
Apostolos Antonacopoulos · 
Subhasis Chaudhuri · Rama Chellappa · 
Cheng-Lin Liu · Saumik Bhattacharya · 
Umapada Pal (Eds.)

LN
CS

 1
53

23

Pattern Recognition
27th International Conference, ICPR 2024 
Kolkata, India, December 1–5, 2024 
Proceedings, Part XXIII



Lecture Notes in Computer Science 15323
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.



Apostolos Antonacopoulos ·
Subhasis Chaudhuri · Rama Chellappa ·
Cheng-Lin Liu · Saumik Bhattacharya ·
Umapada Pal
Editors

Pattern Recognition
27th International Conference, ICPR 2024
Kolkata, India, December 1–5, 2024
Proceedings, Part XXIII



Editors
Apostolos Antonacopoulos
University of Salford
Salford, UK

Rama Chellappa
Johns Hopkins University
Baltimore, MD, USA

Saumik Bhattacharya
IIT Kharagpur
Kharagpur, India

Subhasis Chaudhuri
Indian Institute of Technology Bombay
Mumbai, India

Cheng-Lin Liu
Chinese Academy of Sciences
Beijing, China

Umapada Pal
Indian Statistical Institute Kolkata
Kolkata, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-78346-3 ISBN 978-3-031-78347-0 (eBook)
https://doi.org/10.1007/978-3-031-78347-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0001-9552-0233
https://orcid.org/0000-0002-7638-1650
https://orcid.org/0000-0003-1273-7969
https://orcid.org/0000-0002-1680-0016
https://orcid.org/0000-0002-6743-4175
https://orcid.org/0000-0002-5426-2618
https://doi.org/10.1007/978-3-031-78347-0


President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. The tree of shapes is a hierarchical data structure that mod-
els a grey-level image via its level lines. It belongs to the family of mor-
phological trees, which allow to design connected operators, i.e. non-
linear filters that transform an image without creating new contours.
Connected operators act by modifying the image-modeling tree, shifting
the values of its nodes. This paradigm is frequently used with the compo-
nent tree, another popular morphological tree. It is much less considered
in the case of the tree of shapes despite its ability to model more finely
the image. Indeed, shifting the values of the nodes of a tree of shapes
is more complex, compared to other morphological trees. In this arti-
cle, we investigate how to modify a tree of shapes by shifting the values of
its nodes. We explain how to carry out this operation so that the mod-
ified/simplified tree remains the tree of shapes of the processed image.
We propose algorithmic solutions and methodological schemes to reach
that goal. We discuss on their properties and we illustrate their rele-
vance by application examples of induced connected operators. Software
implementation available at https://github.com/jmendesf/ToSConOp.

Keywords: tree of shapes · connected filters · grey-level imaging ·
hierarchical models · mathematical morphology

1 Introduction

Graph-based hierarchical structures are a cornerstone of mathematical morphol-
ogy. These hierarchical structures—most often trees—allow to model, describe
and analyse images. They also provide a way to process images, by allowing the
design of connected operators [29], a family of non-linear filters which share the
specific property of modifying an image while preserving its contours (i.e. not
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creating contours that do not exist in the input image). This property derives
from the fact that these operators do not act at the scale of the pixels, but at
the scale of the connected components/flat zones of the image modeled by a tree
[28]. The applications of such operators are many, including mainly filtering and
segmentation.

Two kinds of trees were proposed for modeling images: the component tree
[27] and the tree of shapes [17]. Both were initially designed for modeling grey-
level images and further generalized to handle multivalued images [7,14]. The
design of connected operators based on such trees relies on a three-step proce-
dure [13]: (1) building the tree from the original image (2) modifying the tree
(generally, simplifying it, which can be done by attribute analysis [4] or shap-
ing [32]), and (3) reconstructing the final image from the modified tree. While
component tree based connected operators enjoy a wide variety of applications,
they are not well-fitted when brighter and darker areas of the images need to
be handled simultaneously. In such cases, using both the min- and max-trees
in a parallel or iterative fashion may lead to unsatisfactory results. Despite the
strong links that exist between the component tree and the tree of shapes [21],
and while connected operators based on the tree of shapes have been proposed
[33], this three-step procedure was mostly used to develop connected operators
based on the component tree.

This fact derives from the distinct modeling proposed by the two kinds of
trees. The component tree builds upon the connected components of the binary
threshold sets of the image. As a consequence, simplifying that tree, i.e. removing
a node, provides a valid component tree. It also has a straightforward effect
on the image, by lowering the values of the region associated to the node, leading
in particular to gradient-sign preserving, anti-extensive filters. By contrast, the
tree of shapes builds upon regions bounded by the level lines of the image. As
a consequence, simplifying that tree by removing a node (or more generally by
modifying its value) provides a tree which may not be a valid tree of shapes. It
may also have unexpected effects on the image, in particular by modifying the
sign of the gradients of the contours.

To the best of our knowledge, the way to modify the value of the nodes in
a tree of shapes without altering its intrinsic properties nor its ability to model
the associated image had not been investigated until now [10]. We propose to
tackle this issue.

This article is organized as follows. Section 2 describes related works on the
tree of shapes and connected operators. Section 3 provides notions and properties
related to the tree of shapes. Section 4 describes how an image can be modified
by shifting the value of the nodes of its tree of shapes, and discusses on the
related issues. Section 5 provides an algorithm for shifting the value of one node
of a tree of shapes whereas guaranteeing that it remains the tree of shapes of the
modified image. Section 6 proposes a generic scheme that extends the one-node
shifting algorithm as a many-node shifting. Section 7 exemplifies this scheme with
induced connected operators. Section 8 concludes the article.
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2 Related Works

The trees developed in mathematical morphology are subdivided into two fam-
ilies. The first gathers the total partition trees (e.g. the binary partition tree
[26] and the watershed tree [18]) that decompose the image into incrementally
refining partitions. The second gathers the partial partition trees that model
images with respect to their spatial-spectral structure. The tree of shapes [17]
belongs to this second family. It models a grey-level image by considering it as a
topographic map. It encodes the nested relation between the isocontours of the
image. It is the grey-level generalization of the adjacency tree [24] that models
the topological structure of a binary image.

Modeling an image by a tree of shapes requires to fulfill specific topological
constraints. Indeed, the support of the image has to satisfy the Jordan-Brouwer
property. This is guaranteed for certain topological frameworks, e.g. for the well-
composed images [15]. Digitally well-composed interpolations were investigated
for the definition of trees of shapes in arbitrary dimensions [3].

Variants of the tree of shapes were proposed. One can cite the multivariate
tree of shapes [7] that handles non-grey-level images, or the topological mono-
tonic tree [30] and the topological tree of shapes [20], that focus on the topo-
logical structure of the tree of shapes. The links that exist between the tree of
shapes and the component tree [27] (the other archetype of the partial partition
trees) were also investigated. These links are known since their introduction, and
were mainly characterized by the hole-filling procedure between the nodes of the
component trees and those of the tree of shapes. Recently, the homeomorphic
links between both trees were explicited and formalized [21].

Efforts were geared towards efficiently building the tree of shapes. A method
based on immersing the image domain in the Khalimsky grid guarantees a
worst-case quasi-linear complexity [12]. Alternative approaches, including a root-
to-leaves paradigm [16], have also been presented, and parallel strategies were
investigated [11]. The literature on the construction of the component tree and
the tree of shapes proposes some algorithms that rely on the first to build the
second [5,9] or vice versa [31].

The rich information modeled by the tree of shapes allowed the development
of various image processing and analysis approaches: filtering [8], segmentation
[1], simplification [2] or object recognition [19]. The image processing methods
based on the tree of shapes belong to the family of the connected operators
[29]. Such operators model an image via a morphological tree (tree of shapes,
component tree), modify that tree, and reconstruct the image accordingly [13].
The modification of the tree is most often a simplification that discards the nodes
of the tree that do not satisfy a given criterion, based on descriptive attributes
[4].

Connected operators based on this paradigm mainly build upon component
trees, generally leading to anti-extensive filters. This sheds light on the spectral
anisotropy of these component tree-based operators. By contrast, the simplifica-
tion (or more generally, the modification) of a tree of shapes generally belongs
to the class of self-dual connected operators, leading to an isotropic behaviour,
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relevant for many image processing applications. Such tree-of-shapes-based con-
nected operators are especially interesting as they can take into account both
minimal (“dark”) and maximal (“light”) regions of the image. However, modi-
fying/simplifying a tree of shapes in a convenient fashion is an operation that
is more complex than for a component tree (see Sect. 4).

3 Tree of Shapes

3.1 Basic Definitions

An image is defined as a function F : U → V (Fig. 1(a)). We assume that (1)
U is endowed with a topological structure compliant with the Jordan-Brouwer
property and (2) V is endowed with a total order relation �. For the sake of
readability, we set U = Z

d (d � 2) endowed with the digital topology framework
[25]. We also set V = Z so that F(U) = [[⊥,�]] ⊂ V and a finite number of
points x ∈ U satisfy F(x) > ⊥. These hypotheses are generally satisfied by
digital images.

Let v ∈ V. The upper- and lower-threshold sets of F at value v (Fig. 1(b,d))
are the subsets of U defined as

Λ◦
v(F) = {x ∈ U | v � F(x)} and Λ•

v(F) = {x ∈ U | v > F(x)} (1)

Let A ⊆ U. We note Π[A] ⊆ 2U the set of the connected components of A
(we set Π[A] = ∅ if A = ∅). We note

C◦ =
⋃

v∈V

Π[Λ◦
v(F)] and C• =

⋃

v∈V

Π[Λ•
v(F)] (2)

the set of the connected components of F induced by its upper- and lower-
threshold sets, respectively (Fig. 1(b,d)).

Let Z ∈ Π[A]. We note Zτ ⊇ Z the connected set obtained by filling the
holes of Z (Fig. 1(f)). We set C = C◦ ∪ C• and

Θ = {Zτ | Z ∈ C} (3)

We consider the partial order relation ⊆ on Θ and we note � its reflexive-
transitive reduction. The tree of shapes (Fig. 1(g)) is then defined as follows.

Definition 1 (Tree of shapes [17]). The tree of shapes of F is the tree T =
(Θ,�).

The elements of Θ (resp. �) are called the nodes (resp. the edges) of T.

3.2 Proper Part, Altitude, Image Reconstruction

Each node X ∈ Θ is characterized spatially (with respect to U) and spectrally
(with respect to V). This leads to the two notions of proper part and the altitude
of a node.
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Fig. 1. An image F (a), its upper- (b) and lower-threshold sets (d) (coloured regions).
The two component trees of F : the max-tree (c) that derives from (b) and the min-
tree (e) that derives from (d). Both model the inclusion between connected components.
The tree of shapes (g) that derives from the hole filling of the connected components
of (b,d). The connected components of (b,d) of same color lead to the node of this
color in (f,g).

Definition 2 (Proper part of a node). Let X ∈ Θ. The proper part of X in
the tree of shapes T = (Θ,�) is defined by

ρ(X) = X \
⋃

Y �X

Y (4)

We note ρ : Θ → 2U the induced function.

Remark 3. The set {ρ(X) | X ∈ Θ} is a partition of U.

Definition 4 (Altitude of a node). Let X ∈ Θ. The altitude Alt(X) of X in
the tree of shapes T = (Θ,�) is defined by

∀x ∈ ρ(X), Alt(X) = F(x) (5)

The altitude Alt(X) of X is the unique value of V that F assigns to the points
of the proper part ρ(X) of X. We note Alt : Θ → V the induced function.

From now on, we consider that the tree of shapes T is implicitly endowed
with its induced proper part and altitude functions, i.e. we consider T as
(T, ρ, Alt). From (T, ρ, Alt), it is possible to reconstruct the image in a lossless
way.

Property 5. Given the tree of shapes (T = (Θ,�), ρ, Alt), the image F : U → V

can be recovered by setting, for any x ∈ U

F(x) =
�∨

X∈Θ

1(ρ(X), Alt(X))(x) (6)

where
∨� is the supremum for �, and 1(Y,u) : U → V is the cylinder function

defined by 1(Y,u)(x) = u if x ∈ Y and ⊥ otherwise.
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In other words, the image F can be reconstructed by assigning to each point
x ∈ U the altitude value Alt(X) of the node X ∈ Θ that contains x in its proper
part ρ(X). This reconstruction formula constitutes the cornerstone for designing
connected operators based on the tree of shapes of an image, as discussed in the
next section.

4 How to Modify an Image via Its Tree of Shapes?

Before discussing on the connected operators based on morphological trees
(Sect. 4.2), we recall properties of the tree of shapes related to its invariance to
contrast transformations (Sect. 4.1).

4.1 Contrast Invariance of the Tree of Shapes

Let γ : V → V be a transformation of the space of values. We say that γ is a
contrast transformation if it is strictly increasing, i.e. if for all u, v ∈ V we have
(u < v) ⇒ (γ(u) < γ(v)).

Property 6 (Constrast invariance of the tree of shapes). Let F : U → V

be an image. Let γ : V → V. Let (T, ρ, Alt) be the tree of shapes of F . If γ is a
contrast transformation, then (T, ρ, γ ◦ Alt) is the tree of shapes of γ ◦ F .

In other words, a contrast transformation γ alters neither the structural (T) nor
the spatial (ρ) part of the tree of shapes of an image, whereas the spectral part
(γ ◦ Alt) directly follows the contrast transformation.

A contrast transformation γ acts on the space of values V. It induces a
contrast transformation Γ : VU → V

U that acts on the space of images. It is
defined, for any image F : U → V, by Γ (F) = γ ◦F . The function Γ exhibits an
important property: it is gradient-sign preserving. Let x,y ∈ U such that x and
y are neighbour with respect to the topological structure of U. Let F : U → V

be an image. The gradient sign-preserving property of Γ means that

(F(x) � F(y)) =⇒ (Γ (F(x)) � Γ (F(y))) (7)

As a corollary of Eq. (7), we have

(F(x) = F(y)) =⇒ (Γ (F(x)) = Γ (F(y))) (8)

From Eq. (8), Γ is a connected operator, i.e. it does not create new contours in
the transformed image.

From Properties 5 and 6, the application of Γ on the image F could be
carried out by (1) building the tree of shapes (T, ρ, Alt) of F ; (2) modifying Alt
into γ ◦ Alt; (3) reconstructing the image Γ (F) modeled by (T, ρ, γ ◦ Alt) (see
Eq. (6)).

For a trivial transformation such as Γ , acting directly on F would be suffi-
cient. Nonetheless, the three-step procedure inspired from [13] and discussed in
Sect. 4.2 opens the way to the design of a wider range of gradient-sign preserv-
ing connected operators based on the modification of the values of the nodes of
the tree of shapes, leading to local modifications of the contrast of the modeled
images.
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4.2 Connected Filtering Framework: Issues and Purpose

As stated above, a connected operator can be designed from the simplification
of a tree.

The process consists in:

(i) building the tree T that models the image F ;
(ii) simplifying T into a new tree T̂; and
(iii) reconstructing the new image F̂ from T̂.

F (i)−−−−→ T
⏐⏐�Γ

⏐⏐�(ii)

F̂ (iii)←−−−− T̂

(9)

It was pioneered in [13], where it was designed for component trees [27] and
by considering that the simplification of Step (ii) consists of discarding nodes
according to attributes [4].

This framework may be considered also with a tree of shapes instead of a
component tree. Step (i) relies on the construction of the tree, which can be done
either for the component tree [6] or the tree of shapes [12]. Step (iii) relies on
the reconstruction formula of Eq. (6), which is similar for both the component
tree and the tree of shapes.

Regarding Step (ii), in [13] and most of the subsequent contributions, the idea
was to preserve some nodes of the component tree whereas discarding others. In
particular, when a node X was preserved, ρ(X) and Alt(X) were unaltered. By
contrast, when a node X was discarded, ρ(X) was merged with the proper part
ρ(P ) of its parent node P such that X � P . This discarding/merging can be
seen as a side effect of the modification of the altitude Alt(X) so that it becomes
equal to Alt(P ). Step (ii) could then be generalized as “turn T into a new tree
T̂ by modifying the altitudes of its nodes”.

Defining a new altitude function Âlt : Θ → V does not modify the structure of
the tree T. Besides, the reconstruction formula of Eq. (6) remains valid, making
Step (iii) tractable. The induced operator Γ applied on F is a connected operator,
since it satisfies Eq. (8). Nonetheless, two problems may occur (Fig. 2). First, the
tree T′ associated to the new altitude application Âlt, and to the induced image
F̂ may not be the tree of shapes T̂ of F̂ . More generally, it may not be a
tree of shapes (Fig. 2(c,e)). Second, the operator Γ , although being a connected
operator, may not satisfy Eq. (7), i.e. it may not be gradient sign-preserving
(Fig. 2(a,d)).

We propose hereafter a framework that allows to modify the altitude of the
nodes of a tree of shapes—with controlled side effects on its structure—so that:

(P1) the modified tree remains the tree of shapes of the associated modified
image;

(P2) the sign of the gradients of the modified image is preserved with respect to
the initial image.
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Fig. 2. An image F (a) and its tree of shapes T (b). The removal of C (equivalent to
setting its altitude to that of B) leads to the tree T′ (c). The image obtained from T′

(d) and its tree of shapes ̂T (e). (1) The tree T′ (c) differs from ̂T (e). (2) The sign

of the gradients has been modified between F and ̂F for some contours (d, in red).
(Figure adapted from [17].)

5 Shifting One Node of the Tree of Shapes

We now explain how to modify the altitude of (i.e. shift) a node of a tree of
shapes while satisfying (P1) and (P2).

5.1 Notations

Let F : U → V be an image. Let T = (Θ,�) be its tree of shapes. Let X ∈ Θ
be a node of T. From Property 6, we assume without loss of generality that
Alt(X) = 0. (See Fig. 3.)

Definition 7 (Parent set). The parent set of X is P(X) = {P ∈ Θ | X � P}.
If P(X) = {P}, then P is the parent node of X, i.e. X � P . In that case, by
abuse of notation, we write P(X) = P and we note m = Alt(P ). If P(X) = ∅,
then X is the root of T and we set m = 0.

Definition 8 (Children set). The children set of X is C(X) = {Ci ∈ Θ | Ci �
X}δ

i=1 (with δ � 0).

For any i ∈ [[1, δ]], we note vi the altitude value of the node Ci, i.e. vi = Alt(Ci).
We have vi �= 0, i.e. either vi > 0 or vi < 0.

We assume that {Ci}δ
i=1 is sorted with respect to the values vi, i.e. for all

j, k ∈ [[1, δ]], we have
(j < k) =⇒ (vj � vk) (10)

We set α = |{Ci | vi < 0}| and β = |{Ci | vi > 0}| (with δ = α + β). In
particular, we have {Ci | vi < 0} = {Ci}α

i=1 and {Ci | vi > 0} = {Ci}α+β
i=α+1

For each i ∈ [[1, α]], we set C−
i = Cα−i+1 and we note v−

i = vα−i+1. For each
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Fig. 3. Graphical example of notations of Sect. 5.1. The altitudes of nodes are given into
brackets. In this figure, we have m+ = v4 and m− = v3. They correspond to the closest
(higher and lower) altitudes with respect to X within the set of its children. We have
M+ = {C4} and M− = {C3}, which are the sets of children nodes associated to the
respective values m+ and m−. Finally, we have μ+ = v4 and μ− = v3 which correspond
to the closest (higher and lower) altitudes with respect to X within the whole set of its
neighbouring nodes (parent and children).

i ∈ [[1, β]], we set C+
i = Cα+i and we note v+

i = vα+i. We set C− = {C−
i }α

i=1

and C+ = {C+
i }β

i=1. We set

m+ = min
{

v+
i

}β

i=1
=

{
v+
1 if β > 0

+∞ if β = 0
and m− = max

{
v−

i

}α

i=1
=

{
v−
1 if α > 0

−∞ if α = 0

(11)
and

μ+ =
{

min{m+,m} if m > 0
m+ if m � 0 and μ− =

{
max{m−,m} if m < 0
m− if m � 0 (12)

Finally, we set

M+ =
{
C+

i ∈ C+ | v+
i = μ+

}
and M− =

{
C−

i ∈ C− | v−
i = μ−}

(13)

5.2 Short Range Shifting

Let us first suppose that we want to shift a node X ∈ Θ with no impact beyond
its immediate vicinity. The following property states that if this shifting is small
enough, then the tree of shapes remains unchanged.

Property 9. If the new value v of Alt(X) satisfies μ− < v < μ+, then neither
T nor ρ are modified, and Alt is modified only for X.

Now, let us suppose that we want to shift X slightly further. More precisely,
we want to set the new altitude v of X so that v = μ	 (where 
 is either + or
−). Three (mutually exclusive) distinct cases can occur (Fig. 4):

(i) μ	 = m = m	 (see Property 10);
(ii) μ	 = m �= m	 (see Property 11);
(iii) μ	 = m	 �= m (see Property 12).



10 J. Mendes Forte et al.

Fig. 4. The three cases of short range shifting. First row: initial configuration. Second
row: final configuration. (a–c) We have μ− = −1, μ+ = 2 and the targeted altitude is
v = 2. The part of the tree impacted by the shifting is depicted in red. (Color figure
online)

In each case, it is necessary to discard nodes, as the new altitude v of X is
either that of its parent (ii), of some of its children (iii), or both (i). The node
discarding procedure is defined in Func. Discard. For a node X ∈ Θ to be
discarded, it proceeds as follows: ρ(X) is added to the proper part of the parent
P of X (Line 1); X is removed from Θ (Line 2); (X,P ) is removed from �
(Line 3); for each children C of X, (C,X) is removed from � and replaced by
(C,P ) (Lines 4–6). From now on, “Discarding a node X” will mean that we
apply Func. Discard for X.

Algorithm 1 provides the general short range shifting process that corre-
sponds to Cases (i–iii) and Properties 10–12.

Property 10. If the new value v of X is μ	 = m = m	, then the tree of shapes
of the image F is modified as follows: (1) each C ∈ M	 is discarded; (2) X is
discarded.

In that case, the targeted altitude of X reaches both the altitude of some of
its children and of its parent. We discard these children (Algorithm 1, Lines
4–5) and then X (Algorithm 1, Line 6).
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Function Discard
Input: Θ, �, ρ, X
Output: Θ, �, ρ

1 ρ(P ) := ρ(P )
⋃

ρ(X)
2 Θ → X
3 � → (X, P )
4 foreach C � X do
5 � → (C, X)
6 � ← (C, P )

Algorithm 1: Short range shifting of a node
Input: Θ, �, ρ, Alt, X, v ∈ [[μ−, μ+]]
Output: Θ, �, ρ, Alt

1 if μ− < v < μ+ then Alt(X) := v (Property 9)
2 else
3 if v = m� then
4 foreach S ∈ M� do Discard(Θ, �, ρ, S) (Cases (i), (iii), Properties 10,

12)
5 Alt(X) := v

6 if v = m then Discard(Θ, �, ρ, X) (Cases (i), (ii), Properties 10, 11)

Algorithm 2: Long range shifting
Input: Θ, �, ρ, Alt, X, v
Output: Θ, �, Alt, ρ

1 while Alt(X) �= v do
2 P := P(X)
3 if v > μ+ then b := μ+

4 else if v < μ− then b := μ−

5 else b := v
6 Apply Algorithm 1 (Θ, �, ρ, Alt, X, b)
7 if X /∈ Θ then X := P

Property 11. If the new value v of X is μ	 = m �= m	, then the tree of shapes
of the image F is modified as follows: X is discarded.

In that case, the targeted altitude of X reaches that of its parent only. We discard
X (Algorithm 1, Line 6).

Property 12. If the new value v of X is μ	 = m	 �= m, then the tree of shapes
of the image F is modified as follows: each C ∈ M	 is discarded.

In that case, the targeted altitude of X reaches that of some of its children only.
We discard these children (Algorithm 1, Lines 4–5).
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Fig. 5. The successive steps of long-range shifting for a node X (first row) and the
side effect on the image (second row). The target altitude is v = 4. The red nodes
are shifted, while the blue nodes are involved in the intermediate short-range shiftings.
(Color figure online)

5.3 Long Range Shifting of a Node

Let us now suppose that we want to shift a node X ∈ Θ by modifying its
altitude Alt(X) to a value v /∈ [[μ−, μ+]]. We have either v > μ+ or v < μ−. Let
us suppose that v > μ+ (the same reasoning holds for v < μ−). If we apply
Algorithm 1 to the node X to modify its altitude to the value v = μ+, then the
node X is merged with some of its neighbouring nodes (parent and/or children),
leading to a new node X̂ that differs from X but such that X ⊂ X̂. Thus, further
modifying X boils down to modifying X̂. This node X̂ is associated to its own
interval [[μ̂−, μ̂+]] with μ+ < μ̂+. If v � μ̂+, then the process ends by applying
Algorithm 1 (Line 1, Property 9) with the value v. If v > μ̂+, then the process
continues one step further by applying Algorithm 1 (Lines 3–6, Properties 10–12)
with the value μ̂+, and so on. This iterative process is described in Algorithm
2 (see Fig. 5).

6 Shifting Many Nodes of the Tree of Shapes

In Sect. 5, we explained how to shift a single node of a tree of shapes. We now
focus on the issue of shifting many nodes.

6.1 Criterion and Policy

A criterion is a Boolean function Crit : Θ → {True, False} defined on the
nodes of the tree of shapes (or, more generally, on any subset of U). Its def-
inition guides the selection of the nodes to be shifted. Such criteria, already
considered in [13], often rely on attributes [4] that describe specific (spatial,
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Algorithm 3: Generic tree of shapes modification
Input: Θ, �, Alt, ρ
Parameters: Crit : Θ → {True, False}, Pol : Θ → V

Output: Θ, �, Alt, ρ
1 foreach X ∈ Θ such that Crit(X) = True do
2 v := Pol(X)
3 Apply Algorithm 2 (Θ, �, ρ, Alt, X, v)

spectral. . . ) properties of the nodes. Examples of criteria are given in Sect. 7 for
the illustrative applications.

The policy of a tree-of-shapes modification framework is defined as a function
Pol : Θ → V. Given a criterion Crit, for any node X ∈ Θ such that Crit(X) =
True, the function Pol is used to assign a new value v to Alt(X). Many tree
modification methods proposed in the literature (especially for the component
trees) usually aimed at merging a node X with its parent node P . In that
case, the function Pol was simply defined so that Pol(X) = Alt(P ). Here, the
considered functions Pol are more versatile. Examples of policies are given in
Sect. 7 for the illustrative applications.

6.2 General Approach for Shifting a Set of Nodes

Algorithm 3 defines a generic tree of shapes modification framework. The appli-
cation of Crit on the nodes of Θ defines a set N = {X ∈ Θ | Crit(X) = True}
(Line 1). Each node X ∈ N is assigned a new altitude v ∈ V using the function
Pol (Line 2) and Algorithm 2 is then called in order to effectively shift X with
respect to v (Line 3).

To keep this framework as generic as possible, we did not propose any sort-
ing of N nor tree-traversal strategy. Of course, such choices have a fundamental
effect on the behaviour of the process, since the shifting of a node X ∈ Θ—
and its possible side effects on the remainder of the tree—may (1) modify the
part of N not yet processed (e.g. by adding or removing nodes Y due to modifi-
cations of Crit(Y )) and (2) impact the way to shift these nodes (e.g. if Pol(Y )
has been impacted by the processing of X). Based on these considerations, the
way to order N , the choice to update (or not) the values of Crit and Pol during
the process and the way of processing the nodes (e.g. sequentially or simulta-
neously) are important hyperparameters that have to be set depending on the
application and its purpose.

6.3 Preservation

Algorithm 1, 2, 3 and Func. Discard incrementally build upon each other. By
definition, Func. Discard preserves (P1) and (P2). From Properties 9–12, Algo-
rithm 1 also preserves (P1) and (P2). By construction this is also the case for
Algorithm 2 and then for Algorithm 3.
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Moreover, depending on the used function Pol, additional properties may
be satisfied. For instance, by designing Pol so that for any X ∈ Θ, Pol(X) <
Alt(X) (resp. Pol(X) > Alt(X)), one may build extensive (resp. anti-extensive)
connected operators. The versatility of the proposed framework allows to tackle
various image processing issues, as illustrated in the next section.

6.4 Computational Aspects

If we assume that the number of children is O(1) for the nodes of a tree of
shapes (which is generally the case), then the time cost of Funct. Discard is
O(1), the time cost of Algorithm 1 is O(1) and the time cost of Algorithm 2
is O(k) where k is the number of intermediate altitudes the current node has
to go through. At each application of Algorithm 2, the number of nodes of the
tree is reduced by at least k. It follows that, except the extra-cost induced by
the computation of Crit and Pol in Algorithm 3, its overall time cost is O(|Θ|).
The complexity of this generic approach described in Algorithm 3 then depends
on the strategies adopted by the user for defining and updating Crit and Pol.
For well-chosen strategies (e.g. construction of attributes based on separable
properties, no updating of the modified nodes. . . ), the overall process may be
carried out in linear time. Since the construction of the tree of shapes is itself a
quasi-linear time process, this may allow the development of efficient strategies,
in particular for handling large-scale images. Considering that the simplification
process described in Algorithm 2 acts in only a part of the tree, composed of the
subtree rooted at the processed node plus its upper branch, it is also possible to
rely on parallel approaches, that may be deployed on distributed architectures.

7 Application Examples

We illustrate the relevance of the proposed approach for tree of shapes modi-
fication by providing three examples of induced connected operators acting on
grey-level images. In these experiments, the trees of shapes were natively com-
puted from Higra [22], and subsequently processed by our code (https://github.
com/jmendesf/ToSConOp).

– The first one performs image quantization (Fig. 6). It reduces the dynamics
of an image from 2p to 2k grey-levels, (0 � k � p). Here, Crit always holds
True. The quantized grey-levels are regularly sampled over [[0, 2p−1]] and Pol
is defined so that the altitude of each node is shifted to the closest quantized
value. This first application is a toy example, since pixel-wise quantization
also satisfies (P1) and (P2). It mainly aims to show the generality of our
approach.

– The second one performs area opening (Fig. 7). It removes the nodes of the
tree with smallest proper parts and, equivalently, the smallest details in the
image. Here, Crit(X) = True iff ρ(X) < λ with λ ∈ N. Pol is defined so that
the altitude of X be shifted to m. The nodes X are processed by increasing
size of their proper part.

https://github.com/jmendesf/ToSConOp
https://github.com/jmendesf/ToSConOp
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Fig. 6. (a) A natural image (256 grey levels). (b,c) The result of its quantization to 32
and 16 grey levels, respectively. (Color figure online)

Fig. 7. (a) Remote sensing image (Landsat-7 image courtesy of the U.S. Geological Sur-
vey) (4.1 ·105 pixels, tree of shapes: 1.7 ·105 nodes). (b,c) Simplified images obtained by
area opening with (b) λ = 10 (tree of shapes: 1.5·104 nodes). (c) λ = 25 (tree of shapes:
9.7 · 103 nodes). The number of nodes/flat zones is progressively reduced with respect
to λ in correlation with the SSIM decrease.

– The third one performs mean filtering at the scale of the nodes of the tree
(Fig. 8). It progressively smoothes the altitudes/grey levels between neigh-
bouring nodes/flat zones. Here, Crit always holds True. Pol is defined so
that X is shifted to an altitude defined as the mean value of the altitude
of its neighbouring nodes. The nodes X are processed from the root to the
leaves.

By definition, in each one of these applications, the designed connected operator
modifies/simplifies the tree of shapes and the induced images while satisfying
(P1) and (P2), thus leading to the preservation of the structure of the image.
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Fig. 8. (a) Biological image (synchrotron microtomography, SOLEIL ANATOMIX,
project #20211303, courtesy S. Almagro) (4.2 · 106 pixels, tree of shapes: 1.2 · 106

nodes). (b–c) Smoothed images after n iterations of mean filtering of the tree: (b)
n = 5 (tree of shapes: 4.7 · 105 nodes), (c) n = 10 (tree of shapes: 2.3 · 105 nodes).
The mean filter works by assigning to each node of the tree the mean value of its
neighbouring nodes. The process is repeated n times. The number of nodes/flat zones
is progressively reduced (removing noise) while the SSIM remains high (preserving
structural information).

8 Conclusion

In this article, we introduced an approach for shifting nodes of a tree of shapes,
ensuring that (P1) the resulting tree remains the tree of shapes of the image and
(P2) the sign of the gradient of its contours is preserved. This opens the way
to the development of a wide range of connected operators, designed to tackle
specific issues in various applicative contexts.

The proposed framework is dedicated to the standard tree of shapes, that
models grey-level images. On the one hand, the multivariate tree of shapes [7]
was proposed for handling e.g. colour images. Extending our shifting paradigm
to handle such multivariate images constitutes a perspective work. On the other
hand, the topological tree of shapes [21] was recently introduced as a companion
of the tree of shapes, which models the topology of grey-level images. Extend-
ing the proposed shifting approach to the topological tree of shapes is also a
perspective work.

The ability of the proposed framework to simplify a tree of shapes, e.g. by
removing (physical, semantic) noise and/or by reducing its combinatorial cost
without losing significant information also opens the way to its involvement as a
relevant image descriptor which could be embeded in deep-learning approaches,
e.g. to model topological priors, or to ensure the preservation of structural prop-
erties of images, as already pioneered with the component tree [23].
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7. Carlinet, E., Géraud, T.: MToS: a tree of shapes for multivariate images. IEEE
Trans. Image Process. 24, 5330–5342 (2015)

8. Caselles, V., Monasse, P.: Grain filters. J. Math. Imaging Vis. 17, 249–270 (2002)
9. Caselles, V., Meinhardt, E., Monasse, P.: Constructing the tree of shapes of an

image by fusion of the trees of connected components of upper and lower level
sets. Positivity 12, 55–73 (2008)

10. Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps.
Lecture Notes in Mathematics, Springer (2010). https://doi.org/10.1007/978-3-
642-04611-7
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Abstract. Tree-based structures can model images—and more gener-
ally valued graphs—for processing and analysis purpose. In this frame-
work, the component tree was natively designed for grey-level images—
and more generally totally ordered valued graphs. Ten years ago, the
notion of a multivalued component tree was introduced to relax this
grey-level/total order constraint. In this algorithmic paper, we provide
new tools to handle multivalued component trees. Our contributions are
twofold: (1) we propose a new algorithm for the construction of the
multivalued component tree; (2) we propose two strategies for building
hierarchical orders on value sets, required to further build the multival-
ued component trees of images/graphs relying on such value sets. Codes
available at: https://github.com/bnaegel/multivalued component tree.

Keywords: Algorithmics · Images/valued graphs · Multivalued
component trees · Hierarchical ordering · Connected operators ·
Mathematical morphology

1 Introduction

Building trees for modeling images is a historical research topic which was
mainly investigated in field of mathematical morphology. The trees developed
in this framework model in a compact way the space of the possible parti-
tions of an image induced by its mixed spatial-spectral composition. These so-
called morphological trees can be subdivided into two families, which build upon
either total or partial partitions. The archetype of the first family is the binary
partition tree [23] while the archetype of the second is the component tree [24].

Based on these trees, various image processing and analysis methods were
developed, gathered under the name of connected operators [25,26]. The suc-
cess of morphological trees and connected operators relies on their low cost in
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terms of construction and handling. Regarding their construction, they can be
built in quasi-linear time [3,23]. Regarding their involvement in image process-
ing/analysis tasks, the two main paradigms of attribute-based node selection
[2,8] and optimal cut computation [6,9] can be carried out in linear time.

Over the last years, efforts were geared towards enriching the framework of
morphological hierarchies with new structures that generalize classical ones. In
this context, the notion of multivalued component tree [10] was proposed ten
years ago as a subfamily of the component graphs [16,17] which generalize the
classical component tree [24]. This new paradigm of multivalued component tree
had been designed in order to build a component tree on images where values
are organised with respect to a (partial) hierarchical order relation, whereas the
standard component tree requires a total order.

This is an algorithmic article. It provides new tools mandatory for handling
the multivalued component tree. First, we propose a new approach for building
the multivalued component tree (Sect. 4). By contrast with an initial algorithm
proposed in [10] (which required some pre- and post-processings to rewrite mul-
tivalued component tree construction as component tree construction), we now
provide a standalone algorithm that directly builds a multivalued component tree
from its multivalued image. Second, we provide two strategies for endowing a set
of values with hierarchical order relations, adapted to the further construction of
multivalued component trees (Sect. 5). Both strategies rely on the construction
of morphological trees—component trees or binary partition trees—on/from a
set of values considered itself as an image—or a valued graph.

The other parts of this article are organized as follows. In Sect. 2, we recall
related works on the morphological trees. In Sect. 3, we provide the required
definitions and notions related to the (multivalued) component tree. Section 6
concludes the article.

2 Related Works

A morphological tree models an image defined as a function F : Ω → V that
associates to each point x of its support Ω a value F(x) within the set of values
V. In general, Ω is endowed with an adjacency relation �. In other words, (Ω,�)
is a non-directed graph. By side effect, a morphological tree can model valued
graphs, and not only images.

Morphological trees are partition trees. Indeed, they are created by stacking
a finite sequence of partitions of Ω. Each partition is composed of subsets X ⊆ Ω
that constitute the nodes (root, internal nodes, leaves) of the tree, and a tree
models the inclusion relation between them. Such trees can be classified in two
main families: those originated either from (1) total partitions or (2) partial
partitions of Ω.

The archetype of the total partition trees is the binary partition tree [23]
(also declined under variants: α-tree [27], watershed tree [12], etc.). Except the
leaves, each node is a connected subset X ⊆ Ω which has two children nodes X1

and X2 that form a partition of X, leading to a top-down binary decomposition
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of the root Ω of the tree into subsets of decreasing size. The construction of such
trees is guided by one or many [20] criteria which determine the merging order
of the smallest subsets provided by an initial partition of Ω, that defines the
leaves of the tree.

Fig. 1. (a) A set of values V = {a,b,c,d,e,f,g,h,i}, endowed with a hierarchical order �
such that the minimum is a and the maximal elements are d, e, f, h, i. This ordered
set is depicted here as its Hasse diagram, which is—by definition—a tree. (b) A set
Ω = [[0, 5]]2 (squares) endowed with an adjacency � (segments), leading to the graph
G = (Ω, �). (c) A multivalued image F : Ω → V built on the support Ω (b) and
taking its values in V (a). The colour of each square is associated to the value of the
corresponding point.

The archetype of the partial partition trees is the component tree [24] (also
declined under variants: hyperconnection tree [18], tree of shapes [11], topologi-
cal tree of shapes [14], complete tree of shapes [15], etc.). The component tree is
built from successive threshold sets, at each value of V of the image F . The com-
ponent tree models the inclusion relation between the connected components of
these threshold sets. Each node is a subset X ⊆ Ω corresponding to a connected
component at a given value v ∈ V. If X is not a flat zone of the image, it has
k ≥ 1 children nodes Xi (1 ≤ i ≤ k) that form a partition of a strict subset
Y ⊂ X, which corresponds to the part of X where the values of F are strictly
greater than v.

Many efforts were dedicated to the efficient construction of morphological
trees, and especially the component tree. An overview of the classical algorithms,
based e.g. on flooding or union-find paradigms, can be found in [3]. A recent trend
is also to develop parallel algorithms, based on distributed paradigms [4,5] or
GPU-based approaches [1].

3 Multivalued Component Tree

Let Ω be a finite set and � an adjacency (irreflexive, symmetric) relation on
Ω that induces the (equivalence) connectedness relation by reflexive-transitive
closure of �. The couple G = (Ω,�) is a non-directed graph. For any subset
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X ⊆ Ω, we note C[X] the set of the connected components (i.e. the maximal
connected sets) of the subgraph (X,�) of G induced by X. We assume that G is
connected, i.e. C[Ω] = {Ω}. See Fig. 1(b).

Let V be a finite set and � a hierarchical order on V, i.e. an order (1) which
admits a minimum (resp. a maximum) and (2) such that for any v ∈ V, the
subset of the elements lower (resp. greater) than v is totally ordered by �. See
Fig. 1(a).

A total order is a hierarchical order. Thus, all the definitions given below for
the multivalued component tree [10] generalize those of the classical component
tree [24].

Let us consider an image F defined as a function F : Ω → V. See Fig. 1(c).
The threshold set of F at value v ∈ V is defined by

Λv(F) = {x ∈ Ω | v � F(x)} (1)

See Fig. 2(a). We set
Θ =

⋃

v∈V

C[Λv(F)] (2)

which gathers the connected components at each threshold set Λv(F) (v ∈ V).
The elements of Θ are called the nodes of the multivalued component tree.

A node may be generated at many threshold values (see the “T-shaped”
connected component in Fig. 2(a)). In particular, for any X ∈ Θ, we set

I(X) = {v ∈ V | X ∈ C[Λv(F)]} (3)

and we define the remanence τ(X) of X as the number of threshold sets to which
X belongs, i.e. as

τ(X) = |I(X)| (4)

We also set ω(X) as the maximal value of threshold sets to which X belongs,
i.e. as

ω(X) =
�∨

I(X) (5)

For instance, for the “T-shaped” connected component X in Fig. 2, which
belongs to Λc(F), Λg(F) and Λh(F), we have I(X) = {c,g,h}, the remanence of
X is τ(X) = 3 and we have ω(X) = h, since c � g � h.

The inclusion relation ⊆ is a hierarchical order on Θ. We note � the reflexive-
transitive reduction of ⊆ with respect to Θ. The couple T = (Θ,�), i.e. the Hasse
diagram of (Θ,⊆), is a tree called the multivalued component tree. See Fig. 2(b).

For any node X ∈ Θ, we define the proper part ρ(X) ⊆ Ω of X as

ρ(X) = X \
⋃

Y �X

Y = {x ∈ Ω | F(x) = ω(X)} (6)
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Fig. 2. (a) The nine threshold sets Λv(F) for the image F of Fig. 1(c). The squares
depicted in color (resp. white) belong (resp. do not belong) to Λv(F). Note that
Λf(F) = ∅ since the image F has no point of value f. Also note that Λg(F) �= ∅ whereas
F has no point of value g. This is justified by the fact that Λg(F) is partitioned by
Λh(F) and Λi(F). A connected component (“T-shaped”, in the upper-left part of the
image) is common to the threshold sets Λc(F), Λg(F) and Λh(F). (b) The multivalued
component tree T = (Θ, �) of the image F of Fig. 1(c). Each disk/hexagon corre-
sponds to a node X ⊆ Ω of Θ (the unique hexagonal node X corresponds to the three
occurrences of the “T-shaped” connected component). The color of the disk/hexagon
corresponds to the value ω(X) of the node.

The multivalued component tree T is an image model of the image F . Indeed,
we can reconstruct F from T as follows

∀x ∈ Ω,F(x) =
�∨

X∈Θ

1(X,ω(X))(x) (7)

where 1(A,u) : Ω → V is the cylinder function defined by 1(A,u)(x) = u if
x ∈ A ⊆ Ω and

∧�
V (the minimum of (V,�)) otherwise.

These definitions given for the multivalued component tree are similar to
those of the standard component tree. The only differences are the following:

– � is a hierarchical order whereas it is a total order for the component tree;
– it may happen that ρ(X) = ∅ whereas we have ρ(X) 
= ∅ for the component

tree.

4 Building the Multivalued Component Tree

4.1 Some Reminders of the Previous Algorithm

In [10], a first strategy had been proposed for building the multivalued com-
ponent tree. The main idea was to rewrite the image F : Ω → V as an image
F̂ : Ω̂ → V̂ where Ω̂ ⊇ Ω and V̂ = [[0, p]] ⊂ N with p ≤ |V|. The set V̂ was
endowed with the total order ≤ on N such that there is a homomorphism from
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Algorithm 1: Building the multivalued component tree
Input: (Ω, �), (V, �), F : Ω → V

Output: T = (Θ, �)
1 Build nodes

2 Build points

3 Build status

4 Build nb nodes

5 Build index

6 Build progress

7 vmin :=
∧�

V

8 Choose xmin ∈ Ω such that F(xmin) = vmin

9 points[vmin].add(xmin)

10 progress[vmin] := true
11 Flood(vmin)

(V,�) to (V̂,≤) induced by the equivalence relation on V that gathers the values
of equal distance with respect to the minimum

∧�
V in the Hasse diagram of

(V,�). The set Ω̂ was endowed with an adjacency �
̂Ω such that there is an

increasing homeomorphism from the graph (Ω,�) to the graph (Ω̂,�
̂Ω). The

latter can be defined by adding a new vertex ε{x,y} in Ω̂, and replacing the adja-
cency link x � y by the two links x � ε{x,y} and ε{x,y} � y, whenever the two
vertices x, y ∈ Ω are such that x � y while F(x) and F(y) are non-comparable
with respect to �. It was proved that the component tree T̂ of F̂ is isomorphic
with the multivalued component tree T of F . It was then possible to build a
multivalued component tree by using any algorithm dedicated to the construc-
tion of the component tree, at the cost of (1) the preprocessing that builds F̂
from F , and (2) a post-processing that retrieves T = (Θ,�) from T̂ = (Θ̂, �̂) by
removing from the proper part ρ(X) of each node X ∈ Θ̂ the elements of X \ Ω

and by substituting the values of V to those of V̂ in the definition of ω(X).

4.2 A New Algorithm

We now present a new alternative algorithm that no longer requires such pre-
conditioning of the image F . The construction scheme is detailed in Alg. 1 and
Func. Flood. The proposed strategy is derived from the component tree con-
struction presented by Salembier et al. in [24]. It also finds inspiration in the
mask-based algorithm developed by Ouzounis et al. in [13].

The proposed algorithm relies on the following data structures:

– nodes: a 2D array which stores the nodes of the multivalued component tree.
The first dimension is indexed by the values of V. The second dimension is
indexed by the identifiers of the nodes. In other words, nodes encodes Θ;
nodes[v] encodes the nodes of Θ at value v; and nodes[v][i] encodes the
ith node of Θ at value v;
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Function Flood
Input: u ∈ V: current level
Output: w ∈ V: value of the parent node of the root of the built (partial)

multivalued component tree at value u (or ε if the node has no parent)
1 while !(points[u].empty()) do
2 x := points[u].remove()
3 if index[u] > nb nodes[u] then
4 nb nodes[u] := index[u] // in practice, nb nodes[u]++
5 X := create node() // new node in Θ
6 nodes[u].insert(X)

7 if F(x) �= u then
8 w := F(x)
9 points[w].add(x)

10 progress[w] := true
11 while u < w do w := Flood(w)

12 else
13 status[x] := index[u]
14 nodes[u][index[u]].add to proper part(x)
15 foreach y � x do
16 w := F(y)
17 if status[y] = −1 then
18 if u � w then ŵ := w

19 else ŵ :=
∧�{u, w}

20 points[ŵ].add(y)
21 status[y] := 0
22 progress[ŵ] := true
23 while u < ŵ do ŵ := Flood(ŵ)

24 if u = vmin then
25 w := ε
26 else

27 w :=
∨�{w′ ∈ V | w′ < u}

28 while progress[w] = false do w :=
∨�{w′ ∈ V | w′ < w}

29 create edge(nodes[u][index[u]],nodes[w][index[w]]) // new edge in
�

30 progress[u] = false
31 index[u]++
32 return w

– points: a 2D array which stores the processed points of the image. The first
dimension is indexed by the values of V. In other words, points[v] encodes
all the points x ∈ Ω currently processed “at value v”;

– status: a 1D array which stores the status of each point of the image. For
any point x ∈ Ω, we have status[x] = −1 if x is unprocessed; status[x]
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= 0 if x belongs to points; and status[x] = i > 0 if x belongs to the proper
part ρ(X) of the node X stored in nodes[F(x)][i];

– nb nodes and index: two 1D arrays which store the number of nodes already
fully built and the index of the node currently built at each value of V,
respectively;

– progress: a 1D array which indicates if there exists a node at value v, cur-
rently under construction or to be built, which is an ancestor of the node at
value u currently being defined.

By comparison with the component tree construction detailed in [24], the one
proposed here for multivalued component tree construction differs with regard
to Flood as follows:

– In [24], we have x ∈ nodes[F(x)]. Here (Lines 7–11), we may have x ∈
nodes[u] with u 
= F(x). This happens when x is stored in nodes as the
neighbour of another point with a non-comparable value. In such case, the
chosen value u is the infimum of these two non-comparable values, and we
have in particular u < F(x);

– For two adjacent points x � y, it may occur that F(x) and F(y) be non-
comparable. In particular, the “else” case at Line 19 means that either u > w
or u and w are non-comparable. In the first case, ŵ is set to w. In the second
case, ŵ is the infimum of u and w, distinct from them. In this last case, the
point y of value w is added to nodes[ŵ] and not to nodes[w]. This will
further result in the scenario discussed above (Lines 7–11).

Note that nodes, points, status, nb nodes, index, progress, are handled as
global variables. In practice, Flood is then called for an input value v, with a
given configuration of these variables and modifies them.

An example of the behaviour of the algorithm is provided in Figs. 3 and 4.
For the image F : Ω → V of Fig. 3(a), the processing order of the points of Ω
is given in Fig. 3(b), from the first (1) to the last one (36). Figure 4 shows the
progress of the construction of the multivalued component tree of F with respect
to the processed points.

4.3 Complexity Analysis

In this analysis, we assume that |�| = O(|Ω|), which is the case in digital images.
We note κ(V) the time cost required to compare two elements of V or to compute
their infimum. Depending on the way (V,�) is modeled, κ(V) may vary from
O(1) (with a space cost of O(|V|2)) to O(log |V|) or O(|V|) (depending on the
equilibrium of the Hasse diagram, with a space cost of O(|V|)). We note h(V) ∈ N

the height of the Hasse diagram of (V,�).
Regarding the data structures:

– The size of nodes is O(|Ω|). It is initialized with a time cost O(1).
When accessing nodes[v] for reading or writing, the induced time cost is
O(log(|Ω|)).
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– The size of points is O(|Ω|). It is initialized with a time cost O(|Ω| ·κ(|V|)).
When accessing a set points[v] for reading or writing, the induced time cost
is O(1).

– The size of status is O(|Ω|). It is initialized with a time cost O(|Ω|). Access-
ing it for reading or writing has a time cost O(1).

– The size of nb nodes and index is O(|Ω|). They are initialized with a time
cost O(1). Accessing them for reading or writing has a time cost O(log(|Ω|)).

– The size of progress is O(h(V)). It is initialized with a time cost O(1).
Accessing it for reading or writing has a time cost O(log(h(V))).

Based on these considerations, the time cost for Alg. 1 (except Line 11) is O(|Ω|·
κ(|V|)).

Fig. 3. (a) An image F : Ω → V, following the same conventions as in Fig. 1. (b) The
order of processing of the points of Ω by Alg. 1, from the first processed point (“1”)
to the last processed point (“36”). At Line 15 of Alg. 1, the points y adjacent to x are
considered in the clockwise order, starting from the point on the right of x.

The time cost of Flood depends on:

– the size of Θ. In particular, for each node of Θ, Flood is called once, with an
induced time cost O(log(|Ω|) + log(h(V))) related to Lines 1 and 30–31;

– the size of �. In particular, for each edge of �, Flood is called once, with
an induced time cost O(τ(X) · (log(h(V))) + κ(|V|)) related to Lines 24–29
(where X is the node associated to the processed edge (X,Y ));

– the number of points of Ω. In particular, for each point x ∈ Ω, the while
loop of Flood (Lines 2–23) is run once or twice, with an induced time cost
O(log(|Ω|) + log(h(V)) + κ(V)).
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Fig. 4. Construction of the multivalued component tree of the image F : Ω → V of
Fig. 3(a). The number(s) in the subfigure captions (a–x) correspond to the points x ∈ Ω
processed by Alg. 1 at the current stage, as depicted in Fig. 3(b). At a current stage:
a plain coloured node is fully built; a contour-colored node is under construction; a
non-colored node has not been considered yet; a black edge is built; a light gray edge
is not built.
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It follows that the overall time cost of the construction process (Alg. 1 and
Func. Flood) is

T = O
(
|Ω| ·

(
log(|Ω|) + h(V) · log(h(V)) + h(V) · κ(|V|)

))
(8)

If the Hasse diagram of (V,�) is well balanced, the time cost becomes

T = O
(
|Ω| ·

(
log(|Ω|) + (log(|V|))2

))
(9)

The algorithms dedicated to build the standard component tree present a
quasi-linear computational cost O(|Ω| · log(|Ω|)). The initial algorithm dedi-
cated to build the multivalued component tree [10] (see Sect. 4.1) relies on such
quasi-linear time cost algorithms. In addition, it requires a pre- and a post-
processing step. During the pre-processing, the support of the image is extended
from Ω to Ω̂, and the time cost of the subsequent component tree construction
is then O(|Ω̂| · log(|Ω̂|)). We have |Ω̂| ≥ |Ω|, and the size of Ω̂ depends on the
size of the subset of edges of � that link vertices of Ω with non-comparable
values. More precisely, we have |Ω̂| = |Ω| in the best scenario, i.e. when all the
couples of adjacent vertices x � y are such that F(x) and F(y) are comparable.
By contrast, we have |Ω̂| = |Ω| + O(|�|) when all the couples of adjacent ver-
tices x � y are such that F(x) and F(y) are non-comparable. This last case may
generally occur whenever the Hasse diagram of (V,�) is well-balanced. In the
case of a d-dimensional digital image, the size of � is d · |Ω|. In this context,
the overall time cost of the computation of the multivalued component-tree is
O(d · |Ω| log |Ω|). We observe in particular that the initial algorithm [10] and the
new one proposed here are not sensitive to the same parameters. The first has a
time cost that progressively degrades while the dimension of the image increases,
while the second has a time cost that progressively degrades while the size of the
value space increases. It follows that both algorithms are complementary, and
may be considered depending on the application hypotheses.

5 Hierarchical Order Construction

Building the multivalued component tree of an image F : Ω → V requires a
hierarchical order on the set of values V. In this section, we discuss the ways to
endow V with such hierarchical orders (or, more generally, preorders) �. Two
strategies are proposed:

– building a preorder � on the only values of V (Sect. 5.1);
– enriching V with additional values leading to a larger set W and defining an

order � on W so that the values of V are the maximal elements of (W,�)
(Sect. 5.2).

5.1 (Pre)ordering the Value Set

We first aim to build a hierarchical preorder �V on V. Equivalently, we must
set:
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– an equivalence relation ∼ on V that gathers values which are mutually and
symmetrically comparable, leading to a quotient set V/∼, noted K;

– a hierarchical order �K on K.

This preorder �V is then defined, for all u, v ∈ V, by

(u �V v) ⇐⇒ ([u]∼ �K [v]∼) (10)

Let us come back to the notion of a component tree (see Sect. 3 by assum-
ing that � is a total order). We consider a graph GΔ = (Δ,�Δ) where Δ is
a finite set and �Δ is an adjacency on Δ, and a function δ : Δ → N (with N

endowed with the usual ≤ relation). Following Sect. 3, one can build the compo-
nent tree TΔ = (ΘΔ,�Δ) of (GΔ, δ).

The set ΘΔ is a cover of Δ. More precisely, we have
⋃

ΘΔ = Δ and ∀A ∈
ΘΔ, A 
= ∅. However, two distinct elements A,B ∈ Δ may have a non-empty
intersection. Indeed, for all A,B ∈ Δ we have A ∩ B 
= ∅ ⇒ A ⊆ B ∨ B ⊆ A.
This last point may prohibit ΘΔ to be a partition of Δ. Nonetheless, we can
define the set Δ� from Δ composed of the (non-empty) proper parts of the
nodes of ΘΔ. Given a node A ∈ ΘΔ, the subset A� = ρ(A) ⊆ A is defined as in
Eq. (6). The set Θ�

Δ is then defined as

Θ�
Δ = {A� | A ∈ Θ} (11)

In particular, the application that maps ΘΔ onto Θ�
Δ is a bijection, and Θ�

Δ is
a partition of Δ. It follows that ΘΔ defines an equivalence relation ∼Δ on Δ.

The component tree (ΘΔ,�Δ) is the Hasse diagram of the ordered set
(ΘΔ,⊆). Since ΘΔ and Θ�

Δ are in bijection, we can derive the order ⊆� on
Θ�

Δ by
(A� ⊆� B�) ⇐⇒ (A ⊆ B) (12)

The Hasse diagram (Θ�
Δ,��

Δ) of (Θ�
Δ,⊆�) is then isomorphic to the Hasse dia-

gram (ΘΔ,�Δ), i.e. the component tree of (GΔ, δ).
Following the notations given at the beginning of this section, and setting

Δ = V, ∼Δ = ∼, K = Θ�
Δ and ⊆� = �K, we can define a hierarchical preorder �V

on V from a component tree. In particular, it is only required that V be endowed
with the two elements necessary for building this component tree, namely:

– an adjacency relation �V, allowing to map a graph structure on V;
– a function δV : V → N, allowing to associate to each element of V a value

within the totally ordered set (N,≤).

Example. Let us consider a colour image F : Ω → V where the colour values are
encoded in the 8-bit per band RGB space V = [[0, 255]]3. We model V as the RGB
cube, where each colour v = (r, g, b) ∈ [[0, 255]]3 corresponds to a point in the
Cartesian space. We endow V with the standard 6-adjacency �V defined in digital
topology [22], that models the 1-distance between two colours with respect to the
1 norm. We set GΔ = (V,�V). Let us define δV as the histogram of the image
F . In other words, for any colour v ∈ V, we set δV(v) = |{x ∈ Ω | F(x) = v}|.
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Fig. 5. Illustration of the construction of a hierarchical preorder on a value set (see
Sect. 5.1). (a) Top: an image F : Ω → V. The set Ω is equal to [[0, 4]]2 and is endowed
with an adjacency relation � corresponding to the 4-adjacency. Bottom: the set V

composed of 9 values. (b) Top: the histogram of the image F , used as function δV :
V → N. Bottom: the set V is endowed with an adjacency �V. (c) The component tree
of (V, δV) seen as an image from the set of values V to N where V is endowed with
�V. This component tree defines a hierarchical preorder �, where the red value is the
minimum, the dark blue, yellow and grey values are the maximal elements, and where
the three values light blue, green and fushia are mutually greater and lower. Once V

is endowed with �, it becomes possible to compute the multivalued component tree of
the image F : Ω → V of (a) with respect to �.

Based on the above discussion, the component tree TΔ = (ΘΔ,�Δ) built from
(GΔ, δV) defines the Hasse diagram of a hierarchical preorder �V on V. This
example is illustrated in a simplified version in Fig. 5. From F and �V, it is then
possible to build the multivalued component tree of F induced by its histogram.

5.2 Ordering the Enriched Value Set

We now aim to build a hierarchical (pre)order �W on a superset W of V so that
V = ��WW, i.e. the elements of V are the maximal elements with respect to
�W.

The smallest set W that can be proposed is W = V ∪ {⊥} where ⊥ /∈ V

is a unique element added to V that acts as minimum for �W (such paradigm
was investigated in [21]). The induced hierarchical preorder (which is indeed an
order) is the relation �W defined as {(⊥, v) | v ∈ V} with ⊥ =

∧�W
W and

V = ��WW. It is possible to build larger supersets W and to endow them with
hierarchical preorders �W that also fulfill the above assumption. Such sets W

can be of arbitrary size.
We first observe that defining a preorder instead of an order is not relevant

(by contrast with Sect. 5.1). Let W be a set and �W a hierarchical preorder on
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W. We assume that ��WW = V and
∧�W

W = ⊥, with ⊥ ∈ W \ V. For any
w ∈ W, we set Vw = {v ∈ V | w �W v} (note that Vw 
= ∅). Let w1, w2 ∈ W.
For any w1, w2 ∈ W, we have

(w1 �W w2 ∧ w2 �W w1) =⇒ (Vw2 = Vw1) (13)

The image F can also be seen as a function F : Ω → W. For any w ∈ W, we
have (see Eq. (1))

Λw(F) = {x ∈ Ω | w �W F(x)} = {x ∈ Ω | F(x) ∈ Vw} (14)

Now, let us consider two distinct values w1, w2 ∈ W such that w1 �W w2 and
w2 �W w1. From Eqs. (13 and 14) it follows that C[Λw1(F)] = C[Λw2(F)].
In other words, relaxing the antisymmetry property to define a preorder instead
of an order is useless, since it leads to define many times the same nodes which are
modeled once in Θ (see Eq. (2)). We can then assume without loss of generality
that �W is a hierarchical order.

