inter-
action between actors as captured in Ĝa

t . Formally, this is defined as

F a
t = σ(AtF̂

a
t Ws) (2)

where At is the adjacency matrix for Ga
t , F̂ a

t is the feature representation for
each node of the action graph, Ws is the learnable parameter matrix for the
GCN layer, and σ is the ReLU activation function. The resulting features F a

t

are contextualized across actors, conditioned on their social structure (specified
by weighted edges Et), and the event-level features F̂E

t represented by the action
node in Ga

t . While this reasoning layer can be repeated, additional layers harm
the model’s performance (see Section 4) due to the homogenization of features.

For temporal contextualization, we construct a composite spatial-temporal
graph by establishing temporal edges between actor nodes in Ga

t with their corre-
sponding nodes in the subsequent graph Ga

t+1. While straightforward in theory,
we must address two critical challenges for implementation. First, we do not have
the ground truth tracking annotations that would enable us to establish actor-
actor correspondences across frames. Second, the number of detected actors is
not constant across time, requiring comparing graphs of different sizes. Hence,
registering nodes across actor graphs between consecutive frames requires us (i)
to establish a permutation matrix P to account for varying node ordering across
graphs and (ii) to add null nodes (representing missed/false detections) to the
graph with fewer nodes to ensure every node is registered to one node across
time. The optimal permutation matrix P is obtained by computing a one-to-one
match between two graphs Ga

t and Ga
t+1 using the Hungarian matching algo-

rithm to minimize the distance between the two graphs. Formally, this is the
optimization for

argmin
P∈Pn

N∑

i=1

w1||iF a
t − P(iF a

t+1)||2 + w2φ(iBa
t − P(iBa

t+1)) (3)

where N is the total number of nodes in the graphs Ga
t and Ga

t+1, Pn is the space
over all permutation matrices, φ is the Intersection over Union (IoU) distance
between two bounding boxes, the function P(·) results in the transformation of
a given set of nodes after applying a permutation matrix, i.e., v �→ Pv, and w1

and w2 are scaling factors to balance the two difference distances (i.e., between
feature distance and IoU distance across nodes, respectively). Finally, based on
this learned permutation matrix, we establish temporal edges between the nodes
registered across time. The composite adjacency matrix AG and the correspond-
ing action feature matrix FG are used to construct the spatial-temporal graph
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(Ga), representing the entire video V=I1, I2, . . . IT . A temporal smoothing is
performed on Ga to get the final actor-level features, as defined by

F̂G = σ(AGFGWt) (4)

where Wt is a fixed (non-learnable) identity matrix, making the operation purely
based on message passing. Similar to the spatial smoothing process, this process
can be repeated, but empirically, we find one layer is ideal for our experiments.
As seen in Section 4, temporal smoothing provides substantial gains in group
activity recognition and action detection.

3.4 Social Modeling with Multi-actor Predictive Learning

In addition to the global, event-level predictive learning introduced in Equa-
tion 1, we introduce the notion of multi-actor predictive learning. This allows us
to model the spatial-temporal dynamics of all actors, conditioned on their social
interactions and the overall event dynamics of the scene. We model this using a
multi-actor prediction loss given by

Lactor =
1
N

N∑

i=0

||iF̂ a
t − P(iF̂ a

t+1)||2 + ||iBa
t − P(iBa

t+1)||2 (5)

where the first term minimizes the differences between the anticipated actor-level
features and the actual actor-level features between consecutive frames, and the
second minimizes their respective geometry. We anticipate the future feature
and geometry of each actor using two fully connected neural networks defined
by iF

a
t+1=Wact ∗i F a

t and iB
a
t+1=Wbb ∗i F a

t , respectively. This allows us to train
our overall spatial-temporal prediction stack (defined in Equations 1 and 5) and
the smoothing layers (Equations 2 and 4) by minimizing the overall prediction
errors given by

Ltotal = λ1Lglobal + λ2Lactor (6)

where λ1 and λ2 allow us to balance the global event-level prediction loss and
the actor-level multi-actor prediction loss.

Inferring Labels. For group activity recognition, we do mean average pool-
ing over all actor-level features F̂G defined in the composite spatial-temporal
action graph Ga. K-means clustering is performed on the mean-pooled features
to obtain the final labels. K-means clustering over actor-level features F̂G pro-
vides actor-level action labels. Following prior work [1–3], Hungarian matching
is performed between the predicted labels and ground truth labels to compute
the quantitative metrics, as defined in Section 4. A Spectral Clustering model
is fit on the adjacency matrix AG to find social communities for social activity
recognition, following the protocol from the prior work [10].

Implementation Details We use a DETR [7] model, pre-trained on MS
COCO [24] as our ROI predictor. The CNN backbone is ResNet-50 [13]. The
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Table 1. Group Activity Recognition results evaluated on the Collective Activities
and Volleyball dataset. Accuracy is reported for group activity recognition (denoted
as “Activity”) and mAP for individual action detection (denoted as “Action”). Note: “-”
indicates the model does not detect individual actions.

Approach Training Requirements Bboxes for CAD Dataset Volleyball Dataset
Bboxes Ind. Labels Grp.Labels eval Activity Action Activity

HDTM[19] ✓ ✓ ✓ ✓ 81.5 - 81.9
HANs+HCNs[21] ✓ ✓ ✓ ✓ 84.3 - 85.1
CCGL[38] ✓ ✓ ✓ ✓ 90.0 - 87.6
CERN [33] ✓ ✓ ✓ ✓ 87.6 - 83.3
stagNet [30] ✓ ✓ ✓ ✓ 89.1 - 89.3
GAIM [20] ✓ ✓ ✓ ✓ 90.6 - 91.9
AT [11] ✓ ✓ ✓ ✓ 90.8 - 91.4
GroupFormer [22] ✓ ✓ ✓ ✓ 93.6 - 94.1
HIGCIN [48] ✓ ✗ ✓ ✓ 92.5 - 91.4
CRM [4] ✓ ✓ ✓ ✗ 83.4 - 92.1
SBGAR [23] ✗ ✓ ✓ ✗ 83.7 - 38.7
Zhang et al [52] ✓ ✗ ✓ ✗ 83.7 - 86.0
ARG [45] ✓ ✓ ✓ ✗ 86.10 49.60 -
Ehsanpour et. al.[10] ✓ ✓ ✓ ✗ 89.40 55.90 93.1
HGC-Former[37] ✓ ✓ ✓ ✗ 96.50 64.90 -
PredLearn(K = KGT ) ✗ ✗ ✗ ✗ 62.83 - 10.05
AC-HPL(K = KGT ) ✗ ✗ ✗ ✗ 72.20 - 24.58
Ours (K = KGT ) ✗ ✗ ✗ ✗ 75.95 26.75 39.51
Ours (K = KOPT ) ✗ ✗ ✗ ✗ 90.41 33.02 43.28

size of the global scene features Ft is 7 × 7 × 2048. Class-agnostic detections
with a confidence score of more than 0.1 are taken as object candidates during
training. The top K = 25 attention slots from the predictive learning error are
used to select actors. We use a 2-layer LSTM network as our spatio-temporal
predictor, defined in Section 3.2. The hidden size of each LSTM layer is set to
2048. The GCN layers for spatial and temporal smoothing are set to 512, and a
fully connected layer is used to project the features back to 2048 for multi-actor
predictive learning. w1 and w2 in Equation 3 are set to 1. λ1 and λ2 are set to 1
in Equation 6. As with PredLearn, KOPT is set to be 3 × KGT . The prediction
stack’s learning rate is 1 × 10−4, and for the spatial and temporal smoothing
layers is 1 × 10−3, found using a grid search between 10−5 and 10−2. Training
converges in 6 hours on a workstation with a 64-core AMD ThreadRipper, an
RTX5500, and 128GB CPU RAM.

4 Experimental Evaluation

Data. We use the Collective Activities Dataset (CAD) [9], its annotations-
augmented version, SocialCAD [10], and the Volleyball Dataset [15], to evaluate
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our framework. CAD consists of 44 videos of people performing 6 individual
actions across 5 group activities in unconstrained real-world scenarios. Social-
CAD augmented CAD with additional information, such as individuals’ social
group identification and collective social activity. We follow prior work [10] and
use 31 videos for training and 11 for evaluation. The Volleyball Dataset [15] con-
sists of 4,830 videos obtained from 55 volleyball matches, with 9 group actions
annotated. Following prior work [37], we use 3,493 videos for training and 1,337
videos for evaluation. To evaluate the generalization capabilities of our frame-
work to arbitrary action localization, we use three publicly available benchmarks
- UCF Sports [36], JHMDB [16], and THUMOS’13 [17]. Each dataset contains a
different number of actions (10 in UCF Sports, 21 in JHMDB, and 24 in THU-
MOS’13) across different domains (sports and daily activities). Each dataset
offers a unique challenge for action localization, such as cluttered scenes, highly
similar action classes, large camera motion, and object occlusion. We follow prior
work [2,35] and use official train-test splits for all datasets.

Metrics. We use different metrics for evaluating the performance on each
task. We use the mean multi-class classification accuracy (MCA) for group activ-
ity recognition. For individual action detection, we follow prior work [10] and
use the mean average precision (mAP) as the evaluation metric to account for
missed and false detections. To evaluate social activity understanding, we use
two different metrics - membership accuracy and social activity recognition, as
defined in SocialCAD. The former measures the accuracy of recognizing a per-
son’s social group in the video. The latter measures the ability to jointly predict
a person’s membership and the social activity label. We report the video-level
mAP at 0.5 IOU threshold for arbitrary action localization.

Baselines. We compare against various supervised, weakly supervised, and
unsupervised learning approaches for both group activity understanding and
action localization. The supervised [11,19–22,30,33,38] and weakly supervised
learning baselines [4,10,23,37,45,48] provide solid baselines for comparing the
representation learning capabilities of our framework. Unsupervised learning
approaches, particularly closely related approaches such as AC-HPL [2] and
PredLearn [1], allow us to benchmark our approach with others trained under
the same settings. We use Hungarian matching for all unsupervised learning
baselines to align their predictions with the ground truth labels, following prior
work [1,2]. Note that all baselines, except AC-HPL and PredLearn, are not
trained in a streaming fashion and require strong visual encoders pre-trained on
large amounts of video data (e.g., I3D [8] on Kinetics [8]) and fine-tuned for a
large number of epochs (> 50). We do not require either and only use DETR [7]
pre-trained on MS-COCO for person detection and train in a streaming fashion,
requiring only one pass through all the videos.

4.1 Group Activity Recognition

We first evaluate our approach on the group activity recognition task, where the
goal is to identify the activity in which the majority of the people are involved.
Table 1 summarizes the results. As can be seen, we perform competitively with
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Table 2. Social Activity Understanding results on the SocialCAD dataset [10].
Note: All results are in the detection setting, i.e., without GT bounding boxes.

Approach Training RequirementsMembership Recognition Social Activity Recognition
Bboxes Labels Member

GT [Group] (Upper Bound) - - - 54.4 51.6
GT [Individual] (Upper Bound) - - - 62.5 54.9
HGC-Former [37] ✓ ✓ ✓ - 46.0
ARG [Group] [45] ✓ ✓ ✓ 49.0 34.8
Ehsanpour et al [Group] [10] ✓ ✓ ✗ 49.0 35.6
Ehsanpour et al [individual] [10] ✓ ✓ ✗ 52.4 41.8
Ours ✗ ✗ ✗ 32.33 25.07

supervised learning approaches and significantly outperform prior unsupervised
learning approaches such as PredLearn [1] (by 13.12%) and AC-HPL [2] (by
3.75%). We observe that some activity classes, such as “walking” and “crossing”,
exhibit high intra-class variation in the clustering. Hence, we increase the num-
ber of clusters for recognition to its optimal number (using the elbow method
with intra-cluster variation as the metric) and devise a baseline indicated by
K = KOPT . We observe that the accuracy increases significantly to 90.41%, out-
performing many of the supervised and weakly supervised approaches. It is to
be noted that the supervised learning approaches (at the top of Table 1) require
ground truth bounding boxes during inference for efficient recognition. Weakly
supervised approaches [10,37,45] do not require bounding boxes during inference
but require supervision from dense annotations. Interestingly, we observe that
the mean per-class accuracy (MPCA) is 81.25%, with the class “Waiting” being
the worst-performing one at 35.51%. We attribute it to the predictive learning
paradigm, which naturally focuses on actors with the least predictive motions. It
has actors with highly predictable motion, which reduces the model’s attention
on them and leads to poorer recognition accuracy. However, other classes have a
recognition accuracy above 90%, indicating the model’s effectiveness in recogniz-
ing actions that involve reasoning over actor appearance and motion. On the Vol-
leyball dataset, we obtain a group activity recognition accuracy of 39.51%, which
significantly outperforms the other unsupervised baselines PredLearn (10.05%)
and AC-HPL (24.58%). However, we observe a higher gap between the unsu-
pervised and supervised models. We attribute it to the fact that the supervised
baselines use an I-3D network pre-trained on large datasets such as Kinetics, are
trained for over 50 epochs, and require densely annotated data (such as ground
truth position information for individual players). Our model does not need such
training requirements and can be trained in a streaming manner. Better mod-
eling of social interactions and fine-grained visual feature integration can help
improve performance and narrow the gap between supervised and unsupervised
models.

In addition to group activity recognition, we also report the mAP score for
individual action detection (last column of Table 1), where the goal is to localize
and recognize every actor’s actions. As can be seen, we once again outperform
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Table 3. Generalization to arbitrary action localization. We report the video-
mAP and compare it with unsupervised action localization baselines. OOD refers to
the evaluation on data other than the training domain (CAD).

Approach OOD Eval UCF Sport JHMDB THUMOS13

Ours ✓ 0.40 0.22 0.15
AC-HPL[2] ✗ 0.59 0.15 0.20
PredLearn[1] ✗ 0.32 0.10 0.10
Soomro[35] ✗ 0.30 0.22 0.06
Ours ✗ 0.49 0.25 0.21

prior unsupervised learning approaches significantly while offering competitive
performance to supervised learning approaches [10,37,45]. We do not finetune
our ROI prediction (DETR) on the CAD dataset as with the supervised learn-
ing approaches. This significantly increases the number of actors detected in the
scene, which is not always reflected in the ground truth. One such instance is
highlighted in Figure 2, where we correctly localize and recognize the individual
actions of all actors in the scene and not just those in the ground truth. Prior
unsupervised learning approaches (PredLearn and AC-HPL) do not predict dis-
tinct actions for each actor, but rather, a collective group activity is assigned to
each person. This reduces their utility in action detection and stems from their
inherent assumption that there is one action per video and that all actors partic-
ipate in this global action. We do not make such assumptions and can effectively
recognize and localize multiple, simultaneous actions.

4.2 Social Activity Understanding

In addition to group activity recognition and individual action detection, we
also evaluate the representation learning capabilities of our framework for social
activity understanding tasks such as membership recognition and social activ-
ity recognition. For membership recognition, we follow Ehsanpour et al. [10]
and use graph spectral clustering to segment the individual actors into social
groups to compute the membership recognition accuracy. Table 2 summarizes
the results. We perform competitively with supervised learning approaches such
as HGC-Former [37] and ARG [45], which require prior knowledge of member-
ships during training. We also perform competitively with Ehsanpour et al. [10],
which does not require membership labels during training but does require other
annotations, such as individual and group labels, along with their bounding box
annotations during training. The baselines GT[Group], taken from Ehsanpour et
al. [10], provides the upper bound for detection-based models when the member
locations and actions are provided, and an I3D model [8] is used for labeling the
membership and social activity of the person. On inspecting the results, we find
that much of the reduction in membership recognition accuracy is because we
predict and localize more actions than provided in the ground truth and, hence,
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make more predictions per frame. For example, in Figure 2, we detect the mem-
bership and actions of all people, not just those in the annotations. Fine-tuning
DETR on the ground truth annotations will reduce the false alarms and improve
the performance, albeit at the cost of generalization.

Table 4. Ablation study results on the collective activities dataset. We report accu-
racy for group activity recognition and the mAP for individual action detection tasks.

Approach Group Activity Indiv. Action

Ours (full model) 75.95 26.75
w/ 2 layers of temporal smoothing 72.79 23.15
w/ 2 layers of graph smoothing 73.28 22.84
w/o temporal smoothing 59.13 14.27
w/o graph smoothing 68.39 11.56
w/o action nodes 63.46 18.28
w/o Lactor 69.77 12.45
w/o Lglobal 61.28 9.28
w/ SSD instead of DETR 74.31 23.27

Generalization to Arbitrary Action Localization Since our approach
does not make any assumptions on the number of actions or type of action, we
evaluate its capability to generalize to arbitrary action localization in videos. We
evaluate on the UCF Sports [36], JHMDB [16], and THUMOS’13 [17] datasets,
where there is a single action in the scene with a varying number of actors.
Table 3 summarizes the results, comparing our approach against other unsuper-
vised learning baselines. We outperform the baselines on all benchmarks, except
UCF Sports, when trained on videos from the same domain. The most interest-
ing result is the top row, which shows the performance of our model, trained on
CAD and evaluated on out-of-domain videos. We perform well in arbitrary action
localization without explicit training, showcasing its generalization capabilities.

4.3 Ablation Studies

We systematically analyze the contributions of each part of our framework and
quantify their effects in Table 4. We examine the presence and absence of graph
smoothing, temporal smoothing, and the use of action nodes in our action graphs.
We see that removing action graphs causes a dramatic decrease in group activity
recognition while having minimal effect on individual action recognition. Tempo-
ral smoothing has the most impact on both metrics, which could be attributed
to the fact that information from the entire video is propagated through the
temporal edges and enables better contextualization of group dynamics. Graph
smoothing, which allows nodes to within the same frame to share information, is
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essential in propagating information from the action node to each person node.
Adding additional layers of temporal and graph smoothing reduces the perfor-
mance of the approach since it makes the node representations uniform and,
hence, loses information about the changes in actor appearances and locations.
Removing global predictions (Lglobal) results in considerably lower recognition
performance (61.28%), while Removing the actor-level prediction loss (Lactor)
results in a recognition performance of 69.77%, which is a considerable improve-
ment over PredLearn but lower than the proposed framework. Using SSD [25] as
the visual backbone, such as in PredLearn and AC-HPL, results in group activity
recognition performance of 74.31% and individual action detection performance
of 23.27%, lower than the proposed framework.

Fig. 2. Qualitative visualization successful (top) and unsuccessful (bottom) activity
detection on the Collective Activities dataset. People from the same social group are
highlighted in the same color, and the bounding box color indicates their social activity.
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4.4 Qualitative Evaluation

Figure 2 presents some qualitative visualization of the output from our frame-
work. The top half presents successful social activity detection results. The first
row is the ground truth annotations, while the second row shows our corre-
sponding predictions. As can be seen, we can localize and recognize both the
social membership (indicated by the color of the shaded region) and the social
action (indicated by the bounding box color) of each actor in the scene. Interest-
ingly, we see that we detect and recognize the social activities of people not in
the ground truth (bottom left) and consistently maintain prediction throughout
the sequence. The bottom half of Figure 2 shows unsuccessful results where the
membership was misclassified, although the social action is correct. We attribute
this to our framework’s additional action detections that provide “distractors”
for the membership classification. This effect is reflected in the individual action
mAP score (26.75), where the number of false alarms plays a significant role.
The average recall is 67%, indicating that we can recover and label the actors.

5 Discussion, Limitations, and Future Work

In this paper, we presented a framework for unsupervised multi-actor, multi-
action localization in streaming videos. We showed that it can be adapted to
perform group activity recognition, action detection, social membership identifi-
cation, and social action detection tasks in multi-actor settings. We also demon-
strated its potential for localizing an arbitrary number of actions in streaming
videos and showed its generalization capabilities by evaluating on out-of-domain
data. While it outperformed unsupervised baselines and was competitive with
supervised learning approaches, we observe some limitations that offer poten-
tial for future work. First, the actor selector module focuses on actions with
unpredictable motion. Hence, it fails to consistently localize those with limited
predictability, such as “waiting.” Similarly, it is sensitive to missed detections. It
relies heavily on the ROI detector to provide quality region proposals. Finally,
imposing constraints on group formations in frame-level action graphs will likely
yield more robust social membership recognition performance. Our future work
is focused on improving social action detection by dynamic graph modeling [5].

Acknowledgements. This work was partially supported by the US National Science
Foundation Grants IIS 2348689 and IIS 2348690 and the US Department of Agriculture
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Abstract. Action recognition and segmentation are critical tasks for
the applications requiring detailed analysis on human behavioral charac-
teristics. However, current research primarily concentrates on temporal
action segmentation assuming sequential occurrences of sub-actions. In
practice, multiple actions temporarily overlapped or even co-occur in
parallel. Inspired by image segmentation methods, we propose a joint-
temporal action segmentation method that performs multi-action recog-
nition at each human body joint. To conduct quantitative and qualitative
evaluations, we construct a new skeleton-based multi-action dataset from
the existing N-UCLA dataset (The code for our data generation is avail-
able at https://github.com/kiftiyani/NUCLAOverlap.git). We propose
learning objectives that incorporate the class distribution of each point
to address the continuous label problem. Additionally, we argue that
the inter-dependency between joints is crucial. We conduct multi-action
segmentation experiments comparing well-known objectives such as CE,
MAE, and MSE. Evaluation results demonstrate that our proposed app-
roach achieves outstanding performance on five backbones.

Keywords: Fine-grained action · Multi-action decomposition · Action
regression · Joint dependency · Mutual information

1 Introduction

Human action recognition and segmentation are essential tasks in various com-
puter vision applications, including but not limited to healthcare services,
sports, surveillance, and human-computer interaction. For instance, the qual-
ity of camera-guided healthcare services is critically influenced by the perfor-
mance of human body motion understanding and behavioral action monitoring.
In regular human actions, multiple fine-grained small actions compose a longer,
coarse-grained action [23]. For example, engaging in a basketball game encom-
passes small actions such as running, dribbling, jumping, and throwing a ball. In
this case, playing basketball is a type of broader human action while the involved
small actions collectively describe the characteristics of the broad action.

Skeleton-based human action recognition [5,9,13,16,25,26,28,34] has been
widely studied thanks to the development of depth sensors and body tracking
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algorithms. Earlier approaches either represent the skeleton as a sequence of joint
coordinates and model its high-level features [28] in an unsupervised manner with
recurrent neural networks (RNNs) or use a hand-crafted representation [16] of
the human body as the input to convolutional neural netwrks (CNNs)-based
prediction methods. However both approaches do not fully recognize the human
body structure in the skeleton data. Yan et al. [34] propose to automatically
capture the patterns embedded in the spatial configuration of the human joints
using graph representation and expand it to the temporal dynamics in collective
manner. This achieves substantial improvements over the conventional methods
and has triggered many graph based approaches to better capture the topology
of actions [5,9,13,22,25,26].

Most existing approaches recognize an entire body sequence as a single action
class. However, in real-world applications, an action may involve only a subset of
joints in each temporal frame rather than the entire body of the whole sequence.
Moreover, multiple actions can occur simultaneously at different joint parts. This
highlights the importance of developing more fine-grained action recognition
methods that can accurately identify actions based on specific joint movements
or combinations of joints. Research in fine-grained action recognition [1,19,21,
35] predominantly focuses on video-based temporal action segmentation, which
involves dissecting sequences into multiple sub-actions temporally. Therefore,
achieving fine-grained action segmentation at the joint-temporal level poses a
greater challenge compared to traditional temporal action segmentation.

Inspired by semantic image segmentation, we aim to classify actions at each
individual joint-temporal position. The main goal, akin to general image seg-
mentation, is to categorize the action type of each joint based on its seman-
tic meaning [7]. Research on transformer-based image segmentation [6,15] com-
monly employs the widely used cross-entropy (CE) loss which measures pixel-
wise errors independently as their learning objective, resulting in commendable
accuracy. A lot of research on image segmentation note that segmentation errors
tend to occur predominantly near the boundaries. This has brought considerable
interest in recognizing the significance of boundary information for enhancing
segmentation performance [4,29,32]. On the other hand, segmentation boundary
between human actions in joint-temporal space does not have to be clear because
human body joints are physically connected. Two neighboring joints cannot show
two separate and distinct movements. This indicates that the action category
of a joint includes multiple actions with different weights rather than a single
action type.

Unfortunately, there is no available benchmark dataset for joint-temporal
action segmentation due to the difficulty of manually labeling each joint action
type. To resolve this issue and achieve an appropriate dataset for quantita-
tive evaluation, we propose to build a new dataset for multi-action recognition
and segmentation in the joint-temporal domain from existing skeleton-based
datasets. To this end, we estimate joint-wise importance for the corresponding
action type of the samples and combine two samples of different actions with
respective importance weights. Weighted labels of multiple actions assigned to
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each joint indicate that a joint is involved in more than one action, performing
a series of smoothly connected activities. Finally, our data labels are continuous
values indicating the amount of contribution to each action type.

Fig. 1. Conventional loss measurement
between two points with different class
distribution (smaller better).

To perform multi-action seg-
mentation, we investigate the per-
formance of well-known learning
objectives, such as the cross-
entropy (CE) loss, in tackling our
specific task. Additionally, consid-
ering the similarity of our task
to a regression problem, we inves-
tigate the effectiveness of mean
absolute error (MAE) and mean
squared error (MSE). The conven-
tional learning objectives (CE, MAE, MSE loss) calculate the discrete value of
each class in every point between the estimated and ground truth labels without
considering the class distribution of each point. As shown in Fig. 1, these objec-
tives cannot effectively measure the class distribution of a point. Our approach
focuses on incorporating the class distribution of each joint-temporal-wise point.
Specifically, we design an objective function, namely independent point class
distribution (IPCD) loss, that consider the class distribution by measuring
the vector similarity between points in the ground truth and their corresponding
points in the estimated label. Additionally, based on our observation as depicted
in the left part of Fig. 2, there exists an inter-dependency between joints. Some
joints demonstrate consistent class patterns, while others exhibit significantly
different class patterns across the temporal dimension. This reminds us how
joint movement can be influenced by the neighboring joints of the same body
part. Building on this insight, we propose a new objective function called joint
dependency loss to incorporate joint dependency information, which improve
the performance of the independent point objective, especially in the context of
multiple actions.

We conduct experimental evaluations on skeleton-based multi-action seg-
mentation and compare our results with well-known learning objectives (CE,
MAE and MSE loss) on our dataset using five popular backbones in skeleton-
based action recognition: attention-enhanced adaptive graph convolutional neu-
ral network (AAGCN) [25,26], channel-wise topology refinement graph convo-
lutional network (CTRGCN) [5], information bottleneck-based graph convolu-
tional network (InfoGCN) [9], Multi-scale spatial-temporal convolutional neural
network (MSSTNet) [8], and temporal decoupling graph convolutional network
(TD_GCN) [22]. The experimental results show that our proposed learning
objectives achieve state-of-the-art performance in terms of root mean square
error (RMSE). Our analysis reveals that relying solely on an independent point-
wise learning objective is insufficient for the model to learn continuous class
labels effectively. However, incorporating joint dependency information notably
enhances performance, particularly in multi-action cases.
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Fig. 2. Multi-action label example from our proposed dataset for merged action class
sit down and doffing. Left figures is the class label visualization of the existing classes
(dark to bright colors indicate label value between 0 (darkest color) and 1 (brightest
color)). Right figures are examples of skeleton body structure in selected frames with
class label illustration in every joints.

The main contributions of our work are as follows: (1) we propose a basic
learning objective, IPCD loss, which handles continuous labels by incorporating
the class distribution of each point independently. (2) We propose additional
learning objective based on the inter-joint dependency information namely joint
dependency loss, which enhances the model’s ability to classify the multi-action
region. (3) To conduct the desired experiment, we develop a new multi-action
label skeleton-based human action dataset (merged N-UCLA) from the existing
Northwestern-UCLA (N-UCLA) [30] dataset.

2 Multi-action Dataset

The previous work [23] defines coarse- and fine-grained actions by identifying
that multiple fine-grained actions in one sequence build a single coarse-grained
action representing the same context. Here, we expand this definition by consid-
ering the nature of real actions, where a sequence of actions can be composed of
multiple fine-grained actions representing different contexts. For example, some-
one can walk around while carrying something. The actions of walking and car-
rying something are two independent actions that happen simultaneously but
do not necessarily build the same context. With this expanded definition, we
argue that decomposing actions for each body joint would be advantageous for
future research in fine-grained behavioral action analysis, as it provides detailed
detection and localization of specific actions. While existing fine-grained action
segmentation datasets, such as Breakfast [18], 50Salads [27], and JIGSAW [10],
focus on specific parts of the human body that reveal core movements of each
action class, observing behavioural actions from the entire human body can offer
distinct advantages.

Thus, we utilize skeleton-based human action datasets that provide a full
human body structure due to its nature of free from noisy background. Specif-
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ically, we utilize the N-UCLA [30] dataset, that provides 3D human skeleton
data captured by a Kinect camera. The dataset comprises 1494 samples of 10
action classes listed in Table 1a. From the existing class in N-UCLA, we pair
combinations of two actions and select the most realistic combination based on
our judgement and the appearance of the data. For example, since the "walk
around" class predominantly involves the lower part of the body, it would be
realistic to merge it with an action primarily involving the upper body. Due to
the limitation of the class labels and the importance of realistic combinations,
this study only merges pairs of two classes listed in Table 1b.

Table 1. a) Regular N-UCLA action labels. b) Possible realistic action combination of
N-UCLA for our proposed dataset.

Class Index Action Name
1 Pick up with one hand
2 Pick up with two hand
3 Drop trash
4 Walk around
5 Sit down
6 Stand up
7 Donning
8 Doffing
9 Throw
10 Carry

Class Composition Action Name
4, 3 Walk around while drop trash
4, 9 Walk around while throw
4, 10 Walk around while carry
5, 7 Sit down while donning
5, 8 Sit down while doffing
5, 10 Sit down while carry
6, 7 Stand up while donning
6, 8 Stand up while doffing
6, 9 Stand up while throw
6, 10 Stand up while carry

Initially, to guide the joint-wise labeling, we partition the body into six parts
based on proximity and the nature of body movement coordination: head, spine,
left arm, right arm, left leg, and right leg. We calculate the average motion of
each body part to determine the class label for each joint within these body
parts. Let X ∈ R

T×J×3 define an instance of action sequence, where T and J
are the temporal and joint dimension, respectively. Then M ∈ R

T×J define the
motion value of X. The label value of existing class Y c defined by:

Y 1
j,t =

⎧
⎪⎨

⎪⎩

1, |m(1)p,t − m(2)p,t| ≥ τ and m(1)p,t > m(2)p,t
m(1)j,t

m(1)j,t+m(2)j,t
, |m(1)p,t − m(2)p,t| < τ

0, otherwise.
(1)

We illustrate the generated labels Y 1 for "Sit down" and Y 2 for "Doffing" in
Fig. 2, with the label values of Y 1 measured by Eq. 1. Y c

j,t indicates the label
value for class c at joint j and frame t, and m(c)j,t indicates motion value of an
instance with class label c at joint j and frame t. Additionally, | · | denoting the
absolute value operation. The m(c)p,t indicates the mean of all joints’ motion
corresponding to body part p and frame t for instance with class c. We set
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τ = 0.01 to determine the weighted label regions. Then, the values of label Y 2

obtained by Y 2 = 1 − Y 1.
In the example in Fig. 2, considering the combination of actions "Sit down"

and "Doffing", the red X in the 8th and 33rd frames indicates joint as label "Sit
down", with label value of 1 (brightest color in the "Sit down" class label) and 0
(darkest color in class label "Doffing"). Conversely the blue circle indicates joints
labeled as "Doffing". Additionally, some joints may have two existing labels,
denoted by the green triangle in Fig. 2, with weighted values calculated using
Eq. 1 for each label. The weight values represented by colors ranging from dark
to bright yellow in Fig. 2 indicating values between 0 and 1.

We sample a maximum of 200 samples for each combination, resulting in a
total of 1983 samples.

3 Feature Pyramid Network for Multi-action Recognition

We illustrate our network in Fig. 3 based on Feature Pyramid Network
(FPN) [20] and following the segmentation head of UPerNet (Unified Perceptual
Parsing Network) [33] for simplicity. FPN serves as a versatile feature extractor
that leverages the inherent multi-scale and pyramidal hierarchy within deep con-
volutional networks. It employs a top-down architecture with lateral connections
to construct high-level semantic feature maps across all scales. While UPerNet
extends the FPN architecture into a multi-task framework capable of effectively
segmenting a broad range of concepts in scene understanding, including dense
object detection.

Fig. 3. We evaluate our proposed objective functions
on a simple network structure based on Feature Pyra-
mid Network (FPN) [20] and UPerNet [33]. Each
stage in the bottom-up FPN follows the backbone’s
hierarchical structure, with feature map sizes denoted
by C2, C3, C4 at scale 1, 1/2, 1/4, respectively. Each
stage in the top-down FPN and the classification
head follow the structure of UPerNet [33]. The objec-
tive functions measured from the predicted label and
the ground truth label with LTOTAL(Y, Ŷ ) defined in
Section 4.

We adopt FPN archi-
tecture due to its adapt-
ability to multi-scale feature
hierarchy present in most
CNNs backbones. We select
backbones that have sim-
ilar structure to Residual
Networks [11], which uti-
lize multiple layers with the
same feature map size at
each stage. Here, we denote
the last feature maps of each
stage in the backbone as
{C2, C3, C4}, and the out-
put feature maps of each
layer in the top-down FPN
as {P2, P3, P4}. The down
sampling rates are {1, 2, 4},
respectively.

Finally, we follow UPer-
Net [33] by fusing all feature
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maps from FPN. These feature maps are resized via bilinear interpolation to
match the size of P2, and concatenated. Subsequently, a 1× 1 convolution layer
is applied to fuse features from different levels as well as reduce the channel
dimensions. We introduce this straightforward network to emphasize our focus
on analyzing multi-action recognition learning objective.

4 Methods

Existing conventional dense prediction learning objectives typically calculate
loss based on either the discrete values of estimated classification maps (e.g.,
CE, MAE, and MSE) or estimated class regions (e.g., mIoU (mean intersection
over union) and Dice loss). However, given the characteristics of our dataset—
particularly its continuous labels and the inter-dependencies between joints—
we argue that region-based learning objectives are unsuitable. Specifically, our
dataset includes continuous labels that represent ambiguous or mixed actions,
making it challenging to apply conventional loss functions effectively.

Independent Point Class Distribution (IPCD). Appropriate class distri-
bution information can significantly enhance the learning process. Existing learn-
ing objectives typically penalize independent class distribution of each point by
focusing on discrete class labels. Unlike segmentation tasks where pixels are often
clustered based on feature similarity using contrastive learning [14,31], our app-
roach focuses on joint-temporal action segmentation where points may belong
to multiple classes without clear boundaries between them. Thus, we introduce
continuous class labels with Gaussian distribution in our dataset. To address
this issue, we propose a simple objective function that considers the global class
distribution of points rather than independent discrete values of each class indi-
cation. This function aims to calculate the correlation between corresponding
points in the estimated label and the ground truth.

We denote an estimated class map and its corresponding ground truth as
Ŷ , Y ∈ R

T×J×Nclass , respectively 1. Then the independent point class distribu-
tion loss, LIPCD, is defined by:

LIPCD =
1

TJ

∑

i∈TJ

exp |(yi + ε) · (yi + ε) − (ŷi + ε) · (yi + ε)| (2)

In Eq. 2, ε is a small value used to prevent non-classes 2 regions from being
ignored. The ε also support our introduced class distribution with assuming
that each zero value in the label as units with really small value. The expression
(ŷi + ε) · (yi + ε) computes the dot product similarity between each point in the
estimated label and the corresponding point in the ground truth based on the
1 T , J , and Nclass denote the data temporal dimension, joint dimension and class

number, respectively.
2 We use term non-class to indicate the label with zero value in the mask and term
class to indicate non-zero labels.
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class distribution, where yi, ŷi ∈ R
Nclass and i denotes an index in joint-temporal

dimension. In geometric terms, it is important to note that the maximum value
of the dot product does not necessarily indicate that both vectors are the most
similar. Instead, it measures the alignment of vectors with higher magnitudes.
Therefore, solely maximizing the dot product between the estimated and ground
truth labels is not sufficient for penalizing our model effectively. Instead, we
interpret the dot product measurement as the degree of correlation between the
two vectors. To achieve our objective, we also evaluate the self-correlation of each
point in the ground truth (yi + ε) · (yi + ε) and aim to align the estimated-to-
ground truth correlation with the ground truth self-correlation degree. Thus, our
independent point class distribution loss, LIPCD, works to align the estimated
class distribution pattern with the ground truth class distribution pattern for
each point. This alignment helps the model to predict low distribution in non-
class regions while improving the class distribution overall.

Joint Dependency. Theoretically, optimizing each point independently should
yield good results in estimating the multi-action continuous label. However, in
practice, this approach fails to effectively detect the multi-action region. To
address this issue and leverage the characteristics of our labels, we propose to
incorporate the joint dependency information. As shown in the action labels in
Fig. 2, there is a certain degree of similarity in class distribution between joints
along the temporal dimension, which we refer to as joint dependency. By consid-
ering all class information across the temporal dimension for each joint, the joint
dependency measurement aims to capture the conherence of multi-action regions.
Therefore, joint dependency is expected to enhance the estimation, particularly
in regions where multiple actions overlap. We propose to quantify the degree of
joint dependency inspired by Mutual Information (MI) calculation. This met-
ric will help us assess how information shared between joints can improve the
accuracy of multi-action recognition.

Mutual information is closely related to the statistical dependency between
variables [17]. Exact computation of mutual information is typically feasible only
for discrete variables (where the sum can be computed exactly) or when prob-
ability distributions are known [3]. Previous work has often optimize learning
representation by maximizing the mutual information between strongly corre-
lated components, such as input-output [12] or across view [2], where computing
distributions directly is challenging. In our approach, we aim to leverage the
principles of mutual information calculation to learn the dependency informa-
tion between two known distributions, specifically the estimated labels between
joints. We calculate the mutual information between two joints A ∈ R

T and
B ∈ R

T by the following formulation:

MI(A;B) =
1
T

∑

t∈T

at · bt log
at · bt

μ(A)μ(B)
(3)

note that at and bt are vectors with class labels. From the formulation, mutual
information is defined by weighting the correlation between two different joints
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from the same temporal index at·bt by the correlation information over the global
class distribution of each joint at·bt

µ(A)µ(B) . Thus, our proposed joint dependency
loss Ldep is defined by:

Ldep = |YMI − ŶMI | (4)

where YMI and ŶMI denote the mutual information between joints in Y and Ŷ ,
respectively.

Finally, our total loss is calculated as follows:

LTOTAL = LIPCD + λLdep (5)

where λ represents the weight for the joint dependency loss Ldep.

5 Experimental Evaluation

We compare our results with conventional objective functions and conduct abla-
tion studies to examine the effect of each objective quantitatively. Additionally,
we provided qualitative insights by visually inspecting the decomposition out-
comes. This involved showcasing the predicted labels and the decomposed actions
to illustrate the efficacy of our approach.

5.1 Dataset

The merged N-UCLA dataset is our newly created dataset by merging two sam-
ples from different classes of the human skeleton dataset N-UCLA [30]. The
merging process is explained in detail in Section 2. This dataset composed of 10
action classes and contains 1983 samples in total. We divide the data for training
and testing by 80:20 ratio.

5.2 Implementation Details

Backbone. We employ five state-of-the-art models in skeleton-based human
action recognition as our backbone: AAGCN [26], CTRGCN [5], InfoGCN [9],
TD_GCN [22], and MSSTNet [8]. The first four models are GCN-based, spe-
cializing in capturing the semantic context of human action by leveraging the
topology of human body movements. MSSTNet [8], on the other hand, is the
most recent CNN-based model in skeleton-based action recognition. For simplic-
ity, we employ the single-stream version of these backbones, utilizing only joint
information as the input.

