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President’s Address

On behalf of the Executive Committee of the International Association for Pattern Recog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that we must thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for [ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPR Prize Lectures at ICPR 2024. This year we honor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.



vi President’s Address

The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of Pattern Recognition and whose past contributions,
current research activity and future potential may be regarded as a model to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in TAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer—Rao bound, and Fisher—
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IICPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image, Video, Speech, and Signal Analysis; Biometrics and Human-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2-5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in four meeting rooms with a total of 40 oral sessions. In total 24 workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork Al,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conference would not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, Rama Chellappa and Cheng-Lin Liu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-Marc Ogier and Prabir Bhattacharya) and Tutorial Chairs (B.B. Chaudhuri, Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium. We would like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the Track Chairs and the meta reviewers who devoted significant time to
the review process and preparation of the program. We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

We hope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler
Anil Jain
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Abstract. Visible-infrared person re-identification (VI-ReID) is cru-
cial for surveillance and security applications. Several studies have been
performed for supervised VI-RelD, and recent methods show excellent
retrieval performance on public datasets. However, obtaining VI-RelD
data in practical scenarios presents significant challenges due to the
necessity for the same identity to be available across different types of
cameras, potentially spanning various locations and time frames, along
with the arduous task of annotating data owing to modality discrepan-
cies. This motivates us to explore methods requiring limited data from
a select number of identities, which is more readily obtainable. To this
end, we introduce a novel two-stage learning framework for VI-RelD that
efficiently works with scarce data and labels. Our framework focuses on
Supervised Domain Adaptation, where a pre-trained model from a source
dataset is utilized on a small annotated target dataset. Additionally,
we introduce a novel loss, Hetero-Dissimilarity based Maximum Mean
Discrepancy (HD-MMD), tailored for adapting heterogeneous source
and target domains. Our approach addresses the inherent challenges of
domain shift between datasets and modality differences between visible
and infrared imagery. Our proposed method outperforms several label-
efficient approaches on public VI-RelD datasets while utilizing signifi-
cantly smaller amount of data. Ablation analysis conducted with several
popular baselines reveals the efficacy of our proposed SDA framework
and HD-MMD loss in improving retrieval performance. We also demon-
strate the ease of integrating our approach with other methods. Code
will be released at https://github.com/Mihirsahu2307/SDA-VI-RelD.

Keywords: VI-ReID - Domain Adaptation - Data-efficient Learning

1 Introduction

Visible-infrared person re-identification (VI-RelID) [19,26,27] has garnered sig-
nificant attention in recent years due to its application in 24-hour surveillance
and security systems. It involves matching individuals across visible and infrared
cameras, presenting unique challenges stemming from the discrepancy between

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15315, pp. 1-16, 2025.
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Fig. 1. Comparison of Unsupervised (UDA), Semi-Supervised (SSDA) and Supervised
(SDA) Domain Adaptation strategies for VI-ReID. Different colours show different
labelled IDs. Grey colour refers to unlabelled data.

the modalities. Supervised VI-ReID [6,26] has been extensively studied, with
some methods achieving more than 90% Rank-1 Retrieval accuracy [3,6,7] on
publicly available datasets. Recently, to alleviate the issue of tedious manual
annotation of VI-ReID datasets, Unsupervised Learning [10,20,23] and Unsu-
pervised Domain Adaptation (UDA) [1,4,18] based approaches have also been
studied which require no annotations, but in their place require copious amounts
of data along with huge computational requirements. While substantial progress
has been made in developing VI-ReID models, their effectiveness often relies on
an abundance of large amounts of paired images of identities in both modalities,
termed cross-modal correspondences. This constrains the practical applicability
of these approaches as the acquisition of images of the same person in both
modalities is a laborious task, as it requires the person to be available at two
or more different locations under different lighting conditions and, potentially
different times.

To mitigate this issue, we propose a Supervised Domain Adaptation (SDA)
based framework for VI-RelD, where a model trained on a large-scale source
dataset is transferred to a small annotated target dataset, with no additional
unlabelled data. In general, domain adaptation is widely studied in the semi-
supervised or unsupervised setting with limited or no target labels for scenarios
where gathering the data in abundance might be straightforward, but anno-
tating the data is difficult. But we highlight that for VI-RelD, even garnering
large amounts of data in both modalities is an arduous task, thereby result-
ing in poor performance of the UDA and Semi-Supervised Domain Adaptation
(SSDA) based approaches for small target datasets. For instance, an identity
present in an RGB camera may not be available in the infrared modality, as
this would require changes in lighting conditions and location. This discrepancy
could result in a lack of correspondences, adversely affecting training if the data
is not collected meticulously. In the proposed setting, very limited data can be
collected from a small group of individuals in a controlled fashion. Hence, in
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this paper, we explore the SDA setting for VI-ReID. Fig. 1 shows the difference
between SDA, SSDA and UDA approaches for VI-ReID. The motivation of the
study is inspired by the observations that: 1) In practice, even for unsupervised
VI-RelD, amassing datasets with abundant cross-modal correspondences is an
onerous task. 2) Compiling and annotating cross-modal data for a small batch of
individuals is much easier than gathering huge amounts of unlabelled data with
abundant cross-modal correspondences. To this end, we propose a two-stage
training procedure for SDA consisting of Source Pre-training and Collaborative
Learning. This framework can be integrated with any baseline method. In the
initial Source Pre-training stage, leveraging the annotated source domain, we
aim to mitigate the modality gap and learn a robust embedding network. In the
Collaborative Learning stage, we train the model using both source and target
domains. Further, to bridge the domain gap and distil source knowledge effec-
tively, we propose a Hetero-Dissimilarity based Maximum Mean Discrepancy
(HD-MMD) loss. This loss aligns the dissimilarity space of the heterogeneous
target domain to that of the heterogeneous source domain. Our study reveals the
following insights: 1) Leveraging a large-scale source domain immensely improves
the accuracy of the model on the target domain for VI-ReID. 2) Proposed SDA
framework can achieve excellent retrieval performance while using as little as
20% of the training data.
In summary, the main contributions of the paper are:

— To address the challenge of collecting large-scale datasets with abundant
cross-modal correspondences, we propose a Supervised Domain Adaptation
(SDA) setting. SDA leverages a large-scale, annotated source dataset to learn
robust representations for a small, annotated target dataset, reducing the
dependency on extensive cross-modal correspondences and providing a prac-
tical solution for VI-RelD.

— We propose a two-stage SDA based framework for VI-ReID that seamlessly
integrates with existing VI-RelID methods. This data-efficient framework aims
to address the challenges posed by scarcity of data by leveraging the rich
annotations of the large-scale source dataset.

— We introduce a novel loss, HD-MMD, which effectively utilizes the scarce
cross-modal annotations of the target dataset to learn a robust dissimilarity
space for heterogeneous data. This bridges the gap between the heterogeneous
source and target domains, which have disjoint label spaces.

— Experiments using the proposed SDA based approach on publicly available
datasets demonstrate the retrieval efficacy of our approach over other label-
efficient approaches for VI-RelD, while using as little as 20% of the target
domain training data. Additionally, we empirically validate the effectiveness
of our framework in enhancing the accuracy of various VI-RelD baselines.
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2 Related Work

2.1 Supervised Visible-Infrared Person RelD

Supervised VI-RelD has been extensively studied, with many recent methods
achieving excellent results on public VI-RelD datasets. Most works focus on
domain-invariant feature learning and reducing the modality discrepancy. Ear-
lier studies [11,27] focused on metric learning approaches. Some studies also
use part-level features to extract local information [8,12]. Other works focus
on explicitly reducing the modality discrepancy by designing suitable loss func-
tions. Jambigi et al. [6] introduce a margin-based MMD loss that aligns the
modalities at identity level. Recently, Feng et al. [3] propose a feature learning
paradigm where they erase the shape related features in an attempt to learn
other modality-shared discriminative features. However, these methods rely on
annotations of large-scale VI-RelD datasets, which limits their practical applica-
bility. Contrary to these methods, we propose to use very limited data of a small
set of identities from the target domain to learn a robust embedding network.

2.2 Domain Adaptation for Person RelD

Domain Adaptation for Person Re-identification, and consequently, for VI-RelD,
is inherently an open set adaptation problem as the label spaces of source
and target are mutually exclusive. Most studies focus on UDA for person re-
identification. Lee et al. [9] introduce a camera-driven curriculum learning frame-
work, wherein they use the camera labels to divide the target dataset into
multiple subsets and progressively transfer knowledge from source to target
domains. Many studies leverage pseudo labels [2,17] and learn discriminative
target domain information. Some studies leverage the tracklet information [14]
to mitigate the absence of labels. Mekhazni et al. [14] propose to align the source
and target domain dissimilarity spaces using Maximum Mean Discrepancy. These
UDA approaches rely on an abundance of data in the target dataset which may
not be feasible for VI-ReID. Moreover, UDA approaches that rely on tracklets
which work for single modality Person Reid would fail for VI-ReID. This is
because the tracklets would only provide images for a single modality at a time,
and obtaining tracklet information for the same identity in both modalities would
require knowledge about the identity, thus requiring supervision, which is not
feasible.

2.3 Label Efficient VI-RelD

Liang et al. [10] made one of the earliest attempts to study VI-ReID as an unsu-
pervised learning problem. They propose to first learn the intra-modality feature
representations and then use heterogeneous learning to learn shared discrimina-
tive feature representations by distilling knowledge from intra-modality pseudo-
labels. Subsequent research efforts, such as [20,23,24], further explore Unsu-
pervised Learning based VI-ReID (USL-VI-RelD), leveraging various strategies
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including camera-level information [23], graph-based structures [20], and cross-
modal correspondence mining [24]. Recently, a few studies [1,4] have delved into
UDA for VI-ReID (UDA-VI-ReID), aiming to adapt pre-trained models from a
source VI-RelD dataset to a target VI-RelD dataset. Unsupervised methods are
a step closer to practical VI-RelD systems as they mitigate the issue of laborious
annotations. However, these methods often rely on datasets like SYSU-MMO1
and RegDB, which offer ample cross-modal correspondences. Without sufficient
cross-modality correspondences, as is the practical scenario, these methods would
show deteriorating performance.

Another line of label-efficient approaches study VI-RelID from a semi super-
vised perspective [16,18,22]. These approaches leverage a combination of labelled
visible data and unlabeled infrared data for model training. For instance, Wang
et al. [18] propose Optimal-Transport Label Assignment (OTLA) to tackle this
by leveraging an optimal-transport strategy to assign pseudo labels from visible
to infrared modality. Shi et al. [16] extend upon OTLA to study Semi-Supervised
VI-RelD by labelling a portion of the large-scale training data. In contrast to
prior studies, we address data and label scarcity by annotating a small set of
images from both modalities in the target dataset and eliminating the need for
additional unlabelled data, thus achieving data and label efficiency while reduc-
ing computational overhead.

3 Methodology

In this section, we first formulate the SDA problem for VI-ReID and briefly intro-
duce Maximum Mean Discrepancy (MMD), and then move on to the proposed
HD-MMD loss and SDA-VI-ReID framework.

3.1 SDA Problem Formulation

Let DY and Di denote the annotated source domain visible and infrared datasets,

respectively, where DY = {(vI",y)} N | and Dl = {(im,y" )}m 1- Similarly,

m=1
let V; and I; denote the annotated target domaln visible and infrared datasets,

respectively, where Dy = {(v}" ,y{”)}f:?):l and D} = {(z’{“,ytm)}m 1- Let ng and
ny denote the number of identities and Ny and IV; denote the total number of
images in the training set of source and target dataset, respectively. We have,
n; < ng and Ny < N;.

Let f, be a generic embedding network trained on the source domain § =
{Dv, Di}. The goal of Supervised Domain Adaptation is to adapt f, to the target
domain 7 = {D}, Di}. Note that adaptation involves achieving satisfactory

retrieval performance in the target domain.

3.2 Maximum Mean Discrepancy

MMD [5] is a measure used to quantify the discrepancy between two probability
distributions. In brief, MMD calculates the difference between the empirical
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means of two given sets of samples in a Reproducing Kernel Hilbert Space. For
simplicity, MMD can be interpreted as taking a weighted average of the difference
of moments between the two distributions by transforming the variables using
the kernel k.

MMD between two distributions P and () can be computed as:

MMD(P,Q) = ii’”%
=1 j5=1
Ry Z;lek i, Y +%;;kj(yi7yj)

Where k represents the kernel function, z; and y; are samples from distri-
butions P and @ respectively, and np and ng are the number of samples from
each distribution. We choose the gaussian kernel for k, given by:

202

N @)

MMD has been extensively used in closed-set domain adaptation [21] to min-
imize the distribution shift between a source domain and a target domain having
overlapping label spaces. But MMD can not be directly applied for VI-RelD as
the label space of the source and target domains are different (since the identi-
ties are different). To circumvent this shortcoming of ambiguous alignment, we
introduce HD-MMD.

3.3 Hetero-Dissimilarity based Maximum Mean Discrepancy

Since domain adaptation for VI-RelD is an open set problem, generally with
no overlap of source and target label spaces, instead of aligning the source and
target domains directly, we align the dissimilarity spaces of the two domains.
The dissimilarity space [14] of a feature space is a vector space formed by the
pairwise dissimilarities of the features. Specifically, we design HD-MMD loss,
which aims to align the dissimilarity spaces of the source and target domains,
both of which have heterogeneous data.

Directly using D-MMD [14] doesn’t help with the retrieval performance
(Table 3) because the source and target batches contain heterogeneous data.
As shown in Fig. 3 (c), for a robust embedding model, the clusters of the same
identity are close but separated between modalities. The modality discrepancy
affects the distribution of pairwise distances, leading to reduced performance
when D-MMD is directly applied to source and target batches. To address this,
we propose aligning the dissimilarity spaces of each modality independently. The
bridge between modalities is established using the supervised loss functions of
the baseline. The motivation for this approach is formed by the following: 1)
D-MMD demonstrates remarkable efficacy in single-modality UDA for Person
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Re-identification [14]. 2) Current supervised methods designed for VI-RelD effec-
tively mitigate the modality gap [3,11,26]. By incorporating HD-MMD alongside
these supervised losses, we effectively form well-structured homogeneous clusters
and concurrently diminish the heterogeneous modality gap.

Let f(;” denote the embedding network for the modality m = {v,4}. For the
modality m and domain § = {s, ¢}, the intra-class (within class) dissimilarity for
identity ¢ between images z}, z}" € DJ" is given in Eq. 3. u and w are 2 different
indices for the images of identity . Note that we choose the Lo distance as the
dissimilarity measure between 2 vectors to work with a Euclidean Dissimilarity
vector space.

dp (x, 2) = || S () — Fal)]as u#w 3)

Similarly, the inter-class (between class) dissimilarity between identities i & j
for images x}', 2}’ € D§" is given by:

di (@t ay) = 1 @) = £ @)y i @)

We define the MMD loss for the within-class (dﬂv[l,’é) and between-class (dg"s)
dissimilarity space of modality m as:

LY vivp = MMD(dyy®, drvril/t) (5)

LE yup = MMD(d”, d}?’t) (6)

The final HD-MMD loss is formed by summing up the pair-wise distance
losses of both the modalities.

Lup-ymmp =Ly yvp + LB avrmp + ﬁiw,MMD + EiB,MMD (7)

3.4 SDA-VI-RelD Framework

SDA-VI-RelD framework can be easily integrated with any existing baseline VI-
RelID method. All supervised learning based baselines use the identity loss L;q4,
along with some metric learning based losses (eg. Triplet Loss or some variant)
[11,26]. For convenience, we will collectively term them as L9, ,, where § = {s, t}
denotes the domain (source/target).

Herein, we present the two-stage training methodology for SDA-VI-RelID and
the training objective employed for Collaborative Learning. Fig. 2 depicts the
two-stage framework of the approach, incorporating a generic baseline model for
the embedding network alongside the HD-MMD loss.

Stage 1: Source Pre-Training In this stage, we train the model fy using
the supervised losses of the baseline with the suggested hyperparameters. Note
that the classifier will have ns; number of output logits in this stage.

Stage 2: Collaborative Learning We load the trained model fy and drop
the classifier from stage 1. We append a new classifier having ns + n; number of
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Fig. 2. The complete SDA-VI-RelD framework. In the first stage, the model is pre-
trained on the source dataset. Subsequently, in the second stage, source and target
domains collaboratively train the model and HD-MMD is used to bridge the domain
shift for RGB and IR modalities. Note that the baseline model and supervised losses
are baseline method specific. For the experiments, we choose the baseline as AGW.
Typically, ResNet-50 is used as the backbone of the baseline model.

logits and we train the model f, using the overall training objective L0 given
by:

Liot = Ly +Xs - L3y + M- LHD-MMD (8)

4 Experiments

4.1 Datasets and Metrics

We evaluate the proposed method on two public VI-RelID datasets: SYSU-MMO1
[19] and RegDB [15]. Following the settings in [19], we employ Cumulative
Matching Characteristic (CMC) and mean Average Precision (mAP) as eval-
uation criteria. Additional information about the datasets is provided in the
supplementary materials.
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4.2 Implementation Details

For comparison, we use the standard AGW [26] as our baseline for comparison
with state-of-the-art (SOTA). We keep all the hyperparameters as suggested in
[26]. For the second stage, we empirically choose A\; = 0.25 and A\, = 1. To ensure
fair comparison, images were augmented using the standard random flipping,
random cropping and random erasing [30] strategies, consistent with other SOTA
methods [18,22]. In each batch, we select 4 identities and 4 images from each
modality per identity, for both the domains, making a batch of 24 (4+4) = 64
images. Throughout the section, "x% of dataset" refers to using x% of identities
from the training set. For example, 20% of RegDB means utilising RGB and IR
images from 41 IDs. Further details can be found in supplementary materials.

4.3 Results and Analysis

We compare SDA-VI-RelD (ours) with 3 categories of approaches: Fully Super-
vised methods (SVI-ReID), Unsupervised methods (USVI-ReID) and Label-
Efficient methods (LEVI-ReID). SVI-ReID methods use 100% of the labelled
training data, whereas our approach uses a small fraction which is mentioned
in brackets alongside "SDA". USVI-RelD includes both UDA-VI-ReID and
USL-VI-RelD approaches. LEVI-RelD includes Semi-Supervised Learning based
approaches. Note that unlike our method, other LEVI-RelID methods use a com-
bination of labelled and unlabelled training data. Since we are the first to study
VI-RelD in the data-efficient setting, we mainly compare our method with the
closely related LEVI-RelD based approaches.

Overall, our approach outperforms all label-efficient methods on RegDB, as
evidenced by Table 1. Using a stronger baseline, we beat unsupervised meth-
ods as well while requiring significantly less data and computational resources.
It’s important to note that the performance on the SYSU-MMO1 dataset is
constrained by the RegDB dataset’s inadequacy as a large-scale source domain.
Notably, even 20% of the SYSU-MMO01 dataset surpasses the entire RegDB train-
ing dataset. Moreover, SYSU-MMO01 employs a more extensive camera setup
for both modalities, resulting in more robust learned representations compared
to RegDB. This highlights the suitability of SYSU-MMO01 as a source domain
dataset, contrasting with the inadequacy of RegDB, as confirmed by our find-
ings. This limitation adversely affects results on SYSU-MMO01, as evident from
Table 2. We believe that employing another large-scale VI-ReID dataset as the
source domain could substantially enhance results on SYSU-MMO1.

Comparison with LEVI-RelD methods: Label-efficient (semi-supervised)
methods use labelled visible data along with unlabelled infrared data. Overall,
our findings reveal that we outperform existing LEVI-RelD based methods on
the RegDB dataset (target). This stems from the utilization of the richly labelled
and extensive SYSU-MMO1 dataset as the source domain while using RegDB
as the target domain dataset. We observe that we beat OTLA by using only
20% of the target training data. Moreover, by using just 40% annotations, we
consistently outperform all existing semi-supervised methods and even a few
SVI-RelID methods too. Conversely, in the alternative scenario, RegDB proves
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Table 1. Comparison on RegDB (Target) using SYSU-MMO1 as Source. T Indicates
results are taken from [18]. ¥ Denotes the results without camera information.

Settings RegDB
Visible2Thermal | Thermal2Visible
Type Method Venue Rank-1 | mAP Rank-1 | mAP
SVI-ReID | JSIA-ReID [25] | AAAT'20 |48.5 49.3 48.1 48.9
AGW [26] TPAMTI’21 | 70.1 66.4 70.5 65.9
FMCNet [28] | CVPR’22 |89.1 84.4 88.4 83.9
PartMix [8] CVPR’23 |85.7 82.3 84.9 82.5
SGIEL [3] CVPR’23 |92.2 86.6 91.1 85.2
USVI-RelD | D-MMDT [14] |ECCV’20 |2.2 3.7 2.0 3.6
GLTT [29] CVPR21 |2.9 4.5 6.3 7.6
H2H [10] TIP’21 14.1 12.3 13.9 12.7
OTLA [18] ECCV’22 |32.9 29.7 32.1 28.6
ADCA [24] MM’22 67.2 64.1 68.5 63.8
PGM [20] CVPR’23 |69.5 65.4 69.9 65.2
GUR?* [23] ICCV™23 | 73.9 70.2 75.0 69.9
LEVI-RelD | OTLA [18] ECCV’22 [49.9 41.8 49.6 42.8
TAA [22] TIP’23 62.2 56.0 63.8 56.5
DPIS [16] ICCV’23 |62.3 53.2 61.5 52.7
Ours SDA(20%) - 51.1 46.9 47.3 44.7
SDA (40%) - 71.7 68.1 69.3 66.0

to be an inadequate source domain dataset due to its lack of scale and limited
variability within the images. We would like to highlight that, unlike other LEVI-
ReID methods, we do not require any additional unlabelled training data from
the target domain.

Comparison with USVI-RelD methods: We see that we beat all unsuper-
vised methods except GUR by using AGW and 40% data on RegDB. Note that
D-MMD and GLT are designed for single modality person re-identification and
the results are taken from [18]. We would like to highlight that our approach
requires very limited computational resources compared to the unsupervised
methods. For analysis of time and memory requirements, please refer to the
supplementary materials.

Comparison with SVI-RelID methods: We beat AGW while using only 40%
of the RegDB data. Remarkably, from Fig. 5 (b), it is evident that we achieve
90.2% Rank-1 accuracy by using 100% of the RegDB with AGW as the baseline,
thereby, surpassing all of the SVI-RelD approaches except SGIEL. Note that
using SDA with recent baselines would lead to even better results, as evident
from Table 4. However, there is still ample room for improvement.
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4.4 Ablation Study

In this section, we investigate the influence of the baseline model (AGW),
the training stages within the framework, and the HD-MMD objective on the
retrieval performance for the RegDB dataset. Additionally, we compare the
impact of the standard D-MMD versus our proposed HD-MMD loss, with the
same weight for both the losses (= 1). The results are summarized in Table 3.
Since our approach relies on a large-scale source domain dataset, our experi-
ments are performed using SYSU-MMO1 as the source and RegDB as the target
dataset.

Table 2. Comparison on SYSU-MMO01 (Target) using RegDB as Source. t Indicates
results are taken from [18]. ¥ Denotes the results without camera information.

Settings SYSU-MMO1
All Search Indoor Search
Type Method Venue Rank-1| mAP | Rank-1| mAP
SVI-ReID | JSIA-RelD [25] | AAAT’20 |38.1 36.9 |43.8 52.9
AGW [26] TRAMI'21 | 47.5 47.7 | 54.2 63.0
FMCNet [28§] CVPR’22 |66.3 62.5 |68.2 74.1
PartMix [8] | CVPR'23 |77.8 | 746 815 844
SGIEL [3] CVPR23 771 723 821 | 82.9
USVI-RelID | D-MMD' [14] |ECCV’20 |12.5 10.4 |19.0 154
GLT' [29] CVPR21 | 7.7 95 121 180
H2H [10] TIP21 255 252 |- -
OTLA [18] ECCV’22 |29.9 27.1 129.8 38.8
ADCA [24] MM’22 45.5 42.7 150.6 59.1
PGM [20] CVPR’23 |57.3 51.8 | 56.2 62.7
GUR! [23] ICCV'23 | 61.0 | 57.0 642 | 69.5
LEVI-ReID | OTLA [18] ECCV’22 | 48.2 43.9 474 56.8
TAA [22] TIP’23 48.8 42.3 | 50.1 56.0
DPIS [16] ICCV’23 58.4 55.6 | 63.0 70.0
Ours SDA(20%) - 26.6 26.4 |27.4 36.3
SDA(40%) - 36.0 36.3 |39.2 50.1

Row 1 corresponds to training solely on the target dataset with only 20%
of the data. Training the baseline directly on the small target dataset yields
poor performance, but as we incorporate components of our proposed approach,
retrieval performance improves. Remarkably, employing only Stage-2 of the SDA-
VI-RelD framework yields comparable results, indicating proper alignment of the
source domain with a sufficient number of epochs, and subsequent alignment of
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Table 3. Ablation Study on 20% of RegDB (Target) with SYSU-MMO01 as Source. S-1
and S-2 refer to Stage 1 and 2 of our SDA-VI-RelD framework. The Baseline is AGW.

Row number 1 refers to only target training without using the source domain.

No. | Method Visible2Thermal Thermal2Visible
Baseline S-1 S-2 D-MMD HD-MMD | Rank-1 | mAP Rank-1 | mAP
1 v 29.4 28.7 28.2 27.6
2 v v 39.2 40.6 38.9 39.4
3 v v v 40.1 38.6 40.5 39.9
4 v v v 44.0 39.6 43.5 41.1
5 v v v 49.4 46.3 47.8 43.2
6 v v v v 51.1 46.9 47.3 44.7
= L <3 :
noy 8 oy o e s
v i} s B
- ™ - "
= - i
o | @ 4 >
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(Only Target Training) without HD-MMD with HD-MMD

Fig. 3. t-SNE plots showing RegDB test features of the same 10 IDs. Baseline refers
to direct target training using AGW baseline. Circles: RGB, Crosses: IR features.

the target domain via the HD-MMD loss. This significantly reduces computa-
tional overhead, as Stage-1 can be omitted while achieving similar outcomes.
Moreover, as evident from rows 4 and 6, our HD-MMD loss surpasses D-MMD,
highlighting the suitability of our approach for domain adaptation across het-
erogeneous domains. Visualization via t-SNE [13] plots in Fig. 3 demonstrates
that clusters of the same identity converge closer upon employing SDA and HD-
MMD. Additionally, clusters become more compact with HD-MMD, signifying
improved learning of the cluster structure from aligned dissimilarity spaces for
both modalities.

Further, Table 4 demonstrates the effectiveness of our proposed SDA frame-
work and HD-MMD loss by showcasing significant performance improvements
when integrated with several popular methods, including AGW [26], HeTri [11],
and MMD-ReID (abbr. MMDR) [6]. Only Target (row 1) refers to training the
baseline directly on 20% of RegDB. HcTri and MMDR utilize stronger supervised
signals, which can be unstable when directly applied to the small target dataset
and lead to feature degradation. However, when paired with our framework, the
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learnt representations are better. This highlights the seamless integration of our
framework with recent methods and its ability to enhance their performance.

4.5 Sensitivity Analysis

Effect of \s and \,: The influence of hyperparameters A; and A\, on mAP
and Rank-1 accuracy is illustrated in Fig. 4. We observe a steady decline in
performance as A4 increases, indicating a shift in the optimization focus towards
the source domain at the expense of the target domain. Further, we see that
the HD-MMD loss, governed by A, exhibits stability in the range [0.8, 1.2],
demonstrating the robustness of the proposed loss.

Table 4. Improvement in performance of 3 different VI-ReID methods for 20% RegDB

(Visible2Thermal) by integrating SDA and HD-MMD. SYSU-MMOL1 is used as source
domain for SDA.

Method AGW [26] HcTri [11] MMDR 6]
Rank-1 | mAP | Rank-1 | mAP | Rank-1 mAP
Only Target 29.4 28.7 | 18.5 17.7 20.7 19.3
With SDA 40.1 38.6 | 54.2 50.7 | 59.2 54.5
SDA+HD-MMD | 51.1 46.9 60.1 56.3 | 63.7 58.9

Effect of As on RegDB (Visible2Thermal), A, =1 Effect of A, on RegDB (Visible2Thermal), A; = 0.25
—#— mAP —=— mAP
52 511 —— Rank-1 —— Rank-1
504 52

Accuracy(%)
25 &
S
=
©
Accuracy(%)
@
3

PN
i}

46 4

;

381

3

6 T T T T T T T T T T 44 T T T T T
00 01 02 03 04 05 06 07 08 09 1.0 0.7 0.8 0.9 1.0 11 12

(a) Value of Ag (b) Value of A

Fig. 4. Effect of As and A\, on 20% RegDB (Target) with SYSU-MMO1 as Source.

Effect of ns on RegDB (Visible2Thermal), n; = 40 Effect of n; on RegDB (Visible2Thermal), ns = 395
6 100

mmm Rank-1
7 W mAP

Accuracy (%)
Accuracy (%)

20+
20 (10%) 52 (25%) 103 (50%) 155 (75%) 206 (100%)
(a) Values of ns (b) Values of n;

40
40 (10%) 99 (25%) 198 (50%) 296 (75%) 395 (100%)

Fig. 5. Effect of ns and n: on RegDB (Target) with SYSU-MMO1 as Source.
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Effect of number of source IDs ng; and target IDs n; in Stage-2: Fig.
5 shows the variation of mAP and Rank-1 accuracy with the ny, and n;. As
expected, increasing the number of target domain IDs results in an improvement
in retrieval performance. Remarkably, we achieve 90.2% Rank-1 accuracy by
using all of the RegDB training data, whereas the baseline AGW only achieves
70.1% Rank-1 (Table 1). This demonstrates the versatility of our approach in
not only improving retrieval performance for small target domains, but also
improving performance of fully supervised approaches on large target datasets
by leveraging a large-scale source dataset. The influence of source domain size
on target domain accuracy is apparent from Fig. 5 (a), supporting our claim
that a large-scale source dataset facilitates learning better representations for
the target domain.

5 Conclusion

This paper proposes SDA-VI-RelD, a simple two-stage learning framework for
data-efficient VI-RelID. In the initial pre-training stage, we leverage a large-scale
source domain dataset to train a robust embedding network. Subsequently, in
a collaborative learning approach during the second stage, we adapt this net-
work to a data-scarce target domain. We show that by choosing an appropriately
large-scale source domain along with a strong baseline, robust representations
can be learned for the target domain via the proposed framework. Addition-
ally, we introduce the HD-MMD loss, which aligns heterogeneous source and
target domains, effectively leveraging the scarce cross-modal correspondences of
the target domain. Furthermore, we demonstrate that the proposed approach
seamlessly integrates with existing VI-RelD baselines to improve their perfor-
mance. This study pioneers the investigation of domain adaptive VI-RelID from
a pragmatic supervised standpoint, while also presenting an innovative frame-
work for data and label efficient VI-ReID. Through rigorous experimentation
and ablation analysis, we have demonstrated the effectiveness of the proposed
methodology. The insights gained from our study provide a solid foundation for
future investigations into domain adaptation and data-efficient approaches in
VI-RelD.
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Abstract. Time-series human activity data obtained from sensor tech-
nologies facilitate various applications in industry and daily life, such as
activity recognition, motion or fall detection, and health analysis. Recent
research has shown that person re-identification and soft-biometric recog-
nition are feasible from these activity recordings, leading to privacy
breaches. Consequently, anonymising the subject characteristics found in
the sensor recordings while retaining data utility is of interest. Here, we
present an anonymisation framework using a conditioned autoencoder-
based GAN that allows for three anonymisation strategies for time-series
human activity data experimented on two complementary datasets. The
framework was visually verified with experiments on motion capture
data before being applied to inertial measurement data. This frame-
work reduces re-identification to 0.52% while maintaining data utility
for activity recognition tasks. Further, we present a form of anonymisa-
tion using identity transfer with the help of deep feature interpolation.
The method achieves over 96% successful identity transfer with high data
utility.

Keywords: Anonymising - Privacy - GAN - DFI - Autoencoder

1 Introduction

Privacy refers to the autonomy of the disclosure, usage, and availability of one’s
personal or otherwise confidential information [21]. Though complex, the con-
cept of privacy is a topic of interest due to the recent developments in artificial
intelligence (AI) and the increased possibility of malicious use of data. Conse-
quently, governments have brought forth regulations, such as the General Data
Protection Regulation (GDPR) [4] and the AI Act [5], to protect individuals
from fraudulence and distress with AI. One method of mitigating the fear of
data misuse is anonymizing personal data before saving it on a third-party sys-
tem. ISO/IEC 25237:2017 [9] defines anonymisation as the process by which
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personal data is irreversibly modified such that subject data can no longer be
retraced directly or indirectly by the data user alone or in collaboration with any
other party. As a result, through anonymization, data can be used for various
analyses and applications while retaining the data provider’s privacy.

Human motion data has immense potential in fall detection, activity recog-
nition, and health analysis. Recent studies have identified that motion data can
be used for person re-identification or soft-biometrics recognition (e.g., age, gen-
der, and height) using time-series sensor data [16]. Consequently, there is a need
to anonymize the subject characteristics from the time-series data while main-
taining the data utility or minimizing the identifiable features. Previous works
like [22] have attempted differential privacy, augmentation, and synthetic data
to remove or complement original data. However, very little work exists for
anonymisation in the domain of human activity data. As a result, this paper
brings forth anonymisation strategies for sensor-based human activity data from
a known subject re-identification network on two human activity datasets.

This work considers a situation where a dataset created for an application,
such as human activity recognition (HAR), is repurposed to identify the subjects
performing the activities [16], thus compromising the subjects’ privacy. Given
the scenario, this work explores the possibility of generating synthetic data of the
subjects performing the activities while removing the subject-specific informa-
tion from the recordings. Specifically, can generative networks be used to develop
methods for anonymising sensitive user data while preserving its similarity to
the original data and thus ensuring privacy protection?

For this task, this paper proposes three strategies of anonymisation, where
the generative model attempts to create an identity space where mutual infor-
mation can be removed or interpolated while retaining motion information that
is close to reality for an application such as HAR. The first strategy consid-
ers a situation where the generative model attempts to remove information by
removing the generic subject information present in the re-identification model.
The second strategy assumes knowledge of the subject performing the activity
and thus directs the generative model to remove that subject-specific informa-
tion. The final strategy assumes the knowledge of a subject whose identity was
compromised and can be the target identity of the generator.

The paper is organised as follows: Section 2 presents recent work in anonymi-
sation and generative networks. Section 3 explains the networks that facilitate
the three strategies. Section 4 discusses the results obtained. Finally, the con-
clusions and future work are presented in Section 5.

2 Related work

Human activity data drive innovative technology such as human-machine inter-
action, virtual and augmented reality, and simulation environments [23]. Though
not intended for the use of person and soft-biometric identification [16] and
enhancing video-based subject tracking [7], time-series data unwittingly pro-
vide person-specific information present in the motion recordings of the person
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to machine learning methods. For example, deep neural networks (DNNs) can
extract subject-specific information from stagnant and locomotive activities [16].

Differential privacy (DP) suggests that small alterations to the recorded time-
series data do not significantly affect the statistical properties of the dataset [3].
Consequently, there has been high interest in evaluating DP, especially on time
series data. For example, [22] applied DP with the addition of controlled noise
in time-series data of electric footprints of smart homes for preserving privacy.
However, the data utility was found to be insufficient. This work emphasizes the
computational challenges of adding noise to preserve privacy while maintaining
the statistical structure of the data.

One of the few works that explore inertial measurement unit (IMU) data pri-
vacy preservation is [12]. The authors present two approaches utilising autoen-
coders (AEs) for the privacy preservation of smartphone data. First, the recorded
data is categorised based on the target application requirement as required,
neutral, and sensitive segments. The sensitive time-series recordings are either
replaced with a Replacement autoencoder (RAE) or anonymised using an
Anonymising autoencoder (AAE). On the one hand, the RAE is trained to
categorize the time-series data into categories and then replaces the sensitive
timeframes with randomly chosen neutral timeframes. On the other hand, AAE
attempts to minimize privacy loss while maximising data utility. The authors
calculate the privacy loss as the mutual information of user-specific data in the
anonymised time series and the user’s identity. Several use cases on different
datasets were successfully implemented and evaluated with both networks and
a combination in which data is first masked with an RAE and then further
obscured with an AAE. Their results show that re-identification accuracy can
drop from 96.2% down to 7.0% while keeping activity recognition at high levels
[12].

Generative Adversarial Networks (GANSs) are not primarily used for IMU
time series data generation and augmentation. The research focus on GANs
has preliminarily been on art, entertainment, medical imaging, drug discovery,
and financial modelling [10]. One instance of GANs being used to generate IMU
data is TheraGAN. TheraGAN is a conditional GAN trained to generate realistic
IMU signals to elevate imbalances in the activity classes, leading to more robust
classifiers for therapeutic application. The synthesised data can replace individ-
ual channels of IMU recordings without impairing subsequent HAR models [13].
Consequently, exploring the possibility of using GANs for privacy-preserving
synthetic data generation is interesting. For instance, [8] and [2] use GANSs for
full-body de-identification or anonymisation of subjects in image data. Deep
neural networks such as convolutional neural networks (CNNs) map complex
features into a Euclidean subspace, where the features can be disentangled, and
linearised [20], as the authors of [1]’s hypothesised. Deep feature interpolation
(DFI) uses linear interpolation within local subspaces to achieve precise and
controlled modifications of attributes, for example, in face images, adding or
removal of beard, glasses or skin properties [20], while keeping the face identity
intact [18]. To the best of our knowledge, this method has not been reciprocated
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for sensor-based human motion data. As a result, this work focuses on anonymi-
sation strategies implemented with AE-based GAN architectures and subject
feature transfer using DFI.

3 Anonymisation using Generative Networks
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Fig. 1. Architectural overview of the proposed method. Real data X from data set D is
anonymised in the generator network. The autoencoder structure allows for controlled
deep feature interpolation (DFI) at the bottleneck, making re-identification of the
generator’s output X’ less likely. The generator is trained on the dual objective as
given by the discriminator and identificator networks combined loss LG.

We propose a framework for anonymising multichannel time-series sequence
recordings of humans when performing activities using generative networks. For
a triple (X, a,y) with X a sequence of sensor recordings, a the activity, and y the
identity label of the subject, this framework seeks to generate (X', a’,y’), so that
y' #y and a’ = a. Figure 1 shows the overall framework. This anonymisation
framework consists of an adversarial architecture with three main components:
an autoencoder generator that generates synthetic data, a discriminator
that attempts to differentiate between synthetic and authentic input, and a re-
identification network that recognises the subject performing the activity of
the input-segmented recording.!

The following are the key points considered in the design of the anonymisa-
tion strategies. Firstly, the method assumes that the re-identification network

! The code and parameters of the networks are available on GitHub.
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that an attacker can use is known. Secondly, two constraints are placed on the
generative networks to ensure data utility and a broader range of real-world
applications: the anonymisation process is conducted on segmented recordings,
and the anonymisation strategy should be oblivious to the activities in the seg-
ments. Consequently, a pre-trained re-identification network is used to help train
the anonymisation networks. Further, the generated anonymised recordings are
tested on a pre-trained HAR network that was not included in the training
process.
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Fig. 2. The Autoencoder generator network has (De-)Convolutional layers in the net-
work with filter size [4 x 4] (green layers) to implement the en- and decoding of the code
representation C. The code representation is manipulated by adding the latent features
C. as learned in the dense branch of the network (Blue represents fully-connected lay-
ers). Encoder, Bottleneck and Decoder are pre-trained, with the encoder having fixed
parameters during the GAN training phase.

The autoencoder (AE) generator architecture structurally uses a deep, con-
volutional AE. Deep convolutional networks are efficient at solving HAR and re-
identification tasks [14,16]. Besides, convolutions are efficient at feature extrac-
tion that can facilitate DFI [18]. The autoencoder structure has the additional
benefit of simplifying the reverse mapping problem as the autoencoder learns to
decode autonomously [20]. Figure 2 shows the AE generator architecture. The
encoder of the AE consists of three convolutional layers, with batch normalisa-
tion and ReLU activations. The bottleneck layer has a single convolutional layer
followed by ReLU activations. The decoder consists of three de-convolutional
layers, with the first two layers containing batch normalisation and ReLU acti-
vation. A sample recording X is passed through the encoder, yielding the deep
representation C,. Passing this deep representation to the decoder yields the
reconstructed data sequence X’ of the same shape as X. The AE of the gener-
ator is pre-trained to guarantee a viable reconstruction process and to establish
a baseline concerning HAR and Rel D performance.

While training the GAN, a latent vector z is added to the encoder deep
representation C,, after feature extraction through two dense layers with leaky
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ReLU activations. These dense layers, thus, provide the possibility to model and
embed C, that can manipulate the encoder deep representation C, based on the
combined loss of the GAN. Both, C, and C, have the same dimensions; their
weighted sum is denoted as C. The addition of controlled noise to the embedding
can be considered a variation of differential privacy (DP) as in [6], where the
authors argued that the sampling process for VAE described a DP variant. In
the case of subject-based conditioning of the generator, the latent vector z is
concatenated with the one-hot vector of the subject label y. The new vector
is passed through the dense layers for extracting the feature C,. Thus, instead
of directly adding noise to the bottleneck, this process provides freedom to add
randomness, as well as, condition the bottleneck layer.

The re-identificator RelD serves as a metric to assess the effectiveness of
the generator’s anonymisation. The RelD architecture assigns a block of four
convolutional layers to each limb recording. These convolutional layers operate
in parallel and are then fused by flattening and concatenation. A multi-layer per-
ceptron (MLP) with softmax activation yields the identity prediction for each
subject. The discriminator, denoted as D, is realised using a CNN architecture
with three convolutional layers, with each layer followed by batch normalization
and ReLU activation. The extracted features are then provided to a fully con-
nected layer. This output is obtained through a Sigmoid activation function in
the final layer of the CNN.

3.1 Anonymisation Strategies

The anonymisation framework addresses three strategies, giving a general solu-
tion for anonymisation. The first strategy removes the generic information of
the subjects present in the dataset without specifically focusing on the subject
performing the activity in the given segmented recording, called Anonag. The
second strategy imposes a condition on the generators’ learning based on the
subject’s identity performing the activities in the given segmented recording,
called Anon .. The Anong.c has the base structure of Anon,g but is con-
ditioned on subject identity. However, the conditional value is provided to the
generator and not the discriminator. Inspired by DFI, the third strategy inter-
polates subject representation from the pretrained AE generators’ embeddings
of the segmented recordings. Further, the generative model is trained to transfer
a target subject’s identity onto the generated synthetic segment. Thus, the DFI-
based GAN architecture, Anonppy, performs anonymisation through subject
feature transfer.