Fig. 6. Illustration of the construction of an order on a value set (see Sect. 5.2). (a)
Top: an image F : Ω → V. The set Ω is equal to [[0, 4]]2 and is endowed with an
adjacency relation � corresponding to the 4-adjacency. Bottom: the set V composed
of 9 values, without initial ordering. (b) Top: the co-occurrence matrix of the image
F , used as a priority function δ�V

: �V → N. Bottom: the set V is endowed with an
adjacency �V. (c) The binary partition tree of (V, �V) induced by δ�V

. This binary
partition tree defines a hierarchical order � on an enriched set of values W where the
values of V are the maximal elements.

Although W may be of arbitrary size, we now observe that it is sufficient to
define some sets W that may not be larger than twice the size of V. Let us set
VW = {Vw | w ∈ W} ⊆ 2V. We define the equivalence relation ≡ on W by

(w1 ≡ w2) ⇐⇒ (Vw1 = Vw2) (15)
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Let w ∈ W. The equivalence class [w]≡ is totally ordered by �W. We set ŵ =∨�W [w]≡. We note Ŵ = {ŵ | w ∈ W}. Let w1, w2 ∈ W. We have

(w1 �W w2) =⇒ (ŵ1 �W ŵ2) (16)

In other words, there is a homomorphism from (W,�W) to (Ŵ,�
̂W
) where �

̂W

is the restriction of �W to Ŵ.
By construction, the set Ŵ is in bijection with VW. Since V = ��WW, we

also have V ⊆ Ŵ. Following Eq. (2), we set ΘW =
⋃

w∈W
C[Λw(F)] and Θ

̂W
=⋃

w∈ ̂W
C[Λw(F)]. We have (ΘW,⊆) = (Θ

̂W
,⊆). It follows that the two associated

multivalued component trees are equal. As a conclusion, instead of using a set
W arbitrarily large and potentially infinite, a same multivalued component tree
is obtained by considering the set Ŵ, which is finite. Indeed, from the definition
of ≡, Ŵ is in bijection with VW ⊆ 2V. We even have a stronger result, since
the bijection between Ŵ and VW induces an isomorphism between (Ŵ,�

̂W
) and

(VW,⊆).
Let us now focus on the nature of the Hasse diagram of (VW,⊆). The inclusion

⊆ on VW is a hierarchical order. The Hasse diagram (VW,�) is, in particular, a
partition tree. The fact that V = ��WW implies that {{v} | v ∈ V} = �⊆

VW.
It follows that (VW,�) is a total partition tree. A corollary of this property is
that |VW| < 2 · |V|.

To conclude on this analysis, it appears that for building a hierarchical order
�W on a superset W of V so that the elements of V be the maximal elements
of �W, i.e. V = ��WW, the most simple, yet general solution is to build a total
partition tree from the initial, finest partition of V, namely {{v} | v ∈ V}.
This can be done by building a (binary) partition tree, following the standard
construction algorithms proposed in [23]. To this end, it is only required that V
be endowed with:

– an adjacency relation �V, allowing to map a graph structure on V;
– a priority function δ�V

: �V → N, allowing to determine the couples of nodes
to be merged in priority.

Example. Let us consider an image F : Ω → V. The support Ω is endowed
with an adjacency relation �. The value space V is endowed with the adjacency
relation �V so that GΔ = (V,�V) is an irreflexive complete graph (i.e. ∀u, v ∈
V, u 
= v ⇔ u �V v). We define the co-occurrence matrix [7] of the image F . This
matrix M = (mu,v)u,v∈V is of dimension |V|×|V|. For each couple (u, v) ∈ V×V,
it is defined by mu,v = |{(x,y) ∈ Ω × Ω | x � y ∧ F(x) = u ∧ F(y) = v}|. We
define the priority function δ�V

: �V → N so that for any (u, v) ∈ �V, i.e. for any
u �V v, we have δ�V

((u, v)) = mu,v. Based on the above discussion, the partition-
tree TΔ = (ΘΔ,�Δ) built [23] from (GΔ, δ�V

) defines the Hasse diagram of a
hierarchical order �V on V. This example is illustrated in a simplified version in
Fig. 6. From F and �V, it is then possible to build the multivalued component
tree of F induced by its co-occurrence matrix.



34 N. Passat et al.

6 Conclusion

In this article, we have provided new algorithmic tools for building the multival-
ued component tree, but also for designing hierarchical orders on sets of values,
which is a required condition of images to be modeled via multivalued component
trees. In previous works [10], it had already been observed that the multivalued
component tree could be efficiently involved for processing label images, espe-
cially on the context of hierarchical classification. Recent advances in the study
of component trees have shed light on their links with persistent homology [15],
and more generally their ability to model high-level topological information.
In this context, component trees are being increasingly considered as relevant
topological data descriptors to be embedded in deep-learning frameworks, e.g.
for the design of loss functions [19] or to model the image structure information
in self-supervised learning [28]. The contributions proposed in this article allow
to efficiently handle component trees not only on grey-level images, but more
generally on any multivalued images endowed with a hierarchical order. This
generalization paves the way to the involvement of the (multivalued) component
trees in various computer vision tasks (in particular based on deep-learning)
especially in the context of multivalued data, which is for instance the case in
semantic segmentation.
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representations for grayscale and multiband image processing. IEEE Trans. Image
Process. 21, 14–27 (2012)

19. Perret, B., Cousty, J.: Component tree loss function: definition and optimization.
In: DGMM, pp. 248–260 (2022)

20. Randrianasoa, J.F., Kurtz, C., Desjardin, E., Passat, N.: Binary partition tree
construction from multiple features for image segmentation. Pattern Recogn. 84,
237–250 (2018)

21. Ronse, C., Agnus, V.: Morphology on label images: flat-type operators and con-
nections. J. Math. Imaging Vis. 22, 283–307 (2005)

22. Rosenfeld, A.: Digital topology. Am. Math. Mon. 86, 621–630 (1979)
23. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for

image processing, segmentation, and information retrieval. IEEE Trans. Image
Process. 9, 561–576 (2000)

24. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for
image and sequence processing. IEEE Trans. Image Process. 7, 555–570 (1998)

25. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by
reconstruction. IEEE Trans. Image Process. 4, 1153–1160 (1995)

26. Salembier, P., Wilkinson, M.H.F.: Connected operators. IEEE Signal Process. Mag.
26, 136–157 (2009)

27. Soille, P.: Constrained connectivity for hierarchical image decomposition and sim-
plification. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1132–1145 (2008)

28. Tang, Q., Du, B., Xu, Y.: Self-supervised learning based on max-tree representation
for medical image segmentation. In: IJCNN, pp. 1–6 (2022)



Sketch2Seg: Sketch-Based Image
Segmentation with Pre-trained Diffusion

Model

Xin Dai, Haoge Deng, Ke Li, and Yonggang Qi(B)

Beijing University of Posts and Telecommunications, Beijing, China
{dxin1111,denghaoge,like1990,qiyg}@bupt.edu.cn

Abstract. The text-to-image diffusion models have been applied to
image segmentation, demonstrating the potential of diffusion models
in segmentation. However, texts often struggle to accurately describe
objects, particularly when it comes to fine-grained details. Sketches, on
the other hand, can address the issue to some extent. We observed that
the intermediate features of the diffusion model guided by sketch contain
more effective semantic information for segmentation compared to those
guided by text. Therefore, we propose Sketch2Seg, a sketch-based image
segmentation method with a diffusion model. By extracting intermediate
features of a sketch-to-image diffusion model, only a simple pixel classi-
fier needs to be trained. Quantitatively, our method reaches 78.47% and
81.07% mIOU on the PASCAL VOC and SketchySeg datasets on zero-
shot setups, respectively. To investigate fine-grained sketch segmentation
and detection, we contribute the SketchyCOCOSeg dataset which con-
tains segmentation annotations for images corresponding to the Sketchy-
COCO dataset. Our code is available here.

Keywords: Sketch-based image segmentation · Diffusion model ·
Dataset

1 Introduction

Diffusion models are employed for state-of-the-art image generation. Simulta-
neously, they have shown excellent results in various segmentation tasks [1–4].
Especially some researches on text-to-image diffusion models [5,6], extends the
potential for text-assisted segmentation. However, texts are not always the most
appropriate way to describe the exact object people want to segment, especially
when it comes to fine-grained object details such as the location, shape, and
pose [7].

In recent years, sketch, as a complementary modality to text, has been
explored broadly due to the ubiquitous nature of touchscreens [8,9]. The com-
mon perspective is that sketch is preferable when words become impractical for
conveying a specific concept. Sketch conveys many words [7], which provides
an efficient and precise description (e.g. shape, pose, style) than text [10,11].
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Additionally, sketch is a special kind of visual data, inherently has a smaller
gap with natural images than text, contributes to the model’s understanding of
segmented regions. Hence, we intend to employ sketch as an alternative to text
for segmentation.

Inspired by aranchuk’s excellent work [2], we perform K-means clustering on
the intermediate features of the conditional diffusion model. We compared three
different conditions: sketch, text and no condition. As shown in Fig. 1, it can
be observed that the intermediate features of the pre-trained diffusion model
already possess certain semantic information. Moreover, the features guided by
sketch can generate more optimal clustering results than text. The insight arises
from this, sketch is effective guiding condition in segmentation tasks.

Fig. 1. K-Means (k=2) clustering of different conditional diffusion models’ intermediate
features. From top to bottom, the text inputs are: “a photo of a bird”, “a green car on
the left”, “a photo of a cow”, “a zebra grazing on the grass” (Color figure online).

In this paper, for the first time, diffusion model is exploited for sketch-based
image segmentation. Specifically, we utilize ControlNet [12] and Stable Diffu-
sion [13] for sketch and image feature extraction, respectively. These features
are then employed to train a simple pixel classifier, achieving segmentation of
target objects and background. Sketch-to-image diffusion model [14] is a dif-
fusion generation model that generates natural images conditioned on sketch
as input. Our model ingeniously utilizes a pre-trained sketch-to-image diffusion
model, eliminating the need for extensive training data. In addition to few-shot
training, owing to the ability of sketch to convey abstract concepts, we further
dictate our model works in a zero-shot manner for a general-purpose [15].

We conducted category-level and instance-level segmentation on a subset of
PASCAL VOC 2012 [16] and SketchySeg [8] dataset, respectively. The results
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demonstrate that our approach outperforms existing works. During our research,
we discovered the absence of dataset for fine-grained segmentation setting [15,
17]. Therefore, following the approach taken by chowdhury et al. [15] in sketch-
based object detection, we contributed a dataset suitable for fine-grained sketch
image segmentation.

In summary, our contributions are (i) for the first time, we propose a sketch-
based image segmentation method with diffusion models. (ii) our approach
requires few data for training, and achieves the best performance in a zero-
shot manner. (iii) we contribute a granular dataset for fine-grained sketch-image
segmentation and detection.

2 Related Work

Sketch-based Image Segmentation. Sketch-based image segmentation dif-
fers from traditional dense prediction tasks such as semantic segmentation and
instance segmentation. It regards sketch as a description of the desired concept to
segment and separate objects represented by sketch from the background in the
image. The existing work extends traditional segmentation networks to introduce
the concept of sketch. Sketch-a-segmenter [8] first proposed the visual task, they
extended the DeepLabv3+ [18] segmentation network to include a Hypernet-
work [19] that introduce the sketch and synthesizes the weights of DeepLabv3+
classifier. SGOL [20] proposed a variant of the DETR [21] network that explores
sketch-guided instance segmentation through an encoder-decoder transformer
architecture.

Diffusion Model for Image Segmentation. Diffusion model have recently
shown remarkable potential in various segmentation tasks [5,6,22]. Image seg-
mentation was transformed into mask generation by [22–24]. Text-to-image dif-
fusion model were exploited to generate cross-attention maps during the denois-
ing process, which were then used for target segmentation [25]. Aranchuk et al.
utilized the intermediate features generated by the diffusion model for segmenta-
tion [2]. To the best of our knowledge, our method is the first to combine sketch
and diffusion models for image segmentation.

3 Methodology

3.1 Problem Definition

Referring to Sketch-a-Segmentor [8], we use sketches as a visual representation
concept for the segmentation part, segmenting certain types of objects in an
image. To train a classifier, we use N data tuples{(p, s,m)}N

i=1 about photo p,
sketch s and segmentation mask m. Formally, our segmentation model can be
expressed as

m = SΦ (FΘ(p, s)) (1)

where FΘ(·; ·) is a feature extractor of image and sketch, SΦ(·) is a pixel classifier
with parameters Φ.



Sketch2Seg: Sketch-Based Image Segmentation 39

3.2 Diffusion Model

The diffusion model first adds Gaussian noise gradually to the picture x0 through
a forward process to get the noisy sample xt, which finally makes the image
become completely Gaussian noise xT ∼ N (0, I). Formally, the forward diffusion
process can be

q (xt | xt−1) = N
(
xt;

√
1 − βtxt−1, βtI

)
(2)

where β1, ..., βt is a fixed variance schedule. The diffusion model defines each
addition of noise as a Markov process, where upon the intermediate samples of
the addition of noise can be obtained directly from the original image x0

q (xt | x0) := N (
xt;

√
ᾱtx0, (1 − ᾱt) I

)
(3)

where αt := 1 − βt, ᾱt :=
∏t

s=1 αs.
The reverse process is also defined as a Markov Gaussian transformation,

pθ (xt−1 | xt) := N (xt−1;μθ (xt, t) ,Σθ (xt, t)) (4)

where the mean of the Gaussian distribution μθ needs to be predicted using a
neural network, the variance Σθ can be a parameter that is considered fixed or
learnable. However, during the practice of diffusion modeling, it has been found
that it is more effective to predict the noise εθ in the denoising process than to
predict the mean directly, and it can be shown that the μθ is a linear combination
of εθ and xt

μθ (xt, t) =
1√
αt

(
xt − βt√

1 − ᾱt
εθ (xt, t)

)
(5)

3.3 Feature Extraction

The prevalent diffusion-based image generative models [12,13,26,27] typically
use a UNet architecture to learn the denoising process. As shown in Fig. 2, We
exploit pre-trained ControlNet [12] to encode sketch, facilitating the integration
of sketch information with the images to be segmented. ControlNet is a neural
network that controls a pretrained image diffusion model, which replicates the
structure and parameters of UNet’s encoder, and different modules are connected
to each other using a 1×1 convolutional layer with an initialisation parameter
of zero. At every step of the de-noising process, diffusion model use the sketch
input to infer the de-noising direction of the noising input image.

As shown in [2,6], the feature map output of the UNet can be regarded as
rich and dense feature for segmentation. We extract certain output of the UNet’s
decoders as feature fusion as sketch and image, which leading pixel classifier to
distinguish between the object to be segmented and other objects.

For a given real image x0 ∈ RH×W×3 and the segment query sketch s0 ∈
RH×W×3, we compute reverse process of an input image and sketch at certain
de-noising step t through the diffusion model to extract its visual representation.
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Fig. 2. Overview and training pipeline of the proposed method. We first cor-
rupt the input image x0 according q(xt|x0) to obtain xt, then xt and sketch s0 were fed
into Stable diffusion and ControlNet, respectively. Then we extract the intermediate
features of the certain blocks of the decoder, upsampling to the image resolution and
concatenating them. The pixel-level representations are used to train a MLP with cross
entropy loss.

Specially, we first corrupt x0 by adding Gaussian noise according to Eq. 3
at several certain time step t. The noisy xt is input of the UNet and s0 is fed
into ControlNet. The outputs of each module of ControlNet are added to UNet’s
encoder. During the reverse process, we extract specific blocks’ intermediate
features and upsample to H × W with bilinear interpolation. All the feature
maps concatenated allows treating them as pixel-level representation of input
x0 and s0. We denote the joint feature as F0 ∈ RH×W×N

′
, which N

′
being the

dimension of the high-dimensional feature representation of a single pixel.

3.4 Pixel Classifier

Reshape F0 into a two-dimensional vector V0 ∈ RHW×N
′
, and for each pixel

representation fi ∈ RN
′

in V0, we train a multi-layer perceptrons(MLP) to clas-
sify them. The MLP consists of multiple Linear, ReLu and Batch-Normalization
layers. When predicting the categories, the softmax function is used to take the
category with the highest probability as the predicted category.

m̂i = softmax(MLP (fi)) (6)

where m̂i ∈ {0, 1}, denotes the category of the ith pixel.

3.5 Object Function

We train the network to binary classify each pixel of the image to get a binary
(foreground and background) segmentation map. We use the cross-entropy func-
tion as an objective function to minimize the cross-entropy between the predicted
and true values during training.

L = −
∑

mp(i,j) log
(
m̂p(i,j))

)
(7)
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where p(i,j) denotes the pixel in row i, column j. mp(i,j) is the true labeling of
the corresponding pixel, and m̂p(i,j) is the label of the category predicted by the
model.

Table 1. Categories of the Training and Testing

Train-Category(10) Test-Category(5)

dog,wine bottle,horse,sheep,airplane car,cat,chair

bicycle,sailboat,songbird,table,coach cow,motorcycle

Fig. 3. Examples about revised fine-grained object detection dataset SketchyCOCOSeg

4 Experiment

To probe the limits of sketch segmentation, we conducted experiments at three
granularities: category, single-object instance, and multi-object fine-grained lev-
els, using unique datasets for each. For fine-grained segmentation without com-
parative SketchyCOCO results, we converted the task to object detection via
segmentation masks’ minimum bounding rectangles. All experiments were eval-
uated in a zero-shot setting for the training and testing classes are completely
disjoint.
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4.1 Experiment Setting and Datasets

Datasets. For category-level image segmentation, we select photos from 15 cat-
egories in the PASCAL VOC 2012 dataset follwing [8], the sketches come from
Sketchy dataset [28]. Specifically, the categories chosen are listed in Table 1.
For instance-level image segmentation, we choose the SketchySeg dataset pro-
posed by [8]. SketchySeg dataset contains 15 annotated categories as listed in
Table 1. For sketch-based fine-grained image detection, 1225 sketch-image pairs
from SketchyCOCO [29] with at least one foreground object are chosen following
[15].

Correct Fine-Grained Segmentation Dataset. Since most of the sketches
in the SketchyCOCO dataset are obtained by selecting the foreground from the
scene sketch, which results in some of the sketches being almost a blank map
or the sketches have no correspondence with the objects to be detected. We
corrected the sketches in this dataset.

Our method is: in the SketchyCOCO dataset, the position and pose of the
object to be detected guide the manual selection of sketches from the Sketchy
dataset. Sketches that exhibit a similar pose to the object in the image are
chosen from sketches of the same category of object. These selected sketches are
then used as pairing data. Image processing software is employed to align the
position and size of the sketches with the corresponding objects in the images.
In the new dataset, there are a total of 1225 pairs of data across 14 categories1.
Each photo in the dataset has a corresponding fine-grained sketch and annotated
segmentation mask. We have named this new dataset SketchyCOCOSeg. Some
examples are shown in Fig. 3.

Implementation Details. We use PyTorch 1.12 and run our experiment on
4 Tesla T4 gpus. The image and sketch crop size in the experiment is 256 × 256,
the UNet model is Stable Duffision [13]. The ControlNet and Stable Diffusion
load pre-trained parameters scribbe2image2. The UNet decoder blocks we choose
are B = {5, 7, 8, 11} and the denoising steps are t = {50, 100, 200} of the reverse
diffusion process.

Evaluation Protocol. For image segmentation, we use the standard mean
Inter-section-Over-Union(mIOU) and pixel accuracy for evaluation. The image
pixels belonging to the category of sketch are regraded as foreground and the
rest as background. For object detection, we measure AP.3, AP.5 and AP.7 that
computes the average precision (AP) at IoU values 0.3, 0.5, and 0.7 following
[15].

1 airplane,bicycle,car,cat,cow,dog,elephant,fire hydrant,giraffe,horse,motorcycle,sheep,
traffic light,zebra.

2 https://github.com/lllyasviel/ControlNet.

https://github.com/lllyasviel/ControlNet
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4.2 Competitors

Image Segmentation
DeepLabv3+ [18]: A general image segmentation model. In our exper-
iment,only the photos are fed into DeepLabv3+ for generic binary fore-
ground/background segmentation.
OSLSM [30]: For training, one masked photo in the Sketchy dataset are
exploited for parameter generation.
DDPM-Seg [2]: A diffusion model based baseline. The Stable Diffusion [13] are
used for feature extraction and the category number is two. We retrained the
classifier on our own dataset to evaluate performance.
DeepLabv3+sketch [8]: Both image and sketch are depth concatented and fed
into the network for image segmentation map prediction.
Hyper-DeepLabv3+ Wordvec [8]: A language-based zero-shot learning
architecture. One 300-d vector which extracted for each category by using the
word2vec model pre-trained on the Google News corpus [32] are exploited to
guide classification layer parameters synthesis.
Hyper-DeepLabv3+ sketch [8]: Sketch-based segmentation model, which
takes skecth as input and generate corresponding weights for segmentation.
SAM [31]: A general segmentation model, we take the outer rectangle of the
input sketch as input to get the segmentation mask.
DDPM-Seg + text: A language-based comparative model, which encodes tex-
tual descriptions of the objects in the image using a pre-trained CLIP model,
providing guidance to the pixel classifier.

Table 2. Category-Level Segmentation Result

Method mIOU(%) Pixel Accuracy(%)

DeepLabv3+ 65.31 83.52

OSLSM 65.40 84.36

DeepLabv3+ sketch 67.54 86.25

Hyper-DeepLabv3+ Wordvec 70.84 89.30

Hyper-DeepLabv3+ sketch 73.35 90.24

DDPM-Seg 74.54 89.51

Sketch2Seg 78.47 90.50

Fine-Grained Object Detection
WSDDN [33]: Reimagining object detection as a region classification task using
the Multiple Instance Learning (MIL) paradigm. To incorporate a query sketch
into the WSDDN framework, we employ cross-attention in conjunction with RoI
pooled features, subsequently employing a binary classifier for detection.
OICR [34]: Building upon the foundation of WSDDN, improvements are intro-
duced through iterative MIL to refine the initial prediction scores.
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Fig. 4. Results of Category-level Segmentation on Pascal VOC and Sketchy. (a) Input
sketch for sketch2seg model, (b) Segmentation results of DDPM-Seg, (c) Segmentation
results of DDPM-Seg, (d) Ground-truth segmentation map.

PCL [35]: Multiple positive instances are generated through clustering, and each
cluster result is assigned the corresponding object class label.
ICMWSD [36]: The network are forced to look in the surrounding context
regions by dropping the most discriminative parts.
Sketch-Detect [15]: A sketch-aware detector, which applies a novel prompt
learning setup to marry CLIP [37] and sketch-based image retrieval(SBIR).

Table 3. Instance-Level Segmentation Result

Method mIOU(%) Pixel Accuracy(%)

DeepLabv3+ 74.35 88.17

DeepLabv3+ sketch 76.78 88.77

Hyper-DeepLabv3+ sketch 80.48 90.92

SAM 79.67 90.17

DDPM-Seg 77.94 88.39

DDPM-Seg + text 79.93 91.24

Skecth2seg 81.07 91.33

4.3 Experiment Result

Sketch-Based Category-Level Segmentation
Settings: For the 10 training categories, 5 images are randomly selected for
each category, and sketches of the same category are randomly selected for each
image as training data. When testing, for each picture in the test set, a sketch of
the same category is randomly selected. The test experiment is repeated three
times and the results are averaged.
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Fig. 5. Result of Instance-level Segmentation on SketchySeg. (a) Input sketch for
sketch2seg model. (b) Segmentation results of DDPM-Seg. (c) Segmentation results
of sketch2seg + text. (d) Segmentation results of sketch2seg + sketch. (e) Ground-
truth segmentation map

Results: The results are shown in Table 2, from which we can observe: (i) The
DDPM-Seg outperforms Deeplabv3+ and OSLSM when no prior information is
available regarding auxiliary segmentation. (ii) When applied to novel categories,
the binary foreground segmentation model can somewhat predict foreground
versus background, despite its original training on different categories. (iii) Cat-
egory information proves to be beneficial in enhancing segmentation accuracy,
with sketches demonstrating a higher level of efficacy for segmentation when
compared to word vectors. (iv) In the zero-shot scenario, our proposed approach
attains superior results compared to existing methods. Some qualitative results
are shown in Fig. 4. Compared with DDPM-seg, Skecth2Seg only uses sketches
of the same category, which can obtain more accurate segmentation edges and
reduce segmentation holes.

Sketch-Based Instance-Level Segmentation
Settings: The train/test category split is the same as that for category-level seg-
mentation. In the Sketchy dataset, multiple instance-level sketches were drawn
for each image, for testing, we randomly selected one as the segmentation query.
For the sketch2Seg+text model, we use a general prompt “a photo of a [class]”
where [class] denotes the input images’ category. For instance, “a photo of a
cow” for the first column in the Fig. 5 .

Results: From Table 3 we can see: (i) Any description (text or sketch) of the
object to segment provides improved performance compared to a generic fore-
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Table 4. Fine-Grained Object Detection Result

Method AP.3 AP.5 AP.7

WSDDN 8.1 10.2 9.4

OICR 8.9 10.9 10.0

PCL 9.2 11.5 10.6

ICMWSD 10.3 11.9 10.8

Sketch-Detect 15.0 17.1 16.3

Skecth2seg(SketchCOCO) 48.9 38.4 29.6

Sketch2seg(SketchCOCOSeg) 54.2 40.1 31.9

Fig. 6. Fine-Grained Object Detection with sketch query on image from Sketchy-
COCO. The red box is ground-truth bounding box, the yellow box is our predict
bounding box. (Color figure online)

ground segmenter in our experiment. (ii) For the objects under segmentation,
the instance-level sketches yield a more substantial enhancement in segmen-
tation results compared to textual descriptions. (iii) Despite training with a
limited volume data, our proposed approach achieves state-of-the-art perfor-
mance in the zero-shot setting. Figure 5 presents some qualitative results. Com-
paring to DDPM-Seg without any auxiliary information and sketch2seg+text,
sketch2seg+sketch can obtain more accurate segmentation map, as shown in (d)
row, the segmentation results have less segment cavities.

Sketch-Based Fine-Grained Object Detection
Settings: We classify the 1225 images based on the identified objects into a total
of 14 categories. We randomly select 9 categories, 5 images from each category
as training data. All data from the remaining 5 categories are used as test data.
Repeat 5 times and the results are averaged.
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Table 5. Cross-dataset Evaluation Result

Dataset mIOU(%) Pixel Accuracy(%)

Quickdraw 78.06 89.82

Tuberlin 79.68 90.78

Sketchy 81.07 91.13

Results: From Table 4 we can see: (i) Our method improves AP dramatically,
with an 81% improvement in the metric AP.7 compared to the previous best
method. (ii) Our New dataset SketchCOCOSeg has improved accuracy for tar-
get detection. (iii) Our method also works for fine-grained object detection, and
our method does not require multiple candidate boxes and Non-Maximum Sup-
pression(NMS) process. Some qualitative results are shown in Fig. 6. Our model
capture fine-grained object information and detect specific objects represented
in the sketch.

4.4 Cross-Dataset Evaluation

One goal of our model is to handle the high variability observed in sketch [20],
allowing segmentation queries across different styles without the need for retrain-
ing. Hence, we chose five test categories from the SketchySeg dataset and selected
corresponding sketches from the QuickDraw [38] and Tuberlin [39] dataset to
form data pairs. Our model underwent training on the Sketchy dataset and was
subsequently tested directly on the two newly composed datasets. The results are
shown in Table 5. Compared to the Sketchy dataset, segmentation mIOU drops
slightly on both new datasets, and drops even more on the QuickDraw dataset,
with mIOU dropping by 3.71%, which is to be expected since the sketches in
Quickdraw are really simple and abstract. In general, our approach demonstrates
the capability to perform direct segmentation across datasets.

5 Conclusion

In this article, we presented Sketch2Seg, a new approach to sketch-based image
segmentation. Our approach exploits pre-trained diffusion model to represent
sketch and image, requires a few annotated training data and achieves optimal
performance even in zero-shot setup. In order to explore the expression of sketch
in fine-grained segmentation and detection tasks, we introduce a new dataset
called SketchyCOCOSeg, based on SketchyCOCO. This dataset alleviates the
data scarcity issue in fine-grained segmentation tasks.
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Abstract. This paper presents a new automated unsupervised segmen-
tation system to accurately delineate the pulmonary region in 3D com-
puted tomography (CT) scans. It operates on a multi-dimensional joint
probability model, which leverages a deep learning-based transformer
model to optimize the log-likelihood of that probabilistic model. This
probability model integrates appearance probability models, that rep-
resent various radiodensity distributions in both lung and chest areas
within the 3D CT volume using linear combination of Gaussian (LCG),
along with their spatial probability model, generated based on a 3D
Markov Gibbs random field (MGRF), with potentials estimated ana-
lytically. Finally, the generated segmentation is further refined using a
transformer model to maximize the log-likelihood of a given region. The
proposed method’s efficacy is assessed by analyzing 3D chest scans of 28
patients diagnosed with varying severities of COVID-19. Four metrics are
employed for evaluation, namely, Dice similarity coefficient (DSC), over-
lap coefficient, Hausdorff distance (HD), and absolute volume difference
(AVD). The proposed system demonstrates outstanding performance,
with scores of 95.60±1.37%, 91.61±2.51%, 6.56±2.68, and 6.23±3.52, respec-
tively. These findings underscore the potential of the proposed system
in delineating both normal and pathological lung regions in CT images,
when compared to its individual components as well as six state-of-the-
art (SOTA) segmentation methods.

Keywords: LCG · Lung Segmentation · MGRF · Multi-dimensional
Joint Probability · Transformer model

1 Introduction

The respiratory system, comprising the lungs and airways, plays a vital role in
sustaining life by facilitating the exchange of oxygen and carbon dioxide. How-
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ever, this intricate system is susceptible to a myriad of diseases, ranging from
acute infections to chronic conditions, each with its unique set of challenges and
implications for health. Pulmonary diseases present a broad array of symptoms,
including coughing and difficulty breathing, progressing to respiratory failure
and even mortality [30]. Early detection of pulmonary diseases is paramount,
given their potential to progress silently and impact health profoundly. Consider
conditions like lung cancer, which often develop asymptomatically until reach-
ing advanced stages, pulmonary fibrosis, characterized by progressive scarring
of lung tissue, or coronavirus disease 2019 (COVID-19), which can significantly
impact the respiratory system. Detecting these diseases early offers a crucial
window for intervention, enhancing treatment efficacy and improving patient
outcomes. Computed tomography (CT) scans, commonly employed for diagnos-
ing pulmonary diseases, offer highly detailed visualization of the lungs, thereby
enabling precise and accurate identification of respiratory conditions. To develop
an accurate computer-aided diagnostic system (CAD), precise delineation of the
lung region is crucial. Inaccurate segmentation of lung regions can severely com-
promise the effectiveness of the diagnostic process overall. Accomplishing this
task presents considerable challenges, given the intricate nature of lung struc-
tures, the variability in pathological areas, and the similarity in radiodensity
between these areas and the chest. Therefore, This study focuses on the devel-
opment of an accurate lung segmentation system.

Several studies have introduced segmentation methods aimed at identifying
both normal and pathological areas within the lungs. These methods utilize var-
ious approaches, including thresholds, shapes, deep learning models, or hybrid
methods. For example, Moghaddam and Aghazadeh [22] introduced a threshold-
based lung segmentation method through the utilization of Otsu thresholding
method along with connected component analysis. The Bresenham method and
Freeman chain-code algorithm were integrated into their system’s pipeline to
identify nodules/tumors, overlooked during segmentation. Their system was eval-
uated on LIDC-IDRI database, achieving a Dice similarity coefficient (DSC) of
96.12±0.3068%. A recent study [9] utilized U-Net and V-Net for segmenting the
lung and lobes, respectively. Their system achieved a DSC of 98±3% and 94±6%,
respectively. A similar study [21] utilized U-Net with DenseNet121 as a backbone
for segmenting lung regions in CT images. Devi et al. [11] introduced a segmen-
tation system based on deep learning approach designed to outline the lung area
in X-ray images. This network employed U-Net as its backbone with the utiliza-
tion of scale, spatial and channel attention models, achieving a DSC of 92%. A
recent study by Missimer et al. [20] implemented a segmentation system aimed
at outlining the lung region in magnetic resonance imaging (MRI) images. Their
system preprocessed MRI images using various approaches, including morpho-
logical transformations erosion, dilation, reconstruction, and complement. Sub-
sequently, an adaptive thresholding method was employed to segment the lung
region. Finally, a connected component analysis approach was utilized to refine
the segmented region. Their system achieved a DSC of 94%. In [23], authors
employed DeepLabV3+ to delineate lung regions in CT images. They assessed
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its effectiveness using five pretrained networks: ResNet-50, Xception, ResNet-18,
Inception-ResNet-v2, and MobileNet-v2. The system’s performance was evalu-
ated on 750 CT images, with the best lung segmentation accuracy achieved when
DeepLabV3+ was combined with ResNet-18. A similar study [16] investigated
the effectiveness of four deep learning-based segmentation models, including Seg-
Net, U-Net, U-Net++, and FCN, for delineating lung regions in X-ray images.
Their results showed that U-Net++ was more effective in delineating lung regions
compared to the other three models. Another study [24] proposed a three-
stage deep learning-based segmentation system for delineating lung regions in
CT images. In the preprocessing stage, a convolution neural network (CNN) was
introduced to exclude CT images devoid of lung regions. Subsequently, a U-Net
was employed to delineate lung regions in CT images. During postprocessing
stage, another U-Net and CNN were utilized to refine lung contour and elimi-
nate incorrectly segmented regions, respectively. Their system was evaluated on
the 3DIRCAD and ILD database, achieving a DSC of 95%. Shi et al. [29] intro-
duced an automatic segmentation system designed to delineate pathological lung
regions in CT images. Their system leveraged an active shape model (ASM)
based on low-rank and sparse decomposition (LRSD) theory. Moreover, they
employed a hierarchical ASM search strategy, utilizing the LRSD shape model
alongside a normalized gradient-based appearance model to refine the initially
generated shape, thereby enhancing the system’s efficiency against local min-
ima. Their system was evaluated on segmenting the right lung regions in CT
images, achieving a DSC of 96.13 ± 1.54%. Another study [19] implemented an
automatic segmentation based on wavelet transform to delineate lung regions in
CT images. Initially, they proposed an image decomposition-based smoothing
filter to eliminate noise from lung in CT images while retaining the integrity
of their lung outlines. Subsequently, an integration of wavelet transform with
morphological operations was utilized to segment lung region. Finally, a contour
correction method was employed to refine the segmentation, aimed at correcting
and smoothing the identified lung contours. Their system achieved an average
DSC of 98.04%, when evaluated on ILDs dataset. Further elaboration on lung
segmentation techniques and related literature can be found in [4,5,12,14].

Despite the extensive research conducted on lung segmentation using CT
scans, previous studies have notable limitations. These include inaccuracies in
segmenting pathological lesions, particularly with threshold-based systems, the
dependence of shape-based techniques on manual feature selection, and the
substantial dataset requirements for training deep learning-based systems. To
overcome these challenges, we propose an unsupervised maximum a posteri-
ori (MAP)-based segmentation system that employs an appearance and shape
probabilistic models to cluster each region (i.e., lung or chest). This model is
optimized using a deep learning approach rather than stochastic optimization
algorithms, aiming to maximize the likelihood of the probabilistic model.
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2 Methods

Delineating the lung region is a crucial step in developing an accurate computer-
aided diagnostic (CAD) system, as the precision of the segmentation system is
paramount. An inaccurate segmentation system significantly impacts the accu-
racy of any CAD system. Therefore, the development of a precise segmentation
system is essential. To achieve this, we introduce a stochastic unsupervised seg-
mentation system, outlined in Fig. 1, with its procedural steps expounded upon
in the subsequent subsections.

Fig. 1. A schematic visualization of the proposed unsupervised segmentation system
using CT images.

2.1 Appearance Realizations

To improve the accuracy of the proposed system, various appearance realizations
have been incorporated into the system pipeline. These realizations are derived
using a 3D minimum filter with two different kernel sizes: 3 and 5. The rationale
behind utilizing these filters is rooted in the fact that lesion regions typically
exhibit higher radiodensity than lung regions. Hence, these filters serve to effec-
tively merge these regions with the lung, thereby enhancing the lung regions
homogeneity.

2.2 Joint Probability Model

To integrate the density distribution of CT data and its appearance realizations
with their spatial distribution, we proposed a multi-dimensional joint probability
model. Traditionally, the joint probability model relies on a single appearance
realization (g) and region maps (i.e., labeled images denoted by m), that can be
modeled as follows:

P (g,m) = P (g|m)P (m). (1)
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Here, P (m) denotes the spatial distribution of a given map, while P (g|m) rep-
resents the appearance distribution of a grayscale value given a map. In order to
improve the precision of this model, a multi-dimensional appearance realization
(G = g, g′, g′′, . . .) is employed instead of relying on a single appearance real-
ization. Each of these realizations (i.e., g, g′, g′′, . . .) represents different levels of
uniformity improvement obtained using various 3D filters. In this paper, a 3D
minimum filter is employed to derive multiple appearance realizations, aiming
to make the lesion regions appear similar to the lung regions, thereby enhancing
the appearance of lung regions. Assuming the independence of these realizations,
the multi-dimensional joint probability model is defined as follows:

P (G,m) = P (G|m)P (m)
= [P (g|m) + P (g′|m) + P (g′′|m)]

︸ ︷︷ ︸

Appearance Model

P (m). (2)

To regularize the distribution of a given map, Bayesian maximum a posteriori
(MAP) estimation is utilized, with the aim of maximizing the log-likelihood of
a map based on grayscale values, as defined below:

m∗ = argmax
m

L(G,m), (3)

where L(g,m) represents the log-likelihood of the proposed multi-dimensional
model, estimated as follows:

L(G,m) = log P (G,m)
= log [P (g|m) + P (g′|m) + P (g′′|m)] + log P (m).

(4)

2.3 Appearance Model

In order to probabilistically capture the variability in CT data and its appear-
ance realizations, an appearance probabilistic model is introduced. This model
effectively addresses the challenge posed by the different distributions of CT data
resulting from different scanning protocols. It achieves this by representing the
distributions (i.e., histograms) of CT data and its appearance realizations as a
linear combination of Gaussian (LCG) distributions [2,3,26–28], as illustrated in
Fig. 2. Let K denote the number of Gaussian distributions utilized to model the
histogram, with at least two Gaussian components. These two Gaussian com-
ponents, referred to as primary components, signify lung (i.e., k = 1) and chest
(i.e., k = 2) regions. The remaining K − 2 Gaussian components, referred to as
secondary components, are utilized to model the variations, not captured by the
primary components. This probabilistic model, illustrated in Fig. 2b, is defined
as follows:

P (h) = w1ϕ(h; θ1) + w2ϕ(h; θ2)
︸ ︷︷ ︸

primary

+
K

∑

k=3

wkϕ(h; θk)

︸ ︷︷ ︸

secondary

, (5)
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where w denotes the mixing weights that adjusts this probabilistic model to form
a density function, with the condition that

∑K
k=1 wk = 1. While, ϕ(h; θk), and

θk = (μk, σk) represent the Gaussian distribution and its parameters, respec-
tively.

Fig. 2. A visualization of (a) histograms for CT voxel (i.e., g) and its minimum-filtered
voxels (i.e., g′, g′′), (b) their corresponding appearance models, (c) their clustered
modes, and (d) final output.

By employing a two-step expectation maximization (EM) algorithm, the mix-
ing weights and Gaussian parameters are computed. The main goal of this algo-
rithm is to maximize the log-likelihood of the empirical data [13]. Afterward,
the secondary components are categorized into one of primary components (i.e.,
lung or chest) using a modified k-means algorithm [27] if the distance between
their means and the mean of that primary component is minimized, as illus-
trated in Fig. 2c. After clustering these secondary components, the appearance
probability of a given class (c), as depicted in Fig. 2d, is modeled as follows:

p(h|c) = wcϕ(h; θc)
︸ ︷︷ ︸

primary

+
∑

k̂

wk̂ϕ(h; θk̂)

︸ ︷︷ ︸

secondary

. (6)

2.4 Spatial Model

To investigate the spatial relationship between current region map and its
26 neighbors, a Markov-Gibbs random field (MGRF) approach [1,13,15] is
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employed to model these spatial relationship. The model adeptly captures pair-
wise neighboring interactions through analytical estimation of bi-value poten-
tials. These potentials act as distinguishing elements, deciding whether a partic-
ular interaction corresponds (i.e., Veq) or deviates (i.e., Vnoneq) from a specific
label. These bi-value potentials can be estimated as follows:

V (x, χ) =
{

Veq x = χ
Vnoneq x �= χ

(7)

Here, x and χ represent given labels (lung or chest), while Veq and Vnoneq

are calculated as follows:

Veq =
X2

X − 1

(

feq(m) − 1
X

)

Vnoneq = −Veq

(8)

where X and feq(m) represent the total count of labels and the number of
equivalent labels found in all pairwise interactions among its 26-neighbors for a
particular region map, respectively.

Finally, the spatial probability for a given offset (ξ, η, ζ), which defines these
neighboring interactions, is calculated based on these estimated potentials, as
detailed below:

P (m) =
1
Z

exp

⎛

⎝

∑

(i,j,z)∈R

∑

(ξ,η,ζ)∈N

V (mi,j,z,mi+ξ,j+η,z+ζ)

⎞

⎠ (9)

Here, Z stands for the normalization factor, whereas N represents the shifts (i.e.,
distance) for all 26 neighboring elements.

2.5 Optimization Model

To optimize the proposed multi-dimensional joint probability (Eq. 2), a Swin
Transformer-based network, specifically Swin-Unet [7], is utilized, as presented
in Fig. 1. The strength of the Swin Transformer lies in its ability to efficiently
capture long-range dependencies across input data, owing to its hierarchical
and non-local attention mechanisms. This capability significantly enhances per-
formance in segmentation tasks. Swin-Unet is built upon an encoder-decoder
architecture that incorporates skip connections. These connections facilitate the
retention and propagation of low-level features from early layers to deeper lay-
ers, thereby aiding in gradient flow, mitigating vanishing gradient issues, and
ultimately enhancing the model’s performance. This network utilizes Swin trans-
former [18], which consists of four layers: linear embedding, encoder, decoder,
and linear projection. The linear embedding consists of a convolution layer with
a kernel size of 4 × 4, followed by a flatten layer and a normalization layer. The
encoder layer compresses the input information into a lower-dimensional repre-
sentation, aiming to identify subtle features, while the decoder layer reconstructs
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the output based on this learned representation, with the aim of generating
coherent and relevant results. This network utilizes four levels of encoder and
decoder layers. Each level of the encoder layer comprises two Swin transformer
blocks and patch merging for generating hierarchical features, except for the
last level, which consists of two Swin Transformer blocks only. The Swin trans-
former block, characterized by its hierarchical attention mechanism and shifted
window-based self-attention, plays a pivotal role in capturing both local and
global features within the input data. This block consists of two consecutive
layers, each containing layer normalization (LN) and a multi-head self-attention
(MSA) module, followed by a multi-layer perceptron (MLP), as illustrated in
Fig. 3a. The structure of this block can be defined as follows:

ôl = W -MSA(LN(ol−1)) + ol−1,

ol = MLP (LN(ôl)) + ôl,

ôl+1 = SW -MSA(LN(ol)) + ol,

ol+1 = MLP (LN(ôl+1)) + ôl+1.

(10)

Fig. 3. A schematic illustration of (a) Swin Transformer block, and (b) the normalized
log-likelihood.

Here, ol, and ôl represent the output of MLP and (S)W-MSA in the lth layer,
respectively. Where, W-MSA self-attention can be defined as follows:

Attention(ol) = Softmax
(

QKT

√
d

+ B

)

V (11)

where Q, K, and V are learnable matrices with dimension d. Moreover, patch
merging layer is responsible for reducing the input twice (i.e., downsampling)
by aggregating information from neighboring patches (i.e., four patches), while
simultaneously doubling the number of feature maps through the utilization of
a linear layer to combine the concatenated features. Furthermore, each level
of decoder layer consists of two Swin transformer blocks and patch expanding,
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except for the first level, which comprises patch expanding only. Patch expanding
layer is responsible for increasing the spatial resolution of feature maps (i.e.,
upsampling) while integrating contextual information from neighboring patches.
Finally, the linear project layer consists of a convolution layer with a kernel size
of 1 × 1 to project the segmentation prediction.

Instead of using this network as a black-box, the Swin-Unet is employed to
optimize the proposed joint probability by maximizing the log-likelihood (Eq. 4).
It takes input consisting of the joint probability of CT data and its appearance
variations. Each probability represented as a separate channel, resulting in a total
of six channels, with three channels dedicated to lung features and three channels
for chest features. The network’s output serves as potential candidates, aimed at
maximizing the log-likelihood of the proposed joint probability. To accomplish
this, a spatial probability of these candidates is calculated. Following this, any
candidate regions that contribute to an enhancement in the log-likelihood of the
joint probability replace the existing region maps. However, this substitution is
subject to the condition that the DSC between the old and updated region maps
remains above a predefined threshold, ensuring that the updated regions are
not chosen arbitrarily. To visually demonstrate the improvement in the log-
likelihood of the joint probability, Fig. 3b is provided. This figure illustrates
how the log-likelihood of the joint probability steadily rises with each epoch,
emphasizing the difference between the two labels. This network is trained in an
unsupervised approach, eliminating the requirement for annotation labels (i.e.,
ground-truth). In this process, if the region maps produced by the network do
not enhance the log-likelihood of the proposed joint probability, they are deemed
errors. Subsequently, the network autonomously updates itself to rectify these
errors, employing a cross-entropy loss function. This function guides the model
to reduce the disparity between predicted probabilities (pl) and the segmentation
(t) produced by the proposed joint probability or adjusted by the network. It is
applied to both lung and chest probabilities, which can be calculated as follows:

lCE(pl, t) = −t log(pl)
︸ ︷︷ ︸

lung

− (1 − t) log(1 − pl)
︸ ︷︷ ︸

chest

(12)

To summarize the steps of the proposed stochastic segmentation system,
Algorithm 1 is presented.

3 Experimental Results

The evaluation of the segmentation system is conducted on 28 3D CT chest scans,
each displaying different levels of COVID-19 infection severity. The evaluation
utilizes an NVIDIA GPU with an Intel Core i9 processor and 64GB of RAM,
achieving an average execution time of 256.96±62.98 s. To assess the effectiveness
of our framework compared to methods reliant on training data, an extra set of
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Algorithm 1: The core steps of the proposed segmentation system.
input : 3D CT volume.
output: 3D lung segmentation.
1 Use 3D minimum filter to produce various appearance realizations.
2 Estimate the LCG probability for both lung and chest in the CT voxel,

as well as two minimum-filtered voxels, using Eq. 6.
3 Use Eq. 9 to compute the MGRF probability for the initial segmentation

produced by the model in Step 2.
4 Utilize Eq. 2 to calculate the multi-dimensional joint probability.
Optimizing log-likelihood: Iterate through Steps 1–1 until
convergence of the log-likelihood of the joint probability is achieved.
5 Employ Swin-Unet model to generate a candidate region map.
6 Calculate the MGRF probability of this candidate region map.
7 Substitute the candidate region map with the previous map if its log-

likelihood improves and the DSC between the refined and old segmenta-
tion remains below a certain threshold.

8 Train the Swin-Unet model using the segmentation, resulted from Step 1.

25 3D CT chest scans, comprising a total of 4305 images, was selected for train-
ing in our comparative study. The process of gathering information follows the
guidelines set forth by the University of Louisville (UofL) Institutional Review
Board (IRB), and the study conforms to the ethical standards outlined in the
Declaration of Helsinki.

To assess the effectiveness of the proposed segmentation system, its perfor-
mance is evaluated against its individual components using a diverse array of
evaluation metrics, including the overlap coefficient, DSC, absolute volume dif-
ference (AVD), and Hausdorff distance (HD) [27], as depicted in Table 1. As
illustrated in the table, the appearance model (i.e., LCG) applied to minimum-
filtered voxel with a kernel size of 5 yields the worst performance. However,
combining the appearance model of original voxel with the minimum-filtered
voxels of size 3 and 5 boosts the segmentation performance. Moreover, the inte-
gration of the spatial model (MGRF) with the three appearance models using
the proposed multi-dimensional joint probability leads to a 4% improvement in
the DSC, compared to utilizing the appearance model of minimum-filtered voxel
alone. Despite these findings, the proposed segmentation system, optimized using
Swin-Unet, surpasses its constituents, achieving a DSC of 95.60±1.37%, an over-
lap coefficient of 91.61±2.51%, an AVD of 6.23±3.52, and an HD of 6.56±2.68.
Furthermore, to visually highlight the promise of the proposed segmentation
system, Fig. 4 illustrates various segmentation outcomes corresponding to three
levels of respiratory support (i.e., levels 0, 1, and 2) presented in 2D axial, sagit-
tal, and coronal cross-sections. This visualization effectively demonstrates the
robustness of the proposed segmentation system. Overall, these outcomes illus-
trate the precision enhancement achieved by the proposed system, solidifying its
superiority in segmentation performance.
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Table 1. Qualitative assessment of the proposed segmentation system in comparison
to its constituent.

DSC (%) Overlap (%) AVD HD

LCG 91.03±5.22 83.92±8.38 5.57±6.05 37.09±15.88

LCGMin3 89.67±3.58 81.46±5.74 18.88±7.79 97.51±25.89

LCGMin5 82.58±4.72 70.59±6.73 41.07±14.35 101.22±27.42

LCGCombined 92.60±3.17 86.38±5.35 6.33±4.00 31.91±17.84

MGRF 93.86±2.70 88.54±4.68 6.43±3.78 30.61±20.76

Our System 95.60±1.37 91.61±2.51 6.23±3.52 6.56±2.68

Fig. 4. An illustrative example of our system depicted in (a) 2D axial, (b) sagittal, and
(c) coronal cross-sections. The red region with a blue border represents the segmenta-
tion results, while the green border indicates the ground truth.

Moreover, to underscore the strength and reliability of the proposed system,
various state-of-the-art (SOTA) segmentation approaches, including both super-
vised and unsupervised methods, are employed for comparison. These include
3D Unet [10], DeepLabv3+ [8], Swin-Unet [7], Unet [25], MS-Former [17], and
iterative conditional mode (ICM) [6], as summarized in Table 2. As demon-
strated in the table, among supervised approaches, DeepLabv3+ exhibits the
poorest performance, with a DSC of 83.38±11.40%, an overlap coefficient of
73.05±16.50%, an AVD of 38.62±34.46, and an HD of 50.09±33.49. Conversely,
among unsupervised approaches, MS-Former performs the worst, with a DSC of
76.21±12.75%, an overlap coefficient of 62.99±14.47%, an AVD of 39.49±13.54, and
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an HD of 19.03±8.01. However, the proposed segmentation system surpasses these
methodologies, demonstrating its capability in delineating normal and patholog-
ical lung areas in CT images. To visually emphasize the potential of the pro-
posed system, Fig. 5 presents various examples of segmentation results across
different levels of COVID-19 severity, facilitating a visual comparison between
the proposed system and these SOTA methods. As illustrated in the figure, the
proposed system demonstrates significant performance compared to these SOTA
methods. Moreover, both DeepLabv3+ and MS-Former are unsuitable for seg-
menting pathological lung regions, as their results are not comparable with those
of other SOTA methods. These finding confirm the effectiveness of the proposed
system and its potential for accurately outlining both normal and pathological
lung regions in CT images.

Table 2. Qualitative assessment of the proposed segmentation system in comparison
to existing methodologies.

DSC (%) Overlap (%) AVD HD

3D Unet [10] 93.71±3.70 88.37±6.15 8.66±8.91 30.73±36.71

DeepLabv3+ [8] 83.38±11.40 73.05±16.50 38.62±34.46 50.09±33.49

Swin-Unet [7] 92.69±6.71 87±10.54 10.3±10.57 11.81±12.32

Unet [25] 94.98±1.66 90.49±2.99 6.92±2.79 13.78±21.19

MS-Former [17] 76.21±12.75 62.99±14.47 39.49±13.54 19.03±8.01

ICM [6] 94.42±2.30 89.52±4.04 6.72±3.95 26.60±20.41

Our System 95.60±1.37 91.61±2.51 6.23±3.52 6.56±2.68

Furthermore, to demonstrate the robustness of the proposed system, its per-
formance is evaluated on six different lung cancer CT volumes and compared
with unsupervised segmentation methods, as outlined in Table 3. As illustrated
in the table, the proposed system outperforms these methods, achieving a DSC
of 98.37±0.42, an overlap coefficient of 96.79±0.82, an AVD of 2.97±0.91, and an
HD of 2.21±0.40. All these results confirm the superiority of the proposed system
in segmenting lung regions.

Table 3. Qualitative assessment of the proposed segmentation system for lung cancer
CT volumes compared to existing unsupervised methodologies.

DSC (%) Overlap (%) AVD HD

MS-Former [17] 79.05±3.83 65.49±5.15 36.77±5.51 20.32±1.87

ICM [6] 97.54±0.60 95.21±1.14 4.59±1.29 31.21±23.81

Our System 98.37±0.42 96.79±0.82 2.97±0.91 2.21±0.40
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Fig. 5. A visual comparison showcasing the outcomes of our system against those of
other existing methods. The red region with a blue border indicates the segmentation
results, while the green region with a green border represents the ground truth.

4 Conclusions

This study presented a new segmentation system aimed at precisely outlining
lung regions in a 3D CT chest volume. The system employs a stochastic unsuper-
vised probabilistic model, optimized using deep learning model. This probabilis-
tic model integrates an appearance model, created by representing CT radioden-
sity as a linear combination of Gaussians, with a spatial model generated based
on 3D MGRF. This integration is facilitated by introducing a multi-dimensional
joint probability that combines the appearance model of various appearances
with their respective spatial models. Subsequently, the segmentation produced
by this joint probability is further refined using a Swin-Unet transformer, with-
out requiring annotation labels, by updating regions that maximize the log-
likelihood of the joint probability. The experimental results showcased a note-
worthy enhancement in the system’s accuracy, compared to its individual com-
ponents, in addition to its superiority over the various SOTA methods. In the
future, we aim to investigate the integration of shape-based models into the pro-
posed system and study their impacts on its overall accuracy, as well as validate
the proposed system on various pathological lung diseases.
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Abstract. Over the years, the use of superpixel segmentation has become
very popular in various applications, serving as a preprocessing step to
reduce data size by adapting to the content of the image, regardless of
its semantic content. While the superpixel segmentation of standard pla-
nar images, captured with a 90◦ field of view, has been extensively stud-
ied, there has been limited focus on dedicated methods to omnidirectional
or spherical images, captured with a 360◦ field of view. In this study, we
introduce the first deep learning-based superpixel segmentation approach
tailored for omnidirectional images called DSS (for Deep Spherical Super-
pixels). Our methodology leverages on spherical CNN architectures and
the differentiable K-means clustering paradigm for superpixels, to gener-
ate superpixels that follow the spherical geometry. Additionally, we pro-
pose to use data augmentation techniques specifically designed for 360◦

images, enabling our model to efficiently learn from a limited set of anno-
tated omnidirectional data. Our extensive validation across two datasets
demonstrates that taking into account the inherent circular geometry of
such images into our framework improves the segmentation performance
over traditional and deep learning-based superpixel methods. Our code is
available online (https://github.com/rgiraud/dss).

Keywords: Superpixels · Omnidirectional Images · Spherical CNN

1 Introduction

The vast majority of computer vision methods are tailored for standard RGB
images, i.e., captured with a standard 90◦ field of view (FoV). However, acquisition
devices with wider FoV have become more and more popular in the recent years. In
particular, omnidirectional images with a 360◦ × 180◦ FoV are very interesting to
capture the entire environment of a scene. Over the literature, such imagery may be
equally referred as omnidirectional, spherical, 360◦, or even panoramic. Naturally,
such acquisition introduces distortions when projecting the capture on a planar 2D
image. Nevertheless, many dedicated methods have been successfully applied on
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these images, for example for scene reconstruction [21], semantic segmentation [27]
for autonomous driving, or in the context of mixed or virtual reality [18].

To efficiently apply deep learning-based architectures to these images, a few
adjustments must be made to consider their specific geometry. For instance, the
input images are horizontally circular so the pixels of the first column should
be considered spatially adjacent to the pixels of the last column. Some methods
explicitly take into account these geometrical properties, for instance with spher-
ical convolutional neural networks (SCNNs) that have demonstrated higher per-
formance on 360◦ images than standard CNNs [6]. Nevertheless, as for any deep
learning-based method, a significant amount of annotated data is necessary for
an efficient training, especially when tackling segmentation applications.

For regular standard images, various segmentation datasets are available with
different content, resolution or precision in the annotations. However, only a few
spherical image datasets are available, such as SUN360 [25] or Matterport3D [4].
Moreover, due to the tediousness of a pixel-wise semantic segmentation pro-
cess, they generally only provide layout, depth or camera pose information [19].
In the context of autonomous driving, many datasets contain pixel-wise seman-
tic annotations but the FoV is generally limited to standard rectangular acqui-
sition [7,8], or the images are captured by a fisheye lense introducing other dis-
tortions [29]. Hence, deep learning segmentation methods that are applied to
360◦ imagery may highly necessitate specific data augmentation strategies [21,27].

In a more general context of image segmentation methods, non-semantic
decompositions into superpixels offer numerous benefits. These methods regu-
larly group pixels into homogeneous and connected regions, respecting the image
contours. They have mainly been popularized by SLIC [1], a simple method that
uses a locally constrained iterative K-means clustering, computed on color and
position features. Then, many derived methods have been proposed, such as
the non-iterative SNIC method [2], LSC [5] which expands the feature space of
SLIC, or SCALP [11] that computes a color consistency along the path between a
pixel and the centroid of its superpixel. Other methods like GMMSP [3] propose
different strategies, such as using a Gaussian Mixture Model.

The first superpixel method tailored for spherical images was proposed in [22],
extending SLIC. The spherical geometry is considered in the clustering distance,
that is computed using the 3D positions of pixels on the sphere. The produced
superpixels are regular on the 3D sphere domain and are able adapt to the
distortions of objects induced by the projection on the 2D planar image, leading
to higher segmentation performance compared to planar methods. Following,
many planar superpixel algorithms have had their omnidirectional counterparts,
such as SSNIC [20], SphLSC and SphSPS (or SphSCALP) [9].

Nevertheless, over the years, all these traditional approaches have started
to report saturated performance over the segmentation benchmarks. With the
Superpixel Sampling Network (SSN) method [12], a first deep learning frame-
work has been proposed to compute a segmentation into superpixels. SSN and
following methods, e.g., [26], enable to improve the segmentation accuracy by
computing more advanced features, with the use of a CNN trained on higher-level
annotated segmentations (for example from semantic segmentations). However,
these deep learning methods have only been designed for standard planar images.
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Contributions. In this work, we propose the first deep learning-based method
called Deep Spherical Superpixels (DSS), able to segment omnidirectional images
into spherical superpixels. The contributions of this work are listed as follows:

i We introduce the first deep learning-based superpixel segmentation method
tailored for omnidirectional images, leveraging spherical CNN architectures
and the differentiable K-means superpixel algorithm;

ii We make use of specific data augmentation strategies designed for
360◦ images, whose effectiveness is demonstrated through an ablation study;

iii We comprehensively evaluate the proposed method against state-of-the-art
approaches, including both traditional planar and spherical approaches as well
as deep learning-based methods, evaluated for the first time on the spherical
superpixel segmentation task;

iv We propose a quantitative validation on the Panorama Segmentation Dataset
(PSD) [22], the reference for spherical superpixels, on initial and noisy images,
and also on a newly considered omnidirectional road dataset, Wild PAnoramic
Semantic Segmentation (WildPASS) [28];

v The source code of our method is made available to the research community.

2 Deep Spherical Superpixels Method

In this Section, we introduce our proposed Deep Spherical Superpixels (DSS)
method. First, we present the Superpixel Sampling Network (SNN) [12] frame-
work that we use as basis for our method (Sect. 2.1). Then, we detail the
360◦ coordinates system (Sect. 2.2) and our modifications of SSN to generate
spherical superpixels (Sect. 2.3). Finally, we present the 360◦-specific data aug-
mentation used to enable our model to efficiently learn from a limited set of
annotated omnidirectional data (Sect. 2.4).