Training Setting. We conduct all experiments with 110 epochs and imple-
menting a warm-up strategy for the first 5 epochs following the method described
in [9]. We set the weight decay to 4 × 10−4 and use a batch size of 16. Based
on the empirical experiments, we define different weight λ for each backbone
in Eq. 5. All backbones were pretrained on the NTU-RGB+D 60 [24] dataset,
where we augment the joint structure from 25 to 20 joints to align with the
human skeleton structure of the N-UCLA dataset.
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Fig. 4. Qualitative comparison of the result prediction label values between conven-
tional and our proposed loss function with CTRGCN [5] backbone. In this figure, we
display all 10 class indices to demonstrate the performance of each objective function
in multi-action prediction, specifically across both class and non-class regions. Note
that the labels are represented with continuous values, ranging from the darkest to the
brightest colors, indicating values from 0 to 1, respectively.
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Fig. 5. The absolute different between the ground truth and prediction label values
from Fig. 4 samples. This value indicates the prediction error for each class indication
in the joint-temporal dimension. This figure demonstrates that our proposed objective
functions predict the non-class regions with smaller error (dark color) and exhibit
similar error distribution compared to the baseline methods.
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Fig. 6. Examples of action decomposition results (best viewed in color). Based on our
experimental assumptions, each sample involves a maximum of two actions. We select
the top-2 predicted labels to visualize the decomposition results for each joint. The
thickness of the points and edges corresponds to the weight of the labels, with thicker
lines or points indicating larger weights. For example, the skeleton sequence in the first
row shows that the "drop trash" action is dominated by hand movements, represented
by green-colored joints and edges. In contrast, the "walk around" action is character-
ized by movements of the spine and lower body parts, represented by red-colored joints
and edges. The figure also illustrates mixed actions, where some joints or edges are
indicated by two colors of different thicknesses, representing the weighted label value.
In the second row, the sequence combines the actions "doffing" and "stand up". It
demonstrates that "doffing" action is performed predominantly by hand movements,
while "stand up" action involves movements of the spine and lower body parts. And
mixed labels are visible in some hand parts, indicating their involvement in both "doff-
ing" and "stand up" actions. Similarly, in rows three and four, we can observe which
body parts are involved in each action.
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5.3 Experimental Results

We compare our results on five backbones: AAGCN [25,26], CTRGCN [5],
InfoGCN [9], TD_GCN [22], and MSSTNet [8]; with existing conventional objec-
tive functions in Table 2 by calculating the root mean squared error (RMSE).
Across all five models, our proposed objective functions achieves state-of-the-art
performance, validating the effectiveness of our work.

Table 2. Comparative results on the Merged N-UCLA dataset. All results are obtained
with the same training settings, except for the weight parameter λ in Eq. 5 for each
backbone: 0.7 for AAGCN, 0.6 for CTRGCN, 0.4 for InfoGCN, and 0.5 for both MSST-
Net and TD_GCN.

Objective Func. RMSE
AAGCN [26] CTRGCN [5] InfoGCN [9] TD_GCN [22] MSSTNet [8]

CE 0.1332 0.1268 0.1317 0.1218 0.1306
MAE 0.1145 0.1192 0.1269 0.1169 0.1154
MSE 0.1143 0.1100 0.1102 0.0983 0.1147
Ours (w/o Ldep) 0.1124 0.1006 0.1122 0.093 0.1085
Ours (LTOTAL) 0.1066 0.095 0.1052 0.0796 0.1046

Table 3. RMSE comparison of class and non-class regions. This comparison shows the
model’s performance in multi-label prediction.By analyzing the error in label values
between class and non-class regions, we demonstrate that our proposed LIPCD loss
improves the predictions significantly in the class regions compared to the baseline
methods. Furthermore, incorporating the proposed Ldep further enhances predictions
in both class and non-class regions.

Objective Func. RMSE (class ± non-class)
AAGCN [26] CTRGCN [5] InfoGCN [9] TD_GCN [22] MSSTNet [8]

CE 0.3543 ± 0.0763 0.3410 ± 0.0707 0.3486 ± 0.0764 0.3279 ± 0.0677 0.3457 ± 0.0756
MAE 0.2926 ± 0.0714 0.3178 ± 0.0680 0.3310 ± 0.0760 0.3119 ± 0.0664 0.2937 ± 0.0725
MSE 0.3074 ± 0.0637 0.2966 ± 0.0608 0.2944 ± 0.0624 0.2666 ± 0.0536 0.308 ± 0.0642
Ours (w/o Ldep) 0.2852 ± 0.0711 0.2587 ± 0.0621 0.2833 ± 0.0716 0.2441 ± 0.0548 0.2759 ± 0.0683
Ours (LTOTAL) 0.2698 ± 0.06790.2422 ± 0.0595 0.2673 ± 0.06630.2092 ± 0.0469 0.2614 ± 0.0679

Independent point class distribution (IPCD) loss. We demonstrate the
impact of utilizing our IPCD loss from Eq. 2. Table 2 compares our method
to the baseline methods. Compared to the best baseline method, MSE, our
method shows improvements in most of the models except for InfoGCN. Signifi-
cant improvements are also observed in the class regions, as detailed in Table 3.
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Although the quantitative evaluation of the non-class regions shown in Table 3
does not exhibit meaningful improvement compared to MSE, visualization in
Fig. 4 and Fig. 5 indicate that compared to the baseline methods our IPCD
loss predict the non-class regions in near zero value almost evenly. This suggests
that our proposed IPCD loss provides an alternative solution to conventional loss
functions in addressing weighted label problems. However, it remains insufficient
for decomposing the multi-action region effectively.

Joint dependency loss. As described in Section 4, we introduce the joint
dependency loss to complement the class distribution loss. By incorporating
dependencies between joints, the model is encouraged to learn temporal-wise
class patterns, thereby aiding in the recognition of multi-action labels. The last
row of Table 2 shows that our method outperforms the baselines across all back-
bones. Furthermore, significant improvements are observed in both class and
non-class regions than without joint dependency loss, as shown in the last two
rows of Table 3. This is further supported by the action label prediction in the
last row of Fig. 4, where our method effectively portrays the multi-action regions
better than other methods. This supports our hypothesis that leveraging joint
dependency information alongside class distribution information helps the mod-
els to effectively learn multi-action regions with minimal errors, as demonstrate
in Fig. 5, where errors are measured by the absolute different between the ground
truth and the predicted labels. Finally, our decomposition results are illustrated
in Fig. 6, showing how each action is decomposed in joint-temporal-wise manner
based on the action recognition results.

6 Conclusion

This study demonstrates the feasibility of action segmentation in joint-temporal
domain. We introduce novel learning objectives, namely independent point class
distribution (IPCD) loss and joint dependency loss, which have been shown
to effectively learn continuous action labels. Remarkably, our method achieves
state-of-the-art performance compared to existing conventional loss functions on
merged N-UCLA dataset using a simple network architecture.
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Abstract. Vision-language models (VLMs) have demonstrated remark-
able performance across various visual tasks, leveraging joint learning of
visual and textual representations. While these models excel in zero-
shot image tasks, their application to zero-shot video action recogni-
tion (ZSVAR) remains challenging due to the dynamic and temporal
nature of actions. Existing methods for ZS-VAR typically require exten-
sive training on specific datasets, which can be resource-intensive and
may introduce domain biases. In this work, we propose Text-Enhanced
Action Recognition (TEAR), a simple approach to ZS-VAR that is
training-free and does not require the availability of training data or
extensive computational resources. Drawing inspiration from recent find-
ings in vision and language literature, we utilize action descriptors for
decomposition and contextual information to enhance zero-shot action
recognition. Through experiments on UCF101, HMDB51, and Kinetics-
600 datasets, we showcase the effectiveness and applicability of our pro-
posed approach in addressing the challenges of ZS-VAR. (The code will
be released later at https://github.com/MaXDL4Phys/tear).

Keywords: Action Recognition · Zero-shot Transfer · Vision and
Language

1 Introduction

Multimodal vision-language models (VLMs) [12,33] have demonstrated out-
standing performance across diverse visual tasks. These models undergo pre-
training on large-scale datasets, aiming to jointly learn representations for images
and text. Benefiting from textual representations, VLMs have exhibited impres-
sive zero-shot capabilities, i.e., ability to generalize to a novel set of unseen classes
on a handful of tasks, such as image classification [47], object detection [10,37]
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and segmentation [35]. However, despite the zero-shot transfer results achieved
on image tasks, these models still struggle when applied zero-shot to videos
without proper fine-tuning [14,25,44]. Understanding actions in video streams
is inherently more challenging than recognizing static elements in images. For
instance, while identifying an object in an image may be straightforward, grasp-
ing intricate actions, such as dancing, involves understanding dynamic move-
ments and temporal context, adding complexity to the task. This characteristic
makes video action recognition, which finds real-world applications in various
fields [6] like autonomous driving, sports analysis, and entertainment, typically
more challenging than the image counterpart.

Recognizing actions in videos through zero-shot video action recognition (ZS-
VAR) using VLMs can be challenging due to the associated temporal dynamics
and complexities. Additional training is often required to capture these factors.
Recent ZS-VAR methods have shown satisfactory results but require extensive
training on appropriate datasets to achieve such performance. [14,18,26,41].
While effective, these approaches have several drawbacks. Primarily, the training
process can be time-consuming and resource-intensive. Additionally, fine-tuning
task-specific datasets may introduce biases into the system, limiting its general-
izability across different datasets [17]. Furthermore, introducing new parameters
can increase the computational cost of model deployment and inference, adding
to the complexity of these approaches in real-world scenarios.

These motivations prompt us to explore an alternative approach to ZS-VAR
that is training-free and does not require the availability of training data or
extensive computational resources. One recently highlighted problem of VLMs
is that they may not encode sufficient knowledge of verbs, which are crucial
for understanding and recognizing actions in videos [24,28,42]. Additionally,
research has shown that incorporating contextual information in textual prompts
can enhance the performance of VLMs in various downstream tasks [1,21]. Draw-
ing inspiration from these recent findings, we aim to leverage the decomposition
of actions and the introduction of contextual information to improve zero-shot
action recognition without further training.

We propose TEAR, which stands for Text-Enhanced Zero-Shot Action Recog-
nition, as a training-free approach for ZS-VAR. We leverage a VLM pre-trained
solely on image data, abstaining from fine-tuning it on video data. Our approach
unfolds in two primary steps: first, the generation of action descriptors employ-
ing a large language model (LLM); second, zero-shot prediction facilitated by
the generated textual descriptors. We evaluate the proposed approach on three
standard benchmarks, i.e., UCF101 [40], HMDB51 [16], and Kinetics-600 [4].

Our contributions can be summarized as follows:

1. We propose TEAR, Text-Enhanced Action Recognition, the first method
addressing zero-shot video action recognition in a training-free manner. Our
approach does not rely on the availability of training data or require signifi-
cant computational resources. This contribution makes ZS-VAR more acces-
sible and practical for real-world applications.
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2. By decomposing action labels into sequential observable steps and providing
visually related descriptions, our approach enables better understanding and
recognition of actions in videos. We demonstrate how leveraging decomposi-
tion and description benefits the zero-shot action recognition task.

3. We empirically show the capabilities of the proposed method on three
datasets, i.e., UCF101 [40], HMDB51 [16], and Kinetics-600 [4], achieving
results that are competitive with training-based approaches.

2 Related Work

Vision-language models. Vision-language models (VLMs), such as CLIP [33],
have been developed to learn joint visual-text embedding spaces through pre-
training on large-scale datasets of web-crawled image-text pairs. They have show-
cased outstanding performance across various downstream tasks, particularly in
the image domain, with notable zero-shot capabilities [12]. These models have
been recently extended to the video domain, where tasks are typically more
challenging due to the additional temporal dimension. Recent works achieve this
by incorporating additional learnable components for spatiotemporal modeling,
including self-attention layers, textual or vision prompts, or dedicated visual
decoders, demonstrating improvements in video-related tasks [14,41]. However,
their adaptation to zero-shot settings still necessitates further development, and
the results currently lag significantly behind those achieved in tasks related
to image processing. Moreover, by introducing new parameters, these meth-
ods necessitate additional training and the availability of large-scale training
data. This dependence makes the adaptation resource-intensive and can further
introduce domain bias, limiting zero-shot transfer on unseen classes.

Zero-shot action recognition. Zero-shot action recognition consists of iden-
tifying actions in videos from a closed set of action classes not encountered
during the model’s training phase. Early work [19,46] proposed to represent
actions by sets of manually defined high-level semantic concepts, i.e., attributes,
and show that this can be used to recognize action categories that have never
been seen before. This advancement represented a step toward more explicit,
semantics-driven solutions, as opposed to the modeling of input sequences in
latent spaces [7,9,23,30]. Another line of work [2,20,32,39] uses word embed-
ding of action names as semantic representation. Our work differs from these
due to the idea of the language modality alone being the key for generalizing to
new tasks and categories in a specifically video-oriented fashion.

Vision-language for action recognition Previous works have explored the
potential of leveraging the newly advanced VLMs, such as CLIP [33], to enhance
recognition capabilities with textually conveyed semantics [21,29,38]. These
works, however, address the more generic task of image-based recognition with-
out employing text-oriented solutions tailored for videos. On the other hand,
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the video field has been investigated in many subsequent works based on video
captioning [8] and improved textual descriptors [26,34,41,45,48]. Our work is
more closely aligned with methods using LLMs [11,18,34]. MAXI [18] adapts a
VLM for zero-shot action recognition using only unlabelled videos, composing
a text bag for each unlabelled video using a captioning model and an LLM.
FROSTER [11] tackles open-vocabulary action recognition and uses an LLM as
a form of text augmentation at training time to mitigate the distribution shift
between CLIP’s pre-training captions and template-embedded action names.

However, we move a step further towards specifically video-oriented solutions
by employing text-based augmentations to the label space that explicitly leverage
the temporal and sequential nature of video data, such as the decomposition of
action into sequential sub-actions.

3 Method

Most prior works in zero-shot video action recognition have focused on adapting
image-based VLMs through additional training, necessitating video data avail-
ability. In this work, we propose to leverage a language-driven manipulation of
action labels and demonstrate that it enables effective action recognition without
the need for further training, thereby achieving zero-shot performance. Our pro-
posed method TEAR directly addresses zero-shot action recognition at inference
time in a remarkably simple but efficient way, as illustrated in Fig. 1.

Formally, given a video V and a pre-defined set of action classes C, our goal
is to classify the action present in the video. We achieve this with an image-
based VLM model and an LLM, without necessitating tailored fine-tuning on
video data. TEAR employs a pre-trained CLIP [33] as the VLM and GPT-
3.5 [3] for the LLM. The method consists of two main steps: firstly, generating
action textual descriptors using a large language model (LLM), and secondly,
facilitating zero-shot prediction through these descriptors. We provide detailed
explanations of these steps in the following.

3.1 Action descriptors generation

al It has been shown that VLMs often struggle with verbs due to their strong
object and noun bias [24]. Our key insight is that an action is more than just
the verb; the surrounding context and objects can describe it, the different steps
needed to perform it and additional visual cues. For each category y ∈ C we
construct a set of textual descriptors D(y), considering the following descriptors:

– Class: the action label y in the original format.
– Decomposition: a list of sub-actions. Specifically, we break down the action

into three consecutive stages, capturing it across different temporal phases.
– Description: an elaborate semantic description of the action.
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Fig. 1. Overview of the proposed method. TEAR addresses the task of zero-
shot action recognition. First, for every action class label y, we generate a set of
action textual descriptors D(y) by querying an LLM. Then we compute the textual
and visual embeddings, keeping both the image and text encoders frozen ( ). Lastly,
the final prediction is obtained by computing the similarity between the textual
embeddings and the averaged visual embeddings.

– Context: a textual descriptor encompassing two distinct types of information
pertinent to the action. One is the overall context, highlighting visual features
likely to be observed in a video portraying the action. The other is a list of
objects likely to participate in the action.

– Combinations: a combination of all the previously listed ones.

Crafting textual descriptors for classes manually becomes increasingly
impractical as the number of datasets and classes grows, rendering it infeasible.
For this reason, we propose to automatically construct this set by prompting a
large language model, such as GPT-3.5 [3], with multiple queries. We design a
query for each one of the textual descriptors, as reported in Tab. 1. An example
of the obtained descriptors for the action snowboarding is reported in Tab. 2.

Visual inspection of the obtained D(y) against actual video content of the
corresponding action class y confirms the descriptors’ relevance. In Fig. 2 and 3,
we illustrate a few examples of action labels, the generated descriptors, and four
frames from a video of the same ground truth action. In particular, Fig. 2a,
Fig. 2b and Fig. 2c show that: i) the decomposition into steps corresponds to
the sub-actions present in the video, describing the whole event in a set of more
atomic actions, ii) the description is aligned with the general video content and,
iii) the context and objects tags can be found in the video. This approach may
result in failure cases when the textual descriptors do not accurately capture
specific nuances. In Fig. 3, for example, the obtained descriptors depict a kissing
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action in a romantic setting, while a video labeled with the same action portrays
a friendly interaction between babies.

Motivated by previous research demonstrating the efficacy of prompt tem-
plates [33], we incorporate a diverse set of templates, listed in supplementary
material, into our approach. Specifically, we encapsulate all the obtained textual
descriptors with the templates. Moreover, prepending the action class for each
descriptor typically enhances performance. We attribute this to the fact that
omitting the action class altogether and relying solely on the generated descrip-
tors can result in a loss of information. This approach ensures that the generated
descriptions maintain relevance and specificity.

3.2 Zero-shot recognition with action descriptors

TEAR operates in the following straightforward manner to generate the final
inference based on the previously discussed textual descriptors provided by the
language model. The key components are a pre-trained VLM, consisting of an
image encoder EI and a text encoder ET . Given a test video V, first, we sample
N frames uniformly along the whole duration of the video and represent it as a
set of frames as V = {xi}Ni=1. Then we compute a compact representation from V
as the average of its N frames’ latent representations, extracted with the vision
encoder:

V̄ =
1
N

N∑

i=1

EI (xi) (1)

Then we compute a textual representation for each class yj ∈ C, by encoding
the textual descriptors D = {dj}Mj=1 with the text encoder and averaging them:

zj =
1
M

M∑

i=1

ET (di (yj)) (2)

where M is not fixed and depends on the category yj .
Lastly, our model selects the action with the highest cosine similarity to the

compact video representation, allowing it to make the final predictions:

ŷ = argmax
j∈|C|

(
zj · V̄

‖zj‖ · ‖V̄‖
)

(3)

4 Experiment Results

4.1 Datasets and Metrics

We conduct experiments with three popular video action recognition datasets:
UCF101 [40], HMDB51 [16], and Kinetics-600 (K600) [4]. These datasets are
frequently used to evaluate zero-shot action recognition. We report the standard
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Fig. 2. Examples of descriptors matching visual cues in test videos. We show
descriptors generated for four videos of Kinetics-600. We show four frames for each
video and highlight the matching with the decomposition, description, and context.
For each video, the label above represents the ground truth label.



334 M. Bosetti et al.

Fig. 3. Example of descriptors that do not match visual cues in test videos.
We show descriptors generated for one video of Kinetics-600 of the class kissing. We
show four frames from the video and highlight the matching with the decomposition,
description, and context. For this sample, the textual descriptors do not match the
visual cues in the video. Further qualitative analyses are available in the supplementary
material.

evaluation metrics of Top1/Top5 accuracy. To ensure our experiments are com-
parable to previous studies, we adopt the same protocol of previous works [18,36].

The HMDB51 dataset [16] contains approximately 7,000 manually annotated
videos of human motion sourced from various platforms, including films and
YouTube. Each video is categorized under one of 51 action labels, with at least
101 videos per label. The average duration of each video is 3.2 seconds.
UCF101. The UCF101 dataset [40] consists of 13,320 videos derived from vari-
ous online platforms and categorized into 101 action classes. These classes encom-
pass a wide range of human activities and are organized into five broad cate-
gories: Human Object Interaction, Body-Motion Only, Human-Human Interac-
tion, Playing Musical Instruments, and Sports.
Kinetics-600. Extending the Kinetics-400 dataset [15], Kinetics-600 [4] features
videos representing 600 human action classes. The additional videos, sourced
from YouTube, broaden the range of depicted actions to include various inter-
personal and person-object interactions and individual actions.

4.2 Implementation details

We extract RGB frames and resize them to a resolution of 224×224. We employ
CLIP (with ViT-B/16 visual encoder) as the VLM and GPT-3.5 as the LLM.
We do not provide details on training implementation, as our proposed TEAR is
inference-only. The sole hyperparameter, the number of frames sampled from
the video (N = 16), is set to align with state-of-the-art methods. The number
of textual descriptors per-class M varies among different classes, as we do not
set it a priori and depends on the output of the LLM.
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Table 1. Queries used for action description generation. We show the prompts
used to query the LLM for each textual descriptor generation.

Descriptor Query

Decomposition You are a chatbot specialised in video action decomposition. The user
will provide you with an action and you will have to decompose it into
three sequential observable steps. The steps must strictly be three. You
must strictly provide each response as a python list, e.g., [’action1’,
’action2’, action3’]. Omit any kind of introduction, the response must
only contain the three actions. Comply strictly to the template. Do not
ask for any clarification, just give your best answer. It is for a school
project, so itÃćâĆňâĎćs very important. It is also very important your
response is in the form of a python list.

Description You are a chatbot specialised in video action description. The user will
provide you with an action and you will have to describe the action by
providing only visually related information. You must strictly provide
each response as a Python string. The description should be succinct
and general. Omit any kind of introduction. Comply strictly to the
template. Do not ask for any clarification, just give your best answer.
Following is an example. Action label: typing. Description: Typing nor-
mally involve a person and a device with keyboard. When typing, the
individual positions their fingers over the keyboard.

Context You are a chatbot specialised in video understanding. The user will
provide you with the name of an action, and you will have to pro-
vide two specific pieces of information about that action. The first
one is the context, which consists of any visually relevant feature that
may be expected to appear in a video portraying that action. The
second one consists of a lists of objects that may involved in the
action. You must strictly provide each response as a python dictio-
nary, e.g., ÃćâĆňâĎćcontextÃćâĆňâĎć: ÃćâĆňâĎća personÃćâĆňâĎć,
ÃćâĆňâĎćobjectsÃćâĆňâĎć: [ÃćâĆňâĎćpersonÃćâĆňâĎć]. Omit any
kind of introduction, the response must only contain the two pieces
of information. Comply strictly to the template. Do not ask for any
clarification, just give your best answer. It is for a school project, so
itÃćâĆňâĎćs very important. It is also very important your response
is in the form of a python dictionary.

4.3 Comparative results

In Tab. 3, it can be seen that vanilla CLIP already has good zero-shot per-
formance across the three datasets. It outperforms training-based methods like
ER-ZSAR [5] and JigsawNet [31] without fine-tuning on video data. The remain-
ing training-based methods adapt CLIP by fine-tuning on Kinetics-400. Most of
these approaches are supervised, while MAXI [18] and LSS [34] perform fine-
tuning on an unlabeled video data collection. With TEAR, we eliminate the need
for training, enabling direct inference. On UCF101 and HMDB51, our results
significantly surpass the CLIP baseline, achieving +6.3% and +12.8% Top 1
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Table 2. Example of generated action description. We show an example for the
specific action of snowboarding.

Descriptor Content

Class "snowboarding"

Decomposition "Strap your feet securely onto the snowboard
bindings", "Lean forward to initiate movement
down the slope", "Use heel-to-toe shifts in
weight to steer and balance as you descend"

Description "A person sliding down a snow-covered slope on
a single board attached to their feet, making
turns and jumps while maintaining balance."

Context "snow-covered mountain slope or snow park",
"snowboard", "snow boots", "helmet"

Combination "snowboarding", "Strap your feet securely
onto the snowboard bindings", "Lean forward
to initiate movement down the slope", "Use
heel-to-toe shifts in weight to steer and
balance as you descend", "A person sliding down
a snow-covered slope on a single board attached
to their feet, making turns and jumps while
maintaining balance.", "snow-covered mountain
slope or snow park", "snowboard", "snow boots",
"helmet"

accuracy, respectively. Additionally, on Kinetics-600, TEAR improves upon the
baseline (+6.8/5.3% Top1/Top5).

4.4 Ablation

In this section, we perform ablations of our method to validate our main design
choices. We report Top1/Top5 accuracy for all of the datasets considered. In the
ablation shown in Fig. 4, we evaluate the choice of the textual descriptors used
in the proposed methodology, as detailed in Sec. 3.1. Our findings indicate that
incorporating one of the descriptors usually enhances performance. However, the
most substantial improvement is observed when all the descriptors are used in
conjunction. Hence, a comprehensive approach furnishes the VLM model with
richer linguistic cues, enhancing its zero-shot action recognition accuracy across
all benchmarks. In Tab. 4, we depict the results of the ablations of different
descriptors, discussed in detail in supplementary material, the use of additional
templates and the choice of prepending the original action class to the obtained
textual descriptors. We observe that adding the original class label and using
templates enhances the model’s accuracy.
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Table 3. Comparison with state-of-the-art zero-shot action recognition
methods. We report zero-shot action recognition results on UCF101, HMDB51, and
K600. We report Top1 and Top5 accuracy computed on the three official test splits.
We also include the backbone used and the number of frames sampled from videos.
The green color is our method .

Method
Training

Backbone Frames UCF101HMDB51 K600
Top1 Top1 Top1 Top5

ER-ZSAR [5] � TSM 16 51.8 35.3 42.1 73.1
JigsawNet [31] � R(2+1)D 16 56.0 38.7 - -
ActionCLIP [41] � ViT-B/16 32 58.3 40.8 66.7 91.6
XCLIP [26] � ViT-B/16 32 72.0 44.6 65.2 86.1
A5 [14] � ViT-B/16 32 69.3 44.3 55.8 81.4
ViFi-CLIP [36] � ViT-B/16 32 76.8 51.3 71.2 92.2
Text4Vis [43] � ViT-L/14 16 - - 68.9 -
MAXI [18] � ViT-B/16 16/32 78.2 52.3 71.5 92.5
LSS [34] � ViT-B/16 8 74.2 51.4 - -
OTI [48] � ViT-B/16 8 88.3 54.2 - -
EPK-CLIP[45] � ViT-B/16 8 75.3 48.7 - -
EPK-ViFi[45] � ViT-B/16 8 77.7 51.6 - -

CLIP [33] ✗ ViT-B/16 16 69.9 38.0 63.5 86.8
TEAR ✗ ViT-B/16 16 76.2 50.8 70.3 92.1

Fig. 4. Ablation on using the textual descriptors. We ablate the use of different
textual descriptors defined in Sec. 3.1. We report the Top1 accuracy on the three
datasets and use the same color coding as in Sec. 3.1.
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Table 4. Ablation on constructing the textual prompts. We ablate using tem-
plates and prepending the action class after descriptor generation. Results are reported
for both ViT-B/32 and ViT-B/16 visual backbones. Green is our configuration .

Template Class Backbone UCF101 HMDB51 K600
Top1 Top5 Top1 Top5 Top1 Top5

✗ ✗ ViT-B/32 68.9 93.1 43.6 73.9 61.1 86.9
� ✗ ViT-B/32 68.7 92.8 45.8 74.1 61.5 87.4
✗ � ViT-B/32 72.2 94.0 47.5 76.9 66.9 89.5
� � ViT-B/32 72.6 94.6 48.0 78.5 67.0 90.0

✗ ✗ ViT-B/16 70.1 94.0 44.1 75.6 66.0 90.5
� ✗ ViT-B/16 72.6 94.6 48.4 77.0 66.2 90.1
✗ � ViT-B/16 75.8 95.9 49.0 81.2 70.2 92.2
� � ViT-B/16 76.2 96.3 50.8 82.0 70.3 92.3

In addition, in Tab. 5, we assess the choice of the visual backbone EI and
the number of sampled frames N . We observe a significant gain with ViT-B/16
compared to ViT-B/32, and ViT-B/16 is also the backbone commonly employed
by other competitors. Additionally, our method exhibits low sensitivity to the
number of sampled frames for both backbones, whether 16 or 32. As a result,
we adopt the configuration with 16 sampled frames as our final choice to have a
fair comparison with most competitors who also utilize this setting.

Table 5. Ablation on the backbone used and the frame sampling N. Green is
our configuration .

Backbone N UCF101 HMDB51 K600
Top1 Top5 Top1 Top5 Top1 Top5

ViT-B/32 32 72.5 94.7 48.5 78.2 67.0 90.0
ViT-B/32 16 72.2 94.0 47.5 76.9 66.8 89.9
ViT-B/16 32 76.4 96.5 50.8 82.2 70.5 92.2
ViT-B/16 16 76.2 96.3 50.8 82.0 70.3 92.3

Lastly, we ablate the different LLMs to determine the robustness of the
method related to the generation of action descriptors. Thus, we re-evaluate
our method using different LLMs on the HMBD dataset.

Tab. 6 revealed that our method is robust, with only minor performance
differences across different LLMs. Although advanced models like GPT-4o offer
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Table 6. Ablation on the LLM used to generate prompts. Green is
our configuration .

LLM Description Decomposition Context Combination
Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

GPT-3.5 50.1 79.2 48.2 81.1 48.2 81.1 50.8 82.0
GPT-4o [27] 51.4 81.3 49.7 79.8 49.9 80.1 50.8 82.3
Llama3 [22] 49.5 80.2 49.1 77.9 49.5 79.4 49.5 80.1
Mistral [13] 47.8 78.3 47.4 78.9 47.8 79.8 45.2 74.8

slight improvements, our method remains effective regardless of the model used.
This showcases the method’s reliability and adaptability to various LLMs with
varying capacities. We maintain the use of GPT-3.5 as it offers a cost-effective
alternative to GPT-4o, ensuring the method remains accessible without sacrific-
ing significant performance.

In conclusion, our experiments, which combine all forms of text augmentation
—including label, description, decomposition, and context— significantly when
templates and class label conditioning are applied, demonstrate a cumulative
improvement in performance.

5 Limitations

While our approach for generating textual action descriptors provides an auto-
mated pipeline for capturing various aspects of action classes, it may be sub-
optimal for more temporally fine-grained or very atomic actions that cannot be
decomposed into distinct steps. Additionally, our method may encounter limita-
tions when dealing with actions that exhibit less association with objects or are
highly variable in context. Actions with weaker object associations may benefit
less from the generated textual descriptors. Similarly, actions that vary widely
in context may result in descriptors that fail to capture the diverse contexts
in which they occur. Addressing these limitations can lead to more advanced
models for language-driven action recognition.

6 Conclusion

This work tackles the challenging problem of zero-shot video action recognition.
We propose TEAR, a training-free approach that generates rich textual descrip-
tors for the action class labels and then performs zero-shot prediction using the
obtained descriptors. Despite its simplicity, TEAR outperforms baseline models
and rivals training-based methods in the task of zero-shot action recognition, all
without the need for in-domain training.
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While our method was primarily evaluated on action recognition, its appli-
cability can extend to more challenging tasks on untrimmed videos, such as
Temporal Action Localization or Action Segmentation. By leveraging textual
descriptors to bridge the semantic gap between action labels and visual con-
tent, our approach promises to tackle broader video understanding tasks beyond
mere classification. Future research efforts should explore the adaptation and
extension of TEAR to address these more complex video analysis tasks.
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1 Introduction

The remarkable advancements in deep learning have revolutionized action recogni-
tion, particularly with the advent of supervised learning protocols. However, acquir-
ing a substantial number of annotated videos remains a challenge in practice since
it is time-consuming and expensive [17,39]. Each day, video-sharing platforms like
YouTube and Instagram witness millions of new video uploads. Leveraging this vast
pool of unlabeled videos presents a significant opportunity for semi-supervised learn-
ing approaches, promising substantial benefits for advancing action recognition capa-
bilities [20,37].

A typical method for leveraging unlabeled data involves assigning pseudo-labels to
them and effectively treating them as ground truth during training [12,22,30]. Current
methodologies typically involve training a model on annotated data and subsequently
employing it to make predictions on unlabeled videos. When predictions exhibit high
confidence levels, they are adopted as pseudo-labels for the respective videos, guid-
ing further network training. However, the efficacy of this approach hugely depends on
the quantity and accuracy of the pseudo-labels generated. Unfortunately, the inherent
limitations in discriminating patterns from a scant amount of labeled data often result
in subpar pseudo-labels, ultimately impeding the potential benefits gleaned from unla-
beled data.

Fig. 1. Comparison of performance between different architectural models.

To enhance the utilization of unlabeled videos, our approach draws inspiration from
recent studies, particularly from [34], which introduced an auxiliary model to provide
complementary learning. We also introduce complementary learning but with notable



Transformer-ResNet Hybrid Pipeline for Semi-supervised Action Recognition 345

advancements. Firstly, we introduce a cross-architecture strategy, leveraging both 3D
CNNs and transformer models’ strengths, unlike CMPL [34], which relies solely on
3D CNNs. This is because both 3D CNNs and video transformers (VIT) offer distinct
advantages in action recognition. As shown in Fig. 1a, videos for activities such as
‘playing the guitar” from the Kinetics-400 dataset that demonstrate short-range tempo-
ral dependencies typically involve actions or events that occur over a relatively short
duration and require capturing temporal context within a limited time-frame, and per-
form better with 3D CNNs. This is because 3D CNNs excel at capturing spatial features
and local dependencies in the temporal domain due to their intrinsic property, which
involves processing spatio-temporal information through convolutions.

On the other hand, transformer architectures, leveraging self-attention mechanisms,
can naturally capture long-range dependencies by allowing each token to learn atten-
tion across the entire sequence. As shown in Fig. 1a videos such as the "yoga” class in
the Kinetics-400 dataset, which demonstrate long-range temporal dependencies involv-
ing actions or events that unfold gradually over extended periods that require capturing
temporal context over more extended periods, perform better in the transformer model.
Such intrinsic property in transformers enables them to capture complex relationships
and interactions between distant frames, leading to a more holistic understanding of the
action context. This capability enables transformers to encode meaningful context infor-
mation into video representations, facilitating a deeper understanding of the temporal
dynamics and interactions within the video sequence.

Besides that, CMPL [34] also suggests that smaller models excel at capturing tem-
poral dynamics in action recognition. In comparison, larger models are more adept at
learning spatial semantics to differentiate between various action instances. Motivated
by this approach, we chose to leverage the advantages of a smaller transformer model,
VIT-S, over its larger counterpart, VIT-B. As depicted in Fig. 1b and further studied in
Section S2 in the Supplementary Material, a smaller model, despite its smaller capacity,
does obtain significant improvements over a bigger model in certain classes. While VIT-
B excels at capturing spatial semantics, it is essential to note that our primary model,
3D-ResNet50, already possesses these strong capabilities. The 3D convolutional nature
of ResNet-50 makes it well-suited for extracting spatial features and local dependencies
within the temporal domain. Therefore, the inclusion of VIT-S as an auxiliary model
complements the strengths of our primary model by focusing on capturing temporal
dynamics, which aligns with our primary objective of addressing action recognition
in videos. This strategic combination allows our ActNetFormer framework to achieve
a balanced representation learning, leveraging the spatial semantics captured by 3D-
ResNet50 and the temporal dynamics captured by VIT-S. As demonstrated in our abla-
tion study (Section 7.2), this integration of VIT-S as an auxiliary model consistently
leads to better results compared to adapting VIT-B. Hence, while VIT-B remains essen-
tial, its role is effectively supported by the capabilities of our primary model, thereby
justifying our choice of prioritizing VIT-S within the ActNetFormer framework.

Furthermore, our method also incorporates video level contrastive learning,
enabling the model to glean stronger representations at the spatio-temporal level. Hence,
our cross-architecture pseudo-labeling approach is utilized to capture distinct aspects
of action representation from both the 3D CNNs and transformer architectures, while
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cross-architecture contrastive learning aims explicitly to align the representations and
discover mutual information in global high-level representations across these architec-
tures. More experimental details about the cross-architecture strategy are included in
Section S1.1 in the Supplementary Material.

The main contributions of this work is twofold and listed as follows:

– We propose a novel cross-architecture pseudo-labeling framework for semi-
supervised action recognition in videos.

– An architecture-level contrastive learning is developed to enhance the performance
of the proposed approach for action recognition in videos.

Fig. 2. Architecture of the proposed framework.

2 Related works

2.1 Action Recognition

Action recognition has advanced significantly with deep learning architectures like
CNNs, Recurrent Neural Networks (RNNs), and Transformers. CNNs capture spatial
information, while the RNNs captures temporal dependencies [3]. Meanwhile, Trans-
formers, known for NLP tasks, is excellent at capturing long-range dependencies.
Varshney et al. [28] proposed a CNN model combining spatial and temporal infor-
mation using different fusion schemes for human activities recognition video. Vision
Transformer (ViT) [8] treats images as sequences of patches, achieving competitive
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performance on image classification tasks. Arnab et al. [1] extend Transformers to
video classification, while Bertasius et al. [2] introduce TimeSformer, a convolution-
free approach to video classification built exclusively on self-attention over space and
time convolution-free approach. TimeSformer achieves state-of-the-art (SOTA) results
on action recognition benchmarks like Kinetics-400 and Kinetics-600, offering faster
training and higher efficiency. Besides that, TimeSformer can also achieve good results
even without pretraining. However, achieving these results may require more extensive
data augmentation and longer training periods.

2.2 Semi-supervised Learning for Video Action Recognition

Action recognition in computer vision is vital across various applications, yet it often
suffers from limited labeled data. Semi-supervised learning (SSL) methods provide
a solution by utilizing both labeled and unlabeled data to enhance model perfor-
mance [22,34]. These approaches exploit the abundance of unlabeled video data avail-
able online. Wu et al. [31] proposed NCCL, a neighbor-guided consistent and con-
trastive learning (NCCL) method for semi-supervised video-based action recogni-
tion. Xu et al. [34] introduced CMPL, employing cross-model predictions to gener-
ate pseudo-labels and improve model performance. Singh et al. [21] leverage unsuper-
vised videos played at different speeds to address limited labeled data. Xiao et al. [32]
enhance semi-supervised video action recognition by incorporating temporal gradient
information alongside RGB data. Jing et al. [13] use pseudo-labels from CNN con-
fidences and normalized probabilities to guide training, achieving impressive results
with minimal labeled data. Gao et al. [10] introduced an end-to-end semi-supervised
Differentiated Auxiliary guided Network (DANet) for action recognition. Xiong et
al. [33] introduce multi-view pseudo-labeling, leveraging appearance and motion cues
for improved SSL. Tong et al. [26] propose TACL, employing temporal action augmen-
tation, action consistency learning, and action curriculum pseudo-labeling for enhanced
SSL. These advancements demonstrate the potential of SSL techniques in boosting
action recognition performance, especially in scenarios with limited labeled data.

2.3 Contrastive Learning in Action Recognition

Contrastive learning has become a popular approach, especially in computer vision [16].
Unlike supervised methods, contrastive learning operates on unlabeled data, maxi-
mizing agreement between similar samples while minimizing it between dissimilar
ones [19,24]. It fosters a feature space where similar instances are clustered and dis-
similar ones are separated. By optimizing a similarity metric using positive (similar)
and negative (dissimilar) sample pairs, contrastive learning extracts meaningful fea-
tures beneficial for tasks like classification and object detection. Its advantage lies
in learning from vast unlabeled data, making it suitable for scenarios with limited
labeled data [7,25]. Guo et al. [11] propose AimCLR, a contrastive learning-based self-
supervised action representation framework. They enhance positive sample diversity
and minimize distribution divergence, achieving superior performance. The method
in [38] also proposes a hierarchical matching model for few-shot action recognition,
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leveraging contrastive learning to enhance video similarity measurements across multi-
ple levels. Rao et al. [18] introduce AS-CAL, a contrastive learning method for action
recognition with 3D skeleton data, capturing action patterns across transformations for
effective representation.

3 Method

3.1 Overview of our work

The proposed ActNetFormer framework is illustrated in Fig. 2. Our approach consists
of two models, i.e., the primary model Z(·) and the auxiliary model A(·). These mod-
els process video inputs with varying frame rates, utilizing 3D-ResNet50 as the primary
model and VIT-S as the auxiliary model by default. When presented with an unlabeled
video, both models independently generate predictions on the data that are weakly aug-
mented. The predicted outcomes are then utilized to generate a pseudo-label for the
counterpart model, acting as guidance for the strongly augmented data. The “SG" nota-
tion denotes the stop-gradient operation, and supervised losses from labeled data are
not depicted in this figure. Additionally, we incorporate contrastive learning to maxi-
mize agreement between the outputs of the two architectures for the same video while
minimizing the agreement for different videos. ActNetFormer leverages the strengths
of both a 3D CNN and a transformer. Given an input video clip, each model produces
a video representation separately. This encourages each model to focus on different
features or patterns within the videos, leading to more comprehensive representations.
By combining these complementary representations through contrastive learning, the
framework can leverage a richer set of features for action recognition.

3.2 Our proposed framework

Given a labeled dataset X containing Nl videos, each paired with a corresponding label
(xi, yi), and an unlabeled dataset U comprised of Nu videos, ActNetFormer efficiently
learns an action recognition model by utilizing both data that are labeled and unlabeled.
Typically, the size of the unlabeled dataset Nu is greater than that of the labeled dataset
Nl. We provide a brief description of the pseudo-labeling method in Section 3.3. Sub-
sequently, we introduce the proposed ActNetFormer framework in Section 3.4. Then,
we explain how contrastive learning works in ActNetFormer framework in Section 3.4.
Subsequently, we delve into the implementation details of ActNetFormer in Section 4.