Anonag and Anona.c focus on reducing subject re-identification while gen-
erating synthetic sequences with high data utility. Thus, a combination of loss
functions achieves effective anonymisation and synthesis, where an inverted
binary cross-entropy (BCE) loss for D, BCE(D[X']), is multiplied by the cross-
entropy loss of ReID for the source subject C'E(RelID[X]®)). However, when
the RelD prediction for the actual identity approaches zero, indicating success-
ful concealment of the identity, the entire loss term collapses to a negligible
value. Consequently, the discriminator’s influence is nullified, resulting in the
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network generating random, unidentifiable noise, which is undesirable. Thus, a
linear clipping of the RelD loss to a minimum value ensures that the RelD
output is low. A loss value [, [ — m -l + b reduces the RelD loss but is fully
differentiable, Equation (1).

La(X',y) = BOE(D[X'))- (m-CE(ReID[X]™) +b), for m,be RY,m+b=1,
(1)

The combination loss affects the learning of the feature C. For instance, C,
learns features most sensitive to re-identification. Applying an inverted RelD-
loss to the dense layer that maps the latent vector z to C, enforces a heavy dis-
tortion of identifiable features while maintaining data utility provided, the losses
of ReID and D are combined. The difference between the methods Anon g and
Anon a.c generators is that, in Anona.q, the subject identity is provided to the
generator as an encoding concatenated to latent vector z. This process increases
uncertainty as the identity labels are fed exclusively to the generator, not the dis-
criminator. This deliberate deviation from the standard implementation provides
a context for the generator to learn anonymisation. However, this modification
does not affect the loss Equation (1).

The training of the Anonpp; is complementary to the training of Anonag
and Anon 4. strategies. In Anonpry, the focus is to reduce/remove the identity
of the subject performing the activity in the given segmented recording and to
replace a target subject’s identity in its place. Consequently, the first step in this
direction is to remove the mean subject-specific information. The subject-specific
feature encoding can be obtained from the bottleneck of the autoencoder. Thus,
for a given sequence X of a source subject y € Y with feature representation
C,, the mean subject-specific information across all N sequence representations
is described as S = ~ ZZN:O ng).

Adapting the concept of DFI, a linear transformation exists in the feature
space that allows the shift of identity to a feature representation resembling
another subject. However, this transformation cannot be naively applied to the
bottleneck encoding for the reason that the feature space consists of subject iden-
tity as well as activity features that are entangled. Given the activity-agnostic
training, the feature entanglement cannot be easily resolved. The dataset imbal-
ance amplifies the feature entanglement problem. Consequently, Anonppr; min-
imises the mean subject-specific features from the given sequence and adds the
target subject features learned through the GAN training, as presented in Equa-
tion (2). To facilitate the target subject feature learning process, the target
identity embedding is concatenated to the latent vector input z, which is further
encoded as C,(y’) through the deep layers discussed previously.

C= (Cx - §y) + Cz(y/) (2)

This difference in training requirement implies that the loss function Equa-
tion (1) must be updated. Consequently, the linear scaling of the Rel D’s contri-
bution to the total loss was dropped, thus alleviating the concern about vanishing
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gradients associated with the function, Equation (3). The new loss function LEF!
is minimal if the discriminator perceives the synthetic samples X’ as authentic
and simultaneously, the re-identification G assigns them with high probability
to the target subject 1/’

LEFI(X' ) = BCE(D[X']) - CE(ReID[X'],/) (3)

3.2 Training
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Fig. 3. Overview of the experimental process. Step (1) describes the unsupervised
training of an autoencoder. (2) This autoencoder is inserted into the GAN network
structure and the GAN training commerces. After the training, the generator is used
for synthetic data generation in step (3). Step (4) then compares the synthetic and
original datasets using HAR and ID networks.

We follow a multi-phase training process outlined in Figure 3. Initially, the
autoencoder architecture of the generator is trained independently. The primary
objective of this phase is to identify an optimal embedding for the activity data,
which will be consistently used in the later stages. Furthermore, this step estab-
lishes a preliminary quality benchmark for the data reconstruction. The param-
eters of the autoencoder are then fixed and transferred into the generator. Next,
the pre-trained identification, Rel D, with fixed parameters and the untrained
discriminator D are integrated into the network. RelD is fixed to represent an
adversary network attempting re-identification. In contrast, the discriminator
gets trained parallel to the generator to ensure consistent similarity between
real and synthetic data for subsequent applications.

4 Anonymisation Results

The anonymisation method presented here combines the three established strate-
gies, deep feature interpolation, differential privacy, and a GAN structure, two
of which are implemented directly in the generator. This approach is evaluated
on two publicly available benchmark datasets of inertial measurement recordings
of human movements.



Anonymisation for Time-Series Human Activity Data 25

4.1 Datasets

Two datasets were used for experimentation, namely the Logistic Activity Recog-
nition Challenge (LARa) dataset (version 2) [17] and the MotionSense [11]
dataset. LARa consists of both motion capture (MoCap) LARaas,cap and iner-
tial measurement unit (IMU) data LARajpp, whereas MotionSense (MS) con-
sists of only IMU data. LARarypy has a total of five on-body devices (OBDs)
with three sensors each, whereas MS has one OBD with three sensors. The
LARaocap is sampled at 200Hz, while LARasyp and MS are sampled at
100H z and 50H z, respectively. The datasets consist of varied sets of activities
and subjects. The MS data set has 24 subjects performing six different activ-
ities of daily living, while LARaj/0cqp and LARary have 16 and 7 subjects,
respectively, performing seven classes of logistics activities. The MoCap data
from LARa is used to visually verify the methods used in the experiment. The
work, however, is focused on the anonymisation of IMU data.

4.2 Benchmarked networks

The anonymisation method, see Figure 3, depends on two architectures con-
trolling the quality of the anonymisation process, such that the anonymised
sequences will fool the RelD while the HAR prediction accuracy is maintained.
Thus, the sequence will contain information allowing HAR but not RelD. These
two control-point architectures, ReID and HAR are benchmarked architectures
proposed in [16, 15].

Two variations of the RelD can be found based on the number of channels
in the datasets. For datasets with high channel density, the ReID network, as
detailed in [16], is utilised and referred to as RelDy. For example, ReIDy, [16]
is used for the LARayocap and LARajpy, further denoted as ReID%I ¢ and
ReIDIMY | respectively. In the case of low channel density, a single block of four
convolutional layers performs the feature extraction, referred to as RelDj;. The
pre-trained RelD networks assess the possibility of re-identification from the
synthesised recordings. RelD,; is used mainly with the MS dataset, referred to
as RelD31S5.

Similarly, pre-trained HAR networks for LARapocap, LARarp, and MS
data were used to quantify the utility of the generated data for HAR applications.
Based on the work of [19], tCNN-IMU networks were used for LARaysocqp and
LARajyp, referred to as CNNIMU p;¢ and CNNIMU ¢, respectively. For the
MS, a CNNIMU ;¢ with one branch is used for HAR, as mentioned in [19].

Autoencoder Two variations of AEs with different features in the bottleneck
layer were experimented on. The first variant has 32 features, and the second
variant has 64 features. Minor padding is applied to the input and output layers
to make the chosen filter size fit the data shape. For the (de-)convolutional layers,
a fixed filter size of [4 x 4] with a stride of 2 was effective during a hyperparameter
search. The AE is trained unsupervised, and the network generalises while being
agnostic about input recording activities. Mean Squared Error (MSE) loss was
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Fig. 4. Visual inspection of the reconstruction quality of AFErpientrap. The real
sequence X (left) from the MbientLab dataset is fed to the respective autoencoder
network. The reconstruction yielded by AFEapientras (right) retains the general tra-
jectories of the time-series but misses out on details, showing a quantisation effect on
temporal neighbourhood.

employed. The networks with 64 features at the bottleneck performed best at
low validation loss and visual inspection as presented in Figure 4.

Table 1 presents the baseline performance obtained for the HAR and RelD
networks on the real dataset and the AE-generated data for the datasets of
interest. A learning rate of 0.0001, batch size 50 and epoch 10 for LARa dataset
RelID network and a learning rate of 0.001, batch size 50 and epoch 100 for MS
RelID network was found to be effective.

Table 1. Baseline RelD and HAR Metrics for LARayocap, LARarvy and Motion-
Sense.

Real Data AEgyntn Data
Dataset RelD HAR RelD HAR
Acc% wF1% Acc% wFl%‘Acc% wF1% Acc% wF1%
LARarocap |98.97 9897 76.54 76.19 ‘99.81 99.81 97.19 97.18
LARarmqu  |94.61  94.57 80.28 79.81 ‘78.50 77.55 64.60 63.98
MS 78.23 78.08 95.81 95.75 ‘9.70 5.85 55.80 53.73

Generally, a drop in network performance can be seen on the data synthesised
by the AE. Interestingly, network trained on synthetic LARasocqp performs
better than the real data. One could attribute this performance difference to the
high channel density MoCap data being optimised with the encoding of the AE.
However, in comparison, loss of information from the low channel density IMU
data is evident.

4.3 Anonag

Table 2 presents the baseline results of the HAR and RelD networks using the
synthetic data obtained from the autoencoder-based GAN, Anon 4¢, trained on
each dataset. Anon s trained on LARajp;p achieved optimal results at the 20-
epoch mark. In contrast, Anon ¢ trained on LARay/ocqp achieved stable train-
ing after 5 epochs. The experiments run best at a small learning rate of 1x107>
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Table 2. Benchmark for synthetic data generated by the respective models compared
to real data. Values correspond to averages across 5 runs (mean + std. deviation). High
HAR metrics indicate good utility preservation, while low ID metrics show successful
anonymisation.

‘ Anonag ‘ Real Data
Network | HAR RelD | HAR RelD
‘ Acc%(1) wF1%(1) Acc%(]) wF1%(]) ‘ Acc% wF1% Acc% wF1%
Anon’{5°P 13745+ 022 2657+0.16 6.52+0.10 1.19+£0.03 7654 76.19 98.97 98.97
Anon’{2V \ 44.77 +£0.28 35.23+0.24 13.91 £ 0.08 4.524+0.13 \ 80.28 79.81 94.61 94.57
Anon}§ 36364012 33474+0.12 7.02+£0.07 230£0.05 9581 95.75 78.23 78.08

for both the generator and discriminator. Anon g was efficient in anonymising
LARajypy dataset. Unaltered data on the RelD network with 95% accuracy
reduced to 4.5% on the synthesised data. Some of the data utility was lost in
this process as wF; score of the activity recognition on the original data at 80%
dropped significantly to 35% for the Anonse on LARajp . A similar drop in
performance can be seen in the LARaysocaqp performance. Specifically, low RelD
was achieved at 6.52%. These results show that the generator learned to modify
privacy-sensitive features but compromised the integrity of the time series, lead-
ing to lower HAR accuracy than the benchmark values. This outcome can be
associated with the absence of guidance for the generator regarding the identity
information to be concealed. The Anon g performs generic anonymisation by
applying modifications indiscriminately. Thus negatively affecting data utility.

4.4 Anong.qg

The second strategy provides the subject information to the generator. The iden-
tity information provided is a conditioning that allows Anons.g to learn about
the subject-specific characteristics it must mask to facilitate anonymisation. The
hyperparameter search on this architecture shows that the generator’s training
process was stable at a low learning rate. Overfitting was addressed by employ-
ing a EXPONENTIALLR learning rate scheduler that dynamically adjusts the
learning rates for both the generator and the discriminator after each epoch.

Table 3. Benchmark for synthetic data generated by the respective models compared
to real data. Values correspond to averages across 5 runs (mean + std. deviation). High
HAR metrics indicate good utility preservation, while low ID metrics show successful
anonymisation.

‘ Anona.c ‘ Real Data
Network | HAR ReID . HAR RelD
‘Accuracy (1) wFi (1) Accuracy (|) wFi (]) ‘Acc% wF1% Acc% wF1%

Anon%™? 136,42 £0.21 25.38+0.15 6.46+0.09 119+£0.02 7654 76.19 98.97 98.97
Anon’MY 63.14+0.17 60.08+£0.18 0.76+0.01 0.52+0.01 80.28 79.81 9461 94.57
Anon}l¥, |37.94+0.13 3553+0.11 526+007 1974005 9581 9575 78.23 T8.08
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The respective HAR and RelD metrics were established to compare Anona.q
with benchmark values. Table 3 presents the average Acc and wF'1 over five
training-test sets. Anona.c achieves an identification accuracy of 0.76% while
maintaining high data utility for LARajy;y. Furthermore, Anons.q generates
samples matching the predicted activity of the original data in 63.14% of the
cases, whereas samples generated by Anonag yielded 44.77% accuracy for this
benchmark. Similar results can be seen with the MS dataset, too. However,
LARajy0Cap performance decreases, specifically for ReID. The visible data util-
ity improvement can be attributed to including the identity labels in the net-
work’s input.

4.5 AnonDFI

Anonppy deviates from the previously explained philosophy of anonymisation
as it attempts a controlled identity transfer for a given sequence, being aware of
the source and desired target identity. As discussed in Section 3, the bottleneck
of the AE generator encodes features that can be shifted in a desired direction
following the concept of DFT.

Table 4. Benchmark of HAR and RelD metrics per target subject an example on
LARaryu. Higher metrics correspond to better preservation of activity information
and successful anonymisation through identity transfer to the target subject.

Target HAR Metrics ReID Metrics

Subject | wF (1) Accuracy (1) |wF1 (1) Accuracy (1)
So 58.00 £ 00.28 59.68 +00.21 | 99.63 = 00.01 99.26 £ 00.03
S1 56.62 £ 00.15 59.80 +00.12 | 99.88 £ 00.00 99.77 & 00.00
Sa 59.03 £ 00.33 62.25 + 00.27 | 99.71 4+ 00.01 99.42 + 00.02
Ss 54.60 £ 00.27 58.38 +00.26 | 99.67 = 00.01 99.34 £ 00.03
S 51.08 £00.20 53.53 +00.16 | 99.72 £ 00.01 99.43 £ 00.01
Ss 52.87 £00.31 57.40 +00.34 | 99.71 £+ 00.00 99.42 + 00.00
Se 59.69 £00.31 62.08 +00.38 | 99.26 £ 00.04 98.53 + 00.07
S7 57.94£00.18 61.51 +00.17|99.68 £ 00.01 99.35 £ 00.01

A preliminary test of subject transfer applied solely on the AE provided
encouraging results, as presented in Table 4. For instance, DFI-based subject
transfer on LARaj,; achieves good data utility preservation, comparable to
the results of Anona.g. Figure 5 presents a comparison between the original
skeleton of Subject 08 in M interpolated to subject 15 in M from LARapsocqp-
However, the anonymization is much weaker, with an average Re-ID accuracy of
30%, compared to the previously achieved 0.7%. Compared to the AE baseline,
the results demonstrate improved data utility preservation with HAR accuracies
of 80% while concurrently reducing RelD scores by half. Thus, motivating the
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method discussed in Section 3 to train the GAN, referred to as Anonppy, to
achieve enhanced data utility and anonymisation through subject transfer.

Table 5. Benchmark for synthetic data generated by the respective models compared
to real data. Values correspond to averages across 5 runs (mean =+ std. deviation). High
HAR metrics indicate good utility preservation, while low ID metrics show successful

anonymisation.
‘ Anonpry ‘ Real Data
Network | HAR ReID . HAR RelD
‘Accuracy (1) wFi (1) Accuracy (]) wFi (]) ‘Acc% wF1% Acc% wF1%

Anonoer \ 37.454+0.22 26.57+0.16 6.52+0.10 1.19+0.03 \ 76.54 76.19 98.97 98.97
AnontMY \ 44.77+0.28 35.23+0.24 13.91+0.08 4.524+0.13 \ 80.28 79.81 94.61 94.57
Anon¥g; \ 39.37£0.12 3548 +0.11 5.94+0.04 2.20+0.03 \ 95.81 95.75 7823 78.08
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Fig. 5. Comparison between the original skeleton in M with the generated one using
the Anonprr from source Subject 08 to Subject 15 in M from the LARaroCap-

The Anonpp; training process significantly increased the GAN’s stability
and positively influenced the quality of the generated samples. Anonpp IMU
achieved stability at low epochs of 4 and 7 epochs, respectively. As this method
focuses on targeting the entire dataset to a target subject, the maximal identity
metric scores for the target subject indicate the best privacy preservation. This
adjustment of the evaluation strategy ensures that the results are not misleading
due to the imbalanced support across subjects in the dataset. The network reli-
ably transfers over 96% of all sequences to any target subject while maintaining
high data utility. We observe a notable variance in the HAR metrics, depending
on which subject is chosen as the target. A possible reason for this observation
can be found in the composition of the dataset used, as slightly over-represented
subjects are preferred to be targets.
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5 Conclusion

The objective of this work was to explore and develop a privacy-preserving
framework that maintains data utility for IMU data in the context of HAR
using generative networks. This framework consists of an adversarial architec-
ture conditioned on a discriminator and an identification network to transform
input sequences such that future re-identification is impossible. Notice that the
framework is not conditioned to the activities performed by the subjects in
the recordings. The framework considers three different anonymisation strate-
gies: without subject information, with subject information and anonymisation
through subject feature transfer. These strategies cover different use-case sce-
narios of anonymisation.

Three GAN architectures in alliance with the presented strategies were imple-
mented. Anon a.c yielded the best results by lowering the re-identification wF}
score from 80.28% to 0.52%, while maintaining HAR scores above 60%. Further-
more, two distinct approaches to subject feature transfer have been introduced
and experimentally verified, conditioning the GAN for interpolating deep repre-
sentation of subjects.

The findings demonstrate the effectiveness of a GAN-based network archi-
tecture in reducing re-identification risks associated with IMU data and open
the following topics for further exploration. Firstly, the effect of the anonymised
samples generated by GANs on the training of HAR models embedded in end-
user devices must be investigated. Anonymisation directly on end-user devices
allows for fully preserving privacy. However, the performance of this method can
be contrasted with federated learning. Second, it would be insightful to investi-
gate whether the developed targeted DFT architecture can effectively contribute
to balancing datasets, specifically by enhancing the representation of subjects,
thus, addressing the dataset bias of HAR models.
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Abstract. Neural networks trained on human motion data have various
industrial and daily living applications, such as activity recognition, ges-
ture recognition, and gait-based biometrics. These neural network mod-
els are often trained on industrial or research datasets designed for a
specific application with a narrow subject pool. Given that subject re-
identification and soft-biometric, such as age, gender, and height, identi-
fication is feasible using neural networks trained on human activity data,
the influence of these characteristics on HAR models cannot be ignored.
Biased datasets can halt neural networks from generalizing to unseen
subjects. However, the biases found in activity data are not explicit.
As a result, this paper focuses on representation biases caused by the
training data subject characteristics in multi-channel time-series human
activity data obtained from sensor technologies. We provide a statisti-
cal approach to evaluate the biases in existing datasets, a method to
account for biases, and a perspective on subject selection criteria for
future human activity datasets. The study is a step towards fair and
trustworthy artificial intelligence by attempting to quantify the subject
bias in multi-channel time-series HAR data.
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1 Introduction

Human activity recognition (HAR) involves recognizing an individual’s phys-
ical activities from multi-channel time-series (MCTS) sensor recordings. HAR
research is relevant for human technology interaction, mobile, and ubiquitous
computing applications for industries and daily living. In many cases, applica-
tions use neural network-based classifiers trained on MCTS datasets designed
for a specific use case. However, these classifiers’ robustness is determined by
the quality of the dataset used [2]|, as neural networks inherit biases from the
datasets [22]. For example, varying sensor placements [5], a shift of the domain
[11], inconsistent labels [19], and class imbalance [16], present in the datasets
introduce so-called dynamic inductive biases to the classifier. Similarly, subject
characteristics in the dataset influence the activity classifier. The authors in [22]
name the under-representation of a part of the population that an application
targets and the subsequent failure to generalize as representation bias. In accor-
dance with this, this work refers to the biases caused or influenced by subject
characteristics represented in the dataset as representation bias.

Person re-identification and soft-biometrics such as age, gender and height
identification are feasible with time-series human activity recordings [15,25].
These works emphasize the influence of an individual’s characteristics in the
time-series data. Researchers have attempted cross-validation, personalization
of HAR networks, augmentation and synthetic data generation to provide gen-
eralized HAR models [4,9]. However, these attempts do not evaluate or acknowl-
edge representation biases of the datasets. Generalized HAR models or Universal
HAR models are defined to be capable of generalizing to motion patterns of any
subject [4]. However, achieving such a model is restricted by the availability of
datasets that vary in the subject’s physical characteristics and documentation.
Creating such datasets is time-consuming due to the efforts for sensor set-up,
data recording and cleaning, and labeling [18,21]. For example, for the LARa
dataset [16], annotation alone took 85min per 2min of recorded data [19], or
90 min per 1min for HAR datasets in industry as reported by MotionMiners
GmbH. Furthermore, subject selection criteria followed by dataset creators in
the dataset creation process are based on the availability of actors or volunteers.

To our knowledge, no approach or metric for time-series human activity data
biases is available. Consequently, this work develops an approach to account for
representation biases in a dataset, evaluates the representation biases learned
by HAR models and thus, provides a subject selection criteria [18], as a form of
representation bias mitigation strategy starting from the source — the dataset.
Thus, this work aims to be a first step towards ensuring fair and trustworthy
models for MCTS HAR applications. The contribution aims to answer the fol-
lowing questions:

RQ1: Do the physical characteristics of humans influence activity recognition
performance?

RQ@2: What physical characteristics should be considered when selecting sub-
jects to create a robust classifier?
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RQ@3: Can we develop a metric for representation bias in activity recognition
classifiers?

The remainder of this contribution is structured as follows. Section 2 presents
works on the motion behavior of humans resulting from their physical character-
istics and connection to identity and activity recognition. Section 3 elaborates on
an approach to bias evaluation and explains the experimental design to quantify
the influence of subject characteristics on HAR performance. Section 4 presents
the quantitative results of the experiments using different datasets, and Section
5 presents the answers to each research question. Finally, Section 6 discusses the
main contributions and concludes with further work and an outlook.

2 Related Work

Datasets are prone to biases. According to [7], eight biases generally found in
datasets are social, measurement, representation, label, algorithmic, evaluation,
deployment and feedback bias; such datasets further bias data-driven machine
learning (ML) methods. Biased ML models can lead to unfair results in sensitive
applications such as deep face recognition, loan and credit, and product sugges-
tion applications [3,7]. Consequently, evaluating and mitigating the biases are
vital for generalizing ML models. Representation bias, in particular, is associated
with the dataset creation process. Thus, to ensure fair and trustworthy ML mod-
els, creating a balanced dataset is of interest [10]. The authors created a balanced
face dataset that included age, gender, and ethnic aspects. The model facilitated
an accurate classification model with the help of the public image dataset with
equal representation of each characteristic. In a similar effort, [28] proposed a
metric called the calibrated detection rate (recall) of a demographic characteris-
tic for face detection. Furthermore, the authors evaluated various face detection
bias mitigation strategies. Similar research in computer vision motivated authors
of [27] to create a tool called REVISE, which facilitates the detection of potential
biases in a visual dataset for the object, person and geography-based analysis.

Previous research on biases in HAR focuses on dynamic inductive biases,
such as the type of sensors, sensor positions, segment size, and pre-processing
[8]. For example, [29] uses bias and noise correction formulas for sensor data
pre-processing. However, bias caused by the subjects selected for HAR datasets
is unexplored [18]. Gait activity-based person re-identification suggests that each
individual’s motion behavior is unique and can be referred to as a biometric [1].
Nevertheless, physical characteristics such as height, weight, and handedness can
influence the performance of various activities [15,20].

The impact of the representation bias is visible when accounting for the
generalization capability of the models. For instance, [12] segregated the HAR
models into three categories: personal, impersonal and hybrid. Personal models
are trained and tested on the same subject’s activities, while impersonal or uni-
versal models use training data from users not present in the test set. Finally,
the hybrid model combines the personal and impersonal models. The evaluation
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of the models shows that the universal model performs the worst at 76% accu-
racy. In comparison, personal and hybrid models perform better at 98% and 95%
classification accuracy, respectively. However, personal and hybrid models may
not be feasible for practical applications, e.g. in industrial settings with frequent
staff changes. Thus, evaluating the physical or soft-biometric characteristics of
the individual is of interest to create a robust impersonal model of the HAR clas-
sifier. The authors in [6] weighted the training data by considering the similarity
between subjects of the training and test data. In addition to the similarity of
physical attributes, similar signal patterns were evaluated. The authors consid-
ered a Euclidean distance between the feature vectors of two subjects based on
age, weight and height and visualized a multi-dimensional scaling over physical
characteristics. They experimented with their method on the UNIMIB-SHAR,
Mobiact and MotionSense datasets and showed that their approach improves
the classification accuracy.

Though the above-discussed literature suggests the impact of subjects’ indi-
viduality on HAR accuracy and introduces a concept to improve classification
accuracy with the help of personalization of the model, the issue of generalized
HAR models is yet to be tackled. Consequently, understanding the subject char-
acteristics that induce bias, a dataset creation methodology, and a metric to
account for the biases are necessary for dataset creators as a subject selection
criterion [18] to mitigate the resulting bias.

3 Statistical Analysis of Representation Bias in Human
Activity Recognition

The influence of an individual’s physical characteristics is blended into human
motion. As a result, isolating the features of the human motion associated with
the physical characteristics from the recordings is improbable. Sensor biases,
sensor placement, or the idiosyncrasies of the individual’s motion cannot be
isolated from human movement recorded using on-body devices (OBDs), such
as inertial measurement units (IMUs). Consequently, statistical evaluation of the
impact of the subject’s physical and soft-biometric characteristics is desirable.
In this section, we elaborate on the hypotheses, the evaluation strategy, the
networks, and the datasets of interest.

3.1 Formulation of Hypotheses

Multi-channel time-series datasets such as Motion Capture (MoCap) systems
and OBDs record the human body’s movements. The physical characteristics, as
well as the soft-biometrics of an individual, influence the motion. For example,
an old subject may walk slower than a young subject. However, it is unclear if an
OBD placed at the wrist of the subject is influenced by the subject’s handedness
alone or if the height, gender, and age attributes contribute to biases in HAR
datasets. In particular, is such a recording influenced by the subject characteristic
or human representation available in the dataset?
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Figure 1 outlines the proposed approach. A statistical concept known as
heterogeneity measure (HM) is utilized to curate the training set for a neu-
ral network. HM quantifies the diversity or non-uniformity of qualities within
a dataset, providing insight into the range and distribution of qualities present
[17]. This measure helps understand the spectrum of physical and soft-biometric
characteristics among subjects in HAR datasets. Thus, an HM-curated train-
ing set includes different physical or soft-biometric heterogeneity levels. Here,
the hypothesis is that when maintaining the size of the training data across
all heterogeneity-level experiments, classifier performance on unseen test sets
increases with an increase in heterogeneity of the subject’s physical characteris-
tics in the training data.
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Fig.1. A curated subset of the training dataset is selected based on a heterogene-
ity measure for training neural networks. We hypothesize that classifier performance
variation can be identified based on the heterogeneity measure.

3.2 The Representation Bias - An Evaluation Strategy

We desire an evaluation strategy that considers the diversity of the subjects’
characteristics in the training set. Thus, we propose a quality measure that
depends on the different number of characteristic levels in the dataset. For exam-
ple, assume two characteristics, A and B, each with levels ranging from 1 to a
and 1 to b, respectively; in this work, A could represent age, divided into the lev-
els ‘young’ and ‘old’, while B could represent gender, ‘male’ and ‘female’. Thus,
characteristics A and B have two levels (a = b = 2). This gives us a - b (= 4)
different levels of characteristics. These levels imply a - b different potential het-
erogeneity groups ranging from being a completely homogeneous training set
where all subjects have the same characteristic level (here referred to as group
1) to a completely heterogeneous training set where all subjects have varied char-
acteristic levels (here, group ab or 4). Therefore, heterogeneity is gauged based
on the various levels in the training sets of the same size, with not all combi-
nations necessarily feasible (depending on the dataset). Within a heterogeneity
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group lying between completely homogenous and completely heterogenous, fur-
ther division into subgroups depending on the characteristic level combinations
is feasible, as elaborated in Section 3.4.

For a fair comparison of the heterogeneity group, the amount of data present
in the training sets of each group should be approximately equal. As a result,
the training sample size for the activity classifier depends on subgroup size;
for smaller datasets, the training set size equals ab subjects, while for larger
datasets, a multiple of ab is used to ensure coverage of all heterogeneity groups.
However, it is to be noted that the size must be set before splitting the data into
heterogeneity groups such that all the heterogeneity groups have approximately
equal numbers of training data. Subjects not included in the training set are
reserved for testing the classifier. To mitigate selection bias, subjects are ran-
domly selected for the training set. This allows a comprehensive exploration of
the dataset’s diversity, with N distinct experiments conducted for each hetero-
geneity group. Experiments are conducted with the maximum number of training
sets possible for the respective dataset in cases where N different training sets
were not feasible.

Categorization of physical characteristics, such as age, which are continuous,
is necessary to simplify the analysis while preserving important data charac-
teristics. This process facilitates pattern identification and ensures a sufficient
sample size for robust statistical analysis. Thus, this approach can be gener-
alized to more characteristics, e.g., a third characteristic C' with levels 1,... ¢
gives abc heterogeneity groups. Again, heterogeneity is measured from group 1
to group abc. As this approach becomes cumbersome with large characteristic
levels, selecting 4-8 different groups is suggested.

3.3 Datasets

The dataset selection criteria for this work were the availability of varied sub-
jects, documentation of subjects’ physical characteristics, the public availabil-
ity of the dataset, varied activities within the dataset and previous use of the
dataset in HAR research. Table 1 presents the chosen datasets for this work.
MobiAct [26], Motionsense [13], and Sisfall [24] have one OBD, which typically
consists of an accelerometer and gyroscope (IMU). In addition, a MoCap dataset,
LARaocap [16], is included in the experiment. The three IMU datasets are
recordings of activities of daily living such as walking, jogging, and sitting. The

Table 1. Datasets for experimentation and their features.

Dataset Sampling No: No: Sensor Characteristics
Rate (Hz) Subject Activities Placement Available
MobiAct |26] 20 58 9 Trouser Pocket Age, Gender, Weight, Height
Motionsense [13] 50 24 6 Trouser pocket Age, Gender, Weight, Height
Sisfall [24] 200 38 15 Waist Age, Gender, Weight, Height

LARanocap [16] 200 16 7 Body joints  Age, Gender, Weight, Height, Handedness
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Table 2. Statistical summary of the physical characteristics. Weight is measured in
kilograms (kg), height in centimeters (cm), and gender is denoted as F for females and
M for males.

Age Height ‘Weight Gender
Dataset Min. 1st Qu. Med. 3rd Qu. Max. Min. 1st Qu. Med. 3rd Qu. Max. Min. Ist Qu. Med. 3rd Qu. Max. % F %M
LARa 22 24.75 28 49.5 59 159 163 171.5 177 185 48 63.5 69.5 79.75 100 50 50
MotionSense 18 25 28 31.25 46 161 164.8 175.5 180 190 48 60 71 80.5 102 41.67 58.33
Mobiact 20 22.25 25 26 40 158 170 176 180 193 50 67 75.5 85 120 27.59 72.41
Sisfall 19 2225 26.50 64 75 149 156 164 170 183  41.5 52.25 62 72 102 50 50
Sisfall Young 19 21 23 25 30 149 156.5 165 171 183  41.5 49.25 585 68.75 80.5 52.17 47.83

MoCap dataset consists of kinematic recordings of logistics activities. The com-
bination of datasets for experimentation would bring forth the representation
biases that may be present in the datasets, irrespective of their feature quantity.

All four datasets provide the age, gender, weight and height characteristics
of the subjects. Table 2 presents the statistical analysis of the characteristics of
the subjects. Furthermore, a sub-categorization of the Sisfall dataset, focusing
on young subjects of the dataset, is presented. This subset is created due to
incomplete data for older subjects within this dataset. Mobiact consists of the
least variations in age and has more male subjects. The LARa, MotionSense, and
Sisfall datasets are more varied in age distribution and nearly equal in gender
distribution.

3.4 Experimental Design

The initial analysis showed a significant correlation between the height and
weight characteristics to the gender of the individuals for all datasets. Table
3 shows the frequency of the different characteristic values, namely, height and
weight, to gender. Given the small number of subjects across datasets, binary
categorization based on the dataset median was considered to ensure sufficiently
large training sets. Thus, height and weight are classified as Short/Tall and
Light /Heavy. The table shows the division after combining all datasets, imply-
ing that including these characteristics in the selection of the subjects would
essentially repeat the trend. As a result, we focus on the age and gender of the
subjects to test the hypothesis. Age characteristics were divided into the lev-
els ‘young’ and ‘old’, while binary categorization of gender (male and female)
was followed as per the datasets. For the Sisfall dataset, we utilized the age
divisions provided by the dataset creators. Thus, we have four combinations of

Table 3. Frequencies of gender and categorized weight and height for all datasets.

Weight Height

Light Heavy Short Tall
Female 41 12 49 4
Male 27 56 18 65




40 N. R. Nair et al.

Table 4. Description of the HM for the training set.

Group Heterogeneity Measure

1 All subjects share the same characteristics

2 Subjects have two different characteristics (e.g. old women
and young men are used in the training set)

3 Subjects have three different characteristic level combinations

All four different characteristics combination are included in
the training set

the two characteristics, referred to as characteristic levels: young woman, old
woman, young man, and old man. Following the evaluation strategy outlined in
Section 3.2, the experiments encompass four different groups of heterogeneity,
as depicted in Table 4.

The HM ‘2’ can be further divided into two subgroups depending on how
the two types of characteristic levels differ: ‘2a’ refers to differences in one char-
acteristic (e.g., young men and young women), and ‘2b’ refers to differences in
both characteristics (e.g., young women and old men). Similarly, the HM ‘3’ con-
sists of three different characteristic levels, for example, young man, old man,
and young woman. Table 5 shows the frequency of the two characteristics under
consideration in all data sets. The LARa dataset has an approximately similar
number of subjects in the age and gender categories. However, clear differences
in the number of subjects can be found in Mobiact. In accordance with the pro-
cedure described in Section 3.2, the number of subjects for the training of each
dataset was determined. Specifically, four subjects were used to train the LARa,
MotionSense, and Sisfall Young datasets. For the Mobiact dataset, the number
of subjects was increased to 12, and for the Sisfall dataset, eight subjects were
selected for training. The remaining subjects not included in the training sets
were reserved for testing.

Table 5. Frequencies of gender and categorized age for all datasets.

LARa MotionSense Mobiact Sisfall Sisfall Young

Young Old Young Old Young Old Young Old Young Old
Female 5 3 7 3 7 9 12 7 6 6
Male 4 4 6 8 19 23 11 8 4 7

Neural Networks and Training Procedure This work uses three varied
neural networks! for HAR; namely, two variations of time-series convolutional
neural networks (CNN-IMU)- proposed by [14], a Long-Short Term Memory

! The code and parameters of the networks are available on GitHub.


https://github.com/nilahnair/ICPR2024_DatasetBias

Representation Biases in Time-Series Human Activity Recognition 41

(LSTM) network and Transformer (Trans) proposed by [23]. The first variation
of CNN-IMU has a block of four convolutional layers, two layers of multi-layer
perceptron (MLP), and the softmax activation layer. Datasets with a few chan-
nels (less than 10) are trained on this network. The second CNN-IMU variant for
high channel density has five blocks of four convolutional layers, followed by two
layers of MLP. The LSTM network has four hidden layers of 256 dimensions,
followed by two MLP layers and a softmax activation layer. Unlike classical
classifiers, which require hand-crafted features, the deep learning architecture
performs necessary feature extraction on the input data before the classification
process during supervised learning. As a result, the method is robust against
manual feature extraction biases.

The weights of the network are initialized using the orthogonal initialization
method. The Cross-Entropy Loss function is utilized to calculate activity clas-
sification loss. The Root Mean Square Propagation (RMSProp) optimization is
used with a momentum of 0.9 and weight decay of 5 x 10~%. Gaussian noise with
mean g = 0 and standard deviation (SD) ¢ = 0.01 is added to the sensor mea-
surements to simulate sensor inaccuracies [14]. Dropout of probability p = 0.5
was applied on the MLP, and early-stopping was implemented to avoid over-
fitting. The baseline architectures for each dataset were experimentally obtained
post-hyperparameter search.

Evaluation Metric The accuracy (Acc) and weighted F1 score (wF1) were used
to measure the activity metrics. wF'1 was evaluated due to the unbalanced nature
of the activity recordings in the datasets. Furthermore, recall and precision of
the activity labels are evaluated.

4 Experiments and Results

This section presents and analyses the results obtained from the experimental
design discussed in Section 3.2. The first step in this direction is to achieve a
baseline evaluation of the networks on the selected datasets to understand the
networks’ performance on a larger quantity of the same dataset, as shown in
Table 6. CNNs and LSTMs perform well on the datasets. An exception is the
case of Sisfall for CNN. In comparison, Transformer (Trans) perform poorly on
all datasets except MotionSense. This can be associated with the training data
quantity required for CNN-Transformers.

Next, the subjects of the training and validation sets are chosen based on the
statistical hypothesis discussed in Section 3. The neural networks trained on the
training sets created based on heterogeneity measures generally perform poorly,
given the fewer data available in these sets. However, this work is focused on the
comparative performance of the networks on the training sets as it is ensured
that the sets have a similar quantity of data. Figure 2 and Figure 3 present the
boxplots of accuracy and wF1-score for each HM group for all datasets. The
networks are given a designated color and are followed for all plots in this work.
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Table 6. Baseline implementation of neural networks on the selected datasets.

Dataset Network | Batch Size Epoch Accuracy (%) wF1 (%)

LARa CNN-IMU | 100 10 88.0824 4+ 0.2149 87.5761 £ 0.2497
LSTM 50 15 82.5851 4+ 0.5524 81.6674 + 0.6279
Trans 100 30 71.6814 + 12.9298 65.5721 + 20.0809

Mobiact CNN 50 30 94.5179 £+ 0.1038 94.3257 £ 0.1145
LSTM 50 15 95.6331 £+ 0.1631 95.5188 + 0.1691
Trans 50 15 71.4007 £ 29.0897 65.7899 + 36.5785

MotionSense CNN 50 30 95.9017 £+ 0.1381 95.8639 £ 0.1278
LSTM 100 30 96.0538 £+ 0.2132  96.0182 + 0.2079
Trans 100 15 91.1124 £+ 0.6498 91.0656 £ 0.6338

Sisfall CNN 50 50 63.3665 4+ 0.8636 63.2645 4+ 0.8082
LSTM 50 50 74.4645 + 0.3826 74.3861 + 0.3169
Trans 100 30 71.2942 + 0.2988 70.8207 £ 0.4622
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Fig. 2. Results on the average accuracy measured in percentage for all datasets on all
HM groups.

The performance measures of all datasets present similar trends. In partic-
ular, the results show an increase in the average accuracy of the classification
experiments, especially for datasets with large age differences (such as LARa
and MotionSense). Interestingly, the increase is not significant when comparing
the results of Sisfall, specifically Sisfall Young. However, Sisfall shows a large
age variation within the dataset. A major point is that the variation in age is
clustered rather than linear, the impact of which can be seen in the results of HM
‘3> and ‘4’. A similar trend is visible with the wF1 values. The average wF1 of
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Fig. 3. Results on the average wF1-Score measured in percentage for all datasets on
all HM groups.

the classification experiments shows an increase in performance with an increase
in heterogeneity measure in alignment with the hypothesis.

The influence of the different network architectures on the performance met-
rics shows clear differences between the datasets. Although the CNN architecture
is competitive in datasets such as LARa, MotionSense and Mobiact, it performs
comparatively worse in the two subsets of Sisfall. In particular, the Transformer
network shows large variations in the values of the performance metrics in the
Mobiact and MotionSense datasets, especially in the heterogeneity group ‘2’.
However, for all networks and datasets, the standard deviation of accuracy and
wF1 performances decreases with increased HM. This can be associated with
the improved robustness of the network.

The performance difference in HM ‘2’ may be attributed to the different sub-
groups ‘2a’ and ‘2b’. As discussed previously, while HM ‘2a’ consists of variations
of one characteristic of the training set subjects, HM ‘2b’ consists of variations
of two characteristics. This means that the training data of HM ‘2b’ has more
diversity in the scope of the subject’s physical characteristics than ‘2a’. In our
case, at least two subjects in the training set are retained to have similar char-
acteristics. Figure 4 presents the accuracy results of HM ‘2’ subgroups. Similar
results for wfl can be found in Figure S1 in the Supplement. Based on the trend
seen in Figure 2 and Figure 3, an improvement in the performance measure
would be expected with increasing heterogeneity in the training set. However, it
is worth noting that no significant differences in performance can be observed,
even if the average accuracy values are slightly higher for HM ‘2b’. A greater
difference can be observed for MotionSense and Transformer in particular.

Turning to a more targeted analysis by examining the performance metrics
for specific activity labels. Here, we focus on recall and precision to assess the
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Fig. 4. Results on the average accuracy measured in percentage for all datasets on HM
subgroups ‘2a’ and ‘2b’.

classifier’s ability to identify individual activities accurately. In this context, the
focus is narrowed to the activity of ‘walking’ since it is consistently present across
all datasets. Figure 5 shows the averaged precision (left) and recall (right) across
all corresponding experiments of the HM groups. Figures S2 and S3 in the Sup-
plement provide more detailed results. An increased precision and recall across
higher HM groups is generally observed. However, recall is more receptive to
an increase in characteristic levels. This trend aligns with our previous findings,
suggesting that as heterogeneity in the training sample increases, the classifier’s
ability to accurately identify the ‘walking’ activity improves on the unseen test
data. Thus, this work with statistical evaluation proves that for the same amount
of training data, having varied subject characteristics, here heterogeneity, helps
enhance neural network performance on unseen test data.
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5 Discussion

The experiments of this work aimed to answer the three research questions iter-
ated in Section 1. Here, we answer the research questions based on the analysis
of the experiments.

RQ1: Do the physical characteristics of humans influence activity recognition
performance?

The experiments indicate that training data comprising diverse physical char-
acteristics compared to a training set with homogeneous physical characteristics
of the subjects improves accuracy on unseen testing data with subjects of var-
ied physical attributes. Specifically, a systematic increase in the heterogeneity
of training data while maintaining the quantity of training data of subjects
improved classification accuracy. Thus proving the influence of human charac-
teristics on the HAR classifier performance, answering RQ1.

