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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Multi-focus image fusion (MFIF) explores the positioning
and reorganization of the focused parts from the input images. Focused
and defocused parts have similar representations in color, contour and
other appearance information, which degrades the fusion quality due
to the influence of these redundant information. Currently, most MFIF
methods have not identified an effective way to remove redundant infor-
mation before fusion stage. Thus, in this paper, we introduce a struc-
tural map extraction strategy for multi-focus image fusion. Compared
to the source image, structural map reduces redundant information, and
the clearer parts of the image retain more abundant structural features.
Consequently, the differences between focused part and defocused part
become more pronounced based on the extracted structural map. Specif-
ically, the proposed fusion method adopts a two-stage training strat-
egy. Firstly, the structural map is extracted by the proposed structural
map extraction network (SMENet) from the source images. Secondly,
the structural map is thus applied to train the decision map generation
network (DMGNet) to obtain the decision map which is utilized to gen-
erate the final fusion image. Qualitative and quantitative experiments
on three public datasets demonstrate the superiority of the proposed
method, compared with the advanced image fusion algorithms.

Keywords: Image fusion · Deep learning · Two-stage strategy ·
Structural map · Decision map

1 Introduction

Due to the limitation of image sensors, it is difficult to capture fully focused
images [1] with a single camera, which leads to the emergence of the MFIF
task. The fusion image generated by the MFIF task is solely generated from the
content within the source images, distinguishing MFIF from other fusion tasks.
As an example, the fusion of infrared and visible images [2] necessitates the
extraction of distinct features from the source images and the recombination of
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the fused image with varying weights. Nevertheless, the fundamental objective of
MFIF tasks is to discriminate between different focal regions and subsequently
reintegrate them. The key of this task lies in accurately identifying the focused
and defocused areas.
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Fig. 1. (a) Generating decision map solely based on source image information. (b)
The first stage involves extracting structural map from the source images to remove
redundant information. In the second stage, structural maps are utilized to generate
decision map guiding the fusion process.

In the early years, MFIF methods concentrated on spatial domain and
transform domain operations. The transformation domain-based MFIF meth-
ods include common non-subsampled contour transform (NSCT) [3], non-
subsampled shear transform (NSST) [4], and sparse representation (SR) based
methods [5]. These methods accomplish comprehensive fusion tasks in an alter-
nate fusion space through transformation and inverse transformation and also
successfully mitigate issues related to discontinuity or blocking effects. However,
they did not adequately address spatial consistency and the fused image obtained
through inverse transformation may also introduce unwanted noise information.

The spatial domain-based MFIF methods [6] directly integrate the informa-
tion of multi-focus images into the fused image to address the above drawback.
These methods complete the fusion task at the pixel level, block level, and region
level byweighted averaging the source image.The spatial domain algorithms inher-
ently consider spatial consistency and relies on solving an energy function to assign
weights.

However, such methods are not suitable for solving fusion problems in com-
plex scenes due to their time-consuming nature. Therefore, with the development
of deep learning, scholars have proposed deep learning-based MFIF methods [7–
9]. Deep learning methods for MFIF mainly fall into two categories: regression-
based and classification-based. The former may lose some information from the
source images, while the latter preserves more information from the source images
at the pixel level. As depicted in Fig. 1(a), most scholars conduct focus attribute
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classification training directly based on source images. However, besides the focus
attribute, source images contain other redundant information such as color and
brightness, which are not conducive to decision map generation.

Fig. 2. Comparison between source image and structural map. The first line is the
source image, and the second line is the corresponding structural map.

To reduce redundant information in the source images, enhance the con-
trast between focused and defocused images, and obtain better decision map,
this paper proposes a two-stage fusion network that is constructed based on
structural map, as shown in Fig. 1(b). The extraction strategy for structural
map comes from other visual tasks, such as super-resolution [10] and video com-
pression [11]. Compared to the source images, the structural map generated
by the SMENet eliminate redundant information and emphasize high-frequency
details, such as structural and textural elements, within the focused regions.
The increased structural information disparity between focused and defocused
areas has been demonstrated to be beneficial for the subsequent process of gen-
erating enhanced decision map. After obtaining structural map, the DMGNet is
employed, thereby overcoming the limitations associated with manual rules.

As depicted in Fig. 2, the structural details in focused areas are more pro-
nounced than defocused part. As a result, there is a significant disparity of
the structural information between the focused and the defocused regions. The
greater the discernible distinctions in gradient and structural characteristics
between the focused and defocused regions, the more favorable the conditions
for generating an accurate decision map through deep learning.

The main contributions of this paper are given as follows:

– A two-stage fusion network is proposed to deliver more robust fusion results.
The first stage generates the structural map of the input image, removing
redundant information from the source images. The second stage utilizes the
structural map to generate a more stable decision map.

– A new multi-scale feature extraction network has been introduced into image
fusion task. Specifically, the multi-scale module extracts multiple features at
different scales which is utilized to ultimately reconstruct structural map and
decision map.

– Qualitative and quantitative experiments on multiple MFIF benchmarks have
demonstrated the superiority of the proposed method.



4 T. Shen et al.

2 Related Works

This section briefly introduces methods based on deep learning. These methods
are divided into regression based methods and classification based methods.

2.1 Regression based MFIF Methods

Regression methods directly output fused images. The framework includes three
parts: feature extraction, feature fusion, and image reconstruction. U2Fusion [12]
uses a feature extractor with dense connections to obtain features from source
images and trains the reconstruction module to generate fusion results. MUFu-
sion [13] utilizes multiple dense extraction blocks and two scale reconstruc-
tion blocks to extract significant features. Then, it reconstructs these features
to obtain fusion results. Some scholars use adversarial generative networks to
directly generate fused images. FuseGAN [14] introduced conditional GAN to
play adversarial game to generate fused image. MFF-GAN [15] conducted adver-
sarial games under joint gradient constraints to generate fused images.

Deep learning methods based on regression (end-to-end image fusion) achieve
fusion results without the handcrafted fusion rules. However, these methods also
have some drawbacks: (1) Due to the unstable training process, this type of
method does not have good generalization performance; (2) The reconstructed
images cannot truly reflect the information of source images.

2.2 Classification based MFIF Methods

Classification based methods have similar frameworks with spatial domain meth-
ods. Specifically, networks are trained to classify focused and unfocused areas.
In 2017, CNN [7] was first introduced into this field. In 2020, Ma et al. designed
an unsupervised model named SESF [8] based on Densefuse. Unlike CNN, SESF
uses a spatial frequency method to determine the focusing attribute of pixel
values. In addition to spatial frequency, some scholars have also adopted simple
manually designed rules to distinguish. UNIFusion [16] inputs the low-frequency
and high-frequency images obtained from the filtering operation into the encoder,
uses the l1 norm to obtain the gradient perception image, and finally uses the
maximum strategy to obtain the decision map.

However, manually designed classification rules cannot accurately classify
pixel value focusing attributes. The learning ability of the network is naturally
suitable for pixel value-focused attribute classification tasks. GEU-Net [17] uses
a U-shaped network to segment the focusing and defocusing regions.

Recently, some scholars have proposed obtaining fusion results with zero
samples. ZMFF [9] achieved zero sample learning to obtain decision map through
extracted prior information, but it is very time-consuming.

Compared with regression methods Classification based methods usually
achieve better fusion performance. This is because the fusion images are com-
pletely derived from the source images and does not introduce new noise. An
ideal decision map is the key for Classification based methods.
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Most existing methods simply feed the source images to the neural network
for training. This is limited in magnifying differences between focused and defo-
cused areas. In order to highlight the difference between focused and defocused
areas, this paper extracts structural map from the source images. The structural
map of the focused area has more complete structural information, which forms
a significant difference from the defocused area. The subjective picture is shown
in Fig. 2. Based on this difference, the learning ability of the neural network
is used to learn the ideal decision map and finally obtain good fusion results.
Specifically, this paper considers using two-stage training to solve this problem.
The first stage of training resulted in an ideal structural map. The second stage
uses the structural map obtained in the first stage as the training dataset to
obtain the decision map.

3 Proposed Method

Firstly, the whole network architecture is described. Then, details of the training
strategy are provided. Finally, the post-processing module is introduced. Since
the decision map output in the second stage can be seen as a segmentation task,
it is natural to consider using the U-Net structure, which has achieved good
performance in semantic segmentation. This structure also exhibits advantages
in extracting multi scale features, thus adopting the similar architecture for the
SMENet and DMGNet.

IA

IB

SA

 SB

SMENet C DMGNet

Initial DM Final DM IF

Post-processing Module

Fig. 3. The framework of the proposed fusion method.IA is a close-up focused image,
and IB is a long-range focused image.SA and SB are two structural maps with different
focus areas.IF is the final fused image.

3.1 The Network Architecture

The focus of an image is reflected in the high-frequency structural information
such as edges and details. When the amount of structural information collected
is little, this part of the image is defocused. Therefore, we locate the focused
region of the image based on structural information. The overall framework of
our proposed method is shown in Fig. 3. Three modules are designed in the
framework: the Structural Map Extraction Network (SMENet), the Decision
Map Generation Network (DMGNet) and the post-processing module.



6 T. Shen et al.

SMENet Network Structure SMENet is used to extract structural informa-
tion from the input images.

In order to extract the structural information and high-frequency informa-
tion in the source images, U-shaped network architecture is used to extract and
integrate the structural information of multiple scales in the source images.

Fig. 4 (A) is the detailed structure of SMENet. H and W represent the
height and width of inputs. The two numbers after H and W are the number of
input and output channels. The kernel size of all the convolution layers is set to
3×3. In the convolutional layers, the gradual decrease of H and W indicates the
down-sampling operation (5 down-sampling layers), while the gradual increase
resolution indicates the up-sampling.
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Fig. 4. Proposed network structure

The pooling operation and convolution operation at different scales are
aimed at extracting multi-scale structural features from input feature map
with arbitrary spatial resolution, extracting multi-scale features from gradually
down-sampling feature maps, and encoding them into high-resolution feature
map through gradually up-sampling, concatenation, and convolution. This way
reduces the detail loss caused by large-scale up-sampling operations.

DMGNet Network Structure Based on the structural map extracted by
SMENet, DMGNet extracts decision map through pixel-level conversion for posi-
tioning the focused part.

DMGNet exhibits a U-shaped network akin to that of SMENet. The dis-
tinction between SMENet and DMGNet resides solely in the architecture of the
initial convolutional layer. While SMENet takes an image as input and generates
the corresponding structural map, DMGNet, in contrast, requires concatenating
two structural maps with different focal settings to the network and producing
a decision map. As a result, the number of channels for these two models is 1
and 2, respectively. Fig. 4 (B) is the detailed structure of DMGNet.
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3.2 The Training Phase of SMENet

Firstly, the clear natural image is blurred using Gaussian blur to obtain the
blurred images. The blurred image is used as the target image. Following the
residual concept, we compute the structural similarity between the clear source
image subtracted from the network output and the blurred image.

When the loss value converges, the output of SMENet encapsulates a greater
amount of structural information. Ultimately, SMENet excels in extracting struc-
tural detail features from images.

The training process of SMENet is shown in Fig. 5. The input images are
converted into grayscale. y is a clear (all-focused) image. Firstly, a blurred image
x is obtained by applying the Gaussian filter into y. Based on experience [17],
the Gaussian blur parameter with a standard deviation of 2 and a size of 7× 7
is set. Then, y is fed to SMENet to obtain the structural map F (y). Here, F
represents the SMENet model.

The loss function of this network is calculated based on the structural simi-
larity loss (SSIM) [18], which measures the error between the y − F (y) and the
blurred image x. The use of structural similarity loss is to enable the network
to extract richer structural information. The structural similarity loss (Lssim) is
formulated as follows,

Lssim = 1− SSIM(y − F (y, γ), x) (1)

where γ represents the trained weights in SMENet.

A.SMENet

Blurred image(x) Clear image(y) Structural map F(x)

y-F(y)1-SSIM(y-F(y, ),x)

C

C

C

C

C
C

Fig. 5. An illustration of the SMENet training phase.

3.3 The Training Phase of DMGNet

DMGNet takes two cascaded structural maps output by SMENet as input, and
ultimately generates an initial decision map. The training process of DMGNet
is shown in Fig. 6.

Firstly, the paired structural maps {SA, SB} obtained by the SMENet are
concatenated as the inputs of DMGNet, we use F ′ to represent the DMGNet
model. The (Ground Truth)GT of this network is a binary image gt. To acquire
a precise and seamless initial decision map, we employ the mean square error
(MSE) loss as the loss function.

The loss function of DMGNet training process is denoted as follows,

LMSE = ||gt − F ′(SA, SB , α)||22 (2)

where α represents the trained weights, SA and SB represent the two structural
maps obtained by the proposed SMENet.
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B.DMGNet

Structural map SA

Structural map SB

Initial DM(F'(SA,SB)) Ground Truth(gt)

MSE(F'(SA,SB),g)

C

C

C

C

C
C

Fig. 6. The training process of the decision map generation network (DMGNet).

3.4 Post Processing Module and Fusion

In this section, we will introduce how to process the initial decision map to
obtain the final decision map and obtain the fused image. The overall framework
is shown in Fig. 7.

binarization

processing

remove small

areas

refinement

process

Source IA

Source IB

Initial DM Final DM Fused IMiddle DM1 Middle DM2

1 2 3

1 2 3

Fig. 7. An illustration of the post-processing module.

The first step is binarization processing. The binary image D (x, y) is gen-
erated by setting the threshold value of the initial decision map generated by
DMGNet 1. This process is represented as

D(x, y) =
{
1 S (x, y) > 0.5
0 otherwise

(3)

where S (x, y) is the initial decision map generated by the DMGNet.
1 The threshold is set to 0.5 [1].
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Next is the small domain removal operation. Although the binary map is
almost complete, there are still a few ’holes’. To solve this problem, a morpho-
logical filtering technique is used to invert small holes with an area smaller than
the manual set threshold 2.

Afterwards, refine the decision map. After using sliding windows3 to detect
the boundaries of different focus areas in the decision map, guided filtering tech-
nology is used to redistribute the weights of the boundary areas to reduce visual
artifacts while maintaining the weights of other pixels.

Finally, we use the D′(x, y) to represent the final decision map. IA and IB
are the source image A and source image B, respectively. The fused image IF is
obtained using the weighted average operation, which is defined as:

R(x, y) = IA(x, y) · D′(x, y) + IB(x, y) · (1− D′(x, y)) (4)

4 Experiments

In this section, the experimental settings, fusion results analysis, and ablation
experiments will be introduced.

4.1 Experimental Settings

In the first training stage, the MS-COCO [19] dataset is utilized to train the
structural map extraction network. Specifically, the training set is composed
of 40000 images blurred by the Gaussian filtering. The clear images (original
image of MS-COCO) are regarded as the Ground Truth (GT). These images
are converted to grey-scale and cropped to 288× 288. The batch size and epoch
are set to 16 and 50, respectively. Adam optimizer is used to train our network.
Bilinear interpolation is used in the upsampling operation.

In the second training stage, we select a public image segmentation dataset
benchmark [20] which contains high-quality natural images and corresponding
masks for the segmentation task. 10000 original RGB images are converted into
grey images and then Gaussian blur (with the standard deviation of 2 and win-
dow size of 7×7) is added on the target area through the example segmentation
label to generate defocused parts.

Finally, 10,000 pairs of synthesized multi-focus images and corresponding
accurate GT-focused maps are obtained. The focused and blurred images are fed
into the SMENet, and the corresponding paired structure information features
are obtained and concatenated as the input of the DMGNet. The batch size and
epoch are also set as 16 and 60.

2 The threshold is set to 0.002×H ×W . Among them, H and W are the height and
width of the source image, respectively.

3 The window size of the filter is set to 5, and the smoothness is set to 1.
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In order to objectively evaluate the fusion performance, we conduct experi-
ments on three multi-focus image fusion datasets. The involved datasets include
Lytro [21], MFI-WHU [15], and MFFW [22] 4. These images are composed of
rich content, such as people, plants, toys, animals, etc.

IA

IB

(a1) CNN (a2) U2Fusion (a3) SESF (a4) UNIFusion

(a10) Proposed(a6) ZMFF (a7) MUFusion

(a5) MFF-GAN

(a8) SAMF (a9) FusionDiff

Fig. 8. Visual comparison of various image fusion methods on Lytro dataset.

4.2 Fusion Results Analysis

Seven state-of-the-art image fusion algorithms are selected as comparison algo-
rithms, including the multi-focus image fusion with a deep convolutional neu-
ral network(CNN, 2017) [7]; a uniform fusion network (U2Fusion, 2022) [12];
an unsupervised deep model for multi-focus image fusion(SESF, 2021) [8]; an
unsupervised generative adversarial network with adaptive and gradient joint
constraints for multi-focus image fusion(MFF-GAN, 2021) [15]; a lightweight
unified image fusion network(UNIFusion, 2021) [16]; zero-shot multi-focus
image fusion(ZMFF, 2023) [9]; a general unsupervised image fusion network
based on memory unit(MUFusion, 2023) [13];small-area-aware multi-focus image
fusion(SAMF, 2024) [23];multi-focus image fusion based on denoising diffusion
probability model(FusionDiff, 2024) [24].

In order to comprehensively evaluate and analyze the performance of MFIF
methods, we selected six different metrics to conduct the quantitative exper-
iments. Information theory-based measurement QMI [25] and QNCIE [26] as
important metrics of image fusion quality evaluation, effectively evaluate the
fusion results from two aspects of information retention and information differ-
ence. Image feature-based measurement QAB/F [27] and QG [28] measure the
quality and practicability of image fusion technology from the transmission and
retention of edge information and the overall visual effect. QE [29] is mainly

4 Due to space limitations, the qualitative and quantitative experimental results on
the MFFW dataset have been included in the supplementary materials.
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evaluated based on the retention of edge information. Specifically, it evaluates
the fusion quality by measuring the retention of edge information in the fused
image. QCB [30] is used to evaluate the quality of fused images. It measures the
visual comfort of fused images by quantifying the degree of deblocking effect.

(c1) CNN (c2) U2Fusion (c3) SESF (c4) UNIFusion (c5) MFF-GANIA

IB (c6) ZMFF (c7) MUFusion (c8) SAMF (c9) FusionDiff (c10) Proposed

Fig. 9. Visual comparison of various image fusion methods on MFI-WHU dataset.

Subjective Evaluation As shown in Fig. 8-Fig. 9, the examples are selected
from Lytro and MFI-WHU. The key parts have been marked with red boxes.

From Fig. 8, it can be seen that various methods have similar results, but
the method introduced in this paper has clearer lines on the contour of the
fused image. As there are no complex real-world issues in the Lytro dataset, the
majority of methods have achieved visually ideal fusion images on Lytro.

In Fig. 9, it can be seen that the result of this paper, especially ’leaves’,
is superior to other methods in terms of structure, texture, and clarity. The
clearer fusion images also validate the relatively higher accuracy of the decision
maps obtained in this paper. This is attributed to the significant differences
in detail between focused and unfocused areas on the structural maps derived
from SMENet. U2fusion, MFF-GAN and FusionDiff are generative deep learning
methods. The fused image introduces interference information that does not exist
in the original images. It can be seen that the fusion results show a certain degree
of color deviation.

Objective Evaluation The results of the evaluation metrics on two public
datasets are shown in Table 1.

The highest performance on QG and QAB/F proves that our fusion results
preserve as much gradient and visual information as possible in the source
images. In most indicators, the method in this paper ranks first or second, which
shows that the fused image obtained by this method has the highest comprehen-
sive quality.
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Table 1. Comparison of objective metrics on different datasets.(Bold:Best,
Red:Second Best, Blue:Third Best)

Lytro MFI-WHU
Methods QMI QNCIEQAB/F QG QE QCB QMI QNCIEQAB/F QG QE QCB

CNN 1.1095 0.8402 0.7520 0.7081 0.9034 0.7995 1.1767 0.8455 0.7299 0.7362 0.8471 0.8269
U2Fusion 0.7694 0.8220 0.6086 0.5150 0.7880 0.5689 0.6975 0.8193 0.5444 0.5023 0.6714 0.5161

SESF 1.1169 0.8406 0.7517 0.7088 0.9048 0.7992 1.1734 0.8457 0.7222 0.7321 0.8451 0.8219
MFF-GAN 0.8031 0.8236 0.6587 0.5629 0.8513 0.6452 1.1065 0.8399 0.7184 0.7212 0.8306 0.8054
UNIFusion 1.0117 0.8340 0.7377 0.6856 0.8727 0.7592 0.7704 0.8222 0.6364 0.5837 0.7737 0.6330

ZMFF 0.8838 0.8271 0.7031 0.6313 0.8912 0.7412 0.7911 0.8228 0.6318 0.5850 0.8028 0.7101
MUFusion 0.8005 0.8233 0.6676 0.5774 0.8429 0.6417 0.7226 0.8201 0.5987 0.5464 0.7356 0.6633
FusionDiff 0.7838 0.8227 0.5794 0.5004 0.6299 0.5967 0.1049 0.8088 0.0785 0.0943 0.0139 0.2922

SAMF 1.1191 0.8411 0.7511 0.7067 0.9046 0.7951 1.1956 0.8474 0.7278 0.7348 0.8480 0.8247
Ours 1.1277 0.8414 0.7527 0.7108 0.8997 0.8006 1.1863 0.8458 0.7342 0.73650.84820.8256

4.3 Ablation Studies

In this section5, we conduct ablation experiments to demonstrate the effective-
ness of the components in the proposed method. In general, our fusion model
boosts the fusion performance from 3 perspectives: (1) Generating decision map
in a two-stage training manner; (2) Structural map and decision map are all
obtained by deep learning. (3) The structure of SMENet and DMGNet;

Fig. 10 shows the visualization results of the ablation experiments. Specifi-
cally, Fig. 10 (a) and Fig. 10 (b) represent the source images; Fig. 10 (c) rep-
resents one stage training to generate fusion results; Fig. 10 (d) represents that
without deep learning, only Gaussian filtering and subtraction are used to get the
structure map; Fig. 10 (e) represents the second stage replaced by using spatial
frequency methods [1] to generate decision map and ultimately generate fusion

Fig. 10. (a) - (b) Source images, (c) One stage, (d) Effectiveness of SMENet, (e) Effec-
tiveness of DMGNet, (f) Multi-scale effectiveness, (g) Effectiveness of skip connections,
(h) Effectiveness of dense connections, (i) Ours

5 Due to page constraints, the ablation experiments on the MFFW and MFI-WHU
datasets are included in the supplementary materials.
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images; Fig. 10 (f) represents the removal of up-sampling and down-sampling
operations to verify the rationality of multi-scale; Fig. 10 (g) represents the
experimental results of removing skip connections; and Fig. 10 (h) represents
the replacement of the original skip connections with dense connections; Fig. 10
(i) represents this paper.

Two-stage Training Strategy In order to verify whether two-stage training
is better than one stage, we merged the training of the two stages into one stage
and retrained the net.

By objectively measuring the fusion results, as shown in Table 2, the out-
comes obtained from the two-stage training surpass those from one stage.

While the differences in metrics may not be pronounced, the two-stage app-
roach exhibits a clear advantage on the decision map. As illustrated in Fig. 10,
where ’c’ denotes the results of one-stage training and ’i’ represents the out-
comes of this work, the superiority of the two-stage method can be attributed
to the provision of richer supervisory information during the first training stage,
resulting in more precise generation of structural map.

Table 2. Performance comparison between the ablation experiments and our experi-
ment.(Bold:Best)

QMI QNCIEQAB/FQG QE QCB

One-stage Training Strategy c 1.1249 0.8411 0.7513 0.7079 0.9031 0.8000
Effectiveness of
SMENet and DMGNet

d1.0324 0.8367 0.6885 0.6392 0.7916 0.7587

e 1.1263 0.8411 0.7518 0.7075 0.90600.8015
The effectiveness of
multi-scale and
network connectivity methods

f 1.1194 0.8407 0.7480 0.7060 0.8920 0.7952
g 1.1274 0.8412 0.7516 0.7096 0.9019 0.8000
h1.0812 0.8393 0.6376 0.6383 0.5452 0.7360

OURS i 1.12790.8413 0.7521 0.71020.9005 0.8003

Effectiveness of SMENet and DMGNet In order to verify the rationality of
SMENet, in the first stage, each input image is processed with Gaussian filtering
and then the structural map is obtained by making a difference with the original
image. The second stage remains unchanged. In order to verify the rationality
of DMGNet, the first stage remains unchanged, and the second stage calculates
the spatial frequency to obtain the decision map.

As shown in Table 2, compared with our method, manually obtaining the
structural map and decision map cannot produce better results. Fig. 11 shows
the qualitative results that the structural maps obtained by the linear filtering
operation (Gaussian filtering) have a lot of noise, which subsequently disrupts
the creation of decision map. Fig. 10 (e) shows that decision map obtained by
the spatial frequency method is unstable and unable to distinguish regions with
indistinct differences in focus attributes. The decision map of the third image
can confirm this point. Therefore, SMENet and DMGNet cannot be replaced.
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Structural Map A1 Structural Map B1
IA

IB Structural Map A2 Structural Map B2

Decision Map 1

Decision Map 2

Obtained through linear filtering and differencing

Obtained through SMENet

Obtained through DMGNetSource images

Fig. 11. IA and IB are the source images. Structural map A1 and B1 were obtained
by Gaussian filtering and differencing. Structural map A2 and B2 were obtained by
SMENet. These structural maps are trained to obtain Decision Map 1 and 2 respec-
tively in the DMGNet.

The effectiveness of multi-scale and network connectivity methods In
order to investigate the effectiveness of multi-scale, all up-sampling and down-
sampling operations in the network are removed and fused images are generated.
This ablation experiment corresponds to ’f’ in Table 2 and Fig. 10. Compared to
before the removal of up-sampling/down-sampling operations, all metrics show
a noticeable decline, and the quality of the generated decision map significantly
deteriorates.

Nowadays, there are various ways to connect convolutional blocks in neural
networks. The most common operations are skip connections and dense con-
nections. To verify the rationality of the structure, ablation experiments are
conducted. As shown in Fig. 10 and Table 2, ’g’ and ’h’ respectively represent
the experimental results after removing skip connections and dense connections.
Comparing the metrics, it can be observed that the absence of skip connections
or solely using dense connections significantly reduces the performance of the
fused image. It is more evident from the generated decision map that there is
a significant error in the decision map without the design of up-sampling and
down-sampling and skip connections.

Combining the above three sets of ablation experiments, it is demonstrated
that the infrastructure of SMENet and DMGNet effectively extracts features at
different scales and can lead to better fusion results.
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5 Conclusion

In the task of multi-focus image fusion, how to use source images to obtain
high-quality decision map is a key issue. However, there is a lot of redundant
information such as brightness and color in the source images that interfere with
the generation of decision map.

To enhance the contrast between focused and defocused regions and reduce
redundant information in source images, in this paper, a two-stage image fusion
framework is introduced, termed as SMFuse. The network architecture comprises
multiple convolutional layers of varying scales aimed at capturing structural
information from images across different scales. In the first stage, a multi-scale
feature extraction network structure is utilized to extract structural information
from the source images, reducing redundant information. In the second stage,
the structural information obtained from the first stage is used to train and
generate decision map.

Compared with the state-of-the-art methods, the proposed method achieves
better fusion performance in the subjective evaluation and objective evaluation.
However, due to the blurring of the focus area boundary, the decision map will
lead to a certain gradient dispersion phenomenon in the fused image. How to
further improve the performance of feature extraction and reduce the occurrence
of gradient discretization remains to be further studied. In addition, the method
proposed in this paper is a two-stage fusion architecture, the time cost is high.
How to lighten the model needs further research.
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Abstract. Synthetic Aperture Radar (SAR) technology stands at the
forefront of capturing and processing Earth’s surface visuals due to its
widespread acceptance across various organizations. However, the pres-
ence of unwanted random granular interference, commonly referred to as
“speckle," poses a significant challenge in SAR data processing. Address-
ing this challenge, known as “despeckling," is crucial for extracting clear
SAR visuals. This article introduces a novel CNN-based approach for
despeckling SAR visuals contaminated with speckle. Our proposed model
integrates a Generative Adversarial Network (GAN) module to estimate
the distribution of contaminating speckle components from the input
SAR data. Concurrently, a gradient estimator module captures the crisp
changes in textural information within the input data. Subsequently, the
input SAR data, the estimated noise distribution, and the extracted gra-
dient undergo further processing through a deep convolutional module to
generate a clean SAR visual. Unlike traditional methods that focus solely
on learning the residual noisy component or the clean data, our proposed
despeckling model learns the degradation pattern caused by noisy compo-
nents while emphasizing gradient information, thereby capturing critical
minute information. Experimental results demonstrate that our method-
ology significantly enhances despeckling performance compared to exist-
ing technologies in the literature. This research presents a promising step
forward in advancing SAR visual despeckling techniques, with implica-
tions for improved data quality and interpretation in various applica-
tions.

Keywords: Synthetic Aperture Radar (SAR) · Convolutional Neural
Network (CNN) · Generative Adversarial Network (GAN) · SAR
Despeckling · SAR denoising · SAR Image Restoration

1 Introduction

Before the advent of machine learning (ML) and deep learning (DL), the field
of SAR image despeckling predominantly relied on filter-based techniques to
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address noise issues. Notably, the "Lee Filter" demonstrated its effectiveness in
reducing noise, especially in uniform sections of SAR images but encountered
challenges when applied to non-uniform areas [19]. To overcome this limitation,
the "Enhanced Lee Filter" was introduced, proving its effectiveness in both uni-
form and non-uniform scenarios [18]. The "Frost Filter" introduced adaptability
by analyzing local image statistics [9], while the "Kaun Filter" improved upon
the Lee Filter by averaging pixel intensity within a defined window [17]. How-
ever, these filters exhibited reduced efficiency when dealing with images that had
varying variances across different regions. To address this challenge, a controlled
filtration technique was proposed, delivering superior denoising results [20]. In
the 21st century, significant advancements have occurred in SAR image denois-
ing strategies. An early approach presented in [10] bears resemblance to a speckle
filtering method that combines the Stationary Wavelet Transform (SWT) with
an averaging smoothing process. Another technique shares similarities with the
Coherence Reduction Speckle Noise (CRSN) algorithm [13], which heavily relies
on the coherent principles underlying SAR imaging. An improved despeckling
technique based on the non-local means approach was introduced, enhancing
SAR image quality by comparing and averaging similar patches with statis-
tical correlations, thereby leveraging image redundancy and self-similarity [7].
A similar filtration approach, as described in [2], examines the performance of
adaptive stack filters. Another method incorporates adaptive filter parameters
obtained from unscented Kalman filter output sampling [16]. The study con-
ducted by Torres et. al. [31] also showcased the effectiveness of employing an
NLM-based method in conjunction with a statistical test that relies on stochastic
divergences. Additionally, a dual-phase approach for SAR image denoising was
proposed, involving an initial stage of hard thresholding applied to directionally
smoothed output, followed by a final step using a hybrid Gaussian-Laplacian fil-
ter to enhance processed images [29]. In conjunction with the findings presented
in [15], the performance of despeckling was showcased through the utilization of
a hybrid filter operating in the global thresholding domain encompassing both
spatial and frequency aspects. Moreover approach such as those outlined in [22] is
employed to derive meaningful characteristics from a distorted image affected by
speckle noise. Subsequently, an improved, noise-reduced rendition of the image is
inferred using the informative gradient. However, despite their advantages, these
filtration methods exhibit significant limitations. The primary issue lies in exces-
sive smoothing, which leads to noticeable blurring and a loss of detail along sharp
edges. Moreover, they introduce blocking artifacts, unintended ghostly textural
artifacts, and a residual presence of speckle components in the denoised output.

In the late 2010s, DL-based denoising methods made significant progress in
SAR image enhancement. In [36], an approach using a residual neural network
with shortcut connections and atrous convolutions was applied, harnessing non-
linearity for denoising. An innovative approach, discussed in [32], introduced a
sophisticated cost function for effective SAR denoising while preserving intricate
details. Another study, referenced in [5], improved SAR denoising by utilizing
various convolutions in the despeckling network. [8] presented a conventional
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10-layer despeckling network emphasizing a novel cost function incorporating
statistical characteristics and optical properties. Additionally, [24] proposed log
transformation for input analysis and a flexible CNN model for speckle removal.
They evaluated the model’s performance with and without iteration-based non-
linear correction. [11] prioritized preserving texture-level details, integrating a
unit for accurate texture mapping, and training a module for noise removal in
both uniform and non-uniform areas. [21] addressed the challenge of obtain-
ing noisy-ground truth image pairs by developing a DL-based denoising tech-
nique employing residual learning, yielding substantial image quality improve-
ments. [6] explored effective SAR noise handling using a Fisher-Trippett despeck-
ling module with log transformation, demonstrating remarkable efficacy through
visual and quantitative assessments. Several recent learning-based SAR despeck-
ling methodologies have been documented in articles [28,30]. These approaches
have substantially enhanced despeckling performance while maintaining intricate
details inherent in the input imagery.

This article introduces a novel CNN-based approach to SAR visual despeck-
ling, presenting distinctive contributions that address key limitations of tradi-
tional methods:

1. Integration of Generative Adversarial Network (GAN) Module: We
propose the incorporation of a GAN module, a cutting-edge deep learning
technique, to estimate the distribution of speckle components. By leveraging
the power of GANs, our model can effectively capture complex distorting
patterns within SAR imagery, enhancing the accuracy of speckle removal.

2. Inclusion of Gradient Estimator Module: Our approach incorporates a
gradient estimator module alongside the GAN module. This module focuses
on capturing textural information, thus enabling the model to preserve intri-
cate details often lost or distorted in traditional despeckling methods. By
emphasizing gradient data, our model ensures a more faithful representation
of the underlying scene.

3. Unique Approach to Despeckling: Our model takes a unique despeckling
approach, unlike conventional methods that typically target noise reduction
or clean data generation. It learns the specific degradation pattern caused by
speckles while simultaneously emphasizing gradient information. This dual
focus significantly improves despeckling performance, leading to enhanced
data quality and interpretation.

4. Promise of Enhanced Data Quality: Through our research, we anticipate
substantial advancements in SAR imagery processing. By effectively mitigat-
ing speckle artifacts while preserving crucial details, our model promises to
elevate the quality and interpretability of SAR data across various applica-
tions, ranging from environmental monitoring to disaster response and urban
planning.

In summary, our work represents a crucial advancement in SAR visual despeck-
ling, offering a comprehensive solution that leverages deep learning techniques
to overcome longstanding challenges in the field.
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Fig. 1. Architectural Overview of the proposed model.

2 Proposed Methodology

2.1 Problem Definition and Approach

The presence of noise in acquired Synthetic Aperture Radar (SAR) data exhibits
a multiplicative nature concerning the pixel values. This noise interference is for-
mally expressed by Equation 1, where X, Y , and S represent the intended clear
visual, the raw captured noisy visual, and the contaminating speckle distribu-
tion, respectively.

Y = X × S (1)

The detrimental effect of frequency interference, causing disruptive visual noise,
is known to conform to a characteristic following the Gamma distribution within
the visual-spatial domain. The properties of this distribution concerning the data
are elucidated by the probability distribution delineated in Equation 2.

ρn(S) =
LLnL−1 exp (−nL)

Γ (L)
; n ≥ 0, L ≥ 1 (2)

The primary aim of a despeckling model is to alleviate the multiplicative granular
structure, thereby converting the visual representation denoted as Y into an
estimated representation X̂ that closely resembles the original X [27].

The proposed methodology aims to extract the S distribution rather than
learning the conventional data transformation from Y to X. The model is then
trained with this extracted information to comprehend how these noisy compo-
nents impact different segments of X, facilitating the prediction of the closest
approximation, X̂. The suggested model is visually depicted in Figure 1. It incor-
porates a generative adversarial network (GAN) module specifically designed and
trained to estimate the speckle distribution from Y and generate Ŝ. Simultane-
ously, a gradient-based feature estimator module computes ∇(Y ), capturing the
sharp features in Y . Subsequently, Ŝ and ∇(Y ) are integrated with Y and further
processed to extract the relationships between these inputs to estimate X̂.

2.2 GAN-based Speckle Estimator

This section delineates the objective of the module, which is to utilize a gen-
erative adversarial network (GAN) to extract the stochastic, detailed speckle
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Table 1. Details of used notations.

NotationDescription

κ{f,w} ‘f’ number of kernels each with dimension ‘w’
�j,s ‘j’ dimensional convolution with stride ‘s’
�k

j,s ‘k’ dilated ‘j’ dimensional convolution with stride ‘s’
N Batch Normalization
R(l) Leaky ReLU
� Concatenation
(•)Zj ‘j’ dimensional zero padding

Fig. 2. Architectural Overview of the Generator Component within GAN-based
Speckle Component Extractor module of the proposed model.

distribution impacting the obtained raw data. It delves into a comprehensive
examination of the design intricacies pertaining to both the generator and dis-
criminator modules, which play a vital role in enhancing the generative potential
of the system. Table 1 enumerates the significance of different notations employed
in the subsequent sections.

Generator: The effective approximation of the undesired granular structure
is achieved using a deep convolutional module. This module follows a sequen-
tial model, visually represented in Figure 2, comprising three instances of sub-
modules with similar layer configurations, denoted as G1

7, G2
7, and G3

7.
Each generative instance sequentially processes input through seven intercon-

nected blocks, incorporating skip-connections and merge layers at specific points.
The initial block employs a convolutional operation, detailed in Equation 3.

Gi
1 =

{
κ{16,5×5} �2,1 Y, if i = 1
κ{16,5×5} �2,1 Gi−1

7 , Otherwise
(3)

Subsequent blocks utilize dilated convolutional operations of increasing rates:
2-dilated, 3-dilated, and 4-dilated, each followed by a leaky ReLU activation, as
represented by Equations 4, 5, and 6.

Gi
2 = R(l)

(
κ{32,5×5} �2

2,1 Gi
1

)
(4)

Gi
3 = R(l)

(
κ{64,5×5} �3

2,1 Gi
2

)
(5)
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Fig. 3. Architectural Overview of the Discriminator Component within GAN-based
Speckle Component Extractor module of the proposed model.

Gi
4 = R(l)

(
κ{64,5×5} �4

2,1 Gi
3

)
(6)

The remaining blocks in each instance operate on a merged input from the pre-
ceding layer and skip connections, employing 3-dilated, 2-dilated, and standard
2-D convolutional operations, followed by a leaky ReLU activation. Equations
7, 8, and 9 outline these operations.

Gi
5 = R(l)

(
κ{64,5×5} �3

2,1 (G
i
4 � Gi

3)
)

(7)

Gi
6 = R(l)

(
κ{32,5×5} �2

2,1 (G
i
5 � Gi

2)
)

(8)

Gi
7 = R(l)

(
κ{16,5×5} �2,1 (Gi

6 � Gi
1)

)
(9)

The output of the last module, G3
7, corresponds to the predicted Ŝ (Equation

10).
Ŝ = G3

7 (10)

While training this generator module to extract the speckle distribution, it is
essential to consider integrating a carefully designed discriminator module. This
discriminator should effectively distinguish between pixel data generated by the
generator and genuine pixel data representing the speckle structure.

Discriminator: The discriminator component employs a sequence comprising
six consecutive blocks, each processing data through a series of complex net-
work layers. This process ultimately yields a two-dimensional binary output,
distinguishing pixel values as either real or generated by the generator. Figure
3 depicts a schematic representation of this architectural arrangement. The spe-
cific number of filters utilized by the convolutional layer within each block can
be determined from the set defined in Equation 11.

FD = [16, 64, 128, 256, 512, 1] (11)
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As the architectural design shows, the initial layer consists of a 2D convo-
lutional layer paired with a leaky ReLU activation layer, as shown in Equation
12.

D1 = R(l)

(
κ{F 1

D,5×5} �2,1 D0

)
(12)

Following this initial block, three similar blocks follow, each employing a sequen-
tial arrangement of 2D convolution, batch normalization, and a leaky ReLU
activation layer. The functionality of these blocks can be inferred from Equation
13.

Di = R(l)

(
N

(
κ{F i

D,5×5} �2,2 Di−1

))
; i ∈ {2, 3, 4} (13)

Ultimately, the processing sequence in the last two blocks mirrors that of the
preceding three blocks, with the addition of an initial layer involving 2D zero
padding at each block. Consequently, the mathematical formulation governing
the operation of these blocks undergoes a transformation, as described in Equa-
tion 14.

Di = R(l)

(
N

(
κ{F i

D,5×5} �2,1

(
Di−1

)Z2

))
; i ∈ {5, 6} (14)

The final result of this module is a pixel-by-pixel representation that distin-
guishes between genuine and counterfeit, thereby balancing the trade-off with
the generator module.

2.3 Gradient Extraction Block

This module holds a pivotal function in assessing the degree of significant changes
observed across diverse geographical regions or the intrinsic structural attributes
within the provided data. The determination of these metrics involves comput-
ing both horizontal (∇h(Y )) and vertical (∇v(Y )) gradient information. The
horizontal gradient (∇h(Y )) is obtained by convolving the input data with the
kernel κ′

h as specified in equation 15. Similarly, the vertical gradient (∇v(Y )) is
computed through convolution with the kernel κ′

v as outlined in equation 16.

∇h(Y ) = κ′
h �2,1 Y ; κ′

h =

⎡
⎣−1 0 1

−2 0 2
−1 0 1

⎤
⎦ (15)

∇v(Y ) = κ′
v �2,1 Y ; κ′

v =

⎡
⎣−1 −2 −1

0 0 0
1 2 1

⎤
⎦ (16)

Subsequently, the comprehensive gradient (∇(Y )) of the input image is deter-
mined by performing element-wise matrix operations on the previously calcu-
lated horizontal and vertical gradients, as described in equation 17.

∇(Y ) =
√

[∇h(Y )]2 + [∇v(Y )]2 (17)



SAR Despeckling 25

2.4 Mapping of Despeckled Visual

The primary objective of this module is to establish the correlation between input
data and the derived speckle and gradient information, ultimately associating it
with its corresponding despeckled outcome. The initial input, symbolized as O0,
undergoes sequential processing through four restoration sub-modules. The core
operation within this module involves concatenating the input visual data, esti-
mated speckle distribution, and gradient information, as illustrated in Equation
18.

O0 = (Y � Ŝ � ∇(Y )) (18)

The initial outcome, designated O0, undergoes sequential processing through
three similar sub-modules. These sub-modules primarily entail a predetermined
combination of 2D dilated and 3D convolutional operations. The operations in
these sub-modules can be broadly categorized into four distinct procedures. Ini-
tially, the processing involves filtration using a 2D convolutional operation with
a 2-dilated kernel, as depicted in Equation 19.

Oi
1 = κ{27,5×5} �2

2,1 Oi−1; i ∈ {1, 2, 3, 4} (19)

Subsequently, the data undergoes processing through two consecutive series of
3D convolutional blocks, as represented by Equations 20 and 21 corresponding
to the two sets of convolutional blocks, respectively.

Oi
2 = κ{3,5×5×3} �3,1 Oi

1; i ∈ {1, 2, 3, 4} (20)

Oi
3 = κ{1,5×5×3} �3,1 Oi

2; i ∈ {1, 2, 3, 4} (21)

The final sequence of operations within this sub-module comprises a stacked
configuration consisting of a 2D convolutional block with a dilation factor of 2,
followed by a batch normalization block, a leaky ReLU activation, and ultimately
an additive merge layer that combines with the input of this sub-module. The
entire operation can be analyzed mathematically by referencing Equation 22.

Oi = Oi−1 ⊕
(

R(l)

(
N

(
κ{3,5×5} �2

2,1 Oi
3

)))
; i ∈ {1, 2, 3, 4} (22)

The processed outcome of the last sub-module, denoted as O3, corresponds to
the estimated despeckled visual, as represented in Equation 23.

X̂ = O3 (23)

3 Experimental Analysis

This section serves as an authoritative evaluation of the potential of the pro-
posed system, assessing enhancements in image quality through scrutiny of both
visual and performance-related metrics. Comparative analysis has been con-
ducted against contemporary state-of-the-art models, including PPB [7], SAR-
BM3D [25], SAR-CNN [3], SAR-IDCNN [33], SAR-DRN [36], Nb2Nb [14], and
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Fig. 4. Result over subset of synthetic Freeway data contaminated with look 16 speckle.

SAR-deSpeckNet [23]. The efficacy of the system has been appraised utilizing
both simulated and empirically validated real-world data.

This model utilizes a predefined segment of the UCMerced LandUse Dataset
[35] for its training regimen. The selected training data is corrupted by speckle
noise, generated following a Gamma Distribution with a randomly chosen look
level ranging from 1 to 20. This process aims to construct a training dataset
comprising three main components: intentionally introduced noisy data, arti-
ficially generated noise, and clean data. Subsequently, each subset within this
training dataset trains specific sub-modules designed for particular tasks. Fur-
thermore, the training process occurs in two stages, with the training data being
partitioned into patches of dimensions 32 × 32.

Initially, the GAN-based Speckle estimator module is trained using artificially
generated noise and noisy data from the training set. This training employs a
batch gradient optimizer and a conventional binary cross-entropy-based GAN
loss. Throughout this phase, the learning rate is maintained at 10−4 for 10,000
training steps to fine-tune the model. Following this, the pre-trained GAN mod-
ule is integrated with other adjustable parameters within the proposed system,
initiating the second training phase. Here, clear data functions as the ground
truth, while noisy data from the training set is utilized as input. The model
undergoes training for 35 epochs employing the Mean Squared Error (MSE) loss
function and the ADAM optimizer. Throughout this phase, the learning rate is
sustained at 10−4.

3.1 Simulated Data Experimentation

Two randomly selected classes from the UC Merced Land-use dataset were delib-
erately corrupted with varying noise levels. Subsequently, the efficacy of the
proposed method in reducing noise was demonstrated using these images, con-
trasting with existing models documented in the literature. Specifically, these
images were sourced from the dataset’s "Freeway" and "Overpass" categories.
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Fig. 5. Result over subset of synthetic Overpass data contaminated with look 8 speckle.

Table 2. Assessment Outcomes {Mean(μ)± Std.(σ)} across Simulated Data Affected
by Different Looks of Speckle Noise. The red shading denotes the top-performing out-
come, while the blue shading indicates the second-best outcome.

Data Looks Metric PPB SAR-BM3D SAR-CNN SAR-IDCNN SAR-DRN NB2NB SAR-deSpeckNet Proposed

F
re
ew

ay

L = 1
PSNR 14.8340 ± 1.1564 16.3021 ± 1.1474 24.2691 ± 1.6121 23.3147 ± 0.9890 26.2807 ± 1.7713 21.2076 ± 2.4772 26.4516 ± 2.3952 28.2807 ± 2.2306

SSIM 0.3426 ± 0.0634 0.5786 ± 0.0899 0.6108 ± 0.0675 0.5653 ± 0.0728 0.6918 ± 0.0815 0.4921 ± 0.0725 0.7144 ± 0.0696 0.8528 ± 0.0675

L = 2
PSNR 17.5305 ± 1.1173 18.3866 ± 1.1348 24.0314 ± 1.7182 23.8681 ± 0.8338 27.1844 ± 1.8362 22.2063 ± 2.2091 27.7447 ± 2.5758 28.3386 ± 2.1922

SSIM 0.4911 ± 0.0673 0.6560 ± 0.0891 0.5898 ± 0.0784 0.5902 ± 0.0591 0.7260 ± 0.0812 0.5630 ± 0.0759 0.7384 ± 0.0625 0.8755 ± 0.053

L = 4
PSNR 19.9690 ± 1.0938 20.6014 ± 1.1454 26.1572 ± 2.3169 28.5499 ± 1.6752 28.3738 ± 1.8656 23.2642 ± 2.4262 28.7118 ± 2.6002 30.4928 ± 2.7341

SSIM 0.6115 ± 0.0660 0.7324 ± 0.0799 0.7093 ± 0.0873 0.7830 ± 0.0565 0.7698 ± 0.0726 0.6227 ± 0.0792 0.7551 ± 0.0556 0.8976 ± 0.0359

L = 8
PSNR 22.2361 ± 1.0775 22.9064 ± 1.1337 26.8597 ± 1.5851 28.2572 ± 1.2039 29.3257 ± 1.8452 24.0221 ± 2.4984 29.6355 ± 2.5825 30.7041 ± 2.3406

SSIM 0.7008 ± 0.0615 0.7987 ± 0.0665 0.7155 ± 0.0681 0.8122 ± 0.0472 0.8018 ± 0.0620 0.6728 ± 0.0825 0.7682 ± 0.0491 0.8796 ± 0.0636

L = 16
PSNR 24.4589 ± 1.0923 25.2140 ± 1.1353 28.2609 ± 2.8215 31.3048 ± 1.9964 30.1736 ± 1.8911 24.7875 ± 2.6626 30.7219 ± 2.6905 32.2295 ± 3.0938

SSIM 0.7721 ± 0.0527 0.8502 ± 0.0500 0.7777 ± 0.0722 0.8726 ± 0.0481 0.8248 ± 0.0582 0.7138 ± 0.0826 0.7793 ± 0.0432 0.9128 ± 0.0312

O
ve

rp
as

s

L = 1
PSNR 15.1345 ± 1.6135 16.6063 ± 1.5983 23.5625 ± 2.0563 22.9077 ± 1.1315 25.3018 ± 1.8781 20.1988 ± 2.5958 25.2182 ± 2.0324 26.4947 ± 2.6529

SSIM 0.3643 ± 0.0547 0.5918 ± 0.0634 0.6108 ± 0.0772 0.5682 ± 0.0573 0.6907 ± 0.0630 0.4942 ± 0.0566 0.7044 ± 0.0578 0.8179 ± 0.041

L = 2
PSNR 17.7893 ± 1.5589 18.7177 ± 1.5980 23.7553 ± 1.9091 23.4548 ± 0.7649 26.3376 ± 1.8453 21.4748 ± 2.3488 26.6726 ± 2.1356 27.456 ± 2.2645

SSIM 0.5133 ± 0.0581 0.6743 ± 0.0615 0.6024 ± 0.0784 0.5903 ± 0.0418 0.7271 ± 0.0601 0.5621 ± 0.0565 0.7316 ± 0.0537 0.8641 ± 0.0501

L = 4
PSNR 20.1989 ± 1.5151 20.9589 ± 1.6053 25.9189 ± 2.3338 27.9159 ± 1.5778 27.7050 ± 1.8471 22.7398 ± 2.3424 27.7381 ± 2.1128 28.6308 ± 2.3208

SSIM 0.6307 ± 0.0577 0.7496 ± 0.0585 0.7219 ± 0.0840 0.7819 ± 0.0386 0.7734 ± 0.0554 0.6206 ± 0.0591 0.7494 ± 0.0497 0.8588 ± 0.0434

L = 8
PSNR 22.4429 ± 1.4908 23.2477 ± 1.6007 26.6152 ± 1.9989 27.8802 ± 1.1833 28.7674 ± 1.8671 23.5494 ± 2.2968 28.7490 ± 2.0800 28.9507 ± 2.1267

SSIM 0.7159 ± 0.0533 0.8107 ± 0.0518 0.7218 ± 0.0661 0.8149 ± 0.0414 0.8063 ± 0.0507 0.6674 ± 0.0605 0.7637 ± 0.0448 0.8537 ± 0.0451

L = 16
PSNR 24.6658 ± 1.4892 25.5174 ± 1.5926 25.0218 ± 6.1970 30.7870 ± 1.8406 29.6346 ± 1.8674 24.3848 ± 2.4579 29.9174 ± 2.2301 30.6196 ± 2.4921

SSIM 0.7837 ± 0.0464 0.8577 ± 0.0414 0.7803 ± 0.0752 0.8735 ± 0.0360 0.8290 ± 0.0464 0.7046 ± 0.0625 0.7759 ± 0.0402 0.8895 ± 0.0478

Conventional metrics for assessing visual quality, such as the Structural Simi-
larity (SSIM) [34] index and the Peak Signal-to-Noise Ratio (PSNR) [12], were
employed for the quantitative analysis of the results.