3.3 Preliminaries on Pseudo-Labeling

Pseudo-labeling is a widely employed approach in semi-supervised image recogni-
tion, aiming to leverage the model to generate artificial labels for data that are not
labeled [22,36,39]. The generated labels that surpass a predefined threshold are kept,
enabling the associated unlabeled data to be utilized as extra samples for training. Fix-
Match [22], a recent SOTA approach, utilizes weakly augmented images for acquiring
pseudo-labels, which are subsequently combined with strongly augmented versions to
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generate labeled samples. The extension of FixMatch to semi-supervised action recog-
nition can be accomplished as follows:

Lu =
1

Bu

Bu∑

i=1

1 (max(qi) ≥ τ)H (ŷi, Z(Gs(ui))) , (1)

In the equation (1), Bu denotes the batch size, τ is the threshold used to indicate
if the prediction that is made is reliable or not, 1(·) denotes the indicator function,
qi = Z(Gw(ui)) represents the class distribution, and ŷi = argmax(qi) denotes the
pseudo-label. Gs(·) and Gw(·) respectively denote the processes of strong and weak
augmentation. H(·, ·) represents the standard cross-entropy loss. Lu represents the loss
on the unlabeled data, while the loss on the labeled data is the cross-entropy loss typi-
cally used in action recognition.

3.4 Cross-Architecture Pseudo-Labeling

In Section 3.3, we discussed the fundamental concept underlying recent semi-
supervised learning methodologies, which revolves around generating high-quality
pseudo-labels for unlabeled data. However, in scenarios where the number of labeled
instances is constrained, a single model may lack the necessary discriminative power
to assign pseudo-labels effectively to a large volume of unlabeled data [34]. To address
this challenge our approach (Cross-Architecture Pseudo-Labeling in ActNetFormer)
adopts a novel strategy of employing two models with distinct architectures and task-
ing them with generating pseudo-labels for each other. This approach is influenced by
the understanding that different models exhibit distinct strengths and biases. While 3D
CNNs excel in capturing spatial features and local dependencies within the temporal
domain, transformers are more adept at handling long-range dependencies within the
temporal domain. This variation in architectural characteristics leads to the generation
of complementary semantic representations.

As shown in Fig. 2, we illustrate the ActNetFormer framework, which employs a
cross-architecture setup. Specifically, we utilize the 3D-ResNet50 as the primary model
Z(·) and video transformer (VIT-S) as the auxiliary model A(·). Both models undergo
supervised training using labeled data while simultaneously providing pseudo-labels
for data unlabeled to their counterparts. This method encourages the two architectures
to understand complementary representations, ultimately enhancing overall efficacy.

Training on labeled data. Training a model on labeled data involves a straightforward
process. Given a set of labeled videos {(xi, yi)}Bl

i=1, we define the supervised loss for
both models as follows:

LZ
s =

1
Bl

Bl∑

i=1

H(yi, Z(GZ
n (xi))) (2)

LA
s =

1
Bl

Bl∑

i=1

H(yi, A(GA
n (xi))) (3)
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where Gn(·) denotes the conventional data augmentation method employed in [9,
29].

Training on unlabeled data. When presented with an unlabeled video ui, the auxil-
iary model A(·) generates predictions based on data that are weakly augmented ui and
produces category-wise probabilities denoted as qAi = A(Gw(ui)). If the maximum
probability among these probabilities,max(qAi ), exceeds a predefined threshold τ , it is
considered a reliable prediction. In such cases, we utilize qAi to infer the pseudo ground
truth label ŷA

i = argmax(qAi ) for the strongly augmented ui. This process allows the
model Z(·) to learn effectively.

LZ
u =

1
Bu

Bu∑

i=1

1
(
max(qAi ) ≥ τ

) H(ŷA
i , Z(Gs(ui))) (4)

where, Bu represents the batch size, and H(·, ·) denotes the cross-entropy loss.
Similar to the auxiliary model, the primary model will also produce a prediction

qZi = Z(Gw(ui)), which is then utilized to create a labeled pair (ŷZ
i , Gs(ui)) for the

auxiliary model:

LA
u =

1
Bu

Bu∑

i=1

1
(
max(qZi ) ≥ τ

) H(ŷZ
i , A(Gs(ui))) (5)

Contrastive learning. The goal is to train the primary and auxiliary models using
limited supervision initially, which can effectively analyze a vast collection of unla-
beled videos to enhance activity understanding. Our cross-architecture pseudo-labeling
approach already leverages two different architectures to capture different aspects of
action representations as mentioned in Section 3.4. Contrastive learning is incorpo-
rated to encourage the models further to extract complementary features from the input
data, leading to more comprehensive representations of actions. 3D CNN and a Video
Transformer process the input video clip differently and produce a unique representa-
tion of the video content. In other words, the features extracted by each architecture
capture different aspects of the video, such as spatial and temporal information. This
diversity in representations can be advantageous as it allows the model to learn from
multiple perspectives, potentially leading to a more comprehensive understanding of
the action sequences in the videos. Therefore, cross-architecture contrastive learning is
employed to discover the mutual information that coexists between both the represen-
tation encoding generated by the 3D CNN and the video transformer model. It is worth
noting that our framework uses weakly augmented samples from each architecture for
cross-architecture contrastive learning, inspired by [32].

Consider a mini-batch with Bu unlabeled videos. Here, m(uZ
i ) represents the video

clip processed by the primary model, while m(uA
i ) represents the video clip processed

by the auxiliary model. Therefore, m can be interpreted as the function that generates
representations of the input videos through the respective models. These representations
form the positive pair. For the rest of Bu − 1 videos, m(uZ

i ) and m(uq
k) form negative

pairs, where the representation of the k-th video can come from either of the architecture



Transformer-ResNet Hybrid Pipeline for Semi-supervised Action Recognition 351

(i.e., q ∈ {Z,A}). Given that the negative pairs comprise various videos with distinct
content, the representation of different videos within each architecture is pushed apart.
This is facilitated by utilizing a contrastive loss (Lca) adapted from [5,21], as outlined
below.

Lca(uZ
i , uA

i ) = − log
h(m(uZ

i ),m(uA
i ))

h(m(uZ
i ),m(uA

i )) +
∑B

k=1
q∈{Z,A}

1{k �=i}h(m(uZ
i ),m(uq

k))
(6)

where, h(u, v) = exp
(

u�v
‖u‖2‖v‖2

/τ
)
represents the exponential of the cosine similarity

measure between vectors u and v, where τ denotes the temperature hyperparameter.
The final contrastive loss is calculated for all positive pairs, (uZ

i , uA
i ), where uZ

i is the
representation generated by the primary model and uA

i is the representation generated
by auxiliary model. The loss function is engineered to reduce the similarity, not just
among different videos processed within individual architectures but also across both
architectural models.

Complete Training objective. To encapsulate, merging supervised losses derived from
labeled data with unsupervised losses derived from unlabeled data, we present the entire
objective function as:

L = (LZ
s + LA

s ) + γ · (LZ
u + LA

u ) + β · Lca (7)

where, γ and β are weights of the cross-architecture loss and contrastive learning losses
respectively.

4 Implementation

4.1 Auxiliary Model

As mentioned in Section 3.4, the auxiliary model should possess distinct learning capa-
bilities compared to the primary model in order to offer complementary representa-
tions. Hence, we utilize VIT-S, which is the smaller version of the bigger transformer
model (VIT-B). Comprehensive ablation studies (in the next section) show the supe-
riority of VIT-S w.r.t. the transformer model (VIT-B) and the smaller 3D CNN model
(3D-ResNet18). Unless otherwise specified, we utilize 3D-ResNet50 as the primary and
VIT-S as the auxiliary models, respectively. More details of these models are included
in Section S3 in the Supplementary Material.

4.2 Spatial data augmentations

We strictly adhere to the spatial data augmentations proposed in [9,29] for training,
denoted as Gn(·), on labeled data. For unlabeled data, random horizontal flipping, ran-
dom scaling, and random cropping are employed as weak augmentations, denoted as
Gw(·). The input size of the video is standardized to 224× 224 pixels to ensure consis-
tency during augmentation and subsequent processing by the models. We utilize tech-
niques such as AutoAugment [6] or Dropout [4] as strong augmentation, Gs(·).
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4.3 Temporal data augmentations

Our ActNetFormer framework incorporates variations in frame rates for temporal data
augmentations inspired by prior research in [21,35]. While the primary model operates
at a lower frame rate, the auxiliary model is provided with a higher one. This variation
in frame rates allows for exploring different speeds in video representations. Despite
the differences in playback speeds, the videos maintain the same semantics, maximiz-
ing the similarity between their representations. This approach offers complementary
benefits by leveraging both slower and faster frame rates between the primary and aux-
iliary models. Consequently, this contributes to improving the overall performance of
our ActNetFormer framework in action recognition. Additional spatial and temporal
augmentations analysis are provided in Section S1.2 in Supplementary Material.

5 Experiments

We assess the effectiveness of the proposed ActNetFormer framework on three widely
used datasets, i.e., Kinetics-400 [14], HMDB-51 [15] and UCF-101 [23]. We employ
two standard settings for semi-supervised action recognition, using 1% and 10% of the
labeled data for the UCF-101 and Kinetics-400 datasets. However, for the HMDB-51
dataset, we use 40%, 50%, and 60% of the labeled data. Detailed ablation studies on the
design choices of ActNetFormer are also conducted. Additionally, empirical analysis
is provided in Section S2 in the Supplementary Material to validate the motivations
behind ActNetFormer. It is crucial to emphasize that all experiments are conducted
using a single modality (RGB only) and assessed on the corresponding validation sets
unless stated otherwise.

5.1 Dataset

The Kinetics-400 dataset [14] comprises a vast collection of human action videos,
encompassing around 245,000 training samples and 20,000 validation samples across
400 distinct action categories. Following established methodologies like MvPL [33] and
CMPL [34], we adopt a labeling rate of 1% or 10%, selecting 6 or 60 labeled training
videos per category. Additionally, the UCF-101 dataset [23] offers 13,320 video sam-
ples spread across 101 categories. We also sample 1 or 10 samples in each category
as the labeled set following CMPL [34]. HMDB-51 [15] is a smaller dataset sourced
from movie videos, featuring 51 human activity classes consisting of 6766 videos with
high intra-class variance. We conduct experiments at three different labeling rates: 40%,
50%, and 60% based on LTG [32].

5.2 Baseline

For our primary model, we utilize the 3D-ResNet50 from [9]. We employ the ViT [8]
extended with the video TimeSformer [2] as the auxiliary model in our ActNetFormer
approach. While most hyperparameters remain consistent with the baseline, we utilize
the divided space-time attention mechanism, as mentioned in TimeSformer [2]. How-
ever, only the big transformer model (VIT-B) is offered in TimeSformer, hence we adopt
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the smaller transformer model (VIT-S) inspired by DeiT-S [27] with the dimensions of
384 and 6 heads. More details on the structure of primary and auxiliary models are
included in Section S3 in the Supplementary Material.

5.3 Training and inference

During training, we utilize a stochastic gradient descent (SGD) optimizer with a
momentum of 0.9 and a weight decay of 0.001. The confidence score threshold τ , is
set to 0.8. Parameters γ and β are both set to 2. Based on insights from the ablation
study in Section 7.1, we employ a batch ratio of 1:5 for labeled to unlabeled data,
ensuring a balanced and effective training process. A total of 250 training epochs are
used. During testing, consistent with the inference method employed in MvPL [33] and
CMPL [34], we uniformly sample five clips from each video and generate three distinct
crops to achieve a resolution of 224 × 224, covering various spatial areas within the
clips. The final prediction is obtained by averaging the softmax probabilities of these
5 × 3 predictions. While both the primary and auxiliary models are optimized jointly
during training, only the primary model is utilized for inference, thereby incurring no
additional inference cost. It is noteworthy that our ActNetFormer approach does not rely
on pre-training or pre-trained weights, setting it apart from other methods and under-
scoring its uniqueness in the field of action recognition in videos. We train our model
entirely from scratch, further highlighting the robustness of our approach.

6 Results

Table 1. Comparison of results with SOTA approaches on UCF-101, Kinetics-400 and HMDB-
51. The best-performing results are highlighted in red, while the second-best results are high-
lighted in blue. Methods utilizing pre-trained ImageNet weights are displayed in grey. "Params"
indicates the number of parameters. “Input” shows the modality used during training, where “V"
representing raw RGB video, “F" denoting optical flow, and “G" indicating temporal gradient.
"Architecture" indicates the types of models used during training.

Method Architecture Input Epoch ParamsUCF-101Kinetics-400HMDB51

(M) 1% 10% 1% 10% 40%50%60%

FixMatch (NeurIPS 2020) [22] 3D-ResNet50 V 200 31.8 14.8 49.8 8.6 46.9 - - -

FixMatch (NeurIPS 2020) [22] SlowFast-R50 V 200 60 16.1 55.1 10.1 49.4 - - -

TCL (CVPR 2021) [21] TSM-ResNet-18 V 400 11.2 - - 8.5 - - - -

MvPL (ICCV 2022) [33] 3D-ResNet50 V+F+G 600 31.8 22.8 80.5 17.0 58.2 30.5 33.9 35.8

TACL (IEEE TCSVT 2022)[26] 3D-ResNet50 V 200 33.2 - 55.6 - - 38.7 40.2 41.7

LTG (CVPR 2022) [32] 3D-ResNet18 V+G 180 67.1 - 62.4 9.8 43.8 46.5 48.4 49.7

CMPL (CVPR 2022) [34] 3D-ResNet50 + 3D-ResNet18V 200 45.3 25.1 79.1 17.6 58.4 - - -

NCCL (IEEE TIP 2023) [31] TSM-ResNet-18 V+G 400 23.1 21.6 - 12.2 43.8 - - -

DANet (Elsevier NN 2023) [10] 3D-ResNet18 V 600 31.8 - 64.6 - - - - -

ActNetFormer (Ours) 3D-ResNet50 + VIT-S V 250 62.3 26.1 80.0 18.3 59.2 47.1 48.2 49.9

ActNetFormer (Ours) with Contrastive learning 3D-ResNet50 + VIT-S V 250 62.3 27.6 80.6 19.1 59.8 47.9 49.1 51.1

We present the top-1 accuracy as our chosen evaluation metric in Table 1. ActNet-
Former consistently performs better than various SOTA methods, including FixMatch,
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TCL, MvPL, TACL, CMPL, NCCL, DANet, and LTG, across all the three datasets and
labeling rates. The inclusion of contrastive learning in our approach demonstrates an
improved performance by a significant percentage, specifically at the 1% labeled data
setting. We observe a percentage increase of approximately 4.60% for the UCF-101 and
4.37% for the Kinetics-400 dataset. This enhancement underscores the effectiveness of
incorporating contrastive learning, resulting in more robust representations. ActNet-
Former outperforms FixMatch by a large margin due to its novel cross-architecture
strategy, which leverages the strengths of both 3D CNN and VIT models, whereas Fix-
Match relies solely on its own architecture for label generation, potentially limiting
its adaptability. Our approach shares similarities with the CMPL approach. However,
it surpasses CMPL in several vital aspects. Firstly, our approach incorporates video-
level contrastive learning, which enables the model to learn more robust representa-
tions at the video level. This enhanced representation leads to better performance in
action recognition. Additionally, our approach leverages a cross-architecture strategy,
combining the strengths of both 3D CNN and VIT models. In contrast, CMPL lever-
ages a cross-model strategy which utilizes the strength of 3D CNN alone. By inte-
grating spatial feature extraction capabilities from CNNs with the attention mecha-
nisms of transformers, our approach achieves a more comprehensive understanding of
both spatial and temporal aspects of video data. Besides that, our approach achieves
a performance of 80.0% in the 10% UCF-101 dataset, while incorporating contrastive
learning boosts our performance to 80.6%, bringing it closer to the 80.5% achieved by
MvPL. Notably, our approach relies solely on one modality, whereas MvPL exploits
three modalities. Despite this discrepancy in input modalities, our approach demon-
strates comparable performance, indicating its efficiency in leveraging single-modality
information for video understanding tasks. This suggests that our approach may offer a
more streamlined solution than MvPL, which relies on multiple modalities to achieve
similar performance levels. Among the various approaches evaluated on the HMDB-51
dataset, the LTG method achieves the closest results to our ActNetFormer approach.
Our ActNetFormer, without contrastive learning, performs slightly better at 40% and
60% labeled data, while LTG performs marginally better at 50% labeled data. How-
ever, with the addition of contrastive learning, ActNetFormer outperforms LTG across
all three labeled data percentages. This demonstrates the substantial benefits of incor-
porating contrastive learning in our approach, leading to superior performance on the
HMDB-51 dataset.

7 Ablation Studies

We thoroughly examine the proposed ActNetFormer method through several ablation
studies. We present the experimental outcomes of various configurations of hyperpa-
rameters. We then analyze different combinations of the primary and auxiliary models.
In all the ablation studies, it is crucial to highlight that experiments conducted with
the UCF-101 dataset utilize 1% of the labeled data, while those conducted with the
Kinetics-400 dataset also employ 1% of the labeled data.
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7.1 Analysis of hyperparameters

Here, we investigate the impact of various hyperparameters. Experiments are conducted
under the 1% setting of the Kinetics-400 dataset. Initially, we examine the influence of
different threshold values of τ . As illustrated in Fig. 3 (a), the results indicate that a
threshold of (τ = 0.8) achieved the highest accuracy, suggesting that the quality of
the threshold is crucial. Additionally, setting the threshold too high, as in the case of
(τ = 0.9), may lead to sub-optimal performance, as evidenced by the lower accuracy
compared to (τ = 0.8). When the threshold is set too high, there is a risk that only a
limited number of unlabeled samples are selected for inclusion. This occurs because
the threshold acts as a criterion for determining which samples are considered confi-
dently predicted by the model and thus eligible for inclusion in the training process.
Therefore, if the threshold is excessively high, fewer unlabeled samples may meet this
criterion, leading to under-utilization of unlabeled data and potentially compromising
model performance. Hence, we utilize 0.8 as the threshold for all the experiments in
this study.

Next, we evaluate the impact of the ratio between labeled and unlabeled samples in
a mini-batch on the final outcome. Specifically, we fix the number of labeled samplesBl

at 1 and randomly sample Bu unlabeled samples to form a mini-batch, where Bu varies
from {1, 3, 5, 7}. The outcomes are depicted in Fig. 3 (b), indicating that the model
performs best when Bu = 5. Lastly, we explore the selection of the loss weights γ and
β, as shown in Fig. 3 (c) and Fig. 3 (d) for the cross-architecture loss and contrastive
learning loss, respectively. We find that the optimum value of γ and β are 2. Hence, we
utilize γ = 2 and β = 2 for all the experiments.

Fig. 3. Analysis of different hyperparameters which includes Threshold τ , Batch ratio Bu, Loss
weight γ, Loss weight β.

7.2 Analysis of different combination of primary and auxiliary models used

“ResNet-B" explicitly denotes the 3D-ResNet50 model, while “ResNet-S" refers to
the 3D-ResNet18 model. Correspondingly, “VIT-S" represents the smaller variant of
the video transformer model, while “VIT-B" indicates the larger variant. Please keep
these specific references in mind for clarity in our discussions. Before delving into
the comparisons, it is important to note that we have critically analyzed why our app-
roach (ResNet-B and VIT-S) outperforms other combinations. The comparison between
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Table 2. Comparison of performance between primary and auxiliary models on UCF-101 (1%)
and Kinetics-400 (1%) datasets.

Primary Model Auxiliary Model UCF-101 (1%)Kinetics-400 (1%)

VIT-B VIT-S 19.2 13.1

VIT-B ResNet-B 20.9 13.9

VIT-B ResNet-S 21.1 14.6

ResNet-B VIT-B 23.7 16.9

ResNet-B ResNet-S 25.1 17.6

ResNet-B VIT-S 26.1 18.3

ResNet-B and VIT-S versus alternative combinations is illustrated in Table 2, and the
analysis is detailed below.

The comparison between ResNet-B and VIT-S versus alternative combinations
reveals detailed insights. ResNet-B and VIT-S, demonstrate the significance of cross-
architecture approaches in video recognition tasks. Significant performance enhance-
ments are achieved by leveraging ResNet-B’s spatial feature extraction and VIT-S’s
temporal understanding. Additionally, VIT-S’s superiority as an auxiliary model high-
lights the effectiveness of smaller models, particularly in the temporal domain, due
to its smaller parameter count and better suitability for scenarios with limited data.
When VIT-B is employed as the primary model among the first three combinations, its
best performance is achieved when paired with ResNet-S. This outcome validates our
motivation for employing a cross-architecture strategy and demonstrates the efficacy
of using smaller models as auxiliary components. The complementary nature and the
efficacy in the temporal domain of smaller models enhance the overall performance.
Overall, this analysis emphasizes the pivotal role of the cross-architecture approach and
the utilization of smaller models in improving video recognition performance, aligning
with the motivation of our study. Further ablations are provided in Section S1 of the
Supplementary Material.

8 Conclusion

In conclusion, our proposed approach, ActNetFormer, combines cross-architecture
pseudo-labeling with contrastive learning to offer a robust solution for semi-supervised
video action recognition. By leveraging both labeled and unlabeled data, ActNetFormer
effectively learns action representations by merging pseudo-labeling and contrastive
learning techniques. This novel approach integrates 3D CNN and VIT to compre-
hensively capture spatial and temporal aspects of action representations. Addition-
ally, cross-architecture contrastive learning is employed to explore mutual informa-
tion between the encoding generated by 3D CNN and VIT. This strategy enhances the
model’s ability to learn from diverse perspectives, resulting in superior performance.
The success of ActNetFormer underscores the effectiveness of leveraging diverse archi-
tectures and semi-supervised learning paradigms to advance action recognition in real-
world scenarios.
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Abstract. The occurrence of human fall is a significant threat to human
health, especially among the elderly. Unlike standard action recognition,
falls manifest a combination of static and dynamic attributes. They are
highly sensitive to spatio-temporal motion, marked by sudden and tran-
sient occurrences. This paper proposes a novel spatio-temporal convo-
lutional method for end-to-end human fall detection, named Residual
Spatio-Temporal Attention Network (RSTAN). The network integrates
a Spatial Channel Attention (SCA) module within the convolutional lay-
ers of the Residual 3D convolution to enhance feature refinement. selec-
tively accentuates spatial and channel dimensions. In addition, to capture
both the extensive spatio-temporal features and the short-range spatio-
temporal characteristics of human falls, effectively distinguishing them
from daily activities, we propose a Multi-interval Difference Aggregation
(MDA) method. The MDA utilizes multiple time interval frame differ-
ences to extract motion features. Our proposed method’s superior perfor-
mance is demonstrated through experiments on three publicly available
fall detection datasets. Specifically, achieving 100% accuracy on the UR
Fall Detection dataset.

Keywords: Human fall detection · Residual 3D convolution · Spatial
channel attention · Multi-interval difference aggregation

1 Introduction

Fall detection plays a vital role in safeguarding individuals, particularly the
elderly. The World Health Organization (WHO) acknowledges this critical issue,
reporting approximately 37.3 million falls annually that necessitate medical
care. Falls are the second leading cause of unintentional injury-related deaths
globally[30]. International guidelines for fall prevention and management in older
adults emphasize the potential benefits of e-health technologies, including wear-
ables, virtual reality applications, and environmental monitoring systems[16].

Fall detection systems for humans are primarily classified into three cate-
gories: wearable sensor-based systems[19–21], ambient device-based systems[5,
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6,11,17], and camera device-based systems[13]. Comparing wearable devices,
ambient device-based systems primarily collect wifi and MEMS information to
detect fall events, which do not restrict human activity. However, installing these
sensors throughout the entire area can be laborious. In contrast to wearable
devices and ambient device-based systems, camera device-based systems utilize
existing cameras or surveillance cameras to capture video data and offer non-
invasiveness and low cost for the elderly. Additionally, visual detection systems
can provide more intuitive and comprehensive information, with higher accuracy
and reliability.

In vision-based research, fall detection often rely on depth images acquired
through RGB-D sensors, as these sensors provide rich information about human
motion patterns via depth maps. However, recent advancements in deep learning-
based algorithms have enabled many studies to achieve significant performance in
Human fall detection using conventional RGB cameras. However, deep learning-
based methods often perform fall detection in two stages. The first stage is based
on pos-Net or Yolo-pos[25] to extract human skeleton features, and the second
stage is based on LSTM[12] or CNN classification[31,33,34]. Alternatively, the
process may commence with employing Yolo[25] to detect the human box, fol-
lowed by LSTM to establish continuity relationships between frames[4,7,15,29],
facilitating the identification of falling frames. Moreover, motion features can be
extracted through frame difference or optical flow techniques, and subsequently
convolved to classify falling frames. Compared with complex integration meth-
ods, accurate and sensitive end-to-end fall detection is needed to be more flexible
for real-world deployment in fall detection systems.

Fall events cannot be adequately distinguished solely based on the magni-
tude of motion, as complex foreground information from various behaviors such
as running and lying complicates the analysis. Hence, there is a need for the
model to discern human spatial velocity, enabling the differentiation of fall events
from other daily activities characterized by intricate spatial dynamics. We intro-
duce the Residual Spatio-Temporal Attention Network (RSTAN) design based
on the Spatial Channel Attention (SCA) mechanism and a residual 3D convo-
lution, named R(2+1)D[23]. In this network, SCA offers significant advantages
by enhancing feature representation and concurrently mitigating the detrimen-
tal impact of noise and irrelevant spatial features. The incorporation of SCA
enhances the overall efficiency and effectiveness of video-based R(2+1)D convo-
lutional networks for fall detection applications. Moreover, in contrast to the slow
extraction process of optical flow motion features, our method, Multi-interval
Difference Aggregation (MDA), is designed to facilitate the rapid acquisition of
rich spatial motion characteristics.

In summary, the key contributions of this paper are as follows:

1. We replace the complex integrated model with an end-to-end spatio-temporal
convolutional network for human fall detection while improving fall detection
accuracy.
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2. We design a RSTAN based on SCA to dynamically adjust the network’s focus
on different channels, which enhances the performance of the baseline model
comprehensively.

3. We design the MDA method to capture subtle spatial velocity features of
human falls, distinguishing them from daily activities.

4. We complete extensive experiments on three publicly available fall detection
datasets to demonstrate the superior performance of our method.

2 Related works

Fall detection is integral to intelligent monitoring and home security systems.
Some studies detect falls by extracting human skeletal pose and classifying them.
Yadav et al. [33] preprocessed the pose coordinates and fed them into specially
designed convolutional neural networks (CNNs) along with gated recurrent units
(GRUs) in a sliding window manner, enabling the models to capture the spa-
tiotemporal patterns within the raw data. Recent research, Noor et al.[18] pro-
posed a lightweight skeleton-based 3D-CNN fall recognition network that demon-
strates significant improvements in accuracy and processing time. This reflects
the importance of 3D-CNN in fall detection. However, these methods are all
based on two-stage approaches for fall detection. In contrast, action recognition
offers an end-to-end fall detection method.

In action recognition, numerous studies have developed innovative spatio-
temporal network architectures designed to enhance the learning of temporal
features. Tran et al.[22] illustrated the advantages of 3D CNNs over 2D CNNs
for extracting temporal features by integrating the time dimension directly into
the CNN framework. A subsequent advancement, the Inflated 3D Convolu-
tion (I3D)[2,27], extended traditional 2D convolution kernels into 3D space to
effectively capture spatiotemporal features. Similarly, the R(2+1)D[23] method
sought to decompose 3D convolutions into a series of spatial and temporal con-
volutions, aiming to reduce parameter count while maintaining performance.

Based on video feature extraction in action recognition, some researchers have
experimented with end-to-end fall detection. Wang et al.[26] offers a forward-
thinking, end-to-end method for video feature extraction and classification in fall
detection. Their approach defines a fall merely as a deviation of the body’s center
of gravity from the vertical line, along with an inability to maintain balance.
However, this definition could oversimplify real-world complexities and may lack
the universality needed for fall detection across diverse scenarios.

While fall detection methodologies share similarities with those used in
action recognition, the unique nature of falls demands special consideration.
Falls manifest as a blend of static and dynamic characteristics, and are sus-
ceptible to motion characteristics, characterized by sudden and transient occur-
rences. Therefore, an end-to-end fall detection network, which is based on video
understanding for action recognition and is sensitive to motion information, is
necessitated.
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3 Method

In this study, we present a novel human fall detection architecture named Resid-
ual Spatio-Temporal Attention Network (RSTAN) and Multi-interval Difference
Aggregation (MDA). In the subsequent section, we provide a comprehensive
introduction to the framework of the proposed method.

3.1 Overview

Because the fall process has a great correlation with the motion characteristics
of humans, compared with the slow extraction of optical flow motion features,
we extract frame difference features to obtain motion features quickly. Further-
more, the accuracy of motion features is inherently affected by the frame dif-
ference interval. For slow-moving objects, longer interval frame differences are
suitable, while shorter intervals are preferable for fast-moving objects. There-
fore, we design an MDA module, to capture fall actions at different speeds. This
module extracts rich motion information by calculating the frame differences
over various time intervals.

After that, we input the multi-interval frame difference image and the original
image into the RSTAN and then get the classification result of whether the
human is falling or not. We give an illustration of this architecture (see Fig.1).

window

Diff-MDA

Raw frame

Fall 

. . .
. . .

. . .

-
-

-
-

Residual Spatio-Temporal 
Attention Network
(RSTAN)

classifier

Video 

Fig. 1. The proposed human fall detection architecture. Where ”�” denotes
the frame difference operation across multiple frame intervals, motion features are
extracted within various temporal ranges in this way for the result of ”Diff-MDA”;
”⊕” symbolizes the concatenation operation.

Given that the typical human fall action occurs within 1 to 2 seconds, and
considering a video frame rate of 25 FPS, we opt to utilize a sliding window
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approach with a length of 16 frames, as the input clip length for the network.
Additionally, we set the step size to 1-4, ensuring the accuracy of fall detection.

3.2 The Design of the Multi-Interval Differential Aggregation

It has been observed that the primary distinguishing feature between falls and
routine activities (such as lying down, sitting, or sleeping) lies in the rapid ver-
tical downward movement of the individual’s posture. Consequently, to capture
the motion attributes associated with falls, we expedite the extraction of motion
features through frame difference. However, it is noteworthy that when falls occur
swiftly, smaller frame difference intervals are necessary to effectively detect this
action. Conversely, when falls happen gradually, larger frame difference intervals
are required. To address this variability, we integrate information from multi-
ple time frame differences, enabling the detection of fall actions across different
speeds.

Firstly, the input video sequence is segmented into a series of image frames.
For each pair of consecutive frames (such as F t and F t+1,), the pixel-level dif-
ferences between them are calculated to form a frame of differential image.

V (t) = V (:, :,F t,F t+1,, :, s) , t ∈ (1, Clip) (1)

To capture movements at different speeds, the MDA module does not merely
calculate the differences between adjacent frames but computes the differences
between frames at multiple intervals. The interval i is continuously increased
to realize the frame difference images with (1, 3, 5, .., clip − 1) intervals. Finally,
they are aggregated into the clip

2 ∗ 3 ∗ 112 ∗ 112 shape data, and input into the
R(2+1)D network based on spatial channel attention.

D2i = |V (clip − 1 − i) − V (i)|, i ∈ (1, Clip/2) (2)

3.3 The Framework of Residual Spatio-Temporal Attention
Network

The RSTAN is incorporated by a Spatial Channel Attention (SCA) module
between the convolutional layers of the Residual 3D convolution. The framework
of RSTAN is shown to illustrate (see Fig.2).

Different from the typical Residual 3D convolution, We choose R(2+1)D[23]
as our baseline. R(2+1)D convolution separates the spatial and temporal dimen-
sions, which reduces the number of model parameters while maintaining an effi-
cient feature extraction capability. In this network, R (2+1) D is divided into
1×d×d 2D spatial convolution and t×1×1 temporal convolution based on R3D,
which has higher modeling flexibility and fewer parameters.

In order to dynamically adjust the network’s focus on different channels,
we introduce a spatial channel attention mechanism to thereby enhance the
recognition capability for falling actions. Upon obtaining the output from the
R(2+1)D convolution, a flattening operation is performed on the output. In
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Fig. 2. The framework of RSTAN. (a) Focuses on theresidual (2+1) D convolu-
tion, R(2+1)D realizes three-dimensional spatio-temporal convolution by spatial two-
dimensional convolution and temporal one-dimensional convolution. (b) Visual illus-
tration of SCA, where we use different colors to represent the attention weights, ”⊗”
denotes matrix multiplication.

contrast to conventional average pooling, the flatten operation does not lose
any information but instead flattens all features into a one-dimensional vector,
effectively preserving all the information from the original feature map. This
flattened vector is denoted as F ∈ R

N×T×H×W . Subsequently, a shared Multi-
Layer Perceptron (MLP) is employed, which consists of two 2x2 convolutional
layers with a ReLU activation function in between. The MLP transforms F into
a set of feature weights W ∈ R

N×T×H×W . This spatial channel attention is
illustrated above (see Fig.2(b)), mathematically expressed as:

W = Conv2×2(ReLU(Conv2×2(F))) (3)

Finally, the feature weights W are used to reweight the original input to
the attention mechanism. This is achieved by summing over the product of the
feature weights and the corresponding input features, for all spatial positions in
the input. The final output of the SCA, VSC(X), is given by:

VSC(X) =
∑K−1

i=0

∑K−1
j=0 W i,j · Xt

i,j (4)

Where VSC(·) denotes the function operation applied to the spatial channel,
Xt

i,j is the input feature at spatial position (i, j), and W i,j is the corresponding
feature weight, while K denotes the size of the 2-D convolution kernel.
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In the proposed framework, the SCA is integrated into the Residual 3D Con-
volutional Network (R3D). Specifically, the SCA is applied on the output of the
original R3D network, and then the result is fed back into the R3D network.
This process can be mathematically expressed as:

R3D(X) = R3Dold (VSC(R3Dold (X))) (5)

where R3Dold (X) denotes the output of the original R3D network processing
the input X, VSC(X) represents the function of the SCA module, and R3D(X)
denotes the output of the R3D network with the integrated SCA module pro-
cessing the input X.

3.4 Loss Function.

Given the substantial volume of daily activity videos within the fall dataset com-
pared to the limited quantity of fall-related data, addressing the class imbalance
issue is imperative. To mitigate this challenge, we employ the weighted cross-
entropy loss function. We set the inverse ratio of the fall and daily action category
proportions for the weights assigned to the respective categories to achieve the
best model performance. The loss function as follows:

loss = − 1
n

n∑

i=1

m∑

j=1

Wjyij log ŷij (6)

Here, yij is the true label of the j − th class of the i − th sample, ŷij is the
predicted value of the j − th class of the i− th sample, Wj represents the j − th
class weight, n is the number of samples, and m is the number of classes.

4 Experiments

4.1 Dataset

(1) The UR Fall Detection Dataset (URFD) was developed by the Computa-
tional Modeling Discipline Centre at the University of Rzeszow [14]. This
dataset contains 70 video clips in total, with 30 showing falls and 40 illus-
trating non-fall activities like walking, sitting, squatting, and leaning. The
individuals in the videos display a range of fall behaviors simultaneously,
such as leaning backward, tilting, and suddenly collapsing to the ground.
All the recorded activities, including both falls and daily actions, are cap-
tured in RGB images with a resolution of 640 × 480.

(2) The Le2i dataset, developed by Charfi et al. [3], comprises 191 video
sequences featuring multiple actors and four distinct stages, unlike other
datasets. These videos include variations in lighting conditions and present
typical challenges such as occlusions and cluttered or textured backgrounds.
The actors perform a range of normal daily activities alongside fall events.
The videos are recorded at a frame rate of 25 FPS with a resolution of
320×240 pixels.
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(3) The Multiple Cameras Fall Dataset (MCFD), developed by Auvinet et al.
[1], consists of 192 video sequences across 24 scenes, including 22 fall sce-
narios and two scenes depicting daily activities. These videos were captured
using eight calibrated cameras, each with a resolution of 720 × 480 pixels.
This dataset is unique in offering a wide variety of perspectives on behav-
ior and motion, encompassing not only typical fall-related actions but also
activities like moving boxes, running, and cleaning rooms.

Dataset process: We process the dataset to train the fall detection model.
Initially, We segment the video sequences into three categories: before the fall,
during the fall, and after the fall. The video sequences before and after the fall
are classified as daily activity, while the sequences during the fall are classified
as falls. Due to the excessive length of many daily activity sequences, and con-
sidering that falls usually last only 1 to 2 seconds, we divide the excessively
long videos into sequential slices of 32 frames each. These segmented data are
then divided into training, validation, and testing sets for experimentation. The
detailed post-processing datasets are presented in Table 1.

Table 1. Detailed descriptions of the number of video categories after dataset process-
ing in the three publicly available fall detection datasets.

Datasets URFD Le2i MCFD

trainval test trainval test trainval test

ADL video 197 57 87 501 168167 5287 11801940

Fall video 19 5 6 36 6 11 175 43 46

Total video 216 62 93 537 174178 5462 12231986

4.2 Implementation Details

We leverage the PyTorch framework with an NVIDIA RTX3090Ti GPU to imple-
ment our experiment. For each input video, we extract continuous T frames to
form a clip, which is then input into our model. Each frame is resized to 112×112.
The input fed to the model is of the size B×T×3×112×112. The train batch size
B is set to 24 and clip T sets 16. We adopt Adam as an optimizer and the learn-
ing rate is set to 0.01. Since the input class is imbalanced, we use the weighted
cross-entropy loss as the loss function and set the inverse ratio of the fall and no
fall category proportions for the weights assigned to the respective categories to
achieve a better model performance.

4.3 Experimental Visualization

To test the performance of our model, we randomly select the long video data
corresponding to the test data from the dataset, and then the model sends it
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to the model with a sliding window of 16 frames in length to obtain the fall
classification score prob of the current window and the classification score of no
fall. The final test result is determined by the label corresponding to the highest
probability (prob) score. Above the video sequences are the visualized detection
prob scores from testing (see Fig. 3).

Walking (No fall) Fall lying (No fall)

Fig. 3. Visualization of fall detection results. The x-axis represents the number
of frames, while the y-axis represents the video classification results, specifically the fall
probability score within the sliding window, denoted by ”prob”. We mark the falling
video sequence with red boxes.

It is the classification score of the fall label obtained from a long video of
nearly 800 frames (for the binary classification model, the prob score of no fall is
1 − fall prob). Around the 400th frame, the person falls, and at this point, the
probability score of fall increases rapidly. Meanwhile, in other video sequences of
daily activities where no falls occurred, prob scores are very low. It can be seen
that the model is accurate in fall localization and very sensitive to fall detection.

4.4 Performance Comparison with Existing Approaches

We compared our method with previous state-of-the-art fall detection
approaches using the UR Fall Detection Dataset, Multiple Cameras Fall Dataset,
and Le2i Fall Detection Dataset. The methods selected for comparison include
the leading fall detection techniques commonly applied to these datasets. To
assess the accuracy of our method in classifying fall videos, we employed accu-
racy, recall, precision, and F1-score as the evaluation metrics.

It is obtained by experimental results in Table 2, our method achieves opti-
mal accuracy and sensitivity of 100% on the URFD Fall Detection Dataset. It
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Table 2. Comparison of the proposed method with existing methods on three public
fall datasets.

Dataset Methods AccuracyRecall PrecisionF1 score

URFD Pose+GAN [31] 0.885 0.821 0.934 -

YOLOV3+LSTM[8] - 0.914 0.948 0.931

HOP+MBH[24] - 0.975 0.969 0.971

CNN+LSTM[32] - 0.967 0.979 0.973

YOLOK+3DCNN[9] 0.9966 0.9949 0.9992 -

Ours 1.0 1.0 1.0 1.0

Le2i Pose+GAN[31] 0.916 0.80 0.926 -

CNN+LSTM[32] 0.984 0.93 0.993 0.984

RNN [10] - 0.99 0.97 -

Ours 0.9831 0.98 0.98 0.98

MCFD RNN[10] - 0.98 0.96 -

YOLOv3+LSTM[8] - 0.916 0.935 -

YOLOK+3DCNN[9] 0.9822 0.98620.9777 -

Ours 0.9848 0.98 0.97 0.97

also shows excellent performance on the other two public datasets and proves the
excellent ability of our proposed network in capturing spatio-temporal motion
information. A series of comparative experiments have demonstrated the excep-
tional ability of our proposed RSTAN to capture spatio-temporal motion infor-
mation.

It’s worth noting that our method achieved the second-highest performance
on the Le2i dataset. Through our visualization experiments, we discerned sub-
stantial fluctuations in lighting conditions within the Le2i dataset. This pro-
nounced variability in scene illumination appears to be a significant factor con-
tributing to the misclassifications made by our model. The primary cause of this
issue lies in our network’s heightened sensitivity to motion features, leading it to
erroneously interpret changes in a person’s shadow as a fall event. To address this
challenge, future research should concentrate on fortifying the network’s capacity
for robust visual target comprehension and reduce the model’s vulnerability to
such environmental alterations, thereby improving its overall performance and
reliability.

4.5 Ablation Study

To demonstrate the efficacy of our methodology, we will carry out a comprehen-
sive set of ablation experiments using publicly available datasets. This rigorous
analysis aims to thoroughly examine and validate various components of our
proposed approach. Specifically, we will examine various components within our
architecture, such as the RSTAN with spatial channel attention module or with-
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out spatial channel attention. We also experimented with MDA and other feature
extraction methods for comparison. Following this analysis, we aim to identify
the optimal configuration of the proposed method.