RQ2: What physical characteristics should be considered when selecting sub-
jects to create a robust classifier?

Noting that the majority of HAR datasets are limited in size and variability of
subject characteristics, the datasets chosen as part of this work showed an inher-
ent correlation between height and weight characteristics to gender. Within the
datasets’ and study’s limitations, the experiments indicate that gender signifi-
cantly influences the HAR models, followed by age, height and weight. Due to the
unavailability of further physical characteristic information in HAR datasets and
the correlation of height and weight to gender, the answer to RQ2 is restricted
mainly to age and gender characteristics. The study does not intend to discrim-
inate based on these attributes but to identify representation biases. Thus, we
recommend the creation of well-documented, large datasets with diverse subjects
to further the research on physical characteristics that influence the robustness
of HAR classifiers. For example, the influence of handedness and ethnicity.

Furthermore, we recommend that dataset creators ensure the presence of
subjects with extreme characteristics in their dataset, along with a more signif-
icant number of subjects with diverse physical characteristics. However, as seen
in Sisfall, a uniform selection of subjects from the range of a characteristic is
ideal compared to clusters within the range of characteristics. To elaborate, it is
essential to consider the variation of the characteristics within the subgroups, as
was evident when comparing the age groups of the Sisfall dataset. This practice
increases the classifier’s robustness and contributes to its overall performance.

RQ3: Can we develop a metric for representation bias in activity recognition
classifiers?

The answer to RQ3, on the development of a metric for representation bias
for HAR classifiers, is that a metric is not ideal for the dataset curation pro-
cess but rather an evaluation strategy focusing on a heterogeneity measure to
curate training data for neural networks is ideal. The experiments clarified that
HM directly impacts accuracy, wF1 and recall. Precision showed relatively less
response to low variations in HM measures. However, more improvement in pre-
cision was found with maximum heterogeneity in the training data. As physical
characteristic information is blended into the motion data recorded by sensors, a
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significant limitation is the complexity of accurately measuring and quantifying
representation bias and its interaction with other dataset biases. Thus, unless
the intention is to classify the physical characteristics directly, an evaluation
strategy is preferred than a metric.

6 Conclusions

This work aimed to evaluate representation biases in HAR systems by analyz-
ing the impact of subjects’ physical characteristics on classifier performance.
Understanding these biases is crucial for developing more accurate, reliable and
generalized HAR models and to guide the dataset creation process for novel HAR
applications. To achieve this, we systematically curated training data for state-
of-the-art HAR classifiers and evaluated their performance on four datasets with
subjects of varying physical characteristics. Further, based on the experimental
results, we answered the three main research questions the work focused on. The
work established an influence of the subject characteristics on the performance
of human activity recognition neural network models. Further, within the limi-
tation of the subject characteristics made available in public HAR datasets, this
study provided suggestions on the physical characteristics to focus on. Finally,
the work provides a recommendation to HAR dataset creators on subject selec-
tion criteria for dataset creation based on the sequential science of experiments.

This work focused on binary classes within characteristics. In future work,
evaluations on multiple sub-classes within each physical characteristic and the
evaluation’s impact must be performed to further generalize this contribution’s
conclusions. These may require extensive amounts of data to learn HAR through
supervised learning. Thus, larger, well-documented datasets with variations in
subjects’ physical characteristics (multiple classes for each characteristic) are
required to analyze these models. In addition, datasets consisting of detailed
subject characteristics are desirable for identifying new dimensions of the dataset
bias, such as the impact of handedness.
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Abstract. Sleep apnea, a prevalent sleep disorder affecting individu-
als of all demographics, poses a threat of significant disruption to daily
life. The analysis of Electrocardiogram (ECG) data facilitates the accu-
rate diagnosis of sleep apnea. With the advent of machine learning and
its accessibility through cloud services, doctors have been compelled to
enhance their diagnostic capabilities by integrating deep learning into
their analytical tools. However, challenges such as data privacy, security,
and confidentiality regulations are hindering the adoption of deep learn-
ing in the healthcare domain. In this research, we address these challenges
by proposing an end-to-end encrypted framework to analyze encrypted
ECG signals and diagnose sleep apnea. Leveraging Fully Homomorphic
Encryption (FHE) on deep learning models ensures privacy and secu-
rity by design while enabling computations on encrypted data. To over-
come the unique challenges posed by handling encrypted data in deep
learning models, we introduce novel and efficient techniques for adapt-
ing several key components such as the convolutional layer, max pooling,
ReLU activation, and fully connected layer to the FHE domain. Our app-
roach includes adapting the convolutional layer in the spectral domain,
implementing fully connected layers as generalized matrix multiplication,
and employing approximation methods for ReLU activation and max
pooling. The experimental results on real encrypted ECG data demon-
strate the feasibility and efficacy of our proposed framework, achieving
a remarkable accuracy of 99.56% in detecting sleep apnea. Our proposed
encrypted network does not lose any predictive performance compared
to its plaintext counterpart. This research underscores the potential of
encrypted data processing in significantly enhancing the security and
privacy of healthcare services, particularly in the domain of sleep apnea
diagnosis.

Keywords: Convolutional Neural Networks * Fully Homomorphic
Encryption + Homomorphic Fourier Transform - Sleep Apnea Detection

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15315, pp. 49-64, 2025.
https://doi.org/10.1007/978-3-031-78354-8_4

®

Check for
updates


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78354-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-78354-8_4

50 B. Yalavarthi et al.

1 Introduction

Sleep apnea is a prevalent sleep disorder characterized by abnormal reductions
or pauses in breathing during sleep, leading to inadequate oxygen supply to the
patient [27]. The consequential impact on sleep quality can manifest in short-
term issues such as low concentration, daytime sleepiness, and irritability, while
long-term effects may include heart complications and diabetes !. Polysomnogra-
phy (PSG) is the conventional diagnostic test for sleep apnea, yet its drawbacks,
including time-consuming procedures and limited monitoring periods, necessi-
tate the exploration of alternative methods [27]. Electrocardiogram (ECG) sig-
nals play a crucial role in data-driven diagnostic methods for a wide range of
diseases. These signals provide detailed insights into the electrical activity of
the heart, enabling the identification, monitoring and early detection of various
conditions [8]. Moreover, ECG signals have been recognized as significant fea-
tures in the detection of sleep apnea and also are cost-effective and convenient.
By analyzing the variations and patterns in ECG data, advanced algorithms
can detect anomalies indicative of sleep apnea with high accuracy, contributing
to more effective and timely diagnosis and treatment of this prevalent disorder
[24]. Several studies have demonstrated the effectiveness of ECG signals in auto-
mated sleep apnea detection [10], leveraging deep learning models for accurate,
accessible, and continuous monitoring [17].

As cloud-based deep learning models gain popularity in medical diagnosis
[16], the importance of ensuring data security and privacy becomes paramount
[30]. Large-scale data breaches and identity theft underscore the challenges of
constructing resilient and secure systems in the open environment of the Inter-
net [12]. Given the sensitive nature of the medical diagnosis, strong data privacy
regulations, and ECG signals containing personally identifiable information [14],
end-to-end encryption is crucial when utilizing healthcare cloud services. Alter-
natives like confidential computing cannot ensure the same level of privacy as
FHE systems as the data must be decrypted during the analysis phase, ren-
dering it vulnerable. Additionally, it is susceptible to side-channel attacks, as
demonstrated by various studies [26].

This paper proposes a convolutional neural network (CNN) classifier for sleep
apnea detection using homomorphically encrypted ECG signals. The end-to-end
secure framework ensures that the ECG signal remains encrypted throughout
the process, preserving patient privacy. The large-scale availability of ECG data
enabled CNN models to achieve near-perfect accuracy scores [17], making them
competent for cloud-based disease diagnosis. The high-level framework of the
proposed system is shown in Figure 1. The user collects the ECG signal, encrypts
it using the private key, and sends it to the cloud service provider. After the
inference is performed on the encrypted data, the diagnosis result (in encrypted
form) is communicated to the user who only can decrypt it. We consider a
comprehensive threat model for cloud diagnostic services, presuming a scenario
where the cloud is compromised, and an attacker gains access to medical data,

! https://houstonsleepsolutions.com /what-is-sleep-apnea-and-do-i-have-it /
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including diagnostic results. Our FHE solution ensures that, even in the event
of a cloud breach, the data remains secure as it is maintained in encrypted form,
preventing unauthorized use by the attacker.

Furthermore, various data and computational adjustments are implemented
for efficient inference of encrypted data. To address the high processing times
associated with operations on encrypted data, particularly in convolutional lay-
ers, this research incorporates multi-threading techniques. By optimizing the dis-
tribution of filters across threads, we aim to achieve more efficient computations
while minimizing unnecessary memory overhead. Our approach enhances the
practicality of applying encrypted deep learning models in real-world scenarios.
Displayed equations are centered and set on a separate line.

M Encrypted ECG
e

Signal

ECG Signal

Patient

Fig. 1. Framework of the proposed privacy-preserving sleep apnea detector

2 FHE basics

A homomorphic encryption scheme is characterized as an encryption system in
which a set of operations on plaintexts can be executed directly on the cipher-
texts without the need for decryption. This capability is attained through addi-
tion and multiplication operations as these two operations collectively form a
functionally complete set over finite rings [23]. Let pKey and sKey denote
the public and secret keys, while Enc and Dec represent the encryption and
decryption processes. Consider plaintext values ptl and pt2. Encrypting ptl
and pt2 using the public key pKey results in ctl = Encrypt(ptl,pKey) and
ct2 = Enc(pt2,pKey), representing their encrypted forms. A cryptosystem is
considered homomorphic concerning a chosen operator (eg: addition, multipli-
cation), denoted as o, if there exists another operator e such that ptl o pt2 =
Dec(ctl o ct2, sKey).
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It’s crucial to emphasize the broad spectrum of homomorphic encryp-
tion, accommodating different types designed to meet diverse computational
requirements. Partially Homomorphic Encryption (PHE) permits only addi-
tion or multiplication operations. Somewhat Homomorphic Encryption (SHE)
enables restricted computation on ciphertexts. Leveled Homomorphic Encryp-
tion (LHE) facilitates computations on ciphertexts with limited depth, providing
the option to increase depth through multiple encryption levels. Fully Homomor-
phic Encryption (FHE) allows computations on ciphertexts of any depth and
complexity, making it the most flexible of the lot.

Fully Homomorphic encryption schemes like BGV and BFV, building upon
the first-generation FHE systems, were aimed at enhancing computational effi-
ciency through leveled structures. These systems introduce optimizations like re-
linearization and modulus-switching. In 2017, a novel homomorphic encryption
scheme emerged named CKKS. This scheme improves efficiency and expands
applicability across various arithmetic applications. CKKS also enhanced the
efficiency of BGV/BFV by enabling quicker numerical computation through
approximation. [12].

Our work utilizes FHE based on the CKKS scheme to enable secure com-
putation on encrypted ECG signal data. However, several trivial computational
operators used in deep learning are yet to be implemented in the FHE framework
without compromising security. In this work, we develop FHE-compatible
operators for ECG analysis using a fully learned deep learning net-
work for inferencing.

3 Related Work

In the realm of privacy-preserving disease detection and deep learning with FHE,
prior research has made notable strides. [25] introduced a method for arrhyth-
mia diagnosis, achieving 98% accuracy by leveraging Support Vector Machines
(SVM) on encrypted ECG signals. [29] employed classical regression techniques
to fit and perform inference on encrypted data for seizure detection and predict-
ing predisposition to alcoholism using EEG signals. Additionally, [3] proposed
a toolbox of statistical techniques for secure genome analysis using encrypted
genetic data.

There have been alternate privacy-preserving techniques, with a significant
focus on federated learning. [19] utilized federated learning for Alzheimer’s dis-
ease detection, while [21] applied it to fMRI analysis. However, federated learning
has inherent vulnerabilities, such as communication risks between nodes and the
central agent, as well as the storage of data in plaintext, making it susceptible
to potential breaches [19]. Additionally, [31] proposed a sleep apnea monitor-
ing mechanism employing fog computing to enhance security but several studies
showed its vulnerability to potential man-in-the-middle attacks.

In the context of adapting Convolutional Neural Networks (CNNs) to FHE,
various studies have been conducted. [15] introduced a 2D CNN in FHE for infer-
ence on MNIST and Melanoma datasets using spatial convolution. [1] explored
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accelerating CNN inference in FHE using GPUs on MNIST and CIFAR-10
datasets. Notably, [22], [20], and [2] suggested performing convolution in the
frequency domain to reduce the number of homomorphic operations. However,
these methods exhibit limitations such as the absence of strided convolution,
incomplete adaptation of ReLU and max pooling layers to FHE, or the need for
intermediate re-encryption or interactions with the client.

In contrast, our work addresses these gaps by incorporating strided convolu-
tion in the frequency domain, providing accurate adaptations for max pooling
and ReLU to FHE, and eliminating the necessity for intermediate interactions
with the client, bootstrapping, or re-encryption. These advancements distinguish
our methodology from existing approaches, enhancing the efficiency and security
of deep learning in the FHE domain.

4 Proposed Approach

The network architecture used for sleep apnea detection is shown in Figure 2.
The key modules that are developed in FHE are (i) Convolution Layer; (ii)
ReLU; (iii) Max pooling layer; and (iv) Fully connected layer.

ECG data from the University College Dublin Sleep Apnea Database was
used in this work [11]. This dataset comprises complete overnight simultaneous
three-channel Holter ECG recordings, featuring adult subjects exhibiting indi-
cations of sleep-disordered breathing. Each second within this recording period
was labeled as either apneic or non-apneic by experts, thereby providing gran-
ular and comprehensive data for analysis comprising 8,05,926 training samples.
The network is initially trained using plaintext training data from this dataset
and the trained weights are used for inference on the encrypted test data.
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Fig. 2. CNN architecture used for secure sleep apnea detection.

We utilize the HEAAN library[6], which utilizes the CKKS scheme for FHE
operations.
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Fig. 3. 1D Convolution in FHE Domain. Input ciphertext and weights are multiplied in
the frequency domain to obtain full convolution. Valid convolution output is obtained
by rotating the full convolution by n-1 and extracting the valid convolution.

4.1 Adaptations for FHE

Computation within the FHE domain imposes various substantial constraints,
including the absence of individual element access in encrypted arrays, restricted
computation depth, high time complexity, and a lack of native support for fun-
damental operators such as a comparator. In this section, we discuss the adap-
tations made to the data and the training process of the CNN to ensure com-
patibility with FHE.

Each Electrocardiogram (ECG) signal in the dataset comprises 1408 sam-
ples. Given that the HEAAN library supports the encryption of data with sizes
that are powers of 2, we pad each input signal with zeros to extend it to a
length of 2048. This extended, padded input signal is then encrypted into a
single ciphertext. Consolidating the entire input signal into a single ciphertext
is crucial for the efficiency of arithmetic operations on ciphertexts, leveraging
Single Instruction, Multiple Data (SIMD) operations supported by HEAAN. To
facilitate efficient arithmetic operations between ciphertext inputs and plaintext
weights/filters, we also pad the latter with zeros, extending them to a length of
2048. It’s noteworthy that increasing the input size from 1408 to 2048 doesn’t
introduce noticeable computational overhead due to the SIMD nature of oper-
ations in HEAAN. As we need to use approximate versions of ReLU and max
pooling in FHE, we employ these approximations during the training of the plain-
text model. This enables the model to adjust to these approximations during
inference in the FHE domain, thereby not affecting the predictive performance.

4.2 Convolutional Layer

For computational efficiency, we realize convolution by Hadamard product of
signal and filter in the frequency domain based on equations 1 and 2.

yln] = FH{X (k) W(k)} (1)
where F~! is the inverse Fourier transform, y[n] is the convolution output at

index n, X (k), W (k) is the Discrete Fourier transform (DFT) of the signal, and
filter respectively at index k, Discrete Fourier transform for input x is given by
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N—-1
X[k =" aln] - eI F"k (2)
n=0

where X [k] is the DFT coefficient at frequency bin k, z[n] is the input signal
value at time index n, and N is the Length of the input signal.

Computing the DFT of encrypted data using standard plaintext methods
is very time inefficient and consumes large multiplicative depth which is bad
for FHE mapping. Homomorphic Fourier transform is used for computing the
DFT of the encrypted data. Homomorphic Fourier transform as described in [13]
uses Cooley-Tukey matrix factorization to construct an efficient algorithm for
computing 1-D DFT of encrypted data. We observed that this algorithm is faster
by around 165 times than regular matrix multiplication for computing 1-D DFT
for an input size of 2048 as shown in Table 1.

Table 1. Time taken (in s) to calculate DFT in FHE

Input Size Multiplication | Homomorphic Fourier transform
128 29.97 2.48
256 110.36 2.235
512 213.53 4.48

1024 435.60 5.1

2048 855.92 5.2

4096 1795.5 6.82

Standard Fast Fourier transform is used to transform the plaintext filter
into the frequency domain. The result of the Hadamard product between the
input and filter in the frequency domain followed by inverse DFT gives the
full convolution output [18]. To get the valid convolution output, we rotate the
resultant ciphertext by n-1, where n is the size of the filter. Subsequently, we
perform a multiplication with an array that consists of alternating groups of 1’s
and 0’s, as illustrated in Figure 3. Since our network has convolution layers with
strided (>1) convolution we devised a generic method to obtain an arbitrary
strided convolution from frequency domain convolution output. As this output
is a convolution with stride one, it is necessary to eliminate recurring patches
of values. These patches have lengths corresponding to the stride (1, 2, 3, etc.,
for strides 2, 3, 4, etc.). The process involves multiplying the ciphertext by a
plaintext vector with a specific pattern of 1s and 0Os based on the patch size.
Subsequently, the "remove holes" function, discussed in the following section, is
invoked to complete this operation.
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Fig. 4. Max Pooling illustration for Ciphertext of size 8. Max: Approximate max is
applied to input and its left rotated variant and the result is multiplied by a plaintext
array of alternating 1s and Os to replicate the stride of two. Remove Holes: The result of
the max stage contains alternating zeros which are all grouped and moved completely
to the right.

4.3 Max Pooling

The pooling layer within our network employs max pooling with a kernel size of
two and a stride of two. Due to the lack of support for the comparison operation
in FHE schemes, we utilize an approximate max operation proposed by [5]. The
formula for the approximate max value is given by:

(a+b)  Sart((a—1b)*d)
2 + 2

Here, d represents the number of iterations used for computing the approx-
imate square root, as also suggested in [5]. In our case, the two inputs a and b
correspond to the input and a copy of the input left-rotated by 1. The result
from the max function introduces alternating zeros or "holes," which need to
be removed to get the pooling output. This poses a challenge due to the lack of
access to individual elements.

To address this, we have devised a generic iterative process for hole removal
in ciphertexts. This process involves left-shifting the ciphertext by 2%, adding it
to the original, and then multiplying the result by an array containing repeating
groups of 1’s and 0’s, each with a length of 2!, Here, i ranges from 0 to
log, (V) —2 (where N is the length of the ciphertext). The entire process of max
pooling is visually represented in Figure 4.

Max(a, b;d) =

4.4 ReLU

Homomorphic encryption schemes, including the HEAAN library, lack direct
support for the comparison function. To address this, polynomial approximate
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comparison is employed, as described in [5]. An asymptotically optimal com-
parison method named CompG, proposed by [7], approximates a sign function
using composite polynomial approximation. CompG operates effectively within
the input range of -1 to 1.

To ensure that the input to the Rectified Linear Unit (ReLU) falls within this
specified range, output values from convolutional layers are normalized using a
scaling factor before applying ReLU. The scaling factor is determined by the
formula:

Scaling Factor = max(|maxValue|, minValue|)

Here, |[maxValue| and |minValue| represent the absolute maximum and min-
imum input values, respectively, observed for the corresponding ReLLU block in
the trained model on the training data. After applying ReLU, the reciprocal of
the scaling factor is used to restore the original values of the positive inputs. For
the ReLLU implementation, the composite approximation technique is employed
to compare the input value a against 0. This comparison function yields a result
of 1 if a is greater than 0, 0 if @ is less than 0, and 0.5 if a is equal to 0. The
ReLU result is obtained by multiplying the output of the comparison function
by the input value whose results are depicted in Figure 5.
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Fig. 5. FHE ReLU results obtained using the approximate polynomial comparator

4.5 Fully Connected Layer

In this layer, an array of ciphertexts serves as input. For each output node,
element-wise multiplication is performed between each ciphertext in the array
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Fig. 6. FC Layer output computation illustration for single ciphertext input. Element-
wise multiplication between ciphertext and weights is followed by calculating DFT.
The final output for the FC node or weighted sum is the DC component of the DFT

and the corresponding node weights and the results are summed up. The out-
come is a ciphertext whose elements need to be summed to obtain the final
output of the node. To achieve the sum of these elements, a common approach
involves left-shifting the ciphertext N-1 times and iteratively adding it to the
original ciphertext after each shift. However, this requires N-1 rotations of the
ciphertext, which can be computationally expensive. Instead, we employ a more
efficient technique wherein we utilize the Discrete Fourier Transform (DFT) of
the ciphertext to obtain the sum. The first element of the DFT represents the
sum of all elements in the signal. The mapping of the fully connected layer to the
FHE domain is depicted in Figure 6. Given that the problem at hand is binary
classification, the fully connected layer outputs only two nodes. To determine the
classification output of the network, the CompG comparator function is used to
identify the higher activation value among these two nodes. The comparator
function returns a ciphertext that can be used to find the predicted class label
of the network.

4.6 Parallelization

To parallelize the convolutional layers, we employ the NTL multi-threading,
which automatically manages thread creation and assignment in a manner that
optimizes efficiency. However, not all layers are equally amenable to paralleliza-
tion. Given the limited number of filters in the first layer (only three), we refrain
from parallelization supported by experiments showing that using a single thread
has the lowest latency. For the second layer, we find that using the threads equal
to the number of filters in it is optimal while for the third layer using all the
available 128 threads was found to be optimal as shown in Figure 7.
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5 Results and Discussion

5.1 Performance evaluation

We randomly selected a few samples from the testing set and performed infer-
ence on the proposed encrypted network to evaluate its performance. Table
2 shows the classification performance of the encrypted model and Table 3
shows the layer wise error in the FHE domain. The comparison between
the encrypted network final classification output and the plaintext
counterpart revealed no errors while providing 128 bit security, high-
lighting the efficacy of our adaptation to the FHE domain.

5.2 Complexity Analysis
Table 4 shows the complexity analysis of our deep learning operators in the FHE

domain. When separated by operations, fully connected layer was most expensive

Table 2. Predictive performance of the proposed model in FHE.

Performance Metric | Value
Accuracy 99.50%
Sensitivity 97.10%
Specificity 99.10%
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Table 3. Mean Average Error (MAE) induced due to FHE Computations

Layer MAE
Layer 1 (Batch Norm + Convl + ReLU + Max Pooling) | 0.010
Layer 2 (Conv2 + Max Pooling + ReLU) 0.102
Layer 3 (Conv3 + Max Pooling + ReLLU+ Batch Norm) |0.011
Fully Connected Layer + Argmax (Final Output) 0

followed by max pooling owing to its max operation. Although convolution was
taking relatively lesser time, the number of convolution operations present in
network is significantly higher than any other operations. Figure 8 shows the
average time taken to process the data through each layer. A large chunk of
the total time taken for inference is consumed by the third convolution layer
comnsisting of 1500 convolutions. Our experimental results indicate a 36% drop
in processing times for the second convolutional layer and a 44% drop for the
third layer following parallelization. The layer’s processing times exhibit a less
pronounced improvement than expected, indicating that additional factors like
available memory may be affecting its performance. Using parallelization we were
able to reduce the total inference time from 25430.2 s to 14571.25 s, attaining a
speedup of 42.70%.

Table 4. Complexity Analysis (PT: Plaintext, CT: Ciphertext, HOP: Homomorphic
Operations)

Operation Conv | Max Pool | ReLU | Fully Connected Layer
#Additions 8 43 15 400

#PT-CT Muls |46 36 11 46

#CT-CT Muls |0 31 1 0

#CT Rotations | 27 1 0 26

#HOPs 81 111 27 472

Latency (s) 20.70 |25.14 17.14 |517.49
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5.3 Advantages of FHE over other Privacy Preserving Methods

In our proposed approach we set the FHE parameters in HEAAN to obtain 128-
bit security thereby providing cryptographic privacy guarantees throughout the
detection process. It is well-established that other widely used privacy-preserving
methods, such as federated learning or differential privacy, cannot guarantee such
a high level of security [28]. Unlike other encryption methods like RSA, AES,
that require data to be decrypted for processing, FHE ensures that data remains
encrypted at all times making it end-to-end secure (Table 5). This significantly
reduces the risk of data breaches and unauthorized access, helping to meet strin-
gent regulatory requirements for data protection in healthcare, such as HIPAA
in the United States. Privacy obtained through differential privacy involves com-
promising model performance for security, whereas FHE was able to maintain
model performance while still providing a higher level of security [9] [4].
Moreover, the privacy use case we address in this work is a cloud-based disease
detector. To provide maximum privacy, it is essential that patient data remains
secure during transmission to the cloud, model inference, and transmission of the
diagnosis results back to the patient. FHE is the only privacy-preserving tech-
nique that can provide end-to-end cryptographic privacy guarantees and secu-
rity. Federated learning cannot protect against cloud breaches or ensure privacy
from the cloud service provider. Differential privacy techniques cannot ensure
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Table 5. Privacy and Security comparison of FHE and other methods

Phase FHE FL/DP/Encryption/etc..

Input Transmission to Cloud |Encrypted and Secure | Encrypted and Secure

Processing/Inference Encrypted and Secure | Unencrypted and Unsecure

Diagnosis Result back to User | Encrypted and Secure | Encrypted and Secure

privacy during input/output transmission or processing and cannot guarantee
privacy from the cloud service provider [9]. Even when these techniques are used
in combination with regular encryption for data transmission, data still needs
to be decrypted during processing leaving it vulnerable to attack as detailed in
Table 5.

6 Conclusion and Future Work

In this paper, we propose the first end-to-end encrypted sleep apnea detector
using deep neural networks. By employing FHE for encryption, we achieve 128-
bit security for the entire pipeline of cloud-based medical diagnosis, including
during inference. The proposed encrypted model detects sleep apnea with an
accuracy of 99.50%, a specificity of 99.56%, and a sensitivity of 97.10%. We
successfully adapted convolutional, fully connected, max pooling, and ReLU
blocks of the CNN to the FHE domain. Specifically, we utilized the homomorphic
Fourier transform to perform convolutions, employed approximate methods for
executing ReLU and max pooling operations, and developed a novel technique
to efficiently implement fully connected layers in the FHE domain.

For inference, we demonstrate that the encrypted model does not suffer any
predictive performance loss compared to the plaintext version, thereby illus-
trating the feasibility of FHE-based systems in cloud-based medical diagno-
sis. Although our approach provides strong security guarantees and does not
trade off performance for security, the drawback lies in the inference time, which
we partially addressed through parallelization. Future directions for our work
include developing more efficient parallelization strategies, and ciphertext pack-
ing schemes to further reduce the inference time.
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Abstract. To enhance privacy in Convolutional Neural Network (CNN)
based inference methods, fully homomorphic encryption (FHE) is a
golden tool. However, high latency and limited multiplicative depth are
major problems in building CNNs for FHE. Convolution operations dom-
inate the inference time of CNNs in FHE schemes due to the large number
of costly multiplications and accumulation operations required. All the
prior works have performed convolution in either the spatial or frequency
domain. Alternatively, in this paper, we propose to use a summed area
table (SAT) along with kernels approximated with box filters for the
computation of convolution in 1D, 2D, and 3D space. The usage of box
filters allows us to reduce the number of costly multiplications required
to compute convolution. We show that the proposed method computes
convolution output with lower latency than the standard spatial convo-
lution method and can be applied with arbitrary kernels. We also show
that the speed-up provided by our approach increases with the size of the
image or kernel. Through the usage of SATs and box filters, we reduce
the number of expensive multiplication operations required in convolu-
tion by 20%-52% and latency by 15%-89%.

Keywords: Convolution + Fully Homomorphic Encryption - Summed
Area Tables - CNN

1 Introduction

The Fully Homomorphic Encryption (FHE) scheme provides a path for end-to-
end secure and private inference of deep learning models. FHE finds its need
in several applications where clients send sensitive information to the server for
analysis by machine learning models as it enables computations on encrypted
data [9]. Figure 1 shows the application of FHE in preserving the privacy of
client data in cloud inferences. Several inherent limitations of FHE including
restricted arithmetic operation support (only Addition and Multiplication), lim-
ited multiplicative depth, and high latency limit its practicality for real-world
deployment. Convolutional Neural Networks (CNNs) have become the standard
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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architecture used for solving many problems in computer vision [2], making it
crucial to secure the data passed through CNNs for inference. In this work,
we address the problem of latency of CNN inference in the FHE domain. [7]
showed that convolution layers take around 90% of the inference time in CNNs
(Figure 2a). In FHE there are a limited number of multiplications we can per-
form before the accumulating noise makes the ciphertext unrecoverable and a
costly operation called bootstrapping is required to recover it partially. More-
over, multiplication in FHE is slower than in unencrypted domain by a factor of
10,000 [12] and addition is around 500 times faster than multiplication in FHE
(Figure 2b). These factors strongly motivate us to reduce the number of multi-
plications in convolution to decrease the latency of CNNs in FHE. We propose a
method using Summed Area Tables, and box filters to reduce the multiplications
in convolution operation by replacing them with additions and thereby reducing
the latency.
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Fig. 1. Overview of using FHE to secure the client data when using cloud machine
learning services.

Standard convolution is performed in either spatial or frequency domain.
Spatial convolution involves applying a kernel/filter (used interchangeably) to
an input signal or image by sliding it across the entire input and computing
the weighted sum of the filter coefficients and the corresponding input values
at each location (Fig. 3). In Frequency domain convolution the input and the
filter are first converted into frequency domain using Fourier transform, the
corresponding frequency representations are multiplied and are converted back
to spatial domain using inverse Fourier transform.

A homomorphic encryption is defined as an encryption system where a set of
operations on plaintexts can be performed directly on the corresponding cipher-
texts. Let pKey and sKey denote the public and secret keys, while Enc and Dec
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Fig. 2. a) Layer-wise inference latency in CNN models. b) Time taken for operations
with plaintext and ciphertext operands.

represent the encryption and decryption processes. Consider plaintext values ptl
and pt2. Encrypting ptl and pt2 using the public key pKey results in

ctl = Encrypt(ptl,pKey) and ct2 = FEnc(pt2,pKey), representing their
encrypted forms. A cryptosystem is considered homomorphic concerning a cho-
sen operator (eg: addition, multiplication), denoted as o, if there exists another
operator e such that ptl o pt2 = Dec(ctl o ct2, sKey).

There are multiple homomorphic encryption schemes like Partially Homomor-
phic Encryption (PHE), Somewhat Homomorphic Encryption (SHE), Leveled
Homomorphic Encryption (LHE) and Fully Homomorphic Encryption (FHE).
FHE is the most flexible of the lot allowing for homomorphic operations of
addition and multiplication and computations of arbitrary depth using boot-
strapping. Several FHE systems have been suggested, such as the BFV, BGV,
and CKKS schemes [9]. BFV and BGV allow vector operations on integers,
while CKKS facilitates floating-point operations. These schemes enable Single
Instruction Multiple Data (SIMD) operations by bundling various values into
arrays and converting them into ciphertexts.

While there are existing works that suggest various methods like efficient
message packing [16], frequency domain convolution [18], and quantization [20]
for addressing the latency of convolution operation in FHE domain, none of
them explored using SATs which are more efficient than standard methods for
performing convolution.

Our contributions in this work can be summarized as follows:

— We propose to use box filters in combination with SATs to reduce the inference
latency of CNNs in FHE environment.

— We extend the filter approximation algorithm previously used for approxi-
mating arbitrary 2D filters with a set of box filters to accommodate both 1D
and 3D filters.

— Our experiments demonstrate that our proposed approach is faster when
compared to standard or frequency domain convolution in FHE without rea-
sonably effecting the classification performance.
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2 Related Work

Prior works have proposed various approaches for performing convolutions in
FHE domain each differing primarily in the way the image pixels or messages are
packed into the ciphertexts and the corresponding algorithm for computing con-
volution. [16] [14] [17] all propose various ways of packing the input image pixels
into ciphertext slots and adapting the deep CNNs like Resnet 20/32/44/56/110
to FHE. [27] proposes channel-wise packing, while [13] uses a hybrid packing
method that combines multiple existing packing schemes. [20] proposes to use
quantization to reduce the inference latency in CNNs and [29] uses binary net-
works to remove the need for multiplications although significantly affects the
accuracy. While all the above-mentioned works use spatial convolution, [18] and
[5] put forward the idea of using frequency domain convolution to suit the effi-
cient single instruction multiple data (SIMD) processing approach present in
various FHE schemes. In addition to the efficient packing, and convolution algo-
rithm innovations several works have explored acceleration approaches. [1] for
the first time explored using GPUs for encrypted inference of CNNs to decrease
the latency while [19] proposes high-performance approaches like MPI. [23] pro-
poses a custom accelerator for FHE computations.

Orthogonal to the existing packing schemes, quantization techniques, and
algorithms for speeding up convolution in FHE we propose a methodology to
improve the convolution latency in FHE using SATs and box filters.

SATs are well-established concepts in computer vision, enabling the rapid
computation of the sum of values within any arbitrary subset of a grid, main-
taining a constant time complexity [8]. SATs are used to speed up computations
for various tasks including texture mapping [4], decomposition of fully connected
layers [3], accelerating convolutions with binary [26] and large kernels [28] while
[25] generalizes the summed-area tables for n-dimensional inputs. [21] provides
an effective algorithm for learning a set of box filters that approximate any
arbitrary 2D kernel.

In this work, we use the kernel approximating algorithm to represent any
1D/2D/3D kernel with a set of box filters and SATs to provide an efficient
method for convolution in the FHE domain.

3 Methodology

3.1 Overview

Given an input image I and filter F' we calculate convolution in the following
steps.

— If not encrypted already, every pixel of I is encrypted into a ciphertext using
FHE and SAT of encrypted input is calculated I.

— Filter F' is approximated with a set of box filters using the algorithm 4.

— SAT and box filters are used to compute the convolution output as illustrated
in Figure 4
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3.2 Encryption

We use HEAAN [6] library which is based on CKKS FHE scheme for our homo-
morphic encryption and computations. In our packing method each value of the
input signal is encrypted into a ciphertext. When multiple values of input are
encrypted into a single ciphertext we cant access the individual elements directly
and need to go through a considerable overhead to get the element at an index.
But with our approach of packing where each value of input is a ciphertext we
can avoid that overhead. The proposed methodology is orthogonal to the packing
scheme applied to encrypt the input data into ciphertexts. There are innovative
packing techniques to reduce the need for individual element access [16] [14] [17]
for convolutions but they need to be modified to suit for our approach of using
SAT and box filters, we leave this direction for future work.

3.3 Approximating Arbitrary Filters with Box Filters

We approximate a kernel with a set of box filters by extending the algorithm
proposed by [21] to approximate any 1D/2D/3D filter with a set of box filters.
This algorithm outputs a set of box filters which can be used to produce an
approximation of any filter as shown in algorithm 1. Each of these box filters are
represented by corner points determine box filter position in the original filter
space and a scaling factor.

Algorithm 1 Computing filter from set of box filters

1: function COMPUTEFILTER({ai}f-V:l, {ei1, 2. .. eik}ﬁvzl)
2: Initialize filter ' with zeros

3: fori=1to N do
4: Compute filter segment f; using the edges {ei1, €i2... €k}
6: end for
7 return F
8: end function
TY1-e-[1[916]7 |9
217 7|5 87215 T -~ 27 44 9] 8 [ 4
AN b @ 4 7| 87 |-36] 1 [-40] 3
34-6.|2|976.]7 |3 s
aE Bl 212|107 B 7 115|37| -3 |-2|-35
3|8 1|99l 1|3] L _de
e 243 | 8 15 (-20 | -7 | -15 | -28
2|5 |5 |8 |6 |15 [~_|.-
2099|1760 Kernel (F) 83322143 -8 | 3
Input (I) Convolution Output

Fig. 3. Illustration of regular spatial convolution
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Approximation algorithm 4 is an exhaustive search method which determines
the ideal values of the corner points of the box iteratively by working on one
box at a time [21]. The approximation algorithm starts from one box and goes
iteratively until the maximum number of boxes maxN is reached or approxima-
tion error is below a threshold. For our experiments, we set max N based on the
filter shape and around 20% to 50% less than the total entries in the filter. Error
threshold was set to 1 L2-percent error. At each step of the iteration, optimal

1/0(1|9(6|7]|9 1 1 2 11 | 17 | 24 | 33
2|7|7|5|8|2|5 3 10 | 18 | 32 | 46 | 55 | 69
7|17 |4|8|9|5]|1 10 | 24 | 36 | 58 | 81 | 95 | 110
3|6|2(9(6 7|3 _ 5 13 | 33 | 47 | 78 | 107 | 128 | 146
3|8 |1[(9(9(1|3 16 | 44 | 59 | 99 | 137 | 159 | 180
2| 5|5(8 (6|15 18 | 51 | 71 [ 119 | 163 | 186 | 212
2/ 0|9(1(7 6|0 20 | 53 | 82 | 131|182 | 211 | 237
Input (I) Summed Area Table of 1
Approximating F with box filters
i (4D | i i | &
2(-2|0 = 6* + 3% 1 (1|1 |+1% |1 |21 [+2* 1| 4+1%*
2|3 |-3 1 d i | 1
Kernel (F) b1 b2 b3 b4 b5
Calculating Convolution output using box filters and SAT
1(0]1 1101 1/0]1 1/0]1 1701 1(0]1
2(7|7|—— |2 |7]|7 2(7 (7 2(7 (7 27 |7 2(7)|7
77| 4 717|4 7174 717|4 77| 4 7(7|4

For Convolution Output at each point, we find sum
within the coloured region using the summed area table A B
and multiply with corresponding scaling factor

Sum within the
region = D+A-B-C

Summed Area Table
Output = 6%(7) -3*(2+7+7+7+7+4) + 1*(1+0+1+2+7+7) +
2%(7) + 1%(7) = 21

Fig. 4. Illustration of proposed approach of convolution with summed-area table and
box filters. Given an input image I and kernel F their summed area table and box filter
approximations are calculated followed by using them to compute the convolution
output



SC

Efficient Convolution Operator in FHE Using Summed Area Table 71

aling values {a} for the boxes are determined using matrices M and V. M

computed using algorithm 2 contains information of overlap between different

Algorithm 2 Compute Overlap Matrix M

1: function CoMPUTEM (n, bozes)

2: Initialize nxn matrix M with all entries as 0
3: for i — 1 ton do

4: for j — 1 ton do

5: MTi][j] < Overlap between bozes[i] and bozes[j]
6: end for

7 end for

8: return M

9: end function
Algorithm 3 Compute filter sum Matrix V'

1: function CoMPUTEV (n, boxes, filter)
2: Initialize nx1 matrix V with all entries as 0
3: for i < 1 ton do
4: V]i] < Sum of filter values within the overlap between bozes[i] and filter
5: end for
6: return V
7: end function
Algorithm 4 Approximating Filter with Box Filters
1: function APPROXIMATEFILTER(mazN, filter, threshold)
2 Start with N = 0, boxes = [|, threshold =1
3: k = 2 % Dimension(filter)
4: while N < maxzN do
5: N=N+1.
6 Keep all values of {ei1,ei2... eik}f.v;ll constant.
7 for e, in range (0, e,1) do > Exhaustive search for corner points
8: for e,y in range (0, enx) do
9: append the current iteration box {eil, €i2. .. eik} to boxes
10: M = ComputeM (n, boxes)
11: V = ComputeV (n, boxes, filter)
12: {a;}}1 = M~'V > Computing scaling factors for current box set
13: E(8) = ||(ComputeFilter({a: Y11, {ei1, i . .. eix }1ry) — filter)||z
14: remove the current iteration box {ei1, €2 ... e} from boxes
15: end for
16: end for
17: Add the box {ei1, ei2...e;x} to bores which had the lowest E(6).
18: return if error E(0n) below threshold.
19: end while
20: return boxes
21: end function
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boxes in the set, while V' computed using algorithm 3 has information about
sum of filter values within the overlap between boxes and the original filter.

3.4 Convolution with SAT and Box Filters

Given an n dimensional input I and kernel F' we compute the SAT of the input
using [26] (for 1D and 2D) or [25] (for 3D) and we obtain a set of m box filters
B approximating F' through algorithm 4. Equation 1 shows how these set of
box filters can be used to get the original kernel F. As the linear combination
of these box filters approximates the original kernel we can apply these box
filters individually and combine the responses to get equivalent output of the
convolution with the kernel. Since these box filters are rectangles/cuboids of
various sizes filled with ones, we just need to get the sum of the values within the
rectangle/cuboid and multiply it by the corresponding scaling factor to get the
convolution output for a given box filter. SATs come in handy for this process
as they provide us with an efficient way to get the sum within a region. The
number of multiplications required to calculate convolution output at each point
by this approach is equal to the number of box filters used for approximating
the kernel, thereby reducing the required multiplications from K x Ks... * K,
for n dimension kernel to N where K1, K>..K,, are the dimensions of the kernel
and N is the number of boxes required to approximate it. n dimensional spatial
convolution is given by equation 2, using 1 we can replace F' in equation 2 with
the set of the box filters B to obtain equation 3 for computing convolution.
Figure 4 shows an example of the approximating box filters, and using SAT to
compute convolution.

Our approach also makes the convolution more conducive to parallelization.
In addition to parallelization of each channel like in regular spatial convolution
we can also parallelize convolution response computation of each box filter effec-
tively reducing the latency further. In all our experiments we use these kinds of
parallelization and run parallel threads equal to the number of boxes used.

F ~ a1b; + agbs + .. + ap by, (1)

Ki K

IxF=Y Y- ZIkl,kZ,...,kn}~F[i—k1,j—k27...,l—kn} (2)

k1=1ko=1 kn=1

Bi1 Bz Bin

I*F:al Z Z Z I[bll,b12,...,b1n]'b1

b11=1b12=1 bin=1
Ba1  Baa Ba,

+ oy Z Z Z Iba1, baa, . .., ban] - by (3)

b21=1b22=1 bon=21

+am Z Z Z m17 m2a-~-ab'rrm]'bm

bm1=1bma=1 bmn=m1

where B;1, Bjs..B;, represents the shape of the filter in each dimension for box 3.
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4 Experiments and Results

We perform various experiments proving the efficiency and efficacy of our app-
roach in computing convolution. These experiments are aimed at understanding
the effects of using box filter approximated kernels in terms of error and latency.