2.1 Superpixel Sampling Network

In the superpixel segmentation literature, the Simple Linear Iterative Clustering
(SLIC) algorithm is one the most simple yet accurate method [1]. It performs
a locally constrained K-means clustering starting from a regular sampling grid.
This clustering relies on a spatial and a color distance between each pixel and a
superpixel centroid. Although SLIC is interesting for its rapidity and ease to use,
its clustering accuracy can be limited since it is only based on RGB or Lab image
features.

In [12], an end-to-end framework is proposed using a convolutional neural
network (CNN) trained to learn how to provide more advanced features as input
to a differentiable SLIC clustering algorithm. The network is trained to produce
superpixels that are contained into higher-level annotated segmentations (for
example from semantic segmentations). In particular, the integration of SLIC
into a deep learning framework is possible in a differentiable manner by con-
sidering soft mappings of pixels to superpixels. At inference time, the final hard
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mapping, associating a pixel to a unique superpixel, is only computed to generate
the final segmentation.

The SSN model takes as input images of size N = h × w, represented with 5
channels corresponding to Lab color features (3 channels) and xy pixel coordi-
nates (2 channels). The goal of the model is to learn deep features that are more
suitable to perform a differentiable clustering into superpixels. To achieve this,
the SSN model uses a CNN composed of three blocks, each with two convolu-
tional layers, batch normalization and ReLU activation, with a max pooling layer
applied after each block. For the output, feature maps of each block are upsam-
pled to the original image size (if necessary, for the second and third blocks) and
concatenated. The original Lab and xy features are also concatenated into the
output feature maps, resulting in D-dimensional pixel features (i.e., 5 channels
from input features and D−5 learned deep features). In practice, the SSN model
used D = 20 in their experiments. For more details about this architecture, the
reader can refer to [12].

These learned features are then fed to the aforementioned differentiable clus-
tering to compute soft assignments of pixels to superpixels. These soft assign-
ments are in turn used to compute a loss function tailored for the desired
superpixel properties. For example, to obtain superpixels matching semantic
segmented objects, the loss is comprised of two terms: (i) a pixel-wise cross-
entropy term between ground-truth semantic segmentation and predicted soft
superpixels and (ii) a compactness term which encourages superpixels to have
low spatial variance.

The method is therefore end-to-end trainable and can learn deep pixel fea-
tures tailored for subsequent superpixels properties. In the following, we present
how to adapt this approach to the specific case of generating spherical superpix-
els for omnidirectional images.

2.2 Spherical Geometry

The projection system between the planar equirectangular 2D space and the
3D spherical space is depicted in Fig. 1. This relationship can be understood
through the projection of vertical and horizontal coordinates of the plane onto
the sphere’s meridians and latitude circles. This process creates a spherical image
where the width w is double the height h. It implies a horizontal continuity
in the planar image domain that characterizes omnidirectional images. Hence,
each pixel p = [j, i] in the 2D space matches a 3D point X = [x, y, z] on the unit
sphere following the equations:

p =

⎡
⎣

j = � θw
2π �

i = �φh
π �

⎤
⎦ ↔ X =

⎡
⎣

x = sin(yπ
h )cos( 2xπ

w )
y = sin(yπ

h )sin(2xπ
w )

z = cos(yπ
h )

⎤
⎦ , (1)

where θ = arctan2(y, x) is the azimuthal angle, and φ = arccos(z) is the polar
angle. Note that this mapping of coordinates considers that j ∈ [−w

2 , w
2 ] so to

map x to [0, w], we have x ← x + w when x ≤ 0.
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Fig. 1. 2D Planar and 3D spherical system coordinates. A pixel at position [j, i] in the
2D space is mapped to a 3D point [x, y, z] on the unit sphere following (1). This point
can also be represented by its respective azimuthal and polar angles θ and φ.

2.3 Spherical Superpixel Clustering Network

In this Section, we describe our adaptation of the K-means differentiable super-
pixel clustering network [12] to provide superpixels that are regular over the
spherical domain. We use the same CNN architecture as basis for our method.

Features and Superpixels Initialization. As input for the CNN, we use the
Lab color features of the N = h×w pixels, denoted as Fc ∈ R

N×3. The pixel
coordinates are also given as input, but instead of the 2D pixel positions, we
provide the 3D spherical coordinates Fs ∈ [−1, 1]N×3. To match the coordinates
domain, we normalize the Lab features Fc to also lie in [−1, 1].

With classical 2D images, superpixel clusters are usually initialized by a reg-
ular sampling on the 2D grid. However, this strategy is not ideal with omnidi-
rectional images as it does not respect the underlying 3D geometry. To overcome
this issue, many spherical sampling strategies have been compared for superpixel
clusters initialization [9,20]. In our proposed DSS method, as in [9], we use Ham-
mersley sampling [24] to rapidly provide an appropriate set of K 3D points that
are uniformly distributed on the unit sphere (see Fig. 2(a)). From this set of 3D
points, we define an initial label map by a nearest neighbor computation on the
3D pixel position X (see Fig. 2(b)). Such spherically uniform sampling implies a
sparser 2D sampling on the planar image near vertical borders. Classical planar
methods that consider an initial regular grid would produce very irregular over-
segmentation around the sphere’s poles, as shown later in Sect. 3.3. From this
label map, we extract the initial superpixel features with an average pooling.

Neighborhood-Based Distance. In the original SLIC method [1], the K-
means clustering is locally constrained so each superpixel can only aggregate a
pixel in a fixed sized square window centered on the superpixel barycenter. For
efficient implementation purposes, the K-means-based differentiable clustering of
SSN [12] slightly differs by iteratively computing the pixel association within
the 9-th superpixel neighborhood of the initialization map. Therefore, the core
of the clustering distance computation is geometry-agnostic, once the superpixel
neighbors are identified. In our context, we can compute for each superpixel a
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Fig. 2. Spherical label map initialization. (a) A Hammersley sampling with K = 300
centroids points is computed on the unit sphere. Note the lower sampling density at
the vertical borders, corresponding to the sphere’s poles. (b) Corresponding label map,
where each pixel is associated to the closest Hammersley barycenters, producing regular
regions on the sphere. The 8 neighbors of the red superpixel (closest in the spherical
space) are represented in blue. (Color figure online)

n-th neighborhood with a nearest neighbors distance on their 3D barycenters in
the spherical space. Such neighborhood is represented in Fig. 2.

Therefore, contrary to the planar square sampling, our method can define
without ambiguity a n ∈ [[0, N ]]-th neighborhood. In practice, we use a n = 9
neighborhood, as in SSN.

Horizontally Circular Clustering. 360◦ images are particularly characterized
by their horizontally circular nature. This aspect is not considered in standard
CNNs, which typically use zero padding strategies for convolutions and where
the final receptive field may be also lower than the image dimension. In the
context of spherical superpixel clustering, without any semantic aggregation of
clustered regions, using standard convolutions is highly irrelevant since we would
observe a discontinuity in the segmentation at the image borders.

For example, Fig. 3(a) shows the result obtained by using a standard zero
padding strategy in the CNN layers. With 3×3 convolution kernels, the features
extracted for pixels at j = 0 and j = w−1 are not consistent with the ones of their
neighborhood, which disrupts the selection of their closest superpixel among the
9 closest. When computing the hard clustering association, border pixels are
generally associated to a disconnected region resulting in the appearance of an
artificial vertical border in the spherical space, as for planar methods.

To take into account this horizontally circular geometry into our model, we
propose to use a spherical CNN with a more natural circular padding strategy, as
in [16,23]. Our spherical CNN uses a horizontal circular (or periodic) padding of
half size of the kernel at each step requiring padding (convolutional or max pool-
ing layers). A replicate padding strategy is used for vertical padding. Hence, the
spherical CNN is fully able to preserve the 360◦ geometry in the final cluster-
ing and to compute relevant features at the borders. Note that other strategies
may be possible, such as applying a large input circular padding as a preprocess-
ing [17], but with many successive convolutions, this leads to handle significantly
larger images, and thus to higher memory and time consumption.
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Fig. 3. Impact of the circular padding on the superpixel segmentation. (a) With stan-
dard zero padding, the CNN features of pixels at j = 0 and j = w−1 are not consistent
with neighborhood, leading to a vertical border in the spherical space, as for planar
methods. (b) With circular padding, the features remain consistent on the borders and
the method is able to fully consider the geometry of the omnidirectional images.

Loss Function. Deep pixel features from our spherical CNN are fed to the
differentiable clustering method to produce soft assignments Ssoft of spherical
superpixels. As in SSN, the model is trained with a loss comprised of a pixel-wise
cross-entropy with ground-truth segmentation G denoted Lseg, and a compact-
ness term Lcompact to enforce superpixels with low spatial variance:

L = Lseg(G,Ssoft) + λLcompact(Fs,Ssoft). (2)

Region Connectivity. After training, to compute the final superpixel segmen-
tation of an image, a last step ensures the connectivity of the produced regions as
for most superpixel clustering methods [1,12]. This is simply done by aggregat-
ing the smallest disconnected regions to the largest and nearest one but taking
into account the circular aspect.

2.4 360o-Specific Data Augmentation

In the context of 360◦ imagery, the lack of extensive image datasets with segmen-
tations makes it hard to train neural networks efficiently. To mitigate this data
limitation, the use of data augmentation strategies is crucial. While simple aug-
mentation techniques such as flips, blurs, and noise addition are applicable, they
may be insufficient to provide enough diversity to the training process. However,
many other conventional data augmentation strategies may alter the intrinsic
360◦ geometry and should not be used for such images. For instance, rotations
or crops, as used in SSN [12], compromise the spherical geometry, leading to the
loss of the horizontal mirror effect and the spatial distortion of the 2D label map.
Using such augmentation techniques would lead the model to learn to provide
irregular superpixels in the spherical space with artificial vertical borders at the
edges, as for planar methods (see Fig. 3(a)).

To overcome these challenges, we propose to use data augmentation tech-
niques tailored explicitly for 360◦ images. A straightforward augmentation tech-
nique would consist in horizontally rolling the 360◦ image and its ground-truth
[14]. As stated in [16], such data augmentation strategy does not bring any
diversity in a pure CNN network. Nevertheless, in our context, since average
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Fig. 4. Example of data augmentation used during training. Left: Standard Gaus-
sian blur and noise (here with respective maximal variance σ = 20 and σ = 2). The
ground-truth labels are not impacted. Middle: Crop & mirror strategy. A random crop
of half-width is selected (represented by the green square) and mirrored to form a new
360◦ image. This method combines horizontal rolling, flipping and also creates informa-
tion at the mirror border. Right: Panoramic stretch [21] to introduce distortions in the
360◦ image (here with parameters kx = 0.5, ky = 1.25 that correspond to a respective
enlargement and a shrinking of the areas where |x| ≈ 1 and |y| ≈ 1). The layout of the
scene is represented by the green lines to more easily apprehend the distortion.

superpixel features are extracted according to an spherical initialization label
map, a roll of the image may have a different impact on the produced segmenta-
tion. To go further, we also propose to combine random half-width cropping and
horizontal mirroring of the input image and ground-truth (see Fig. 4(middle)).
This way, in a single transformation, we combine rolling and flipping while cre-
ating information at the mirror border.

Finally, we use the panoramic stretch approach of [21] to introduce spatial
distortions. To stretch a 360◦ image, [x, y, z] coordinates are simply multiplied
by a respective factor [kx, ky, kz] and projected back to the sphere. Pixel values
are then computed using bilinear interpolation. Since setting kz would affect
the projection of x and y values the same way, authors propose to only set
kx and ky parameters. The 3D coordinates maps in Fig. 1 represent the image
area that would be affected by increasing one of the parameters. For instance,
setting ky < 1 would zoom on the region where y values are close to -1 and 1
(see Fig. 4(right)). We refer the reader to [21] to more details on the stretching
algorithm and to our supp. mat. for additional examples.

With such data augmentation, we are able to greatly enrich the training dataset
while preserving the spherical geometry of 360◦ images. We demonstrate the
improvement of performance obtained using these techniques during training in
Sect. 3.2.
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3 Results

3.1 Validation Framework

Datasets. In our experiments, we considered two relevant spherical segmenta-
tion datasets containing various accurately segmented objects (see examples in
supp. mat.). The first dataset called Panorama Segmentation Dataset (PSD) [22]
is the reference one and contains 75 images of 512×1024 pixels from the SUN360
dataset [25]. The ground-truth manual segmentations from [22], contain an aver-
age number of 510 objects with an average size of 1334 pixels. To fairly compare
deep learning methods, we respectively consider 55, 5 and 15 images for the
train, validation and test sets. In Sect. 3.3, we also compare the performance
on PSD images affected by an additive white Gaussian noise of variance 20.

To further demonstrate the performance of DSS, we choose to consider for
the first time in spherical superpixel methods evaluation, the Wild PAnoramic
Semantic Segmentation (WildPASS) dataset [28], containing 500 omnidirectional
natural road images. We resize the images to 512×1024 and split the dataset into
respectively 300, 100 and 100 images for train, validation and test sets.

Parameter Settings. Our data augmentation is applied on-the-fly during train-
ing. It includes (i) applying a random Gaussian blur with a variance σ ∈ [0, 2],
(ii) adding Gaussian noise of variance σ ∈ [0, 20], (iii) random flipping, horizon-
tal rolling and half-width random crop and mirror with a 0.5 probability, and (iv)
panoramic stretching with random parameters kx and ky between 0.5 and 2. Dur-
ing training, λ = 1 in (2) and images are downsized to 256×512 pixels, so our
model can understand the whole scene’s geometry, contrary to the 201×201 crops
used in [12]. We refer the reader to the supp. mat. for training details.

Evaluation Metrics. The main challenge in superpixel segmentation is the abil-
ity to produce superpixels that are contained into the image objects, with respect
to a ground-truth segmentation. Regularity is also an important aspect to inter-
active applications or to later extract significant neighborhoods [10]. Since these
criteria are generally contradictory, efficiently maximizing both is usually the
bottleneck of superpixel methods. These aspects can be relevantly evaluated
with state-of-the-art dedicated metrics [10]. In the following, we denote super-
pixel segmentation as S = {Si} and ground-truth segmentation as G = {Gj}
with their respective borders B(S) and B(G).

The mainly reported measure is the segmentation accuracy, with the Achiev-
able Segmentation Accuracy (ASA) [13] such that:

ASA(S,G) =
1∑

Si∈S
|Si|

∑
Si

max
Gj∈G

|Si ∩ Gj |. (3)

This aspect can also be evaluated by focusing on the contour adherence of
superpixels to the object borders, using the Boundary-Recall (BR) such that:

BR(S,G) =
1

|B(G)|
∑

p∈B(G)

δ[ min
q∈B(S)

‖p − q‖ < ε], (4)
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Table 1. Ablation study of the proposed DSS method on PSD and noisy PSD images
on ASA (↑), CD/BR (↓) and GGR (↑). CD is given for BR = 0.8. Best and second
best results are respectively in bold and underlined font.

Data augmentation

Gaussian Horizontal Panoramic Circular PSD Noisy PSD

blur&noise crop&mirror strecth padding ASA CD/BR GGR ASA CD/BR GGR

- - - � 0.862 0.134 0.385 0.858 0.139 0.386

� - - � 0.877 0.119 0.444 0.868 0.132 0.461

� � - � 0.888 0.117 0.413 0.883 0.124 0.423

� � � - 0.887 0.124 0.387 0.884 0.134 0.390

� � � � 0.890 0.122 0.388 0.886 0.132 0.392

with ε a distance threshold set to 2 pixels [10], and δ[a] = 1 when a is true and 0
otherwise. Since it only measures recall, BR should be compared to the Contour
Density (CD), i.e., the proportion of border pixels of the generated superpixels.

Finally, to evaluate the regularity aspect, we use the Generalized Global Reg-
ularity (GGR) metric that adapts the metric proposed in [10] to 360◦ images [9].
This metric evaluates the convexity, balanced pixel distribution, contour smooth-
ness of each shape and also how homogeneous the shape distribution is within the
segmentation. We refer the reader to [9] to more details on the GGR metric.

3.2 Ablation Study

In Table 1, we report the impact of each data augmentation strategy and the spher-
ical CNN architecture, i.e., using circular padding instead of zero padding [12]
on the PSD and noisy PSD images for an average number of K = 500 superpix-
els. Each augmentation strategy increases the training efficiency in terms of seg-
mentation accuracy, while the circular padding logically improves the spherical
regularity by cancelling the artificial horizontal border of the segmentation. This
confirms the interest of improving the original SSN method with spherical CNN
architecture and specific augmentation strategies for 360◦ images.

3.3 Comparison to State-of-the-Art Methods

Compared Methods. In our experiments, we compare DSS to the spherical
methods: SSLIC [30], SSNIC [20], SphLSC and SphSPS [9]. We also compare to
some recent planar methods: LSC [5], SNIC [2], GMMSP [3], and SSN [12] All
methods are used with the default regularity parameters. For the SSLIC method
[30], that does not have one, we use a color weight of 20 to try to optimize its
segmentation accuracy. For SSN [12], we compare to both the initial network
trained on the BSD dataset [15] containing planar natural images (SSN-BSD)
and to a retrained network on the targeted dataset (SSN-PSD, SSN-WP).

Evaluation of Performance. We compare the proposed DSS to the spheri-
cal methods in terms of segmentation accuracy (ASA) and also contour adher-
ence (CD/BR) for several superpixel numbers required K, on the PSD images
Fig. 5(a), noisy PSD images Fig. 5(b) and WP images Fig. 5(c).
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Fig. 5. Comparison of DSS to state-of-the-art methods. Top: Segmentation accuracy
evaluated with ASA (3). Bottom: Contour adherence in terms of CD vs BR (4).

We observe that DSS obtains the highest segmentation accuracy (ASA) on
all type of images. We can also see that our method is robust to noise contrary to
most state-of-the-art methods that present a significant loss of performance on
such slightly altered images. Finally, we can note that DSS superpixels also have
the highest contour adherence (lowest CD/BR) compared to other methods, only
except on noise-free PSD images. This can be simply explained by the fact
that our method, as SSN, does not explicitly integrate a contour adherence
loss and that the ground-truth segmentations in the PSD dataset contain many
annotations of very thin objects that impact such metric.

In Table 2, we report results for K = 500, also including the regularity metric
(GGR), and performance obtained with planar methods. We observe that GGR
discriminates well the planar and spherical methods. DSS is among the spherical
methods, having higher spherical regularity than planar methods, and it also
preserves its regularity in the presence of noise.

Table 2. Quantitative comparison of DSS to state-of-the-art methods for an average
number of K = 500 superpixels on ASA (↑), CD/BR (↓) and GGR (↑). CD is given
for BR=0.8. Best and second best results are respectively in bold and underlined font.

PSD Noisy PSD WP

ASA CD/BR GGR ASA CD/BR GGR ASA CD/BR GGR

P
la

n
a
r

LSC [5] 0.877 0.138 0.347 0.844 0.303 0.334 0.962 0.153 0.313

SNIC [2] 0.864 0.129 0.361 0.852 0.139 0.357 0.958 0.146 0.322

GMMSP [3] 0.877 0.136 0.339 0.849 0.329 0.328 0.963 0.157 0.306

SSN-BSD [12] 0.879 0.119 0.328 0.863 0.147 0.321 0.967 0.134 0.296

SSN-PSD/WP [12] 0.887 0.114 0.334 0.873 0.141 0.328 0.972 0.120 0.303

S
p
h
er

ic
a
l

SSLIC [30] 0.866 0.130 0.421 0.821 0.130 0.383 0.956 0.152 0.399

SSNIC [20] 0.883 0.110 0.462 0.857 0.134 0.399 0.958 0.142 0.410

SphLSC [9] 0.882 0.105 0.397 0.850 0.252 0.357 0.960 0.152 0.360

SphSPS [9] 0.883 0.112 0.452 0.877 0.146 0.389 0.962 0.133 0.411

DSS 0.890 0.122 0.388 0.886 0.132 0.392 0.973 0.118 0.356
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Compared to SSN, we can first notice that SSN trained on the BSD does not
generalize very well when applied on PSD or WP images. It demonstrates the
capacity of CNNs to extract semantic information and that performance of gen-
eralization may highly depend on the similarity of annotations. We also observe
that DSS slightly outperforms SSN retrained on the PSD and WP datasets, in
terms of segmentation accuracy. SSN is able to train its network by providing
image crops, which is a much more efficient learning strategy than to provide the
whole image, as we have to do in DSS. Nevertheless, with our data augmentation
strategy, we can maintain the same level of accuracy while generating spherical
superpixels that may follow the deformed objects.

Finally, qualitative results are respectively shown on PSD, noisy PSD and
WP images in Figs. 6, 7, 8. For planar methods, we can note the projection irreg-

Fig. 6. Qualitative comparison on PSD images, for planar (left) and spherical methods
(right) for two superpixel numbers K = 1200 (top-left) and K = 400 (bottom right).
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Fig. 7. Qualitative comparison on a noisy PSD image for planar (left) and spherical
methods (right) for two superpixel numbers K = 1200 (top-left) and K = 400 (bottom
right). DSS is able to preserve its regularity and accuracy compared to most methods.

Fig. 8. Qualitative comparison on a WP image for planar (left) and spherical methods
(right) for two superpixel numbers K = 1200 (top-left) and K = 400 (bottom right).
Note how DSS is able to capture the car in the image center.
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ularity around the sphere’s poles. DSS produces spherically regular superpixels
that well capture the image objects.

4 Conclusion

In this work, we proposed DSS, the first deep learning-based spherical super-
pixel segmentation method. The proposed approach leverages on spherical CNN
architectures dedicated to omnidirectional images having a circular geometry.
We demonstrated that combining a deep learning strategy that respects the
spherical geometry along with appropriate data augmentation enables to achieve
higher and more robust segmentation performance than both traditional and
deep learning-based methods.

We firmly believe that the presented work holds significant value for the
community, given the importance of achieving both accurate segmentation and
high regularity in the acquisition space, here spherical, for an effective display
and processing of adjacent relationships in computer vision preprocessing tasks.
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Abstract. Salient object detection (SOD) aims at finding the most
salient objects in images and outputs pixel-level binary masks.
Transformer-based methods achieve promising performance due to their
global semantic understanding, crucial for identifying salient objects.
However, these models tend to be large and require numerous training
parameters. To better harness the potential of transformers for SOD,
we propose a novel parameter-efficient fine-tuning method aimed at
reducing the number of training parameters while enhancing the salient
object detection capability. Our model, termed EXternal Prompt fea-
tures Enhanced adapteR Tuning (ExPert), features an encoder-decoder
structure with adapters and injectors interspersed between the layers
of a frozen transformer encoder. The adapter modules adapt the pre-
trained backbone to SOD while the injector modules incorporate external
prompt features to enhance the awareness of salient objects. Comprehen-
sive experiments demonstrate the superiority of our method. Surpassing
former state-of-the-art (SOTA) models across five SOD datasets, ExPert
achieves 0.215 mean absolute error (MAE) in the ECSSD dataset with
80.2 M trained parameters, 21% better than SelfReformer [31] and 47%
better than EGNet [33].

Keywords: Salient object detection · Segmentation · Adapter
tuning · Prompt tuning · Vision language model

1 Introduction

1.1 Motivation

Salient object detection (SOD) is a widely studied task in computer vision that
outputs a binary mask of the visually salient objects in an image. The detection
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of salient objects can benefit various computer vision tasks, such as semantic seg-
mentation, instance segmentation, and object detection. In recent years, convo-
lutional neural network (CNN) based models and transformer-based models have
shown promising performances for SOD. However, although transformer-based
models [15,22,31] generally outperform their CNN counterparts, they are more
computationally expensive due to their typically large number of parameters
that are essential for achieving superior performance.

The encoder-decoder framework is widely used for salient object detection,
which is defined as a binary semantic segmentation. Firstly, a vision encoder
is initialized with pre-trained model weights from classification or segmentation
models. The next step is to fine-tune the encoder and decoder on salient object
detection datasets to extend the model to the SOD task. The predicted salient
masks are generated by the specific decoder with the extracted features. Beyond
fine-tuning, training the pre-trained backbone along with other new sophisti-
cated modules can gain better performance. However, it necessitates an even
larger number of trained parameters.

To fine-tune pre-trained transformer models efficiently with fewer parame-
ters, we leverage adapter tuning [4] that selectively fine-tunes certain side con-
nections within frozen transformer blocks, facilitating transferability to down-
stream tasks. However, only manipulating features of the frozen backbone does
not effectively tackle the salient object detection task. In [10], some learnable
prompt vectors are added to the transformer layers to fine-tune large trans-
former models for specific tasks. Inspired by the effectiveness of visual prompt
tuning, we assume that features from external backbones can be employed as
prompt features. The injection of suitable external prompt features can enhance
the performance of SOD models in addition to adapter tuning.

1.2 Methods Overview

We propose EXternal Prompt features Enhanced adapteR Tuning (ExPert)
model to parameter-efficiently tune pre-trained transformer backbones for salient
object detection. ExPert is a backbone-agnostic model and can be extended to
any transformer-based pre-trained backbones. Inspired by [4,17], ExPert uses
the block-level1 adapter module to tune the transformer backbone between each
block unit. We denote the adapter of ExPert as E-adapter.

We also design a block-level injector module E-injector to receive external
prompt features and inject them into the backbone so as to enhance salient
features. The encoder backbone is frozen during training while the E-adapters,
the E-injectors and the decoder are trained. The vision features from DINO [3],
ViT [6] and BLIP [13] are chosen to verify the compatibility of our E-injector.

Moreover, we hypothesize that the captions of images are highly related
to the salient elements. Based on this premise, ExPert interacts BLIP’s visual

1 In [4], the adapter is a side connection of the feed-forward function inside the trans-
former block which is denoted as “FF-level”. In [17] and our ExPert, the adapter is
a side connection between transformer blocks and is denoted as “block-level”.
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features and text embeddings of corresponding captions using cross attention.
The best result was achieved by injecting the interacted features combined with
ViT’s features into the backbone. Comprehensive experiments show that ExPert
surpasses CNN-based SOTA models largely and performs better than previous
transformer-based models.

1.3 Contributions

Our main contributions lie in three aspects:

• We propose the ExPert model to parameter-efficiently fine-tune pre-trained
transformer backbones for salient object detection. ExPert is backbone-
agnostic and can use different transformer-based backbones. Comprehensive
experiments demonstrate the superiority of ExPert.

• We design the block-level E-adapter to parameter-efficiently adapt the pre-
trained transformer backbones to salient object detection. The size of the
trained parameters of ExPert is only 80.2M.

• Our E-injector can receive different external prompt features and inject them
to guide the backbone to extract salient features. Experiments demonstrate
that the injection of features that contain rich semantic information largely
boosts the performance.

2 Related Work

2.1 Salient Object Detection

CNN-based models are proficient at extracting local details. EGNet [33] focuses
on the complementarity between edges and the content of salient objects by
extracting edge information. U2Net [19] proposes a nested U-shape convolutional
network to handle inputs with flexible sizes without any pre-training. Although
requiring more computing costs, transformer-based models surpass CNN-based
models in SOD because transformer models can grasp the long-range seman-
tic context of input images. SelfReformer [31] adopts a global branch to refine
the local context branch with a multi-stage transformer backbone to achieve
better long-range information extraction. EVP [17] fine-tunes SegFormer [26]
with patch embedding prompts and Fourier transformation prompts to better
differentiate objects.

2.2 Adapter Tuning and Visual Prompt Tuning

Adapter tuning is a method to fine-tune pre-trained models which was first
proposed in [21] as a trainable side connection branch for parameter-efficient
tuning. Later Houlsby et al. [9] used adapter tuning to parameter-efficiently
train transformer-based language models. AdapterFormer [4] applies adapter
tuning to Vision Transformer and achieves promising performance in multi-label
classification. EVP [17] demonstrates that adapter tuning can effectively transfer
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pre-trained transformer-based models to downstream tasks such as salient object
detection, camouflaged object detection, and other binary segmentation tasks.

Prompt [16] is originally used in natural language processing (NLP) to
instruct pre-trained language models to understand and shift to new tasks.
Prompt tuning has also developed rapidly in the computer vision (CV) domain.
An input-agnostic visual perturbation prompt is learned and fed to a model
together with input images to repurpose pre-trained models to downstream tasks
in [2]. Some learnable parameters are injected into the transformer’s input
space to efficiently fine-tune large-scale transformer models in [10]. ViT-
Adapter [5] uses side branches to inject spatial priors into ViT to fine-tune
the model for detection and segmentation tasks. These works all show that the
injection of prompt information into the original backbone can guide pre-trained
models for versatile downstream tasks.

3 Methods

Fig. 1. The overall architecture of ExPert. During training, the vision encoder is frozen;
only the E-adapters, E-injectors and the decoder are trained.

3.1 Overview

Salient object detection is an important task in the computer vision field, which
detects the most salient objects in an RGB image and outputs binary masks of
these objects. Let I ∈ R

H×W×3 denote the input image and G ∈ R
H×W×1 the

corresponding ground truth binary mask. The output binary mask of the model
is M ∈ R

H×W×1. Suppose the SOD model is F and its parameters are θ, then
the mask is calculated as F(I, θ). The loss function L in ExPert is a combination
of binary cross entropy (BCE) loss and intersection over union (IoU) loss [29].
The training target is to minimize L(M,G) between M and G.

We propose an encoder-decoder model denominated as EXternal Prompt
features Enhanced adapteR Tuning (ExPert) with block-level E-adapter and
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E-injector. The architecture of ExPert is shown in Fig. 1 and entails a vision
encoder, a mask decoder, some E-adapter modules between the transformer
blocks of the vision encoder and some shared E-injectors for each feature scale.

Since SOD is defined as a segmentation task that is similar to semantic seg-
mentation, pre-trained transformer backbones for segmentation or classification
are preferable. A multi-scale encoder of SegFormer [26] and its decoder are chosen
as the backbone and the segmentation head of ExPert. E-adapter is a lightweight
side connection module that helps to transfer the pre-trained transformer back-
bone to salient object detection. In addition, E-injector is a lightweight side con-
nection module that projects vision features from other backbones as guiding
prompts and injects these prompts into the encoder. The detailed structures of
E-adapter and E-injector are illustrated in Fig. 3.

ExPert is trained in an end-to-end manner with image-mask pairs. Dur-
ing training, the vision encoder is frozen while the E-adapters, E-injectors and
decoder are trained. Experiments demonstrate that the combined prompts of
BLIP and ViT achieve the best result. As a backbone-agnostic model, ExPert
can switch between different transformer backbones with simple modification2

while the decoder needs to be specified according to different backbones.

3.2 Encoder and Decoder

Fig. 2. The decoder of ExPert for multi-scale features. The illustration of feature
images is visualized by choosing a random slice of the channel dimension. ExPert’s
final mask is generated by resizing this mask to the original size.

Transformer backbones can be classified into two types according to whether the
scale of features changes. One is the single-scale backbone and the other is the
multi-scale backbone. The features of the single-scale backbone keep the same
size during the forward propagation while the multi-scale backbone’s features
change size. For salient object detection, former research [19,31,34] emphasized
the importance of multi-scale feature fusion to get finer segmentation masks.
Since multi-scale features are crucial to dense prediction for finer details, multi-
scale backbones have an advantage over single-scale backbones in segmentation
tasks. Therefore we choose the MiT-B4 version of SegFormer [26] as our multi-
scale backbone. The encoder of SegFormer has 4 stages of feature extraction
2 More details can be found in the supplementary materials.
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and each stage has a different scale of features. The decoder is kept intact as the
original one as shown in Fig. 2.

For each stage of feature extraction, denote the output feature of the ith
stage as F out

i . A linear layer Li projects F out
i to align the channel dimension

for the following concatenation, followed by a bilinear upsampling U() to align
the spatial scale of features. Then all aligned features from different stages are
concatenated by Cat() to get Fc. Finally, two convolution layers, Cfuse, Cpred

and the sigmoid function S() are applied for the mask generation. The mask M
is generated as Eq. 2.

Fc = Cat(
I∑

i=1

U(Li(F out
i ))) (1)

M = S(Cpred(Cfuse(Fc))) (2)

3.3 E-adapter

Fig. 3. The detailed structure of E-adapter and E-injector. D-P is the down projection
layer, M-L is the median linear layer, U-P is the up projection layer and Dim-P is the
dimension projection layer.

To fine-tune the transformer backbone in a parameter-efficient manner, we
employ the adapter tuning method, which reduces the dimension of features
through a bottleneck design, thereby diminishing the number of trained parame-
ters. As shown in the bottom branch of Fig. 3, we propose the E-adapter, consist-
ing of a down-projection(D-P) layer with parameters P d

e , a median linear(M-L)
layer Lm

e and an up-projection(U-P) layer with parameters Pu
e . It is noteworthy

that the D-P layers of the E-adapter are shared for features of the same spa-
tial scale in order to further diminish the number of trained parameters. The
M-L and U-P layers are independent for each E-adapter. The additional low-
dimension M-L layers serve to increase the variability of the E-adapter. Define
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the ith block forward function as Bi(), the (i + 1)th block’s feature Fi+1 after
the E-adapter is computed as Eq. 4.3

F ad
i = Pu

e · ReLU(Lm
e (P d

e · Fi)) (3)

Fi+1 = Bi+i(Fi + F ad
i ) (4)

3.4 E-injector

Previous works [5,17] show that side connection modules like adapters can intro-
duce extra information to boost the model’s performance in object detection and
segmentation tasks. We design the E-injector to inject external features from
other backbones of the same input images as guiding prompts into the encoder
for salient object detection. The E-injector’s structure is depicted in the top
branch of Fig. 3.

If the number of injected prompt features is J , the jth E-injector is composed
of a prompt transformation Transj() and a dimension projection (Dim-P) layer
with parameters P dim

j . Since visual prompts might vary in size and shape, a
feature transformation Transj() fits the prompt feature F ′

j to the ith layer’s
feature Fi of the frozen backbone. Transj() is composed of a normalization and
a resize operation. The E-injector can receive different transformer features F ′

j

including the features from DINO, ViT and BLIP’s vision encoder. The output of
the E-injector F inj

j is generated as Eq. 5. To better adjust the injector features to
the backbone, a learnable scaling vector αj is used to weight them. The (i+1)th

block’s feature Fi+1 is computed as Eq. 6.

F inj
j = P dim

j · Transj(F ′
j) (5)

Fi+1 = Bi+i(Fi + F ad
i +

J∑

j=1

F inj
j × αj) (6)

Finding suitable prompt features is crucial to the quality of salient masks
for E-injector. DINO [3] is a self-supervised model trained without labels that
exhibits an obvious tendency to focus on objects in an image. Observing the
attention maps of DINO reveal coarse masks that are nearly similar to the masks
of the salient objects, we assume this kind of object-aware features can aid
pre-trained models in locating objects. Besides, considering that our multi-scale
backbone has fewer layers of high resolution features compared to single-scale
backbones such as ViT, our backbone’s overall perception of an image might be
complemented by the features of ViT’s last layer. ExPert uses the features of
ViT/B-16 as the auxiliary features for better global perception of images.

While piling up the features might strengthen the visual details, it is still
hard to guide the model to recognize the notion of saliency. It is noteworthy
that the caption naturally contains the descriptions of the salient objects in
an image which are beneficial to SOD. Therefore, we envision that the caption
of an image is highly related to the salient objects and contains the salient
3 The P · F in Eq. 3 represents the linear projection to features F with parameters P.
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information. Some Vision Language Models (VLM) like BLIP [13] are trained
on large caption datasets.4 The features from BLIP’s vision encoder trained
with image-text labels, which contain rich semantic information of an image, are
injected as semantic-enhanced features by E-injector.

To fully explore the rich semantic information in BLIP, we interact BLIP’s
vision features and BLIP’s captions for better focus on salient objects. Although
there are no captions or other text information in SOD datasets, we can gen-
erate them by the inference results of the BLIP model. For an image I, the
corresponding caption is generated by BLIP using beam search. The caption is
tokenized and embedded by BLIP’s text encoder to get the text embedding T .
The interacted feature is acquired via the cross-attention between the last layer
vision feature Vb of BLIP and T . In each cross attention layer, Vb is projected
as the query and T is projected as the key and value by linear projections.
Experiments show that one cross-attention layer is enough for the interaction5.
Since BLIP is trained with image-caption pairs, the alignment of image and text
features is not of pixel scale but rather of patch scale. As auxiliary prompt fea-
tures, too many cross attentions might lead to unexpected noises that harm the
final performance.

Since the features from ViT and similar models can refine the mask in detail
and the features from BLIP can inject semantic information into ExPert, we com-
bine these two features together for E-injector. The final version of ExPert uses
the features from ViT’s last layer and the interacted features by cross-attention
from BLIP. Experiments show that the combination prompt version achieves the
best performance. Unless specified, ExPert represents our best version.

4 Experiments

4.1 Experiment Setup

Implemented with PyTorch, ExPert is trained on the DUTS [24] dataset with a
batch size of eight using two V100 16G GPUs. The encoder and the decoder are
initialized with the publicly released pre-trained weights of SegFormer and the
other parameters are initialized randomly. We used the AdamW optimizer and
the learning rate is set to 2e−4 with a weight decay of zero.

We used ECSSD [27], DUT-OMRON [28], HKU-IS [11] and PASCAL-S [14]
as the evaluation datasets. Four metrics are adopted for our model evaluation:
the mean absolute error (MAE), the F-measure Fβ [1], the maximum E-measure
[8] and the S-measure [7]. More details on implementation, datasets and metrics
can be found in the supplement file.

4 CLIP [20] is a well-known VLM model trained with millions of image-text pairs.
However the text of CLIP is a simple sentence with the class name which is not the
caption of the whole image. The resolution of CLIP’s training images is 224*224, the
feature is 7*7 with the patch size of 32 which is too small to upsample. Therefore
ExPert does not consider CLIP’s features.

5 More details can be found in the supplementary file.
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4.2 Comparison with SOTA Models

Table 1. The quantitative metrics of our best version of ExPert(ViT & BLIP+ Injec-
tion) and four SOTA models. Best results are in bold. SR is the abbreviation of SelfRe-
former. EVP and SR are two transformer-based SOTA models while EGNet and U2Net
are two CNN-based SOTA models. The column of trained parameters (TP) shows the
size of trained parameters of each model.

Methods
DUTS-TE DUT-OMRON ECSSD

MAE↓ FM↑ EM↑ SM↑ MAE↓ FM↑ EM↑ SM↑ MAE↓ FM↑ EM↑ SM↑
EGNet .0431 .8507 .9148 .8775 .0564 .7686 .8640 .8345 .0405 .9293 .9494 .9192

U2Net .0443 .8477 .9102 .8737 .0544 .7930 .8794 .8466 .0330 .9408 .9572 .9276

EVP .0297 .9033 .9521 .9016 .0485 .8195 .9047 .8529 .0303 .9475 .9636 .9335

SR .0266 .9016 .9514 .9110 .0433 .8058 .8899 .8603 .0273 .9480 .9651 .9356

ExPert .0231 .9158.9594.9179 .0429.8399.9101.8711 .0215.9550.9707.9422

(a)

Methods
HKU-IS PASCAL-S TP

MAE↓ FM↑ EM↑ SM↑ MAE↓ FM↑ EM↑ SM↑ Size

EGNet .0345 .9160 .9520 .9098 .0821 .8166 .8673 .8469 412.3M

U2Net .0312 .9238 .9539 .9160 .0817 .8097 .8609 .8414 168.1M

EVP .0253 .9426 .9694 .9294 .0674 .8486 .8930 .8701 14.1M

SR .0241 .9406 .9689 .9309 .0600 .8513 .8978 .8807 349.7M

ExPert .0198.9498.9747.9375 .0538.8670.9099.8932 80.2M

(b)

Quantitative Comparison. We compare our model’s salient masks with four
representative state-of-the art models on five salient object detection datasets:
DUTS-TR, DUT-OMRON, ECSSD, HKU-IS and PASCAL-S. Two CNN SOTA
models EGNet [33] and U2Net [19] are considered together with two transformer
SOTA models SelfReformer [31] and EVP [17]. The metrics are calculated under
the same condition using the prediction masks of different models6. The predic-
tion masks are all provided by the official release7.

The results are shown in Table 1. Our method achieves the best performance
across all the SOTA models on all five datasets, which demonstrates the effec-
tiveness of ExPert and the potential of the transformer backbone on salient
6 We use the public codes of SOD Evaluation Metrics to compute the metrics.
7 Considering that EVP’s official mask is 352*352 which is not the original size, we

resize the prediction map of EVP to the size of ground truth and then compute the
metrics.

https://github.com/zyjwuyan/SOD_Evaluation_Metrics
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object detection. For the MAE metric, ExPert surpasses the second best Self-
Reformer by 0.0058 (around 21% improvement) in the ECSSD dataset and sur-
passes EGNet by around 47%. The superiority on all other three metrics demon-
strates that ExPert has stronger competence to segment the salient objects in
an image. Regarding the size of trained parameters, ExPert is more parameter
efficient than all SOTA models except EVP whose trained parameters are also
under 100 M as ExPert but with a smaller size. Therefore, ExPert realizes a good
trade-off between performance and the size of trained parameters. Figure 4 shows
the F-measure curves and the precision-recall curves of ExPert and 4 SOTA mod-
els on five datasets. It is observable in these curves that our model consistently
outperforms all other models.

Fig. 4. The F-measure curves and the precision-recall (PR) curves of ExPert and four
SOTA models on five datasets.

To ensure sufficient comparisons, ExPert is also compared to other latest
SOD models8 including M3Net [30], DSRNet [23], TCRNet [32], BBRF model
[18], IMSFNet [25] and CTD-L [12]. As shown in Table 2, ExPert performs
better in three metrics than these latest SOD models in the DUT-OMRON
dataset, which demonstrates the superiority of ExPert.

8 Due to the absence of codes or salient maps of some models, we directly use the
metrics results in the published paper. The results of M3Net [30] are calculated
using the official salient maps of the M3Net SwinB version.
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Table 2. The results on the DUT-OMRON dataset of different SOD models and
ExPert of metrics MAE, Fβ , max E-measure and S-measure. The best results are in
bold.

Metrics ExPert M3Net [30] DSRNet [23] TCRNet [32] BBRF [18] IMSFNet [25] CTD-L [12]

MAE↓ .042 .045 .051 .054 .042 .053 .049

max-FM↑ .839 .832 .810 0.791 .814 .760 .789

max-EM↑ .910 .902 / / .887 .777 .881

SM↑ .871 .872 .852 0.843 .855 / /

Fig. 5. The qualitative results of ExPert and four SOTA models. From left to right are
the images, the ground truths, ExPert’s masks, EVP’s masks, SelfReformer’s masks,
U2Net’s masks and EGNet’s masks. Better visual effect when zooming in.

Qualitative Comparison. In Fig. 5, we show the qualitative comparison
between our model and SOTA models to give readers an intuitive comprehension.
Compared to SOTA models, ExPert’s masks are more accurate in details and
can distinguish some ambiguous scenarios like reflection in water in the second
row. The head of the girl is similar to the tree in the background in the first row
while the hair and the cloth similar to the dark background are confusing in
the fifth row. Four SOTA models can’t differentiate these nuances but ExPert
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can handle the ambiguity. In the first row, ExPert’s mask is even more accurate
than the ground truth which contains all the hair. Moreover, the semantic infor-
mation injection from BLIP aids ExPert in recognizing the relationship between
objects in an image. For example, in the fourth row, the baggage on the ground
is obviously related to the man. ExPert segments them out while some other
SOTA models neglect the baggage or focus wrongly on the street lamp. Another
example is the third row, the children in the car should be regarded as a whole
with the car. Semantic information also assists ExPert in handling complex sce-
narios, such as shadow interference or color similarity, for instance, the case of
discerning the body of the deer in the shadow. As for salient objects of small
sizes, ExPert can well recognize them with clear details and less ambiguity as
shown in the last two rows.

4.3 Ablation Study

Tuning Methods: To verify the effectiveness of E-adapter on fine-tuning mod-
els for salient object detection, the performances of different fine-tuning meth-
ods are evaluated on the ECSSD dataset. As shown in Table 3, full fine-tuning9

achieves the best performance but requires a large size of trained parameters.
Training from scratch requires a large size of trained parameters with poor per-
formances and head tuning10 doesn’t output satisfying results either. As for
adapter tuning, the performances are close to the fully tuned version with much
fewer trained parameters.

Single-scale and Multi-scale Backbone: To compare the performance of
the single-scale backbone and the multi-scale backbone, all fine-tuning methods
are used to fine-tune MiT-B4 SegFormer and two of them are used to fine-tune
ViT-B/16. The decoder of ViT is the same as [35], more details can be found
in our supplement file. In Table 3, training from scratch and adapter tuning of
ViT are worse than the counterparts of SegFormer because multi-scale features
can extract more detailed information in the images. Therefore, ExPert uses
multi-scale pre-trained models as the encoder backbone for their finer details.

Adapter Level: In [4], the adapter module is side connected inside the trans-
former block while in ExPert we use the block-level adapter, which is side con-
nected between transformer blocks. In Table 3, the block-level adapter performs
better than the FF-level adapter which demonstrates that in the segmentation
task the block-level adapters are more advantageous. We suppose that the self-
attention layers are also important in image recognition and should also be
covered by adapters.

9 The full fine-tuning method trains all the parameters of the backbone and decoder
using the new datasets.

10 The head tuning method trains only the decoder while keeping the backbone frozen.
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Table 3. The results on ECSSD datasets of different fine-tune methods. Scratch refers
to training from scratch. Head tune and full tune denote head tuning and full fine-
tuning respectively. Adapter tune uses the block-level E-adapter to adapter tune pre-
trained models. “-S” means the SegFormer backbone. “-V” means the ViT-B/16 back-
bone. “-FF” means the adapter is of FF level, otherwise the block-level. The metric in
bold is the best.

Methods MAE↓ max-FM↑ max-EM↑ SM↑ Trained Parameters

Scratch-S 0.0784 0.8552 0.8758 0.8085 733.8MB

Head tune-S 0.0740 0.8922 0.9292 0.8444 36.1MB

Full tune-S 0.0282 0.9501 0.9679 0.9320 733.8MB

Adapter tune-S 0.0354 0.9447 0.9626 0.9193 50.9MB

Adapter tune-S-FF 0.0383 0.9446 0.9612 0.9152 48.0MB

From scratch-V 0.0312 0.9412 0.9648 0.9264 1093.7MB

Adapter tune-V 0.0362 0.9300 0.9569 0.9163 130.3MB

Prompt Feature: To verify the effectiveness of E-injector and different prompt
features, we denote the baseline model as the multi-scale encoder with E-adapter
but without E-injector. In Table 4, we compared E-injector with five prompt
features to the baseline. Injecting DINO features as prompt features performs
better than the baseline, which shows that object-aware features from DINO
can guide the encoder to focus more on salient objects. The ViT features injec-
tion is better than the DINO features injection, suggesting that pre-trained
models’ semantic information can further boost the performance of SOD. Addi-
tionally, although the multi-scale backbone can extract multi-scale salient fea-
tures, its global layers are usually shallower than those in single-scale backbones.
This weakness can be alleviated by the injection of ViT’s features which go
through more layers of the full-size scale.

Table 4. The results on ECSSD datasets of different prompt features for E-adapter.
BLIP+ represents the interacted features after cross-attention of BLIP. The baseline
only uses the E-adapter in 3.3 without the E-injector.

Methods MAE↓ max-FM↑ max-EM↑ SM↑ Trained Parameters

Baseline 0.0354 0.9447 0.9626 0.9193 50.9MB

DINO Inject 0.0298 0.9473 0.9625 0.9330 60.0MB

ViT Inject 0.0272 0.9497 0.9654 0.9357 60.0MB

BLIP Inject 0.0249 0.9516 0.9681 0.9380 60.0MB

BLIP+ Inject 0.0231 0.9534 0.9689 0.9408 80.2MB

ViT & BLIP+ Inject 0.0215 0.9550 0.9707 0.9422 80.2MB

Compared to the injection of ViT’s features, the injection of BLIP’s vision
feature performs better. Since BLIP is trained with image-text pairs, the seman-
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tic recognition of BLIP is stronger than ViT which is trained with image-label
pairs. This indicates that semantic information is critical for the model to detect
salient objects. The BLIP+ injection version surpasses the BLIP injection ver-
sion, verifying that our cross-attention interaction between BLIP’s image fea-
tures and caption embeddings successfully highlight the salient regions. The best
performance comes from the combination of ViT’s features and the BLIP+ fea-
tures, which captures both the detailed large scale features and the rich semantic
information.

5 Conclusion

We introduce the EXternal Prompt features Enhanced adapteR Tuning
(ExPert) model, designed to efficiently fine-tune pre-trained transformer mod-
els for salient object detection. E-adapter efficiently tailors pre-trained backbones
to extract salient features, while E-injector integrates various external features
as guiding prompts, enhancing the localization of salient objects. Additionally, to
enhance the representation of fine details, ExPert incorporates ViT features into
the backbone to complement shallow global layers. Furthermore, to capture the
relationship between image content and salient elements, the image-text inter-
action features from BLIP are integrated into the encoder, enabling better dif-
ferentiation of complex scenarios. Comprehensive experiments demonstrate the
superior performance of our ExPert over both state-of-the-art CNN-based and
transformer-based models across five validation datasets.

Looking ahead, further enhancement of ExPert may include exploration of
additional prompt features. It is possible to inject other prompt features such
as color or texture information into the backbone. Moreover, ExPert’s paradigm
could also be applied to other segmentation tasks, such as semantic segmentation
and panoptic segmentation. We also find that ExPert’s performance is influenced
by the quality of the generated captions by BLIP. To make ExPert more robust,
how to filter out captions of low quality is a challenge. We leave these possible
directions for future research.
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Abstract. Semantic segmentation involves labeling each pixel in an
image with a corresponding class label, enabling detailed scene under-
standing. In dynamic environments, where conditions change over time,
incremental learning techniques are essential for updating segmentation
models with newly acquired data. However, incremental segmentation
faces the challenge of catastrophic forgetting, where models lose pre-
viously learned knowledge when trained on new data distributions. To
address this, we propose a recall-based knowledge distillation approach
for stable segmentation model training across dynamic environments.
Our method combines the strengths of knowledge distillation and recall
learning to enhance the model’s ability to recall information from pre-
vious data distributions while adapting to new ones. By reintroducing a
small portion of the previous dataset during training and applying tai-
lored distillation techniques, our approach mitigates catastrophic forget-
ting and improves the robustness of these models. Through comprehen-
sive evaluations, we demonstrate the effectiveness of our approach in two
scenarios: salt segmentation in seismic datasets and tumor segmentation
in MRI datasets. Our method offers a promising solution for addressing
the challenges of catastrophic forgetting in incremental semantic seg-
mentation, facilitating the development of more adaptive and reliable
computer vision systems in dynamic environments.

Keywords: Segmentation · Catastrophic Forgetting · Knowledge
Distillation · Recall Learning · Seismic imaging · MRI

1 Introduction

Semantic segmentation is a fundamental task in computer vision. It involves
labeling each pixel in an image with a class label, thereby enabling a detailed
understanding of visual scenes. Semantic segmentation has seen remarkable
progress in various domains [13,18] such as energy, medical image analysis [1,16],
autonomous driving, etc. To adapt to the dynamic environments in production,
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these models are frequently updated with new data [9,26]. This process of updat-
ing a model with new data is called incremental learning [32]. As shown in Fig. 1,
a simple approach to address this is to retrain the model from scratch using all
the available old and new data [19]. However, this approach requires an expensive
training phase and significant storage resources for the old and new data. A more
efficient way to update models is to fine-tune them incrementally on the new
data, starting with the weights of the previous model. Incremental segmentation
models however poses a critical challenge of ensuring that the model adapts to
incoming data without compromising the knowledge acquired from previous data
- a phenomenon called catastrophic forgetting [11,22]. Catastrophic forgetting
can be either class-based or distribution-based. In class-based, the model’s ability
to segment classes that it had previously learned degrades when presented with
new tasks. In distribution-based, the model’s ability to segment the same classes
when presented with different data distributions degrades. Recent methods have
addressed class-based forgetting using recall/rehearsal [20] or knowledge distilla-
tion [5]. Knowledge distillation [5] approaches have offered a promising solution
to address this issue by distilling the knowledge learned from the accumulated
data into a compact form onto the new task model. This enables the model
to maintain performance across varying data distributions and adapt more effi-
ciently to new tasks. Recall learning [20] involves periodically reintroducing past
data samples during training to counteract the detrimental effects of catastrophic
forgetting. However, research focusing on distribution-based catastrophic for-
getting is limited [20]. Our proposed method offers a promising solution for
addressing the challenges of catastrophic forgetting due to distribution shifts in
incremental semantic segmentation. In this paper, we explore the application
of knowledge distillation and recall learning for segmentation model by training
them across varying data distributions. In doing so, we propose a recall-based
distillation approach to address catastrophic forgetting. Our method builds upon
the strengths of knowledge distillation and recall learning techniques to enhance
the model’s ability to recall information from previous data distributions while
adapting to new ones. By reintroducing a small portion of the previous dataset
during training and applying tailored distillation techniques, our method aims
to alleviate distribution based catastrophic forgetting and improve the robust-
ness and adaptability of semantic segmentation models in real-world settings.
Additionally, to the best of our knowledge, our method is the only approach
that effectively combines recall learning with knowledge distillation to address
distribution-based catastrophic forgetting.

Our paper makes the following contributions:

1. We propose to use distillation loss in recall learning from the old datasets to
enable the model to learn to recall and reweigh the model parameters.

2. We evaluate the approach on two problem domains: salt segmentation in
seismic datasets and tumor segmentation in MRI datasets

3. We investigate the impact of applying different training curriculum on the
model’s performance, providing insights into the learning dynamics of incre-
mental segmentation models.
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Fig. 1. Comparison of model retraining and Incremental Learning (IL). IL adapts
to new data distributions over time using previous model weights, reducing training
time and memory requirements, and making it more practical for updating models in
dynamic environments.

2 Related Works

2.1 Incremental Learning in Semantic Segmentation

Incremental learning in Segmentation is a relatively new field that has been gain-
ing attention in recent years [8,24]. This research mainly focuses on finding ways
to prevent catastrophic forgetting [28]. It also faces the challenge of background
shift, which was first pointed out in [8]. Background shift in incremental learn-
ing occurs when old classes from previous iterations are merged or collapsed into
the background. Strategies such as pseudo-labelling [30] can mitigate this issue
by dynamically updating the background class based on the model’s predictions
and preserving the distinctions between old and new classes. Recall learning and
knowledge distillation are two main techniques studied in literature.

2.2 Knowledge Distillation

Knowledge distillation (KD) approach [5], is widely being investigated to mit-
igate catastrophic forgetting. One of the first studies by Michieli et al. [25],
focuses on applying distillation scheme to retain knowledge about segmenting
the old classes in an incremental setting. They developed methodologies involving
learning of output prediction maps, intermediate layers, and feature maps of the
teacher models. Phan et al. [27] proposed a class similarity knowledge distillation
(CSW-KD) that distills the knowledge of a previous model on old classes that are
similar to the new ones. Further, Douillard et al. [10] proposed Local pooled out-
put distillation (POD) that employs a multi-scale pooling distillation scheme to
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maintain spatial relationships in features and n entropy-based pseudo-labelling
to handle background shifts. Further studies [12,14,30] have also proposed KD
to tackle class-based catastrophic forgetting.

2.3 Recall Learning

Recall learning involves storing and replaying past data samples or experiences
during the training of a model. This technique allows the model to retain knowl-
edge of previously seen data. Huang et al. [15] proposed a half-real half-fake
distillation approach that includes synthetic images alongside real ones during
the training of new tasks to refresh models’ memory of old classes. Yan et al.
[31] proposed a method called RECALL which utilizes generative adversarial net-
works and web-crawled data to produce new samples representing old classes,
which are then integrated into the training data for new tasks. Another strat-
egy by Michieli et al. [25] introduces an expectation-maximization framework,
merging relabeling and replay-based methods to enhance continual learning.

These studies primarily concentrate on addressing catastrophic forgetting in
class-based incremental segmentation scenarios. In our work, we leverage the
advantages of both knowledge distillation and recall learning to introduce a
recall-based distillation approach for distribution based forgetting. Unlike exist-
ing methods, our approach specifically focuses on enhancing the model’s abil-
ity to recall information from previous datasets for individual classes. We achieve
this by reintroducing a portion of the previous dataset to the incremental model
and applying distillation techniques tailored to facilitate better recall in the seg-
mentation model. Additionally, we incorporate a curriculum strategy into the
training batches to systematically investigate the learning progression of the
model.

3 Method

3.1 Problem Definition

The task of semantic segmentation is to assign a class c, to each pixel in a given
image where the number of classes, N , typically ranges from 0 to N −1, where 0
represents the background class. As depicted in Fig. 2, in an incremental learning
setting, a model Modeli : {F (xij) → yij}h,wi,j=1, where h and w denote the height
and width of the image respectively, is trained incrementally. Here, xij denotes
the pixel at the ith row and jth column of the image, and yij represents the
ground truth segmentation map pixel. The incremental training process begins
with the weights of the previous model Modeli−1 and continues training as new
dataset Traini is acquired. At each step, after Modeli is trained, it is tested
on a set of seen datasets {Testsx}ix=1, where Testsi is a non-intersecting subset
of images coming from dataset Traini and also on a set of unseen datasets
{Testux}kx=1, k =number of unseen datasets. Catastrophic forgetting is said to
occur when Modeli performs poorly on the previous test dataset Tests or on
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Fig. 2. Catastrophic forgetting in incremental segmentation. It can be seen quanti-
tatively and qualitatively that when the model is updated using new data (Traini),
Modeli performs poorly on previously seen Testsi as well as on some unseen Testui ,
indicating a loss of performance on previously learned data distributions.

a subset of Testu when updated with new training dataset Traini. This study
focuses on scenarios where the input distribution of the data varies across the
incremental tasks while the set of classes remains fixed with N = 2.

3.2 Proposed Recall-Based Distillation Framework

Figure 3 illustrates our proposed recall-based distillation approach. We first train
the Modeli−1 to recognize pixels belonging to classes C from training dataset
Traini−1 using the cross-entropy loss, LCE .

LCE = − 1
N

N∑

i=1

(yi · log(ŷi) + (1 − yi) · log(1 − ŷi)) , (1)

where yi is the true label (either 0 or 1) and ŷi is the predicted probability that
the input belongs to class i. Then Modeli−1 is frozen and acts as a teacher model
for the next incremental model Modeli. We proceed to train Modeli using the
new dataset Traini and Train′

i−1 which is a subset of previous dataset Traini−1.

Batching: We batch images from Train′
i−1 and Traini separately. This step

is crucial as the organization of data during training significantly impacts the
model’s learning process. There are four strategies for concatenating batches
from the two datasets, as illustrated in Fig. 4. One approach is to concatenate the
batches randomly, providing a diverse mix of data in each batch. Alternatively, a
more rigid strategy involves passing all batches from Train′

i−1 first followed by
Traini, or vice versa. While this method ensures exposure to both datasets
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Fig. 3. Our proposed Recall-Based Distillation approach begins with separate batching
of images from Train′

i−1 (subset of previous task data Traini−1) and Traini (current
task data) in the Batches concatenating module. Next, a Distillation Loss strategy
is applied to recall knowledge from the previous model (Modeli−1), optimizing both
losses to facilitate learning across new and old data distributions.

separately, it may lead to bias towards the one presented first, potentially limiting
the model’s adaptability. A more systematic approach is to alternate batches
from the two distributions. By interweaving data from different distributions, we
hypothesize that the model learns to adapt to both sets simultaneously, leading
to more balanced and efficient learning.

Fig. 4. Four curriculum’s for concatenating batches from Train′
i−1 and Traini.