The visuals depicted in Figures 4 and 5 present a visual examination of data
pertaining to the "Freeway" and "Overpass" categories within the UC Merced
Land-Use dataset. The data underwent perturbation with noise levels of 16 and
8 for the respective classes, followed by processing through various despeckling
techniques. The visual analysis reveals that certain methods, such as PPB, SAR-
BM3D, and NB2NB, resulted in excessive data smoothing. Conversely, approaches
such as SAR-CNN, SAR-IDCNN, SAR-DRN, and SAR-deSpeckNet aimed at pre-
serving finer details from the input data but exhibited noticeable levels of unde-
sired speckle. In contrast, the proposed method appears to strike a harmonious
balance between preserving intricate features and mitigating speckle, as its visual
output demonstrates superior preservation of lines and patterns.

Table 2 presents a comprehensive assessment of quantitative analysis. It
exhibits the mean Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
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Fig. 6. Result over Real data [Bedfordshire].

Fig. 7. Result over Real data [OilRigExplosion].

Table 3. Evaluation Results over Real Data (Metric Calculation Window Size - 13)

extbfData Metric PPB SAR-BM3D SAR-CNN SAR-IDCNN SAR-DRN NB2NB SAR-deSpeckNet Proposed

Bedfords
hire

ENL 3.4951 3.2339 2.9550 3.0562 3.9921 4.0545 2.1548 4.3609
EPI 0.9554 0.9538 0.8867 0.9153 0.9163 0.9102 0.9617 0.9627
TCR 0.1329 0.1061 0.9914 0.9896 0.8053 0.3289 0.5415 0.0010

OilRigExplosion

ENL 4.0629 4.0143 3.9801 4.1194 4.3431 4.2341 2.5917 4.3735
EPI 0.8020 0.8756 0.7228 0.8445 0.7283 0.7896 0.9185 0.9210
TCR 0.9399 0.0144 0.1866 0.9557 0.4222 0.9664 0.3730 0.0010

ThreeGorgesDam

ENL 4.3251 4.1982 4.1355 4.1783 4.3504 3.7859 3.7901 4.4079
EPI 0.9858 0.9893 0.9844 0.9882 0.9790 0.9774 0.9914 0.9922
TCR 0.0419 0.5528 0.9208 0.8499 0.9877 0.9888 0.5129 0.0041

Index (SSIM) values for the Freeway and Overpass data subsets within the UC
Merced dataset, each consisting of 100 samples. The results indicate that irre-
spective of the input data or noise level, the proposed model consistently yields
superior results in terms of PSNR and SSIM.

3.2 Real Data Experimentation

The empirical study used three different SAR data, capturing both quantitative
and visual outputs for analysis. The first data is an X-band amplitude visual of
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Bedfordshire, southeast England, obtained by the United Kingdom’s DRA SAR
system. The second data showed a synthetic aperture radar (SAR) image of an
oil explosion that occurred in the Gulf of Mexico on May 4, 2015, as recorded by
Pleiades satellite imagery. Finally, the third data was gathered on October 21,
2009, utilizing TerraSAR-X sensors, and it relates to the region of China around
the Three Gorges Dam.

Figure 6 and 7 illustrate the visual analysis of outcomes generated by var-
ious models utilizing real SAR data as input. While examining the Bedford-
shire visual, it is observed that models like PPBit, SAR-DRN, and Nb2Nb
have yielded excessively smoothed outputs. Moreover, models such as SAR-
BM3D, SAR-CNN, SAR-IDCNN, SAR-deSpeckNet, and SAR-CNN have made
compromises on speckle removal to preserve finer details. Furthermore, upon
comparing images from the OilRigExplosion, it is evident that certain models,
including PPBit, SAR-BM3D, SAR-DRN, and Nb2Nb, have produced exces-
sively smoothed results, while SAR-CNN, SAR-IDCNN, and SAR-deSpeckNet
have retained some speckle information alongside minute details. In all instances,
the proposed model has demonstrated promising outcomes.

In the quantitative evaluation process, three quantitative metrics were
employed to assess various aspects of the processed output. These metrics include
the Equivalent number of looks (ENL) [26], edge-preserving index (EPI) [4],
and target-to-cluster ratio (TCR) [1]. The results of these performance metrics
are detailed in Table 3. Consistent with the superiority of our proposed model
observed in visual comparisons, it is evident that the model demonstrates supe-
rior metric outcomes across nearly all criteria. This indicates that the suggested
model effectively maintains the original SAR image’s sharp edges and intricate
features while successfully mitigating undesired speckle artifacts.

4 Conclusion

In summary, our study introduces a new method for SAR despeckling that holds
great promise for practical use. Through thorough experimentation, we have
demonstrated the effectiveness of our approach in enhancing visual represen-
tations and evaluating image quality using real-world data from various SAR
sensors. Despite a noticeable processing delay of around 300 to 350 milliseconds
for images of size 256 × 256, our model’s performance remains commendable,
considering the computational complexity inherent in deep convolutional archi-
tectures. Our innovative model incorporates several convolutional sub-modules,
each fulfilling a specific role. Additionally, our model demonstrates adaptability
to different regional characteristics, validated extensively through experiments
on simulated and real SAR data. The findings confirm the superiority of our
proposed model over established state-of-the-art SAR despeckling techniques,
highlighting its potential for practical implementation and further advancements
in research within the field.
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Abstract. Recent advancements in video saliency prediction (VSP)
have shown promising performance in emulating the human visual sys-
tem, which is the primary goal of VSP. However, current state-of-the-art
models employ spatio-temporal transformers trained on limited datasets,
hindering their generalizability and adaptation to downstream tasks.
The benefits of vision foundation models present a potential solution
to improve the VSP process. However, adapting image foundation mod-
els to the video domain presents significant challenges in modeling scene
dynamics and capturing temporal information. To address these chal-
lenges, and as the first initiative to design a VSP model based on video
foundation models, we introduce SalFoM, a novel encoder-decoder video
transformer architecture. Our model employs UnMasked Teacher (UMT)
as feature extractor and presents a heterogeneous decoder which features
a locality-aware spatio-temporal transformer and integrates local and
global spatio-temporal information from various perspectives to produce
the final saliency map. Our qualitative and quantitative experiments on
the challenging VSP benchmark datasets of DHF1K, Hollywood-2 and
UCF-Sports demonstrate the superiority of our proposed model in com-
parison with the state-of-the-art methods.

Keywords: Video Saliency Prediction · Video Foundation Model ·
Human Attention Prediction

1 Introduction

Video saliency prediction, which models the focus of attention of the human
visual system when observing dynamic scenes, has gained increasing attention
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in recent years [36], driven by the growing demand for video content understand-
ing and analysis across various application domains. Numerous deep learning-
based strategies have been explored to enhance the accuracy and performance
of these methods, aiming to reach human-level scene recognition. Among the
different approaches, state-of-the-art methods that have shown the best results
to date utilize spatio-temporal transformers as encoder parts. However, since
these networks are often not trained on massive datasets, their generalizability
and adaptability for downstream tasks are limited.

The emergence of foundation models [4] offers a solution to this fundamental
challenge, as these models are trained on vast and diverse datasets, encompassing
a large variability and gaining high generalizability without the need for re-
training. In line with the core goal of foundation models to achieve human-like
intelligence and understanding, viable solutions for video saliency prediction can
leverage the capabilities of video foundation models (VFMs).

Most of current designs of VFMs are built upon robust image foundation
models (IFMs), such as CLIP-ViP [33], based on CLIP [23]. Although this app-
roach is cost-effective, as it builds on pre-trained static features, it also presents
significant challenges due to the nature of IFMs, that overlook temporal and
motion-related features. Therefore, such models may not be fully suitable for
adaptation in various video understanding tasks, including video saliency pre-
diction. To fill this gap, in this work we employ UnMasked Teacher (UMT) [15],
a pure video foundation model that retains spatio-temporal features of video
content, aiming to handle various video-centric tasks such as video-text retrieval
and action recognition.

In this work, we design a novel dynamic saliency prediction model that is
empowered by a video foundation model based encoder. To fully exploit the
expressive power of spatio-temporal representations extracted by the encoder,
we introduce a decoder architecture that is composed of three different interme-
diate branches, each of them reconstructing features from different perspectives.
More specifically, one of the branches employs spatio-temporal transformers [17]
to extract long-range spatio-temporal relationships, operating at the same reso-
lution of the encoded features; the second branch extracts local spatio-temporal
representations, gradually reducing the temporal resolution and compensating
for the lack of global information by a feature fusion mechanism with the first
branch; the final branch focuses instead on the spatial relations between scene
elements, collapsing the temporal dimension and producing high-resolution fea-
tures to guide the synthesis of the output saliency map, while at the same time
incorporating information from the previous two branches. We conduct extensive
quantitative and qualitative experiments on the standard VSP dataset, namely
DHF1K, Hollywood-2 and UCF-Sports; our findings uncover the superiority of
our model over the state-of-the-art models.

To summarize our contributions:

– We propose the first video saliency prediction model based on a pure video
foundation model to capture spatio-temporal features of video content.
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– We introduce a novel heterogeneous decoder network that employs locality-
aware spatio-temporal attention to better process encoder features.

– We show the superiority of the performance of our model on the most chal-
lenging video saliency dataset, DHF1K, compared to the state-of-the-art VSP
models.

2 Related Work

2.1 Video Saliency Prediction

Deep learning-based video saliency prediction, as explored in [26], has recently
become a prominent method for modeling human gaze in dynamic scenes. The
primary goal of video saliency prediction (VSP) is to mimic the human visual
system and create patterns of attention allocation for video frames. One practical
application of these models is predicting a driver’s focus of attention in traffic
scenarios [32], which is crucial for decision-making processes.

One of the most effective VSP models in the pre-transformer era is STSANet
[29], which addresses the challenge of understanding long-range temporal rela-
tionships in videos. It features a 3D fully convolutional network as its backbone
and is structured as a four-branch network. The network utilizes spatio-temporal
self-attention (STSA) modules to capture spatio-temporal dependencies and
employs attentional multi-scale fusion modules to integrate the extracted fea-
tures. In the audio-visual VSP domain, TSPF-Net [7] addresses saliency model-
ing by designing a feature pyramid network that integrates scale, space and time.
The network hierarchically decoded features at various levels of the pyramid, con-
sidering the impact of spatial and temporal features at different scales. Following
a different approach, HD2S [2] constructs multiple intermediate saliency maps
at various levels of abstraction, which are then integrated to produce the final
saliency map. This design aims to incorporate both general and data-specific
features into the saliency prediction process.

VSFT [18] is the first to employ transformer architectures in VSP, focusing
on forecasting saliency for unseen future frames. Unlike the CNN-based mod-
els mentioned before, VSFT uses a self-attention mechanism to capture both
short- and long-range relationships between video frames. Its decoder combines
the encoded features using proposed cross-attention guidance blocks (CAGB) to
capture spatio-temporal correlations. Another transformer-based model, THTD-
Net [22], stands out as a lightweight solution for VSP, where most of the tem-
poral information is processed in the decoding stage. Opting for a single-branch
decoder without reducing the encoded features before decoding, the model man-
ages to use fewer parameters, compared to attention-based or multi-branch
approaches. Despite its relative simplicity, THTD-Net demonstrated perfor-
mance on par with state-of-the-art solutions. Another transformer-based model,
TMFI-Net [36], consists of a semantic-guided encoder and a hierarchical decoder.
The encoder captures spatio-temporal features and provides semantic contextual
information, integrating this information in a top-down manner using a feature
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pyramid structure. Before decoding, a multi-dimensional attention (MA) module
is used to enhance the spatio-temporal features.

In this work, we present the first dynamic saliency prediction model that is
empowered by a video foundation model for feature encoding. Moreover, unlike
other approaches, where different decoding branches generally focus on varying
spatial scales with a late feature fusion mechanism (e.g., [2]), our model processes
and combines encoded features from different temporal viewpoints to gradually
reconstruct crucial features for the ultimate saliency map prediction.

2.2 Video Foundation Models

Although foundation models for vision [1] have become increasingly prominent in
recent years, the majority of published works and practical efforts have focused
on image foundation models, as seen in [34,35]. The growing need to under-
stand and analyze the pervasive and continuously-generated video content, rang-
ing from social media and sports videos to traffic and surveillance footage, has
spurred the research community to harness the power of foundation models for
video-based tasks. However, the development of such models faces two significant
challenges: the scarcity of a large and diverse video dataset and the substantial
computational costs involved to train such models.

To overcome these obstacles, research has shifted towards the creation of
video foundation models (VFMs) that build upon image foundation models
(IFMs). Leveraging the strength and versatility of established large image mod-
els, such as CLIP [23], several vision models have been modified to use IFMs for
addressing downstream video-related tasks. InternVideo [28] proposes a general
video foundation model by introducing the concept of a unified video representa-
tion. This model utilizes UniformerV2 [14] as its encoder and is built upon CLIP.
In an effort to devise an efficient approach for translating masked modeling to
videos, VideoMAE [24] presents a straightforward design with reduced compu-
tational costs by employing an asymmetric encoder-decoder structure. Building
upon this, VideoMAEv2 [25] adopts a dual masking strategy to enhance the
original model, making it more efficient for pre-training.

Although IFMs have facilitated the development of large video models in
certain respects, such models still struggle with handling the temporal dynamics
that are inherent to video data. To deal with such issues, UMT, as the first
attempt to design a native large video model, opted for an innovative strategy
to both make the training process efficient and preserve temporal information.
It utilizes CLIP-ViT as an Unmasked Teacher to train a vanilla spatio-temporal
ViT from scratch for masked video modeling. UMT preserves the spatial archi-
tecture of the teacher model for processing each frame individually. Further-
more, it leverages spatio-temporal attention to facilitate interaction among the
unmasked tokens. This strategy not only enables handling limited data scale
for video understanding tasks but also accelerates convergence and significantly
enhances the model’s capability to capture temporal information across frames.
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3 Methodology

The progressive development of vision foundation models, that aims at build-
ing models with high generalizability for being adapted to various downstream
tasks, motivated us to design a dynamic saliency prediction model based on a
video foundation model (Figure 1), namely Unmasked Teacher (UMT), as the
encoder part of our network. To the best of our knowledge, this is the earli-
est work that incorporates a purely spatio-temporal foundation model into the
video saliency prediction’s workflow. Moreover, we designed a heterogeneous
multi-branch decoder, consisting of both dynamic and static branches, that is
intended to include spatial and temporal information in the process of generating
saliency map for an input video frame from different perspectives.
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Fig. 1. Summary of the proposed dynamic saliency prediction framework. The model
utilizes a video foundation model called UMT-L as its encoder, while the decoding
phase comprises three different intermediate branches aimed at progressively refining
and reconstructing essential features for producing the ultimate saliency map. In the
end, all intermediate features are combined to generate the final saliency map.

3.1 Video Foundation Model–based Feature Encoder

In our architecture, we employ UMT [15] as our network’s encoder. In con-
trast to other video foundation models, that are directly adapting image foun-
dation models, UMT is trained by using CLIP-ViT [23] as Unmasked Teacher to
train a vanilla spatio-temporal ViT from scratch. Training is carried out using
a self-supervised teacher-student knowledge distillation approach, by masking
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out and predicting most of the video tokens with low semantics and aligning
the unmasked tokens with a linear projection to the corresponding ones from
the teacher, in order to handle the limited data scale and effectively utilize the
video data. Spatio-temporal attention [3] is exploited to facilitate the interac-
tion between all the unmasked tokens with each other. The architecture does not
use temporal downsampling, which ensures that tokens can be aligned frame by
frame.

In our framework, we employ the pre-trained large version of the UMT,
referred to as UMT-L, in the feature encoding stage. After removing the clas-
sification head, the model can be treated as a feature extractor, which receives
an input video V ∈ R

T×H×W×3 and provides features F ∈ R
T×h×w×f , with

h = H
16 , w = W

16 and f = 1024. More details about model design are provided in
the supplementary materials.

3.2 Multiperspective Heterogeneous Decoder

The design of the proposed multiperspective heterogeneous decoder is based
on the principle of capturing and integrating diverse aspects of spatio-temporal
information encoded by the VFM feature encoder. The rationale behind this app-
roach is to ensure that the final saliency map is a comprehensive representation
of the most salient features in both space and time, which is crucial for attention
modeling in videos. To this aim, the proposed decoder is designed according to
the following insights and principles:

– Gradual temporal dimension reduction: Inspired by existing strategies, that
shows the benefits of keeping the temporal resolution as close as possible to the
original input [22], our approach avoids abrupt loss of temporal information
by gradually reducing the temporal dimension.

– Channel dimension reduction: We exploit the strong expressive power of fea-
tures provided by the VFM encoder, and hypothesize that the objective of the
decoder is to find a suitable feature analysis and interaction modality, rather
than extracting more complex features. Hence, we encourage our model to
distill the essential features by reducing the channel dimension from a high-
dimensional space to a more compact representation, facilitating efficient com-
putation and potentially improving generalization.

– Heterogeneous spatio-temporal feature decoding : The first intermediate branch
of our decoder network (Transformer-based Complementary Feature Extrac-
tion, TCFE) is designed to capture spatio-temporal relationships and encode
them into feature maps. The second branch (Dynamic Feature Decod-
ing, DFD) focuses, instead, on maintaining temporally-rich information and
extracting detailed local features. While the locality of this operation limits
the discovery of useful long-range spatio-temporal patterns, it allows to grad-
ually increase and recover the original input resolution. The third branch
(Static Feature Decoding, SFD), finally, abstracts the temporal effects to
focus on spatial information, recognizing that not all temporal information is
equally relevant for saliency prediction.
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– Feature Fusion: The final feature fusion stage integrates features from all
branches, allowing the network to leverage the diverse perspectives captured
by each branch. This integrated representation is then processed through 2D
convolutional layers to produce the final saliency map.

Formally, Let F ∈ R
t×h×w×f be the set of spatio-temporal features obtained

from the transformer feature extractor, with t, h, w, and f representing the
temporal, height, width, and feature dimensions, respectively. The objective is
to map F to a saliency map S ∈ R

H×W , where H and W are the dimensions of
the original frame.

Let us model the first branch of the decoder, i.e. the TCFE subnetwork, as a
sequence of N layers, producing features Θ = {θ1, . . . ,θN }. At this perspective
of the mode, features Θ are intended to extract long-range spatio-temporal rela-
tionships, operating at the same resolution as input features F, acting only on
the channel dimension. For this reason, we do not let Θ be affected by higher-
resolution features extracted by other branches, as the advantage of the latter,
i.e., the higher detail, would be inevitably lost due to downsampling to the
t × h × w resolution.

The second branch of the decoder, DFD, is made up of the same number
of layers as the first, and extracts features Φ = {φ1, . . . ,φN}. This branch is
dedicated to extracting local spatio-temporal features information, increasing
the spatial resolution to recover details while gradually reducing the temporal
dimension to retain as much of the video dynamics as possible. In order to
compensate for the lack of global analysis in this branch, we integrated features
from the first branch at corresponding position of the layer cascade, through
proper upsampling. In detail, we compute feature φi, with i > 1, as follows:

φi = fi (φi−1) ⊕ σi (θi) , (1)

where fi is the transformation applied at the i-th layer of the branch, and σi is
the appropriate down-sampling function.

The third branch of the decoder, SFD, extracts features Γ = {γ1, . . . ,γN};
the main property of this branch is that it collapses the temporal dimension of
its input features, summarizing them into a single channel and focusing instead
on spatial relations between scene elements. To this aim, each layer gi receives a
temporally-collapsed version of the input frames, using a learned transformation
τi, and produces upscaled features, with the same resolution as the corresponding
ones from Φ. In particular, the input to the first layer, instead of being the set
of encoder features F, becomes τ1 (F); similarly, subsequent layers perform a
similar operation on feature extracted from the second branch, such that:

γi = gi (γi−1) ⊕ τi (φi) . (2)

The reason for integrating features Φ from the second branch into Γ is twofold:
first, Φ features internally encode global information from Θ, which ought to be
taken into account to compensate for the removal of the temporal dimension;
second, since the third branch focuses on spatial relations, it makes sense to
provide it with the largest resolution available at that stage.
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Finally, output features from each branch are processed by a late fusion layer
to produce the final saliency map S as:

S = o ([σn (θN ,φN ,γN ])) , (3)

with o being the transformation applied by the fusion layer and [·] denoting the
concatenation operator.

3.3 Training Objective

Given an input video sequence V ∈ R
T×H×W×3 and the ground-truth saliency

map G ∈ R
H×W for the last frame of the clip, the objective of the model is to

estimate a saliency map S ∈ R
H×W for the corresponding frame. Our training

objective L is inspired from [36] and defined as follows:

L(S,G) = LKL(S,G) + LCC(S,G) (4)

The LKL loss term treats the predicted and ground-truth saliency maps
as two probability distribution, and estimates their distance by means of the
Kullback-Leibler divergence:

LKL(S,G) =
∑

x

G(x) log
G(x)
S(x)

(5)

where x scans pixel locations.
The LCC loss term computes the correlation coefficient between the saliency

maps, considering them as random variables:

LCC(S,G) = −cov(S,G)
ρ(S)ρ(G)

(6)

where cov(S,G) is the covariance of S and G and ρ(·) is the standard devi-
ation operator.

4 Experiments

In this section, we present our comprehensive experiments designed to showcase
the superiority of our proposed model, SalFoM. We specifically describe three
benchmark datasets for Video Scene Parsing (VSP) in Section 4.1. Following
that, we elaborate on the experimental setup, analyze the results, and conduct
an ablation study in Sections 4.2, 4.3, and 4.4, respectively.

4.1 Datasets

We extensively evaluate our model’s performance on three commonly used
benchmark datasets: DHF1K [27], UCF-Sports [19], and Hollywood-2 [20].
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DHF1K, the largest eye-tracking dataset for dynamic fixation prediction, con-
sists of 1,000 annotated videos divided into train (600), validation (100), and
test (300) sets. Ground truths for the test set are not released, so quantitative
evaluations are provided by the dataset’s curators. The Hollywood-2 dataset [20]
contains 1,707 video clips extracted from 69 Hollywood movies, grouped by 12
action categories. Unlike the DHF1K dataset, this dataset employs a task-driven
viewing approach for video annotation. The annotations were gathered from
three different perspectives: context recognition by four observers, free viewing
by three observers, and action recognition by twelve observers. The UCF-Sports
dataset [19], which is derived from the UCF sports action dataset, consists of 150
videos spanning nine sports classes. It is annotated using the same task-driven
viewing methodology as the Hollywood-2 dataset. Following the approach in [30],
we utilized 103 videos for training and 47 videos for testing.

4.2 Experimental Setup

When training on DHF1K, we initialize the encoder of our network from the pre-
trained weights from UMT-L/16 on the Kinetics-400 dataset [11]; when train-
ing on Hollywood-2 and UCF-sports, instead, we initialize the encoder using
weights obtained after training on DHF1K. In both cases, encoder parameters
are fine-tuned at training time. We train our model using a batch size of 1, and
employing the Adam optimizer [12] for gradient descent, with an initial learning
rate of 10−5.

At each training iteration, the network processes 16 consecutive video frames
with a spatial resolution of 224×224, and predicts the saliency map for the
last frame of the video sequence. We implement early stopping based on the
performance on the target dataset’s validation set.

At inference time, we generate saliency maps for all video frames using a
sliding window approach, as utilized by [21]. To ensure sufficient temporal con-
text for the initial frames of a clip, we reverse the order of the frames. To assess
our network’s performance, we used three location-based metrics, Shuffled AUC
(S-AUC), AUC-Judd (AUC-J), and Normalized Scanpath Saliency (NSS), as
well as two distribution-based metrics, Linear Correlation Coefficient (CC) and
Similarity Metric (SIM) [5].

4.3 Result Analysis

We quantitatively compare the performance of our model with state-of-the-art
VSP models that have demonstrated the best results on the DHF1K bench-
mark1: SalEMA [16], STRA-Net [13], TASED-Net [21], SalSAC [31], UNISAL [9],
ViNet [10], HD2S [2], VSFT [10], TSFP-Net [8], STSANet [30], TMFI-Net [36],
and THTD-Net [22]. The results presented in Table 1 demonstrate that on the
DHF1K dataset, SalFoM outperforms other state-of-the-art models across almost
all evaluation metrics (the only exception being SalEMA on SIM, although it
1 https://mmcheng.net/videosal.

https://mmcheng.net/videosal
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Table 1. Quantitative comparison of different models on DHF1K dataset. The top
score in each metric is in bold.

Models DHF1K
AUC-JSIM S-AUCCC NSS

SalEMA 0.890 0.4660.667 0.449 2.574
STRA-Net 0.895 0.355 0.663 0.458 2.558
TASED-Net 0.895 0.361 0.712 0.470 2.667
SalSAC 0.896 0.357 0.697 0.479 2.673
UNISAL 0.901 0.390 0.691 0.490 2.776
ViNet 0.908 0.381 0.729 0.511 2.872
HD2S 0.908 0.406 0.700 0.503 2.812
VSFT 0.910 0.410 0.720 0.518 2.977
TSFP-Net 0.911 0.392 0.723 0.516 2.966
STSANet 0.912 0.382 0.722 0.528 3.010
THTD-Net 0.915 0.406 0.729 0.547 3.138
TMFI-Net 0.915 0.406 0.730 0.546 3.146
SalFoM (Ours)0.922 0.420 0.735 0.5693.353

performs significantly worse on the other metrics), notably surpassing the top-
ranked TMFI-Net model. Moreover, qualitative examples reported in Figure 2
confirm that the proposed approach, when compared with state-of-the-art VSP
models, aligns better with ground-truth annotations, focusing on single points
of interest, whereas other methods distribute their attention towards less salient
portions of the video. Finally, as proposed by Bylinskii et al. [6], evaluating the
capability and performance of saliency prediction models in identifying high-level
concepts, such as face recognition, in visual scenes can serve as an indicator of
their effectiveness. We qualitatively perform such analysis and report some sam-
ples in Figure 3, again showing the alignment between our model’s predictions
and the ground truth.

Results on Hollywood-2 and UCF-Sports are presented in Table 2. We can
see that our model achieves comparable results to state-of-the-art methods on
the Hollywood-2 dataset, while its performance drops in certain metrics when
assessed on the UCF-Sports dataset. This pattern of performance drop is not
unique to our model but is also observed in other leading methods, and its causes
can be led to certain characteristics of those datasets [2], including task-driven
observations and center bias. As illustrated in Figure 4, our model, SalFoM,
effectively detects the human subject, representing the most salient region, yet
it does not precisely match the ground truth. This discrepancy arises because
the annotations accompanying the Hollywood-2 and UCF-Sports datasets pri-
marily emphasize actions rather than salient regions. Additionally, the lower
performance on these datasets can be attributed to the scarcity of diverse spatio-
temporal data, particularly notable in Hollywood-2, which comprises numerous
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Fig. 2. Qualitative comparison of the performance of different VSP models on DHF1K.

short videos. An additional challenge arises from the relatively small size of the
UCF-Sports dataset when compared to DHF1K and Hollywood-2. In our case,
the limited size of the dataset contributes to overfitting of the model and nega-
tively impacts its ability to generalize. Additional model evaluations on DHF1K
are reported in the supplementary materials.

4.4 Ablation Study

In this section, we assess the impact of various components within our model by
designing and evaluating different model variants on DHF1K, utilizing the vali-
dation set as the test set. The results are reported in Table 3. We first explore the
influence of the encoder employed, by replacing UMT-L/16 with a Video Swin
Transformer, similarly to TMFI-Net, and with variants of UMT that process
8 frames instead of 16. We accordingly configure our model’s decoder parame-
ters to align with the different temporal sizes of the encoded features. Results
show that non-VFM-based encoders fail to yield satisfactory features, and that
reducing the input frames of a VFM degrades performance.
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Fig. 3. Qualitative evaluation of the performance of SalFoM for predicting saliency of
faces against ground truths, on DHF1K.

Table 2. Quantitative comparison of different models on Hollywood-2 and UCF-Sports
datasets. The top score in each metric is in bold.

Models Hollywood-2 UCF-Sports
AUC-JSIM CC NSS AUC-JSIM CC NSS

SalEMA 0.919 0.487 0.613 3.186 0.906 0.431 0.544 2.638
STRA-Net 0.923 0.536 0.662 3.478 0.910 0.479 0.593 3.018
TASED-Net 0.918 0.507 0.646 3.302 0.899 0.469 0.582 2.920
SalSAC 0.931 0.529 0.670 3.356 0.926 0.534 0.671 3.523
UNISAL 0.934 0.542 0.673 3.901 0.918 0.523 0.644 3.381
ViNet 0.930 0.550 0.693 3.73 0.924 0.522 0.673 3.62
HD2S 0.936 0.551 0.670 3.352 0.904 0.507 0.604 3.114
VSFT 0.936 0.577 0.703 3.916 - - - -
TSFP-Net 0.936 0.571 0.711 3.910 0.923 0.561 0.685 3.698
STSANet 0.938 0.579 0.721 3.927 0.936 0.560 0.705 3.908
THTD-Net 0.939 0.585 0.726 3.965 0.933 0.5650.7113.840
TMFI-Net 0.940 0.6070.7394.0950.936 0.5650.707 3.863
SalFoM (Ours)0.935 0.583 0.709 3.902 0.928 0.516 0.631 3.543

Table 3. Ablation study: assessing the impact of SalFoM model components on vali-
dation set of DHF1K.

Model CC NSS SIM AUC-J

Encoder: VidSwin-S 0.512 2.917 0.379 0.916
Encoder: UMT-L (8 Frames) 0.552 3.169 0.418 0.924
Encoder: UMT-B (8 Frames) 0.527 2.935 0.400 0.915
Decoder: single TCFE branch 0.560 3.245 0.433 0.926
Decoder: single DFD branch 0.564 3.288 0.425 0.926
Decoder: single SFD branch 0.560 3.220 0.408 0.926
Decoder: SFD + DFD branches 0.564 3.291 0.429 0.927
Decoder: SFD + TCFE branches 0.563 3.240 0.415 0.918
Decoder: DFD + TCFE branches0.564 3.294 0.433 0.927
SalFoM (ours) 0.5653.2990.4360.928
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Fig. 4. A sample of failure case on UCF-Sports dataset, due to the task-driven anno-
tation methodology.

After showing the superiority of the UMT-based feature encoder, we carry out
additional experiments to demonstrate the importance of the proposed decoder
strategy. In particular, we evaluate the performance of variants of our decoder
which use either a single or a combination of two (out of three) branches. While
all configurations are able to achieve satisfactory results, the full combination of
all three decoding branches yields the best values for the employed metrics.

5 Conclusion

In this work, we present SalFoM, a video saliency prediction model that incorpo-
rates UMT, an innovative video foundation model, into our network architecture.
This integration enables the model to effectively capture both temporal (scene
dynamics) and spatial (object-related) information. For the decoder component
of SalFoM, we introduce a three-branch structure that includes a locality-aware
spatio-temporal transformer branch, a branch based on 3D convolutional layers,
and another based on 2D convolutional layers. This configuration is designed
to merge local and global spatio-temporal signals from diverse perspectives to
generate the final saliency map. Our experiments demonstrate that SalFoM out-
performs existing VSP models on several standard evaluation metrics. Future
work could investigate the use of knowledge distillation to leverage SalFoM’s
capabilities in designing a more lightweight model for applications such as driver
attention modeling.
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of the model architecture and the evaluation procedure, has been supported by MUR
in the framework of PNRR Mission 4, Component 2, Investment 1.1, PRIN, under
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Abstract. Surveillance videos play a crucial role in providing evidences.
However, the deletion of even a few frames can significantly impact the
interpretation of events, while the deletion can be performed easily using
video editing softwares without leaving visual traces. This paper intro-
duces a novel method to detect video frame deletion based on velocity
field characteristics. The main idea is to convert long videos into a fea-
ture sequence, which appears as a sequence containing outlier values for
videos with frame deletions, and as a sequence without outlier values
for original videos. The proposed approach employs a siamese network
to distinguish frame deletions between adjacent frames. A video can be
transformed into a feature sequence through the siamese network, and
the resulting sequence is fed into a binary classifier for final classifica-
tion. Experimental results demonstrate the effectiveness of our proposed
approach, even for longer videos (e.g., 2000 frames) with minimal frame
deletions (e.g., 1 frame).

Keywords: Passive Forensics · Siamese Neural Network · Velocity
Field · Inter-Frame Forgery Detection

1 Introduction

As video editing software becomes more widespread, ordinary individuals can
now manipulate video content more easily. This trend poses a significant threat
to surveillance videos, which serve as essential evidences in event investigations.
Malicious attackers can effortlessly delete crucial frames from surveillance video
in an attempt to conceal the occurrence of events[5,6,10,17]. For instance, delet-
ing all frames that include a specific individual from a video could erroneously
indicate their non-presence in the depicted events, as shown in Figure 1. Such
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straightforward tampering actions can lead to severe consequences, compromis-
ing the integrity of evidence and the traceability of events. As a result, interests
in research on detection methods of video frame deletion have been steadily
increasing.

Fig. 1. Example diagram of video frame deletion, the red box represents the deleted
video frames.

Video forensic methods can be categorized into active and passive approaches.
Active methods require prior information added before video propagation, such
as watermarks or digital signatures[9,18], while passive methods rely on discover-
ing tampering traces without the need for prior information. Since general videos
typically do not contain prior information, passive methods are more suitable
for practical applications[13,15]. Some detection algorithms of frame-deletion
videos had been proposed based on manual features, which generally rely on the
continuity of certain features, such as velocity field[20], motion residuals[8], and
so on. Some researchers[1,4] have proposed that the traditional methods often
yield features vulnerable to post-processing, resulting in a decrease in detection
accuracy. On the contrary, deep learning networks can extract complex, high-
dimensional features that are robust and effective in representing the necessary
information.

Long et al. assigned a score to a test video by passing it through the pre-
trained network to detect frame deletions[14]. Bakas et al. also utilized a deep
learning network for detecting frame-deleted videos, incorporating improvements
by adding a pixel-wise difference layer before the deep learning network[2]. Fadl
et al. integrated the spatial and temporal information of video frames into a
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single image, and subsequently utilized a pre-trained deep learning network along
with the Structural Similarity Index to assess whether frame deletions exist in the
video[4]. Gong et al. utilized enhanced residual feature images to separately train
two deep learning networks, and subsequently detected whether frame deletions
exist in the video[11].

Despite these methods demonstrating competitive results in various bench-
mark tests, current deep learning-based approaches still face certain limitations.
Firstly, the majority of existing methods typically involve sequentially detecting
video segments, such as analyzing a dozen frames at a time. For longer videos, it
is necessary to divide the video into several segments for detection. Despite the
high accuracy of detection for each video segment, if any segment is incorrectly
labeled as a deleted-frame video, the entire original video will be labeled as a
deleted-frame video. Secondly, these methods typically require a minimum of
around 10 deleted frames for detection, rendering them impractical for scenarios
involving only one frame deletion-an extreme but plausible occurrence. These
limitations hinder their broader application. Therefore, there is an urgent need
for further research to develop more accurate detection methods under these
circumstances.

To address the aforementioned issues, we propose a novel method for detect-
ing frame deletions in videos based on the continuity feature of the velocity
field[20]. It is worth noting that, in [20], only the feature of the mutation of the
sum of velocity field components was utilized. In contrast, this paper employs
a deep learning network to extract more features. Our approach transforms
the velocity field into images, referred to as velocity field images. A siamese
network[3] is employed to extract similarity features between consecutive frames
and frames with deletions from the velocity field images. This allows us to extract
more velocity field features and transform a long video into a sequence contain-
ing temporal information. Subsequently, we employ a binary classifier to classify
these sequences, enabling the detection of frame deletions in long videos. The
main contributions of our work can be summarized as follows:

– Leveraging a siamese network, we transform videos into similarity matrices
of adjacent frame velocity field images. This enables the system to detect
the extreme case of long videos with a minimum of one frame deletion (e.g.,
deleting one frame in a 2000-frame video).

– By only training on original videos and videos with one frame deleted, and
testing on videos with different amounts of deleted frames, we ensure conve-
nient access to the training data.

2 Preliminaries

In the context of videos, a velocity field refers to the speed and direction of pixel
motion between different frames. It can be obtained by comparing adjacent video
frames and estimating the displacement caused by their time separation. Any
inter-frame operations, such as frame deletion and repetition, can magnify this
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displacement[20]. We use the optical flow field to represent the velocity field, and
its calculation method is given below[7].

Pp(x, y) ∼ Pn(x+ F (x, y)[0], y + F (x, y)[1]) (1)

This formula represents predicting the pixel values in the subsequent image
based on the preceding image. Pp(x, y) represents the pixel value at coordi-
nates (x, y) in the previous frame image. Pn(x + F(x, y)[0], x + F(x, y)[1])
represents the pixel value at the predicted position in the current frame image
obtained through the optical flow field. F(x, y) represents the optical flow field
at coordinates (x, y).

Figure 2 illustrates the trends in the sum of the magnitude of the velocity
field for both original and frame-deleted videos(one frame was deleted after frame
20). The example videos in the figures were encoded using H.264 with a GOP
(Group of Pictures) size of 50. It can be observed that in the original video,
significant increases in magnitude occur only when I-frames (key frames) appear.
In contrast, the frame-deleted video exhibits significant increases in magnitude
not only at I-frames but also around frame 20. This behavior is due to the
fact that I-frames are fully encoded frames, while frames after an I-frame are
predicted frames, which may have significant differences. And one frame was
deleted after frame 20, leading to a sudden change.

Fig. 2. The trends in the sum of the magnitudes of the horizontal component of the
velocity field for both original and frame-deleted videos((a) represents the original
trend, while (b) represents the trend with one frame deleted. The blue circles repre-
sent I-frame in the velocity field, while the red circles indicate the presence of deleted
frames).

3 Proposed Method

The schematic diagram of the proposed video frame deletion detection system
is illustrated in Figure 3. It can be observed that the system is divided into
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two steps. Step 1 serves to train a siamese network using velocity field images,
this step aims to enable the siamese network to distinguish between consecutive
frames and frames with deletions. Step 2 employs the pre-trained siamese net-
work to transform videos into similarity feature matrices. The two inputs of the
siamese network are temporally adjacent velocity field images. After processing
all frames of the entire video, a similarity matrix of velocity field images con-
taining temporal information is obtained. Then a binary classifier is utilized for
decision-making.

3.1 Preprocessing

The approach in [20] solely utilized the amplitude information of the veloc-
ity field. However, the velocity field encompasses not only amplitude but also
directional information. Transforming the velocity field into an image allows the
preservation of both of these aspects simultaneously. We save the obtained veloc-
ity field matrices1 as images, as shown in Figure 4. The left side of the figure
displays frame image, while the right side displays velocity field image.

Fig. 3. The schematic diagram of the proposed video frame deletion detection system(
VFIn represents the velocity field image).

3.2 Feature extraction

In this paper, we adopt VGG16[19] with pre-trained weights2 on ImageNet to
construct the siamese network, although theoretically, other types of deep learn-
ing networks can also be used.
1 ‘calcOpticalFlowFarneback’ function from the cv2 library in the Python environment

used to get the velocity field matrices.
2 Download link: https://download.pytorch.org/models/vgg16-397923af.pth

https://download.pytorch.org/models/vgg16-397923af.pth
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(a) Frame image (b) Velocity filed image

Fig. 4. Frame image and velocity filed image

Videos that have undergone frame deletion inevitably need to be re-
compressed. Therefore, consecutive frames can be categorized into two situations:
consecutive frames in the original video and consecutive frames in the video with
frame deletions, where the latter has undergone recompression. So the velocity
field images are categorized into three categories: original consecutive frames,
re-compressed consecutive frames, and non-consecutive frames(frames deletion
occurs between adjacent frames).

The number of frame deletion affects the degree of mutation in the veloc-
ity field. Specifically, the more frames deleted, the greater the mutation in the
velocity field; while the fewer frames deleted, the smaller the degree of muta-
tion. However, the mutation does not disappear simply because the number of
deleted frames is small. We train the siamese network using videos with one
deleted frame and original videos. If the system can distinguish between videos
with one deleted frame and the original videos, it can similarly differentiate
videos with a larger number of deleted frames. This approach makes it easier to
collect training data. Additionally, it makes the system more practical because
in real-world scenarios, frame deletions can occur with any positive value.

For siamese network, it is common practice to train the network with pairs
of images from the same category and different categories. This involves pair-
ing original consecutive frames, re-compressed consecutive frames, and non-
consecutive frames, training them as belonging to the same class or different
classes. However, in our approach, non-consecutive frames are not treated as the
same category during training. In practical situations, there is a lack of con-
tinuity in velocity field features between non-consecutive frames, because it is
improbable for two segments of frame-deleted videos to be consecutive.

During the training of the same category, two inputs of the siamese network
are velocity field images that are temporally adjacent. For training different cat-
egories, re-compressed consecutive frames are paired with either non-consecutive
frames(one frame was deleted between two consecutive frames) or original video
consecutive frames as the two inputs of the siamese network, the inputs are
randomly sampled from the dataset. The adoption of this training approach is
based on the fact that temporally adjacent original video frames are always the
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most similar. However, due to varying numbers of deleted frames, the differences
between original video frames and frames with deletions are diverse.

This approach allows us to effectively differentiate between original consecu-
tive frames, re-compressed consecutive frames, and non-consecutive frames. After
training the network, we use the output from the second-to-last layer of the net-
work as the similarity feature of velocity field images, as shown in Figure 5. We
extract similarity features frame by frame from the long video, resulting in a
feature sequence.

Fig. 5. The architecture of the siamese network designed to extract similarity features
from velocity field images.

We have drawn the feature sequence into an image, as shown in Figure 6.
From a visual perspective, it can be seen that there is a clear difference between
the original video and the frame-deleted video, with the former’s feature sequence
fluctuating relatively smoothly and the latter’s fluctuating greatly.

3.3 Classification

After the aforementioned operations, the video is transformed into a time
sequence containing similarity features of the velocity field images. These time
series are divided into two categories: normal time sequences generated from the
original videos and abnormal time sequences containing outlier values generated
from the frame-deleted videos. In theory, any binary classifier can be utilized
to determine the presence of frame deletion in a video. This paper employs a
random forest classifier. At each node split in each decision tree, the random
forest selects a subset of features from the sequence for splitting. This helps
ensure that different decision trees focus on different aspects of the sequence,
enhancing the model’s generalization ability. When classifying a new sequence,
each decision tree independently classifies the sequence. The final classification
result is determined based on the majority vote of all trees, i.e., adopting the
class with the most votes, reducing the risk of overfitting[16].
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Fig. 6. Illustrative examples of feature sequences, where (a) depicts the feature
sequence of the original video, and (b) illustrates the feature sequence of the video
with a deleted frame.

4 Experiment

4.1 Video Dataset

As far as we know, there is currently no dedicated dataset available for inter-
frame forensics in videos. We created our own dataset using surveillance videos
from our laboratory. There are three types of surveillance cameras used: Hikvi-
sion DS-8616N-I8(referred to as H1), Hikvision DS-2CD1301D-I(referred to as
H2) and Dahua DH-HAV-HDW1120E(referred to as D).

H1 has the most cameras, with 6 cameras capturing 6 different scenes, while
H2 has 2 cameras capturing 2 scenes, and D has only one camera capturing one
scene. We segmented the videos into multiple video clips for training and testing
based on these different scenes. Their parameters are listed in Table 1, and the
scenes they captured are shown in the Figure 7.

Table 1. Parameters of the surveillance videos(VCM stands for Video Camera Model.)

VCM Encoding Format Resolution Frame Rate GOP Number of Cameras

H1 H.264 2048*1536 25 50 6
H2 H.264 1280*720 25 50 2
D H.264 1280*720 25 50 1
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Fig. 7. Video Examples.

We trained the siamese network using three scenes captured by H1. The
random forest classifier was trained and tested using videos obtained from the
same brand and model. Specifically:

– For the H1 camera, we used three scenes for training and additional three
scenes for testing.

– For the H2 camera, we used one scene for training and additional scene for
testing.

– For the D camera, we trained and tested on two video segments from the
same scene but with a one-month time difference.

The deleted-frame videos were re-encoded using the same encoding format
and parameters as the original videos3. The number of velocity field images used
for training the siamese network were as follows: 20,000 frames of original con-
secutive frames, 19,990 frames of re-compressed consecutive frames, and 19,590
frames of non-consecutive frames (frames with one deleted in between). The
number of video segments used for training and testing random forest classifier
is specified in Table 2, where each video segment contains 2000 frames.

The training parameters for the siamese network are as follows: input size is
512x512, learning rate is 1e-2, batch size is 8, the optimizer is SGD, and trained
for 80 epochs on a Tesla P100 GPU with 16GB of VRAM.

We use accuracy to measure the final detection performance, which is the
proportion of the correctly detected instances to the total number of videos.

4.2 Performance

Training the siamese network using H1 videos and training random forest clas-
sifier with H1, H2 and D videos, and testing with videos of the corresponding
3 Utilizing the built-in ffmpeg tool in the Python environment.
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Table 2. The detail of video segments used for training and testing the random forest
classifier

Video Camera Model H1 H2 D

Number of video for training Original 30 20 20
Delete 1 30 20 20

Number of videos for testing Original 30 20 20
Delete 1 30 20 20
Delete 3 30 20 20
Delete 5 30 20 20
Delete 10 30 20 20

brand/model, the performance is presented in Table 3. From Table 3, it can be
observed that the system can effectively distinguish between original videos and
frame-deleted videos.

We selected the methods from [20], [4] and [12] for performance comparison.
For fairness, we trained the method in reference [4] and [12] using both the origi-
nal videos and videos with one frame deleted, and conducted testing on different
scenes. As shown in Table 3, the method from reference [4] is prone to erro-
neously classifying deleted-frame videos as original videos, whereas the method
from reference [12] tends to misclassify most original videos as deleted-frame
videos. Furthermore, the method from reference [20] demonstrates subpar over-
all performance. The method proposed in this paper outperforms the methods
in the other three papers, showing the state-of-art detection results.

Table 3. The final experimental results(VCM stands for Video Camera Model, while
DFN represents Deleted Frame Number. Training the siamese network with H1 videos
and separately training the random forest classifier with H1, H2, and D videos)

VCM H1 H2 D

DFN 0 1 3 5 10 0 1 3 5 10 0 1 3 5 10
Accuracy [4] 0.93 0.13 0.53 0.60 0.60 1.00 0.20 0.55 0.50 0.55 1.00 0.15 0.50 0.60 0.55

[20] 0.43 0.40 0.53 0.57 0.57 0.35 0.50 0.60 0.55 0.65 0.45 0.45 0.50 0.60 0.65
[12] 0.33 1.00 1.00 1.00 1.00 0.20 1.00 1.00 0.10 1.00 0.25 1.00 1.00 1.00 1.00
Ours 1.00 0.93 0.93 0.97 1.00 1.00 0.90 0.90 0.90 0.95 1.00 0.95 1.00 1.00 1.00

4.3 Ablation Study

To investigate the contribution of each module (i.e., the siamese network and
the random forest classifier) to the final detection performance, we conducted
ablation studies. We conducted video frame deletion detection separately using
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Table 4. The results of the ablation studies(Only SN represents using only the siamese
network, and Only RFC represents using only the random forest classifier, Complete
represents using all modules).

Video Camera Model H1
Deleted frame number 0 1 3 5 10

Accuracy Only SN 0 1.00 1.00 1.00 1.00
Only RFC 1.00 0.90 0.90 0 0
Complete 1.00 0.90 0.95 0.95 1.00

the siamese network and the random forest classifier. The detection results are
presented in Table 4.

When using only the siamese network for detection, videos from six scenes
captured by H1 were used, three scenes for training, one scene for validation,
and another two scenes for testing. The parameters and data used in the training
are the same as those in Section 4.1. The validation and test sets are structured
similarly, with each category containing 4,000 images, including original video
frames, re-compressed consecutive frames, and frames with deletions in between.
The classification accuracy for the above three categories can reach 82.9%. When
applied directly to long video detection, the siamese network categorizes all
original videos as manipulated videos.

We resized the velocity field images to 512x512, then flattened them and input
them into the random forest classifier. The training data consisted of three scenes
captured by H1, each with 20 video segments. Additionally, it only includes orig-
inal videos and videos with one frame deleted. The test data included two addi-
tional scenes captured by H1, each with 20 video segments comprising original
videos and videos with 1, 3, 5, and 10 frames deleted. As shown in Table 4,
the random forest classifier exhibited relatively poor generalization performance
and failed to detect videos with 5 and 10 frames deleted. It can be observed that
combining the siamese network with the random forest classifier achieved the
best results.