4.1 Filter Response Error

We perform this experiment to get more insights into the capability of our app-
roach to approximate filters of various types at granular level. We compare indi-
vidual 1D, 2D, and 3D filters of varying sizes and use the percent error of L2
distance between the filter responses of the original and the approximated fil-
ter for this evaluation. We randomly selected kernels learned by standard CNN
architectures like Alexnet [15] Resnet [10], VGGNet [24] for 2D, and applica-
tion specific CNNs [11] [22] found in literature for 1D and 3D. In cases where
a specific filter size is not present in the CNN model we used filter with ran-
dom values. The results are shown in table 1 with average error and average
decrease in multiplications over all the kernels tested. The minimum number of
boxes required to take the error below 1% over all the kernels tested are shown
in Table 1. These results show that we can approximate varied-sized 1D, 2D,
and 3D filters with high accuracy while reducing the number of multiplications
required for convolution by 22% - 52%.

Table 1. Average Filter Response Error with approximate box filters and % of Multi-
plications reduced for various filters

Dimension | Filter Size | # of Boxes used | % L2 Error | %
in Filter decrease
Response in Mults
1 7 5 0.94% 28.57%
14 10 0.87% 28.57%
28 20 0.49% 28.57%
56 36 0.94% 35.71%
2 3 5 0.15% 44.44%
5 20 0.08% 20%
7 32 0.65% 28.57%
9 35 0.78% 44.44%
3 3 20 0.74% 25.92%
4 46 0.95% 28.125%
5 60 0.87% 52%
6 130 0.72% 39.81%
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4.2 CNN Classifier Performance Error

We study the effect of approximating CNN kernels with box filters on the classi-
fication performance. We replace all the learned kernels of various CNN architec-
tures with the approximated box filters and report the difference in classification
accuracy. We find that the approximation with box filters does not reasonably
effect the accuracy of the model as shown in the Table 2.

Table 2. CNN Classifier Performance Error when kernels are approximated with box
filters

CNN Architecture Dataset | Accuracy Accuracy % decrease
with original | when in Mults
kernels (%) |approximated

with box
filters (%)

ResNet-20 CIFAR-10|91.73 91.73 45.2%

ResNet-18 ImageNet | 56.44 56.02 38.32%

ResNet-32 CIFAR-10 | 92.63 92.59 44.24%

ResNet-34 ImageNet | 65.72 64.5 40.17%

4.3 Image Size vs Convolution Time

In this experiment, we analyze how the time taken for 2D convolution using our
proposed approach scales up with increasing image size in FHE in comparison
with regular convolution. For this experiment, we keep the filter size constant
at 5x5 and vary the image sizes. Figure 5 shows that the proposed approach is
on average twice as fast compared to regular convolution in FHE for image sizes
ranging from 32X32 to 1024x1024.

4.4 Filter Size vs Convolution Time

We also compare the regular convolution with our proposed method in both 2D
and 3D cases with varying filter sizes. For 2D we keep the image size constant
at 256x256 and vary the filter sizes from 3 to 9, while for 3D we use an image of
shape 32x32x32 and vary the filter sizes from 3 to 6. Based on the results shown
in Figure 6, 7 we find that with our approach convolution time remains constant
as filter size increases for both 2D and 3D versions while regular convolution
shows a quadratic trend.
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Fig. 5. Comparison of latency of proposed approach with regular spatial convolution
for varying 2D image sizes with filter size 5x5.
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Fig. 6. Comparison of latency of proposed approach with regular spatial convolution
for varying 2D filter sizes and 256x256 image.
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Fig. 7. Comparison of latency of proposed approach with regular spatial convolution
for varying 3D filter sizes and 32x32x32 image.
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Fig. 8. Comparison of latency of proposed approach with frequency domain convolution
for varying 2D filter sizes and 256x256 image.

4.5 Comparison with Frequency domain Convolution

In addition to comparison of our approach with spatial convolution we also
compare it with frequency domain convolution for 2D images and kernels. As
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encrypting each pixel is prohibitive for computing Fast Fourier transform (FFT)
in FHE we encrypt each row of the input image into a ciphertext and compute
FFT of the input. The frequency domain representations of both the input and
filter are multiplied and inverse Fourier transform is applied. Inference latency
comparison of proposed approach and frequency domain convolution is shown in
Figure 8. Although both frequency domain approach and our proposed approach
remain constant as filter size increases the former is 64 times slower than our
approach.

5 Conclusion

In this paper, we proposed an approach to reduce the number of multiplications
required in convolution operations using summed-area tables, and box filters.
We extend the algorithm proposed in prior work for approximating arbitrary 2D
filters with box filters for 1D and 3D versions. We apply our proposed approach
for computing convolution in FHE and through various experiments show the
efficacy and efficiency of our approach in reducing the convolution latency in the
FHE domain. Based on the experimental results we can conclude that our app-
roach proves to be a viable alternative to widely used regular spatial convolution
for reducing latency in the FHE domain. A promising line of future work is to
explore using our approach in combination with various packing schemes used
currently in FHE for inference in CNNs.
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Abstract. In recent years, complex machine learning models have been
widely introduced in various industrial fields due to their high accu-
racy. However, their increasing complexity has been a major obstacle to
their implementation in sensitive decision-making situations. In order
to address this problem, various post-hoc explanation methods have
been proposed, but they have not been able to achieve interpretabil-
ity of both the explanation and its scope. We propose R-LIME, a novel
method that interprets complex classifiers within an interpretable scope.
R-LIME locally and linearly approximates the complex decision bound-
ary of a black-box classifier within a rectangular region and maximizes
the region as long as the approximation accuracy exceeds a given thresh-
old. The resulting rectangular region is interpretable for users because
it is expressed as a conjunction of feature predicates. Through qualitative
and quantitative comparisons on a real-world dataset, we demonstrate
that R-LIME provides more reliable and interpretable explanations than
existing methods.

Keywords: Interpretable machine learning - Local surrogate model

1 Introduction

In recent years, complex machine learning models, such as deep neural networks
and random forests, have been widely introduced in various industrial fields due
to their significant improvements in accuracy. However, their increasing complex-
ity and black-box nature pose challenges, particularly in critical decision-making
scenarios such as healthcare and finance, where the lack of transparency becomes
a major obstacle to implementation. In order to address this problem, extensive
research has focused on post-hoc explanations for complex models [5,10,11].
Post-hoc explanation methods are categorized into model-dependent and model-
agnostic methods based on their dependence on the model’s structure, with the
latter further classified into global and local methods based on the locality in the
input space [13].
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This book is not bad.
It is funny and interesting.

(a) Focal point.

{"bad"}

(b) Explanation by LIME. It provides con-
tributions of each feature to the output, but
does not explicitly indicate its scope.

{"not", "bad"} ==  Positive

(c¢) Explanation by Anchor. It provides the (d) Explanation by R-LIME. It provides both
effective scope of the explanation, but does contributions of each feature and its effective
not show the influence of each feature. scope.

Fig. 1. Example of explanations by LIME [10], Anchor [11] and R-LIME (our proposed
method) for a sentiment prediction model.

In this paper, we focus on local and model-agnostic methods. LIME [10] and
Anchor [11] are representative local model-agnostic methods. An example of
explanations by LIME and Anchor for a sentiment prediction model is illustrated
in Fig. 1. LIME linearly approximates the complex decision boundary around the
given focal point (Fig. 1(a)), then provides the weights of the linear model as the
contribution of each feature to the output. The explanation by LIME (Fig. 1(b))
suggests that the word “not” mainly contributes to the positive prediction, but
does not explicitly indicate its effective scope. Without the scope, users might
mistakenly apply the knowledge derived from the explanation to other instances
far from the focal point, potentially leading to misunderstanding of the black-box
model’s behavior [11]. For this example, users may apply the derived insights
to the sentence “This book is not good.” and mistakenly conclude that the word
“not” mainly contributes to the positive prediction for this sentence as well, which
is obviously incorrect. Anchor maximizes the coverage of a rectangular region
containing the focal point as long as the probability of the black-box classifier
outputting the same label as the focal point within the region exceeds a given
threshold. While Anchor provides an effective scope of the explanation, users
can get less insight compared to LIME. The explanation by Anchor (Fig. 1(c))
suggests that replacing words other than “not” and “bad” has little impact on
the classifier’s output. While it clearly cannot be applied to the sentence “This
book is not good” because of not including the word “bad”, the explanation does
not provide details about the influence of each word, resulting in less user insight
into the model’s behavior compared to LIME.
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post-hoc
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model-dependent

(DTD [9], LRP [3]) model-agnostic

|
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global local
(PDP [4], ALE [2]) (LIME [10], Anchor [11], R-LIME)

Fig. 2. Categorization of post-hoc explanation methods. We focus on model-agnostic
and local methods, which explain model’s local behavior using only its output.

To address these limitations, we propose R-LIME (Ruled LIME), which pro-
vides both the contributions of each feature to the output and the effective scope
of the explanation. R-LIME linearly approximates a complex decision boundary
in a rectangular region and maximizes the region as long as the accuracy of the
linear classifier exceeds a given threshold. The region is interpretable for users
because it is expressed as a conjunction of feature predicates. An example of the
explanation by R-LIME for a sentiment prediction model is shown in Fig. 1(d).
It is clear that users can apply the insights derived from the explanation only to
the sentences containing the word “bad”.

2 Related Work

In this section, we overview existing research on post-hoc explanation methods,
which explain the behavior of black-box models already trained. As shown in
Fig. 2, post-hoc methods are classified into several categories.

They are broadly divided into model-dependent and model-agnostic methods
based on their dependence on the model’s structure. Model-dependent methods,
such as deep Taylor decomposition (DTD) [9] and layer-wise relevance propa-
gation (LRP) [3], primarily focus on neural networks and explain the model’s
behavior using its parameters [13]. While these methods provide detailed expla-
nations (e.g., layer-wise explanations for neural networks), it is often challenging
to apply the same method to models with different structures. In contrast, model-
agnostic methods use only the model’s output. Although they are applicable to
any model, they cannot explain the internal reasoning processes of the model.

Model-agnostic methods are further categorized into global and local methods
based on their locality in the input space. Global methods, such as partial depen-
dence plots (PDP) [4] and accumulated local effects (ALE) [2], aim to explain
the model’s behavior across the entire input space. However, providing global
explanations becomes challenging as the model’s complexity increases. In con-
trast, local methods, such as individual conditional expectation (ICE) [1], local
interpretable model-agnostic explanations (LIME) [10], Anchor [11] and shapley
additive explanations (SHAP) [8], explain the model’s behavior in the vicinity of
a specific input. While they offer explanations simpler and more accurate than
global methods, the scope of the explanation is limited locally.
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Fig. 3. Visual comparison of LIME, Anchor and R-LIME (our method). The dashed
line represents the local linear approximation model, and the solid line represents the
rectangular region containing the focal point.

3 Proposed Method

3.1 Previous Work

We specifically focus on local and model-agnostic methods. This section briefly
reviews existing research on local model-agnostic explanations, particularly
focusing on studies closely related to our proposed method.

LIME (Local Interpretable Model-agnostic Explanations) [10] LIME
locally approximates a black-box classifier f : R™ — {0, 1} around a focal point
x € R™ using a linear classifier g : R™ — {0,1} (Fig. 3(a)). The approximation
process involves the following steps:

1. Generate a set of perturbed samples Z, around z and their pseudo-labels
f(Z,) ={f(2) | z € Z,}. (i) Convert z into a binary vector 2’ € {0,1}"" , (ii)
generate perturbed samples by randomly drawing non-zero elements from z/,
and (iii) convert the perturbed samples back to the original space.

2. Train a linear classifier g using Z, and f(Z,) by minimizing the following loss

function:
L(f.gm) = > ma(2)(f(2) — 9(2))%, (1)

2€EZ,

where 7, (2) is a weight function that assigns larger weights for samples closer
to x, typically defined using an exponential kernel.

LIME provides valuable insights into the local behavior of the model by showing
each feature’s contribution to the output f(z). However, it does not explicitly
define the region for generating perturbed samples, making it difficult for users
to assess the effective scope of the explanation [11].

Anchor [11] Anchor maximizes the coverage of a rectangular region containing
the focal point x, expressed as a conjunction of feature predicates (a rule) as long
as the probability of the black-box classifier f outputting f(x) within the region
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exceeds a given threshold 7 (Fig. 3(b)). It aims to highlight important features
contributing significantly to the output. For a discrete m-dimensional input space
D™, a trained black-box classifier f : D™ — {0, 1}, an instance € D™ and a
distribution D over the input space, a rule A(z) = a;, (2) A ai,(2) A+ Aag,(2)
is defined. The predicate a;(z) evaluates to true (= 1) when z; = x; and false
(= 0) otherwise. The reliability of the explanation is defined as the “accuracy”
of the rule, and the generality of the explanation is defined as the “coverage” of
the rule. The accuracy acc(A) and coverage cov(A) of the rule A are defined as
follows:

acc(A) =E.opiay) L yey=f@)], (2)
cov(A) = E.p)[A(2)], (3)

where D(z|A) is the conditional distribution in the region where the rule A
returns true. acc(A) represents the probability that the output of f matches
between the perturbation z ~ D(z|A) and the focal point x, and cov(A) expresses
the probability that the perturbation z fits into A. Anchor maximizes coverage
as long as the accuracy of the rule A exceeds a given threshold 7. However, eq.
(2) is not directly computable. Introducing a confidence level 1 —¢ (0 <¢§ < 1),
the accuracy constraint is relaxed as follows:

P(acc(A) > 1) >1-14. (4)
Thus, the following optimization problem is solved:

A* = arg max cov(A). (5)
A s.t. P(acc(A)>7)>1—-0NA(x)=1

3.2 Overview

We propose R-LIME, a novel method designed to address the limitations of
LIME [10] and Anchor [11]. Similar to LIME, it locally approximates the black-
box classifier f around the focal point x using a linear classifier g, and similar to
Anchor, it generates the perturbed samples for approximation from a rectangular
region (Fig. 3(c)).

Anchor maximizes the coverage of region A as long as the probability of the
output of the black-box classifier f matching f(z) within A exceeds a given
threshold 7. R-LIME, on the other hand, learns a linear classifier g within the
rectangular region A and maximizes the coverage of A under lower constraints
on the accuracy of g. We modify Anchor’s definition of accuracy in eq. (2) as
follows:

A - EN z ]1 z)=g(z)l»
ace(4) = max E.p (i) [Ls()=y(2) (6)

where G is a hypothesis space of possible linear classifiers. By solving the opti-
mization problem in eq. (5) under the modified definition of accuracy in eq. (6),
we can select the rule that enables explanation with high accuracy and generality.
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Fig. 4. Overview of the R-LIME algorithm. The progression of the algorithm is illus-
trated from left to right. The solid line represents the rectangular region A, and the
dashed line represents the linear approximation model g learned within A. The initial
value of A is an empty rule (entire input space), and predicates are added to A, reduc-
ing coverage. The process continues until acc(A) > 7 is satisfied, at which point the
rule with the maximum coverage is output.

3.3 Algorithm

The R-LIME algorithm is mainly based on the method used in Anchor[11]. For
non-convex optimization problems like eq. (5), greedy search are often used. But
greedy methods often converge to local optima, so we use beam search, which
selects multiple candidates at each iteration to improve the search robustness.
The pseudo-code is shown in Algorithm 1.

Generating New Candidate Rules To generate new candidate rules, one
additional predicate is added to each of the B candidate rules selected in the
previous iteration. The pseudo-code is shown in Algorithm 2. T'(z) is the set of
predicates {ai,...,an}, where a;(z) evaluates to true when z; = z; and false
otherwise. T'(z) \ A is the set of predicates in T'(x) not included in rule A.

Searching Rules with Highest Accuracy Given the set of candidate rules
A, the algorithm selects the B candidate rules with the highest accuracy. This
problem can be formulated as best arm identification in the multi-armed bandit
framework. Each candidate rule A; € A is considered as an arm, and reward of
arm a; follows a Bernoulli distribution with P(X = 1) = acc(4;). By sampling
z ~ D(:|A;) and obtaining the reward 1;(,)—g,(.) for each trial, the algorithm
updates g; using z and f(z) after each trial. To efficiently search the rule (arm)
with the highest accuracy, we employ the KL-LUCB algorithm [6]. The pseudo-
code is shown in Algorithm 3. For tolerance € € [0, 1], the KL-LUCB algorithm

guarantees below:
P(mi A) > mi A)y—e)>1-4. 7
(min ace(A) > min acc(A') —¢) > (7)
However, the KL-LUCB algorithm assumes that the reward distribution for
each arm remains unchanged, while our method updates the classifier g; with

each sampling, which may not satisfy the assumption. This issue is discussed
further in section 5.2.
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Algorithm 1 R-LIME
Input: Black-box model f, Target instance x, Distribution D, Threshold 7, Beam
width B, Tolerance e, Confidence level 1 — ¢

Output: Rule A" satisfying Eq. (5)

1: A* <~ mnull, 4o~ 0, t 0 > Initialize the set of candidate rules Ao to 0
2: while A* = null do

3: t—t+1

4 A; «— GENERATECANDS(A:—1)

5 At «— B-BesTCanDs(A;, D, B, ¢,9)

6: A" « LARGESTCAND(A, T, 9)

7: end while

Algorithm 2 Generating new candidate rules

1: function GENERATECANDS(A, z)

2: if A =0 then return {true} > An initial empty rule always returns true
3 A0

4 for all A € Ado

5 for all a € (T'(z) \ A) do

6: A~ AU(ANa) b Get anew rule by adding a new predicate a to A
7 end for
8

9

10:

end for ~
return A
end function

Algorithm 3 Searching rules with highest accuracy (KL-LUCB [6])
1: function B-BesTCANDsS(A, D, B, ¢, )

2: initialize acc, acc,, acc; for VA € A

3: A « B-ProvisioNALLY BESTCANDS(.A) > B rules with highest accuracy
4: A «— argminac 4 acc; (A, §) > The rule with the smallest lower bound
5: A — arg mMax 4/¢(4\.4) &CCu (A',9) > The rule with the largest upper bound
6: while acc,(A’,§) —acci(4,6) > e do

7: sample z ~ D(z|A), 2’ ~ D(z'|A)

8: update acc, accy, acc; for A and A’

9: A « B-PROVISIONALLYBESTCANDS(A)

10: A «— argminac 4 acci (A4, d)

11: A’ — argmax 4r¢( 1\ 4) accu(A’, )

12: end while
13: return A
14: end function

Algorithm 4 Searching a rule with highest coverage under constraint

1: function LARGESTCAND(A, T, 4)

2: A* «— null > If no rule satisfies the constraint, return null
3 for all A € A s.t. acci(A,5) > 7 do

4: if cov(A) > cov(A*) then A" — A
5: end for
6
7

return A*
end function
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Searching a Rule with Highest Coverage under Constraint To satisfy
the constraint imposed by eq. (4), a rule A needs to meet the following condition:

accy(4,9) >, (8)

where acc;(A, d) is the lower limit of the 100(1 — 6)% confidence interval for
acc(A). If the set of candidate rules A includes rules satisfying eq. (8), the
one with the maximum coverage among them is selected, then the iteration is
terminated. If A does not contain any rule satisfying eq. (8), it returns null, and
proceeds to the next iteration. The pseudo-code is presented in Algorithm 4.

3.4 Computational Complexity

Post-hoc explanation methods including LIME, Anchor and R-LIME need to
sample a perturbation vector and get the output of the black-box model multiple
times, which is computationally expensive. The number of samples required for
LIME is |Z,|, which is the number of samples designated by the user. On the
other hand, the expected number of samples required for Anchor and R-LIME
is bounded by O[m - OniaB[B.m,B]], Where Oniap(B.m,B) 1S the expected number
of samples for best arm identification finding the best B arms from B -m arms.
For the KL-LUCB algorithm [6],

Bm Bm
OMAB[B-m,B] =0 [52 log 625] .

9)
Then the total expected number of samples for Anchor and R-LIME is
bounded by

= 8oy

2
o [Bm Bm] . (10)
For each iteration of the KL-LUCB algorithm, R-LIME needs to update the
linear classifier g;, which is not required in Anchor. If we use logistic regression
as the linear classifier and update it by stochastic gradient descent (SGD) [12],
the computational complexity of updating g; is O(m). It is negligible compared
to the complexity of generating a perturbed sample, which is O(m?) if we get
a sample from a multivariate normal distribution using Cholesky decomposition
in advance. Overall, the computational complexity of R-LIME is comparable to

that of Anchor.

4 Experiments
To verify the effectiveness of our method, we conducted qualitative and quantita-

tive comparisons of R-LIME with LIME and Anchor, using a real-world dataset.
Our code for R-LIME is available on GitHub!.

! https://github.com /g-ohara/rlime


https://github.com/g-ohara/rlime
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Table 1. Attributes of the recidivism dataset used in the experiments. Continuous
features are all discretized, and only binary and ordinal features are considered.

Attribute Overview # of Possible Values
Race Race (Black or White) 2
Alcohol Presence of serious alcohol issues 2
Junky Drug usage 2
Supervised Release Supervised release 2
Married Marital status 2
Felony Felony or not 2
WorkRelease Participation in work release program 2
Crime against Property Crime against property or not 2
Crime against Person =~ Crime against a person or not 2
Gender Gender (Female or Male) 2
Priors Number of prior offenses 4
YearsSchool Years of formal education completed 4
PrisonViolations Number of prison rule violations 3
Age Age 4
MonthsServed Months served in prison 4
Recidivism Recidivism or not 2

4.1 Qualitative Evaluation

Experimental Setup We used the recidivism dataset [14] for our experiments.
The dataset contains personal information on 9549 prisoners released from North
Carolina prisons between July 1, 1979 and June 30, 1980. As shown in Table 1,
the dataset includes 19 items such as race (Race), gender (Gender), presence of
alcohol dependence (Alcohol), number of prior offenses (Priors), and presence of
recidivism (Recidivism). For this experiment, we treated the binary classification
problem of predicting the presence of recidivism (Recidivism) as the target label.
We discretized continuous features and removed missing values, resulting in 15
features.

We splitted the dataset into training data (7639 instances) and test data (955
instances), and trained a random forest model with 50 trees as the black-box
classifier using the training data. Then, we generate LIME, Anchor and R-LIME
explanations for two instances extracted from the test data (Fig. 5). For R-LIME,
we used logistic regression as the linear approximation model, and a multivariate
normal distribution estimated from the training data as the distribution D. For
both Anchor and R-LIME, the beam width was set to B = 10, the confidence
coefficient to 1 — ¢ = 0.95, and the tolerance of the KL-LUCB algorithm to
€ = 0.05. The accuracy threshold 7 was set to 7 = 0.70,0.90.

This problem setting can be considered as a case where a complex machine
learning model is introduced to decide parole for prisoners. Since such decisions
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Race Black (0)
Alcohol No (0)
Junky No (0)
Supervised Release Yes (1)
Married Yes (1)
Felony No (0)
WorkRelease Yes (1)
Crime against Property No (0)
Crime against Person No (0)
Gender Male (1)
Priors 1
YearsSchool 8.00 < YearsSchool <= 10.00 (1)
PrisonViolations 0
Age Age > 33.00 (3)
MonthsServed 4.00 < MonthsServed <= 9.00 (1)
Recidivism No more crimes (0)
(a) Instance A
Race Black (0)
Alcohol Yes (1)
Junky No (0)
Supervised Release Yes (1)
Married No (0)
Felony No (0)
WorkRelease Yes (1)
Crime against Property Yes (1)
Crime against Person o (0)
Gender Male (1)
Priors 1
YearsSchool YearsSchool > 11.00 (3)
PrisonViolations 0
Age 21.00 < Age <= 26.00 (1)
MonthsServed 4.00 < MonthsServed <= 9.00 (1)
Recidivism Re-arrested (1)

(b) Instance B

Fig. 5. Two instances sampled from training data of recidivism dataset. Each number
in parentheses represents the integer value assigned to the corresponding categorical
value.

can have a significant impact on a person’s life, it is crucial for users to appro-
priately interpret the outputs of black-box models.
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Fig. 6. Explanation for Instance A by LIME, Anchor and R-LIME.

Experimental Results The results of the experiment are shown in Figs. 6 and
7. The values assigned to each feature name represent the contribution (weight
of the linear classifier) to the output of the black-box classifier, normalized such
that the absolute sum is 1. The figures display the 5 features with the highest
absolute contribution.

Explanations generated by LIME (Figs. 6(a) and 7(a)) provide insights that
having a prior offenses (Priors), being served for a long time in prison (Months-
Served), and committing a crime against property (Crime against Property) pri-
marily contribute to the positive prediction (prediction that the prisoner will be
re-arrested). On the other hand, being elderly (Age), being married (Married),
and being of white race (Race) contribute to the negative prediction (predic-
tion that the prisoner will not be re-arrested). While these LIME explanations
provide valuable insights into the behavior of the black-box model, they do not
explicitly indicate the application scope of the explanations, leaving users unable
to determine to which prisoners the explanations are applicable.

Anchor provides conditions for the model’s output to be fixed with high prob-
ability. For example, the explanation for instance A under 7 = 0.70 (Fig. 6(b))
means that the model will predict with 75.66 % probability that the prisoner
will commit no more crimes when a prisoner is older than 33 and has one prior
offense. Although it clearly provides the explanation’s application scope, it does
not provide details about how these conditions affect the model’s output.
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Fig. 7. Explanation for Instance B by LIME, Anchor and R-LIME.

In contrast to LIME and Anchor, R-LIME provides both contribution of each
feature to the output and the application scope of the explanation. For exam-
ple, the explanation for instance A under 7 = 0.70 (Fig. 6(d)) indicates that it
is applicable only to married prisoner (Married =Yes). R-LIME explanations
also provide their accuracy and coverage, allowing users to evaluate reliability
and generality of the explanations. For example, the coverage of the explana-
tion for instance B under 7 = 0.90 (Fig. 7(e)) is 0.01%, indicating that the
decision boundaries around instance B are complex, making it challenging to
obtain a high-accuracy linear approximation. This information allows users to
discern that the application scope of this explanation is very narrow, limiting its
utility.

4.2 Quantitative Evaluation: LIME vs. R-LIME

Experimental Setup To demonstrate that R-LIME learns a highly accurate
linear approximation model in the optimized approximation region, we con-
ducted a comparison of the local accuracy of explanations between LIME and
R-LIME. Under the same settings as in section 4.1, we randomly sampled 100
instances from the test data of the recidivism dataset and generated explanations
using LIME and R-LIME (with 7 = 0.70,0.80,0.90). We then sampled 10,000
instances within the rectangular region obtained by R-LIME and calculated the
local accuracy of both methods.
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Fig. 8. Comparison of existing methods (LIME, Anchor) and R-LIME.

Experimental Results The results are presented in Fig. 8(a), showing the
distribution of the local accuracy of the linear classifiers learned by LIME and
R-LIME. R-LIME achieved higher accuracy compared to LIME for all values of
7. This suggests that the linear classifiers learned by LIME and R-LIME differ
significantly, and R-LIME learns a high-accuracy linear classifier adapted to the
optimized rectangular region. Additionally, as 7 increases, the variability in the
accuracy of LIME widens. This indicates that the linear classifiers learned by
LIME may not function effectively as approximation models depending on how
the region is selected.

4.3 Quantitative Evaluation: Anchor vs. R-LIME

Experimental Setup To demonstrate that R-LIME explanations are more
general than Anchor, we conducted a comparison of the coverage of explanations
between Anchor and R-LIME. Under the same settings as in section 4.1, we
generated Anchor and R-LIME explanations for 704 instances from the test data
of the recidivism dataset, under the values of 7 = 0.65,0.70,0.75, 0.80, 0.85, 0.90.

Experimental Results The results are presented in Fig. 8(b), showing the
coverage of the explanations by Anchor and R-LIME. The coverage of explana-
tions generated by R-LIME is higher compared to Anchor for almost values of
7, especially for relatively small 7. It is because of the flexibility of the linear
approximation models learned by R-LIME, which captures the decision bound-
ary more precisely. In contrast, Anchor uses only the intervals of each feature
discretized in advance, which cannot capture the decision boundary flexibly and
makes its scope narrow.
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Fig. 9. Behavior of R-LIME for balanced and imbalanced label distribution. In case of
imbalanced label distribution, the approximation region covers the entire input space
and the linear approximation model always outputs the majority label.

Table 2. Deviation between the estimated accuracy and the true accuracy of the
linear classifier learned by R-LIME. The deviation 0.012 + 0.017 was relatively small
considering the confidence level 1 — § = 0.95.

Estimated acc. True acc. Deviation
Average .811 .829 .012
Standard Deviation .018 .023 .017

5 Discussion

5.1 Behavior for Imbalanced Label Distribution

R-LIME may generate less useful explanations when the distribution of black-
box classifier outputs is imbalanced. When the ratio of outputting the minority
label is less than 1 — 7, where 7 is the accuracy threshold, the approximation
region generated by R-LIME covers the entire input space, and the learned linear
classifier always outputs the majority label (Fig. 9).

A first possible solution to this problem is modifying the loss function. Using
weighted logistic loss or Focal Loss [7] as the loss function might lead to the gen-
eration of more useful explanations in the case of imbalanced label distribution.
Another solution involves adding constraints to limit the label distribution bias
within the approximation region. In addition to eq. (4), adding a constraint like

2
1
(EZND(Z|A) My(z)=1] — 2) <p (11)

could suppress the excessive expansion of the approximation region.

5.2 Changes in Reward Distribution in Best Arm Identification

For R-LIME, the problem of selecting the rule with the highest accuracy is
formulated as the best arm identification problem in multi-armed bandit frame-
work, and solved using the KL-LUCB algorithm [6]. However, this algorithm
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assumes that the reward distribution remains constant, while in R-LIME, the
reward distribution (accuracy of the linear approximation) changes with every
update of the approximation model after sampling. Therefore, rewards obtained
at an early stage might influence the estimated value and make it deviate from
the true value.

We conducted an experiment to evaluate the deviation between the esti-
mated accuracy and the true accuracy. We generated explanations for 3200 data
instances sampled from the dataset, and compared the estimated accuracy with
the true accuracy. The true accuracy was calculated based on 1000 instances
sampled within the approximation region. The results in Table 2 show a mean
deviation of 0.012 with a standard deviation of 0.017. By considering the con-
fidence level 1 — § = 0.95, the deviation was relatively small. While there are
concerns about the theoretical validity of using the KL-LUCB algorithm, our
results suggest that the deviation is not significant in practice.

5.3 Parameter Selection

In Sec. 3.4, we discussed about the computational complexity of R-LIME, which
depends on some hyperparameters. R-LIME requires the hyperparameters to be
selected by users, such as the threshold of accuracy 7, beam width B, tolerance €
and confidence level §. B should be large and € and ¢ should be small for accurate
results, as long as the computational cost is acceptable. On the other hand, 7
should be carefully selected by users, sometimes interactively, considering the
tradeoff between the accuracy and generality of generated explanation.

6 Conclusion

Existing methods for local model-agnostic explanations of black-box classifiers,
such as LIME and Anchor, have limitations that they cannot achieve inter-
pretability of both the explanation and its application scope. To address these
challenges, we proposed R-LIME, a method that locally and linearly approxi-
mates the decision boundary of a black-box classifier and provides a rectangular
approximation region, which is interpretable for users due to being expressed as a
conjunction of feature predicates. We proposed an algorithm to maximize cover-
age of the approximation region as long as the accuracy of the linear approxima-
tion model exceeds a given threshold. Comparing R-LIME with existing methods
on the real-world dataset, we demonstrated that R-LIME achieves interpretabil-
ity of both the explanation and its application scope, and provides explanations
more accurate than LIME and more general than Anchor. Finally, we discussed
the instability of behavior with imbalanced label distributions, raised questions
about the theoretical validity of using the KL-LUCB algorithm, and hyperpa-
rameter tuning in practice.
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Abstract. Spiking Neural Networks (SNNs) are poised to lead the next
generation of artificial intelligence, offering energy efficiency and per-
formance on par with traditional neural networks. With these advan-
tages, SNNs are finding widespread applications across various domains.
One significant area of interest is image generation using deep learn-
ing models like Variational Autoencoders (VAE). However, like other
deep learning models, SNNs demand substantial training data to achieve
desired outcomes, raising concerns about data privacy. Our pioneering
contribution is the introduction of a Differentially Private Spiking Varia-
tional Autoencoder (DP-SVAE) for image generation and reconstruction.
DP-SVAE employs standard Differentially Private Stochastic Gradient
Descent (DP-SGD) to ensure privacy preservation. Additionally, we have
evaluated the models against various adversarial attacks to highlight the
importance of differential privacy. We comprehensively analyze the pro-
posed model through extensive experimentation across publicly available
benchmark datasets. This pioneering study marks the first exploration
of privacy considerations in SNN-based VAEs and will catalyze further
research in this domain.

Keywords: Spiking Neural Networks - Differential Privacy -
Variational Autoencoder - Image Reconstruction

1 Introduction and Related Work

Artificial Intelligence (AI) has experienced exponential growth across various
sectors due to the digitization of industries. Neural networks like Recurrent
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Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and Arti-
ficial Neural Networks (ANNs) have become indispensable components in fields
ranging from agriculture, healthcare, social media, robotics, manufacturing, etc.
Between 2012 and 2018, the computational resources required for training deep
learning models saw a remarkable increase, scaling up by a factor of 300,000,
as reported by Schwartz et al.’s work [1]. To overcome the issue of the rapid
growth in power consumption to fulfill computational needs, another type of
neural network, Spiking Neural Networks (SNNs), is gaining attention due to its
energy-efficient behavior. The SNNs are also referred to as the third generation
of neural networks [2].

All the aforementioned neural networks share the common goal of emulat-
ing the human brain’s functionality. Among them, SNNs closely resemble the
human brain’s operations. To perform computation, SNNs receive input data in
the form of spikes at different points in time, which are then processed as per
the membrane potential of spiking neurons present in the network. The neu-
ron fires a spike when the membrane potential surpasses a predefined threshold.
Various models for spiking neurons are found in the literature, including the
Hodgkin-Huxley [3], Leaky-Integrate-and-Fire [4], and Izhikevich neuron mod-
els [5]. The main contrast between ANNs and SNNs is their information represen-
tation methods. SNNs generally excel in information representation, utilizing dif-
ferential equations for computation compared to ANNs’ activation functions [6].
The inherent spike-firing mechanism of SNNs contributes significantly to their
energy efficiency. Despite this energy efficiency, SNNs maintain performance lev-
els comparable to other neural network types [7].

Leveraging their energy efficiency and firm performance, SNNs find appli-
cations in various tasks such as speech recognition, image classification, object
detection, healthcare, and more [8]. One such important application is image
generation. Image generation models need heavy computational resources. Thus,
integrating SNNs with such models could offer significant benefits. Skatchkovsky
et al. [9] proposed a hybrid Variational Autoencoder(VAE), where the encoder
consists of SNN while the decoder uses ANN. Rosenfeld et al. [10] proposed a
Spiking Generative Adversarial Network consisting of SNN and ANN. Talatha et
al. [11] proposed VAE-sleep based on a biologically realistic sleep algorithm for
VAEs. Kamata et al. [12] were the first to propose Fully Spiking VAE (FSVAE)
using autoregressive Bernoulli spike sampling, where they achieved better perfor-
mance on FSVAE compared to its counterpart ANN VAE (built with the same
architecture). Moreover, to boost research in domains where data scarcity is
present, e.g., medical imaging, SNN-based image generative models have become
an efficient alternative for data generation.

In general, creating robust models requires vast data for training and test-
ing; however, storing and utilizing such a large volume of data raises concerns
about potential data breaches. Various attacks, such as linkage attacks, mem-
bership inference attacks, data reconstruction attacks, adversarial attacks, and
model inversion attacks, among others, may compromise the data, model, or out-
put [13]. These privacy threats emphasize the need to develop privacy-preserving
techniques for image-generation models.
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To address these privacy concerns, Dwork et al. proposed a mathematical
framework called Differential Privacy (DP), which can quantify the privacy loss
of every data point [14] present in the dataset. DP ensures that if the data
is changed by one entry, then the change in the algorithm’s output will be
insignificant, i.e., bounded by a small constant value. DP has found applica-
tions in almost every domain related to machine learning. Mueller et al. [15]
have demonstrated the effects of applying DP on graphical neural networks for
graph classification. Xie et al. [16] proposed Differentially Private Generative
Adversarial Networks for image generation. Tang et al. [17] explore Differen-
tially Private image classification by learning priors. Wang et al. [18] proposed
VideoDP to ensure the privacy of videos using DP. Ziller et al. [19] proposed
a DP framework named Deepee, validated on medical imaging tasks. Weggen-
mann et al. [20] performed text anonymization using DP VAE. Chu et al. [21]
proposed DP based denoising diffusion model. Wang et al. [22] were the first to
explore DP for SNNs.

Considering the vital importance of DP and the limited exploration of its
application in SNNs for image generation using VAEs, we propose differentially
private image generation using Spiking VAEs. To the best of our knowledge, we
are the first to propose and provide an in-depth analysis of DP image generation
using spiking VAEs. Due to its adaptability with most machine learning models,
we have followed the standard Differentially Private Stochastic Gradient Descent
(DP-SGD) [23] technique to apply DP. We evaluated the privacy-utility trade-
off using four benchmark datasets (MNIST [24], FMNIST [25], CIFARI10 [26],
and CelebA [27]). To provide a better comparison of SNN and ANN-based mod-
els, we implemented DP on both SNN VAE and ANN VAE. We highlight our
contributions as follows:

— To the best of our knowledge, we are the first to propose differentially private
SNN-VAE (DP-SVAE) for image generation.

— To further estimate the influence of DP on spiking and non-spiking models,
we implemented DP on Spiking VAE and ANN VAE models and provided
thorough analysis using several quantitative and qualitative measures.

— We rigorously evaluated and demonstrated the robustness of Differential Pri-
vacy (DP) by subjecting both differentially private and non-differentially pri-
vate versions of spiking and non-spiking models to various adversarial attacks.

— We provide a thorough analysis of DP-SVAE using various hyperparameters
to evaluate their privacy utility trade-off for image generation.

2 Preliminaries

This section provides important background information for differentially private
image generation using spiking VAE.

Variational Autoencoder (VAE): VAE is commonly used for image gen-
eration task [28]. It consists of an encoder, a decoder, and a latent variable
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z. For image generation, it trains a latent variable model p(z,z) defined as
p(z, z) = p(z) p(x|z), where x, p(z) denotes the input and probability distribu-
tion over latent variable z (commonly referred as prior distribution) respectively,
and p(z|z) denotes the probability distribution for the decoder. The posterior
probability p(z|x) is intractable, and hence the encoder model, ¢(z|z), was intro-
duced [29]. The variational lower bound on the marginal likelihood of p(z) can
be defined using Eq. 1.

L = —KL[q(z[2)[|p(2)] + Eq(z|0) [log p(z|2)] (1)

Here, KL[q(z|x)||p(z)] is called Kullback-Leibler (K L) divergence between the
posterior and prior.

Spiking Neural Networks (SNN): SNNs are considered to be energy-efficient
substitutes for other neural networks. SNNs take input features in the form
of spikes, which are created using encoding methods, such as direct encoding.
The working principle of SNNs is forwarding the spike trains to the next layer
when a predefined threshold value of membrane potential is surpassed in the
spiking neurons. After firing the spike, the membrane potential resets itself to
its resting potential. Some of the most commonly used spiking neuron models
include the Leaky-Integrate-and-Fire (LIF) model [4], Hodgkin-Huxley model
[3], and Izhikevich model [5]. In this work, the LIF model is used and defined
using Eq. 2.

du (t)
T 0

= —(ua(t) —u,) + R-I(t), when uy(t) < vy (2)

Here 7, is membrane time constant, u,(t) is membrane potential, w,(¢) is the
resting potential, I(t) is the input current, R is the resistance, and v; is the
threshold potential at the time stamp ¢.

Differential Privacy (DP): DP [14] is a mathematical framework to ensure
data privacy. In more general terms, an algorithm is differentially private if the
inclusion or exclusion of a single data point does not substantially affect the
output. Mathematically, let D; and Dy be two neighboring datasets (i.e., both
datasets differ by one point). A randomized algorithm M is said to be (e, 9)
differentially private if for any two input data points x € Dy, y € Da, it follows
bound as shown using Eq. 3.

PIM(z) € O] < exp(e)P[M(y) € O] +6 (3)

where O C Range(M) and P denotes the probability. DP is generally applied by
adding noise to the gradients during model training. Some of the most impor-
tant noise addition mechanisms include the Laplace mechanism, Gaussian mech-
anism, Exponential mechanism, etc[30]. In our work, we followed the Gaussian
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mechanism to add the noise (N (0,02A?)) sampled from the Gaussian distribu-
tion. Let ¢ be a query function and A be Ly - Sensitivity of ¢, then Gaussian
mechanism (A) over dataset (D) can be defined using Eq. 4.

A(D) = q(D) + N (0, 0% A?) (4)

Here, the Gaussian Mechanism with parameter o such that o > < 8( s (g,0)-

differentially private for some constant, ¢ > 4/21n (1 25) [30]. L2 - Sensitivity

determines the maximum change in the output of two neighboring datasets after
applying the query. Let q be a query function and ||.||, be L2 norm over the
range of ¢, then Lo - Sensitivity (A) of q is defined using Eq. 5.

A= max  a(D) - (Do)l 5)

Differentially Private Stochastic Gradient Descent (DP-SGD): DP-
SGD [23] is an extension to the Stochastic Gradient Descent algorithm and is
widely used to train differentially private machine learning or deep learning mod-
els. In DP-SGD, the gradients are first clipped according to their £y - sensitivity
at each iteration so that no single gradient can make more significant updates
with respect to others. After gradient clipping, noise (termed as noise multiplier)
sampled from the Gaussian distribution is added to the gradients. One of the
most significant properties of DP is composition, which is used to track privacy
expenditure during model training.

Renyi Differential Privacy (RDP): To measure the privacy spent, we fol-
lowed Renyi Differential Privacy [31]. Based on Renyi Divergence, (a,€)-RDP
is considered to be a relaxed version of DP where a € (1,00). Let us assume
a randomized algorithm A that takes D; as its input. The algorithm A is said
to be (a,€)-Renyi DP if for every pair of neighboring datasets D; and Do, if
Do (A(D))||A(D,)) < €, where D,(+||-) denotes the Renyi divergence of order
a [32]. Due to its compositional properties, it is used with DP-SGD for privacy
accounting.