Impact of Multi-interval Difference Aggregation. In the fall detection
experiments, we utilize the original RGB frames, optical flow, frame difference,
and a combination of RGB and frame difference frames as inputs to train our
network. During validation and testing, the accuracy is calculated after the same
video processing. In the experimental design involving the combination of RGB
and frame difference frames, we set the frame difference intervals to 2, 4, and 8,
along with our proposed MDA method. Where optical flow is generated using
the denseflow[28] method. We conducted our experiments on the URFD, Le2i,
and MCFD fall detection datasets, considering MDA and other input modalities.
The data presented in the table represents the accuracy rate.

Table 3. Ablation study regarding MDA and other input modalities on the
URFD/Le2i/MCFD fall detection dataset.

Input Mode RGB Optical FlowFrame DiffRGB+Diff4RGB+Diff8RGB+MDA

URFD 0.98760.9436 0.9876 1.0 1.0 1.0

Le2i 0.95510.9494 0.9438 0.9551 0.9494 0.9831

MCFD 0.95170.8319 0.9613 0.9773 0.9768 0.9848

As evidenced by our experimental results from Table 3, it is observed that
the approach of employing “RGB+diff” as the feature input modalities always
yield superior accuracy. This combination leverages the strengths of both static
and dynamic information, enabling the model to better identify the rapid move-
ments characteristic of fall events. Our multi-scale frame difference aggregation
approach further refines this by capturing motion information at various scales,
which is crucial for accurately detecting falls.

In contrast, relying solely on RGB static features or diff motion features
is insufficient. RGB features alone lack the necessary temporal information to
capture motion dynamics, while diff features alone may miss critical spatial
details. Additionally, while optical flow features theoretically provide compre-
hensive motion information, the increased computational complexity does not
translate into improved performance, making it an inefficient choice for this task.

Overall, the experimental results underscore the importance of combining
multiple types of features and employing multi-scale aggregation to achieve
robust fall detection.

Impact of Spatial Channel Attention Module. We also consider the Neu-
ral Network and compare different situations: RSTAN with SCA or without.
When other parameters are set the same, across all evaluations conducted on
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fall detection datasets, the incorporation of SCA consistently yields superior
performance compared to scenarios where it is not utilized.

Table 4. The results of ablation study regarding SCA of the proposed method on the
URFD/Le2i/MCFD fall detection dataset.

Dataset Measures AccuracyRecallPrecisionF1 score

URFD w/o SCA 0.9892 0.99 0.99 0.99

w/ SCA 1.0 1.0 1.0 1.0

Le2i w/o SCA 0.9212 0.92 0.93 0.92

w/ SCA 0.9831 0.98 0.98 0.98

MCFD w/o SCA 0.9507 0.95 0.97 0.96

w/ SCA 0.9848 0.98 0.98 0.98

According to the test results in Table 4, we can analyze the SCA offering
significant benefits in enhancing feature representation and discriminative capa-
bility. By selectively emphasizing informative spatial regions while suppressing
irrelevant ones, SCA effectively enhances the spatial discriminative power within
the convolutional feature maps. This attention mechanism enables the network
to focus on salient spatial information, thereby facilitating more robust and
accurate feature extraction in the spatiotemporal domain.

5 Conclusion And Future Work

In this paper, we introduce a novel end-to-end fall detection method that lever-
ages the Multi-Interval Difference Aggregation (MDA) and Residual Spatio-
Temporal Attention Network (RSTAN), integrating residual 3D convolution with
Spatial-Channel Attention (SCA) mechanisms. Experimental results show that
our approach achieves outstanding performance on three public fall detection
datasets. Additionally, ablation studies confirm the effectiveness of both the
MDA and SCA modules.

In our future work, we aim to optimize the model structure to enhance detec-
tion speed and reduce computational resource consumption. Additionally, we will
pursue the development of more lightweight models to enable hardware deploy-
ment with lower resource requirements and costs.
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Abstract. Video anomaly detection (VAD) plays a pivotal role in cru-
cial applications such as security and surveillance, garnering significant
interest from the research community. The utility of cross-domain VAD
is critical in practical scenarios, yet most of research remains focused on
same-domain VAD. Weakly supervised approaches excel in same-domain
contexts but are rarely applied to cross-domain VAD, which typically
relies on unsupervised methods. This paper presents a new weakly super-
vised framework for addressing cross-domain VAD challenges, aiming to
improve model generalization across different domains. A key issue is the
model’s propensity for overfitting to source domain anomalies, impairing
its ability to detect out-of-distribution anomalies. Our approach intro-
duces a video synthesis technique using generative technologies for zero-
shot cross-domain VAD. This strategy combats the generative technolo-
gies’ limitations, especially their struggle to generate human behavior
and object motion accurately—vital aspects of VAD. By merging gener-
ative video editing with object synthesizing, we ensure that synthesized
videos maintain their original normal or abnormal status. Combining
synthesized with original data, our model is trained in a weakly super-
vised manner. The experimental results demonstrate that our method
outperforms existing works for cross-domain scenarios.

Keywords: Video Anomaly Detection · Zero-Shot Cross-Domain
Video Anomaly Detection · Data Augmentation · Synthesis of
Anomaly Videos · Weakly Supervised Learning

1 Introduction

Video anomaly detection (VAD) is a computer vision task that involves iden-
tifying events that are unexpected to occur, such as fighting and shoplifting.
VAD has practical applications in a wide range of fields, including security and
surveillance fields. A critical aspect of VAD is cross-domain capability, where
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Fig. 1. Comparison of cross-domain VAD problem settings: our methodology vs.
existing approaches. ‘NI’ stands for normal instances and ‘AI’ stands for anomalous
instances. Traditional cross-domain VAD models (xVAD [15,17] and zxVAD [2]) typi-
cally depend on source domain normal data supplemented with information from exter-
nal datasets, such as select instances from the target domain or auxiliary datasets. In
contrast, our approach exclusively uses normal and anomalous data from the source
domain for model training.

a model trained on a source domain is tested on a target domain. This is cru-
cial due to variations in context, location, camera angles, and types of anomalies
between domains, making it impractical and costly to tailor models for each spe-
cific context. Despite its importance, most of the existing research concentrates
on same-domain VAD, leaving cross-domain VAD relatively unexplored. Current
cross-domain VAD studies primarily utilize unsupervised methods, focusing on
normal behavior and identifying anomalies as deviations [2,15,17]. However,
while weakly supervised methods show superior performance in same-domain
scenarios, their potential in cross-domain contexts remains untapped. This paper
introduces a novel approach for weakly supervised cross-domain VAD, lever-
aging insights from weakly supervised techniques in same-domain settings to
enhance cross-domain performance. Figure 1 illustrates the distinctions between
our problem setting and those of existing approaches. For instance, as a general
expectation, our cross-domain WSVAD approach aims to enable models trained
on limited intersections to be effectively deployed across diverse settings, such
as other intersections, footpaths.

One challenge in weakly supervised cross-domain VAD is the tendency to
overfit source domain anomalies, diminishing the ability to recognize out-of-
distribution anomalies. This overfitting arises because weakly supervised meth-
ods are trained on both normal and anomalous events within the source domain,
potentially leading them to recognize only the anomaly types present in that
dataset.

To address this, we introduce a synthetic video generation technique for cross-
domain VAD within a weakly supervised framework. This method is designed to
enrich source domain data diversity and aims to prevent overfitting by employing
advanced generative technologies for creating or editing videos based on given
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prompts. This data augmentation solely utilizes the videos provided by the orig-
inal training set from the source domain. Our data augmentation approach aims
to alter only the style of the videos from the training set in the source domain,
without changing the movements of humans or objects. This ensures that videos
synthesized from normal ones remain normal while those synthesized from abnor-
mal ones remain abnormal.

However, while state-of-the-art video-to-video transformation approaches
have great ability, they often fall short in accurately depicting human behaviors
or object movements, which are crucial elements in VAD. Our solution com-
bines generative and object segmentation techniques to produce videos with
realistic human and object movements. We utilize Segment-and-Track-Anything
(SAM-Track) technology [6] to extract objects from videos, integrating them
with content generated by TokenFlow [9] to construct new training materials
based on the UR-DMU modules [29], which represent one of the state-of-the-art
approaches for same-domain VAD. Unlike traditional cross-domain VAD meth-
ods that rely on unsupervised learning, our approach does not necessitate data
from the target domain or any supplementary datasets. To adapt UR-DMU for
cross-domain VAD, we have modified the original model in two key ways: 1)
Our method uses ViCLIP [25] for feature extraction instead of I3D [26]; 2) Our
method employs a dense Multi-Layer Perceptron (MLP) for the classification
header. The effectiveness of our approach is validated through experiments in
cross-domain settings, including ShanghaiTech [16] and Avenue [14] datasets.
Our contributions are as follows:

– Introduction of a cross-domain anomaly detection method in a weakly super-
vised framework, which integrates a modified UR-DMU model with new fea-
ture extraction via ViCLIP and a dense MLP classification header.

– Development of a unique synthetic video generation technique to enhance
the resilience of the weakly supervised framework against overfitting. This
technique comprises two phases: style editing using TokenFlow and object
synthesizing with SAM-Track.

– Demonstration of our method’s efficacy in cross-domain VAD scenarios.

2 Related Works

2.1 Weakly Supervised VAD

The task of weakly supervised video anomaly detection (WSVAD) is crucial in
the Computer Vision domain, recognized for its practicality and precision. This
approach has prompted the exploration of various methodologies to address the
challenge. In contrast to unsupervised VAD, which does not necessitate anno-
tated anomaly data but encounters difficulties in anomaly detection, WSVAD
employs video-level annotations. This system labels entire videos as normal or
abnormal, significantly reducing the effort required for data collection.

The Multiple Instance Learning framework is a cornerstone and effective
strategy for WSVAD [20]. Numerous approaches have been proposed: RTFM [24]
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uses dilated convolutions and self-attention mechanisms to discern feature mag-
nitudes and grasp temporal dependencies across ranges. Joo et al. [11] uti-
lize the CLIP [22] image encoder for extracting features and employ temporal
self-attention for temporal dependency analysis. Li et al. [13] propose a Multi-
Sequence Learning (MSL) approach with a Transformer-based architecture for
assessing anomaly scores at both video and snippet levels, further enhancing
accuracy through a self-training refinement strategy. Majhi et al. [19] innovate
with the Outlier-Embedder and Cross Temporal Scale Transformer, aimed at
understanding the temporal interplay between anomalies and normal events,
and capturing global temporal relations, respectively. Zhou et al. [29] introduce
an uncertainty learning model complemented by a global-local multi-head self-
attention module for effective spatial and temporal feature integration, enriched
with a memory unit for feature distinction. While these techniques have demon-
strated their efficacy in same-domain WSVAD applications, their performance
in cross-domain contexts is yet to be explored.

2.2 Cross-Domain VAD

The task of VAD within same-domain settings has been extensively explored in
many studies (see [20] for details). In contrast, only a handful studies, such as
those mentioned in [2,15,17], have focused on cross-domain settings for VAD. In
cross-domain evaluation, the test dataset is collected under an entirely different
environment from the training dataset. This approach enables the assessment
of VAD performance across different contexts and domains, which is critically
important for practical applications in terms of its adaptability and robustness.

Studies [15,17] utilize few-shot learning approaches to adopt the context
of the target domain. Although effective, these methods require a small quan-
tity of target domain data. Unlike these methods, the technique introduced by
Aich et al. [2] requires no data from the target domain. Instead, their method
generates pseudo-anomaly instances by superimposing humans from an auxil-
iary dataset, such as those used for action recognition tasks. The findings in [2]
demonstrate superior performance over methods based on the few-shot approach
in cross-domain scenarios, even though it still relies on external datasets. Pre-
vious strategies for cross-domain anomaly detection depend on either data from
the target domain or supplementary datasets to improve detection capabilities
in novel contexts.

These approaches employed unsupervised methods, while weakly supervised
approaches are generally used in same-domain scenarios. This is advantageous
in terms of avoiding overfitting to specific type of anomalous events, but it also
means that they cannot leverage insights from the well-studied weakly super-
vised approaches. Our study diverges from these methods by utilizing weakly
supervised frameworks. The key to our approach is enhancing data solely using
source domain resources, without the need for any additional datasets, to avoid
overfitting.
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2.3 Synthetic Image for VAD

Data augmentation based on synthetic data for VAD has been introduced in
previous studies. [4,21] utilize generative model such as GAN and Auto Encoder
to produce pseudo-anomaly data. [10] proposes clustering-based pseudo-anomaly
generation, where normal data is separated into k-clusters and one of the clus-
ters is treated as normal and the others as abnormal. The method proposed in
[5] generates irregular motions for each object separately and uses the pseudo
motion for self-training scheme. A cut-and-paste strategy is used in [1–3] to pro-
duce pseudo-anomaly data. These methods are unsuitable for direct application
within WSVAD frameworks, as they generally generate pseudo anomalies that
appear in all frames of the generated videos. Unlike these previous methods for
synthetic image generation for VAD tasks, our data augmentation approach can
be directly applied to WSVAD frameworks.

3 Methods

Initially, we introduce our data augmentation framework in Fig. 2, which gen-
erates synthetic normal and abnormal videos using only the source domain’s
videos. This approach utilizes advanced generative techniques to minimize inac-
curacies in human or object movements common in generated videos.

The framework consists of two components: Style Editing, which employs a
video editing technique to produce a variety of video style, and Object Synthe-
sizing, aimed at maintaining the visual integrity of the foreground objects. Our
framework is capable of generating synthetic video data independently, without
the need for any additional datasets. It specifically targets the generation of
synthetic videos depicting person-based anomalous activities.

Furthermore, we introduce a novel weakly supervised learning architecture for
video anomaly detection. This architecture utilizes spatial and temporal feature
extractors to derive robust snippet features, which are then refined by GLMHSA
and DMU modules [29]. The processed features are subsequently fed into our
advanced classification modules.

In the following sections, we delve into the details of the video augmentation
framework, and describe our video anomaly detection architecture.

3.1 Synthetic Video Generation

Our generation scheme consists of two main components: Style Editing and
Objects Synthesizing.

Style Editing. To enhance the diversity of videos, we emphasize the manip-
ulation of style information. The style of video can significantly impact event
recognition within videos, and our goal is to mitigate these effects by increasing
style diversity. For this purpose, we utilize TokenFlow [9], a text-guided video
editing framework. TokenFlow facilitates seamless video modifications through
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Fig. 2. Pipeline of the proposed approach. This methodology consists of two primary
phases: 1) Data Augmentation, which leverages synthetic video generation, and 2)
Learning, where the model is trained using the augmented dataset. The augmentation
phase incorporates Style Editing and Object Synthesizing techniques, seamlessly inte-
grating style-edited frames with extracted humans and objects. In the learning phase,
the model undergoes training with both the original data from the source domain and
the synthetically augmented data. The ViCLIP [25] model extracts 768-dimensional
features from each video snippet, which are then forwarded to the UR-DMU block [29].
The outputs of this block serve as inputs to a three-layered Denser MLP.

a pre-trained text-to-image diffusion model, eliminating the need for additional
training or fine-tuning. A source dataset video V original is processed by Token-
Flow, using prompts to specify desired style, resulting in an style-edited video
denoted as V edited.

Object Synthesizing. To preserve the integrity of foreground elements in the
original videos, objects and individuals are extracted and then superimposed
onto the style-edited video V edited. This step is crucial as the video editing
process may inadvertently alter or obscure the appearance of these foreground
elements. For this purpose, we employ the SAM-Track model [6] to identify
object regions in the source videos. First, we extract a sequence of frame-level
object masks, IMi from the ith frame of V original using the SAM-Track model.
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Second, The actual objects in the original video frame is then isolated by apply-
ing the mask through element-wise multiplication of the ith frame’s mask (IMi )
and ith original frame (IV

original

i ), denoted as IOi = IMi ⊗ IV
original

i , where ⊗
represents multiplication. We also create a sequence of inverted mask frames
(IMi ) for frame-level blending. Finally, a synthesized video (V S) is created. IV

S

i ,
the ith frame of V S , is produced by combining the extracted objects with the
frame generated by TokenFlow (IV

edited

i ) using the inverted mask. This process
is formulated as IV

S

i = IOi ⊕ (IMi ⊗ IV
edited

i ), where ⊕ denotes pixel-wise addi-
tion. These synthesized and original videos V original and V S , respectively, are
utilized to learn robust feature representations. Figure 3 presents a comparison
between video frames with and without the object synthesizing. As illustrated
in Fig. 3, our technique successfully integrates foreground objects from the orig-
inal source video into the style-edited video, despite occasional distortions or
disappearances of person body parts in the edited videos.

Fig. 3. The comparison of with and without object synthesizing

3.2 Constructing Video Anomaly Detection Modules

To begin, we define the problem settings for WSVAD. Each video from sets
V original and V S is divided into multiple snippets and we denote each video
snippet v ∈ R

F×C×H×W (F is the number of frames, C is the number of channels,
H is the height and W is the width of frames). We follow a Multiple-Instance
Learning framework [20]. Within this framework, a video is labeled as y = 1 if
it contains at least one abnormal snippet, and y = 0 if all snippets are normal,
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although normal snippets may also be present in videos labeled as y = 1. The
objective of WSVAD is to develop a model capable of generating an anomaly
score S = f(v) for each snippet.

We construct a video anomaly detection model using both original source
videos and synthesized videos within a weakly supervised framework. Our archi-
tecture comprises two main modules: a Video Snippet Feature Extractor and an
Anomaly Classifier. Initially, in line with the typical process for WSVAD, video
features from each snippet are extracted using existing pretrained models. For
our module, we use ViCLIP [25], a variant of CLIP [22] fine-tuned for video pro-
cessing, as the video snippet feature extractor. ViCLIP [25] adapts video-text
representations, significantly enhancing video understanding tasks.

We further employ the UR-DMU modules which is the integration of Global
and Local Multi-Head Self Attention (GL-MHSA), Dual Memory Units(DMU),
and Normal Data Uncertainty Learning (NUL) modules [29] together with a new
denser Multi-Layer Perceptron than the original one, to serve as our anomaly
classifier. These modules, GL-MHSA, DMU, and NUL, are specialized feature
embedding systems crafted to distinguish between normal and abnormal fea-
tures within video snippets. GL-MHSA is adept at identifying both immedi-
ate and extended temporal correlations within anomalous features. Meanwhile,
DMU archives feature prototypes from standard data, and NUL is tasked with
mapping the distribution of such normal data. The synthesized features from
GL-MHSA and DMU are channeled into the classification layer. For a nuanced
analysis of features from diverse datasets, we deploy a deeply layered and denser
MLP, which consists of three layers of MLP. Regarding loss functions, we adopt
the loss functions as outlined by Zhou et al. [29], which include Binary Cross
Entropy Loss for classification, dual memory loss for differentiating normal and
abnormal patterns, triplet loss to separate these features, Kullback-Leibler diver-
sity regularization for stable learning, and distance loss to enhance the margin
between normal and abnormal features

4 Experiments

4.1 Datasets

Following existing works for cross-dataset VAD, we evaluated our approach under
a cross-domain scenario, trained on the SHT dataset [16] and tested on the
Avenue dataset [14] and Ped2, as detailed in Sect. 4.3 and Sect. 4.7, respectively.
With advancements in image sensor technology, high-resolution RGB color cam-
eras have become prevalent in surveillance, making the evaluation of VAD tasks
on RGB-colored, high-resolution videos increasingly crucial. We did not use the
UCF-Crime [23], Ped1 [18] datasets for our evaluation due to their low resolu-
tion and low clarity, which are 240×320, 158×238, respectively. The UCF-Crime
dataset, sourced from the internet, is particularly noted for its low-quality videos.
Such limitations in resolution and clarity are typical reasons for their exclusion
in related research studies [8,10].
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ShanghaiTech (SHT) [16]: The ShanghaiTech dataset comprises 437 videos,
with 307 normal and 130 anomaly videos such as riding a bicycle, crossing a road,
and jumping forward across 13 different settings. Each video is presented at a
resolution of 480×856. It is predominantly utilized for unsupervised anomaly
detection, as the training set exclusively contains normal events. The footage is
captured from elevated angles. Additionally, a revised version for weakly super-
vised learning, termed SHT-V2, was introduced by [28], incorporating a subset
of anomaly videos from the original test set into the training set.
Avenue [14]: Collected at the CUHK campus Avenue, this dataset includes 16
training and 21 test videos, featuring a total of 47 abnormal events such as run-
ning, irregular walking directions, cycling, and throwing objects. Each video is
presented at a resolution of 360×640.
UCSD Ped2 [18]: A compact video anomaly dataset, UCSD Ped2 consists of
28 videos, including 16 for training and 12 for testing. It catalogs anomalies
like running, biking, and skateboarding. Unlike SHT-V2 and Avenue, the Ped2
dataset are grayscale videos and low resolution (240×360).

4.2 Evaluation Settings

Implementation Details. Each video is segmented into snippets of 16 frames
each, with a resolution of 224 × 224 pixels. For snippet feature extraction, we
employ the ViCLIP [25] model, which has been pretrained on dataset InternVid-
10M-FLT [25]. We have chosen eight evenly spaced frames out of sixteen and
passed them through ViCLIP [25] to extract features. We utilize the UR-
DMU module, excluding its original classification head, while retaining the same
parameters as mentioned in [29]. Instead of the original classification head, we
introduce a three-layer MLP as the new classification head. The original classi-
fication head consists of two layers with output nodes 128 and 1. In our classi-
fication head, the first, second, and third layers are designed with output nodes
512, 64, and 1, respectively. The learning rate is configured at 0.0001, utilizing
the Adam optimizer, with a batch size of 32.

In our approach, we enhance the training dataset by creating two distinct
style videos for each original video, effectively tripling the size of the training
dataset. We employed “road, person, building, trees, snowfall” and “road, per-
son, building, trees, rainy-day” as prompts for style editing in data augmentation.
TokenFlow aims to modify videos to match specific input text prompts. How-
ever, selecting suitable prompts is essential to achieve realistic outcomes; oth-
erwise, the results may be impractical. We experimented with various prompts
on TokenFlow using videos from our training dataset, with outcomes displayed
in Fig. 4. Notably, in the video edited with the prompt “persons walking on
street” (see Fig. 4, right), stationary individuals were generated, making their
presence appear unnatural despite the normal behavior of people in the original
video. These findings suggest that although TokenFlow holds promise, there’s a
notable risk of generating unsatisfactory or unrealistic videos without meticulous
prompt selection. In this paper, we carefully selected prompts for style editing
to minimize artifacts.
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For the cross-domain VAD, our model is trained using the training set from
the source domain (SHT-V2) and assessed on the test sets of target domains
(Avenue). The macro and micro Area Under the Curve (AUC) are employed to
gauge performance. It should be noted that existing cross-domain VAD methods
did not calculate micro AUC scores; therefore, we only present their macro AUC
scores for comparison.

Original Frame
Prompt:

"road, person, building, trees, snowfall" 
Prompt:

"persons walking on street" 

Fig. 4. Examples of outputs generated by TokenFlow using various prompts

4.3 VAD Results of Our Proposed Approach on Cross-Domain
Datasets

Table 1 reports the AUC scores of our proposed method on the test set of cross-
domain settings as well as scores of our method without data augmentation
and original UR-DMU baseline. We should note that existing methods for cross-
domain scenarios also employ SHT-V1 dataset, which is designed for unsuper-
vised learning manner and is different from SHT-V2 dataset.

In the Avenue Test dataset, our method achieves a higher macro AUC score
(83.42%) than existing methods for cross-domain VAD and original UR-DMU
baseline. In addition, our method with augmented data marks a higher macro
AUC score than the original UR-DMU (78.90%) and our method without aug-
mented data (68.60%). In terms of micro AUC, our method (88.92%) also out-
performed the original UR-DMU (86.38%) and ours without augmented data
(77.36%). These results suggest that our method effectively improves the perfor-
mance of VAD in cross-domain dataset settings. Ours without augmented data
scores lower than the original UR-DMU. This outcome is likely due to our archi-
tecture incorporating a denser classification head, which requires more data for
effective training.

Figure 5 shows the frame-level anomaly scores for videos in the Avenue
dataset. The results show that our method detects anomaly events precisely.

4.4 Ablation Studies

Impact of Object Synthesizing on Anomaly Detection. We explore the
effect of adding an object synthesizing phase (Sect. 3.1) on Video Anomaly Detec-
tion effectiveness. In our assessment, we leveraged the TokenFlow output, Vbg, as
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Table 1. Comparison of AUC scores with other methods. The best score is marked in
bold font and the second is marked in underline.‘U’ stands for Unsupervised Learning
and ‘WS’ stands for Weakly Supervised Learning.

Learning Method macro AUC micro AUC

U rGAN [15] 71.43 –
MPN [17] 74.06 –
zxVAD [2] 83.19 –

WS UR-DMU (our implementation) [29] 78.90 86.38
Ours (w/o Augmented data) 68.60 77.36
Ours (with Augmented data) 83.42 88.92

Video 1 Video 6

Frame of Normality Frame of Anomaly

Fig. 5. Anomaly score on test sample Video 01 (left) and Video 06 (right) from Avenue

augmented data, foregoing the application of object synthesis. The performance
comparison of VAD with and without the object synthesizing phase on Avenue
dataset is detailed in Table 2. The data in Table 2 show that incorporating the
object synthesizing phase yields a performance score of 83.42% (macro AUC)
and 88.92% (micro AUC), markedly surpassing the macro AUC of 61.12% and
micro AUC of 71.02% obtained without the object synthesizing step. This find-
ing highlights the crucial enhancement the object synthesizing phase brings to
the efficiency of Weakly supervised VAD across different domains.

Effect of Feature Extractors. The choice of video snippet feature extractor
significantly impacts the accuracy of video anomaly detection, as highlighted by
existing studies. To evaluate the effect of different feature extractors, we con-
ducted a comparative experiment using extractors highlighted in prior research:
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Table 2. Comparison of AUC scores with and without Object Synthesis

Method macro micro

Ours w/o Object Synthesizing 61.12 71.02
Ours 83.42 88.92

I3D [26], S3D [27], and CLIP [22]. These extractors are widely recognized in
various Video Anomaly Detection (VAD) studies, with I3D and S3D commonly
employed as video snippet feature extractors. The application of CLIP [22] for
the VAD task was introduced by Joo et al. [11], from whom we adopted the pre-
trained model for our analysis. The experiment’s results, represented as AUC
scores, are detailed in Table 3. According to Table 3, the macro AUC scores for
I3D, S3D, and CLIP are 73.24%, 75.82%, and 62.21%, respectively, while micro
AUC scores are 84.37%, 85.26%, and 77.24% each. In contrast, ViCLIP [25]
demonstrates superior performance, achieving macro AUC of 83.42% and micro
AUC of 88.92% on Avenue, thus surpassing the other feature extractors. These
findings underscore ViCLIP’s superior capability in extracting more effective fea-
tures for the Weakly Supervised VAD task. It is beneficial to note that applying
ViCLIP [25] to the methods [2,15,17] listed in Table 1 is not feasible, as these
existing methods utilize auto-encoders for individual frame analysis in an unsu-
pervised learning context and are not designed to handle temporal information.

Table 3. Comparison of AUC scores across different video snippet feature extractors

Feature Extractor macro micro

I3D 73.24 84.37
S3D 75.82 85.26
CLIP 62.21 77.24
ViCLIP [25](Ours) 83.42 88.92

Effect of the Dense MLP. In our approach, we incorporated dense MLP
as a new classification head for the UR-DMU modules. To validate the efficacy
of employing dense MLP for classification, we carried out an experiment. In
this experiment, augmented data was utilized to train both the version with
the dense MLP and the version with the original classification head. Table 4
presents a comparison of AUC scores between our dense MLP and the original
classification head as used in [29]. The AUC scores achieved with the dense MLP
(83.42% of macro AUC and 88.92% of micro AUC) surpassed those obtained
with the original classification head in [29] (68.69% of macro AUC and 83.10%
of micro AUC). These findings demonstrate the enhanced performance of our
dense MLP in the context of cross-domain weakly supervised VAD tasks.
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Table 4. Comparison of AUC scores with our Dense MLP and original classifica-
tion head

Classification head macro micro

Original classification head [29] 68.69 83.10
Dense MLP 83.42 88.92

4.5 Effect of Augmented Data on Other WSVAD Methods

To assess the impact of our augmented data on other Weakly Supervised Video
Anomaly Detection (WSVAD) methods, we conducted a series of experiments.
In these experiments, we integrated our augmented data into various WSVAD
methods and compared their performance with and without the augmented data.
The results of these comparisons are detailed in Table 5. The performance of
RTFM and BN-WVAD declines with our augmented data, likely due to their
designs being optimized for smaller datasets, which may not effectively handle
extensive augmentation. Conversely, our method benefits significantly from aug-
mented data. Based on the results in Table 4, we can assume that this improve-
ment is largely due to the efficacy of Dense MLP in processing large volumes of
data.

Table 5. Comparison of performance among various WSVAD methods with and with-
out our augmented data

Method macro AUC

RTFM (w/o Augmented data) [24] 70.37
RTFM (w/ Augmented data) [24] 59.26
BN-WVAD (w/o Augmented data) [30] 61.47
BN-WVAD (w/ Augmented data) [30] 52.97
UR-DMU (w/o Augmented data) [29] 78.90
UR-DMU (w/ Augmented data) [29] 80.07
Ours (w/o Augmented data) 68.60
Ours (with Augmented data) 83.42

4.6 Same-Domain Evaluation

Table 6 displays the AUC scores from the same-domain evaluation on the SHT-
V2 dataset. The table reveals that our augmented model yields an increase in
AUC scores by 1.94% and 0.14% over the baseline UR-DMU model and our app-
roach without augmentation, respectively. This evidence underscores the efficacy
of our method for the Video Anomaly Detection (VAD) task within the same-
domain context. Compared to existing state-of-the-art methods [7,12,24] that
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focus only on same-domain scenarios, our method achieves comparable scores
despite targeting cross-domain scenarios.

Table 6. Comparison of AUC Scores between Ours and existing methods in a same-
domain scenario, trained and tested on the SHT-V2 Dataset.The best score is marked
in bold font and the second is marked in underline.

Method macro micro

RTFM [24] 97.21 –
SSRL [12] 97.98 –
Cho et al. [7] 97.60 –
BN-WVAD [30] 97.61 –
UR-DMU (our implementation) 94.55 99.06
Ours (w/o Augmented data) 96.35 98.16
Ours (with Augmented data) 96.49 99.24

4.7 Evaluation on Low-Resolution Grayscale Dataset

To assess the potential effectiveness of our approach in low-quality video, we
conducted experiments with the UCSD Ped2 dataset. It’s important to note that,
given the current state of surveillance technology, the relevance of evaluating
VAD on low-resolution, grayscale, and small datasets is diminishing. In this
experiment, the models are trained on SHT-V2 dataset and tested on Ped2
dataset. Considering gray-scaled data, we evaluate both RGB and gray-scale
data augmentation.

Table 7. Comparison of AUC scores with other methods on UCSD Ped2 datasets. The
best score is marked in bold font and the second is marked in underline. ‘U’ stands for
Unsupervised Learning and ‘WS’ stands for Weakly Supervised Learning.

Learning Method macro micro

U rGAN [15] 81.95 –
MPN [17] 90.17 –
zxVAD [2] 95.80 –

WS UR-DMU (our implementation) [29] 83.89
Ours (w/o Augmented data) 90.22 91.72
Ours (with Augmented data (RGB)) 90.46 91.91
Ours (with Augmented data (Gray-scale)) 93.43 92.65

The results are shown in Table 7. On the Ped2 Test dataset, our method
recorded macro AUC scores of 93.43% for grayscale and 90.46% for RGB, with
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micro AUC scores of 92.65% for grayscale and 91.91% for RGB, which are higher
than ours without augmented data(macro AUC of 90.22% and micro AUC of
91.72%). The UCSD Ped2 dataset, characterized by its lower resolution and
quality, is a significant factor contributing to the underperformance observed in
our evaluations. While our results on this dataset are modestly lower compared
to zxVAD [2], which reported 95.80% accuracy, we primarily attribute this dis-
crepancy to the difference in video quality between the source dataset, including
the augmented data, and the target domain dataset. In our data augmentation
process, we generate videos with higher resolution and clarity. Conversely, the
zxVAD approach as described in [2] utilizes images of varying quality, includ-
ing some with notably low clarity. In practice, our method with grayscale data
augmentation outperformed our method with RGB data augmentation, indicat-
ing that domain-specific data augmentation can markedly enhance cross-domain
VAD performance.

4.8 Computational Cost

We assessed the computational cost of UR-DMU, our method with I3D
(Ours(I3D)), and our method using ViCLIP (Ours(ViCLIP)) by calculating
frames per second (FPS) and the number of model parameters, following the
methodology outlined in [2]. This evaluation was conducted using a single
A100 GPU. Both UR-DMU and Ours(I3D) share similar components and archi-
tectures, with the primary distinction being the integration of Dense MLP
in Ours(I3D). In terms of performance, Ours(ViCLIP) operates at 6.69 FPS,
while Ours(I3D) achieves 39.20 FPS, and UR-DMU records 39.26 FPS. Despite
Ours(ViCLIP) being slower, it maintains a speed that is feasible for practi-
cal applications. Regarding model complexity, Ours(ViCLIP) has 310,500,482
parameters, significantly higher than Ours(I3D) with 19,616,561 parameters,
and UR-DMU with 19,190,193 parameters. These figures illustrate the trade-
offs between computational efficiency and model complexity in our designs.

5 Conclusion

This paper tackles the challenge of weakly supervised Video Anomaly Detection
in cross-domain scenarios. We introduce a novel data augmentation strategy
leveraging synthetic image generation tailored for weakly supervised learning
contexts. Our weakly-supervised learning framework features a ViCLIP-based
feature extractor, the UR-DMU module, and an innovative dense MLP classifier.
This ensemble is designed to effectively discern normal and anomalous patterns
based solely on weak labels. The experimental findings support the effectiveness
of our approach. In future work, we plan to evaluate our method across multiple
datasets and explore various prompts for style editing.
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Abstract. As more and more attention is paid to the digital protection
of traditional culture, Labanotation, as a way to protect traditional cul-
ture, has also attracted the attention of scholars. Especially in the field
of automatically generating Labanotation, some methods have been pro-
posed. However, existing Labanotation automatic generation methods
ignore the high-order kinematic dependencies between the performer’s
body joints. Furthermore, the static modeling of the channel skeleton
topology loses the unique correlation of each channel. Therefore, these
methods cannot accurately represent complex dance movements. We pro-
pose a Hypergraph Self-Attention (HSA) and Channel Topology Special-
ization (CTS) network (HSA-CTS) for automatic generation of Labano-
tation. HSA-CTS includes a global context attention feature extraction
module and a local channel topology specialized feature extraction mod-
ule. First, it models the human body’s high-order kinematic dependence
on the global spatiotemporal relationship of the skeleton, then dynami-
cally learns the topology in different channels and effectively aggregates
joint features in different channels for human action recognition. Experi-
mental results show that our proposed method outperforms state-of-the-
art methods on Laban16 and Laban48 (common datasets for Labanota-
tion studies).

Keywords: Labanotation · Hypergraph · Self-attation · Channel
Topology Specialization

1 Introduction

Nowadays, people pay more and more attention to the protection of traditional
culture. As a very precious cultural heritage, traditional dance is gradually fac-
ing the crisis of being lost due to the lack of effective recording and protec-
tion methods. At the beginning of the 20th century, dance theorist Rudolf von
Labanotation created Labanotation, a standard notation system for recording
dance movements, to unify various types of dances into specifications and record
them [1]. This recording system can use specific symbols to express human dance
movements simply and effectively, and has since been widely used for the record-
ing and protection of traditional dances. However, manually recording not only
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15315, pp. 392–406, 2025.
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requires professional Labanotation writers, but also consumes a lot of energy
from professionals. Therefore, there were some studies on using computers to
automatically generate Labanotation scores.

The early traditional method requires pre-segmentation of continuous motion
data [2–10], and then modeling and feature extraction of each segment. This
method is also called a two-stage method. The main disadvantage of this method
is that the quality of data segmentation directly affects subsequent modeling
and feature extraction. Some later methods no longer pre-segment the data and
use sequence-to-sequence models to align the input skeleton sequence with the
output dance spectrum sequence [11–16] to achieve global optimization. These
methods are called one-stage methods. The one-stage approach outperforms the
two-stage method in both performance and operational complexity. The model
is optimized as a whole through sequence-to-sequence alignment. However, these
methods ignore the high-order kinematic dependence of human joints. For exam-
ple, in the long jump movement, the end joints of the arms and the joints of the
feet have a synergistic relationship throughout the movement. Traditional graph
structures use adjacency matrices based on correlations between joints to repre-
sent the topological arrangement of joints. This graph structure is not conducive
to extracting the internal relationships between such non-physically connected
joints. Secondly, since the skeleton topology modeling of previous methods is
channel sharing modeling, information is inevitably lost in multi-channel action
recognition tasks. Human actions contains unique information when viewed from
different directions.

To solve this problem, we propose a Hypergraph Self-Attention and Chan-
nel Topology Specialization network for automatic generation of Labanotation.
First, the hypergraph [18–20] is an extension of the graph that has good per-
formance in handling human skeletal structures, particularly in tasks involving
multi-joint collaboration in the human body. We embed the skeletal hypergraph
into a variant of the transformer to connect the global context and capture the
spatiotemporal dependencies of higher-order movements in human joints. Addi-
tionally, we adopt a channel topology specialization method to model the skeletal
topology map. By applying specialized treatment to the topology map of each
channel, we achieve finer-grained information capture.

In summary, the contributions of this article are as follows:

– We design a network based on hypergraph self-attention for automatic Laban-
otation generation. By embedding skeleton information into variants of the
transformer, it can better connect with the global context to capture the
high-order aspects of human joints Kinematic spatiotemporal dependence.

– We further use a channel topology specialized network to model the skeleton
topology map to extract joint features in different channels information and
integrate it into the network.

– Our model is evaluated on two datasets, laban16 and laban48, and the results
show that our model has achieved the best results so far.
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Fig. 1. The expression of Labanotation symbols is in part (a). A specific action is
composed of horizontal and vertical symbols. The main experimental steps of the second
phase are in part (b).

2 Related Works

Labanotation is one of the most popular standardized dance notation systems,
used to record and analyze human movements in dance, splitting a complex
overall movement into each basic human movement according to the human
body movement parts and spatial divisions. The legend display of Labanotation
is shown in Fig. 1 (a).

2.1 Traditional Two-Stage Learning Method

In the early stages of research, scholars focused on improving the ability to
extract skeleton features and improving human action analysis methods. Guo’s
research [4] defines a method that achieves motion segmentation and recognition.
In the model proposed by Chen [3], static multi-frame analysis is used to accu-
rately find the locations of human body joints. These methods all segment and
re-identify continuous action sequences, which are also called two-stage meth-
ods, as shown in Fig. 1 (b). Moreover, they are all methods that focus on spatial
modeling and are deficient in temporal modeling.

Subsequent studies focused extensively on capturing temporal relationships
between frames in segmented motion. Zhou [5] utilized dynamic time warping
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to align motion segments with pre-existing templates, enhancing motion classi-
fication. Li [6] introduced an approach to extracting relative joint position fea-
tures from motion capture data, employing hidden Markov models for temporal
analysis. The methodologies proposed by Zhang [7] and Hao [8] incorporated
recurrent neural networks (RNNs), showcasing swift and accurate recognition
of segmented motions. Additionally, certain investigations [9,10] enhanced the
precision of motion segmentation by analyzing factors such as movement speed
and variations in the body’s mass center. Because the methods introduced above
require segmentation of continuous motion capture data first, and then feature
extraction and recognition, we call them two-stage methods.

2.2 Near-Term One-Stage Approach

The main issue with the two-stage method lies in the significant impact of the
quality of segmented action data on subsequent recognition tasks. Subsequently,
a one-stage method emerged as a viable alternative, eliminating the need for seg-
mented action data. Xie [11] introduced a two-stream fusion-directed graph neu-
ral network (DGNN) coupled with connectionist temporal classification (CTC).
This approach aimed to enhance recognition performance by leveraging con-
textual spatiotemporal relationships, emphasizing subtle variations in spatial
and temporal attributes. In a similar vein, Li [21] opted for the widely adopted
encoder-decoder network to transform the task into a sequence processing prob-
lem. However, a drawback of this approach is that the features of the input
data are encoded into a fixed-length word vector, resulting in the loss of some
spatiotemporal information during the decoding of the output symbol sequence.
To address this issue, Gong [16] proposed a dual-stream model, which utilizes
a temporal and spatial multi-scale convolutional network (TSMS) to capture
short-term spatiotemporal dependencies in the skeleton sequence. Simultane-
ously, a Transformer network is employed to grasp the long-term temporal and
spatial dependencies of the skeleton sequence.