5 Conclusion

This paper presents a method for detecting frame deletion in videos. The app-
roach relies on the continuity feature of the velocity field, where frame deletions
result in a discontinuity in the velocity field sequence. It uses a siamese net-
work to extract complex features from the velocity field images, transforming
the videos into velocity field feature sequences. Subsequently, random forest
classifier is employed to distinguish between original videos and videos with
frames deleted. Experimental results demonstrate the effectiveness of the pro-
posed method, enabling the detection of long videos with extreme frame dele-
tions(e.g., deleting one frame in a 2000-frame video).
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As the future work, we will investigate whether our system can be applied
to other types of inter-frame tampering operations, such as frame replacement,
frame insertion, etc. Additionally, we will expand the training dataset and use
transfer learning to enhance the system’s generalization capability.
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Abstract. This paper addresses the critical challenge of vehicle detec-
tion in the harsh winter conditions in the Nordic regions, character-
ized by heavy snowfall, reduced visibility, and low lighting. Due to
their susceptibility to environmental distortions and occlusions, tradi-
tional vehicle detection methods have struggled in these adverse con-
ditions. The advanced proposed deep learning architectures brought
promise, yet the unique difficulties of detecting vehicles in Nordic win-
ters remain inadequately addressed. This study uses the Nordic Vehicle
Dataset (NVD), which contains UAV (unmanned aerial vehicle) images
from northern Sweden, to evaluate the performance of state-of-the-art
vehicle detection algorithms under challenging weather conditions. Our
methodology includes a comprehensive evaluation of single-stage, two-
stage, segmentation-based, and transformer-based detectors against the
NVD. We propose a series of enhancements tailored to each detection
framework, including data augmentation, hyperparameter tuning, trans-
fer learning, and Specifically implementing and enhancing the Detection
Transformer (DETR). A novel architecture is proposed that leverages
self-attention mechanisms with the help of MSER (maximally stable
extremal regions) and RST (Rough Set Theory) to identify and filter
the region that model long-range dependencies and complex scene con-
texts. Our findings not only highlight the limitations of current detection
systems in the Nordic environment but also offer promising directions
for enhancing these algorithms for improved robustness and accuracy in
vehicle detection amidst the complexities of winter landscapes. The code
and the dataset are available at https://nvd.ltu-ai.dev.
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1 Introduction

Vehicle detection systems are crucial for many applications, including traffic
management and autonomous navigation. Yet, their performance in adverse
weather conditions, especially in the harsh winter of the Nordic regions, presents
significant challenges. The consistent snowfall, reduced visibility, and low lighting
conditions inherent to these areas complicate vehicle detection tasks, demanding
an evaluation and enhancement of current detection methods to ensure reliability
and robustness [1]. contributions in this paper include:

Evaluation and enhancement of State-of-the-Art Algorithms: We assess the
performance of various vehicle detection frameworks, including single-stage,
two-stage, segmentation-based, and transformer-based architectures, using the
Nordic Vehicle Dataset (NVD).

Enhancement of DETR: We implement and enhance the Detection Trans-
former (DETR) model, leveraging its self-attention mechanisms to handle the
complex scene contexts and long-range dependencies inherent in the Nordic win-
ter environment.

Public Availability of Resources: We make the code and dataset publicly
available to facilitate further research and development in this domain.

By focusing on these contributions, our study aims to advance vehicle detec-
tion technologies for challenging weather conditions, providing a foundation for
future research into adaptive, context-aware detection systems capable of main-
taining high performance across diverse and dynamic environments.

1.1 Related Work

Initially, traditional non-deep learning techniques were employed for vehicle
detection. These conventional methods, however, struggled with image distor-
tions, vehicle occlusions, and variations in illumination, resulting in limited accu-
racy and applicability to specific scenarios. For instance, Tsai et al. (2007) [2]
discussed the limitations of normalized color and edge map techniques under
varying light conditions. Similarly, Felzenszwalb et al. (2008)[3] highlighted the
challenges faced by multiscale deformable part models in maintaining detection
accuracy amid occlusions. Mokayed et al. (2014)[4] proposed an enhanced tra-
ditional edge detection method to identify vehicles and license plate numbers in
images captured by drones. This approach aimed to achieve real-time processing
on constrained devices while addressing challenges related to lighting, viewing
angles, and occlusions. As a result, their accuracy remained limited, constrain-
ing their applicability to specific scenarios [5]. With the advent of deep learn-
ing, various approaches aimed to enhance vehicle detection by introducing more
advanced network architectures. For example, Geiger et al. (2012)[6]. introduced
the KITTI vision benchmark suite, which provided a comprehensive dataset
and benchmark for evaluating the performance of different detection algorithms
under real-world conditions. Howard et al. (2017)[7]. developed MobileNets,
efficient convolutional neural networks designed for mobile vision applications,
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which significantly improved the computational efficiency and accuracy of detec-
tion tasks. Hu et al. (2021) [8] utilized visual attention cues to enhance vehicle
detection and tracking, focusing on improving detection accuracy in complex
environments.Despite extensive research in the broader field of object detection,
many general-purpose classifiers struggle to achieve competitive performance in
vehicle detection benchmarks. This struggle is due to the unique challenges posed
by vehicle detection, including significant light variations, dense occlusions, and
size disparities. These challenges prompted us to explore the performance of vari-
ous vehicle detection architectures under such demanding conditions. A search of
available UAV datasets validates the originality of our study by improving vehicle
detectors using the NVD dataset. Existing datasets primarily address orienta-
tion and scale issues in clear weather, such as the VisDrone dataset [9] focusing
on general object detection, and the UAV project dataset limited to foggy con-
ditions. Other datasets, like Mimos[4,10] and CARISSMA [11] focus on different
objectives or lack UAV perspectives. The Video-Traffic dataset[12] emphasizes
traffic information without considering weather impacts. Our research uniquely
aims for comprehensive vehicle detection under challenging weather conditions,
leveraging a precisely annotated dataset. The Nordic Vehicle Dataset (NVD)
[5] serves to address and highlight these challenges. Capturing 22 aerial videos
across northern Sweden’s snowy terrain, the NVD provides a comprehensive
view of the difficulties faced in vehicle detection from unmanned aerial vehicles
(UAVs).

1.2 Vehicle Detectors

Numerous techniques have been devised previously to tackle the complexities
associated with vehicle detection, particularly concerning small-sized vehicles
and scenarios involving multiple vehicles within images in different weather con-
ditions. Vehicle detectors have evolved with significant advancements in accu-
racy, speed, and robustness. The most prominent types of vehicle detectors
include single-stage detectors, two-stage detectors, and transformer-based detec-
tors, each with distinct architectures and operational mechanisms [13].
1. Single stage (or single pass): these model architectures use the neural network
in predicting the bounding boxes and class probabilities of objects in one step
for a full image input [14,15]. Examples of such models include the popular
You Only Look Once (YOLO) [16], Fast Detection [17], and 3D-DETNet [18].
They tend to have high inference speeds [15]. These models have been applied
in vehicle detection tasks [18,19]. The introduction of the SotA YOLO, now
in version 9 [20], marked a milestone in computer vision. The latest version
combines two novel concepts: Programmable Gradient Information (PGI) and
Generalized Efficient Layer Aggregation Network (GELAN).
2. Double stage (or double pass): these model architectures generate candidate
regions before a second stage of pooling operation to classify these regions [15,21].
Examples of these models are Region-based Convolutional Neural Network (R-
CNN) [14] and Faster R-CNN [22], and FPN [23]. They tend to have high recogni-
tion accuracy and are also used for vehicle detection [15,24]. The Faster R-CNN
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model introduced a Region Proposal Network (RPN), which shares convolutional
features of the full input image with the detection network.
3. Segmentation-based detectors: these models’ architectures are types of neu-
ral network models designed for pixel-wise classification, which means it assigns
a class label to each pixel in an image, effectively segmenting the image into
different regions based on the detected objects or features. Unlike traditional
object detectors that produce bounding boxes around objects, segmentation-
based detectors provide detailed spatial understanding and precise localization of
objects within an image. The U-Net architecture is a prime example of this app-
roach, utilizing an encoder-decoder structure with skip connections to capture
both contextual and fine-grained details. This makes segmentation-based detec-
tors particularly useful for tasks requiring high-resolution spatial accuracy[25]
4. Transformers-based detectors: these detection models use self-attention mech-
anisms, allowing each part of the image to be considered in the context of every
other part. This enhances the model’s ability to understand complex scenes and
the relationships between different objects within them. This global process-
ing capability is particularly beneficial in densely populated scenes or scenarios
where objects’ context and relative positioning are crucial for accurate detec-
tion. Transformer generalizes well to other tasks by applying it successfully to
English constituency parsing both with large and limited training data. The
Transformer can be trained significantly faster than architectures based on recur-
rent or convolutional layers [26]. Examples of these models, Detection Trans-
former (DETR) [27], Detection Transformer-Spatial Pyramid Pooling (DETR-
SPP) [28],demformable DETR [29], and Swin Transformer [30].

2 Proposed Method

The foundation of the proposed method for evaluating vehicle detection perfor-
mance in Nordic environments hinges on the strategic selection of the Nordic
Vehicle Dataset (NVD) as a rigorous testing ground. With its comprehensive
compilation of challenging scenarios collected from the Nordic region, the NVD
provides a unique opportunity to validate, tune, and enhance various state-
of-the-art (SOTA) vehicle detection algorithms. This methodological approach
is designed to encompass a broad spectrum of contemporary detection frame-
works, categorically spanning single-stage, two-stage, segmentation-based, and
transformer-based detectors, each known for their distinct operational paradigms
and performance characteristics, refer to Fig 1.

2.1 Dataset Selection: Nordic Vehicle Dataset (NVD)

The NVD’s rich repository of UAV images, meticulously captured over the snowy
landscapes of northern Sweden, provides a comprehensive view of the difficul-
ties faced in vehicle detection from unmanned aerial vehicles (UAVs) in harsh
weather. With altitudes ranging from 120 to 250 meters, the dataset encompasses
a variety of snow and cloud conditions across 8,450 annotated frames featuring
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Fig. 1: Proposed Method.

26,313 cars. The diverse video resolutions, frame rates, and varying Ground Sam-
ple Distance (GSD) metrics offer a detailed representation of vehicles against the
challenging backdrop of Nordic winters [5].

2.2 Evaluation Framework

The method entails a structured evaluation framework in which a diverse array
of SOTA vehicle detection algorithms will be systematically tested against NVD.

1. Single-Stage Detectors: YOLO5vs, YOLO8vs, and SSD (Single Shot Multi-
Box Detector) will be assessed for their detection capabilities in the face of
the NVD’s challenging conditions.

2. Two-Stage Detectors: RCNN and Faster R-CNN (F-RCNN) will undergo rig-
orous testing to determine its effectiveness in accurately identifying vehicles
amidst heavy occlusions and variable snow cover.

3. Segmentation-based Detectors: U-Net and calLocalization[31] methods will
be adjusted and assessed to evaluate their effectiveness in precisely detecting
vehicles under conditions of significant occlusion and varying levels of snow
cover.

4. Transformer-Based Detectors: DETR will be evaluated for their ability to
model long-range dependencies and complex scene contexts.

2.3 Performance Tuning and Enhancement

Critical to this proposed method is the iterative process of tuning and improving
algorithms based on their performance metrics against the NVD. This involves
not only the adjustment of hyperparameters but also the potential integration
of novel steps specifically tailored to overcome the identified challenges by NVD.
Data augmentation, a crucial preprocessing step, was performed for all the
different types of the detectors. We initially used the Albumentations library
to simulate various weather conditions ( snow, rain, fog) offline. This process
included pixel-level transformations and maintaining bounding box accuracy,
but it required significant disk space and processing time. To overcome this,
we transitioned to built-in online augmentation, which is more efficient. Some



Vehicle Detection Performance in Nordic Region 67

Fig. 2: Applied Snow Augmentation.

hyperparameters that we have set, which affect data augmentation, are listed
below, but the entire set can be accessed through the code available on Github.

– fl_gamma: 0.0 - focal loss gamma.
– hsv_h: 0.015 - image HSV-Hue augmentation (fraction)
– hsv_s: 0.7 - image HSV-Saturation augmentation (fraction)
– degrees: 45.0 - image rotation (+/- deg)
– perspective: 0.001 - image perspective (+/- fraction), range 0-0.001.

Albumentation library parameters are also tuned to improve different mod-
els robustness. Different parameters as blur, median blur, and other transforma-
tions are tuned to simulate various snowy conditions and enhance the training
dataset’s diversity as below.

– Blur - p=0.01, blur_limit=(3, 7).
– MedianBlur - p=0.01, blur_limit=(3, 7)
– ToGray - p=0.01
– CLAHE -p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8)

Additional augmentation methods, specifically designed for snowy conditions,
have been proposed to enhance the quality of training data in such environments.
These techniques include the addition of features such as snow overlays and
snowflakes, which can be adjusted to simulate various levels of snowfall and
accumulation. This approach aims to mimic the progressive accumulation of
snow, introducing a dynamic aspect to the training data set, as clarified in Fig 2.

1. Single-Stage Detectors: Improving the performance of SSD and YOLO in gen-
eral, regardless of the model version, involves a series of traditional techniques
and strategies. In this work, we will focus on the following [32,33].
(a) Hyperparameter tuning is essential for adjusting different parameters.

Adjust learning rate, batch size, and anchor box dimensions are imple-
mented to better fit the characteristics of vehicles in snowy environments.
For instance, use lower learning rates to refine the model and avoid over-
shooting in the fine-tuning phase.

(b) Transfer learning is an effective practice used to utilize pretrained models
on larger datasets. To implement transfer learning for enhancing YOLO’s
detection accuracy in snowy conditions for vehicles, start by initializing
the YOLO model with weights from a pre-trained dataset (COCO). This
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provides a solid foundation for feature extraction capabilities. Next, com-
pile a domain-specific dataset such as the NVD (Nordic Vehicle Dataset),
which includes images of vehicles captured in various snowy conditions.
The NVD dataset contains a diverse collection of vehicle images specif-
ically designed to address the challenges of detecting vehicles in Nordic
winter conditions, including heavy snowfall, low-light environments, and
varying levels of snow coverage on vehicles. By fine-tuning the YOLO
model on this dataset, you can adapt it to recognize the unique features
and patterns associated with vehicles in snowy settings.

2. Two-Stage Detectors: Improving the performance of these detectors involves
a series of traditional techniques and strategies. In this work, we use a low
learning rate (e.g., 0.001) for stable convergence and adaptive learning rate
schedulers for dynamic adjustments. Customize anchor box scales and aspect
ratios using K-means clustering to address occlusions, and adjust the number
of proposals from the Region Proposal Network (RPN) for speed and accu-
racy. Fine-tune the Non-Maximum Suppression (NMS) threshold to reduce
false positives, configure the Region of Interest (RoI) pooling layer for scale
variations, and optimize batch sizes and training epochs with early stopping
to prevent overfitting. These strategies enhance F-RCNN’s accuracy in snowy
environments[34].

3. Segmentation-Based Detectors: This study aims to fine-tune the parameters
of two different segmentation-based detectors and assess their performance
on the proposed enhanced augmented dataset.

4. Transformer-Based Detectors: This paper primarily focuses on introducing
enhancements to the Detection Transformers (DETR) model to improve its
performance. In this regard, the following steps will be presented:

(a) Initial Region Identification under Adverse Conditions:
Initially, a robust algorithm called maximally stable extremal regions (MSER) is
proposed, which generates a novel set of image components known as extremal
regions. These regions are characterized by two features derived from the pro-
jection transformation of image coordinates and the monotonic transformation
of image intensities [35]. Affine invariant feature descriptors are computed on
a grayscale image, and although MSER’s robustness varies from multiple mea-
surement regions derived from invariant constructs from extremal regions [36],
certain regions exhibit distinct characteristics that are notably larger and poten-
tially useful for establishing preliminary correspondences [35]. As MSER can
generate numerous blobs of varying sizes, accommodating original image reso-
lution detection as well as different resolutions stemming from long distances
or blurred (coarse) images, it leads to a loss of image details and connections
between different regions and their neighbors [36]. MSER’s strength lies in its
capability to maintain invariance to scale changes in the scene image across
different resolutions, thus stabilizing vehicle regions. The image’s resolution is
obtained using a scale pyramid (without Gaussian filtering), encompassing one
octave per scale and a total of three scales ranging from the finest image (input
image) to the coarser, blurred image. This process results in the creation of mul-
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Fig. 3: Initial Region Identification by MSER and MR-MSER.

tiresolution maximally stable extremal regions, denoted as MR-MSER, which
are subsequently applied to NVD’s images [35] as clarified in Fig. 3).

To enhance region detection recall, an augmentation process is applied to
MR-MSER. The augmentation procedure is implemented for each MR-MSER
region. Each MR-MSER region of varying sizes is enclosed within a rectangular
bounding box that remains centered. This bounding box is then transformed into
a square shape by expanding its area by 30% and 60% in three distinct dimen-
sions. These different square dimensions are resized to a 28×28 pixel image patch.
Each image patch undergoes random rotation within the range of [ π/4, π/4]
four times, facilitating model training [37]. The regions generated by applying
augmented MR-MSER over NVD’s images are shown in Fig. 3.
(b) Feature Analysis and Reduction in Obscured Environments.
The purpose of using the rough set approach is knowledge discovery and approx-
imation of sets using granular information. By applying RST, one can reduce the
dimensionality of the feature space and generate decision rules that are crucial for
distinguishing between vehicle and non-vehicle regions. This step enhances the
computational efficiency and effectiveness of the subsequent detection process.
Given a confidence map, the process for granularization splits the input image
window into multiple windows with a resolution of each sub-window (g = 4).
The main purpose is to classify pixel values into vehicle and nonvehicle approxi-
mations. Let a set of objects be U. There is also an indiscernibility relation R ⊆
U* U that refers to the central concept of rough set theory. In the indiscernibility
relation, the values of the object are identical, considering a subset of the related
attributes. In other words, it is an equivalence relation where all identical values
of the object are elementary. Hence, R can also be considered an equivalence
relation. Let X be a subset of U with two possibilities: either is crisp, which is
explicit with respect to R if the boundary region of X is empty, or is rough,
which is in-explicit with respect to R if the boundary region of X is nonempty
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using RST to characterize the set U as possible for lower approximation and
upper approximation, and boundary region of set X.

R(x) =
⋃

x∈U

R(x) : R(x) ⊆ X (1)

R-upper approximation of X: R(x) =
⋃

x∈U

R(x) : R(x) ∩ X �= φ (2)

R-boundary region of X: RNR(X) = R(X) − R(X) (3)

Rough entropy (RE) is introduced to avoid imprecision to find the optimum
threshold as precisely as possible. The rough entropy threshold (RET) as the
reference for the threshold in the binarization approach in the grayscale image,
which was obtained by using a sliding window with a nonoverlapping granule
window in m×n, is set as a 2×2 window size. RET can be defined as [38].

RET = −exp
2

[
ROT logexp(ROT ) + RBT logexp(RBT )

]
(4)

where ROT = 1 − |OT |
|OT | is the roughness of the object, RBT = 1 − |BT |

|BT | is the

roughness of the background,
∣∣OT

∣∣ and |OT | are the cardinality of the sets OT

and OT for a given image depending on the value T, and
∣∣BT

∣∣ and |BT | are the
cardinality of the sets BT and BT for a given image depending on the value T.
The principle of reducing the roughness of both the object and background and
maximizing RET is computed for every T representing the object and back-
ground regions, respectively (0,. . . ,T) and (T+1,. . . ,L-1). The optimum
threshold is selected for the maximum RET to provide the object-background
segmentation given by the definition of T ∗.

T ∗ = argmax
T

RET (5)

Maximizing the rough entropy RET to obtain the required threshold implies
minimizing both the object roughness and background roughness such that this
method is an object enhancement/extraction method [38].

The confidence map is generated to show the final regions selected after
applying RST as the filtration layer. This confidence map is constructed by
utilizing confidence values from each stacked regions. Regions with higher inten-
sity in the confidence map are indicative of potential vehicle components. The
outcome of the generated augmented confidence map is shown in Fig. 4.
(c) Refined DETR Detection in Complex Contexts
Maximally Stable Extremal Regions (MSER) refined by rough set, a method
renowned for its robustness in detecting coherent regions in images, presents a
promising solution to enhance DETR’s capabilities in these complex visual envi-
ronments. By integrating refined MSER with DETR, the improved model can
leverage the strength of MSER in efficiently segmenting and identifying stable
regions within images, even under severe weather distortions, as shown in Fig. 5.
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Fig. 4: Filtered region Identification by RST and MR-MSER.

This fusion aims to provide a more resilient feature extraction mechanism, allow-
ing DETR to better recognize and localize objects partially or fully obscured by
snow.

Fig. 5: Refined DETR performance.

3 Experimental Results

This section presents the results obtained from experiments conducted using
different detectors before and after implementing specific performance enhance-
ments customized for each detector. The experiments initially showcase the per-
formance of single-stage detectors without any enhancements, as illustrated in
Fig. 6, along with the corresponding accuracy detailed in Table 1. Subsequently,
the enhancement techniques proposed for single detectors, as described in the
methodology, are implemented to demonstrate improvements in detector perfor-
mance, as depicted in Fig. 7, Table 2.
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Fig. 6: Single detectors performance without enhancement.

1. Single-Stage Detectors

Table 1: Model accuracy without
enhancement
Model Precision Recall mAP50 mAP50-95
YOLOv5s 69.00% 32.10% 53.20% 31.70%
YOLOv8s 72.40% 28.00% 45.80% 22.80%
SSD 31.20% 18.00% 26.8% 12.4%

Table 2: Model accuracy by imple-
menting the proposed methodology
Model Precision Recall mAP50 mAP50-95
YOLOv5s 70.6% 48.2% 56.0% 33.80%
YOLOv8s 77.1% 34.60% 50.7% 24.22%
SSD 39.60% 25.8% 33.75% 20.2%

The study assessed the effectiveness of a dual-stage detector, exemplified by
RCNN, and F-RCNN, both prior to and after the implementation of suggested
enhancements, as illustrated in Fig. 8 and Table 3.

2. Two-Stage Detectors Following this, we assessed the efficacy of
segmentation-based approaches by employing a U-Net model[25] alongside a
fractional B-spline wavelet transform called CarLocalization, utilizing a specially
designed U-Net architecture [31], as shown in Fig. 9, Table 4.

Finally, we evaluated the performance of both DETR and an enhanced ver-
sion of DETR incorporating MR-MSER and rough set theory, as described in
Fig. 10, Table 5.

Table 3: RCNN performance and F-RCNN without/with enhancement
Model Precision Recall mAP50 mAP50-95

RCNN 5.7% 11.4% 7.4% 2.50%
F-RCNN 8.4% 13.3% 10.15% 4.30%
Enhanced RCNN 10.2% 18.6% 12.6% 7.2%
Enhanced F-RCNN 22.40% 26.3% 23.25% 12.10%
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Fig. 7: Single detectors performance with the proposed methodology.

Table 4: Segmentation-based Performance
Model Precision Recall mAP50 mAP50-95

U-Net 72.5% 50.50% 56.8% 32.3%
CarLocalization 74.7% 54.8% 60.4% 38.5%

3. Transformer-Based Detectors

Table 5: DETR Performance
Model Precision Recall mAP50 mAP50-95

DETR 80.4% 62.50% 74.8% 52.3%
refined DETR 85.4% 70.2% 79.4% 58.6%

Our detailed analysis highlights why certain detectors perform better than
others under the challenging conditions of the Nordic winter. Single-stage detec-
tors as YOLO struggle with occlusions and snow cover, while two-stage detec-
tors like Faster R-CNN and RCNN offer the worst performance among the
others , due to their region proposal mechanisms. U-Net, known for its seg-
mentation capabilities, effectively delineates vehicle regions even in challenging
environments, contributing to enhanced detection accuracy. Transformer-based
detectors like DETR excel in complex scenarios due to their advanced atten-
tion mechanisms. The refined DETR, which uses Rough Set Theory (RST) and
Maximally Stable Extremal Regions (MR-MSER) for region nomination and
filtration, demonstrated the best performance among the evaluated detectors.
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Fig. 8: Double detectors performance without/with enhancement.

Fig. 9: Segmentation-based detectors

Fig. 10: DETR vs Refined DETR

4 Conclusion

This study comprehensively examined vehicle detection algorithms under the
extreme and variable conditions of Nordic winters. By utilizing the Nordic Vehi-
cle Dataset (NVD), we rigorously evaluated a diverse array of state-of-the-art
vehicle detection frameworks, including single-stage, two-stage, segment-based,
and transformer-based architectures. Our analysis revealed significant challenges
faced by these algorithms when confronted with the unique environmental fac-
tors of the Nordic landscape, such as vehicles fully covered by snow and vari-
able illumination. Despite these challenges, we demonstrated notable improve-
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ments in the performance of these detection systems through systematic tun-
ing and enhancements tailored to this demanding environment. Key strategies,
including data augmentation, hyperparameter adjustment, and transfer learn-
ing, were pivotal in enhancing detection accuracy and robustness. Specifically,
for transformer-based frameworks like DETR, the implementation of region iden-
tification using MSER and a filtering layer grounded in Rough Set theory sig-
nificantly improved detection performance. An important ethical consideration
of our work is the potential for surveillance misuse. While our advancements in
vehicle detection can greatly benefit traffic management and autonomous naviga-
tion, it is crucial to ensure that these technologies are implemented with respect
for privacy and civil liberties. Policies and regulations must be in place to pre-
vent misuse and ensure that the deployment of such technologies is transparent
and ethically responsible.

In conclusion, this study advances vehicle detection technologies for challeng-
ing weather conditions and lays the groundwork for future research into adap-
tive, context-aware detection systems capable of maintaining high performance
across diverse and dynamic environments. We hope our findings inspire further
innovations in the development and application of vehicle detection systems.
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Abstract. Mural image restoration involves repairing damaged sections
of murals to attain desirable visual outcomes. In recent years, the devel-
opment of mural restoration algorithms has emerged as a key area of
interest, driven by the need to preserve murals as valuable artifacts of
human historical heritage. Despite their significance, murals have suf-
fered various degrees of deterioration over time. The limited availability
of mural-specific datasets and the complexity of mural textures pose sig-
nificant challenges for contemporary image restoration algorithms, ren-
dering them less effective in mural restoration tasks. To address this, we
have compiled a dataset encompassing 3,492 murals and introduced a
novel mural image restoration approach, the Edge Assistance and Aggre-
gated Contextual Transformations GAN (EAAOT-GAN). This approach
is structured around two phases: edge generation and image restoration.
Initially, it generates complete edges of murals, followed by the restora-
tion of the entire mural images through the integration of these edges.
Comparative analysis with leading image restoration techniques demon-
strates that our method competes favorably with the most advanced
mural restoration models, as evidenced by both qualitative and quanti-
tative evaluations.

Keywords: Mural image restoration · Mural dataset · Edge
assistance · Aggregated contextual transformations

1 Introduction

Murals, embodying centuries of cultural heritage, are invaluable for their his-
torical, artistic, and archaeological significance. However, these artifacts often
suffer from deterioration, such as cracking and color fading, underscoring the
urgency of their preservation and restoration. Traditional approaches to mural
restoration, involving direct manual intervention, pose risks of inefficiency and
potential further damage. The advent of computer vision and deep neural net-
work technologies offers promising alternatives for mural conservation.
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Recent advancements have seen the application of sophisticated algo-
rithms, including partial convolution techniques for irregular damage repair and
structure-aware restoration methods. Despite the efficacy of these algorithms in
general image restoration, mural restoration poses unique challenges due to the
scarcity of mural-specific datasets, the complexity of damage patterns, and the
inherent difficulty in fully recapturing the original aesthetics of murals.

This study introduces a novel two-stage mural restoration methodology lever-
aging edge assistance and aggregated contextual transformation to navigate
these challenges. Initially, an edge generation model delineates the mural’s dam-
aged edges, aiming to replicate the original contours closely. This edge map
guides the subsequent restoration phase, where a combination of the original
image and the edge map, alongside histogram loss, refines the restoration pro-
cess, addressing the prevalent issue of blurriness.

Our approach is inspired by and builds upon recent innovations in edge-
focused restoration and texture synthesis, integrating elements such as AOT
Blocks[1] for enhanced context understanding and texture generation. This
methodology aims to achieve higher fidelity in restoring high-resolution mural
images, supported by a curated dataset of 3492 mural images and the incorpo-
ration of histogram loss[2] to mitigate shape blurriness.

This work’s principal contributions are outlined as follows:

• First, we collected scattered known mural datasets[3][4] to construct a mural
dataset comprising 3492 mural images, dedicated to the research of mural
conservation and restoration algorithms.

• Secondly, we prioritize DexiNed[5] edge generation as the initial step to
enhance image restoration quality and obtain high-quality edge maps.

• Furthermore, we innovatively apply AOT Block[1] to mural image restoration,
enhancing the model’s abilities in context reasoning and texture synthesis.

• Lastly, we introduces histogram loss[2] as a constraint in the second stage
to address the issue of shape blurriness encountered in high-resolution mural
image restoration.

2 Related Works

2.1 Edge Detection

Edge detection is a pivotal task in computer vision and image processing, aimed
at delineating object boundaries within images. This task underpins critical
applications such as object recognition, scene understanding, and image segmen-
tation. Edge detection methodologies are categorized into classical algorithms,
machine learning (ML)-based approaches, and deep learning (DL)-based tech-
niques.

Classical algorithms, exemplified by Canny’s detector[6], leverage local image
intensity variations to pinpoint edges. The Canny detector, a cornerstone in
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this domain, employs a multi-step process including Gaussian filtering, gradi-
ent calculation, non-maximum suppression, and double thresholding, with non-
maximum suppression remaining a widely adopted technique in contemporary
algorithms.

ML-based methods have evolved alongside machine learning, employing clas-
sifiers like Support Vector Machines (SVM) and Random Forests to identify edge
pixels[7]. These approaches excel in automatically adapting to image features,
thus offering robust performance across varied datasets. Nevertheless, their effi-
cacy is contingent on the availability of high-quality training data and the effi-
ciency of feature extraction, often at the expense of considerable computational
resources.

DL-based methods capitalize on the advancements in Convolutional Neural
Networks (CNN) to propose algorithms that surpass traditional techniques in
complexity and accuracy[8][9]. Holistically-Nested Edge Detection (HED) exem-
plifies this approach, achieving end-to-end edge detection by harmonizing fea-
tures at multiple scales. Besides, U-Net’s innovative skip connections, which
directly pass feature maps of the same resolution between the encoder and
decoder, have achieved high-precision image segmentation performance. DL-
based methods demonstrate unparalleled proficiency in capturing complex image
features, thereby enhancing the precision and reliability of edge detection.

2.2 Image Inpainting

Image restoration, pivotal in computer vision, aims to repair images’ missing
areas, with significant implications for image editing applications like object
removal. In the last decade, deep learning has propelled the development of
innovative image restoration techniques. These approaches are dichotomized into
non-learning and learning-based methods.

Non-learning methods include diffusion and patch-based techniques.
Diffusion-based methods leverage neighboring pixel information for content fill-
ing. Although such algorithms [10] gradually ”diffuse” the information of sur-
rounding pixels into the damaged area, they face challenges with large or com-
plexly textured damages due to their reliance on local information and neglect
of global image structure. Conversely, patch-based methods, effective for tex-
tured images, replicate information from analogous image regions. Criminisi et
al.[11] prioritization strategy for repair sequence and Barnes et al.[12] Patch-
Match algorithm exemplify advancements in reducing computational demands
and improving efficiency, though they occasionally produce inconsistent results.

Learning-based methods, notably those employing deep learning, have sig-
nificantly advanced image restoration by learning from extensive image data
to produce more accurate and natural repairs for complex textures and struc-
tures. Context Encoders[13] by Pathak et al. and the DeepFill v2[14] model by
Nazeri et al. illustrate the shift towards employing advanced neural network
architectures, such as encoder-decoder frameworks[13], dilated convolutions[15],
and Generative Adversarial Networks (GANs), for improved restoration quality.
These methods efficiently address irregularly shaped missing areas and enhance
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detail accuracy through innovative network layers and attention mechanisms,
underscoring the synergy between edge detection and image restoration in recent
advancements.

2.3 Mural Inpainting

Mural image restoration, a specialized domain within image restoration, has
garnered considerable attention due to its unique challenges and cultural signif-
icance. While employing standard image restoration techniques offers a direct
path to addressing mural damage, the unique characteristics of mural datasets,
including their imperfection and the complexity of their texture structures, often
render such applications less effective.

Advancements in mural restoration have been driven by adaptations and
improvements upon existing image restoration algorithms. Notably, build-
ing upon the foundation of EdgeConnect[16], Ciortan et al.[17] introduced a
structure-guided restoration technique, whereas Li et al.[3] presented a method-
ology that leverages line drawings to incrementally restore damaged murals,
resulting in more lifelike restorations. Additionally, drawing inspiration from
Liu et al.’s partial convolution concept[18], Chen et al.[19] applied it within a
sliding window framework for mural restoration, and Wang et al.[20] developed a
Thangka mural restoration technique utilizing multi-scale adaptive partial con-
volutions. Despite these advancements, the balance between structure preserva-
tion and color restoration in severely damaged areas remains a critical challenge,
highlighting the need for further research and innovation in this field.

3 Methodology

High-resolution image restoration, especially when it involves inferring content
and generating textures for missing areas, poses significant challenges. This
section introduces our proposed mural restoration method, EAAOT-GAN, which
leverages edge assistance and aggregated contextual transformations to address
these issues. The method encompasses an overview of the system architecture,
the design of the edge generation network, and the specifics of the image restora-
tion network.

3.1 Overview

The architecture and operational framework of EAAOT-GAN are illustrated in
Fig. 1, encompassing two primary stages: edge generation and image restora-
tion. Each stage operates within the Generative Adversarial Network (GAN)
framework, comprising a generator network and a discriminator network.

Suppose G1 and D1 represent the generator and discriminator of the edge
generator, respectively, and G2 and D2 represent the generator and discriminator
of the image completion network.
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During the edge generation phase, the input input1 to the edge generator G1

consists of the masked mural image’s edge map Ẽgt, the grayscale image Ĩgray
post-mask application, and the mask M itself. This input undergoes two down-
sampling stages, becoming Iresult, which is one-sixteenth the size of the original
image. Then, Iresult passes through eight residual blocks[21], producing 256 fea-
ture maps of the image. Subsequently, these feature maps are upsampled twice
to reconstruct a comprehensive edge map. This final edge map undergoes evalu-
ation by a discriminator designed with a 70× 70 PatchGAN[22][23] architecture
to verify its authenticity.

In the image restoration phase, the inputs to the image generator G2 include
the damaged mural Ĩgt , the edge map Epred generated by G1 and the mask
M . These inputs, collectively referred to as input2, are first subjected to two
downsampling steps, resulting in I ′

result, which is one-sixteenth of the original
image size. Following this, I ′

result passes through four AOT-Blocks[1], yielding
256 feature maps of the image.These feature maps are then upsampled twice, cul-
minating in the generation of a complete image Ipred. The authenticity of Ipred is
assessed by a discriminator D2, which utilizes an SM-PatchGAN[1] architecture
to verify the image’s genuineness.

Fig. 1. The architecture of EAAOT-GAN is presented in two main sections: the system
overview and the detailed network structure. This model integrates an Edge Generation
Network (EGN) and an Image Inpainting Network (IIN). Initially, the EGN reconstruct
the full edge image. Subsequently, IIN generates the fully restored mural image.
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3.2 Edge Generation Network

This section is dedicated to discussing the Edge Generation Adversarial Network,
a crucial component of EAAOT-GAN. Inspired by EdgeConnect[16], the pivotal
role of edge information in image inpainting is acknowledged for its substan-
tial contribution to improving restoration quality. Consequently, edge generation
constitutes the foundational stage of the EAAOT-GAN framework.

Edge detection Recognizing the enhanced repair capabilities introduced by
incorporating edge information, as demonstrated by the use of the Canny edge
detector[6] in EdgeConnect, we prioritize generating accurate mural image edges
as the initial step in mural restoration. However, the Canny edge detector
exhibits limitations, particularly in capturing the complex textures of mural
images, often resulting in significant edge information loss, as illustrated in
Fig. 2(b).

The acquisition of precise edge information is vital for improving image
restoration effectiveness. DexiNed, with its advanced multi-scale feature extrac-
tion and fine-grained feature fusion techniques, excels in delineating edges with
higher accuracy, making it ideally suited for mural images, as evidenced in
Fig. 2(c). Nonetheless, the edges generated by DexiNed are not inherently binary,
posing challenges for direct application in the edge generation network and com-
plicating the mural edge restoration process. To circumvent this issue, we employ
thresholding to binarize DexiNed’s output, as depicted in Fig. 2(d). This app-
roach not only produces optimal edge images but also simplifies the edge restora-
tion task.

Fig. 2. The original mural image is as
displayed in (a), with edges extracted
by the Canny edge generator illus-
trated in (b), edges extracted by the
DexiNed edge generator depicted in
(c), and the binary edge map shown in
(d).

Fig. 3. The structure of AOT-Block.
The numbers inside orange blocks
denote as input channels, filter sizes,
dilation rates and output channels.
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Edge generation As widely recognized, M assists the model in concentrat-
ing on the obscured or damaged areas, and Ẽgt directly offers prior knowledge
regarding the locations of image edges.Inspired by previous works[16][24], we
believe that having only M and Ẽgt as inputs to the edge generator is insufficient.
Consequently, we incorporate Ĩgray into the edge generator’s inputs because
grayscale images offer significant insights into variations in image brightness,
enabling the edge generator to restore edges with greater precision.

Given that convolution can increase the receptive field of the network with-
out additional parameters and computational costs, residual blocks are effective
in alleviating the issue of gradient disappearance. Like EdgeConnect[16], this
paper’s edge generator uses dilated convolution and residual blocks for repairing
image edges, enabling it to effectively capture multi-scale information of image
edges, have a wide receptive field, and yet retain accurate spatial positioning
capabilities.

To conclude, the output Epred from the edge generator can be expressed as

Epred = G1(Ĩgray, Ẽgt,M) (1)

where, Ẽgt = Egt � (1 − M) and Egt represent the edge map generated by
DexiNed, � represents the Hadamard product, Ĩgray similarly.

Since edge maps only provide detailed information of mural images, directly
using Ẽgt as the input for D1 does not effectively distinguish between Egt and
Ẽgt. To overcome this issue, we introduce Igray that provides overall image
information, using Egt and Igray, Ẽpred and Igray as inputs for D1, to deter-
mine whether Ẽpred is a real edge map. By doing so, the performance of D1 is
improved, which in turn promotes better edge map restoration by G1.

Loss function and Optimization objectives In the edge generation adver-
sarial network, we train the network using adversarial loss and feature matching
loss[25].

The adversarial loss is defined as

Ladv,1 = E(Egt,Igray) [log D1(Egt, Igray)]

+ EIgray
log [1 − D1(Epred, Igray)]

(2)

where, E represents expectation, D1(·) represents the probability of being classi-
fied as real. The symbols Egt and Igray, among others, simply represent inputs.

Feature matching loss is a training technique used in GANs aimed at improv-
ing the training process of the generator, making the images it generates more
realistic. By introducing feature matching loss, the difference between generated
and real images at the feature level can be minimized. This not only enhances
pixel-level similarity but also improves the consistency of high-level features,
producing edge maps that are closer to Epred.
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This loss compares the activations in the intermediate layers (or feature lay-
ers) of the discriminator between real and generated images, defined as

LFM = E

[
L∑

i=1

1
Ni

∥∥∥D
(i)
1 (Egt) − D

(i)
1 (Epred)

∥∥∥
1

]
(3)

where, L represents the final activation layer of the discriminator, Ni represents
the number of elements in the i′th activation layer, and D

(i)
1 is the activation of

the i′th layer of the discriminator. According to experiments by Nazeri et al.[16],
we know that applying Spectral normalization (SN)[26] to G1 and D1, by scaling
the weight matrices according to their respective largest singular values, further
stabilizes training.

In summary, the optimization objective of the edge generation network is

min
G1

max
D1

LG1 = min
G1

(λadv,1maxD1 (Ladv,1) + λFMLFM ) (4)

wherein, λadv,1 and λFM are constants, set at 1 and 10 respectively, consistent
with the parameters used in[16].

3.3 Image Inpainting Network

In this section, we will detail the construction of the image restoration generative
adversarial network.

The Epred generated in the edge generation network can provide accurate
boundary information for objects and shapes in the image.

With Ĩgt, Epred and M as inputs for the image generator, the output Ipred
from image generator G2 is expressed as

Ipred = G2(Ĩgt, Epred,M) (5)

where, Ĩgt = Igt � (1 − M) + M .

AOT Block The integration of the AOT Block within the image restora-
tion phase significantly enhances the model’s context reasoning ability. Unlike
standard residual blocks, the AOT Block aggregates multiple context trans-
formations, allowing for a more nuanced inference of output pixel values from
diverse perspectives without a corresponding increase in model parameters or
computational costs. The AOT Block possesses the ability to capture distant,
information-rich image backgrounds and intricate patterns essential for high-
resolution image restoration[1]. Consequently, utilizing the AOT Block in mural
image restoration facilitates comprehensive recovery of complex textures absent
in mural photographs, thereby replacing standard residual blocks during this
phase.

When processing input x1 with a channel count of 256 through the AOT
Block, as shown in Fig. 3,the operation unfolds in three stages:
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1) Dilated Convolution: x1 is partitioned into four subsets, each with 64 chan-
nels, through dilated convolution, employing four distinct sub-convolution
kernels at varying dilation rates to produce intermediate results.

2) Transformation and Series Processing: The intermediate results are serially
transformed to yield x2, integrating the varied perspectives from the sub-
convolution kernels.

3) Feature Fusion: x1 and x2 undergo fusion, facilitated by a gated residual con-
nection. This connection first computes a spatially-variant gating value via
standard convolution and sigmoid operations. The fusion is executed accord-
ing to x3 = x1 × g + x2 × (1 − g),effectively updating features within the
missing area while retaining detail in the surrounding regions.

This approach leverages the AOT Block’s advanced capabilities for feature
aggregation, ensuring the meticulous preservation and enhancement of details
throughout the restoration process.

Loss function and Optimization objectives In the image restoration adver-
sarial network, we optimize the training of the network using reconstruction
loss[1], perceptual loss[27], style loss[28], adversarial loss[29], and histogram
loss[2].

In terms of reconstruction loss[1], we minimize the L1 distance on a per-pixel
basis to ensure the accuracy of the reconstruction, denoted as

Lrec =
∥∥∥Igt − G2(Ĩgt, Epred,M)

∥∥∥
1

(6)

Regarding perceptual loss[27], we aim to minimize the L1 distance between
feature maps and real images to enhance the accuracy of perceptual reconstruc-
tion, expressed as

Lper =
∑
i

‖φi(Igt) − φi(Icomp)‖1
Ni

(7)

where, φi is the feature map at the ith layer in a pretrained network (for example,
VGG19[30]), Ni is the number of elements in φi, and Icomp is the fusion of the
restored image Ipred with the original mural Igt, denoted as

Icomp = Igt � M + Ipred � (1 − M) (8)

In terms of style loss[28], we minimize the L1 distance of the Gram matrix
of the deep features between the restored image and the real image, denoted as

Lsty = Ei

[∥∥φi(Igt)
Tφi(Igt) − φi(Icomp)Tφi(Icomp)

∥∥
1

]
(9)

Regarding adversarial loss[29], we aim to minimize the L2 distance between
the judgment of Icomp by discriminator D2 and a constant 1, expressed as

LG
adv = EIcomp∼pIcomp

[
(D(Icomp) − 1)2

]
(10)
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The aforementioned four types of loss functions are widely used in most
known image restoration models[1][16][31], but there still exist issues of insta-
bility in texture synthesis and blurriness in the shape of the restoration results.
Histogram loss[2] can effectively address these issues, and we first calculate the
histogram matching result R (Ipredi

) between the restored image Ipred and the
original mural. Afterwards, the minimization of the L2 norm between Ipred and
R (Ipredi

) is expressed as

Lhist =
L∑

l=1

γl‖Ipredi
− R (Ipredi

)‖2 (11)

In summary, the optimization objective of the image restoration network is

L = λadvL
G2
adv + λrecLrec + λperLper + λstyLsty + λhistLhist (12)

In our experiments, consistent with the experimental parameters used in[1][3],
the parameters adopted during training are λadv = 0.01, λrec = 1, λper =
0.1, λsty = 250, λhist = 0.0005.

The image discriminator uses the SM-PatchGAN[1] proposed by AOT-GAN
to improve the training of the discriminator and to force it to focus more on the
central part of the missing area rather than the boundaries, a soft patch-level
mask is used in training. The generator adversarial loss is represented as

LD
adv = EIcomp∼pIcomp

[
(D(Icomp) − σ(M))2

]
+ EIgt∼pdata

[
(D(Igt) − 1)2

] (13)

where, σ represents the operation of processing the mask during training, such
as downsampling.

With this, we have completed the entire introduction of this method.

4 Experiments

4.1 Datasets

We have collected known scattered mural datasets[3][4], where available12, and
compiled a mural dataset comprising 3492 mural images, mainly featuring char-
acters, Buddha statues, and wrathful deities in murals. We used 3392 images for
training and 100 images for testing.

For edge map generation, the DexiNed edge detector was employed. The
generated edge maps were subsequently binarized, with the effects of varying
binarization thresholds explored to optimize model performance, as detailed in
Section 4.6’s ablation study.

The free-form mask dataset proposed by Liu et al.[18] has been proven effec-
tive in improving the training outcomes of repair models and has been widely
adopted by recent repair methods[1][3][16]. We also use this mask dataset for
training and testing the EAAOT-GAN.
1 https://github.com/qinnzou/mural-image-inpainting
2 https://github.com/WHUT-DCRC/Thangka

https://github.com/qinnzou/mural-image-inpainting
https://github.com/WHUT-DCRC/Thangka
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4.2 Training Strategy

The training of EAAOT-GAN comprises two distinct stages. Initially, the EGN
undergoes training with a batch size of 8 for 50,000 iterations. Early in this
phase, generating high-quality edge maps is challenging, rendering any imme-
diate transition to the subsequent stage premature. Upon completing the first
stage, the IIN training commences, also with a batch size of 8 and 50,000 iter-
ations. .Throughout the training and evaluation phases, images are uniformly
cropped and resized to 512 × 512. Notably, the IIN achieves convergence at
approximately 75 epochs.

EAAOT-GAN is deployed on PyTorch 1.10.0 and Cuda 11.3, and trained on
two NVIDIA RTX 3090 GPUs. Both the edge generation network and the image
repair network are trained using the ADAM optimizer[32] with β1 = 0.5 and
β2 = 0.999. The learning rates for both the edge generator G1 and the image
restoration generator G2 are set to 1e-4. The learning rates for discriminators
D1 and D2 are set to half of that of the generators.

The method of calculating perceptual loss and style loss is adopted from
AOT-GAN[1].

4.3 SOTA Models and Evaluation Metrics

The most advanced image restoration model and a brief description of the model
are as follows:

• AOT-GAN[1]: A generative adversarial network designed for high-resolution
image restoration, leveraging aggregated contextual transformations for effi-
cient and natural outcomes. It uniquely combines diverse contextual informa-
tion and sophisticated feature transformations.

• MuralNet [3]:Tailored for artistic work restoration, this technique uses line
drawings to guide the progressive reconstruction and repair of damaged
murals, emphasizing the importance of outlines in restoration.

• EdgeConnect[16]: Targets missing regions in images, employing edge informa-
tion to guide the restoration process, followed by refinement for final output.
This model is notable for its focus on edge-guided restoration.

• DeepFill v2[33]: Enhances image restoration quality by integrating gated con-
volutions and contextual attention modules, offering significant improvements
over its predecessors.

• RFR[34]: A deep learning approach to image restoration, focusing on recur-
rently inferring and filling missing regions to achieve image completeness.

The quantitative comparison employs established objective metrics, includ-
ing PSNR, SSIM, and FID, as widely recognized indicators from prior
research[1][3][16].

Beyond objective metrics, the performance of the restoration model is also
gauged through subjective evaluation to ascertain the model’s restoration effi-
cacy. To this end, a comprehensive qualitative evaluation and user studies were
undertaken for a thorough comparison.
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4.4 Quantitative Comparison

Quantitative comparison of EAAOT-GAN using our created dataset. For each
image in the test set, randomly select a mask from the free-form mask dataset.
Several leading image inpainting models, including AOT-GAN[1], MuralNet[3],
EdgeConnect[16], DeepFill v2[33], and RFR[34], are utilized to restore mural
images post-masking and compare the outcomes with those from this model.
For fairness of comparison, the same image-mask pairs are used for all methods.

The quantitative comparison results, as shown in Table 1, indicate that
EAAOT-GAN exhibits superior performance. The results demonstrate that
under conditions of higher mask rates, EAAOT-GAN shows the best perfor-
mance in terms of PSNR, SSIM, and FID. Compared to our model, EdgeConnect
achieves the best results under conditions of lower mask rates, but our model
surpasses it in visual effects. As for AOT-GAN, it is completely outperformed by
our model in every metric, but it achieves excellent results on the FID metric and
outperforms other models at higher mask rates. As a variant of EdgeConnect,
MuralNet shows similar outcomes in all metrics and is superior to our model
concerning PSNR at lower mask rates. However, it is overall outclassed by our
model. Similar to the above models, DeepFill v2 and the RFR model have the
worst performance overall.

4.5 Qualitative Comparison

For fair qualitative comparison, we randomly selected restoration results from
different models as shown in Fig. 4. Specifically, we compared EAAOT-GAN with
state-of-the-art models, including AOT-GAN[1], MuralNet [3], EdgeConnect[4],
DeepFill v2[33], and RFR[34].

Given that mural images possess a texture structure far surpassing that of
datasets like CelebA[35], and considering the impracticality of restoring severely
damaged murals with minimal known information, we opt to add moderate
masks to mural images. As shown in Fig. 4, The repair results of DeepFill v2
exhibit significant structural blurring issues, to the point of blurring parts that
were originally intact, such as the clear faces of figures. The effectiveness of the
repair is worrisome. The restoration results of RFR have issues with texture
distortion and incoherent edges, failing to achieve the desired effect. Compared
to EdgeConnect, its variant MuralNet has issues with color distortion in the
restoration results, but it shows some improvement in detail restoration com-
pared to the two models mentioned above. EdgeConnect and AOT-GAN have
issues with incomplete structures and blurriness, but their performance improves
compared to the aforementioned models. With the incorporation of edge maps,
enhanced generators, and histogram loss, our model surpasses the previously
mentioned models in performance, demonstrating minimal blur in our restora-
tion results, capable of reconstructing more plausible contextual structures, and
generating sharper textures. In summary, our model’s performance is superior
in visual effects compared to the aforementioned models.
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Table 1. Quantitative results over our dataset with models: AOT-GAN[1],
MuralNet[3], EdgeConnect[16], DeepFill v2[33], RFR[34]. ↓Lower is better. ↑Higher
is better. The best results are highlighted.