Adversarial Attacks: In this study, we employed the following three adver-
sarial attacks during the testing phase to assess the robustness of differentially
private and non-differentially private models.

— Fast Gradient Sign Method (FGSM) [33] leverages the sign of the gra-
dient from the original input to compute perturbations, thereby generating
adversarial examples. These adversarial examples retain perceptual similarity
to the original data yet degrade model performance during testing.

— Carlini and Wagner (C&W) Attack [34] formulates an optimization
problem to generate adversarial examples. The objective function minimizes
the perturbation added to the original input while ensuring that the perturbed
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input is misclassified. The attack employs advanced optimization techniques
to find minimal perturbations that effectively fool the model.

— Square Attack [35] generates adversarial images using an iterative search
strategy. It effectively finds perturbations by exploring the pixel space of the
original image within constraints defined by metrics like the [; norm. This
method ensures that the perturbations are within a specified distance from
the original pixel.

3 Differential Private Spiking Variational Autoencoder
(DP-SVAE)

Adding Noise

A
[ e ‘I
Posterlor

1 @ Loss —bQ
Encoder Decoder

Fig. 1. The schematic architecture diagram of the proposed approach.

In this work, we develop a differentially private spiking VAE and its equivalent
differentially private ANN VAE for image reconstruction and generation. Our
approach’s vanilla architecture (i.e., non-differentially private) follows the archi-
tecture of FSVAE and ANN VAE as proposed by Kamata et al. [12]. We followed
standard DP-SGD training with AdamW optimizer to train our model with DP.
We provide the schematic architecture diagram of the proposed model in Fig. 1
The SNNs use binary time series data, so in our proposed DP-SVAE, we used
autoregressive Bernoulli spike sampling [12]. The prior and posterior for the
latent space of DP-SVAE are defined using Bernoulli distribution [36]. The prior
and posterior can be mathematically represented using Eq. 6 and Eq. 7.

p(z1.7) Hp zt|z<t) (6)

q(zr7|21r) = HQ(Zt|$gt7Z<t) (7)
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The commonly used loss function for VAE is expressed in Eq.1. For SNN, we
use Maximum Mean Discrepancy (M M D) [37] alongwith Postsynaptic Potential
Function (PSP) [38] in place of KL divergence.

PSP(ZSt) = (1 - i)P;S’P)(th_1) + izt (8)

Ta Ta
Here 7, denotes the membrane time constant and PSP = 0 when z<o. The
MM D metric using PSP is defined as,

T
MMD? =) " |[PSP(nq,<t) — PSP(mp,<0 )| (9)
t=1

Here, m, ; and 7, ; represent the average output of the autoregressive SNN model
of posterior and prior. They are used as parameters for Bernoulli sampling for
latent variables. To start the training of the model, the input image I is con-
verted into spikes over the time stamps T using direct encoding and denoted
as Iy.r. These spikes are then forwarded to the SNN encoder (E) and passed
through the LIF neurons to obtain the encoded spike trains, denoted as I 1ET
This encoded output combined with latent variable z;_;1 acts as input to the
posterior, which generates z; using Bernoulli spike sampling. The prior also has
a similar architecture to that of the posterior, but it uses only z;_; as input.
The sampled z; is then passed through the decoder to obtain the reconstructed
image, Ri.7. The decoder has the same architecture as the encoder. To convert
Ry.r into a real image (R), non-firing neurons are used in the output layer,
which uses membrane potential of Ry.7 at the last time stamp T to obtain the
reconstructed image. The overall loss function during training can be described
using Eq. 10

T
L=MSE(I,R)+ Y |PSP(rg<) — PSP(mp,<:)|” (10)

t=1

To make the model differentially private, we decide the privacy budget, €, accord-
ing to how tight or loose the privacy bound is required. After that, depending
on the value of €, we train the model with a specific noise multiplier, which
determines the Gaussian noise to be added to the model gradients. Along with
the noise addition, Ls-sensitivity bound is also considered to clip the model
gradients. Then, the model is trained using these noisy and clipped gradients
to optimize the model. The privacy budget is calculated using RDP accoun-
tant. We integrated differential privacy into ANN VAE by following the same
approach used for DP-SVAE.

4 Experimentation and Results

Dataset Details and Evaluation Metrics: During experimentation, we used
four benchmark datasets, namely MNIST [24], CIFAR10 [26], FMNIST [25],
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and CelebA [27]. The MNIST and FMNIST datasets comprise 70,000 grayscale
images of handwritten digits and clothing items (60,000 for training and 10,000
for testing). The CIFARI0 dataset consists of 60,000 RGB images (50,000 for
training and 10,000 for testing). To further evaluate the scalability of our app-
roach, we have also used the CelebA dataset consisting of 182,732 RGB images
(162,770 for training and 19,962 for testing), which contains the celebrity face
images. For model evaluation, we used different metrics, i.e., reconstruction loss,
Inception Score (IS), and Frechet Distance using Frechet Inception Distance
(FID) and Autoencoder Inception Distance (AID). Reconstruction loss quanti-
fies the quality of the reconstructed image with respect to the original image
using mean square error. Inception Score evaluates the quality of images gen-
erated during image generation. FID examines the statistical likeness between
distributions of real and generated images, while IS assesses both the realism
and diversity of the generated images. AID assists in computing the Frechet
distance of the autoencoder’s latent variables between sampled and real images
since datasets such as MNIST are different from the ImageNet domain. Thus, as
suggested by Kamata et al. [12], the autoencoder is pretrained on each dataset
and utilized for measuring the Frechet distance.

Implementation Details: We implemented our approach using PyTorch as
a programming framework and Opacus [39] to implement differential privacy
for RDP accountant. We set § = — Tmaliy Of o dataser for RDP accounting.
The proposed models were tested on the Ubuntu 22.04 operating system with
NVIDIA A5000 GPU and 24 GB graphics memory. We used the official train-test
split for evaluation purposes for all the datasets. We followed the same settings
as used by [12] and trained the models using AdamW optimizer for 150 epochs
with a batch size of 250. For adversarial attacks, we employ perturbations with
a magnitude of 0.3 and utilize the mean square error (MSE) as the loss function.
In the Square Attack, a perturbation patch size of 4x4 is used. We perform
50 iterations to generate adversarial examples for both the C&W and Square
attacks.

Ablation Study: We have used three different privacy budgets, i.e., ¢ ={1, 5,
10} to provide analysis of both loose and tight privacy bounds with respective
noise multipliers {0.01, 0.005, 0.001} respectively, which was decided on the fact
that stricter privacy bounds require more noise or vice versa. We performed an
ablation study using the MNIST dataset on three clip values ({1,3,5}) for all e
and their respective noise values to determine optimal clip values. We provided
the summary of the ablation study on clip values for DP-SVAE and DP-ANN
VAE models in Table 1 and Table 2 respectively. From Table 1 and Table 2, we
found clip=3 is robust for DP-SVAE and comparable for DP-ANN VAE models
for most of the datasets. For the CelebA dataset, we observed that clip=>5 is
giving better results. Hence, clip value 3 is used throughout the experiments for
MNIST, FMIST, and CIFAR10, while clip value 5 is used for the CelebA dataset.
During experimentation, we observed that the learning of DP-SVAE and DP-
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ANN were sensitive to noise values, hence we have carefully chosen the noise
values as {0.01, 0.005, 0.001}. Even on such smaller noise values, we observed
a significant performance drop by DP models. We have to increase our privacy
budget for these noise values, so we introduced a budget multiplier for privacy
accounting. Hence, we multiplied each noise value by 1000 for DP models for
privacy budget calculation. We summarize the ablation for the effect of different
privacy budgets, i.e., ¢ ={1, 5, 10} with their respective noise values on all the
datasets for DP-SVAE and DP-ANN VAE in Table 3 and Table 4 respectively.
Please refer to the supplementary material for additional experimental results
on different clip values. We also analyze the effect of different time stamps, T" =
{4, 8, 12, 16, 20, 24} on the FID score for DP-SVAE using the MNIST dataset
in Fig. 2 and found that T" = 16 gives best results.

FID over Time for DP-SVAE

200 A
190 A
o
r 1801
170 A

160

4 8 12 16 20 24
Time Stamp (T)

Fig. 2. Ablation study on different time stamps for MNIST dataset using DP-SVAE
at €e=10, noise=0.001, and clip=3.0.

Table 1. Ablation study on different clip values = {1, 3, 5} for MNIST dataset using
DP-SVAE.

e |Noise | Clip | Reconstruction Loss | | Inception Score 1 |FID |  AID |
1 ]0.01 1 0.27 1.159 328.32 | 413.58
1 10.01 3 0.231 1.089 285.6 | 357.4

1 10.01 5 0.23 1.066 279.01 | 386.43
5 10.005 |1 0.288 1.109 302.73 | 428.55
5 10.005 |3 0.109 3.844 224.37 | 169.68
5 10.005 |5 0.126 3.635 234.13 |180.09
10/ 0.001 |1 0.34 1.031 367.25 |838.69
10/ 0.001 |3 0.057 5.288 155.14 | 55.33

10]0.001 |5 0.055 5.115 162.64 | 57.59
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Table 2. Ablation study on different clip values = {1, 3, 5} on MNIST dataset using

DP-ANN VAE.
¢ | Noise | Clip | Reconstruction Loss | | Inception Score 7| FID | | AID |
1 ]0.01 1 0.148 4.475 263.19 | 98.01
1 |0.01 3 0.142 4.71 264.34 | 98.45
1 |0.01 5 0.149 4.441 257.82 | 96.47
5 0.005 |1 0.118 5.371 229.55 | 86.53
5 |0.005 |3 0.12 5.325 229.01 | 86.18
5 0.005 |5 0.116 5.147 227.96 | 84.76
10 0.001 |1 0.076 5.323 155.81 | 46.22
10 0.001 |3 0.077 5.146 158.71 | 46.89
10 0.001 |5 0.076 5.569 162.4 49.61

Table 3. Ablation study of DP-SVAE at different combinations

for different datasets.

of € and noise values

Dataset € Noise | Reconstruction Loss | | Inception Score T | FID | | AID |
MNIST 1 |0.01 0.231 1.089 285.6 | 357.4
0.005 |0.109 3.844 224.37 | 169.68
10| 0.001 | 0.057 5.288 155.14 | 55.33
CIFAR10 |1 |0.01 0.249 1.015 405.5 | 423.48
5 |0.005 |0.141 1.169 312.04 | 191.6
10| 0.001 |0.102 1.935 253.06 | 163.29
FMNIST |1 |0.01 0.107 2.274 291.28 | 146.3
0.005 | 0.084 2.499 277.74 | 98.72
10| 0.001 |0.061 4.384 210.76 | 43.95
CelebA 1 |0.01 0.265 1.046 406.83 | 1270.45
0.005 |0.102 2.007 337.79 | 433.78
10| 0.001 | 0.083 2.67 249.84 | 291.79

Table 4. Ablation study of DP-ANN VAE at different combinations of € and noise
values for different datasets.

Dataset e | Noise | Reconstruction Loss | | Inception Score T | FID | | AID |
MNIST 1 |0.01 0.142 4.71 264.34 | 98.45
0.005 |0.12 5.325 229.01 | 86.18
10| 0.001 | 0.076 5.146 158.71 | 46.89
CIFAR10 |1 |0.01 0.159 1.303 261.85 | 207.66
0.005 |0.144 1.536 261.63 | 208.91
10| 0.001 |0.129 1.975 303.33 | 244.03
FMNIST |1 |0.01 0.112 4.286 258.86 | 66.6
0.005 | 0.093 4.513 249.43 | 57.07
10| 0.001 |0.072 4.343 216.14 | 39.76
CelebA 1 |0.01 0.115 2.067 318.59 | 378.63
0.005 | 0.104 2.154 321.14 | 341.93
10| 0.001 | 0.084 2.708 281.57 | 290.81
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Comparison with State-of-the-Art Methods and Adversarial Attacks:
In Table 5, we compare our proposed differentially private spiking and non-
spiking models against recent state-of-the-art (SOTA) approaches, specifically
FSVAE [12] and ESVAE [40]. We observed that non-spiking models experienced
a smaller reduction in utility compared to spiking models when subjected to
differential privacy. Additionally, although ESVAE, with its complex architec-
ture, initially outperformed FSVAE, its utility degraded more significantly than
DP-SVAE under differential privacy constraints. The impact of various adver-
sarial attacks, including FGSM, C&W Attack, and Square Attack, is shown in
Table 6, which illustrates an increase in reconstruction loss. To further evaluate
the effectiveness of the differentially private models, we quantified the increase in
reconstruction loss under adversarial attacks, as shown in Table 7. Our observa-
tions indicate that the differentially private models exhibit enhanced robustness
against adversarial attacks compared to their non-differentially private counter-
parts for both spiking and non-spiking variants, demonstrating only a minimal
increase in reconstruction loss. Moreover, we also noted that non-spiking models
suffer more under adversarial attacks than their spiking models.

Please note that, due to the huge computational demand by large models used
for the CelebA dataset, we considered only three datasets for experimentation
in Table 5, 6, and 7.

Table 5. Analysis using SOTA methods with e=10, noise=0.001, and clip=3 for DP
(bold entries denote better utility among DP-SVAE and DP-ESVAE).

Dataset | Model Reconstruction Loss | | Inception Score 7| FID | | AID |
MNIST |ANN VAE 0.048 5.947 112.5 17.09
DP-ANN VAE | 0.076 5.146 158.71 | 46.89
FSVAE 0.031 6.209 97.06 | 35.54
DP-SVAE 0.057 5.288 155.14 | 55.33
ESVAE 0.013 5.612 117.8 | 10.99
DP-ESVAE 0.073 4.572 235.45 | 72.81
CIFAR10  ANN VAE 0.105 2.591 229.6 | 196.9
DP-ANN VAE | 0.129 1.975 303.33 | 244.03
FSVAE 0.066 2.945 175.5 133.9
DP-SVAE 0.102 1.935 253.06 |163.29
ESVAE 0.045 3.758 127.0 | 14.74
DP-ESVAE 0.079 2.411 131.33 | 260.38
FMNIST | ANN VAE 0.05 4.252 123.7 | 18.08
DP-ANN VAE | 0.072 4.343 216.14 | 39.76
FSVAE 0.031 4.551 90.12 15.75
DP-SVAE 0.061 4.384 210.76 | 43.95
ESVAE 0.019 6.227 125.3 | 11.13
DP-ESVAE 0.069 3.687 257.781 | 64.44
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Table 6. Reconstruction loss during different adversarial attacks on various models
(bold entries denote the most severe attack for the given model).

Dataset Model No Attack | FGSM | C&W Square
MNIST ANN VAE 0.048 0.82191 |0.81375 |0.97973
DP-ANN VAE | 0.076 0.82139 | 0.81862 |0.99341
FSVAE 0.031 0.04930 | 0.04847 | 0.09353
DP-SVAE 0.057 0.07734 |0.07443 | 0.08815
ESVAE 0.013 0.04578 | 0.04906 |0.06310
DP-ESVAE 0.073 0.08415 | 0.08560 |0.10059
CIFAR10 | ANN VAE 0.105 0.23647 | 0.24365 | 0.21749
DP-ANN VAE | 0.129 0.21324 | 0.22775 | 0.18422
FSVAE 0.066 0.10641 | 0.09237 | 0.10617
DP-SVAE 0.102 0.13942 | 0.11110 | 0.12344
ESVAE 0.045 0.06735 | 0.07147 | 0.09304
DP-ESVAE 0.079 0.09516 |0.09730 |0.11118
FMNIST | ANN VAE 0.050 0.61577 | 0.61633 | 0.72048
DP-ANN VAE | 0.072 0.62678 | 0.61790 |0.72303
FSVAE 0.031 0.07710 |0.05814 |0.08733
DP-SVAE 0.061 0.11412 | 0.08307 | 0.10535
ESVAE 0.019 0.06301 | 0.05633 |0.09713
DP-ESVAE 0.069 0.09875 | 0.08996 |0.11898

Table 7. Increment in reconstruction loss across various models during different attacks
(bold entries indicate models that exhibit the minimum gain in reconstruction loss
compared to their non-DP counterparts).

Dataset Model FGSM | C&W Square
MNIST ANN VAE 0.77391 | 0.76575 | 0.93173
DP-ANN VAE | 0.74539 | 0.74262 | 0.91741
FSVAE 0.01830 | 0.01747 | 0.06253
DP-SVAE 0.02034 | 0.01743 | 0.03115
ESVAE 0.03278 | 0.03606 | 0.05010
DP-ESVAE 0.01115 | 0.01260 | 0.02759
CIFAR10 | ANN VAE 0.13147 | 0.13865 | 0.11249
DP-ANN VAE | 0.08424 | 0.09875 | 0.05522
FSVAE 0.04041 | 0.02637 | 0.04017
DP-SVAE 0.03742 | 0.0091 | 0.02145
ESVAE 0.02235 | 0.02647 | 0.04804
DP-ESVAE 0.01616 | 0.0183 | 0.03218
FMNIST | ANN VAE 0.56577 | 0.56633 | 0.67048
DP-ANN VAE | 0.55478 | 0.5459 | 0.65103
FSVAE 0.04610 | 0.02714 | 0.05633
DP-SVAE 0.05312 | 0.02207 | 0.04435
ESVAE 0.04401 | 0.03733 | 0.07813
DP-ESVAE 0.02975 | 0.02096 | 0.04998
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5 Discussion

From ablation study (refer to Table 1, Table 2, Table 3, and Table 4), we decided
the optimal values for clip, €, and noise multiplier. Based on the behavior of differ-
ent spiking and non-spiking models under DP settings (refer to Table 5, Table 6,
and Table 7), we found FSVAE is overall more robust in terms of privacy-utility
trade-off. Therefore, we considered FSVAE and its differentially private variant
(DP-SVAE) for analysis on all four datasets in Table 8. From Table 3 and Table 4,
we observe that as we increase the value of the noise multiplier to get tighter
privacy bound, the performance of the DP models degrades. This behavior is not
strange but rather a consequence of the privacy utility trade-off. Though all the
datasets have shown a similar behavior of degraded performance with an increase
in noise, some datasets behave differently in terms of the addition of noise to
the gradients and different clip values. Therefore, we have used clip value 3 for
MNIST, FMNIST, and CIFARI10, whereas, for CelebA, we used clip value 5 as
clip value 3 for CelebA was giving absurd results (please refer to supplementary
for the values of CelebA on clip 3). This may be due to the complexity involved
in the CelebA dataset in terms of its size and lesser distinguishing features in
different celebrity faces compared to other datasets.

Table 8. Comparative Analysis of different methods at e=10, noise=0.001.

Dataset | Model Reconstruction Loss | | Inception Score | |FID | | AID |
MNIST |ANN VAE 0.048 5.947 112.5 |17.09
DP-ANN VAE | 0.076 5.146 158.71 | 46.89
FSVAE 0.031 6.209 97.06 | 35.54
DP-SVAE 0.057 5.288 155.14 | 55.33
CIFAR10 | ANN VAE 0.105 2.591 229.6 | 196.9
DP-ANN VAE | 0.129 1.975 303.33 | 244.03
FSVAE 0.066 2.945 175.5 |133.9
DP-SVAE 0.102 1.935 253.06 | 163.29
FMNIST | ANN VAE 0.05 4.252 123.7 |18.08
DP-ANN VAE | 0.072 4.343 216.14 | 39.76
FSVAE 0.031 4.551 90.12 | 15.75
DP-SVAE 0.061 4.384 210.76 | 43.95
CelebA | ANN VAE 0.059 3.231 92.53 | 156.9
DP-ANN VAE | 0.104 2.154 321.14 | 341.93
FSVAE 0.051 3.697 101.6 |112.9
DP-SVAE 0.083 2.67 249.84 | 291.79

Also, from Table 8, we can compare the behavior of models when the least
amount of noise is added. For example, the Reconstruction Loss, Inception Score,
FID, and AID for differentially private and non-differentially private models
show similar behavior for MNIST, FMNIST, and CIFAR10 datasets whereas,
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for CelebA dataset, we observed significant change in AID and FID by a factor
228.61 and 185.03 for DP-ANN VAE respectively and for DP-SVAE, the FID
and AID varies by a factor of 148.24 and 178.89 respectively. From Table 3 and
Table 4, we can observe that even the addition of small noise (i.e. 0.01) can cause
significant change in reconstruction loss with a maximum value of 0.265 (refer
Table 3) in case of CelebA (for DP-SVAE) and 0.159 (refer Table 4) in case of
CIFARI0 (for DP-ANN VAE). We have also provided the qualitative compar-
ison of different models (ANN VAE, DP-ANN VAE, FSVAE, and DP-SVAE)
in Fig. 3 for image reconstruction and generation, where we used differentially
private models with e=10 and noise = 0.001. From Table 6 and Table 7, we
observed that introducing a small noise level (0.001) enhanced the robustness
of spiking models against adversarial attacks. In contrast, this noise was insuf-
ficient to confer robustness to ANNs, as evidenced by the significant increase
in reconstruction loss under various attacks. However, DP models (DP-ANN;
DP-SVAE, and DP-ESVAE) demonstrated superior performance compared to
their non-DP counterparts under the influence of adversarial attacks (refer to
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ent datasets.
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Table 7). In general, we found that after introducing DP, DP-SVAE showed lesser
reconstruction loss and a higher Inception Score than DP-ANN VAE. Similarly,
DP-SVAE attains a small FID compared to DP-ANN VAE while making them
differentially private. Overall, DP-SVAE performed better than DP-ANN VAE,
which is consistent with their non-DP variants, but our study also highlights
that DP-SVAE is more affected in terms of privacy-utility trade-off comparing
DP-ANN VAE.

6 Conclusion and Future Scope

In this study, we introduced differentially private implementation of existing
SOTA spiking and non-spiking VAE models (DP-SVAE, DP-ESVAE, and DP-
ANN VAE), which, to the best of our knowledge, have not been previously
proposed. We comprehensively analyzed these models and evaluated their per-
formance using various benchmark datasets. Our study elucidates the privacy-
utility trade-off in spiking and non-spiking models. Additionally, we have demon-
strated the impact of adversarial attacks, underscoring the potential of differ-
ential privacy to enhance model robustness and mitigate the adverse effects
of input perturbations. Our results reveal that imposing stricter privacy con-
straints reduces model utility, with performance variations observed depend-
ing on the dataset and model. Notably, we observed a substantial performance
decrease in SNNs, even with minimal noise, likely attributed to their spike-driven
nature. This underscores the necessity for further research to explore optimized
optimization techniques for differentially private SNN models. We also suggest
investigating models that offer enhanced privacy and utility for future endeavors.
Additionally, including a broader range of real-world datasets could augment the
generalizability of our findings.
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Abstract. Automatically recognizing emotional intent using facial
expression has been a thoroughly investigated topic in the realm of com-
puter vision. Facial Expression Recognition (FER), being a supervised
learning task, relies heavily on substantially large data exemplifying var-
ious socio-cultural demographic attributes. Over the past decade, several
real-world in-the-wild FER datasets that have been proposed were col-
lected through crowd-sourcing or web-scraping. However, most of these
practically used datasets employ a manual annotation methodology for
labelling emotional intent, which inherently propagates individual demo-
graphic biases. Moreover, these datasets also lack an equitable represen-
tation of various socio-cultural demographic groups, thereby inducing
a class imbalance. Bias analysis and its mitigation have been investi-
gated across multiple domains and problem settings; however, in the
FER domain, this is a relatively lesser explored area. This work lever-
ages representation learning based on latent spaces to mitigate bias in
facial expression recognition systems, thereby enhancing a deep learning
model’s fairness and overall accuracy.

Keywords: Bias Mitigation - Facial Expression Recognition + Fairness

1 Introduction

Facial emotion recognition (FER) has been a deeply explored problem in the field
of machine learning and computer vision. In the past decade, numerous proposed
FER datasets have made it easier to approach facial expression recognition as a
supervised deep-learning task. Deep learning requires large and diverse datasets
for efficaciously modelling data distribution. However, such a supervised learning
strategy necessitates substantial training data that reflects a wide range of socio-
cultural demographic characteristics.

Over the past decade, various real-world, in-the-wild datasets have been pro-
posed using web-scraped/crowd-sourced images. A crucial drawback of employ-
ing such a data-driven method for expression recognition lies in its susceptibil-
ity to biases present in the datasets, particularly those that disproportionately
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affect specific demographic groups.[3,11]. Facial Emotion Recognition requires
human annotations for each image, which propagates the biases and prejudices
of the annotators. Moreover, most real-world in-the-wild datasets lack propor-
tionate representation of different demographic attributes such as race, age, and
gender. Another crucial factor contributing to bias in FER datasets is crowd-
sourced annotation. Each annotator possesses their own bias with respect to
understanding facial expressions in varied demographics. However, given the
enormous size of datasets, these biases are often assumed to be components of
random noise.|2,47].

In practice, however, people may harbour systematic and demographic biases,
especially when inadequately trained with proper demographic and psychological
knowledge; they may incorporate such biases into their annotations [6]. Bias is
defined as systematic mistakes that result in unjust outcomes during a decision-
making process. Within deep learning, this can originate from multiple factors,
such as data collection methodology, algorithm design, and biased human anno-
tation [7]. A deep learning model trained on such datasets would inherently
propagate bias, thus making it unfair. Fairness in the contex of deep learning
refers to the absence of bias or discrimination in deep learning systems; however,
achieving it can be difficult since deploying a real-world deep learning solution
can propogate biases that can emerge in such systems.

Annotation biases and imbalances in class distribution and demographic rep-
resentation within datasets amplify biases and undermine equal-odds fairness
across attributes like gender and ethnicity. This underscores the importance of
scrutinizing dataset bias and developing algorithms to mitigate its effects. When
examining age as a specific attribute, it becomes evident that younger individu-
als are more often depicted with positive emotions (e.g., happiness) [6], whereas
older adults are more frequently associated with negative emotions (e.g., sadness
and disgust). This reveals a bias in the models, which tend to perceive younger
individuals more positively, while older adults are more likely to be assigned
negative emotional predictions.

Bias analysis and its mitigation strategies have gained good traction among
researchers working in the facial analysis domain. However, in the FER domain,
this is a relatively less explored area [34,42]. This research work seeks to tackle
and diminish this bias, aiming to enhance fairness in deep learning models. The
key contributions of this research encompass:

— A novel latent alignment technique with an architecture that creates bet-
ter latent representations, mitigates bias, and increases accuracy for Facial
Emotion Recognition.

— A novel training technique and loss function that uses Variational Autoen-
coders and an adversarial discriminator with perceptual loss for bias mitiga-
tion and a CNN backbone for expression classification.

— Conducting extensive evaluation on two popular datasets (RAF-DB [26] and
CelebA|[28]) and multiple protected attributes in both separate and combined
techniques, mitigating bias towards gender, race, and age, setting new state-
of-the-art results and competitive performance.
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This paper is an expanded version of our Student Abstract published at AAAI-
24 [35], which, as far as we know, represents the first effort to explore the use of
latent space representation learning for mitigating biases in the facial expression
recognition domain. This paper provides more comprehensive experimentation
with an additional dataset (CelebA[28]), detailed results on the interplay between
different protected attributes, and better insights into our methodology and
training approach.

The remainder of this paper is structured as follows: Section 2 reviews
recent significant contributions in bias mitigation. Section3 outlines the adopted
methodology, detailing the training process, loss functions, and the classification
model used. Section 4 showcases our experimental results, including the evalu-
ation metrics and dataset analysis. Section 5 offers a component-wise ablation
study of the proposed architecture. Finally, Section 6 concludes the study and
suggests directions for future research.

2 Recent Works

Bias in Machine learning has attracted wider attention in recent years, with
the rapid growth in the deployment of real-world machine learning applications.
Extensive surveys|9,17,29,32| have been done to study bias and its mitigation
strategies. In this section, we discuss some of the notable methods for mitigating
biases. The literature [9] identifies three primary strategies for mitigating bias,
categorized as pre-processing, in-processing, and post-processing techniques.

Pre-processing techniques: In [4] an optimized pre-processing strategy was pre-
sented that modifies the data features and labels. Zemel et al. [43] proposed a
strategy for bias mitigation that involves learning fair data representations by
framing fairness as an optimization problem, where the goal is to find representa-
tions that accurately reflect the data while obfuscating any information regarding
membership in protected groups. Feldman et al. [14] proposed disparate impact
remover, where feature values were modified while preserving rank ordering to
improve overall fairness.

In-processing: Kamishima et al. proposed a prejudice remover mechanism [23]
that leverages a discrimination-aware regularization approach to the learning
objective that can be applied to any prediction algorithm with probabilistic
discriminative models. Zhang et al. [45] introduced a strategy for learning fair
representations by incorporating a variable representing the group of interest
while simultaneously training both a predictor and an adversary. The Meta Fair
Classifier [5] suggests a meta-algorithm for classification that integrates fairness
constraints into its input and produces an optimized classifier as output.

Post-processing: Reject option Classification [22] presents a discriminative aware
classification, which essentially aims at the prediction that carries a higher degree
of uncertainty and consequently allocates positive outcomes to underrepresented
groups and negative outcomes to more advantaged groups. The calibrated equal-
ized odds strategy [33] aims to optimize the output scores of a calibrated classifier
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by adjusting the probabilities to modify output labels, all while upholding the
goal of equalized odds.

Some other techniques to tackle dataset bias include transfer learning[31],
adversarial mitigation[39,46]|, and domain adaptation [36-38|. Various strategies
have been proposed to eliminate or prevent models from acquiring misleading
or unwanted correlations. A post-hoc correction technique [15] that imposes an
equality of odds constraint on previously learnt predictor. In the domain of deep
learning, two popular techniques are the tweaking of loss functions to impose
penalties on unfairness|1], and adversarial learning [20,30,45]. These techniques
aim to learn a fair representation that is devoid of any information related to
protected attributes.

Bias mitigation in Facial Affect Recognition: Bias mitigation in affect
recognition is a relatively less-explored area. With the exponential increase in
computing capabilities over the past decade, many datasets and algorithms have
been proposed for automatically recognizing facial expressions. However, most
of these in the wild real-world datasets are either web-scraped or crowd-sourced.
These datasets often have two major limitations [25]. Firstly, most datasets have
class imbalances; i.e. people with varied socio-cultural-ethnic identities are inad-
equately represented among various classes. Secondly, since these large numbers
of scraped images are manually labelled by a group of annotators, a personal
bias is inherently a part of the dataset.

Some of the existing works that have tackled bias and it’s mitigation in affect
recognition include a facial action unit calibrated FER approach [8], an attribute
aware and a disentangled method [42]. Zeng et al. [44] proposed a Meta-Face2Exp
architecture that utilized large unlabelled facial recognition datasets.

3 Methodology

We propose a two-part model for mitigating bias. Recognizing that CNNs tend
to learn from all input features, for the first part of the model we propose a
Variational Autoencoder (VAE) to encode the images into a latent space. The
images corresponding to each protected attribute in the dataset will each have
a corresponding latent space. Our goal is to minimize the distance between
these latent spaces so that each latent encodes only the information relevant to
expression classification. We propose to utilize a Variational Autoencoder with
shared weights for all protected attributes where the inter-latent domain gap is
reduced using an adversarial discriminator. We denote the Encoder part as E
and the Generator part as G. We introduce a two-part model to address bias
mitigation. We develop a two-phase model to address the mitigation of bias.
Given the propensity of CNN models to assimilate all input features, the first
part of our approach employs a Variational Autoencoder (VAE) which encodes
all images, each with a corresponding protected attribute, into the common
latent space. The goal is to minimise disparities between these latent spaces,
ensuring they contain information relevant to expression classification.
Summarising the methodology:
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Fig. 1. Framework of Attribute Disentanglement: L; denotes the data associated with
attribute qi. Zy, represents the latent space corresponding to L;. Er; is a variational
autoencoder (VAE) with weights shared across V i. ’E’ refers to the Encoder module
which compresses the input image into a latent which does not contain information
about the protected attribute. 'G; refers to the Generator, which is a reconstruction
module that converts the latent back to the original image.
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— The main cause of bias is that models tend to learn protected attributes as
features.

— Our model solves this by generating a latent that has forgotten the protected
attribute.

— This is done by overlapping the latent spaces of data points belonging to
different protected attributes; this overlap is done using the discriminator.

Attribute Disentanglement - We use a Variational Autoencoder with shared
weights across the designated protected attributes for that dataset, mitigating
domain disparities between latents through an adversarial discriminator. The
Encoder and Generator components are represented as ‘E’ and ‘G’ as demon-
strated in Fig. 1, where g; represents protected attributes ¢, such as gender.

Lyap(z) =KL (2 | 2) [N(0,1)) + LYAED ()

2 (1)
+a “Gf(y) - Gf(y)HF
Equation 1 denotes the objective function for the VAE. The first part of the
objective is KL-divergence penalizing the deviation of latent distributions from
a Gaussian Distribution. The second part of the objective is a discriminator
loss, which determines whether the discriminator correctly predicts the class of
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the protected attribute. The final part of the objective is a Style-Reconstruction
Loss [21].

Classification Model We pass the latent representation generated by E into
a classification module consisting of MBConv[18] blocks demonstrated in Fig. 2.

min max = Lyap(z) + L8 (z,) Vg 2)
Ex;,Gx; Dx, ’

Training Method The Encoder and Discriminator modules are trained
together using a min-max objective function (Equation 2), where the Discrimi-
nator employs a categorical cross-entropy loss. Following the VAE training, the
classification module is trained separately, utilizing a symmetric cross-entropy
loss to enhance robustness.

Training Configuration The training was performed on two NVIDIA Tesla
V100 GPUs, each with 32 GB of memory. A Stochastic Gradient Descent Opti-
mizer was utilized, configured with a learning rate of 0.0001 and a momentum of
0.9. The hyper-parameter « in Ly 4 from Equation 1 in the paper was deter-
mined to be 10 following a grid search.

RAF-DB [26] provides images resized to 128x128 pixels. We applied basic
augmentations to our dataset, including horizontal flips with a probability of
50% and random rotations by a maximum angle of 15°.

Loss Functions The proposed model introduces a novel loss function (Equation
1) that is composed of three distinct components.

The first component is the KL Divergence between the latent variables and
a sample from a Gaussian distribution with a mean of 0 and a variance of 1,
as described by [24]. This element is employed to create denser representations
in the latent space, which enhances accuracy and reduces bias, as demonstrated
later in Section 5.
The second component is the loss from the discriminator’s potential to predict
the protected attribute accurately. The Encoder’s goal is to be able to fool the
discriminator into not knowing the protected attribute. This is the main com-
ponent that aligns the latent spaces and ensures the Encoder does not learn the
protected attribute features.
The final component is the Style-Reconstruction Loss from [21], which is added
to ensure that the semantic emotion-level features are not lost on the Genera-
tor’s reconstruction of the image. This is used instead of a pixel-wise loss because
expression is a subjective concept, and a pixel-wise loss does not necessarily rep-
resent semantic consistency.

H; W,

1 2 J
Gq?(x)c.c’ = W ¢'(x)h,w,c¢'(-r)h,w,c/ (3)
! / CjHj J hX::le: =1 ’ ’
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Fig. 2. The classification backbone utilizes the latent representation produced by the
encoder to categorize the data into seven distinct emotions.

Equation 3 represents the Gram matrix of the j;, feature map for a network ¢,
where ¢;(x) corresponds to the activations of the j, layer in the network. The
overall loss is computed as the squared Frobenius norm between the input and
output feature matrices.

Classification Model: We have used 3 sequential MBConv [19] modules which
use the latent representation generated by the Latent Alignment VAE and clas-
sify it into the seven basic expressions. The MBConv block has been extensively
explored in many areas of deep learning and is a versatile and efficient building
block. We have also experimented with using Residual Blocks [16] and found
that they have a minor reduction in accuracy (described further in Section 5).

4 Experminenation, Results, and Analysis

4.1 Evaluation Metric

We formulate our metric for fairness as [42] and use the “equal odds” philosophy.

¢ 5 — —_ —_ .
]_-:min(zcglp(y—c|y—qu—QmX) (4)

S pi=cly=cq=dx)

Vi€ (1,2...N)
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In equation 4, "d" represents the protected attribute with the highest accu-
racy. To measure fairness, we compute the accuracy for each class across all
attributes and use the minimum value as our fairness metric. For comprehen-
sive analysis, we also calculate the average accuracy for each class across all
attributes, following the methodology described in [40].

4.2 Experiments and Analysis

We conducted experiments on the RAF-DB [26] and CelebA [28] datasets, fol-
lowing a methodology similar to that in [42]. The RAF-DB dataset comprises 7
classes annotated by humans. Our model utilizes the provided train-test split,
with 12,271 images for training and 3,068 images for testing. As shown in Tables
1 and 5, our model achieves state-of-the-art performance on RAF-DB for both
metrics, demonstrating significant bias mitigation.

Our methodology and setup is based on the hypothesis that protected
attributes can be forgotten without information loss of other facial attributes.
Ideally, a network would be able to perfectly distinguish attributes if these
attributes were completely separable from the rest of the informative features
of the image. However, since they are not, we hypothesize that if subsets of a
dataset partitioned on the basis of the protected attribute are aligned or brought
closer in a latent space, these attributes are considered to be forgotten.

To achieve this, we use a discriminator module to classify the latents into
their respective protected attributes. When this discriminator cannot determine
membership of a latent into a particular protected attribute subset, then fairness
can be achieved since the classification would be done solely on the basis of a
latent which does not contain information about the protected attribute.

Table 1. Comparison of class wise accuracies on RAF-DB.

Emotion ‘ Accuracy[%)]
‘Ours DA42]
Happiness 92.0 93.3
Angry 83.2 81.0
Disgusted 57.7 54.1
Fearful 60.2 53.8
Surprised 82.9 81.8
Sadness  76.0 77.7
Neutral 81.0 82.1
Mean 76.1 74.8

RAF-DB Bias Analysis. Most FER datasets do not have the respective age,
gender, and ethnic labels; therefore, to substantiate our results, we conducted
experiments on RAF-DB [26], one of the most popular benchmark FER datasets.
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Fig. 3. Data Distribution of the test test of RAF-DB. (a) represents the gender-wise
distribution, (b) represents the age group distribution, and (c) represents the ethnic
distribution of the test set of RAF-DB.

RAF-DB contains 15,339 images of diverse facial expressions downloaded
from the internet and annotated manually by crowd-sourcing and reliable esti-
mation; this dataset consists of seven basic expressions and eleven compound
expressions.

RAF-DB provides labels that include expression, gender type, ethnicity, and
age group. Fig. 3 showcases the attribute-wise breakdown of each label class in
the test data. Since the distribution of test and training data is kept similar, we
can draw few inferences from this distribution.

— Considering "race" as an attribute, we observe that almost 77% of the images
belong to a single class i.e. Caucasian, rest, 23% are then distributed among
two attributes, namely African-American and Asian.

— Similarly, for the age attribute, almost 57% of the images belong to one of
the five age brackets, namely {20-39}. The rest of the 43% of images are
distributed among the remaining four classes. Moreover, senior citizens from
the 70+ age bracket and infants from {0-3} age bracket are highly under-
represented, consisting of about 3% and 5% of the total images, respectively.

— Observing the expression attribute, we can infer that 39.7% of the total images
belong to one of the seven expression classes, i.e. happy; the rest of the six
classes are then distributed among the remaining six expressions. Moreover,
expressions like fear, disgust and surprise are highly under-represented, con-
sisting of about 2.7%, 5% and 10% of the total images, respectively.
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Table 2. Mean expression-wise accuracy categorized by Gender and Race attributes
on RAF-DB.

Attribute Labels Mean Class wise Accuracies
DA[42] Offline[10] Focal Loss[27] DDC|12] DIC|41] SS[13]  Owurs

Male 74.2 72.0 71.0 71.0 72.0 72.0 76.3
Female 74.4 75.0 75.0 74.0 75.0 76.0 76.0
Caucasian 75.6 74.0 73.0 72.0 74.0 74.0 76.15
African-American  76.6 76.0 75.0 73.0 76.0 75.0 771
Asian 70.4 76.0 75.0 74.0 77.0 76.0 75.5

Table 3. Mean class-wise accuracy segmented by Age, Gender, and Race attributes
on the RAF-DB dataset.

Attribute Labels Mean Class wise Accuracies

DA[42] Ours
0-3 80.2 82.4
4-19 69.9 72.3
20-39 76.4 77.0
40-69 74.4 75.7
70+ 62.2 70.1
M-Caucasian 74.5 76.0
M-African-American 80.2 81.1
M-Asian 70.2 73.4
F-Caucasian 75.5 76.2
F-African-American 87.6 81.1
F-Asian 69.0 71.7

Table 4. Comparison of bias mitigation performance (where higher values indicate
better outcomes) on RAF-DB, categorized by attribute labels.

Protected attributes Mitigation of Bias
DA[42| Offline[10] Focal Loss[27] DDC|12] DIC[41] SS[13] Ours

Gender 99.97 95.4 96.1 96.2 95.4 95.4  99.51
Race 91.9 974 97.2 97.6 96.5 97.5 942
Age 821 - - - - - 84.8

This further substantiates our claim and establishes the need to mitigate
bias in most FER datasets. The expression accuracy shown in Table 1 does
not sufficiently portray the performance variation of classifiers across different
demographics; therefore, in Table 2,3, we comprehensively compare accuracies
broken down by each demographic group. Furthermore, to substantiate the inter-
play of "gender" and "race" attributes we also provide results of joint "Gender-
Race" groups in Table 3.From Table2,3 it can be inferred, that our proposed
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method outperforms for mean class-wise accuracies broken down by attributes
"age", "gender", "race" and "gender-race". To provide a numerical assessment of
mitigation of bias for sensitive attributes such as age, gender, and race, in Table
4, we provide comparisons with [10,12,13,27,41,42| using our evaluation metric
for fairness (using Equation 4). From Table 4 we can infer that with regards
to bias mitigation, our approach performs almost at par with Xu et al. [42] for

"gender" attribute, whereas for "age" class it outperforms [42].

Table 5. Comparison of accuracy segmented by the smiling attribute in the CelebA
dataset.

Expression | Accuracy
DA [42] [42] Ours

Smiling 92.2 92.9
Not-Smiling 94.1 94.8
Mean 93.15 93.85

Table 6. Mean accuracy per class categorized by attributes on the CelebA dataset.

Attributes Mean Class-wise Accuracy
DA[42][42] Ours

Female 93.6 94.5

Male 91.9 93.4

Old 91.6 92.5

Young 93.6 94.3

Female-Old 92.7 93.3

Female-Young 93.8 94.9

Male-Old 90.7 92.1

Male-Young  92.8 93.7

CelebA Bias Analysis

We conduct experimentation for images in CelebA for the binary attribute of
"smiling". This is done to facilitate the expression recognition of happy. We use
the CelebA dataset since it is much larger as compared to RAF-DB with 39920
images in a subset of CelebA as compared to 12271 in all of RAF-DB. The
protected attributes we use for fairness are Gender and Age.