Distillation Loss: After the batches from the two distributions have been
concatenated in the batch concatenating module, the Modeli is trained using
the weights initialized from Modeli−1. During training, batches originating from
Traini are trained on the cross-entropy loss LCE . To recall knowledge of the old
model Modeli−1 a distillation loss is applied on Train′

i−1 batches, given as:

LDL =
1
N

∑

i∈N

KL(psi ||pti). (2)
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KL(·) is the Kullback-Leibler divergence function. psi and pti represent the prob-
abilities of the ith pixel in the segmentation map extracted from the student
and the teacher network respectively, and N is total number of pixels in the
map. Hence the total loss optimized for Train′

i−1 batches is a combination of
LCE and LDL

Ltotal = (1 − α) ∗ LCE + α ∗ LDL (3)

where α is a hyper-parameter that denotes the weights of each term. Distillation
loss is exclusively applied to the old data Train′

i−1 and not the new data Traini,
as the old model Modeli−1 has only been exposed to the old data. Therefore,
we distill the knowledge from the old data onto the new model Modeli.

4 Experiments

4.1 Implementation Details

We conduct experiments using the U-net architecture [29], which comprises an
encoder-decoder structure. The encoder extracts high-level features through con-
volutions and max-pooling, while the decoder enhances spatial dimensions using
transposed convolutions. Skip connections preserve detailed information. For
training the U-net models, we employed the Adam optimizer [17]. The batch
size was set to 32 and the models were trained for 30 epochs, during which the
learning rate was fixed at 0.001. Additionally, we utilized a pacing function,
specifically the ReduceOnPlateau scheduler, to dynamically adjust the learning
rate during training. This pacing function reduces the learning rate when the
validation loss plateaus, allowing the model to converge more efficiently.

4.2 Datasets

We apply our approach in the context of two application domains: 1) top salt
segmentation in seismic images and 2) brain tumor segmentation in magnetic
resonance images (MRIs).

Salt Segmentation in Seismic: As shown in Table 1, we used 3 distinct seis-
mic datasets from the coast of Gulf of Mexico (GOM) to train and evaluate our
models. GOMA, GOMB , and GOMC , are 3D seismic volumes from which 2D
images, measuring 256×256 pixels are sliced at regular intervals in an inline and
crossline manner. GOMA is a substantial volume with 14k images. GOMB and
GOMC are comparatively smaller in scale with nearly 4k images each. At each
increment a non-intersecting set of these datasets is used as Tests. For Testu, we
used two separate 3D volume, also from GOM, denoted by Testu1 and Testu2 .
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Table 1. Distribution of Train and Test Seismic &MRI Datasets

Domain Seismic MRI

Dataset Data size Dataset Data size

Train GOMA 14,000 UCSF 6,148

GOMB 4,000 UPENN 4,215

GOMC 4,000 TCGA 2,128

Test-seen GOM′
A + GOM′

B 500 UCSF′ + UPENN′ 500

GOM′
C 500 TCGA′ 300

Test-unseen Testu1 450 BraTS 3,475

Testu2 500

Brain Tumor Segmentation in MRI: As shown in Table 1, we utilized four
MRI datasets: UPENN [4], UCSF [7], BraTS20 [2,3,23], and TCGA [6,21]. UCSF
includes 3D MRI images gathered from the University of California, San Fran-
cisco and includes nearly 6k 2D generated images after slicing the 3D scans.
UPENN comprises approximately 4.2k 2D generated images, with each image
typically having dimensions of 256 × 256 pixels. BraTS is a widely-used bench-
mark dataset consisting of MRI images collected from multiple institutions
and we used approximately 3.4k 2D images. The TCGA-TCIA dataset com-
bines MRI images from The Cancer Genome Atlas (TCGA) collection and from
The Cancer Imaging Archive from which we used nearly 2k MRI images.

4.3 Evaluation Metrics

For model evaluation, we employ three primary metrics for model evaluation: the
dice coefficient, the Area Under the Curve (AUC) of the Precision-Recall (PR)
score, and the confusion matrix. The dice coefficient quantifies the degree of
overlap between the binary segmentation mask predicted by our model and the
ground truth, providing a measure of segmentation accuracy. The AUC of the PR
curve offers a comprehensive assessment of binary classification performance by
illustrating the trade-off between precision and recall across various threshold
values. Further, a pixel-wise confusion matrix, is incorporated to further analyze
the model’s performance. It consists of four key elements:

– True Positives (TP): Correctly predicting the positive class
– False Positives (FP): Mistakenly identifying positive class where none exists.
– True Negatives (TN): Accurately predicting the negative class.
– False Negatives (FN): Mistakenly identifying negative class where none exists.
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5 Results and Discussion

5.1 Recall-Based Knowledge Distillation on Incremental Learning

Table 2. Summary of models trained using recall-based knowledge distillation. The
subscript represents the number of images from the respective dataset.

Model Train data Abbreviation Training Time

Teacher (GOMA + GOMB)19k Teacher 21478.26 s

Baseline [19] (GOMA + GOMB)19k + (GOMC)4k Baseline 4521.74 s

Model retraining [33] (GOMA + GOMB + GOMC)23k Retrained 26015.37 s

Recall-Based KD (our) (GOMA + GOMB)2k + (GOMC)4k Student2k 6782.6 s

(GOMA + GOMB)4k + (GOMC)4k Student4k 9043.47 s

(GOMA + GOMB)6k + (GOMC)4k Student6k 11304.34 s

Table 3. Results of recall-based KD approach on Seismic using curriculum 1 in Fig. 4.

Test Data Metric Teacher Baseline [19] Retrained [33] KD approach (our)

Student2k Student4k Student6k

(GOMA + GOMB)500 Dice 0.93778 0.15217 0.93136 0.86637 0.91597 0.91349

AUC PR 0.88807 0.1142 0.87783 0.80333 0.86942 0.86738

TP 0.9828 0.11044 0.98146 0.82798 0.89853 0.89727

FP 0.10079 0.38373 0.10874 0.04646 0.04225 0.04241

FN 0.01719 0.8895 0.01853 0.17202 0.10146 0.10273

TN 0.91707 0.95427 0.91669 0.92515 0.92248 0.92243

(GOMC)500 Dice 0.23052 0.889514 0.86394 0.864523 0.857949 0.86151

AUC PR 0.25158 0.78457 0.48332 0.73805 0.73661 0.75105

TP 0.4097 0.93266 0.96943 0.76075 0.7596 0.77544

FP 0.80123 0.22347 0.26859 0.07001 0.08268 0.08928

FN 0.5903 0.06733 0.03056 0.23924 0.24039 0.22455

TN 0.91573 0.93164 0.93093 0.9401 0.94023 0.93963

Testu1 Dice 0.482464 0.434251 0.41277 0.476423 0.4639002 0.4623619

AUC PR 0.36989 0.32812 0.32478 0.33958 0.3423 0.32814

TP 0.52588 0.52918 0.53436 0.52626 0.49709 0.47291

FP 0.57412 0.62335 0.66374 0.56479 0.55718 0.54772

FN 0.47412 0.4808 0.46564 0.47374 0.5129 0.52709

TN 0.95724 0.95965 0.95607 0.96252 0.96437 0.96529

Testu2 Dice 0.51567 0.21028 0.52429 0.34474 0.41276 0.41102

AUC PR 0.40385 0.16906 0.43402 0.27965 0.3375 0.30232

TP 0.51223 0.1742 0.53412 0.27293 0.33873 0.32908

FP 0.43038 0.36876 0.38271 0.19647 0.19748 0.19811

FN 0.48776 0.82579 0.46588 0.72707 0.66126 0.68292

TN 0.93169 0.95365 0.93236 0.94997 0.9467 0.95002
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Table 4. Different models trained using MRI datasets.

Model Train data Abbreviation Training Time

Teacher (UPENN+UCSF)12k Teacher 1868 s

Baseline [19] (UPENN+UCSF)12k + (TCGA)2k Baseline 348 s

Model retraining [33] (UPENN+UCSF + TCGA)14k Retrained 2280 s

Recall-Based KD (UPENN+UCSF)1k + (TCGA)2k Student1k 832 s

(UPENN+UCSF)2k + (TCGA)2k Student2k 910 s

(UPENN+UCSF)3k + (TCGA)2k Student3k 1003 s

Seismic Data: As shown in Table 2, we begin by taking model trained with
GOMA + GOMB datasets as the teacher model. Then starting with the weights
of teacher we incrementally train a model with GOMC dataset which acts as
a baseline model, a state of the art [19], for comparing our approach. Now,
we train multiple models using our recall-based distillation approach by vary-
ing the number of images to use for the recall process. For instance, Student2k
comprises a model trained with GOMC dataset and 2k images from the old
datasets GOMA + GOMB . Table 3 details the results obtained on these model.
(GOMA + GOMB)500 and (GOMC)500 indicates testing on a portion of seen
datasets while Testu1 and Testu2 are unseen test datasets. Additionally, we have
trained the only state-of-the-art method, to the best of our knowledge, by
using all three datasets together, thus retraining the model from scratch [33].
The training time for each model highlights that the retrained model requires
the most time since all the old data is reintroduced for training. In contrast, our
method demonstrates that using KD on a portion of the old data results in signif-
icantly faster training, thereby reducing computational complexity and training
time (Table 2).

Looking at the results in Table 3, some general trends can be observed.
First, the teacher model, which initially seemed to be performing well on test-
ing on (GOMA + GOMB)500 dataset, shows a drastic fall in performance on
the baseline model. However, applying the recall-based KD approach seems to
work in retaining the original performance on this dataset as this is the set
of images on which distillation was applied. We see a drop in performance on
unseen datasets as well when tested with the baseline model compared to the
initial teacher. But as recall-based KD approach is applied the model once again
retains the performance. Further, as the number of images from the old datasets
(GOMA +GOMB) is increased, we generally see a slight improvement in perfor-
mance over seen datasets.

MRI Data: For evaluation on MRI datasets, teacher model is trained on
(UPENN + UCSF)12k datasets. The baseline model is then trained incremen-
tally with the addition of (TCGA)2k dataset, starting with weights of previ-
ous model ((UPENN+UCSF)12k). Subsequently, our recall-based KD approach
trains multiple models with varying numbers of images from the old datasets
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Table 5. Results of recall-based KD approach on MRI using curriculum 1 in Fig. 4.

Test Data Metric Teacher Baseline [19] Retrained [33] KD approach (our)

Student1k Student2k Student3k

(UPENN + UCSF)500 Dice 0.79622 0.31561 0.78667 0.60231 0.62445 0.74687

AUC PR 0.89794 0.51766 0.79888 0.79911 0.86853 0.87065

TP 0.80639 0.25993 0.69232 0.57186 0.55377 0.74967

FP 0.12985 0.06911 0.09664 0.07853 0.03944 0.12908

FN 0.19361 0.96702 0.43922 0.42414 0.44223 0.24633

TN 0.95232 0.74006 0.95644 0.95776 0.95924 0.95316

(TCGA)500 Dice 0.10646 0.34142 0.33211 0.33822 0.32351 0.32001

AUC PR 0.20899 0.38868 0.37865 0.38561 0.38796 0.37489

TP 0.21527 0.40554 0.33902 0.35174 0.32187 0.33711

FP 0.53768 0.18782 0.13294 0.13345 0.07438 0.14749

FN 0.78472 0.19446 0.08934 0.08825 0.11813 0.10289

TN 0.97905 0.97103 0.97543 0.97115 0.97289 0.97122

BraTS Dice 0.73705 0.38182 0.57844 0.59197 0.54139 0.69398

AUC PR 0.86031 0.5788 0.73485 0.78705 0.79967 0.82352

TP 0.73297 0.32657 0.54333 0.55996 0.47719 0.69844

FP 0.12969 0.11271 0.94545 0.09776 0.04192 0.14609

FN 0.26511 0.67343 0.34089 0.44003 0.51733 0.29609

TN 0.94849 0.96178 0.95098 0.95482 0.95821 0.94998

Table 6. Analyzing the performance using different training curriculum’s on the
batches for Seismic Models.

Test Data Metric Student2k Model

C 1 C 2 C 3 C 4

(GOMA + GOMB)500 Dice 0.86637 0.51639 0.92185 0.87554

AUC PR 0.80333 0.42904 0.87597 0.81443

(GOMC)500 Dice 0.864523 0.87385 0.80539 0.74283

AUC PR 0.73805 0.74559 0.72343 0.56166

Testu1 Dice 0.4764236 0.46001 0.46646 0.49214

AUC PR 0.32407 0.32342 0.30921 0.33958

Testu2 Dice 0.34474 0.20400 0.36321 0.38687

AUC PR 0.27965 0.17053 0.30587 0.31769

(UPENN+UCSF) combined with (TCGA)2k dataset. These models are denoted
as Student1k, Student2k, and Student3k, indicating the number of images from
the old datasets used for training. Here as well, we retrained a state-of-the-art
model from scratch using all three datasets [33], which took the longest time
due to reintroducing all old data. In contrast, our KD method uses a portion
of old data, resulting in significantly faster training and reduced computational
complexity.
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For MRI datasets, the results are summarized in Table 5. (UPENN +
UCSF)500 and (TCGA)500 indicates testing on a portion of seen datasets while
BraTS is an unseen test dataset. Notably, the teacher model (Teacher) performs
well initially, but there is a decrease in performance on the baseline model. How-
ever, employing the recall-based KD approach with varying combinations of old
and new datasets shows promising results in maintaining or even improving
performance metrics. For instance, the Student3k model shows improved perfor-
mance compared to the baseline in several metrics across different test datasets.
This trend continues as the number of images from the old dataset increases, indi-
cating the effectiveness of the recall-based KD approach in incremental learning
scenarios. Some sample predictions made by these models can be seen in Fig. 5.

5.2 Further Evaluation

Applying Learning Curriculum on Batches: We investigate the effects
of using different curriculum’s as depicted in Fig. 4. Table 6 shows the results
for salt segmentation in Seismic data and Table 7 shows the results for tumor
segmentation in MRI data. C1 represents the curriculum where batches from
both new and old datasets are given purely randomly. C2 and C3 represent the
extreme cases where the batches from one dataset are given first, followed by
batches from the other dataset. C4 is the balanced case where batches from each
set are given alternately.

Interestingly, when analyzing the results on the seen datasets in MRI, we
see that when using curriculum C2, where batches from TCGA are given first,
followed by batches from UPENN+UCSF, the model performs best in making
predictions on UPENN+UCSF test dataset. Similar observation can be seen
when using C3 where the model performs best on TCGA test dataset as the
batches from TCGA are given for training last. This observation aligns with
the intuition that when the model is exposed to batches from UPENN+UCSF
or TCGA towards the end of training, it tends to perform better on the respective
test sets. Conversely, on the unseen dataset BraTS, the best performance is
achieved when batches from the two datasets are alternated (as in C4).

In case of seismic we observe a similar performance. When using C2 or C3
the model excels in making predictions on the respective test datasets correlated
with the dataset introduced towards the end of training. Further, on unseen test
datasets the model trained with alternating batches curriculum (C4) tends to do
best. This suggests that providing a balanced exposure to both datasets during
training may lead to improved generalization and performance on unseen data.
Hence, it is essential to carefully designing the training curriculum to optimize
model performance across different datasets and tasks. By strategically alter-
nating between the dataset distributions during training, models can effectively
leverage the diverse information present in each dataset, ultimately enhancing
their ability to generalize to new and unseen data distributions.

Varying Loss Hyperparameter: Here we investigate the choice for the hyper-
parameter α in the loss function. We train with different values of α ranging from
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Fig. 5. Qualitative results on MRI seen and unseen datasets.

Table 7. Analyzing the performance using different training curriculum’s on the
batches for MRI models.

Test Data Metric 1kold + 2knew Model

C 1 C 2 C 3 C 4

(UPENN + UCSF)500 Dice 0.64401 0.553229 0.730802 0.681149

AUC PR 0.80855 0.781559 0.847799 0.832356

(TCGA)500 Dice 0.33822 0.340035 0.311825 0.334421

AUC PR 0.38561 0.387077 0.362951 0.391385

BraTS Dice 0.59197 0.376764 0.600653 0.605210

AUC PR 0.78705 0.676064 0.777815 0.788173

0 to 1 and observe their impact on model performance. This results are shown
in Table 8 and Table 9 for Seismic and MRI respectively. In each case, in seen
and unseen dataset testing, we see that the model performs best with an α
value of 0.4. In scenarios where only distillation loss is utilized (i.e., α = 1),
the model focuses excessively on mimicking the outputs of the teacher model
without fully leveraging the information contained in the ground truth labels.
This can potentially lead to a loss of fine-grained details and an over-reliance on
the teacher model’s predictions. On the other hand, when α = 0.4, a balance is
struck between distillation loss and cross-entropy loss. This allows the model to
not only benefit from the distilled knowledge of the teacher model but also to
refine its predictions based on the ground truth labels, thus leading to improved
generalization and robustness.
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Table 8. Analyzing the effect of hyperparamater α, ranging from 0 to 1, in computing
loss for Seismic models. Lower values of α indicate higher emphasis on cross-entropy
loss, while higher values prioritize distillation loss.

Test Data Metric Recall-based KD Model

α = 0 α = 0.4 α = 0.6 α = 1.0

(GOMA + GOMB)500 Dice 0.85432 0.86637 0.86362 0.75942

AUC PR 0.77453 0.80333 0.79324 0.64341

(GOMC)500 Dice 0.86123 0.86452 0.85647 0.86237

AUC PR 0.73281 0.73805 0.73222 0.72311

Testu1 Dice 0.44839 0.47642 0.46211 0.41903

AUC PR 0.30123 0.33958 0.31955 0.29585

Testu2 Dice 0.31309 0.34474 0.32567 0.29053

AUC PR 0.25849 0.27965 0.27001 0.24473

Table 9. Effect of hyperparamater α in computing loss for MRI models. In each test
set, choosing and α of 0.4 seemed to give the optimal balance

Test Data Metric Recall-based KD Model

α = 0 α = 0.4 α = 0.6 α = 1.0

(UPENN + UCSF)500 Dice 0.668466 0.681149 0.675805 0.565161

AUC PR 0.813678 0.832356 0.827396 0.707104

(TCGA)500 Dice 0.332678 0.334421 0.324947 0.32346

AUC PR 0.388366 0.391385 0.391299 0.385238

BraTS Dice 0.57996 0.605210 0.601866 0.523672

AUC PR 0.76794 0.788173 0.770234 0.635562

6 Conclusion

In this paper, we propose a novel approach to mitigate catastrophic forget-
ting in incremental semantic segmentation, focusing on distribution-based for-
getting. Our recall-based distillation method combines knowledge distillation and
recall learning techniques to enhance model robustness across dynamic environ-
ments. By reintroducing a small portion of previous data during training and
employing tailored distillation, our approach improves model stability and per-
formance. Through extensive evaluations on seismic and MRI datasets, we
demonstrate its effectiveness in maintaining performance across varying data dis-
tributions. Thus, our method preserves information transfer by periodically rein-
troducing past data during training, reinforcing and integrating earlier knowl-
edge to prevent catastrophic forgetting. Future work will involve empirical veri-
fication of this information preservation aspect, where we will conduct detailed
studies to measure the extent to which knowledge from earlier steps is retained
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and utilized in subsequent training phases. This will further strengthen the reli-
ability and applicability of our proposed method in real-world scenarios.

Acknowledgements. We would like to thank Shell Global Solutions for providing us
with the Gulf of Mexico Seismic datasets.
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Abstract. 3D scene segmentation is a crucial task in Computer
Vision, with applications in autonomous driving, augmented reality, and
robotics. Traditional methods often struggle to provide consistent and
accurate segmentation across different viewpoints. To address this, we
look at the growing field of novel view synthesis. Methods like NeRF
and 3DGS take a set of images and implicitly learn a multi-view consis-
tent representation of the geometry of the scene; the same strategy can
be extended to learn a 3D segmentation of the scene that is consistent
with the 2D segmentation of an initial training set of input images.

We introduce Contrastive Gaussian Clustering, a novel approach
for novel segmentation view synthesis and 3D scene segmentation. We
extend 3D Gaussian Splatting to include a learnable 3D feature field,
which allows us to cluster the 3D Gaussians into objects. Using a com-
bination of contrastive learning and spatial regularization, our model
can be trained on inconsistent 2D segmentation labels, and still learn
to generate multi-view consistent masks. Moreover, the resulting model
is extremely accurate, improving the IoU accuracy of the predicted
masks by +8% over the state of the art.

Code and trained models are available at https://github.com/
MyrnaCCS/contrastive-gaussian-clustering.

Keywords: 3D Gaussian Splatting · 3D Segmentation · Contrastive
Learning

1 Introduction

Reliable and efficient 3D scene segmentation, i.e., the ability to divide the content
of a 3D scene into different objects, is a fundamental skill at the core of several
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computer vision tasks, and it is a prerequisite for autonomous navigation, scene
understanding, and for many AR/VR applications [13]. In this work, we propose
a general 3D scene segmentation approach based on 3D Gaussian Splatting [16],
that only requires 2D images and their segmentation masks as input, without
making assumptions on the masks’ consistency across images.

Fig. 1. The objective of Contrastive Gaussian Clustering is to take (a) a set of input
images and (b) their class-agnostic segmentations and (c) distill their information in a
model based on 3DGS. This model can then be used for (d) a wide range of visual and
segmentation downstream tasks, such as novel view synthesis, retrieving the mask of a
selected object, or 3D scene segmentation.

One of the challenges of 3D scene segmentation is the limited availability of
annotated 3D scene datasets, as manual annotations are time-consuming [15].
Recent works bypassed this issue by lifting readily available 2D image under-
standing to 3D space [28], inserting their semantic information into 3D point
clouds [14,29,30] or NeRFs [17,19,40]. These methods have shown that averag-
ing noisy labels across multiple views generates view-independent dense semantic
labels [40]. Early approaches relied on a limited range of task-specific labels [7,36],
but the recent introduction of foundational models like CLIP [32] and SAM [18]
provide open-vocabulary 2D semantic segmentation labels, which can be used to
optimize scene representations [31,37]. The segmentation masks generated by the
foundation models, however, are not always consistent across views, and exist-
ing methods require time-consuming pre-processing to enforce cross-view consis-
tency in the training data [37]. In this work, we address this by introducing a model
that can be trained on inconsistent 2D segmentation masks, while still learning
a 3D feature field consistent across all views.

As exemplified in Fig. 1, our method takes as input a) a set of multi-view
images and b) their 2D segmentations, which are not required to be consistent
across views. We then use images and masks to train c) a model representing
both the visual and geometrical information of the scene, as well as a 3D seg-
mentation feature field. This model can then be used for a wide range of d)
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downstream tasks exploiting the visual information (novel view synthesis), seg-
mentation information (3D scene segmentation) or on a combination of the two
(returning a segmentation mask given a selected point on a rendered view). The
optimization of the geometric and visual components can be approached follow-
ing standard 3D Gaussian Splatting [16], using a rendering loss to optimize the
color, position and shape of the 3D Gaussians. To learn the 3D segmentation fea-
ture field, we propose extracting information from the inconsistent 2D segmen-
tation masks via contrastive learning. This approach ensures segmentation con-
sistency across all views without requiring changes to the 2D masks themselves.
We test the proposed method against related works based on implicit scene rep-
resentations [17] and 3D Gaussian representations [31,37], and show through
qualitative and quantitative evaluation how our method can match and outper-
form them. A video outlining the motivation and main results of this paper is
available at the project’s page. Our contributions can be summarized as:

– A novel approach to embed a 3D feature field in a 3DGS model, enabling
simultaneous modelling of the scene’s appearance and segmentation.

– A contrastive-learning approach enforcing a multi-view consistent segmenta-
tion feature field, even when training on inconsistent segmentation masks.

– An approach for 3D scene segmentation by clustering the Gaussians according
to the feature field.

2 Related Work

In this section, we provide an overview of the relevant literature on image and
scene segmentation, in addition to 3D scene modeling with techniques for novel-
view synthesis. For a complete review of scene understanding or semantic seg-
mentation, we refer the reader to [27] and [11], respectively.

Scene Understanding. Scene understanding is a fundamental problem in com-
puter vision, inferring the semantics and properties of all elements in a 3D scene
given a 3D model and a set of RGB images [28]. Early approaches train models
on ground-truth (GT) 3D labels, focusing on specific tasks like 3D object clas-
sification [36], object detection and localization [7] or 3D semantic and instance
segmentation [2,6,9,21]. To overcome the limited availability of 3D GT data,
subsequent work leverages 2D supervision, by back-projecting and fusing 2D
labels to generate pseudo 3D annotations [12] or applying contrastive learning
between 2D and 3D features [24,33]. More recently, large visual language mod-
els [4,18,32] have allowed to shift from a close-set of predefined labels to an open-
vocabulary framework [32], making it possible zero-shot transfer to new tasks
and dataset distributions. We also leverage contrastive learning and foundation
models, using class-agnostic segmentation masks generated by the Segment Any-
thing Model (SAM) [18]. However, we apply such techniques to a different scene
representation - 3D Gaussian Splatting - and combine contrastive loss with other
forms of supervision, like spatial regularization from the distance between the
Gaussians.
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RadianceFields.Neural Radiance Fields (NeRF) [25] optimize a Multilayer Per-
ceptron (MLP) to represent a 3D scene as a continuous volumetric function that
maps position and viewing direction to density and color. NeRF has enabled the
rendering of complex scenes, producing high-quality results in novel-view synthe-
sis. Subsequent work have focused on faster training/rendering [1,26,39]. An alter-
native approach to NVS comes from 3D Gaussian Splatting (3DGS) [16], which
achieves both competitive training times and real-time rendering at higher image
resolution. Unlike NeRF [25], 3DGS foregoes a continuous volumetric representa-
tion and instead approximate a scene using millions of 3D Gaussians with different
sizes, orientations, and view-dependent colors. One of the advantages of this app-
roach is that it allows for direct access to the radiance field data, enabling to edit
the scene by removing, displacing or adding Gaussians [8]. This also allows captur-
ing dynamic scenes, including a time parameter to model the scene’s changes over
time [35]; or combining the model in a pipeline with a foundation model to edit
the scene from text prompts [10] or select the Gaussians associated with a specific
object [37]. Of these methods, Gaussian Grouping is the closest to our applica-
tion by segmenting the scene into groups of 3D Gaussians. However, this technique
relies on a video-tracker to obtain consistent masks IDs across the training images,
which also preset the number of instances in the scene.

Scene Understanding in Radiance Fields Representations. Semantic-
NeRF [40] extends the implicit scene representation to encode appearance, geom-
etry, and semantics, and generates denoised semantic labels by training over
sparse or noisy annotations. Other methods propose to distill image embeddings
extracted by a foundation model encoder into a 3D feature field. Distilled Fea-
ture Fields (DFF) [34] includes an extra branch that outputs a pixel-aligned fea-
ture vector extracted from LSeg [20] or DINO [4]. Unlike DFF, LERF [17] super-
vises by rendering non pixel-aligned multi-scale CLIP [32] embeddings. Although
these techniques locate a wide variety of objects given any language prompt, they
may suffer from inaccurate segmentations occasionally caused by objects with
similar semantics. More recent methods [5,31] have used foundational models for
grounding language/segmentation features onto the 3D Gaussians. While these
methods provide better performance in localization tasks, achieving higher accu-
racy, their segmentation masks are noisy/patchy. Mingqiao et al. [37] cluster the
Gaussians by assigning them a unique identity ID. Though these methods can
include instance segmentation features into the scene representation, the number
of objects in the scene is predefined, and it requires an additional tracking method
to pre-compute the needed multi-view consistent segmentation labels. A similar
approach of using contrastive learning to lift inconsistent 2D segmentations into
NeRF has also been used in 3D instance segmentation [3]. We show an alternative
method to encode identity features into 3D Gaussians, so we can group them into
clusters that we can easily extract/remove from the 3D scene.

3 Methodology

In this work, we represent a scene as a collection of 3D Gaussians that jointly
model geometry, appearance, and instance segmentation information. Our app-
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Fig. 2. Pipeline: (a) Given a set of images from different viewpoints, we use (b) a foun-
dation model for image segmentation to generate 2D segmentation masks. We capture
the appearance of the scene using (c) a rendering loss that, like in traditional 3DGS,
optimizes the geometry and color of (d) our Contrastive Gaussian Clustering model.
Simultaneously, (e) a contrastive clustering loss on the rendered-features optimizes a
3D segmentation feature field, encoded in (d) our scene model; this loss pulls apart
the rendered-features of pixels belonging to different masks and encourages similarity
between the features of those belonging to the same mask. Moreover, we use (f) a
spatial-similarity regularization mechanism, encouraging the segmentation features to
be similar for neighboring Gaussians and different for faraway Gaussians. (Color figure
online)

roach allows high-quality real-time novel view and segmentation synthesis. We
empower a 3DGS model to tackle scene understanding downstream tasks by
augmenting each 3D Gaussian with a view-independent feature vector. This set
of learnable feature vectors is called the 3D feature field. We optimize our 3D
feature field to lift inconsistent 2D segmentation masks into 3D space. A post-
optimization process is then applied to render multi-view consistent segmenta-
tions and to segment the scene into distinct clusters. A comparison between our
algorithm and 3DGS is available in the Supplementary Material.

As shown in Fig. 2, our approach takes (a) a set of input images, from which
we independently extract (b) inconsistent 2D segmentation masks using a foun-
dation model for image segmentation. Then, we optimize the 3D Gaussians using
(c) the original 3DGS loss function [16] that measures the difference between
the rendered and ground truth images. Simultaneously, we make use of (e) a
contrastive clustering loss to supervise the 3D feature field. This results in (d)
a 3D Gaussian scene representation which captures both visual and instance
information. To provide more accurate segmentations and speed up training,
we introduce (f) a regularization term that enforces the correlation between the
distance of Gaussians in Euclidean and the feature space.
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In this section, we first review the 3DGS rendering method. Then we discuss
the main steps of our pipeline, including rendering and supervising the 3D feature
field via contrastive learning.

3.1 Preliminaries on 3D Gaussian Splatting

The 3DGS model represents a scene as millions of 3D Gaussians parameterized
by their position μ, 3D covariance matrix Σ, opacity α, and color c. 3DGS rep-
resents the view-dependent appearance c by spherical harmonics. These param-
eters are jointly optimized to render high-quality novel-views. Since 3DGS pre-
serves the properties of differentiable volumetric representations, it requires as
input only a set of images and their camera parameters. Initially, 3DGS creates
a set of 3D Gaussians using a sparse Structure-from-Motion (SfM) point cloud
obtained during camera calibration. To render 3D Gaussians from a particular
point of view, the 3DGS starts by projecting these Gaussians onto the image
space, a rendering termed “splatting”. Subsequently, 3DGS generates a sorted
list of N Gaussians, ordering them from closest to farthest. The color of a pixel
C is then computed by α-blending the colors of N overlapping points:

C =
∑

i∈N
ciα

′
i

i−1∏

j=1

(1 − α′
j). (1)

The final opacity α′
i is determined by multiplying the learned opacity αi and the

2D Gaussian. The optimization is done by subsequent iterations that compare
the ground-truth images against the corresponding rendered views.

3.2 3D Feature Field

The 3D feature field is a collection of learnable-vectors stored on the 3D Gaus-
sians, that encode the instance segmentation of the scene. We augment each 3D
Gaussian with a learnable feature f . Unlike the view-dependent appearance, this
feature must remain consistent across all viewing directions. Therefore, instead of
computing spherical harmonics coefficients, we extract its component from Gaus-
sians. During training, we randomly initialize the feature vectors and then adjust
them to minimize the contrastive clustering error. The optimization of the 3D
feature field involves three iterative steps repeated for each training view: 3D
feature field rendering; clustering the rendered features following the related GT
segmentation map; and back-propagating the contrastive clustering error.

At each iteration, we render an image and its corresponding 2D feature map,
following an analogous process to the rendering algorithm described in Sect. 3.1.
For each pixel of the desired view, we α blend the features as:

F =
∑

i∈N
fiα

′
i

i−1∏

j=1

(1 − α′
j) (2)
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Contrastive Clustering. As the first step toward scene optimization, SAM
automatically generates 2D segmentation masks from the set of input images.
Specifically, we deploy SAM’s automatic generation pipeline on each training
image I ∈ R

H×W , resulting in sets of segments {mp ∈ R
H×W |p = 1 . . . Nk}. The

number of segments per image Nk is uncapped, allowing the proposed approach
to learn as many instances as are present in the scene. As described previ-
ously, the 3D feature field optimization is composed of three steps: rendering a
2D feature map for a given view, clustering the rendered features based on the
corresponding 2D segmentation masks to compute a contrastive clustering loss,
and then updating our 3D feature field accordingly.

Contrastive clustering maximizes the similarity among features within the
same segment in the segmentation map, while minimizing it for those from dif-
ferent segments. Given a view p, the cluster {fp} is the set of rendered features
of the 2D feature map that belongs to the same segment mp in the correspond-
ing GT segmentation map, and the mean feature in {fp} is the centroid f̄p. Like
Contrastive Lift [3], we adopt a slow-fast contrastive learning strategy where the
teacher parameters f̄p are updated by exponential moving average of the student
parameters {fp}. Our objective is to minimize the following loss function:

LCC = − 1
Nk

Nk∑

p=1

|{fp}|∑

q=1

log
exp

(
fp
q · f̄p/φp

)
∑Nk

s=1 exp
(
fp
q · f̄s/φs

) , (3)

where, fp
q are features in {fp}. The concentration estimation of the p-th cluster

is φp. Similar to [38], we define it as:
∑Np

q=1‖fp
q − f̄p‖2/Np log (Np + ε), where

Np = |{fp}| and ε = 100. φ is used to balance the cluster size and variance,
and is small if the number of pixel-feature elements is high and the average
distance between its elements and the centroid is small. The smooth parameter
ε is needed to avoid excessively large φ. Rather than regularize the features by
including a normalization loss, we apply �2-normalization to each feature in the
rendered feature map before the loss computation.

Spatial-Similarity Regularization. An easy way to obtain 3D instance seg-
mentation is to cluster similar features. However, we occasionally observe sparse
outliers (Gaussians misclassified) in regions where the scene is not well observed.
Furthermore, we notice that constant failures in the 2D segmentation (e.g., a
chair that is inconsistently segmented in two parts: legs and seat) may induce
to inaccurate segmentation masks.

To address these issues, we include spatial-similarity regularization to enforce
spatial continuity of the feature vectors, encouraging adjacent 3D Gaussians to
have similar segmentation feature vectors while discouraging faraway Gaussians
from having the same segmentation features. The regularization function is com-
puted with M sampling Gaussians:

Lregularization =
λnear

MK
M∑

j=1

K∑

i=1

H (1 − fj · fi) +
λfar

ML
M∑

j=1

L∑

i=1

H (fj · fi) , (4)
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where H denotes the sigmoid function. We compute the cosine similarity of
features for the closest K = 2 and the farthest L = 5 Gaussians. Empirically,
we found λnear = 0.05 and λfar = 0.15 to yield the best result.

Loss Function. The losses defined in this section are combined in a total loss:

L = Lrendering + λclusteringLCC + Lregularization, (5)

where Lrendering is the original rendering loss of 3DGS. Empirically, we set
λclustering = 1 × 10−6. See Sect. 4.4 for ablation of these parameters.

4 Experiments

We aim to segment objects within a scene into distinct clusters, to generate
novel segmentation masks from any viewpoint of the scene. We therefore com-
pare our algorithm against recent work for scene understanding, which code
has already been published. Specifically, we compare our approach against three
relevant competitors: LERF [17], Gaussian Grouping [37], and LangSplat [31].
LERF is an open-vocabulary localization method that embeds a language field
within a NeRF by grounding CLIP embeddings extracted at multiple scales
over the training images. Given a text query, LERF predicts 3D regions with
the semantic content pertinent to the input query. The recent Gaussian Group-
ing [37] is a technique for classifying 3D Gaussians into predefined instances, and
LangSplat [31] is an approach that results in a collection of 3D Language Gaus-
sians, such as LERF, outputs a relevancy map for a given text. We evaluate the
performance using two metrics: the mean intersection over union (mIoU), which
measures the overlap of the GT and rendered masks; and the mean boundary
intersection over union (mBIoU), which evaluates contour alignment between
predicted and ground truth masks. In both cases, we report the average perfor-
mance over all test views and text prompts.

In this section, we first provide details about the datasets used to evaluate the
models (Sect. 4.1), then give some implementation details (Sect. 4.2) and report
the segmentation performance of the models (Sect. 4.3). Finally, we discuss the
advantages of a spatial-similarity regularization loss (Sect. 4.4).

4.1 Datasets

We evaluate the chosen models on two datasets containing indoor and outdoor
scenes: the LERF-Mask dataset [37] and the 3D-OVS dataset [22].

LERF-Mask. The LERF-Mask dataset is composed of three manually anno-
tated scenes from the LERF-Localization dataset [17]. These scenes belong to
the “posed long-tailed objects” of LERF-Localization, which are scenes contain-
ing multiple objects with low search volume and low competition, arranged on a
plane, like a set of objects arranged on a small table (“Figurines”). These scenes
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are captured using the Polycam application on an iPhone, utilizing its onboard
SLAM to obtain the camera poses.

3D-OVS. We also report quantitative and qualitative results on five scenes
of the 3D-OVS dataset [22], which also consists of a set of long-tail objects, such
as toys and everyday objects on a “Bed” or on a “Sofa”.

4.2 Implementation Details

The models evaluated in this section are supervised on segmentation masks
automatically generated with the ViT-H SAM model, trained on the SA-1B
dataset [18]. These masks are used to learn feature vectors in R

16 for each
Gaussian. To ensure a stable training process, the loss terms of Eq. (5) are
applied with different frequencies: the standard 3DGS loss, used to optimize
the geometrical and appearance aspects of the scene, is used at every training
iteration. The contrastive clustering loss every 50 iterations, and the spatial-
similarity regularization every 100 iterations. Moreover, to reduce the size of
the problem and make the loss more stable, we evaluate the clustering loss only
on clusters composed by more than 100 features. The optimization of a sin-
gle scene takes approximately 30k iterations on an NVIDIA 4090 GPU, which
amounts to approximately 20 min. The trained model then can render a novel
segmentation mask in 0.005 seconds; comparing this with the time necessary
to run ViT-H SAM on an image (5.1 sec), this highlights the advantage of the
proposed method.

Instance Segmentation. After optimization, the model can be used for Object
Selection, as exemplified in Fig. 1; given one calibrated image, we want to find
the segmentation mask associated with a given selected pixel. Given a 2D pixel
location in the image, we obtain a discriminative feature, i.e.the rendered feature
vector at that pixel’s location. We then generate a 2D similarity map SC by
rendering segmentation features for all pixels of the image, and evaluating their
cosine similarity to the discriminative vector. Each pixel of the view (u, v) ∈ I
is then categorized as part of the object of interest or not. Pixels with cosine
similarity greater than a fixed threshold t (empirically chosen as t = 0.7) are
classified as part of the object; otherwise, they are not. The segmentation mask
MOBJ is defined as:

MOBJ(u, v) =

{
1, if SC(u, v) ≥ t

0, otherwise
(6)

We note that this process can be applied in parallel to multiple objects, by
extracting a set of discriminative features at different locations. An analogous
approach also allows the 3D segmentation of the scene, by selecting one or more
Gaussians and extracting, for each, all Gaussians with a high similarity score.
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Semantic Segmentation. The proposed model renders novel feature maps
by projecting and blending the content of the 3D feature field on an image
plane. To compare these against the ground truth mask, we follow this procedure:
i) we select a text prompt related to the content of the scene; ii) we feed into
Grounding DINO [23] an (Image, Text) pair which provides a bounding box
that we use to generate a segmentation mask by using it as a prompt to SAM;
iii) we sample the rendered feature map associated to a pixel within the segment,
and iv) use it as a discriminative feature, generating the object’s segmentation
in an arbitrary view by selecting all pixels whose rendered-feature vector is falls
within a predefined threshold from the discriminative feature.

4.3 Evaluation on Features

First, we compare the performance of our Contrastive Gaussian Clustering
against its competitors. We report the average performance on each scene, but
a complete breakdown of the performance on each object is available in the
Supp.Mat.

Table 1. Comparison of semantic segmentation on LERF-Mask dataset. We report
the mIoU and mBIoU (higher is better). LERF-Mask dataset contains accurate seg-
mentation masks that we use to evaluate our segmentation performance.

Method Figurines Ramen Teatime Average

mIoU mBIoU mIoU mBIoU mIoU mBIoU mIoU mBIoU

LERF [17] 33.5 30.6 28.3 14.7 49.7 42.6 37.2 29.3

Gaussian Grouping [37] 69.7 67.9 77.0 68.7 71.7 66.1 72.8 67.6

LangSplat [31] 44.3 41.9 34.8 28.7 54.3 48.8 44.5 39.8

Ours 91.6 88.8 68.7 63.1 80.5 78.9 80.3 76.9

Table 2. Comparison of semantic segmentation on 3D-OVS dataset, on scenes with
sparse long-tail objects and simple background. We report the mIoU (higher is better).

Method Bed Bench Room Sofa Lawn Average

mIoU mIoU mIoU mIoU mIoU mIoU

LERF [17] 73.5 53.2 46.6 27.0 73.7 54.8

Gaussian Grouping [37] 97.3 73.7 79.0 68.1 96.5 82.9

LangSplat [31] 34.3 84.8 56.3 67.7 95.8 67.8

Ours 95.2 96.1 86.8 67.5 91.8 87.5



124 M. Castillo et al.

As shown in Table 1, our method significantly outperforms the other
approaches on both metrics, providing on average a +43% accuracy than LERF,
+36% accuracy than LangSplat, and +8% accuracy than Gaussian Grouping on
average. Regarding the boundary quality of the masks, we outperform on aver-
age the competitors by 48%, 37%, and 9%. Though Gaussian Grouping achieves
better performance on Ramen, we suggest looking at Fig. 3, in which we show
how our method produces better qualitative results, with more accurate segmen-
tations.

Fig. 3. Qualitative comparison of test views for scenes on LERF-Mask dataset. Our
method is able to generate accurate instance segmentation masks for any object on
in-the-wild scenes. We replicate and exceed the results in green apple, pork belly, apple.
LangSplat exhibits noisy segmentation mask for old-camera and coarse segmentation
for sheep. Gaussian Grouping misclassified some pixels outside yellow bowl or classify
two objects in the same category in waving basket. (Color figure online)

When we test the models on the 3D-OVS, the performance is comparable with
the previous experiments, as shown in Table 2. Here, our method outperforms
the competitors only on two out of five scenes. This is due to two types of error
in the training data masks: type I) incorrect object localization by Grounding
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Fig. 4. In this experiment, we extract the Gaussians that belong to the red toy chair.
We first compute a discriminative feature, following the same procedure as described in
Sect. 4.2. Then, we filter the 3D Gaussians by computing its similarity score. The final
result is the 3D segmentation of the red toy chair. Observe that without our spatial-
similarity regularization loss, the 3D segmentation is affected by a high number of out-
liers. Though these outliers can be easily removed by modifying the similarity threshold,
we point-out that the outliers for a fixing similarity threshold is minimum when we use
our spatial-similarity regularization loss. (Color figure online)

DINO, and type II) incorrect object segmentation by SAM. For example, the
average accuracy on Sofa is low because of two outlier objects: object Pikachu,
with a completely incorrect segmentation (Type I error), and grey sofa, that
in most training views is detected as two objects (Type II error). However, on
average our model achieves the best performances; we outperform LERF on all
scenes; and when we perform worse than Gaussian Grouping or LangSplat the
performance gap on the mIoU is small: 2.1% on Bed, 0.6 on Sofa, and 4.7 on
Lawn.

Of the competitor models, Gaussian Grouping is the one that achieves the
closest performance to us. The main limitation of this method is that, while it
also enforces multi-view consistency, it does so through preprocessing, requiring
that the 2D segmentation masks are made consistent. However, errors in this
process propagate to the model, resulting in worse performance. In contrast,
our model is not affected by this problem, as it autonomously learns to enforce
consistency across the various views. The limited performance of LangSplat is
instead due to its embedding in the image semantic features, embedded as 3-
dimensional vector, without having a mechanism to ensure no two segments have
similar features; this results in noisy segmentation masks and misdetections. This
does not happen in our method, since the contrastive clustering loss ensures
features from different segments are far in feature space.
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Finally, Fig. 3 provides a qualitative comparison of the methods. We can see
that the resulting segmentation masks are compatible with the numerical results,
showing how our method produces qualitatively better instance segmentations
than our competitors. Additional results showing the qualitative performance
on 3D segmentation are available in the Supplementary Material.

4.4 Ablation Studies

In the previous experiments, we have claimed that the advantage of our method
and, to a lesser extent, of Gaussian Grouping on the other methods is due to
the implicitly learned multi-view consistency; which, in our case, is enforced
through the loss of Eq. (5). To validate this assumption, we run an ablation test
comparing the performance of our model with and without spatial-similarity
regularization. The results, reported in Table 3, show that in most scenes the
spatial-similarity loss results in a significant performance improvement, on aver-
age of 78.8% against 80.3%. This is also supported by the qualitative results on
3D segmentation reported in Fig. 4.

Fig. 5. Segmentation accuracy as a function of threshold t on the LERF-Mask dataset.

Table 3. An ablation study of our model. In this experiment, we explore the impact
of the spatial-similarity regularization loss on the segmentation quality. Metrics are
averaged over all the test views.

Method Figurines Ramen Teatime Average

mIoU mBIoU mIoU mBIoU mIoU mBIoU mIoU mBIoU

No 3D Loss 91.7 88.4 67.6 62.4 77.2 73.9 78.8 74.9

No Similarity Loss 92.2 89.2 67.1 62.2 75.3 73.9 78.2 75.1

No Dissimilarity Loss 91.4 88.6 67.1 61.9 80.0 78.6 79.5 76.4

Complete Model 91.6 88.8 68.7 63.1 80.6 78.9 80.3 76.9

Finally, we validate the choice of hyperparameters by studying their effect
on segmentation accuracy. Figure 5 shows how setting the instance segmentation
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threshold to t = 0.7 maximizes performance on all scenes. In Table 4 we instead
report the average performance when perturbing each of the hyperparameters
of the loss function defined in Eq. (5).

Table 4. Segmentation accuracy as a function of the hyperparameters of Eq. 5.

Metrics

Hyperparameter Value mIoU mBIoU

10 78.6 75.9

ε 100 80.3 76.9

1000 76.7 72.8

1 ×10−7 73.5 70.7

λclustering 1 ×10−6 80.3 76.9

1 ×10−5 77.8 75.1

1 ×10−4 78.1 75.4

0.005 77.6 74.7

λnear 0.05 80.3 76.9

0.5 74.4 71.6

5.0 77.0 73.2

Metrics

Hyperparameter Value mIoU mBIoU

0.015 77.6 74.6

λfar 0.15 80.3 76.9

1.5 73.1 70.0

15.0 71.4 68.7

2 80.3 76.9

K 5 78.6 75.9

15 77.4 74.3

2 77.6 74.5

L 5 80.3 76.9

15 73.6 71.2

5 Conclusions

In this paper, we introduce Contrastive Gaussian Clustering, a novel approach
for 3D scene segmentation. We have shown how, by implicitly enforcing a con-
trastive clustering loss, we are able to learn consistent segmentation features
from an inconsistent set of 2D segmentation masks. This means that the pro-
posed model can learn from automatically generated segmentation masks, with
little to none preprocessing required. Moreover, the use of a spatial-similarity
regularization ensures that the features learned for Gaussians corresponding to
different 3D clusters are distinct enough to provide accurate 3D segmentation.
The combination of such two losses results in an efficient and accurate model
that outperforms current approaches based both on NERF and 3DGS.

Limitations. Although the results reported in the paper are very promising,
including additional information involves some trade-off. Foremost, the use of
the two additional losses involves a computational overhead with respect to
standard 3DGS, requiring on average 100% longer time to train. We can, how-
ever, reduce this by only applying the losses every 50/100 iterations, respec-
tively. Moreover, the additional information stored in the Gaussians requires
larger memory capacity; future works will consider more efficient ways of includ-
ing the identity information into the scene representation. Other limitations are
inherited from SAM and Grounding DINO. For example, to select all Gaussians
matched to a given semantic label, we rely on Grounding DINO to select that
object’ location in a reference image. However, if this location is wrong, it will
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not be possible to recover the correct mask. The model’s performance is also lim-
ited by the accuracy of the 2D segmentations used in training. We observe that,
if multiple views contain incorrect masks, this can result into multiple instances
being clustered together.

Future Works. We will expand the proposed approach, integrating it with
LLM for language interaction, and extending the feature field to also include
hierarchical segmentations. Future work will explore more advanced ways of con-
trastive clustering. Concerning our multi-view contrastive loss, in future work
we could explore more intelligent ways to contrast all the feature-objects.

Acknowledgments. This project has received funding from the European Union’s
Horizon research and innovation programme under grant agreement No 101079116 and
No 101079995.
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Abstract. The main challenge presents in bitemporal building change
detection (BCD) in remote sensing (RS) is to detect the relevant changes
that are related to the buildings, while ignoring changes induced by other
types of land cover as well as varied environmental condition during the
sensing process. In this paper, we propose a new BCD model with a dou-
ble encoder architecture. The Gabor wavelet-based encoder which aims
to highlight the characteristic of buildings on RS imagery i.e., the com-
paratively more regular and repetitive texture than other objects on RS
images. This Gabor Encoder is used in addition to the convolutional-
neural-network-based encoder that extracts other meaningful and high-
level information from the images. Moreover, we also propose Feature
Conjunction Module to efficiently combine the extracted features by
characterizing possible types of changes. Comparative results with State-
of-the-art models on 3 different BCD datasets (LEVIR-CD, S2Looking,
and WHU-CD) confirm that the proposed model outperforms current
BCD methods in producing a highly accurate change map of buildings.
Our code is available on https://github.com/Ayana-Inria/AYANet.

Keywords: Gabor wavelet · Convolutional Neural Network · Building
Change Detection · Remote Sensing

1 Introduction

Change Detection aims to identify changes occurred in a scene between two dif-
ferent times, based on a pair of (geometrically) registered images acquired at pre
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and post-event. Some examples of the event that can cause the changes include
urban expansion, deforestation, or natural disaster. The challenge is to recog-
nize changes attributed to the event, while ignoring any other visual changes that
are unrelated to the event itself, which are generally due to lighting conditions,
shadows, seasonal variations, or changes in other environmental conditions. An
important special case of change detection is Building Change Detection (BCD),
where the goal is to highlight changes only in buildings and ignore the irrelevant
changes of other objects (e.g. vegetation) [22]. In remote sensing imagery, built-
in regions typically have a distinctive repetitive visual pattern compared to other
natural regions. Thus, such characteristics are important in identifying built-in
areas as well as any changes related to buildings (either buildings that are demol-
ished or newly constructed). The typical BCD task creates a change map that
highlights appearance and disappearance of buildings, which can be used as the
starting point of a broad range of applications, such as urban growth analysis [9],
and disaster assessment and recovery [20].

Traditional change detection methods can be divided into pixel-based and
object-based methods. While pixel-based methods rely on pixel-wise spectral
value changes between bi-temporal images, object-based methods can incorpo-
rate both spectral and spatial (e.g. shape, texture) contextual information of
images. The former approach is challenged by the limited spatial contextual
information provided by a small neighborhood of pixels, while the latter one is
subject to object segmentation errors and lacks the capability to include both
local and global features which are crucial as local features preserve spatial
details and global features provide a bigger context information to accurately
recognize the semantic information of pixels.

Deep Convolutional Neural Networks (CNN) have demonstrated promising
performance in addressing the complexities of the BCD task [1,4,13,18,26]. CNN
is able to extract image features via spatial convolutions and hierarchical feature
representations, which successfully combines local features by gradually increas-
ing the effective receptive field of subsequent layers as it goes deeper in the net-
work, creating a pyramid-like stack of features at multiple resolution. Recently,
Transformer networks are becoming popular in BCD because of their efficiency
in capturing the global context of the features. It can be incorporated in com-
bination with CNN [3,15], or it can also be used without feature extraction by
CNNs [2]. Theoretically, both CNN and Transformer can learn texture features
from the training image data [17,19], assuming sufficiently many training data
are available. However this is not the case in remote sensing imagery. While gen-
eral purpose large datasets exist to train such networks, e.g. ImageNet [8] which
contains around 14 million images, and JFT-3B [27] with approximately 3 billion
images, open BCD datasets generally contain fewer images by several order of
magnitude (less than hundreds of thousands). This is a serious constraint when
more and more complex models are appearing with several million parameters
to learn.

Models based on CNN, Transformer, or both, incorporate typical strategies
such as metric-based learning [4], as well as integrating attention mechanisms [1,
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4,10,18]. Indeed, attention-based approaches put weights on relevant features
e.g. temporal attention which emphasizes the relation between the features of
the bi-temporal images that accentuate the change [4]. However, considering
the typical size of BCD datasets, it is by far not evident that such complex
networks can learn features effectively, especially Transformer which may fail to
learn some specific features if the training data are not provided sufficiently [19].
On the other hand, other approaches are using fewer parameters to learn by
reducing the complexity of the network [3,7,10,15]. While all of the State-of-the-
Art methods mentioned above, including attention-based, Transformer-based or
CNN-based ones, perform well (see Sect. 3.3), none of them explicitly perform
feature extractions that are characteristic to the particular texture properties of
building in spite of its importance in differentiating buildings from other objects
in the BCD task.

Fig. 1. Some examples of features extracted at different stages of the Gabor Encoder.
The deeper the stage goes, the lower the resolution is. Notice that regions with buildings
are clearly highlighted at each resolution, while other regions (in spite of being textured
but without regularity) are supressed in the feature maps.

To address this issue, we propose AYANet which adopts a double-encoder fea-
ture extraction backbone that provides rich texture features in a Siamese network
to extract multi-scale features from bi-temporal image pairs. At each resolution,
feature differences are extracted and forwarded to a final decoder, which identi-
fies building changes and provides the final change map. The main contributions
of this paper are:

1. We integrate local feature extraction from a CNN-based encoder which is
based on EfficientNet-B7 [23], and explore the advantages of a dedicated
multi-scale texture feature encoder based on Gabor wavelets [11], in the form
of a so called double encoder where CNN-extracted hierarchical features are
augmented by features directly representing repetitive visual patterns at dif-
ferent scale and orientation. One can also interpret it as a kind of attention
to highly regular textured regions. Figure 1 illustrates some multi-scale fea-
tures extracted by the proposed Gabor Encoder. We can observe that the
extracted features highlight the textures of buildings that are located on the
right side of the image. While a CNN can already extract general texture
features from the input images, the intuition we have in mind when designing
the Gabor Encoder is to ensure the encoder to extract the textures belong to
the buildings by imposing Gabor filters when the network learns to update
the convolutional filters which are integrated together as the building block
of the encoder (more detail in Sect. 2.1).
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2. Features from corresponding scale in the Siamese network are processed by
a Feature Conjunction Module (FCM), which will characterize their dissimi-
larity for the decoder.

The quantitative and qualitative experimental results on standard datasets
demonstrate the superiority of our method.

2 AYANet

Fig. 2. The architecture of AYANet. The design follows the style of a Siamese network
i.e., the same Encoder and Gabor Encoder are used to process the two input images.

The proposed model, shown in Fig. 2, is a Siamese network with three main
components:
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1. double encoder consisting of our Gabor Encoder and the EfficientNet-based
general Encoder

2. Feature Conjunction Modules at 4 resolutions
3. the Decoder and Classifier which produces the final change map

A pair of pre-change and post-change images with input size H × W × C (
H, W , C refer to height, width, channels respectively), goes directly to the
Encoder. The Encoder produces multi-scale features from each block with a
size of H

2i × W
2i × Ci, where i = {1, 2, 3, 4}, and Ci+1 > Ci. The same pair

of input images is converted to grayscale and is duplicated to H × W × C1

before being fed to the Gabor Encoder in order to accommodate the depthwise
mechanism used in that block, which will be explained in detailed in Subsect. 2.1.
The Gabor Encoder extracts features at different scales at the same resolution
as the features extracted by the Encoder. Features are then concatenated and
being passed to the Feature Conjunction Module where pre-change and post-
change features are combined such that feature changes are highlighted. These
conjugated features are subsequently passed to the Decoder. The Decoder of
AYANet utilizes the decoder part of [5], which comprises several upsampling
layers. The operation includes a simple bilinear upsample followed by the sum
of upsampled features, and the features coming directly from the FCM module
at every stage. The binary change map is produced by classifying the features
upsampled by transposed convolution layers.

2.1 Double Encoder

Feature extraction by the double encoder comprises two components. One CNN-
based Encoder, which consists of the first 4 mobile inverted bottleneck blocks
(MBConv) of EfficientNet-B7 [23]. The depthwise separable convolution imple-
mentation in the building block of EfficientNet allows deep feature extraction
with less computational cost compared to architectures using regular convolu-
tion blocks. Moreover, the squeeze and excitation (SE) block [12] in MBConv
will act as the channel attention mechanism in the Encoder which models the
interdependencies among channels of the features. The other one is our Gabor
Encoder which focuses on the repetitive visual patterns of the buildings.

Gabor Encoder. The main element of Gabor Encoder is inspired by Gabor
Orientation Filters (GoFs) proposed in [17]. A GoF consists of a group of filters in
which each of the filter is a learnable convolutional filter modulated by a Gabor
filter [17]. Gabor filters [11] are biologically motivated as mammalians’ vision
system uses similar multiscale filters to extract texture information from retinal
images. Gabor filters are represented by the following equation [16,17,25]:

G(u, v) =
||ku,v ||2

σ2
e−(||ku ,v ||2||z ||2/2σ2)[eiku ,v z − e−σ2/2], (1)

where z = (x, y), ku,v =
(

kjx

kjy

)
=

(
kv cos ku

kv sin ku

)
, frequency kv = (π/2)/

√
2
(v−1)

,

orientation ku = u π
U , and σ = 2π. The scale parameter v = 1, ..., V controls the
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Fig. 3. The upper part of the image shows how GoF is obtained and the lower part
indicates the difference on how the filters work between standard convolution (left) and
depthwise convolution (right).

frequency of the filter in inverse proportion while the parameter u = 0, ..., U − 1
determines the orientation of the filter.

Each filter in a GoF is a product of element-wise multiplication of a convo-
lutional filter Ci of size N ×K ×K with a Gabor filter G(u, v) with size K ×K,
orientation u, and scale v

Cv
i,u = Ci � G(u, v), (2)

Thus, a GoF [17] comprises a group of filters with a scale v and a set of orien-
tations U

Ĉv
i = (Cv

i,0, ..., C
v
i,U−1), (3)

The upper part of Fig. 3 illustrates the process to obtain a GoF. We intuitively
interpret the integration of Gabor filters in the convolutional block, in some
way, guides the parameter learning in the Gabor Encoder to be imposed by
Gabor filters we set in the GoFs because the backpropagation process will take
into account the Gabor filters in each block [17]. Additionally, we modified the
original GoF by replacing standard convolution to depthwise convolution [6],
which changes the operation (assume stride = 1 with padding) from

F̂k,l,n =
∑
i,j,m

Ki,j,m,nFk+i−1,l+j−1,m, (4)
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to
F̂k,l,m =

∑
i,j

Ki,j,mFk+i−1,l+j−1,m (5)

where K is the filter, F is the input image or feature, and F̂ is the output
feature. (i, j) denotes the position of the cell indexed based on the kernel size,
(k, l) defines the position of the cell indexed based on the output feature size, m
increments until the number of input channel, and n is looped until the number
of output channel. The lower part of Fig. 3 shows the difference between convo-
lution operation on the left and depthwise convolution on the right. Depthwise
convolution applies one kernel to each input channel, which provides the fol-
lowing benefits: 1) less computational cost and 2) filtering the features spatially
without the mixing of channel-wise information. In order to implement this, we
need to make sure that the number of input channels is the same as the number
of filters or the output channels, which is the reason why we need to duplicate
the input image to the number of filters of the first block in the Gabor Encoder.

Referring back to Fig. 2, The block of operations between the input image
or input features and GoF with the depthwise convolution is called GDConv.
Two blocks of GDConv with kernel size of 7 × 7 are responsible to produce
the Gabor Encoder’s output features at a particular resolution. These output
features from each stage are then to be concatenated with the output features
from the EfficientNet encoder at the same resolution. The orientation of GDConv
was set to U = 4 to represent the horizontal, vertical, and diagonal orientations.
The scale parameters were v = 1 and v = 2 for the first and second GDConv
block respectively. A depthwise convolution with stride 2 is used in the second
block to bring down the spatial resolution to half of the input size. In order
to adjust the channel size, we implement Convolution 1 × 1 before every first
block of each stage except for the first stage where the channel adjustment is
handled by duplicating the image channel. Every second block of each stage is
also followed by Batch Normalization and ReLU activation function.