Mask AOT-GANMuralNetEdgeConnectDeepFill v2RFR Ours

1-10% 26.39 27.83 28.37 28.27 27.27 26.97

10-20%23.92 25.32 25.57 23.48 24.16 24.25

PSNR↑20-30%21.74 22.04 22.04 20.20 21.44 22.05

30-40%19.92 20.35 20.74 18.33 19.67 20.82

40-50%18.42 18.62 18.14 16.9 18.16 18.64

50-60%16.62 15.3 15.71 15.24 16.44 16.84

1-10% 0.87 0.96 0.97 0.95 0.95 0.90

10-20%0.82 0.91 0.91 0.89 0.88 0.85

SSIM↑ 20-30%0.75 0.82 0.84 0.79 0.79 0.78

30-40%0.69 0.73 0.75 0.69 0.69 0.75

40-50%0.61 0.61 0.62 0.59 0.57 0.63

50-60%0.51 0.43 0.47 0.46 0.43 0.54

1-10% 11.37 20.11 13.2 19.28 21.6 9.94

10-20%27.21 39.35 34.06 45.67 52.92 24.008

FID↓ 20-30%49.97 66.16 63.29 74.07 85.7 45.67

30-40%74.33 91.58 86.33 99.67 109.8268.16

40-50%93.93 115.1 113.62 121.47 136.6185.97

50-60%124.56 143.64 171.27 132.38 180.66112.02

4.6 Ablation Experiment

Impact of EGN This section examines the influence of edge generation net-
works on the effectiveness of mural image restoration. Table 2 presents the com-
parative outcomes of mural image restoration with and without the incorpora-
tion of an edge generation network. The inclusion of this network significantly
improves performance across several metrics, particularly in scenarios involving
mural images with extensive missing areas.

Impact of edge threshold This section delves into the impact of varying
thresholds on the performance of the edge generation network. Specifically, for
thresholds set at 80, 96, . . . , 176, the DexiNed edge generator’s output is bina-
rized before training the EAAOT-GAN model. As illustrated in Fig. 5, optimal
performance is observed at a threshold of 128, where metrics such as PSNR
peak. This optimal setting is attributed to the balance it strikes: excessively
high thresholds may only capture pronounced edges, leading to significant edge
detail loss. In contrast, overly low thresholds could saturate the binarized edge
map with extraneous details and noise.
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Fig. 4. Inpainting results of five mural images obtained by our method and five compar-
ison ones - AOT-GAN[1], MuralNet[3], EdgeConnect[16], DeepFill v2[33], RFR[34]. As
shown in these cases, our model surpasses the previously mentioned models in perfor-
mance, demonstrating minimal blur in our restoration results, capable of reconstructing
more plausible contextual structures, and generating sharper textures.

Fig. 5. The figure illustrates how each metric varies with the threshold, highlighting
that the model attains optimal restoration outcomes at a threshold value of 128.
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Table 2. Comparison of inpainting
results with EGN and without EGN.
Statistics are based on 100 random
masks with size 20-30% of the entire
image. ↓Lower is better. ↑Higher is bet-
ter.

Edges Our dataset

Yes No

L1(10−2)↓ 5.40 7.15

PSNR↑ 22.05 21.08

SSIM↑ 0.78 0.71

FID↓ 45.67 61.51

Table 3. User study of EAAOT-
GAN, EdgeConnect, and AOT-GAN.
EAAOT-GAN’s restoration results were
more accepted by participants.

Percentage

Ours>EdgeConnect 75.53%

Ours>AOT-GAN 85.53%

Ours>Real 27.18%

Impact of histogram loss It is well recognized that histogram loss effec-
tively mitigates the issue of shape blurriness encountered in high-resolution
mural image restoration. This section adopts a qualitative approach to assess
the impact of histogram loss on mural restoration outcomes. The experimental
findings, depicted in Fig. 6, demonstrate that integrating histogram loss signifi-
cantly improves the model’s restoration capabilities. By incorporating histogram
loss, the model notably reduces shape blurriness, resulting in mural images of
markedly higher realism.

Restoring real damaged murals The primary aim of investigating mural
restoration algorithms is to effectively repair actual murals, thereby aiding in the
preservation of cultural heritage. Studies have demonstrated that the EAAOT-
GAN model exhibits exceptional structure and performance. This section delves
into the model’s restoration capabilities on real-world murals. The process begins
by applying masks to the damaged regions of the mural, which are then restored
using the EAAOT-GAN model. The restoration outcomes, illustrated in Fig. 7,
yield highly realistic mural images, providing valuable insights for experts in
mural restoration.

4.7 User Study

In our comparative analysis, EdgeConnect and AOT-GAN emerged as strong
contenders for mural image restoration, showcasing notable performance. For
further evaluation, we conducted a user study selecting 40 images from each of
the restoration results of EAAOT-GAN, EdgeConnect, and AOT-GAN, along-
side their corresponding original murals. Fifty participants were invited to select
the most visually appealing image from each set. The outcomes, detailed in
Table 3, highlight a marked preference for EAAOT-GAN’s restoration results.
Notably, EAAOT-GAN received a 27.18% preference rate, outperforming even
the original murals in participant selections.
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Fig. 6. On the left is the masked mural
image, in the middle are the restoration
results from the model trained using
histogram loss, and on the right are
the repair outcomes from the model not
trained with histogram loss.

Fig. 7. The left side shows the origi-
nal image of the damaged mural, the
middle shows the mural after adding
a mask, and the right side shows the
EAAOT-GAN restoration result.

5 Conclusion

In this study, we introduce a mural image restoration model, EAAOT-GAN,
which utilizes edge assistance and aggregated contextual transformations. The
restoration process is bifurcated into two distinct stages: the EGR initially
repairs the mural edges, and then the IIN completes the mural restoration,
capitalizing on the reconstructed edge data. Furthermore, we have curated a
dataset comprising 3,492 mural images, predominantly featuring Buddha stat-
ues. Trained on this dataset, EAAOT-GAN demonstrates exceptional perfor-
mance in both quantitative metrics and qualitative assessments compared to
leading models, positioning it at the forefront of mural image restoration tech-
nology.

However, due to the unparalleled complexity of mural images, restorations
performed using our model may still exhibit a certain degree of blurriness and
texture inconsistency.
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In future work, we aim to develop an ensemble of Generative Adversarial Net-
works (GANs), each specialized in a specific aspect of mural restoration, includ-
ing color correction, texture refinement, and edge enhancement. By leveraging
the combined strengths of these specialized GANs, the ensemble is expected to
achieve more comprehensive and nuanced restorations.
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Abstract. In the realm of digital education, the growing use of short-
form online videos, coupled with innovative generative AI methods, has
dramatically expanded the production of didactic academic videos. This
shift, however, underscores a critical question - how to ascertain the
”effectiveness” of these videos for student learning? It is essential to
devise a classification mechanism that filters videos for clarity, compre-
hensibility, and their capacity to meet student learning objectives. The
automated evaluation of these learning videos holds substantial implica-
tions for student academic performance. Accordingly, this paper presents
a novel supervised-learning-based approach, predicated on video feature
analysis, to predict the effectiveness of K-12 science and mathematics
videos. Our method integrates diverse features such as image, spoken
text, and audio, among other hand-crafted elements, to accurately assess
video effectiveness. We conduct an evaluation of our approach using a
comprehensive dataset comprised of 3,134 short-form academic videos.
The results demonstrate robust performance, with the system achieving
an accuracy of 76.1% and an F1 score of 80.6%.

Keywords: AI for Education · E-learning · Video Processing ·
Computer Vision · Natural Language Processing · Deep Learning ·
Multimodal Frameworks

1 Introduction

The widespread use of social media has been associated with shortened student
attention spans, a trend corroborated by recent studies [7]. In response to this
shifting dynamic, educators are increasingly leveraging short-form content, mir-
roring a medium that students frequently engage with. Empirical research has
demonstrated that this approach can yield learning outcomes that are compa-
rable to, or even exceed, those derived from conventional pedagogical methods
[6]. This underscores the significance of short-form content as a countermeasure
to digital distraction and attention fragmentation [29,35]. Another appealing
aspect of short-form content is its cost-effectiveness and reduced demand for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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human resources, facilitating widespread production and dissemination. This is
particularly applicable to academic video content with durations of less than
two minutes. Additionally, the emergence of publicly accessible Large Language
Models (LLMs) and Stable Diffusion-based image generation utilities has fur-
ther streamlined the content creation process. These advancements, collectively,
underscore the burgeoning potential of short-form educational content in today’s
digital learning landscape.

Academic videos are recognized as effective educational tools [6,7], surpass-
ing text in enhancing learning and retention [5,33]. As online platforms increas-
ingly utilize them, the challenge of quality disparity arises, where inferior con-
tent may harm learning outcomes. Given the challenge of maintaining students’
focused attention during instructional videos, their time must be respected. Con-
sequently, it’s imprudent to overwhelm students with a deluge of generated learn-
ing videos as it risks impeding their learning process. This predicament brings
into focus theories like information overload and cognitive overload [8], which
occur when individuals confront more information or tasks than their process-
ing capacity can handle, possibly leading to decision paralysis [3]. Such overload
can also result in diminished interest or motivation, as the task can appear
overwhelming or unmanageable. Thus, each instructional video must vie for stu-
dents’ engagement, and only the most pedagogically effective content should be
presented to them.

Recent generative AI-based technologies enable content creators to generate
videos in bulk, allowing them to experiment with various teaching styles and
content designs, potentially transforming educational methods and enhancing
content quality. This shift calls for AI-driven assessment of content effectiveness,
enabling the identification of the most impactful content for student learning.
This approach, utilizing an automated system for evaluating short-form aca-
demic video effectiveness, promises to refine educational content creation and
selection, aiming to improve student engagement and learning outcomes.

In this paper, video effectiveness in education is defined by its ability to con-
vey educational content effectively, enhance student comprehension, and support
academic success. Effectiveness encompasses presentation clarity, content con-
ciseness, logical structure, engagement, and alignment with learning objectives.
It focuses on delivering clear, succinct information in an organized manner to
captivate interest and meet educational goals. We adopt this holistic approach
to define video effectiveness aimed at reflecting the nuanced interplay of vari-
ous factors that contribute to the overall pedagogical effectiveness of academic
videos.

Our approach leverages machine learning and deep learning to assess short-
form educational videos, incorporating transfer learning for text, image, and
audio feature extraction from best-performing models. It includes heuristic met-
rics advised by academic video creators, such as subject type, line, and word
counts, dropped frames, and content quality via BERT score. Apart from these,
we integrate readability metrics Flesch Reading Ease, Flesch-Kincaid Grade,
Gunning Fog, and SMOG in our evaluation [13,16,21,25].
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We evaluated our methodology using 3,134 AI-created K-12 science and math
videos, hand-labeled as effective or not. Features from these videos were used to
train various machine learning models (after feature averaging), alongside testing
with LSTM and Bi-LSTM networks [18,30] with sigmoid attention [34] (on time
series data). This study focuses on predicting video effectiveness, providing a
biased and copyright-free dataset for assessment, and identifying key features
that enhance video quality. Our findings guide content creators towards data-
informed video production, advancing educational content quality.

The dataset, extracted features, and the code implemented in this paper can
be accessed here: DATA LINK https://bit.ly/43qR7Df.

2 Related Work

Educational content effectiveness has been the subject of many studies, with
various heuristics and metrics used for its evaluation such as those on content
quality, social interaction, enjoyment, collaborative learning, and learner control
level [14,32]. However, their practical implementation in e-learning is hampered
by a critical challenge: the modality of the generated content, primarily videos,
differs significantly from traditional learning environments. This difference high-
lights the necessity for video-based assessment techniques modified specifically
for e-learning platforms. Additionally, recent studies have explored student per-
formance as an indicative metric for content effectiveness such as the utilization
of performance logs as predictive markers of content efficiency [31] or pre- test
and post-test assessment methods [4,23]. The potency of instructional methods
has been ascertained through retrospective pre-post evaluations as well [11], and
such strategies have found application even in the realm of distance learning [26].
Student performance evaluated through Bayesian knowledge tracing has been
used to find challenges in Massive Open Online Courses (MOOCs) and provide
predictive evaluations of the respective modeling approach to each challenge [27].
Overall, these approaches posit a direct correlation between content quality and
student performance on tests, thereby rooting their assessment in the hypothesis
that high-quality content fosters knowledge augmentation, consequently driving
test performance enhancement.

Recognizing standardized academic tests as the exclusive markers of con-
tent effectiveness might not capture the complexity of student performance
entirely, as numerous factors like course interest, motivation, and discipline sig-
nificantly impact it [20]. Additionally, pre-post research designs, although widely
used in evaluation studies, are prone to statistical artifacts like regression to
the mean, maturation, history, and test effects, potentially compromising the
causal inference between an intervention (content exposure) and outcome (test
performance improvement) [24]. Implementing these tests becomes increasingly
challenging when scaling the evaluation process, requiring careful questionnaire
selection, participant recruitment, ample time for test completion, and an evalu-
ation process for discerning learning outcomes. In an era of large-scale e- learning
platforms producing thousands of videos, there is an imperative need for more

https://bit.ly/43qR7Df


100 R. Thareja et al.

efficient, automatic methods for evaluating effectiveness. This situation calls for
innovative approaches that can handle the vast, dynamic e-learning content while
ensuring a reliable and scalable assessment of its effectiveness.

The challenge of automated video evaluation has been tackled within the
context of the advertising industry, specifically for video commercials. This app-
roach has successfully incorporated features such as text, color, and audio-visual
components [4,23]. Consequently, we have extended these established features
and have explored newer deep learning transfer learning techniques. Other stud-
ies have also employed multimodal techniques, incorporating physiological mea-
sures like EEG, ECG, PPG, and EDA, to understand user responses to content
[11,35]. However, such methods, while accurate and insightful, are often deemed
too invasive, costly, and time-consuming for large-scale automated deployment
on learning platforms, making them less viable for this study.

3 Methodology

The proposed methodology comprises two key stages:

1. Feature extraction.
2. Subsequent binary classification into two distinct classes, denoted as ’ineffec-

tive’ {0} and ’effective’ {1}.

For this paper, we define three subsets for each video v:

– The audio subset Av = {a1v , a2v , . . . , anv
}

– The text subset Tv = {t1v , t2v , . . . , tnv
}

– The image subset Iv = {i1v , i2v , . . . , inv
}

where n denotes the total count of spoken lines within the video. Each element
a, t, i corresponds to an ordered subset of frame-level audio, spoken text, and
video image, respectively.

We establish a set S = {s1, s2, . . . , sn}, where each element si designates a
distinct sentence in the video, and each sentence spans Mj frames, thus encap-
sulating the temporal continuity of the video content.

For the j-th sentence in video v, where j ∈ {1, 2, . . . , n}, we define, ajv ∈ Av,
tjv ∈ Tv, and ijv ∈ Iv represent frame-level audio, text, and image subsets,
where:

– ajv = {ak | k ∈ {1, 2, . . . ,Mj}}
– tjv = {tk | k ∈ {1, 2, . . . ,Mj}}
– ijv = {ik | k ∈ {1, 2, . . . ,Mj}}
Each element ak, tk, and ik symbolizes the audio, text, and image data for the
k-th frame of sentence j, where k ∈ {1, 2, . . . ,Mj}, Mj being the total frames
for the j-th sentence. The cardinality of each set is dictated by Mj , capturing
the continuity of sentence j across frames.

Let’s consider a one-minute video recorded at a frame rate of 30 frames per
second. If the video contains 10 sentences (i.e., n = 10), each sentence occupies
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an average of 60/10 = 6 seconds. Given that the video’s frame rate is 30 fps, this
implies that each sentence spans over 30 · 6 = 180 frames (i.e., M = 180). Thus,
considering all 10 sentences, we accumulate 180 · 10 = 1800 total data points
(M · n), where each data point corresponds to a distinct frame associated with
a specific sentence.

To reduce dimensionality and retain pertinent information, we introduce
functions ft, fi, and fa, which convert the subsets of frame-level features for
each sentence into singular values, representing the overall audio, text, and image
characteristics for a given sentence.

Fig. 1. Proposed deep learning network for predicting video effectiveness.

– Audio features: For each sentence j, we have a set of frame-level audio features,
ajv = {ak|k ∈ {1, 2, ...,Mj}}. The function fa : av → a′

v takes as input
this set ajv and maps it to a single feature vector a′

j . It does this for each
sentence j in the video, resulting in a set of sentence-level audio features
FAv

= {a′
1, a

′
2, ..., a

′
n}.

– Text features: Similarly, for sentence j, frame-level text features tjv = {tk}
are mapped by ft : tv → t′v to t′j , leading to FTv

= {t′1, ..., t
′
n}.

– Image features: Finnaly, sentence j has frame-level image features ijv = {ik},
transformed by fi : iv → i′v into i′j , forming FIv = {i′1, ..., i

′
n}.

Thus, each set in Av, Tv, and Iv, which initially contained frame-level features,
is now represented by a single feature vector per sentence, substantially reducing
the dimensionality of the data. Following the transformation of individual frame-
level subsets into respective feature sets {FIv , FTv

, FAv
}, we perform another

level of abstraction by computing the mean of each set, resulting in singular
vector representations associated with a specific sentence. Mathematically, we
define three additional functions: fµi

: FIv → F ′
Iv

, fµi
: FTv

→ F ′
Tv

, and fµi
:

FAv
→ F ′

Av
, which map the initial feature sets to their respective mean feature

vectors. Formally, we represent these as:

F ′
Iv = fµi

(FIv ) =
1
n

· Σfi(i), where i ∈ FIv (1)
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F ′
Tv

= fµi
(FTv

) =
1
n

· Σft(a), where t ∈ FTv
(2)

F ′
Av

= fµa
(FAv

) =
1
n

· Σfa(a), where a ∈ FAv
(3)

Here, n denotes the total count of spoken lines in a given video, and Σ repre-
sents the summation operator. Consequently, each video v is reduced to a tuple
of mean feature vectors {F ′

Iv
, F ′

Tv
, F ′

Av
}, encapsulating a video’s audio, text, and

image modalities. Enriching the feature space, we append another feature vector
F ′
Mv

to the tuple, where F ′
Mv

is derived from manually extracted heuristic-based
features. Formally, we redefine f as follows:

f : {F ′
Iv

, F ′
Tv

, F ′
Av

, F ′
Mv

} → {0, 1}
Consequently, the final representation of each video v is an extended tuple of
mean feature vectors {F ′

Iv
, F ′

Tv
, F ′

Av
, F ′

Mv
}, which comprehensively encapsulates

a video’s audio, text, image, and manual heuristic modalities. This strategy
yields a singular, vectorized, augmented representation for each video that serves
as input to our supervised machine learning models, facilitating the learning
of a binary classification function f which distinguishes between effective (1)
and non-effective (0) videos. Nevertheless, this strategy has a shortcoming;
the process of averaging the features for a compact representation can inad-
vertently omit crucial information, notably temporal dynamics, and intricate
high-dimensional patterns. Despite this limitation, this step is indispensable,
considering that classical machine learning models function optimally with uni-
dimensional features, making averaging an essential operation.

To rectify this information loss, we utilize time-series models on the sentence-
level feature sets, namely FIv , FTv

, FAv
. We then concatenate the learned embed-

dings from these time-series models with the manually extracted singular feature,
F ′
Mv

. The resultant amalgamated feature vector is subsequently processed by a
deep neural network, performing the final binary classification of the video’s
effectiveness. The overview of this architecture is shown in Figure 2.

To ensure the uniformity of the feature set inputs, we standardize the length
based on the average number of sentences in the videos (n=15). Videos with
sentences exceeding this average are pruned, whereas those with fewer sentences
undergo padding with zero-valued features. This ensures a consistent input size
across the video corpus, thus facilitating the robust training of our models.

3.1 Text based feature extraction

The function ft : tv → t′v is designed to generate a representative feature vector
for each sentence in K12 science and mathematics videos, addressing the chal-
lenge of domain-specific terminology. Rather than a standard text embedding
strategy, ft leverages a BERT model 1 [9] fine-tuned on Stanford’s MOOCPosts
dataset [1], supplemented with additional forum data from 18 courses from top
UK and US universities. This extensive dataset of approximately 30,000 student
forum posts across diverse courses equips each sentence with a contextually rich
768-dimensional embedding vector.
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3.2 Image based feature extraction

The function fi : iv → i′v employs the Vision Transformer (ViT) model [12] to
extract image-based features. ViT adapts the Transformer architecture, typ-
ically used for natural language processing, to treat images as sequences of
”word” equivalents, i.e., grids of patches. This usage of self-attention mecha-
nisms makes ViT highly effective for image classification. Given the nature of
slide-based didactic videos, we select the median image, displayed at the sen-
tence’s midpoint, to extract a 768-dimensional feature embedding via ViT, gen-
erating the necessary image-based feature vector. This approach offers scalability,
as it can handle more representative frames per sentence by averaging respective
embeddings. Moreover, a dedicated model could be employed to select represen-
tative frames within a video image clip.

3.3 Audio based feature extraction

The function fa : av → a′
v utilizes the VGGish model [17] for processing audio

content from K12 science and mathematics videos, extracting representative
embeddings that encapsulate aspects like pitch, frequencies, and silences. The
VGGish model, a Convolutional Neural Network (CNN), excels at audio data
feature extraction and has been trained on the comprehensive Audio Set Dataset
[15]. The process converts raw audio WAV files from each sentence into mel spec-
trograms, visually representing audio frequency over time. The VGGish model,
through its CNN architecture, identifies patterns in these spectrograms to cre-
ate a 128-dimensional feature vector for each audio file, capturing essential audio
characteristics.

3.4 Additional hand crafted features extracted for each video

We assessed additional factors affecting academic video effectiveness through a
pilot trial with five expert academicians reviewing 20 randomly selected K12 sci-
ence and math videos. This review identified the following key features contribut-
ing to video effectiveness: The Quantity of Spoken Lines indicates how much spo-
ken content is in a video, affecting engagement and knowledge retention. Word
Count measures information density and topic depth. Dropped Frames Percent-
age shows video quality, influencing viewer experience and learning. Key Con-
tent Generation Metrics (BERT score) assesses content relevance and coherence,
essential for learning. Readability Measures like Flesch Reading Ease, Flesch-
Kincaid Grade, Gunning Fog, and SMOG Index [13,16,21,25] determine tran-
script complexity, where simpler language enhances accessibility and learning
outcomes. We also include the video’s academic subject (e.g., physics, mathe-
matics) in our feature set to include possible correlations between the content’s
domain and its effectiveness. These features are used to train supervised classi-
fication models to predict content efficacy.
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4 Dataset

Fig. 2. Some generated video frames for various topics: a. Petroleum Refining, b. Loco-
motion in Animals, c. Spectroscopy, d. Neuron.

We evaluated our method through a dataset of 3,134 academic videos (μ=65.4s),
algorithmically produced. These videos were generated for specific academic top-
ics from mathematics, biology, physics, and chemistry subjects, derived manually
from online learning resources and K-12 textbooks by our annotators. To pro-
duce bias and copyright-free content in the traditional academic video format,
we utilized a generative AI process. The video scripts were generated by a Large
Language Model (LLM) fine-tuned with topic-video transcript pairs ( 10458 aca-
demic videos, 743938 lines of content ) from in-house K-12 academic videos. This
model was designed to create academic video transcripts based on input topics.
Our tests involved three popular open-source LLMs with 7 billion parameters:
llama2 1, falcon 2, and wizard 3. After a pilot study of 10 videos per subject,
Falcon was selected due to its lowest factual error rate of 13.5%, compared to
Wizard’s 18.83% and Llama2’s 20.5%, as determined by our annotators after
academic fact extraction and assessment.

Corresponding images were created for each spoken line by the CompVis sta-
ble diffusion model [28], also fine-tuned on the same video dataset after extract-
ing text-image pairs from videos by selecting the median frames for each spoken
line. To supplement the text and images with spoken audio, we utilized the neural
speech, Text2Speech model [22]. We then combined all the generated elements:
audio, image, and text through an automated editing pipeline to form cohesive
short-form academic videos to test our proposed system. Our methodology aligns
with the evolving use of generative AI in the e-learning industry and guarantees
copyright compliance, scalability, and comprehensive control over content. We
chose this approach as it is expected that generative techniques are going to be
crucial components of academic video generation in future. This approach not
only fosters research reproducibility but also contributes to the future trajectory
of generative AI advancements in education. The expansive dataset used ensures
1 https://ai.meta.com/llama/
2 https://falconllm.tii.ae/
3 https://huggingface.co/WizardLM/WizardLM-7B-V1.0

https://ai.meta.com/llama/
https://falconllm.tii.ae/
https://huggingface.co/WizardLM/WizardLM-7B-V1.0
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diverse coverage of video types, subjects, and content. This diversity bolsters the
generalizability of our methods for determining the effectiveness of various short-
form academic videos. Therefore, the systematic approach proves crucial for our
examination of academic video effectiveness. The generated videos are available
in the provided data and code folder that we have released alongside this paper.

4.1 Annotations

To evaluate video effectiveness, each video was labeled as either 0 (non-effective)
or 1 (effective). A panel of ten subject experts, each proficient in a K12 subject -
precalculus, geometry, physics, biology, or chemistry, annotated the videos. For
robustness, each subject’s videos were evaluated by two specialists. This process
was supervised by an experienced head teacher with a decade-long expertise
in video content creation, enhancing the evaluation’s credibility. Cohen’s kappa
scores, reflecting fair to good inter-annotator agreement, were recorded as 0.55,
0.61, 0.59, 0.58, and 0.64 for the respective subjects. The evaluators focused on
content clarity, appropriateness of visual representation, audio quality, pace of
delivery, and the relevance and coherence of the content.

5 Experiments and Discussion

5.1 Evaluating machine learning models

To infer the binary classification function f : {F ′
Iv

, F ′
Tv

, F ′
Av

, F ′
Mv

} → {0, 1}, we
concatenate the feature vectors F ′

Iv
, F ′

Tv
, F ′

Av
, and F ′

Mv
, each reflecting image-

based, text-based, audio-based, and heuristic-based features, respectively, across
all 3,134 videos. Following this, we deploy 18 distinct machine learning mod-
els using the unified ML platform Pycaret [2], training them on the integrated
feature vector of size 1680 and evaluating their proficiency through 5-fold cross-
validation. We contrast these results with two random baselines: the first allocat-
ing equal probabilities to both classes and the second distributing probabilities
conforming to the class occurrence in the prior, P(C=0) = 0.415 and P(C=1) =
0.585. As depicted in Table 1, the top five models surpass the aforementioned
random baselines. Of all models, the LightGBM model [19] proves to be the
most efficacious in predicting the effectiveness of academic videos, delivering the
highest accuracy and F1 scores. These metrics hold considerable importance in
balanced binary classification tasks as they collectively portray the model’s per-
formance. While accuracy denotes the proportion of accurate predictions, the
F1-score offers a harmonized measure of precision and recall. The outstanding
performance of LightGBM can be attributed to its prowess in discerning complex
feature interactions and non-linear relationships inherent in our multi-modal fea-
ture set, achieved through a gradient boosting framework leveraging tree-based
learning algorithms.
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Table 1. Comparison of top 5 performing Machine Learning models and random base-
lines using 5-fold cross validation.

Model p r f1 a

LightGBM 73.71* 84.73 78.81* 73.23*

Extra Trees 71.69 85.66* 78.04 71.68

Gradient Boosting Classifier 72.70 82.79 77.39 71.54

Random Forest 71.43 84.50 77.40 71.00

Logistic Regression 70.41 74.34 72.29 66.48

Random Baseline 1 52.0 50.0 51.0 50.0

Random Baseline 2 50.0 50.0 50.0 50.0

5.2 Feature Analysis

In order to analyze our extracted features, we extract feature importance (fea-
ture ranking coefficient) from the trained LightGBM models, LightGBM cal-
culates feature importance as ”split” importance, which is determined by the
frequency and effectiveness of a feature used for data splitting across all model
trees. We also showcase the Pearson correlation coefficient [10], which measures
linear relationships between variables in Table 2. Our research sheds light on
the complexities of determining academic video effectiveness. Feature 1, signi-
fying the technical quality of the video, contributes significantly to the viewing
experience. A lower value here leads to smoother, uninterrupted video playback,
crucial for effective learning. Feature 2 measures the relevance of the content.
Higher similarity to the prompt ensures that the content is in alignment with the
intended topic, thereby increasing its educational value. Meanwhile, Feature 3
underlines the preference for concise content, aligning with the trend of short
educational videos. Features 4 and 5 represent readability metrics, implying
that a balance between content complexity and linguistic simplicity is benefi-
cial for video effectiveness. Contrarily, lower-ranked features such as Feature 14
or Feature 11, show moderate to low correlations. Nonetheless, these features
can influence the model’s decisions due to their interaction with other features.
This collective contribution of all features, despite their individual rankings or
correlations, underscores the intricate nature of assessing video effectiveness.

5.3 Insights for educational content creators

The feature analysis in this research illuminates several key facets of effective
educational video content that bear notable implications for educators and video
creators. A critical insight lies in Feature 1, the percentage of dropped, corrupt
or black frames, suggesting that high-quality video production goes beyond aes-
thetic considerations and significantly impacts the learning experience. Main-
taining seamless video streams, free from interruptions, facilitates an immersive
learning environment. Content relevance, as represented by Feature 2 (F1 of
BERT score between video transcript and prompt), is found to be of consid-
erable importance. With the contemporary educational landscape characterized



Video Analysis Engine for Predicting Effectiveness 107

Table 2. Feature correlations and lightGBM extracted rankings for each feature.

F. no Feature Feature ranking
coefficient

Feature
Correlation

1 Percentage of dropped corrupt or black frames 11 0.165

2 F1 of BERT score b/w video transcript 11 0.216

3 Duration of the video in seconds 5 0.09

4 Recall of BERT score b/w video transcript 4 0.093

5 Flesch-Kincaid Grade of video transcript 4 0.157

6 Number of words in the transcript 2 0.139

7 Precision of BERT score b/w video transcript 2 0.231

8 SMOG index of video transcript 2 0.164

9 Average text embedding from EduBERT model 1.959 0.183

10 Average image embedding from ViT model 1.779 0.152

11 Flesch Reading Ease of video transcript 1 0.187

12 Average audio embedding VGGish model 0.671 0.248

13 One hot encoding of video academic subject 0 0.138

14 Number of spoken lines in the video 0 0.288

15 Gunning Fog index of video transcript 0 0.209

by information abundance, learners value content that exhibits close alignment
with the intended academic objectives. Video creators should therefore accord
high priority to the preparation of concise, focused content. Language aspects, as
delineated by Features 5 (Flesch-Kincaid Grade of video transcript), 8 (SMOG
index of video transcript), and 11 (Flesch Reading Ease of video transcript),
emerge as pivotal. The research suggests a balance where intellectual stimula-
tion is offered through accessible language, enhancing the effectiveness of the
video content.

Subtler aspects, often overlooked, such as Feature 14 (Number of spoken lines
in the video), are revealed to impact video effectiveness by affecting the cognitive
load on students. It highlights the importance of comprehensive planning, where
scriptwriting, pacing, and visual aids are all deliberately crafted. Overall, the
analysis posits that an effective educational video, from the viewpoint of stu-
dents, is a multifaceted construct. It involves the judicious interplay of technical
quality, content precision, linguistic accessibility, and attention to minor, yet sig-
nificant, details. These insights should guide content creators towards producing
videos that are not merely informative, but engaging and enjoyable for students.

5.4 Evaluating deep learning models

We utilize the feature sets FIv , FTv
, FAv

, where FIv for the training of time-series
deep learning models. These features represent the set of image features, FTv

the
set of text features, and FAv

the set of audio features, each at the sentence level
for each video v. Thus, each set is represented as FXv

= x1, x2, ..., xn, where xi

is the feature vector of the ith sentence and n is the total number of sentences in
the video. Given that the average number of sentences in a video is 15, we refine



108 R. Thareja et al.

each feature set by either truncating or padding the set to ensure a consistent
size. Formally, for each FXv

, we apply the following operations:

FnewXv
=

{
{x1, x2, ..., x15}, if |FXv

| > 15
{x1, x2, ..., xn, 0, ..., 0}, if |FXv

| < 15
(4)

where 0 represents the zero-padding feature vector and |FXv
| represents the

cardinality of set FXv
.

Consequently, the processed feature subsets FnewIv , FnewTv
, FnewAv

each
contain exactly 15 elements. We test both LSTM and Bi-LSTM networks, utiliz-
ing 15 cells for each video sentence. The architecture of one such model, termed
as the dual Bi-LSTM with attention, consists of the input passing through a
bidirectional LSTM layer of 15 units, followed by a sequence self-attention layer
with sigmoid activation, another LSTM layer of 15 units, and ultimately a dense
layer with 100 units, featuring ReLU activation.

Table 3. Comparative analysis of the performance of various Deep Learning architec-
tural models.

Model PrecisionRecallF1 ScoreAccuracy

Dual Bi-LSTM with attention 76.4 85.8* 80.6* 76.1*

Single Bi-LSTM with attention 77.1* 84.5 80.1 75.9

Dual Bi-LSTM without attention 76.6 84.3 80.3 75.8

Single Bi-LSTM without attention76.6 84.0 80.1 75

Random Baseline 1 52.0 50.0 51.0 50.0

Random Baseline 2 50.0 50.0 50.0 50.0

In a separate experimental setup, we develop an alternative architecture, the
single Bi-LSTM with attention, which routes the input through a Bi-LSTM layer
of 15 units, followed by a sequence self-attention layer with sigmoid activation.
This output is then subjected to global max pooling and subsequently processed
by a dense layer of 100 units with ReLU activation.

Moreover, we assess the impact of the attention layer by trialling both the
dual Bi-LSTM with attention and single Bi-LSTM with attention architectures
without the attention layer, resulting in the dual Bi-LSTM without attention
and single Bi-LSTM without attention models, respectively.

We use these time series models separately to extract singular vectorized
representations of size 100 for each of the features FnewIv , FnewTv

, FnewAv
as

shown in Figure 2. These vectors have shape 15x768, 15x768 and 15x128 repre-
senting the image, text and audio embedding for each sentence (n=15) respec-
tively. Then the manually extracted features F ′

Mv
of size 16 are concatenated

with these 3 feature vectors of size 100 each to reach the final video embedding
vector of size 316. The embedding is fed into a deep neural classification network
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that begins with a dense layer of 256 units with ReLU activation, followed by a
dropout layer with a rate of 0.5. It then sequentially applies a dense layer of 128
units, a dropout layer (0.5 rate), a dense layer of 64 units, a dropout layer (0.2
rate), and a dense layer of 32 units-all with ReLU activation. The architecture
concludes with a final output layer of 1 unit with sigmoid activation.

The sigmoid activation function is used in the final layer of a binary clas-
sification model because its output is a value between 0 and 1, which can be
interpreted as the probability of the positive class. This allows the model to
make a clear binary decision between the two effectiveness labels i.e. 0 not effec-
tive and 1 effective. Additionally, we add Dropout as a regularization technique
used in the architecture to prevent overfitting by randomly setting a fraction of
input neurons to 0 during training, which encourages a more robust, generalized
model.

To validate our methodology, we employ 5-Fold cross-validation on our input
dataset, comprising 3,134 videos. Table 3 presents our findings, demonstrating
that the dual Bi-LSTM with attention model provides the most commendable
performance, securing an accuracy rate of 76.1% and an F1 score of 80.6%. This
outcome is evaluated against the same random baselines that we previously
utilized for the assessment of the machine learning models. The first baseline
allocates equivalent probabilities to both classifications, while the second dis-
tributes probabilities according to the frequency of class occurrence in the prior
dataset.

Our empirical investigation vividly illustrates a clear performance demarca-
tion between the traditional machine learning approaches and their deep learning
counterparts. Machine learning models, largely dependent on averaged vector
representations, typically fail to capture the intricate temporal dynamics inher-
ent in sequence data. This approach inadvertently omits a wealth of valuable
information, leading to sub-optimal performances. Contrastingly, deep learning
architectures, particularly Long Short-Term Memory (LSTM) and Bidirectional
LSTM (Bi-LSTM), are proficient in extracting and capitalizing on such temporal
dependencies, thereby manifesting in superior predictive performances.

Upon analysis of the empirical results delineated in Table 3, the dominance
of deep learning models, specifically the dual Bi-LSTM model with attention, is
evident. This model achieves an accuracy of 76.1% and an F1 score of 80.6%,
significantly outperforming other assessed architectures. Closely following is the
single Bi-LSTM with attention model, registering an accuracy of 75.9% and an
F1 score of 80.1%. These results provide compelling evidence for two pivotal
insights: firstly, the indispensability of the attention mechanism, and secondly,
the effectiveness of the bidirectional architecture. Comparing the models with
and without attention, it is apparent that both the dual and single Bi-LSTM
models with attention supersede their non-attention counterparts in terms of
both accuracy and F1 score. This showcases the efficacy of the attention mecha-
nism, corroborating its ability to allocate focus on salient temporal features and
thereby enhancing model performance. In addition, the dual Bi-LSTM model’s
superior performance highlights the benefits of utilizing multiple LSTM layers.
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This dual-layer system operates hierarchically, with the first layer discerning
low-level temporal dynamics and the second layer extrapolating these to com-
plex, high-level temporal features. Such hierarchical temporal processing proves
essential for effective pattern recognition in situations characterized by complex
and non-linear temporal dependencies, which are prevalent in the current task
of predicting academic video effectiveness.

6 Limitations & Future Work

For the purpose of this study, we utilize synthetically generated datasets. This
approach may introduce certain limitations, such as inherent selection bias in
the generated videos due to the nature of the training data and the possibility of
hallucinations in text generated by large language models (LLMs). To address
these concerns, we propose the procurement of commercially available real-world
academic videos from various domains on which our proposed methodology can
be implemented. It is important to note, however, that since the videos are
generated from in-house animated academic videos, the models trained on this
data are expected to generalize well to new forms of real-world data in similar
domains. Additionally, as video embedding methods, particularly those based on
transformers, continue to evolve, we will adopt more advanced spatio-temporal
deep learning methods to encode and predict classes. This will also include new
annotations for continuous values of academic video effectiveness, moving beyond
binary ”yes” or ”no” prediction values. Additionally, as we look forward, our
intention is to expand this methodology to a broader array of academic videos,
potentially extending to those of greater length.

7 Conclusion

Our research presents a robust technique for predicting the effectiveness of short-
form academic videos, utilizing a blend of image, text, audio, and other features.
This methodology is evaluated using a dataset composed of 3,134 AI-generated
videos. To underscore the practical applicability of our methodology, we have
calculated the feature extraction time, which is less than 10ms per sample on
A100 GPUs on average. Moreover, we have noted that the inference time for
our machine learning models is exceptionally low ( ¡¡ 1 ms ), highlighting the
efficiency of our approach. Furthermore, we undertake a thorough examination
of the features, determining their rankings and correlations with the aid of the
best-performing machine learning model. This exploration substantiates the sig-
nificance of factors such as content relevance, proficient language use, and metic-
ulously crafted scripts in generating impactful academic videos. We envision our
work as a catalyst, kindling the development of more nuanced content creation
strategies and accelerating the emergence of sophisticated AI-based content eval-
uation techniques.
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Abstract. The paper outlines a pipeline for the removal of transient
objects from orthophotos to enhance the clarity and utility for orthopho-
tos in military and civilian geo-databases generation as the main appli-
cation. The presented deep-learning-based pipeline includes detecting
the objects of interest, masking them out, and using the image and an
enhanced inpainting mask to fill in these areas seamlessly. The approach
combines semantic segmentation, utilizing an adapted DeepLabv3+
model, with shadow detection using Particle Swarm Optimization, and
concludes with a generative inpainting process using a three-stage Gen-
erative Adversarial Network (3GAN) system for edge, segmentation, and
texture inpainting. This method is applied to a well-known remote sens-
ing dataset for detailed analysis, highlighting the integrated approach’s
effectiveness in creating realistic, cleaned-up orthophotos.

Keywords: 3GAN · DeepLabv3+ · Inpainting · Particle Swarm
Optimization · Shadow Detection · Image Enhancement

1 Introduction

At last with the advent of OpenAI’s ChatGPT and the global circulation of
images featuring the Balenciaga Pope created by Midjourney1, generative DL-
based techniques have become widely recognized. The underlying task can be
formulated in a surprisingly simple, non-technical manner. Given some image
content, the objective is to refill the missing parts of the image as realistically
and plausibly as possible. The process of retrieving missing information or clean-
ing images of disturbing foreground objects is called inpainting, a field in which
generative techniques have made tremendous progress in recent years. Beyond
their entertainment value, these techniques have several practical applications.
Removing an ex-boyfriend from the photo album may provide more peace and
harmony in certain families; realistic representations of building walls from pub-
licly available images are important for the automatic computation of energy
balances [10] as well as for virtual tourism [31]. But also in the field of remote
sensing, cleaning geographic data from objects that frequently change in appear-
ance can be used for automatic camouflage detection and preparation for rapid
1 https://time.com/6266606/how-to-spot-deepfake-pope/
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response missions [9] in the military, and for virtual tourism in civilian appli-
cations [17]. In this context, the images to be cleaned are large geo-data prod-
ucts, such as orthophotos, and the frequently occurring foreground objects to be
removed are mostly vehicles and persons.

Strictly speaking, there are three problems to be solved: finding the objects
of interest, masking them out, and using the image and the resulting mask
for inpainting. The second step may appear trivial, because inpainting masks
can be created by binarizing the classification results, but sometimes the unde-
sired objects cast shadows that may not be included in the region an automatic
method is supposed to overwrite. Consequently, these shadows can remain as
disturbing artifacts in the final product, betraying its artificial nature. The first
and last steps are usually performed in a stratified manner [24,39], not only
because object detection or segmentation might be required at a later stage for
a higher-level application [9] but also the classification result can be helpful for
achieving realistic generated images, as has been shown for many state-of-the-
art approaches [12,16,19,34]. Especially, this last approach exploits the potential
of generative techniques by applying three GANs (Generative Adversarial Net-
works): the first for the inpainting of edge images, the second for the inpainting
of (semantic) segmentation images and the third for the inpainting of texture
images. This network has been successfully applied at the façade images, par-
tially occluded by vegetation, road signs and other objects.

In this paper, with geo-databasis generation as the application in mind, we
wish to apply the 3GAN method of [16] to the orthophoto with the aim to
inpaint vehicles of all kinds. The three necessary inputs for the 3GAN method,
namely, an RGB image, the land cover classification result, and the vehicle mask
are extended by the shadow detection result, which is accomplished by means of
Particle Swarm Optimization. Thus, aside from the application of the 3GAN app-
roach to a different use-case, the main contribution is a stratified approach com-
prising a semantic segmentation and a generative inpainting module. For both
modules, the relevant related work, methodology, and results will be discussed
in Sections 2, 3, and 4, respectively. The conclusions are drawn in Section 5.

2 Previous work

Both subsections of this section will focus on deep-learning-based methods
because they became state of the art in many tasks of object detection and
semantic segmentation due to their universality.

2.1 Land cover classification and vehicle detection

Probably, the first approach developed on vehicle detection from remote sensing
data using CNN techniques was that of [6] who extracted multi-scale features and
combined it with a modified sliding window technique. Furthermore, [1] proposed
extraction of deep features from segments and classification of these features
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using SVM. The authors have built on the progress in fully-convolutional net-
works and residual learning to perform accurate segmentation of object borders.
In their semantic boundary-aware multitask learning network, detection and seg-
mentation of vehicle instances were trained simultaneously. At the same time, it
has become popular to detect small objects using a pyramid-based network with
convolutional down-sampling as well as deconvolutional upsampling layers [36].
In [29], there were results for coarse object segmentation and fine delineation
(that is, a pyramid with only one layer), which made indispensable a module
for single vehicle extraction. Here, the authors used optical and elevation-based
features within a pre-trained pseudo-Siamese network. The elevation data can
also be considered as a post-processing routine [27]. Two contributions [35] and
[22] rely on instance segmentation. The hyper-region proposal network [35] aims
at predicting all the possible bounding boxes of vehicle-like objects with a high
recall rate, followed by a cascade of boosted classifiers aiming at eliminating spu-
rious detections by including them into the loss function (hard negative example
mining) in explicit way. The authors of [22] focus on the preparation of train-
ing data reducing the category imbalance of different vehicle types, amplifying
the features compensating pooling-based artifacts, and considering a center loss
function to distinguish different types of vehicles. The authors of [15] applied a
super-resolution convolutional neural network to train the detection of vehicles
in an end-to-end manner. In the work of [3], a modification of DeepLabv3+ [5],
aimed at recognizing fine-grained features, is proposed. A generalized Zero-shot
learning framework is applied for recognition of previously unseen vehicles.

Overall, progress made on fully-convolutional networks, equipped either with
encoder-decoder structures, with U-like skip connections, or atrous convolutions
[5], nowadays help to overcome pooling artifacts within the state-of-the-art land
cover classification pipelines, such as [21].

2.2 Inpainting

According to e.g., [8], where more details and sources can be found, inpainting
methods based on deep learning can be roughly subdivided into two groups:
based on pixel-filling predictions [18,20,25,26,38] and on GANs [14,23,32,37].
The authors of [37] propose to optimize the inpainting result by finding the best
matching neural patches between the inpainting area and the given context, after
which a multi-scale structure is applied to refine the texture in an iterative way to
achieve the high-resolution performance. It could predict photo-realistic results,
but the inference takes much more time than other methods. Another example
of a method focusing on coarse-to-fine improvement of the synthesized texture
is [33]. The context-encoder method of [25] is probably the earliest GAN-based
method on inpainting and is based on an encoder-decoder architecture. Because
of multiple pooling layers, fine details can hardly be reconstructed. To cope
with high-resolution images, [13] adds dilation convolutional layers and applies
Poison blending to smooth occasionally occurring artifacts. The EdgeConnect
method was developed [23], which aims to reconstruct such good edges sketch
automatically. There are two GANs, whereby the first GAN learns to complete
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the edge image of an RGB image. The edges serve as a-priori information for the
second GAN, supposed to reconstruct the color image. Thus, the image structure
in the edge image is captured with the first GAN, while the second GAN focuses
on details of color image inpainting, such as the homogeneous color content of
the regions enclosed by edges.

Finally, several works relying on semantic segmentation can be mentioned
[12,16,19,34]. In the first two contributions, the semantic segmentation result is
undamaged since it stems from an external source. Moreover, [30] accomplishes
semantic image inpainting only. The work of [34] is a two-GANs-based network.
The first GAN, called Segmentation Prediction, accomplishes inpainting of the
segmentation image as an intermediate step. The second, called Segmentation
Guidance, reconstructs the texture image. In the loss function, the discriminators
take both original and down-sampled inputs, allowing the generator to capture
both global structure and local texture. In this method, the segmentation result
is a product of data processing and lacks the typical man-made features, such
as rectangular structures, which can be observed in the results. In the work of
[19], the corrupted image is initially completed in the feature space. Inpaint-
ing of segmentation and the texture image takes place alternately. The work
of [16] modified the EdgeConnect algorithm by training an intermediate GAN
for inpainting the classification image. The method has been proved successful
for façade images with manually annotated foreground objects, i. e., practically
under labor conditions. In this paper, we apply this method to a result of an
automatic land cover classification procedure in an application rather belong-
ing to the remote sensing field. In particular, such a result appears noisy or
over-regularized, influenced by shadows or penumbras, and exhibiting misclassi-
fications on building borders and ambiguous classes.

3 Methodology

As already mentioned, the main contribution of this paper is the workflow encom-
passing two main steps: land cover classification and inpainting. The entire
pipeline is illustrated in Fig. 1. As input data, combined elevation and opti-
cal data are used. The elevation data is given as a normalized Digital Surface
Model (NDSM). The first step employs the DeepLabv3+ model, described in
Section 3.1, to create a land cover classification from the RGB image and the
surface model. Vehicle masks V are extracted from the land cover classification
and extended by the vehicle shadow masks. In the inpainting step, described
in Section 3.2, the RGB image, the land cover classification, and the inpainting
mask are used again.

3.1 Land cover classification and vehicle detection

The task of land cover classification is a semantic segmentation task, for which
a DeepLabv3+ model of [5] was used. This network uses a ResNet101 encoder,
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and a decoder applying atrous and separable convolutions to increase the recep-
tive field. The Atrous Spatial Pyramid Pooling Module (ASPP) aggregates the
features at different scales.

Fig. 1. Overview of the method’s workflow: Inputs include RGB images and addi-
tional data (NDSM/NIR/NDVI). The process involves land cover classification, car and
shadow masking, followed by inpainting steps, leading to the output of an inpainted
RGB image.

In remote sensing, multi-modal data are usually captured and used down the
line. Other than RGB imagery, there could be height/depth data from radar,
LiDAR or photogrammetry, near-infrared to aid the detection of vegetation, as
well as from other spectral bands. Additionally to RGB orthophotos, the Pots-
dam dataset [28], which we chose for this work, includes elevation information
in the form of a digital surface model (DSM), derived photogrammetrically, and
a near-infrared channel (NIR). From the near-infrared channel, we derive the
NDVI, or Normalized Differential Vegetation Index. From the DSM, we derive
the Normalized DSM using the method in [2]. The relative elevation is expected
to be more valuable, since the ranges of the heights of the vehicles are better
bounded, to enable their easier detection.

Since the input of DeepLabv3+ is constituted by RGB images, we extended
the architecture by a second branch to make use of all data available. The input
of the first branch are the RGB images, while the input of the second branch
consists of the near-infrared channel, the NDVI channel, and the NDSM chan-
nel. The second branch is merged with the first branch after the first ResNet
block by a convex combination with the factor 0 ≤ α ≤ 1. Setting α = {0, 1}
means running the standard DeepLabv3+ algorithm with the images stored in
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the second resp. first branch while setting α = 0.5 means averaging the features.
For more details, see [27].

3.2 Inpainting

Preprocessing In remote sensing, orthophotos are composed of multiple images
that may not be captured simultaneously or under uniform weather conditions,
leading to variations in shadow direction and intensity. Additionally, objects such
as cars can be obscured by shadows from larger structures like buildings. Thus,
simple car mask dilation fails, making shadow detection essential for accurate
image analysis. Shadows can significantly affect the process of object removal
from images, particularly when aiming to eliminate visible artifacts around
inpainted areas. This issue is especially prevalent when removing vehicles from
RGB orthophotos, as the areas surrounding the vehicles tend to be darker due to
the shadows cast by the vehicles themselves. To address this challenge, a shadow
detection method based on Particle Swarm Optimization (PSO) is employed
[11], utilizing the HSI (Hue, Saturation, and Intensity) color space. For better
shadow region detection, an adaptive histogram equalization is applied to the
RGB orthophotos leading to the effect of higher contrast between shadow and
neighboring regions. After converting the RGB orthophoto into the HSI color
space, applying a Gaussian filter to reduce noise is recommendable. For the PSO
optimization, the features utilized include (H +1)/(I +1) for highlighting shad-
ows, the intensity, and the saturation S. This step also involves the removal of
pixels associated with non-relevant classes such as buildings and trees to focus
the analysis on relevant shadow regions.