The Smiling/No Smiling attribute is evenly distributed with exactly 50%
of the images having the smiling attribute. The image distribution for Gender
and Age are not evenly distributed, with a 22.8% gap between the number of
Male and Female images, and a 51.4% gap between the number of Young and
Old images. The comparison of accuracies with "Smiling" vs "No Smiling" is
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shown in Table 5. Since this is a simple binary classification task, accuracies
are almost comparable. Table 6 provides comparable class-wise (i.e. "Smiling"
vs "No Smiling") accuracies broken down by attribute labels ("gender", "age",
and "Gender-Age"). Table 7 provides comparisons with [42] using our evaluation
metric for fairness (using Equation 4) on sensitive attributes.

Table 7. Comparison of bias mitigation (where higher values indicate better perfor-
mance) on CelebA, categorized by attribute labels.

Protected Attribute Bias Mitigated
DAJ[42][42] Ours

Gender 98.3 99.1
Age 98.1 98.9
Gender-Age 96.9 98.0

5 Ablation Study

We demonstrate the importance and effectiveness of each technical contribu-
tion through this ablation study on RAF-DB [26]. We first look at the impact
of using a Variational Autoencoder as compared to a standard Autoencoder or
other dimensional reduction techniques. We can see a significant drop in accu-
racy and a corresponding drop in bias mitigation when an Autoencoder is used
in place of a VAE. We believe this is due to the ability of VAEs to generate
denser representations due to the KL-Divergence loss from the Gaussian distri-
bution present in VAEs.

Table 8. Component-wise Ablation Study of our model.

Component Mean Accuracy Bias (Gender) Bias (Race)
VAE+MBConv-+Discriminator (Ours) 76.1 99.93 94.2
Auto Encoder+Discriminator+MBConv 74.2 97.6 91.2
VAE+Discriminator+ResBlock 74.5 99.91 93.8
VAE+MBConv 76 91.4 79.2
VAE+ResBlock 73 91 79.3

We further look at the impact of the Discriminator module on latent space
alignment and examine whether it increases fairness. From Table 8, we see that
there is a significant decrease in bias mitigation when the VAE is trained with-
out the min-max objective jointly with the discriminator. This demonstrates
that the Discriminator is highly impactful for latent space alignment and that
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the sensitive attributes are encoded in the latent without it.

We further analyze the impact of the CNN classifier backbone on accuracies.
We find that the MBConv block[18] performs superior as compared to ResBlock
[16]. In recent works, MBConv blocks have been known for their superior expres-
sive power in CNNs. MBConv outperforms ResBlocks given all other parameters
remain the same. However, this difference is minimal given that the largest con-
tributor to our model is the VAE+Discriminator architecture for latent align-
ment.

6 Conclusion

With the exponential increase of real-world artificial intelligence systems
deployed in our daily lives, accounting for fairness has become a crucial fac-
tor in the design and research of such systems. Al systems can be deployed
in various critical settings to make important life-changing decisions; hence,
ensuring that these decisions do not exhibit bias or discriminatory behaviour
against specific groups or demographics is of utmost importance. As a result,
bias mitigation investigation and its mitigating strategies have gained good trac-
tion among researchers. Recently, many works have proposed bias mitigation
strategies through traditional machine learning and deep learning in various
subdomains; however, this is a relatively less-explored area in facial expression
recognition. In this research, we present an innovative approach to reducing bias
in FER systems by integrating a Variational Autoencoder with an Adversar-
ial Discriminator, followed by a classification module utilizing MBConv. Our
method not only surpasses the results reported in [42] but also introduces a ver-
satile framework that can be adapted for other image classification tasks. To our
knowledge, this is the first work to leverage latent alignment for bias mitigation
in FER systems. We aim for our research to pave the way for more extensive
exploration of latent space manipulation in addressing bias across diverse image
classification challenges.
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Abstract. Although state-of-the-art transformer models have shown promising
results in unmanned aerial vehicle (UAV) tracking, they come with high computa-
tional demands. Existing tracking methods aim to reduce computational complex-
ity by controlling the number of tokens. However, this method is not effective for
all tracking methods. Therefore, we propose a novel dynamic token sampling for
an efficient UAV transformer tracking framework. Unlike previous transformer-
based tracking methods, our method avoids the need for complex head networks
like classification and regression. It solely employs our newly designed encoder,
comprising three key components: Dynamic Position Embedding, Dynamic Token
Sampler, and Convolutional Feed-Forward Network. This module enhances visual
representation by scoring and dynamically sampling tokens, allowing for a flexible
token count that adapts to target changes within each frame. We utilize a simple
image-sequence contrastive loss as the loss function. Our approach not only sim-
plifies the tracking framework, but also achieves state-of-the-art performance on
multiple challenging datasets at real-time run speeds.

Keywords: Unmanned Aerial Vehicle - Dynamic Token Sampling -
Image-sequence Contrastive Loss - Real-time Tracking

1 Introduction

Visual object tracking is one of the fundamental tasks in computer vision. It involves
tracking the position of a chosen object solely based on an initial frame, across subse-
quent frames. Due to its extensive application in the field of unmanned aerial vehicles
(UAV) [1], such as aerial cinematography, collision warning, and visual localization, it
has attracted widespread attention. Recently, prevalent tracking methods mostly employ
a divide-and-conquer strategy, breaking down the tracking problem into multiple sub-
problems, such as feature extraction and relation modeling. These sub-problems are
handled by specific networks. The mainstream methods primarily address the issue
through a two-stage and two-stream pipeline [2]. Here, two-stage refers to decompos-
ing the tracking process into two stages: feature extraction and relationship modeling.
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Two-stream involves processing search images and template images separately. These
divide-and-conquer strategies have proven to achieve significant performance in tracking
benchmarks, consequently becoming the design of the current mainstream models.

(a) (b) (©) (d)

s Qur CSwinTT

Fig. 1. Visualization of Early Attention Maps for Different Methods.

However, recent research has identified shortcomings in feature extraction and rela-
tion modeling. Firstly, based on the Transformer method, extracting shallow features
results in high redundancy. As depicted in Fig. 1(c), shallow attention focuses more on
adjacent tokens given an anchor token, paying less attention to distant tokens. Conse-
quently, global comparisons between tokens in subsequent processes lead to increased
computational complexity in capturing local correlations. To address this issue, GRM
[3] proposed an adaptive token that offers more flexible modeling capabilities, reducing
attention on local regions. As shown in Fig. 1(b), GRM moderately reduces redun-
dancy in local attention, focusing on only a few surrounding tokens. Then, CSwinTT [4]
performs feature extraction without prior knowledge of the object. Specifically, image
feature extraction is determined post off-line training, resulting in weak interactions
between the template and search region. Finally, despite the outstanding expressive
capabilities of the transformer, it suffers from the drawback of high computational costs.
The computational cost is quadratically related to the number of tokens used. Hence,
an essential need exists to effectively reduce the number of tokens to lower computa-
tional expenses. OSTrack [31] proposed a candidate elimination module that retains the
top-k corresponding candidate weights, reducing computational costs. However, a fixed
approach undoubtedly leads to the loss of useful information.

To address these issues, we propose a new dynamic token sampling for efficient
UAV transformer tracking framework (DDCTrack), as illustrated in Fig. 3. The moti-
vation behind our approach lies in the observation that the contribution of information
from the object and search region to the final tracking varies significantly, containing
a considerable amount of redundant and irrelevant data. The tracked object determines
the quantity of relevant information. As shown in Fig. 5, it is clear that only a specific
number of markers are required to achieve accurate target tracking, and that this number
varies at each stage. Therefore, we introduce a method capable of dynamically selecting
the minimum required tokens according to the object at different stages. This approach
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is entirely different from EViT [5], which specifies the selection of tokens based on a
fixed ratio during training. Such a static approach risks losing critical information, par-
ticularly in challenging tracking datasets. It can also lead to unnecessary token wastage
in simpler tracking scenarios, increasing computational costs. We reduce unnecessary
waste by dynamically adjusting the number of tokens. Additionally, to enhance inter-
action between information, the flattened template and search region can be directly
concatenated, boosting target discrimination. This direct connection between the tem-
plate and search region facilitates highly parallelized tracking, eliminating the need for
additional networks for feature extraction, striking a favorable balance between speed
and performance.

Moreover, our model not only takes images as inputs but also transforms four super-
vised values into discrete tokens. By introducing the proposed DDC encoder, which
combines vision and coordinates, it enhances the visual representation. Training is con-
ducted on contrastive loss using image-sequence pairs, eliminating the need for further
fine-tuning. Despite our framework’s simplicity, the proposed tracking performance
demonstrates impressive results, reaching new SOTA levels across multiple datasets.
Compared to other transformer-based trackers, we maintain superior inference efficiency
and faster convergence. It is worth noting that existing methods heavily rely on intri-
cately designed head networks or complex loss functions. However, our tracker utilizes
only two encoder structures with a simple loss function. DDCTrack achieves a favorable
balance between speed and accuracy, as depicted in Fig. 8.

In summary, our work primarily involves the following contributions:

(1) Wehave designed anovel UAV tracking framework that introduces a new perspective
to tracking by utilizing sequences as supervision.

(2) We proposed a new DDC module comprising three crucial components: Dynamic
Position Embedding (DPE), Dynamic Token Sampler (DTS), and Convolutional
Feed-Forward Network (ConvFFN). Specifically designed for shallow features,
it effectively learns global representations. Moreover, it dynamically adjusts the
number of tokens and is a differentiable parameter-free module.

(3) Through comprehensive experiments across multiple datasets, we validated that
our proposed approach exhibits superiority in terms of inference speed, tracking
performance, and convergence speed when compared to existing methods.

2 Related Work

2.1 Vision Transformers

As transformer models achieved remarkable success in natural language processing [6],
ViT introduced transformer architecture into computer vision, resulting in groundbreak-
ing achievements. Leveraging its advantage in modeling long-range dependencies, many
researchers have started focusing on designing visual transformers. Various approaches,
such as self-attention variants, novel hierarchical architectures, and positional encodings,
have been applied to visual tasks [7]. However, computations based on transformer archi-
tectures are often determined by the number of tokens, inevitably leading to increased
computational costs. Consequently, several effective self-attention mechanisms have
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been introduced to alleviate these computational burdens. For instance, PVT [8] intro-
duced a pyramid architecture with downsampling key and value tokens. Reformer [9]
employed hashing functions to allocate tokens into buckets and applied dense attention
within each bucket. Orthogonal Transformer [10] computed an orthogonal space to rep-
resent global and local features. ACT [11] and TCFormer [12] treated merged tokens as
queries and the original tokens as keys and values, aiming to reduce computational costs.
In contrast to these methods, our proposed DDC utilizes soft associations to establish
sparse mappings between tokens and super tokens, employing self-attention in the super
token space.

2.2 Visual Tracking

(a) Two-Stream Pipeline (b) Two-Stage Pipeline (¢) Our Pipeline (DDCTrack)

Fig. 2. Three different tracking pipeline.

As depicted in Fig. 2, the two-stream pipeline [13] involves using a transformer model
to extract features from both the template and the search region. The two-stage pipeline
sequentially divides the process into two steps: feature extraction and relation modeling.
Based on the above differences, our method is compared with the above different struc-
tural prototypes. Earlier methods and some transformer-based tracking methods belong
to the category shown in Fig. 2(a). These techniques extract features from the template
and search regions separately using a backbone. However, they lack the ability to adjust
template features based on the search region and struggle with effective relationship mod-
eling. Therefore, the two-stage approach was introduced, incorporating feature extrac-
tion and relation modeling (for example, siamese utilizing cross-correlation operations
and transformer self-attention mechanism). This led to a relatively complex relationship
module, as shown in Fig. 2(b). STARK [14] concatenated the search region with pre-
extracted template features and fed them into multiple self-attention layers. TransT [15]
stacked a series of self-attention and cross-attention layers for feature fusion. While the
two-stream structure improves performance, it inevitably sacrifices speed. In contrast,
our structure is different, as depicted in Fig. 2(c). Firstly, it combines template features
and the search region as input into a transformer model and then integrates the object’s
coordinate position into a single framework. Our pipeline efficiently provides features
and relationship modeling at a lower cost, guiding each other to generate the final object
position efficiently in both training and testing phases.
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2.3 Sequence Learning with Text Supervision

Through large-scale image-text pairs datasets, representation learning with text-
supervised methods [16] has been applied to various visual tasks, such as object detec-
tion and segmentation. Moreover, in cross-modality domains, sequence learning has been
integrated. For instance, Flamingo and DALL-E [17] have adopted sequence-to-sequence
learning to unify multi-modality tasks.

Referring to PixSeq, our sequence learning shares similarities. Both methods lever-
age sequence generation to address visual tasks and discretize continuous values of
bounding box coordinates into integers. However, there are differences compared to
Pix2Seq. Firstly, the representation of sequences differs. Pix2Seq expresses sequences
through object corner coordinates and categories, whereas we utilize center point coordi-
nates, width, and height for representation. Secondly, the methodologies differ. Pix2Seq
utilizes ResNet and encoder-decoder transformer. In contrast, our method is simpler, rely-
ing solely on our proposed DDC encoder. Thirdly, the task objectives vary. Pix2Seq is
designed for object detection, while our objective is tracking. Furthermore, our method is
end-to-end, allowing seamless integration of earlier tracking designs like online template
updates into our tracking approach.
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Fig. 3. Architecture of the proposed DDCTrack. The key component is an DDC encoder, which
consists of DPE, DTS, and ConvFFN, respectively.

In this section, we propose the DDCTrack architecture for UAV tracking with sequence
supervision, as depicted in Fig. 3. Initially, we introduce the sequence encoder. Sub-
sequently, we provide a detailed description of the proposed DDC encoder module.
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Finally, we introduce the image-sequence contrastive loss and integrating online update
techniques.

3.1 Sequence Encoder

We first convert the object bounding box into a sequence of discrete tokens. Typically,
a bounding box is determined by its center position (x, y), width, and height (w, h).
There are various representations for expressing the bounding box, such as [w, &, x, y, ]
and [x, y, w, h]. From an intuitive standpoint, [x, y, w, k] aligns more with human prior
knowledge, implying the prioritization of locating the object position before estimating
its width and height. We normalize these continuous coordinates into integers between
[1, npins]. The integers between [1, np;,s] are considered as a word within V. Experimen-
tal findings indicate higher precision when np;,, is set to 3500 (detailed in Sect. 4.3).
Each word in V has a corresponding learnable embedding, which is optimized during
training. In the final stage of the DDCTrack model, we compute the contrastive loss for
image-sequence pairs using formula Sground.

3.2 DDC Encoder

The image encoder is a transformer-based architecture designed by us to represent visual
features. Firstly, a linear projection converts search image patches and template image
patches into visual embeddings, and these visual embeddings are then fed into trans-
former layers and concatenated together. Subsequently, they pass through DDC blocks
for representation extraction. Finally, average pooling is applied to the output to obtain
the global representation of the object.

The DDC Block consists of three components: DPE, DTS, and ConvFFN.

X = DPE(X;,) + Xin (D
Y =DTSUNX)) +X 2)
Z = ConvFFN(BN(Y)) + Y 3)

Dynamic Position Embedding. We dynamically incorporate position information into
all tokens using DPE (Eq. 1) to effectively leverage the spatiotemporal order of tokens
for object modeling. In contrast to convolutional position embedding, relative positional
encoding, and absolute position encoding [18], DPE overcomes permutation invariance
and is resolution-agnostic. This is due to its shared convolutional parameters, locality, and
zero padding, aiding tokens along the object boundaries to discover their absolute posi-
tion. Consequently, all tokens can encode their absolute spatiotemporal position merely
by querying their neighbors. Our DTS efficiently explores and utilizes long-range depen-
dency relationships to extract contextual representations. A detailed description of DTS
will be provided in the subsection below. Furthermore, ConvFFN enhances local feature
representation, comprising a 3 x 3 depth-wise convolution, a non-linear function (such
as GELU), and two 1 x 1 convolutions. It is noteworthy that both ConvFFN and DPE
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utilize depthwise convolutions to reinforce the learning capacity of local features. Mean-
while, DTS effectively employs long-range dependencies to extract global contextual
features. Therefore, the combined utilization of these three components significantly
improves our model’s ability to capture both local and global dependencies.

Dynamic Token Sampler. Due to the computation in transformers being determined by
the number of tokens, many SOTA vision transformers are computationally expensive,
and the number of tokens remains static at each stage. Convolutional neural networks
typically reduce parameter counts through various pooling operations to mitigate compu-
tational expenses. This often leads to a direct reduction in spatial or temporal resolution
within the network. However, applying such fixed-kernel pooling operations directly to
vision transformers is not straightforward. The reason being, tokens are permutation-
invariant, and employing fixed downsampling operations is not an optimal choice. On
one hand, fixed downsampling may cause the loss of crucial information for the target in
certain video frames. On the other hand, it results in many irrelevant features for object
tracking. Therefore, we propose a DTS capable of dynamically adjusting the number
of tokens in each stage of the transformer. This overcomes the issue of losing critical
information for the target while reducing computational resources.

Dynamic Token Score

A = Softmax(QK’ /d)
A e R

Score of Token j:s,=A, x|V

(N+Dx(N+1)
Inverse Transform Sampling

Inverse Transform Sampling

Scores

Sample unique K’ tokens[w& B
and refine A to get A®
K'sK<N

Input Tokens Input Tokens

O
O i

0 —
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Fig. 4. Flow of the DTS Module.

DTS is a parameter-free differentiable module that samples tokens containing crucial
information based on the input tokens, as depicted in Fig. 4. In the DTS module, token
scores are calculated using token scoring for each token, and then a subset of these tokens
is sampled based on these scores.

Token Scoring. Given the input token X € RV*TDx4 there is a self-attention layer
with N + 1 tokens. The ViT first connects the classification token to the input token,
and then processes it through the model. Finally, the output tokens corresponding to
the last transformer block are fed to the classification head to obtain the classification
probabilities. Our goal is to reduce the output tokens O € REK+Dxd dynamically
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adjusting based on the input image (where K’ represents the number of sampled tokens),
while meeting K’ < K < N, where K is the parameter for the maximum sampled
quantity. The quantity of sampled tokens K’ varies based on different stages of the
network and data variations, as illustrated in Fig. 5. The scoring criterion for each token
is as follows.
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Fig. 5. Visualization of Dynamic Token Sampling Process.

In the standard self-attention layer, the queries Q € RMN+Dxd 3h9 key K € RN+Dxd
and values V € RIN*TD*d are calculated by input tokens X € RVTD*4 regpectively.
The queries and keys undergo a dot product operation to obtain the attention matrix A4,
which is scaled down by a factor of v/d.

A = Soft max(QKZ /v/d) 4)

Then, the output tokens are computed by a combination of the values weighted by
the attention weights.

O =AY (5)

where each row of A contains the attention weights for each output token, indicating the
contribution of input tokens to the output tokens. The A; . contains the classification
token, where A, ; represents the input tokens and j denotes the importance for the output
classification token. Therefore, we filter the attention matrix .4 by using A 2, ...,1, N+1 as
significance scores, as specifically described in Fig. 4. Here, to preserve the classification
token, we did not utilize A; ;. In Eq. 5, it can be observed that the output tokens
O are determined by both A and V), thus introducing the norm of Vj to calculate the
significance score for the j—th token. The reason is that the smaller the norm, the lesser the
impact, indicating the corresponding token is less significant. The ablation experiments
demonstrated that the norms of the .4 ; and V}; contribute to improving the tracking
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results. The calculation method for the significance score of token j is as follows.
__ Sux |
Yo Avj < [V

where i,j € { 2...N }. For multi-head attention layers, the scores for each head are
computed, followed by an addition of these head scores.
Token Sampling. According to Eq. 6, to compute the significance scores of all tokens,
we can select the corresponding rows through the attention matrix A. A straightforward
method is to choose the top K tokens with higher scores. However, from the experiments
(detailed in Sect. 4.3), it can be concluded that this method is not optimal and does not
dynamically select the top K tokens. We analyze the reason, which could be due to
directly discarding tokens with lower scores, resulting in the potential loss of useful
information. Particularly, in cases where the discriminative capability is weak, some
information might not be extracted. For instance, in the early stages, the softmax function
might cause a reduction in attention weights for multiple tokens with similar keys.
Therefore, it is possible to sample tokens based on their significance scores, where the
probability of sampling one among similar tokens is proportional to their summed scores.
During the sampling stage, inverse transform sampling is used based on the tokens’
significance scores. These scores are normalized, hence they can be interpreted as prob-
abilities. The cumulative distribution function (CDF) is computed as follows, starting
from the second token as with token scoring. Once the cumulative distribution function
is available, the inverse operation of the CDF is applied to obtain the sampling function.

S (6)

W(k) = CDF~ (k) (7

Jj=i
CDF; =S, (8)
j=2

where k € [0, 1]. It can be concluded that significance scores can calculate the map
function between original tokens and sampled tokens. We can sample K times from the
uniform distribution U [0, 1][0, 1] to obtain K samples. Such randomization may be
desirable in some areas, but deterministic inference takes precedence in most cases. As
a consequence, a fixed sampling approach of k = {%, % ceeh %} is chosen for
both training and inference. Due to W(-) €, the indices of the nearest significant scores’
tokens are taken as sampling indices.

When a token is sampled multiple times, it only needs to be retained once. Therefore,
the quantity of unique indices K’ is far less than K. From Fig. 5, it can be observed that
in the earlier stages, more tokens are selected, indicating lower feature discrimination
ability and more balanced attention weights. However, in later stages, the situation is
reversed. The number and position of tokens also vary depending on different images.
When the background containing the object is relatively clean, only a few tokens are
sampled. Conversely, in cluttered backgrounds, more tokens are required. This validates
the significance of our proposed dynamic token sampling method.

The indices of sampled tokens can be used to correct the attention matrix A €
RN+Dx(N+1) by selecting the rows corresponding to the sampled K’ + 1 tokens..AS €
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RE+DxN+D genotes the corrected attention matrix. Replace A in Eq. 5 with A% to
obtain output tokens @ € RE+Dxd,

O =A% )

3.3 Learning from Image-Sequence Pairs

To effectively train the DDCTrack model, we employ an image-sequence pairs
contrastive loss between image-sequence pairs, described as follows.
Image-Sequence Contrastive Loss. To better learn visual representation through
sequence supervision, we train the image-sequence contrastive loss using a dual-encoder
model. Initially, the DDC encoder acts as the image encoder, generating visual fea-
tures, while BERT functions as the sequence encoder, generating sequences. Both the
image and sequence pairs are input into their respective encoders, projected into a com-
mon embedding space, and their similarity measures are computed. Subsequently, the
successfully matched image-sequence pairs are considered as positive pairs, while the
unsuccessful pairs are regarded as negative pairs. Finally, we pull positive pairs closer
together and push unmatched negative pairs farther away.

In our approach, we calculate alignment scores Sgoung between the image and
sequence.

O = Enci(Img), P = Ency(Coordinate), Sgrpund = opPT (10)

where P € RM*4 represents the sequence embedding from the text encoder, acting
similarly to the weight matrix in self-attention mechanisms.

4 Experiments

4.1 Implementation Details

Model. We used DeiT-S [19] + DDC as the visual encoder for DDCTrack-B256 and
B384, and DeiT-B + DDC as the visual encoder architecture for DDCTrack-S256 and
B384. The sequence encoder employed BERT [20]. Pre-training utilized ImageNet for
initializing visual encoder parameters, with patch sizes set at 16 x 16. It is worth noting
that cropping operations were not used to prevent disrupting the alignment of image and
sequence signals. The vocabulary size and the quantization np;,; quantity are both set to
3500. The encoder has 8 attention heads, a hidden size of 256, and the Feed Forward
Network has a hidden size of 1024. The word embedding dimension is the same as the
decoder’s hidden size.

Training. Our training data consist of Youtube-BB, GOT-10K, COCO, and ImageNet
VID. We trained the model using the AdamW [21] optimizer and set the learning rate
and weight decay for both visual and sequence encoders to 10~*. The model was trained
for 500 epochs with a warm-up strategy, with each epoch containing 60k image pairs.
After 400 epochs, the learning rate was reduced by a factor of 10.
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Fig. 6. Overall performance of all trackers on four well-known aerial tracking benchmarks.

4.2 Comparison with State-of-the-Art Trackers

For a comprehensive analysis, a comparative evaluation of DDCTrack and a number of
SOTA trackers [22-34] was conducted on our authoritatively challenging public UAV
dataset.

UAV123. The dataset consists of a large-scale UAV tracking benchmark comprising 123
high-quality challenging sequences, totaling over 112,000 frames. As shown in Fig. 6(a),
our tracker outperforms other algorithms in both precision and success metrics. On
precision, our tracker ranks first, surpassing the second-ranked SeqTrack (by 4.2 points)
and the third-ranked VPMMT (by 4.8 points). On the success metric, DDCTrack exhibits
improvement over the second-ranked SeqTrack (by 0.4 points), claiming the top position.
VisDrone. For VisDrone, it is an extensive dataset comprising over 20,000 images and
more than 6 million annotated bounding boxes. As depicted in Fig. 6(b), our tracker
achieves a precision higher by 1.5 points compared to the second-ranked JVGTNLS.
Additionally, the success score slightly surpasses the VPMMT method by 0.1 points.
UAV20L. UAV20L consists of 20 long-term tracking sequences, totaling over 58,000
frames, with an average of approximately 2,934 frames per sequence. As illustrated in
Fig. 6(c), our DDCTrack demonstrates superior performance compared to other SOTA
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methods, underscoring the effectiveness of our proposed tracking framework. For exam-
ple, in terms of accuracy, our method outperforms the second ranked SeqTrack and third
ranked GRM by 3.5 and 9.8 points, respectively. Similarly, in terms of success rate,
DDCTrack achieves the best results, followed by SeqTrack and OSTrack, surpassing
them by 0.6 and 1.1 points, respectively. These excellent experimental results validate
that our tracker can be a top choice for long-term aerial tracking scenarios.

DTB70. Compared to the previous two datasets, the DTB70 dataset comprises a consid-
erable number of scenes with fast motion, encompassing 70 challenging UAV sequences.
As depicted in Fig. 6(d), DDCTrack achieves the best performance in both precision and
success metrics. SeqTrack follows as the second-best performer, followed by JVGTNLS.
Our method not only enhances precision but also improves speed. The primary reason
is that our proposed approach efficiently samples critical tokens dynamically.

4.3 Ablation Study

In this section, we demonstrate the effectiveness of the proposed method from various
perspectives. The experiments follow the one-pass evaluation (Precision and Success),
using DDCTrack-S256 as the baseline model.

Table 1. Ablation Study on UAV 123 and DTB70.

# Method UAV123 DTB70
1 Baseline 68.6 66.4
2 Joint — Separate 61.1 59.8
3 [x, y,w, h] = [w, h, x, y] 67.3 65.7
4 [x, ¥, w, h] = [x5, X0, Vit Vil 67.5 65.9
5 Concat of Search-Template 68.7 66.5
6 Avg. Of Search-Template 68.5 66.4
7 + Integrating Online Update 71.8 70.9
8 + Temporal 72.1 73.6

Joint v.s. Separate. The input to the image DDC encoder commonly employs two
different approaches. One involves feeding both the template and search regions into
the encoder jointly, extracting features together in a unified manner. Another approach
is to refer to the Siamese method and extract the features of the template and search
area separately, as shown in Table 1 (2). Experimental results on both datasets indicate
a performance drop when features are extracted separately compared to the joint fea-
ture extraction method. We hypothesize that the joint method enables the encoder to
effectively learn the complex correspondences between template and search images.

The Encoder’s Inputs Differ. We conducted a comparative analysis of different inputs
for the sequence encoder, as shown in Table 1 (3 and 4). One approach is [w, A, x, y],
where the decoder initially generates the width and height [w, h] of the target and
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subsequently produces the center position [x, y] of the target. Another approach is
%1, X5, Yies Yrb), TEprEesenting the top-left coordinate [xj, y;;] of the target and the
bottom-right coordinate [x,3, y;5] of the target. Through experiments, it was found that
[x, y, w, h] obtained better experimental results. In addition, as shown in Table 1 (5 and
6), we compared it with two other groups of experiments: the search image and the tem-
plate image were concat and averaged, respectively. For Table 1 (5), all image features
are fed directly into the DDC encoder. For Table 1 (6), the first step involves projecting
them into a 1D embedding, followed by feeding them into the DDC encoder. From the
experimental results, it can be observed that these two methods yield similar tracking
performance.

Integrating Online Update. Our approach utilizes dynamic templates to capture the
feature variations of the target object and select reliable templates. As shown in Table 1
(7), our method has improved tracking performance.

Temporal Sequence. We conducted an additional set of experiments showing the seam-
less integration of temporal information within our proposed framework. For instance,
we constructed a time series that included the target’s coordinate positions in the previ-
ous 5 frames. We appended this time series before the START token. When generating
the next new token, the historical frame coordinates were incorporated. Through this
procedure, our method was capable of observing the target’s previous motion trajec-
tory. Experimental results demonstrate that this integration approach enhances tracking
performance across multiple datasets, as depicted in Table 1 (8).

Precision
= e =
Y 3 =

°

(——@— VisDrone|
UAV20L | 4

L s L L s L 1 L
0 500 1000 1500 2000 2500 3000 3500 4000

Quantization Bins

=

Fig. 7. Influence of the number of quantization bins.

The Number of n;,;. Additionally, we discussed the impact of the quantity of np;,;s
on the tracking, as shown in Fig. 7. What we analyzed is that the quantization error is
reduced accordingly. As np;,s exceeds 3500, the performance gradually stabilizes, so we
set it to 3500.

4.4 Real-Time Analysis

Results on UAV20L and DTB70. As shown in Fig. 8, our tracker is compared with
various SOTA tracking methods on the x-axis (FPS) and y-axis (Precision). DDC-
Track demonstrates significantly superior performance in both speed and precision,
outperforming several methods in terms of speed as well.



142

G.Duetal.

Precision VS FPS on UAV20L

Precision VS FPS on DTB70

0.84

* Our
081 119 FPS — 3 0.81 114 FPS v_> * A MvCL
0.78) m 0.78] MMFNet
g g 4 ® MAT
= =1
= 05 v 5 078 <« OSTrack
g on 20m2 B LSAR
= ® £ . * %"/ GAT
A 0.69 L | PY A 0.69 'Y - i:‘“ ,}
& V¥ FBAC
0.66 0.66) [ ] @ SiamRPN
0.63 0.63 ATOM
45 60 75 % 105 120 30 5 60 75 [ 105 120
FPS FPS
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4.5 Attribute-Based Comparison
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Fig. 9. The experimental results obtained on UAV in terms of overlap AUC with different
challenging visual attributes.

As shown in Fig. 9, the experimental results demonstrate that DDCTrack outperforms
current methods like GRM and ViPT when faced with these challenges. This is mainly
attributed to our explicitly designed DDC module, which effectively learns global rep-
resentations while dynamically adjusting the number of tokens. Additionally, our newly
devised framework eliminates complex head networks, enhancing tracking performance
in dealing with appearance variations.

5 Conclusion

Designing a simple, clean, and high-performance model for UAV tracking is a challeng-
ing task. In this work, we propose a novel dynamic token sampling for an efficient UAV
transformer tracking framework, which addresses to some extent the drawbacks of the
two-stream and two-stage models, such as complex head networks. Subsequently, based
on the proposed DDC module, the framework dynamically selects tokens of significant
information, allowing for the use of only the necessary tokens for each input video.
This process discards some unnecessary tokens, significantly improving tracking speed.
Experiments and analysis demonstrate the ability to achieve a good balance between
performance and inference speed.
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Abstract. Recognizing human actions in real-time presents a fundamental chal-
lenge, particularly when humans interact with other humans or objects in a shared
space. Such systems must be able to recognize and assess real-world human
actions from different angles and viewpoints. Consequently, a substantial vol-
ume of multi-dimensional human action training data is essential to enable data-
driven algorithms to operate effectively in real-world scenarios. This paper intro-
duces the Action Clip dataset, which provides a comprehensive 360-degree view
of human actions, capturing rich features from multiple angles. Additionally, we
describe the design and implementation of Human Action Prediction via Pose
Kinematics (HAPTICS), a comprehensive pipeline for real-time human pose esti-
mation and action recognition, all achievable with standard monocular camera
sensors. HAPTICS utilizes a skeleton modality by transforming initially noisy
human pose kinematic structures into skeletal features, such as body velocity,
joint velocity, joint angles, and limb lengths derived from joint positions, fol-
lowed by a classification layer. We have implemented and evaluated HAPTICS
using four different datasets, demonstrating competitive state-of-the-art perfor-
mance in pose-based action recognition and real-time performance at 30 frames
per second on a live camera. The code and dataset are available at: https://github.
com/RaiseLab/HAPtics

1 Introduction

Understanding human actions and behavior in a human-like manner presents a signifi-
cant challenge for autonomous systems, robots, and their interactions with humans. In
the context of self-driving cars and robots operating in urban environments [4][31], a
future is envisioned where autonomous systems and humans coexist in shared public
spaces. However, accurately inferring and predicting human actions in real-time using
various sensor technologies remains a formidable task.

There are two primary challenges in human action recognition: (i) meeting real-
time performance requirements, and (ii) acquiring suitable real-world training datasets.
In scenarios where autonomous systems must engage with individuals, they require
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Fig. 1. Action features obtained from a group of three frames f using pose kinematics mechanism
denoted in colors, i.e., body velocity Vyoqy (red), joint velocity Vjoins (green), joint angles Jongie
(blue), and length of limbs L;;ms (violet) from joint positions. (Color figure online)

precise information about the specific actions people are undertaking in their immediate
surroundings. This is especially critical in direct interactions with humans [10]. Given
the highly dynamic nature of human actions, predicting them accurately and in real-time
is paramount.

In addition to the runtime requirements of algorithms, data-driven approaches
necessitate vast volumes of real-world training data. Data acquisition often emerges
as a significant challenge in developing these algorithms, making the availability of
ample data a critical aspect of algorithm design. Given the domain shift from heav-
ily annotated visual data to real-world, synchronous, unlabeled data, pose-based action
recognition algorithms must operate without direct reliance on visual annotations. Moti-
vated by this, we recognized the substantial potential of leveraging real-time data with
a 360-degree view of human actions for training our action recognition algorithms.
Our objective is to facilitate the training of such algorithms using live real-world data,
thereby overcoming domain transfer hurdles. This approach promises to significantly
reduce the manual effort typically associated with recorded and annotated sensor data.

Several proposals for human action recognition [49] [47] [40] [S0] acknowledge the
challenges of real-time execution and real-world datasets and aim to develop datasets
and efficient inference models. Recent studies suggest that skeletal-based action recog-
nition [23] [49] [47], combined with CNN-based models [22] [26], and efficient net-
works [40] [50], can meet the latency requirements for training and inference in human
action recognition. However, existing proposals suffer from either high computational
complexity [23] [49] [47], notably inferior performance [40] [50], or sensitivity to vari-
ations in viewpoint [22] [26], rendering them impractical.

In this paper, we adopt a skeleton-based modality and present HAPTICS, a real-
time human action predictor capable of capturing a 360-degree view of human actions
in real-world settings. It performs real-time human pose estimation and action recogni-
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tion using only a standard monocular camera. Specifically, building on a human pose
extractor [5], HAPTICS maintains the receptive field while reducing computation and
convolutional operations by replacing each 7 x 7 convolutional kernel with three con-
secutive 3 x 3 kernels. Additionally, the output of each of the three convolutional ker-
nels is concatenated. The number of non-linearity layers is tripled, allowing the network
to retain both lower and higher-level features. Finally, Part Affinity Fields (PAF) [5] are
utilized to predict keypoint confidence maps and bipartite graph matching [44] is used
to assemble the connections that share the same part detection candidates into full-
body poses. Once the full-body pose task is performed, preprocessing operations are
conducted to verify the actual kinematic structure of the human pose. Extensive skele-
tal feature extraction follows, including body velocity, joint velocity, joint angles, and
limb lengths derived from joint positions to classify various human actions, as shown
in Fig. 1.

We evaluated the HAPTICS system using four different action recognition bench-
marks, including our proposed Action Clip dataset, NW-UCLA [41], NTU RGB+D 60
[35], and NTU RGB+D 120 [25]. To the best of our knowledge, HAPTICS is the first
real-time model with reliable performance for the task of human pose estimation and
action recognition, running at 30 frames per second (fps) on a live webcam using a
single TITAN RTX. This paper makes the following contributions:

— Development of the Action Clip dataset, providing a 360° view of human actions to
enhance the classifier’s ability to understand human action behaviors from various
angles.

— Implementation of HAPTICS, a simple yet effective end-to-end pipeline with basic
preprocessing and extensive skeletal feature extraction techniques.

— In-depth evaluation of HAPTICS regarding real-time execution and its effectiveness
for real-world applications.

2 Related Work

Skeletal-Based Action Recognition. Action recognition based on skeletal data has
received increasing attention due to its compactness compared to RGB-based repre-
sentations. In a prior study [23], a framework for convolutional co-occurrence feature
learning was introduced, employing a hierarchical approach to systematically integrate
diverse levels of contextual information. The work by [49] proposes a view-adaptive
model that autonomously adjusts observation perspectives during action occurrences,
aiming to achieve view-invariant representations of human actions. However, CNN- or
RNN-based models have played a significant role in this regard due to their substantial
impact on spatial configurations.

Inspired by graph-based methods, Yan et al. [45] pioneered the integration of Graph
Convolutional Networks (GCN) into skeleton-based action recognition, giving rise to
ST-GCN. This model concurrently captures the spatial configurations and temporal
dynamics of skeletons. Building upon this work, Song et al. [39] [38] addressed the
occlusion issue in this domain by proposing a multi-stream GCN to extract rich fea-
tures from more activated skeleton joints. Liu et al. [28] explored the impact of multi-
adjacency GCNs and dilated temporal Convolutional Neural Networks (CNNs), intro-
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Fig.2. Overview of HAPTICS pipeline. (a/b) stages show architecture of the whole-body pose
estimation pipeline, generate part affinity fields (PAFs) L and keypoint heatmaps S for torso,
face, hand, and foot. The network is trained end-to-end with a multi-task loss (f7)(fs) combin-
ing each keypoint loss. (c) The most refined PAF and keypoint heatmap channels are resized at
test time to improve accuracy. (d) The parsing algorithm utilizes the PAFs to identify whole-
body parts belonging to the same person by performing bipartite matching. (e) The final whole-
body poses are returned for all individuals in the frame. (f) The preprocessing stage oper-
ates on the whole body pose and performs important transformations. (g) Action features like
Viodys Vjoint, Jangte, Lisms from joint positions are extracted from the previous three frames f;.
(h) These features are forwarded to the classification stage. (i) Finally, the action predictions are
performed in the live output stream.

ducing a sophisticated model known as MS-G3D to disentangle multi-scale graph con-
volutions. Furthermore, a study [8] introduced a decoupled GCN method to enhance
graph modeling capability without incurring additional computational overhead.

To enable global joint relationship modeling, Shi ez al. [36] integrated the Non-local
method [43] into a two-stream GCN model, named 2s-AGCN, resulting in a substan-
tial enhancement in recognition accuracy. Similar to 2s-AGCN, the Dynamic GCN,
proposed by Ye et al. [47], introduced a novel approach to model global dependen-
cies, leading to outstanding accuracy in skeleton-based action recognition. While these
methods have achieved remarkable performance, the escalating computational demands
of multi-stream structures present challenges to their real-world applicability. Conse-
quently, the quest to mitigate the complexity of GCN models remains a formidable
task.

CNN-Based Action Recognition. Given the robust classification capabilities of con-
volutional neural networks (CNNSs), several recent studies [22] [18] [21] [26] [42] have
sought to convert skeleton sequences into 2D images and subsequently utilize CNNs for
classification. In some instances [22], [21], the X, y, and z coordinates in 3D space are
assigned to the three channels of an image, with frame IDs corresponding to different
rows and joint IDs corresponding to different columns. The coordinate values are nor-
malized within the range of 0-255 based on either dataset statistics [22] or sequence
statistics [22], [21]. Alternatively, some studies [18] use relative positions between
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joints and reference joints (e.g., left shoulder, right shoulder, left hip, and right hip)
to generate multiple images. Other approaches [21] [42] use 2D projection maps from
joint trajectories onto different orthogonal planes as images. One method [26] repre-
sents a 5D space (3D coordinates, time label, joint label) as a 2D coordinate space and
a 3D color space, generating 10 images from different assignments of the 5D space.
These 10 images are then fed into 10 ConvNets for classification, with the results from
the 10 models fused for the final prediction.

While most of the aforementioned works focus on mapping a skeleton sequence

to images, they overlook the challenge posed by view variations in the skeleton data.
In contrast, our approach employs ConvNets to capture complex features from a 360-
degree view of human 2D skeletons for multi-dimensional CNN-based action recogni-
tion.
Real-Time Models. The efficiency of a model, commonly assessed by the number
of trainable parameters and floating-point operations per second (FLOPs), is crucial in
deep learning tasks. Numerous studies have focused on improving neural network effi-
ciency, aiming to reduce model parameters or FLOPs. Examples include MobileNetv1
[14], MobileNetv2 [34], MobileNeXt [51], and EfficientNet [40]. The MobileNet fam-
ily of models achieves size reduction through separable convolutions, which decompose
standard convolutions into a depthwise convolution applied to each channel individually
and a 1 x 1 pointwise convolution to combine the outputs.

To refine structural hyperparameters in neural networks, compound scaling [40]
introduces a family of EfficientNet models. In the context of skeletal-based action
recognition, some studies have addressed the challenge of model complexity. For
instance, the study in [46] devises a lightweight network with CNN-based blocks,
though it lacks the accuracy of GCN models. Another study [50] employs a sophis-
ticated data preprocessing strategy, incorporating positions, velocities, frame indexes,
and joint types as inputs. While this preprocessing module enables the model to rec-
ognize actions with a shallow architecture, resulting in a rapid inference speed of 188
sequences per second per GPU, its performance is notably inferior to other state-of-the-
art models.