Fig. 4. The structure of Feature Conjuction Module.

2.2 Feature Conjunction Module

The extracted multi-resolution features concatenated from both encoders are
processed by the Feature Conjunction Module (FCM). As shown in Fig. 4,
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we treat pre-change feature f0 and post-change feature f1 with several oper-
ations similar to [24], in order to explicitly represent the behavior of bi-temporal
changes. Referenced from [24], f0 − f1 and f1 − f0 define the appearance and
disapperance of the object, while Max(f0, f1) − Min(f0, f1) intends to cap-
ture exchanging objects. We additionally add f0 + f1 to highlight the changed
objects from the unchanged ones. All of the products of these operations are
concatenated together with the original features f0 and f1, then they undergo a
1×1 convolution which will learn the important channels related to the changes
and reduce the resolution from H

2i × W
2i × 6Ci to H

2i × W
2i × Ci. A 3 × 3 convo-

lution followed by Batch Normalization and ReLU activation are added as the
last stage to further learn the relevant features.

3 Experiments

The performance of AYANet has been evaluated on 3 standard RS building
change detection datasets. Comparison with State-of-the-Art (SOTA) methods is
done both quantitatively using standard metrics, and qualitatively by visualizing
the change maps. Some of the SOTA methods have been trained and tested
in-house to ensure a fair comparison, while for other methods we report the
measurements on the standard test split of the datasets published in papers.

3.1 Datasets

LEVIR-CD [4] consists of very high-resolution (VHR) RGB imagery highlight-
ing the change in the development as well as the decline of buildings in Texas,
USA. The dataset has 31333 change instances of various types of buildings
such as large warehouses, tall apartments, villa residences, and small garages.
For the experiment, we cropped 637 pairs of 0.5m resolution images with a
size of 1024 × 1024 pixels to 256 × 256 patches without overlap. Following the
default split of the dataset, the total pairs used for training/validation/test is
7120/1024/2048.

S2Looking [21] has 5000 bitemporal VHR side-viewing satellite imagery
obtained at several off-nadir angles. The images are captured from various satel-
lites such as GaoFen, SuperView, and BeiJing-2 with a size of 1024 × 1024 pix-
els and spatial resolutions ranging from 0.5m to 0.8m. The S2Looking dataset
contains scenes of rural areas from around the world which adds the complexity
of features of the dataset. The default split of train/validation/test consists of
3500/500/1000 pairs of images. For the experiment, the images were cropped
into 256×256 patches which makes the final split adds up to 56000/8000/16000.

WHU-CD [14] records the building changes in Christchurch, New Zealand
between 2012 and 2016. This dataset contains a pair of RGB aerial images with
0.2m spatial resolution. The training split has a size of 21243 × 15354 pixels
and the test split is 11256×15354 pixels. Like the other two datasets, the images
were cropped to 256×256, and we randomly split the images to 6096/762/762 for
train/validation/test.
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3.2 Implementation Details

The implementation of the proposed model was done using PyTorch and we
run experiments on two GPUs: NVIDIA Quadro GV100 and NDVIA GeForce
RTX4090. Input images were augmented geometrically (random flipping, ran-
dom cropping) or photometrically (Gaussian blur). Weights of the model were
randomly initialized. We trained the model using cross-entropy loss and AdamW
optimizer (weight decay 0.01 and beta values (0.9, 0.999)). The model started
the training with learning rate from 0.0001 linearly decaying to 0. We set the
batch size to 8 and stopped the training at 300 epochs.

We utilized Precision, Recall, F1-score, and Intersection over Union (IoU) for
the quantitative evaluation of our model.

Table 1. Quantitative results of AYANet and State-of-The-Art models on the LEVIR-
CD dataset. The best result is highlighted in bold. Results of all SOTA models are as
reported in the original papers.

Model Precision Recall F1-score IoU

AFCF3D-Net [26] 91.35% 90.17% 90.76% 83.08%

BIT [3] 89.24% 89.37% 89.31% 80.68%

ChangeFormer [2] 92.05% 88.80% 90.40% 82.48%

DMI-Net [10] 92.52% 89.95% 90.71% 82.99%

DUNE-CD [1] 92.27% 88.83% 90.52% 82.68%

FHD [18] 92.61% 89.61% 91.09% 83.63%

GVA-CD [13] 92.63% 87.88% 90.31% 82.51%

MSFCTNet [15] 92.06% 90.00% 91.02% 83.52%

STANet-PAM [4] 83.81% 91.00% 87.26% 77.40%

TINYCD [7] 92.68% 89.47% 91.05% 83.57%

AYANet 92.60% 90.25% 91.41% 84.17%

3.3 Comparison with SOTA

We listed the comparison of performances among our proposed model and sev-
eral SOTA models on the LEVIR-CD dataset in Table 1. We make use of the
default train/validation/test split, which has been used by many papers to report
their results as well - which allows us a direct comparison with numerous SOTA
methods. Furthermore, we only report results published in the original paper of
the methods (which are the optimized results of the authors themselves) to guar-
antee a fair comparison with our method. The SOTA methods listed in Table 1
represent a broad range of techniques and strategies. AFCF3D-Net [26] treats
bitemporal images like a video and uses 3D CNN as its backbone. CNN-based
models such as DMI-Net [10], DUNE-CD [1], FHD [18], STANet-PAM [4], and
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TINYCD [7] incorporate various attention mechanisms including self-, channel-,
global-, local-, and cross-attention. GVA-CD [13] focuses on the feature difference
method by taking into account the geometric structure of the object. BIT [3],
ChangeFormer [2], and MSFCTNet [15] utilizes Transformer either in hybrid
style or using it purely without CNN.

It can be observed that AYANet performs better than most of the listed
SOTA models and outperforms all in terms of F1-score and IoU. This includes
surpassing the models that implement Transformer, for example the CNN-
Trans-former-hybrid BIT by 2.10% and 3.49%, and the pure Transformer-based
ChangeFormer by 1.01% and 1.69%. The proposed model also exceeds the per-
formance of TINYCD by 0.36% and 0.60%. TINYCD also uses EfficientNet as
their feature extractor, and a more sophisticated technique to manipulate the
features extracted, as opposed to a simpler operation used in our FCM. We
intuitively correlate this outcome to the addition of the Gabor Encoder help-
ing extracting relevant features of the buildings such that only a simple feature
manipulation is necessary to highlight the change of the buildings. Comparing
to the method that explicitly target the pattern of the object on the image
i.e. GVA-CD which focuses on geometric variation, our proposed model which
targets building’s textures, has a 1.10% higher F1-score and a 1.66% higher IoU.

Table 2. Quantitative results of AYANet and State-of-The-Art models on the
S2Looking dataset. The best result is highlighted in bold. All SOTA models’ results are
reproduced.

Model Precision Recall F1-score IoU

BIT [3] 73.99% 52.73% 61.58% 44.49%

ChangeFormer [2] 68.04% 57.03% 62.05% 44.98%

STANet-PAM [4] 36.30% 61.84% 45.74% 29.65%

AYANet 69.37% 58.70% 63.59% 46.62%

Table 3. Quantitative results of AYANet and State-of-The-Art models on the WHU-
CD dataset. The best result is highlighted in bold. All SOTA models’ results are repro-
duced.

Model Precision Recall F1-score IoU

BIT [3] 87.65% 90.91% 89.25% 80.59%

ChangeFormer [2] 94.15% 85.52% 89.63% 81.20%

STANet-PAM [4] 70.65% 93.54% 80.50% 67.37%

AYANet 95.56% 92.89% 94.21% 89.05%

The evaluation on the S2Looking dataset and the WHU-CD dataset were also
done. The S2Looking dataset covers a more challenging task where images are
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taken from off-nadir angles. Perhaps for this reason, relatively few papers report
evaluation results on this difficult dataset and the reported IoU numbers are all
below 50%. The WHU-CD dataset does not have a standard train/val/test split
such that most of the literature present their results by randomly splitting the
set. Unlike on the LEVIR-CD dataset, a fair comparison thus cannot be done
based on only the published numbers. Therefore we re-trained and evaluated
relevant SOTA methods on the same split of this dataset. We selected three
models representing pure CNN (STANet-PAM), hybrid CNN and Transformer
(BIT), and pure Transformer models (ChangeFormer). Table 2 and Table 3 show
the quantitative results of AYANet and SOTA models on the S2Looking and
the WHU-CD datasets respectively. The proposed model shows the highest per-
formance in terms of F1-score and IoU among the evaluated methods on both
datasets. There are minimal differences of 1.54% and 1.64% on the S2Looking
dataset as well as significant improvement by 4.58% and 7.85% on the WHU-CD
dataset, w.r.t. the second-best performer model i.e. ChangeFormer.

Fig. 5. Qualitative comparison of the change maps predicted by the proposed model
and the SOTA models. The first 2 rows are the results on LEVIR-CD, while the third
and fourth rows are from the WHU-CD and S2Looking datasets respectively. Color
representation: TP (white), FP (light blue), TN (black), FN (red). (Color figure online)

The qualitative comparison is shown in Fig. 5 where it can be seen that
AYANet’s change maps have less false positive (light blue area) and false negative
(red area) in several cases, such as detecting changes of big building on the third
row of the figure, recognizing changes in smaller buildings on the first row, as well
as change detection in the environment with poor lighting condition shown in
the last row of the figure. Moreover, our model produces more precise masks like
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what we can observed in the second row of the figure where the boundary of the
buildings located close to each other appears to be clearer.

We did an additional experiment to test our models that were trained on
one particular dataset, with another datasets. The goal of this experiment is to
show the proxy of generalization ability of the models. Results in Table 4 show
the performance of the models trained on LEVIR-CD and tested on the WHU-
CD dataset The proposed model outperforms other models in F1-score and IoU
at least by 2.28% and 2.85%. The difference can also be confirmed in Fig. 6
where we can observe that AYANet’s change maps have less false positive and
false negative prediction. However, note that even our best performing model
reaches only 60%, which is obviously much lower than anything trained on the
WHU-CD dataset itself. Other SOTA models also reported the same tendency
which may be related to the rather large difference in remote sensing imagery
making change detection methods generalization challenging, partially because
the pre and post-images are already registered so change detection requires only
a pixel-wise analysis of changes thus more global changes are not learned well
by these models and this is not even their goal to do so.

Table 4. The results of cross-dataset evaluation. All models are trained on the LEVIR-
CD dataset and are tested on the WHU-CD dataset.

Model Precision Recall F1-score IoU

BIT [3] 58.36% 79.52% 67.32% 50.74%

ChangeFormer [2] 76.87% 70.10% 73.33% 57.89%

STANet-PAM [4] 28.31% 14.27% 18.98% 10.48%

AYANet 77.60% 73.66% 75.58% 60.74%

Fig. 6. Qualitative performance of the models on cross-dataset evaluation. Color rep-
resentation: TP (white), FP (light blue), TN (black), FN (red). (Color figure online)

3.4 Ablation Study

An ablation study was conducted to check how the proposed model behaves
according to different settings of encoder. Table 5 shows the qualitative results
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of AYANet with the proposed double encoder, and the cases where we only use
the Gabor Encoder as well as modified EfficientNet we use as the Encoder,
exclusively. We find that using only the Gabor Encoder does not give the model
a satisfactory performance as it only reaches 88.92% in F1-score, and 80.05% in
IoU compared to AYANet which has 91.41% and 84.17% in the same metrics.
However, adding the Gabor Encoder to the deep convolutional feature extractor,
EfficientNet does increase the result, especially in IoU which implies a better
agreement between the area of prediction and the ground truth. Some examples
of the predictions shown in Fig. 7 confirm this IoU improvement. It can be seen
that AYANet enhances boundary between buildings compared to the cases when
we only use one single encoder.

Table 5. The experiments on the encoder of AYANet on the LEVIR-CD dataset.

Encoder Precision Recall F1-score IoU

Gabor 90.51% 87.38% 88.92% 80.05%

EfficientNet 92.15% 90.35% 91.24% 83.90%

AYANet 92.60% 90.25% 91.41% 84.17%

Fig. 7. The visualization of the ablation study on encoder. Visualization is done with
and without color representation to make the boundary between buildings more visible.
Color representation: TP (white), FP (light blue), TN (black), FN (red). (Color figure
online)
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4 Conclusion

We introduce AYANet, a remote sensing change detection model using double
encoder as the features extractor. The design of the double encoder includes
CNN-based encoder and the Gabor Encoder which aims to extract the texture
features of buildings. Moreover, Feature Conjunction Module is also proposed
to process the extracted features from the double encoder in order to charac-
terize the changes. Based on the comparison with SOTA models and the exper-
imental evaluation, the proposed model demonstrates a good performance on
3 different building change detection datasets that have different characteris-
tics. The ablation study confirms that adding the Gabor Encoder to the CNN-
based encoder predicts a more accurate boundary between buildings. Future
work will focus on a novel learning strategy that accommodates for domain
adaptation, and unsupervised or semi-supervised learning approaches to cater
to the problem of limited amount of data.
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Abstract. Incremental Few-Shot Semantic Segmentation (iFSS) tack-
les a task that requires a model to continually expand its segmentation
capability on novel classes using only a few annotated examples. Typi-
cal incremental approaches encounter a challenge that the objective of
the base training phase (fitting base classes with sufficient instances)
does not align with the incremental learning phase (rapidly adapting to
new classes with less forgetting). This disconnect can result in subop-
timal performance in the incremental setting. This study introduces a
meta-learning-based prototype approach that encourages the model to
learn how to adapt quickly while preserving previous knowledge. Con-
cretely, we mimic the incremental evaluation protocol during the base
training session by sampling a sequence of pseudo-incremental tasks.
Each task in the simulated sequence is trained using a meta-objective
to enable rapid adaptation without forgetting. To enhance discrimina-
tion among class prototypes, we introduce prototype space redistribution
learning, which dynamically updates class prototypes to establish opti-
mal inter-prototype boundaries within the prototype space. Extensive
experiments on iFSS datasets built upon PASCAL and COCO bench-
marks show the advanced performance of the proposed approach, offering
valuable insights for addressing iFSS challenges.

Keywords: Few-shot segmentation · Prototype learning · Incremental
learning · Meta-learning

1 Introduction

Deep learning models have made remarkable strides in semantic segmentation
tasks by training on extensive datasets with rich annotations. In an effort

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15323, pp. 147–162, 2025.
https://doi.org/10.1007/978-3-031-78347-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78347-0_10&domain=pdf
https://doi.org/10.1007/978-3-031-78347-0_10


148 W. Xu et al.

to alleviate the burden of data annotation, Few-shot Semantic Segmentation
(FSS) [12,30] has been introduced, aiming to rapidly adapt to novel classes with
minimal labeled data rapidly. However, FSS frameworks typically operate under
a fixed output space assumption, where the number of target classes is predeter-
mined. This limitation constrains the practicality and scalability of deployment
in real-world scenarios where the total number of categories is uncertain, and
new class objects may emerge over time.

In this work, we address a more challenging and practical scenario where the
model continuously encounters a stream of new image data containing instances
of previously unseen classes. The objective is to update a model to effectively
segment new classes using a few annotated samples while retaining its segmenta-
tion capability on existing seen classes. The task known as Incremental Few-Shot
Semantic Segmentation (iFSS) in the existing literature [2,33], is inspired by few-
shot class incremental learning (FSCIL) [22]. It shares two common challenges,
namely catastrophic forgetting of learned knowledge and overfitting to a lim-
ited number of novel class examples. This arises due to the absence of access
to previous session data during the incremental learning sessions. When updat-
ing parameters with imbalanced novel class data (where the number of novel
classes is considerably smaller compared to base classes), the model tends to
exhibit a strong bias towards novel classes in pursuit of rapid adaptation. Con-
sequently, there is a risk of aggressively overwriting crucial knowledge related
to old classes in an attempt to accommodate the latest instances, resulting in
a loss of generalization ability.

The challenges mentioned above stem from the task misalignment inherent
in existing iFSS methods [2,33]. These methods begin by initializing a model
that effectively predicts the base classes through classical supervised learning
during the base training session. However, in subsequent incremental sessions,
the focus shifts to pursuing fast adaptation to novel classes with less forget-
ting. To overcome this drawback, we propose a meta-learning [5,25] based app-
roach that directly learns to incrementally adapt to novel classes conditioned
on a few examples. This is achieved by simulating the incremental few-shot sce-
nario during base session training (Fig. 1). Concretely, we sample a sequence of
pseudo incremental tasks from the base class dataset. For each pseudo task, the
model performs fast adaptation with a few new class examples and updates itself.
Then the meta loss is calculated by measuring the performance of the updated
model on the test images of both the old and the new classes. The object of the
meta loss is to incentivize the model to incrementally learn new classes while
minimizing the forgetting of the old ones.

Recently, some FSCIL studies [31,35] trains a backbone network on the base
session and subsequently keep its parameters fixed during incremental sessions
to maintain a consistent feature extractor. However, in these methods, the fea-
ture extractor remains static, implying that the feature space distributed for
the base class is reused to accommodate additional classes. Our approach relies
on prototype learning, wherein a prototype for a novel class is constructed from
its features, forming a prototype classifier alongside the prototypes of the base
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classes. When generating a prototype for a new class, it may be positioned close
to the prototypes of the base classes in the feature space. This can result in
interference, where a pixel will produce high similarity scores with both new
and old prototypes, leading to catastrophic forgetting.

To optimize the prototype generation process, we propose a Prototype Space
Re-distribution Learning (PSRL) to incrementally learn novel class prototypes
and adaptively allocate base and novel prototypes into a latent prototype space,
maintaining optimal prototype boundaries. Specifically, we fix the pre-trained
feature backbone to preserve a unified feature extractor and introduce a pro-
totype projector mapping intermediate class vectors to a subspace for dynamic
prototype distribution. The redistribution process aims to enhance discrimina-
tion between new and old class prototypes, thereby improving segmentation
performance. Furthermore, it regulates the updated base prototypes placed near
their previous position to prevent prototype misalignment, effectively mitigating
knowledge forgetting. The contributions of this work are summarized as:

– We introduce a meta-learning approach that closely aligns the base learning
objective with the incremental evaluation protocol. Through training with a
series of pseudo incremental tasks, our method directly optimizes the model
to enhance the discovery of novel objects while mitigating forgetting

– We present Prototype Space Re-distribution Learning (PSRL), a method that
incrementally learns novel classes while considering inter-prototype discrimi-
nation and maintaining base prototype consistency. This approach alleviates
catastrophic forgetting of base classes and facilitates rapid adaptation to novel
classes.

– Extensive experiments on dedicated iFSS benchmark from PASCAL and
COCO datasets demonstrate the proposed method outperforms several coun-
terparts.

2 Related Work

2.1 Semantic Segmentation

Semantic segmentation has witnessed significant advancements through the
development of deep learning models. Fully Convolutional Networks (FCNs) [15]
marked a significant milestone, enabling end-to-end learning for pixel-wise clas-
sification. Building upon this foundation, numerous Convolutional Neural Net-
works (CNNs) based architectures have been designed in aspects of optimal
encoder-decoder frameworks [3], pyramid pooling [32] and multi-scale feature
fusion [11]. While CNNs progressively build context through layers, transform-
ers inherently consider the entire image at each stage, allowing them to cap-
ture long-range dependencies more effectively. This has led to the development
of transformer-based models that introduce strong feature representation [24],
hybrid CNN-Transformer architectures [29], and cross-attention decoders [4,21].
Despite their impressive performance, these models typically require a substan-
tial amount of mask-annotated data for training and are limited to predefined
categories.
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Fig. 1. Illustration of the evaluation protocol and our meta-training process. During
the online incremental learning stage, the model undergoes training solely on new
classes within each incremental session, while evaluation is conducted on all classes
encountered thus far. Our strategy aims to replicate this evaluation protocol during
the offline base class training stage. This is accomplished by randomly sampling a large
portion of base class images to constitute the pseudo base dataset, with the remaining
classes forming the pseudo novel classes. Initially, the model trains on the pseudo base
dataset and subsequently adapts to the pseudo novel classes. This approach enables
the model to learn how to swiftly identify new classes while retaining the ability to
segment previously encountered ones

2.2 Few Shot Semantic Segmentation

To reduce the expenses associated with annotating segmentation data,
researchers introduced few-shot semantic image segmentation (FSS). This app-
roach aims to accurately segment objects in an image using only a small num-
ber of labeled examples per class. Drawing inspiration from few-shot learn-
ing [20], FSS models employ a two-branch architecture where a support branch
learns class-wise prototypes from a small set of labeled images (support images),
and the query image is segmented by comparing each pixel to the support
class prototypes. Recent advancements in FSS mainly design models from the
aspects of generating versatile prototypes and learning reliable feature correspon-
dence. The prototype optimization strategy [13,30] aims at compressing abstract
class information into one or multiple prototypes that enable the model to per-
form effective feature guidance. The latter encourages the model to consider
the most related information between the query-support images during segmen-
tation by learning dense feature correspondence [16,17]. Despite the progress
made in few-shot semantic segmentation (FSS) methods, they specialize pri-
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marily in identifying a single novel class by generating a binary foreground-
background mask. In contrast, our prototype-based model addresses a more
demanding and practical scenario where the model must segment all classes
it has seen thus far.

2.3 Incremental Learning

Incremental learning (IL), also known as lifelong or continuous learning, is an
approach within machine learning that focuses on the model’s ability to learn
continuously, accommodating new knowledge while retaining previously learned
information. IL methods can be broadly classified into replay-based [26] and
regularization-based [34]. In replay-based methods, samples of previous tasks
are either stored or generated at first and then replayed when learning the new
task. Zhu et al. [34] propose to store the same number of old samples as each new
class to form a joint set during its incremental learning process. Regularization-
based methods protect old knowledge from being covered by imposing constraints
on new tasks. In iFSS, Cermelli et al. [2] introduced a prototype-based distil-
lation loss to force the current model to retain scores for old classes, thereby
preventing forgetting. Guangchen et al. [19] proposes an embedding adaptive-
update strategy to prevent catastrophic forgetting, where hyper-class embed-
dings remain fixed to preserve existing knowledge. To mitigate feature embed-
ding bias, Kai et al. [10] presents class-agnostic foreground perception across
multiple targets. Different from those methods, our method exploits the proto-
type classifier to remember knowledge and directly optimize the learning process
with meta-learning tasks.

3 Method

3.1 Problem Setting

iFSS addresses the challenge of updating a pre-trained segmentation model to
accommodate newly introduced classes over time, utilizing limited annotated
examples for each novel class. Specifically, let Dt

train/test = {It
n,Mt

n}, n ∈
{1, 2, . . . ,K}, t ∈ {1, 2, ..., T}, denote a sequence of the training and testing sets
of image It

train/test and their corresponding semantic label masks Mt
train/test.

The label classes Ct of each set are disjoint, such that Ci ∩ Cj = ∅,∀i �= j. iFSS
comprises a base session with abundant labeled training images from D0

train and
a sequence of incremental sessions with only a few training images for each novel
class from {D1

train,D2
train, ...,DT

train}. We undertake offline training in the base
session to initialize a model using base classes C0. After the base session, the
model is expected to adapt to new classes Ct(t > 0) with a few examples in
the subsequent incremental sessions. Note that at the tth session, the model has
access only to Dt

train for training and then is evaluated on test images containing
all the encountered classes so far, i.e. {D0

test ∪ D1
test... ∪ Dt

test}.
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Fig. 2. The proposed prototype-based approach utilizes masked average pooling
(MAP) to derive the novel class prototype. Subsequently, all prototypes are projected
into a latent prototype space for redistribution. The resulting prototypes form a new
classifier Pt capable of identifying both base and novel classes. This process is consid-
ered as a sequential task of the meta-learning optimization. In the online incremental
sessions, the feature extractor remains frozen, and only the prototype projector and
segmentation head are updated

3.2 Prototype Space Re-distribution Learning

Prototype-Based Semantic Segmentation. As introduced in [23], typi-
cal prototype-based few-shot semantic segmentation frameworks comprise a
feature extractor and a prototype classifier. Feature extractor transforms the
input image I ∈ R

h×w×3 into a feature embedding F ∈ R
w×h×d in a latent

space. Subsequently, a prototype classifier P ∈ RN×d is trained to perform
pixel-wise predictions for N classes on F . For iFSS, our objective is to progres-
sively expand the base prototype classifier P0 with prototypes of novel classes,
facilitating the continuous segmentation of newly encountered classes without
forgetting prior knowledge. Formally, in an N-class K-shot incremental session
(N novel classes and each novel class has K training samples), all training sam-
ples It

c,n are first processed by a feature extractor f and mask average pooling.
Subsequently, these samples are averaged over K shots to create N prototypes,
denoted as pt

c(c ∈ {1, 2, . . . , N}).

pt
c =

1
K

K∑

n=1

∑
h,w

[Mt
c,n ◦ f

(It
c,n

)]
h,w∑

h,w

[Mt
c,n

]
h,w

, (1)

where It
c,n denotes the n-th training image of class c. Mt

c,n ∈ R
h,w,1 is the class

mask for class c on feature f
(It

c,n

) ∈ R
h,w,d. After obtaining N prototypes,

the prediction of pixel i of F is assigned according to the normalized cosine
similarity score Si,c(F) between features and the class prototype pt

c as:
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Si,c(F) =
exp

(
Sim(Fi,pt

c)/τ
)

∑N
j=1 exp

(
Sim(Fi,pt

j )/τ
) , (2)

where Fi ∈ R
d are the positional features extracted from input image I, N

represents the cumulative category of prototype vectors up to session t, and τ
is a temperature parameter that controls the concentration level of the distri-
bution [27]. Sim(, ) = F�

i pt

‖Fi‖‖pt‖ is the cosine similarity metric that measures the
pixel classification score.

Training with few-shot examples in novel class sessions inevitably leads to
overfitting and has the potential to undermine the feature extraction capabilities
of the pre-train backbone network. Given that our prototype classifier encom-
passes both base and newly encountered classes, and we have no access to base
examples during incremental learning, modulating the extractor may map new
classes into a disparate feature space from that of base classes. Therefore, to
ensure consistent feature mapping, the backbone is consistently maintained in
a fixed state. However, the newly added prototypes may lie close to the base-
class prototypes because the prototype is derived from a fixed feature space
that is tailored for base classes. To discriminate novel prototypes from their
base counterparts, we introduce the prototype projector g to map the current
prototypes into a latent prototype space (Fig. 2) where base and novel pro-
totypes are adaptively distributed to achieve two objectives: i) ensuring clear
inter-prototype discrimination among base and novel prototypes for fast adap-
tation to new classes, and ii) minimizing the displacement of base prototypes
away from their original positions to prevent catastrophic forgetting and main-
tain alignment between features and prototypes. Accordingly, we propose a novel
prototype redistribution loss that places the new class prototype pt

i at a posi-
tion far from base prototypes P t−1

j and relocates base classes to a near-optimal
position as:

Lr =

∑Nb

i=1

∑Nt

j=1 Sim
(
P t−1

i , P t
j

)

∑Nb

i=1 Sim(P t−1
i , P̂ t−1

i )
, (3)

where N b, N t are the class prototype number of previous sessions [0, 1, ..., t − 1]
and current session t. P̂ t−1

i represents the redistributed prototype vector derived
from the base prototype P t−1

i . We utilize cosine distance as the metric for the
similarity matrix. The loss function Lr is designed to minimize the similarity
between new class prototypes and base prototypes, concurrently maximizing the
similarity between the original base prototypes and their respective redistribu-
tions.

3.3 Learning to Incrementally Learn

The core idea underlying our approach is meta-learning inspired by MAML [7] for
few-shot tasks. During the meta-training phase, the model is trained with a set of
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Fig. 3. The meta-learning optimization strategy samples pseudo-sequential learning
tasks on the base set to perform task training. The meta update process encourages the
model to learn in a manner that preserves performance on old classes while effectively
adapting to novel classes.

novel class adaptation tasks that are formulated as few-shot learning problems,
aiming to simulate the scenario encountered during meta-testing. In iFSS, the
online incremental stage closely resembles the “meta-testing” stage. This stage
entails adapting the model to a sequence of incremental sessions, where each
session introduces several novel classes with few-shot examples. Inspired by this,
the model is meta-trained on base classes with the goal of mimicking the incre-
mental learning scenario anticipated during the subsequent online incremental
learning (i.e., evaluation). This ensures that the model is learned in a manner
enabling effective adaptation to new classes with less forgetting.

Sequential Task Sampling. We replicate the evaluation process by utiliz-
ing the base classes. More precisely, we segregate the training images of base
classes into distinct training and testing sets with no overlap. In each epoch, we
initiate the training process by sampling a sequence of T tasks, Ds

train/test =
{(

Ij
train/test,Mj

train/test

)}T

j=0
, where T is the actual incremental session num-

ber, and each session include training and testing image-mask pairs. We define
D0 as the pseudo base set, comprising more classes and training examples than
subsequent tasks (e.g., j > 0) in the few-shot setting. To mitigate the risk of
the model overfitting to a particular sequence, we introduce random sampling
of classes and their corresponding images



Task Consistent iFSS 155

Algorithm 1. Meta training process
Require: θg, θseg: pre-trained weights
Require: D0: training set of base classes
1: while not converged do

2: Ds
train/test =

{(
Ij

train/test, Mj
train/test

)}T

j=0

3: Initialize the models with D0.
4: Dmeta = ∅
5: for j = 1, 2, ..., T do
6: P = Concat(Pold, Pnew)
7: θ̂g,seg

j = θg,seg − α∇θg,segLCE

(Ij
train, Mj

train; θ
)

8: Dmeta = Dmeta ∪ Dj
test

9: θg,seg = θg,seg − β∇θg,seg
∑

(I,M)∈Dmeta
Lmeta

(
I, M; θ̂g,seg

j

)

10: end for
11: end while

Meta-training. During the meta-training phase, for every sampled sequence
Ds

train/test, we introduce a prototype redistribution-oriented optimization app-
roach grounded in Meta-Learning. We denote θ = {θf , θg, θseg} as the parameter
for the whole network, where θf , θg, θseg denote the parameters for backbone,
prototype projection layer and segmentation head, respectively. We first conduct
supervised training of θ on the base classes using cross-entropy loss (LCE). The
meta-training procedure is illustrated in Algorithm 1 and Fig. 3. At the begin-
ning of training on each sequence, we define an empty cumulative meta test set
Dmeta to store the test images from previous tasks. At the jth task, we first
generate the new class prototypes Pnew and then concatenate it into the current
prototype classifier Pold. Subsequently, we start to perform fast adaptation to
new classes and update θg and θseg via a few L gradient steps:

θ̂g,seg
j = θg,seg − α∇θg,segLCE

(
Ij

train,Mj
train; θ

)
, (4)

where Ij
train,Mj

train are the images and labels for training jth pseudo task.
The loss LCE(, :) is computed on the output of the current model and the target
label Mj

train.
The adaptation process mimics the model’s learning pattern for new classes

during incremental sessions. Ideally, we aim for the adapted parameters to per-
form well in both the classes from the previous and current tasks. The meta-
test set accumulated from previous tasks is used for evaluating how well the
updated model resists catastrophic forgetting on old classes and adaptation on
new classes. We append Dj

test to Dmeta , and accordingly, the meta-objective is
defined as:

θg,seg = θg,seg − β∇θg,seg

∑

(I,M)∈Dmeta

Lmeta

(
I,M; θ̂g,seg

j

)
. (5)
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Note that Lmeta is a function designed to optimize θg,seg with the objective of
achieving optimal performance through the redistribution of class prototypes as:

Lmeta = LCE(Itest,Mtest) + λLr. (6)

When all N tasks are done, Dmeta is reset to empty and we repeat the learning
process from the random initialization and adaptation process.

In the online incremental learning stage, we execute Lines 5–7 of Algorithm 1
to acquire knowledge about novel classes during evaluation. The steps outlined
in Algorithm 1 align with the evaluation protocol: after being trained on the
current session, the model undergoes evaluation on all encountered classes so
far. This meta-objective encourages our model to quickly adapt to novel classes
without sacrificing remembering old ones.

4 Experiments

4.1 Dataset

We evaluate the proposed method on two widely used semantic segmentation
datasets: PASCAL VOC 2012 [6] and COCO [14]. Following established prac-
tices [2], we evenly partition the classes in PASCAL VOC and COCO into four
folds, with each fold containing 5 and 20 categories, respectively. In the valida-
tion stage, three folds are used to form the base set, while the categories from the
remaining fold are utilized for testing.

4.2 Implementation Details and Evaluation Metrics

In all experiments, we employ ResNet-101 [9] pre-trained on ImageNet as the
feature extractor. Our configuration involves ASPP [3] with a 1× 1 convolutional
layer as the segmentation head. We evaluate the performance of a method uti-
lizing three mean intersection-over-union (mIoU) metrics: mIoU on base classes
(mIoU-B), mIoU on new classes (mIoU-N), and the harmonic mean of the two
(HM). Consistent with [2], all reported results are presented upon the completion
of training in the final incremental session. Particularly, the single step means
while multi-step has multiple sessions: 5 sessions of 1 class on VOC and 4 sessions
of 5 classes on COCO.

4.3 Main Results

The outcomes of our method on the PASCAL VOC 2012 and COCO datasets
are consolidated in Table 1 and Table 2, respectively. We consider three base-
lines: Finetune, directly fine-tune the base model with new classes on each
session; naive prototype classifier WI [18] and its dynamic version DWI [8];
knowledge-distillation-based method MiB [1]; FSS method HDMNet [17] and iFSS
approach SRAA [33]. Our approach demonstrates superior performance in novel
class adaptation across most settings for both PASCAL and COCO datasets.
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Table 1. The experimental results on the PASCAL VOC 2012 dataset.

Method Single step Multi-step

1-shot 5-shot 1-shot 5-shot

mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM

Finetune 58.3 9.7 16.7 55.8 29.6 38.7 47.2 3.9 7.2 58.7 7.7 13.6

WI [18] 62.7 15.5 24.9 64.9 21.7 32.5 66.6 16.1 25.9 66.6 21.9 33.0

DWI [8] 64.3 15.4 24.8 64.9 23.5 34.5 67.2 16.3 26.2 67.6 25.4 36.9

MiB [1] 61.0 5.2 9.7 65.0 28.1 39.3 43.9 2.6 4.9 60.9 5.8 10.5

SPN [28] 59.8 16.3 25.6 58.4 33.4 42.5 49.8 8.1 13.9 61.6 16.3 25.8

PIFS [2] 60.9 18.6 28.5 60.5 33.4 43.0 64.1 16.9 26.7 64.5 27.5 38.6

HDMNet [17] 57.7 16.4 25.5 58.1 34.9 43.6 52.2 15.6 19.0 55.0 14.7 23.2

SRAA [33] 65.2 19.1 29.5 63.8 36.7 46.6 66.4 18.8 29.3 64.3 28.7 39.7

Ours 63.4 19.7 30.1 61.6 35.8 45.3 65.5 20.4 31.1 65.9 29.1 40.4

Table 2. The experimental results on the COCO dataset.

Method Single step Multi-step

1-shot 5-shot 1-shot 5-shot

mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM

Finetune 41.2 4.1 7.5 41.6 12.3 19.0 38.5 4.8 8.5 39.5 11.5 17.8

WI [18] 43.8 6.9 11.9 43.6 8.7 14.5 46.3 8.3 14.1 46.3 10.3 16.9

DWI [8] 44.5 7.5 12.8 44.9 12.1 19.1 46.2 9.2 15.3 46.6 14.5 22.1

MiB [1] 43.8 3.5 6.5 44.7 11.9 18.8 40.4 3.1 5.8 43.8 11.5 18.2

SPN [28] 43.5 6.7 11.7 43.7 15.6 22.9 40.3 8.7 14.3 41.4 18.2 25.3

PIFS [2] 40.8 8.2 9.8 41.4 9.6 15.6 39.7 5.9 10.3 40.3 16.3 23.2

HDMNet [17] 39.5 5.6 9.8 40.1 13.6 20.3 39.7 6.5 11.2 41.4 12.6 19.3

SRAA [33] 41.2 9.3 15.2 46.2 17.1 24.4 40.7 11.3 17.7 41.0 19.7 26.6

Ours 43.8 10.4 16.7 44.4 20.8 28.3 43.1 12.3 19.1 43.5 22.2 29.4

Additionally, it achieves state-of-the-art performance in terms of Harmonic Mean
(HM) scores across all settings except for 5-shot single step, indicating that our
approach effectively balances the retention of information about old classes while
facilitating adaptation to new ones. Particularly noteworthy is our method’s per-
formance on the PASCAL dataset, where it achieves significantly higher novel class
segmentation mIoU scores compared to all other methods, reaching 35.8% and
29.1% in single-step and multi-step settings, respectively. This surpasses the state-
of-the-art method (SRAA) by 0.6% and 1.8% under 1-shot setting, respectively.
Our meta-learning-based approach exhibits superior fast adaptation capability to
novel classes without compromising base class segmentation accuracy, achieving
competitive base class segmentation performance on both PASCAL and COCO
datasets. In the single-step setting, all the new classes are introduced in a single
session. When more samples are provided for a particular class, the model demon-
strates improved adaptation to the novel class, as evidenced by the mIoU-N score,
albeit with a potential decrease in performance for the base classes. This effect is
mitigated in the multi-step setting, where our meta-learning approach effectively
learns to resist forgetting through training across multiple sessions

On the COCO dataset, our approach showcases significantly greater improve-
ments in HM scores compared to the state-of-the-art method SRAA [33]. For
instance, in the task of 5-shot segmentation, our method’s HM scores surpass
those of SRAA by 3.9% and 2.8%, whereas the margins are only −1.3% and 0.7%
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on the PASCAL dataset. This highlights the effectiveness of our approach in
tackling the more intricate challenges associated with a larger number of classes,
which is particularly beneficial in real-world applications.

Fig. 4. Visualization of multi-step results under shot setting on the PASCAL dataset.

In Fig. 4, we showcase visualized segmentation results obtained from train-
ing under the multi-step incremental setup, using one training example for each
novel class. In comparison to vanilla weight-printing (WI), which simply appends
new class prototypes to the prototype classifier, our approach notably distin-
guishes novel classes like “bus” from the base class “person” and “sheep” from the
background. Additionally, as observed in the third row, WI exhibits overfitting
to the “sofa” and completely forgets the knowledge of the “chair”. Our method,
employing task-consistent meta-learning with prototype distribution loss, pre-
serves the ability to segment learned classes while accurately adapting to new
classes.

4.4 Ablation Study

Componet Effectiveness. As illustrated in the second row of Table 3, intro-
ducing the meta-learning strategy, which trains the model in a manner aligned
with the expected evaluation in the incremental sessions, significantly enhances
novel class adaptation and mitigates catastrophic forgetting. The application of
Linter upon meta-learning results in a 0.9% increase in novel class accuracy but
induces a 1.3% performance reduction in the base class. It suggests that merely
focusing on minimizing the similarity between the new class and the old class
prototypes while neglecting the drift of the base class can lead to prototype
inconsistency before and after adaptation, resulting in knowledge forgetting.

Backbone and Prototype Redistribution. To investigate the performance
difference between frozen and updated backbones, we conduct comparison exper-



Task Consistent iFSS 159

Table 3. Ablation study of the meta-learning scheme and prototype redistribution loss

on COCO, under the multi-step one-shot setting. Linter =
∑Nb

i=1

∑Nt

j=1 Sim(P t−1
i , P t

j )
merely aims to minimize similarity between novel and base classes

Baseline Meta-learning Linter Lr Base Novel HM

� 44.8 7.8 13.3

� � 42.5 10.6 17.0

� � � 41.2 11.5 18.0

� � � 43.1 12.3 19.1

Table 4. Ablations on backbones and prototype redistribution. “fix” denotes that
the backbone remains fixed during incremental steps, while “update” means that the
backbone continues to update. “PR” indicates the addition of the prototype projection
layer and the adoptation of the prototype redistribution loss Lr.

Methods Novel Base HM

Backbone (fix) 7.2 44.1 12.4

Backbone (update) 7.8 36.0 12.8

Backbone (fix) + PR 10.6 40.4 16.8

Backbone (update) + PR 10.2 36.5 15.9

iments using two baseline models. In these experiments, the pre-trained back-
bone is either kept fixed or updated during the incremental steps. The model
with the fixed backbone is denoted as Backbone (fix), while the model with the
updated backbone is referred to as Backbone (update). As shown in Table 4,
Backbone (update) outperforms Backbone (fix) in terms of HM score, primar-
ily due to its superior performance on novel classes. However, there is a sig-
nificant drop in mIoU for base classes, indicating that updating the backbone
without any constrain may lead to overfitting on new classes and result in catas-
trophic forgetting.

Then, we augment the model by appending a prototype projection layer after
the backbone and applying prototype redistribution supervision to obtain the
classifier. From the results of the last two rows of Table 4, the fixed version out-
performs the updated counterpart by a significant margin in both novel and base
class segmentation. This superiority is attributed to the fixed backbone’s ability
to retain information about the base classes, while “PR” ensures that the proto-
types in the subspace remain well-separated. These factors mitigate catastrophic
forgetting and facilitate rapid adaptation.

Coefficient Selection. As shown in Fig. 5, we investigate the impact of the
coefficient λ in Eq. 6 on the model’s performance, testing lambda values from
0.1 to 0.6. The objective is to identify the optimal λ that balances regularization
with the model’s ability to effectively learn new classes.
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Fig. 5. Ablation study on coefficient λ. HM performance in the Single step experiment
under 1-shot setting.

Our findings indicate that a λ value of 0.3 achieves the best performance,
as evidenced by the peak in the performance of HM under 1-shot setting. This
optimal performance at lambda = 0.3 suggests an effective balance between for-
getting and adaptability. Lower lambda values, closer to 0.1, may result in insuf-
ficient regularization, causing overfitting and poor generalization. Conversely,
higher lambda values, approaching 0.6, could overly constrain the model, limit-
ing its ability to adapt to novel classes and thereby degrading performance.

5 Conclusion

This work addresses a practical scenario of semantic segmentation that incremen-
tally learns novel classes with a few examples. We propose a meta-learning-based
approach, directly optimizing the network to acquire the ability to incrementally
learn within the few-shot incremental setting. To alleviate catastrophic forget-
ting and overfitting problems, we introduce a prototype space re-distribution
mechanism to dynamically update class prototypes during each incremental ses-
sion. Extensive experiments on PASCAL and COCO benchmarks demonstrate
that the proposed method facilitates a model learning paradigm for quick classes
learning without forgetting.
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Abstract. Clinical time series are ubiquitous in healthcare for accurate
disease risk prediction. The recent Transformer models have demon-
strated superior performance in time series learning. However, these
methods focus on global temporal dependency and widely utilize channel-
mix or channel-independent tokenization. They ignore local dependency
in clinical time series and are limited to capturing the intrinsic clin-
ical variable correlations. To address the above issues, we present an
Multi-scale Value-Density Transformer with Medical Semantic Guid-
ance (MVMformer), which takes irregularity-aware segment-wise mod-
eling for clinical time series and correlate diverse clinical variates based
on their medical semantic affinity. Specifically, MVMformer introduces a
Multi-scale Value-Density Attention to capture intra-segment character-
istics in both value trends and temporal density while accommodating
multi-length segments. Furthermore, MVMformer constructs a Hierar-
chical Medical Semantic Graph to analyze complicated variable relation-
ships starting from detailed measurements to associated organs. Experi-
mental results on three medical datasets demonstrate the superiority of
MVMformer over existing state-of-the-art methods.

Keywords: Clinical Time Series · Segment · Kernelized · Intensity ·
Medical Semantic

1 Introduction

The widespread application of Electronic Health Records (EHRs) accumulated
a large amount of clinical time series data, which consists of patients’ examined
clinical variates at multiple visits to hospitals [16,26,30]. Early disease predic-
tion based on clinical time series data is crucial for patients [15,31,35], which sup-
ports clinicians with timely intervention. However, modeling clinical time series
presents its unique challenges in two aspects: (1) Temporal Dependency : The
temporal dependency in clinical time series involves the adaptive combination
of both global dependency and local dependency. In particular, local dependency
exhibits distinct characteristics (e.g., different patient states within specific time
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periods), which are significant aspects in clinical time series analysis. (2) Clini-
cal Variable Correlations: The correlations between pairs of clinical variables can
be complicated and vary in magnitude. For instance, there are strong correlations
between urea and creatinine to indicate kidney dysfunction, compared to other
variables.

The recent Transformer-based methods have demonstrated strong perfor-
mance in clinical time series learning [3,13,28,29,32]. While these methods have
addressed global dependency through effective self-attention design [12,18], they
tend to overlook the informative local dependency in clinical time series data.
Furthermore, in terms of clinical variable correlations, existing approaches often
employ channel-mixing or channel-independent tokenization [6,19], assuming full
correlation among clinical variables and leading to high learning complexity.

To tackle the above issues, our motivations are in two-fold: (1) Irregularity-
aware segment-wise modeling : These segments contain valuable clues that reflect
the patient states within specific time periods. However, modeling the segment
in clinical time series can be challenging due to irregularity. As illustrated in
Fig. 1, there are varying dominant segment lengths and significant intra-segment
characteristics in both the value and time distributions. (2) Connecting clini-
cal variables based on medical semantic affinity : Clinical variables contain spe-
cific medical meanings, which provide valuable semantic information. According
to their medical meanings, we can establish correlations between clinical vari-
ables from various aspects. For instance, as illustrated in Fig. 1, it is commonly
observed that clinical variables are sparsely associated with particular organs
based on their medical meanings [17,21,23].

Based on the above analysis, a Multi-scale Value-Density Transformer with
Medical Semantic Guidance (MVMformer) is proposed to perform disease
prediction using clinical time series modeling. MVMformer takes irregularity-
aware segment-wise modeling while connecting diverse clinical variables based
on their medical semantics: To capture the intra-segment characteristics and
achieve multi-scale modeling, we introduce the Multi-Scale Value-Density Atten-
tion (MS-VDAttn). MS-VDAttn accommodates multi-length segments in a sin-
gle module and captures both value trend and temporal density within seg-
ment. To connect diverse clinical variables, a Hierarchical Medical Semantic
Graph (HMS Graph) is proposed to explore the group similarity of clinical vari-
ables through their associated organs. The HMS Graph enables a comprehensive
patient analysis starting from detailed measurements and extending to associ-
ated organs. Our extensive experiments on three real-world medical datasets
demonstrate the effectiveness of MVMformer against state-of-the-art models.
The main contributions are summarized as follows:

– We introduce a Multi-scale Value-Density Transformer with Medical
Semantic Guidance (MVMformer) for disease prediction based on clinical
time series. Our method focuses on capturing local dependency through
irregularity-aware segment-wise modeling and complicated clinical variables
based on their medical semantics.
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– A Multi-Scale Value-Density Attention (MS-VDAttn) is proposed to handle
multi-length segments and capture intra-segment characteristics in both value
trend and temporal density.

– A Hierarchical Medical Semantic Graph (HMS Graph) is proposed to estab-
lish connections between clinical variables from related measurements to asso-
ciated organs.

– Experimental results on three real-world clinical time series datasets show
that our method significantly outperforms all baseline methods.

Fig. 1. Clinical time series exhibit significant local dependency in both value trend and
temporal density, attributed to distinct patient states in specific time periods. Further-
more, different clinical variables are sparsely connected through associated organs,
aiding doctors in making comprehensive prediction.

2 Related Work

2.1 Modeling Irregular Clinical Time Series

To learn the sparse and irregular clinical time series, a variety of methods have
been developed [7]. Most of these methods are built on recurrent neural networks
(RNNs) and typically require complete input data, necessitating modifications to
handle missing values. Therefore, various imputation techniques have been pro-
posed to transform sparse irregular data into dense and regular sequences [8,10].
Another research avenue employs differential equations to represent underlying
continuous processes associated with irregularly sampled data [2,11,20]. How-
ever, these methods are limited in computation efficiency since they require the
numerous iterations for differential equation solving. Furthermore, Raindrop [33]
approaches the problem by transforming irregular time series into sensor graphs.
And graph neural networks are utilized to capture the correlation among differ-
ent variables. Recently, Transformers have shown the promising effectiveness in
capturing long-range dependencies for sequential data, making them an attrac-
tive option for time series modeling.
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2.2 Transformer for Clinical Time Series

While Transformer-based methods [4,18,22] have shown effectiveness with regu-
lar temporal data, adapting them for irregular clinical time series presents chal-
lenges. Recent methods tailored for clinical time series emphasize custom self-
attention mechanisms to capture temporal dependencies and efficient tokeniza-
tion to understand inter-variable relationships. In clinical time series analysis, it
is essential to capture both time and variable dependencies. To tackle the above
challenges, [28] takes a different approach by embedding tokens from sequences
of (time, variate, value) triplets, achieving global representation through a Trans-
former. Hi-BEHRT handles the longer sequences of individual observations based
on loys a hierarchical Transformer architecture. mTAN [24] proposes an advanced
attention-based interpolation method to convert irregular time series into reg-
ular continuous-time embeddings. UTDE [34] combines the mTAN embeddings
with traditional imputation technique based on the learnable gates, which lever-
ages their strengths in addressing intricate temporal dependency. ContiFormer
[3] extends continuous dynamics in ODE to the self-attention mechanism, which
adapts the Transformer to the continuous-time domain. Warpformer utilizes the
time warping technique to adaptively unify irregular time series into the given
scale. Meanwhile, a doubly self-attention module in Warpformer is proposed
for representation learning across both time and variable dimensions. Finally,
ViTST [13] adapts powerful vision Transformers by converting irregular time
series into line graph images.

Though the above methods have been effective at capturing temporal depen-
dency, all of them focus on global dependency, which may inevitably lose fine-
grained temporal variations. In addition, the widely utilized channel-mix or
channel-independent (accompanied by feature attention) embeddings are limited
in high learning complexity in terms of the intrinsic clinical variable correlation.

3 Preliminaries

Let D = {(Xi,Ti, yi)}N
i=1 denote a dataset with N patients. Each patient

contains a clinical time series (Xi,Ti) and a binary prediction label yi (e.g.
discharge or death for modality prediction). The (Xi,Ti) represents a series
of records Xi = [xi.1,xi.2, ...,xi.|Ti|] and corresponding timestamps Ti =
[ti.1, ti.2, ..., ti.|Ti|] at all visits. Each xi.j includes the values of certain vari-
ates in all K clinical variates (lab parameters, physiological signals) at the
j-th visit since only partial variates are examined at each visit. For the k-
th clinical variate, its series and corresponding timestamp list are denoted as
xk

i = [xk
i.1, x

k
i.2, ..., x

k
i.|tk|] and tk

i = [tki.1, t
k
i.2, ..., t

k
i.|tk|]. In the following part, we

drop the patient index i for simplicity.
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4 Proposed Method

The architecture of the proposed Multi-Scale Value-Density Transformer with
Medical Semantic Guidance (MVMformer) is shown in Fig. 2. In a nutshell,
MVMformer learns clinical time series from segment view based on a stack of
Multi-Scale Value-Density Attention (MS-VDAttn) modules while connecting
diverse clinical variables based on a Hierarchical Medical Semantic Graph (HMS
Graph). Specifically, the MS-VDAttn is introduced to capture both value trend
and temporal density for multi-length segments, which considers the irregularity
in clinical data. In the top layer, MVMformer establishes hierarchical connec-
tions between clinical variables based on their associations with organs through
the HMS Graph. In addition, the proposed MVMformer can directly deal with
clinical time series without imputation, which avoids unreliable values.

4.1 Time Series Segmentation

Given a fixed length L, we divide the clinical time series into several segments,
with each observed time stamp tkj ∈ tk serving as the center of a segment. This
segmentation process is applied individually to each k-th clinical variable. In
addition, the circular padding is applied for the border of each series. Each
segment Sk

j centered at c = tkj can be defined as follows:

Sk
j =

{
(t, x) |c = tkj , c − L

2
� t � c +

L

2
, t ∈ tk

}
(1)

where tk, xk are the observed time points and values in [tkj − L
2 , tkj + L

2 ]. We drop
the variable index k and timestamp index j for brevity the following section.

4.2 Multi-scale Value-Density Attention

Effective segment modeling in clinical time series needs to capture dependency
in both value and time dimension, while accommodating varied segment lengths.
In this section, we introduce the proposed Multi-scale Value-Density Attention
(MS-VDAttn) module to address these requirements. MS-VDAttn is built upon
the kernelized attention [14], which integrates the kernel – a powerful tool for
capturing local dependency - into attention mechanism. Unlike kernelized atten-
tion focuses on reducing computational complexity, our MS-VDAttn aims to
improve the segment representation learning. Specifically, we first enhance ker-
nelized attention in multi-scale modeling, which handles multi-length segments
in a single module. Furthermore, we design a value and density units within the
MS-VDAttn module, which are tailored to capture both the value trend and
temporal density within segments.
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Fig. 2. (a) The overview of the proposed MVMformer model. which consists of: (b)
Multi-Scale Value-Density Attention (MS-VDAttn) to model multi-length segments in
both value trend and temporal density. (c) Hierachical Medical Semantic Graph (HMS
Graph) to connect the groups of clinical variables with associated organs.

Multi-scale Kernelized Attention. It enhances the kernelized attention in
multi-scale modeling, which handles multi-length segments simultaneously. The
kernelized attention can be viewed as the kernel approximation in the attention.
We focus on the widely utilized γ-scaled Gaussian kernel κγ (t, t′), Its kernelized
attention can be formulated as:

κγ (t, t′) ≈ αγ (t, t′) = exp (WQpt · WKpt′) (2)

pt =
1√
D

[cos (w1t + bi) , cos (w2t + bi) , ..., cos (wDt + bD)] (3)

where wi ∼ N (
0, γ−2

)
, bi ∼ U (0, 2π). pt is time embedding Φγ (.) derived from

a set of Fourier features, which plays a crucial role in determining the kernel
structure and kernel scale γ.

To control the scale of αγ(t, t′) while making it adapt to specific data char-
acteristics, we enhance the pt to a Gaussian Time Embedding (GTE) Φγ,θ(t):

pγ,θ (t) =
1√
D

[cosWpθ
t|| sinWpθ

t] ,Wpθ
∼ N (

0, γ−2
)

(4)

Φγ,θ (t) = GeLU (Wθpγ,θ (t) + bθ) (5)
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where the Wp is adaptively initialized from a normal distribution to ensure
approximation with a given scale γ. Moreover, we make Wp, Wθ, bθ learnable
to adapt to specific data characteristics.

Based on the Φγ,θ (t), we enhance the multi-scale modeling ability of kernel-
ized attention by incorporating diverse scales to handle various segment lengths
across various heads. Different scale factors γ = [γ1, γ2, ..., γh] are leveraged in
h heads. Meanwhile, we coduct segmentations h times using different lengths
L = [L1, L2, ..., Lh] in the MS-VDAttn. The multi-scale kernelized attention han-
dles varied-length segments (centered at the same point) across different heads,
This facilitates the identification of dominant segments with dynamic lengths.

Value Unit. it captures the value dependency between the center point and
other time points within segment via the αγ (.), as inspired by the continuous
kernel convolution. For each segment Sk

j , the kernelized attention scores are
computed by taking its center point c as query and all observed time stamps
tS ∈ S as keys:

Atemp =
αγ (c, tS)∑
t∈tS

αγ (c, t)
∈ R

|tS| (6)

Then all observed values xS ∈ S act as the keys. The value embedding vector
htemp
S is obtained by aggregating all observation information within segment:

htemp
S = Atemp (WV xS) ∈ R

d (7)

The value unit deals with the observed time points, with αtemp normalized
to 1 regardless of the number of time points. Therefore, it is necessary to design
a to reflect the discrepant intensity among segments.

Density Unit. It extends the kernel density visualization [1] to encode the
temporal density by learning the temporal distribution of kernelized attention
scores.

To obtain the continuous distribution of kernelized attention scores over
time, we first discretized a set of regular reference time stamps r = [r1, r2...rM ]
within each segment. Then we compute the kernelized attention matrix Aspa

between the observed time embeddings Ψ(tS) and reference time embeddings
Ψ(r).

Aint =
αγ (tS, r)∑

r∈r αγ (tS, r)
∈ R

|tS|×|r| (8)

where Aspa indicates the density between observed points and reference points.
We aggregate the Aspa along each reference point:

aint = pool (Aint) ∈ R
|r| (9)

where the density attention vector aint contains the diverse density magnitude
across reference points. The aint is encoded into a hidden vector, which represents
the learned temporal density pattern within each segment:

Hint = AintWp (10)
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where the Hint ∈ R
|tS|×d,Wp ∈ R

|r|×d. Then we aggregate Hint to obtain the
intensity embedding for each segment:

hint
S = MLP (aint) ∈ R

d (11)

We concatenate the representations from the value unit and intensity unit as
the final output at each segment S:

hS =
[
htemp
S ,hint

S

]
(12)

4.3 Hierachical Medical Semantic Graph

In this section, we establish connections between various clinical variables by
identifying their correlations through a hierarchical medical semantic graph
(HMS Graph). The HMS Graph mimics the hierarchical diagnosis process that
starts with specific examinations, then moves toward corresponding organ func-
tions, and finally reaches a final diagnosis. As illustrated in Fig. 2(c), we construct
a two-level medical semantic graph:

Measurement-Level Graph Construction. We categorize all clinical vari-
ables into distinct groups based on public medical knowledge [17], with
each group associated with a particular organ system. Subsequently, we trans-
form this variates group structure into a correlation graph.

Go (Vo, Eo) is a undirected graph, where nodes V denote variates groups asso-
ciated with organ type o ∈ O and edges E describe dependencies between vari-
ates. Each node vector vkinVo is encoded that summarizes all segment embed-
dings along each variable dimension:

vk = pool
([

hSk
1
, ...,hSk

|tk|

])
, 1 � k � K (13)

The edge weights are randomly initialized as fully-connected graphs and lean-
able with prediction loss. Besides, we build a virtual node vo to aggregate vari-
able group information, which represents the organ state.

Organ-Level Graph Construction. At the top level, we construct the organ-
level graph G (V, E) to provide a holistic view of the status of different organs:
Each graph node vo ∈ V denotes the organ states inferred from the variate
group. Edge eo.∗ ∈ E denotes the interactions between organs.

Hierachical Graph-based Interaction. We learn the HMS Graph based on
two layers of GCNs networks, with information passing from measurement-level
and organ-level graphs. In the first GCN layer, feature interactions occur between
variate nodes within the same group, capturing intra-group variable correlations:

[
v1, ...,v|Vo|,vo

]
= GCN1 (Go (Vo, Eo)) , o ∈ O (14)
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After GCN1(.), the virtual (organ) node combines information from all
corresponding clinical variables. In the second layer of GCN, all the virtual
nodes exchange information with each other to analyze organ states and their
interactions. [

v∗
1, ...,v

∗
o , ...,v∗

|O|
]

= GCN2 (G (V, E)) (15)

Finally, the compact and personalized prediction is obtained by aggregating
information from the representations:

y = Pred
(
pool

([
v∗
1, ...,v

∗
o , ...,v∗

|O|
]))

(16)

5 Experiments

We evaluate our method in the disease prediction task using three real-world
medical datasets.

5.1 Experimental Setup

Datasets. We utilize three real-world medical datasets. The statistical summary
of these datasets is shown in the Table 1.

Physionet 2012 (P12)1 comprises 11,988 clinical time series of patients,
including 35 physiological and laboratory parameters, alongside a binary label
denoting patient survival during hospitalization.

Physionet 2019 (P19)2 consists of 37,320 clinical time series of patients,
including 34 physiological and laboratory parameters, along with a binary label
indicating the presence of sepsis.

MIMIC-III (MIMIC)3 includes over 58,000 hospital admissions from Beth
Israel Deaconess Medical Center, covering the years 2001 to 2012. We focus
on the first 48 h of records, which encompass 28 physiological and laboratory
parameters [5]. Our experiments involve conducting a mortality prediction task.

Table 1. Statistics of P12, P19 and MIMIC datasets.