2.3 Skeleton Topology Modeling

Researchers have long been exploring better ways to model skeletal topology.
For methods that adopt topology-sharing, the approach entails using the same
topology for aggregation across all channels, which often leads to the loss of
unique features present in different channels. Most existing Graph Convolutional
Network (GCN) methods [22–24] employ topology-sharing techniques.

In contrast, non-shared topology methods involve selecting different topolo-
gies within different channels. This approach alleviates constraints associated
with shared topology, enabling the model to more effectively extract subtle fea-
tures between different channels. For example, Cheng et al. [27] introduced the
Dynamic Channel-GCN (DC-GCN), which assigns individually parameterized
topologies to different channel groups. Similarly, the method proposed in this
paper employs non-shared topology methods for channel topology modeling.
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To the best of my knowledge, this paper presents the first method for gener-
ating Labanotation using non-shared topology techniques.

Fig. 2. The overall framework of HSA-CTS. The rectangular part is the encoder for
feature extraction, and the trapezoidal part is the classifier.

3 Proposed Method

In this part, we will introduce the proposed model framework, specific imple-
mentation details, and some mathematical representation methods used. The
overall framework is shown in Fig. 2.

First, in order to better capture the intrinsic connections between non-
physically connected joints of the human body, we proposed the Hypergraph Self-
Attention (HSA) module. The data is input to the Hypergraph Self-Attention
module after normalization and direction unification. This module extracts the
global contextual high-order dependency information of the skeleton by embed-
ding the skeleton joint information into transformer variants. To extract unique
information in each channel, we propose the Channel Topology Specialization
(CTS) module. Global information output from HSA is input into CTS. The
CTS module uniquely models each channel, extracts unique information in dif-
ferent channels of the skeleton topology, and further extracts local information
between skeletal joints, thereby achieving the purpose of refining global informa-
tion. Finally, the Multi-Scale Temporal Convolution (MSTC) module is used to
extract the relationship between different motion data time frames and perform
classification output. Below we introduce each part in detail.

3.1 Hypergraph Self-Attention(HSA) for Joint Feature Extraction

In this part, we will introduce the Hypergraph Self-Attention(HSA) module.
The structural implementation is shown in Fig. 3.

Different from the structure and representation of ordinary graphs, edges
in hypergraphs are called hyperedges, which can connect two or more vertices.
The specific representation is shown on the left side of Fig. 4. An unweighted
hypergraph of human skeleton can be defined as Gh = (Vh, Eh), where Vh is the



HSA-CTS 397

Fig. 3. The internal implementation of HSA. We embed the hyperedge representation
and spatial graph distance skeleton structure into the transformer variant to extract
skeleton structure features.

Fig. 4. Representation of the relationship between edges and nodes in the hypergraph,
and the adjacency matrix.

set of joints, and Eh is the set of skeleton hyperedges. For hypergraph Gh, the
incidence matrix H is shown in Fig. 4, which denotes the relationship between
nodes. Specifically, if the element in the i -th row and the j -th column of the
matrix is 1, it means that the j -th hyperedge contains the i -th node. Given
v ∈ Vh and e ∈ Eh, the entry of H is defined as follows:

h(v, e) =
{
1, v ∈ e
0, v /∈ e

(1)

The degree of a node v ∈ Vh represents the number of hyperedge passing through
the node, the degree of a hyperedge e ∈ Eh represents the number of nodes
contained in the hyperedge, their definitions are as follows:

d(v) =
∑

e∈Eh

h(v, e), d(e) =
∑
v∈Vh

h(v, e) (2)

We denote Dv as the diagonal matrices of node degrees d(v), De as the
diagonal matrices of the hyperedge degrees d(e), and We as the diagonal matrices
of the hyper-edge weights.
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Let H represent the adjacency matrix of the hypergraph, then the normal-
ized adjacency matrix can be expressed as H̃ = D

− 1
2

e HD
− 1

2
e , C represents the

feature dimension of the input data, The input data X ∈ R
V ×C represents joint

features, Then the characteristics of the hyperedge TE can be regarded as the
joint characteristics of the nodes included in the hyperedge:

TE = H̃XWe (3)

where We ∈ R
C×C is the hyperedge weight matrix.

We embed the skeletal graph structure into a variant of the transformer using
a method similar to Graphormer [17]. Due to our use of a hypergraph structure,
information from hyperedges is embedded separately.

We denote X = [XT
1 , ...XT

n ]T ∈ R
n×c as the input of the self-attention mod-

ule where c represents the feature dimension of the input data. The input X is
projected by three matrices WQ ∈ R

c×dK , WK ∈ R
c×dK , and WV ∈ R

c×dV to
the corresponding representations Q,K, V .

The internal implementation of hypergraph self-attention is shown in Fig. 3.
The skeleton feature input after node centrality embedding can be expressed as:

X̃i = Xi + σd(vi), Qi = X̃iWQ (4)

The self-attention of nodes vi and vj hypergraph after embedding the skeleton
graph structural information is expressed as:

Aij = softmax(
QiK

T
j + QiT

T
E + βTT

E√
dK

+ bθ(vi,vj))V (5)

– QiK
T
j represents an ordinary attention query between two joints.

– QiT
T
E represents an attention query between joints and associated hyperedges.

– βTT
E , aims to calculate the attention bias of different hyperedges independent

of the query position, and represents the influence of irrelevant hyperedges on
the query position. β represents how much attention bias should be assigned
to these irrelevant positions, which is learned during the continuous training
of the model.

– bθ(vi,vj) the spatial relation between vi and vj . The function θ can be defined
by the connectivity between the nodes in the hypergraph. We choose θ(vi, vj)
to be the distance of the shortest path (SPD) between vi and vj if the two
nodes are connected. If not, we set the output of θ to be a special value, -1.
We assign each (feasible) output value a learnable scalar which will serve as
a bias term in the self-attention module [17].

The output after HSA is expressed as:

X̂i =
n∑

j=1

Aij (6)
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Fig. 5. The internal implementation of CTS. The upper side of the module is the
unique modeling of the channel, and the lower side is the feature transformation into
a high-level feature space.

3.2 Channel Topology Specialization(CTS) Network

The overall structure and specific implementation of our proposed CTS mod-
ule is shown in Fig. 5. We dynamically model the skeleton topology in different
channels to extract the correlation between joints in different kinds of motion
features, and then aggregate each input feature converted into high-level fea-
tures through a linear transformation with the corresponding skeleton topology.
output. Below we introduce the specific implementation.

Channel Specialization Modeling. We have devised a simple modeling func-
tion, denoted as F, to characterize the inter-channel correlations among various
key nodes. Let X̂i and X̂j represent the input features of vi and vj , respec-
tively, after undergoing HSA. The inter-channel correlation between them can
be described as the channel-specific topological relationship resulting from a
nonlinear transformation of the distance along a particular channel dimension
between vi and vj . The formula is as follows:

F (X̂i, X̂j) = σ(X̂i − X̂j) (7)

where σ(·) is activation function and the channel topology relationship M ∈
R

n×n×ĉ between vi and vj is expressed as:

mij = γ(F (X̂i, X̂j)) (8)

Then use the specialized topology to optimize the globally shared topology to
obtain topology modeling with dual information:

S = R(H,M) = H + ωM (9)

where ω is a learnable parameter, H is added to each channel of ωM for fusion
specialization.
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Channel Feature Transformation. The purpose of feature transformation
is to increase the channel dimension of the input features through T (·). The
formula is:

X = T (X̂) = X̂W (10)

Feature Aggregation. By utilizing the aforementioned formula, we have
acquired both the specialized channel topology, denoted as M , and the advanced
features, represented by X . CTS employs a channel-level strategy for feature
aggregation. This entails modeling a distinct channel topology diagram for
each channel, where diverse channel topology diagrams encapsulate relationships
between nodes corresponding to different motion characteristics. Consequently,
feature aggregation is executed on each channel topology map, yielding the final
output Z achieved through the concatenation of output features from all channel
maps. This process is formulated as follows:

Z = P (X , S) = [S1X1||S2X2...SĉXĉ] (11)

where || is concatenate operation.

Fig. 6. Internal implementation of multi-scale temporal convolution.

3.3 Multi-scale Temporal Convolution(MSTC)

In order to model the temporal correlation of continuous lines of human actions,
we adopt the Multi-Scale Temporal Convolution (MSTC) module [24,25] as the
final feature extraction part. This module contains four branches, each containing
a 1 × 1 convolution to reduce channel dimension. The first three branches contain
two temporal convolutions with different dilations and one Max-Pool respectively
following 1 × 1 convolution. The results of the four branches are concatenated
to obtain the output. The specific implementation is shown in Fig. 6.

Finally, HSA-CTS is built by alternately stacking HSA, CTS and MSTC
layers as follows:

Y = ReLU(MSTC(CTS(HSA(X)))) (12)
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4 Experiments

In this part, we introduce the data sets, evaluation indicators, model optimiza-
tion details in the experiment, and the final actual effect of the model.

4.1 Labanotation Datasets

The two datasets we used are Laban16 and Laban48. The number of samples
in the two data sets are 1600 and 4800 respectively. Each sample contains 3–8
actions. The number of labels is 7121 and 22654 respectively. The number of
frames is 1119706 and 3067156 respectively. The action categories are 16 and 48
respectively, corresponding to 16 and 48 basic Labanotation symbols.

4.2 Implementation Details

All experiments are conducted with the PyTorch deep learning library. We train
the model using the standard cross entropy loss. The learning rate is initially set
to 0.01, with a decay factor of 0.1 applied at epochs [20, 40, 60], respectively.
For Laban16 and Laban48, the batch size is set to 32 and 64. The number of
heads in multi-head self-attention is set to 9, and the weight decay for Stochastic
Gradient Descent (SGD) is set to 0.0005. All experiments are carried out on a
Ubuntu server with a 2.2GHz CPU and an NVIDIA Tesla P40 GPU. The CTS
part uses three parallel CTS modules to learn the local feature relationships of
the human skeleton.

Table 1. The results compared with the state-of-the-arts methods on Laban16 and
Lanban48.

Model name Laban16(%) Laban48(%)

CRNN + CTC [12] 72.80 68.92
Seq2Seq [21] 73.60 70.89
DFGNN-CTC [26] 87.79 82.02
Lie+CRNN + Attention + Seq2seq [13] 86.21 91.61
GS-GCN + RA-Attention + Seq2seq [15] 89.84 89.40
FFCRNN+ Seq2Seq [14] 90.65 93.29
TSMS + SSA + TSA + PSA (SLSTRM) [16] 95.16 95.78
Ours: HSA + MSTC 95.82 96.03
Ours: HSA + CTS + MSTC 95.98 96.22
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4.3 Results and Analysis

In order to verify the effectiveness of our proposed model HSA-CTS, we con-
ducted ablation experiments on the automatically generated research data sets
Laban16 and Laban48 of the Labanotation evaluation study. The effectiveness
of the components in HSA-CTS are verified through ablation experiments.

Comparison to the State-of-the-Arts Methods: First, we use the
Transformer-based HSA global feature extraction network to evaluate the effec-
tiveness of global spatiotemporal features for dance action sequence recognition
on Laban16 and Laban48, using the global feature extraction network as our
basic comparison reference experiment. The generation results of our proposed
network model surpass all previous models with good results, which shows that
it is effective for us to embed the hypergraph skeleton topology into the trans-
former to generate Labanotation.

Table 2. Comparison of computational complexity.

Model Parameters(M) Laban16(%) Laban48(%)

SLSTRM [16] 5.8M 95.16 95.78
Ours: HSA+ CTS + MSTC 4.7M 95.98 96.22

Table 3. The mean and standard deviation of the model on the Laban16 and Laban48
datasets.

Model Dataset Mean Accuracy (%) ± Standard Deviation

SLSTRM [16] Laban16/Laban48 95.16/95.78
Ours: HSA + CTS + MSTC Laban16/laban48 95.912 ± 0.023/96.174 ± 0.029

From the results in Table 1, we can see that the HSA we proposed has played
a very good role in the task of automatically generating Labanotation. Thanks
to the good global context information extraction capability of the transformer
model and the good representation of the human skeleton structure by the hyper-
graph, even if we do not add the CTS module to perform specialized modeling
of the skeleton topology to extract local features, the HSA model exhibits out-
standing results. After adding the CTS module, the entire model network further
strengthens the extraction of local features, and our network effect has been fur-
ther improved.

We verified the computational complexity of our model and compared it with
the SLSTRM [16] method, as shown in Table 2. In addition to the SLSTRM [16]
method, we did not compare other indicators such as computational complexity
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with other methods because our method has much higher accuracy than theirs.
The results show that our method not only has higher accuracy on both datasets,
but also has lower computational complexity and better performance. We also
conducted multiple experiments to verify the statistical significance of the model,
proving that our results are not accidental, as shown in Table 3.

Table 4. The effectiveness of each individual component of HSA-CTS.

SA HSA CTS MSTC Laban16(%) Laban 48(%)

� 93.21 93.57
� 93.98 93.87

� � 94.23 94.54
� � 95.82 96.03

� 93.65 93.13
� � 95.32 95.22

� � 94.03 94.13
� � 94.51 95.11
� � � 95.98 96.22

Ablation Study: We conducted ablation experiments to validate the effective-
ness of each part of the model. In Table 4, we present the comparison results
between the hypergraph self-attention module and the ordinary graph self-
attention module. From the results, it can be seen that the hypergraph structure
performs better in capturing overall information about human joints compared to
the ordinary graph structure. This can be attributed to the fact that hyperedges
can ignore the physical connections between joints, thereby facilitating feature
extraction and information aggregation, significantly improving the upper limit
of the model.

In comparison to HSA, CTS focuses more on modeling unique features of the
feature channels to capture finer-grained channel characteristics. This was also
the original intention behind designing the entire model, as the Labanotation
generation task requires consideration of both global and local details. HSA,
built upon Transformer, has been experimentally proven to excel in capturing
global features, while the inclusion of CTS can compensate for some potentially
lost fine-grained features by HSA, thus complementing each other.

However, it is worth noting that both modules extract features in spatial
dimensions. MSTC further improves the performance of the entire model by
extracting temporal features from the joint motion between frames. It can be
seen that the three parts of the entire model They are combined with each other
to achieve the best results.
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Fig. 7. The left side shows the hyperedge division of nodes, and the right side shows the
visualization of the change of an action in the dataset. The blue dotted line represents
the high-order dependency captured by the hypergraph. (Color figure online)

Table 5. Discussion on performance of hyperedge partitioning.

Partition Type Laban16(%) Laban 48(%)

Randomly Divide 94.60 95.40
Symmetrically Divided a 95.98 96.22
Symmetrically Divided b 95.31 95.87

Hypergraph Captures High-Order Dependency Validity Verification:
Our division of hyperedges is fed back into the hypergraph adjacency matrix.
The division of hyperedges is crucial to the representation of the skeleton action
structure and affects the degree of correlation between joints. We divide the
hyperedges based on people’s prior knowledge, as shown in Table 5 and Fig. 7,
We found that the best division method is left-right symmetric.

The left side of Fig. 7 shows three types of hyperedge divisions. The joints
in the figure do not represent the number of joints in the actual skeleton graph.
We use joints of the same color to represent the joint points contained in the
same hyperedge. The first one is randomly divided from left to right, the second
one divides the human body into two symmetrical left and right parts, and the
third one divides the human body into two upper and lower parts. The reason
for this division is because we believe that in actual human body movements or
data sets, there is an important connection between the joints with the largest
difference in motion trajectories. So we visualized the data [28], as shown on the
right side of Fig. 7. The blue dotted line represents the high-order dependency
captured by the hypergraph.

The experimental results show that the division of hyperedges does have an
impact on the recognition accuracy. We analyzed that the second division method
achieved the best effect because it divided the ends of the limbs together, and
the motion trajectories of these joints were longer.

5 Conclusion

In this work, we embed human skeleton structure information into Transformer
through a hypergraph structure. This is a better solution for automatic gen-
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eration of Labanotation compared to previous models. We propose an HSA
structure combined with a CTS module to make the model aware of high-order
joint motion dependencies and channel-specific features. The resulting model,
called HSA-CTS, achieves state-of-the-art performance. However, the difficulty
of obtaining datasets for our task may have some impact on the performance of
our proposed model.
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Abstract. Inertial Measurement Unit (IMU)-based Human Activity
Recognition (HAR) systems that employ Generalized Zero-Shot Learn-
ing (GZSL) face significant challenges in accurately classifying activities
that were not observed previously during training. These challenges stem
primarily from the inherent difficulty of recognizing unseen classes with-
out sacrificing the classification accuracy of observed classes in a GZSL
setting. A novel deep neural network (DNN) architecture termed as the
Joint Sequences (JS)-Siamese architecture is proposed to address these
challenges using IMU and video data. The proposed architecture uses
skeleton joint sequences to bridge the gap between IMU features and
video data, thus effectively solving the domain shift problem. A Siamese
DNN-based metric learning model is employed to handle the hubness
problem by mapping similar samples in close proximity and dissimilar
ones farther apart in a joint embedding space. Additionally, a Dynamic
Calibration Ensemble (DCE) technique is introduced to address the clas-
sification bias towards the observed classes in GZSL, thereby ensuring
balanced representation of both, observed and unseen classes. The pro-
posed JS-Siamese DNN architecture is shown to yield significant per-
formance improvement over attribute-based, word embedding-based and
video embedding-based GZSL approaches for HAR proposed in the liter-
ature. Experimental evaluation on three IMU benchmark datasets, i.e.,
PAMAP2, DaLiAc and UTD-MHAD demonstrate the effectiveness of
the proposed JS-Siamese DNN architecture for sensor-based HAR.

Keywords: human activity recognition · generalized zero-shot
learning · inertial measurement unit · deep neural network

1 Introduction

Human activity recognition (HAR) systems focus on the automated classifica-
tion of human activities and represent an emerging area of study in mobile
and ubiquitous computing. HAR systems often struggle to adapt to complex
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situations where human activities not previously observed during training are
encountered during testing. In such scenarios, the HAR system is prone to inac-
curacies, often mislabeling previously unseen activities as one of the previously
observed categories it has been trained to recognize. A fundamental challenge
in HAR is dealing with the vast diversity of human activities in contrast to
the limited range included in existing benchmark training datasets. Most Iner-
tial Measurement Unit (IMU) training datasets contain fewer than 20 activity
labels [15,16], suggesting a high likelihood of users performing unrecorded activ-
ities. While expanding IMU datasets to include a broader range of activities is
feasible, the substantial cost associated with data collection and annotation is a
major deterrent.

Zero Shot Learning (ZSL) aims to develop a model capable of identify-
ing unseen classes via transfer of knowledge from previously observed classes
to unseen classes by embedding both observed and unseen classes in a high-
dimensional semantic vector space. These semantic representations can take var-
ious forms, such as context-based embeddings, manually crafted attribute vec-
tors [9] automated word vector retrieval, or a combination of the above. Thus,
ZSL uses semantic data to bridge the divide between the observed and unseen
classes. Traditional ZSL methods, which only include samples from unseen
classes in their test sets, do not fully represent real-world scenarios. In real-
ity, samples from observed classes are more common than those from unseen
ones, making it impractical to classify only the unseen samples at test time. A
more practical and realistic extension of ZSL, termed as Generalized Zero-Shot
Learning (GZSL) [3], entails identifying samples from both observed and unseen
classes at test time.

2 Related Work

Early works on ZSL in the context of IMU-based HAR employ primarily
attribute-based approach. The seminal work on Direct Attribute Prediction
(DAP) [9] implements several Support Vector Machine (SVM) classifiers to sepa-
rately map and predict the binary attributes in a semantic space. Each semantic
attribute is classified by a single SVM classifier followed by the computation of a
maximum a posteriori (MAP) estimate to derive the final predictions. Inspired
by the DAP approach, Cheng et al. [6] propose a method that predicts each
binary attribute using a separate SVM classifier in a binary attribute semantic
space, followed by k-nearest-neighbor (k-NN) classification to yield the final pre-
diction. In a further extension, Cheng et al. [5] implement a conditional random
field (CRF) to predict each attribute followed by a k-NN classifier enhanced
with a junction tree algorithm for final classification. Wang et al. [20] present
a nonlinear compatibility model to compute compatibility scores in a seman-
tic attribute space between the feature space instances from sensor readings
and prototypes from each class. Wu et al. [21] employ a neural network to
project the feature instances into a semantic space and perform classification
by computing the similarities between the feature instances and the prototypes.
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Ohashi et al. [13] leveraged a Convolutional Neural Network (CNN) to extract
features from raw IMU data while simultaneously performing projection. The
attributes are manually assigned weights to denote their importance and stored
in an importance table. There are several limitations associated with attribute-
based approaches, the most significant being the need for expert knowledge to
define attributes. This results in attribute variations caused by human subjec-
tivity and lack of scalability with increasing number of classes. Furthermore,
the performance of attribute-based approaches depends heavily on class-specific
attribute differences, making it challenging to define attributes for all possible
classes.

To overcome the limitations of attribute-based approaches, some studies
employ a word embedding-based semantic space where the word embeddings are
generated using unsupervised learning algorithms on general text corpora such
as Wikipedia. The semantic space is generated using embedding vectors that
represent words associated with each unknown activity class. Word embedding-
based approaches have been shown to be more scalable than their attribute-based
counterparts as new classes can be added by simply adding new words. Matsuki
et al. [12] compare the embeddings of similar words to hand-crafted attribute
vectors and found the recognition performance to be similar. Wu et al. [21] pro-
pose a Multi-layer Perceptron (MLP) model with skip connections for projec-
tion of word embedding and attribute vectors and experimentally demonstrate
that the attribute-based semantic space outperforms the word embedding-based
semantic space in terms of classification accuracy. Although the word embedding-
based semantic space method is scalable, it suffers from representation complex-
ity, meaning ambiguity and performance instability since the HAR accuracy is
observed to be greatly impacted by the learning task at hand and the text corpus
used.

Since words lack motion-specific information, Tong et al. [18] propose a video-
based semantic space for ZSL in the context of ZSL for HAR. The video semantic
space facilitates the transfer of knowledge from a pretrained video action recog-
nition model to unseen activity recognition. While their research shows that a
computer vision-derived semantic space has a great potential for improving IMU-
based HAR, the methodology described in their paper suffers from the hubness,
bias, and domain shift problems that have been addressed in this paper.

In summary, the few studies exploring ZSL for IMU-based HAR utilize pri-
marily a manually crafted attribute vector space, a commonly used semantic
space for joint embedding in ZSL applications [6,12,20,21]. Semantic space
formulations derived from word embeddings of class labels or class descrip-
tions have shown varying degrees of effectiveness compared to manually crafted
attributes [12,21]. To our knowledge, the work presented by Tong et al. [18] is
the only one that employs a semantic space using video embeddings from pre-
trained video-based HAR models albeit with the associated hubness, bias and
domain shift problems which are addressed in this paper.
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3 Contributions

In light of the related work, this paper addresses some key challenges in GZSL
for sensor-based HAR. The first is the domain gap between the IMU features
and video embeddings, which results in the domain shift problem arising from
the mismatch or discrepancy in data distributions between the training phase
and the testing phase. The domain shift can adversely impact the model’s gen-
eralizability and consequently the accuracy of its predictions. Second, the study
utilizes a projection-based technique to map instances from the IMU feature
space into the video semantic space followed by nearest neighbor classification
to determine the predicted class. However, this approach is hindered by the hub-
ness problem, a well-documented issue in the context of zero-shot learning (ZSL)
and generalized zero-shot learning (GZSL). Hubness occurs when certain data
points, referred to as ”hubs” become overly central within the high-dimensional
feature space. As shown in Figure 1, these hub points frequently appear as the
nearest neighbors for many other data points, irrespective of their actual class
similarity. This phenomenon is a facet of the curse of dimensionality, significantly
impacting the effectiveness of nearest neighbor methods. In high-dimensional
spaces, the distance metrics used to determine similarity become less discrimi-
native. This cause some points to be considered close to many others. These hubs
distort the neighborhood structure, leading to incorrect nearest neighbor classi-
fications. Consequently, the hubness problem complicates the crucial GZSL task
of accurately computing similarity or distance measures between data points. In
the context of this study, this results in certain IMU features instances being
projected too frequently into the video embedding space as similar to multiple
other instances, thereby degrading the classification accuracy.

Fig. 1. Hubness Problem in GZSL

Third, since the GZSL-based classifier is expected to encounter both familiar
(i.e., previously observed) and unfamiliar (i.e., unseen) classes during test time
in real-world scenarios, the classifier tends to exhibit a strong bias towards the
previously observed (i.e., seen) classes, leading to frequent misclassification of
the unseen classes.
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In this paper a novel and effective deep neural network (DNN) architec-
ture termed as the Joint Sequences (JS)-Siamese architecture is proposed to
address the aforementioned challenges of GZSL in the context of IMU-based
HAR. Specifically, the paper makes the following contributions:

– It aims to overcome the domain shift problem by employing a common data
modality comprising of skeleton joint sequences. The underlying idea is that
skeleton key points or joints effectively encapsulate the movements of body
parts in a video. Thus, models that use joint sequence data focus on the
motion-related information content in the input videos, in a manner similar
to IMU data. The domain shift problem is addressed by systematically inte-
grating a set of existing techniques to convert IMU data to a skeleton-like
representation while simultaneously extracting skeleton joint sequences from
input video data using a skeleton HAR model. Thus, the proposed approach
matches the data distribution from both modalities thereby addressing the
domain shift problem in the context of GZSL.

– It addresses the hubness problem by employing a Siamese DNN that incor-
porates deep metric learning. Hub points in the feature space are avoided by
mapping similar samples in close proximity and dissimilar ones farther apart
in a lower-dimensional shared embedding space.

– A novel Dynamic Calibration Ensemble (DCE) approach is proposed to
address the inherent bias problem in the context of GZSL. The proposed
DCE approach aims to balance the representation of both seen and unseen
classes via a dynamic calibration mechanism that adjusts the biases of indi-
vidual classifiers over time, based on variations in their performance.

The effectiveness of the proposed JS-Siamese DNN architecture is demonstrated
by performing extensive experiments on three IMU benchmark datasets includ-
ing PAMAP2 [15], DaLiAc [10] and UTD-MHAD [4].

4 JS-Siamese DNN Architecture

The proposed JS-Siamese architecture, depicted in Figure 2, is comprised of four
main components: the first is the transformation of the IMU data into skeleton
joint sequences using a combination of existing techniques; the second is the
extraction of joint sequences from input video data using the Spatial Temporal
Graph Convolutional Network (ST-GCN) model [22]; the third is the projection
of joint sequences derived from the IMU and video data into a shared embedding
space; and the fourth is the proposed DCE technique used to address the bias
problem in classification for HAR.

4.1 Transformation of IMU data into skeleton joint sequences

The IMU sensor data, comprising of accelerometer and gyroscope measurements,
is preprocessed and transformed into a skeleton joint sequences representation
using a novel approach that systematically leverages and integrates a set of
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Fig. 2. The proposed JS-Siamese DNN Architecture

existing techniques. The accelerometer data is normalized using the standard
acceleration due to gravity and subsequently fused with the gyroscope data
using the Madgwick filter [11] to estimate the orientation of the sensor. The
Madgwick filter computes a quaternion representing the orientation of the sen-
sor relative to the Earth. The Madgwick filter comprises of a prediction step
using the gyroscope data and an update step that entails a correction using the
accelerometer data to ensure that the sensor orientation aligns with the direction
of gravity. The new quaternion is then normalized after each update to ensure
that it represents a valid rotation. The orientation quaternion computed by the
Madgwick filter is then used to transform the accelerometer data. This transfor-
mation allows one to use the orientation data to rotate the accelerometer vector
such that the accelerometer vector is now represented in a consistent frame of
reference throughout the dataset, which helps to alleviate the effects of sensor
drift over time.

The orientations of the joints are estimated from the fused sensor data using
Euler angles [14]. Euler angles provide a straightforward and intuitive represen-
tation of joint orientations by means of rotations around the three axes (i.e.,
roll, pitch, and yaw). We compute the rotation matrix from the quaternion and
subsequently extract the Euler angles. To obtain a skeleton-like sequence rep-
resentation, the joint coordinates are aggregated over time into a fixed-length
representation for each activity instance using attention-based temporal pool-
ing. Given a matrix C representing the joint coordinates, where each row i
corresponds to a time step and each column j corresponds to a specific joint
coordinate, a pooled representation is derived across the time step. The atten-
tion weights are computed based on the absolute values of joint coordinates as
Wi,j = |Ci,j | where W is the attention weights matrix with the same dimensions
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as matrix C. The attention scores for each time step i are derived by averaging

the attention weights across all joint coordinates as Si = 1
j

J∑

j=1

Wi,j where S is a

vector of attention scores and J represents the total number of joint coordinates.
To obtain the pooled representation of joint coordinates, a weighted average is
computed across all time steps using the attention scores as follows:

Pj =
∑I

i=1 S · Ci,j
∑I

i=1 Si

(1)

where P represents the pooled representation, I is the total number of time steps
and j is the joint coordinate under consideration.

4.2 Extraction of joint sequences from video data

The joint sequences are extracted from video data using a pre-trained ST-GCN
model [22] resulting in motion-level information which is considered critial for
HAR. The OpenPose library [2] is used to detect and extract the human skeleton
in each frame of the video and create a mapping that correlates human anatomi-
cal joint names (e.g., left wrist) with their corresponding numerical indices. These
numerical indices are important for locating the spatial coordinates of the joints
within the output representation generated by the model. The skeleton data is
then fed to the ST-GCN model to generate the joint coordinates from the input
video data. To extract the joint-level features from the input video data, the last
layer of ST-GCN model is discarded and the output of the penultimate ST-GCN
layer deemed to be the joint features representing the coordinates or features of
the respective joints in the video frame. The joint coordinates are accumulated
over all the video frames to obtain the joint sequences. The result is a set of joint
sequences, each sequence encapsulating the positional information of a joint over
time.

4.3 Projection of joint sequences data

In the proposed HAR scheme, the transformed skeleton-like representations
derived from IMU data are one input data modality whereas the joint sequences
generated from the video data using the ST-GCN are the other input data modal-
ity. A deep metric learning model based on a Siamese DNN is employed to map
samples from both modalities in a shared embedding space in a manner such
that similar samples from both modalities are mapped in close spatial proximity
whereas dissimilar samples are mapped farther apart in the shared embedding
space in which the final classification is subsequently performed. Each subnet-
work within the Siamese DNN consists of three long short-term memory (LSTM)
layers for processing of the joint sequences. The final layer in each subnetwork
serves as a projection layer that transforms the final LSTM hidden state into
a latent representation and projects it into a lower-dimensional common latent
space spanned by vectors of size 64.
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Formally, the LSTM processes an input sequence x = {x1, x2, . . . xT } of
length T and produces a sequence of hidden states h = {h1, h2, . . . hT } using
ht = LSTM(xt, ht−1) where ht is the hidden state at time t. The last hidden
state hT is extracted and processed by the projection layer resulting in a vector
z = W · hT + b where W and b are the weight matrix and bias respectively. We
employ a contrastive loss function based on cosine similarity [8]. Given a pair of
sequences x1 and x2 and their latent representations z1 and z2 generated by the
Siamese network, the cosine similarity CS between z1 and z2 is computed as:

CS(z1, z2) =
z1 · z2

||z1||2 · ||z2||2
(2)

The contrastive loss L for z1 and z2 is given by:

L(z1, z2) =

{
CS(z1, z2)2 if label = 0
max(0, δ − CS(z1, z2))2 if label = 1

(3)

where label = 0 denotes similar sequences, label = 1 denotes dissimilar sequences
and the margin δ is a hyperparameter that specifies the minimum separa-
tion distance between dissimilar sequences in the cosine similarity space. For
similar sequences z1 and z2, the contrastive loss L(z1, z2) is minimized when
CS(z1, z2) ≈ 0 whereas for dissimilar sequences z1 and z2, the contrastive loss
L(z1, z2) is minimized when CS(z1, z2) ≤ δ. To train the Siamese network, we
train the model for 50 epochs using an Adam optimizer with a learning rate of
0.001.

4.4 Dynamic calibration ensemble (DCE)

Calibrated Stacking [3] is one of the key approaches used to address the bias
problem in GZSL. The main idea behind calibrated stacking is to adjust the
scores of the seen class discriminant function using a calibration factor. The
calibrated stacking rule is follows:

ŷ = arg max
c∈T

fc(x) − γ||[c ∈ S] (4)

where T = S ∪ U is the union of the set of seen classes S and set of unseen
classes U , fc(x) is a discriminant scoring function for class c ∈ T , ŷ is the derived
class label for input x, ||[·] ∈ {0, 1} indicates whether c is a seen class or not and
γ is a calibration factor. The value of γ determines the best balance between seen
and unseen predictions. Calibrated stacking suffers from some significant limita-
tions. First, the calibration hyperparameter used to determine the optimal value
requires careful tuning which is time-consuming and task- or dataset-dependent.
Second, calibrated stacking may not generalize well across different datasets,
i.e., calibration that works well for one dataset may not be suitable for another.
Third, calibrated stacking aims to balance the performance between seen and
unseen classes. It often involves a trade-off in that improving performance on
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unseen classes may result in a decrease in classification accuracy for seen classes,
and vice versa.

To address these limitations, we propose a novel Dynamic Calibration Ensem-
ble (DCE) scheme that aims to provide a balanced and fair representation of
both seen and unseen classes in GZSL. DCE employs an ensemble of stacked
classifiers, each fine-tuned to have a specific inherent bias, towards either seen
or unseen classes. The novelty of the DCE scheme lies in its dynamic calibration
mechanism, which dynamically adjusts the bias of each classifier in the ensemble
over multiple epochs in response to observed performance disparities. Thus, the
DCE approach adapts to the changing needs of the GZSL task, ensuring that
neither the seen nor the unseen classes are disproportionately favored. This mit-
igates the common issue of bias towards the seen classes in GZSL, resulting in
improved generalization performance of the classifier.

The DCE consists of four sets of stacked classifiers, each with its own cali-
bration factor γi. The stacked classifiers are designed to have varying degrees of
bias with the first set being strongly biased towards the seen classes, the second
set slightly biased towards the seen classes, the third set slightly biased towards
the unseen classes, and the fourth set strongly biased towards unseen. This leads
to the following change in the calibrated stacking formula:

δi(e) = arg max
c∈T

fc(x) − γi(e)||[c ∈ S] (5)

Each set of stacked classifiers is initially calibrated with a base calibration factor
γbase, which sets its inherent bias. These base calibration factors are dynami-
cally adjusted based on the observed disparity in performance (i.e., classification
accuracy A) with increasing values of the epoch number e. The disparity H (i.e.,
H-score) is computed as the harmonic mean between seen class performance AS
and unseen class performance AU as follows:

H =
2 × AS × AU

AS + AU
(6)

The harmonic mean H (H-score) penalizes the model if either AS or AU is low,
thus ensuring a balanced performance.

The dynamic calibration for the first set of stacked classifiers is computed as
γ1(e) = γbase + α × tanh(H) where γbase is a base calibration value that ensures
an inherent bias in the network and e is the epoch number. This value is typically
set to maintain the model’s strong inclination towards seen classes. For this set
of stacked classifier, we set γbase = −10. The parameter α is a scaling factor
which determines the strength of the adjustment based on the disparity H and
tanh(H) is the hyperbolic tangent of the disparity. The tanh function maps any
input value to a value between −1 and 1. As the disparity H grows, this term
becomes more influential, adjusting the calibration factor accordingly. For δ1,
equation (5) implies that as the disparity increases (indicating that the model
is not performing well on unseen classes), the calibration factor γ1 increases,
reducing slightly its strong bias towards seen classes.
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For the second set of stacked classifiers, the dynamic calibration is defined as
γ2(e) = γbase + 0.5 × α × tanh(H). For δ2, which slightly favors seen classes, the
introduction of the multiplier 0.5 indicates that this set adjusts its calibration at
half the rate of δ1. This more modest adjustment rate reflects δ2’s initial slight
bias towards seen classes. For this set, we initialize γbase = −5. The dynamic
calibration for the third set of stacked classifiers is computed as γ3(e) = γbase −
0.5 × α × tanh(H). For δ3, which slightly favors unseen classes, the calibration
factor decreases as disparity increases. As the model underperforms on unseen
classes, δ3’s slight increase towards unseen classes is accentuated. For this set, we
initialize γbase = 5. Finally, for the fourth set of stacked classifiers, the dynamic
calibration is computed as γ4(e) = γbase − α × tanh(H). For δ4, equation (5)
implies that the set of stacked classifiers strongly favors unseen classes. Here, we
initialize the inherent bias γbase = 10. We followed the work in [19] which tested
values of γ ranging from [0.5, 5]. Based on this approach, we initialized the γbase
parameters within the range [-10, 10] to ensure a broader coverage for addressing
biases towards both seen and unseen classes. The choice of γbase impacts the
initial bias of the classifiers, which in turn influences the dynamic calibration
process. Different initial values can lead to variations in the convergence behavior
of the model and its final performance metrics. If γbase is too low (a large negative
value) or set too high (a large positive value), it can cause the model to be overly
biased towards either seen or unseen classes, leading to suboptimal performance.
While the initial values of γbase play a role in the model’s bias and convergence,
the DCE mechanism mitigates the impact of these initializations by dynamically
adjusting the biases during training. It is recommended to choose initial values
within the ranges that provide a reasonable starting point such as [-10,10], as
extreme values can affect the speed and efficiency of the dynamic calibration
process.

Computing the optimal weights for each stack in the DCE is essential for
maximizing performance. The goal is to assign weights that show each stack’s
ability to balance the recognition of seen and unseen classes. Since the harmonic
mean score (H-score) is used to track the performance balance for each stack of
classifiers, we use the H-score values directly to calculate the weights as follows:

wi =
Hi

∑N
j=1 Hj

(7)

where wi and Hi are the weight and H-score respectively for the ith classifier
and N is the total number of classifiers in the set of stacked classifiers. The final
prediction is computed as follows:

ypred = arg max
c∈T

(
4∑

i=1

wi × δi

)

(8)
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5 Experimental Results

5.1 Data

IMU data. Three sensor-based benchmark datasets were used for evaluation of
the proposed approach: PAMAP2 [15], DaLiAc [10], and UTD-MHAD [4]. For
each dataset, we use the triaxial accelerometer data and gyroscope data in our
experiments. For performance assessment, we divide the activity classes within
each dataset into seen and unseen classes. We also categorize the activities in
each dataset adopting the activity types defined in [18]. Our approach involves
selecting one class from each activity type as unseen, thus guaranteeing a bal-
anced representation of different activity types and allowing us to assess the
proposed method’s performance across diverse activity types.

In the PAMAP2 dataset, we designate activities such as playing soccer, car
driving, sitting, folding laundry and descending stairs as unseen. The unseen
class instances form part of the testing data, while instances from seen classes,
such as watching TV (primarily subject 101) and others (subject 108), comprise
the rest of the testing data. The remaining data serves as training instances. In
total, we have 13 seen classes, 5 unseen classes, 18398 training instances and
8300 testing instances.

In the DaLiAc dataset, unseen classes include rope jumping, vacuuming,
standing and descending stairs. Instances from the aforementioned unseen classes
are used as part of the testing data. Furthermore, within the seen classes, we
choose examples from subjects 17, 18, and 19 as testing data and use the remain-
der as training data. In total, we have 8 seen classes, 4 unseen classes, 15970
training instances and 6108 testing instances.

In the UTD-MHAD dataset, classes such as draw x, bowling, swipe left, clap,
and basketball shoot, are marked as unseen. Given the uniform distribution of
activity instances across classes in this dataset, the activities are picked randomly
from different activity types. Instances from the aforementioned unseen classes
are included as part of the testing data, whereas for seen classes, we select data
from subject 8 for testing and use the rest for training. In total, we have 22 seen
classes, 5 unseen classes, 615 training instances and 246 testing instances.
Video data. We follow [18] in selecting 10 skeletal video clips per activity class
for the 18 activities in the PAMAP2 dataset, and 13 activities in the DaLiAc
dataset ensuring at least one skeletal video clip for each seen and unseen activity.
We also collect video data from publicly available datasets such as Kinetics-400[7]
and UCF101[17]. We randomly choose 512 consecutive frames (≈ 17 seconds)
from each video clip (and repeating shorter video clips to fill 512 frames) as input
to the ST-GCN model. We extract the skeleton joint sequences for UTD-MHAD
from the videos supplied by the dataset. For each class label, there are a total of
32 video clips available as each activity is performed four times by eight subjects.
Since the subjects are always in the center of the frame and the background and
camera are fixed, the videos have little variability. For consistency, we utilize
256 consecutive frames to extract the skeleton joint sequences using the ST-
GCN model.
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5.2 Evaluation metrics

In the GZSL setting, two primary metrics are employed for evaluating the pro-
posed approach. First, to assess the accuracy of recognizing activities from both
seen and unseen classes, we calculate the average per-class accuracy for seen and
unseen classes separately. The average per-class accuracy A is determined as the
mean of the accuracy values for each class, formulated as follows:

A =
1

NC

Nc∑

i=1

number of correctly classified instances for class ci
number of instances in class ci

(9)

where NC represents the number of classes in either the seen or unseen sets. This
metric remains unaffected by class imbalance, providing a balanced evaluation
across classes. We denote the average per-class accuracy for seen classes as AS ,
and for unseen classes as AU . Subsequently, we compute the H-score as the
harmonic mean of these accuracies as shown in equation (6) to provide a single
metric that captures the performance across both seen and unseen classes. In our
analysis, we thoroughly evaluate the metrics AS , AU and H-score. Our primary
focus is on the H-score, as it integrates the performance on both seen and unseen
classes, offering a comprehensive evaluation of the proposed approach.