3 Technical Approach

3.1 Action Clip Data Preparation

Motivation. The construction of the Action Clip dataset serves two primary purposes.
First, it aims to establish a self-contained action dataset that excludes the involvement
of a second object within the action (e.g., brushing teeth, where the toothbrush is the
second object), as seen in [35] and [17]. This approach reduces the need for extensive
manual image labeling for training, requiring only a video clip of any action performed
by a human for feature extraction. Second, the dataset offers a generalized view with a
360-degree perspective of human actions in a live environment, enabling a comprehen-
sive understanding of human activities from any angle. The decision to create the Action
Clip dataset was motivated by the goal of improving the evaluation of the model’s per-
formance across various views of human actions in real-time environments, ensuring
compatibility with real-time applications.
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Fig. 3. Examples of 360° view of the human body incorporated in Action Clip Dataset.

Data Collection. One notable advantage of our system is its ability to collect data
from diverse sources. Our feature extraction algorithm can extract pose features from
any human action video source, whether obtained through live video recording or down-
loaded from the internet. Initially, a continuous stream of video frames is transformed
into still images, each labeled with a corresponding class (e.g., run, wave). In cases
where duplicated images do not adequately describe the person’s action, these frames
or a range of frames can be excluded. Subsequently, the video stream can span from
a few seconds to minutes, capturing a specific type of action. Video clips are recorded
with a frame size of 640 x 480 and a frame rate of 10 fps, ensuring a rapid enough
pace to capture the entire action movement. Visual examples of the 360-degree view of
human actions' and the number of samples are illustrated in Fig. 3 and Table 1.

Table 1. The number of frames for each class used in training and testing operations.

Actions stand | walk |run |jump sit |squat | kick |punch | wave  bow |sleep |clap | total
# of frames | 6196 | 4985 | 2042 | 4575 | 6881 | 2605 | 5105 | 5592 | 9805 | 5674 | 3628 | 5471 | 62559

3.2 Network Architecture

The pose pipeline is divided into two distinct stages, as shown in Fig. 2a and b, where
refinement is applied to both the affinity field and confidence map branches at each
stage. A significant advancement over [5] has been made to reduce computational costs.
In our updated approach, refinement occurs exclusively at the PAF stage, where body
part locations are already identified. As a result, confidence map prediction takes place
solely at the PAF stage in Fig. 2. This adjustment reduces the computational load per
stage by half. Empirical observations demonstrate that refined affinity field predictions
enhance confidence map results at the keypoint heatmap stage, as shown in Fig. 2.
Intuitively, the PAF channel identifies the locations of body parts, while the heatmap
channel identifies the locations of keypoints.

! Refer to the supplementary materials for a detailed visual description.
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Moreover, we increased the network depth. In the initial methodology proposed
by [5], the network architecture featured multiple 7 x 7 convolutional layers. In our
updated model, we maintain the receptive field while reducing computation by replac-
ing each 7 x 7 convolutional kernel with three consecutive 3 x 3 kernels. The former
method required 2 x 72 — 1 = 97 operations, while our current approach needs only 17.
Additionally, we concatenate the output of each 3 x 3 convolutional kernel, similar to
DenseNet [15]. This triples the number of non-linearity layers, preserving both lower-
level and higher-level features. Batch normalization is essential for the convergence of
our deeper architecture; however, its implementation introduces a slowdown of approx-
imately 20%. As an alternative, we replace ReLU layers with PReLU layers, which aid
in fast convergence similar to batch normalization.

3.3 PAF-based Body Pose Estimation

The proposed pose estimation pipeline is based on the Part Affinity Field (PAF) archi-
tecture [5]. This methodology iteratively predicts Part Affinity Fields (PAFs) that
encode part-to-part associations and detection confidence maps for keypoints. Each
PAF is represented as a 2D orientation vector pointing from one keypoint to another.
The input image is initially processed by a convolutional network (e.g., CMU Pose or
Mobilenet-thin), generating a set of feature maps, F'. Subsequently, F' is fed into the
PAF stage, &) of the network @, which predicts a set of PAFs, LD For each subse-
quent stage ¢, the PAFs from the previous stage, L(*~1), are concatenated with F' and
refined to produce L®. After N stages, the final set of PAF channels is obtained as
L = L) Finally, F and L are concatenated and fed into a network p, which predicts
the keypoint heatmaps, .S.

LM = W (F) (1

LW =¢W(F L-D) v2<t< N (2
L= 3)

S =p(F, L) “4)

L2 loss function is applied at each stage, comparing the estimated predictions with
the groundtruth maps (S*) and fields (L*) for each pixel (p) on each keypoint heatmap
(c) and PAF channel (f):

fo= ZZ p)-ILs(p) — L3 (p)I3) (5)

f=1p

fs = Z Y (W)lISe(p) — S (@)II3) (6)

c=1 p

Here, C' and F represent the number of stages for predicting the keypoint heatmap
and PAF, respectively. Additionally, W denotes a binary mask where W (p) = 0 when
an annotation is absent at pixel p. Non-maximum suppression is performed on the con-
fidence map of keypoints to derive a discrete set of candidate locations for body parts.
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Finally, bipartite graph matching [44] is employed to connect and assemble the detected
parts into full-body poses for each individual in the frame, as shown in Fig. 2d and e.

Table 2. Notations in Algorithm 1. Table 3. Notations in Algorithm 2.
Dyraw Raw skeleton data (joining positions) Xs Concatenation of joints pose of f frames
Dyor Normalize skeleton data H Average skeleton height in X,
D Action dataset Vhody | Velocity of neck/H
F Frame in dataset X Normalize pose
Dgpeleton | Detected skeleton Vioints | Velocity of all joints in X
Omiss Missing joining position
Xni_curr |X joint coordinate in current frame
Xni_prev | X joint coordinate in previous frame
Yimi_curr |Y joint coordinate in current frame
Ymi_prev |Y joint coordinate in previous frame

3.4 Preprocessing Pose Features

The initial skeleton data undergoes a preprocessing stage before feature extraction. This
preprocessing comprises four distinct steps, as outlined in Fig. 2f preprocessing stage:
Coordinate Scaling. Initially, the keypoint positions obtained from our pose pipeline
exhibit different units for the  and y coordinates. To ensure consistency and accom-
modate images with varying height and width ratios, these coordinates are uniformly
scaled to a common unit: ', 3’ = x - scale_factor, y - scale_factor.

Exclusion of Head Joints. Our pose pipeline provides five keypoints related to the
head, including the nose, two eyes, and two ears. However, for the specific actions
within the training dataset, the positional information of the head minimally contributes
to the classification task. The critical focus is on the body and limb configurations.
Therefore, the five head joints are excluded to enhance the interpretability of features.
Frame Discardance Criteria. If a frame lacks a detected human skeleton or if the
detected skeleton lacks neck or thigh joint information, the frame is considered invalid
and is subsequently discarded. Additionally, the sliding window must be re-initialized
on the next valid frame in such cases.

Handling Missing Joints. In certain scenarios, the pose estimation pipeline may fail
to detect a complete human skeleton within an image, resulting in gaps or missing joint
positions. To maintain a fixed-size feature vector for subsequent classification, these
missing joints must be assigned values. Two suboptimal solutions were considered: (1)
rejecting the frame, which was impractical as it would prevent action detection when
individuals were oriented sideways or not facing the camera, and (2) assigning positions
outside of a reasonable range, which could theoretically work with a robust classifier.
However, empirical results showed poor recognition accuracy with this method, making
it unsuitable. Instead, a more effective solution was adopted, involving the assignment
of missing joint positions based on their relative positions in the preceding frame con-
cerning the neck joint. For example, if in the previous frame, the hand was located 10
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pixels to the right of the neck, and in the current frame, the hand is missing, it is placed
10 pixels to the right of the neck in the current frame. Empirical experimentation con-
firmed the effectiveness of this approach. Step-by-step pseudocode for preprocessing
pose features is presented in Algorithm 1. Table 2 summarizes the notations used in
Algorithm 1.

Algorithm 1 Preprocessing Pose Features

Inpllt= Dyaw = {(Xah Ybl)s (Xa27 Yb2)s--~ (Xa177 Ybl?)}
Olltpllt: Dypor = {(th le)s (Xn27 Ym2)»~-- (Xn177 Ym17)}
Step 1: Scale the coordinates
for (X4, Ypi) € Draw do:
Dyor = Normalize {(Xai, Ypi)}
end for
Step 2: Remove head joint
for (X,i,Ymi) € Dnor do:
if (Xni,Yimi) = {'head’, eyes’, ears’} then
Discard (Xni, Ymi)
end if
end for
Step 3: Discard frames with no neck or thigh
for F € D do:
if Dogeteton = () then:
Discard F
end if
end for
Step 4: Fill in the missing joints
for D jeleton € F do:
if O,niss € F then:
Xni_curr = XNeckcurr + (X'ni_prev - XN@Ckprev)
Ymi_curr =Y Neckcurr + (Ymi_p'rev - Nec}fp're'u)
end if
end for

3.5 Skeletal Feature Extraction

Following the initial preprocessing step, the joint positions are now complete and ready
for further analysis, as shown in Fig. 2g. In this section, we utilize the joint positions
obtained from a sequence of f = 3 frames as raw features. Additionally, we design and
extract distinctive features to enhance the discrimination of various types of actions.
A step-by-step overview of the computed features is presented in Algorithm 2, with
details of the notations provided in Table 3.

Before initializing model training, the normalized pose data—namely body velocity
(Vbody), joint velocity (Vigine), joint angles (Jangle), and limb lengths ( Ly, )—are selected
as trainable features. These features are concatenated to create a feature vector with a
dimensionality of 170. Subsequently, the Principal Component Analysis (PCA) algo-
rithm is employed to reduce the dimensionality of the feature vector. After applying
PCA, the dimensionality is reduced by 70%, aiming to decrease training time and com-
putational costs. These meticulously engineered features are now prepared for training
the classifier, as depicted in Fig. 2h.
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4 Evaluation

4.1 Datasets and Experimental Setup

We evaluate the proposed HAPTICS model on four challenging benchmarks: NTU
RGB+D 60 [35], NTU RGB+D 120 [25], Northwestern-UCLA [41], and our proposed
Action Clip dataset. The evaluation protocols for NTU RGB+D 60, NTU RGB+D 120,
and Northwestern-UCLA follow those outlined in their respective published papers.

All experiments use a single TITAN RTX GPU under the PyTorch deep learning
framework. The models are trained using Stochastic Gradient Descent with a momen-
tum of 0.9 and a weight decay of 0.0004. Pose features are extracted from a sequence
of 3 frames using CMU pose [5] and Mobilenet-thin [14] backbone networks. The end-
to-end training is performed using an input image size of 656 x 368, and the same
resolution is consistently maintained throughout the experiments.

Algorithm 2 Skeletal Feature Extraction

Step 1: Calculate X
Initialize X s as a dynamic array

for i = 1to 3 do: > f =3 frames
for j = 1to 13 do: > 13 joints
for k = 1to 2 do: > 2 position values per joint
Xs[(i—1) %26+ (j — 1) * 2 + k] = joint position (z, j, k)
end for
end for
end for

Step 2: Calculate H

Initialize H

for i = 1to 3 do: > f = 3 frames
H = H + distance between neck position(s), thigh

position(4)
H=H/5

end for

Step 3: Calculate V4,04,

Initialize Vpq, as a dynamic array

for i = 1to 3 do: > f = 3 frames
Viody i — 2] = velocity(neck position(), neck position

(i-1)/H

end for

Step 4: Calculate X

Initialize X as a dynamic array

Xmean = mean(Xs)

for i = 1 to 78 do: > joint positions in 3 frames
X[i] = (Xali] = Xmean)/H

end for

Step 5: Calculate Vjoin¢s

Initialize Vjoin¢s as a dynamic array

for i = 1to 3 do: > f = 3 frames
for j = 1to 13 do: > 13 joints
for k = 1to 2 do: > 2 velocity values per joint
Vioints[((2 — 1) * 23 4 (§ — 1) * 2 + k)] = joint velocity (i, j, k)
end for
end for
end for

Step 5: Calculate Joint angles from X
Step 6: Calculate the length of each limb from X
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4.2 Results

Comparison with State-of-the-Art. We initially evaluated the proposed system on
our newly launched Action Clip dataset, which includes 12 challenging actions cap-
tured from a 360° view of daily life activities. Each action was assessed by calculating
precision, recall, and F1 score using test samples from the dataset, as shown in Table
4. Our system achieved 97% accuracy across all three metrics. Additionally, we imple-

Table 4. Precision, recall, and f1-score on our pro- Table 5. Comparison of the Top-1 accu-
posed Action Clip test dataset. I indicates CMU racy (%) with the state-of-the-art meth-

pose used as a human pose feature extractor. ods on our proposed Action Clip dataset.

Action Precision Recall Fl-score| Testset ~ Results are implemented based on their

jump 0.94 095 095 1352 released codes. T indicates Mobilenet-thin

kick 097 097 097 1525 and t indicates CMU pose used as a human

punch 097 09 097 | 1709 pose feature extractor.

run 0.97 0.95 0.96 619 Methods Modalities Accuracy

sit 1.00 0.99 0.99 2008

squat 099 097 098 | 737 nCTE [13] RGB — 66.7

stand 096 097 097 | 1795  GlimpseClouds[3] | RGB 9038

walk 0.94 094  0.94 1448 ActionMachine [52]| RGB 95.3

wave 0.99 0.99 0.99 2951 TS-LSTM [20] Skeleton 87.9

blOW g-gg (1)-3(7) (1)‘(9)(7) }(7)‘9‘; Shift-GCN [9] Skeleton ~ 93.2

sleep . . .

clap 096 097 097 1720 O[O Skeleton 954

Accuracy 1 0.97 18702 HAPTICS T Skeleton 95.8
HAPTICS I Skeleton 97.0

Macroavg f | 0.97 0.97  0.97 18702
Weight avg | 10.97 097 097 18702

Table 6. Comparisons with the state-of-the- Table 7. Comparison with the state-of-the-
art methods on NTU RGB+D 60 dataset. art methods on NTU RGB+D 120 dataset.
t indicates Mobilenet-thin and i indicates { indicates Mobilenet-thin and I indicates
CMU pose used as a human pose feature CMU pose used as a human pose feature

extractor. extractor.

Methods Modalities X-sub X-set ~ Methods Modalities X-sub X-set
PoseConv3D [11] RGB 93.7 96.6 PoseConv3D [11] RGB 86.0 89.6
ActionMachine [52] RGB 943 972 Shift-GCN [9] Skeleton 85.9 87.6
Glimpse Clouds [3] RGB 86.6 93.2 KA-AGTN [27] Skeleton 86.1 88.0
SRNet [30] Skeleton 87.3 91.3 TemPose [16] Skeleton 87.0 88.5
AGC-LSTM [37] Skeleton 89.2 95.0 4s-MTS-Former [29]| Skeleton 87.1 90.0
Shift-GCN [9] Skeleton 90.7 96.5 MSSTNet [12] Skeleton 874 884
TemPose [16] Skeleton 927 952 CTR-GCN [6] Skeleton 88.9 90.6
HAPTICS T Skeleton 1 96.8 93.5 HAPTICS Skeleton 86.1 88.3
HAPTICS Skeleton 97.3 942 HAPTICS § Skeleton 89.7 91.5
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mented systems using both RGB and skeleton modalities with the Action Clip dataset
and compared the results with our proposed system, as presented in Table 5.

We also evaluated the proposed model on the NTU RGB+D 60 and NTU RGB+D
120 datasets, following the X-sub and X-set protocols. The results, presented in Tables
6 and 7, demonstrate the effectiveness of our model. HAPTICS achieved the highest
accuracy of 97.3% on X-sub and 94.2% on X-set for the NTU RGB+D 60 benchmark,
surpassing state-of-the-art methods [30], [37], [9], and [16]. Similarly, our proposed
technique achieved the highest accuracy of 89.7% on X-sub and 91.5% on X-set for the
NTU RGB+D 120 benchmark, marking significant improvements over state-of-the-art
methods [16], [29], [12], and [6], respectively.

Table 8. Comparisons of top-1(%) accuracy with
state-of-the-art methods on the Northwestern-

50 1 r 100
UCLA dataset. HAPTICS uses Mobilenet-thin
() and CMU pose ( I) networks for human pose
estimation. &7 [ 80

2

o

8 301 F60 >
Methods Modalities Top-1 5 e

=3 3
NKTM [33] RGB 7558 £ 20 [ a0 2
Glimpse Clouds [3] RGB 91.1 i
Action Machin [52]| RGB  96.5 11T “Cﬂbjz”fenet-thinfps [ 20

ps
TS-LSTM [20] Skeleton  89.2 —e— Mobilenet-thin Accuracy
AGC-LSTM [37] | Skeleton 93.3 o 1T SMY Accuraey | | Lo
Shift-GCN [9] Skeleton ~ 94.6 Y eberof meene - ©
umber of people
CTR-GCN [6] Skeleton  96.5
MSSTNet [12] Skeleton  97.6 Fig. 4. Frames per second and accuracy for the
HAPTICS | Skeleton 974 given number of people in live webcam using
- TITAN RTX GPU.

HAPTICS I Skeleton  98.2

Finally, we evaluated our proposed model on the low-resolution Northwestern-
UCLA dataset to validate its effectiveness and generalizability. Table 8 presents promis-
ing results compared to top competitors [20], [37], [9], [6], and [12]. Specifically, HAP-
TICS achieved a top-1 accuracy of 98.2%, representing a 3.6% improvement over [9], a
1.7% improvement over [6], and a 0.6% improvement over the recent [12].
Computational Speed and Cost. Computational speed is measured based on the exe-
cution time in frames per second (fps) using live webcam video at a resolution of 656
x 368. Fig. 4 shows that HAPTICS, with Mobilenet-thin, achieves the highest fps,
reaching 30 for a single person and approximately 17 fps when the number of individ-
uals increases to 6. In contrast, the CMU method attains high accuracy but has slightly
lower fps due to the nature of its design. Fig. 5 presents the computation cost in FLOPS,
providing a comparison to methods that use skeleton modalities.
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0 — Table 9. Pose estimation comparison using

COCO keypoint fest set.

50

40 r Models Backbone AP | APM | APE
g;;o I PersonLab [32] ResNet-152 | 68.7 | 64.1 | 75.5
z MultiPoseNet [19] | ResNet-101 | 69.6 | 65.0 | 76.3
2 HigherHRNet [7] | HRNet 70.5 | 66.6 | 75.8
10 I SIMPLE [48] HRNet-W32 | 71.1 | 69.1 | 79.1
0] StrongPose [2] ResNet-101 | 72.1 | 67.0 | 77.1
MiPcs(Mob)  HAPUGS(CMU)  SHRGCN  AdapiveGON  AGC-LSTH PosePlusSeg [1] | ResNet-152 | 72.8 | 67.8 | 79.4
HAPTICS Mobilenet | 74.6 | 69.1 | 81.7
Fig.5. Computational cost compared with poc CMU 763 717 | 3.8

skeleton modalities systems.

Accuracy (%)

HAPtics HAPtics t HAPtics
Methods

Fig. 6. HAPtics represents the results of the baseline version of our model that uses only the CMU
pose backbone network. HAPtics | denotes results obtained when the functionality of PAF is
enabled, while HAPtics 1 indicates the results achieved with the integration of PAF and advanced
feature extraction.

4.3 Ablation Studies

Adaptation of PAF. We evaluated the generalizability of our pose pipeline by integrat-
ing the PAF technique [5]. Our findings outperforms recent state-of-the-art methods,
including SIMPLE [48], StrongPose [2], and PosePlusSeg [1], when evaluated on the
COCO keypoint test set [24], as shown in Table 9.

Backbone vs. Techniques. To systematically assess the impact of our specific tech-
niques beyond the capabilities of the backbone networks, we conducted studies compar-
ing the system’s performance with and without the integration of PAF and our enhanced
feature extraction techniques. The ablation results in Fig. 6 demonstrate that while the
backbone networks establish a high baseline of performance, the integration of our
methods provides significant additional improvements in accuracy. For instance, with
PAF-based enhancements and advanced feature extraction methods, the system’s accu-
racy noticeably increased, particularly in complex action recognition scenarios.
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Mobilenet-thin

(a) Action Clip (f=4) (b) Northwestern-UCLA (f=5) (c) NTU RGB+D 120 (f=6)

Fig.7. The confusion matrix illustrates the outcomes of 12 actions from (a) the Action Clip
dataset, employing frames (f = 4) for pose feature extraction, 10 action results from (b) the
Northwestern-UCLA dataset, utilizing f = 5 frames for pose feature extraction, and 20 novel
fine-grained action classes from (c) the NTU RGB+D 120 dataset, with f = 6 for pose feature
extraction. (Best viewed with zoom in).

Pose Features with Varied Numbers of Frames. We explored the performance of
HAPTICS across different numbers of frames (f = 4, 5, 6) for pose feature extraction.
Our investigation covered 12 classes from the proposed Action Clip Dataset, as depicted
in Fig. 7(a), 10 classes from the NW-UCLA dataset, as illustrated in Fig. 7(b), and 20
novel classes from the NTU RGB+D 120 dataset, as shown in Fig. 7(c).

5 Conclusion and Future Work

This research proposes a novel Action Clip dataset that captures a 360° view of human
actions and introduces a comprehensive pipeline for real-time human pose estimation
and action recognition using standard monocular camera sensors. The proposed app-
roach transforms noisy human pose kinematic features into encoded skeletal features.
These features are then classified using deep neural network techniques, achieving not
only competitive state-of-the-art performance in pose-based action detection but also
ensuring real-time execution.

Acknowledgments. This work was supported in part by the National Research Foundation
of Korea (NRF) grant 2022R1G1A1003531, 2022R1A4A3018824 and Institute of Information
and Communications Technology Planning and Evaluation (II'TP) grant RS-2020-11201741, RS-
2022-00155885, RS-2024-00423071 funded by the Korea government (MSIT).



HAPTICS: Human Action Prediction in Real-time via Pose Kinematics 159

References

10.

11.

13.

14.

15.

17.

18.

19.

20.

21.

22.

. Ahmad, N., Khan, J., Kim, J.Y., Lee, Y.: Joint Human Pose Estimation and Instance Seg-

mentation with PosePlusSeg. In: AAAI (2022)

. Ahmad, N., Yoon, J.: Strongpose: bottom-up and strong keypoint heat map based pose esti-

mation. In: ICPR. pp. 8608-8615. IEEE (2021)

. Baradel, F., Wolf, C., Mille, J., Taylor, G.W.: Glimpse clouds: Human activity recognition

from unstructured feature points. In: CVPR. pp. 469-478 (2018)

. Brooks, R.: The big problem with self-driving cars is people. IEEE spectrum: technology,

engineering, and science News 27(8) (2017)

. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using

part affinity fields. In: CVPR. pp. 7291-7299 (2017)

. Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., Hu, W.: Channel-wise topology refinement

graph convolution for skeleton-based action recognition. In: ICCV. pp. 13359-13368 (2021)

. Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.: Higherhrnet: Scale-aware

representation learning for bottom-up human pose estimation. In: CVPR (2020)

. Cheng, K., Zhang, Y., Cao, C., Shi, L., Cheng, J., Lu, H.: Decoupling gcn with dropgraph

module for skeleton-based action recognition. In: ECCV. pp. 536-553. Springer (2020)

. Cheng, K., Zhang, Y., He, X., Chen, W., Cheng, J., Lu, H.: Skeleton-based action recognition

with shift graph convolutional network. In: CVPR. pp. 183-192 (2020)

Choi, C., Kim, J., Nam, Y.: Snapbot : Enabling Dynamic Human Robot Interactions for
Real-Time Computational Photography. In: HRI (2024)

Duan, H., Zhao, Y., Chen, K., Lin, D., Dai, B.: Revisiting skeleton-based action recognition.
In: CVPR. pp. 2969-2978 (2022)

. Feng, D., Wu, Z., Zhang, J., Ren, T.: Multi-scale spatial temporal graph neural network for

skeleton-based action recognition. IEEE Access 9, 58256-58265 (2021)

Gupta, A., Martinez, J., Little, J.J., Woodham, R.J.: 3d pose from motion for cross-view
action recognition via non-linear circulant temporal encoding. In: CVPR (2014)

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applica-
tions. arXiv preprint arXiv:1704.04861 (2017)

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional
networks. In: CVPR. pp. 47004708 (2017)

. Ibh, M., et al.: Tempose: a new skeleton-based transformer model designed for fine-grained

motion recognition in badminton. In: CVPR. pp. 5199-5208 (2023)

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., Viola, F.,
Green, T., Back, T., Natsev, P., et al.: The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950 (2017)

Ke, Q., Bennamoun, M., An, S., Sohel, F., Boussaid, F.: A new representation of skeleton
sequences for 3d action recognition. In: ICPR. pp. 3288-3297 (2017)

Kocabas, M., Karagoz, S., Akbas, E.: Multiposenet: Fast multi-person pose estimation using
pose residual network. In: ECCV. pp. 417-433 (2018)

Lee, L., Kim, D., Kang, S., Lee, S.: Ensemble deep learning for skeleton-based action recog-
nition using temporal sliding Istm networks. In: CVPR. pp. 1012-1020 (2017)

Li, B., Dai, Y., Cheng, X., Chen, H., Lin, Y., He, M.: Skeleton based action recognition
using translation-scale invariant image mapping and multi-scale deep cnn. In: ICMEW. pp.
601-604 (2017)

Li, C., Zhong, Q., Xie, D., Pu, S.: Skeleton-based action recognition with convolutional
neural networks. In: ICMEW. pp. 597-600 (2017)


http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1705.06950

160

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.
41.
42.
43.
44.
45.
46.

47.

N. Ahmad et al.

Li, C., Zhong, Q., Xie, D., Pu, S.: Co-occurrence feature learning from skeleton
data for action recognition and detection with hierarchical aggregation. arXiv preprint
arXiv:1804.06055 (2018)

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dolldr, P., Zitnick,
C.L.: Microsoft coco: Common objects in context. In: ECCV (2014)

Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.Y., Kot, A.C.: Ntu rgb+ d 120: A large-
scale benchmark for 3d human activity understanding. TPAMI 42(10), 2684-2701 (2019)
Liu, M., Liu, H., Chen, C.: Enhanced skeleton visualization for view invariant human action
recognition. Pattern Recogn. 68, 346-362 (2017)

Liu, Y., Zhang, H., Xu, D., He, K.: Graph transformer network with temporal kernel attention
for skeleton-based action recognition. Knowl.-Based Syst. 240, 108146 (2022)

Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling and unifying graph con-
volutions for skeleton-based action recognition. In: CVPR. pp. 143-152 (2020)

Lv, J., Gong, X.: Multi-grained temporal segmentation attention modeling for skeleton-based
action recognition. IEEE Signal Processing Letters (2023)

Nie, W., Wang, W., Huang, X.: Srnet: Structured relevance feature learning network from
skeleton data for human action recognition. IEEE Access 7, 132161-132172 (2019)
Nwankwo, L., Rueckert, E.: The conversation is the command: Interacting with real-world
autonomous robot through natural language. arXiv preprint arXiv:2401.11838 (2024)
Papandreou, G., Zhu, T., Chen, L.C., Gidaris, S., Tompson, J., Murphy, K.: Personlab: Person
pose estimation and instance segmentation with a bottom-up, part-based, geometric embed-
ding model. In: ECCV. pp. 269-286 (2018)

Rahmani, H., Mian, A.: Learning a non-linear knowledge transfer model for cross-view
action recognition. In: CVPR. pp. 2458-2466 (2015)

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted resid-
uals and linear bottlenecks. In: CVPR. pp. 4510-4520 (2018)

Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: Ntu rgb+ d: A large scale dataset for 3d human
activity analysis. In: CVPR. pp. 1010-1019 (2016)

Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for
skeleton-based action recognition. In: CVPR. pp. 12026-12035 (2019)

Si, C., Chen, W., Wang, W., Wang, L., Tan, T.: An attention enhanced graph convolutional
Istm network for skeleton-based action recognition. In: CVPR. pp. 1227-1236 (2019)
Song, Y.F,, Zhang, Z., Shan, C., Wang, L.: Richly activated graph convolutional network for
robust skeleton-based action recognition. Transactions on Circuits and Systems for Video
Technology 31(5), 1915-1925 (2020)

Song, Y.F.,, Zhang, Z., Wang, L.: Richly activated graph convolutional network for action
recognition with incomplete skeletons. In: ICIP. pp. 1-5. IEEE (2019)

Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks.
In: ICML. pp. 6105-6114. PMLR (2019)

Wang, J., Nie, X., Xia, Y., Wu, Y., Zhu, S.C.: Cross-view action modeling, learning and
recognition. In: CVPR. pp. 2649-2656 (2014)

Wang, P, Li, W,, Li, C., Hou, Y.: Action recognition based on joint trajectory maps with
convolutional neural networks. Knowl.-Based Syst. 158, 43-53 (2018)

Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)
West, D.B., et al.: Introduction to graph theory, vol. 2. Prentice hall (2001)

Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based
action recognition. In: AAAIL vol. 32 (2018)

Yang, F., Wu, Y., Sakti, S., Nakamura, S.: Make skeleton-based action recognition model
smaller, faster and better. In: MM, pp. 1-6 (2019)

Ye, F., Pu, S., Zhong, Q., Li, C., Xie, D., Tang, H.: Dynamic gcn: Context-enriched topology
learning for skeleton-based action recognition. In: MM. pp. 55-63 (2020)


http://arxiv.org/abs/1804.06055
http://arxiv.org/abs/2401.11838

48.

49.

50.

51.

52.

HAPTICS: Human Action Prediction in Real-time via Pose Kinematics 161

Zhang, J., Zhu, Z., Lu, J., Huang, J., Huang, G., Zhou, J.: Simple: Single-network
with mimicking and point learning for bottom-up human pose estimation. arXiv preprint
arXiv:2104.02486 (2021)

Zhang, P, Lan, C., Xing, J., Zeng, W., Xue, J., Zheng, N.: View adaptive neural networks for
high performance skeleton-based human action recognition. TPAMI 41(8) (2019)

Zhang, P, Lan, C., Zeng, W., Xing, J., Xue, J., Zheng, N.: Semantics-guided neural networks
for efficient skeleton-based human action recognition. In: CVPR. pp. 1112-1121 (2020)
Zhou, D., Hou, Q., Chen, Y., Feng, J., Yan, S.: Rethinking bottleneck structure for efficient
mobile network design. In: ECCV. pp. 680-697 (2020)

Zhu, J., Zou, W., Xu, L., Hu, Y., Zhu, Z., Chang, M., Huang, J., Huang, G., Du, D.: Action
machine: Rethinking action recognition in trimmed videos. arXiv preprint (2018)


http://arxiv.org/abs/2104.02486

l‘)

Check for
updates

Predicting the Next Action by Modeling
the Abstract Goal

Debaditya Roy!®)@® and Basura Fernando':?

! Institute of High-Performance Computing, Agency for Science, Technology and
Research, Singapore, Singapore
roy_debaditya@ihpc.a-star.edu.sg, fernando_basura@cfar.a-star.edu.sg
2 Centre for Frontier AI Research, Agency for Science, Technology and Research,
Singapore, Singapore

Abstract. The problem of predicting human actions from observed
videos is an inherently uncertain one. We present an action anticipation
model that leverages latent goal information to reduce the uncertainty in
future predictions. We develop a latent variable representing goal infor-
mation called abstract goal which is conditioned on observed sequences
of visual features for action anticipation. We design the abstract goal
as a distribution whose parameters are estimated using a variational
recurrent model. We sample multiple candidates for the next action and
use goal consistency criterion to determine the best candidate that fol-
lows from the abstract goal. Our method obtains impressive results on
the very challenging Epic-Kitchens55 (EK55) and good results in Epic-
Kitchens100 (EK100) datasets. Code is available at https://github.com/
LAHAproject/Abstract Goal

Keywords: Action Anticipation - Stochastic Modeling - Variational
Inference

1 Introduction

Anticipating human actions from videos has significant relevance across vari-
ous domains, including but not limited to human-robot collaboration, intelligent
domiciles, assistive robotics, and wearable virtual assistants. Specifically, ego-
centric videos, which capture the actions of the individual wearing the camera,
represent a valuable resource for the development of intelligent assistants capa-
ble of forecasting the wearer’s future actions and providing tailored assistance
accordingly. A fundamental challenge in action anticipation lies in the inherent
uncertainty surrounding future predictions. Human behavior is predominantly
steered by individual goals or intentions, thus guiding the sequence of actions
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Fig. 1. Model design for abstract goal-based action anticipation. Yellow ellipses repre-
sent distributions and pink boxes represent various variables of the model.

performed. Consequently, incorporating goal information holds promise for miti-
gating such uncertainty in forecasting future actions. For example, with informa-
tion about the goal wash pan, a model can predict that take pan will be followed
by rinse pan and not put pan on stove.

Goal and intentions have been adopted in some recent works for effec-
tive action anticipation [21,27,30]. In this paper, we make use of a stochastic
method [4,9] for latent goal modeling to improve action anticipation that goes
beyond the deterministic latent goal representation in [27]. We propose to learn
a new latent variable called abstract goal as a latent distribution as shown in
Figure 1. We use two types of abstract goal distributions when predicting
the next action in the sequence. The first abstract goal distribution is learned
using the observed visual features and a stochastic recurrent neural network [4]
which we call “feature-based abstract goal” distribution. Furthermore, we design
an “action-based abstract goal” distribution using the next action representa-
tion distribution and the observed action representation. We sample multiple
next-action-representation candidates and use the goal consistency criterion to
find the most likely next action—see Figure 1. The action that is most likely to
happen in the future (“next best action”) is the one that maximizes consistency
between the two latent abstract goal distributions. During learning, we use goal
consistency as a loss function to obtain a model informed of human behavior, i.e.
the sequences of actions. Such a mechanism is not present in previous stochastic
approaches [1,21,22] which only minimizes KL divergence between prior and
posterior latent distribution to obtain the best future actions. Also, we introduce
a goal consistency measure to choose the best next action candidate rather than
mean or median sampling used in [1,22]. We show that goal consistency has
the biggest impact on action anticipation. Our approach yields improvements
when predicting the next action in unscripted activities on the Epic-Kitchensb5
(EK55). Our contributions are:

— A new latent variable called abstract goal using a stochastic recurrent model
that uses two latent distributions for the observed and the next action and
enforces consistency among them to effectively predict the next action.

— A novel goal consistency term that measures how well a plausible future action
(next action) aligns with abstract goal distributions.
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2 Related work

Research in action anticipation has gained popularity in recent years thanks to
progress in datasets [6] and challenges [5]. The activity label of the entire action
sequence is used to anticipate the next action in [29]. In [27], observed features
are used to obtain a fixed latent goal from visual features. [3] conceptualizes goals
as the visual outputs of a sequence of actions. They predict each action in the
sequence based on its relative closeness to the goal as compared to the previous
action. [19] propose to use an external memory bank to store prototypes of the
overall activity and contrastive learning augmented with the memory bank for
forecasting the next action.

Predicting Future features for Anticipation. In [10] authors show that
LSTM can be unrolled for multiple time steps to predict future features can be
used to accurately predict the next action. In [26], Human-object interactions
are encoded as features and fed to a transformer encoder-decoder to predict the
features of future frames and the corresponding future actions. Authors in [1§]
estimate spatial attention maps of future human-object interactions to predict
the next action. In [32], authors propose to summarize long-range sequences
by processing smaller temporal sequences and caching them in memory as con-
text and using the context for action anticipation. In [12], a real-time action
anticipation framework is presented using a two-stage transformer with reduced
parameters that is trained for future feature prediction and action anticipation.
Due to the lightweight nature of their model, the action inference is performed
in real-time. In [16], temporal features are computed using time-conditioned skip
connections to anticipate the next action. In [33], an RNN is used to generate
the intermediate frames between the observed frames and the anticipated action.
In [13], every frame is represented using a Visual Transformer (ViT) [7] and com-
bined using a temporal transformer to predict future features and action labels.
Authors in [34], train a transformer model to predict the next action by reduc-
ing the amount of observed future available during learning from fully available
to completely absent. Authors in [28] model interactions using cross-attention
between humans and object visual features using a spatio-temporal visual trans-
former and use the modeled interaction to predict the next action.

Long-term forecasting. In [2], future actions and their duration are pre-
dicted autoregressively using an RNN with observed action labels as input.
In [2,20], RNNs are used to predict future actions conditioned on observed action
labels. Latent distributions are used in literature to encode the observed action
and duration in [1,22]. In [1], a sample from the latent distribution of observed
action is combined with previously predicted action in a decoder to predict the
multiple next actions and their duration. In [22], two decoders are used to pre-
dict the action labels and duration separately. The action decoder uses the action
labels in the observed video as input while the duration prediction decoder uses
the duration of actions. Similarly, in [14], a transformer is used to encode past
actions and duration while another transformer decoder is used to predict both
future actions and their duration. In [24], authors use two transformer encoders
for segment-level and long-term encoding and a decoder that fuses both encoder
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inputs to predict future actions. In [21], goal labels and observed features are used
as input to a conditional variational encoder to predict future actions. In [37],
a large language model is prompted with observed actions and narrations to
predict future actions.

Correlating past and future. In [23], authors model the transition
between the visual features of the observed and the next action to generate the
next action features. A similar action anticipation model that correlates past
observed features with the future using Jaccard vector similarity is presented
in [8]. In [16], time-conditioned skip connections are used to generate features
for predicting future actions at different anticipation time in the future. In [11],
authors propose a neural memory network to compare an input (spatial repre-
sentation or labels) with the existing memory content to predict future action
labels. Similarly, in [25], authors propose an action anticipation framework with
a self-regulated learning process. A counterfactual reasoning is used to improve
action anticipation in [36]. Our approach correlates the past and future by enfore-
ing goal consistency between the two abstract goal distributions computed using
observed features and the next action.

3 Action anticipation with abstract goals

In this section, we explain our model design outlined in Figure 1. At first,
we explain how to compute the feature-based abstract goal distribution in
Section 3.1. Then, we describe how to obtain next action candidates and action-
based abstract goal with respect to these candidates in Section 3.2 and 3.3,
respectively. We then explain the goal consistency criterion used to obtain the
best next action candidate in Section 3.4. Finally, we describe the various loss
functions to train our model in Section 3.5.

3.1 Observed Feature-based abstract goal representation

In this section, we describe how to generate feature-based abstract goal
representation using variational recurrent neural network (VRNN) frame-
work [4,9]. Let us denote the observed feature sequence by xi,Xga,---,Xr
where x; € R%. Following standard VRNN, a Gaussian distribution
4t(z¢|X1:0-1) ~ N (Wt priors Ttprior) is used to model the prior distribution of
the abstract goal (z;) given the observed feature sequence x;.;—1. The param-
eters fy priors Ot prior € R% are estimated using the hidden state of the RNN
(hy_; € R9) learned from the previous ¢ — 1 features, i.e. (Bt priors Tt prior) =
Gprior(hi—1). Note that ¢ppior : R™" — R% refers to two separate MLPs, one to
obtain g ;.. and another with softplus activation to estimate the standard
deviation (o prior). Unless otherwise specified, all MLPs are two layered neural
networks with ReLLU activation.

The posterior distribution of the abstract goal 7(z¢|x1:t) ~ N (¢ pos: Tt,pos)
computes the effect of observing the incoming new feature x;. The parameters
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of posterior distribution r are computed as follows:

(Nt,posﬂ o't,pos) = ¢pos([¢m (xt)7 ®n (htfl)]% (1)

where ¢pos : R2X4 — R% ¢, : RY — R% | ¢y, : R% — R% are linear layers and
[-, -] represents vector concatenation. We use the reparameterization trick [17] to
sample an abstract goal (z; € R%) from the prior distribution ¢(z¢|x1.;_1) as
follows:

Zy = l'l’t,prior + Ot prior O, (2)

where € ~ N(0,1) € R?% is a standard Gaussian distribution. Then sampled z,
is used to obtain the next hidden state of the RNN' as follows:

ht :RNN(htflv[¢m(xt)a¢z(zt)])th6 1a"' 7T (3)

where ¢, : R% — R% acts as a feature extractor over z;. The sampled abstract
goal (z;) can be used to reconstruct (or generate) the feature sequence as done in
VRNN framework [4,9]. However, we use it to represent feature-based abstract
goal. Our intuition comes from the fact that humans derive action plans from
goals, and videos are a realization of this action plan. Therefore, by construc-
tion, goal determines the video (feature evolution in our case). Interestingly, as
the abstract goal latent variable encapsulates the video feature generation pro-
cess, by analogical similarity, we make the proposition that latent variable (z;)
represents the notion of feature-based abstract goal.

Therefore, we denote the “feature-based abstract goal distribution” as follows:

p(zr) = q(zr[x1:7-1). (4)

The abstract goal distribution represents all abstract goals with respect to a
particular observed feature sequence. Any observed action may lead to more than
one goal. Our abstract goal representation captures these variations.

3.2 Action representations

Human actions are causal in nature and the next action in a sequence depends
on the earlier actions. For example, washing vegetables is succeeded by cutting
vegetables when the goal is “making a salad”. We capture the causality between
observed and next actions using “the observed action representation” and the
“next action representation”. We obtain the observed action representation
(ap) using feature-based abstract goal and the hidden state of RNN as follows:

ao = ¢O([¢Z(ZT)7¢h(hT)]) (5)

Here ¢ : R?*% — R% and zp is sampled from the abstract goal distribution
p(zr) using Equation 2.

1 Our RNN is a standard GRU cell.
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Then we obtain the distribution of next action representation (ay) con-
ditioned on the hidden state of the RNN and the observed action representation
denoted by p(ay|hr,ap). The reason for modeling next action representation
as a distribution conditioned on hidden state and the observed action repre-
sentation is two-fold. First, a particular observed action may lead to different
next actions depending on the context and goal. Note that in our model, both
observed action representation ap and the RNN hidden state hr depend on the
feature-based abstract goal representation. Second, there can be variations in
human behavior when executing the same task. The next action representations
are generated using a Gaussian distribution N'(p, ., agN) where p,, ,0ay € R
The parameters of next action distribution are estimated as

p(aN‘hTaaO) NN(NaN?GiN)7 (6)

where (pt,,,0ay) = On([¢n(hr), da(ao)]). The mapping network ¢, : R —
R% and ¢y : R2¥% — R% are two separate MLPs. Now we sample multiple next
action representations from the next action representation distribution using the
reparameterization trick as in Equation 7,

aN = lJ’aN + O'aN @ €7 (7)

where € ~ N(0,1) € R% is a standard Gaussian distribution.