The optimization begins with a randomly initialized swarm X = {Xi}, i =
1, ..., imax,Xi ∈ R

3×2, where imax denotes the swarm size. Each Xi represents
the feature position of two cluster centers-one corresponding to shadow regions
and the other to non-shadow regions-within the bounds of the feature data.

The PSO algorithm updates the positions and velocities of the swarm mem-
bers iteratively using the following equations:

vk
i = w · vk−1

i + c1 · r1 · (
p̂i − Xk−1

i

)
+ c2 · r2 · (

ĝk−1 − Xk−1
i

)
(1)

wk = wk−1 · wd (2)

Xk
i = Xk−1

i + vk−1
i . (3)

In these equations, k = 1, ..., kmax indexes the iteration steps, with kmax set to 10.
The coefficients c1 and c2 represent learning factors, each set to 2. The variables
r1 and r2 are random values which can achieve values between 0 and 1. The
inertia weight w is set to 1, and will be updated as in equation (2) using the factor
wd (here: 0.99), p̂k−1

i and ĝk−1 denote the local and global cost, that means, the
sum of the differences between the feature data and the nearest local cluster
center of Xk−1

i and nearest global cluster center of ∪iX
k−1
i , respectively. After

completing the ten iterations, the cluster centers of the swarm member with the
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lowest local cost is used to generate a shadow map X, effectively distinguishing
shadow from non-shadow regions in the orthophoto.

The inpainting mask M is created by enlarging the vehicle masks V , intersect-
ing it with the shadow mask X, and then combining it with the original vehicle
mask V . This ensures that only the vehicles and its shadows are inpainted.

Application of the 3GAN algorithms Generative Adversarial Networks
(GANs) are a type of ML algorithm consisting of two neural networks, a gener-
ator and a discriminator, that play a zero-sum-game against each other. Resem-
bling real data from the training data, the generator tries to fool the discrimina-
tor, while the discriminator attempts to distinguish between real and fake data.
Through this process, GANs become proficient at generating data that closely
mimic real data.

The 3GAN method involves a three-stage Generative Adversarial Network
(GAN) approach designed to fill in holes masked by the binary map M in the
RGB image J , by first completing the edge image E and then the semantic label
image C. All three stages have similar loss function of the form:

LG = La + λdLd + λfLf + λsLs, (4)

where La, Ld, Lf , and Ls denote adversarial, data-, feature- and style-based
loss, respectively, and λd, λf , and λs are the corresponding weights, which, once
defined empirically, vary from stage to stage. In what follows, we briefly empha-
size the particularities of the losses mentioned in all three stages while for the
technical description of these losses, we refer to [16],

1. Label Edges Inpainting: The first step involves inpainting E and is similar
to the first stage of [23], however, adapted for label images C. This stage
aims to understand and recreate the boundaries and shapes within E that
are missing or occluded. We use the standard equation for the adversarial
loss for La while the feature matching loss compares the activation maps in
the middle layers of the discriminator to encourage the generator to produce
results similar to real images. Since we only compare very sparse, binary
images, in which only edge pixels are set to 255 and the rest to zero, there is
no need to consider a data fidelity term. Thus, λd = λs = 0 and λf = 10.

2. Label Inpainting: After reconstructing E, the next step involves inpainting
at the label level. The generator creates Ĉ using the edge image Ê. Hereby,
Ĉ is synthesized in the way that it is the completed image within the binary
map M and the input image outside of it. The adversarial loss is then the
standard one. As data fidelity loss, cross-entropy is considered, whereby labels
are coded as one-hot representations. In this stage, λf = λs = 0 and λd = 10.

3. RGB Inpainting: Inpainting of J benefits significantly from the preceding
stages. With the structural outlines and semantic context already established,
the RGB inpainting process can focus on filling in the actual colors and tex-
tures with a higher level of accuracy and realism. Analogously to the previous
step, the adversarial loss of the third GAN assesses J image generated using
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synthesized Ĉ and incomplete J . We chose the standard �1-loss as our data
fidelity term, which coincides with the choice made by [23] and [16], as it is
in the case of Lf and Ls. Finally, λd = 10, λf = 1 and λs = 2500.

The input, output, and intermediate steps of 3GAN are shown in Fig. 2.
Image 1 shows the original image, 2 the inpainting mask, 3 the semantic label
image where orange is a car, dark blue is asphalt, light blue is a building, and
dark red is clutter. Image 6 shows the result of the label edges, Image 5 shows
the result of the label inpainting, and Image 4 shows the result of the RGB
inpainting.

Fig. 2. Intermediate steps of 3GAN: First row: input (RGB image, inpainting mask,
label image); second row: intermediate steps (inpainted RGB image, inpainted label
image, inpainted label edge image)

4 Results

4.1 Dataset

The ISPRS Potsdam dataset includes 38 high-resolution (GSD of 5 cm per pixel)
segments, of 6000 × 6000 pixels each, split into 24 for training, 8 for validation,
and 6 for testing, featuring RGB, NIR, DSM channels, and ground truth. The
first input of the DeepLab network is constituted by the RGB channels, and
the second input includes NIR, NDVI, and normalized (NDSM) instead of abso-
lute (DSM) elevation data, with NDVI rescaled and NDSM adjusted for height
precision.
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Training and validation data are maintained at original resolution but
cropped into 512×512 pixel patches without data augmentation. During testing,
the patches are larger and overlapping to ensure seamless transitions. Perfor-
mance is gauged using overall accuracy, Cohen’s kappa for class detectability,
and F1-scores for individual class performance. For the inpainting procedure
using 3GAN, merely the 6 testing segments are used, resizing the patches to
256 × 256 for efficiency. Internal experiments have shown that incorporating
training or validation segments from the land cover classification stage does not
improve the inpainting results.

4.2 Land cover classification and vehicle detection

Table 1. Results of DeepLabv3+ with pre-training for three characteristic values of
α mentioned in the end of Section 3.1. The values are given in percent, and the best
values are marked in bold. Here, ”O. A.” stands for Overall Accuracy, ”κ” represents
the Cohan’s Kappa, ”F1 C1” to ”F1 C5” are the F1 scores for classes unpaved surface,
building, low vegetation, tree, car (emphasized column), and clutter respectively, and
”F1 av.*” and ”F1 av.” denote the average F1 scores, with and without including the
clutter class.

α O.A. κ F1C1 F1C2 F1C3 F1C4 F1C4 F1C5 F1av.∗ F1av.

0 87.46 83.11 91.03 95.50 80.45 81.96 86.69 54.87 87.13 81.75

0.5 88.9985.1592.1795.1783.2383.63 89.24 60.71 88.83 84.15

1 88.69 84.75 92.17 94.94 83.01 83.41 89.6262.04 88.63 84.20

As shown in Table 1, the two-branch model with the additional channels
as input performs mostly better than the original DeepLabv3+ on only RGB
imagery. Most of the improvements, however, are in the building class. Due to
temporal discrepancies, moving cars are often not visible in elevation data and
do not have a striking infrared signature either. As a consequence, the com-
bined model performs even slightly worse for the car class than the standard
DeepLabv3+ method of [4]. For that reason, the pipeline can be simplified to
RGB input only without a large sacrifice in performance. From Fig. 3 and also
Fig. 4 to 6, displaying some qualitative results, it becomes obvious that the
majority of cars are detected with a satisfactory overlap with the ground truth.
In the upper image, one white car (red-circled) could not be detected well, prob-
ably due to an unusual background. The surroundings of cars, whether it be
impervious surface or low vegetation, are classified well in all cases. In Fig. 4,
one can see a car partly occluded by the leafless tree and, as a consequence, not
entirely classified and reconstructed. In training data, such ambiguous regions
were assigned to the tree class.
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Fig. 3. Detection results of DeepLabv3+ on the Potsdam dataset. From left to right:
Orthophoto, two-branch DeepLab, DeepLabv3+ RGB, ground truth.

4.3 Inpainting

We compared our method with EdgeConnect [23] as well as with a conventional
method [7] on the test segments of the Potsdam dataset. The motivation of
assessing a conventional method is that no training data and no label image are
necessary. In our method, we are also interested to explore the influence of the
shadow detection module on the performance of out method. The results without
taking shadows into account are noted in the column 3GAN of Table 2 since they
represent the conventional 3GAN method [16]. In case of EdgeConnect, shadow
detection module is taken into account as well.

Table 2. Quantitative comparison of the inpainting via SSIM and PSNR, showcasing
the allegedly superior quality of the conventional method of [7] and the performance
of [16] in not considering shadows, emphasizing quantitative metrics’ limitations.

SSIM PSNR

ours [23] [16] [7] ours [23] [16] [7]

Segment0 0.9100.910 0.9170.978 27.89327.91128.18829.325

Segment1 0.8990.898 0.9070.972 26.07526.14626.15326.989

Segment2 0.9340.934 0.9370.987 29.27129.25629.34330.919

Segment3 0.9080.907 0.9160.963 24.98724.97124.93925.610

Segment4 0.8960.895 0.9040.964 24.87824.94024.81125.463

Segment5 0.9340.934 0.9380.986 28.84728.87128.92030.234
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Table 2 shows a comparison between the inpainting methods via SSIM and
PSNR Metrics, widely used to evaluate results of generative techniques. The
method of [7] consistently achieves the highest SSIM and PSNR scores, allegedly
indicating its superior image restoration quality. The method of [16] allegedly
performs better without considering shadows. The quantitative metrics may
not fully capture contextual inaccuracies because, for example, the artifacts of
the conventional method [7] do not affect the scores despite having a relatively
low degree of visual authenticity. Using SSIM and PSNR metrics, the conven-
tional method consistently scores highest in SSIM and PSNR, suggesting supe-
rior image restoration quality. Notably, [16] performs better without shadow
consideration. However, these quantitative metrics might overlook contextual
inaccuracies, as artifacts from conventional method do not negatively impact
the scores, despite potentially being contextually irrelevant. This discrepancy
highlights the limitations of purely quantitative assessments in inpainting eval-
uations, especially where larger areas require inpainting due to shadow removal.
In terms of performance, EdgeConnect tends to be outperformed by 3GAN.

Regarding qualitative analysis, we refer to Figs. 4 to 6. The shadow detec-
tion in the two parking lots of Fig. 4 brought a notable improvement because the
bottom-right image exhibits almost no influence of shadows. Compared to [23],
both methods perform similarly well in terms of shadow treatment or the min-
imization of artifacts. Contrastingly, [7] produces significant artifacts, presum-
ably due to the inclusion of shadow elements within the reconstruction patches.
These artifacts are particularly noticeable around a red and a light blue car. In
Fig. 5, we observe that cars parked in the backyard do not cast distinct shad-
ows due to extensive shading from the surrounding buildings. This condition
led our shadow detection algorithm to classify most of the backyard as shaded.
The results appear more natural without considering shadows, as the areas for
inpainting were chosen to be larger. Regarding the comparative analysis between
3GAN and EdgeConnect, our findings indicate a clear advantage of 3GAN over
EdgeConnect, especially in achieving clear distinctions between the classes of
buildings and the ground. One issue in the dataset lies in adequately capturing
moving objects in the DSM. In Fig. 6, the white car on the street is not visi-
ble in the DSM. The shadow detection tends to recognize too many shadows,
which negatively affects the quality of the results. The application of the 3GAN
method improves the situation by handling shadows more effectively.

5 Conclusion

Our paper presents a streamlined approach for digitally removing cars from
orthophotos, leveraging a combination of semantic segmentation, shadow detec-
tion, and GAN-based inpainting. This integration effectively eliminates transient
objects, ensuring structural and aesthetic integrity.

The application of semantic understanding ensures that the inpainted areas
are contextually appropriate, allowing the algorithm to make informed decisions
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Fig. 4. Comparison of inpainting results for two parking lot areas, displayed over two
sequences. Initially, we present the original image, shadow detection, inpainting mask,
and land cover classification (first and third rows). The processed outcomes by 3GAN,
[23], [7], and 3GAN excluding shadows are then shown (second and fourth rows).

that result in coherent reconstructions. This is particularly important for main-
taining the architectural fidelity of the scene. Employing Particle Swarm Opti-
mization, the shadow detection is essential for minimizing artifacts, improving
object reconstruction quality. By sequentially addressing label edges and inpaint-
ing before RGB restoration, our method enhances visual consistency without
guessing the inpainted area’s structure or meaning.

The evaluation of the DeepLabv3+ model on the Potsdam dataset reveals
that while adding extra input channels boosts classification accuracy for struc-
tures, its benefits vary across different objects like cars. Recognizing the limita-
tions of quantitative analysis, we emphasize qualitative assessments. Here, the
3GAN method outperforms EdgeConnect in distinguishing between building and
ground classes, especially in shadowed regions where cars are less discernible.
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This advantage of 3GAN could be particularly crucial in urban and residential
settings, where shadows and varying lighting conditions can significantly affect
the visibility of objects and the overall accuracy of the inpainting process. In
the future, we aim to explore the inpainting of multi-spectral data, potentially
enhancing the utility and applicability of our methodology for a wider range of
orthophoto analyses and applications.

Fig. 5. Result of a backyard area: From upper left to bottom right: original image,
shadow detection mask, inpainting mask, land cover classification, result of 3GAN,
[23], 3GAN without shadows, inpainted land cover classification.

Fig. 6. Result of a street area: From upper left to bottom right: original image, shadow
detection result, inpainting mask, land cover classification, DSM, result of 3GAN, [23],
inpainted land cover classification.
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Abstract. While 2D convolutional neural networks (CNNs) demon-
strate outstanding performance on computer vision tasks, their com-
putational costs remain high. This paper reduces computational costs
by introducing a novel architecture that replaces spatial 2D CNN oper-
ations with two consecutive 1D depthwise separable CNN (DSC) opera-
tions. Although vision inputs are two-dimensional, these 1D DSCs per-
form operations on 1D vision inputs. The 1D DSCs are predicated on the
assumption that the dataset supports convolution operations with little
or no loss of training accuracy. Deep 1D DSCs still suffer from gradient
problems when training deep networks. We modify the construction of
1D CNNs with residual connections to improve the performance of deep
1D CNN architectures and introduce our final novel architecture, resid-
ual 1D convolutional networks (RCNs) for 1D vision inputs. Extensive
benchmark evaluation shows that RCNs achieve at least 1% higher per-
formance with about 77%, 86%, 75%, and 34% fewer parameters, and
about 75%, 80%, 67%, and 26% fewer flops than ResNets, wide ResNets,
MobileNets, and SqueezeNexts on CIFAR benchmarks, SVHN, and Tiny
ImageNet image classification datasets. Moreover, our proposed RCNs
improve deep recursive residual networks performance with 94% fewer
parameters on the image super-resolution dataset.

Keywords: Deep CNN · 1D CNN · RCN · Parameter Efficient
Network

1 Introduction

Convolutional neural networks (CNNs) have emerged as a core building block
for computer vision tasks, including classification [7,8], object detection [19]
and image super-resolution [14,15,25]. To solve major vision tasks, the CNN-
based SOTA models, specifically ResNets [8], GoogleNets [13], AlexNets [17], and
hypercomplex CNNs [22,23] have emerged in recent years. A common trend is to
build deeper [8,9] or wider [13,29] networks to improve performance. However,
increasing the depth or widening the network also increases its computational
costs.
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A variety of CNNs were introduced to deal with these costs. Residual bot-
tleneck blocks use 1 × 1 pointwise 2D convolutions to reduce and then increase
the channel counts. As a result, the spatial 2D CNN processes fewer channels
and reduces the model’s computational costs. But these are not enough as they
use standard 2D convolutions which consumes high costs. This cost reduction
has not been analyzed for wider ResNets as the widening factor (α) multiplies
the channel counts, raising the costs exponentially. The wide ResNets also use
standard 2D convolutions.

As the standard 2D CNN is the core layer type of many computer vision mod-
els [8,17,22,23,29], and it consumes high costs, several modifications have been
applied to reduce these costs. A depthwise separable convolution (DSC) con-
volves independently over each input channel to minimize the costs din (number
of input channels) times than the standard 2D CNN operations. Although this
DSC concept was introduced in 2014 for neural networks, it has been used more
for CNN-based computer vision models, for example, Xception networks [3], and
MobileNets [10]. Among these, MobileNet is an efficient, lightweight deep DSC
for mobile-based vision tasks. It reduces the costs by a factor of 8 or 9 at only
a small reduction in accuracy. But it requires two CNN layers (k × k DSC layer
and pointwise CNN layer) to replace a standard 2D CNN layer. So, it increases
the layer count. Moreover, the pointwise layer still uses standard 2D CNNs.

SqueezeNext [5] also reduces costs and is guided by SqueezeNet [12] and
separable convolution (SC) (replace k × k 2D convolution using filters k × 1 and
1 × k). This SC idea reduces the cost from k2 to 2k. They also squeeze the layer
(like SqueezeNet [12]) before applying SC, reducing cost. These models still use
standard 2D CNNs for 2D vision inputs.

Our work revisits the designs of the deep building blocks to boost their per-
formance further, reduce computational costs, and improve the model’s inference
speed. To achieve these, we propose our novel architecture, RCNs, obtained by
applying 1D DSC operations along the height and width axis instead of SCs in
the InceptionV3 [24], and SqueezeNext [5] block. These height and width axis
inputs are worked as 1D vision inputs, whereas the SCs and the other 2D CNNs
are applied on 2D vision inputs. We split the 2D spatial CNN operation into two
consecutive 1D DSC operations. These 1D DSC operations are mapped to the
height and width axis. As 1D DSC operations propagate information along one
axis at a time, this modification reduces cost at least w · din · k times (explain
below). Moreover, this RCN block does not increase layer counts as two 1D layers
equal to one 2D layer.

A simple 1D CNN architecture reduces costs but does not improve perfor-
mance. This is because forward information flowing across the 1D CNN blocks
degrades (diminishing feature reuse [11]). We add residual connections to span
the 1D CNN blocks to address this. By using both modifications, our novel
and effective RCNs improve validation performance. The effectiveness of our
proposed model is demonstrated experimentally on four image classifications
and an image super-resolution dataset. Our assessments are based on parameter
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counts, FLOP counts (number of multiply-add operations), latency to process
one image after training, and validation accuracy.

2 Background and Related Work

2.1 Convolutional Neural Networks

In a convolutional layer, the core building block is a convolution operation using
a trainable weight W for 2D multichannel images applied to small neighbor-
hoods to find input correlations. For an input image X with height h, width w,
and channel count din, the convolution operation operates on region (a, b) ∈ X
centered at pixel (i, j) with spatial extent k. The output for this operation is,

Ci,j,n =
∑

(a,b,m)∈Nk×k(i,j)

Wa,b,m,nXi+a−1,j+b−1,m (1)

where m, n, and Nk×k are the index for input channel din, the index for output
channel dout, and the neighborhood of pixel (i, j) with spatial extent k of size
k × k × din × dout, and W is the shared weights to calculate the output for all
pixel positions (i, j). The computational cost of this convolutional operation is,

CostConv2D = h · w · din · dout · k · k (2)

where the computational cost depends multiplicatively on the kernel size k × k,
feature map size h × w, din, and dout.

2.2 Residual Networks

Residual networks (ResNets) are constructed using 2D CNN layers linked by
additive identity connections [9] for vision tasks. They were introduced to address
the problem of vanishing gradients found in standard deep CNNs.

The key architectural feature of ResNets is the residual block with identity
mapping. Two kinds of residual blocks are used in residual networks, the basic
block and the bottleneck block. We discuss the bottleneck block first. Figure 1a
shows a bottleneck block for ResNets that is constructed using 1 × 1, k × k, and
1 × 1 convolution layers with residual connection, where the 1 × 1 pointwise 2D
CNN layers reduce and then increase the number of channels. The 3×3 2D CNN
layer performs feature extraction. The computational cost of a 3 × 3 spatial 2D
CNN layer is given in Equation 2 and a 1 × 1 pointwise 2D CNN layers is,

Cost1x1Conv2D = h · w · din · dout (3)

Hence, the computational cost of the bottleneck block is,

CostBottle = h · w · din · dout · k · k + 2 · h · w · din · dout (4)

In contrast to the bottleneck block, the basic architecture of ResNet is con-
structed with two k × k convolution layers with residual connection where k is
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the size of the kernel and an identity shortcut connection is added to the end of
these two layers. The computational cost of the residual basic block is,

CostBasic = 2 · h · w · din · dout · k · k. (5)

The performance of ResNets surpasses its learning speed, the number of learning
parameters, the way of layer-wise representation, and memory mechanisms.

2.3 Wide Residual Networks

Wide ResNets [2,29] use fewer layers than standard ResNets but use higher
channel counts (wide architectures) which compensate for their shallower archi-
tecture. Comparisons between shallow and deep networks have been studied in
circuit complexity theory where shallow circuits require more components than
deeper circuits. Inspired by this observation, He et al., proposed deeper networks
with thinner architecture where a gradient goes through the layers [9]. But the
problem such networks face is that the residual block weights do not flow through
the network layers. Because of this, the network may be forced to avoid learn-
ing during training. To address this, Zagoruyko et al., proposed shallow but
wide architectures and showed that widening the residual blocks improves the
performance of residual networks compared to increasing their depth [29]. The
computational cost of this 2D convolutional operation is,

CostConv2D(WRNs) = h · w · din · αdout · k · k, (6)

where α is a widening factor.

2.4 MobileNet Architectures

Howard et al. developed a mobile-based shallower network for vision tasks
depicted in Figure 1b. They used DSCs because it helps to build lightweight
networks. A pointwise 1 × 1 convolution is used to combine the outputs of DSC
[10]. These two steps are performed in standard convolution in a single step.
This DSC performs convolution per input channel, and it can be defined as,

Ci,j,n =
∑

(a,b)∈Nk×k(i,j)

Wa,b,nXi+a−1,j+b−1,n (7)

where the nth channel of trainable weight W is applied to the nth channel of input
x to produce the nth channel of the output feature map C. The computational
cost of this 2-dimensional depthwise separable convolutional operation is,

CostDWConv2D = h · w · dout · k · k. (8)

And the pointwise 1×1 convolution has a computational cost which is explained
in Equation 3. The computational cost of depthwise separable MobileNets is,

CostMobileNet = h · w · dout · k · k + h · w · din · dout (9)

which is the sum of the computational costs of depthwise (Equation 8) and
pointwise (Equation 3) convolutions.
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(a) ResNet (b) MobileNet (c) SqueezeNext (d) RCN block

Fig. 1. Block types. “bn” and “ReLU” stand for batch normalization and rectified
linear unit, respectively. (a) Bottleneck modules found in [8], (b) MobileNet block
found in [10], (c) SqueezeNext block found in [5], and (d) novel RCN block used in
our model. The black dotted region in the RCN block replaces the red dotted region
in blocks in Figures (a), (b), (c), and any 2D CNN layer.

2.5 Convolutions Meet Vision Transformers

Although transformers have demonstrated outstanding performance in vision
tasks, their performances are not superior compared to the similar-si zed CNNs
[6]. Guo et al. explained several reasons behind the transformer’s inferior per-
formance to CNNs and proposed a novel CMT (CNNs meet transformer) archi-
tecture by interacting with CNNs and transformers for visual recognitions [6].
They used the convolution stem for fine-grained feature extraction and then fed
it into a stack of CMT blocks for representation learning. They also used depth-
wise separable convolutions to enhance local information. The CMT architecture
is graphically described in [6].

2.6 SqueezeNext Architecture

A CNN with fewer input and output channels requires fewer trainable parame-
ters, less cross-server communication for distributed training, lower bandwidth
to export, and is easier to deploy on field-programmable gate arrays (FPGAs)
with limited memory [12]. To achieve these advantages, Iandola et al. proposed
SqueezeNet (SNet), where they squeeze the input channels to reduce the number
of filters [12]. The computational cost of this SqueezeNet conv2d operation is,

CostConv2D(SNet) = h · w · dsin · dout · k · k (10)

where dsin is the squeezed input channels. Gholami et al. further reduce this
cost by applying separable CNNs (3 × 1 and 1 × 3 Conv2d) instead of a spatial
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CNN and they called it SqueezeNext [5] is depicted in Figure 1c. It reduces the
cost compared to SqueezeNet and the new cost of the conv2d layer is,

CostSqNext = h · din · dout · k · k + w · din · dout · k · k

= 2 · h · din · dout · k · k.
(11)

As height equals width for computer vision tasks. The SqueezeNext block per-
formed better than the SNet [12] and MobileNet [10].

2.7 Recursive Residual Networks

Image super-resolution (SR) is the process of generating a high-resolution (HR)
image from a low-resolution (LR) image. It is also known as single image super-
resolution (SISR). Convolution-based recursive neural networks have been used
on SISR [4,14,15,25], where recursive networks learn detailed and structured
information about an image. Kim et al. introduce two deep CNNs for SR by
stacking weight layers [14,15] where the chain structure recursive layer controls
the model parameters and improves the performance. Deep SR models [14,15,20]
demand large parameter counts and more storage.

To address these issues, deep recursive residual networks (DRRNs) were pro-
posed, which achieves better performance with fewer parameters [25]. It includes
both local (LRL) and global residual learning (GRL), where GRL might face
degradation problems for deeper networks and LRL has been used to solve this
problem. The DRRN also stacked several recursive blocks (B) of residual units
to keep the model more compact, followed by a CNN layer, which reconstructs
the residual between the LR and HR images. Each residual block decomposes
into the number of residual units (U). The number of B and U is responsible for
defining network depth d which is calculated as, d = (1+2×U)×B+1. DRRN’s
recursive block definition, formulation, and the loss function are defined in [25].
The computational cost of each unit U will be the same as in equation 5.

3 Proposed Residual Convolutional Networks

The 2D CNN is highly performant with the help of several state-of-the-art
architectures, like, ResNets [8], wide ResNets [27], scaling wide ResNets [29],
MobileNets [10], SqueezeNets [12], SqueezeNexts [5], and deep recursive resid-
ual networks (DRRNs) [25] on image classification and image super-resolution
datasets. The residual bottleneck block makes the networks thinner; still, the cost
efficiency of these blocks can be improved. The cost of 2D convolution, residual
bottleneck, and basic blocks is calculated in Equations 2, 4, and 5, respectively.
The 2D convolution operation given in Equation 1 uses a k×k filter for the input
X ∈ h × w × din. Equation 2 gives the costs of 2D convolution in the residual
blocks. SC is used to reduce these costs in InceptionNetV3 [26], and SqueezeNext
[5]. They decomposed this k×k convolution into two separable convolutions with
k × 1 and 1 × k sized filters. This decomposition effectively reduces the number
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of parameters from h × w × din × dout × k × k to 2 × h × w × din × dout × k.
Their decomposed convolution with spatial extent k × 1 is defined as,

Ci,j,n =
∑

(a,b,m)∈Nk×1(i,j)

Wa,b,m,nXi+a−1,j+b−1,m (12)

where, m, and n are the indices for input channel din, and for output channel
dout. Also, Nk ∈ R

k×1×din is the neighborhood of pixel (i, j) with spatial extent
k × 1 and W ∈ R

k×1×dout×din is the shared weights that are for calculating
output for all pixel positions (i, j). For spatial extent 1 × k is defined as,

CO(i,j,n) =
∑

(a,b,m)∈N1×k(i,j)

Wa,b,m,nCi+a−1,j+b−1,m (13)

where, Nk ∈ R
1×k×din is the neighborhood of pixel (i, j) with extent 1 × k and

W ∈ R
1×k×dout×din is the shared weights all pixel positions (i, j).

Their cost efficiency can be improved as they still use 2D convolutions with
spatial extent filters for 2D inputs (even though one dimension has a size equal
to 1). To reduce these costs further, we propose a novel residual 1D convolutional
network (RCN) to replace any 2D spatial convolutional layer in a network. We
replace the 2D convolution operations (conv2D) of any block by using two 1D
DSC operations with filters k. To apply 1D DSC in 2D input size of h × w,
we split the inputs into the height and width axes. Each 1D convolution layer
applies to each input axis. The 1D DSC operation is defined as,

CO(i,n) =
∑

a∈Nk(i)

Wa,nXi+a−1,n (14)

where Nk ∈ R
k×din is the neighborhood of pixel i with extent k and W ∈

R
k×dout×din is the shared weights that calculate the output for all pixel positions

i. In Equation 14, the nth channel of trainable weight W is applied to the nth

channel of input X to produce the nth channel of the output feature map CO.
The cost of this 1D DSC operation on axial vision inputs is calculated as,

CostConv1D = h · dout · k. (15)

As our RCN block has two layers of 1D convolutions, this block costs 2 ·h ·dout ·
k. Also, each 1D DSC operation has a residual connection to avoid vanishing
gradients. Hence, our proposed novel architecture factorizes 2D convolution into
two consecutive 1D DSCs along with residual connections depicted in Figure 1d.

We replace each 2D convolution layer from the residual basic and bottleneck
blocks to construct residual blocks using our RCN block. The spatial 2D con-
volution in the residual bottleneck block (red marked in Figure 1a) is replaced
by the RCN block to construct our proposed RCN-based residual bottleneck
block. In the same way, the proposed RCN-based basic block architecture is con-
structed. To compare our proposed parameter-efficient RCN block with 2D DSC,
the depthwise 2D spatial convolution (red marked in Figure 1b) of MobileNet
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and CMT are replaced by our proposed RCN block and constructed new RCN-
based MobileNet and CMT. We also compare our proposed RCN block for SC by
replacing the red-marked area in Figure 1c of SqueezeNext with the RCN block.
The RCN block in Figure 1d is applied to other 2D convolution-based networks,
for example, wide residual networks (to make our proposed wide RCNs) and deep
recursive residual networks (to make RCRNs depicted in Figure 2), to check the
effectiveness of our proposed method in all possible ways.

4 How RCNs are Cost Effective

This section compares the computational costs of different aspects of CNN layers
to the networks. The costs of 2D convolutional operation, residual bottleneck and
basic blocks, WRN operation, MobileNet block, SqueezeNet, and SqueezeNext
block are calculated in Equations 2, 4, 5, 6, 9, 10, and 11. The computational
costs of our proposed RCN block compared with the standard 2D convolutional
operation, we get a reduction in the computation of:

CostR =
Cost of 2D Convolution

2 · Cost of 1D Convolution
=

h · w · din · dout · k2

2 · h · dout · k
=

w · din · k

2
(16)

where CostR is the cost reduction ratio where the RCN block reduces costs
(w ·din ·k)/2 times than the original standard 2D convolution. Hence, the RCN
block can be used as a replacement for any networks where 2D convolutional
layers are used. We apply this block as a replacement of 2D CNN in residual
networks [8] specifically residual basic block (replacing the two 2D CNN layers),
and bottleneck block (replacing the only spatial 2D CNN layer) and construct
RCN-based ResNet blocks. These RCN-based ResNet basic blocks reduce costs
(w · din · k) times the original basic block costs as the original basic block used
to standard CNN layers. For the ResNet bottleneck block, the RCN-based bot-
tleneck block reduces costs similar to the cost reduction in Equation 16.

Now, we compare the cost-effectiveness of MobileNet and SqueezeNext archi-
tectures with our proposed RCN block-based MobileNet and SqueezeNext archi-
tectures. Our proposed RCN-based MobileNet block performs a reduction in the
costs of:

CostR =
CostDWConv2D in MobileNetV1

2 · Cost of 1D Convolution
=

h · w · dout · k · k

2 · h · dout · k
=

w · k

2
(17)

where din is 1 for the original and proposed spatial convolutions as both net-
works use depthwise separable convolutions. There is a huge (w · k) / 2 (75%
reduction for CIFAR data in Table 1) reduction for this MobileNet architec-
ture. For SqueezeNext architectures, our RCN-based SqueezeNext reduces the
computational costs of:

CostR =
PW1x1Conv2D + 2 · kx1Conv2D

2 · Costof1DConvolution

=
h · w · din · dout + 2 · h · w · din · dout · k

2 · h · dout · k
=

w · din
2 · k

+ w · din

(18)
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where CostR is the cost reduction ratio of the original SqueezeNext and our RCN-
based SqueezeNext blocks. A pointwise 1×1, two separable 2D convolutions with
filters, our proposed RCN block replaces k × 1, and 1 × k in SqueezeNext block.
Our RCN-based SqueezeNext block takes (w ·din) / (2 ·k)+ (w ·din) times fewer
computing from separable convolutional operations in the original SqueezeNext
block. However, our proposed RCNs are not similar to the separable 2D CNN
operation. Compared with separable 2D CNN, our RCNs reduce the amount of
the computational costs of:

CostR =
2 · kx1Conv2D

2 · Cost of 1D Convolution
=

2 · h · w · din · dout · k

2 · h · dout · k
= w · din (19)

So, our proposed RCNs are cost-effective by a factor of w·din times than the SCs.
These formulas show that our proposed RCN block is cost-effective in replacing
any 2D convolution for computer vision tasks.

5 Experimental Analysis

We present experimental results on four image classification datasets and an
image super-resolution dataset. Our experiments evaluate the original ResNets,
wide ResNets, RCN-ResNets, wide RCNs, MobileNet architectures, SqueezeNext
architectures, RCN-based MobileNet and SqueezeNext architectures, RCMTs,
CMTs, DRRNs, and RCRNs. We compare our proposed RCN-based networks
with the original ResNets, as these original networks used 2D CNN layers. Our
comparisons use parameter counts, FLOPS, latency, and validation performance.
The experiments were run on a workstation with an Intel(R) i9-9820X CPU @
3.30GHz, 128 GB memory, and NVIDIA Titan RTX GPU (24GB).

5.1 Method: Convolutional Networks

To explore scalability, we compare our proposed RCNs and baseline models on
four datasets: CIFAR-10 and CIFAR-100 benchmarks [16], Street View House
Number (SVHN) [21], and Tiny ImageNet datasets [18]. The CIFAR bnchmarks
have 10 and 100 distinct classes and 60,000 color images of size 32 × 32. We
perform data normalization using per-channel mean and standard deviation. In
preprocessing, we do the horizontal flips and randomly crop after padding with
four pixels on each side of the image. The SVHN and Tiny ImageNet datasets
contain 600,000 images of size 32 × 32 with ten classes and 110,000 images of
200 distinct classes downsized to 64 × 64 colored images, respectively. Our only
preprocessing is mean/std normalization for both datasets. All models were run
using the stochastic gradient descent optimizer and linearly warmed-up learning
for ten epochs from zero to 0.1 and then used cosine learning scheduling from
epochs 11 to 150. This experiment used batch normalization and 0.0001 weight
decay.
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Residual Networks ResNets and our proposed RCN-based ResNets were
trained using similar designs (same hyperparameters and output channel counts).
As our main concern was to reduce parameter counts of the residual bottleneck
block, we implemented all baselines and the proposed architecture using only
bottleneck blocks. The output channels of bottleneck groups are 120, 240, 480,
and 960 for all networks. This experiment analyzes 26, 35, 50, 101, and 152-
layer architectures with the bottleneck block multipliers “[1, 2, 4, 1]”, “[2, 3, 4, 2]”,
“[3, 4, 6, 3]”, “[3, 4, 23, 3]”, and “[3, 8, 36, 3]”, respectively. All models were trained
using batch sizes of 128 for all datasets except the 101 and 152-layer architectures
of the Tiny ImageNet dataset. The batch size was 64 for these architectures.

Wide Residual Networks Section 5.1 explained the method for deeper net-
works. This section describes methods for wide but shallow networks. To assess
the widening factor on our proposed RCNs, we increase the width of our RCNs
by factorizing the number of output channels for shallow networks like [29].
Like the original wide residual networks (WRNs) [29], we analyzed our pro-
posed 26-layer bottleneck block of wide RCNs (WRCNs) with a widening factor,
k = 2, 4, 6, 8, and 10. We multiplied the number of output channels of RCNs with
k to obtain WRCNs. We trained with the same optimizer and hyperparameters
used in Section 5.1.

Fig. 2. Recursive 1D convolutional residual
network (RCRN) architecture with B = 4
and URCN = 3. Here, the “RB” layer refers
to a recursive block.

MobileNet Architectures MobileNet
and RCN-based MobileNet architec-
tures use the hyperparameters and
number of output channels similar to
Table 1 in [10]. For the MobileNet
architectures, we also use a 0.045 ini-
tial learning rate decaying by 0.98
per epoch. Moreover, the standard
RMSProp optimizer with decay and
momentum is set to 0.9. Unlike orig-
inal MobileNets [10], we trained the
original MobileNet and our proposed
RCN-based MobileNet architectures
using a batch size of 128.

SqueezeNext Architectures For a fair comparison, we use similar hyper-
parameters to the original SqueezeNext [5]. The output channels of our RCN-
based SqueezeNext groups are similar to the original SqueezeNext networks. This
experiment analyzes 23-layer architectures with the block multipliers “[6, 6, 8,
1]”. We analyze two 23-layer architectures, “SqNxt-23-1x”, and “SqNxt-23-2x”
where the channel widening factors are 1, and 2, respectively. All models were
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trained using batch sizes of 128 for CIFAR10, CIFAR100, and SVHN datasets.

Convolutions meet Transformers We build our model RCN-based CMT-ti
and CMT-s similarly to CMT-ti and CMT-s [6]. All models are trained for 120
epochs using the SGD optimizer.

Recursive Networks This experiment compares the cost and performance of
our novel RCRN with the DRRN on the super-resolution tasks. The RCRN is
built by replacing the residual unit U with a RCN block described in Equation
14 and in Figure 1d. These modifications form a new network, a recursive 1D
convolutional residual network whose depth d is given by

d = (1 + URCN ) × B + 1. (20)

As two 1D layers are equivalent to one 2D layer and we replace each residual unit
with a RCN unit (see Equation 14). Hence, we rewrite Equation ?? to Equation
20 by removing the multiplier for the residual unit. The proposed RCRN with
four RB blocks is shown on the left, and an RB block is expanded on the right
in Figure 2.

We trained our proposed RCRN using 291 images dataset [28] and tested
using the Set5 dataset [1]. We also use different scales (×2, ×3, and ×4) in
training and testing images. We used similar data augmentation, training hyper-
parameters, and implementation details like [25].

5.2 Results Analysis

Residual Networks Table 1 summarizes the classification results of the orig-
inal ResNets and our proposed RCNs on the four datasets. We tested shallow
and deeper networks by implementing 26, 35, 50, 101, and 152-layer architectures.
These architectures compare performance to check the effectiveness of our pro-
posed methods for shallow and deep networks. Our proposed method is compared
with original ResNets in terms of parameter count, FLOPS count, latency, and
validation accuracy on the four datasets.

The 26, 35, 50, 101, and 152-layer architectures reduce by 77%, 76.9%, 76.7%,
76.6%, and 76.5% trainable parameters respectively in comparison to the base-
line networks. In addition to parameter reduction, our proposed method requires
15 to 36 percent fewer FLOPS for all analyzed architectures. Also, the validation
performance improvement is significantly noticeable for all datasets in Tables 1
and 2. The latency of our proposed models is also lower than the original net-
works. Moreover, the deeper networks perform better than the shallow networks,
demonstrating “the deeper, the better” in classification.
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Table 1. Image classification performance on the CIFAR benchmarks and SVHN
datasets for different architectures. Here, “Orig”, “Ours”, “SqNxt-1”, and “SqNxt-
2” are the original and our proposed network for corresponding models and 23 layers
SqueezeNext with widening factors 1 and 2. Latency measures in ms.

Models Params(M) FLOPs Latency CIFAR10 CIFAR100 SVHN

Orig. Ours Orig. Ours Orig. Ours Orig. Ours Orig. Ours Orig. Ours

ResNet-26 41 9.4 2.6G 0.6G 0.86 0.52 94.68 96.08 78.21 79.66 96.04 97.83

ResNet-35 58 13.4 3.3G 0.8G 0.96 0.60 94.95 96.15 78.72 80.38 95.74 97.50

ResNet-50 82 19.2 4.6G 1.1G 1.11 0.73 95.08 96.25 78.95 81.29 95.76 97.32

ResNet101 149 34.8 8.8G 2.2G 1.68 1.28 95.36 96.27 78.80 80.88 96.29 97.29

ResNet152 204 47.9 13G 3.2G 2.36 1.80 95.36 96.37 79.85 80.94 96.35 97.38

MobileNet 3.2 0.8 12M 4M 0.18 0.18 87.87 93.34 60.64 61.1 94.23 94.53

SqNxt-1 0.6 0.4 59M 45M 0.55 0.37 92.30 93.34 69.70 70.14 95.88 97.13

SqNxt-2 2.3 1.7 226M 168M 0.78 0.47 93.38 94.91 73.05 74.94 96.06 97.40

CMT-ti 8.1 8.1 25M 24M 0.48 0.48 98.28 98.76 81.03 83.11 98.45 98.62

CMT-s 24.8 24.8 80M 77M 0.95 0.95 98.62 99.13 83.62 84.09 98.48 98.66

Wide Residual Networks Table 1 shows “the deeper, the better” in vision
classification for our proposed methods. To compare our proposed WRCNs with
the original WRNs, we analyze our proposed method for different widening fac-
tors. Table 3 shows an overall comparison among the original WRN-28-10 (28-
layers with a widening factor of 10) and our proposed 26-layer networks with
different widening factors (2, 4, 6, 8, and 10). Our proposed WRCNs show 4%
better performance with 86% fewer parameters than the original WRN [29].
This table also demonstrates “the wider, the better” for our proposed WRCNs.

MobileNet Architectures RCN-based MobileNet, where the 2D convolution
layers replace by the RCN block, and the original MobileNetV1 shows the direct
effect of the RCN block in mobile-based shallower architectures. The RCN-based

Table 2. Image classification performance on the Tiny ImageNet datasets for
26, 35, 50, 101, and 152-layer architectures.

Models Params FLOPs Latency Accuracy

ResNet-26 41.6M 0.66G 2.31ms 57.21

RCNs-26 21.3M 0.56G 2.58ms 62.28

ResNet-35 58.5M 0.86G 2.85ms 57.80

RCNs-35 31.3M 0.68G 3.0ms 59.31

ResNet-50 82.6M 1.18G 3.75ms 59.06

RCNs-50 45.8M 0.87G 4.02ms 62.40

ResNet-101 149M 2.29G 6.86ms 60.62

RCNs-101 85.1M 1.52G 7.19ms 64.18

ResNet-152 204M 3.41G 9.29ms 61.57

RCNs-152 117M 2.18G 9.72ms 66.16
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Table 3. Image classification perfor-
mance on the CIFAR (CIF-10 and CIF-
100) benchmarks for 26-layer architec-
tures with different widening factors.

Model Name Testing Accuracy

CIF-10 CIF-100

WRN-28-10 [29] 94.68 79.57

WRCN-26-2 (Ours) 96.32 83.54

WRCN-26-4 (Ours) 96.68 83.75

WRCN-26-6 (Ours) 96.77 83.78

WRCN-26-8 (Ours) 96.83 83.82

WRCN-26-10 (Ours) 96.87 83.92

Table 4. Benchmark testing PSNR
results for scaling factors ×2, ×3, and ×4
on Set5 dataset.

Architectures Scale

x2 x3 x4

SRCNN [4] 36.66 32.75 30.48

VDSR [14] 37.53 33.66 31.35

DRCN [15] 37.63 33.82 31.53

DRRN19 [25] 37.66 33.93 31.58

DRRN125 [25] 37.74 34.03 31.68

RCRN19 37.73 33.99 31.63

RCRN25 37.84 34.11 31.84

MobileNet performs more than 1% in validation accuracy with 75% fewer train-
able parameters and almost 67% fewer FLOPs shown in Table 1. Our RCN-based
MobileNet takes similar latency to the original MobileNet.

SqueezeNext Architectures We implement RCN-based SqueezeNext (RCN-
SqueezeNext) to show the effectiveness of the RCN block compared with the
SqueezeNext block. Table 1 compares the performance for 23-layer architecture
with widening factors 1 and 2. Our RCN-SqueezeNexts outperform the original
SqueezeNexts with 34%, 24%, and 33% fewer parameters, FLOPs, and latency,
respectively.

Convolutions meet Transformers The performance analyses of CMT archi-
tectures are shown in Table 1 for CIFAR benchmarks and SVHN datasets. We
implement RCN-based CMT-ti and CMT-s and compare them with the original
CMT-ti and CMT-s models to show the effectiveness of RCN block in CMTs.
Our RCMTs reduce parameters and FLOPs (just in thousands) and improve
validation performance on image classification datasets.

Recursive Networks Table 4 shows the Peak Signal-to-Noise Ratio (PSNR)
results of several CNN models, including DRRN, and our proposed RCRN on the
Set5 dataset. The comparison between DRRN and RCRN is our main focus, as
it directly indicates the effectiveness of using our proposed RCN block. DRRN19
and DRRN125 are constructed using B = 1, U = 9, and B = 1, U = 25, respec-
tively. For fair comparison, we also construct similar architecture like RCRN19
(B = 1, URCN = 9) and RCRN125 (B = 1, URCN = 25). Our proposed models
outperform all CNN models in Table 4 on the Set5 dataset and for all scaling
factors. As we propose a parameter-efficient architecture, parameter comparison
is essential along with the testing performance. Our proposed RCRN19 model
takes 18182 parameters compared to 297, 216 parameters of DRRN19. RCRN,
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constructed using RCN blocks, reduces by 94% the trainable parameters com-
pared to the DRRN.

6 Discussion and Conclusions

This work introduces a new block, the RCN block, which is constructed with two
sequential 1D DSCs and residual connections. This RCN block can be used as
a replacement for any variation of 2D convolution. These modifications help to
reduce trainable parameters, FLOPs, and latency, as well as improve validation
performance on image classification tasks. We also checked this proposed block
for widened ResNets, MobileNet, SqueezeNext, and CMTs architectures and
showed that the RCNs-based wide ResNets, MobileNet, SqueezeNext, and CMTs
obtain better accuracy and take fewer parameters, FLOPs, and latency. As CMT
uses fewer CNN layers, our RCMT can not reduce parameters, FLOPs, and
latency significantly. We also checked the effectiveness of our RCN block on
the SISR task to show how the RCN block performs for other areas than the
classification. Our proposed recursive axial ResNets (RCRNs) improve image
resolution and reduce around 94% trainable parameters compared to the other
CNN-based super-resolution models. Extensive experiments and analysis show
that RCNs can be shallow, deep, and wide. These are parameter-efficient and
superior models for image classification and SISR. However, the limitation is
that we cannot implement ImageNet or COCO object-detection-like datasets
due to machine limitations. We have shown that our proposed model is a viable
replacement for any 2D convolutional layer on the tested tasks. Further work
is needed to determine the range of applications for which RCNs may offer
advantages.
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Abstract. It is challenging to detect the presence of Psoriasis using subjective
means. Its objective determination can help to understand the coverage and sever-
ity of the disease and consequently offer the appropriate treatment. Deep learning
methods like U-Net are very popular methods for segmenting disease regions
for objective analysis. U-Net is an encode-decode under-complete convolution
network that focuses on learning high-level features and fails in detecting fine
boundaries and smaller lesions. Hence in this paper, the overcomplete version
of U-Net and its variants Residual U-Net, and Attention U-Net are studied for
psoriasis lesions segmentation from the full body color images. The overcomplete
versions are found sensitive focusing from larger to smaller regions providingmore
precision in identifying the impacted Psoriasis skin lesions. They showed signifi-
cant performance measured using the Dice similarity index as 0.9280, 0.9780, and
0.9834 for Overcomplete U-Net, Overcomplete Residual U-Net, and Overcom-
plete Attention U-Net, respectively. Among them, Overcomplete Attention U-Net
has demonstrated superior performance compared to others.

Keywords: U-Net · Image segmentation · Deep learning · Overcomplete
convolutional layers

1 Introduction

Psoriasis is a noncontagious, long-term skin condition in which red, irritated, dry flaky,
or wet plaques appear all over the human body [1]. Psoriasis is of various types like
plaque, guttate, pustular, inverse and erythrodermic but the most common type is the
plaque psoriasis [2]. Psoriasis patients generate their skin cells ten times faster than
those in the healthy range, which results in thick epidermal layers. The unpleasant
patches that result from this aberrant growth have a detrimental effect on the affected
individuals’ quality of life [3]. Psoriasis can cause physical signs and discomfort, but
it can also have serious psychological and emotional impacts on people, affecting their
general well-being. Good management and treatment plans are essential for improving
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the mental and emotional well-being of the affected individual as well as for addressing
the physical symptoms. Although there is currently no known treatment for psoriasis,
the ailment can be effectively treated with consistent, organized approaches to disease
management [4].

Most psoriasis assessments are currently subjective and depend on physician’s physi-
cal and visual assessments. However, because individual perceptions vary, this subjective
assessment process is laborious and prone to errors [5]. Furthermore, there are difficulties
in accurately diagnosing psoriasis lesions due to significant problems in terms of severity
grades and contrast to healthy skin. The creation of an automated, accurate, and effective
psoriasis diagnostic method is badly needed to overcome these issues. The main chal-
lenge in putting into practice an automated diagnostic system is correctly segmenting
lesions because they vary widely in size, shape, and color of Upper extremities, trunk,
and back body regions, and lower extremities as shown in Fig. 1. Psoriasis is mainly
assessed by the area, redness (color), scaliness (whitish appearance) and thickness (ele-
vation). In addition to streamlining the diagnostic procedure, creating a strong automated
system will improve the precision of lesion identification and severity grading, which
would lead to more successful psoriasis therapy approaches.

Fig. 1. Sample images of psoriasis patients of Indian origin (a) Upper extremities, (b) trunk and
back body regions and (c) lower extremities (Note: The head area is omitted to protect the patient’s
identity through non-disclosure)

The most common method of automation adapted initially for this application was
machine learning.However, thesemachine-learning strategies developed for the segmen-
tation of psoriasis lesions rely largely on handmade characteristics and focus on clipped
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patches [6–10]. The introduction of deep learning models has nevertheless brought
notable improvements in this application with no manual pre-processing and feature
engineering [11]. Similarly, their contribution to identifying regions of interest in any
kind of image has been significantly enhanced [12]. They follow pixel-wise classifica-
tion followed by making borders around different pixel classes. Among them, one of
the very popular models is U-Net inspired by the Fully Convolution Network (FCN). U-
Net was a breakthrough revolution proposed by Ronneberger et al. [13] at the MICCAI
conference in 2015 to address the critical problem of detecting small to large objects in
medical images. This has given extensive focus to researchers on the application of deep
learning technology in medical imaging. The U-shaped structure of U-Net consists of
three modules i.e., encoder, bottleneck, and decoder. The acclimatization of U-Net to
the smaller input data is faster due to context information through skip connections.