5.3 Comparison with baselines

We implemented two versions of the proposed JS-Siamese architecture, one with
conventional calibrated stacking (JS-Siamese-c) and the other with DCE (JS-
Siamese-DCE). We compared both JS-Siamese versions with state-of-the-art
(SOTA) methods for sensor-based HAR that employ GZSL. To ensure a fair
comparison, we incorporated calibrated stacking in each of the SOTA meth-
ods to address the inherent bias problem in GZSL. We use the same train-test
split discussed in Section 5.1 for evaluating all the methods. The results of the
evaluation are summarized in Table 1.

We compare the JS-Siamese-c architecture to SOTA semantic attribute-
based approaches with calibrated stacking i.e., NuActiv-c, CRF+NN-c, NCBM-
c, HDPoseDS-c, and EmCoGM-c. The JS-Siamese-c architecture is observed to
yield higher classification accuracy values on both seen classes (AS) and unseen
classes (AU ) and higher H-score values across all the three benchmark datasets,
i.e., PAMAP2, DaLiAc and UTD-MHAD. Specifically, the JS-Siamese-c archi-
tecture shows a 16.4% increase in AS , 12.3% increase in AU , and 15.1% increase
in H-score values compared to the best performing SOTA semantic attribute-
based approach (in terms of the specific performance measure) when averaged
across all the three benchmark datasets.

When comparing JS-Siamese-c to semantic word embedding-based
approaches with calibrated stacking such as ExpWord-c and MLCLM-c, JS-
Siamese-c is observed to exhibit superior performance in terms of AS , AU
and H-score values. Specifically, JS-Siamese-c shows a 23.2% increase in AS ,
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Table 1. Comparison of the JS-Siamese architecture to SOTA methods

Approach Space PAMAP2 DaLiAc UTD-MHAD

AS(%)AU (%)H AS(%)AU (%)H AS(%)AU (%)H

NuActiv-c Attribute 26.4 27.5 26.9 63.1 33.2 43.5 29.5 23.4 26.1

CRF+NN-c Attribute 31.6 29.6 30.5 71.3 40.2 51.4 35.2 23.3 28.0

NCBM-c Attribute 53.6 34.6 42.1 70.0 41.6 52.1 26.1 51.5 34.6

HDPoseDS-c Attribute 58.3 22.3 32.2 73.2 37.8 49.8 28.2 29.6 28.8

EmCoGM-c Attribute 57.2 40.6 47.5 58.0 51.6 54.6 39.3 36.8 38.0

ExpWord-c Word 48.8 39.1 43.3 54.1 44.2 48.6 25.2 26.5 25.8

MLCLM-c Word 42.0 32.5 36.7 49.8 41.5 45.2 20.0 33.0 24.9

I3D-emb-c RGB Videos 49.3 41.5 45.0 53.7 44.7 48.7 36.7 34.9 35.7

JS-Siamese-c Skeletal Videos 63.4 49.1 55.3 77.8 56.7 65.5 48.4 39.8 43.6

JS-Siamese-DCE Skeletal Videos 69.8 61.2 65.2 85.7 67.5 77.3 51.4 47.3 49.2

12.4% increase in AU , and 17.3% increase in H-score values compared to the
best performing SOTA semantic word embedding-based approach (in terms of
the specific performance measure) when averaged across all the three bench-
mark datasets. Word embedding-based approaches often face challenges arising
from meaning ambiguity and representation complexity resulting in less stable
semantic spaces. Also, mapping the IMU-derived activities to words is extremely
challenging due to the large domain gap between IMU data and words. How-
ever, since JS-Siamese-c uses skeletal joint sequences, it employs a more stable
and representative semantic space resulting in enhanced performance in recog-
nizing a diverse range of activities over all the benchmark datasets. Likewise,
when compared with video embedding-based approaches such as I3D-emb-c, JS-
Siamese-c demonstrated a clear superiority in performance over all three bench-
mark datasets. In particular, JS-Siamese-c shows a 16.3% increase in AS , 8.1%
increase in AU , and 11.6% increase in H-score values compared to I3D-emb-c
when averaged across all three benchmark datasets. These results highlight the
adaptability of JS-Siamese-c in the context of GZSL for IMU-based HAR and
its robustness to the domain shift and hubness problems.

Additionally, JS-Siamese-DCE marks a significant performance improvement
over JS-Siamese-c as evidenced by the substantial increases in AS , AU and
H-score values across all the benchmark datasets. Notably, JS-Siamese-DCE
exhibits a 5.7% increase in AS , 10.1% increase in AU , and 9.0% increase in
H-score values compared to JS-Siamese-c when averaged across all three bench-
mark datasets. This demonstrates the effectiveness of the DCE scheme for GZSL
in the context of IMU-based HAR.

5.4 Ablation study

Impact of domain shift (skeleton joint sequences embeddings vs RGB
video embeddings): We studied the impact of domain shift on the accuracy of
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the JS-Siamese architecture by utilizing RGB video embeddings extracted from
the F4D model [1] instead of skeleton joint sequences extracted from the pre-
trained ST-GCN model. In this experiment, we made some adjustments to the
JS-Siamese architecture [1] as follows. In the case of the PAMAP2 and DaLiAc
benchmark datasets, after preprocessing of the IMU data, we did not trans-
form the IMU data to a skeleton-like representation. Instead, before the feature
extraction stage, we removed 10 seconds from the start and end of the video of
each activity recording to ensure that no noise is included. Following [16], we
segmented the raw video data using sliding windows with a window size of 5.12
seconds and an overlap of 1 second. Within each window, we computed the mean
and standard deviation values and used them as features. For UTD-MHAD, we
did not use the sliding window approach since the actions in UTD-MHAD are
very short; instead, we treated the entire recording as a single window. We term
the above described scheme as the V-Siamese-DCE architecture.

Figure 3 depicts the impact of domain shift on the JS-Siamese architecture.
On the benchmark datasets PAMAP2, DaLiAc and UTD-MHAD, V-Siamese-
DCE achieved H-score values of 49.2%, 64.1% and 39.8% respectively which
represent a reduction of 16%, 13.2% and 9.4% respectively when compared to
corresponding H-score values attained by JS-Siamese-DCE on the same datasets.
The average reduction in H-score values across all three benchmark datasets is
12.9%, highlighting the importance of resolving the domain shift problem and
selecting the appropriate data modality when developing a GZSL framework.

Fig. 3. Impact of domain shift (right) and impact of hubness (left)

Impact of hubness (latent embedding space vs skeleton joint sequences
embedding space): We studied the impact of hubness on the accuracy of
the JS-Siamese architecture by projecting the transformed skeleton-like repre-
sentation derived from IMU data to the skeleton joint sequences space con-
structed using the pre-trained ST-GCN model. In this experiment, we replaced
the Siamese network with a 3-layer LSTM network to process the skeleton-like
representations derived from IMU data and produce the embeddings to be pro-
jected onto the skeleton joint sequences embedding space. Furthermore, we used
a 3-layer LSTM network to process the joint sequences extracted from the ST-
GCN model and generate the embeddings. The projection of the skeleton-like
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representations from IMU data onto the skeleton joint sequences space was fol-
lowed by classification in that space using the DCE procedure. We denote the
resulting architecture as JS-emb-DCE. Figure 3 depicts the results of perfor-
mance comparison between JS-emb-DCE and JS-Siamese-DCE. The JS-emb-
DCE is observed to achieve an H-score of 55.7, 67.3 and 39.8 representing a
reduction of 9.5%, 10% and 9.4% for the PAMAP2, DaLiAc and UTD-MHAD
datasets respectively when compared to JS-Siamese-DCE. The average decrease
in H-score across all datasets is 9.63% signifying the importance of addressing
the hubness problem when designing a GZSL framework (Table 2).

Table 2. Impact of bias

Approach Space PAMAP2 DaLiAc UTD-MHAD

AS(%)AU (%)H AS(%)AU (%)H AS(%)AU (%)H

JS-Siamese Skeletal videos 76.4 10.1 17.8 96.5 9.8 17.8 58.7 18.1 27.6

JS-Siamese-c Skeletal Videos 63.4 49.1 55.3 77.8 56.7 65.5 48.4 39.8 43.6

JS-Siamese-DCE Skeletal Videos 69.8 61.2 65.2 85.7 67.5 77.3 51.4 47.3 49.2

Impact of bias on JS-Siamese architecture: We studied the impact of bias
on the JS-Siamese architecture by comparing its performance with and without
addressing the bias problem. Specifically, we compare the original JS-Siamese
model with the JS-Siamese-DCE model, which incorporates the Dynamic Cali-
bration Ensemble (DCE) technique to mitigate bias. Table 2 depicts the impact
of bias on the JS-Siamese architecture. The average reduction in bias can be
quantified by comparing the AU and H-score values across the three datasets.
For the JS-Siamese model, the average AU across the PAMAP2, DaLiAc, and
UTD-MHAD datasets is 12.7%, whereas for the JS-Siamese-DCE model, it is
58.7%. This represents an average increase of 46% in the AU value. Similarly,
the average H-score for the JS-Siamese model is 21.1%, whereas for the JS-
Siamese-DCE model, it is 63.9%. This represents an average increase in H-score
of 42.8%. Addressing the bias problem does come with a trade-off in the accu-
racy of seen classes (AS). For the JS-Siamese model, the average AS value across
the PAMAP2, DaLiAc, and UTD-MHAD datasets is 77.2%, whereas for the JS-
Siamese-DCE model, it is 69%. This represents an average decrease in AS of
8.2%. We believe that this reduction is an acceptable trade-off given the sig-
nificant improvements in the accuracy of unseen classes (AU )and the overall
H-score.
Impact of loss function (contrastive loss vs. triplet loss): We trained
the Siamese network with two different loss functions, i.e., the contrastive loss
function and the triplet function and noted the classification accuracy results
in each case. As shown in Figure 4, the network trained with the contrastive
loss function achieved a significantly higher accuracy of 92%, compared to the
79% accuracy obtained with the triplet loss function. In each case, the network
employed 3 LSTM layers and was trained for 50 epochs using an Adam optimizer.
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The higher accuracy achieved with the contrastive loss function indicates that
it is better at creating a distinct separation between the different classes in the
dataset, resulting in more accurate HAR. This is due to the inherent ability
of the contrastive loss function to effectively differentiate between similar and
dissimilar instances, which aligns well with the characteristics of the data used
in the JS-Siamese architecture.

Fig. 4. Contrastive loss vs triplet loss

Impact of the number of LSTM layers: We systematically explored how
varying the number of LSTM layers in the Siamese network influences the perfor-
mance of the JS-Siamese-DCE architecture. We conducted experiments employ-
ing network configurations with 1, 2, 3 and 4 LSTM layers to assess their impact
on model performance. Performance metrics, including classification accuracy
for both seen and unseen classes (i.e., AS and AU ), as well as the H-score, were
recorded for the three benchmark datasets. Figures 5a, 5b, and 5c show the
impact of varying the number of LSTM layers in the Siamese network on model
performance. The goal was to determine the optimal LSTM layer configuration
for maximizing the performance of the JS-Siamese-DCE architecture. For all of
the three benchmark datasets, a Siamese architecture with 3 LSTM layers was
observed to yield the best performance metrics.

6 Conclusions

In summary, this paper proposed a novel architecture for GZSL in the context
of HAR using IMU data. The proposed JS-Siamese architecture tackles the crit-
ical and inherent challenges associated with traditional GZSL settings, namely,
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Fig. 5. Impact of different number of LSTM layers on model performance

the domain shift problem, hubness problem, and bias towards seen classes over
unseen classes. The advantages of the proposed JS-Siamese architecture are
demonstrated through extensive experiments on various benchmark datasets,
showing significant performance improvement over existing methods. Our future
work will explore the incorporation of point cloud input data, acquired using
a depth sensor, in the proposed architecture along with IMU and RGB video
input data.
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Abstract. Human Activity Recognition (HAR) using wearable sensors
has gained significant attention due to its portability and unobtrusive-
ness. However, the data obtained from wearable sensors are limited to
inertial data from predefined locations on the human body. In contrast,
skeletal data from motion capture devices, such as the Kinect camera,
offer richer information by capturing the whole body dynamics of a
human action. Unfortunately, the use of skeletal data is impractical in
wearable sensor-based HAR for real-world deployment. Currently, trans-
former neural networks, known for their self-attention mechanism, have
shown effective handling of data from diverse modalities in wearable
sensor-based HAR. However, the deployment of multimodal transformer
on wearable devices is challenging due to their inherent large model size.
We propose a Lightweight HAR Transformer (LightHART) framework
that trains an unimodal Inertial Transformer (IT) network by transfer-
ring knowledge from a large multimodal transformer using a knowledge
distillation approach. We evaluate the proposed framework on three pub-
lic multimodal human activity datasets and compare the performance of
the LightHART student model with various state-of-the-art approaches.
Experimental results demonstrate that our LightHART model achieves
competitive performance in terms of effectiveness and scalability with
a model size of only 1.43 Mb. We are the first to deploy and validate
the LightHART fall detection model on a SmartFall App running on a
WearOS-compatible smartwatch showcasing its potential in advancing
wearable sensor-based HAR research.
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1 Introduction

A wearable sensing system that can facilitate Human Activity Recogni-
tion (HAR) utilizing information extracted from diverse visual and inertial
(accelerometer, gyroscope, etc.) modalities can have a significant societal impact.
For example, HAR can improve elder care in assisted living centers from timely
detection of falls and timely administration of medication. In addition, HAR can
also revolutionize diverse context-aware applications like fitness tracking, health
monitoring, and gesture recognition, just to name a few [16].

Human perceives the world in a multimodal view, automatically integrating
information from multiple sensors like vision, sound, touch, etc. It is known that
multimodal deep learning approaches can leverage information from multiple
sources like accelerometers, gyroscopes, and visual inputs and alleviate the limi-
tation regarding unimodal approaches via complementary information, reducing
the ambiguity of activity recognition, and being robust against noisy data. While
the multimodal learning model offers various benefits for HAR problem, imple-
menting them in wearable devices is challenging due to hardware limitations in
executing models of large size and the inability to acquire the visual modality
continuously with on-body sensors without compromising users’ privacy.

Knowledge Distillation (KD) is a potential solution that can leverage multi-
modal algorithms for wearable devices. KD was first introduced in [9] to distill
knowledge from large models i.e. teacher into smaller models i.e. student. Ini-
tially, a large complex model is trained with data suitable for the task. These
models typically had a large number of parameters and thus can achieve high
accuracy by learning rich representations. Next, a smaller model is trained on
the same dataset, but instead of using only the ground truth labels, it is trained
to mimic the behavior of the teacher model. To improve the performance of
deep learning models on HAR tasks involving vision modality, particularly when
dealing with occlusion, the authors of [13] introduced a multimodal knowledge
distillation approach that integrates diverse sensor information. A cross-modal
knowledge distillation method is introduced in [23] that transfers knowledge
from multimodal to unimodal networks. Though this work aimed to produce a
model for wearable devices, the ResNet18 student network used in this research
resulted in a complex model that is not usable in wearable devices. A small Dis-
tilled Mid-fusion Transformer student model is produced by [14], but the student
model only works in the presence of multimodal data, which makes it inappro-
priate for use in portable wearable devices since it is not possible to acquire the
visual data in real-time while being mobile and free of the burden to carry a
specialized on-body visual sensor. Meanwhile, previous studies applied several
fusion methods in building effective multimodal model [14,22]. For instance, the
work in [22] uses a late fusion, and the authors in [14] introduce a Temporal
Mid Fusion. However, these fusions don’t take the spatial and temporal features
into account at the same time and thus can’t produce an effective knowledge
representation when transferring to student models.

To leverage multi-modal learning on wearable devices, we propose a Light-
weight HAR Transformer (LightHART) framework that produces an Inertial
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Transformer (IT), the student model, that can learn to mimic a Spatio-Temporal
ConvTransformer (STConvT) teacher model. First, we train the STConvT model
with data from multiple modalities (i.e. skeleton, inertial) and fuse the spatial
and temporal information using Attention Feature Fusion. We then train the
student model on only inertial data (unimodal) guided by the feature repre-
sentation acquired in STConvT using knowledge distillation. This LightHART
framework tries to minimize the distillation loss during its training. After train-
ing, LightHART’s student model can achieve competitive performance on three
multimodal HAR datasets with a model size of only 1.43 Mb. We further tested
and deployed the LightHART fall detection model (a specific type of human
activity) on a SmartFall App [21] running on a WearOS-compatible smartwatch.
The contributions of this paper are summarized as follows:

– We propose LightHART that generates a lightweight transformer model run-
ning on inertial modalities only. To our knowledge, this is the first study con-
ducting a knowledge distillation process from a skeleton-to-inertial domain
using an unimodal Transformer model which is lightweight.

– We propose a STConvT model with Attention Feature Fusion that can pro-
duce better feature representation aligning both spatial and temporal infor-
mation.

– We demonstrated the effectiveness and generalization ability of the proposed
LightHART method on three public datasets.

– We are the first to test and deploy the LightHART fall detection model on
a real-world fall detection App to demonstrate its potential in advancing
wearable sensor-based HAR research.

Our paper is organized as follows. In the related work in Section 2, we describe
some background work on human activity recognition and the motivation behind
choosing a transformer-based architecture. Next, we present the methodology
and the architecture of LightHART in Section 3. We outline the setup of the
Spatial and Temporal encoder blocks and the Attention Feature Fusion strategy.
In Section 4, we describe the dataset used, the experimental setup, and the eval-
uation protocol used. In Section 5, we compare the performance of LightHART
with other SOTA approaches. In Section 6, we conduct ablation studies to show-
case the effectiveness of our fusion strategy and the spatial block. Finally, we
discuss the implications of our findings and future directions for our work in the
conclusion section.

2 Related Work

Human Activity Recognition: HAR is used to detect and classify human
activities under appropriate labels. An activity refers to the collective movement
of parts of the body to complete a task. For example, moving the head in negation
is a gesture, and walking, jumping, and hand waving are activities [27]. The
approaches to resolving the human activity recognition task can be divided into
three types: vision-based HAR [2], sensor-based HAR [8], and multimodal HAR
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[14]. A wide spectrum of methods, ranging from traditional machine learning,
rule-based, to deep learning methods have been used for HAR over the years.

An extensive comparison among K-Nearest Neighbor (KNN), Support Vec-
tor Machines (SVM), Gaussian Mixture Models (GMM), and Hidden Markov
Models (HMM) for wearable sensor-based HAR is discussed in [1]. The early
traditional machine learning approaches depend on features built by domain
experts and can’t efficiently differentiate between very similar activities such as
walking upstairs and walking downstairs [26]. RNN, LSTM, and CNN are uni-
modal deep learning networks that have become popular in recent years and
have achieved state-of-the-art in recognizing different HAR tasks. For example,
an ensemble Recurrent Neural Network (RNN) method has been used in [17]
to do fall detection from wearable devices. Multiple other research works such
as those in [19,25,26] have used LSTM and a hybrid CNN-LSTM network for
HAR.

Wearable devices using unimodal data have shown the promise of bringing
personalized health monitoring closer to consumers [20]. For example, smart-
watches like the Apple Series, which feature built-in ”hard fall” detection and
ECG monitoring apps, are a viable platform for digital health applications when
paired with a smartphone. However, unimodal deep learning methods using data
from wearable devices have certain limitations [12,30]. Data produced by wear-
able sensors can be noisy, lack contextual information, and face difficulties dis-
criminating among activities producing similar patterns. For example, if a person
is wearing a watch on the left wrist and the left wrist does not move during a fall,
the fall will be missed. Video or skeleton modalities can provide complementary
and contextual information to unimodal data from wearable devices for better
recognition of human activities. To capture information from both spatial and
temporal domains, the authors in [16] introduced a multimodal network called
AttnSense. DanHar framework was proposed in [7] to blend channel attention
and temporal attention with a CNN model. However, none of the above multi-
modal models have a model size that is small enough for real-world deployment
to a wearable device.

Transformer: Deep learning methods like LSTM and CNN have some inher-
ent problems when used for HAR. Although LSTM can handle temporal dynam-
ics in long sequences of data from human activities, their singular perception
limits them in capturing complex patterns that require multiple viewpoints.
Convolutional Neural Networks (CNNs) are primarily designed to extract local
spatial patterns within data. By leveraging multiple layers, they can also cap-
ture more complex and global spatial features. However, CNNs are inherently
limited in their ability to process temporal information. The continuous HAR
signal patterns are more distinguishable when seen from a global temporal view-
point. Transformer [28] possesses a global viewpoint courtesy of its self-attention
layer, and the multiple heads in self-attention help to create multiple viewpoints.
Transformer has already been used successfully in NLP, Computer Vision, Rec-
ommendation Systems, and many others. It also has been used in HAR. For
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example, the authors in [31] used a two-stream Transformer network to capture
both spatial and temporal features from inertial data.

However, these multimodal networks aren’t suitable for deployment in wear-
able sensors due to the unavailability of visual modalities in real-time [13,15,23].
Moreover, the constraints of computation power of wearable devices preclude the
deployment of the usually large multi-modal learning model.

To the best of our knowledge, only a few studies by [6,10,32] have con-
ducted efficient experiments on lightweight transformer-based architecture in
HAR domain.

3 Methodology

In this paper, we introduce our LightHART framework that produces a
lightweight (Inertial Transformer) student model from the knowledge distilla-
tion process that only uses inertial data and still maintains similar accuracy
as the multimodal teacher model. An STConvT network works as a teacher by
extracting the salient spatial and temporal features and using an Attention Fea-
ture Fusion to combine features from skeleton and inertia modalities effectively.

Figure 1 gives the overview of the knowledge distillation process that dis-
tillates knowledge from a multimodal teacher model to an unimodal student
model. First, we train a multimodal STConvT teacher network with skeleton
and inertial data. The input from different modalities is segmented using the
sliding window technique described in [34]. We then add a learnable positional
embedding to each of the modalities to preserve the positional information. A
Spatial Block consisting of two convolutional layers extracts accurate spatial
information from the skeleton data.

The output of the Spatial Block is divided into patches and passed on to
a Temporal block which leverages ViT architecture [5]. The Temporal Block
consists of two Transformer Encoders that apply a multi-head self-attention
mechanism [28] on the patches to extract the salient temporal features while
preserving spatial information. On the other hand, inertial data is passed to
a separate Temporal Block. The features from the intermediate Transformer
Encoder dedicated to the skeleton and inertial data are fused using Attention
Feature Fusion and passed to an MLP layer for final prediction. Finally, a knowl-
edge distillation procedure is used to transfer the feature representation learned
by the teacher module to the student’s Inertial Transformer(IT) that works on
inertial data only. Our IT also adopts the ViT architecture [5]. In the following,
we elaborate on the framework to produce the lightweight student model using
the knowledge distillation procedure.

3.1 Inertial Transformer (IT)

The original transformer model consists of an encoder and a decoder. The
encoder generates embeddings from the input, while the decoder uses these
embeddings to produce output in a different language. However, for activity
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Fig. 1. LightHART framework with STConvT as teacher and IT as student.

recognition, only the encoder is needed to extract both spatial and temporal
information.

In ViT, an image’s input is first segmented into patches. We can think of
the inertial data as 2-D images with shape (W,Ciner) where W is the window
size and Ciner is the number of channels of inertial data. The input for IT
x ∈ R

(N×(W×Ciner)/P ) is reshaped into a sequence of patches, where N is the
number of patches and P is the patch size. The IT uses a constant embedding
size of D through all its layers. The patches are transformed to D dimension
using a linear layer (Eq. 1). A learnable class token is appended at the start
of the sequence of embedding patches (z00 = xclass) whose state at the out-
put of the Transformer’s encoderz0L serves as the inertial data representation y.
A learnable one-dimensional positional embedding Epos is added to the patch
embeddings. The Transformer encoder [28] comprising of interleaved layers of
multiheaded self-attention (MSA) and MLP blocks is applied to the patches.
Layer normalization (LN) is employed preceding each block for stabilized train-
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ing, with residual connections following each block. The residual connection was
used to avoid a vanishing gradient and ensure a direct flow of information. The
class token of the last encoder block output is then passed to the MLP head
with the softmax activation to get the final prediction.

To keep the network small, we construct it with only two Transformer encoder
blocks with small embedding dimensions in the student’s IT.

z0 = [xclass ; x1
p E ; x2

p ; ...; xN
p E ; ] + Epos E ∈ R

((W×Ciner)/P )×D (1)

3.2 Spatio-Temporal ConvTransformer

The Spatio-Temporal ConvTransformer is made up of three important parts: 1.
Spatial Block, 2. Temporal Blocks, and 3. Attention Feature Fusion that helps it
to analyze both spatial and temporal information effectively.

Spatial Block: The Spatial Block is depicted in Fig 1 in orange color. This
module is in charge of dealing with the spatial details found in skeleton data.
It uses two 2-dimensional (2D) convolution layers that could effectively extract
the relationships between nearby joints. These layers have a special property
called translation invariance inductive bias, making them particularly effective
at processing spatial information. Let xSK ∈ R

(CSK ,JSK ,WSK) is the skeleton
input to the Spatial Block where CSK is the channels of skeleton data, JSK

is the number of predefined joints and WSK is the size of the window. The 2D
Convolution layers in the Spatial Block take in an input of (Cin,H,W ) where Cin

is the number of channels, H is the height of input and W is width. To process
the skeleton data with 2D Convolution Layer we set Cin = CSK , H = JSK , and
W = WSK . Both the convolution layers had a filter shape of (1, 9) to gather
spatial information from three adjacent joints. The Spatial Block (SP) produces
an output sp of shape (Cout,Hout,W ), where Cout is the output channel size and
Hout is the output height as of Eq. 2. The output of the Spatial Block is then
reshaped to (N,Cout ×Hout × (W/P )) where N is the number of patches and P
is the size of the patches.

sp = SP(Xskl) Xskl ∈ R
(CSK ,JSK ,WSK) (2)

Temporal Block: The Temporal Block has a structure that is the same as the
IT. So, the sequence of skeleton patches sp is transformed into z skl0 ∈ R

(B,P,D)

(Eq. 4) where D remains constant all across the network. Creating patches from
the embedding will help the Temporal Block to process temporal information
together [5]. We also process the inertial data with a Temporal Block. Let
Xiner ∈ R

(W×Ciner) be the inertial data. This inertial is then reshaped to ip ∈
R

(N×(W×Ciner)/P ). To match the dimension of the Transformer Encoder the
input is transformed to x ∈ R

(N×D) and 1-D learnable positional embedding
Epos and class embedding iclass was added (Eq. 3). The processed inertial data
and output from the Spatial Block then go through the first Encoder on two
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different Temporal Blocks as shown in Fig 1 and produce embedding z skl1 and
z iner1 (Eq. 5).

z iner0 = [iclass ; i1p E ; i2p ; ...; iNp E ; ] + Epos E ∈ R
((W×Ciner)/P )×D (3)

z skl0 = [sclass ; s1p E ; s2p ; ...; sNp E ; ] + Epos E ∈ R
((Cout×Hout×W )/P )×D (4)

zm1 = Encoder(zm0 ) m ∈ (iner, skl) (5)

Attention Feature Fusion z skl1 and z iner1 are then added together to pro-
duce z comb

1 (Eq. 6). This fusion purpose is named as Attention Feature
Fusion(AFF) as the output of transformer encoder layers dedicated to different
modalities are fused. AFF merges complementary information from temporally
aligned patches of different modalities. This fusion in terms helps the subsequent
self-attention layer(MSA) in better exploring the relation between patches. For
all subsequent layers, z comb

l is produced by fusing z comb
l−1 and z inerl−1 (Eq. 7). The

final prediction y is generated by passing the class token z comb0
L of the L-th

encoder block (last) through an MLP layer (Eq. 8). A softmax function is used
on the output of the MLP layer to produce the class predictions.

z comb
1 = Encoder(z skl1 + z iner1 ) (6)

z comb
l = Encoder(z comb

l−1 + z inerl−1 ) (7)

y = softmax(MLP(z comb0
L ) (8)

3.3 Multimodal to Unimodal Knowledge Distillation

The knowledge distillation begins after we finish training the STConvT with
skeleton and inertial data. During knowledge distillation, a teacher’s STConvT
takes multimodal (skeleton & inertial) data as input and the student’s IT takes
only the inertial data. In general, neural networks produce a class probability by
taking the logits and passing it through a softmax function pi = softmax(z i).
But, the knowledge distillation method in [9] used a soft prediction with param-
eter Temperature (T) (Eq. 9). The higher the temperature the softer the pre-
diction. Both the teacher and the student produce soft predictions Pteacher and
Pstudent . These soft predictions are then compared using a KL-Divergence Loss
(Eq. 10). The entropy between the ground truth ygt and the student’s (IT) final
prediction ystud is measured using a cross-entropy loss and added with the KL-
Divergence loss to get the knowledge distillation loss LKD (Eq. 11). The student
model tries to mimic the teacher’s prediction by minimizing this loss during its
training.

pi =
e

(zi )
T

∑
j e

( zj
T )

(9)



LightHART: Lightweight Human Activity Recognition Transformer 433

Lkl(Pstudent ,Pteacher ) =
∑

i

Pstudent,i log
Pstudent,i

Pteacher ,i
(10)

LKD = Lcross(ygt , ystud) + Lkl(Pteacher ,Pstudent) (11)

4 Experiments

4.1 Datasets

We evaluated the LightHART’s performance on three human activity datasets.
UTD-MHAD and Berkeley-MHAD are a few of the mainstream multimodal
human activity recognition datasets publicly available. SmartFallMM is another
multimodal human activity recognition dataset developed in our lab with a spe-
cific focus on fall detection.

The UTD-MHAD dataset [3] was collected using a single Kinect camera and
one wearable inertial sensor. The Kinect camera captures full-body visual data
during activities, while the inertial sensor records acceleration, gyroscope, and
magnetometer data. The sensor was placed on the subject’s right wrist or thigh,
depending on whether the action primarily involved the arm or leg. The use of
only a Kinect camera and inertial sensor is due to their low cost and non-intrusive
nature. The dataset includes 27 actions performed by 8 subjects (4 males and
4 females), with each action repeated 4 times, resulting in 861 samples after
excluding corrupted ones.

The Berkeley-MHAD dataset [24] consists of temporally synchronized and
geometrically calibrated data from an optical mocap system, multi-baseline
stereo cameras from multiple views, depth sensors, accelerometers, and micro-
phones. We used the accelerometer data collected from the left wrist for our
experiment. It contains 11 actions performed by 7 male and 5 female subjects
in the range of 23-30 years of age except for one elderly subject. All the sub-
jects performed 5 repetitions of each action, yielding about 660 samples which
correspond to about 82 minutes of total recording time.

The SmartFallMM1 multi-modal dataset comprises data from two distinct
modalities, collected using four different types of devices. The skeleton data
was gathered using three Azure Kinect cameras. Additionally, accelerometer
and gyroscope data were obtained from three types of inertial sensors: Meta
sensors (from MBIENT), a Huawei Smartwatch running WearOS, and a Google
Nexus phone. This dataset includes a total of 14 activities, performed by 36
participants. Among these activities, 9 are Activities of Daily Life (ADL), and 5
are different fall activities, resulting in a total of 1,134 activity trials, and only 11
participants could perform fall activities. We used the accelerometer data sensed
from Huawei SmartWatch and the skeleton data for our experiments.

1 Url: https://anonymous.4open.science/r/smartfallmm-4588

https://anonymous.4open.science/r/smartfallmm-4588
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4.2 Evaluation Protocol

For the UTD-MHAD dataset, we follow the established evaluation protocol out-
lined in the original paper [3]. Specifically, subjects with odd-numbered identi-
fiers (1, 3, 5, 7) are designated for training purposes, while subjects with even-
numbered identifiers (2, 4, 6, 8) are reserved for testing. Given the limited size of
the dataset, this approach serves to maintain a balance between the sizes of the
training and testing datasets. Moreover, the segmentation based on person IDs
serves the dual purpose of preventing data leakage and ensuring the integrity
of the evaluation process. We adhere to the evaluation protocol outlined in the
original paper [24] for Berkeley-MHAD. The training dataset comprises of first
7 persons’ data while the testing dataset consists of the last 5 persons’ data.

We performed recognition of fall-related activities on SmartFallMM dataset
with real-world testing and evaluation in mind, as we already have a fall detection
system developed for a wearable device [21]. We used the first 9 persons’ data
for training and the last 2 persons’ data for testing. After training an offline stu-
dent IT model with LightHART, we deploy this model to a Huawei Smartwatch
running the SmartFall App for real-time evaluation. Two student participants
are recruited under IRB 9461 for the real-time evaluation. They performed all 9
ADLs and 5 Fall activities five times each activity wearing the smartwatch.

4.3 Experimental Setup

The inertial modality may contain multiple streams (e.g. the accelerometer and
gyroscope) of data. Despite the presence of different streams, we consider them
as a single modality since they are all time-series data. Skeleton data is sensed
as a sequence of time-series (accelerometer) data from multiple skeletal nodes.
Both skeleton and inertial data have variable lengths across activity trials and
different sampling rates. To optimize training, we equalized the sampling rates
and extracted synchronized windows of size 64 from both skeleton and iner-
tial modalities, with a 10-timestamp overlap between windows. The STConvT
architecture consists of 2 consecutive Convolution layers with both having a filter
size of 9 to facilitate the extraction of spatial information from adjacent joints.
The two Temporal Blocks had two Transformer encoders each with an input
dimension of 32. To optimize the model, we employed the SGD optimizer with
a learning rate set at 0.0025 and utilized the knowledge distillation loss (Eq. 11)
function during the training phase.

5 Studies and Results

5.1 Evaluations and Comparisons

We compared our LightHART’s performance with other state-of-the-art mul-
timodal transformers with knowledge distillation-based methods using inertial
and skeleton data as input. Table 1 and 2 show the experimental results on
UTD-MHAD and Berkeley-MHAD respectively. We evaluated SmartFallMM
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mainly for fall detection activities and is not included in this table. The iner-
tial data from UTD-MHAD had two streams (accelerometer and gyroscope). We
compared the performance of LightHART with multimodal transformer models
like CrossVit [33], DMFT [14] and TokenFusion [29]. LightHART outperformed
these transformer-based methods as it consecutively gains 8.67% and 14.44%,
over TokenFusion [29], CrossVit [33]. Though DMFT [14] has a higher accu-
racy of 92.12%, it’s worth mentioning that it had a complex architecture with
262.2× larger model size than the student model trained with LightHART which
makes it infeasible for deployment in wearable devices. The increased accuracy
of LightHART is primarily due to the knowledge distillation method. Before
knowledge distillation, the accuracy of LightHART student’s model was 73.618
% on UTD-MHAD dataset and the teacher Spatial-Temporal ConvTransformer
had an accuracy of 89.81%.

Table 1. Performance comparison on the UTD-MHAD dataset. S: Skeleton, D: Depth,
I: Inertial, aug:augumentation.

Method Modality Combination Accuracy(%)

UTD-MHAD [3] I + D 81.86

Gimme Signals [18] I + S 76.13

Gimme Signals [18] I + S(aug) 86.53

TokenFusion [29] I + S 78.89

CrossViT [33] I + S 75.37

MobileHART(XS) [6] I 77.52

DMFT [14] I+S 92.12

LightHART(Teacher) I + S 89.81

LightHART (Student) I 73.62

LightHART(KD) I 87.56 (13.94 ↑)

But after the knowledge distillation, the accuracy of the student model went
up to 87.56% which is a 13.942% increase in accuracy. The LightHART stu-
dent model also has an 10.037% accuracy gain over MobileHART(XS) [6] - a
lightweight Transformer model - which further supports the effectiveness of our
LightHART framework.

The gap between teacher and student is as small as 2.25% which demonstrates
that the STConvT supported by Attention Feature Fusion creates feature rep-
resentations that the student’s uni-modal IT (Inertial Transformer) can easily
mimic.

Similar trends are observed in the case of the Berkeley-MHAD dataset. The
inertial modality had only the accelerometer stream for this dataset. LightHART
outperformed multimodal Transformer networks like TokenFusion [29] and
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Table 2. Performance comparison on the Berkeley-MHAD dataset. S: Skeleton, D:
Depth, I: Inertial

Method Modality Combination Accuracy(%)

MMhar-Ensemblenet [4] I + D 81.86

TokenFusion [29] I + S 79.91

CrossVit [33] I + S 75.37

DMFT [14] I + S 78.18

LightHART (Teacher) I + S 85.69

LightHART (student) I 80.33

LightHART(KD) I 81.93(1.60 ↑)

Cross-Vit [33] and DMFT [14]2 as it consecutively gains 3.04% and 6.56% and
3.75% . The knowledge distillation method effectively increased the accuracy of
the student model by 1.6%. The gap between teacher and student was 3.76%.
The accuracy gain after knowledge distillation was 1.6% which is lower than the
UTD-MHAD dataset. This was due to the absence of a gyroscope stream in iner-
tial data as gyroscopes provide much-needed information about angular velocity.
We couldn’t compare the results with MobileHART(XS) [6] as it required both
gyroscope and accelerometer modalities.

Fig. 2. Accuracy Comparison for Fall Detection Task of SmartfallMM dataset

Fig. 2 illustrates the performance comparison of STConvT, IT, and IT with
KD on the SmartFallMM dataset. The teacher model, STConvT, achieved an
2 DMFT wasn’t originally evaluated on Berkley-MHAD datasets. We trained this

model for 250 epochs for Berkley-MHAD to provide the same training time for fair
comparison
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accuracy of 99.75%, while the student IT model of LightHART had an accuracy
of 77.0% before applying KD. By employing STConvT as the teacher during the
knowledge distillation process, the accuracy of the IT model increased by 1.50%
for fall detection.

Table. 3 shows the model size comparison of different multimodal Trans-
former models. The student model generated using LightHART had a model size
of 1.43 Mb which is 262.2× smaller than DMFT [14] which has a model size of
375 Mb. The DMFT uses a ResNet50 pre-trained model size of 98 Mb. Even if
they used an architecture without the ResNet50, the model size would still be
193.7× larger than the student model generated by LightHART. CrossVit [33]
and MobileHART(XS) also have 425× and 7.23× larger model sizes compared
to our student model. Only TokenFusion [29] has a smaller model size than our
student network. However, this smaller model size also compromises the accu-
racy as it drops to 78.89% for UTD-MHAD and 79.91% for Berkeley-MHAD.
Overall, only our student model can maintain competitive performance while
reducing the model size.

Table 3. Model Size comparison for different Transformer models

Modalities Model Model size(mb)

I LightHART 1.43

I + S TokenFusion [29] .68

I + S CrossVit [33] 608.09

I + R + S DMFT [14] 375

I MobileHART(XS) [6] 10.36

5.2 Performance on Wearable Devices

We ported two different IT models to run on a smartwatch, one generated by
LightHART and the other purely based on uni-modal accelerometer data without
knowledge distillation to observe the average inference time and performance.
Both of our IT models running on the device could make an inference in .4459
ms to .8428 ms for a stream of data with a duration of 4 seconds compared to
1 to 13 ms for 2.56 seconds duration of data using MobileHART(XS) [6]. The
LightHART student IT model’s performance improvement in fall detection task
after training with KD can also be observed in Figure 3. Though both the
models have a similar number of True Positive detection of 24 and 25, the IT
model trained without KD cannot differentiate the intrinsic patterns between
ADL and Fall activities as it can only detect 5 of 35 ADL activities accurately
compared to 25 out of 35 of the student model trained with KD. The accuracy
of the model without KD drops by 31.69% and becomes 45.31% during the on-
device evaluation. The student’s model trained with KD can maintain similar
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accuracy with on-device evaluation as its accuracy only becomes 76.56% which
represents only a 1.94% drop. This on-device performance comparison shows
models trained with KD can help maintain better performance.