3.3 Action-based abstract goal representation

Now, we obtain action-based abstract goal from observed and next action rep-
resentations using generative variational framework [17]. The distribution for
action-based abstract goal is modeled with a Gaussian distribution conditioned
on the next action representation denoted by ¢(zy|ay) whose parameters are
computed as ¢(znylay) ~ N(py,, 0ng) Where (y,, 0ng) = dng(dalan))
and py,, OnNg € R? and ONg - R — R? is implemented with two MLPs.
On the other hand, parameters of the action-based abstract goal distribution
(r) conditioned on both observed and next action representation are given as
r(zylan,a0) ~ N(py,, o nr) whose parameters are estimated as:

(17 O Nr) = Onr([da(an), ¢a(a0)]) (®)

where py,., 0N, € R% and ¢y, : R% — R? is a dual headed MLP. Finally,
the action-based abstract goal distribution for the next action p(zy) is given
by the distribution
p(zn) = q(zn|an). 9)
We use both feature-based and action-based abstract goal representation to find
the best candidate for next action as explained in next section. It should be
noted that while the ¢(zy|ayx) only depends on next action representation and
r(zylan,a0) depends on both observed and next action representation. As r()
has more evidence compared to ¢(), 7() acts as the posterior distribution in our
modeling.
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3.4 Next action anticipation with goal consistency

Given a sampled feature-based abstract goal zr, we select the best next action
representation a}, using the divergence between p(zr) distribution (eq. 4) and
p(zn) distribution (eq. 9). We call this divergence as the goal consistency
criterion. For a given zp, observed action ap and the next sampled action
ay, the goal consistency criterion is derived from the average of KL-divergence
Dir(p(zr)||p(zn) and D (p(zn)||p(zr)) as follows:

_ Dki(p(zr)|lp(zn)) + Dr(p(zy)|p(27))

D(ay) 5 : (10)

We choose the best next action candidate (i.e. the anticipated action candidate
representation) a%, that minimizes the goal consistency criterion. The rationale
is that the best anticipated action should have an action-based abstract goal
representation p(zy ) that aligns with the feature-based abstract goal distribution
p(zr). We use the following algorithm to find the best next action candidate a};.

Algorithm 1 Best next action selection

: Sample feat-based abstract goal z: from eq. 4 — z¢ ~ q+(z¢|X1:4-1)

: Get observed action representation ap (eq. 5)

: Get next action representation distribution p(an|h¢, a0) (eq. 6)

: Sample K next action representations N’ = {ak, - --ak} ~ p(an|h¢,a0)
: Best next action ay = argmingk ¢z D@ ke {1,--- K}

Tk W N =

Finally, we predict the anticipated action from the selected next action rep-
resentation as § = ¢.(ak ). where ¢, : R% — R% is the MLP classifier and ¥ is
the class score vector. It should be noted that in Algorithm 1, we sample only
one feature-based abstraction goal in line 1 of the algorithm. However, during
training we sample ) number of feature-based abstraction goals and for each of
them we sample K number of next action representations. In this case, we select
the best candidate from all K x @) next action representation candidates using
Equation 10. Therefore, the next best action is consistent and does not rely too
much on sampling as long as we sample sufficient candidate next actions.

Even if the feature-based abstract goal P(zr) is obtained from VRNN frame-
work [4,9], the formulation of action representations ap and ay, action-based
abstract goal P(zy) and goal consistency criterion is drastically different from
[1,22]. In [27], goal consistency is defined between latent goals before and after
the action using a hard threshold. Instead, our goal consistency is a symmetric
KL divergence between p(zr) and p(zy) distributions which aims to align the
two abstract goal distributions. This also results in a massive improvement in
next action anticipation performance as shown in the experiments.
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3.5 Loss functions and training of our model

Our anticipation network is trained using a number of losses. In contrast to prior
stochastic methods [1,21,22], we introduce three KL divergence losses, based on
a) feature-based abstract goal (Lo¢), b) action-based abstract goal (Ly¢), and
¢) goal-consistency (Lgc). The first loss function is used to learn the parameters
of the feature-based abstract goal distribution. We compute the KL-divergence
between the conditional prior ¢(z:|x1..—1) and posterior r(z;|x1.¢) distributions
for every feature in the observed feature sequence and minimize the sum given
as follows Lo = 23:1 Dgr(r(z¢]x1:)]|q(z¢|%1:4~1)) and we call this observed
goal loss. This loss is based on the intuition that the abstract goal should not
change due to a new observed feature.

Our second loss arises when we learn the action-based abstract goal distribu-
tion. We compute the KL-divergence between r(zx|ak, ao) and g(zy|al;) distri-
butions of action-based abstract goal distributions as Lng = Dk (r(zn|al, ao0)
llg(zn]al)). We denote the corresponding best action-based abstract goal dis-
tribution by p(z}) = ¢(zn|a} ). The intuition is same as before, the goal should
not change because of the next best action aj;.

Furthermore, the feature-based and action-based abstract goal distributions
should be aligned with respect to the selected next best action aj,. Therefore,
we minimize the symmetric KL-Divergence between the feature-based and best-
action-based abstract goal distribution as follows:

Lo =P lzr)llp(zy) -; D1 (p(zy)[lp(zr) ()

We coin this loss as goal consistency loss. This loss is based on D(ay) in
Equation 10 with the only difference being that p(z%,) = q(zn|a}) is computed
with respect to the selected best next action representation a};. Finally, we have
the cross-entropy loss for comparing the model’s prediction § with the ground
truth one-hot label y as Lya = — >y @ log(§). The loss function to train the
model is a combination of all losses given as follows:

Liotal = Loc + Lng + Lac + Lna. (12)

We experimented with adding different weights to each loss but there is no
significant difference in performance. Therefore, we weigh them equally.

4 Experiments and results

4.1 Datasets, features, and training details

We use well known action anticipation datasets, Epic-Kitchens55[5] (EK55) and
Epic-Kitchens100(6] (EK100) to evaluate our approach.

We validate our models using the TSN features obtained from RGB and opti-
cal flow videos, and bag of object features provided by [10] for a fair comparison
with existing approaches. Our base model has the following parameters: observed
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Table 1. Comparison of anticipation accuracy with state-of-the-art on EK55 evaluation
server with anticipation time of 1 sec. ACT: for action.

Method Top-1 accuracy(%) Top-5 accuracy (%) Precision(%) Recall(%)
VERB | NOUN | ACT. | VERB | NOUN | ACT. | VERB | NOUN | ACT |VERB|NOUN |ACT.

Seen Kitchens (S1)

RU-LSTM [10] 33.04 [22.78 [14.39 [79.55 [50.95 [33.73 (2550 [24.12 [07.37 [15.73 [19.81 [07.66
Lat. Goal [27] 27.96 |27.40 |08.10 |78.09 |55.98 |26.46 |- - - - - -
SRL [25] 34.80 [22.84 1424 7959 |52.03 |34.61 |28.29 |25.60 |06.45 12.19 |19.16 | 06.34
ImagineRNN [33] 35.44 |22.79 |14.66 79.72 |52.09 |34.98 |28.04 |24.18 |06.66 16.03 |19.61 |07.08
Temp. Agg. [29] 37.87 |24.10 |16.64 |79.74 |53.98 |36.06 |36.41 2520 |09.64 15.67 |22.01 |10.05
MM-Trans [26] 2859 |27.18 |10.85 78.64 |57.66 |30.83 |17.50 |26.20 |03.81 10.81 |24.89 | 04.49
MM-TCN [35] 37.16 |23.75 |15.45 79.48 |51.86 |34.37 |28.18 |23.82 |06.94 16.05 |22.31 |08.40
AVT [13] 34.36 20.16 |16.84 80.03 |51.57 |36.52 |23.25 |17.77 |09.71 |14.02 |18.81 |10.11
DCR [34] 17.70 38.50 | -

Abstract Goal (VRNN) |51.56 ' 35.34 |22.03 | 82.56 |58.01 |38.29 '34.83 |31.33 | 13.08|26.67 |31.42 |12.20
Unseen Kitchens (S2)

RU-LSTM [10] 27.01 [15.19 [08.16 [69.55 |34.38 [21.10 [13.69 [09.87 [03.64 [09.21 [11.97 |04.83
Lat. Goal [27] 2240 [19.12 [04.78 [72.07 |42.68 |16.97 |- - - - - -

SRL [25] 27.42 1547 [08.88 [71.90 |36.80 |22.06 |20.23 |12.48 |02.84 |07.83 |12.25 |04.33
ImagineRNN [33] 29.33 1550 [09.25 |70.67 |35.78 |22.19 |17.10 |12.20 |03.47 |09.66 | 12.36 | 05.21
Temp. Agg. [29] 2950 |16.52 [10.04 [70.13 |37.83 |23.42 [20.43 |12.95 |04.92 |08.03 |12.84 |06.26
MM-Trans [26] 26.80 |18.40 |06.76 |70.40 |44.18 [20.04 [09.53 |15.17 |02.23 [07.73 |15.19 |03.34
MM-TCN [35] 30.66 |14.92 [08.91 [72.00 |36.67 |21.68 |10.51 |12.26 |04.35 [09.79 |12.72 |04.94
AVT [13] 30.66 |15.64 |10.41 |72.17 |40.76 |24.27 |12.86 |11.83 |04.84 |09.89 | 13.46 | 06.41
DCR [34] - - 10.90 |- - 24.80 |- - - - - -

Abstract Goal (VRNN) |41.41 1 22.36 |13.28 | 73.10 [41.62 |24.24 123.62 |18.29 | 08.73|15.70 |18.29 | 08.29

duration - 2 seconds, frame rate - 3 fps, RNN (GRU) hidden dimension d;, =
256, abstract goal dimension d, = 128, number of sampled feature-based abstract
goals (Q = 3), number of next-action-representation candidates (K = 10), Liotal
loss, and fixed anticipation time - 1s (following EK55 and EK100 evaluation
server criteria), unless specified otherwise. We use a batch size of 128 videos and
train for 15 epochs with a learning rate of 0.001 using Adam optimizer with
weight decay (AdamW) in Pytorch. All our MLPs have 256 hidden dimensions.

4.2 Comparison with state-of-the-art

We compare the performance of Abstract Goal (our method) with current state-
of-the-art approaches on both the seen and unseen test sets of EK55 datasets
in Table 1 using a late fusion of TSN-RGB, TSN-Flow, and Object features like
most of the prior work. We train separate models for verb and noun anticipation
and combine their predictions to obtain action anticipation accuracy. The model
structure is the same for both the verb and noun models but the final classifica-
tion output is either verb or noun. Our method outperforms all other prior state-
of-the-art methods for both seen kitchens (S1) and unseen kitchens (S2). Notably,
we outperform Transformer-based AVT [13] and Temporal-Aggregation [29] in
all measures in both seen and unseen kitchens except for Top-5 accuracy on
unseen kitchens. We believe this improvement is due to two factors, (i) stochas-
tic modeling is massively important for action anticipation, and (ii) the effective
use of goal information is paramount for better action anticipation.
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Table 2. Comparison on EK100 dataset on evaluation server using test set. Accuracy
measured by mean recall@5 (%) following the standard protocol.

Method Input | Overall Unseen Kitchens Tail Classes

VERB  NOUN | ACT. | VERB | NOUN | ACT. | VERB | NOUN | ACT.
AVT [13] Frames | 26.69 |32.33 |16.74 |21.03 |27.64 |12.89 |19.28 |24.03 |13.81
RAFTformer [12] Frames | 30.10 |34.10 |15.40 |- - - - - -
InAVIiT [28] Frames | 49.14 | 49.97 |23.75|44.36 | 49.28 | 23.49 |43.17 1 39.91 18.11
RU-LSTM 6] TSN 25.25 [26.69 |11.19 119.36 |26.87 |09.65 |17.56 |15.97 | 07.92
Temp. Agg. [29] TSN 21.76 |30.59 |12.55 |17.86 |27.04 |10.46 |13.59 |20.62 | 08.85
TransAction [15] TSN 36.15 |32.20 |13.39 |27.60 |24.24 |10.05 |32.06 |29.87 |11.88
DCRJ34] TSN |- - 17.30 |- - 14.10 |- - 14.30
Abstract Goal (VRNN) | TSN 31.40 |30.10 |14.29 31.36 |35.56 |17.34 2290 |16.42 | 07.70
Abstract Goal (TF) TSN 37.63 |38.70 | 14.21 |34.92 | 38.88 |14.25 |30.67 |29.10 |09.11

Despite, these excellent results on EK55, our overall results on EK100 are not
state-of-the-art—see Table 2. Our method performs not as well as recent methods
that are extensively pre-trained vision transformer (ViT) models with image and
action recognition datasets before being trained for action anticipation [12,13,
28]. On the other hand, our model is trained directly on the target dataset
using temporal segment network (TSN) [31] features. Compared to the best
Transformer model [15,34] trained on TSN features, Abstract Goal - VRNN
performs better on both overall and unseen kitchens of the EK100 dataset but
not as well on tail classes. EK100 dataset is dominated by long-tailed distribution
where 228 noun classes out of 300 are in the tail classes. Similarly, 86 verbs
out of 97 are in the tail classes. In our model, the next-action-representation
is modeled with a Gaussian distribution (Equation 6), and therefore, it is not
able to cater to exceptionally long tail class distributions as in EK100. This is
a limitation of our method. We do not witness the tail-class issue in EK55 as
the performance measure used is accuracy compared to mean-recall in EK100.
Accuracy is influenced heavily by frequent classes but mean-recall treats all
classes equally.

For completeness, we test whether the tail class issue on EK100 can be
resolved using a transformer network (6 layers with 8 attention heads) instead
of a GRU for observed feature summarization. While abstract goal with trans-
former (TF) improves tail class performance it is not able to outperform [15,34]
on tail classes. This confirms our hypothesis that using Gaussian distribution
for next-action-representation (action-based abstract goal) can limit tail class
performance but improves overall and unseen kitchens anticipation accuracy.

4.3 Impact of goal consistency criterion and loss

In this section, we evaluate the impact of Goal Consistency (GC) criterion and
the loss derived from it £, using the validation set of EK55 and EK100 datasets.
We train separate models for verb and noun anticipation using TSN-RGB (RGB)
and Object (OBJ) features, respectively. As Mean and Median sampling are used
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in prior variational prediction models [1], here we use mean and median sampling
as two baselines to show the effect of GC. We sample ) x K number of next-
action representations (an) instead of selecting the best next-action candidate
using GC (Algorithm 1). Then we obtain the mean/median vector of all sampled
candidates and then make the prediction using the classifier (e.g. mean vector=

%Xa; ). We also experimented with a majority /median class prediction baseline.

In this case, we take all @Q x K predictions from the classifier (from the next
action-representation candidates) and pick the majority /median class as the final
prediction. Everything else stays the same for all these mean/majority /median
baseline models, except we do not use the GC criterion (Equation 10) and the
goal consistency loss L,.. Results are reported in Table 3.

Table 3. The impact of goal consistency criterion and loss. @1 and @5 denotes Top-1
and Top-5 accuracy and V stands for verb and N stands for noun.

Goal candidate (Q) & Action candidate (K) EK55 EK100
val |va5 |[N@Ql |[N@5 |val (V@5 |N@l |Naj
Mean Q=1, 41.79 | 72.23 |25.79 |49.50 |44.51 |76.89 |22.72 | 50.78
K=1
Median 41.16 | 71.32 |24.30 |48.31 |45.44 |77.91 |22.15 | 51.23
Majority class 41.98 | 72.89 |25.98 |50.01 42.98 |74.56 |24.13 |53.45
Median class 41.02 | 72.11 |22.88 |49.87 |44.19 |77.00 |22.97 | 51.98
Our model 45.18|77.30 | 28.16 | 51.08 | 48.84 | 80.52 | 27.50 | 55.83
Mean Q=3, 39.40 | 72.23 |24.22 [48.96 145.90 |77.88 |22.41 |50.87
K=1
Median 41.32 | 71.32 |26.60 | 51.70 |45.63 |77.02 |24.33 | 52.87
Majority class 38.39 169.42 | 24.70 1 48.22 |45.72 | 78.61 | 22.61 |50.89
Median class 40.43 | 71.43 |26.52 |52.33 45.84 |78.09 |23.78 |52.33
Our model 44.68|77.14 | 28.29 | 53.78 | 49.02 | 80.86 | 28.52 | 54.91
Without Lac | Q=1, 38.31 |70.77 |119.74 |43.11 |43.82 |77.45 |21.25 | 51.99
K=1
With Lgc 40.88|71.43 | 22.09 | 46.29 | 46.80 | 78.41 | 26.80 | 53.32

As can be seen from the results, there is a significant impact of GC. Especially,
there is an improvement of 3.39% and 2.37% for top-1 verb and noun accuracy
respectively using our GC model in the EK55 dataset for @ = 1, K = 10 over
Mean sampling baseline. A similar trend can be seen for EK100 and Q = 3, K =
10 as well. Our model also outperforms majority and median class sampling
baselines for both [@Q = 1, K = 10| and [@Q = 3, K = 10] configurations indicating
the effectiveness of goal consistency both as GC criterion and GC loss Lgc.
Overall, our method with GC loss and criterion performs better than all other
variants. Perhaps this is because the GC criterion allows the model to regularize
the candidate selection while GC loss allows the model to enforce this during
the training. This clearly shows the impact of goal consistency formulation of
our model for action anticipation.

We perform a more controlled experiment to further evaluate the impact of
GC loss where we set Q =1 and K = 1 and train our model with and without
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Table 4. Ablation on the sensitivity of number of sampled feature-based-abstract-goals
(Q) and next-action representation candidate K on EK55 and EK100 validation set.

parameter value | EK55 EK100

val |va@s5 |[N@l |N@5 |va@l |v@5 N@l |N@5
1 45.18 | 77.30 |28.16 |51.08 |48.84 |80.52 |27.50 |55.83
2 44.44 | 76.19 |28.47|52.38 |49.25 | 80.44 | 28.41 |55.65
3 44.68 | 77.14 |28.29 |53.7849.02 | 80.86 28.52 | 54.91
4 45.31 | 77.91/26.28 |50.33 |48.86 | 80.46 | 28.16 |55.11
5

1

3

5

num. feature-based abstract goals (Q) (K = 10)

45.80 | 77.40 |26.95 |51.93 |49.71|80.40 28.04 |55.16
39.81 | 72.31 |21.48 |44.96 |44.24 | 75.67 1 20.06 |42.56
40.49 | 74.20 |22.60 |46.22 |44.37 |76.11 21.07 |44.51
41.32 | 74.26 |23.17 |48.23 |45.61 | 78.91 |22.91 |45.12
10 44.68 | 77.14 |28.29 | 53.78|49.02 | 80.86 | 28.52|54.91
20 43.79 |79.00 | 27.07 | 51.10 |49.01 |80.36 |28.13 |55.40
30 44.56 | 77.81 |27.80 |51.00 |49.18|81.20 27.44 |53.42

num. next action candidates (K) (Q=3)

GC loss (Lge)- It should be noted that when @ = 1 and K = 1, GC criterion
has no impact because we do not have multiple candidates to evaluate. The only
meaningful way to see the effect of GC is to compare a model trained with and
without the GC loss. To obtain a statistically meaningful result, we repeat this
experiment 10 times and report the mean performance. As it can be seen from
the results in Table 3 (last two rows), clearly GC loss has a positive impact
even when we just sample a single action candidate from our stochastic model.
We see that compared to our model variant [Q = 1, K = 1 with Lg¢], the
[Q =1, K = 10 with L5¢] model performs significantly better (last row vs row
5 of Table 3). This indicates the impact of next-action-representation sampling
(Equation 6) even for a single sampled feature-based abstract goal (Q = 1).
We conclude that the goal consistency loss, the goal consistency criterion, and
next-action-representation distribution modeling (all novel concepts introduced
in this paper) are effective for action anticipation.

Table 5. Loss ablation on EK55 and EK100 validation set. i.e.Ln a-Next action cross-
entropy loss, Log-Feature-based abstract goal loss, £Lnyg-Action-based abstract goal
loss, Lac-Goal consistency loss.

Losses EK55 EK100
val |vas5 |N@l |N@5 |va@l |va@s |Na@l |N@s

LNna 21.36 | 69.69 |27.76 | 51.89 | 24.46 |72.31 |27.12 | 54.55
Lna+ Loc 44.42 | 77.79 |28.41 |51.31 |43.23 | 75.63 | 23.45 | 52.89
Lyna+ LNnc 46.01 | 77.94 |29.05 | 52.32 |46.94 | 78.44 |22.96 | 49.66
Lyna+ Lac 43.83 | 77.43 | 28.06 | 51.87 |44.45 | 76.72 |20.31 |47.87
Lyna+ Loc + LNc 44.47 | 77.12 | 28.51 | 51.34 |46.73 | 78.62 |24.56 | 51.33
Lyna+ Loc + Lcc 45.47 | 77.42 | 28.61 |52.34 |47.25 | 78.11 |26.91 | 53.34
Lna+ Loc+ Lng + Lac | 46.37 | 77.97 | 29.86 | 52.74 | 49.02 | 80.86 | 28.52 | 54.91

Apart from GC loss, we also study the impact of other loss functions described
in Section 3.5 and report the results in Table 5. If we use only the supervised
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cross-entropy loss (i.e., Lx4), then the performance is the worst, especially for
verbs. Both Log and Ly help in regularizing the abstract goal representations
(z¢ and ay), and therefore results improve significantly. Especially, the Lx4 +
Lyg is the best loss combination for a pair of losses. When we combine all
four losses, we get the best results. While Ly 4 + Lny¢ regularizes the learning
of abstract goal representations, L& which minimizes the divergence between
feature-based and action-based goal distributions improves the choice of next
verb or noun among the plausible candidates. We conclude that all four losses
are important for our model.

4.4 Effect of action-based abstract goal distributions

We demonstrate the efficacy of action-based abstract goal in our model by com-
paring it to a variant of our model having only the feature-based abstract goal
(equivalent to a VRNN) in Table 6. For the feature-based abstract goal (Feat.
abs. goal), we obtain a latent variable zt and the observed action representation
ap from Equation 5. We classify ag using a classifier to obtain the future action
and train using cross-entropy loss and KL-divergence (Log). We do not have

Table 6. Effect of action-based abstract goal

Model val |va@s5 |N@l |N@5
Abs. Goal (Feat)-mean 27.76 | 61.23 | 22.34 | 46.78
Abs. Goal (Feat)-median 38.13 | 68.94 | 23.85 | 47.56

Abs. Goal (Feat+Act)-mean |39.40 | 72.23 |24.22 | 48.96
Abs. goal (Feat+Act)-median | 44.68 | 77.14 | 28.29 | 53.78

GC criterion when using only the feature abstract goal distribution and hence
we sample 30 candidates for ag and consider their mean or median. The num-
ber of sampled candidates is chosen to match our feature + action abstract goal
model with 30 next action candidates (Q = 3, K = 10). As shown in Table 6,
using action-based abstract goal in conjunction with feature-based abstract goal
performs much better than only feature abstract goal distribution (under both
mean or median prediction).

5 Conclusion

We present a novel approach for action anticipation where abstract goals are
learned with a stochastic recurrent model. We outperform existing approaches
on EK55 and our model generalizes to unseen kitchen environments in both EK55
and EK100 datasets. We also show the importance of goal consistency criterion,
goal consistency loss, next-action representation modeling, and architecture. One
limitation of the current work is the inability to directly interpret the latent
goal representation learned by our model. Second, our method is not able to
tackle long-tail-class distribution issues. In the future, we aim to address these
limitations of our model.
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Abstract. Hand pose represents key information for action recogni-
tion in the egocentric perspective, where the user is interacting with
objects. We propose to improve egocentric 3D hand pose estimation
based on RGB frames only by using pseudo-depth images. Incorporat-
ing state-of-the-art single RGB image depth estimation techniques, we
generate pseudo-depth representations of the frames and use distance
knowledge to segment irrelevant parts of the scene. The resulting depth
maps are then used as segmentation masks for the RGB frames. Exper-
imental results on H20 Dataset confirm the high accuracy of the esti-
mated pose with our method in an action recognition task. The 3D hand
pose, together with information from object detection, is processed by a
transformer-based action recognition network, resulting in an accuracy
of 91.73%, outperforming all state-of-the-art methods. Estimations of
3D hand pose result in competitive performance with existing methods
with a mean pose error of 28.66 mm. This method opens up new possi-
bilities for employing distance information in egocentric 3D hand pose
estimation without relying on depth sensors. The code is available under
https://github.com/wiktormucha/SHARP.

Keywords: Egocentric -+ 3D hand pose *+ Action recognition

1 Introduction

In recent years, one of the growing research areas in computer vision has been
egocentric vision, as evidenced by the increasing number and size of published
datasets EPIC-KITCHENS (6], Ego4D [14], H20 [16] and release of devices like
Ray-Ban Stories, Apple Vision Pro or HoloLens. One of the challenges in egocen-
tric vision is understanding human-object interaction based on hand pose estima-
tion and action recognition [11,16]. The hand pose estimation task is described
as the challenge of estimating the position of key points representing the joints
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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1. Egocentric 3D Hand Pose Estimation with SHARP and Object Detection
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Fig. 1. Overview of our method. In the sequence of input frames fi, f2, f3... f, repre-
senting the action, SHARP improves the estimation of the 3D hand pose Phi’?R’n. The
bounding box of the manipulated objects Po2P with their labels Po; are retrieved using
YOLOv7 [27]. Pose information is embedded in a vector describing each frame. The
sequence of vectors is processed by the transformer-based network to predict action.

of a human hand in two or three-dimensional space. Estimated positions are a
valuable source of information for recognising the actions performed by a cam-
era wearer, linking these two tasks. Egocentric action recognition research is of
great importance in various domains, including augmented and virtual reality,
nutritional behaviour analysis, and Active Assisted Living (AAL) technologies
for lifestyle analysis [21] or assistance [17]. As AAL technologies mainly target
Activities of Daily Living (ADLs) such as drinking, eating and food preparation,
which are inherently manual and involve object manipulation, there’s a growing
interest in research focused on hand-based action recognition.

Current work on egocentric hand-based action recognition focuses on 3D hand
pose [7,16,26] using a single RGB camera. As a result, these studies regress z
coordinate from RGB frames, which introduces complexity and results in pose
prediction errors of around 40 mm [15,16,26] (equivalent to a 20.5% error con-
sidering an average human hand size of 18 cm), which is far from the desired
performance, especially considering that publicly available datasets for egocen-
tric hand pose are captured in a laboratory environment. Accurate pose predic-
tion is essential for hand-based action recognition [18]. The improvement in 3D
prediction could be further enhanced by the use of a depth sensor, but there’s
currently no portable depth sensor on the market. Despite market availability,
an additional sensor would add undesired costs due to power and processing
requirements. Data growth for training and research is another constraint, as
labelling key points in 3D space is difficult and requires, for example, a labo-
ratory multi-view camera setup [16,22]. All these circumstances create a need
and motivate our research to explore new techniques and solutions to improve
egocentric 3D pose estimation based on RGB images only.
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Our study proposes the use of pseudo-depth images, depth images gener-
ated from a single RGB image using state-of-the-art depth estimation methods.
The resulting distance representation of the scene does not contain real depth
values, but it allows for the removal of non-relevant information in the scene
depending on the distance. In an egocentric perspective, human arms have a
constant maximum distance from the camera because the camera is mounted in
a fixed position on the human body. This characteristic allows for the removal
of the values representing the parts of the scene beyond this distance, leaving
the input image of a hand pose estimation network with only hands and manip-
ulated objects visible. We call this process Segmentation of Hands and Arms
by Range using Pseudo-depth (SHARP). This solution requires no additional
sensors; it can be applied to any RGB input data; no additional training of the
depth estimation model is required; and compared to background subtraction
based on image sequences, only a single RGB image is required. These advan-
tages are confirmed by a performance improvement of 7mm, reducing the mean
pose error from 35.48 mm to 28.66 mm from the baseline. The overview of the
method is presented in Fig. 1. Our contribution can be listed as follows:

— Inspired by superior egocentric hand pose estimation in 2D over other meth-
ods, we extend the state-of-the-art EffHandEgoNet [18] to 3D pose estimation,
resulting in a new architecture called EffHandEgoNet3D.

— On the top of EffHandEgoNet3D we propose SHARP module, a novel idea
for egocentric scene segmentation to improve hand-object interaction under-
standing. A state-of-the-art depth estimation model is used to generate
a pseudo-depth scene representation. Furthermore, the generated distance
knowledge is used to remove irrelevant information in the scene with a fixed
distance over the range of the human arms, resulting in the preservation of
the human arms and the interacting object. SHARP requires no additional
training and can be applied to any egocentric RGB data. The proposed archi-
tecture outperforms several state-of-the-art studies, achieving a mean error
of 28.66 mm on the H20 Dataset.

— We implement an action recognition network based on a transformer archi-
tecture. It uses previously estimated 3D hand pose and 2D object detection
information as input. The network outperforms the state-of-the-art on the
H20 Dataset, including methods that use more information e.g. 6D object
pose, reaching 91.73% action recognition accuracy.

— We present extensive experiments and ablations performed on H20 Dataset,
showing the influence of the proposed scene segmentation method on the
performance of 3D hand pose estimation in the egocentric perspective.

The structure of the paper is as follows: In Sect. 2, we review related research
on egocentric 3D hand keypoint estimation, hand-based action recognition, and
depth estimation using a single RGB image, and identify opportunities for
improvement. Section 3 details our approach and its implementation. Our evalu-
ation and experimental results are presented in Sect. 4. Finally, Sect. 5 concludes
the study, summarising its main findings and limitations.
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2 Related Work

Egocentric Hand Pose FEstimation. Hand pose estimation in egocentric
vision faces challenges such as self-occlusion, limited field of view, and diverse
perspectives, which hinder effective generalisation. Some approaches overcome
these obstacles by using RGB-D sensors [11,19,31]. However, the adoption of
depth sensors is hampered by limited market availability, directing towards self-
made solutions and increasing computing and power costs. Due to device limi-
tations, several studies estimate 3D keypoints from RGB images only by using
neural networks that estimate the z coordinate representing depth along x and y,
followed by a conversion from 2D to 3D space using intrinsic camera parameters
[16,26]. For example, Tekin et al. [26] compute the 3D pose of a hand directly
from a single RGB image using a convolutional neural network (CNN) that out-
puts a 3D grid with the probability of target pose values in each cell. Similarly,
Kwon et al. [16] extend this approach to estimate poses for both hands. However,
these methods report a mean end-point error (EPE) of 37 mm for hand pose esti-
mation in the H20 dataset, suggesting room for improvement given the average
human hand size of 18 cm. Cho et al. [5] use CNNs with transformer-based net-
works for 3D pose reconstruction on a frame-by-frame basis, while Wen et al.
[30] propose a sequence-based approach for depth reconstruction that addresses
occlusion challenges.

Egocentric Action Recognition. A common strategy for action recogni-
tion involves the joint processing of hand and object information. Cartas et
al. [3] proposes CNN-based object detectors to estimate the positions of primary
regions (hands) and secondary regions (objects). Temporal information from
these regions is then processed by a Long Short-Term Memory (LSTM) network.
Nguyen et al. [20] Transition from bounding box information to 2D skeletons of a
single hand estimated by CNN from RGB and depth images. The joints of these
skeletons are aggregated using spatial and temporal Gaussian aggregation, and
action recognition is performed using a learnable Symmetric Positive Definite
(SPD) matrix. With the rise of 3D-based hand pose estimation algorithms, the
scientific community has increasingly focused on egocentric action understand-
ing using 3D information [7,16,26]. Tekin et al. [26] estimate 3D hand and object
poses from a single RGB frame using a CNN, embedding temporal information
to predict action classes using an LSTM. Other techniques use graph networks,
such as Das et al. [7], who present a spatio-temporal graph CNN architecture
that describes finger motion using separate subgraphs. Kwon et al. [16] construct
sub-graphs for each hand and object, which are merged into a multigraph model,
allowing learning of interactions between these components. Wen et al. [30] use
a transformer-based model with estimated 3D hand pose and object label input.
Cho et al. [5] enrich the transformer inputs with object pose and hand-object
contact information. However, these studies do not make use of depth data.
Instead, they estimate points in 3D space using neural networks and intrinsic
camera parameters [5,16,26,30].



182 W. Mucha et al.

Depth Estimation from Single RGB Image. Recent advances in depth
estimation have relied on CNNs for direct regression of scene depth from input
images [9]. These methods often struggle to generalise to unconstrained scenes
due to the limited diversity and size of the training data. Garg et al. [12] pro-
posed the use of calibrated stereo cameras for self-supervision, which simpli-
fies data acquisition but maintains constraints on specific data regimes. Despite
subsequent self-supervised approaches [13], challenges remain, particularly for
dynamic scenes. Efforts to overcome these limitations include crowd-sourced
annotation of ordinal relationships [4], but existing datasets are often biased or
lack dynamic objects, making it difficult to generalise to less constrained environ-
ments. In response, Ranftl et al. [24] propose tools for mixing multiple datasets,
even with incompatible annotations. Their approach incorporates a robust train-
ing objective, principled multi-objective learning, and emphasises pre-training of
encoders on ancillary tasks. By training on five different sources, including a rich
dataset of 3D movies, they outperform state-of-the-art depth estimation models
in zero-shot cross-dataset performance. As an extension of this work, Ranftl et
al. [23] present DPT-Hybrid and DPT-Large architectures enhanced with dense
prediction transformers, which use vision transformers instead of CNNs, further
improving the performance of depth estimation.

What distinguishes our work from other studies of egocentric 3D hand pose
is the use of a depth estimation that we incorporate into SHARP module. Using
state-of-the-art single RGB image depth estimation techniques, we generate a
pseudo-depth representation of the image without any additional equipment.
Knowing that the distance of the human arms from the camera in an egocentric
view is constant, we then use this generated depth image to segment irrelevant
information from the scene using a fixed distance threshold, thereby unifying
the dataset for hand pose estimation. This methodology ensures that the hand
pose estimation model only considers hands and manipulated objects, thereby
increasing accuracy and efficiency, and can be applied to any RGB dataset.

3 Egocentric 3D Hand Pose Estimation and Action
Recognition Enforced With Pseudo Depth

The study considers the tasks of egocentric 3D hand pose estimation and action
recognition. These two tasks are correlated but significantly different, so the
methodology is described separately for each.

3.1 Egocentric 3D Hand Pose with Pseudo-depth Segmentation

In the first stage, each RGB frame f,, undergoes processing with SHARP mod-
ule which consists of a depth estimation model DPT-Hybrid [23], yielding a
pseudo-depth representation I” of the frame f,,. This pseudo-depth map is then
normalised with its maximum value maz(I”). As human arms have a constant
maximum range we utilise this characteristic. Subsequently, a fixed threshold ¢
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Fig. 2. Overview of the proposed egocentric 3D hand pose estimation method. First,
the RGB image is processed with the SHARP module. Within SHARP, the pseudo-
depth image is generated using the DPT-Hybrid. This distance representation is used to
remove irrelevant scene information using a fixed threshold of the human arm range ¢.
Secondly, the SHARP output is passed through a 3D hand pose estimation network.

is applied to the pseudo depth map I? to remove the non-relevant scene part.
The resultant depth map, devoid of background interference, serves as a segmen-
tation mask for the f,. Segmentation of f, with I? results in I5F% where the
RGB image contains only human arms and a manipulated object.

The processed I5FC € R3*wXh 4y h = 512 is then inputted into a 3D hand
pose estimation network, named EffHandEgoNet3D, which is an extension of
the state-of-the-art 2D egocentric hand pose network, EffHandEgoNet [18], tai-
lored for 3D estimation. EffHandEgoNet3D comprises an EfficientNetV2-S [25]
backbone which extract feature map representation of ISF¢ [y, € R1280x16x16
Extracted feature map F); is handed to two independent upsamplers for each
of the hands and M LPﬁ r estimating keypoints’ depth. Despite pose estima-
tion, the handness modules responsible for predicting each hand’s presence

ndl g /- MLP
3D Hand Pose . Classifier
=  Estimation with - f. = kot = % J
a3
s i
- f; => 2 => f3 5
=1 £ Action label:
Object Detection S
YOLOV?, fi a «  grab book
(¢ ) - fn = - " E - place book
= « open milk
Fufafefu PR =[Cwuydi-GuyduPol  fo=[PhiR, Pos,)  freRES yg | oken > pour mik
&

X
N

Fig. 3. Our action recognition procedure. From the sequence of frames fi, fa, f3...fn
the hand pose Ph?L’j?R is estimated with SHARP and EffHandEgoNet3D model and
the object pose Po*”, Po, is extracted with YOLOvw7 [27]. Each sequence frame f,
is linearised and positional embedding and classification tokens are added. Next, this
sequence is passed to a transformer encoder [8] repeated x2 times, which embeds the
temporal information. Finally, the MLP predicts one of the 36 action labels.
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hr,hr € R? are built from another M LPfI r- The upsamplers consist of three
transposed convolutions with batch normalisation and ReLU activation except
the last layer followed by a pointwise convolution. Output results are heatmaps
Hp r € R7X%X wwhere each cell represents the probability of joint J occurrence
for each hand. In the next step they are transformed into P%% and concate-

nated with estimated corresponding z values resulting in P%%D . The final step

utilises camera intrinsic parameters to transform P2 ‘)D

using the pinhole camera
model to camera space resulting in PL . The overview of the complete method

is visible in Fig. 2.

3.2 Egocentric Action Recognition Based on 3D Hand Pose

We perform egocentric action recognition from image sequences using estimated
3D hand pose and 2D information about interacting object. The actions consid-
ered in this study are those in which humans manipulate objects with one or
both hands, such as pouring milk or opening a bottle. An overview of the pipeline
is shown in Fig. 3. It consists of three distinct components: object detection, 3D
hand pose estimation, and finally action recognition using a transformer encoder
and a classification MLP. The architecture improves egocentric action recogni-
tion based on the 2D hand pose introduced in EffHandEgoNet study [18]. The
first step in the pipeline is object detection, which is carried out employing the
pre-trained YOLOv7 network [27]. In each frame, denoted as f,, the interacting
object is represented by Poop(z,y) € R¥*2 where each point corresponds to the
corners of its bounding box. Additionally, Po; € R! represents object’s label.
The representation of each action sequence consists of frames
[f1, f2, f3, s fn], where n € [1..N] and N = 20 following [18]. These frames
embed flattened poses of hands Ph%’?R and object Posp, Po;. If fewer than N
frames represent an action, zero padding is applied, while actions longer than
N frames are sub-sampled. The input vector V., is a concatenation of frames
fn c R135.
fn = [ h POQD,PO[} (1)

seq [flan fn] [ N] (2)

The sequence vector representing an action Ve, is processed to embed tem-
poral information with a transformer encoder block following [18]. First, Ve, is
linearised using a fully connected layer to ay;,. The resulting zy;, is combined
with a classification token and a positional embedding. The embedded sequence
is passed to MLP for classifying the action.

4 Experiments

4.1 Datasets

In this evaluation, we focus exclusively on the H20 Dataset [16] due to its suit-
ability for our research objectives. This dataset captures human actions from
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an egocentric perspective, providing labels for action recognition and 3D hand
pose of both hands. At the time of this study, there are only two other publicly
available datasets with similar characteristics required for our study, such as
AssemblyHands [22] and HoloAssist [29]. While HoloAssist is potentially valu-
able, the hand pose labels have not yet been released. AssemblyHands is excluded
due to images captured by infrared cameras, which are incompatible with the
DPT-Hybrid depth estimation model designed for RGB input.

H20 Dataset is a comprehensive resource for analysing hand-based actions and
object interactions involving two hands. It includes multi-view RGB-D images
annotated with action labels covering 36 different classes derived from verb and
object labels. It also includes 3D poses for both hands, resulting in j = 2 x 21
points, and 6D poses and meshes for the manipulated objects. Ground truth
camera poses and scene point clouds further enrich the dataset. The actions
captured in the dataset were performed by four people. For both the action
recognition and hand pose estimation tasks, the dataset provides training, val-
idation and test subsets. The action recognition subset contains 569 clips for
training, 122 for validation and 242 for testing.

4.2 Metrics

To evaluate the hand pose estimation and compare our work with the state of the
art, we calculate the Mean Per Joint Position Error (MPJPE) in millimetres over
21 keypoints J representing the human hand. This error metric quantifies the
Euclidean distance between the predicted and ground truth values. For action
recognition, we use the top-1 accuracy measure, where the model’s prediction
must exactly match the expected ground truth to be considered accurate.

4.3 Experiment Setup

For both learning processes, each run is repeated three times to reduce the
effect of random initialisation of the network, and mean results with standard
deviations are reported.

3D Hand Pose Estimation is trained and evaluated on H20 Dataset. The
optimisation is done using Stochastic Gradient Descent (SGD) over the sum-
marised loss function including Intersection over Union (IoU) for each upsam-
pler and L1 loss for predicted corresponding depth values. The process starts
with a learning rate [, = 0.1 and momentum equal to m = 0.9. Over time [, is
reduced by a = 0.5 every 10*” epoch starting from the 50" epoch. the data is
augmented with random cropping, horizontal flipping, vertical flipping, resizing,
rotating and blurring. The batch size is equal to bs = 32. Model weights are
saved for the smallest MPJPE in the validation subset.

Action Recognition module requires object detection. For this, we fine-tune
YOLOvT7 on the H20 Dataset using the open-source strategy reported by the
authors. The training of the action recognition includes the augmentation of
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the sequence vectors with keypoints using random rotation and an additional
strategy with random masking of either the hand, the object positions or the
label. This is done by setting the corresponding values of the hand or object
in the frame f, to zero. We follow [16,26,32] and use given poses in training.
Input sequence frames are randomly sub-sampled during training and uniformly
sub-sampled for validation and testing. Models are trained with a batch size
bs = 64, AdamW optimiser, cross-entropy loss function, and a learning rate
l, = 0.001 reduced by a factor of 0.5 every 200 epochs after 500 epochs. Hyper-
parameters and augmentations are selected based on the best-performing set in
the validation subset. Weights are stored for best validation accuracy.

4.4 Comparison with State of the Art

Our architecture with SHARP gives an average MPJPE in hand pose of 29.61 +
0.71 mm in three consecutive runs with the best run MPJPE equal to 28.66 mm.
The qualitative results shown in Fig.4 confirm the improvement in 3D hand
pose estimation when using SHARP, but also show that SHARP can lead to a
degradation in performance if too much information is reduced from the scene.
Further, we employ the estimated 3D hand pose using SHARP in the proposed
action recognition architecture. It yields an average of 90.90% =+ 0.67 over three
runs, with the best model yielding an accuracy of 91.73%. Comparison with state
of the art for egocentric 3D hand pose estimation is presented in Table 1. Table 2
presents a comparison of state-of-the-art action recognition methods and their
results on the H20 Dataset reported by the authors. To ensure a fair comparison,
the table provides details regarding the inputs of the action recognition modules.
For both tasks, we follow other studies [1,5,18,26,30] and report our best results.

We measure the inference times of our methods for the hand pose estimation
task for a single frame and for a 