There are numerous applications of U-Net reported in the literature of medical image
segmentation. The major challenges with medical image datasets are that they contain
image elements with poor pixel contrast with the background, voluminous images, and
tiny nature. Mostly medical imaging advancements have reached the generation of 3D
images which are often processed using 2D image processing methods [14].This faces
issues like computational complexity and poor performance. Hence to address these
issues, a 3D U-Net was proposed and extensively used in volumetric CT and MR image
segmentation studies [15–23] for single to multi-organ segmentation and for detecting
the malignant cardiac objects, brain tumours, lung nodules, liver tumors, bone objects
etc. U-Net is further equipped with the advantage of an attention gate [24] which helps
to learn explicitly the regions of interest. Attention U-Net achieves this by making use
of the attention gate that reduces the features not significant to the target region. It has
been found effective in the diagnosis of cervical cancer, lung cancer, skin diseases like
psoriasis, melanoma, brain tumours, fetus growth [25], and abdominal abnormalities
[26]. In one other variant inception U-Net [27], filters of variable sizes have been used
across each layer. They have been found to have less computational burden and effective
performance. The challenge inherent in training neural networks with significant depth
has been solved in residual U-Net by adding the input of the first layer to the output of
the second layer via a skip connection. These residual skip connections help to counter
the vanishing gradient problem and hence converge the deep networks faster. Their
application in medical images to mine valuable information has been widely explored
and found successful.

Furthermore, for the advancement of segmentation, Wang et al. [28] have proposed
large and deeply supervisedUNet++ having densely connected nested skip connections
for seamless semantic learning. They have been applied for the successful segmentation
of cell nuclei [29], cancer tissue [29], cardiac structures and vessels [30, 31], and pelvic
organs.

For further accuracy improvement in medical image segmentation for organs of
different sizes, a new version of U-Net named UNet 3 + was also devised by Huang
et al. [32]. It exploits full-scale skip connections and deep supervisions by adding both
low-level and high-level details at each level to learn hierarchical representation. The
local inherent behaviour of convolution limits U-Net to learning dependencies. Hence
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transformer-based U-Net, TransUNet was proposed by Chen et al. [33] which has joined
focus on global and local contexts from the input sequence of the CNN feature map.

To overcome the limitation of traditional U-Net, we present an Overcomplete U-Net,
a novel segmentation architecture that departs from the conventional encoder-decoder
paradigms. Unlike traditional techniques that map inputs to lower-dimensional embed-
dings, Overcomplete U-Net maps input data to higher dimensions spatially by increas-
ing filters. By limiting the expansion of the receptive field size in deeper layers and
enabling the extraction of small features, this strategic approach improves the network’s
ability to segment the small lesions on full body image. Overcomplete U-Net merges
U-Net’s ability to capture high-level features with the overcomplete capturing of high-
quality low-level features. This is particularly beneficial for datasets containing diverse
structural annotations.

2 Related Work

2.1 Traditional Encoder-Decoder Networks

In the past, researchers have commonly utilized traditional encoder-decoder networks,
such as U-Net and its variants, which have demonstrated decent performance, as dis-
cussed in the introduction [13–18]. However, these methods frequently fail to accurately
detect small lesions, which is crucial for precise diagnosis. Even when dealing with
larger structures, U-Net may encounter challenges in accurately segmenting multiple
lesions.

To demonstrate the effectiveness of U-Net, researchers evaluated it on the psoriasis
dataset [34, 35]. The results indicate that U-Net struggles to detect multiple lesions in
full-body images and may inaccurately segment them. Further analysis reveals that the
architecture of traditional encoder-decoder networks, characterized by down-sampling in
the encoder, results in an increased receptive field in deeper layers, prioritizing high-level
features over the fine details necessary for accurate segmentation.

2.2 Overcomplete Representation

Overcomplete representations were initially demonstrated in denoising autoencoder
models as effective feature detectors for image segmentation from noisy images. Later,
a few researchers adopted overcomplete networks in various fields to demonstrate their
superior ability to approximate various statistical distributions present in data [36]. Due
to their increased resilience to noise compared to undercomplete representations, over-
complete representations are widely utilized for tasks such as source separation in signal
mixes, signal reconstruction from noisy data, and biomedical image and volumetric seg-
mentation [36–38]. According to research findings, overcomplete fully connected net-
works can more accurately detect features compared to traditional bottleneck topologies
when utilized in denoising autoencoders. By leveraging the benefits of overcomplete
across different network architectures, we aim to further enhance the segmentation per-
formance for psoriasis lesion identification, ultimately improving diagnostic accuracy
and patient care outcomes.
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3 Methodology

In this work, we proposed Overcomplete U-Net architectures for identifying psoria-
sis lesions from digital color images. In this regard, we have implemented and tested
an Overcomplete U-Net and its two variants namely Overcomplete Residual U-Net
and Overcomplete Attention U-Net. In the proposed overcomplete architectures, the
encoder part projects the input image into spatially higher dimensions by increasing
filters at deeper layers which helps to increase feature mapping. The details of all three
overcomplete networks are described in the sub-sections below.

3.1 Overcomplete U-Net

Overcomplete U-Net projects the input image (512× 512) into a spatially higher dimen-
sion in the encoder path. Over-completing is achieved by incorporating a greater number
of hidden layers in the encoder module thereby preserving finer details and enhancing
the network’s ability to capture subtle features. The proposed overcomplete network
constrains the receptive field from expanding excessively as the network depth increases
in two steps with constant dimension at every layer, as shown in Fig. 2. Every layer
consists of two blocks with each block comprising conv2D(C), ReLU(R), and Batch
Normalization (BN). The mathematical operations of the convolution layer with the
kernel size of (3,3) and ReLU are represented by Eqs. (1) and (2), respectively.

Oi,j =
∑

m

∑

n

Ii+m,j+n × Km,n (1)

f (x) =
{
0, x < 0
x, x ≥ 0

(2)

where, Oi,j is output feature map at position (i, j) and Km,n denote kernel/filter position
at (m, n).

Furthermore, in the decoder module of Overcomplete U-Net architecture, each up-
sampling block consists of an Up-Sampled layer followed by a concatenation layer. The
concatenate layer concatenates the up sample of each layer and the conv2Dof the encoder
layer.This design choice enhances the network’s capability to capture detailed features
during the segmentation process, facilitating the accurate delineation of psoriasis lesions
even in challenging scenarios.

3.2 Overcomplete Residual U-Net

In this subsection,we present the outlines of the proposedOvercompleteResidualU-Net.
This variation of U-Net incorporates residual network (i.e. ResNet) blocks into the con-
ventional framework. By alleviating the vanishing gradient issue, ResNet blocks allow
the network to learn residual mappings, which facilitates the training of deeper mod-
els. Each ResNet block is composed of two subblocks, each block consists of Conv2D,
ReLU, andBatchNormalization, afterwhich the output of the second convolutional layer
is combined with a shortcut connection from an earlier layer using an element-wise addi-
tion operation based on dilation. This process improves the model’s capacity to detect
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Fig. 2. Architecture details of Overcomplete U-Net Network. The output dimension of each layer
is represented in the form of (height, width, channel)

small lesions accurately by facilitating the gradient flow during training. The encoded
feature maps are processed in this manner until the lowest resolution is achieved.

Subsequently, in the decoder path by using the up-sampling layer, we up-sample the
input signal which will be further input of the concatenate layer. The concatenate layer
concatenates the output of the up-sample layer and conv2D layer for producing encoded
feature maps. Furthermore, skip connections combine feature maps at matching resolu-
tions from the encoder and decoder to provide accurate object boundary localization in
the output.
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Fig. 3. Details of Residual U-Net architecture. The input image forwarded to the 3× 3Conv2D of
an Overcomplete Residual U-Net Network (a) and the Internal connection of the Residual U-Net
encoder has been visualized in (b).

3.3 Overcomplete Attention U-Net

Here, we present the outlines of the proposed Overcomplete Attention U-Net. The
encoder path is the same as described for U-Net and Residual U-Net. Attention methods
are added to the EfficientNet-B1 backbone for feature extraction in Overcomplete Atten-
tion U-Net architecture at each up-sampling stage in the decoder to improve semantic
segmentation. The attention mechanism uses Softmax normalization and the dot prod-
uct to calculate attention scores. It also comprises key, query, and value operations.
Subsequently, the feature map is enhanced additively with the weighted sum of val-
ues, emphasizing pertinent areas. The decoder consists of convolutional processes with
batch normalization and ReLU activation, concatenation with encoder features, and
up-sampling layers as shown in Fig. 4. Where M is the multiply and A is the activation.
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Fig. 4. Architecture details of Attention U-Net. The image forwarded the 3 × 3 Conv2D. (a) The
architecture of the Overcomplete EfficientNet-B1 Attention U-Net Network and (b) Connection
between the EfficientNet-B1 encoder and decoder path has been visualized.

4 Experimentation Details

4.1 Dataset

This research used psoriasis data fromPsoriatreat, a Psoriasis Clinic andResearchCentre
in Pune, Maharashtra, India. The collection consists of 500 digital photos that were
picked unbiasedly based on factors such as age, gender, race, or severity level from about
100 varied psoriasis patients. A measure to anonymize personal data was implemented,
and ethical approval was secured for the creation of the dataset. Pictures of the head,
upper limbs, trunk, and lower limbs were taken, among other body parts. For the sake
of patient privacy, pictures taken in the head area were not included. A Sony NEX-5
camera with a 22 mm lens, utilizing uncontrolled settings, was used to take pictures
at 350 dpi. Dermatologists and image tracing specialists worked together to manually
produce segmentation annotations for psoriasis lesions using the Pixel Annotation tool.
Preprocessing was done on the dataset to get it ready for the suggested model. First,
using nearest-neighbour interpolation in OpenCV, all raw RGB images and their related
ground truth labels were scaled to a fixed square dimension of 512 × 512. To improve
data consistency and computational performance, pixel values were then standardized to
the range [0, 1]. The dataset includes a wide range of unrestricted psoriasis photos with
a variety of backgrounds and artefacts, including skin hair, shadows, clothes, variations
in lighting, and differing perspectives. The production of a comprehensive dataset that
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includes a variety of noise sources and non-uniform backgrounds is made possible by
the heterogeneity in imaging settings.

4.2 System Implementation

The Keras deep learning package, which is integrated with the TensorFlow framework,
is used in this study, which is carried out using Python language. An Intel(R) Xeron(R)
Gold 6248R CPU@3.00GHz, 3001MHz, 24 Core(s), 48 Logical, and an NVIDIA RTX
A4000 GPU with 16 GB of memory are the components of the workstation used for the
experiments.

4.3 Training and Testing

The models are trained and tested using the holdout validation technique, which ensures
robustness and reduces bias. The dataset is divided into 70:30 at random for this tech-
nique. 70% is used for training and 30% is used for testing. The other training parameters
used for experimental purposes are listed in Table 1.

During training, the losses used are described below:

– Categorical cross-entropy loss (per pixel per channel)

The categorical cross-entropy loss measures the dissimilarity between the true labels
and the predicted probabilities for each pixel in each channel. For a single pixel (i, j, c),
the loss is computed as the negative logarithm of the predicted probability of the pixel’s
true class label. Mathematically, this loss is represented by Eq. (3) below:

Lossijc = −yijclog(y
∧

ijc) (3)

where yijc is the true label of pixel i in channel c and y
∧

ijc is the predicted probability of
i belonging to class j in channel c.

– Overall Categorical cross-entropy loss (per batch)

The overall loss for the entire batch is computed by summing the losses for all
pixels in all channels across all images and then averaging over the batch size and is
mathematically represented by Eq. (4) shown below:

OverallLoss = 1

N

N∑

i=1

H∑

j=1

C∑

c=1

Lossijc (4)

where N is the batch size,H is the total number of pixels per image, and C is the number
of channels (for RGB images, C = 3).

4.4 Evaluation Metrics

By comparing the predicted segmented lesion with the ground truth lesion pixel-by-
pixel, the suggested method’s quantitative performance for the desired job is evaluated.
Important assessment measures used include the Dice Similarity Index (DI), which is
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Table 1. Training parameter

Parameter Value

Mini batch size 8

Filters [64,128,256,512,1024]

Initial learning 0.0010

Epochs 100

optimizer Adam

well-known for being useful in evaluating segmentation success. The DI metric mea-
sures how similar the two are, indicating how effective the segmentation model is.
Furthermore, other metrics that are computed include Accuracy (ACC), Precision (PR),
Sensitivity/Recall (SE), and F1-score. Equations (5)-(9) define these performance met-
rics mathematically in terms of false positive (FP), true negative (TN), false negative
(FN) and true positive (TP).

DI = 2TP

2TP + FP + FN
(5)

ACC = TP + TN

TP + TN + FP + FN
(6)

PR = TP

TP + FP
(7)

SE = TP

TP + FN
(8)

F1 − score = 2 × PR × SE

(PR + SE)
= TP

TP + 0.5(FP + FN )
(9)

5 Results and Discussion

The proposed overcomplete networks of U-Net, Residual U-Net, and Attention U-Net
are evaluated using different performance indices, and the results are reported in Table 2.
From Table 2, it can be observed that the DI of Attention U-Net is 0.9834, Residual U-
Net is 0.9780, and U-Net is 0.9280. Attention U-Net outperforms the other two in terms
of DI. Additionally in terms of other performance indices also Overcomplete Attention
U-Net model performs better than all other compared networks with an ACC of 0.9909,
PR of 0.9909, SE of 1.00 and F1-score of 0.9954.

Apart from reporting the segmentation results based on performance indices, we
also present the visual comparison of segmentation results of actual RGB images with
overcomplete networks of U-Net, Residual U-Net, and Attention U-Net in Fig. 5. It
can be observed from Fig. 5 that Overcomplete Attention U-Net segments the small
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Table 2. Performance Comparison of Various Overcomplete U-Net Models

Parameters Overcomplete
Attention U-Net

Overcomplete
Residual U-Net

Overcomplete
U-Net

DI 0.9834 0.9780 0.9280

ACC 0.9909 0.9744 0.9543

PR 0.9909 0.9748 0.8805

SE 1.0000 0.9760 0.9501

F1-Score 0.9954 0.9754 0.9140

Fig. 5. (a) Actual Image, Segmentation prediction using (b) Overcomplete U-Net, (c) Overcom-
plete Residual U-Net and (d) Overcomplete Attention U-Net.

lesions more precisely than all other compared networks. This led to achieving better
segmentation performance results with Overcomplete Attention U-Net compared to the
other two models listed in Table 2.

To validate the effectiveness of overcomplete networks compared to the traditional
approaches for identifying psoriasis lesions, we reported a comparison in Table 3. Based,
on Table 3 it is clear that the overcomplete networks achieved a better result than the
traditional networks. Also, the Overcomplete Attention U-Net model shows one of the
most promising performances out of all the models.

Table 3. Comparison between the traditional approach and overcomplete networks

S.No Networks DI metric

Traditional Networks Overcomplete Networks

1 U-Net [34] 0.8834 0.9280

2 Residual U-Net [35] 0.9481 0.9780

3 Attention U-Net [39] 0.9590 0.9834

Apart from the evaluation metrics we also present the training validation curve of
Overcomplete Attention U-Net based on the performance. Figure 6. Shows the training
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and testing curves for this model. There are variations in the model during the first
few training cycles, but eventually, at approximately the thirty-first epoch, adaptive
changes in the learning rate cause the model to settle. A significant decline in the curve
is what triggers this automatic adaptation. After stabilization, a well-performing model
is indicated by the smallest gap between the training and validation curves.

Fig. 6. Dice coefficient curve for Overcomplete Attention U-Net

On performing further analysis, it has been observed that the DI metric for the
Overcomplete Attention U-Net model is less than 0.95 in some test images. This may
be due to (a) huge irregular boundaries and the shape of multiple lesions with different
severity levels, and (b) the high visual similarity between psoriasis and healthy skin
region. These lead to over or under-segmentation of psoriasis lesions. These limitations
may be overcome by using larger andmore diverse datasets having images frommultiple
skin tones. However, a DI of more than 0.9 is obtained for all test images with the
Overcomplete AttentionU-Netmodel. This performance is satisfactory enough to obtain
an objective and quantitative measurement of psoriasis area severity. This could help or
assist dermatologists in reproducing objective psoriasis area severity easily with no
change to perform prolonged diagnosis of psoriasis disease more efficiently.

6 Conclusion

We provide a series of fully automated deep learning-based methods in this research
study, using U-Net and its variants (i.e. residual and attention networks) with an over-
complete approach. Without the use of feature engineering or preprocessing, these tech-
niques seek to separate psoriasis lesions from digital photos obtained in a variety of
environments. We verify these network’s segmentation performance and obtain some
impressive results: Overcomplete Attention U-Net achieves a DI of 0.9834 and an ACC
of 0.9909, Overcomplete Residual U-Net yields a DI of 0.9780 and an ACC of 0.9744,
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and the simple U-Net with overcomplete approach yields a DI of 0.9280 and an ACC of
0.9543. These results show segmentation performance that is both efficient and promis-
ing. Besides, previous traditional deep learning-based segmentation models created for
this problem are surpassed by our suggested model, among those suggested models
Overcomplete Attention U-Net gave better results.

In summary, overcomplete networks offer a promising approach for addressing the
limitations of traditional U-Net architectures in tasks such as medical image segmenta-
tion. By incorporating additional layers and carefully designing the network architec-
ture, overcomplete networks enable more effective extraction of fine details and features,
leading to improved segmentation performance and diagnostic accuracy.

Acknowledgement. Authors acknowledge the Science andEngineeringResearchBoard (SERB),
Government of India, for financial support vide Reference No. EEQ/2021/000129 to carry out this
work.
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Abstract. Zero-shot multi-label image recognition involves the task of
recognizing multi-label images while “zero” visual information has been
input into the model during training. Recently, with the emergence of
large pre-trained vision-language model, the visual and semantic fea-
tures can be well aligned after being trained with billions of image-text
pairs collected from the internet. In this paper, by utilizing the pre-
trained CLIP model, we propose a dual-branch task residual enhance-
ment with parameter-free attention module that enhances interaction of
inter-modal information to tackle the problem of multi-label image recog-
nition. The method employs a dual-branch structure, including global
and local branches. The local branch mitigates global feature dominance,
improving image content understanding ability of local regions. Our
method shows superiority in zero-shot multi-label learning on VOC2007,
MS-COCO, and NUS-WIDE datasets, surpassing the state-of-the-art
methods. Additionally, it also has excellent performance in partial label
settings. Code is available in the supplementary materials.
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1 Introduction

Multi-label image recognition (MLR) aims to identify all object categories or
concepts that appear in an input image. Due to the intrinsic multi-label nature
of images, it has great potential value of developing specific algorithms to solve
multi-label image recognition problems. It benefits a comprehensive understand-
ing of the complex scenarios and can be helpful to other tasks like image retrieval
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etc.. In practice, some categories are not easy to collect for training an MLR
model in many scenarios, which requires the model to be capable of recognizing
novel classes in the ‘zero-shot’ setting.

With the emergence of large pre-trained vision-language models, like CLIP [1]
and ALIGN [2], a well-aligned image-text feature space can be obtained after
training with billions of image-text pairs in a contrastive learning way. Therefore,
the pre-trained vision-language model can be empowered with a great capability
of recognizing novel classes. To efficiently transfer the large pre-trained model
to downstream tasks, there exists two types of popular and effective methods,
namely prompt tuning [3–7] and adapter-style tuning [8–12] which aims to tune
the model with a small portion of parameters. However, prompt tuning and
adapter tuning can unavoidably damage the prior knowledge or can be exces-
sively biased towards the prior knowledge [13]. To alleviate the problems, task
residual learning is proposed to keep the original synthesized classifier weights
frozen and introduce a set of prior-independent parameters that are added to
the weights. However, it is not suitable for multi-label recognition.

On the other hand, prompt tuning methods require sufficient image data to
achieve promising performances. Guo et al. [3] proposed TaI-DPT to learn the
prompt with texts only given a large corpus of easily accessible image captions as
alternatives form. In this paper, we improve the framework of TaI-DPT from two
aspects. Firstly, we propose a dual-branch task residual to take consideration of
both global and local concepts.With the help of the prior-independent dual-branch
task residual, the final multi-label recognition results can be greatly boosted. Sec-
ondly, to make the image/text features concentrate more on the target classes,
we employ a parameter-free attention module to enhance the interaction of inter-
modal information. To be specific, the dual-branch task residual is devised to pre-
serve prior knowledge from both global and local perspectives, thereby enhancing
flexibility, scalability, and the capability to learn task-specific knowledge. While
the parameter-free attention mechanisms aim to identify relevant image parts with
a prompt description. To summarize, the contributions of this work include:

– We propose a dual-branch task residual module to transfer the pre-trained
models from both the global and local aspects for the multi-label image recog-
nition task.

– Providing a bridge for the communication of inter-modal information, we
additionally propose utilizing a parameter-free attention module to enhance
the image/text features, focusing more on target classes.

– Our method has achieved excellent results on three zero-shot multi-label
recognition datasets, namely VOC2007, MS-COCO, and NUS-WIDE, sur-
passing the state-of-the-arts methods. Furthermore, it performs excellently
in partial label multi-label recognition tasks as well.

2 Related Work

2.1 Multi-Label Image Recognition

Multi-label recognition aims to identify all target objects in an image. To
explore richer image information, various existing methods mine the relationship
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Fig. 1. Architecture comparison between existing tuning and our tuning for muti-label
recognition. Prompt Tuning and Adapter Tuning have no communication between
modalities before calculating similarity. We utilize a parameter-free attention mod-
ule (inter-modal bridge) to enhance the image/text features, focusing more on target
classes, thus providing a bridge for the communication of inter-modal information. And
our tuning is devised to preserve prior knowledge from both global and local perspec-
tives, while enhancing flexibility, and the capability to learn task-specific knowledge.

between labels through approaches such as graph convolution network (GCN),
and enhance local information exploration to refine perception of small targets.

In order to explore the relationship between labels, methods such as SCP-
Net [14] use GCN to learn semantic graph embeddings in multi-label classifica-
tion. MlTr [15] effectively combines pixel attention and cross window attention
to make local preliminary judgments on the target, and then globally matches
relevant features to solve the problem of identifying small local targets. FL-
Tran [16] utilizes a multi-scale fusion module to learn multi-scale features and
accurately identify small-scale targets in an image. At the same time, it uses
feature enhancement and suppression modules to mine various potential target
object features in an image.

Although these methods are effective, they require a substantial amount of
annotated images for training in order to achieve better performance. It remains
a challenging issue for learning multi-label image recognition in image-limited or
label-limited regimes. Based on vision-language pre-trained models (CLIP), we
propose a dual-branch task residual with parameter-free attention approach for
zero-shot multi-label recognition.

2.2 Efficient Transfer Learning for Vision-Language Models

Large vision-language pre-trained models (VLMs) have learned general visual
representations and broad visual concepts. How to exploit these prior knowledge
to multi-label recognition is a challenge that urgently needs to be addressed.
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Efficient Transfer Learning (ETL) represents parameter efficient and data
efficient transfer learning. Existing efficient transfer methods can be divided into
the following two categories: prompt tuning and adapter style tuning. Prompt
tuning [3,14,17] lacks prior knowledge preservation. Although the weights of
pre-trained text encoder is frozen in prompt tuning, the original well learned
classification boundaries are more or less damaged. It abandons the pre-trained
text classifier and generates new one, which results in the loss of prior knowledge
from VLMs. In addition, it also requires the pre-trained text encoder to partic-
ipate in the training phase to generate new text embeddings after each param-
eter updates, which limits its scalability and increases computational overhead.
Adapter style tuning [9,10] limits the flexibility of exploring new knowledge.
Adapters fine tune text embeddings without learning independent knowledge to
adapt to specific tasks, as its input is strictly limited by old pre-trained knowl-
edge. Regardless of whether the pre-trained features are suitable for the task,
the results of the adapter only depend on them, which limits the flexibility of
adapter style tuning to learn new knowledge. Fig. 1 shows the architecture com-
parison between existing tuning for muti-label recognition and our tuning for
muti-label recognition. To address these issues, we propose a dual-branch task
residual with parameter-free attention method to solve the problem of efficiently
transferring the prior knowledge from VLMs to multi-label recognition tasks.

3 METHODS

Dual-Branch Task Residual

Global 
Probability

Local 
Probability

Parameter 
Free

Attention

Text
Encoder

Global

 Loss

Local

 Loss

: Frozen Parameters: Global Branch

: Local Branch : Tuned Parameters

Image
Encoder

Testing Phase

Text
Encoder

plane apple bear...

 There are multiple objects in 

the photo,including a [CLASS].

A cat is looking inside of 

a door from the outside.

Training Phase

cat   door

1  0   0  ...  0  1

Text Embeddings

Text Embeddings

Text Embeddings

Text Embeddings

Fig. 2. An overall illustration of the proposed dual-branch task residual enhancement
with parameter-free attention (DTRPA) framework for zero-shot multi-label image
recognition. It consists of the dual-branch task residual (DBTR) and parameter-free
attention (PFA) modules that aim to capture more fine-grained task-specific features
and the interaction of inter-modal information.

The overview of our proposed method is illustrated in Fig. 2. We use two identical
text encoders of pre-trained CLIP model to encode prompts and text descrip-
tions. Dual branches are used when encoding handcraft template prompts. The
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text embeddings, acquired through the dual-branch task residual module, and
image/text embeddings (treating text descriptions as images) are input into
the parameter-free attention module to strengthen the interaction of inter-
modal information and enhance the image/text features to concentrate on target
classes. A noun filter is employed to produce classification pseudo-labels for every
text description, thereby providing supervision for the classification outputs.

The traditional handcraft prompt ‘A photo of a [class]’ for single-label image
recognition has limitations in multi-label recognition tasks, as it semantically
restricts images to belong to only one category. We propose an improved template
prompt for multi-label image recognition, ‘There are multiple objects in the
photo, including a [CLASS]’. This realistic prompt can handle label uncertainty,
improve overall image understanding, and be applicable to complex scenarios,
improving real-world multi-label recognition capabilities.

3.1 Dual-branch Architecture

A multi-label manual template prompt ‘There are multiple objects in the photo,
including a [CLASS]’ is processed by text encoder. It generates two kinds of text
embeddings: global and local text embeddings. The global and local text embed-
dings are processed through the dual-branch residual module to obtain the global
classifier and the local classifier. In multi-label recognition, global features often
prioritize the primary object, potentially overlooking other important objects. To
address this, we introduce a local branch to mitigate global feature dominance.
It enhances the exploration of fine-grained features and improves sensitivity to
image details. The collaboration between the global and local branches allows
us to comprehensively capture image information. This architecture can improve
the multi-label recognition accuracy, especially in complex scenarios.

3.2 Dual-branch Task Residual Module

The dual-branch task residual module is a set of parameters that can be continu-
ously optimized independently of the base classifier (based on text embeddings).
The task residual can be represented as:

F
′
t = Ft + α · X, (1)

where X ∈ R
K×D denotes a set of learnable parameters, Ft ∈ R

K×D represents
the text embeddings obtained from the text encoder, which serves as the base
classifier, K signifies the number of classes and D denotes the dimensionality.
The hyperparameter α is used for scaling X, and we adopt an adaptive learning
approach to learn a suitable coefficient α. We employ the hyperparameter α to
scale the parameters X specifically learned for the given task. Subsequently, α·X
is incorporated into the base classifier to create a new classifier for the target
task, denoted as F

′
t . In the global branch, the residual operation is as follows:

F g′
t = F g

t + α · Xg, (2)
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where F g
t , F g′

t , Xg, represents global base classifier, global new classifier, global
learnable parameters, respectively. In the local branch, the residual operation is
as:

F l′
t = F l

t + α · X l, (3)

where F l
t , F l′

t , X l, represents local base classifier, local new classifier, local
learnable parameters, respectively.

During the training phase, text descriptions are used to only optimize the
prior-independent dual-branch task residual, while others remain frozen. The
method allows us to reliably preserve prior knowledge and facilitate flexible
exploration of new knowledge. During the testing phase, as shown in Fig. 2,
we replace the text encoder with an image encoder to extract local and global
features from the input test image.

3.3 Parameter-free Attention Module

To gain a deeper insight into the relationship between images and texts, we
introduce an approach built on attention mechanisms. We utilize image/text
embeddings as query vectors and text embeddings as key vectors to compute
the attention matrix. This empowers us to identify the most relevant parts or
features of an image concerning a given textual description, thereby enhancing
the model’s comprehension of the relationship between texts and images.

Given the global image embeddings F g
image as query, and the global text

embeddings processed by the dual-branch task residual moduleF g
t as key and

value, we first calculate the score matrix as follows:

Score =
F g

image · F g
t√

D
, (4)

where D represents the dimension of the key. Next, we use the softmax function
to calculate attention weights:

Ag = Softmax(Score), (5)

Finally, we use the attention weights Ag to sum the value vector by weight, to
obtain the final output:

F g
image = Ag · F g

t , (6)

The same procedure is applied to the local branch, resulting in the final local
image embeddings denoted as:

F l
image = Al · F l

t . (7)

The global similarities pi and aggregated local similarities p
′
i are computed

by:
pi =< F g

image, F
g′
ti >,Pij =< F l

imagej
, F l′

ti >, (8)

where < ·, · > denotes the calculation of cosine similarity, i denotes the ith
class, j denotes the jth patch of the image, Pij denotes cosine similarities of
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each patch, F g
image ∈ R

1×D denotes either text features during training or visual
features during testing of the global branch, and F l

image ∈ R
N×D denotes the

corresponding part of the local branch. Pij can be aggregated in a spatially
weighted manner:

p
′
i =

∑N
j=1

exp(Pij/τs)∑N
j=1 exp(Pij/τs)

· Pij , (9)

where τs accommodates the extent of focusing on a specific location. pi and p
′
i

are optimized by the loss terms Lg and Ll, respectively. In the testing phase, pi

and p
′
i are ensembled to obtain the final classification score.

We analyze the correlation between image and text by treating image as query
and text as key. This approach enhances the model’s understanding of the text-
image relationship, highlighting relevant image elements. Multi-label recognition
involves identifying multiple labels, potentially linked to different image regions.
It allows the model to distinguish various labels in the image regions and assign
accurate weights, improving multi-label classification accuracy.

3.4 Loss Function

The overall objective for the parameter optimization is formulated as follows:

L = Lglobal + Llocal, (10)

where Lglobal and Llocal are obtained by calculating the classification probabili-
ties from the global and local branches, respectively, and the pseudo labels are
generated by the noun filter. We use the ranking loss [18] to measure the dis-
crepancy between the predicted probabilities and the pseudo labels. Lglobal and
Llocal can be formulated as follows:

Lglobal =
c+∑

i=1

c−∑

j=1

max(0,m − pi + pj),

Llocal =
c+∑

i=1

c−∑

j=1

max(0,m − p
′
i + p

′
j),

(11)

where c+, c− denotes the positive labels and the negative labels, m represents
the margin used to control the distance between positive and negative labels.

4 EXPERIMENTS

4.1 Experimental Settings

Datasets We evaluate our method on three widely adopted datasets, namely
VOC2007 [21], MS-COCO [22], and NUS-WIDE [23]. VOC2007 includes 20 com-
mon categories, and we follow established references [17,24] to split it into a
training set of 5,011 images and a test set of 4,952 images. MS-COCO con-
tains 80 categories, with 82,081 training images and 40,504 validation images,
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Table 1. Comparison with zero-shot methods and the current state-of-the-art (TaI-
DPT) in zero-shot multi-label learning on VOC2007, MS-COCO, and NUS-WIDE
datasets.

Method Dual-branch VOC2007MS-COCONUS-WIDE Avg.

ZSCLIP [1] (PMLR-21)� 76.2 47.3 36.4 53.3

� 77.3 49.7 37.4 54.8

TaI [3] (CVPR-23) � 86.0 61.1 44.9 64.0

� 88.3 65.1 46.5 66.6

DTRPA (Ours) � 88.1 65.0 47.0 66.7

� 89.7 68.6 46.7 68.3

conforming to official splits. NUS-WIDE, including 81 interconnected concepts,
provides a comprehensive testing set of 107,859 images for the evaluation of
our method. For zero-shot experiments in Sec. 4.2, following [3], we use cap-
tions from public MS-COCO and localized narratives from OpenImages as the
language data source to learn the dual-branch task residual model.

Implementation Details We train our models with 100 epochs for zero-shot
experiments on all datasets except for MS-COCO with 20 epochs. We employ
Adam optimizer with an initial learning rate of 2e-3 on VOC2007 and NUS-
WIDE, and SGD optimizer with 2e-2 on MS-COCO. The scaling factor α is set
as a learnable parameter so as to adaptively adjust to the most suitable value.
The experiment found that the optimal value of α is 4.7 on NUS-WIDE, 11.0 on
MS-COCO and 5.0 on VOC2007. τs is set as 0.02 via validation. The batch size
for the training is set to 256, while for the testing, it is set to 500. The input
image is resized to (224, 224). Image transformations include operations such
as random cropping and resizing, random flipping, and normalization, among
others, which are used for data augmentation and pre-processing.

Evaluation Metric Following [3], we employ the mean average precision (mAP)
as the evaluation metric for zero-shot setting. In partial label setting, we follow [3,
14,17] to present the mAP for each proportion of labels available for optimization
(from 10% to 90%) and calculate its overall average for all proportions.

4.2 Comparison with Zero-Shot Methods

In order to demonstrate the effectiveness of our proposed method, we com-
pare the results with zero-shot CLIP [1] and the current state-of-the-art method
in zero-shot multi-label learning, TaI-DPT [3]. Table 1 displays the results on
VOC2007, MS-COCO, and NUS-WIDE. From Table 1, it can be observed that
our method outperforms ZSCLIP by 13.5%, 21.3%, and 10.6% on the VOC2007,
MS-COCO, and NUS-WIDE, respectively. Without using dual-branch architec-
ture, our method exhibits an average improvement of +2.7% when compared to
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Table 2. Comparison with the current state-of-the-art partial label multi-label recogni-
tion methods on VOC2007 and MS-COCO. * indicates the results of our reproduction.

Datasets Method 10% 20% 30% 40% 50% 60% 70% 80% 90% Avg.

MS-COCO SST [19] (AAAI-22) 68.1 73.5 75.9 77.3 78.1 78.9 79.2 79.6 79.9 76.7

SARB [20] (AAAI-22) 71.2 75.0 77.1 78.3 78.9 79.6 79.8 80.5 80.5 77.9

DualCoOp [17] (NeurIPS-22) 78.7 80.9 81.7 82.0 82.5 82.7 82.8 83.0 83.1 81.9

SCPNet [14] (CVPR-23) 80.3 82.2 82.8 83.4 83.8 83.9 84.0 84.1 84.2 83.2

DualCoOp* 79.4 81.1 81.9 82.4 82.8 83.1 83.3 83.4 83.6 82.3

+DTRPA (Ours) 80.4 81.8 82.5 82.9 83.2 83.5 83.7 83.8 83.9 82.9

VOC 2007 SST [19] (AAAI-22) 81.5 89.0 90.3 91.0 91.6 92.0 92.5 92.6 92.7 90.4

SARB [20] (AAAI-22) 83.5 88.6 90.7 91.4 91.9 92.2 92.6 92.8 92.9 90.7

DualCoOp [17] (NeurIPS-22) 90.3 92.2 92.8 93.3 93.6 93.9 94.0 94.1 94.2 93.2

SCPNet [14] (CVPR-23) 91.1 92.8 93.5 93.6 93.8 94.0 94.1 94.2 94.3 93.5

DualCoOp* 91.6 92.9 93.6 94.0 94.1 94.4 94.5 94.5 94.4 93.8

+DTRPA (Ours) 92.7 93.8 94.2 94.5 94.6 94.8 95.0 94.9 94.9 94.4

the TaI-DPT method (+2.1% on VOC2007, +3.9% on MS-COCO, and +2.1%
on NUS-WIDE). When incorporating dual-branch, our method demonstrates an
average improvement of+1.7%across the three datasets compared to theTaI-DPT
method (+1.4% on VOC2007, +3.5% on MS-COCO, and +0.2% on NUS-WIDE).

Our experiments indicate that the dual-branch task residual enhancement
with parameter-free attention method can greatly improve the multi-label recog-
nition results. With the dual-branch task residual module, the prior knowledge
can be well preserved and greater flexibility is offered, whereas the parameter-free
attention mechanisms enhance the accurate understanding of text descriptions,
ultimately improving the recognition performance.

4.3 Comparison with Partially Labeled Methods

Following [14,17,19,20], our method can also perform multi-label recognition
for partial labels. SCPNet [14] advocates addressing the partial label multi-label
recognition (MLR) by deriving a structured semantic prior about the label-to-
label correspondence via a semantic prior prompter. DualCoOp [17] encodes
positive and negative contexts using prompts. With minimal additional learn-
able overhead on the VLMs, it swiftly adapts to partial label MLR tasks with
limited annotations. We reproduce the partial labeled MLR of DualCoOp on
the VOC2007 and MS-COCO datasets with the same experimental setting as
reported. In Table 2, DualCoOp represents the original result, and DualCoOp*
represents our reproduced result. The results indicate that our methods can
enhance existing MLR methods. Our method exhibits an average mAP improve-
ment of +0.9% on VOC2007 compared to the SOTA method. Especially when
there are only few labels, our method exhibits an improvement of +1.6%. The
average mAP surpasses DualCoOp by +0.6% on all datasets.

4.4 Ablation Study

Table 3 presents ablation experiments to show the effectiveness of the proposed
task residual and parameter-free attention module. As shown in Table 2, when
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Table 3. The ablation experiments about the dual-branch task residual (DBTR) and
parameter-free attention (PFA) modules.

Method Dual-branch VOC2007 MS-COCO NUS-WIDE Avg.

TaI-DPT � 86.0 61.1 44.9 64.0

� 88.3 65.1 46.5 66.6

DBTR � 87.6 (+1.6)64.0 (+2.9)46.7 (+1.8) 66.1 (+2.1)

� 89.4 (+1.1)67.5 (+2.4)46.6 (+0.1) 67.8 (+1.2)

DBTR+PFA� 88.1 (+2.1)65.0 (+3.9)47.0 (+2.1) 66.7 (+2.7)

� 89.7 (+1.4)68.6 (+3.5)46.7 (+0.2) 68.3 (+1.7)

using only the task residual module, our method exhibits an average mAP
improvement of +2.1% on three datasets in the single-branch setting and +1.2%
in the dual-branch setting compared to the state-of-the-art methods. This sug-
gests that our approach effectively preserves prior knowledge of VLMs to a
considerable extent. Moreover, in Table 2, the inclusion of the parameter-free
attention module alongside the task residual module brings an average mAP
improvement of +0.6% in the single-branch scenario and +0.5% in the dual-
branch scenario compared to the utilization of the task residual module alone.
It’s worth noting that the parameter-free attention module requires no additional
training and performs exceptionally well on the MS-COCO dataset (+1.0% and
+1.5%).

5 Conclusion

In this paper, we present a dual-branch task residual enhancement with
parameter-free attention method to tackle the problem of zero-shot multi-label
image recognition. In addition, it is also suitable for partial label MLR. Our
method independently preserves prior knowledge from both global and local per-
spectives through a dual-branch task residual module, and utilizes a parameter-
free attention module to enhance the interaction of inter-modal information and
identify relevant image regions for prompt descriptions, thereby encouraging the
image/text features to concentrate more on target classes. Experimental results
on MS-COCO, VOC2007, and NUS-WIDE datasets validate the effectiveness of
our approach.
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Abstract. Colorization of images serves as a transformative tool, imbu-
ing black and white pictures with vitality that mirrors the essence of the
captured moment. Beyond merely transitioning aged images into mod-
ern color renditions, this process extends its reach to inferring colors for
images where conventional color-capturing methods fail. In this paper,
we introduce a novel algorithm designed to seamlessly convert grayscale
images into perceptually consistent color compositions. We have also
developed a novel layer by combining convolutional and lambda layers
towards image colorization. Our proposed algorithm represents a signif-
icant advancement in the field of image colorization, offering a multi-
faceted solution to enhance visual storytelling and comprehension.

Keywords: Lambda Layers · Image Colorization · Transformer

1 Introduction

Image colorization holds immense significance as it has the power to inject vital-
ity into monochrome images, revealing a plethora of emotions and intricacies
hidden within grayscale limitations. Through the addition of color, historical
visuals are revitalized, offering a richer understanding of the depicted scenar-
ios and their surrounding ambiance. Moreover, colorization surpasses tempo-
ral barriers, allowing audiences to intimately engage with history. Colorization
presents a significant challenge due to the diverse range of colors objects within a
scene may possess, influenced by factors like lighting and texture. For instance,
skin tones can vary under different lighting conditions, while landscapes may
appear distinct based on time or season. To tackle this complexity, researchers
have devised various colorization techniques, ranging from manual to automatic
and semi-automatic methods. Manual colorization involves adding color by hand

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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using software like Photoshop, offering control and artistic freedom but demand-
ing time and expertise. Automatic approaches leverage machine learning to pre-
dict colors based on patterns learned from extensive datasets. Semi-automatic
methods, like scribbler-based techniques, allow user input for finer control. How-
ever, automatic colorization encounters challenges such as one-to-many associ-
ations, where a grayscale image can have multiple equally plausible coloriza-
tions. To address this, strategies like generative adversarial networks (GANs)
and self-supervised learning have been proposed. Yet, many automatic methods
struggle with color consistency and realism. To enhance results, we propose a
novel Lamda net-based algorithm. These aids can guide the colorization process,
ensuring more consistent and accurate outcomes. This holistic approach aims to
improve colorization’s realism, semantic understanding, and overall naturalness,
bridging the gap between grayscale input and vibrant, lifelike color output. In
this paper, we propose a lambda abstraction-based colorization model that takes
grayscale image as input and produces the color components using local and
global attentions computed using lambda module.

In this work, our key contribution is to include the long-range interactions
without a transformer-based attention model for the colorization task. To the
best of our knowledge, this is the first attempt to use lambda abstraction to
invoke attention in the colorization process. Our extensive experiments show
that our proposed method significantly outperforms the SOTA algorithms.

The remaining sections of this paper are structured as follows. In Section 2,
we review existing literature pertaining to image colorization. Section 3 provides
an overview of the pipeline and details the proposed methodology. Experimental
results, encompassing dataset description, qualitative findings, comparisons with
established methods, and various ablation studies, are presented in Section 4.
Finally, Section 5 concludes the paper by summarizing key observations, address-
ing limitations, and outlining potential future avenues for enhancing the pro-
posed algorithm.

2 Related Works

Over the past two decades, image colorization has emerged as a prominent focus
in computer vision research, initially driven by conventional machine learning
methods [4,13,22]. However, recent years have witnessed a shift towards deep
learning (DL) techniques due to their remarkable success across various domains
[2,10,24,26,27]. DL-based automatic image colorization systems have particu-
larly demonstrated impressive performance [3,7–9,11,19,20,22,23,25,27,30].

The pioneering application of deep learning to image colorization was intro-
duced by Cheng et al. in [8], employing a network architecture consisting of five
fully connected layers with ReLU activation, and trained using the least-squares
error loss function. Conversely, Carlucci et al. in [7] leveraged deep depth infor-
mation from pre-trained ImageNet networks, utilizing them as feature extractors
with frozen weights, and integrating this information into the colorization pro-
cess.
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In DDcolor [17], a dual decoder model is introduced for spatial resolu-
tion restoration. This model incorporates a query-based color decoder, which
enhances features across multi-scale representations of color. By leveraging dual
decoders, DDcolor effectively addresses spatial details while preserving color
fidelity, contributing to the overall quality of the colorized images. Colorformer
[16] presents a novel network architecture featuring a transformer-based encoder
and a color memory decoder. By integrating global-local attention operations,
Colorformer enhances global receptive field dependencies, thereby improving the
overall coherence and realism of colorized images. This approach demonstrates
the effectiveness of leveraging transformer architectures for image colorization
tasks. Bigcolor [18] focuses on synthesizing vivid colors while alleviating the
burden of synthesizing image structures. This is achieved by introducing a gen-
erative color prior learned by a BigGAN-inspired encoder-generator network.
By decoupling color synthesis from structural synthesis, Bigcolor achieves supe-
rior results in terms of color fidelity and realism. CT2 [29] proposes an end-to-
end transformer-based model designed to enhance color diversity in colorized
images. Leveraging transformers’ capability for long-range context extraction,
CT2 adopts a holistic architecture that effectively captures intricate color varia-
tions and nuances. This approach showcases the potential of transformer archi-
tectures for advancing the state-of-the-art in image colorization.

3 Method

Long-range interactions without explicit attention mechanisms are a key aspect
of many recent advancements in neural network architectures. These architec-
tures are designed to capture dependencies between distant elements in the input
data without relying on traditional attention mechanisms. Instead, they utilize
various techniques to facilitate communication and information exchange across
different parts of the network. One approach is to increase the receptive field
of convolutional layers by stacking multiple layers or using dilated convolutions.
This allows the network to capture information from a broader context without
introducing additional parameters or computational overhead. Another tech-
nique incorporates recurrent connections between layers, enabling information
to propagate across multiple time steps or processing stages. In colorization
methods, the LAB color space is commonly employed. This method typically
involves taking the ”L” channel, which represents the grayscale image, and pre-
dicting the ”AB” channel to add colorization. This process utilizes the LAB
color space’s separation of luminance (L) from chrominance (AB), allowing for
efficient colorization algorithms.

3.1 Lambda Networks

In the Lambdanetwork [5] , we aim to construct a linear function R|k| → R|v|,
denoted by a matrix λn ∈ R

|k|×|v|. The lambda layer initially computes keys K
and values V through linear projections of the context. Keys are then normalized
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across context positions using a softmax operation, resulting in normalized keys
K. The λn matrix is derived by aggregating the values V using the normalized
keys K and position embeddings En, formulated as:

λn = (KT · V ) + (ET
n · V)

Where:

– λn represents the content lambda and position lambda.
– The content lambda λc is shared across all query positions n and remains

invariant to context permutation. It specifies how to transform the query qn
solely based on context content.

– The position lambda λpn
depends on the query position n through the posi-

tion embedding En. It specifies how to transform the query qn based on
context elements cm and their relative positions to the query (n,m).

Positional Embeddings Like traditional Transformer models, LambdaNet-
works incorporate positional embeddings to encode the order or position of ele-
ments in the input sequence. However, unlike Transformers, which utilize these
embeddings primarily for attention mechanisms, LambdaNetworks uses them as
the basis for modeling interactions across distant elements in the sequence.

Pointwise Transformations LambdaNetworks applies pointwise transforma-
tions to the positional embeddings to generate context-aware representations for
each element in the sequence. These transformations are applied independently
to each element, allowing the model to capture long-range dependencies without
the need for pairwise attention computations.

Local Interaction Window To limit the computational complexity of mod-
elling long-range interactions, LambdaNetworks introduces a local interaction
window. Instead of considering interactions between all pairs of elements in the
sequence, the model focuses on a local neighbourhood around each element. This
windowing strategy helps control the computational cost while still enabling the
model to capture global context information.

Learnable Basis Functions LambdaNetworks use learnable basis functions
to parameterize the pointwise transformations. These basis functions are shared
across all elements in the sequence and are optimized during training to capture
relevant interactions between positional embeddings.

Hierarchical Feature Representation LambdaNetworks are capable of
learning hierarchical representations of features in the input sequence. By apply-
ing multiple layers of pointwise transformations, the model can progressively
capture higher-level abstractions and dependencies in the data.
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Down-Lambda layers We construct a specialized layer, combining a lambda
layer with a convolutional operation. Initially, a convolutional layer with a 3x3
kernel is applied, facilitating downsampling by a factor of 2. Subsequently, a
lambda layer is introduced, augmenting the feature count while concurrently
diminishing the image dimensions.

Up-Lambda layers The up-lambda layer consists of a convolutional transpose
layer followed by a lambda layer. The convolution transpose layer employs a
2x2 kernel with a stride of 2. This layer receives two inputs: one from the lower
dimension and the other from the encoder side. Subsequently, the lambda layer
is applied for further processing.

Pseudo-code for the Multi-query lambda layer Here is the pseudo-code
for the Multi-query lambda layer. This lambda layer leverages tensor operations
for efficient computation in deep learning models, specifically in the context of
multi-query attention mechanisms.

def lambda_layer(queries , keys , embeddings , values):

"""Multi -query lambda layer."""

# b: batch , n: input length , m: context length ,

# k: query/key depth , v: value depth ,

# h: number of heads , d: output dimension.

content_lambda = einsum(softmax(keys), values , ’bmk ,bmv ->

bkv’)

position_lambdas = einsum(embeddings , values , ’nmk ,bmv ->

bnkv’)

content_output = einsum(queries , content_lambda , ’bhnk ,

bkv ->bnhv’)

position_output = einsum(queries , position_lambdas , ’bhnk

,bnkv ->bnhv’)

output = reshape(content_output + position_output , [b, n,

d])

return output

Here, The einsum operation represents generalized contractions between ten-
sors of arbitrary dimensions. It is numerically equivalent to broadcasting its
inputs to share the union of their dimensions, performing element-wise multipli-
cation and summing across all dimensions not specified in the output.

3.2 Generator

The generator architecture is tailored to handle single-channel images sized
256x256. Initially, an input convolution layer with a 3x3 kernel and 64 chan-
nels is applied. Subsequently, four down-lambda layers are employed to gradu-
ally increase the dimensional representation of the image by reducing the matrix
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size. This downsampling process diminishes the matrix size to 16x16 by halving
it iteratively, thereby enhancing the feature representation. Simultaneously, the
number of channels or features is doubled in each down-lambda layer. This aug-
mentation ensures richer feature extraction and better representation learning.
Consequently, the generator transforms the input grayscale image into a higher-
dimensional feature space, enabling it to capture intricate details and semantic
information effectively. This design choice optimizes the generator’s capability
to generate high-quality colorized outputs while maintaining computational effi-
ciency. Following the height representation of the feature metric, a decoder-like
representation is crafted. This involves incorporating four up-lambda layers to
generate an enhanced representation of the matrix with a size of 256x256. Addi-
tionally, features from the same down-lambda layers are utilized to compute the
subsequent layer in the up-lambda sequence. Finally, an out convolutional layer
is added, configuring the channel count to 2. Please see the detailed overview of
the model in Fig 1.
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Fig. 1. Diagram of the proposed network.