Patients Average visits (per patient) Clinical variates Missing rate Positive rate

P12 11,988 45.6 35 80.4% 10.1%

P19 37,320 44.54 34 79.8% 2.2%

MIMIC 28,951 42.3 28 82.9% 11.8%

Baselines. We compare our method with several types of baselines tailored to
clinical time series prediction as follows:

1 https://physionet.org/content/challenge-2012/1.0.0/.
2 https://physionet.org/content/challenge-2019/1.0.0/.
3 https://physionet.org/content/mimiciii/1.4/.

https://physionet.org/content/challenge-2012/1.0.0/
https://physionet.org/content/challenge-2019/1.0.0/
https://physionet.org/content/mimiciii/1.4/
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– RNN
• DATA-GRU [27] introduces irregularity-sensitive updating mechanisms

into recurrent neural network
– GNN

– Raindrop [33] transforms the clinical time series into a set of variable
tuples and models their correlations by graph neural networks.

– Transformer
• ViTST [13] converts irregular time series into line images and utilizes

advanced vision transformers to capture representations of the time series.
• DuETT [9] transforms sparse time series into a regular sequence and

incorporates both temporal and feature attentions to facilitate robust
representation extraction.

• Warpformer [32] combines self-attention module with a warping module
to dynamically unify irregular time series within a specified scale.

Implementation. We randomly split each dataset into three subsets: a train-
ing set, a validation set, and a testing set, adhering to an 8:1:1 ratio. All exper-
iments were performed on a server with an Intel Core 2.80 GHz processor and
an Nvidia Tesla V100 GPU, employing 5-fold cross-validation. The batch size
was set to 16, and the proposed MVMformer was trained for 100 epochs using
the Adam optimizer with a learning rate of 0.0005. We configured the number
of segment layers to 3, with the h = 8, dt = 64, and dx = 32 in VI-KerAttn
for each layer. The bandwidth parameter γh was set to 1

Lh
, scaling with the input

segment length. To enhance multi-scale modeling capabilities, we utilized pro-
gressive segment lengths ((5, 9, 13, 17), (13, 17, 21, 25), (21, 25, 29, 33)) across the
three layers, with each segment length processed by 2 heads. This hyperparam-
eter setup exhibited strong generalization performance across all three datasets.
The evaluation metrics include the Area Under the ROC Curve (AUROC) and
the Area Under the Precision-Recall Curve (AUPRC).

Table 2. Performance comparison for prediction accuracy in three real-world medical
datasets

Type Methods P12 P19 MIMIC

AUROC AUPRC AUROC AUPRC AUROC AUPRC

RNN DATA-GRU [25] 84.2±0.5 45.2±0.4 81.9±0.5 36.9±0.6 85.1±0.7 49.4±0.5

GNN Raindrop [33] 81.9±0.8 43.1±0.9 83.2±0.7 38.3±0.8 83.6±0.5 47.7±0.6

Transformer ViTST [13] 84.9±0.6 46.8±0.5 82.7±0.5 37.2±0.6 85.9±0.6 50.5±0.7

DuETT [9] 85.4±0.7 47.5±0.7 84.1 ± 0.6 40.3±0.5 87.1±0.5 52.1±0.6

Warpformer [32] 86.1 ± 0.6 48.2 ± 0.5 82.7±0.8 41.5 ± 0.7 87.8 ± 0.4 53.8 ± 0.4

MVMformer 87.5±0.5 50.4±0.4 85.9±0.5 43.9±0.6 89.5±0.5 56.8±0.5

5.2 Prediction Accuracy

Table 2 shows the experimental outcomes of MVMformer alongside all base-
line methods regarding AUROC and AUPRC across three real-world datasets.
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Among the baselines, Warpformer and DuETT perform the best accuracy, high-
lighting the effectiveness of Transformer architecture for time series learning.
Despite DuETT utilizing variate-independent tokenization and attention mech-
anisms across both time and variate dimensions, it does not surpass Warp-
former. This is primarily due to the extensive hypothesis space and increased
learning complexity when capturing all pair-wise variate correlations through
self-attention. In contrast, MVMformer consistently outperforms both Warp-
former and DuETT across all datasets, with manageable variance. This advan-
tage stems from MVMformer’s ability to integrate informative local dynam-
ics, which are often overlooked by other Transformer-based methods. Addition-
ally, MVMformer constructs a medical semantic graph by leveraging medical
knowledge, which simplifies the learning of variate correlations into several sub-
problems focused on specific variate groups. This approach reduces the hypothe-
sis space and lowers learning complexity, resulting in enhanced performance. This
is particularly evident in datasets with fewer samples and a higher number of
variates (e.g., P12), where the high sample complexity required for capturing
complete feature correlations is not met. MVMformer effectively addresses this
issue, achieving superior results. By comparing results between the P12 and
MIMIC, we can find: in the P12, which has fewer samples and a higher miss-
ing rate, the performance improvements are 4.23% for AUPRC and 1.5% for
AUROC compared to the best baselines. These gains significantly surpass those
seen in the MIMIC dataset, which shows improvements of 2.67% for AUPRC
and 1.25% for AUROC.

Table 3. Ablation study for the proposed MS-VDKerAttn

ID Ablations P12 P19 MIMIC

KerAttn Multi-Scale Value Density AUROC AUPRC AUROC AUPRC AUROC AUPRC

1© 83.1±0.8 46.8±0.5 82.1±0.5 40.2±0.7 85.7±0.6 51.5±0.7

2© � 84.2±0.9 47.5±0.7 82.9±0.4 41.7±0.6 86.2±0.7 52.1±0.5

3© � � 85.3±0.6 48.2±0.6 84.1±0.5 42.5±0.6 87.1±0.6 54.3±0.5

4© � � � 86.1±0.7 49.3±0.4 85.1±0.7 43.1±0.8 87.8±0.4 55.2±0.6

5© � � � 86.7±0.7 49.7±0.4 85.4±0.7 43.1±0.8 88.5±0.4 55.9±0.6

6© � � 84.9±0.6 47.9±0.7 84.0±0.6 42.1±0.7 86.8±0.7 53.4±0.8

Ours � � � � 87.5±0.5 50.4±0.4 85.9±0.5 43.9±0.6 89.5±0.5 56.8±0.5

5.3 Ablation Study

We conducted ablation studys on MVMformer to validate the significance of
critical designs: (1) Multi-Scale Value-Density Attention (MS-VDKerAttn) (2)
Hierarchical Medical Semantic Graph (HMS Graph).

MS-VDKerAttn. We construct 6 variants for MS-VDKerAttn: (1) For 1© and
6©, we replace multi-scale kernelized attention with vanilla self-attention. (2) For
2©, we remove multi-scale modeling ability in MS-VDKerAttn. (4) For 3©, 4©, and
5©, we separately remove the value or density unit in the MS-VDKerAttn.
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Table 3 illustrates the comparison results. We can discover that 2© outper-
forms 1© in all datasets, which indicates that the kernelized attention is more
appropriate for segment modeling compared to vanilla attention. Meanwhile, 3©
outperforms 2©, demonstrating that incorporating multi-scale modeling into the
kernelized attention enhances the generalization ability for dynamic segment
lengths. Moreover, we observe that 4© and 5© outperform 3© with 5© marginally
outperforming 1©. This highlights the universal effectiveness of both the value
and density units in both kernelized and non-kernelized attentions. Notably,
our proposed method performs better than 5©. This indicates that our effective
multi-scale kernelized attention further improves the performance of the value
and density units.

Table 4. Ablation study for the proposed HMS Graph

ID Ablations P12 P19 MIMIC

Semantics Hierachical AUROC AUPRC AUROC AUPRC AUROC AUPRC

1© 83.7±0.7 46.7±0.8 82.5±0.6 40.2±0.7 85.9±0.7 53.6±0.9

2© � 86.8±0.6 49.2±0.5 85.2±0.5 42.8±0.6 87.8±0.6 55.9±0.5

3© � 85.2±0.6 47.8±0.7 84.1±0.5 41.3±0.5 86.4±0.6 54.4±0.7

Ours � � 87.5±0.5 50.4±0.4 85.9±0.5 43.9±0.6 89.5±0.5 56.8±0.5

HMS Graph. Table 4 includes the results of two variants: (1) 1© replaces
the HMS Graph with a single-level and full-connected graph, where both node
embeddings and correlation weights are randomly initialized and learnable. (2)
2© constructs a hierarchical graph without medical semantic affinity, where vari-
able groups are built by clustering. (3) 3© replaces the HMS Graph with a single-
level and full-connected graph while preserving medical semantics by assigning
a correlation weight of 1 for similar clinical variable.

From Table 4, we can observe that 2© outperforms 1© since our hierarchical
graph indirectly regularizes the sparse similarity between clinical variables and
thus alleviates learning complexity. Moreover, 3© outperforms 1©, demonstrating
that medical semantic affinity can effectively connect diverse clinical variables.
Notably, our MVMformer outperforms 2© and 3©, indicating that the medical
semantic affinity into the hierarchical graph structure is compatible with the
medical semantic affinity of clinical variables and adaptively combining them
can further improve model performance.

5.4 Analysis of HMS Graph in Missing Variable Settings

Our MVMformer can implicitly address missing variables by leveraging the
learned dependencies among clinical variables in the HMS Graph. To evaluate
this capability, we assess whether MVMformer can perform well when a subset of
variables is entirely absent. This scenario is particularly relevant in cases where
certain variables may not be available at specific institutions. In this setting,
we keep the training samples unchanged. For both validation and test sets, we
randomly select a portion of the variables and conceal all their observations. The
excluded variables remain the same across samples and models.
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Fig. 3. Analysis of HMS Graph in Missing Variable Settings.

HMS Graph Visualization. As illustrated in Fig. 3(a), we visualize the
learned HMS Graph. Distinct patterns can be observed in the two-level learned
dependency graphs, demonstrating that MVMformer can adaptively learn both
inter-variable and inter-organ graph structures that are sensitive to the predic-
tion task. In addition to the visualization, we can derive several concrete insights.
For example, the function of the “Heart” system is notably affected by both the
“Lung” and “Blood” systems. Furthermore, within the lung system, there is a
strong dependency among “RespRate,” “PaO2,” and “SaO2.”

Accuracy in Missing Variable Settings. We report results of both P12 and
P19 datasets in Fig. 3(b). We find that MVMformer achieves the highest perfor-
mance in both AUROC and AUPRC when the percentage of missing variables
ranges from 10% to 40%. As the amount of missing data increases, MVMformer
demonstrates significant performance enhancements with consistent predictions.
It outperforms baseline models by as much as 24.9% in AUROC and 29.3% in
AUPRC. This is primarily attributed to the capability of the proposed HMS
Graph to group variables with similar medical semantics, allowing the informa-
tion from partially missing variables to be supplemented by their dependencies
on others.

6 Conclusion

In this paper, we propose a MVMformer to perform disease prediction based
on clinical time series. In contrast with existing methods, MVMformer takes
irregularity-aware segment-wise modeling for clinical time series while consid-
ering the medical semantic affinities among clinical variables, consisting of two
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key modules. A Multi-scale Value-Density Attention is first introduced to cap-
ture both value trend and temporal density within multi-length segments. Then a
Hierarchical Medical Semantic Graph is constructed to learn the group similarity
of clinical variables with associated organs, leveraging public medical knowledge.
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Abstract. Obesity is a common issue in modern societies today that
can lead to significantly reduced quality of life. Existing research on
investigating obesity-related neurological characteristics is limited to tra-
ditional approaches such as significance testing and regression. These
approaches may require certain neurological assumptions to be made
and may struggle to handle the complexity and non-linear relationships
within the high-dimensional electroencephalography (EEG) data. In this
study, we propose a deep learning-based approach for extracting features
from resting-state EEG signals to classify obesity-related brain activity.
Specifically, we employ a Variational Autoencoder (VAE) to learn robust
feature representations from EEG data, followed by classification using
a 1-D convolutional neural network (CNN). By comparing our approach
with benchmark models, we demonstrate the efficiency of VAE in feature
extraction, evidenced by significantly improved classification accuracies,
enhanced visualizations, and reduced impurity measures in the learned
feature representations.

Keywords: Deep learning · EEG classification · Varational
Autoencoer

1 Introduction

Obesity is a global health issue linked to dysfunction in multiple body systems,
including the heart, liver, kidneys, joints, and reproductive system [1–4]. It also
contributes to the onset of various diseases, such as type 2 diabetes, cardiovascu-
lar diseases, and cancers [5]. While much research focuses on the clinical charac-
teristics of obesity, increasing attention is being directed towards its neurological
effects [6,7]. Techniques such as electroencephalography (EEG) and functional
magnetic resonance imaging (fMRI), which capture brain structure and activity,
have been extensively employed to investigate brain activity patterns related to
obesity [8–10].
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15323, pp. 179–191, 2025.
https://doi.org/10.1007/978-3-031-78347-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78347-0_12&domain=pdf
https://doi.org/10.1007/978-3-031-78347-0_12


180 Y. Yue et al.

Several studies have suggested that obesity is linked to cognitive impairment
and altered brain network structures [8,11]. For instance, abnormal connectivity
in the somatosensory cortex and insula in obese individuals may impair their
ability to predict energy needs, leading to overeating [12]. Additionally, altered
hippocampal structures, which are strongly correlated with dementia, have been
observed in obese individuals [13].

However, obesity-related brain activities are often researched using tradi-
tional statistical approaches such as significance testing and regression, which
focus on predefined, isolated brain regions [14,15]. These approaches have limita-
tions: they may not capture complex interactions between brain regions, overlook
the holistic brain function where regions interact dynamically, and introduce
bias by focusing on predefined areas based on prior knowledge. Additionally,
such approaches may not account for individual variability in brain structure and
function. Moreover, brain activity analysis in obesity research often relies on pre-
defined measures like functional connectivity or spectral powers [14,16]. These
measures require prior selection of specific regions or frequency bands, poten-
tially excluding relevant data outside these categories.

These limitations underscore the need for applying machine learning (ML)
and deep learning (DL) approaches in obesity-related brain activity research.
These approaches can handle the high-dimensional nature of brain signals with-
out significant information loss and automatically detect complex interactions
across the entire brain. This enables a more comprehensive analysis of brain pat-
terns, ultimately leading to more effective obesity interventions and treatments.

To the best of our knowledge, no prior research has directly investigated
obesity-related brain activities using EEG data through ML or DL approaches.
This study aims to address this gap by employing a DL-based approach to learn
robust and comprehensive feature representations of brain activity associated
with obesity directly from EEG signals.

Specifically, we employ an unsupervised Variational Autoencoder (VAE) to
learn high-level, robust feature representations. VAE is chosen in this study due
to previous studies have consistently demonstrated its efficiency in robust feature
learning compared to other unsupervised feature learning approaches such as
autoencoder and Principle Component Analysis [17–19]. These representations
are then used as input for a 1-D convolutional neural network (CNN) to perform
the obesity classification task. The entire process of our study is demonstrated in
Fig. 1. Key novelties of our study include:

– Our study is the first to identify obese brain activities at the EEG signal
level using a DL-based framework. It addresses the limitations of traditional
approaches by eliminating the need for predefined features and capturing
intricate brain signal patterns;

– We demonstrated the effectiveness of using a VAE to learn feature represen-
tations for analyzing brain activity associated with obesity.;

– We introduced a quantitative measure based on impurity to evaluate the sep-
arability of the feature space, further confirming the superiority of VAE fea-
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tures. These enhancements contribute to the interpretability of our proposed
model.

We have made the source code for this study available.1
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Fig. 1. Overall process of the proposed work.

2 Method

2.1 Data Description and Preprocessing

The EEG datasets used in this study were collected from 30 obese females and
30 lean (i.e., healthy) females who are between 25 to 65 years old. Subjects who
have a body mass index (BMI) higher than 30 are defined as obese individuals
and those who have a BMI lower than 25 are defined as lean individuals. Given
that several studies have reported sex-related differences in obesity and research
in the field supports the validity of investigating obesity within a single-sex [20–
22], in this study, we limited our research to females only to eliminate potential
confounding factors related to sex differences and to gain sex-specific insights.

The international 10–20 sensor layout system, which has 19 main channels,
was used for the EEG recording process. For each subject, resting-state EEG
data were recorded while fasting and with eyes closed for approximately 5 min.

Regarding the data preprocessing process, the first five seconds of each EEG
recording were discarded as they usually contain a high level of noise. The record-
ings were then resampled to 128 Hz and band-pass filtered between 0.1 Hz and
45 Hz. Next, each recording was segmented into 10-second consecutive epochs,
and each epoch would be used as an individual data sample. This resulted in
each subject having a total of 26 epochs, meaning each subject’s data consisted
of 26 data samples.

The ethical approval for subject recruitment and data collection processes
was obtained from the Southern District Health Board Ethics Committee, New
Zealand (Ref: 15/STH/68), in accordance with the Declaration of Helsinki.
1 https://github.com/2duck1lion/VAE/tree/main.

https://github.com/2duck1lion/VAE/tree/main
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2.2 Latent Feature Representation Learning

In this study, we used a VAE model to learn latent feature representations,
chosen based on previous studies demonstrating its efficacy in robust feature
learning through maintaining a smooth and continuous latent feature space [17–
19]. Specifically, VAE operates within a probabilistic framework that facilitates
the learning of latent variables capturing the underlying data structure. This
capability enables efficient noise reduction and extraction of salient features,
thereby enhancing discriminative power in classification tasks.

VAE works by encoding an input data sample into a Gaussian distribution
within the latent space, with the decoder subsequently performing the decom-
pression and reconstruction processes using the data points sampled from this
space. Additionally, regularization within the latent space is enforced by guiding
the encoded latent variables towards this Gaussian distribution. The objective
function of a VAE comprises two components: minimizing the reconstruction
error to enhance the precision of the encoding-decoding process, and ensuring
that the distribution outputted by the encoder closely resembles a Gaussian
distribution. The loss function of a VAE can be formally written as:

LVAE = E(‖x − x̂‖2) + DKL(q(z|x)||p(z)), (1)

where z is the latent variable, q(z|x) is the latent distribution generated by
the encoder, p(z) is the prior distribution in the latent space which follows a
Gaussian distribution, and DKL(.) denotes the Kullback-Leibler divergence.

In this study, we used the encoder output as the learned latent feature repre-
sentation for classification. This choice is made based on two key considerations:
first, the latent representation, being used for reconstructing the input data, is
presumed to encapsulate the majority of information from the input; second,
leveraging this high-level latent representation helps in filtering out noise unre-
lated to obesity.

The detailed architecture of the proposed VAE is shown in Fig. 1. This archi-
tecture is designed based on the concept of EEGNet [23], which is an extensively
used DL model for EEG classification tasks. It mainly consists of a temporal
convolution block followed by a depth-wise spatial convolution block. A sepa-
rable convolution block is then applied to improve the model’s performance. In
this study, in the encoding part of the proposed VAE, we first adapted a tempo-
ral convolution layer with a kernel size of 1×128/2=1×64, to extract temporal
features. We then performed a spatial convolution by using kernels with a size of
19×1, to extract spatial features. Each convolution layer is followed by a batch
normalization layer and a leaky ReLU layer. The decoder is then designed by
taking the inverse of the encoder.

2.3 Data Partitioning and Classification

Ten-fold subject-based cross-validation was employed as the data partitioning
strategy in this study. Within each fold, 6 subjects (3 lean and 3 obese) were
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set aside for testing, while 54 subjects (27 lean and 27 obese) were used for
training. Additionally, within each training fold, 6 subjects (3 obese and 3 lean)
were further selected for validation. The final testing score (i.e., accuracy) was
obtained by averaging the scores across all folds.

For classification, we employed a 1-D CNN, a Support Vector Machine (SVM)
with a Radial Basis Function kernel, a K-nearest neighbours (KNN) classifier
with k = 3, a Random Forest (RF) classifier, and an Adaboost (ADB) classifier
to predict the label for each data sample. Hyperparameters were optimized using
the validation dataset. The SVM used a gamma parameter set to the inverse
of the number of features to control the decision boundary’s shape. The RF
consisted of 50 estimators with a maximum depth of 10. For ADB, 75 estimators
were employed with a learning rate of 0.88. We chose these simple classifiers in
this study to emphasize the effectiveness of the learned feature representations.

The architecture of the proposed 1-D CNN is shown in Fig. 2. The network
begins with two convolutional layers, employing 8 filters of size 64 in the first
layer and 16 filters of size 32 in the second. These are followed by an average
pooling layer with a size of 4 and a dropout layer with a rate of 0.25 to minimize
the number of parameters and reduce overfitting. The final convolutional layer
consists of 32 filters with a size of 16, succeeded by an average pooling layer of size
8 and another dropout layer with a rate of 0.25. After each convolution, batch
normalization and activation layers are included to facilitate faster learning and
improve convergence through regularization.

For each subject, the final classification label was determined by the majority
vote of 26 data samples classified as either obese or lean.

Fig. 2. Architecture of the proposed 1-D CNN used for classification.

2.4 Neural Network Model Training and Optimization

TensorFlow with the Keras API was employed in this study. The VAE was
trained on preprocessed EEG data matrices comprising 19 channels and 1280
time points, processed in batches of 26 samples. Training used the Adam opti-
mizer with a learning rate of 0.0005, running for up to 500 epochs with early
stopping based on model loss.

The 1-D CNN was optimized using the Adam optimizer with a learning rate of
0.001 and compiled with binary cross-entropy loss. The training was conducted
in batches of 200 samples for a maximum of 200 epochs, with early stopping
implemented based on validation loss and patience of 20 epochs.
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2.5 Impurity-Based Measure for Assessing Feature Discriminability

In this study, we introduced a novel impurity-based measure to assess the dis-
criminant ability of the learned feature representation. Suppose a D-dimension,
N -entry feature set X. Denote the value set of the i-th attribute as Xi,
i = 1, · · · ,D. Using the idea of the decision tree, we seek an optimal thresh-
old τ that splits the values in Xi into two value subsets with minimum impurity:

XL
i = {xij |xij < τ, j = 1, · · · , N}

XR
i = {xij |xij ≥ τ, j = 1, · · · , N} (2)

As we are dealing with a two-class problem, the impurity can be calculated
using the Gini index [24]. Suppose within a subset S, p is the probability of an
instance x belonging to Class 1, the Gini index is

G(S) = p(1 − p). (3)

Hence we define a “dichotomy impurity” (DI) for the i-th attribute based on the
minimal weighted average of impurities of the two subsets generated by the best
“cut”:

DIi = min
τ

( |XL
i |

|Xi| G(XL
i ) +

|XR
i |

|Xi| G(XR
i )

)
, (4)

where |.| indicates cardinality. In other words, DIi indicates the purest dichotomy
we can get on attribute i. The overall separability of the feature representation
can be roughly indicated by the average DI:

DI =
∑

i

DIi/D. (5)

The smaller DI is, the better separability we can achieve.

2.6 Benchmark Model Choices and Performance Comparison

As extensively used models for EEG classification tasks, we chose EEGNet, Shal-
low ConvNet, and Deep ConvNet as the baseline models to compare with our pro-
posed model [23,25]. For state-of-the-art comparisons, we selected various neural
network-based models with diverse architectures that are commonly employed
for resting-state EEG classification. These models include VGGNet [3], a CNN-
based architecture with deep layers and attention-based residual-inception mod-
ules designed to learn complex features; MuLHiTA [26], which focuses on identi-
fying mental stress levels using a multi-branch long short term memory (LSTM)
architecture and hierarchical temporal attention mechanisms; AgeNet [27], a
deep CNN proposed for age prediction; ParkinsonNet [28], a CNN with LSTM
mechanism proposed for Parkinson’s Disease detection; and CognitionNet [29],
a multi-head CNN based on attention mechanisms proposed to predict cognitive
decline. Given that each of these benchmark models uses an end-to-end clas-
sification process that includes distinct approaches for feature extraction and
feature embedding, we directly applied them to the preprocessed EEG signals.
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3 Results and Discussion

3.1 Classification Performance Comparison

The test scores (i.e., accuracy) obtained using the 1-D CNN, SVM, KNN, RF,
and ADB are shown in Table 1. Among these, the 1-D CNN achieved the high-
est classification scores, with 0.951 for subject-level classification and 0.937 for
epoch-level classification.

Further comparison of test accuracies between the benchmark models and our
proposed model is presented in Table 2. Our proposed model demonstrated its
efficiency by significantly outperforming the benchmark models on both subject-
level and sample-level classifications.

Table 1. Test scores (mean accuracy ± standard deviation) obtained using 1-D CNN,
SVM, KNN, RF, and ADB as classifiers.

Methods Subject-level scores Epoch-level scores

1-D CNN0.951 ± 0.104 0.937 ± 0.130

SVM 0.917 ± 0.170 0.920 ± 0.139

KNN 0.903 ± 0.135 0.909 ± 0.143

RF 0.936 ± 0.152 0.937 ± 0.163

ADB 0.883 ± 0.299 0.898 ± 0.236

Table 2. Test scores (mean accuracy ± standard deviation) of benchmark models and
the proposed model.

Methods Subject-level scores Epoch-level scores

EEGNet 0.610 ±0.162 0.578 ±0.137

Shallow ConvNet 0.670 ±0.132 0.631 ±0.114

Deep ConvNet 0.670 ±0.151 0.582 ±0.133

A-VGGRI 0.742 ±0.138 0.798 ±0.113

MuLHiTA 0.798 ±0.169 0.814 ±0.127

AgeNet 0.817±0.166 0.587 ±0.060

ParkinsonNet 0.583±0.118 0.583 ±0.071

CognitionNet 0.567±0.110 0.589 ±0.057

Proposed Model 0.951 ±0.110 0.937 ±0.134
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Fig. 3. 2-D visualizations of learned feature representations using t-SNE. Top row: (a)
Features learned by EEGNet at its spatial convolution layer and (b) features learned
by VAE. Bottom row: (c) Features from 8 randomly selected subjects (4 obese marked
with ‘+’ and 4 lean marked with ‘o’) learned by EEGNet, and (d) Features learned by
VAE. Each subject’s data points are coloured consistently. The VAE feature set shows
distinct subject-based clusters.

3.2 Evaluation of Feature Representations

To illustrate the learned feature representations, we applied t-distributed
stochastic neighbour embedding (t-SNE) [30], a non-linear dimensionality reduc-
tion technique, to project the feature representations learned by EEGNet at the
spatial convolution layer and our proposed VAE into 2-D Euclidean spaces. We
chose t-SNE for its ability to effectively preserve the local structure of high-
dimensional data by minimizing differences between the joint distributions of
high-dimensional and low-dimensional data [31].

We visualized the feature representations in two scenarios: across all subjects
and on a subset of 8 randomly selected subjects. Figure 3a shows the feature
representation learned by EEGNet, and Fig. 3b shows the feature representation
learned by the proposed VAE across all subjects. Similarly, Fig. 3c shows the
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features learned by EEGNet, and Fig. 3d shows the features learned by the pro-
posed VAE on the subset of 8 randomly selected subjects. These visualizations
indicate that features learned by the proposed VAE exhibit a distinct distribu-
tion between the obese and lean groups, demonstrating effective separation of
underlying data patterns.

One potential explanation for the between-group discrimination contained in
the feature representations learned by the proposed VAE, which contributes to
the significantly enhanced performance of our model, lies in the nature of resting-
state EEG data. Resting-state EEG data inherently contains differences between
subjects. These differences can be regarded as irrelevant noise in the context of
the classification task [32]. Therefore, a model capable of learning high-level fea-
tures that incorporate subject-specific distinctions allows it to filter out the irrel-
evant variations or noise caused by these differences between subjects, thereby
enhancing its ability to perform accurate classifications based on relevant pat-
terns in the EEG data. This relationship is visually demonstrated in Fig. 3c and
Fig. 3d, which present the learned feature representations organized by subject.
Moreover, we infer that supervised feature learning adjusts the learned features
based on the gradient outcomes from the classification process. In contrast, as
an unsupervised model, VAE primarily focuses on reconstructing the input data,
which reduces the risk of overfitting during training. Consequently, VAE is more
likely to learn diverse and adaptable feature representations.

Additionally, we applied the proposed DI measure to the learned feature
representations of EEGNet and the proposed VAE, resulting in DI = 0.247 for
EEGNet features and DI = 0.220 for VAE features. Given that effective features
typically contribute significantly to classifier performance, we compared the first
quartile of these feature sets-specifically, the top 25% with the lowest DIi values-
as depicted in Fig. 4. The DI values associated with the VAE features exhibit
a more distinct separation compared to those of EEGNet, indicating the good
discriminative quality of the VAE features.

3.3 Analysis of Channel Importance for Obesity

We computed the average output values from the spatial convolution layer of the
VAE encoder to assess the importance of individual EEG channels in relation
to obesity. Figure 5a visually represents these values (a larger value is repre-
sented with a higher colour intensity). Higher average output values for a chan-
nel in the lean group indicate stronger responses to EEG signals typical of lean
individuals, highlighting pronounced EEG patterns relevant to lean physiology.
Conversely, higher values in the obese group denote stronger responses to EEG
signals characteristic of obese individuals, emphasizing distinct EEG patterns
associated with obesity. The contrasting colour patterns in Fig. 5a (e.g., dark
red versus dark blue) indicate opposite contributions to the VAE’s feature rep-
resentation.

To provide a more intuitive demonstration of channel importance, we com-
puted the absolute difference between the importance of each channel for lean
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Fig. 4. Comparison of the first quantile of the DI scores from feature representations
learned by EEGNet and VAE.

Fig. 5. Visualization of Obesity-related Channel Importance.
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and obese groups, referred to as the ‘net’ channel importance. This is demon-
strated in Fig. 5b, where darker colours indicate higher ‘net’ channel impor-
tance. The absolute value of this difference, or the ‘net’ channel importance,
reflects the overall contribution of each EEG channel in distinguishing between
lean and obese individuals. Higher values signify channels that play a more sig-
nificant role in capturing EEG patterns specific to either lean or obese individ-
uals. This analysis helps in identifying which EEG channels are most crucial for
differentiating between these two groups based on their neural activity patterns.

4 Ablation Study

We conducted an ablation study to assess the contribution of the VAE feature
learning process. Using the best-performing 1-D CNN classification algorithm, we
compared the classification performance on preprocessed EEG signals alone and
on the feature representations learned via VAE. The results demonstrated that
using only preprocessed EEG signals achieved accuracies of 0.54 for sample-level
and 0.55 for subject-level classification. In contrast, incorporating VAE-learned
features significantly improved accuracies to 0.94 and 0.95, respectively, high-
lighting the substantial impact of the VAE feature learning process on enhancing
classification performance.

5 Conclusion

This study investigated obesity-related brain activities using resting-state EEG
data through a DL approach. We employed a VAE to learn latent feature rep-
resentations from EEG signals, followed by classification using a 1-D CNN. Our
analysis highlights distinct spatial patterns that differentiate obese from lean
brains, providing insights into neural activity associated with obesity.

In future research, we aim to extend our investigation to explore obesity pat-
terns of male individuals. This will involve expanding our dataset to encompass
male subjects and adjusting our model accordingly to provide a comprehensive
analysis of obesity across both sexes. Additionally, we will focus on enhanc-
ing model interpretability by incorporating discussions on temporal and spa-
tial information, thereby advancing our understanding of obesity-related brain
dynamics.
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Abstract. Accurate classification of water pollutants is paramount for
safeguarding the environment. This study presents an innovative app-
roach to classifying water pollutants by integrating deep learning algo-
rithms with effective preprocessing techniques. The Sensichips Smart
Water Cable Sensor(SCW) facilitates real-time data acquisition for vari-
ous water pollutants, establishing a robust foundation for comprehensive
analysis. SCW utilizes the SENSIPLUS chip, which employs impedance
spectroscopy to detect a variety of water-soluble pollutants via an array
of sensors. Our research adopts an end-to-end sensor-to-classification
framework, leveraging deep neural networks to capture temporal data
dynamics. Employing a CNN model with a sliding window approach,
our method demonstrates promising results, achieving an average accu-
racy of 95.78% across ten folds for classifying eight distinct water pollu-
tants. The low-cost IoT-based infrastructure makes this approach scal-
able and accessible for deployment in water monitoring systems.

Keywords: Deep Learning · Smart Cable Water · Smart Sensors ·
Water Pollutant Detection

1 Introduction

Water pollution is a pressing issue that can have devastating effects on both
the environment and human health. The contamination of water bodies by var-
ious pollutants, such as industrial chemicals and waste, agricultural runoff, and
household waste, threatens aquatic life, plants, and humans. Additionally, it
contributes to the high prevalence of water-borne illnesses, among the top 10
global causes of mortality [22]. Identifying pollutants is essential to monitoring
water quality, which is important for environmental management and protect-
ing water resources. Despite the availability of modern, advanced technology,
most drinking water production plants in developing countries continue to rely
on conventional techniques for identifying pollutants in water. The presence of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15323, pp. 192–203, 2025.
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pollutants is detected by conducting a chemical analysis in the laboratory. One
drawback of these technologies is their reliance on human expertise and consid-
erable time investment. Additionally, these systems suffer from extended delay
times, hindering close real-time water quality monitoring. Monitoring stations
increasingly utilize advanced technologies like remote sensing (RS) and the Inter-
net of Things (IoT) to address these challenges, rapidly generating vast amounts
of data.

Conventional machine learning techniques cannot perform well on large data.
In recent years, Deep Learning (DL) has shown remarkable success in various
domains, including image recognition, natural language processing, and speech
recognition [17]. Its ability to automatically learn intricate patterns and repre-
sentations from data makes DL well-suited for complex and high-dimensional
datasets. Long Short-Term Memory Recurrent Neural Networks (LSTM RNNs)
have been widely used in time series classification due to their effectiveness in
handling temporal dependencies. This study presents a new methodology for
classifying water pollutants by integrating cutting-edge technology and data
processing techniques optimized for deep learning models. We use the Sensichips
Smart Cable Water(SCW) based on SENSIPLUS microsensors, a low-power,
low-cost, and real-time solution to gather pollutant data in water. SENSIPLUS
is a proprietary technology of Sensichips s.r.l. developed with the University
of Pisa [20]. This facilitates the development of a more refined understanding
of water quality dynamics.

This paper is structured as follows: Sect. 2 discusses the related work, pro-
viding a review of previous studies. Section 3 presents the proposed approach,
detailing the methodology and data preprocessing techniques used. Results are
presented in Sect. 4. Finally, Sect. 5 concludes the paper by summarizing the
main findings and suggesting avenues for future research.

2 Related Work

Machine learning (ML) approaches have recently gained popularity for evaluat-
ing and classifying water quality. [19] employed various machine learning models,
including SVM, Random Forest, and others, to classify water quality based on
the water quality index (WQI). The study conducted by [11] utilized the Ran-
dom Forest classifier to categorize and predict water quality. [8] employed LSTM
RNNs and SVM to classify water quality into three categories using physicochem-
ical data. In their work, [14] introduced a decision tree model aimed at predict-
ing six different quality indicators: pH, temperature, chemical oxygen demand
(COD), ammonia-nitrogen (NH3-N), nitrate-nitrogen (NO3-N), and pH. SVM,
artificial neural networks (ANN), and group method of data handling (GMDH)
are the three ML algorithms that were compared by [13] in order to estimate
the water quality of the Tireh River in southwest Iran.

However, all the above techniques discussed are classifying water quality.
Based on our present knowledge, only a limited number of methods use sensor
technology and deep learning to classify pollutants. [1] employs an IoT-based
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system integrated with KNN and SVM algorithms to monitor water pollutants,
including pH, temperature, conductivity, and turbidity. The study is limited to
general water pollution detection, such as turbidity, and not specific pollutants in
water. [16] developed a Water Quality Monitoring (WQM) system using a single-
chip solution that incorporates FPGA technology and wireless connectivity via
an XBee module. The system tracks and measures pH, temperature, humidity,
turbidity, carbon dioxide, and water levels. However, this approach is limited
to the above-mentioned quality parameters, not the pollutants specifically. [23]
use a Conv.LSTM network to classify water pollution by monitoring nitrate,
dissolved oxygen, conductivity, biological oxygen demand, total coliform, and
fecal coliform. This study is limited to the mentioned parameters no other pol-
lutants were classified. [15] develops a water pollution monitoring system using
the behavior of Caenorhabditis elegans, LSTM models to analyze time-series
data from nematode movements. The system as detailed primarily focuses on
detecting formaldehyde and benzene, with less emphasis on a broad spectrum
of pollutants. [21] introduce a low-cost sensing platform using natural language
generation to classify wastewater pollutants, significantly improving detection
accuracy over traditional methods. The nitrate content in groundwater is esti-
mated by the authors in [5] using prial component regression and artificial neural
networks. This study is limited to only nitrate content estimation no other pol-
lutants were estimated. The authors use partial least square discriminant anal-
ysis in [7] to find explosive components in sewage water. To identify and classify
the chemicals found in seawater, CNN and LSTM were used by [6]. [2] employs
machine learning techniques to leverage non-changeable factors such as latitude,
longitude, and elevation, predicting pH, temperature, turbidity, dissolved oxygen
hardness, chlorides, alkalinity, and chemical oxygen demand in water bodies, pio-
neering a novel approach to predicting water contamination. Their approach is
only limited to the prediction of the aforementioned factors. Some of the authors
developed systems able to monitor both water and air thanks to the SENSIPLUS
platform [3,4,9,18].

In our previous work [10], an artificial neural network with one hidden layer
was used to classify 5 pollutants in the water. The SENSIPLUS chip was used for
the data collection. KNN and SWM along with the anomaly detection algorithms
were used to detect pollutants in the water in another of our previous works
[12]. Table 1 compares the different approaches for water pollutants and quality
classification.

3 Methodology

Data collection, preprocessing, and implementing deep learning algorithms com-
prise the three main phases of our proposed method. Classifying the pollutants
found in water is our primary goal. Sliding window methodology is employed
to prepare the input data for classification. Presently, eight distinct chemicals
that are often found in water samples are being classified using our proposed
method. Sensichips s.r.l.’s Smart Cable Water (SCW) Sensor collected pollution
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data. The SCW is built on the SENSIPLUS framework and consists of InterDig-
itated Electrodes (IDEs). With its versatile and accurate Electrical Impedance
Spectrometer (EIS), the SENSIPLUS micro-chip can assess both on-chip and
off-chip sensors throughout a frequency range of 3.1 MHz to 1.2 MHz. It is pos-
sible to do measurements with the SENSIPLUS by using a variety of sensors. In
particular, the six IDEs that make up the SCW system are metalized with silver,
copper, platinum, palladium, nickel, silver, and gold.

The following eight pollutants data were collected:

– Acetic Acid
– Ammonia
– Hydrogen Peroxide
– Hydrochloric Acid
– Phosphoric Acid
– Sodium Chloride
– Sodium Hydroxide
– Sodium Hypochlorite

These pollutants originate from various industrial, agricultural, and residen-
tial activities, making their presence ubiquitous and monitoring crucial for envi-
ronmental and human health management. Each pollutant poses distinct health
risks upon exposure, ranging from respiratory irritation to severe burns and long-
term health effects. The method used to measure each pollutant consists of two
phases. Firstly, 600 potable water samples are collected at a rate of 0.5 Hz to sta-
bilize all the sensors. Measurement of the pollutants is the next step. After 600
samples, the pollutant is injected slowly into the water, and a thousand samples
are taken to record the growth of the whole sensor. One of the main challenges in
machine learning is identifying and choosing key sensor features to improve clas-
sification accuracy. To acquire a 10-size feature vector, the appropriate features
are gathered:

– At a frequency of 78 kHz, the impedance of IDEs made of gold and platinum
was measured.

– At a frequency of 200 Hz, the impedance of IDEs made of gold, platinum,
silver, and nickel was measured.

By obtaining 10 sets of 1600 samples for each contaminant (which included
potable water) and using the previously indicated measurement technique, a
total of 144000 samples were collected.

3.1 Data Preprocessing

The raw data is initially analyzed using the EMA technique. The data’s EMA
was estimated using the Eq. 1.

EEMAi
=

(
a− 1
a

)
EEMAi−1 +

(
1
a

)
xEMAi

(1)
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Then, the differences between successive EMA values are computed from the
original data (OD) for each data point. These differences, called EMA Differ-
ences (EMA-D), highlight deviations or changes from the underlying patterns in
the data. By emphasizing these variations, the classification method can better
capture and understand the data dynamics, which is crucial for accurately distin-
guishing between different classes or categories. Equation 2 is used to compute
the differences.

EMA−D = OD − EEMAi
(2)

Then, we filter out the initial transient data and retain only the stable state
data points. By filtering out initial transient data, the model focuses on learning
from stable state data points, thus reducing the influence of temporary fluc-
tuations and noise. We discard the initial 400 samples from each measure and
then implement a sliding window technique on the EMA Differences (EMA-D)
data. Using the sliding window (SW) approach, data was divided into overlap-
ping windows, as shown in Fig. 1. The SW of size 32 sequentially traverses the
data, shifting the sliding window one step at every iteration. The model uses a
collection of input sequences generated via this methodology. Through the imple-
mentation of this approach, it is assumed that the model will possess the ability
to learn trends and data correlations. Figure 2 presents a graphical representa-
tion of one thousand data samples acquired during acetic acid measurements by
the SCW utilizing one of its IDEs (OFFCHIP NICKEL 200 Hz IN-PHASE).

3.2 Pollutants Classification

We used CNNs, LSTM networks, and Simple RNNs to classify pollutants. The
CNN architecture has been tailored to classify pollutants into one of the eight
distinct classes. CNNs are often used for image-related tasks, such as processing
images using RGB channels, which consist of three channels in the input tensor.
However, the water pollution data for our problem are provided in a time series

Fig. 1. Proposed Approach
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Fig. 2. A graphic illustration of the original data, EMA, and difference values related
to Acetic Acid

manner. The proposed method divides the time series data into windows using
the sliding windows approach. This window serves as the input tensor for the
model, allowing it to capture dependencies and extract features.

The total number of windows was calculated as follows: N −W + 1 windows
were obtained by subtracting the window size (W ) from the total number of data
points (N) and adding one. A subset of the EMA-D sequence consisting of W
consecutive data points, each having F features (sensor measure), is represented
by each window. Xi was the identifier for these windows, and i refers to any
integer between 1 and the total number of windows. As an example, Xi was
represented as a matrix in which a feature was represented by each column and
a data point inside the window by each row.

Yi =

⎡
⎢⎢⎢⎣

yi,1 yi,2 . . . yi,F
yi+1,1 yi+1,2 . . . yi+1,F

...
...

. . .
...

yi+W−1,1 yi+W−1,2 . . . yi+W−1,F

⎤
⎥⎥⎥⎦

Let yi,j be the jth feature of the ith data point in the window. Tempo-
ral dependencies were captured via overlapping windows, where the amount of
overlap was specified by the stride (St). Using the sliding window approach, we
successfully divided the EMA-D sequences into segments, which aided in cap-
turing crucial temporal trends and dependencies required for training the CNN
model. The CNN model architecture is specifically designed to handle a feature
set consisting of 10 distinct features. These features are initially organized into a
tensor size 32× 10 by applying a sliding window size of 32. This tensor serves as
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the input data for the subsequent model layers. The architecture and the layers
of the CNN model used are shown in Table 2.

Table 2. CNN Architecture

Lyer Type Configuration

Input Input shape: (height, width, channels)

Convolutional Filters: 32, Kernel size: (3, 3)

Activation ReLU

Batch Normalization

Convolutional Filters: 64, Kernel size: (3, 3)

Activation ReLU

Batch Normalization

Dropout Dropout rate: 0.5

Max Pooling Pool size: (1, 1)

Convolutional Filters: 128, Kernel size: (3, 3)

Activation ReLU

Batch Normalization

Dropout Dropout rate: 0.5

Convolutional Filters: 256, Kernel size: (3, 3)

Activation ReLU

Batch Normalization

Dropout Dropout rate: 0.5

Flatten

Dense Units: 128, Activation: ReLU

Dense Units: 64, Activation: ReLU

Output (Dense) Units: Number of classes, Activation: Softmax

This comprehensive architecture, optimized using stochastic gradient
descent, enables the accurate classification of pollutants based on the feature-rich
EMA-D sequences derived from the initial 32× 10 tensor. On the other hand,
LSTM networks and Simple RNN are employed due to their ability to identify
temporal correlations in sequential data. Transformers models were also used to
classify the pollutants, but they didn’t perform well. The input of these models
is the same as the CNN. To comprehensively evaluate the performance of all the
models, a 10-fold cross-validation technique is utilized. Each model undergoes
ten repetitions of training and validation, following which the dataset is divided
into ten unique subsets. Nine subsets are used for training in each cycle, with
one subset designated as the validation set. The process is carried out on each
of the 10 folds to ensure that each data point is included in the set of validation
data at least once.
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4 Results

The classification performance of the Transformers, RNN, LSTM, and CNN
networks across ten-fold cross-validation is shown in Table 3. For every fold, the
classification accuracy and the mean accuracy are presented.

Table 3. Classification Performance

Folds Transformers RNN LSTM CNN

Fold-1 47.33% 75.43% 83.88 % 85.58%

Fold-2 40.40% 79.53% 91.15 % 94.21%

Fold-3 50.18% 92.42% 97.28% 97.48%

Fold-4 47.31% 88.04% 97.18 % 99.60%

Fold-5 57.54% 89.47% 97.69 % 98.26%

Fold-6 61.51% 83.90% 97.94 % 97.94%

Fold-7 74.86% 94.33% 99.39 % 99.23%

Fold-8 79.63% 85.21% 88.16 % 95.37%

Fold-9 71.74% 82.91% 88.43 % 92.89%

Fold-10 56.63% 81.64% 95.50 % 97.26%

Mean Accuracy 58.68% 85.28% 93.66% 95.78%

The mean classification accuracies for Transformers RNN, LSTM, and CNN
are 58.68%, 85.28%, 93.66%, and 95.78%, respectively. These results indicate
that CNN is the best-performing model, followed by LSTM, RNN, and trans-
formers being the least accurate. The CNN model attained a mean classifica-
tion accuracy of 95.56%. The model maintained excellent accuracy throughout
numerous folds, with a peak of 99.60% in Fold-4. As depicted in the confusion
matrix for Fold-4 (Fig. 3) of CNN model, only Acetic Acid exhibits a slight
confusion with Phosphoric Acid, while all other pollutants are accurately clas-
sified. Additionally, LSTM outperformed RNN, achieving a mean accuracy of
93.66%. The performance of RNN, compared to the other two networks, is not
good since RNN networks are affected by the issue of vanishing gradients during
training. Transformers, with a mean accuracy of 58.68%, demonstrate the lowest
performance among the models. With a marginal difference of roughly 2% the
performance of LSTM and CNN is almost the same.

Table 4. Mean and Standard Deviation(STD) of Classification Accuracies

Model Mean STD

Transformers 58.68% 14.38%

RNN 85.28% 6.01%

LSTM 93.66% 4.73%

CNN 95.78% 2.27%
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One critical aspect to consider is the stability of the models across different
folds. The standard deviation of the accuracies, as shown in Table 4, indicates this
stability. CNNs exhibit the lowest standard deviation (2.27%), underscoring their
robust performance and consistent accuracy across all folds. This consistency can
be attributed to the CNN’s ability to capture local spatial features effectively
within the sliding windows, making it highly suitable for this classification task.
LSTMs follow with a standard deviation of 4.73%, indicating reliable perfor-
mance but slightly less stability than CNNs. RNNs show moderate variability
with a standard deviation of 6.01%, reflecting their susceptibility to the van-
ishing gradient problem. Transformers, with the highest standard deviation of
14.38%, demonstrate significant fluctuations, suggesting that their performance
is less stable and consistent in this context. However, the limited window size
may hinder the full potential of Transformers, which typically excels in larger
contexts. Overall, CNNs emerge as the most suitable model for classifying signals
using a sliding window approach, followed closely by LSTMs.

Fig. 3. CNN Fold-4 Confusion Matrix

5 Conclusion

In conclusion, in this study by leveraging the capabilities of the Sensichips Smart
Water Cable Sensor and implementing deep learning models, we have devel-
oped an efficient system for classifying the eight most commonly found pollu-
tants in water. By, employing Convolutional Neural Networks (CNN), our study
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attained an impressive classification accuracy rate of 95.56%. The accuracy of
our technique showcases its ability to significantly improve the precision of clas-
sifying pollutants in water, hence potentially having a significant influence on
water quality monitoring. Incorporating the sliding window technique enhances
our method’s ability to efficiently capture temporal relationships, constituting
one of its key advantages. Accurately classifying pollutants in water is a con-
tinuous task. Consistent improvement and advancement are essential to effec-
tively address the growing requirements of water pollutant evaluation. However,
our study is limited to eight pollutants, and the model does not perform well
with the transient data included. Future research directions involve incorporat-
ing additional pollutant measurement data and enhancing the model’s ability to
handle non-steady state data by exploring various deep learning models, such as
Convolutional Long Short-Term Memory (ConvLSTM). Additionally, ensemble
approaches can be utilized to integrate classification capabilities from multiple
models.
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Abstract. We propose an innovative approach for generating Near--
Infrared (NIR) hyperspectral images from Visible (VIS) hyperspec-
tral imagery using our Bandwise Attention based CycleGAN(BA-
CycleGAN). This framework introduces three key enhancements:(i) the
integration of a Bandwise Attention mechanism within the architecture
to appropriately attend to spectral bands in the hyperspectral images, (ii)
the addition of a Spectral Angle Mapper(SAM) based consistency loss to
preserve spectral characteristics crucial for hyperspectral imagery, (iii)
replacing the convolution block with depthwise separable convolution
block to significantly reduce the number of training parameters. The
generated NIR images are subsequently concatenated with their cor-
responding VIS hyperspectral images, producing composite VIS-NIR
hyperspectral datasets to improve fructose estimation through the clas-
sification of fruit sweetness levels. We conducted comprehensive exper-
iments using three distinct datasets: VIS, NIR, and the combined VIS-
NIR. Our findings demonstrate that the NIR images generated by BA-
CycleGAN exhibit good spectral fidelity, closely mimicking the charac-
teristics of actual NIR hyperspectral images. Moreover, the combined
VIS-NIR dataset outperforms the individual VIS and NIR datasets in
classifying fructose or sugar content levels in fruit.

Keywords: Spectral Angle Mapper · Hyperspectral images ·
CycleGAN · Depthwise Separable Convolutions · Bandwise Attention

1 Introduction

Traditional methods for fructose or sugar content estimation involve extracting
juice from fruits and measuring soluble solids content (SSC) using refractome-
ters [1]. The advent of hyperspectral imaging [2] in precision agriculture [3–
5], has revolutionized the field of fruit quality assessment by offering a non-
destructive and comprehensive solution. Hyperspectral imaging allows for the
capture of detailed spectral information across a wide range of wavelengths,
providing rich data on the biochemical composition, physiological status, and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15323, pp. 204–218, 2025.
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structural characteristics of fruits. Hyperspectral imaging sensors frequently pro-
duce hundreds of narrow spectral bands from a single region on a fruit. Each
pixel in the hyperspectral image can be thought of as a high-dimensional vec-
tor, with each entry representing the spectral reflectance at a certain wavelength.
Among the spectrum ranges, Visible (VIS) wavelengths (400–700 nm) and Near-
Infrared (NIR) wavelengths (700–2500 nm) have been considerably researched,
although NIR hyperspectral imaging has gained importance due to its sensitiv-
ity to metabolic changes related to sugar content [6,7]. NIR spectral signatures
reflect the molecular vibrations of chemical bonds, offering insights into the inter-
nal composition of fruits and enabling the estimation of sugar content with high
accuracy and non-destructively.

Despite the potential benefits of NIR hyperspectral imaging, its widespread
adoption in fruit quality assessment is hindered by the limited availability of
datasets and the high cost of hyperspectral cameras [8]. Acquiring NIR hyper-
spectral data for various fruit varieties and conditions is challenging and resource-
intensive, often requiring specialized equipment and expertise. As an alternative
approach, researchers have explored the spectrum reconstruction from conven-
tional RGB images [8,9]. While this method offers accessibility and practicality, it
may not fully capture the spectral richness and specificity of hyperspectral imag-
ing, limiting its effectiveness in accurate sugar content estimation.

In this study, we propose a novel approach to address the challenges associ-
ated with the limited availability of NIR hyperspectral data. Instead of relying
on RGB images, which capture only three spectral bands (red, green, and blue),
we leverage Visible (VIS) hyperspectral images, which offer spectral information
across a broader range of wavelengths, for the generation of NIR hyperspectral
data. VIS hyperspectral imaging provides more detailed spectral data, allow-
ing for the capture of subtle variations in fruit composition and quality. Also,
the VIS hyperspectral camera is relatively available at a lower cost than the
NIR hyperspectral camera. To bridge the gap between the limited availability
of NIR hyperspectral data and the availability of VIS hyperspectral data, we
employ the improved Cycle Generative Adversarial Networks(CycleGANs) [10]
to facilitate unpaired image-to-image translation. We have incorporated new
architectural changes in CycleGAN and modified its loss function to make the
generation adaptable for hyperspectral images. CycleGANs enable the gener-
ation of synthetic NIR hyperspectral images from VIS hyperspectral images,
thereby enhancing the accessibility and practicality of NIR hyperspectral imag-
ing for fruit quality assessment.

VIS wavelengths capture information about surface color, texture, and pig-
mentation, which can be related to their ripeness and indirectly to their sugar
content, while NIR wavelengths can penetrate deeper into the fruit’s surface, pro-
viding information about internal structures and compositions, such as moisture
content, sugar content, and other attributes relevant to fruit quality. Combining
VIS and NIR hyperspectral imaging takes advantage of both methods’ strengths.
This combination offers a comprehensive overview, potentially leading to more
accurate estimations of sugar content. By combining both VIS and NIR, hyper-
spectral imaging captures a broader range of spectral features, leading to a more
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comprehensive characterization of fruits. However, the cost of acquiring such a
hyperspectral camera which captures from both ranges (400 nm to 1700 nm) is
very high. So to resolve this issue, we concatenate VIS(400 nm to 900 nm) hyper-
spectral data with corresponding generated NIR(900 nm to 1700 nm) hyperspec-
tral data and created a larger VIS-NIR(400 nm to 1700 nm) hyperspectral tensor
as shown in Fig. 1. Note the proposed generative model will not see the optically
unseen in the NIR band however it will learn the feature dynamics within VIS
bands for a given fruit and then map it appropriately to NIR bands thereby
amplifying the useful latent features.

Fig. 1. Visible(VIS) spectral bands, near-infrared (NIR), and band-wise combination
of VIS and NIR to get a composite VIS-NIR tensor.

The primary objective of this research is to leverage the complementary infor-
mation contained within the VIS and NIR spectral regions to improve the classifi-
cation of sweetness levels in fruits-a task of significant importance for agricultural
quality control and consumer satisfaction. To this end, we conduct comprehensive
experiments using three distinct datasets: VIS, NIR, and the combined VIS-NIR.
We perform rigorous experimentation of the proposed method for assessing effec-
tiveness in accurately predicting the sweetness level of various fruits.

This research not only highlights the potential of GANs in hyperspectral
image synthesis but also paves the way for enhanced agricultural product clas-
sification through the innovative use of combined spectral data.

2 Related Works

2.1 Fructose or Sugar Content Estimation Methods

Chemical Methods for sugar content analysis, such as titration and refrac-
tometry, have been the gold standard for many years. Titration provides precise
measurements [11]. Refractometry, on the other hand, measures the refractive
index of a sugar solution, offering a quick and non-destructive means to assess
sugar concentration [12].
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Hardware-Based Methods consist of spectroscopic techniques, including
Near-Infrared (NIR) [13] and Raman spectroscopy [14], which are prominent for
their non-invasive nature and high accuracy. These methods analyze light absorp-
tion and scattering in fruit tissues, correlating specific wavelengths with sugar
levels. Ultrasound is another non-destructive technique that estimates sugar con-
tent by measuring the acoustic properties of a fruit, which vary with sugar con-
centration [15].

Optical Methods include Infrared (IR) imaging [16] which are gaining popu-
larity due to its ease of use and the ability to integrate with portable devices.
IR imaging detects sugar content based on the distinct absorption and reflec-
tion patterns of IR light by sugars [17]. RGB color analysis, while less accurate,
offers a cost-effective and rapid assessment of sugar content by analyzing the
color changes in fruit skins, which correlate with ripeness and sugar levels but
when accompanied with NIR spectroscopy,it gives better results [18].

2.2 Hyperspectral Imaging for Fruit Quality Assessment

Hyperspectral imaging has emerged as a promising alternative to traditional meth-
ods for fruit quality assessment [19–21]. By capturing detailed spectral information
across a wide range of wavelengths, hyperspectral imaging enables non-invasive
and comprehensive analysis of fruit composition and quality attributes. Near-
Infrared (NIR) and Visible (VIS) spectral regions are used for various applications
in fruit quality assessment, including sugar content detection. NIR hyperspectral
imaging has gained prominence for its ability to detect sugar content in fruits based
on the spectral signatures associated with biochemical changes related to sugar
concentration [22]. Despite its potential, the widespread adoption of NIR hyper-
spectral imaging in fruit quality assessment is hindered by the limited availability
of labeled datasets. Before hyperspectral images are given to Deep learning mod-
els, some preprocessing steps such as dimensionality reduction of hyperspectral
images like Principal Component Analysis (PCA) [23] have also been used but
crucial information in spectral bands gets lost and that’s how we came up with the
idea of using a bandwise attention mechanism.

2.3 Generation of Hyperspectral Images

To address the challenges associated with the limited availability of NIR datasets,
researchers have explored GANs for generating realistic spectral images to aug-
ment datasets, thereby addressing the challenge of limited data availability [24].
CycleGAN [10] architecture has been adapted for translating images between dif-
ferent spectral domains without paired training samples. This capability is partic-
ularly relevant for generating NIR images from VIS images, enabling the study of
cross-spectral characteristics without the need for exact spectral matches. Cycle-
GANs, in particular, have been employed to transform images such as translating
RGB to single-band NIR images [25], single-band VIS images from single-band
NIR image [26], RGB to RGB [27] transfer. As per our knowledge, we are the
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first to do a multiband high-fidelity transformation for hyperspectral images. Our
approaches offers a data-driven solution to enhance the spectral resolution of
imaging data and overcome the limitations of traditional hyperspectral imaging
techniques.

For the evaluation of generated images, PSNR (Peak Signal to Noise Ratio) and
SSIM (Structural Similarity) [28] objective evaluation indicators were used. Both
these indicators are related to determining images’ visual quality but hyperspec-
tral images are more about spectral fidelity. So for qualitative analysis of generated
hyperspectral images, we used Spectral Angle Mapper (SAM) distance [29].

Our study builds upon these foundational works by not only generating NIR
hyperspectral images from VIS counterparts using BA-CycleGAN but also by
demonstrating the utility of combined VIS-NIR hyperspectral images for the
classification of fruit sweetness levels.

3 Our Method

3.1 Preliminaries

CycleGAN [10] is designed for unpaired image-to-image translation tasks,
where the network learns to map images from one domain to another without
the need for paired training data. CycleGAN consists of two main components:
a generator and a discriminator.

Generator in CycleGAN aims to translate images from one domain to
another. It consists of two sub-networks: a forward generator G : X → Y that
maps images from domain X to domain Y , and a backward generator F : Y → X
that maps images from domain Y back to domain X. The generators aim to
minimize the cycle consistency loss, ensuring that the translated image can be
reconstructed back to the original domain.

Discriminator in CycleGAN aims to distinguish between translated images
and real images from the target domain. It consists of two discriminators DX and
DY for domains X and Y respectively. The discriminators aim to differentiate
between real and fake images, while the generators aim to fool the discriminators.

3.2 Proposed Method

We have introduced new architectural changes in the original CycleGAN by
incorporating a bandwise attention mechanism and new losses. All these changes
are made so that the proposed GAN architecture can handle the unique char-
acteristics of hyperspectral images, such as its high dimensionality and spectral
information, and also extract both spectral and spatial features.

Network Architecture. The architecture of BA-CycleGAN is shown in Fig. 2.
Following architectural changes have been made in the original CycleGAN [10].

First Layer Modification: We have modified the input layers to accommodate the
depth of hyperspectral images. The first convolution layer is adjusted to accept
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L input channels instead of three for RGB images. This involves changing the
filter shape in the first layer from [filter-height, filter-width, 3, num-filters] to
[filter-height, filter-width, L, num-filters].

Bandwise Attention in the Encoder of Generator: We have introduced a bandwise
attention mechanism at the beginning of the generator of the CycleGAN. The
hyperspectral input image, with its L spectral bands, is fed into the generator.
This input immediately passes through the bandwise attention mechanism. The
mechanism calculates attention scores for each of the L spectral bands. These
attention scores allow the network to emphasize more important bands and de-
emphasize less relevant ones. The attended feature map is fed into the encoding
block. The main objective of integrating this mechanism is to allow the model to
learn intricate dependencies and relationships between different spectral bands,
leveraging the rich spectral information.