Fig. 3. Confusion matrices for on device performance of LightHART(student) with and
without Knowledge Distillation

6 Ablation Studies

6.1 Effectiveness of Attention Feature Fusion

Table 4 shows the effectiveness of Attention Feature Fusion(AFF). For this
experiment, we used the SimpleFusion [11], TokenFusion by [29], CrossView
Fusion by [33] and Attention Feature Fusion(AFF) with our STConvT to observe
which fusion methods have the most impact on the student model’s accuracy.
The result shows that the teacher model using AFF has a student model with
the highest accuracy of 87.56%. Though the teacher network with CrossView
Fusion had better accuracy, the representation was complex for a lightweight
student model to mimic. Thus, the student had the lowest accuracy of 69.47%

Table 4. Performance comparison of different fusion methods on UTD-Mhad dataset

Method Teacher Accuracy(%)KD Accuracy(%)

SimpleFusion [11] 87.68 84.36

TokenFusion [29] 85.00 70.04

CrossView Fusion [33] 90.0 69.47

AFF 89.81 87.56
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6.2 Effectiveness of Convolution Spatial Block

Table 5 shows the impact of the Convolution Spatial Block. First, we changed
the Spatial Block to a Transformer-like architecture with 2 encoders. The accu-
racy dropped to 77.12% in comparison to 89.81% for the Convolution Spatial
Block. This shows that the Convolutional layers with an inductive bias for spa-
tial information outperform vanilla transformers. On the other hand, a network
without Spatial Block had an accuracy of 80.25% which is 9.56% lower than a
model with Convolution Spatial Block.

Table 5. Performance comparison with and w/o Convolution Spatial Block

Method Teacher Accuracy(%)

Transformer SB 77.12

W/O SB 80.25

Convolution SB 89.81

A supplementary study on the effectiveness of the Temporal Block is pre-
sented in Table 1 of the supplementary materials.

7 Conclusion

In this paper, we propose a LightHART network architecture to generate a
lightweight transformer model (student) using unimodal inertial data that has a
very small model size while retaining similar accuracy as the complex multimodal
transformer (teacher) network in the case of UTD and Berkeley datasets. With
SmartFallMM dataset, we show that the IT model with KD performs better than
the one without. The experimental results also demonstrate that our lightweight
student model with a model size of 1.43 Mb can achieve competitive performance
as compared to other student models distilled from state-of-the-art multimodal
learning frameworks. We further tested and deployed the LightHART student’s
model on a wearable smartwatch device running a fall detection App. The real-
world testing of the model using two participants demonstrates the better per-
formance of a uni-modal fall detection trained using a knowledge distillation
approach. However, while we have demonstrated that a lightweight LightHART
model can be deployed successfully on the device that outperforms the model
without KD, there is still a considerable performance gap between the teacher
and student model in LightHART which we believe can be reduced by adopting
more advanced knowledge distillation methods. Furthermore, using the Smart-
FallMM dataset, the fall detection model trained with KD still needs to be
optimized to reduce the high False Positive ratio for practical use.
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Abstract. Our brain can process visual information, which helps under-
standing the shape of an object. If never seen before, an accurate descrip-
tion of the shape can help ease the task for a human who is looking for
an object. Data scarcity in agriculture is primarily due to the labor-
intensive and cost-intensive nature of collecting, as well as the require-
ment for expertise to label them. Our task of leaf detection has only
one kind of object, which has some general shape features. To make the
task of learning easier from a comparatively smaller dataset, we auto-
matically learn shape prototypes from leaves and use them as templates
to generate shape-specific features to incorporate prior knowledge into
the neural network. We use this method to generate prototypes from
the Plant Village dataset and use them for detection in the Plant-Doc
dataset to improve the mean average precision (mAP) by 3% over the
state-of-the-art Faster-RCNN model. These kinds of experiments show
the cross-dataset generalizability of the proposed method.

Keywords: Template matching · Feature fusion · Shape prior

1 Introduction

Object detection in computer vision is known for its dependency on a large
amount of training data to produce high-quality performance. In domains like
agriculture, it has been a challenge to gather data to train reliable models due
to the labour and cost intensiveness, required expertise in labeling and the sea-
sonal nature of agriculture. This study focuses on one such problem, namely leaf
detection in field images.

Plant disease detection from leaf images has been in the research scenario
for some time now. Sevaral works [1–3] on the Plant Village [4] dataset have
shown remarkable results in disease classification tasks. The Plant Village [4]
dataset consists of 61486 leaf images taken in laboratories with only one leaf
present in the image with proper illumination. For that reason, models trained
on this dataset fail when applied to fields. Images taken in fields contain multiple
leaves with other natural elements like branches, flowers, fruits, insects, or soil.
To remove these kinds of noises from images, researchers have framed it as an
object detection [6–8] task where leaf is the common object of interest and dif-
ferent diseases are of different classes. In [6], the author shows how a secondary
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15315, pp. 442–457, 2025.
https://doi.org/10.1007/978-3-031-78354-8_28
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(a) (b) (c) (d) (e) (f)

Fig. 1. In the figure we can see (a)input image and (b)a learned leaf prototype; (c),
(d) and (e) are prior matching results of the input image with different scales(64 × 64,
128 × 128, 256 × 256) of the leaf prototype; in (f) we can see the predicted bounding
boxes from our model drawn on the input image

classification unit trained for plant disease classification can improve the classi-
fication part of the detection. Models proposed in [1–3] can be fine-tuned and
used for efficient classification given that leaves have been accurately identified
and localised in field images.

Detecting leaves accurately is a very challenging task. Leaves come in all
kinds of shapes, scales, textures, and colours, resulting in high intra-class varia-
tion. Other than that, in field conditions, the leaves are very densely populated,
sometimes creating occlusion in vision. The occlusion of the object increases the
challenge of detection significantly. Also, some parts of the leaves can be under
shadow making that part darker to easily deceive the state-of-the-art detection
models. Leaves have some refelective properties which can make them over-
exposed in photographs taken under bright sunlight, creating another obstacle
in leaf detection.

To overcome all these challenges, we propose a novel method that helps
improve detection performance with the help of shape priors. We use a clustering
algorithm [9] to learn shape priors, which we use to help the model learn better
to detect the object of interest from a small number of data points.

2 Related Works

Artificial intelligence (AI) and machine learning (ML) have found applications
in various domains; agriculture is one of them. In agriculture, AI and ML are
being used in precision farming, yield forecasting, weed and disease detection,
etc. [10]. Vision-based systems are being extensively developed due to the very
fast development of smartphones in the last decade, making them cheap as well
as convenient.

The introduction of the Plant Village [4] dataset paves the way for plant
disease detection to be framed reliably as an image-based pattern recognition
problem. Mohanty et al. [1] for the first time use convolutional neural networks
(CNN) for the classification of diseases in Plant Village. They use GoogleNet and
AlexNet networks, which respectively reach 99.34% and 99.27% accuracy [1]. In
consecutive work on the same dataset, they try to approach this problem in
a different way [2]. Ahmed et al., in their work, make use of different image
features like standard deviation and mean of different colour channels, entropy,
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inverse difference, etc. for disease classification, reporting a 99.31% accuracy. As
of now, an ensemble model has shown 100% classification accuracy for disease
detection in the Plant Village dataset [4]. In [11], the authors use a histogram of
oriented gradients (HOG) [13] along with features extracted by a CNN backbone
for disease classification. This shows the possibility of feature fusion between
learned deep representations and conventional image processing based features
for better convergence of the network.

In a different line of work related to plant disease detection, researchers
have framed the work as an object detection problem. Fuentes et al., in their
works [6–8], have applied and improved different object detection algorithms for
disease and pest detection in tomato plants. In [8], he experiments with different
baseline algorithms, namely faster region-based convolutional neural networks
(Faster-RCNN) [16], single-stage detectors (SSD) [19], and region-based fully
convolutional networks (R-FCN). In the following works, he improves the detec-
tion performance with the help of a secondary diagnosis unit [6] and control
classes [7] that improve the classification part of the detection. This approach
performs better in real-time field scenarios.

Object detection is one of the fundamental tasks in computer vision. Ear-
lier methods used handcrafted features like edge features, corner features, tem-
plate matching, etc. These methods, though fast and lightweight, are unable
to generalise to different scales and lighting. The Viola-Jones model [12] fol-
lowed by the discovery of HOG features [13] successfully demonstrate the use
case of machine learning techniques for object detection. In 2014, Girshick et
al. [14] first used deep learning for object detection, revolutionising the field. In
his work [14], Girshick proposes the region-based convolutional neural network
(RCNN). RCNN uses selective search algorithm to propose potential bounding
boxes. A CNN backbone generates deep-feautre embeddings of the proposed
regions, which are then used by class-specific SVM classifiers for the classifi-
cation of the object. In the subsecuent work, the author improves the speed
and accuracy of the model by introducing the Fast-RCNN detector, which can
generate feature embeddings for all the proposed regions together and uses a
multi-layer perceptron for classification. The most widely used and latest model
from the RCNN family is Faster-RCNN [16]. Ren et al. in [16] introduce region
proposal networks (RPN), which are convolutional neural networks doing the
same task that selective search does for RCNN but in a more precise manner.
RPNs can learn to propose regions from the dataset, bringing down the number
of proposals needed for accurate detection. It opens up a computation space for
heavier classifiers down the line for the classification of the object. Single-stage
detectors like you only look once (YOLO) [18] and single-shot multibox detec-
tors (SSD) [19] were introduced later on for faster, real-time detection. These
methods don’t use region proposals like Faster-RCNN [16], which is a two-stage
detector. The most recent work on object detection based on transformer archi-
tecture is detection transformer (DETR) [20]. DETR [20] uses a CNN backbone
to generate features, which are then passed on to an encoder-decoder architec-
ture. The decoder directly proposes a set of bounding boxes. The previous works
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used a set of priors like anchors and anchor boxes, whereas DETR [20] is inde-
pendent of priors and uses bipartite matching between targets and prediction.
They introduce a novel Hungarian Loss [20] for bipartite matching, creating a
paradigm shift in the field of object detection.

3 Our Method

3.1 Generating shape priors

Suppose we have an object detection dataset, D with bounding boxes present
in it. Suppose D′ is a dataset containing the objects of interest present in D
with only one object present in one image. In absence of a D′, it can be created
by cropping the bounding boxes from D. This D′ dataset will be used to learn
shape prototypes to improve the object detection performance in D. Suppose
the images present in D′ are represented as I ′

k where k ∈ 1, 2, ...N ′ where N ′ is
the number of samples present in D′.

The images in D′ are converted to grayscale to only retain shape features.
These grayscale images have to be segmented with the help of a segmentation
algorithm that can remove the background leaving only the object of interest in
the image. We apply the “Deep Transformation-Invariant Clustering” [9] algo-
rithm created by Monnier et al. to learn shape prototypes. Aim of the clustering
algorithm is to generate n clusters of the dataset D′. A set of prototypes(mean
of clusters) Pi are initialized randomly in the beginning. A set of parametric
transformations φfi(I′

k)
are chosen to be applied on the prototypes, where the

parameter of the transformation, fi(I ′
k) is dependent on the sample with which

we have to calculate the distance of the transformed prototype. fi is a learnable
function which takes the sample I ′

k as input and generates parameters of the
transformation φ. The transformation aligns the prototype with the sample to
accurately measure the distance with it so that the sample can be assigned to a
cluster more accurately. The paper proposes a loss function of the form

LDTI(P1:n, f1:n) =
N ′∑

i=1

l(φf1(I′
i)

(P1), ..., φfn(I′
i)

(Pn)) (1)

Here P1:n and f1:n represent the set of all the prototypes and the set of learnable
functions associated with the prototypes respectively. l is the loss function of the
corresponding clustering method. In case of the k-means DTI clustering, the loss
takes a form

LDTIK−means(P1:n, f1:n) =
N ′∑

i=1

min
u

∥∥I ′
i − φfu(I′

i)
(Pu)

∥∥2 (2)

If this loss is minimized iteratively with alternating optimization method for
both Pi’s and the parameters of fi’s, the model jointly learns the prototypes
and the parameters of the parameter-prediction-networks (fi’s). The iterative
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optimization results in better cluster assignments which in-turn result in better
prototype generation and vice-versa.

This method does prototype based clustering in pixel space for which the
generated prototypes are visually interpretable. As this algorithm is invariant
to a given set of parametric transformations (affine,color,spatial,morphological),
it is suitable to learn prototypes from object instances of different scales, shape
and orientation. DTI-Clustering algorithm learns deep parameter predictors (fi)
which predict transformation parameters for each prototype. These parameters
are used as inputs for transformation modules. Suppose we learn n number of
prototypes from D′ and Pi is the i’th prototype where i ∈ 1, 2, 3, ..., n.

Fig. 2. Fourteen of Our fifty prototypes that we generated from Plant Village [4] with
the help of DTI Clustering algorithm [9]. (Best seen in digital version)

3.2 Prior matching

Template matching is one of the oldest methods in object detection. Let, we
apply m number of transformations on each prototype, Pi which provides us
with n × m number of priors, where P j

i is the i’th protorype transformed by
the j’th method. I is an image from the dataset D. While detecting object in
the image, I we convert it to grayscale image Ig and apply prior matching on it
using P j

i priors. This generates n × m number of feature maps for us, Ri
j or rij .

We use normalized correlation coefficient and correlation coefficient method for
prior matching [23].

The correlation coefficient between the prior P j
i and region Ig(x, y) of the

image I is given as,

R(x, y) =
∑

x′,y′
(P j

i (x′, y′) · Ig(x + x′, y + y′)) (3)

and the normalized cross correlation is given by,

r(x, y) =
R(x, y) − μ

σP j
i

· σIg

(4)
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where σP j
i
, σIg and μ are standard deviation of the prior, standard deviation of

the image region Ig(x, y) and mean of the prior.
Given an image Ig of dimension H × W and a prior P j

i of dimension w × h
generates a matching result of dimension (W − w + 1) × (H − h + 1) which is
smaller than the image I.
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Fig. 3. Architecture of our proposed model for feature fusion in object detection with
a MobilenetV2 backbone and Faster-RCNN object detection head [16]

3.3 Feature fusion

The results generated with prior matching, rji being smaller than the image in
dimension is resized in the same dimension of the image, H × W . There are a
total of n × m results generated from the prior matching. These results, rji are
stacked together creating a tensor of dimension H ×W × (n×m) where (n×m)
can be thought as the number of channels of an image.

Our method uses a backbone architecture which takes two inputs and gen-
erates feature maps. We use two same CNN architectures parallelly in the back-
bone. One takes the image of dimension H × W × 3 as input and the other one
takes H × W × (n × m). One of the architecture learns to summarise features
from the RGB image whereas the other one learns to summarise the features
generated from prior matching results. Feature maps generated from both these
CNN architectures are of same spatial dimension. This helps to fuse the features
together. As this is an object detection task, preserving spatial information in
every stage is very important. For that reason we apply channel-wise concate-
nation for feature fusion.

3.4 Object detection

These fused features are then passed on to an object detection head for it to
predict the boxes,scores and labels. Boxes are given as a tensor B of dimension
N × 4 made up of vectors bi of dimension 1 × 4 in a format of [x1, y1, x2, y2]
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Algorithm 1 Object detection with prior matching
1: Read RGB Image I
2: Resize I to W × H
3: Convert I to grayscale Ig
4: Initialize list MR = []
5: n ← number of prototypes
6: m ← number of scales
7: for i ← 1 to n do
8: for j ← 1 to m do
9: prior is P j

i

10: R = PriorMatching(Ig, P
j
i )

11: resize R into W × H
12: append R in MR
13: end for
14: end for
15: stack MR ← Mr ∈ R(n×m)×H×W

16: Frgb = BackboneRGB(I)
17: Fmr = BackboneMR(Mr)
18: F = ChannelwiseConcatanation(Frgb, Fmr)
19: B,S, L = DetectionHead(F )
20: return boxes B, scores S, labels L

where i ∈ 1, 2, ..., N . (x1, y1) is the top-left vertex and (x2, y2) is the bottom-
right vertex of a bounding box bi. N is the number of bounding boxes predicted
by the model for image. The scores are given as a tensor S of dimension N × 1
where each element of the tensor si ∈ [0, 1]. si is a confidence score for the i’th
bounding box. The model predicts class labels as tensor L of dimension N × 1
where each element li ∈ 0, 1. Here label 0 represents background and label 1
represents object.

4 Experiments and Results

4.1 Experimental setup

We have used the PyTorch framework to implement this work on a system that
has an RTX 3060 GPU with 12 GB of RAM. The system runs on an Intel
i7-11700K processor and 16GB of RAM.

4.2 Dataset description

Plant Village [4] dataset consists of 61486 leaf images. There are 39 classes
of leaves and background present in this class. The classes are plant-disease
pairs. This dataset was collected in laboratory conditions, with one leaf in the
image. Models trained on this dataset fail in real-time field conditions due to
the presence of other leaves or objects.
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Fig. 4. Comparison of (a)regression loss,(b)classification loss,(c)objectness loss of
RPN,(d)regression loss of RPN and (e)total loss between our model and Faster-
RCNN [16]

Plant-Doc [5] is also a plant disease detection dataset. There are two major
advantages in using this dataset. This dataset was created by web scraping,
and a major portion of the images are field images. Two, this dataset has an
object detection dataset where leaves are the object of interest classified into 28
different plant-disease pairs. There are 8923 instances of leaves in a total of 2568
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images. Training and testing data points are divided between 2355 and 243 in
the dataset, and we use the testing dataset for validation.

4.3 Experimental setup

We have used the PyTorch framework to implement this work on a system that
has an RTX 3060 GPU with 12 GB of RAM. The system runs on an Intel
i7-11700K processor and 16GB of RAM.

4.4 Learning shape priors

Plant Village [4] dataset being clean is very suitable for learning prototypes. Leaf
prototypes used as prior were learned from the Plant Village dataset. The images
are first converted into grayscale with the help of the grayscale transformation
present in the Pytorch library [22], and the background is removed to keep only
the foreground leaf with the help of ‘rembg’ library [21]. This helps us segment
the object of interest present in the foreground efficiently. As only the object of
interest is present now, learning priors based on shape is easier for the model.

Table 1. Leaf detection performancre of different state-of-the-art object detection
models on Plant-Doc [5] dataset

Architecture mAP(%)

YOLOv8 [28] 34.09

DETR [20] 8.61

Faster-RCNN [16] 46.8

Ours(Prior matching method: CCOEFF-NORMED [22]) 49.44

Ours(Prior matching method: CCOEFF [22]) 48.69

4.5 Leaf detection

To train our object detection model, we use the stochastic gradient descent
optimizer. The learning rate is initially 0.005. A learning rate scheduler with
a step size of 20 epochs and a decay rate of 0.8 is employed for training. The
optimizer has momentum and decay rates of 0.9 and 0.0005, respectively. There
are only two classes: leaf and background.

We compare the performance of our model with different benchmark models
of object detection. Our experiments are done on the Plant-Doc [5] dataset. In
our experiments, the YOLOv8 [28] architecture reaches 34.09% mAP, Faster-
RCNN [16] reaches 46.8% mAP, and DETR [20] converges at 8.61% mAP. Our
model manages to reach 49.44% mAP, beating the best-performing model by
2.64%.



Robust Leaf Detection using Shape Priors within Smaller Datasets 451

Ground Truth Faster-RCNN Our Model

Fig. 5. In the first column we can see the ground truth boxes drawn on some input
images from the Plant-Doc [5] Object Detection dataset. In the second and third col-
umn predictions from baseline Faster-RCNN [16] and Our model are shown respectively
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Fig. 6. Validation-mAP comparison of our model and Faster-RCNN [16]

The poor performance of DETR can be due to the absence of sufficient data
for training as transformer architectures require huge amount of data to perform
effectively [29].

These results show that our method is able to detect leaves with better
precision than the existing state-of-the art methods on leaf detection. In figure 5,
we can see the predictions of Faster-RCNN [16] and our model side-by-side. In all
the images, we can see that the baseline Faster-RCNN [16] model predicts a lot of
false positive detections, especially if there are more leaves present in the input
image, whereas our model predicts a smaller number of accurate predictions.
A detection in the last row shows that our model is able to detect very small
leaves, and if we look carefully, our model is also able to detect images from the
backside.

The graphs in figure 4a, 4b, 4c, and 4d are plotted for four different losses
used to train the Faster-RCNN [16] model for 150 epochs. In 4a, 4b, 4d, we can
clearly see that the losses converge with increasing epochs very well for our model
compared to the baseline Faster-RCNN [16]. The total loss plotted in figure 4e
also supports the fact that our model converges better than the baseline Faster-
RCNN [16] for leaf detection. The graph plotted in figure 6 shows that our model
is able to converge a lot faster than the Faster-RCNN [16] model in a smaller
number of epochs.

5 Ablation Studies

5.1 Prior matching

We use six different methods of prior matching present in the open cv [22]
library to generate matching results which we use as input to the CNN backbone.
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Table 2. Leaf detection performance of our method with different methods of prior
matching [22]

Prior matching method Method name mAP(%)

Correlation coefficient [23] CCOEFF 48.69

Normalised correlation coefficient [23] CCOEFF-NORMED 49.44

Cross correlation coefficient [24] CCORR 47.12

Normalised cross correlation coefficient [25] CCORR-NORMED 47.76

Squared difference [26] SQDIFF 46.51

Normalised squared difference [27] SQDIFF-NORMED 46.33

Our experimental results showcased in table 2 and figure 7 show that using the
normalised correlation coefficient(CCOEFF-NORMED [23]) implented by the
open cv library results into best performance of our model for leaf localization.

Fig. 7. Validation-mAP comparison for different prior matching methods used with
our method

5.2 Prior matching with different scales of priors

We use unique combinations of three different scales of priors to study the depen-
dence of our method on scales. We use three different scales of 64×64, 128×128
and 256 × 256 for the resolution of the prior. We experiment taking each scale
at a time. For priors of scale 128 × 128 and 256 × 256 we get detection mAP of
45.78% and 45.97% respectively. Whereas the performance for scale 64 × 64 is
comparatively low standing at 40.49%. When we use combination of two scales,



454 D. Misra et al.

Table 3. Leaf detection performance of our method with different scales for prior
matching

Scale of prior mAP(%)

(64 × 64) 40.49

(128 × 128) 45.78

(256 × 256) 45.97

(64 × 64), (128 × 128) 43.33

(128 × 128), (256 × 256) 44.95

(64 × 64), (256 × 256) 44.53

(64 × 64), (128 × 128) and (256 × 256)49.44

for using 128 × 128 and 256 × 256 we get the mAP of 44.95%. From table 3 we
can see that our model outperforms the baseline only when all three scales are
used together with a mAP of 49.44%.

5.3 Effect of shadows and sunlight

In figure 8 we can see that in the first two images, a part of the leaf is under
shadow. Though this makes the job of the model harder, our model can be seen
to be performing at par with the baseline Faster-RCNN. The images seen in the
third and fourth images from left in figure 8 are of good sunlight conditions. In
these conditions our model clearly out performs the baseline model.

(a) (b) (c) (d)

Fig. 8. Leaf detection performance of our model under shadows and sunlight condi-
tions.(a), (c) are predictions from Faster-RCNN and (b), (d) are predictions from our
model.

5.4 Compound leaf detection and false positives

In the examples of detection presented in figure 9 we can see that different parts
of a single leaf are being predicted as different leaves. All of the leaves present
in 9 are tomato leaves. Tomato leaves are compound leaves which are made up
of multiple leaflets that resemble the shape of a leaf and get detected by the
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model. From the results we can observe that our model is getting less confused
by this phenomena than the baseline Faster-RCNN model, improving precision.

(a) (b) (c) (d) (e) (f)

Fig. 9. We can see how the model can get confused as it returns different parts of
single leaf as different leaves. (a), (c), (e) are predictions from Faster-RCNN and (b),
(d), (f) are predictions from our model.

5.5 Backbone independence

Although all our experiments are conducted with a MobileNetV2 backbone we
also experiment with ResNet18 [28] backbone in which we can see that the base-
line Faster-RCNN performs with a mAP of 33.22% whereas our model performs
with a mAP of 39.98%. These results show that even with a ResNet18 back-
bone, our method has been able to improve the performance by 6.76% which
indicates that our method is independent of the CNN backbone used for feature
extraction.

6 Conclusion

From the experiments conducted, we can conclude that the shape information
of an object can be successfully used with deep object detection models. Using
shape priors is very helpful in cases where a smaller amount of data is present
to improve precision. When handcrafted features for a specific task are used
along with deep embeddings, the model converges and performs better, as some
task-specific information makes the learning process easier for the model.
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Abstract. Hyperspectral image(HSI) denoising addresses noise impact
during image acquisition. Transformers have gained notable prominence
in the field of denoising, but their quadratic self-attention complexity
poses computational challenges, hindering global information processing.
Classical window-based self-attention limits non-local information flow,
hampering large-scale object capture in HSI. Furthermore, spectral vari-
ations among neighboring bands introduce redundancy, which burdens
the model and diminishes token variability, resulting in over-smoothing
in the attention map. To address these issues, we propose a novel
method, named Spectral Aggregation Cross-Square Transformer(SACT).
We introduce a cross-square self-attention mechanism to enhance infor-
mation exchange between windows, capturing long-range dependencies
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windows. Additionally, a spatial-spectral aggregation self-attention mod-
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Fig. 1. Denoising performance vs. Flops(G) and Time(s) under CAVE dateset [1].

1 Introduction

Hyperspectral images represent a precious form of remote sensing data, offering
the capability to capture surface feature information across a broader spectral
range. HSI encompasses the spectral characteristics of objects as they reflect or
emit light at different wavelengths, providing a wealth of information. Unlike
traditional RGB and gray images, the unique spectral properties of HSI enable
them to store more detailed and comprehensive information. Consequently, HSI
finds applications in various fields, including remote sensing, object detection,
agriculture, image processing, and more[2,3].

In recent years, model-based approaches have been the primary method
of denoising HSI. These approaches combine signal processing techniques with
mathematical models to identify the sources of noise in HSI. However, the appli-
cation of model-based methods to real-world HSI denoising is hindered by the
fact that real-world noise does not follow the assumptions of artificial mathe-
matical models, presenting a significant challenge in practical scenarios.

In contrast to model-based methods, recently deep learning-based HSI denois-
ing approaches primarily employ an end-to-end, data-driven methodology. These
approaches directly learn noise patterns and features from noised HSI to achieve
more precise denoising performance. Currently, there are two main DL architec-
tures: Convolutional Neural Networks (CNNs) and Transformers. CNNs[4] show
excellent performance, but are usually constrained by local filters when dealing
with HSI, making it challenging to capture global spatial-spectral correlations.
On the other hand, ViTs[5] are primarily designed to process spatial information,
with limited consideration to exploit the distinctive spectral properties inherent
in HSI. This characteristic leads to the computation of a significant volume of
redundant information within the context of HSI.

To address the issues above, we propose a spectral aggregation cross-square
Transformer, aimed at leveraging spatial-spectral information in HSI more effec-
tively and efficiently to achieve comprehensive denoising, as shown in Figure 1.
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First, we design a Cross-Square Self-Attention(CSSA). By incorporating triple-
interacting receptive fields to facilitate inter-window information dissemination,
CSSA can better capture spatial similarities. Specifically, CSSA partitions fea-
ture randomly into three distinct segments to construct cross-square attention
regions, ensuring that information from different areas of HSI can be analyzed
efficiently and comprehensively.

In addition, we develop a Spatial-Spectral Aggregation Self-Attention(SASA)
to improve spatial-spectral context modeling further. SASA combines the neigh-
boring spatial regions of adjacent bands into a single powerful token. This allows
our network to capture the global contextual relationships between the spatial
and spectral dimensions. Thanks to CSSA and SASA, our proposed SACT not
only effectively exploits the intra-band long-range dependencies in the HSI, but
also provides a meaningful tessellation, thus achieving a more comprehensive
denoising effect.

Experimental denoising results on various datasets demonstrate that our
SACT outperforms existing methods in terms of objective metrics on synthetic
datasets and visual quality on real datasets. In summary, the primary contribu-
tions of our work are as follows:

– We propose a spectral aggregation cross-square Transformer for HSI denois-
ing. SACT allows for a more comprehensive exploration of spatial non-local
information and inter-band similarity in HSI.

– We propose Cross-Square attention and Spatial-Spectral Aggregation to
enhance spatial information exploration, learn global HSI representations effi-
ciently, and maximize denoising potential in the SACT network.

– We evaluate SACT on synthetic and real-world HSI for denoising. Our exper-
iments show that our model outperforms other models both quantitatively
and visually.

2 Related Work

2.1 Model-Driven-Based Methods

Traditional HSI denoising methods often rely on model-driven approaches, itera-
tively optimizing with manually crafted priors to restore clean HSI. For example,
[6]estimates noise by considering pixel averages and structures, while[7] adap-
tively adjusts noise thresholds using a total variation to better utilize spatial-
spectral correlation. Recent methods incorporate low-rank matrix approximation
and tensor factorization concepts, such as combining spatial-spectral information
with low-rank matrix decomposition and total variation regularization[8]. Simi-
larly, we aggregate global spatial-spectral information by guiding the denoising
network with tokens that aggregate more effective information.

2.2 Convolutional Neural Networks

CNNs, unlike model-based approaches, automatically extract noise patterns
without prior knowledge of noise types, garnering significant attention. Methods
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like leverage 2D convolutions for denoising[4,9–12], demonstrate strong perfor-
mance in spatial and spectral domains. Additionally, 3D convolution methods
excel in capturing spatial-spectral structural information in high-dimensional
data. QRNN3D effectively models spatial-spectral dependencies and global spec-
tral correlations or introduces innovative regularization terms to mitigate HSI
noise, enriching the landscape of HSI denoising approaches[4,13].

2.3 Vision Transformer

The Vision Transformer (ViT) has gained traction in computer vision recently
by adopting the Transformer model, originally designed for natural language
processing tasks, as a novel architecture [5,14]. ViT exhibits strong performance
across various computer vision tasks, including image classification, object detec-
tion, and segmentation, owing to its ability to handle images of arbitrary sizes
and demonstrate strong generalization capabilities[15–17].

In HSI denoising methods based on the transformer architecture, [18]
enhances denoising capabilities with window attention modules and global spec-
tral attention, focusing on spatial similarity and spectral dependencies. [19]
employs rectangular window attention and extracts global-level low-rank char-
acteristics of spatial-spectral cubes to suppress noise, exploring non-local spatial
similarities and global spectral low-rank properties of HSI. Inspired by [20], we
shift attention to higher-dimensional features, deploying the strategy across the
entire global HSI to aggregate more powerful spatial-spectral tokens effectively.
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3 Methods

3.1 Overall Network Architecture

Our proposed spectral aggregation cross-square Transformer comprises three lay-
ers, illustrated in Figure 2 (a). Each layer starts with a 3x3 convolutional oper-
ation for initial feature extraction from the input HSI. Subsequently, a spectral
aggregation cross-square block is employed for spatial-spectral modeling, featur-
ing two parallel branches: CSSA and SASA. More explanations of modules are
provided in the supplementary material.

SACT integrates a robust self-attention mechanism for capturing long-range
dependencies in the input spatial-spectral data. This module facilitates the net-
work’s understanding of non-local relationships among HSI regions, enhancing
denoising efficacy. Initially, the network performs convolution operations on the
input data:

F = K1 ⊗ Y (1)

where Y represents the input HSI, K1 is a 3×3 convolutional kernel, ⊗ denotes
the convolutional operation, and F represents the feature map. SACT is partic-
ularly effective in dealing with features at different scales, which is essential for
denoising HSI. This is especially important since HSI usually contains multiple
spectral bands with different spatial resolutions. The network comprises three
Transformer layers, the structural process of each layer can be represented as:

F1 = CSSA(LN(F ))
F2 = SASA(LN(F ))

(2)

The SACT model offers a straightforward structure, ease of implementation,
and adjustable parameters, making it a valuable tool for HSI denoising. It com-
prises two modules: CSSA and SASA, responsible for denoising spatial and spec-
tral features of HSI, respectively. This architecture effectively extracts valuable
information from input data, yielding high-quality denoising outcomes. To mit-
igate gradient issues and enhance feature fusion, skip connections are employed
in, simplifying network training and boosting performance. The denoised HSI
can be represented as follows:

Xo = K2 ⊗ (F ⊕ (F1 + F2)) (3)

where Xo represents the denoised HSI, K2 is a 3×3 convolutional kernel, and ⊕
denotes the skip-connections operation.

3.2 Cross-Square Self-Attention

For a given noisy HSI feature, it can be represented as FN×H×W×C . C is the
number of channels. To better explain our model, we divide the cross-square
windows into three categories: horizontal, surrounding, and vertical windows,
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represented by h, w, and m, respectively, illustrated in Figure 2 (b). Along the
spectral dimension, we split it into three equal parts:

Fh, Fs, Fv = Split(F )
Fo = Concat(CSSAh(Fh), CSSAs(Fs), CSSAv(Fv))

(4)

where Fo
N×H×W×C denotes the output of CSSA layer, {Fh, Fs, Fv} ∈

R
N×H×W×C

3 represents the features that are divided into three equal parts.
These parts are then separately processed through horizontal, surrounding, and
vertical CSSA layers, respectively.

Let’s take the example of the vertical profile of CSSA. Given a rectangu-
lar region with a size of (h,w), it is divided into n = H×W

h×w patches in the
spatial dimension (where h < w). In the spatial dimension, F v is divided into
{F v

1 , F v
2 , ..., F v

n} , where {F v
i } ∈ R

h×w×C
3 .Then all the features F v

i are passed
through the Cross-Square Self Attention. Subsequently, each feature patch is
linearly transformed as follows:

qi, ki, vi = linear(F v
i )

Qi = F v
i Wqi ,Ki = F v

i Wki
, Vi = F v

i Wvi

(5)

where query Qi, key Ki, value Vi are all ∈ R
h×w× C

3 , Wqi ,Wki
,Wvi

are learnable
parameters ∈ R

C
3 ×C

3 . Afterward, Qi, Ki, and Vi are divided into h heads using
the projection method:

Qi = {Q1
i , Q

2
i , Q

h
i }

Ki = {K1
i ,K2

i ,Kh
i }

Vi = {V 1
i , V 2

i , V h
i }

(6)

Then, the profile self-attention for each head is computed as follows:

Fi
j = SoftMax(

Qi
jKi

j

√
d

+ B)Vi
j , j = 1, ..., h (7)

where B represents a learnable parameter incorporating position information.
In summary, the output is primarily calculated as:

CSSA(F v) = Integration(F 1
1 , ..., Fn

h ) (8)

Similar to the vertical profile self-attention branch mentioned above, the cal-
culation process for the surrounding and horizontal self-attention branches is
also consistent. The main difference lies in the sizes of the horizontal, surround-
ing, and vertical windows, which are [h,w], [m,m], and [w, h], respectively. The
design of the Cross-Square approach enables us to utilize both local and non-local
spatial similarity information effectively. The overlapping surrounding regions
are assigned higher weights, thus taking advantage of the high information den-
sity inherent in HSI.
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3.3 Spatial-Spectral Aggregation Self-Attention

For each SASA, the Spatial-Spectral Aggregation distance used for initialization
is denoted as λ = 3. First, feature fusion is carried out in the spectral domain:

F a = Aggregate(F i∗3−1, F i∗3, F i∗3+1), i = 1, 2, ..., C//3 (9)

where F a represents the aggregated features in R
c×H×W , with c = C

3 , aggregat-
ing every three spectral bands together.

To reduce computational complexity while retaining essential features, as
shown in the Figure 2 (c), we divide the features into tokens with different spatial
strides of h and w, following the concept from [21], F k

ij = Split(F a),where k =
{1, ..., c}, i = {1, ..., H

h }, j = {1, ..., W
w }. The spatial feature information is aggre-

gated once again through a loop of 9 iterations:

Qij
k = SoftMax(

Fij
kSij

kT

√
d

)

Sij = SoftMax(QKT
/√

d)

(10)

where Sij represents the original region of the ij-th feature area before aggrega-
tion, with a size of 9×R

h×w. d represents the step size of the loop, k represents
the number of loops, ranging from 1 to 9. St represents the feature area after
aggregation, as shown in Figure 2 (c).

Since St is the aggregated feature of adjacent regions in spatial-spectral,
applying a self-attention mechanism as follows:

Q = SijW q,K = SijW k, V = SijW v (11)

By using a similar calculation method as in subsection 3.2, SASA enhances global
contextual dependencies along the spatial and spectral dimensions.

Attn(S) = SoftMax(
QKT

√
d

)V (12)

Finally, we obtain the output of a SCABlock by concatenating the results of
CSSA and SASA by 3 and then reshape to Fpowt

N×H×W×C .

3.4 Complexity Analysis

In this module, a complexity comparison is conducted between our proposed
SACT and the standard global spatial-spectral self-attention method.

Global Spatial-Spectral Self-Attention: The complexity of the standard
global spatial-spectral self-attention can be represented as:

Ω(G3SA) = Ω(H2 × W 2 × C) + Ω(H × W × C2) (13)
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Cross-Square Self-Attention: The formula for Cross-square Self-
Attention can be expressed simply as:

CSSA(W ) = Softmax(q(W )k(W )T /
√

d)V (W ) (14)

where CSSA(W ) represents the attention map computed over the input fea-
tures, and W denotes the input feature windows with sizes [h,w], [m,m], and
[w, h]. Since we randomly split the spectral dimension into three windows, the
computational complexity of CSSA can be expressed as:

Ω(CSSA) = (
2 × H2W 2 × C

h × w × 3
+

H2W 2 × C

m2 × 3
) (15)

Spatial-Spectral Aggregation Self-Attention: The formula for Spatial-
Spectral Aggregation Self-Attention can be expressed as:

Ω(SASA) = (
H × W × C2

t2 × 9 × 3
) (16)

where t represents the spatial resolution size of segmented spatial-spectral tokens.
The total computational complexity of our model can be expressed as:

Ω(SACT ) = Ω(CSSA) + Ω(SASA) (17)

Since (h,w, t) are factors of (H,W ), where (H,W,C) are predefined param-
eters. Our method’s computational complexity is lower than that of the global
spatial-spectral attention mechanism for any {h,w, t,m} < {H,W}.

4 Experiments

In this section, we conduct experiments on both synthetic and real data. Syn-
thetic data are corrupted with mixed noise. We comprehensively evaluate our
proposed model and design experiments to analyze its effectiveness. More details
of experiments and datasets are provided in the supplementary material.

4.1 Experimental Setup

Training Datasets To train our proposed SACT, we follow a training dataset
configuration consistent with [22], randomly selecting 100 images from the ICVL
dataset[23]. After central cropping, each processed image has a spatial resolution
of 512×512 and 31 spectral bands. Subsequently, through operations like random
cropping, rotation, and flipping, the spatial resolution of the images is adjusted
to 64×64, resulting in approximately 53,000 training samples.
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Testing Datasets For the synthetic dataset, our experiments include the ICVL,
CAVE[1], and KAIST[24] datasets. In the ICVL test set, we randomly select 50
different images not included in the training set for testing. In the CAVE dataset,
30 images are chosen for testing, each with a spatial resolution of 512×512 and 31
spectral bands. For the KAIST dataset, we select 10 images, and after cropping,
each image has a spatial resolution of 2048×2048 and 31 spectral bands. To
ensure fair testing, we apply normalization uniformly to the test set.

To assess the model’s generalization, testing datasets also include remote
sensing datasets, such as the Washington DC dataset1, Pavia University [25],
and real datasets: Urban [26] and Realistic dataset [27].

Evaluation Metrics and Implementation Details We use three image qual-
ity evaluation metrics, including Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity (SSIM)[28], and Spectral Angle Mapper (SAM)[29].

Table 1. Quantitative comparison on synthetic, remote sensing, and real datasets.
Best in bold, second best underlined.