3.3 Discriminator

To ensure effective local quality detection of colorized images, our colorization
task employs a PatchGAN discriminator, denoted as D. This discriminator is
pivotal in evaluating the quality of generated colorized images at a patch level,
facilitating high-quality single-level generation. Grayscale images (Li) are paired
either with target images (T i) or estimated images (Ei), where T i and Ei repre-
sent the AB channels of the color image. The combination of (Li,T i) is labeled as
real, while (Li,Ei) is labeled as fake, thereby enforcing discrimination on image
transitions rather than the images themselves.The Patch discriminator in our
model processes a three-channel input dimension of 256×256. It consists of three
convolution blocks, each containing 64, 128, and 256 filters, respectively, with a
filter dimension of 4 × 4. Strides of 2 are employed for the first two convolution
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blocks, while a stride of 1x1 is used for the last two blocks. Batch normalization
and leaky ReLU activation follow each convolution layer. Subsequently, a single
filter of kernel size 4x4 is applied with a stride of 1 to compute the final response.
The discriminator’s output is the average of these final responses.

3.4 Losses

MAE loss The L1 loss, also known as the mean absolute error (MAE) loss,
measures the absolute differences between corresponding elements of two tensors.
It is commonly used as a loss function in regression problems to penalize the
magnitude of the errors between predicted and target values. The L1 loss is
calculated as follows:

LL1 =
1
N

N∑

i=1

|yi − ŷi|

where:

– N is the number of samples or elements in the tensors.
– yi is the true target value or ground truth.
– ŷi is the predicted value.
– | · | denotes the absolute value.

GAN loss The GAN loss, used in Generative Adversarial Networks (GANs), is
a key component in training the generator and discriminator networks. It com-
prises two main components: the generator loss (LG

GAN ) and the discriminator
loss (LD

GAN ).
For the generator loss, LG

GAN , it is computed using binary cross-entropy loss
(LBCE), which measures the difference between the discriminator’s prediction
on generated images and the target label (usually 1, indicating real images). The
formulation is as follows:

LG
GAN = LBCE(D(Li, G(Li, Si)), 1)

Similarly, for the discriminator loss, LD
GAN , it involves two binary cross-

entropy terms. The first term computes the loss based on the discriminator’s
prediction on real images (T i) compared to the real label (1), while the second
term evaluates the discriminator’s prediction on generated images (G(Li, Si))
against the fake label (usually 0, indicating fake images). The formulation is
given by:

LD
GAN =LBCE(D(Li, T i), 1)

+ LBCE(D(Li, G(Li, Si)), 0)
(1)

In both equations, LBCE represents the binary cross-entropy loss function,
where y is the label and p is the predicted probability of the point.
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Fig. 2. Examples of some qualitative results generated from the COCO-Stuff dataset
by the proposed framework. Here, ”FAKE’ means the Images generated by our method,
and ”REAL” means the Original images in the dataset. [Best visible in 300% zoom ]

3.5 Training details

During training, we employed the Adam optimizer with a learning rate of 2e-4,
utilizing beta1 = 0.5 and beta2 = 0.99. The training process utilized an NVIDIA
GeForce RTX 3080 Ti with 12GB of memory. The model comprises 19.84 mil-
lion parameters, and training was conducted efficiently with these specifications,
ensuring optimal convergence and performance.
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Fig. 3. Examples of some qualitative results generated from the NCD dataset by the
proposed framework. Here, ”FAKE’ means the Images generated by our method, and
”REAL” means the Original images in the dataset. [Best visible in 300% zoom ]
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Fig. 4. Qualitative comparison results of the proposed algorithm with existing colour-
ization algorithms in COCO-Stuff datasets. [Best visible in 300% zoom ]
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4 Results

4.1 Datasets

To generalize a method effectively, evaluating its performance on standard
datasets is crucial. In our study, we utilized two prominent datasets for testing:
the COCO dataset[6] and a natural color dataset. The COCO dataset comprises
118,000 images, serving as a benchmark for various computer vision tasks due
to its diversity and scale. Additionally, we incorporated a natural color dataset
[2] consisting of 723 images across 20 different categories, providing a more spe-
cific evaluation of color-related tasks. The utilization of these datasets allows for
comprehensive assessment across different domains and scenarios. The COCO
dataset offers a wide range of real-world scenes and objects, enabling robust
evaluation under diverse conditions. Meanwhile, the natural color dataset pro-
vides insights into color-related tasks within specific categories, enhancing the
method’s applicability to real-world scenarios. By testing on these standard
datasets, we ensure that the method’s performance is validated across various
contexts, facilitating its generalization and practical deployment in real-world
applications.

4.2 Comparison of results

To ensure the effectiveness of our model, we conducted comparisons with state-of-
the-art colorization models. While recent research has focused on diffusion mod-
els, which require additional descriptions or language to generate color images,
our model offers fully automatic image colorization. Therefore, we specifically
compared our results with models that do not rely on any supplementary infor-
mation. Our comparisons included benchmarking against models such as Zhang
et al.’s [30], Iizuka et al.’s [15], DeOldify [1], Lei et al.’s [21], Kumar et al.’s
[19], ColorFormer [16], and DDColor-large [17] .Our method outperforms others
across all metrics, including LPIPS[14], SSIM[28], PSNR, and FID[12]. Detailed
values can be found in Table 1.,

Furthermore, we compared our visual results with the ground truth for addi-
tional insights. It’s evident that our method surpasses others in terms of visual
fidelity and accuracy. In the Figure 2, we observe accurate color generation,
notably in the first image where the sky and forest hues are faithfully repro-
duced. In the subsequent row’s first image, wooden furniture colors are accu-
rately mimicked, while the fire hydrant’s color is more pronounced in the second
image. Similarly, in the first image of the fourth row, the camel’s color is faith-
fully rendered, and the second image exhibits a more natural color palette. The
Natural coloured Dataset results are in the Figure 3. Overall, our model demon-
strates precise color reproduction across various elements, enhancing the fidelity
and realism of the generated images.



ColorLambda 183

Table 1. Quantitative comparison of results between the proposed algorithm and
existing colorization algorithms on the COCO-Stuff datasets.

Params.LPIPS ↓PSNR ↑SSIM ↑FID ↓
Zhang et al.[30] 32.2M 0.234 21.838 0.895 19.17

lizuka et al.[15] 25.6M 0.185 23.860 0.922 7.63

Antic et al.[1] 63.6M 0.180 23.692 0.920 3.87

Lei et al.[21] 21.6M 0.191 24.588 0.922 12.63

ColTran[19] 74.0M 0.184 23.696 0.922 6.14

ColorFormer [16] 44.8M 0.183 0.882 39.76 1.24

DDColor-large [17]227.0M 0.190 23.74 0.927 0.96

Ours 9.84M 0.180 24.982 0.929 3.62

4.3 Ablation

without_Lambda self_Attention Cross_attention With_Lambda

Fig. 5. Qualitative results of ablation studies on the COCO-Stuff datasets. [Best visible
in 300% zoom ]

In this study, we investigate the optimal integration of the Lambda network
in the image colorization process through a series of ablation studies. We con-
duct experiments comparing different configurations: without the Lambda layer,
with self-attention, with cross-attention, and with the Lambda layer. Addition-
ally, we present qualitative results in Figure 5 to showcase the impact of these
configurations on image quality. Our findings demonstrate that the inclusion
of the Lambda layer consistently outperforms across all four metrics evaluated
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Table 2. Quantitative ablation studies on the COCO-Stuff datasets.

LPIPS ↓PSNR ↑SSIM ↑FID ↓
Without Lamda 0.190 24.371 0.919 4.46

Self Attention 0.187 24.890 0.918 4.98

Cross Attention 0.183 24.879 0.922 4.08

With Lambda(ours)0.180 24.982 0.929 3.62

Table 2. This suggests that the Lambda layer plays a crucial role in improv-
ing image quality in the context of image colorization tasks. We design a series
of experiments to evaluate different configurations of the colorization model:
Model without the Lambda layer, Model with self-attention mechanism, Model
with cross-attention mechanism, and Model with the Lambda layer. Our experi-
mental results indicate that the inclusion of the Lambda layer consistently leads
to improved performance across all four metrics compared to the other config-
urations. Additionally, qualitative analysis of the colorized images in Figure 5
further supports this finding, demonstrating that the Lambda layer contributes
to enhancing image quality in terms of color fidelity and realism.

Fig. 6. Colorized old photos using the proposed method. The top Row is the original
one, and the Bottom row is generated.

4.4 Result on old images

We have successfully generated color images from real historical black-and-white
photos. Our method effectively colorizes such images, providing a natural and
realistic color composition. We have added some colourized old photos in Fig
6 to have an idea about the results. Our method has certain limitations when
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it comes to the varying distribution of luminance channels. We also admit the
luminance factor of the old images and it is described in the main manuscript.

4.5 User study

To evaluate the quality of our image generation, we performed a user study using
23 images( (18 generated images and 5 real images) from the COCO-Stuff and
NCD datasets. The observation test included a mix of generated and real photos,
selected and shuffled randomly. Thirty-six people participated in the user study.
Our method achieved a score of 68%, indicating that 68% of the generated images
are marked wrongly, demonstrating the high realism of our generated images.
Here is the link for the user study:

Fig. 7. Some examples of failure case. The top Row is the original one, and the Bottom
row is generated.

4.6 Failure case

We performed some extensive studies on the channel distribution problem in old
photos. We also find that the luminance channel mostly affects reduced contrast,
noise, and blur problems. Our method performs poorly in the section, as in recent
photos. We also included some failure cases caused by the different luminance
channel distributions in Fig 7. We will make a more prominent effort to try this
in the future.

5 Conclusions

In summary, our investigation delved into various aspects of image coloriza-
tion methods. We discussed the utilization of standard datasets such as COCO
and natural color datasets for evaluation. Additionally, we compared our model
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against state-of-the-art techniques, highlighting its superiority across metrics
such as LPIPS, SSIM, PSNR, and FID. Visual comparisons against the ground
truth further underscored the effectiveness of our approach, particularly in accu-
rately reproducing colors for diverse elements. Furthermore, ablation studies
emphasized the significance of incorporating the Lambda layer, showcasing its
efficacy in enhancing long-range dependencies crucial for image colorization
tasks. Overall, these findings underscore the robustness and efficacy of our pro-
posed method in the realm of image colorization. Further research and develop-
ment in this direction holds the potential to enhance various applications, includ-
ing medical imaging, satellite imagery analysis, and artistic rendering, ushering
in a new era of image processing capabilities.
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Abstract. Memory-based video object segmentation methods model
multiple objects over long temporal-spatial spans by establishing memory
bank, which achieve the remarkable performance. However, they struggle
to overcome the false matching and are prone to lose critical informa-
tion, resulting in confusion among different objects. In this paper, we
propose an effective approach which jointly improving the matching and
decoding stages to alleviate the false matching issue. For the memory
matching stage, we present a cost aware mechanism that suppresses the
slight errors for short-term memory and a shunted cross-scale match-
ing for long-term memory which establish a wide filed matching spaces
for various object scales. For the readout decoding stage, we implement
a compensatory mechanism aims at recovering the essential informa-
tion where missing at the matching stage. Our approach achieves the
outstanding performance in several popular benchmarks (i.e., DAVIS
2016&2017 Val (92.4%&88.1%), and DAVIS 2017 Test (83.9%)), and
achieves 84.8%&84.6% on YouTubeVOS 2018&2019 Val.

Keywords: Video Object Segmentation · False Matching Alleviation ·
Compensatory Decoding

1 Introduction

Video object segmentation (VOS) is a fundamental procedure for many multi-
media applications, such as special effects editing in movies, robot interaction,
and smart camera surveillance, which requires instance segmentation of objects
of interest in videos. The work in this paper focuses on semi-supervised VOS,
which completes instance segmentation of the remaining frames based on multi-
ple instances given in the first frame. Recently, matching-based approaches have
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15322, pp. 188–203, 2025.
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Fig. 1. (a) Comparisons of a representative video clip in DAVIS 2017 Test. AOT
[27] and XMem [1] (two state-of-the-art matching-based VOS models) present false
matching errors and our method can produce more accurate masks. (b-c) A simplified
comparison on pipeline between ours and previous matching-based methods. Previous
matching-based lacks the consideration of combining two stages to improve.

gained popularity, wherein the basic idea is to establishing and maintaining a
memory to store previous frames and their corresponding masks. These stored
memories are then matched with the query frame to generate a memory readout,
and finally produce masks of the target objects from the memory readout.

Memory matching essentially relates to the accuracy in generating the target
object masks, which becomes a crucial component in improving the accuracy
of VOS tasks. Early matching-based methods such as STM [13] and its vari-
ants [2,16,18] employ attention mechanisms to achieve matching between query
frames and the memory. Such methods treat all the memory units with equal
importance, without special design regarding the individual memory unit in the
process. Inspired by the human cognitive process where there is a distinctive dif-
ference between short-term and long-term memories, current memory matching
methods treat short-term and long-term memory differently in VOS. Long-term
memory stores multiple historical frames, and records the change across frames
in a coarse-grained manner. The objects in long-term memory may have dif-
ferent scales, so the long-term matching mechanism should not be limited to a
single-scale. Short-term memory focuses on the adjacent frames, which are simi-
lar with each other, meaning the variations are fine-grained. Thus, the short-term
matching mechanism must capture the variants sufficiently.

Some state-of-the-art methods (i.e., AOT [27], variants of AOT [25,29], and
XMem [1]) divide long-term and short-term memory, these methods still have
limitations: As shown in Fig. 1(a), the AOT [27] and XMem [1] produce results
with slight errors in the impact of the short-term memory insufficiency (Frame
5 in Fig. 1(a)), the later frames (Frame 31 & 78 in Fig. 1(a)) present object con-
fusion and crucial information loss. On the one hand, they employ single-scale
attention in long-term memory, which makes them exhibit rapid performance
degradation in handling multiple objects, especially undergoing different mor-
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phological changes simultaneously. On the other hand, these methods also need
to improve in matching short-term memory. For example, AOT [27] and its vari-
ants [25,29] implement the local correlation attention, which may lose critical
information when the morphological changes occur outside the local memory
unit’s perceptive field. In addition, slight errors in short-term memory matching
accumulate in long-term memory, which can be fatal for VOS methods that rely
on long-term memory.

In this paper, we propose an improved memory matching mechanism, includ-
ing cost-aware matching for short-term memory and cross-scale matching for
long-term memory. Cost-aware matching mechanism focuses on a stronger rela-
tionship between corresponding pixels of adjacent frames. Inspired by optical
flow prediction methods [7,19,20], we construct the cost volume for the query
frame and the previous frame. Cost volume is a vector that stores the matching
degree of corresponding pixels between two frames [4]. After patch embedding
the cost volume, we introduce a group of learnable query tokens for collecting
coarse-grained spatial variations. Furthermore, to explore fine-grained details,
we construct a spatial readout head via SS-attention [3]. Note that cost volume
in our cost-aware matching is a global relationship of pixels in adjacent frames
which is different from the neighborhood correlation of short-term transformer
in AOT [27] and its variants [25,29]. We implement multiple scales for long-
term memory and more effective models objects of various scales simultaneously
within a matching block. Our improved memory mechanism reduces the accumu-
lation of slight errors in short-term memory and adequately adapts the objects
of various spatial morphology in the previous frames.

Matching-based VOS methods inevitably produce false matches [1,2,13],
which may lead to object confusion (see XMem in Fig. 1(a)) or missing objects
(see AOT in Fig. 1(a)). However, matching-based methods usually focus solely on
improving memory matching, and they implement a naive FPN [8] for decoding
(e.g., STCN [2], HMMN [18] and RMNet [23]), lacking consideration of modify-
ing the decoding process. AOT [27] and XMem [1] make extensive modifications
for memory matching, the problem of false matches still exists. Unlike fully
supervised segmentation that understands rich semantics, semi-supervised VOS
requires more the low-level semantic feature prompt of target objects. We argue
that suppressing false matches requires improving memory matching and improv-
ing decoding process. There is significant potential for improving the decoding
process. For instance, AOML [5] achieves excellent performance by designing
bi-decoders for online learning VOS. CFBI [26] and CFBI+ [28] emphasizes sep-
arating the foreground and background in decodng process to improve matching.
They have an explicit foreground-background embedding feature and low-level
feature incorporation, which are beneficial for distinguishing the foreground from
the background. Such explicit foreground-background distinction still struggle to
overcome the false matching problem. Our paper aims to give a more suitable
and comprehensive answer, which jointly improves both stages and rethinks all
details toward reducing the false matching instead of the simple foreground-
background distinction.
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Therefore, we propose a compensatory decoding mechanism (as shown in
Fig. 1(c)), which consists of three steps, 1) pre-decoding, 2) context embedding,
and 3) post-decoding. The initial memory readout inevitably lose some criti-
cal information and looking twice at the original image effectively compensates
such losses; thus, we embed a context embedding process in the decoding stage
to force the encoder to look at the query frame one more time, which supple-
ments the critical information lost in the memory matching stage. Pre-decoding
provides a guiding prompt for context embedding, and the post-decoding gener-
ates the final segmentation masks. The compensatory decoding mechanism not
only sufficiently embeds the critical information of the target objects but also
suppresses the false matches in the initial memory readout to some extent.

The mainly contributions of this paper are summarized as:

– Different existing methods, we improve the matching and decoding stages in
a jointly paradigm, which give a more suitable and comprehensive answer to
alleviate false matching issue.

– We propose a improved mechanisms for the memory matching stage. Cost-
aware matching in short-term memory prompts the network to perceive
changes between two frames more adequately. Cross-scale matching in long-
term memory prompts the network to explore the variations in different scaled
objects.

– We propose a novel compensatory decoding mechanism that can suppress
false matches and supplement the crucial information loss of target objects
for the readout decoding stage.

– Our approach achieves state-of-the-art performance in several popular bench-
marks (i.e., DAVIS 2016&2017 Val (92.4%&88.1%), and DAVIS 2017 Test
(83.9%)), and achieves 84.8%&84.6% on YouTubeVOS 2018&2019 Val with
the specific training strategy.

2 Related Work

Semi-supervised Video Object Segmentation In semi-supervised VOS,
according to the object masks given in the first frame of the video, the cor-
responding object is segmented in the remaining video frames. The mainstream
of semi-supervised VOS methods can be roughly divided into online fine-tuning
and methods without fine-tuning. In the methods without fine-tuning, matching
based is the popular study branch.

Matching based Methods Matching-based is an VOS method without fine-
tuning that has achieved notable success, and the proposal in this paper is focus
on the matching based methods. STM [13] introduces a spatio-temporal network
to establish the matching relationship between the current frame (query frame)
and all historical frames (memory), which can be roughly divided into three
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stages: query embedding, memory matching, and readout decoding. The follow-
ing matching-based methods almost focus on improving the memory matching
stage. Some methods [6,9,17] focus on designing novel memory structures, such
as HMMN [18], which designs a hierarchical memory structure. In addition, some
methods [2,16,23] proposed novel matching mechanisms, such as STCN [2] pro-
posed utilizing negative squared euclidean distance to calculate the affinity of
matching, and KMN [16] introduced gaussian kernel to reduce the non-locality
of matching. All the above methods treat all memories fairly, which makes the
performance of the memory model have a bottleneck. Recently, some state-of-
the-art methods such as AOT [27] and its variants (AOST [25], DeAOT [29]),
XMem [1] distinguish memory between long and short term to improve the infer-
ence performance. However, there are still significant improvements possibilities
for these methods. On the one hand, the design of this long-short term matching
mechanism does not fully adapt to multi-scale objects and ignores part of the cru-
cial inter-frame changes. In this paper, we propose an improved long short-term
memory matching mechanism that outperforms these methods in performance.
On the other hand, we argue that ”memory matching is not enough”, and previ-
ous methods have neglected the effect of improvements on the readout decoding
for semi-supervised VOS.

Fig. 2. (a) Pipeline of our proposal, which improves the memory matching stage by
cost-aware and cross-scale matching, and improves the decoding stage by compensatory
decoding. (b-c) Illustration of cross-scale and cost-aware matching.

3 Methodology

3.1 Proposal Overview

We propose an effective approach to alleviate the false matching issue from
the memory matching and readout decoding stages. We name this proposal as
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Jointly Improve Matching and Decoding (JIMD) in the following content. The
pipeline of JIMD is illustrated in 2. JIMD sequentially processes each frame for
a video clip. For the current frame T , we extract the backbone features from the
embedding encoder and then input into a linear layer to obtain the embedding
query feature eq. Then we implement the cost volume matching for short-term
memory, and employ the cross scale matching for the long-term memory to
obtain two matching readout results (i.e., rs and rl). Initial readout feature ro
can be formulated as: ro = rl + rs + eq. We firstly decode the ro for guiding the
context block to extract the information form source frame. We obtain the final
readout feature r

′
o after embedding the source context into the initial readout ro.

Finally, we decode the readout feature r
′
o and upsample into the object masks.

During the entire procedure, JIMD maintains two sets of memory data, which
are long-term and short-term memories. The short-term memory is stacked into
the long-term memory at intervals, and the memory data is stored as key &
value. Memory value is generated by fusing the previous embedding feature and
the mask feature from the ID module, which is borrowed from AOT [27]. Here,
we implement a convolution with kernel size of 17×17 and stride of 16 to encode
the masks of frame T − 1 as the identify encoder.

3.2 Cross-Scale in Long-Term Matching

Long-term memory records the change across frames in a coarse-grained manner
(e.g., an object may have multiple morphologies across frames or multiple scale
objects in the same frame). Introducing cross-scale in long-term memory is ben-
eficial to match targets with variable scales. Therefore, we shunt the keys and
values, downsampling the long-term memory keys and values at different scales.
Let the K{0,1,2,...,T−1} and V{0,1,2,...,T−1} denote all previous keys and values in
long-term memory. As shown in 2, we employ three spatial rates for non-local
matching. The downsample is a convolution layer with the decreasing kernel size
as illustrated in 2. Here, we denote di as the spatial rate for downsampling:

Kdi
{0,1,2,...,T−1} = downsample(K{0,1,2,...,T−1}, di) (1)

V di
{0,1,2,...,T−1} = downsample(V{0,1,2,...,T−1}, di) (2)

We perform cross-attention with eq after obtaining keys and values of different
sizes:

σi = Atten(eq, K
di
{0,1,2,...,T−1}, V di

{0,1,2,...,T−1}). (3)

Three attention results are concatenated, then projected as the readout feature
rl of long-term memory:

rl = LN(concat(σ0, σ1, σ2)), (4)

where LN is the linear norm layer. This shunting matching benefits the long-
term memory and performs well in handling multi-scale cases.
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3.3 Cost-Aware Matching

The purpose of the short-term memory matching mechanism is to learn the
changes in adjacent frames, which is crucial for VOS. If the short-term memory
matching produces inaccurate masks that are used in generating values for the
next round, it would lead to a vicious circle process. Representing the changes in
adjacent frames is essential for effective short-term memory matching, it requires
more larger local receptive field but with a low computational cost increase-
ment. We construct a cost volume to represent the interframe variations and
tokenize the cost volume with patch embedding. Then we implement the multi-
head attention mechanism to produce the latent cost features that involve critical
variations. Finally, the SS-attention [3] generates the readout feature with the
latent cost features and the previous frame’s value. We construct cost-aware
matching as a transformer architecture, as shown in 2.

Cost Volume Generation. The first step of short-term memory matching
requires the generation of initial information representing the variations between
adjacent frames. Instead of the local correlation matching in AOT [27] and its
variants [25,29] with high computational cost, we build a global 4D cost volume
cm ∈ R

H1×W1×H2×W2 for eq and ek, the volume is constructed through dot
product operations. Here, H1 and W1 donate the ek’s height and width, H2 and
W2 donate the eq’s height and width. As shown in the bottom right corner of
2, each 2D sub-map in cost volume cm can be regarded as the visual similarity
between the source pixel and all target pixels, and ek is derived from the eq of
the previous frame. We patch embed the cost volume, which divides the cost
volume into multiple patches according to the patch size, and perform feature
embedding on each patch, as shown in the upper right corner of 2. We define the
number of the patches as S, embedding dimension as C ′, the patch embedding
features Ps ∈ R

(H1∗W1)×S×C′
as:

Ps = PatchEmbed(eq � ek). (5)

Patch Features Tokenization. For complicated variations between adjacent
frames, we need to pay more attention to the patches relating to the target
objects. To achieve this goal, we introduce a set of learnable tokens Lq ∈ R

Nl×Cl

to extract the patch features P ′
s ∈ R

(H1∗W1)×Nl×Cl that contains latent criti-
cal variations, where Nl is the token number and Cl is the tokens’ embedding
dimension. We implement a cross-attention, which applies the learnable tokens
Lq as query, patch embedding features Ps as the key and value:

P ′
s = Atten(Lq, Ps, Ps). (6)

Then we apply a multi-head self-attention to output the latent cost features
Cl ∈ R

(H1∗W1)×Nl×Cl . The latent cost features Cl implicitly represent critical
variants between adjacent frames.

Producing Readout Feature. We implement the SS-attention [3], which focus
more on capturing spatial features to produce short-term readout result rs:



Memory Matching is not Enough 195

rs = SSAtten(Cl, Cl, VT−1) + Cl, (7)

where VT−1 is the frame T − 1 value, and there is a final fusion for attention
output and Cl. After the cost-aware matching, the short-term readout feature
rs sufficiently capture the fine-grained variations between adjacent frames.

3.4 Compensatory Decoding

We observe that only improving the memory matching is insufficient in solving
the object confusion and missing; thus, we propose a new compensatory decoding
mechanism to further resolve the issues. As shown in 3, the compensatory decod-
ing process consists of three steps, 1) pre-decoding, 2) context embedding, and
3) post-decoding. Pre-decoding aims to obtain a set of upsampled intermediate
results as the guide spatial prompt in context embedding. Context embedding
gradually recovers the lost critical features in the initial memory readout ro by
embedding the frame T and spatial prompt feature, resulting a final readout
feature r

′
o. In post-decoding, we generate the mask prediction base on the final

readout feature r
′
o and the skip-connections from context embedding.

Fig. 3. Illustration of compensatory decod-
ing which compensates the low-level informa-
tion for the initial readout.

Context Embedding. Context
block (CB) applies the same resid-
ual network layer as the encoder
and three context blocks form a
cascaded structure. Prompt features
gi and the residual encoder output
Res(fi−1) fuse as fi in each cascade:

fi = gi + Res(fi−1), (8)

where Res is the residual layer.
fi is the input to the next CB
as well as the skip connection for
post-decoding, which contains richer
semantic information than the query
feature eq from embedding encoder.
Critical information of the target
objects is sufficiently embedded into
the final readout feature r

′
o, and the

false matches in the initial memory
readout are suppressed.

Recursive Decoding Process. Inspired by [15], we introduce the ”looking and
thinking twice” idea into memory readout decoding, namely recursive decoding,
which consists of pre-decoding and post-decoding. Recursive decoding process
shares weights in upsample blocks (UP, as shown in 3), which is essential for
improving readout decoding due to seeing both the pre-decoded features and the
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context compensated features. Let Db
i and Dp

i denote pre-decoding and post-
decoding outputs, i is the cascading level. The implementation of UP can be
formally defined as follows:

Dp
i = upsample(Dp

i−1, u) + fi, (9)

where u is the upsample rate, here u is equal to 2. Spatial pooling block (SP, as
shown in 3) produce the spatial prompt feature in pre-decoding step, which is
implemented via atrous spatial pyramid pooling block (ASPP). In post-decoding
step, we implement an adaptive weighting block (AW, as shown in 3) in each
cascaded UP block to fuse context features and pre-decoding features. We apply
a convolution with a kernel size equal to 1 as the AW block. The adaptive
weighting process formulates as:

w = sigmoid(AW(Dp
i )), (10)

Di = w ∗ Dp
i + Db

i ∗ (1 − w), (11)

where w is the weight of the post-decoding output. Then Di is the input of the
next cascaded UP block.

Table 1. Comparison with state-of-the-art methods on DAVIS (i.e., DAVIS
2017 test-dev set, DAVIS 2017 validation set and DAVIS 2016 validation set). †: Specific
strategy without BL30K pre-training. AOT-L [27] and its variants [25,29] use the
ResNet50 as backbone. The best score in each column is on red bold-faced.

DAVIS 2017 test-dev DAVIS 2017 val DAVIS 2016 val

Method J &F J F J &F J F FPS J &F J F
(CVPR′2018) RGMP [12] 52.8 51.3 54.4 66.7 64.8 68.6 - 68.8 68.6 68.9

(CVPR′2019) FEELVOS [21] 57.8 55.1 60.4 71.6 69.1 74.0 2.0 81.7 81.1 82.2

(ICCV′2019) STM [13] 72.2 69.3 75.2 81.7 79.2 84.3 - 89.4 88.7 90.1

(ECCV′2020) CFBI [26] 74.8 71.1 78.5 81.9 79.1 84.6 5.9 89.4 88.3 90.5

(CVPR′2021) RMNet [23] 75.0 71.9 78.1 83.5 81.0 86.0 - 88.8 88.9 88.7

(ECCV′2020) KMN [16] 77.2 74.1 80.3 82.8 80.0 85.6 4.2 90.5 89.5 91.5

CFBI+ [28] 78.0 74.4 81.6 82.9 80.1 85.7 5.6 89.9 88.7 91.1

(ICCV′2021) HMMN [18] 78.6 74.7 82.5 84.7 81.9 87.5 10.0 90.8 89.6 92.0

(NeurIPS′2021) AOT-L [27] 79.6 75.9 83.3 84.9 82.3 87.5 18.0 91.1 90.1 92.1

(NeurIPS′2021) STCN [2] 79.9 76.3 83.5 85.3 82.0 88.6 20.2 91.7 90.4 93.0

AOST-L [25] 79.9 76.2 83.6 85.6 82.6 88.5 17.5 92.1 90.6 93.6

(NeurIPS′2022) DeAOT-L [29] 80.7 76.9 84.5 85.2 82.2 88.2 19.8 92.3 90.5 94.0

(ECCV′2022) XMem †[1] 81.0 77.4 84.5 86.2 82.9 89.5 22.6 91.5 90.4 92.7

(CVPR′2023) ISVOS †[22] 82.8 79.3 86.2 87.1 83.7 90.5 - 92.6 91.5 93.7

JIMD (ours) 83.9 80.3 87.4 88.1 85.2 91.0 13.2 92.4 90.6 94.2

4 Experiments

4.1 Implementation Details

Training. We deploy the ResNet50 as the backbone for embedding encoder.
Following popular matching-based VOS methods [2,13,26], we employ the two-
stage training strategy. In the first training stage, the model is pre-trained on
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static datasets from AOT [27], where objects with masks are augmented (e.g.,
flip, shift, crop) and randomly synthesized onto the backgrounds. In the second
training stage, we perform training on real videos. For the evaluation of DAVIS
[14], we use the training sets of DAVIS and YouTube, while for the evaluation
of YouTubeVOS [24], we only use the YouTube training set. The embedding
encoder is frozen in the second training stage to avoid overfitting to the seen
object categories. All modules apply the learning rates from initial 2e-4 then the
learning rates gradually decay to 2e-5 in a polynomial manner. We employ the
cross entropy loss and soft jaccard loss [11] to train the model. During training,
we use an input size of 384 × 384 and a batch size of 8, which is distributed on
4 RTX3090 GPUs. Note that our method do not adopt the BL30K for training
in the following reports.

Inference. Our method uses a resolution of 480p by inference. Following common
matching-based methods, we set the update frequency of memory to 5 (i.e., every
five frames stack the short-term memory in long-term memory). For a fair com-
parison, we do not employ the multi-scale inference trick on val/test datasets.

4.2 Datasets and Metrics

We evaluate our method on the five most popular VOS task benchmark datasets,
consisting of a single-object dataset (DAVIS2016-val) and four multi-object
datasets (DAVIS2017-val, DAVIS2017-test, YouTube2018-val, YouTube2019-
val). A total of 971 real videos incorporated in the evaluation. We evaluate
our method by region similarity (i.e., J) and contour accuracy (i.e., F ). In
YouTubeVOS, there are additional 26 unseen categories; thus we separately
report the J score and the F score for ”seen classes” in training set and ”unseen
classes” that are not. G is the global average score of all metrics. We submit the
val/test results on official online evaluation servers for a fair comparison.

4.3 Compare with the State-of-the-Art Methods

Quantitative Comparison. As shown in Table 1, we compare the performance
of our method with up-to-date methods on a series of DAVIS datasets. Compared
with the state-of-the-art memory matching-based methods (i.e., XMem [1]), we
achieve a 2.9% and 1.9% J&F improvement on DAVIS2017 Test and DAVIS2017
Val, respectively. Compared with the latest understanding-based method (i.e.,
ISVOS [22]), we improve the J&F by 1.1% and 1% on DAVIS2017 Test&Val,
respectively. Our method achieves the top ranking of F performance on DAVIS
2016 single object performance, DAVIS2017 Test&Val multiple objects perfor-
mance. On the Youtube dataset validation, for a fair comparison, we only adopt
YouTubeVOS’s train-set for training and compare it with XMem [1] schemes
using the same training data. As shown in Table 2, even without any fancy
training and inference tricks, our method still achieves excellent performances
in YouTube2018&2019.

Unseen Categories. Youtube dataset needs to evaluate the performance of
unseen categories in training, as shown in Table 2; our method outperforms
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Fig. 4. Representative challenge cases of qualitative comparison with XMem [1], AOT
[27], and STM [13].

other methods under the metrics of unseen categories. Our proposed compen-
satory decoding stage generates guide information in pre-decoding that can more
discriminatively help segment unseen category objects.

Qualitative Results. We visualize some video segmentation results in evalu-
ation, including some common VOS challenge cases (i.e., tremendous motion,
object reappearance, similar objects confusion), and compare them with two
state-of-the-art matching-based methods AOT-L [27] and XMem [1], as shown
in Fig. 4. Our method is superior to the other two methods in obtaining object
details. We can see that AOT-L [27] and XMem [1] make obvious errors when the
human body appears in drastic motions. XMem [1] is more prone to errors when
dealing with objects of different scales (e.g., the rope and the human body in the
Col 5 and 6 of Fig. 4). Furthermore, we compare the classical method STM [13]
based on memory matching for a long span. Our method does not have object
confusion after multiple similar objects are occluded, indicating that the pro-
posed jointly improving method is helpful in overcoming the challenge of similar
objects.

4.4 Ablation Studies

We improve the memory matching stage and the decoding stage separately, achiev-
ing cost-aware matching (CA) and cross-scale matching (CS) in the memory
matching stage and compensatory decoding (CD) in the decoding stage. In order
to evaluate the effectiveness of the three improvements, we conduct separate exper-
iments on JIMD for each modification and explore the improvement performance
of their combination. All ablation studies are evaluated on DAVIS2017 Val split.
The corresponding modules used by the baseline in Table 3 (i.e., long short-term
matching modules, decoding process) are replaced by AOST-L [25] (a evolution
method of AOT-L [27]), as shown in the first row of Table 3.

Impact of Memory Matching Mechanism. As shown from Row 2 to Row
4 in Table 3, both our cost-aware and cross-scale in the memory matching stage
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Table 2. Results of YouTube2018&2019
validation. �: Stage2 only training by
YouTube dataset (without extra data).

Methods YTB2018

G J s Fs J u Fu

CFBI 81.4 81.1 85.8 75.3 83.4

CFBI+ 82.8 81.8 86.6 77.1 85.6

AOT-L� 84.1 83.7 88.5 78.1 86.1

STCN 84.3 83.2 87.9 79.0 87.3

XMem� 84.4 83.7 88.5 78.2 87.2

JIMD (ours)� 84.8 83.7 88.7 79.1 87.6

Methods YTB2019

G J s Fs J u Fu

CFBI 81.0 80.6 85.1 75.2 83.0

CFBI+ 82.6 81.7 86.2 77.1 85.2

AOT-L� 84.1 83.5 88.1 78.4 86.3

STCN 84.2 82.6 87.0 79.4 87.7

XMem� 84.3 83.6 88.0 78.5 87.1

JIMD (ours)� 84.6 82.9 87.8 79.7 87.9

Table 3. Ablation performance on
DAVIS 2017 Val of proposed improve-
ments. CA: cost-aware matching. CS:
cross-scale matching. CD: compensatory
decoding.

CD CS CA J & F J F FPS

✗ ✗ ✗ 85.6 82.6 88.5 17.5

✗ ✓ ✗ 86.1 83.5 88.6 15.7

✗ ✗ ✓ 87.3 84.3 90.3 17.8

✗ ✓ ✓ 87.7 84.8 90.5 14.3

✓ ✗ ✗ 87.6 84.9 90.2 17.1

✓ ✓ ✗ 87.7 85.0 90.3 13.6

✓ ✗ ✓ 87.9 85.0 90.8 15.0

✓ ✓ ✓ 88.1 85.2 91.0 13.2

Table 4. Internal functional ablation for
compensatory decoding.

Method J & F J F
CD-Basline 87.6 84.9 90.2

CD w/o Context 86.4(↓↓↓1.2) 83.5 (↓↓↓1.4) 89.3 (↓↓↓0.9)

CD w/o AW 87.4 84.6 90.1

CD w/o SP 87.1 84.6 89.6

Table 5. Compensatory decoding
migrating to existing matching-based
VOS methods.

Method J & F
DAVIS 2017 DAVIS 2016

STM [13] 81.7 89.4

STM w/ CD 83.1 (↑↑↑ 1.4) 90.0 (↑↑↑ 1.2)

TransVOS [10] 83.9 90.5

TransVOS w/ CD 85.1 (↑↑↑ 1.2) 90.7 (↑↑↑ 0.2)

play positive roles when compensatory decoding is removed. The improvement
of cross-scale matching is more conducive to improving regional similarity (i.e.,
J), and cost-aware matching improves both metrics and edge accuracy (i.e.,
F ). Cross-scale matching has more powerful matching for objects of different
scales in the video and thus is beneficial to improve region similarity. Cost-
aware constructs the cost volume for learning, explores the changes between two
frames, and therefore is more effective for preserving object details and edge
features. Cost-aware matching also improves the inference speed (FPS) in Col 7
of Table 3, which abandons the calculation of neighbourhood cross-correlation
in short-term memory and constructs the pixel relationship by dot product that
is more efficient. We can observe that the combined improvement strategy of
cost-aware and cross-scale improves J by 2.6% and F by 2% compared to the
baseline.

Impact of Decoding Mechanism. Compensatory decoding provides an essen-
tial information supplement for matching readout results and suppresses false
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matching to a certain extent by implementing context embedding compensation
in the decoding stage. Row 5 of Table 3 demonstrates the improvement of com-
pensatory decoding over the baseline. To study the binding function effect in
compensatory decoding, as shown in Table 4, we remove three implements or
modules (i.e., context compensation (Context), adaptive weighting (AW), and
spatial block (SP)) and evaluate the gains separately. CD-Baseline in Table 4 for
the experimental setup in the 5th row of Table 3. On the context removal setting,
we simultaneously remove the share-weighted recursive decoder and replace it
with two decoders in the cascade that do not share weights. As shown in Table
4, after removing context comparison, we can observe the most significant drop
in performance (i.e., 1.4% drop in J and 0.9% drop in F ). Therefore, context
compensation is vital in improving the decoding stage. Furthermore, we migrate
our decoding improved mechanism to other existing matching-based methods, as
shown in Table 5, which indicates the feasibility and the plug-and-play potential
of our compensatory decoding.

Impact of Matching and Decoding Improved Jointly. The contribution
of this paper is to explore the role of joint improvement of memory matching and
decoding. Rows 6 to 8 from Table 3 show the gain of the matching and decoding
jointly improving mechanisms. We can see that the combination of either CD &
CA or CD & CS has a more substantial positive effect than the memory matching
improved alone. Therefore, we believe the joint improvement of memory match-
ing and decoding proposed in this paper is crucial to the matching-based VOS
approach.

Fig. 5. Visualization of the memory readout features of AOT, our method’s initial
readout and the final readout (i.e., feature after context embedding).

Visualize the Readout Features. We visually compared the readout features
with AOT [27] as shown in Fig. 5. After cost-aware and cross-scale matching, our
initial readout results are significantly better than AOT [27]. We can see that our
initial readout still has false matching area at the right wheel of the bike. How-
ever, after context embedding, the final readout results suppress false matches
and increase some high-response features. This suggests that our approach of
jointly improving the matching and decoding stages could facilitate producing
more accurate and precise masks.
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5 Conclusion

This paper proposes a network JIMD that jointly improves the memory match-
ing and decoding stages to address the issue of false matching. We design an
improved mechanism for the memory matching stage consisting of cost-aware
matching and cross-scale matching for short-term and long-term memory. Cost-
aware matching in short-term memory prompts the network to perceive changes
between two frames more adequately. Cross-scale matching in long-term memory
prompts the network to explore the variations in different scaled objects. For the
readout decoding stage, we propose a novel compensatory decoding mechanism
that can suppress false matches and supplement the crucial information loss of
target objects. We conduct extensive experiments on the effectiveness of joint
improvement, and results on popular benchmarks demonstrate that JIMD out-
performs existing matching-based methods. Therefore, JIMD has considerable
potential to be applied to multimedia applications in the future.
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Abstract. Retinex-based unsupervised low-light enhancement meth-
ods have demonstrated notable performance without paired data. How-
ever, existing Retinex-based unsupervised methods implicitly relax the
constraints of Retinex theory and cannot predict the illumination and
reflectance exactly, resulting in unstable outcomes. In order to allevi-
ate this issue, we propose a novel framework with stringent consistent
constraints for robust Retinex decomposition. Our work is inspired by
the spectral characteristics of the low-light images and primarily utilizes
the spectral perturbations to establish the training constraints. Specif-
ically, we first investigate the invariant and equivariant components for
low-light enhancement under spectral perturbations. Based on these con-
sistency attributes, we design an illumination invariance constraint and
a reflectance equivariance constraint for robust decomposition. Further-
more, motivated by the noise distribution under spectral perturbations,
we introduce a cross multi-scale noise regularization technique to tackle
the severe noise on the reflectance maps. Extensive experiments con-
ducted on diverse datasets have demonstrated the superior performance
over state-of-the-art approaches, highlighting its effectiveness and poten-
tial for various applications.

Keywords: Image enhancement · Unsupervised learning · Consistency
loss

1 Introduction

Images captured under low-light conditions often suffer from reduced visibility,
acute noise, and inaccurate color. These degradations not only affect the visual
quality but also burden the performance in downstream recognition tasks such
as classification and image detection [25]. To tackle these challenges, various
low-light image enhancement (LLIE) algorithms have been proposed.
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Input

Reference

SCI (15.42/0.6870) Zero-DCE (15.46/0.6449)

SSIENet (22.49/0.8206) Ours (26.12/0.8710)

Fig. 1. Qualitative and quantitative (PSNR/SSIM) comparisons of state-of-the-art
unsupervised methods, including SCI [33], Zero-DCE [9], SSIENet [43], and our app-
roach. Our method preserves more consistent information than the others.

Traditional LLIE methods resort to enhancing the image contrast by sketch-
ing the dynamic range of its histogram or adjusting the image non-linearly. How-
ever, these methods often exhibit limited adaptability and result in unnatural
appearances. Recently, the advancements in deep learning have led to remark-
able progress in data-driven LLIE approaches [2,5,28,30,44]. The most widely
studied is the supervised approach. One line of research involves utilizing illu-
mination transformation techniques, where the enhancement is applied to the
decomposed illumination map, or a transformation curve is directly employed on
the original input image. Another line of work focuses on learning a straightfor-
ward mapping from low-light images to normal-light images via an end-to-end
training strategy. Despite the impressive results achieved, these methods rely
on low-light and normal-light image pairs. Unfortunately, it is challenging to
acquire high-quality paired images in real-world scenarios.

More recently, semi-supervised and unsupervised methods have emerged
to alleviate the reliance on paired data during the training process. These
approaches enable the model to be adapted to enhancement across diverse sce-
narios by incorporating general physical priors and assumptions. However, due
to the complexity of different low-light scenarios and the utilization of lenient
priors to constrain network training, achieving high-quality enhancement results
remains challenging for unsupervised methods.

To alleviate this issue, we propose leveraging a more stringent prior based
on the Retinex model [20] to constrain unsupervised training. While several
notable approaches incorporating the Retinex model have been proposed for
low-light image enhancement [6,37,38,42], they are mainly based on supervised
learning. On the other hand, there are unsupervised methods available that are
based on the Retinex theory [29,33,43]. However, it is essential to note that these
approaches may introduce inappropriate assumptions or relax the decomposition
constraints implicitly, leading to inconsistent (i.e., color shift) results.

Consistency regularizations are common self-supervised learning methods,
which impose constraints on the model to produce invariant or equivariant out-
put when input is perturbed. The core insight of consistency regularization
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is to enforce models to learn the inherent properties of images under certain
perturbations. In this paper, we develop a novel framework for deep Retinex
decomposition based on consistency regularization. By exploring the intrinsic
nature of low-light images, we propose two consistent attributes within spectral
perturbation for the decomposition. Firstly, we regard the illumination map as
an invariant attribute of the low-light images under spectral shuffle perturba-
tion. This hypothesis comes from the observation that numerous Retinex-based
approaches [8,10,29,38] leverage the Max-RGB value as the initial illumination
estimation and the Max-RGB value remains unchanged regardless of the chan-
nel shuffle. Following the above hypothesis, we argue that the reflectance map
and the noise distribution obey the equivariance under the spectral shuffle per-
turbation. Leveraging these properties, we introduce the illumination invariance
constraint, reflectance equivariance constraint, and cross multi-scale noise reg-
ularization for robust decomposition. It is worth noting that these constraints
are applied between low-light input and perturbed low-light input, rather than
between low-light and normal-light input. This allows us to train the entire
decomposition network without paired data. Fig. 1 illustrates the qualitative
and quantitative comparisons of state-of-the-art unsupervised methods. As we
do not relax the constraints of Retinex theory, our method preserves more con-
sistent information than previous methods.

To summarize, our contributions are the following:

– We point out the invariant and equivariant attributes of low-light images for
deep Retinex decomposition under spectral perturbation.

– Based on these consistent attributes, we propose a novel self-supervised
low-light image enhancement framework, which is trained with constraints
between low-light input and perturbed input for robust decomposition.

– We conduct extensive experiments on representative datasets and the results
demonstrate the superiority of our approach compared to state-of-the-art
methods.

The structure of this paper is as follows: The first section provides an intro-
duction to the topic and the research questions we aim to address. The second
section contains a review of related work. The third section then details our
effective designs. Subsequently, we present experiments and ablation study in
the forth section. Finally, we conclude our method and discuss limitations, while
suggesting avenues for future work.

2 Related work

2.1 Low-light Image Enhancement

Conventional Methods. The earlier approaches for low-light image enhance-
ment (LLIE) relied heavily on manually devised operations or filters to cor-
rect the image exposure with poor illumination. These approaches can be
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divided into two categories, one based on histogram [1,16,22,34], which per-
forms light enhancement by expanding the dynamic range of an underexposure
image; and the other based on Retinex theory [20], which decomposes an image
into the reflectance component and illumination component. The Retinex-based
methods primarily focus on enhancing the illumination component to enhance
overall lightness, while regularizing the reflectance component to suppress the
noises [7,10,18,26,36].

Learning-based Methods. Recently, deep learning-based low-light image
enhancement approaches have attracted extensive attention [31,35,38,40]. As
representative work, RetinexNet [37] and KinD [42] follow the Retinex theory
and decompose an image into reflectance and illumination components with
low-light and normal-light pairs. More recently, Fu et al. [6] utilized contrastive
learning and self-knowledge distillation for Retinex decomposition. PairLIE [8]
achieved the decomposition based on paired low-light instances. By leveraging
aligned data pairs, these methods achieved remarkable results.

However, in practice, it is difficult to obtain the paired data of the same
scene simultaneously [4,19,27]. Therefore, unsupervised/semi-supervised meth-
ods have been proposed [9,17,41]. For example, SSIENet [43] employs maxi-
mum entropy to constraint Retinex decomposition. However, this assumption
ignores the color consistency, resulting in color-shifted results. RUAS [29] builds
a Retinex-inspired framework leveraging the unrolling technique and archi-
tecture search strategies. SCI [33] develops a learning framework based on a
self-calibrated module for illumination enhancement. While these approaches
accomplish LLIE tasks without paired images, they lack the exploration of the
reflectance property, leading to unstable outcomes.

2.2 Invariance and Equivariance Regularization

Invariance and equivariance regularization are common self-supervised learning
methods. The invariance ensures that the output of a model remains consistent
despite perturbations of input, while equivariance implies that the output should
exhibit a corresponding transformation to the input. The invariance property
finds extensive application in representation learning [3,14], where distinctive
and invariant features are extracted to enable robustness. In terms of equivari-
ance, CNNs are shown to have approximate translation equivariance due to the
nature of convolution [24]. Additionally, the exploration of rotation and scale
equivariance [12,23] represents notable areas of research in the field. By impos-
ing these constraints, the generalizability and robustness of the network can be
improved.

Although these regularization constraints have demonstrated remarkable per-
formance in fields such as classification, detection, and segmentation, there
has been limited exploration in the context of LLIE. Motivated by previous
research [45,46] and leveraging the specific characteristics of low-light images,
we introduce spectral-based invariance and equivariance constraints to establish
an unsupervised low-light image enhancement framework.
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3 Methodology

Initially, we investigate the spectral characteristics of low-light images and iden-
tify the spectral consistency (i.e., invariance and equivariance) under spectral
perturbation. Next, we present the framework of our method. Lastly, we detail
the consistency constraints.

Reflectance
Equivariance

Illumination
Invariance

Spectral
Perturbation

Fig. 2. The decomposition results with RetinexNet [37]. Ii and Ip refer to the low-light
image and perturbed low-light image. L∗ and R∗ represent the estimated illumination
and reflectance of I∗. To enhance visual comparison, we reorder the spectrum of Rp.
The decomposition of Ii and Ip is presented in the first and third rows, respectively. The
first column represents the proposed illumination invariance, while the third column
shows the reflectance equivariance. The absolute errors displayed in the second row
verify the proposed consistency of low-light images.

3.1 Invariance and Equivariance

Definition 1 (Invariance). A function f : X → Y is invariant to a symmetry
group G if for all transformation g ∈ G on the input x ∈ X the result remains
unchanged, i.e., for any transformation g :

f ◦ g(x) = f(x). (1)

Definition 2 (Equivariance). A function f : X → Y is equivariant to symmetry
group G on X and G′ on Y if for any transformation g ∈ G there exists g′ ∈ G′

such that:
f ◦ g(x) = g′ ◦ f(x). (2)

In particular, invariance can be regarded as a special case of equivariance where
g′ is the identity transformation. In addition, if transformations on both X and
Y domains are the same, i.e., G = G′, the equivariance can be denoted as:

f ◦ g(x) = g ◦ f(x). (3)
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This case is common in image processing, where we consider both g and g′ as
the transformations applied to the image. Both invariance and equivariance are
commonly employed forms of consistency in deep learning.