Bandwise Attention in the Decoder of Generator: A second instance of the Band-
wise Attention mechanism is placed before the decoding block. It allows the net-
work to refine its focus on spectral relationships after processing through the
encoder and transformer blocks. It gives the decoder a chance to emphasize the
most relevant spectral features just before final image reconstruction.

Depthwise Separable Convolution: The first layer’s parameters increased signifi-
cantly in both the discriminator and generator structure due to more input chan-
nels which leads to the overall increase in trained parameters. We have replaced
convolutional layers with depthwise separable convolution [30] because of its
efficiency in processing high-dimensional hyperspectral data with fewer parame-
ters and computational resources compared to standard convolution. It also facil-
itates effective learning of spectral-spatial features by processing spatial infor-
mation within each spectral band independently before integrating across the
spectrum.

Bandwise Attention Mechanism. is an attention mechanism where we deter-
mine how much each band should be attended. Note that this is different from
the normal attention mechanism in the way that here we are calculating the
attention score for each band rather than each pixel. We performed the below
steps to calculate the attention score.

Data Representation: We represented the hyperspectral image as a 3D tensor
X of shape [n, n, L], where (n, n) is spatial resolution and L is the number of
spectral bands. We can consider each pixel as a vector of L spectral values
corresponding to the L bands at that pixel.

Flatten for Processing: We converted X from [n, n, L] to [N,L], where N = n×n
is the total number of pixels.
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Fig. 2. Architecture of BA-CycleGAN for hyperspectral images. Our proposed Gener-
ator includes a Bandwise Attention Mechanism and convolution layers are replaced by
Depthwise separable convolution.

Calculation of Queries (Q), Keys (K), and Values(V ): We computed the Q, K,
and V matrices as given in Eq. 1, 2, and 3 respectively.

Q = WQX (1)

K = WKX (2)

V = WV X (3)

Here, WQ, WK , and WV are weight matrices of dimensions [N,N ].

Compute Attention Scores: We calculate the dot product between queries and
keys, then scale by

√
N to facilitate gradient stability:

A = softmax
(

QKT

√
N

)
(4)

A is of size [L,L], where each entry aij represents the attention weight of band
i to band j.

Output Computation: We multiplied the attention matrix by the values to obtain
the output:

O = AV (5)

This results in a matrix O of shape [N,L], where each row now contains a
weighted combination of features across all bands based on their spectral infor-
mation and spatial relationships.

Reshape to Original Spatial Dimensions: We reshaped output from [N,L] back
to [n, n, L] to align with the original spatial structure of the image. This reshaped
output was used as input to further layers.
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Loss Function: The generator aims to minimize the following loss functions:

LGAN(G,DY ,X, Y ) = Ey∼pdata(y)[log DY (y)] + Ex∼pdata(x)[log(1 − DY (G(x)))]
(6)

LGAN(F,DX , Y,X) = Ex∼pdata(x)[log DX(x)] + Ey∼pdata(y)[log(1 − DX(F (y)))]
(7)

Lcycle(G,F ) = Ex∼pdata(x)[||F (G(x)) − x||1] + Ey∼pdata(y)[||G(F (y)) − y||1] (8)

However, we have introduced a new loss which is SAM-based spectral con-
sistency loss. SAM calculates the cosine of the angle between the spectral signa-
ture vectors of the transformed NIR hyperspectral image and the original NIR
hyperspectral image. It ensures that the transformed NIR images maintain a
spectral profile that is consistent with true NIR images by measuring how well
the translated image preserves the spectral directionality, regardless of the mag-
nitude, making it less sensitive to illumination differences. Spectral Angle Map-
per (SAM) between two spectral vectors An and Bn in an L-dimensional space
(where L is the number of spectral bands) is calculated for each pixel and then
it is integrated over all the pixels in the hyperspectral image as shown in the
equation below:

LSAM =
1
N

N∑
n=1

arccos
(

An · Bn

‖An‖2‖Bn‖2

)
(9)

Here, N represents the number of pixels, An and Bn denote the L-
dimensional spectral vectors at the n-th pixel for the translated and real images,
respectively.

The total loss function, L, for the BA-CycleGAN incorporating SAM-based
spectral consistency is defined as:

L = LGAN + λcycLcyc + λSAMLSAM (10)

where LGAN represents the adversarial loss, Lcyc is the cycle consistency
loss,LSAM is the Spectral Angle Mapper (SAM) based spectral consistency loss.
And λcyc, and λSAM are hyper-parameters controlling the relative importance
of each loss component.

4 Experiment

4.1 Dataset

The primary goal is to examine the fructose or sugar content level of the fruit.
Two datasets have been utilized for validating our model. The first one is the
DeepHS [31] dataset consisting of VIS and NIR hyperspectral images of Kiwi
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fruit. Each hyperspectral recording from VIS dataset encompasses 224 spectral
bands within the visible range of the electromagnetic spectrum, spanning from
400 nm to 900 nm while in the case of NIR dataset, 252 bands are lying from
900 nm to 1700 nm.

The second dataset is Wax Apple Hyperspectral-Image Open Dataset (WA-
HSI) [32].In this, 136 wax apple samples are separated into slices (1034 slices in
total) for hyperspectral image data collection. These raw hyperspectral images
have 1367 bands from 400 to 1700 nm. To validate the model on this dataset, each
small cube (size 20×20×1367) of HSIs datasets was separated into two cubes
with different band ranges, including 400–900 nm (size 20×20×943) and 900–
1700 nm (size 20×20×424). The numbers 943 and 424 represent the individual
bands from 400–1000 nm and 900–1700 nm. In both datasets, each recording has
Brix values for sugar content analysis. We are going to classify hyperspectral
images into 3 classes(less sweet, perfect, and very sweet) based on Brix levels
which are correlated with the fructose or sugar content level in the fruit.

4.2 Results

For qualitative analysis using the DeepHS [31] dataset, some samples of gener-
ated NIR images from different GANs after training for 120 epochs are visualized
as shown in Fig. 3. The images are just the RGB representation of hyperspec-
tral images, although BA-CycleGAn generated images look visually better than
CycleGAN, but their visual inspection will not be very fruitful here, so we focused
on quantitative analysis by calculating the SAM distance [29] between gener-
ated NIR images and original NIR images as shown in Table 1, and classification
accuracy for fructose or sugar content estimation.

Fig. 3. Sample of generated NIR images from BA-cycleGAN and original cycleGAN
[10]

We combined the generated dataset with the original dataset to test the accu-
racy of sugar content classification for the VIS, NIR, and VIS-NIR hyperspectral
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Table 1. Comparison of SAM distance calculated between generated NIR images and
original NIR images.

Model Dataset SAM Distance in
degrees (Lower is
better)

CycleGAN DeepHS 28.2

WA-HSI21

BA-CycleGAN DeepHS 14.0

WA-HSI7

as shown in Table 2, 3, and 4 respectively. A comparison with the original dataset
and original dataset + data generated from CycleGAN has also been made to
check the reliability of the generated dataset for classification. We have com-
pared the classification results using DeepHS [31], ResNet 50 [30], VGG 16 [33],
DenseNet 121 [34], and EfficientNet B7 [35]. In all these models, the first layer
has been modified to adapt large dimensions of hyperspectral images.

Table 2. Test accuracy(%) for different models for fructose or sugar content when
trained on VIS hyperspectral datasets.

Model Dataset Original
data

Original data +
data from
CycleGAN

Original data +
data from
BA-CycleGAN

ResNet 50 [30] DeepHS 52 54 60

WA-HSI 61 62 62

VGG 16 [33] DeepHS 50 52 55

WA-HSI 55 58 60

DeepHS [31] DeepHS 50 52 55

WA-HSI 61 62 62

DenseNet 121 [34] DeepHS 54 54 58

WA-HSI 62 64 64

EfficientNet B7 [35] DeepHS 50 52 60

WA-HSI 61 62 62

5 Ablation Studies

We study the impact of each mechanism we introduced in CycleGAN. All the
ablation studies are performed on the DeepHS dataset.
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Table 3. Test accuracy(%) for different models for fructose or sugar content when
trained on NIR hyperspectral datasets.

Model Dataset Original data Original data +
data from
CycleGAN

Original data +
data from
BA-CycleGAN

ResNet 50 [30] DeepHS 50 66 70

WA-HSI 62 63 63

VGG 16 [33] DeepHS 40 58 60

WA-HSI 55 59 60

DeepHS [31] DeepHS 30 58 60

WA-HSI 58 58 60

DenseNet 121 [34] DeepHS 50 66 70

WA-HSI 61 62 63

EfficientNet B7 [35] DeepHS 50 66 72

WA-HSI 62 64 64

Table 4. Test accuracy(%) for different models for fructose or sugar content when
trained on VIS-NIR hyperspectral datasets.

Model Dataset Original data +
data from
CycleGAN

Original data +
data from
BA-CycleGAN

ResNet 50 [30] DeepHS 70 77

WA-HSI 71 74

VGG 16 [33] DeepHS 60 67

WA-HSI 77 78

DeepHS [31] DeepHS 60 67

WA-HSI 79 80

DenseNet 121 [34] DeepHS 72 68

WA-HSI 76 80

EfficientNet B7 [35] DeepHS 72 73

WA-HSI 79 80

5.1 Effect of Using SAM-Based Consistency Loss

We assessed the impact of incorporating SAM-based consistency loss into the
BA-CycleGAN framework using the DeepHS dataset. This investigation involved
comparing two configurations: BA-CycleGAN with, and without SAM-based
consistency loss. The introduction of the SAM-based loss significantly improved
the spectral fidelity of generated NIR images, as evidenced by lower average
SAM values in Table 5, suggesting a closer spectral match with real NIR images.
Moreover, the augmented model facilitated superior classification accuracy in
determining fruit sweetness levels, particularly when leveraging combined VIS-
NIR datasets.
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Table 5. Comparison of SAM distance calculated between generated NIR images and
original NIR images when SAM-based consistency loss is removed on.

Model SAM Distance in degrees

BA-CycleGAN without SAM loss 22.7

BA-CycleGAN with SAM loss 14

5.2 Effect of Using Bandwise Attention Mechanism

Bandwise attention mechanism learns better mapping of bands in hyperspectral
images and thus results in better correlated images as shown in Table 6.

Table 6. Comparison of SAM distance calculated between generated NIR images
from BA-CycleGAN and original NIR images when bandwise attention mechanism
is removed.

Model SAM Distance in degrees

without Bandwise Attention Mechanism 24

with Bandwise Attention Mechanism 14

5.3 Effect of Using Depthwise Separable Convolution

As hyperspectral images have very high dimensionality, incorporating them with
CycleGAN results in a very large number of training parameters and thus large
training time. For an input image of size 224*60*60 (from DeepHS dataset), we
have obtained the training parameters for each layer in the discriminator and
generator architecture. Tables 7 and 8, we compare the training parameters for
each layer, when replacing convolution layers with depthwise separable convo-
lution layers. The depthwise separable convolutions have reduced the parame-
ter count by about 89 % and 93% in generator and discriminator architecture
respectively (Table 9).

Table 7. Comparison of training parameters of discriminator architecture with or
without depthwise convolution layers.

Generator Layers Training parameters without
depthwise separable convolution

Training parameters with
depthwise separable convolution

Encoder layer 1 129,088 16,640

Encoder layer 2 73,856 8,960

Encoder layer 3 295,168 34,304

Transformer Block 10,621,440 1,223,424

Decoder layer 1 295,040 35,456

Decoder layer 2 73,792 9,536

Decoder layer 3 258,272 15,200

Total 11,746,656 1,343,520
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Table 8. Comparison of training parameters of generator architecture with or without
depthwise convolution layers.

Discriminator Layers Training parameters without
depthwise separable convolution

Training parameters with
depthwise separable convolution

layer 1 229,440 18,208

layer 2 131,200 9,408

layer 3 524,544 35,200

layer 4 2,097,664 135,936

layer 5 8,193 9,217

Total 2,991,041 207,969

Table 9. Comparison of training time of BA-CycleGAN with or without depthwise
convolution layers.

Model Training time for 120 epochs

without Depthwise Convolution layers 68 h

with Depthwise Convolution layers 52 h

6 Conclusion

Our study advances the generation of NIR hyperspectral images from VIS data
through BA-CycleGAN, highlighting the crucial role of spectral fidelity in hyper-
spectral imaging. By incorporating a SAM-based consistency loss and a bandwise
spectral attention block, we not only enhanced image quality but also signifi-
cantly improved the classification of fruit fructose levels. We have compared the
classification results for VIS, NIR, and VIS-NIR datasets and found that VIS-
NIR perform better than NIR dataset. This research is not limited to fructose
estimation it can be further used for water and other nutrient estimation not only
in fruits but vegetables and leaves also. VIS-NIR bands can be used extensively
in many domains, and so the method can also be extended in areas other than
agriculture. Future efforts could further optimize these modifications, broaden-
ing the potential applications of this technology in environmental monitoring,
mineralogy, and beyond, making advanced hyperspectral imaging more accessi-
ble and impactful across diverse research fields.
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Abstract. This paper focuses on the challenge of searching a shared
feature space for face and voice modalities. Studies of human intelli-
gence have shown that people can link faces and voices. However, com-
putational intelligence research has paid less attention to the relation-
ship between voice and face. The objective of this work is to identify
generic features that are generalized to both visual and audio modalities,
enabling the matching of faces and voices. To achieve a better approx-
imation of the feature spaces of two modalities, a multi-level alignment
approach is applied to their features. For individual sample pairs, a con-
trast learning approach is exploited. For the overall feature distribution,
an optimal transport method is used. The impact of pre-trained weights
on this task is explored. Compared to the simple contrastive learning
method, inclusion of overall feature alignment improves both verifica-
tion and matching accuracy. Extensive experimental results suggest that
the overall distribution alignment is useful for the cross-model feature
matching task. Also, the use of pre-trained parameters can improve the
results in certain situations.

Keywords: Voice-face association · Cross-modal embeddings ·
Optimal transport

1 Introduction

The mapping between voice and face is a crucial aspect of human intelligence.
Therefore, studying the feature correspondence between voice and face is an
essential research component of computational intelligence. The ability to asso-
ciate voice and face has potential applications in areas such as criminal investi-
gation and intelligent dubbing, where the extension of human identity features
is required.

This paper addresses the question of whether machine learning can match the
features of data from different modalities, specifically, faces and voices. Face and
voice cues are among the most commonly used non-invasive and easily acces-
sible cues in various identification tasks [1]. Studies in cognitive science and
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neuroscience have shown that humans tend to integrate audiovisual information
when performing various perceptual tasks [2]. It has also been confirmed that
humans can accurately match unfamiliar facial images with corresponding voice
recordings and vice versa [3,4].

Considerable research has been conducted on the problem of cross-modal fea-
tures. These studies use the feature of one modality to enhance detection [5,6]
or generate data [7,8] in the other modality. The ability to combine informa-
tion from different modalities can improve detection results and is an important
way to bring machine intelligence closer to the way humans process information.
The interaction between information from different modalities is also very impor-
tant for understanding the world. For example, videos can have different mean-
ings with and without background sounds [9]. Methods such as cross-domain
attention have focused on how to extract more effective features in these related
problems. In this paper, we focus on how to measure the similarity of two fea-
ture spaces and, through the design of loss functions, find a generalised space
for features from different modalities.

Face-voice correlation is a cross-modal problem that has also been investi-
gated. Some studies [5,10,11] use contrast learning to bring the corresponding
cross-modal features of the samples closer together, while pushing the features
of different people further apart. In addition, some researchers [12,13] propose
to implicitly limit the differences between the two distributions by attaching a
classifier to the feature extraction network. Wen et al. [12] suggest that using
supervision from other information can eliminate differences between different
modal features, and Nagrani et al. [13] approach the audio-face matching task
as a multi-classification problem. An alternative method proposed by Cheng et
al. [14] is to use adversarial learning. They introduce a novel adversarial deep
semantic matching network that uses a discriminator to bridge the gap between
voice and face features while maintaining semantic consistency.

However, these methods do not consider the alignment of the overall distribu-
tion, which we believe is crucial for this task. In this paper, both single-sample
and overall alignment is applied to achieve the matching between facial and
vocal modalities. Different from the implicit distribution constraint in existing
methods, Optimal Transport (OT) is used to directly align the overall feature
distributions. Furthermore, to make use of the supplementary information, pre-
trained parameters are employed during the training process, and the effect of
these parameters is analysed.

The remainder of this paper is structured as follows: Sect. 2 provides an
introduction to related studies. Section 3 describes the methods used in the
paper, including single sample pair feature alignment, overall distribution align-
ment, and combination of the two. Specific experimental details are presented
in Sect. 4. In Sect. 5 we analyse and discusse the experimental results, followed
by conclusions in Sect. 6.
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2 Related Work

This paper focuses on establishing a correlation between two modal features to
obtain a generalized feature. Previous studies have identified three types of meth-
ods for feature alignment. The first involves directly pulling together features of
the same person using contrastive methods [5,10,11]. The second involves using
classifiers attached to the feature extraction network to implicitly achieve a limit
[12,13]. Finally, adversarial methods can eliminate differences between features
of several modalities by adding a classifier [15].

Feature extraction is a crucial aspect of this task. As various modal fea-
tures possess distinct characteristics, the feature extraction network typically
varies across modalities [16–18]. A single stream network can be used for feature
extraction after specific data processing [19]. In this work, the encoder networks
are selected based on the properties of different modal data to extract more
representative features.

The optimal transport method has been used in several situations. It has vari-
ous applications, such as image processing, machine learning, statistics, and com-
putational fluid dynamics [20,21]. In these studies, data from different datasets
are considered as separate domains. Data from one domain is then transferred to
another to achieve good recognition results on both domains. Previous study
[22] has showed that optimal transport is an effective way to realize domain
adapation and the convergence is regarded.

In [23] optimal trasport is applied to realise cross-domain speaker verification,
which is close to this study. Because they both focus on the way to eatract
shared human features through different field of datas. In this study, the concept
of ‘different domain’ is extended to ‘different modality’. Optimal transport is
used to reduce the distance between the feature spaces of different modalities,
thereby achieving domain alignment in this cross-modal problem.

Deep migration learning algorithms based on domain adaptive theory typ-
ically rely on pre-trained models [24,25]. The function space of deep networks
is very large, and the pre-training process can effectively reduce the allow-
able function space, thus greatly reducing the generalisation error on the target
domain. This study borrows the idea to better extract features from different
modality. In comparison to the existing large-scale face dataset, which contains
over 9,000 individuals [26,27], the current voice-face corresponding dataset is rel-
atively small, with just over 1,200 individuals [28]. The utilization of pre-trained
parameters incorporates information from other extensive datasets, enabling the
features to more effectively represent the original data.

3 Cross-Modal Feature Alignment Task

Deep learning methods involve encoding the original data using deep neural
networks to obtain high-dimensional features. Existing research suggests a cor-
relation between an individual’s facial and vocal characteristics, suggesting the
potential to align the feature space of the two modalities. The available dataset
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Fig. 1. The task presented in this paper. The top diagram displays the corresponding
image and sound, while the bottom diagram represents the problem to be solved.
The model learns the shared feature space between the two modalities and eventually
determine whether a pair of samples belongs to the same person, or which of the two
images (sounds) corresponds to the given sound (image).

comprises pairs of facial images and sounds. These pairs were obtained by cap-
turing videos from the web and extracting image frames at regular intervals.
By training a deep neural network on ‘true’ voice-face pairs and restricting the
features in the two modes to be similar, the high-level features of the two modes
share a common space. Then it can be determined whether a given pair of
face and voice belongs to the same person or which face from a set corresponds
to a particular voice. Figure 1 is a schematic representation of this problem.

The method utilises two distinct neural networks to extract facial and vocal
features separately. Subsequently, feature alignment is performed. Each facial
image xf and voice signal xv are encoded separately into features by neural
networks: ef = f(xf ), ev = g(xv), f(.) and g(.) are deep neural networks used to
extract features from images or audio. To achieve cross-modal feature matching,
the distribution of ef and ev should be close to each other.

4 Multi-level Alignment of Voice and Face Features

To efficiently extract features from different modalities, two independent net-
works are used to encode input data. Each network is responsible for extracting
features for a specific modality, and the output of each encoder is guaranteed
to have the same feature dimension. After extracting the features, methods are
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Fig. 2. Representation of the overall structure. The image and audio signals are ini-
tially encoded using different encoders to obtain features of the same dimension. These
features are then aligned using the methods described in Sect. 3. The aligned features
are used for subsequent tasks where their similarity is compared.

implemented for feature alignment to establish correspondence between different
modalities. The overall network structure is shown in Fig. 2.

4.1 Single-Sample Feature Alignment Using Contrastive Method

A very intuitive idea to realize the correspondence of features between two
modalities is to use a comparative learning approach. For the features (f1, v1),
(f2, v2), . . . , (fn, vn) of different individuals on two modalities, it is neces-
sary to reduce the distance between (fi, vi) and increase the distance between
(fi, vj), i �= j at the same time, and this can be achieved by designing the fol-
lowing loss function:

Lc(vi, fi) = −log
exp(vT

i fi/τ)
exp(vT

i fi/τ) +
∑

fj∈NF
i

exp(vT
i fj/τ) +

∑
vj∈NV

i
exp(vT

j fi/τ)
,

(1)
In each epoch with size N, there are N pairs of positive samples and 2N(N − 1)
pairs of negative samples. For a pair of positive sample (vi, fi), each feature can
product (N − 1) pair of negative samples: (vi, fj)|(fj∈Nv) and (vj , fi)|(vj∈Nf ),
thus there are 2(N − 1) negative distances, which need to be pull further.

This method only considers the direct correspondence of the sample features
of the two modalities and does not take into consideration the alignment of the
samples to the overall distribution. This can lead to slow convergence of the
model and the possibility that (fi, vi) may be similar even when i �= j. If this
happens, using the above training method will lead to poorer model results.
Therefore, it is necessary to include the overall distribution alignment method.
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4.2 Overall Distribution Alignment Using Optimal Transport

Optimal Transport (OT) aims to find a global optimal transport plan (or cou-
pling) to convert one probability distribution shape into another shape with the
least effort [29]. It focuses on efficiently transferring data between two distri-
butions while maintaining a constant level of quality. OT defines an effective
geometry-aware Wasserstein distance and it preserves the shapes of probability
distributions during adaptation.

To achieve optimal transmission, it is necessary to solve a mathematical
problem known as the ‘cost optimization problem’. The objective is to identify
an optimal transmission strategy that minimises the cost of transmitting data
between two given distributions. In each epoch, the distance of different features:
(fa, vb) is measured by Euclidean distance:

D(fa, vb) = ‖fa − vb‖2. (2)

γ is sovled to minimize:

L∗
OT =

∑

a,b

D(fa, vb)γ(fa, vb). (3)

The difference of distributions between two modalities can be measured by the
following loss function:

LOT (f, v) = min
γ∈Π(f,v)

∑

a,b

D(fa, vb)γ(fa, vb). (4)

L is the distance between two features, γ is the transport plan (or coupling)
between the domains of two modalities.

4.3 Multi-level Feature Alignment

Both alignment methods are applied during the training phase. When consid-
ering only Lc, the symmetry in the overall distribution is neglected. Similarly,
when only LOT is considered, the direct sample correspondence information is
missing. Therefore, these two kinds of losses need to be utilized simultaneously
in the network training process. A parameter α is used to adjust the weights of
the two parameters and the final loss function is:

L = Lc + α ∗ Lot. (5)

In this way, both the direct matching of the feature of sample pairs and the
alignment of two modalities features distributions are used. During training, α
needs to be dynamically tuned to balance the effects of the two loss functions
(Fig. 3).
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Fig. 3. A schematic representation of feature matching. Different colours are used to
distinguish between individuals, while different shapes represent different modalities.
After training, the features of different modalities of the same individual should be
similar, whereas there should be noticeable differences between the features of different
individuals.

4.4 Verification or Matching Based on Feature Similarity

Verification or matching tasks are performed by comparing the similarity of
these features. During feature matching, specific similarity metrics are used to
measure the degree of similarity between face images and speech segments. These
metrics, such as Euclidean distance, cosine similarity, and correlation coefficient,
quantify the similarity between two features and aid in determining whether they
belong to the same person. A threshold is set to determine whether two features
are considered to belong to the same person. The optimal threshold should be
determined based on historical data and practical application scenarios. Cross-
validation can be used to find a suitable threshold.

5 Preparation for Feature Extraction and Alignment

5.1 Dataset

The VoxCeleb [28] dataset was used in our experiments. It comprises 21,063
video clips of 1251 celebrities, extracted from videos uploaded to YouTube.
The dataset is gender-balanced and includes speakers of different ethnicities,
accents, professions, and ages. The face images are generated by cropping the
video frames using facial bounding boxes. The voice clips are extracted from the
video soundtracks with a 16kHz sampling rate at 16-bit PCM.

The test set is annotated with various demographic attributes to create five
testing groups: the unstratified group (U), gender stratified group (G), nation-
ality stratified group (N), age stratified group (A), and gender and nationality
stratified group (GN). Table 1 displays the composition of each subgroup. In
the experiments, each letter corresponds to a group where the individuals to be
discriminated are from the same classification. For instance, in a group G exper-
iment, the images and voices that need to be judged as belonging to the same
person are either all from males or all from females. Matching and verification
tasks are conducted under different demographic partitions.
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Table 1. Composition of the dataset. The letters in brackets correspond to the group-
ings in the following table of experimental results.

Class Gender(G) Ethnicity(E) Age group(A)

m. f. 1 2 3 4 5 6 ≤19 20 s 30 s 40 s 50 s 60 s 70 s ≥80

Number 150 100 1 10 19 13 189 18 2 27 77 58 43 21 14 8

The original face image is used as input for the image part. Each image is
cropped to 122 * 122 and randomly flipped horizontally. The sound part uses 80-
dimensional MFCCs as input features. These are extracted from a 25-millisecond
window with a frame shift of 10 milliseconds for a 2-s randomly cropped segment
of each audio clip. SpecAugment [30] is applied as an augmentation step to the
log mel spectrogram of the samples. The algorithm randomly masks 0 to 5 frames
in the time domain and 0 to 10 channels in the frequency domain.

5.2 Network Architecture

Face Feature Extractor. ResNet-34 is an important network structure in the
field of deep learning and belongs to the ResNet (residual network). This network
structure effectively solves the problems of gradient vanishing and representation
bottleneck in deep neural networks by introducing residual connections, thus
improving the depth of the network and the performance of the model. In the
experiments, the use of ResNet-34 was able to achieve good face recognition on
the target dataset, proving that the features extracted by this network differed
between different people and could be used in this task.

Voice Feature Extractor. ECAPA-TDNN is a neural network model proposed
by Desplanques et al. [17], which is mainly used for speaker recognition. ECAPA-
TDNN utilizes an extended TDNN-x-vector for voice feature extraction, which
consists of multiple frame-level TDNN layers, a statistical pooling layer and two
sentence-level fully connected layers, as well as a layer of softmax with a loss
function of cross-entropy. ECAPA-TDNN can accept input of any length and
merge frame-level features into whole-sentence features. In addition, Wav2vec
and HuBERT are examined as voice encoders to assess the robustness of the
proposed method. The fine-tuning process is described in detail in Sect. 6.

5.3 Training Process

All models are trained with a step learning rate varying between 1e−8 and 1e−3
in conjunction with the Adam optimizer. To prevent over fitting, we apply a
weight decay on all weights in the model of 2e−5. The mini-batch size for training
is 64. To prevent false transports, α in L is 0 for the first 2000 epochs, then α
is set to 0.5. To find the effect of whether the model is pre-trained, we use pre-
trained parameters for the face feature extractor in the training phase. In the
results table, learning with pre-trained parameters is marked with ‘*’.



Unsupervised Search and Correspondence for Generic Feature Spaces 227

6 Experiment Result and Discussion

6.1 Evaluation Protocols

In the evaluation process, the test data were divided into different groups. Fol-
lowing the criteria in the study [11], the testing process was conducted on seen-
heard samples and unseen-unheard samples, under which the test data were
further divided into different groups. In order to investigate the effect of spe-
cific attributes on this task, these attributes are restricted in the selection of
negative test samples, where positive and negative samples in the corresponding
grouping need to be consistent in the following attributes: gender (G), national-
ity (N) and age (A). The gender and nationality labels are taken from Wikipedia,
and the age grouping is obtained by applying an age classifier to the face frames
in the videos and averaging them for each video.

The correspondance of features from different modalities are evaluated in terms
of two tasks: validation andmatching, and the specific settings are described below.

Matching. We are were given a probe from one modality along with two alter-
native samples from another modality one of which was a sample from the same
person as the probe, and the other an interfering sample from another person. Our
goal is to determine which alternative sample matches the sample. To measure the
accuracy of the match, we report the accuracy of the match from voice to face (V-
F) and the accuracy of the match from face to voice (F-V), respectively.

Verification. We are given a speech clip and an image of a face. Our task is to
determine whether they belong to the same identity. The judgment is based on
comparing the similarity of the two input features with a given threshold. Using
different thresholds, we can get different false acceptance and false rejection rates.
The final performance is reported by the Area Under the ROC curve (AUC).

6.2 Quantitative Results and Discussion

The verification result is shown in Table 2, and the matching result is in Table 3.
The experimental results are analysed and discussed below.

Effect of Overall Distributional Alignment. The results of only consider-
ing Lc are labelled ‘Constrastive’ and the results of training with overall loss are
labelled ‘Overall Align’. Compared to contrastive learning only, the accuracy of
face-voice matching and verification of seen individuals has improved. In the ver-
ification results, the accuracy of ‘Overall Align’ is better than ‘Constrastive’ in
every subgroup. In the groupings with no restrictions (labelled ‘-’), the verification
accuracy increased from 60.7 to 69.6 after the addition of the overall distribution,
and the matching accuracy of F → V increased from 69.4 to 74.7. The comparison
of the results is displayed intuitively in Fig. 4. The addition of the overall domain
alignment method improves recognition in both tasks compared to the absence
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Table 2. Experiment results (Verification). Letters in the table indicate different con-
straints (e.g. A, G) and ‘*’ indicates that pre-trained parameters were used in the
training.

Method unseen-unheard seen-heard

– G N A GNA – G N A GNA

PINs [11] 78.5 61.1 77.2 74.9 58.8 87.0 74.2 85.9 86.6 74.0

DIMNet [12] 83.2 71.2 81.9 78.0 62.8 94.7 89.8 93.2 94.8 87.8

SSNet [19] 78.8 62.4 53.1 73.5 51.4 91.2 82.5 89.9 90.7 81.8

Constrastive 60.7 55.2 60.7 59.4 54.7 91.5 85.4 90.9 91.4 84.5

Constrastive* 61.2 55.8 61.7 60.2 54.7 92.6 88.0 92.0 92.6 87.0

Overall Align 69.6 61.4 69.1 67.9 59.4 91.7 88.7 91.5 91.7 86.9

Overall Align* 60.9 55.3 61.1 60.2 55.1 94.3 91.0 94.0 94.6 90.4

Table 3. Experiment results (Matching). Letters in the table indicate different con-
straints (e.g. A, G) and ‘*’ indicates that pre-trained parameters were used in the
training.

Method V → F F → V

– G N GN – G N GN

LAFV [31] 78.2 62.9 76.4 61.6 78.6 61.6 76.7 61.2

CID [5] 78.3 64.7 77.8 64.2 77.6 64.7 77.2 64.1

Constrastive 71.6 63.2 72.5 61.4 69.4 60.5 70.0 60.9

Constrastive* 72.5 62.1 72.6 62.3 72.4 63.3 72.6 61.4

Overall Align 73.3 63.3 73.2 62.2 74.7 65.5 75.2 64.0

Overall Align* 71.6 62.5 71.9 61.4 72.9 64.2 73.8 62.9

Table 4. Comparision of different vocal encoders. The verification results on unseen-
unheard samples is compared.

Model Method – G N A GNA

ECAPA-TDNN Contrastive 60.7 55.2 60.7 59.4 54.7

Overall Align 69.6 61.4 69.1 67.9 59.4

wav2vec Contrastive 81.4 67.8 81.4 78.7 63.7

Overall Align 84.4 60.4 85.0 81.4 58.4

HuBERT Contrastive 82.3 71.9 81.6 79.3 66.2

Overall Align 84.2 64.8 84.6 80.9 60.5

of this method under several different conditions, proving the necessity of overall
alignment in the cross-modal feature matching task.

In order to evaluate the robustness of our method, we wxplored in the experi-
ments more vocal encoders: wav2vec [32] and HuBERT [33], which are two models
with state-of-the-art performance in speaker recognition task. The fine tuning pro-
cess for wav2vec and HuBERT follows the step in the previous study. [34]. The veri-
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fication performance of unseen-unheard samples is compared in Table 4. Thanks to
the strong ability of the transformer structure, the accuracy has largely increased
in each verification group. With Optimal Transport, the verification result in “-
”, “N” and “A” groups are all increased, indicating its necessity in this task. The
application of wav2vec and HuBERT is quite simple in the experiments, the way
to use these encoders needs to be tuned carefully in future works.

Fig. 4. Comparison of ‘Contrastive’ and ‘Overall Align’ on verification and matching
task. The overall distribution alignment can effectively improve the results on both
tasks under different settings.

Effect of Pre-trained Parameters. The results with and without pre-trained
model are compared. The results of learning with pre-trained parameters is labeled
with ‘*’ in Table 2 and Table 3. After applying the pre-trained parameters, the veri-
fication accuracy of the seen-heard in each experimental group showed an improve-
ment of 1% to 2%. Moreover, in these subgroups, using overall alignment is more
effective than using contrastive method alone, whether or not pre-trained parame-
ters are used. The results is displayed intuitively in Fig. 5. The results indicate that
pre-trained parameters can improve the search of generic feature space with lim-
ited data availability. Further research is needed to determine the details of their
use. This component may be utilized to reference knowledge pertinent to zero-shot
learning, thereby facilitating further optimization.
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Fig. 5. Comparision of training with and without pre-trained model on verification
task. Using pre-trained parameters improves verification results when only the com-
parison method is used. The overall distribution alignment is useful when pre-trained
parameters are used.

Comparison with Prior Study. Compared to the existing methods in the
table, our method has an advantage in the final test results. The accuracy of
verification and matching on the test group of seen-heard samples with more
constraints (‘GNA’ group in the verification task and ‘GN’ group in the matching
task) is better than other methods listed in the table. This demonstrates the
effectiveness of our method in achieving feature correspondence between two
modalities. Furthermore, our method does not require any additional identity
information, making it less demanding than existing methods [12].

7 Conclusion

For the unsupervised cross-modal feature matching problem, we add alignment
to the overall distribution of features in addition to the direct alignment of corre-
sponding face images and voice features using contrast learning. The experiment
results indicate that optimal transport can assist the process of contrast learn-
ing by aligning distributions, and has been shown to support the search for a
generic space across different modalities. Pre-trained parameters can also be
useful in specific situations, but may lead to overfitting issues. Further research
should focus on improving the generalisation of the model to improve the recog-
nition of unknown samples. In the future, we will try to improve the results by
exploring different network structures, model training methods and model gen-
eralisation techniques.
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Abstract. This work aims to promote Chinese opera research in both
musical and speech domains, with a primary focus on overcoming the
data limitations. We introduce KunquDB, https://hualizhou167.github.
io/KunquDB, a relatively large-scale, well-annotated audio-visual dataset
comprising 339 speakers and 128 h of content. Originating from the Kunqu
Opera Art Canon (Kunqu yishu dadian), KunquDB is meticulously struc-
tured by dialogue lines, providing explicit annotations including charac-
ter names, speaker names, gender information, vocal manner classifica-
tions, and accompanied by preliminary text transcriptions. KunquDB pro-
vides a versatile foundation for role-centric acoustic studies and advance-
ments in speech-related research, including Automatic Speaker Verifica-
tion (ASV). Beyond enriching opera research, this dataset bridges the gap
between artistic expression and technological innovation. Pioneering the
exploration of ASV in Chinese opera, we construct four test trials consid-
ering two distinct vocal manners in opera voices: stage speech (ST ) and
singing (S). Implementing domain adaptation methods effectively miti-
gates domain mismatches induced by these vocal manner variations while
there is still room for further improvement as a benchmark.

Keywords: Kunqu Opera · Dataset · Multi-modal · Speaker
verification · Cross-domain

1 Introduction

Chinese opera, or Xiqu, is a distinguishable and traditional art form that has
gained worldwide recognition. Kunqu Opera, Beijing Opera, and Cantonese
Opera have been proclaimed World Intangible Cultural Heritage, highlighting
their exceptional artistic contributions and rich cultural heritage. Chinese opera
is a confluence of song, speech, mime, dance, and acrobatics, bound together by
theatrical conventions that differ significantly from Western opera [20].

As a distinctive form of performing arts, Chinese opera diverges from con-
ventional speech and typical singing. In the realm of speech research, opera
provides a distinctive experimental ground, given its intricate fusion of speech,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15323, pp. 233–249, 2025.
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music, and theatrical elements. The multifaceted acoustic expressions within
opera voices create an exceptional context for in-depth exploration in speech
research. Regardless, previous research on Chinese opera has predominantly
stemmed from musical and literary perspectives, relying on traditional method-
ologies rather than integrating state-of-the-art technical tools. The absence of
automated deep-learning tools has led to a heavy reliance on manual data
pipelines for collecting and annotating Chinese opera datasets. Consequently,
existing opera datasets [5,6,12,16] face limitations in terms of scale and annota-
tion richness, typically covering only a few hours [6,16] and providing genre infor-
mation exclusively [6]. In contrast to the comprehensive annotations provided in
speech and singing datasets, which include speaker labels, text transcriptions,
phoneme-level durations, and pitch information, existing Chinese opera datasets
lack comparable richness.

The scarcity of detailed annotations poses a significant obstacle for numer-
ous research tasks on opera data. This obstacle is particularly pronounced for
tasks requiring comprehensive annotations, including automatic speaker recogni-
tion for speaker label prediction, Automatic Speech Recognition (ASR) for text
transcription retrieval, speaker diarization for role detection, as well as speech
and singing voice synthesis. Meanwhile, speech-related research predominantly
focuses on conventional speech. Existing open-source models designed for various
speech tasks, such as speaker diarization, exhibit inadequate robustness when
applied to opera data. The complex acoustic characteristics in opera voices pro-
vide a diverse testing ground for evaluating the robustness of speech models.
The absence of automated tools further obstructs large-scale data collection and
cleaning, restricting access to diverse and abundant datasets. This dilemma cre-
ates a cycle that impedes progress in data availability, hindering the development
of advanced tools for digitizing opera research.

In response to the challenges posed by insufficient data and limitations of
existing models in the field of Chinese opera, our primary objective is to create
a symbiotic relationship between data and models. To achieve this, we present a
comprehensive and publicly accessible audio-visual dataset characterized by its
richness and scale. This resource is designed to lay the groundwork for develop-
ing specialized automated tools applicable to Chinese opera, thereby facilitating
advancements in the study of this art form. Narrowing down from the landscape
of Chinese traditional opera, we focus on one exquisite domain, Kunqu Opera.
Reputed as the mother of Chinese operas, Kunqu Opera boasts a history span-
ning over 600 years [10], giving rise to numerous operas, including Beijing Opera.
In alignment with [5], we selectively choose classic and authoritative audio-visual
materials sourced from the Kunqu Opera Art Canon (Kunqu yishu dadian)1 [39]
to ensure both quantity and quality. The source video undergoes sentence-level

1 Note: After purchasing the book, we negotiated with the publisher and secured their
authorization for its utilization in Kunqu Opera research. The publisher explicitly
stated that the book’s digital resource can be employed solely for scholarly or research
endeavors upon the approval of the publisher. It may not be illegally disseminated
or used for commercial purposes.
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segmentation, generating preliminary text transcriptions. Subsequently, we pro-
ceed with speaker annotation and explicitly categorize each utterance as either
stage speech (ST ) or singing (S) based on vocal manner. Ultimately,KunquDB2,
the curated audio-visual dataset comprises 339 performers, totals approximately
128 h, with stage speech and singing voices each constituting about half of the
dataset. As an audio-visual dataset, it is applicable in various scenarios, including
ASV, ASR, speaker diarization, singing voice synthesis, person re-identification
and multi-modal understanding.

Building on KunquDB, we investigate automatic speaker verification within
the Kunqu Opera context. We aim to provide insights that enhance subsequent
synthesis efforts, accommodating variations in role types and vocal manners.
Speaker verification in Kunqu Opera bears similarities to the task in [2], involv-
ing speech from interviews (typically calm and quiet) and speech from movies
(with varying emotion and background noise) across different domains. This
yields a cross-domain speaker verification challenge induced by vocal manner, an
internal factor of the speaker [23]. To tackle cross-domain issues, we implement
domain adversarial training, leveraging domain prediction to obtain speaker-
discriminative and domain-invariant representations. Furthermore, we employ
the batchwise Siamese training strategy to maintain consistency across different
vocal manners for the same speaker. Experimental results validate the efficacy
of the domain adaptation methods.

Our main contributions are summarized as follows:

– We curate KunquDB (See Footnote 2), a comprehensive audio-visual dataset
specifically tailored for Kunqu Opera. Its large scale effectively mitigates data
shortages and fosters a positive feedback loop between data and tool models.

– To the best of our knowledge, we are the first to explore ASV within Chinese
opera, addressing mismatches across stage speech and singing. The implemen-
tation of domain adaptation methods sets a benchmark for future research.

2 Vocal Distinctions in Chinese Opera Versus Speech

The aural aspect of Chinese traditional opera significantly differs from ordinary
spoken and contemporary singing, including textual structure, pronunciation,
intonation, vocal manner, and overall expressive forms. (1) The textual dimen-
sion of Chinese traditional opera involves two types: song lyrics (changci) for
expressing emotions and stage speech (nianbai) for advancing the narrative [40].
Within the text, two linguistic levels emerge: classical Chinese (wenyan wen),
an archaic written language, and vernacular (baihua), which includes standard
spoken Mandarin or regional dialects with distinct phonetic variations. (2) From
a melodic perspective, Chinese opera draw its musical compositions from a pre-
existing repertoire of tunes. Unlike Western opera, where a designated “com-
poser” is assigned, in Chinese opera, the scriptwriter selects tunes deemed suit-
able for the dramatic context from the repertoire and crafts the accompanying
2 https://hualizhou167.github.io/KunquDB.

https://hualizhou167.github.io/KunquDB
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text. Musical notation is absent; instead, the script specifies tunes by name,
with the text intended to be sung accordingly [47]. Notably, stage speech and
singing exhibit considerably higher Equivalent Sound Levels (Leq) compared to
regular speech [10]. (3) From a vocalization standpoint, Chinese opera utilizes
two vocal techniques: “false-voice” (jiasangzi), executed in falsetto, and “true-
voice” (zhensangzi), produced by vocal cord vibration. Falsetto serves various
purposes. Firstly, male actors, exemplified by renowned figures like Mei Lan-
fang, portray female characters in Chinese opera, employing falsetto to imitate
the female voice [17]. Secondly, falsetto is believed to ideally produce essential,
extended sounds pronounced with a nearly closed mouth [40].

Fig. 1. Mel spectrograms with overlaid pitch contours for singing (a), stage speech (b),
and regular speech (c).

Figure 1 displays Mel spectrograms with overlaid pitch contours for ran-
domly selected utterances representing singing, stage speech, and regular speech
(from an external speech dataset). Singing and stage speech consistently exhibit
higher frequency compared to regular speech. Moreover, singing showcases more
dynamic pitch variation than stage speech, highlighting two distinct acoustic
characteristics in Chinese opera.

3 Related Works

3.1 Chinese Opera

Open-source datasets for Chinese opera remain limited. While [16] and [6] pro-
pose datasets for opera genre and Cantonese singing genre classification, respec-
tively, these datasets are not publicly accessible. Due to the lack of publicly
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available corpora, [19,45,48] targeting opera genre classification, collect data
individually for personalized experiments. Typically, these datasets consist of
individual instances structured as audio files paired with corresponding Chinese
opera genre labels. On the other hand, open-access datasets have driven advance-
ments in academic research. For example, the CompMusic Beijing Opera corpus
proposed in [32] aids [35] in acquiring Beijing Opera percussion patterns for tran-
scription and recognition. Similarly, the unaccompanied singing data released
by [1] provides the foundation for [44] to analyze pitch histograms and vibrato
statistics in Beijing Opera singing.

Due to the lack of automatic tools for data collection and cleaning, existing
opera datasets [5,6,12,16] are limited in scale and annotation richness. Typically
spanning only a few hours [6,16] and offering plain labels [6], they are insufficient
for downstream recognition tasks like ASV and singing speech recognition in the
field of Chinese opera. In the intersection of opera and speech-related research,
most efforts are focused on synthesis, with reliance on the only publicly accessible,
well-annotated yet small-scale dataset, “Jingju a cappella singing” [12]. It serves
as the basis for subsequent neural network-based opera synthesis by [25,41,42,49].
While [41] and [42] pioneer neural network-based synthesis using the DurIAN [46]
framework, [49] introduces OperaSinger, based on the FastSpeech2 [30] frame-
work, exploring novel data augmentations within this small-scale dataset [12]. In
a related vein, [25] attempts to transfer popular singers’ timbre to Chinese opera
using the VITS [18] model with the same dataset [12].

3.2 Automatic Speaker Verification

Automatic Speaker Verification (ASV) aims to verify whether a given utter-
ance (test utterance) matches the claimed identity by comparing it with the
speaker’s known utterance (enrollment utterance). The rise of DNNs in recent
years has triggered the evolution of ASV systems from traditional probabilis-
tic models [7,31] to deep embedding models [9,34]. A typical DNN-based ASV
architecture consists of key components, including: (i) neural network back-
bone [9,13,37] (encoder), (ii) pooling layer [24,33,38] for temporal aggrega-
tion, (iii) loss function [8,36] for training optimization, (iv) scoring strat-
egy [26] for assessing similarity between embeddings.

The neural network backbone, as the encoder, extracts frame-level features
from the input utterance. This backbone has evolved from architectures like
2D Convolutional Neural Networks (CNNs) [37], Time Delay Neural Networks
(TDNNs) [9], and Transformers [13]. Currently, 2D CNNs with ResNet [14] are
the most widely adopted. The pooling layer aggregates frame-level features into
a fixed-length, utterance-level representation, which is then projected linearly
to generate the speaker embedding. Common temporal aggregation techniques
include average pooling [38], statistical pooling [33] and attentive pooling [24].
The loss function is the optimized objective during training, such as the Additive
Margin Softmax (AM-Softmax) [36] and ArcFace [8]. The scoring strategy, or the
back-end model, measures the similarity between enrollment and test utterance
embeddings for verification. Typically, cosine similarity or Probabilistic Linear
Discriminant Analysis (PLDA) [26] are utilized.
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Despite significant progress in ASV, speaker embeddings’ robustness falters
with domain shifts, facing challenges from real-world variations [23], resulting in
performance degradation. For extrinsic factors, [3] and [27] target noise and far-
field conditions for more robust voiceprint representation. Addressing internal
factors, [29] and [2] investigate cross-age and diverse emotional scenes, respec-
tively, to further enhance the robustness.

4 KunquDB Dataset (See Footnote 2)

To obtain authentic singing data for Kunqu Opera and ensure an ample dataset,
we leverage audio-visual materials from the authoritative Kunqu Opera Art
Canon (Kunqu yishu dadian) (see footnote 1) [39] as reliable sources. The source
videos in this collection [39] contain credits, dialogue lines, and information about
vocal manner categories (ST or S), all of which are hard-coded directly or indi-
rectly.

4.1 Overall: QAs About KunquDB

What is KunquDB? KunquDB is a Kunqu Opera audio-visual dataset derived
from videos featuring manual annotations for opera character names, speaker
identity (ID) labels, gender information, singing/stage speech category labels,
and preliminary text transcriptions.

Why is Manual Labeling Required? Due to the nature of Kun Opera perfor-
mances, where the entire stage is often captured rather than close-ups of charac-
ters, human faces occupy limited space in the frame. Moreover, performers’ heavy
makeup and theatrical costumes further obscure facial features, particularly the
waist-length beards (rankou) [40] worn by male characters typically completely
conceal their mouths. Consequently, conventional pipelines, as used in [21,23],
involving face detection, tracking, verification, and audio-video synchronization
for mouth movement and speech, are unsuitable for these opera videos.

How to Get KunquDB? The book [39] purchase grants access to the digital
source video data in a supplementary disc. It is the user’s responsibility to get the
approval from the publisher to conduct research for non-commercial purposes.
We provide annotated data, including segment start and end timestamps, along
with associated information, such as character names, speaker names, and pre-
liminary text transcriptions. The open-source annotations and processing scripts
can be accessed and downloaded online (see footnote 2).

4.2 Data Collection Pipeline

Step 1: Video Segmentation. We utilize VideoSubFinder3, in conjunction
with PaddleOCR4 to extract hardcoded subtitles from source videos, yielding
3 https://sourceforge.net/projects/videosubfinder.
4 https://github.com/PaddlePaddle/PaddleOCR.

https://sourceforge.net/projects/videosubfinder
https://github.com/PaddlePaddle/PaddleOCR


KunquDB: An Attempt for Speaker Verification 239

timestamps for each dialogue line and corresponding text transcriptions. Using
ffmpeg5, we then segment the videos into clips based on the acquired timestamps,
resulting in individual video clips for each dialogue line.

Step 2: Manual Labeling. The manual annotation process includes catego-
rizing vocal manner and active speaker annotations. Vocal manner annotation is
straightforward, with stage speech and singing categorized based on the font style
in the original video subtitles. Active speaker annotation is detailed below and
is divided into (i) discriminative speaker tag, (ii) tag-character annotation, and
(iii) character-performer mapping based on each play. Eventually, the dataset is
structured per dialogue line, encompassing all lines delivered by each performer
across different plays.

i We recruit 20 graduate students to assign active speaker tags, each annotating
an average of 8.5 h of source videos. Participants use XnView MP6 software
to tag active speakers for each line while watching the complete source video.
They adhere to a naming format like spk_01 to ensure consistency and avoid
repetition within each play. Overlapping speech segments are instructed to
be discarded.

ii Match the active speaker tags akin to spk_01 obtained in i with the corre-
sponding characters in each play.

iii Extract character-performer mapping by digitizing the embedded credits in
source videos.

Table 1. Dataset statistics for KunquDB

Types of Utterances Stage Speech Singing

# of speakers 288 + 50 288 + 1

# of videos 339 + 5 339 + 2

# of utterances 60066 17902

# of hours 67.46 60.88

Avg # of videos per speaker 3 3

Avg # of utterances per speaker 178 62

Avg length of utterances(s) 4.04 12.24

Table 2. Training and test data split

#Speakers #Utterances

Training Stage Speech 200 55889

Singing 200 16941

Test Stage Speech 88 + 50 4177

Singing 88 + 1 961

5 https://ffmpeg.org.
6 https://www.xnview.com/en/xnviewmp.

https://ffmpeg.org
https://www.xnview.com/en/xnviewmp
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Step 3: Extract Audio from Video. Initially, we use ffmpeg (See footnote 5)
to extract 48 kHz stereo audio from video segments, then Spleeter [15] isolates
background music, and finally ffmpeg (See footnote 5) downsamples the audio
to mono-channel at 16 kHz.

Step 4: Assessment and Recheck. We extract speaker embeddings for indi-
vidual utterances, using WeSpeaker’s [37] ResNet34-based model pretrained on
Cn-Celeb [11]. Then, we compute average embeddings for each speaker in each
category and assess the cosine similarity between each utterance’s embedding
and the corresponding average. Utterances with a similarity score below the
threshold of 0.4 undergo manual review.

4.3 Dataset Statistics

Table 1 summarizes key statistics for the KunquDB dataset, differentiating stage
speech (ST ) and singing (S) categories. The dataset contains 60, 066 ST utter-
ances and 17, 902 S utterances, contributed by 288 speakers for both ST and S
data, 50 exclusively providing ST data, and 1 exclusively offering S data. Addi-
tionally, there are 339 videos featuring both ST and S , along with 5 exclusively
for ST and 2 for S . Figure 2 visually represents the distribution of utterance
lengths and speakers enacting role types.

4.4 Split: Training and Test

We divide speakers based on their total number of utterances, with the initial
200 individuals allocated to the training set and the remaining 139 to the test
set. See Table 2 for details.

Fig. 2. Left: Histogram of utterance lengths in the dataset. Right: Distribution of
speaker role type information. The legend indicates the role type performed by speak-
ers throughout the dataset. Dan for young female characters, LaoDan for old female
characters, OtherFemale for additional female characters; XiaoSheng for young
male characters, LaoSheng for old male characters, OtherMale for additional male
characters; and MultiGender means speakers portraying characters of both genders.
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4.5 Trial Construction

When generating test trials for speaker verification experiments, we adopt a
consistent procedure for each utterance, randomly selecting five positive and
five negative samples. Investigating four trial scenarios considering two vocal
manners (stage speech and singing), we have:

– Undifferentiated Trial: No distinction between enrollment and test utterance
regarding vocal manner categories; samples are randomly chosen from either
stage speech or singing.

– Stage Speech Domain Trial: Both enrollment and test utterances are from the
stage speech category.

– Singing Domain Trial: Both enrollment and test utterances are from the
singing category.

– Cross-domain Trial: Enrollment is from singing, while test utterances are from
the stage speech category.

5 Learning Domain-Invariant Speaker Embeddings

5.1 Domain Discrepancy Adversarial Learning

As discussed in Sect. 3.2, the speaker ID embedding extractor comprises a feature
encoder, pooling, and linear layer. Traditionally, it is assumed that this extrac-
tor, depicted by the pink dashed box in Fig. 3, exclusively captures acoustic
features defining speaker identity, denoted by the equation f = fid. However, it
may inadvertently conflate identity-specific traits with variations from intrinsic
factors like vocal mannerisms, formalized as Eq. 1, where f denotes the extracted

Fig. 3. Schematic of the DDAL framework. The pink dashed box outlines the identity
embedding extractor; the green dashed box highlights the core components of the
DDAL mechanism. (Color figure online)
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features, fid refers to the identity-specific features, and fdomain represents fea-
tures associated with vocal manners.

f = fid + fdomain (1)

Borrowing insights from [29], we implement an optimized multi-task
paradigm called Domain Discrepancy Adversarial Learning (DDAL), as illus-
trated in Fig. 3, to isolate domain-specific variables from speaker embeddings.
This framework integrates speaker identity verification, domain classification,
and domain adversarial training. Diverging from [29], we disentangle domain
characteristics at the feature map layer instead of the abstract embedding space.
This early disentanglement capitalizes on the richer domain-specific details in the
feature map layer, facilitating a cleaner separation and enhancing verification
precision across domains.

We leverage an attention mechanism to disentangle domain-related features
fdomain induced by different vocal manners from the feature map f extracted
by the backbone model. Next, we refine speaker-specific features, fid, by filter-
ing out fdomain. Following this, both fdomain and fid undergo pooling and fully
connected layers, producing the domain embedding zdomain for domain classi-
fication and speaker ID embedding zid for speaker classification. Further, we
employ a gradient reversal layer (GRL) before an auxiliary domain classifier to
eliminate domain influence from zid through adversarial learning.

Equation 2 defines the composite loss function, comprising the standard iden-
tity loss Lid and the weighted sum of domain classifier losses Lcls1 and Lcls2.
The weight λddal acts as a tuning hyperparameter to balance these components:

LDDAL = Lid + λddal(Lcls1 + Lcls2) (2)

5.2 Batchwise Contrastive Siamese Training

To effectively utilize utterances from the same speakers, we adopt a Batchwise
Contrastive Siamese Training (BCST) strategy, inspired by [22], to refine speaker
embeddings across different domains into a unified, domain-independent repre-
sentation. As depicted in Fig. 4, the model receives paired utterances from the
same speaker but in different vocal manners.

The optimization process focuses on the LBCST , a combined loss compris-
ing the individual utterance losses, LuttS and LuttST , as well as the pair loss
Lpair scaled by a factor λbcst. The pair loss quantifies the cosine distance between
speaker embeddings, zidST and zidS , extracted from paired utterances. By lever-
aging both singular utterance traits and relational information from utterance
pairs, the model is encouraged to enhance its ability to distinguish between
speakers and maintain feature consistency for the same speaker, even when their
vocal manner varies.

LBCST = LuttS + LuttST + λbcstLpair (3)

Lpair = 1 − zidST · zidS

‖zidST‖‖zidS‖ (4)



KunquDB: An Attempt for Speaker Verification 243

Fig. 4. Overview of the BCST structure

6 Experiments

6.1 Experimental Setup

Dataset. We pretrain the model on VoxBlink2 [21] with over 16,000 h of audio
data from 110k speakers. Thereupon, we fine-tune the model using KunquDB’s
training set. Evaluation is performed on the KunquDB test set.

Network. In our baseline (detailed in Table 3), we use ResNet34 [14] as the
feature extractor, followed by a Global Statistic Pooling (GSP) layer to condense
the length-variable frame-level feature map into a fixed-length representation.
This representation is then input to a fully connected layer with 256 dimensions.
For speaker identification, we employ the ArcFace classifier [8] (m = 0.2, s =
32). Binary domain classifier involves stacking Linear-ReLU-Linear structures on
zdomain and zid for domain classification and adversarial learning, respectively.
In the attention mechanisms that decouple domain-related features fdomain from
global features f , we employ two approaches: a neural network-based method
known as Attentive Statistics Pooling (ASP) [24] and a Simple, Parameter-free
Attention Module (SimAM) [43].

We initialize the baseline model by pre-training on the VoxBlink2 dataset
and experiment with various fine-tuning strategies using the KunquDB training
set, as detailed in Table 4. M0 serves as the standard and starting point for
all subsequent fine-tuning experiments; it is pre-trained but not fine-tuned. M1
and M2 undergo fine-tuning using the standard ResNet34-GSP architecture,
aligning with M0. In contrast, M3 and M4 are built on the SimAM-based
DDAL framework; likewise, M5 and M6 adopt the ASP-based DDAL approach.
M2, M4, and M6 incorporate the BCST strategy, further building upon M1,
M3, and M5, respectively.
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Table 3. The architecture of our ResNet34 backbone network. The residual building
blocks are shown in [·], with the numbers of blocks stacked. Downsampling is performed
by Layer2_1, Layer3_1, Layer4_1 with a stride of 2.

Layer Structure Output Size

Conv1 3× 3, 64 64× 80× T

Layer1

[
3× 3, 64

3× 3, 64

]
× 3 64× 80× T

Layer2

[
3× 3, 128

3× 3, 128

]
× 4 128× 40× T

2

Layer3

[
3× 3, 256

3× 3, 256

]
× 6 256× 20× T

4

Layer4

[
3× 3, 512

3× 3, 512

]
× 3 512× 10× T

8

Encoding Global Statistics Pooling 1024
ID Embedding Linear 256

Domain Embedding Linear 256

Table 4. Models varied in architectures, training data, and strategies. KunquDB
fine-tuning indicates whether to utilize the KunquDB training set for fine-tuning.
DDAL denotes Domain Discrepancy Adversarial Learning as described in Sect. 5.1;
BCST refers to Batchwise Contrastive Siamese Training as detailed in Sect. 5.2.

ID Model Size KunquDB fine-tuning BCST

M0 ResNet34-GSP 20.54M× ×
M1 � ×
M2 � �
M3 + SimAM-based DDAL 20.79M � ×
M4 � �
M5 + ASP-based DDAL 27.35M � ×
M6 � �

Training Details. During pre-training, we apply on-the-fly data augmenta-
tion [4] and follow a training setting similar to [28]. For fine-tuning, we utilize
a multi-step learning rate (LR) scheduler starting with an initial LR of 10−3 to
modulate the SGD optimizer, gradually updating the model parameters until
convergence. The hyperparameters λddal and λbcst are assigned with a value of
0.5 when used independently within the model (M1, M2, M3, M5). However,
when both are employed (M4, M6), λddal is set to 1, while λbcst is adjusted to
1.5. Input utterances are truncated to 2 s and converted to 80-dimensional log
Mel-filterbank energies.
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Table 5. The performance comparison of different speaker verification systems in terms
of Equal Error Rate (EER) across four distinct test sets, as outlined in Sect. 4.5.