Datasets + Noise MetricNoisy LRTDTV [30]LLRGTV [31]GRNet [32]MAC-Net [33]T3SC [34]SST [18]SERT [19]SACT

Kaist:N-Gaussian PSNR 18.26 37.33 36.66 30.58 34.33 37.79 36.79 37.77 38.96
SSIM 0.61450.9510 0.9109 0.9131 0.9537 0.9915 0.9774 0.9851 0.9873
SAM 1.07410.2195 0.3678 0.5235 0.4795 0.1603 0.2267 0.1918 0.1677

Kaist:G+Stripe PSNR 18.10 37.16 36.68 30.41 33.37 37.68 36.59 37.57 38.95
SSIM 0.61360.9498 0.9152 0.9093 0.9520 0.9915 0.9779 0.9849 0.9877
SAM 1.07460.2113 0.3510 0.5298 0.4733 0.1678 0.2294 0.1956 0.1724

Kaist:G+Deadline PSNR 17.23 36.49 34.76 30.22 32.82 37.04 36.34 37.35 38.57
SSIM 0.57700.9413 0.8761 0.9044 0.9428 0.9903 0.9762 0.9836 0.9858
SAM 1.09600.2354 0.4268 0.5280 0.4718 0.1888 0.2323 0.1976 0.1788

Kaist:G+Impulse PSNR 15.00 37.03 33.61 28.77 31.02 34.87 35.62 36.58 38.04
SSIM 0.46250.9505 0.8502 0.8870 0.9205 0.9808 0.9726 0.9803 0.9844
SAM 1.09650.2445 0.5109 0.5996 0.5925 0.2561 0.2622 0.2262 0.1944

Kaist:Mixture PSNR 13.70 35.60 32.14 28.29 28.41 33.62 34.65 35.71 36.84
SSIM 0.42160.9355 0.8166 0.8847 0.9041 0.9750 0.9638 0.9761 0.9787
SAM 1.11330.2503 0.5218 0.5780 0.5840 0.2958 0.3050 0.2459 0.2270

ICVL:Mixture PSNR 13.97 34.46 31.39 31.67 30.75 35.68 39.58 40.44 41.68
SSIM 0.33920.9184 0.8756 0.9557 0.9332 0.9790 0.9928 0.9940 0.9955
SAM 0.89870.1127 0.2538 0.1431 0.2673 0.1389 0.0480 0.0470 0.0439

CAVE:Mixture PSNR 14.17 33.82 27.12 28.44 28.53 33.61 34.89 35.86 37.03
SSIM 0.41880.9085 0.7221 0.8899 0.8920 0.9728 0.9616 0.9737 0.9785
SAM 1.13710.2938 0.6567 0.6329 0.6234 0.4137 0.4095 0.3403 0.3096

PAVIA:Mixture PSNR 13.89 29.65 28.41 26.57 27.34 31.39 32.85 33.28 34.20
SSIM 0.34000.8963 0.8923 0.8536 0.8813 0.9523 0.9588 0.9653 0.9700
SAM 0.97460.2445 0.3142 0.2815 0.3530 0.2314 0.1555 0.1451 0.1429

WDC:Mixture PSNR 13.98 36.33 34.32 25.14 30.74 30.49 30.59 31.33 37.20
SSIM 0.21480.8597 0.8260 0.7682 0.7740 0.9064 0.8924 0.9098 0.9296
SAM 1.01200.2148 0.3150 0.3255 0.5371 0.1972 0.1860 0.1609 0.1368

Real:Mixture PSNR 22.53 26.58 26.14 26.80 24.25 26.72 26.95 26.51 27.54
SSIM 0.61470.8541 0.8558 0.8987 0.8224 0.9100 0.9118 0.9027 0.9140
SAM 0.61470.0620 0.0626 0.1168 0.1480 0.0576 0.0711 0.0850 0.0676

1 https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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We randomly add the complex noise during network training to enhance
the network’s generalization and robustness. Our training strategy is inspired
by [22]. The learning rate is set to 1e-4. After 70 epochs, the learning rate is
reduced by a factor of 10. The batch size for our proposed network is set to 8,
and training is conducted on a Quadro RTX 8000 for 80 epochs.

4.2 Efficiency analysis

In this subsection, we analyze the performance of different methods regarding
model parameter size and time consumption cost on the CAVE dataset with
noise case 5. All test experiments are conducted on a 3090 GPU, and the results
are presented in Table 2.

SACT demonstrates superior performance when using the Transformer-based
architecture, achieving a great balance between low computational complexity
and a reasonable number of parameters. Compared to other deep learning-based
techniques, it also has faster computation times, demonstrating its remarkable
balance between resource efficiency and performance.

4.3 Experimental Results

To ensure the effectiveness of the comparative methods, for model-based
approaches, we select corresponding test settings, and for deep learning-based
methods, we compare them with their publicly available pre-trained models. For
datasets with a larger number of spectral bands, some comparative methods are
only applicable to data with 31 spectral bands. We employ a sliding window
strategy for these methods (GRNet, T3SC, SST, and SERT) for denoising, and
the average of the results within all windows is used as the final result.

Table 2. Model complexity comparisons, parameter count (M), floating-point oper-
ations per second (FLOPS), and execution time (seconds), using the CAVE dataset
with dimensions of 512×512×31.

Methods QRNN3D [22]GRNet [32]MAC-Net [33]T3SC [34]SST [18]SERT [19]SACT

PSNR 36.55 28.44 28.53 33.61 34.89 35.86 37.03
Params 0.86 41.44 0.43 0.83 4.10 1.91 2.42
GFLOPS 2513.7 610.7 - - 2082.4 1018.9 957.0
Times 0.720 0.466 2.709 0.758 2.265 0.872 0.821

Complex Noise on Synthetic Datasets To assess denoising performance
under mixed noise settings, we conduct comparative evaluations on datasets
ICVL, CAVE, KAIST, PAVIA, WDC, and Real. The upper half of Table 1
presents quantization and noise reduction performance on the KAIST dataset
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under Complex Noise. Notably, SACT achieves a minimum PSNR improvement
of 1.13 dB compared to SERT across various experiments adding case complex
noise to the KAIST dataset. Figure 3 illustrates the visual comparison results
under Case 5 on the KAIST dataset. In particular, we observe that GRNet
exhibits a spectral shift phenomenon during the denoising process, with some
pixels changing from yellow to blue. Similarly, T3SC also experiences problems
with color changes. In contrast, SACT maintains better spectral consistency and
visual fidelity closer to GroundTruth in terms of both spectral and spatial.

The lower part of Table 1 highlights SACT’s exceptional performance on
other synthetic datasets with Gaussian+Mixture noise, suggesting its superiority
in handling images with a wider spectral range. LRTDTV, LLRGTV, and MAC-
Net exhibit some degree of pseudo-artifacts. In contrast, our proposed SACT
method effectively removes Gaussian noise while preserving the details in the
HSI more finely compared to other methods.

Table 3. Classification quantitative (OA) and qualitative results (Kappa) of Indian
Pines dataset. Best in bold, second best underlined.

Metric Noisy LRTDTVLLRGTVGRNetMACNetT3SC QRNN3DSST SERT SACT(Ours)

OA(%) 76.30 88.45 81.75 77.19 76.14 84.29 91.63 84.38 89.59 92.23
Kappa 0.72160.7627 0.7542 0.7308 0.7194 0.81640.9030 0.81820.87930.9097

To validate the model’s performance under real-world noise conditions, we
conducted hyperspectral image denoising experiments on the Urban, Indian
Pines, and Realistic datasets, widely recognized as representative datasets for
real-world scenarios.

Figure 3 in the far right column illustrates the visual performance of various
methods on real datasets. The best PSNR and SSIM values indicate that our pro-
posed SACT excels in real noise removal. The priori global low-rank assumptions
of LRTDTV and LLRGTV align well with the SAM metric changes observed
in denoising on real datasets, thereby mitigating the impact of noise. However,
their performance is poor on additional WDC and other datasets. In contrast,
our advantage lies in performing better across broader datasets, enhancing the
model’s potential to adapt to various HSI denoising tasks. Our proposed SACT
achieved a significant improvement of 0.59 dB in PSNR than others.

To demonstrate the effectiveness and practical significance of hyperspec-
tral denoising for downstream tasks, we conducted classification experiments
on the Indian Pines using denoised HSI produced by the aforementioned meth-
ods. Employing an SVM-based strategy with a 50% data split for training, we
calculated classification accuracy metrics, including Overall Accuracy (OA) and
the Kappa coefficient(Kappa). The results, as presented in Table 3, indicate that
our proposed SACT achieved the highest classification performance, with an OA
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Fig. 3. Visual comparisons on the CAVE datasets under Non-i.i.d Gaussian+Mixture
noise.
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Fig. 4. Visual and classification comparison of denoising on the Indian Pines. The HSI
bands 127, 24, and 10 combine to create the visual pseudocolor image.

Table 4. Ablation study of CSSA and
SASA using base function.

Baseline CSSA SASA Params(M) PSNR(dB) SSIM SAM

� 1.73 33.47 0.8538 0.2311

� � 1.75 36.26 0.9252 0.1374

� � 2.40 34.42 0.8752 0.2201

� � � 2.42 37.20 0.9296 0.1368

Table 5. Ablation study of different spec-
tral enhancement strategies.

Method PSNR(dB) SSIM SAM

Global SE[18] 35.61 0.9112 0.1555
Low-rank SE[19] 36.70 0.9201 0.1559

Spectral-aggregation SE(Ours) 37.20 0.9296 0.1368

of 92.23% and a Kappa coefficient of 0.9097. SACT is capable of recovering more
denoising details in complex HSI while maintaining spectral consistency.

4.4 Ablation experiment

Module Effectiveness Analysis In SACT, we design two modules to extract
spatial-spectral similarity in HSI, named Cross-Square Self-Attention (CSSA)
and Spatial-Spectral Aggregation Self-Attention (SASA). We use global feature
extraction, shallow feature capture, and multi-layer perceptron modules as base-
lines to validate the effectiveness of spatial similarity utilization and spatial-
spectral information fusion. The baseline incorporating the Cross-Square Self-
Attention module is denoted as baseline + C, while the one incorporating the
Spatial-Spectral Aggregation Self-Attention module is denoted as baseline + S.
The results of the validation are presented in Table 4.

Comparison of the effectiveness of different attention window mecha-
nisms and spectral enhancement strategies We evaluate spectral enhance-
ment strategies, including global spectral attention and low-rank memory spec-
tral enhancement. Table 5 presents the quantitative denoising results, allowing
for a comprehensive comparison.
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x

y

Fig. 5. Performance of different Cross-Square receptive fields on the WDC Mall
dataset. In [x, y], x represents the size of the square, and y represents the distance
of the cross (starting from the square’s edge).

4.5 Parameter analysis

We explore the impact of different cross-square attention region sizes and spec-
tral enhancement levels on model performance in Figure 5. Increasing window
size elevates computational demands, initially boosting quantitative performance
before plateauing. Balancing computational cost and effectiveness, we opt for a
receptive field with a square edge length and cross-distance both set to 8.

5 Conclusion

In this paper, we present a spectral aggregation cross-square Transformer for
HSI denoising. Our approach takes advantage of the intra-band correlations and
dependencies within HSI, exploring spatial similarity more thoroughly for a more
accurate spatial restoration. Additionally, we aggregate contextual information
across the entire spatial-spectral domain to learn global HSI representations
efficiently. The proposed modules generate fewer and more powerful tokens for
self-attention operation, resulting in fewer parameters and lower computational
complexity. Experiments on various datasets demonstrate the effectiveness and
superiority of our approach.
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Abstract. Event cameras produce asynchronous and sparse event
streams capturing changes in light intensity. Overcoming limitations
of conventional frame-based cameras, such as low dynamic range and
data rate, event cameras prove advantageous, particularly in scenarios
with fast motion or challenging illumination conditions. Leveraging sim-
ilar asynchronous and sparse characteristics, Spiking Neural Networks
(SNNs) emerge as natural counterparts for processing event camera data.

Recent advancements in Visual Transformer architectures have
demonstrated enhanced performance in both Artificial Neural Networks
(ANNs) and SNNs across various computer vision tasks. Motivated by
the potential of transformers and spikeformers, we propose two solutions
for fast and robust optical flow estimation: STTFlowNet and SDformer-
Flow. STTFlowNet adopts a U-shaped ANN architecture with spa-
tiotemporal Swin transformer encoders, while SDformerFlow presents
its full spike counterpart with spike-driven Swin transformer encoders.

Notably, our work marks the first utilization of spikeformer for dense
optical flow estimation. We conduct end-to-end training for both models
using supervised learning on the DSEC-flow Dataset. Our results indi-
cate comparable performance with state-of-the-art SNNs and significant
improvement in power consumption compared to the best-performing
ANNs for the same task.

Our code will be open-sourced at https://github.com/yitian97/
SDformerFlow.

Keywords: Spiking Neural Network · Event camera · Transformer ·
Optical flow

1 Introduction

Event cameras have a higher temporal resolution compared to traditional cam-
eras, capturing per-pixel intensity changes. The sparse and asynchronous event
streams they produce can directly encode apparent motion patterns (optical
flow), enabling accurate motion estimation in challenging scenarios like fast
motion or low illumination. However, due to the fundamentally different data
throughput of the two camera types, estimating event-based optical flow sug-
gests different approaches than conventional computer vision methods. Recent
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research utilizing Artificial Neural Networks (ANNs) has demonstrated higher
accuracy [10,19] compared to model-based methods [26,28] for event-based opti-
cal flow estimation. ANN layers rely on floating-point calculations and may not
fully exploit the sparse and asynchronous nature of event data. Spiking Neu-
ral Networks (SNNs) have emerged as a promising match for event data. In
SNNs, neurons integrate input spike trains and generate a binary spike when
the membrane potential reaches a threshold, resetting its value afterward. Neu-
rons are active only when spikes arrive, just as individual event camera pixels
are active only when intensity changes. Sharing this event-driven characteris-
tic makes SNNs an energy-efficient option for processing event data. However,
directly training deep SNNs is challenging due to the non-differentiability of
the spike activity. The backpropagation through time with surrogate gradient
method [25] has bridged neuromorphic computing with the deep learning com-
munity, enabling the training of deeper SNNs. Despite this advancement, the
performance of SNNs still lags behind that of ANN methods.

The Visual Transformer (ViT) and its variant architectures have garnered
increasing interest as potential replacements for convolution networks in vari-
ous computer vision tasks in recent years. Traditional convolution-only models
struggle to capture temporal correlation and efficiently represent global spatial
dependencies due to their inherent locality [4,11,15,29]. The integration of ViT,
particularly with spatiotemporal attention, has also shown promising results in
event-based vision tasks, such as monocular depth estimation [42] and action
recognition [1,8]. Combining SNNs with the ViT architecture for event cam-
eras appears to be a natural choice, promising both performance and energy
efficiency. Moreover, the self-attention mechanism in transformers also shares a
biological background with SNNs [34,39,40,43]. While early work proposing the
Spikeformer architectures primarily validates their efficacy on event-based clas-
sification tasks [39,43], their application in event-based regression tasks remains
limited [47].

Solutions for event-based optical flow are primarily dominated by correlation-
based methods [10,19,30], which require substantial computation and memory
resources to compute the pixel-wise correlation volume. Integrating transform-
ers into optical flow models has shown superior performance compared to non-
transformer models in conventional computer vision, particularly excelling in
scenarios involving large displacements due to their ability to capture global
dependencies effectively [15,23,36]. While some works have utilized transformer
architectures for event camera optical flow estimation tasks [18,32], no one has
proposed a pure SNN architecture, specifically utilizing spikeformer, for event-
based optical flow estimation.

In this work, we introduce SDformerFlow, an SNN employing spiking spa-
tiotemporal Swin transformers. Additionally, for better comparison, we propose
STTFlowNet, an ANN counterpart to our SNN model. We conduct end-to-end
training using supervised learning on the DSEC-flow Dataset. Our work marks
the first instance of utilizing spikeformer for optical flow estimation, demon-
strating comparable performance to state-of-the-art SNN optical flow estima-
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tion while significantly reducing energy consumption compared to the baseline
model. Our contributions are threefold: Firstly, we introduce STTFlowNet, a
Swin transformer-based model for event-based optical flow estimation, equipped
with spatiotemporal self-attention to capture dependencies in both the time
and space domains. Secondly, we present the spiking version of our architecture,
SDformerFlow, marking the first known utilization of spikeformer for event-based
optical flow estimation. Lastly, we conduct extensive experiments on datasets
and compare them with baseline models, uncovering the potential of combining
transformers with SNNs for regression tasks.

2 Related work

2.1 Learning-based methods for event-based optical flow estimation

Drawing inspiration from frame-based optical flow techniques, the estimation of
event-based optical flow using deep learning has achieved state-of-the-art perfor-
mance compared to model-based methods [10,26,28]. Early works predominantly
employed a U-Net architecture [3,12,17,46] to predict sparse flow and evaluated
it using masks due to limited accuracy where no events are present. Inspired by
RAFT flow [30], Gehrig et al. [10] proposed E-RAFT and contributed the Dense
Stereo Event Camera (DSEC) Optical Flow Benchmark [9]. Since then, meth-
ods based on recurrent neural networks with correlation features and iterative
refinement strategies have yielded state-of-the-art performance [3,10,18].

Recent studies have shifted their focus towards enhancing the temporal con-
tinuity of optical flow estimation, aiming to fully leverage the low latency char-
acteristics of event cameras [19,27,35], or integrating richer simulated training
datasets [18,37] to improve accuracy. However, these recurrent refinement meth-
ods implicate calculating computationally expensive cost columns and an itera-
tive update scheme that brings latency to the inference phase.

Another line of work based on SNNs emerges as a computationally efficient
solution for event camera optical flow estimation. Early works trained SNNs
using self-supervised learning, yielding sparse flow estimation [12]. More recent
efforts involve training SNNs using supervised learning with U-Net architectures
and trained with surrogate gradient on the DSEC dataset, resulting in dense
flow estimation [2,16]. To incorporate longer temporal correlations into the SNN
model, some works utilize adaptive neural dynamics in comparison with event
inputs containing richer temporal information [16], while others introduce exter-
nal recurrence [27]. In [2], the authors employed 3D convolutions with stateless
spiking neurons, neglecting the intrinsic temporal dynamics of the neurons. How-
ever, the performance of SNNs still falls behind that of ANNs. While some ANN
methods incorporate transformer architectures in some of their stages [18,32]
and show performance improvements, to the best of our knowledge, this is the
first time that SNNs are combined with a transformer architecture for optical
flow estimation.
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2.2 Spikeformer

Recently, the combination of SNNs and transformer architectures has garnered
increasing interest for other tasks in the neuromorphic community [38,40,43].
Zhou et al. [43] initially proposed spiking self-attention, which eliminates the
softmax function as the spike-formed query and key naturally maintains non-
negativity. Building upon this, Yao et al. [39] introduced a fully spike-driven
transformer with spike-driven self-attention, leveraging only mask and addi-
tion operations to facilitate hardware implementation. Recently, Yao et al. [38]
extended their previous work [39] into a meta-architecture that achieves state-
of-the-art results in SNN classification, detection, and segmentation tasks. While
most spikeformers only apply spatial-wise attention in a single time step [43],
some works also incorporate spatiotemporal attention [33,47]. However, none of
the previous works have utilized the Swin variant of the Spikeformer, nor for
optical flow estimation.

3 Method

3.1 Event Input Representation

We divide the event stream into non-overlapping chunks. Each chunk, comprising
N events within a fixed time window, is represented as E = {(xi, yi, ti, pi)}i∈[N ].
We preprocess each event chunk into an event discretized volume representation
V using a set of bins B, following the methodology introduced in [46].

V (x, y, t) =
∑

i

piκ(x − xi)κ(y − yi)κ(t − ti) (1)

Timestamps are normalized and scaled to the range [0, B − 1], ti = (B − 1)(ti −
t0)/(tN − t1); and κ(a) = max(0, 1−|a|) is a bilinear sampling kernel. To enable
the neural network to learn large temporal correlations, we encode spatiotem-
poral information into channels. For the ANN model, we take the previous and
current chunks of event voxels, dividing the total temporal channels into n blocks.
Each event input block comprises 2B/n × H × W bins. In our case, n = 2.

For the SNN model, to mitigate the computational burden associated with
large time steps, we use only one event voxel chunk. Similarly, we partition the
temporal channel, containing B bins, into n blocks along with their correspond-
ing polarities p. This yields an event representation of size T × 2n × H × W ,
with T = B/n time steps. In our implementation, we set B = 10 and n = 2.
This representation aligns with the spike representation outlined in [16,17]. Each
event chunk comprises C = 4 channels and T = B/2 time steps, as illustrated
in Fig. 1.

3.2 Spiking Neuron

We utilize the Leaky Integrate-and-Fire (LIF) neuron model for all layers in our
models. LIF is widely adopted in the literature due to its simplicity of imple-
mentation and low computational cost. For our implementation, we employ the
Spikejelly library [6] and set Vth = 0.1 and τm = 2.
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Fig. 1. Event input representation.

3.3 Network Architecture

The network architecture pipeline of our proposed methods STTFlowNet and
SDformerFlow (Fig. 2) is similar. We adopt an encoder-decoder architec-
ture, widely utilized in event-based optical flow literature [2,12,44,46]. For
STTFlowNet, the architecture of the Swin Transformer encoder resembles that
of [22]. Each Swin block contains a Multi-Head Self-Attention (MSA) module,
followed by a Feed-Forward Network (FFN) module consisting of two MLP lay-
ers. Layer Normalization (LN) is applied after each module, with residual connec-
tions incorporated. In the MSA module, unlike previous implementations [22], we
utilize scaled cosine attention and logarithmic continuous relative position bias
(CPB) from Swin Transformer V2 [20] to enhance the model’s scaling capability.
In the following sections, we focus on detailing the architecture of SDformerFlow.
Further details are provided in the supplementary document.

For SDformerFlow, the primary architecture comprises three components:
a) a Spike Feature Generator (SFG) embedding module, b) a Spatiotemporal
Swin Spikeformer (STSF) encoder, and c) spike decoders and flow prediction.
The event stream initially enters the SFG module, which outputs spatiotempo-
ral embeddings for the STSF encoders. The STSF encoders then generate spa-
tiotemporal features hierarchically. Subsequently, the output from each encoder
is concatenated to the decoder at the same scale to predict the flow map. Two
additional residual blocks exist between the encoder and decoder modules.

We propose two variants of our fully spiking model: SpikeformerFlow
and SDformerFlow. The key distinction lies in the residual connection. In
SpikeformerFlow, all residual shortcuts utilize spike-element-wise shortcuts
(SEW) [7]. Conversely, in SDformerFlow, we employ membrane-potential short-
cut (MS) [14]. Figure 3(b) illustrates the main differences among the vanilla
shortcut, SEW shortcuts, and MS shortcuts. The vanilla shortcut adds spikes
into the memory potential values, which cannot achieve identity mapping and
have degradation problem [14]. In SEW shortcuts, the residuals are applied after
the spikes, which results in integrals. Meanwhile, in MS shortcuts, residuals are
applied before the spikes to preserve the spike-driven property.
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Fig. 2. SDformerFlowNet architecture.

Spiking Feature Generator Embedding (SFG) The SFG module com-
prises two stages: generating spatiotemporal features and projecting them into
token embeddings for the STSF encoder module. In the first stage, we process
the event input through a spiking convolutional module followed by two resid-
ual blocks to downsample the resolution by half. This projection results in a
feature map of shape T × C × H/2 × W/2. In the second stage, we split the
feature map into spatial patches of size P × P , maintaining the time steps as
the temporal dimension. This operation creates spatiotemporal tokens of size
1 × P × P , projecting the spatial-temporal features into spike embeddings of
shape T × C × H/(2P ) × W/(2P ). For STTFlowNet, both the former and lat-
ter chunks are fed into a shared Resblock module while retaining the spatial
dimension.

Spatiotemporal Swin Spikeformer (STSF) Encoder The STSF module
draws inspiration from the Video Swin Transformer [22] and Spikeformer [43].
Its detailed architecture is illustrated in Fig. 2.

We adopt three stages of Swin Transformer, with each stage comprising 2-
2-6 numbers of STSF blocks successively, followed by a patch merging layer to
reduce the dimension by half.

Each STSF block comprises a spiking multi-head Spike-driven Self-Attention
(SDSA) block with a 3D shifted window (3DW), followed by a spiking MLP
block (see Fig. 3(a) upper). Each spatiotemporal token of shape T × H × W is
partitioned into non-overlapping 3D windows of size Tw ×Hw ×Ww. We employ
a window size of 2×9×9 for cropped resolution and 2×15×15 when fine-tuning
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Fig. 3. In (a): The top diagram depicts the Spike-driven Self-Attention (SDSA) block
utilized in SDFormerFlow, while the bottom one illustrates the Spiking Self-Attention
(SSA) block with Spike-Element-Wise (SEW) shortcuts used in Spikeformerflow and
in other architectures [43]. Fig.(b) shows the comparison of different residual shortcuts
in SNN.

the model on a full resolution of 480 × 640. The SDSA is performed within the
window. We utilize different numbers of attention heads (3, 6, 12) for the STSF
blocks in different stages. The details of our SDSA and spiking patch merge
modules are explained as follows:

Spike-Driven Self-Attention (SDSA) In our SDSA block, the Query, Key, and
Value tensors, denoted as Qs,Ks, Vs, are spiking tensors. We use dot product
attention, and since the attention maps are naturally non-negative, softmax is
unnecessary [43]. We additionally apply a scale factor s for normalization to
prevent gradient vanishing. The single-head SDSA can be formalized as follows:

SDSA(Qs,Ks, Vs) = BN(Linear(SN(QsK
T
s Vs ∗ s))) (2)

Spiking Patch Merge The patch merge layer comprises a Linear layer followed
by a batch normalization layer to downsample the feature map in the spatial
domain.

Spike Decoder Block The decoder consists of three Transposed convolutional
layers, each increasing the spatial resolution by a factor of two. A skip connection
from each STSF encoder is concatenated to the prediction output from the
corresponding decoder of the same scale. Flow prediction is generated at each
scale and concatenated to the decoders. Loss is applied to the flow prediction
upsampled to the full resolution.
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3.4 Loss Function

We train our model with supervised learning using the mean absolute error
between the estimated optical flow upred

i = (upred
i , vpred

i ) and the ground-truth
flow ugt

i = (ugt
i , vgt

i ). Our loss function can be formulated as:

L =
1
n

n∑

i=1

|upred
i − ugt

i | (3)

where n is the number of valid ground truth pixels. For SNN, we employ sur-
rogate gradient (SG) [25] with backpropagation through time (BPTT) to train
the network. We use the inverse tangent as the surrogate function with a width
of 2.

4 Experiments

4.1 Dataset and training details

We utilize the DSEC dataset [9] for both training and evaluation purposes. The
DSEC dataset is a comprehensive outdoor stereo event camera dataset featuring
a resolution of 640× 480. Ground-truth optical flow annotations are provided at
a rate of 10Hz for some of the sequences. To address the lack of ground truth in
the test set, we adopt a similar data split strategy to [2], dividing the training
sequences into training and validation sets. Notably, we exclusively utilize recti-
fied event data from the left camera. During training and validation, we perform
data augmentation techniques, including random horizontal and vertical flips, as
well as random crops on a 288 × 384 resolution. We train the models on three
NVIDIA GeForce RTX 2080 Ti GPUs and employ the AdamW optimizer for a
total of 80 epochs, ensuring convergence. The initial learning rate is set to 0.001
with a weight decay of 0.01. Additionally, we implement a multistep scheduler
that halves the learning rate every 10 epochs. To mitigate performance degra-
dation when scaling up to the full resolution, we conduct fine-tuning on the
full-resolution data for an additional 30 epochs before testing. Given the con-
straints of GPU memory, training at full resolution necessitates a reduced batch
size (1 or 2). During evaluation, we disable the tracking of running states for
batch normalization layers to optimize memory usage.
Additionally, we trained our models on the MVSEC dataset [45]. Since the
MVSEC dataset and DSEC dataset share different spatial resolutions and ground
truth rates. We trained our model using MDR training dataset [24] with cropped
resolution 256 × 256 and reported our evaluation results for the sparse optical
flow to compare with other models.
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4.2 Results

Fig. 4. Qualitative results for optical flow are evaluated on the DSEC validation
dataset. The first column displays the event input, while the second column depicts the
ground truth dense optical flow from our split validation dataset. During evaluation,
we mask the estimated flow where ground truth flows are available. (Best viewed in
color).

Fig. 5. Qualitative results for optical flow are evaluated on the official DSEC test
dataset. The first column presents the event input, while the other columns show the
corresponding estimated optical flow for the baseline method EVFlow and our methods
STTFlowNet and SDformerFlow. (Best viewed in color).

The quantitative results for our models, STTFlowNet and SDformerFlow, eval-
uated on the DSEC benchmark, are presented in Table 1. Additionally, Figures
4 and 5 illustrate the qualitative results obtained from the validation and test
dataset, respectively.

Figure 4 shows both our STTFlowNet and SDformerFlow models, trained
with cropped resolution on our split training dataset and tested on the validation
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Table 1. Quantitative results for optical flow estimation of the DSEC optical flow
benchmarks for all the test sequences. The first column shows the methods, A stands
for ANN, S stands for SNN, while M stands for model-based method.

Training EPE Outlier % AAE

A E-RAFT [10] 0.779 2.684 2.838
EV-FlowNet_retrained [10] 2.32 18.60 -
IDNet [35] 0.719 2.036 2.723
TMA [19] 0.743 2.301 2.684
E-Flowformer [18] 0.759 2.446 2.676
TamingCM[26] 2.33 17.771 10.56
STTFlowNet-en3 (Ours) 0.997 4.588 3.235

S SNN_3DNet[2] 1.707 10.308 6.338
SDFormerFlow-en3 (Ours) 2.142 14.021 5.941

M MultiCM [28] 3.472 30.855 13.983

Table 2. Quantitative results for optical flow evaluated for MVSEC dataset. D shows
the training dataset: MVSEC dataset, FPV or MDR dataset. We highlight the best-
performing results and underline the best results for the SNN model in each tested
sequence.

Training dt = 1 frame D outdoor_day1 indoor_flying1 indoor_flying2 indoor_flying3 Avg

AEE% OutlierAEE% OutlierAEE% OutlierAEE% OutlierAEE% Outlier

A

EV-FlowNet [44] M 0.49 0.20 1.03 2.20 1.72 15.10 1.53 11.90 1.19 7.35
EV-FlowNet2 [46] M 0.32 0.00 0.58 0.00 1.02 4.00 0.87 3.00 0.69 1.75

GRU-EV-FlowNet [12] FPV 0.47 0.25 0.60 0.51 1.17 8.06 0.93 5.64 0.79 3.62
STE-FlowNet [3] M 0.42 0 0.57 0.1 0.79 1.6 1.72 1.3 0.62 0.75
ET-FlowNet [32] FPV 0.39 0.12 0.57 0.53 1.2 8.48 0.95 5.73 0.78 3.72
ADM-Flow [24] MDR 0.41 0.00 0.52 0.14 0.68 1.18 0.52 0.04 0.53 0.34

STT-FlowNet (ours) MDR 0.66 0.29 0.57 0.33 0.88 4.47 0.73 1.58 0.71 1.67

S

Spike-FlowNet [17] M 0.49 0.84 1.28 1.11 0.93
XLIF-EV-FlowNet [12] FPV 0.45 0.16 0.73 0.92 1.45 12.18 1.17 8.35 0.95 5.40
Adaptive-SpikeNet [16] FPV 0.44 0.79 1.37 1.11 0.93

SNN3DNet [2] M 0.85 0.58 0.72 0.67 0.71
SDformerFlow (Ours) MDR 0.69 0.21 0.61 0.60 0.83 3.41 0.76 1.45 0.72 1.42

dataset. We use bicubic interpolation to remap the relative positional bias for
full resolution, as described in [21]. Notably, when the vehicle moves forward in
steady motion, all models achieve accurate flow estimation. However, in scenarios
involving sharp turns or large, abrupt motions (third row in the figure), the
baseline EVFlowNet struggles to estimate the correct direction. In contrast, both
our STTFlowNet and our fully spiking model effectively handle such scenarios,
thanks to their utilization of spatiotemporal attention mechanisms.
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Figure 5 showcases the improved estimation performance of our models on
the DSEC optical flow benchmark1 test set compared to the baseline. Notably,
SDformerFlow achieves superior estimation, although it encounters challenges
in areas where the sensor hits the car hood for which ground truth data is
unavailable. This limitation could be attributed to the additional convolutional
layers added in the early stages to downsample and reduce memory consumption.

Regarding the quantitative evaluation presented in Table 1, our ANN model
outperforms the baseline model [46] and other self-supervised trained models
[26]. However, it still trails behind correlation-volume-based models [10,18]. The
only SNN model included in the benchmark [2] uses stateless neurons and is
trained at full resolution, whereas most other SNN approaches are trained and
validated on cropped resolution [16,27], with limited representation in the bench-
mark. Notably, our fully spiking model, SDformerFlow, exhibits superior perfor-
mance compared to the ANN baseline [46].

The quantitative evaluation tested on MVSEC dataset is presented in Table.
2. Both our ANN and SNN models yield competitive results. Our ANN model
performs better than another transformer-based U-Net architecture [32]. Our
SDformerFlow ranked second for the average AEE for all the sequences among
all the SNN methods. However, the best performing model [2] reports their
results for the indoor sequences separately trained on the subsets of the same
dataset, which may have overfitted to the test dataset.

4.3 Ablation studies

Table 3. Ablation study for STTFlowNet. Column I stands for the event input type.
For the variant of STTFlowNet, en means number of encoders, b stands for number of
input blocks, p means spatial patch size, and w stands for swin spatial window size.
Best-performing results are highlighted.

Model EPE Outlier % AAE I Training res. Param. (M)

EVFlowNet_retrained 1.63 10.01 5.84 count 288,384 14.14
EVFlowNet_retrained 1.57 9.918 6.09 voxel 288,384 14.14
STTFlowNet-en3-b2-p4-w5 1.67 12.61 8.22 count 240,320 20.30
STTFlowNet-en3-b2-p2-w10 1.34 8.29 5.98 count 240,320 20.30
STTFlowNet-en3-b4-p4-w10 1.37 8.21 6.77 count 240,320 20.29
STTFlowNet-en3-b4-p2-w10 1.43 9.44 5.54 count 240,320 20.29
STTFlowNet-en3-b4-p2-w10 1.05 4.97 5.34 voxel 240,320 20.29
STTFlowNet-en3-b2-p2-w10 0.94 3.97 4.78 voxel 240,320 20.30
STTFlowNet-en3-b2-p4-w10 0.83 2.61 4.36 voxel 480,640 20.29
STTFlowNet-en4-b2-p4-w10 0.81 2.50 4.33 voxel 480,640 57.51

1 Full benchmark statistics are available at https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-
flow-benchmark/

https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark/
https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark/
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Table 4. Ablation study for SDformerFlow. For the SNN model variants, en denotes
number of encoders, s stands for number of steps, and c stands for number of channels.
Best performing results are highlighted in bold.

Model EPE Outlier % AAE I Training res.Param. (M)
test res: cropped (C) or full (F) C F C F C F

LIF-EV-FlowNet-en4-s5 3.08 3.47 19.6723.70 17.9014.41voxel10 288,384 14.13
SpikeformerFlowNet-SEW-en3-s8-c41.60 3.21 11.9032.30 12.5114.77voxel15*240,320 19.80
SpikeformerFlowNet-SEW-en3-s4-c81.76 3.54 13.4341.18 14.0127.81voxel15*240,320 19.81
SpikeformerFlowNet-SEW-en3-s5-c41.51 2.52 9.85 22.75 10.6811.10voxel10 288,384 19.83
SpikeformerFlowNet-MS-en3-s5-c4 1.28 2.01 6.91 15.55 9.01 8.99 voxel10 288,384 19.83
SpikeformerFlowNet-MS-en4-s5-c4 1.251.986.69 15.068.48 8.81 voxel10 288,384 56.48
SpikeCAformerFlow-MS-en4-s5-c4 1.66 2.97 10.6527.87 12.0522.55voxel10 288,384 15.73
*The SEW variant with input voxel size of 15 was trained with a resolution of 240×320
due to GPU memory limitations. The rest of the Spikeformer models were trained at
288× 384 resolution.

The ablation study was conducted on the validation DSEC set. For the ANN
models, we retrained EVFlowNet [46] on the DSEC training set as our base model
for 60 epochs while randomly cropping to size 288×384. Our ANN model shares
the same U-Net architecture with EVFlowNet, with the key difference being the
use of spatiotemporal swin transformer encoders instead of convolutional layers.
Our models were trained at either half or full resolution of 480 × 640, and vali-
dated in full resolution. We analyzed the effects of: a) the input representation:
event voxel or count; b) the number of temporal partitioning blocks: 2 (b2) or
4 (b4); c) the spatial patch size: p = 2 or p = 4, and swin spatial window size
w; and d) the training resolution.

Results are summarized in Table. 3. Using the event voxel representation
retained more temporal information and notably improved results. Introducing
swin transformer layers instead of convolutions also led to significant perfor-
mance gains. For the variants of STTFlowNet, the window size influenced the
range of the area to pay attention to, with smaller window sizes making it difficult
for the network to learn larger displacements. Adjusting the patch size between
2 and 4 according to the window size and resolution was found to be effective.
Partitioning the temporal domain into 2 chunks yielded better results than 4,
potentially due to the total number of channels. Further improvements may be
achieved by incorporating a local-global chunking approach as described in [42].
To maintain equivalence between our ANN and SNN models, we utilized local
temporal blocks exclusively. Given the performance degradation experienced by
the swin transformer at higher resolutions, we opted to train the model directly
at full resolution using a patch size of 4. This approach ensured that the resolu-
tion within the swin encoders remained consistent with training the model at half
resolution with a patch size of 2. Notably, this strategy resulted in remarkable
improvements in performance.

For our SNN model, we trained the fully spiking version of EVFlowNet with
LIF neurons using the same input representations as our base model for com-
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Table 5. Energy consumption for ANN and SNN models

Model EPETypeParam (M)FLOPS(G)Avg. spiking ratePower(mJ)

EVFlowNet retrained1.57 ANN14.14 22.38 - 102.95
LIF-EVFlowNet 3.08 SNN 14.13 22.38 0.29 29.21
STTFlowNet-en3 0.72 ANN20.30 86.88 - 399.65
SDFlowNet-en3 1.28 SNN 19.83 34.80 0.27 37.64
SDFlowNet-en4 1.25 SNN 56.48 39.10 0.27 41.08

parison. We studied: a) the number of time steps/channels; b) shortcut variants:
SEW or MS shortcuts; and c) the number of encoders.

Results are presented in Table. 4. The spikeformer encoders significantly
improved performance compared to the baseline model, albeit with reduced
robustness when directly tested on scaled-up resolutions. Increasing the number
of time steps helped capture temporal information at the expense of increased
memory consumption. Opting for 5 time steps and 4 channels struck a bal-
ance between performance and memory consumption. The MS shortcut variant
notably improved results compared to SEW shortcut. One possible explanation
is that the MS shortcut provides an information flow path between the states of
the neurons before the spike function and is not regulated by their firing status.
Increasing the number of encoders from three to four further enhanced perfor-
mance at the cost of increased parameters. Finally, incorporating convolution-
based modules as CAformer in [38,41] in the first two swin encoders yielded a
lightweight model but with slightly reduced performance.

4.4 Energy consumption analysis

In our energy consumption analysis, we follow established methodologies from
prior research [16,27,38]. For ANN models, we estimate energy consumption
based on the number of floating-point operations (FLOPS) required, as all oper-
ations in ANN layers are multiply-accumulate (MAC) operations. Therefore,
the energy consumption for ANN models is calculated as FLOPS×EMAC . Con-
versely, SNN models convert multiplication operations into addition operations
due to their binary nature. Thus, for SNN models, we estimate energy consump-
tion by multiplying the FLOPS with the spiking rate Rs and the number of
time steps T , resulting in FLOPS×Rs × T × EAC . Here, EMAC represents the
energy required for MAC operations, and EAC represents the energy required for
addition operations. For 32-bit floating-point computation, these energy values
are typically EMAC = 4.6pJ and EAC = 0.9pJ , respectively, based on a 45 nm
technology [13]. We estimate the average spiking rates among all time steps for
each layer to calculate energy consumption, ignoring the negligible contribution
of batch normalization layers (around 0.01%). The energy consumption for each
model during the inference phase, with an image input size of 288× 384, is pre-
sented in Table 5. Our results demonstrate that the energy consumption of our
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SNN model is nearly one-tenth that of its ANN counterpart and one-third that
of the baseline EVFlowNet model.

5 Conclusions and future work

We introduced STTFlowNet and SDformerFlow, two novel architectures for
event-based optical flow estimation that leverage spatiotemporal swin trans-
former encoders in ANN and SNN frameworks, respectively. Our work marks
the first application of a spikeformer for event-based optical flow estimation.
Despite not using correlation volumes and facing scalability challenges inherent
to transformer architectures, our results highlight the potential in the use of
spikeformers in regression tasks. Our ablation studies shed light on the impor-
tance of key components such as input representation, temporal partitioning,
and spatial window size, providing insights for future research directions. Our
SNN version is the first fully spikeformer implementation and is comparable
to the other SNN implementations reported in the benchmark. Notably, our
SNN model achieved remarkable energy savings compared to its ANN coun-
terpart and also outperformed the baseline EVFlowNet model. We believe by
introducing spatiotemporal attention, we strengthen our model’s capability to
map global context for the spatial feature maps while capturing spatiotemporal
correlations, which improves the performance of our model compared to other
CNN-based methods.

However, one limitation of our work is that, by feeding the entire chunk
of data into the spatiotemporal attention modules, we were not able to fully
exploit the asynchronous ability of the event camera and SNNs. This can be
improved by introducing temporal delay, as proposed in [33], in future work.
Secondly, transformer-based models suffer from constrained scalability across
different resolutions. Recent work proposes methods to address this issue by
incorporating multi-resolution training [31] or dynamic resolution adjustment
modules [5]. Thirdly, our model is based on the encoder-decoder architecture to
prevent calculating the correlation features and iterative process since it obeys
the motivation to use SNN as a computational and energy-efficient solution, thus
the performance still falls behind some state-of-the-art methods. For improve-
ment, we propose to train with more diverse datasets and exploit learned neural
dynamics parameters. Finally, much work remains to be done related to hard-
ware implementation to fully exploit the advantage of energy efficiency of SNNs.

In conclusion, our work highlights the efficacy of integrating transformer
architectures with spiking neural networks for efficient and robust optical flow
estimation, paving the way for advancements in neuromorphic vision systems.
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