ID Undifferentiated ST -Domain S -Domain Cross-Domain
EER [%] mDCF EER [%] mDCF EER [%] mDCF EER [%] mDCF

M0 21.48 0.99 18.81 0.97 23.06 0.97 28.52 1.00
M1 7.95 0.66 7.53 0.61 7.29 0.77 9.84 0.84
M2 7.79 0.67 7.67 0.65 6.47 0.70 9.37 0.79
M3 7.79 0.71 7.57 0.64 7.20 0.87 9.40 0.88
M47.36 0.71 7.12 0.70 6.21 0.72 8.37 0.84
M5 7.64 0.71 7.56 0.63 6.41 0.78 8.79 0.88
M6 7.39 0.69 7.41 0.63 6.32 0.71 8.25 0.78

Evaluation Metrics. Cosine similarity is used for trial scoring. The verification
performances are measured by the Equal Error Rate (EER) and the minimum
normalized detection cost function (mDCF) with Ptarget = 0.01.

Experimental Results. Table 5 reports the performance of models on different
test sets, with several key observations discussed below.

(1) Model M0 shows weak robustness on Kunqu data, performing best in the
ST -domain due to its exclusive pretraining on speech data. Nevertheless,
its performance is still markedly inferior to its excellent performance on
regular speech test sets, often below 1% EER.

(2) Models generally perform best when enrollment and test utterances share
the same vocal manner, whether in the S or ST category. However, their
performance notably declines in cross-domain scenarios, indicating the dif-
ficulty in extracting domain-agnostic speaker embeddings.

(3) DDAL or BCST individually improves model performance on Kunqu
datasets. Deploying both approaches concurrently (M4 and M6) substan-
tially augments this enhancement, delivering superior outcomes.

(4) Regarding the two implementations of attention within the DDAL strat-
egy, the ASP-based implementation (M5) outperforms the SimAM-based
counterpart (M3) across all test sets without BCST. However, with BCST
integration, the SimAM-based approach (M4) yields better results than
the ASP-based method (M6) in three out of four test sets, except for the
cross-domain scenario.

We randomly select eleven individuals from the test data and visualize their
speaker embeddings using the t-distributed stochastic neighbor embedding (t-
SNE) algorithm in Fig. 5. Each subfigure corresponds to a specific model (M0–
M6), providing a visual representation of the distribution patterns learned under
various domain adaptation approaches. Notably, the M0 subfigure reveals a lack
of convergence in the distributions of utterances from the same speaker across
different domains. In contrast, coherent distributions are observed among similar
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utterance types, with S utterances predominantly in the left upper quadrant and
ST utterances in the right lower quadrant. These t-SNE visualizations consis-
tently mirror the objective performance metrics presented in Table 5, confirming
the effectiveness of the domain adaptation methods.

Fig. 5. t-SNE visualization of speaker embedding extracted by seven models (M0–
M6). Unique colors signify individual distinctions, with circular markers (•) represent-
ing stage speech utterances and pentagonal stars (�) denoting singing utterances.

7 Conclusion

This paper introduces KunquDB, a relatively large-scale, publicly accessible
audio-visual dataset designed to address research gaps in Chinese opera studies.
With detailed annotations, KunquDB aims to serve as a valuable resource for
opera and speech-related research endeavors. Leveraging domain discrepancy
adversarial learning and batchwise contrastive Siamese training, we establish
benchmarks for ASV on Chinese opera data, offering unique insights distinct
from conventional speech datasets.
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Abstract. In the last few years, the advancement of GPT-4 and similar
extensive large language models has significantly influenced video com-
prehension fields, models have been developed to exploit these advances
to enhance interactive video comprehension. However, existing mod-
els generally encode video using image language models or video lan-
guage models with sparse sampling, overlooking the vital action features
present in each video segment. To address this gap, we propose Act-
ChatGPT, an innovative interactive video comprehension model that
integrates action features. Act-ChatGPT incorporates a dense sampling-
based action recognition model as an additional visual encoder, enabling
it to generate responses that consider the action in each video seg-
ment. Comparative analysis reveals Act-ChatGPT superiority over a
base model, with qualitative evidence highlighting its adeptness at rec-
ognizing actions and responding based on them.

Keywords: Multi-Modal Large Language Model · Action Features ·
Video Understanding · Dual-Encoder strategy

1 Introduction

The evolution of Large Language Models (LLMs) in natural language processing
has led to invention of multi-modal LLMs, combining a visual encoder with LLM
for enhanced video understanding. This fusion projects visual features onto LLM
token spaces, facilitating interactive comprehension. Nevertheless, such models
typically use an image language model as a visual encoder or a video language
model that is conscious of modeling the entire video, neglecting detailed actions
within video segments. Conversely, with the adoption of Transformer [20] and
self-supervised learning in video domain, especially models pre-trained on exten-
sive video data, has significantly improved action recognition. These models have
high action recognition performance, and in particular, by using models that
operate on individual video segments, it is possible to extract good action fea-
tures from each segment of the video.
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15323, pp. 250–265, 2025.
https://doi.org/10.1007/978-3-031-78347-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78347-0_17&domain=pdf
http://orcid.org/0009-0002-8926-3183
http://orcid.org/0000-0002-0431-183X
https://doi.org/10.1007/978-3-031-78347-0_17


Act-ChatGPT 251

Therefore, we propose Act-ChatGPT, an advanced multi-modal LLM tai-
lored for video understanding, which emphasizes the utilization of action features
within each video segment. Act-ChatGPT enhances video comprehension by
incorporating an action recognition model as an additional visual encoder. This
model, designed to extract action features from each video segment, works in
tandem with Video-ChatGPT’s existing image-based visual encoder. Moreover,
Act-ChatGPT is different from traditional models by adopting a dual-encoder
strategy. This approach combines the object recognition strengths of the visual
language model with the nuanced human action detection of the action recog-
nition model, enabling a richer video understanding. Our contributions are (1)
We propose Act-ChatGPT, which is the first multi-modal LLM for video under-
standing that introduces action features within each video segment. (2) The
experimental results showed the effectiveness of our proposed method by out-
performing the baseline, Video-ChatGPT.

2 Related Works

2.1 LLMs

A language model that has been pre-trained by self-supervised learning with a
large corpus is called a pre-trained language model. Recently, based on the knowl-
edge that scaling the model parameters and training data of these pre-trained
language models can improve the performance of downstream tasks [10], large
pre-trained language models with a very large number of parameters and trained
on particularly large amounts of data have been constructed. Because these
models have an emergent abilities [26] that has not been seen in small-scale pre-
trained language models, and because they show tremendous ability in solving
a series of complex tasks, they are distinguished from small-scale pre-trained
language models and are referred to as LLMs [24]. LLMs excel in their abil-
ity to generate language and make common sense inferences, and their use
has been studied in many fields, not only in the field of natural language pro-
cessing but also in other fields. For example, OpenAI’s GPT-4, which has been
reported to have particularly excellent instruction response performance, is used
for dataset creation, filtering, and data augmentation, because it can be utilized
via API. Since LLaMA [8] and its successor, Llama-2 [7], are the LLMs whose
models and weights are publicly available, they have become the basis for many
LLMs such as Vicuna [3].

Our study delves into utilizing LLMs within the visual domain, particularly
focusing on enhancing video understanding through the integration of action
features, marking a significant step forward in interactive video understanding.

2.2 Multi-modal LLMs

Current multi-modal LLMs in the visual sphere fall into two primary categories.
The first involves leveraging LLMs to interlink specialized models for diverse



252 Y. Nakamizo and K. Yanai

visual tasks, exemplified by Visual ChatGPT [2], a system that integrates numer-
ous expert models through a LLM. This setup allows the LLM to process user
commands and visual inputs, activating necessary external visual models to ful-
fill these commands.

The second category involves the methods that merge visual models with
LLMs by mapping visual encoder-extracted features onto the LLM’s token space,
creating a unified model capable of end-to-end learning. BLIP-2 [12] is included
in this category, that employs a “Q-former” module that aimed to bridge the
gap between the visual encoder’s features and the LLM’s tokens through end-
to-end training using image-text contrast learning, image-text matching and
image grounded text generation. Additionally, this category includes LLaVA [5],
which introduced Instruction Tuning [22] that is used in the field of natural
language processing for visual contexts as Visual Instruction Tuning. This tech-
nique enhances instruction-following abilities by fine-tuning LLMs with data
composed of instructional texts and their corresponding responses, where visual
features are embedded into the instructional content.

In our study, we focus on the latter method and define the latter as Vision-
LLM, and the Vision-LLM focusing on the video domain is defined as Video-
LLM.

2.3 Video-LLMs

Current Video-LLMs fall into two main categories based on their approach to
video encoding: frame-by-frame encoding using an image language model and
holistic video encoding using a video language model.

The former-type models, such as VideoChat [13], Video-LLaMA [4], Video-
ChatGPT [19], and LLaMA-VID [17], encode videos frame by frame. They
employ the image language model, CLIP [1], as a visual encoder to extract fea-
tures from individual frames sampled across the video. These features are often
condensed and temporally modeled throughout the entire video using pooling
and additional modules before being integrated into the LLM’s token space via
a linear layer.

Conversely, the latter-type models, such as VideoChat2 [14] and Video-
LLaVA [18], encode videos as a whole. Some video language models such as
UMT [16] and LanguageBind [25] capture video-wide features from a limited
sampling of 4–16 frames for efficiency. These features are especially focusing on
the video’s overall context rather than the detailed temporal elements contained
in each segment of the video.

Therefore, the existing Video-LLMs do not explicitly model the temporal
features of the video or focus on modeling throughout the entire video and do
not focus on the action in each segment of the video. Our study differs from the
existing methods in that we introduce action features in each segment of the
video to Video-LLM.
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2.4 Action Recognition Model

The recent advancements in self-supervised learning have underscored its effec-
tiveness, particularly with transformer-based models such as VideoMAEv2 [21]
and UMT [16]. These models, pre-trained on extensive video datasets,
have shown remarkable efficacy in action recognition tasks by fine-tuning.

Current action recognition models predominantly fall into two categories
based on their frame sampling techniques. The first employs dense sampling,
a method that extracts multiple video segments of a set frame length through-
out the video, exemplified by VideoMAE v2. The second utilizes sparse sampling,
a strategy that selects a fixed number of frames about 4 or 16 from the entire
video, regardless of its length, as seen in models like UMT [16]. Dense sampling
is suitable for capturing detailed features within individual video segments, while
sparse sampling is suitable for providing a broader overview of features across
the entire video. Those approach, therefore, offers different unique advantages
for modeling action content, in that they either focus on specific segments or the
video as a whole.

3 Method

3.1 Overview

We introduce a novel Video-LLM into Video-ChatGPT [19] by integrating action
features. Figure 1 provides an overview of our method.

Fig. 1. The overview of Act-ChatGPT

We employ a dual-encoder strategy for the visual encoder, combined using an
image language model for frame-based image feature extraction with an action
recognition model dedicated to capturing action features from video segments.
Initially, we sample T frames, F ∈ R

T×W×H×C , and T sets of 16-frame video
segments, S ∈ R

T×16×W×H×C , from the input video. Then, from these samples
image features, Vf ∈ R

T×N×Df , and action features, Vs ∈ R
T×Ds , are extracted

via their respective encoders. Here, Df and Ds represent the dimensional of
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the embedded features from the image language model and the action recogni-
tion model, respectively. N denotes the number of the image language model’s
patches, calculated as N = W/p × H/p based on the patch size p of the image
language model where W,H, and C represent the width, the height, and the
channel of the input video.

Subsequently, the extracted image and action features, Vf and Vs, are con-
verted into visual tokens, Qv ∈ R

(2T+N)×Dh . Here, Dh represents the dimension
of the LLM’s token space. This is achieved through an Inter-Model Adapter
that projects each feature set into the LLM’s token space and merges them. The
specifics of this conversion process within the Inter-Model Adapter are detailed
further in Sect. 3.3.

In the final step, the next tokens are predicted from a visual token, Qv, and
a linguistic token, Qt, tokenized from the input text, and then a response text
is generated by LLM. To optimize training efficiency, in our proposed method,
we leverage pre-trained models for both two visual encoders and the LLM and
train only the Inter-Model Adapters.

3.2 Using Trained Models

Our method incorporates several pre-trained models across a visual language
model, an action recognition model, and LLM components. Initially, for the
visual language model, we utilize the OpenAI CLIP [1] ViT-L/14 model. Here,
the outputs from the penultimate layer are harnessed as the image features.
Secondly, as an action recognition component, we employ the VideoMAEv2 [21]
ViT-g/14 model, which has been fine-tuned on the Kinetics-710 dataset [15]. For
this model, the action features are derived by applying Layer Normalization to
the final layer’s output and calculating the mean value. Lastly, for the LLM, we
use Vicuna v1.1 [3], a 7B model fine-tuned for the multi-modal model LLaVA [5].

3.3 Inter-model Adapter

Figure 2 provides an overview of our method’s Inter-Model Adapter. The Inter-
Model Adapter is structured from three modules: the Image Feature Conversion
Module, the Action Feature Conversion Module, and the Features Fusion Mod-
ule. Below, we detail the components of each module and outline the processing
procedure.

Image Feature Conversion Module. The Inter-Model Adapter of Video-
ChatGPT converting image features into tokens is used for this module. This
process starts by applying both temporal and spatial mean pooling to the image
features, Vf ∈ R

T×N×Df , extracted from each frame by the image language
model. This process results in temporal features, Vt ∈ R

T×Df , and spatial fea-
tures, Vn ∈ R

N×Df . Subsequently, these features are concatenated and then
mapped to the LLM’s token space through a single linear layer, ff , resulting in
the converted image feature tokens, Qf = ff ([Vt, Vn]) ∈ R

(T+N)×Dh . Here, the
notation [a, b] signifies the concatenation of vectors a and b.
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Fig. 2. The overview of Inter-Model Adapter.

Action Feature Conversion Module. This module is designed to analyze
the interplay among action features within video segments and to map these
features into the LLM’s token space effectively. The first function of this mod-
ule is to capture global features that cannot be captured by segment-by-segment
feature extraction by modeling the features in the temporal direction. To achieve
this, it incorporates time embedding and a TransformerEncoder, with the Trans-
formerEncoder set to a single layer featuring two heads mechanisms. Also, a sin-
gle linear layer is utilized to map these analyzed features into the LLM’s token
space. During the conversion of action features into action feature tokens in this
module, the process starts with adding temporal embedding to the action fea-
tures extracted per video segment by the action recognition model through the
TransformerEncoder. This step produces an enhanced set of action features,
V ′
s = TransformerEncoder (Vs + TE ∈ R

T×Ds), reflecting the temporal rela-
tionships between segments. Here, TE represents the temporal embedding that
is the positional encoding in the temporal direction. Finally, a Dropout layer
followed by a single linear layer fs is applied, projecting the refined action fea-
tures V ′

s into the LLM’s token space, resulting in converted action feature tokens
Qs = fs(Dropout(V ′

s )) ∈ R
T×Dh .
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Features Fusion Module. To merge the two distinct sets of features effec-
tively, this module utilizes a one-dimensional convolution with a kernel size of
one. The process starts by concatenating the image feature tokens, Qf , and the
action feature tokens, Qs, from the feature conversion modules. This concate-
nated set then is processed by sequentially adapting ReLU, Batch Normalization,
Dropout, and finally, the 1D convolution, resulting in the combined visual token,
Qv = (Conv1d(Dropout(BN(ReLU([Qf , Qs])))) ∈ R

(2T+N)×Dh , merged visual
information of image and action information tailored for the LLM.

3.4 Data Augmentation

To address the challenge of insufficient training data our proposed method incor-
porates data augmentation techniques applied to the Video Instruction Dataset
utilized for training. This augmentation process involves rephrasing existing
instruction response texts, executed with the aid of Vicuna v1.5 [3] 13B. Specif-
ically, paraphrases of the instructions are generated by instructing Vicuna to
use synonyms and thesauruses extensively, avoid incorporating external infor-
mation, and ensure the paraphrased instructions remain faithful to the original
instruction-response relationship. This preserves the relationship between the
instructions provided and the response, and extends the dataset without signif-
icantly deteriorating data quality.

3.5 Training

Our training approach follows Vision Instruction Tuning, utilizing a dataset
comprised of video and corresponding instruction response text pairs, similar
to Video-ChatGPT. The training objective is to minimize the token-by-token
cross-entropy error between the actual responses and the model’s predictions.

The training process is divided into two distinct stages. In the first stage, only
one visual encoder is active, and the feature conversion module corresponding
is trained independently. The model structure at this stage of training is shown
in Fig. 3a and Fig. 3b. This stage’s model architecture, when training the Image
Feature Conversion Module, is similar to Video-ChatGPT [19], with the Image
Feature Conversion Module being initialized using the inter-model adapter of
Video-ChatGPT. The weights of the model-to-model adapter of Video-ChatGPT
are equivalent to the weights of the Image Feature Conversion Module of the
proposed method initialized with LLaVA [5] and then trained with the architec-
ture shown in Fig. 3a using the non-augmented Video Instruction Dataset. Sub-
sequently, in the second stage, both feature conversion modules are initialized
with the weights trained in the first stage, and the entire Inter-Model Adapter,
including the features fusion module, then are trained.

3.6 Prompts

The prompts for the LLM are crafted following the format established by Video-
ChatGPT, structured as follows:
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(a)

Fig. 3. (a) The model structure when training only Image Feature Conversion Module.
(b) The model structure when training only Action Feature Conversion Module.

USER: 〈Instruction〉 〈Video-token〉 ASSISTANT:

Here, 〈Instruction〉 denotes the instructions to the LLM, such as queries about
the video, while 〈Video-token〉 symbolizes the visual features converted to tokens.
The designations, “USER: and ASSISTANT:”, distinguish between user instruc-
tions and LLM responses, facilitating the LLM’s comprehension of dialogue pro-
gression, particularly in extended conversations. In our method, 〈Instruction〉
within the template is replaced by the actual instruction text and tokenized.
Subsequently, the token for 〈Video-token〉 is substituted with the visual token
Qv, obtained by the Inter-Model Adapter, before being fed into the LLM.

4 Experiments

4.1 Experimental Settings

In our experiments, we follow the sampling parameters of Video-ChatGPT [19],
setting the number of frames and video segments, T , to 100. The Dropout layer’s
probability parameter, p, was adjusted to 0.0 during the first training stage and
increased to 0.5 in the second stage. Additionally, the temperature parameter,
τ , pivotal in controlling the probability distribution of LLM’s token generation
during inference and thus influencing the model’s creativity, was fixed at 0.2,
except where specified otherwise.

The training for both stages utilizes the same dataset and settings, employ-
ing the Video Instruction Dataset [19] derived from a subset of the ActivityNet
dataset [6]. This dataset contains around 100,000 video pairs coupled with single-
turn instruction-response texts. It is created by making instruction-response
texts pertinent to video content using GPT-3.5 from human-crafted captions
being included in a subset of ActivityNet dataset and frame-level captions from
BLIP-2 [12]. As mentioned above, to address the scarcity of training data, our
approach includes a data augmentation strategy, rephrasing instructions via a
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Table 1. The number of questions in each category

Question Set Action Object Total

GENERIC 1466 530 1996

TEMPORAL 481 18 499

CONSISTENCY 231 268 499

LLM, unlike Video-ChatGPT. Optimization is conducted using AdamW, with
a learning rate schedule using linear warmup with a warmup rate of 0.03 and
cosine decay with a peak at 2 × 10−5. Each training stage is trained for three
epochs, following the training of the inter-model adapter in Video-ChatGPT.

The quantitative evaluation is carried out by Video-based Generative Perfor-
mance Benchmarking [19] and AutoEval-Video [23]. For the Video-based Gen-
erative Performance Benchmarking, a test set based on a subset of ActivityNet
dataset [6] as well as the Video Instruction Dataset is used. The evaluation of
each response is performed by GPT-3.5 (the checkpoints used is gpt-3.5-turbo-
0125) to score a relative score on 0 to 5, based on comparison with the correct
answers, in terms of perspective assigned to each data from five perspectives
that are Correctness of Information (CI), Detail Orientation (DO), Contextual
Understanding (CU), Temporal Understanding (TU) and Consistency (C). In
the following, all questions are evaluated three times, and the means and stan-
dard deviations are reported for each item, except where specified otherwise. In
addition, the evaluation questions in the Generative Performance Benchmarking
dataset is divided into two types of questions using GPT-4o (the checkpoints
used are gpt-4o-2024-05-13): action-oriented questions and object-oriented ques-
tions. Action-oriented questions mean the questions on dynamics in the videos
where action features are expected to help to answer, while object-oriented ques-
tions mean the questions on objects and scenes for which image features are
expected to be helpful. The number of both types are shown in Table 1. Note
that, GENERIC is a split of the dataset used evaluating Correctness of Informa-
tion, Detail Orientation, and Contextual Understanding. TEMPORAL is a split
of the dataset used evaluating Temporal understanding, and CONSISTENCY
is a split of the dataset used evaluating Consistency. The evaluation results for
each of the two types of questions are reported as well.

For the AutoEval-Video, a uniquely collected and annotated dataset for the
benchmark from YouTube across multiple capability domains and topics is used.
The evaluation of each response was performed by GPT-4 (the checkpoints used
are gpt-4-1106-preview) to judge right and wrong based on the specific evalua-
tion rules defined for each sample, in terms of the perspective assigned to each
sample from nine perspectives: Dynamic Perception, State Transition Percep-
tion, Comparison Reasoning, Reasoning with External Knowledge, Explanatory
Reasoning, Predictive Reasoning, Description, Counterfactual Reasoning and
Camera Movement Perception. In the following, the means of the accuracy of
overall and each item of three times evaluations conducted are reported.
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In our study, emphasis was placed on the results of Video-based Generative
Performance Benchmarking, as this is the most commonly used method in exist-
ing Video-LLM assessments. The results of AutoEval-Video, on the other hand,
were used to check the generalisation performance of the model, as they were
based on dataset collected and annotated in a completely different way to the
training data.

4.2 Comparison with Baseline

A quantitative comparative analysis by Video-based Generative Performance
Benchmarking between our proposed method and Video-ChatGPT [19], Video-
LLaMA [4] is shown in Table 2. Table 2 also includes the results of the evalua-
tion of responses by GPT-4o for reference. GPT-4o generated the responses based
on the following instruction, using 20 frames sampled from the video: “These
images are frames cut from a single video. Referring to these images, answer
the following questions. However, the actual answers do not require frame-by-
frame explanations, please generate the actual answer to the aggregated video”.
Note that the evaluation of GPT-4o was conducted only once. To make fair
comparison, we show the results excluding data augmentation (denoted as w/o
data aug.) and the results training inter-model adapters with only augmented
Video Instruction Dataset without pre-training with such as LLaVA [5] dataset
(denoted as scratch). Also, the results for action-oriented questions and object-
oriented questions are shown in Table 3 and Table 4.

Our method superior performance across all metrics when compared to exist-
ing models. Also, within the same metrics, there is no significant difference in
standard deviations between different methods. Notably, even in the absence of
data augmentation, our approach surpassed Video-ChatGPT in all but Consis-
tency. This underscored the significant impact of integrating action features on
enhancing theresponse performance of Video-LLM responses. Note that our
method is still clearly inferior to the response by GPT-4o, indicating room for
further development of the open source Video-LLM.

On the other hand, Table 3 and Table 4 show that Act-ChatGPT outperforms
Video-ChatGPT, especially for action-oriented questions, while conversely the
performance of Act-ChatGPT is slightly less than the baseline in the evalua-
tions for only object-oriented questions. Therefore, our proposed method can be
regarded as focusing on action-oriented questions more.

In addition, a quantitative comparative analysis by AutoEval-Video between
our proposed method and Video-ChatGPT, Video-LLaMA, is detailed in Table 5
and Table 6. As with the Video-based benchmark, we show the results excluding
data augmentation (denoted as w/o data aug.) and the results training inter-
model adapters with only augmented Video Instruction Dataset (denoted as
scratch). In this evaluation, by contrast, our method underperformed the base
model on almost all items. Thus, it can be said that our proposed method has
poorer generalization performance than the Video-ChatGPT. The poor perfor-
mance of Act-ChatGPT for AutoEval-Video mainly comes from the differences
with and without pre-training of inter-model adapters.
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Table 2. Results of Video-based Generative Performance Benchmarking.

CI↑ DO↑ CU↑ TU↑ C↑
Video-LLaMA 2.23 ± 1.25 2.16 ± 0.79 2.52 ± 1.13 1.93 ± 1.09 2.02 ± 1.09

Video-ChatGPT 2.50 ± 1.33 2.31 ± 0.85 2.87 ± 1.18 2.10 ± 1.15 2.20 ± 1.24

Video-ChatGPT (scratch) 2.44 ± 1.31 2.29 ± 0.83 2.82 ± 1.17 2.10 ± 1.11 2.06 ± 1.19

Act-ChatGPT (scratch) 2.53 ± 1.34 2.33 ± 0.82 2.89 ± 1.21 2.19 ± 1.15 2.17 ± 1.23

Act-ChatGPT (w/o data aug.) 2.53 ± 1.36 2.33 ± 0.86 2.92 ± 1.19 2.13 ± 1.14 2.17 ± 1.23

Act-ChatGPT 2.62 ± 1.35 2.37 ± 0.85 3.00 ± 1.17 2.20 ± 1.14 2.28 ± 1.25

GPT-4o 4.02 ± 1.13 3.46 ± 0.92 4.19 ± 0.92 3.30 ± 1.30 3.54 ± 1.23

Table 3. Results of Video-based Generative Performance Benchmarking for the action-
oriented questions.

CI↑ DO↑ CU↑ TU↑ C↑
Video-LLaMA 2.16 ± 1.11 2.08 ± 0.68 2.41 ± 1.04 1.90 ± 1.05 2.13 ± 1.14

Video-ChatGPT 2.51 ± 1.23 2.25 ± 0.78 2.85 ± 1.13 2.09 ± 1.12 2.49 ± 1.24

Video-ChatGPT (scratch) 2.50 ± 1.22 2.28 ± 0.78 2.86 ± 1.13 2.10 ± 1.07 2.43 ± 1.21

Act-ChatGPT (scratch) 2.65 ± 1.23 2.35 ± 0.76 3.00 ± 1.15 2.20 ± 1.14 2.60 ± 1.24

Act-ChatGPT (w/o data aug.) 2.62 ± 1.25 2.32 ± 0.80 2.97 ± 1.14 2.13 ± 1.12 2.54 ± 1.24

Act-ChatGPT 2.72 ± 1.24 2.36 ± 0.78 3.08 ± 1.11 2.19 ± 1.10 2.72 ± 1.23

The inter-model adapter of Video-ChatGPT is pre-trained with 753k
LLaVA [5] training images and fine-tuned with non-augmented 100k Video
Instruction Dataset, whereas the one for Act-ChatGPT is trained with only
augmented 200k Video Instruction Dataset from scratch, except for the Image
Feature Conversion Module, which is initialized with the weights of the inter-
model adapter of Video-ChatGPT. This means that the Image Feature Con-
version Module in the Act-ChatGPT was pre-trained with 753k LLaVa train-
ing images as well, whereas the action feature conversion module was not pre-
trained with any dataset. This is due to the fact that the proposed method
uses a segment-based action recognition model for one of the visual encoders
in which not image data but video data is used for training. In fact, when
comparing Video-ChatGPT (scratch) and Act-ChatGPT (scratch) from Table 5,
which were trained inter-model adapters only on the augmented Video Instruc-

Table 4. Results of Video-based Generative Performance Benchmarking for the object-
oriented questions.

CI↑ DO↑ CU↑ TU↑ C↑
Video-LLaMA 2.43 ± 1.56 2.39 ± 1.00 2.81 ± 1.29 2.61 ± 1.76 1.92 ± 1.03

Video-ChatGPT 2.49 ± 1.58 2.48 ± 1.01 2.90 ± 1.29 2.26 ± 1.89 1.94 ± 1.19

Video-ChatGPT (scratch) 2.27 ± 1.51 2.32 ± 0.95 2.73 ± 1.26 2.15 ± 1.84 1.75 ± 1.09

Act-ChatGPT (scratch) 2.20 ± 1.56 2.27 ± 0.96 2.60 ± 1.32 1.83 ± 1.53 1.80 ± 1.10

Act-ChatGPT (w/o data aug.) 2.28 ± 1.59 2.36 ± 1.00 2.77 ± 1.30 2.33 ± 1.63 1.84 ± 1.13

Act-ChatGPT 2.33 ± 1.58 2.37 ± 1.02 2.79 ± 1.28 2.35 ± 1.89 1.89 ± 1.14
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Table 5. Results of AutoEval-Video (overall)

All↑
Video-LLaMA 0.070

Video-ChatGPT 0.101

Video-ChatGPT (scratch) 0.045

Act-ChatGPT (scratch) 0.049

Act-ChatGPT (w/o data aug.) 0.064

Act-ChatGPT 0.064

Table 6. Results of AutoEval-Video (each item)

Dynamic ↑ State Transitions ↑ Comparison ↑
Video-LLaMA 0.059 0.073 0.140

Video-ChatGPT 0.088 0.115 0.246

Video-ChatGPT (scratch) 0.044 0.094 0.176

Act-ChatGPT (scratch) 0.050 0.041 0.123

Act-ChatGPT (w/o data aug.) 0.036 0.083 0.123

Act-ChatGPT 0.029 0.073 0.193

External Knowledge ↑ Explanatory ↑ Predictive ↑
Video-LLaMA 0.084 0.040 0.041

Video-ChatGPT 0.084 0.086 0.135

Video-ChatGPT (scratch) 0.016 0.035 0.031

Act-ChatGPT (scratch) 0.042 0.045 0.000

Act-ChatGPT (w/o data aug.) 0.062 0.066 0.062

Act-ChatGPT 0.050 0.066 0.052

Description ↑ Counterfactual ↑ Camera Movement ↑
Video-LLaMA 0.056 0.140 0.000

Video-ChatGPT 0.044 0.123 0.111

Video-ChatGPT (scratch) 0.022 0.035 0.111

Act-ChatGPT (scratch) 0.011 0.176 0.000

Act-ChatGPT (w/o data aug.) 0.067 0.053 0.000

Act-ChatGPT 0.044 0.123 0.000

tion Dataset without pre-training with image data, Act-ChatGPT outperforms
Video-ChatGPT on overall accuracy. This shows that the performance deterio-
ration in the evaluation with AutoEval-Video observed in Act-ChatGPT is due
to the lack of pre-training data, not to the introduction of the proposed action
features. This does not negate the effectiveness of the proposed method.

Figure 4 shows qualitative comparisons between Act-ChatGPT and Video-
ChatGPT. The observations from the top and middle response results in
Fig. 4 illustrate that Act-ChatGPT enhances responses over Video-ChatGPT by
improving action recognition as well as the identification of objects involved in
these actions. It is conceivable that this improvement in object recognition is due
to the fact that the large language model recognizes action features in a different
way to spatial features, allowing the consistency of object and action elements as
sentences to be taken into account when generating responses. Furthermore, the
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Fig. 4. Examples of responses.

bottom response result in Fig. 4 demonstrates that Act-ChatGPT retains the
capability to recognize unique objects, as observed in Video-ChatGPT.
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4.3 Ablation Studies

In the ablation studies, Video-based Generative Performance Benchmarking is
used. Table 7 displays the quantitative results for Act-ChatGPT under various
settings. Specifically, (w/o Stage1) denotes results from training solely in the
second stage, (w/o Fusion) refers to scenario not using a features fusion module,
while (w/o Image) and (w/o Action) refer to scenarios where only the action
recognition model or the image language model is employed as a vision encoder,
respectively. Note that the evaluation was conducted only once in each set-
ting and the results are reported. As a side note, even when only one visual
encoder is used, the feature fusion module was applied by adjusting the number
of dimensions. The findings reveal a notable decline in performance metrics when
Act-ChatGPT is trained solely during the second stage, underscoring the critical
role of multi-stage learning. Moreover, utilizing only one type of visual encoder,
whether for actions or images, leads to significant drops in all metrics. These
outcomes suggest that image and action features play complementary roles in
video understanding and emphasize the benefits of action features utilized in
video understanding. In addition, focusing on feature fusion, the performance
significantly deteriorated is found when features were not fused. This shows that
in this research, where a LLM is frozen, a mechanism for explicitly fusing fea-
tures is important for improving the performance.

Table 7. Results of Video-based Generative Performance Benchmarking under various
settings.

CI↑ DO↑ CU↑ TU↑ C↑
Act-ChatGPT (w/o Stage1) 2.28 ± 1.32 2.20 ± 0.89 2.66 ± 1.24 2.00 ± 1.16 2.01 ± 1.46

Act-ChatGPT (w/o Image) 2.17 ± 1.34 2.03 ± 0.85 2.46 ± 1.22 1.86 ± 1.07 1.99 ± 1.12

Act-ChatGPT (w/o Action) 2.41 ± 1.31 2.21 ± 0.82 2.74 ± 1.20 2.19 ± 1.16 1.97 ± 1.23

Act-ChatGPT (w/o Fusion) 2.39 ± 1.32 2.23 ± 0.89 2.74 ± 1.24 2.12 ± 1.16 2.26 ± 1.21

Act-ChatGPT (w/ all) 2.62 ± 1.35 2.37 ± 0.85 3.00 ± 1.17 2.20 ± 1.14 2.28 ± 1.25

5 Limitations

In our study, a new Act-ChatGPT with a newly introduced action feature was
proposed. Several limitations still remain. The first major limitation relates
to training data. In the recent trends in Video-LLMs, as Peng Jin et al. [9]
have shown the advantages of joint learning of images and videos, it has become
mainstream to learn various visual representations by also utilizing a large
amount of image data in addition to video data. However, in our work, we
used an action recognition model that operated on a video segment basis as part
of the visual encoder. This design choice made it difficult to utilize image data
for training. Therefore, to keep up with these trends and achieve better perfor-
mance, it is necessary to create extensive video datasets to compensate for the
lack of data or develop methods to utilize images for training.
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The second limitation is in the computational cost. The computational cost of
our proposed method is relatively high because it employs a large action recogni-
tion model. Additionally, our dual-encoder approach, which processes a certain
amount of object features in the action branch, further contributes to these
costs. The action recognition model used in our proposed method, trained on
the Kinetics dataset [11] that are considered relatively easy to classify even with
only scene information, includes somewhat object recognition capabilities. How-
ever, these capabilities are sometimes redundant in our method since the image
branch already handles object recognition. This redundancy suggests a need for
the more focused and compact model that extracts only movement features,
which could help in reducing computational expenses.

6 Conclusions

In this paper, we proposed Act-ChatGPT, a Video-LLM designed to use action
features from individual video segments to enrich response generation with
insight into the action depicted. Act-ChatGPT enhanced both action and their
associated object recognition capabilities, outperforming the Video-ChatGPT
used as a base model. In addition, it also retains a certain level of object recog-
nition capabilities, such as identifying unique objects in the video, demonstrating
the improvement in video understanding over the base approaches overall.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers,
22H00540 and 22H00548.
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Abstract. A main goal in developing video-compression algorithms is to
enhance human-perceived visual quality while maintaining file size. But
modern video-analysis efforts such as detection and recognition, which
are integral to video surveillance and autonomous vehicles, involve so
much data that they necessitate machine-vision processing with minimal
human intervention. In such cases, the video codec must be optimized for
machine vision. This paper explores the effects of compression on detec-
tion and recognition algorithms (objects, faces, and license plates) and
introduces novel full-reference image/video-quality metrics for each task,
tailored to machine vision. Experimental results indicate our proposed
metrics correlate better with the machine-vision results for the respective
tasks than do existing image/video-quality metrics.

Keywords: Machine vision · Image Quality · Video Compression ·
Object Detection · Face Recognition · License Plate Recognition

1 Introduction

As the field of computer-vision continues to evolve, an increasing number of
algorithms are being deployed in real-world applications. A popular application
of this technology is video analytics, which has become integral to video surveil-
lance, autonomous vehicles and other systems. Video analytics, for example, has
two crucial tasks: detection and recognition. Depending on the system, the sub-
jects of these tasks can be traffic signs, vehicles (object detection), human faces
(detection/recognition), license plates (detection/recognition), and so on. As the
number of video-surveillance cameras increases, automating these tasks becomes
more critical given that human operators are incapable of processing such vast
quantities of data.
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To ensure efficient storage and transmission of such extensive data, the cap-
tured images and videos require compression. Lossy compression standards such
as JPEG, H.264/AVC, H.265/HEVC, and AV1 serve this purpose; their develop-
ment involved optimizing the visual quality of the compressed content. The best
way to assess visual quality is subjective human ratings, but they can be time-
consuming and expensive. Hence the use of full reference (FR) quality-assessment
methods such as PSNR, SSIM [24], and VMAF [2], some of which correlate highly
with subjective scores [5]. These methods enable us to quickly and cost-effectively
configure and develop codecs while emphasizing visual quality.

Most state-of-the-art detection and recognition algorithms are based on deep
neural networks, and their effectiveness is evaluated not visually, but through
performance metrics. Compression directly affects the performance and reliabil-
ity of computer-vision algorithms, especially at high compression ratios [6,19].
Vision researchers and developers have therefore attempted to determine image
quality for algorithms and develop codecs for machine vision [1].

For video surveillance system the main objects for analysis are people and
vehicles, thus we choose three main video analytics algorithms for our machine-
oriented quality metrics: object detection (including vehicles, persons, faces, and
license plates), face recognition, license plates recognition.

Often video surveillance systems use a specific detection/recognition algo-
rithm (e.g. YOLOv5). Optimizing camera-data compression for them requires
a comparatively fast method that predicts detection/recognition performance
on the already encoded video, thereby enabling selection of encoding param-
eters to maximize that performance. If the target neural-network-based detec-
tion/recognition algorithms are evaluating the relative performance of codec pro-
totypes or codec settings, they need lots of time and computational power owing
to the number of parameters and the neural-network size. For instance, the
recent x264 codec has almost 50 settings; selection of these parameters through
an exhaustive search, even without using complex neural networks, would take
centuries [30].

During investigation for our machine oriented metric we have following tar-
gets:

1. Achieve high correlation score with mentioned three main video analytics
algorithms for its particular implementations with lower computational com-
plexity.

2. Considering question about metric generalization for different implementation
detection/recognition algorithms.

Additionally, detection/recognition algorithms are imperfect, and identify-
ing the cause of potential errors is impossible. For example, an object could
be truly unrecognizable in the encoded image or video, necessitating quality
improvement, or one algorithm may have certain limitations whereas another
can detect the object error-free. Running multiple detection/recognition algo-
rithms to improve the robustness of such an evaluation method would be even
more time-consuming and computationally intensive.
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To address these issues, our paper makes three important contributions:

1. First, we propose a methodology of measuring image and video quality in
terms of detection/recognition performance.

2. Second, we analyze detection- and recognition-performance correlation with
that of popular image-quality-assessment (IQA) and video-quality-assessment
(VQA) methods on widely used image and video codecs. Our results show
little to no correlation between their outputs and detection/recognition per-
formance.

3. Third, we propose new video-quality metrics based on convolutional-
neural-network (CNN) models with respect to object detection, face detec-
tion/recognition, and license-plate detection/recognition performance. We
validated our metrics by checking their correlation with the performance of
the machine-vision algorithms for the corresponding tasks.

2 Related Work

Methods for image-quality assessment have garnered considerable attention from
researchers in the field of visual-perception as high-quality video content is
important for retaining viewer interest [16]. Initially, these efforts evaluated
image quality on the basis of how the human eye perceives visual information
in generic videos and in specific video types such as streaming, user-generated
content (UGC), 3D, and virtual and augmented reality. Recently, although com-
puter vision increasingly permeates everyday life, efforts to develop machine-
vision-aware image- and video-quality metrics have been less extensive.

2.1 Objective Image and Video-Quality Assessment

Many methods and algorithms evaluate the visual quality of images. Among the
most widely used are PSNR and SSIM; they assess image quality on the basis of
signal (pixel) similarity between the original and evaluated images. When applied
to videos, these algorithms work frame by frame and then average the results.
More-modern approaches to assessing video quality have emerged: for example,
VMAF demonstrates a higher correlation with subjective human evaluations
relative to PSNR and SSIM.

There are also no reference (NR) methods that take only a single image as
input. Among them is an early NR quality metric: NIQE [17], which evaluates an
image’s “naturalness” and serves in cases where the original image is unavailable.
Recently, NR metrics have approached the quality of FR metrics. For instance,
DOVER [25] and MDTVSFA [13] correlate highly with subjective quality [5].

These methods are widely used to develop and optimize video-compression
and video-processing algorithms. Some exhibit high correlation with human-
perceived visual quality, but they were not designed to predict detection and
recognition performance on compressed images and video.
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2.2 Image and Video-Quality Assessment for Detection

Kong et al. [12] introduced a no-reference IQA algorithm for object detection.
This algorithm integrates classical computer vision and selects 13 image features,
including gradient-vector metrics and HOG descriptors [9]. Random forest is
trained to predict detection quality using the revised frame-detection-accuracy
metric, which is akin to Intersection over Union (IoU).

Rahman et al. [20] presented an algorithm that employs statistical features
based on the internal representations of images input to a neural-network-
based object detector. It then uses these statistics to train a LightGBM algo-
rithm, which performs classification to predict whether the object-detection
accuracy for a given input image will surpass a certain threshold or fail.

Schubert et al. [22] suggested predicting an object-detection algorithm’s
accuracy on the basis of its confidence in the results. The authors analyzed
non-maximum suppression step using features and statistics from the detection
results to predict accuracy without ground-truth annotations. Their underlying
hypothesis is that the more objects this stage filters out, the higher the confi-
dence in the remaining object’s actual presence.

Beniwal et al. [7] proposed a metric based on the quantization error from
H.264 compression. The mean DCT ratio of all filters of first Faster R-CNN con-
volutional layer is used as a quality label. Higher values indicate higher quanti-
zation loss and lower quality. They train CNN network to predict these quality
labels using cropped patches as an input.

2.3 Image and Video-Quality Assessment for Recognition

Best-Rowden and Jain [8] introduced an automatic method for predicting the
quality of face images, integrating two assessment strategies: subjective evalua-
tions by humans and objective measurement based on similarity scores for face
recognition utility. Both approaches utilize features from deep neural networks as
inputs for SVMs, allowing for a quantification of face image quality that reflects
human perception and the operational performance of face-recognition systems.

Hernandez-Ortega et al. [11] introduced FaceQnet, a tool that estimates the
quality of face images with respect to their utility in face recognition. Face-
Qnet operates by fine-tuning a preexisting face-recognition neural network for
regression; the goal is to predict face-image quality as a continuous value.

Terhorst et al. [23] proposed an unsupervised approach to face-image-quality
estimation called SER-FIQ. They compute the quality score as the mean
Euclidean distance of the multiple embedding features from a recognition model
with different dropout patterns.

Ou et al. [18] introduced SDD-FIQA, a method that uses inter- and intraclass
comparison scores to determine the quality of face images by creating distribu-
tions of genuine and impostor scores for each image. The quality of an image
is assessed by calculating the mean Wasserstein distance between these distri-
butions across multiple iterations. This approach then refines a face-recognition
model with these quality scores, similarly to the FaceQNet method.
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Most of these studies consider quality loss due to shooting conditions-such
as poor lighting, motion blur, and noise-but neglect artifacts that arise during
compression with different quality factors. They also use knowledge of architec-
ture and intermediate results of detection/recognition algorithms, although in
some cases the algorithm is inaccessible.

3 Datasets

Our research hinges on carefully collected datasets, each of which is pivotal to
developing and testing image-quality metrics. We used the validation and/or test
parts of popular datasets pertinent to the respective tasks: COCO 2017 [14] for
object detection, WIDER FACE [27] for face detection, CCPD [26] for license-
plate detection and recognition, and CelebA [15] for face recognition. Our test
set contained proprietary unlabeled videos from CCTV cameras for all tasks,
except Glint360k images for face recognition.

To ensure our method’s proper function despite various distortions, we
selected several practical video and image codecs (rav1e, x264, x265, VVenC, and
JPEG) to encode the dataset images. We balanced the dataset by calculating
the PSNR of the compressed images and adjusting the codec quality parameters
to achieve a similar distribution over all codecs, as Fig. 1 illustrates.

Fig. 1. PSNR distribution on MS COCO dataset, compressed with different codec and
quality factors.

In total, every image in our datasets has 20 quality degradations. For JPEG,
we used 20 compression degrees but retained only two quality factors because they
represent two boundary values: the minimum, below which severe image degrada-
tion occurs, and the maximum, above which quality improvement is indiscernible.
Note that we were unable to obtain completely uncompressed data; it would have
been helpful, however, as open datasets usually employ JPEG compression and
our proprietary videos employ H.264/H.265, so our compression distortions are
on top of existing compression. This limitation should not significantly affect the
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results because open datasets have undergone quality control and avoid extreme
compression, and because the camera codecs have a high bitrate.

Test-Dataset Labeling. The videos in our test set were unlabeled, but ground-
truth labels are crucial for correct target-metric calculations, correlation-score
measurement, and object extraction from images. We therefore used an auto-
matic labeling pipeline in four of five tasks: object detection, face detection,
license-plate detection, and license-plate recognition.

We extracted all the frames from videos and ran detection algorithms to
label frames (each case used the algorithm’s most complex version for precise
labeling: i.e., YOLOv5X for object detection, RetinaFace for face recognition,
and LPRNet for license-plate recognition). We selected only objects with a cor-
responding high confidence and ignored detector errors. Instead, we looked at
performance deterioration on compressed videos and picked about 1,000 frames
containing several objects per task. Our choices were approximately 100 frames
apart—since nearby frames are usually similar - to ensure diversity and reduce
the number of noisy labels. We employed distinct frames (images), not videos,
to train and validate results because video detection and recognition usually
consider each frame and average the results for the entire video. Figure 2 show
labeling examples. For license-plate detection we applied an extra filter using
a recognition algorithm: it picked frames with fully recognized characters and
filtered frames with similar license plates using the Levenshtein distance. The
datasets were subsequently reviewed by humans for gross detection errors (false
positive and false negative detections). The pixel-level accuracy of the bounding
boxes was not meticulously verified: even though automatic annotation is often
inaccurate, it is reasonable to expect that if a sophisticated detection algorithm
for GT labeling fails to identify an object in an uncompressed image, the tar-
get detection algorithm will also struggle to detect the object once the image
undergoes compression.

Fig. 2. Detection labeling example.

The face recognition test set was derived from the open Glint360k [3] dataset
due to the need to extract at least two different face images for the same per-
son. This requirement arose because our video recordings featured very similar
facial images for each person, as individuals seldom appeared more than once in
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external video-surveillance footage. For each person in a dataset we choose two
face images: one for the database and one for a query.

For the database we attempt to find the person’s “best” face image using
ICAO-compliance software (Biolab-ICAO, as in FaceQNet’s pipeline). For a
query we select another random image of that person’s face. Figure 3 shows
example images. Table 1 summarizes the characteristics of our study’s datasets.

Fig. 3. Face images examples.

Table 1. Summary of datasets used in the study.

Task Dataset part Source images Compressed images

Object detection Train and val sets, COCO 3,125 62,500
Test set, proprietary 1,000 20,000

Face detection Train and val sets, WIDER 3,226 64,520
Test set, proprietary 1,000 20,000

Car plate detection Train and val sets, CCPD 5,020 100,400
Test set, proprietary 600 12,000

Face recognition Train and val sets, CelebA 5,000 100,000
Test set, Glint360k 1,000 20,000

Car plate recognition Train and val sets, CCPD 5,020 100,400
Test set, proprietary 600 12,000

4 Proposed Method

4.1 Detection Methodology

Object detection, crucial for applications like surveillance, identifies and locates
objects in images by combining classification and localization. Key performance
metrics include confidence score and Intersection over Union (IoU) with ground
truth (GT). These metrics are essential for distinguishing between false neg-
atives (missed detections) and false positives (incorrect detections), especially
when objects are scarce. Correctly identifying missed detections is particularly
important in surveillance, as human oversight can address false positives.

Object detectors tend to underperform in images that contain small or
occluded objects [21], a limitation attributable to their implementation details
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rather than compression effects. Given our focus on information loss due to com-
pression, it is essential to select quality metrics that are not biased by object-
detector limitations.

The Mean Average Precision (mAP) metric assesses the detection algorithm’s
confidence and incorporates an IoU threshold to determine the object-matching
accuracy. However, its utility diminishes in images that contain few objects: here,
mAP values may provide no meaningful insight because they may be binary (e.g.,
0 or 1 for images with a single object).

Similarly, Average Precision (AP), which accounts for precision and recall, is
poorly suited to single images or frames. The metric fails to differentiate between
the effects of information loss (manifesting as false negatives) and detector inac-
curacies (leading to false positives), particularly under varied compression levels.

We consider three possible target-detection performance metrics: mean-IoU,
Object IoU, and Delta Object IoU. Mean-IoU provides a general measure of
how accurately objects are detected over the entire image, regardless of object
number or size. It permits consideration of false negatives: if no correct match to
a reference object is found, the IoU for that object is zero. Furthermore, it allows
setting of an IoU-value threshold below which objects are no longer considered
correctly detected. Note, however, that although mean-IoU facilitates evaluation
of individual images, it does not directly reflect the total number of objects,
potentially obscuring detection performance relative to object quantity.

Object IoU focuses on the IoU for an object cropped from a reference frame.
It provides a more specific measure of detection accuracy for individual objects
by assessing how well the detected object matches the GT in size and location.
Object IoU is particularly useful for analyzing detection performance object
by object, a potentially critical capability for applications that must precisely
detect each object.

Delta Object IoU represents the difference in an object’s IoUs between the
reference frame and the compressed frame. Essentially, it quantifies the impact
of compression on individual-object detection quality. A small Delta Object
IoU indicates that the object’s detection accuracy is relatively unaffected by
compression, whereas a large Delta Object IoU suggests considerable detection-
performance degradation due to compression.

We then investigated which of our proposed target metrics is most represen-
tative for evaluating detection performance.

4.2 Detection Metric

All target detectors in this study are YOLOv5 variations tailored to specific
detection tasks: YOLOv5s for object detection, YOLO5Face for face detection,
and LPD YOLOv5 for license-plate detection. First we analyzed almost 40 IQA
and VQA metrics to determine how they correlate with the detectors’ perfor-
mance. We applied each metric to every compressed image in our datasets.
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Our analysis included the following:

– Image/video-quality metrics
• Full-reference: PSNR (peak signal-to-noise ratio), SSIM (structural sim-

ilarity index), MS-SSIM (multiscale structural similarity index), VMAF
(video multi-method assessment fusion)

• No-reference: NIQE (natural image quality evaluator), BRISQUE
(Blind/Referenceless image spatial quality evaluator)

– Other Metrics: SAM (spectral angle mapper), SRE (spatial resolution
enhancement), DSS (decision support system), NLPD (normalized Lapla-
cian pyramid distance), GMSD (gradient magnitude similarity deviation),
MDSI (mean deviation similarity index), VSI (visual saliency-induced Index),
ERQA (edge-based region quality assessment)

– NSS (natural scene statistics): blockiness, total variation, colorfulness, bright-
ness

Fig. 4. Object detection. Objective metric results

After verifying the comparison method, we found the correlation scores for all
tested metrics to be low, approximately 0.2–0.3 according to SRCC (see Fig. 4,
Table 2). This result suggests none of the metrics are practical for evaluating
detection performance on compressed videos.

Table 2. Obtained correlations for standart IQA/VQA quality metrics.

Method Best IQA/VQA metric
results among tested

Task Dataset Target algorithm PLCC SRCC

Object Detection COCO YOLOv5s 0.21 0.24
Face Detection WIDER YOLO5Face 0.25 0.33
Car plate Detection CCPD LPD YOLOv5 0.32 0.31
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Figure 5 illustrates our proposed metric’s overall architecture. The input
varies with the target metric: for mean-IoU, we used whole images; for object-
IoU and Delta Object IoU, we used cropped objects based on GT bounding
boxes (Fig. 6 shows this variant).

Fig. 5. The proposed quality metric architecture.

Fig. 6. The metric pipeline for assessing object crops.

Due to IQA and VQA metrics’ low correlation, we decided to research novel
video-quality metrics based on CNN models which process crops of input images.

The lightweight MobileNetV3 network served as backbone for feature extrac-
tion. We then concatenated embeddings with their difference and fed the results
to an MLP block that predicts the target metric.

We sequentially examined each proposed target-detection-performance met-
ric to determine which was most representative. The first was mean-IoU. We
trained our metric to predict the mean-IoU score for the entire compressed
image as an input and achieved low SRCC scores of 0.29–0.37, depending on
the task. Consequently, our analysis identified a major drawback of mean-IoU as
the target performance metric. The IoU for each detected object in an image can
vary, and averaging the results can lead to a false detection-quality perception in
compressed content: the average value heavily masks omission of objects (false
negatives). This drawback is absent from the next two metrics, which average
the IoU of all objects in the dataset.

Having already calculated bounding boxes in uncompressed sequences (GT),
we examined object IoU and computed the average value for cropped objects
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across all images. This approach recognizes that vast areas of a video frame,
such as trees, asphalt, and sidewalks, are typically irrelevant to surveillance.
By concentrating on areas that contain objects of interest, we sought to assess
how the quality of these areas degrades rather than evaluating overall image
or background quality. After training our metric to predict Object IoU as the
target, we achieved an SRCC of 0.5–0.6 for detection. The results showed that
the metric poorly predicted absolute IoU values. Indeed, predicting an IoU score
for an object without any supporting information from the detector is difficult.
Rather than considering compression’s impact on detection-algorithm perfor-
mance, Object IoU considers the trained metric’s performance to predict the
detection result, leading to misalignment with the actual objective.

To address described limitations, we shifted to the Delta Object IoU. That
shift acknowledges the inherent detection-performance variability among com-
pression levels and seeks to more directly quantify compression’s impact. Our
experimental results demonstrate a notable improvement in correlation scores
when using Delta Object IoU. Specifically, we observed SRCC in the 0.8–
0.9 range for multiple tasks, indicating a stronger correlation with detection-
algorithm performance degradation due to compression. Delta Object IoU’s main
disadvantage as a target metric is that the deltas of different detection algorithms
have low correlation, so the trained algorithm generalizes poorly to different tar-
get detectors.

Because of the unified approach of our proposed detection metrics, we can
aggregate them into a general version. This version, trained on all datasets for
all tasks, yielded results that were slightly inferior to those we obtained for
task-specific metrics (see Table 3).

Table 3. Correlation scores (SRCC) for the general metric compared to individual
metrics.

Dataset (task) Test data
Generalized model Separate models

All datasets 0.837 –
Object detection 0.844 0.892
Face detection 0.816 0.818
Car plate detection 0.811 0.811

4.3 Face-Recognition Methodology

Standard metrics for measuring face-recognition efficiency include false-
acceptance rate (FAR) and false-rejection rate (FRR). However, these can only
be calculated for an entire dataset, whereas sometimes it is necessary to assess the
quality of a single photo. A common methodology for neural-network-based face
recognition involves computing embeddings for a corpus of reference images, each
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associated with known individuals, as well as for a query image. The identifi-
cation process entails choosing the reference image whose embedding is most
similar to that of the query image. To quantify the impact of image compres-
sion on face recognition performance, we calculated ArcFace [10] embeddings
for all images (database and queries). Consider cosine similarity between image
embeddings:

R(Ia, Ib) = cosSim(emb(Ia), emb(Ib)) (1)

The proposed target metric is calculated as follows:

F (Iref , Icompr) = R(Iref , Idatabase)−R(Icompr, Idatabase) (2)

Compression algorithms will influence correct recognition of the query face,
so the cosine similarity between database and compressed images will differ. The
face-recognition performance metric measures this difference in cosine similarity;
if the difference is high, the face-recognition system is more likely to fail.

4.4 Face-Recognition Metric

Recognition often follows detection, so we focused on image crops. As with detec-
tion, our first task was to analyze the performance of standard IQA/VQA metrics
and existing quality-assessment methods for face recognition. The correlation
scores for all metrics were low, suggesting that none is practical for evaluating
face-recognition performance on compressed videos (Fig. 7).

Fig. 7. Existing quality assessment methods for face recognition and standard
IQA/VQA metrics results.

For face recognition we used ResNet-18 and a one-layer regression head to
predict cosine-similarity deltas between source and compressed images. First,
we trained our metric to predict a target score for a pair of reference and com-
pressed face crops; the result was a 0.59 SRCC. We thus concluded that the
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Fig. 8. Pipeline of face-recognition metric.

metric provides unstable results on individual face images. To address this insta-
bility, we propose predicting image/video quality on small subsets of images as
single inputs and averaging CNN feature before regression head to predict scores
(Fig. 8). The SRCC of the metric trained with the proposed strategy is 0.85
SRCC.

4.5 License-Plate-Recognition Methodology

To crop license plates from the full-size images, we used bounding boxes from GT.
In license-plate recognition, the outcome is a sequence of characters, so the qual-
ity assessment differs fundamentally from other tasks considered. A variety of
string-similarity measures, such as Hamming distance and Levenshtein distance,
calculate the minimum number of character transformations necessary to convert
one string to another. But these measures are unnormalized, making them less
convenient for regression. Additionally, the Hamming distance requires equal-
length strings, whereas license-plate-recognition methods may output a varying
number of characters owing to unreadable symbols or misinterpretations, such
as compression artifacts.

For this work, we propose Jaro similarity, which considers string lengths as
well as the number and placement of common characters, making it suitable for
automatic comparison and classification in data matching, duplicate identifica-
tion, and more. The Jaro similarity dj of two given strings s1 and s2 is

dj =

{
0 if m = 0
1
3

(
m

|s1| +
m

|s2| +
m−t
m

)
otherwise

where: m is the number of matching characters; t is half the number of transpo-
sitions.

It is particularly useful for license-plate recognition, as it accounts for match-
ing characters that may be shifted a few positions left or right. Similar to IoU,
the overall metric for an image comes from averaging Jaro similarity over all
matched license plates.
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4.6 License-Plate-Recognition Metric

The standard IQA/VQA methods exhibit bad correlation scores for our proposed
target metric (Fig. 9).

Fig. 9. Standard IQA/VQA metrics results.

We developed a neural-network metric to predict the performance of a license-
plate-recognition method that takes as input a grayscale license-plate image. The
model is a classic CNN, and its output is a single real number representing the
expected recognition quality (Fig. 10). A value of 1 indicates perfect recogni-
tion, while a value of 0 indicates the license-plate characters will be incorrectly
recognized. After training the architecture, we achieved an SRCC of 0.85.

Fig. 10. Pipeline of license-plate-recognition metric.

5 Conclusion

This paper comprehensively explores the development and validation of novel
image-quality metrics for machine vision, with a focus on assessing detection
and recognition performance on compressed images and videos. These metrics
address a major gap in standard IQA/VQA methods, which cater mainly to
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human visual perception and inadequately predict machine-vision performance
on compressed images and videos.

Our metrics proved to be 3–5 times more computationally efficient than the
target examined algorithms. For detection, we produced a general metric that
applies to various detection subtasks, making the computations even more effi-
cient since several detectors of the same family (e.g., YOLOv5) are used simul-
taneously in some cases (e.g., object and license-plate detection).

Although our proposed metrics yielded promising results, they are designed
for specific tasks and, unmodified, may be inapplicable to other machine-vision
tasks. Future work could explore development of more-general metrics that can
handle a wider range of detection and recognition tasks. Additionally, further
research could examine integration of these metrics into video-compression algo-
rithms to automate optimization for machine vision.

Our metrics can also be used for other tasks that consume image/video data
as an input. For example, visual question answering uses multimodal fusion
of features extracted from both image and text. Taking a look at the exist-
ing VideoQA models, we can observe that the majority of them are utilizing
features (rather than predicted labels) extracted from an image or a video by
familiar object detection models, e.g. Faster-RCNN features in ViteVQA [29] and
BUTD [4], or ResNet features in MFH [28]. Therefore, we expect that our results
will extrapolate to those models. Applicability to newer models (e.g. Fuyu-8B)
that use direct linear projection of image patches requires a separate study. As
our machine-vision metrics are feature-focused for image/video data, they can
serve as a reference point for developing a metric for the VisualQA task.
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