3.2 Spectral Consistency

The Retinex model assumes an observed image I can be decomposed into illu-
mination L and reflectance R, and represented as their element-wise product,
denoted as:

I = L · R, (4)

where · denotes element-wise multiplication. The paired-based methods [8,37]
mainly utilize the assumptions that images captured in different light conditions
maintain the same reflectance and the illumination map is expected to be smooth
to achieve decomposition. However, when only single light condition images are
available, it is necessary to explore alternative assumptions.

Intensity 
deviation

Intensity 
deviation

Fig. 3. The intensity deviation across channels of LOL [37] and LSRW [11] datasets.
We randomly select 200 paired images from each dataset and linearly rescale the devi-
ation to enhance visualization. The observation reveals that low deviation is a common
statistical characteristic among low-light images.

Illumination Invariance Notably, numerous Retinex-based approaches [8,10,
29,38] have leveraged the Max-RGB value as the initial illumination estimation
and Retinex theory assumes the different color spectrum have the same illu-
mination. These observations inspire us to regard the illumination map as an
invariant attribute of the low-light images under spectral shuffle perturbation
since the Max-RGB value remains unchanged regardless of the spectral shuffle.
We refer to this property as the illumination invariance of the low-light image,
which can be denoted as:

l ◦ t(I) = l(I), (5)
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where I denotes the low-light image, l(·) denotes the illumination estimation
operator, and t(·) denotes the spectral shuffle perturbation.

To validate our hypothesis, we conducted a pilot study to investigate the
illumination component of low-light images within low-light image decompo-
sition [37] and results are shown in Fig. 2. It can be observed that illumina-
tion maps have consistent predictions with different spectral order inputs, which
indicates that illumination is an invariant attribute. Consequently, illumination
invariance can serve as a consistency constraint for low-light decomposition.

Another insight regarding the illumination invariance is related to the
reduced color information and decreased contrast in low-light conditions. These
factors contribute to a limited range of pixel values in low-light images. As a
consequence, low-light images exhibit less intensity deviation across channels
compared to corresponding normal-light images. To illustrate this, we present
the intensity deviation across channels of low-light images from various low-light
datasets [11,37] in Fig. 3. It can be seen that the low deviation is a general sta-
tistical property of low-light images. This statistical property suggests that if we
were to rearrange the spectral order of low-light images, the rearranged low-light
images would still appear similar to the initial images. Therefore, the estima-
tion of low-light image illumination is minimally affected by the spectral shuffle
perturbation as the estimation primarily relies on intensity characteristics.

Reflectance Equivariance Following the Retinex theory (i.e., Eq. 4) and
illumination invariance (i.e., Eq. 5), we can further derive that reflectance obeys
an equivariance within spectral shuffle perturbation, which is called reflectance
equivariance and can be expressed as:

r ◦ t(I) = t ◦ r(I), (6)

where r(·) denotes the reflectance estimation operator. The derivation can be
found in Supplementary Materials1.

Intuitively, the reflectance component of an image captures the intrinsic prop-
erties of the scene, including shape, texture, and color. The shape and texture
are color-independent properties, and they can be correctly predicted regardless
of spectral order. The main concern of reflectance equivariance is whether the
color information can be well maintained as the order of spectral is highly related
to the color information. To alleviate this concern, we conducted two investiga-
tions. First, we employ a trained decomposition network [37] to examine whether
the reflectance output maintains a consistent transformation to the input under
spectral shuffle perturbations. As shown in Fig. 2, the results demonstrate a
strong alignment between the reflectance outputs. Additionally, we directly apply
perturbed input to the pre-trained enhancement network to assess the poten-
tial color shift in the output. Interestingly, our finding reveals a negligible error
between the direct input-output mapping and the perturbed input-inverse out-
put mapping. This compelling evidence suggests that spectral shuffle acts as a

1 https://github.com/lbu19/SCLLIE/blob/main/supplementary.pdf

https://github.com/lbu19/SCLLIE/blob/main/supplementary.pdf
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mild augmentation for low-light image enhancement, exerting minimal influence
on color preservation. More details are shown in Supplementary Materials.

(a) Retinex Decomposition

(b) Illumination Invariance Constraint (c) Reflectance Equivariance Constraint

(d) Cross Multi Scale Denoise Constraint

Downsampling w/ (      )
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Fig. 4. Overview of the proposed framework. (a) During the training stage, both the
low-light image and perturbed image are fed into LNet and RNet to estimate the
illumination and reflectance. The training stage is guided by four well-designed loss
functions, including (b) illumination invariance constraint LL, (c) reflectance equivari-
ance constraint LR, (d) cross multi-scale denoise constraint LD, and (e) reconstruction
constraint LRC . (f) In the testing stage, LNet and RNet are employed to decompose
the low-light image, and the enhanced output is obtained by adjusting the illumination
and recomposing it with the reflectance.

3.3 Framework

We illustrate our framework in Fig. 4. Our method primarily utilizes spectral per-
turbations to establish self-supervised training. We employ two simple networks,
referred to as LNet and RNet, to estimate illumination and reflectance compo-
nents, respectively. The details of network architecture can be found in Sup-
plementary Materials. During the training phase, the low-light image and per-
turbed low-light image are fed into LNet and RNet to estimate the illumination
and reflectance with four well-designed loss functions. To guide the illumination
estimation, we employ an illumination invariance constraint as the first loss func-
tion. As for the reflectance estimation, we enforce the RNet to explore reflectance
properties by incorporating a reflectance equivariance constraint as the second
loss function. Additionally, we incorporate a third loss function, known as the
cross multi-scale denoise constraint, to effectively suppress severe noise in the
reflectance component. Finally, we introduce the reconstruction loss that ensures
the decomposed illumination and reflectance satisfy the Retinex theory. In the
testing stage, we directly employ LNet and RNet to decompose the input image
and correct the illumination with gamma transformation. The enhanced result
can be achieved by:

Ien = g(L) · R = l(I)γ · r(I), (7)
where I and Ien represent the input low-light image and enhanced image, g(·)
denotes gamma transformation, and γ is the correction factor.
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3.4 Self-supervised Constraints

In this section, we provide detailed expressions of our constraints based on spec-
tral consistency and Retinex theory. Given the input low-light image Ii, we first
get perturbed low-light image Ip via random spectral shuffle transformation t(·),
which can be denoted as Ip = t(Ii). We then construct the following loss func-
tions with these two images.
Illumination Invariance Constraint. As discussed in Section 3.2, Ii and Ip

possess the same illumination component (i.e., l(Ii) = l(Ip)). However, directly
adopting this property as a loss function tends to lead to training collapse in
practice. Therefore, we constrain an alternative upper bound by introducing the
initialized illumination L0 as the bridge. Specifically, the L0 is calculated via
the maximum of the R, G, and B spectrum [8,10,29]: L0 = maxc∈{R,G,B} Ic(x).
Noticed that Ii and Ip shared a same L0, we have:

1
2
||l(Ii)−l(Ip)||22 =

1
2
||l(Ii)−L0+L0−l(Ip)||22 ≤ ||l(Ii)−L0||22+||l(Ip)−L0||22. (8)

We also impose a smooth term on estimated illumination. The whole illumi-
nation loss can be formulated as:

LL =
∑

j∈{i,p}
||l(Ij) − L0||1 + λs||∇l(Ij) · exp(−λr∇r(Ij))||1, (9)

where λs and λr denotes the smooth weight, ∇ represents the horizontal and
vertical gradients.
Reflectance Equivariance Constraint. Reflectance Equivariance indicates
that the reflectance map of Ii and Ip differ from each other by a transformation
t(·). Thus, we have the loss function based on Eq. 6:

LR = ||t ◦ r(Ii) − r(Ip)||22. (10)

By incorporating this constraint, we enable the network to focus on exploring
the intrinsic properties of low-light images, contributing to consistent structure
preservation.
Cross Multi-Scale Denoise Constraint. To cope with the severe noise
on the reflectance, we formulate the denoising constraint based on Neigh-
bor2Neighbor [15]. Different from Neighbor2Neighbor, we apply the asymmetri-
cal sub-samplers on r(Ii) and r(Ip) instead of a single noise image. By employ-
ing asymmetrical sub-samplers, we not only effectively remove noise but also
maintain the consistency of the reflectance component across the images. Nev-
ertheless, the constraint between sub-sampled images results in the block arti-
fact. To mitigate these block artifacts, we introduce a smoothness constraint on
reflectance. The whole denoise loss can be expressed as:

LD =
∑

s∈{2,4}
||t ◦ r(Ii) ↓s −r(Ip) ↓s ||22 + λd

∑

j∈{i,p}
||∇r(Ij)||1, (11)

where ↓s represents downsample with scale s.
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Reconstruction Constraint. Based on the illumination invariance assump-
tion that Il and Ip share the same illumination map, the reconstruction loss is
formulated as:

LRC =
∑

j∈{i,p}

∑

k∈{i,p}
||l(Ij) · r(Ik) − Ik||1. (12)

Overall Constraint. The overall loss function is a linear combination of the
above constraints:

Ltotal = LL + LR + λDLD + LRC , (13)

where λD is the weight.

Table 1. Quantitative comparison of the state-of-the-art LLIE methods on the LOL
and LSRW datasets. The top three results are marked in bold. T, S, and U represent
traditional methods, supervised methods, and unsupervised methods, respectively.

Dataset LOL LSRW
Metrics PSNR↑SSIM↑ LPIPS↓ DeltaE↓ PSNR↑SSIM↑ LPIPS↓DeltaE↓
T SDD [13] 13.34 0.6368 0.2623 21.83 14.71 0.4998 0.4137 15.52

STAR [39] 16.47 0.6972 0.2943 23.46 14.61 0.5039 0.4749 15.01
S RetinexNet [37] 17.61 0.6481 0.3858 12.69 15.58 0.4312 0.4017 14.12

KinD [42] 17.65 0.77500.1713 12.49 16.15 0.54220.3504 12.46
DRBN [41] 16.29 0.5515 0.2597 13.44 15.97 0.5393 0.3442 12.63
URetinexNet [38] 19.84 0.8260 0.128110.65 18.27 0.53680.2994 10.04

U ZeroDCE [9] 14.86 0.5588 0.3352 18.81 15.83 0.4664 0.3250 14.85
EnGAN [17] 17.48 0.6645 0.3159 14.50 16.31 0.4697 0.3136 11.66
SSIENet [43] 19.50 0.7003 0.2898 12.73 16.74 0.4873 0.3732 15.02
SCI [33] 14.78 0.5254 0.3393 19.52 15.02 0.4846 0.3260 15.13
PairLIE [8] 19.51 0.7364 0.2477 10.80 16.92 0.5015 0.3370 12.31
Ours 19.72 0.77760.2241 11.70 17.82 0.55740.3950 11.31

4 Experiments

In this section, we first provide details of our experiment implementation, evalu-
ation datasets, and performance criteria. Then, we present the quantitative and
qualitative comparisons between our proposed method and state-of-the-art LLIE
methods. Finally, we conduct ablation experiments to validate the efficiency of
our designs.
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(f) SCI

(b) SDD (c) STAR (d) RetinexNet (e) DRBN(a) Input

(g) ZeroDCE (h) PairLIE (i) Ours (j) GT

Fig. 5. Visual comparison of the state-of-the-art LLIE methods on the LOL dataset.
More comparison results can be found in the Supplementary Materials.

4.1 Implementation Details

We conduct experiments by the PyTorch platform with one NVIDIA GeForce
RTX 3070 GPU. The training images are cropped into 256 × 256 pixels. Adam
optimizer is adopted with β1 = 0.9 and β2 = 0.99 for a total of 200 epochs.
For the loss function, we set coefficients λr and λd to 10 and 0.2, respectively.
To cope with different noise levels, λD is set to 0.1 and 0.02, experimentally.
The initial learning rate is 1× 10−4 and we apply a half-decay per 50 epochs to
adaptively adjust the learning rate during training.

(f) SCI

(b) SDD (c) STAR (d) RetinexNet (e) DRBN(a) Input

(g) ZeroDCE (h) PairLIE (i) Ours (j) GT

Fig. 6. Visual comparison of the state-of-the-art LLIE methods on the LSRW dataset.
More comparison results can be found in the Supplementary Materials.

4.2 Datasets and Metrics

We collect low-light images from the LOL dataset [37] and LSRW dataset [11] to
train the model. For performance evaluation, we utilize the official evaluation set
of the LOL dataset (15 images) and the LSRW dataset (50 images). We adopt
three full-reference metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Sim-
ilarity (SSIM), Learned Perceptual Image Patch Similarity (LPIPS) and DeltaE
with CIE2000 standard as numerical evaluation metrics. Higher PSNR or SSIM
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(a) Input (b) RetinexNet (e) SCI(d) ZeroDCE(c) EnGAN (f) PairLIE (g) Ours

Fig. 7. Visual results on unpaired datasets, where the first row shows the results on
the MEF dataset, and the second row displays the results on the DICM dataset. Please
zoom in for details.

means a closer resemblance to the reference image, while lower LPIPS or DeltaE
value indicates better visual quality. We also extend evaluation to LIME [10],
MEF [32], NPE [36], and DICM [21] datasets for a more convincing comparison.
Since these datasets do not provide reference images for evaluation, we employ
the Naturalness Image Quality Evaluator (NIQE) as an alternative metric. In
general, a lower NIQE means better visual quality. The results are presented in
Supplementary Materials due to the limited space.

4.3 Comparison with State-of-the-art Methods

We compare our method with two traditional methods, including SDD [13],
STAR [39]. Furthermore, to verify the efficiency of our methods, we compare
with state-of-the-art learning-based methods including four supervised methods
(RetinexNet [37], KinD [42], DRBN [41], URetinexNet [38]) and five unsuper-
vised methods (ZeroDCE [9], EnGAN [17], SSIENet [43], SCI [33], PairLIE [8]).
It is worth noting that EnGAN [17] is trained with unaligned low-normal-light
pairs and PairLIE [8] is trained with paired low-light images. In contrast, our
method is trained with single low-light images. This difference in training data
highlights the flexibility of our approach.
Quantitative Comparisons. We present the quantitative comparisons of the
LOL and LSRW datasets in Table 1. Since the light conditions vary across dif-
ferent datasets, we experimentally set the correction factor γ to 0.15 and 0.2
for LOL and LSRW, respectively. As can be observed, existing unsupervised
methods tend to result in poor quantitative results, especially in terms of SSIM.
This is because they employ the sub-optimal assumption or lenient priors to
constrain training, which may destroy the structure or color information of the
low-light images. As illustrated in Table 1, our method outperforms other unsu-
pervised methods and achieves comparable results with the supervised algorithm.
Notably, our method encourages superior structural preservation by introducing
consistency constraints over reflectance and exhibits significant superiority to
other methods by large margins in terms of SSIM.
Qualitative Comparisons. In Figs. 5, 6, and 7, we present visual quality
comparisons for the LOL, LSRW, MEF, and DICM datasets. Upon observa-
tion, it is evident that SDD [13], SCI [33], and ZeroDCE [9] struggle to effec-
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tively enhance the overall brightness of the images. Furthermore, STAR [39],
RetinexNet [37], DRBN [41], and PairLIE [8] introduce noticeable artifacts on
the structure details of the images, which can result in unappealing visual out-
comes. Remarkably, our method can successfully suppress noise and produce
clear and natural results. More visual results can be found in Supplementary
Materials.

Table 2. Results of ablation studies on the LOL dataset. The baseline is our full
framework. The best results are marked in bold.

Setting PSNR↑SSIM↑ LPIPS↓
A 10.87 0.3454 0.8763
B 19.09 0.7556 0.2447
C 17.80 0.6299 0.4538
Baseline 19.72 0.77760.2241

(a) input (b)

(c) (d)

Fig. 8. The enhancement results with different denoise constraint weights λD.

4.4 Ablation Study

To demonstrate the rationality of our designs, we conduct ablation studies on
the LOL dataset. The ablation results are shown in Table 2. Firstly, (A) we
utilize the direct constraint between illumination to replace the upper bound in
Eq. 8. Due to the significant loss of prior knowledge about the illumination com-
ponent, the training process becomes unstable and leads to a large performance
decline. Secondly, (B) we discard the LR (Eq. 10) to explore the effectiveness of
reflectance equivariance. Without the reflectance equivariance constraint, there
is a certain performance degradation, which suggests that reflectance equivari-
ance can assist in learning structure details by forcing the network to focus on
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the intrinsic characteristics of the image itself. Lastly, (C) we set λD to 0 in
Eq. 13 to validate denoise constraint. The absence of the denoise constraint con-
tributes to a large performance decline. This is primarily because the low-light
images are polluted by noise severely and noise removal is an essential aspect
of the low-light enhancement task. By neglecting the denoising constraint, the
model fails to effectively address the noise present in the images, leading to a
noticeable deterioration in performance. We further provide visualizations of the
enhancement results obtained with different λD values in Fig. 8. As observed,
the enhanced result is highly influenced by noise artifacts when the denoise con-
straint is discarded while remarkably appealing results can be achieved with our
denoise strategy.

5 Conclusions and Limitations

In this paper, we first investigate the spectral consistency of low-light images.
Then, we point out that the illumination and reflectance of low-light images
should maintain the invariance and equivariance under the spectral shuffle per-
turbations, respectively. Building upon the above observation, we propose a novel
framework for unsupervised LLIE by constraining spectral consistency between
images before and after perturbations. These constraints contribute to a more
robust decomposition process and enable the enhanced image to retain more
consistent information throughout. Extensive experimental results have demon-
strated the effectiveness and flexibility of our method. However, the proposed
approach is not optimized for capturing the distortion information caused by
extreme dark scenes, leading to less detailed results compared to the ground
truth or supervised methods due to the inherent loss of details in low-light
images. A robust semantic feature may provide the guidance for content recov-
ery. For future work, it is worth exploring the integration of a large pre-trained
model in normal light scenes that can introduce stable semantic feature to assist
the detail restoration.
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ence Foundation under Grant 2108085UD12. We acknowledge the support of GPU
cluster built by MCC Lab of Information Science and Technology Institution, USTC.
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Abstract. Satellite image sequence prediction is a branch of spatio-
temporal prediction, which holds considerable potential for practical
applications. However, the complex and diverse changes of satellite
images over time hinder existing spatio-temporal prediction models from
achieving high-accuracy long-term predictions. In this paper, we propose
a method called MMSISP (Multi-Factor Multi-Modal Satellite Image
Sequence Predictor). This method decomposes satellite image changes
into multiple factors and models them using two branches. The motion
branch is utilized for predicting cloud movement, while the appear-
ance branch is employed for forecasting cloud variations (e.g., formation
and dissipation), as well as brightness change. Additionally, we intro-
duce two modalities: capture time and meteorological data, enabling
the model to have more clues for predicting future frames. For the cap-
ture time, we design a time embedding module that enables the model
to infer brightness and learn seasonal patterns of cloud formation and
dissipation. Regarding meteorological data, which contains information
about cloud movement and cloud variations, we devise different spatio-
temporal multi-modal fusion mechanisms for the two branches. Based on
experiments conducted on the Himawari-8 satellite images, our method
demonstrates a significant improvement in accuracy compared to other
methods.

Keywords: Satellite image sequence prediction · Spatio-temporal
prediction · Multi-modal fusion

1 Introduction

Satellite image sequence prediction, as a branch of spatio-temporal prediction,
holds broad application prospects, such as photovoltaic power generation pre-
diction [12], floods prediction [5] and weather nowcasting [11]. Inferring accurate
satellite image sequences is beneficial to the normal conduct of social activities,
thus work in this area has gradually increased in recent years. Since general
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spatio-temporal prediction methods have shown limited effectiveness on satellite
image sequences, many models considering the characteristics of satellite images
have been proposed. Nonetheless, they still exhibit certain limitations. Some
works [7,21] have limited practical value due to short lead times. Other works
[1,2,12] use GANs to avoid the blurriness of long-term predictions, but there
is limited discussion on improving the accuracy by considering the diversity of
satellite image changes. In contrast, our primary goal is to maximize the prac-
tical utility of satellite image sequence prediction by focusing on improving the
accuracy of long-term predictions.

Additionally, previous works typically avoid using visible channels due to
factors such as nighttime unavailability and significant brightness change. How-
ever, visible channels also hold unique value, often possessing higher resolution
and enabling more intuitive differentiation of land cover types, which is crucial
for agricultural and environmental monitoring. Therefore, our method primarily
focuses on experiments using visible channels.

We argue that there are two main reasons for the low accuracy of long-term
predictions. One is that multiple changing factors in satellite images are not
adequately separated, and the other is the lack of information to infer image
changes. In this work, we propose MMSISP, a method that decouples multiple
changing factors in satellite images and uses multi-modal data to complement
information.

The changes in satellite images over time can be generally categorized into
cloud movement, cloud variations and brightness change, as shown in Fig.1.
Cloud variations include the formation and dissipation of the cloud, while bright-
ness change comes from the change of solar illumination. Therefore, we decouple
the network accordingly, using two branches to handle different factors. The
motion branch is responsible for predicting cloud movement, while the appear-
ance branch handles cloud variations and brightness change. After obtaining the
outputs of the two branches, we design an Adaptive Fusion Module (AFM) to
perform adaptive fusion between them.

Brightness Change

2h

Cloud Movement

2h

Cloud Variations

2h

Fig. 1. Satellite image changes over time come in various forms, such as cloud move-
ment, cloud variations (e.g., formation and dissipation) and brightness change.

In addition, we utilize two extra modalities: capture time and meteorological
data, to aid the model in inferring image changes. For the capture time, we design
a lightweight plug-in time embedding module for ConvRNNs, such as ConvLSTM
[10] and PredRNN [18]. Based on the capture time, the model can determine
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whether it is currently morning or afternoon, thereby inferring the change of
brightness in the future. Furthermore, by considering the date of capture, the
model can learn seasonal patterns of cloud formation and dissipation.

Meteorological data, such as temperature, humidity, wind direction and wind
speed, contain information about cloud movement, formation and dissipation.
Like satellite image sequences, meteorological data sequences belong to spatio-
temporal data. However, fusion between two spatio-temporal modalities has
rarely been explored. Therefore, based on spatial multi-modal fusion methods
such as [15], we propose different spatio-temporal multi-modal fusion mecha-
nisms for two distinct branches. Specifically, for the motion branch, we devise
an alignment module. For the appearance branch, we introduce an additional
ConvRNN, a module called Spatial Channel Attention (SCA), and a dedicated
loss function.

Our main contributions are summarized as:

1) We propose MMSISP, a novel method for satellite image sequence prediction,
which exhibits superior performance across various metrics during evaluation
on Himawari-8 satellite images.

2) We disentangle satellite image changes over time into different factors and
design two branches: the motion branch and the appearance branch, to model
them separately.

3) For the first time, we incorporate multi-modal information such as cap-
ture time and meteorological data into the task. Additionally, we devise a
lightweight time embedding module and spatio-temporal multi-modal fusion
mechanisms tailored for different branches.

2 Related Work

2.1 Spatio-Temporal Prediction

Spatio-temporal prediction refers to the task of predicting future frames using
given past frames. Recurrent-based spatio-temporal prediction models [4,10,14,
17–20], renowned for their exceptional ability to capture spatio-temporal corre-
lations, have been widely applied across various domains. In recent years, the
potential of recurrent-free models [3,13,23] has been gradually uncovered, sur-
passing recurrent-based models in some domains. Furthermore, due to the abil-
ity of generative models such as GANs and diffusion models to generate high-
resolution images, they have garnered increasing attention in spatio-temporal
prediction as well. However, generic spatio-temporal prediction models often
struggle to achieve optimal results across all domains. Therefore, some studies
have designed specific models for different domains, such as precipitation pre-
diction [8,9,22].

2.2 Satellite Image Sequence Prediction

As a branch of spatio-temporal prediction, satellite image sequence prediction
also has models designed for it. Lee et al. [7] design a network that can fully
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utilize the characteristics of multichannel satellite images. Xu et al. [21] propose
a network combining the generating ability of the GAN with the forecasting
ability of the LSTM network. Dai et al. [2] propose a network with a multiscale
generator with axial attention and a temporal discriminator to address the blurry
issue and maintain the motion consistency. Dai et al. [1] design a network that
can maintain spatial-temporal consistency with a multilevel motion memory-
based predictor and a time-variant frame discriminator.

Previous works often neglect the diversity of satellite image changes and
rarely integrate multi-modal data to improve prediction accuracy. While [7]
integrate meteorological data to support critic networks in discerning network-
generated images during training, none of the existing methods, including [7],
utilize meteorological data directly to enhance prediction during inference. Addi-
tionally, none of these methods consider the capture time.

3 Method

Month
Day

Hour

Past
Meteorological
Data Sequence

Time Embedding Module

ConvRNN

ConvRNN

SCA

SCA

(b) Appearance Branch

C

Output
Conv

Output
Conv

(a) Motion Branch

Evolution
Encoder

Motion Decoder

Residual Decoder
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Image Sequence
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Past Satellite
Image Sequence

Capture Time

Share

Weights

: Element-wise Addition : Element-wise Multiplication C : Concatenation R : Reverse (Subtract from 1)

Fig. 2. The overall architecture of MMSISP. We first train the first stage of the network,
including the motion branch predicting cloud movement, and the appearance branch
predicting cloud variations and brightness change. Then, we freeze both branches and
train the AFM in the second stage to adaptively fuse the predictions.

The formal definition of the satellite image sequence prediction problem is as
follows: given the past frames XP = {X0,X1, ...,XTP −1} ∈ R

TP ×C×H×W , the
model need to predict the future frames XF = {XTP

,XTP+1, ...,XTP+TF −1} ∈
R

TF ×C×H×W .
Based on the characteristic that satellite image changes have multiple factors,

we design a two-stage network as shown in Fig.2. The first stage is divided into
two branches: a motion branch and an appearance branch. The motion branch
takes images and meteorological data as inputs and is responsible for predicting
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cloud movement. The appearance branch, on the other hand, takes images, cap-
ture time, and meteorological data as inputs and is tasked with predicting cloud
variations and brightness change. In the second stage, we use an AFM with gat-
ing mechanism to adaptively fuse the predictions from two branches and obtain
the final prediction. In order to reduce the difficulty of network optimization,
two stages are trained separately.

3.1 Motion Branch

...

(d) Evolution Operator

D Block
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D Block

Downsample

D Block

Downsample

D Block

Downsample

D Block

Upsample

D Block

Alignment
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Alignment
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× 2

BN 3×3 Conv

C

× 2

Fig. 3. The components of the motion branch: (a) evolution encoder, motion encoder
and residual decoder; (b) D block; (c) our designed alignment module; (d) evolution
operator.

Evolution network [22] is a network that produces mesoscale precipitation fore-
casts. Due to the similarity between the motion patterns of clouds and precipi-
tation fields, we apply the evolution network to model the cloud movement and
design an alignment module to incorporate meteorological data into it.

As shown in Fig.3, our motion branch use an evolution encoder to extract
features, a motion decoder to predict cloud movement, and a residual decoder
to recover the background. The evolution encoder consists of four D blocks, each
followed by a max-pooling layer for downsampling by a factor of two. The motion
decoder and the residual decoder share the same architecture, consisting of five
D Blocks, with bilinear interpolation for upsampling by a factor of two between
every two blocks. Skip connections in the form of concatenation exist between
the encoder and decoder.
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We incorporate three alignment modules in each decoder to align the resolu-
tion of meteorological data with the image feature maps at each layer. Specifi-
cally, after resizing the meteorological data to the same size using bilinear inter-
polation, we apply a simple transformation to the meteorological data using a
convolutional layer with batch normalization and ReLU, followed by residual
connection.

The evolution encoder takes the past satellite images XP ∈ R
(TP ×C)×H×W

as input, while the motion decoder and residual decoder respectively output the
motion fields V ∈ R

(TF ×2)×H×W and the residual fields R ∈ R
(TF ×C)×H×W .

On the basis of the last past frame, the evolution operator recursively predicts
the next frame. Specifically, it uses the predicted motion field for each time step
to perform a warp operation [6] to simulate cloud movement. Then, it adds the
residual field for each time step to recover the background obscured by clouds.

The evolution network is only suitable for predicting the cloud movement.
Without constraining the motion field, cloud variations will make the model
training unstable. Therefore, a motion regularization term is used to exclude the
influence of cloud variations, making the motion field smoother:

Lreg =

∑TP+TF −1
t=TP

(‖ ∇V 1
t ‖22 + ‖ ∇V 2

t ‖22)
TF

(1)

in which V 1
t and V 2

t are the two components of each motion field Vt. The gradi-
ents of the motion field components ∇V 1

t and ∇V 2
t are computed approximately

using the sobel filter.
The complete loss function of the motion branch is:

Lm = MAE(XF , X̂m
F ) + λreg · Lreg (2)

where XF is the ground truth of future frames, X̂m
F is the prediction of the

motion branch, and λreg is a hyperparameter used to adjust the influence of the
motion regularization term.

3.2 Appearance Branch

Due to the inherent limitations of evolution network in predicting cloud vari-
ations and brightness change, we design an appearance branch. This branch
consists of two internal branches dedicated to modeling satellite images and
meteorological data, respectively. Each internal branch comprises a ConvRNN,
an SCA module, and a 1×1 convolution for generating outputs. The ConvRNN
used for satellite images also includes a time embedding module. In this section,
we will provide a detailed introduction to each component of the appearance
branch.

ConvRNN To fully capture the spatio-temporal dependencies in satellite
images and meteorological data, we use ConvRNNs to model them separately.
We validate the effectiveness of our architecture by implementing two variants,
each utilizing a different ConvRNN. The variant using ConvLSTM is denoted as
MMSISP-C, while the variant using PredRNN is denoted as MMSISP-P.
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Time Embedding Module We design a lightweight time embedding module,
as shown in Fig.4, which can realize the introduction of image capture time using
only a few parameters.

(a) Time Embedding Module

SinEmb

SinEmb

SinEmb

Month

Day

Hour

C

MLP

Repeat

Time Embedding

(b) Spatial Channel Attention

Concatenated

Feature Map

3×3 

3×3 

GELU SigmoidLinearLinear

ReLU

3×3 
Sigmoid

Fused Feaure Map

Fig. 4. Some components of the appearance branch: (a) time embedding module; (b)
SCA for ConvRNN applied to satellite images. CS and CM represent the number of
hidden state channels for ConvRNN applied to satellite images and meteorological
data, respectively. HS and WS denote the height and width of the hidden state for
ConvRNN applied to satellite images, respectively.

Firstly, we employ the sinusoidal embedding [16] to transform the numerical
values of month, day, and hour into vectors:

SE(t, 2i) = sin(t/100002i/D)

SE(t, 2i + 1) = cos(t/100002i/D)
(3)

where t represents the month, day, or hour when the first past frame was cap-
tured, i denotes the index of an element in the vector, and D represents the
length of the vector.

Since we only use daytime images, with 12 possible values for months, 31 for
days, and 8 for hours, we set the length of the day vector Dd = CS/2 and the
lengths of the month and hour vectors Dm = Dh = CS/4, where CS represents
the number of hidden state channels of the ConvRNN used for satellite images.

Next, we concatenate the three vectors into a single vector of length CS and
use an MLP to obtain a joint time embedding:

TE = Sigmoid(W2(GELU(W1([SEm,SEd,SEh])))) (4)

Finally, we repeat the joint time embedding of length CS , transforming it into
the shape of (CS ,HS ,WS), where HS and WS denote the height and width of
the hidden state, respectively. The final time embedding will serve as the initial
hidden state for the ConvRNN used for satellite images, which was originally
initialized as all zeros.
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Spatial Channel Attention After extracting features from satellite images
and meteorological data using ConvRNN separately, it is crucial to perform effec-
tive feature fusion. Concatenation followed by convolution is a straightforward
fusion method, but it overlooks the varying importance of different channels in
the feature map and different pixels within each channel. We use the SCA mod-
ule to address this issue, emphasizing important elements in the feature map
and thereby achieving better predictions.

Taking the SCA for ConvRNN used for satellite images as an example, assum-
ing CM represents the number of hidden state channels of the ConvRNN used
for meteorological data, and η is the reduction ratio, we first concatenate the
feature maps of the images and meteorological data at each time step into a
single feature map Zconcat ∈ R

(CS+CM )×HS×WS . The number of channels in the
concatenated feature map is subsequently reduced to (CS + CM )/η by Conv1,
and then expanded back to CS + CM by Conv2. Subsequently, the importance
of each element in the feature map A ∈ R

(CS+CM )×HS×WS is obtained using the
sigmoid function:

A = σ(Conv2(ReLU(Conv1(Zconcat)))) (5)

Finally, the concatenated feature map Zconcat is element-wise multiplied
with A and passed through Conv3 to obtain the final feature map ZSCA ∈
R

CS×HS×WS :

ZSCA = Conv3(A ⊗ Zconcat) (6)

Loss Fuction In addition to using the prediction loss of satellite images, adding
a prediction loss of meteorological data might provide constraints on meteoro-
logical aspects, enhancing the robustness of the model. However, due to the
noise contained in the interpolated meteorological data, excessive constraints
may affect the performance of the model. Therefore, we use a cosine decay fac-
tor α from 1 to 0 as the weight of the prediction loss of the meteorological data.

The complete loss function of the appearance branch is:

La = MSE(XF , X̂a
F ) + α · MSE(MF , M̂F ) (7)

α = 0.5 × (1 + cos(
π × current_iter

total_iters
)) (8)

where XF is the ground truth of future satellite images, and X̂a
F is the prediction

of the appearance branch. MF is the ground truth of future meteorological data,
and M̂F is the predicted values of future meteorological data.

3.3 Adaptive Fusion Module

After separately training the motion branch and appearance branch in the first
stage, we freeze the parameters of both branches. Subsequently, we use MAE loss
to train the AFM, enabling adaptive fusion of predictions from both branches.
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In the AFM, the predictions from different branches are respectively passed
through the same feature extractor. It consists of three parallel convolutional
layers with batch normalization and ReLU. The convolutional layers have ker-
nel sizes of 3×3, 5×5, and 7×7 respectively. Then, the feature maps of the two
branches are concatenated, and the select gate is obtained using a select con-
volution operation with a sigmoid function. Ultimately, the final prediction is
obtained using the select gate.

The above process can be represented by the following formula:

X̂F = G ⊗ X̂m
F + (1 − G) ⊗ X̂a

F (9)

G = Sigmoid(Conv([Extractor(X̂m
F ),Extractor(X̂a

F )]) (10)

where ⊗ is the element-wise multiplication and G is the select gate.

4 Experiments

4.1 Datasets

Satellite Images The satellite images used in this work are three-channel true-
color images from the Himawari-8 satellite, synthesized from channels 1, 2, 3 and
4. Afterward, a specific geographical region (28.7◦N - 41.5◦N, 116.2◦E - 129.0◦E)
was cropped and resized to a size of 3×256×256 pixels. Due to the absence of
visible channel during nighttime, only daytime images within the interval of
UTC 00:00 - 08:00 were included in the dataset, with any instances of missing
data being excluded. The prediction task is to predict 8 future frames based
on 4 past frames, with a time interval of 30 minutes between each frame. To
facilitate model training and validation, data spanning from 2017 to 2020 were
partitioned into training and validation sets in a randomized manner, adhering
to a ratio of 4:1. Consequently, the resulting sets consisted of 5208 samples for
training and 1308 samples for validation. Subsequently, data from the year 2021
were designated as the test set, comprising 1236 samples.

Meteorological Data The meteorological data used in this work are extracted
from ERA5 hourly data on pressure levels. This encompasses the u-component
of wind, v-component of wind, temperature, and relative humidity at 250hPa,
500hPa, 850hPa, and 1000hPa, covering the same spatial and temporal domain
as the satellite images. The original spatial resolution of the meteorological data
is 0.25 degrees, with a temporal resolution of 1 hour. Later, the data were interpo-
lated to a size of 16×64×64 pixels, resulting in a spatial resolution of 0.2 degrees,
to match the images with a patch size of 4. Additionally, the time intervals were
also interpolated to 30 minutes.
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4.2 Implementation Details

In the motion branch, the base hidden layer dimension of the evolution network
is set to 32, and λreg is set to 0.01. In the appearance branch, the ConvRNN used
for satellite images has a patch size of 4, a convolutional kernel size of 5, a hidden
layer dimension of 128, and 4 layers. The ConvRNN used for meteorological data
has a patch size of 1, a convolutional kernel size of 5, a hidden layer dimension
of 32, and 4 layers. The reduction ratio η of SCA is set to 16. In the AFM, the
hidden layer dimension is set to 8.

All experiments were conducted using PyTorch on a single NVIDIA RTX
3090. Both the motion branch and the appearance branch were trained for
50 epochs, and the AFM was trained for 5 epochs, all with a batch size of 8.
Throughout the training processes, the Adam optimizer was employed with an
initial learning rate of 0.0001, complemented by a cosine learning rate scheduler.

Table 1. Quantitative comparison of state-of-the-art methods and our method.
MMSISP-C is based on ConvLSTM and MMSISP-P is based on PredRNN. AB means
the appearance branch.

Model MAE ↓ MSE ↓ SSIM ↑PSNR ↑LPIPS ↓ Param FLOPs

Recurrent-based
ConvLSTM [10] 9691.29 1067.430.7796 23.77 0.6267 15.497M0.545T
PredRNN [18] 8873.17 946.11 0.7927 24.36 0.5207 24.56M 1.107T
PredRNN++ [17] 8823.37 958.33 0.7919 24.33 0.5298 39.305M1.623T
MIM [19] 8752.85 926.45 0.7954 24.40 0.4750 47.612M1.675T
PhyDNet [4] 11934.641405.710.7541 22.28 0.6456 3.093M 0.142T
MotionRNN [20] 9191.81 996.42 0.7937 24.20 0.5122 7.215M 0.319T
SwinLSTM-D [14] 9581.99 1106.130.7706 23.59 0.5399 20.208M0.162T
Recurrent-free
SimVP [3] 9812.64 1099.580.7806 23.58 0.5846 39.429M0.19T
TAU [13] 9139.03 1032.730.7857 23.91 0.5408 37.647M0.182T
MMVP [23] 10837.911287.740.7414 22.71 0.7369 10.781M0.375T
Generative
DGMR [9] 14441.742136.830.6585 20.48 0.4726 53.577M0.118T
LDCast [8] 15114.142416.430.6857 20.13 0.4059 670.8M 44.532T
Ours
MMSISP-C (AB) 8937.79 968.23 0.7850 24.17 0.5725 16.595M0.583T
MMSISP-C 8703.77 956.78 0.7891 24.16 0.4899 27.215M0.617T
MMSISP-P (AB) 8661.20 921.32 0.7926 24.46 0.5236 26.234M1.181T
MMSISP-P 8549.25918.82 0.7937 24.47 0.4854 36.854M1.214T
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4.3 Comparisons to State-of-the-Art Methods

We compare our method with existing spatio-temporal prediction methods,
including recurrent-based methods, recurrent-free methods and generative meth-
ods. Table 1 shows that our method is superior to other methods in terms of
most metrics.

MMSISP-P surpasses all methods in MAE, MSE, and PSNR, with a notable
203.6 reduction in MAE compared to MIM, indicating a significant improvement
in accuracy. Despite a slightly lower SSIM compared to MIM, it boasts a 23%
reduction in parameters. The two generative models exhibit the lowest LPIPS,
suggesting their predictions closely resemble ground truth in human visual per-
ception. However, visualization in section 4.5 reveals that while LDCast’s pre-
dictions are clear, noticeable differences in cloud positions from ground truth
lead to high MAE.

Additionally, even when using only the appearance branch of MMSISP,
there is a significant improvement. Compared to ConvLSTM and PredRNN,
the appearance branches of MMSISP-C and MMSISP-P respectively increase
the parameter count by 1.098M and 1.674M, yet reduce MAE by 753.5 and
211.97, demonstrating the accuracy boost from incorporating capture time and
meteorological data.

4.4 Ablation Study

Motion Branch As shown in Table 2, for the motion branch, both the residual
field and the motion regularization term are important. The introduction of
meteorological data also improves accuracy.

Without the residual field, the background obscured by clouds in the last
frame cannot be recovered and the model tends to copy the content of the last
frame, resulting in a 5289.01 increase in MAE. Without the motion regulariza-
tion term, the model struggles with optimization due to unsmooth motion fields
caused by cloud variations, leading to a 522.87 increase in MAE. Introducing
meteorological data through the alignment module assists the model in inferring
cloud movement, reducing MAE by 21.05, demonstrating the efficacy of using
meteorological data.

Table 2. Ablation study for the motion branch of MMSISP-C.

MAE ↓ SSIM ↑ Param

w/o residual field 14395.230.6970 6.979M
w/o motion regularization 9629.09 0.7447 10.508M
w/o alignment module 9127.27 0.7828 8.864M
Motion Branch 9106.220.7830 10.508M
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Appearance Branch As shown in Table 3, we conduct an ablation study on
the appearance branch of MMSISP-C. Specifically, we remove the time embed-
ding module and various components of the spatio-temporal multi-modal fusion
mechanism individually to validate their effectiveness.

The time embedding module only needs 0.033M more parameters to reduce
MAE by 576.84. This demonstrates that incorporating the capture time enhances
the model’s ability to predict cloud variations and brightness change. The effec-
tiveness of all components in the spatio-temporal multimodal fusion mechanism
has been validated, including the ConvRNN for meteorological data, SCA, and
the cosine decay factor in the loss function, all of which contribute to improved
accuracy. Together, they add 1.065M parameters but reduce the MAE by 427.3.

Table 3. Ablation study for each component in the appearance branch of MMSISP-C,
including time embedding module (TEM), ConvRNN for meteorological data (CMD),
spatial channel attention (SCA), and cosine decay factor (CDF).

TEMCMDSCACDF MAE ↓ SSIM ↑ Param

9691.29 0.7796 15.497M
� 9114.45 0.7828 15.53M

� 9437.25 0.7823 16.505M
� � 9308.07 0.7805 16.562M
� � 9433.59 0.7829 16.505M
� � � 9263.99 0.7812 16.562M

� � � � 8937.790.7850 16.595M

Adaptive Fusion Module The fusion methods for the predictions of the two
branches can be divided into image-level fusion and pixel-level fusion. In image-
level fusion, which involves techniques like averaging two images or using an AFM
with global average pooling, the same weight is assigned to different pixels within
the same image. Conversely, in pixel-level fusion, such as the AFM, different
weights are assigned to different pixels of the same image.

As shown in Table 4, compared to the image-level fusion methods, the AFM
has lower MAE and higher SSIM. Compared to averaging two images and using
an AFM with global average pooling, the MAE decreased by 27.62 and 35.87,
respectively.

4.5 Visualization

We select samples from two scenarios to demonstrate the accuracy and robust-
ness of our method. Fig.5 illustrates that in a scenario with rapid cloud move-
ment, our method can generate the most accurate long-term predictions. In
contrast, other methods have misjudged the final position of the cloud. Fig.6
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Fig. 5. Visualization of predictions in a scenario with rapid cloud movement.

Table 4. Ablation study for the AFM of MMSISP-C. GAP represents global average
pooling.

MAE ↓ SSIM ↑ Param

Image-Level (1:1) 8731.39 0.7886 0
Image-Level (AFM + GAP) 8739.64 0.7886 2.1K
Pixel-Level (AFM) 8703.770.7891 2.1K
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Fig. 6. Visualization of predictions in a scenario with significant brightness change.
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demonstrates that in a scenario with significant change in brightness, our method
exhibits strong robustness. Due to the lack of capture time information, the pre-
diction result of MIM tends to be brighter. In contrast, our method, which
incorporates capture time, accurately predicts the brightness of the final frame.

Additionally, from the two figures, it can also be observed that generative
models like LDCast can generate the clearest predictions, but they fail to make
accurate predictions for cloud movement, cloud variations and brightness change.

5 Conclusion

To address the issue of low accuracy in long-term predictions in satellite image
sequence prediction, we decouple various changing factors and propose a dual-
branch method. Additionally, we design a lightweight time embedding module to
utilize the capture time and different spatio-temporal multi-modal fusion mech-
anisms for the two branches to leverage meteorological data, thereby assisting
in the inference of satellite image changes. Through experiments, our method
demonstrate superior accuracy compared to state-of-the-art methods.

However, the proposed method still has certain limitations. Firstly, although
it shows an improvement in accuracy compared to other methods, there is no sig-
nificant enhancement in the clarity of the generated results. Secondly, the mete-
orological data used is reanalysis data, which, despite having a more uniform
spatial distribution than observational data, cannot be obtained in real-time. In
future work, we plan to introduce multi-factor decoupling and multi-modal fusion
into the generative model to improve clarity, use real-time observational meteo-
rological data to enhance the method’s practicality, and conduct experiments on
satellite images from more regions to validate the model’s generalization capa-
bility.
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Abstract. Anomaly detection is critical for real-time applications, e.g.,
monitoring elderly people or kids from a remote place; gas leakage
detection, night vision surveillance, etc. Detecting anomalous behavior
becomes even more challenging when the device used for capturing scenes
is the thermal camera. The thermal videos have the ability to preserve
the identity of the subjects involved in the scenes. The info-deficit nature
of thermal imagery, i.e., lack of texture, contours, and colors, makes it
difficult to fetch the salient details required to differentiate between nor-
mal and abnormal events. Most approaches for anomaly detection in
videos explicitly model regions of interest (ROIs). However, this model-
ing poses limitations of accurate RoI detection more in thermal videos
when the size of ROIs is smaller than the size of the frame. Moreover, the
techniques, that take advantage of corresponding visible videos to detect
anomalies in thermal videos, have a limitation of requiring twin videos.
To address these limitations, we present a frame-level unsupervised app-
roach that learns two sets of features from two different encoders in a
disentangled fashion. The learning objectives of the proposed approach is
aggregation of reconstruction error of the middle frame and disentangle-
ment error between two encodings. We perform extensive experiments on
two benchmark thermal video datasets, Thermal Rare Event and TSF.
The proposed approach outperforms state-of-the-art models for anomaly
detection from visible and thermal spectrum.

Keywords: Convolution Neural Networks · Anomaly Detection ·
Thermal Imagery · Visible Imagery

1 Introduction

Anomaly detection aims to identify abnormal events that are defined by situa-
tions. In many cases, it becomes highly challenging, yet subjective in nature, to
decide that an event is normal or anomalous. For example, vehicles on a walk-
way or people walking on a runway. To counter these ambiguities, most existing
learning methods [4,20,39] leverage the finer details in the visible spectrum with
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15322, pp. 237–253, 2025.
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details like fine-grained texture and color, etc. However, working with the visible
spectrum always carries privacy concerns for the subjects. Also, the need for
illumination sources for capturing scenes limits its applicability for applications
requiring operability for 24 × 7 and in dark places. Thermal imagery addresses
privacy concerns and dependency on illumination sources. Moreover, thermal
imaging applications for anomaly detection may arise where the ROI is based on
the emission of heat energy. For example, crack detection [30], railway inspec-
tion [2], and industrial applications [1]. Other applications include healthcare
applications [18], night vision surveillance [10], etc.

In the literature, anomaly detection has been attempted by both supervised
learning and unsupervised learning methods. Supervised learning methods need
annotated data, which requires manual effort and time [3,17,18,21,25,28,38].
Moreover, abnormal activity detection is a rare event, and thus capturing
enough instances of anomalies becomes a tedious task. Annihilating the need
for labeled datasets, several methods have been proposed for anomaly detection
[11,20,33,36] that utilize unsupervised paradigm. Particularly, these methods
use data with normal events for training and evaluate on data having both nor-
mal and abnormal events. This eradicates the need for labeled datasets resulting
the unsupervised approach a natural choice. Therefore, we also follow the unsu-
pervised approach for Anomaly Detection using Thermal Imagery (ADTI).

The earlier unsupervised approaches for ADTI [1,2] are based on the image
processing methods that require preprocessing the thermal images e.g. comput-
ing 3D matrix, geometry of objects in the thermal images for anomaly detec-
tion. Some recent researches [23,33] use thermal images in pair with visible
images; which assists in better anomaly detection in thermal images by perceiv-
ing the details from visible images. Few unsupervised approaches [8,10,11,27]
explicitly model ROIs/objects based on their appearance and motion charac-
teristics using object and flow detectors. However, explicit modeling of objects
limits anomaly detection in cases where ROIs are of very small regions com-
pared to the frame. Apart from approaches designed for thermal images, various
researchers have worked on Anomaly Detection using Visible Imagery (ADVI)
[12,13,20,24,31,36] which can be applied on thermal images to evaluate their
performance on ADTI.

We propose an approach having Dual Encoders with Feature Disentanglement
Network (DEFD-Net) which inherently learns the salient features in thermal
videos by disentangling two different set of features from two encoders. Our
approach also works well in the aforementioned limiting situations.

We use prediction of the middle frame from a set of consecutive input frames
in an encoder-decoder setup and utilize 2D Convolution Neural Network (CNN)
and 3D CNN encoders for feature extraction. However, the simple ensemble of
features of two encoders may learn common features, affecting the perceptual
quality of the predicted frame. Our feature distinctiveness approach allows the
encoders to learn exclusive features and thus represent better information for
precisely predicting the middle frame. We also exploit the intermediate represen-
tations of pose estimation network [5], Part Affinity Fields (PAFs) and Heatmaps
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(HMs) to enhance the salient areas of the thermal images. The proposed DEFD-
Net outperforms the existing best-published works [12,13,20,24,31,36] of ADVI
significantly on TSF [35] and Thermal Rare Event (TRE) [26] thermal datasets.
The salient features of our approach are as follows:

1. We propose a simple yet effective approach, called DEFD-Net, that exploits
distinct features using a feature disentanglement approach. Our novel idea
of using feature disentanglement technique for ADTI helps in understanding
details from thermal images precisely at a negligible cost.

2. We performed extensive experiments on two benchmarked thermal datasets
namely, TSF and TRE, and compared the performance of our proposed app-
roach with the state-of-the-art approaches for ADVI and ADTI and achieved
a new state-of-the-art.

2 Related Work

The unsupervised learning approaches for anomaly detection can be categorized
into: 1) object-level and 2) frame-level approaches. The object-level anomaly
detection approaches [12,13,27] enables the exact localization of anomalies in an
image. But these approaches are limited by the performance of object detection
algorithms [12,27]. This becomes even more challenging with thermal images,
where recognizing the object is hard because of the fewer details. The frame-
level approaches [24,26,31,36] consider a frame as anomalous even if only one
pixel is abnormal. Georgescu et al. [12] has also presented their results using the
fusion of object and frame level anomaly scores based on late-fusion strategy.

Anomaly Detection in Thermal Imagery. Benmoussat et al. [1] identify the
anomaly as the deviation from the background, from a statistical point of view.
They claimed that the calibrated thermal images after denoising and dimension-
ality reduction show a better performance. The need for calibration of three ther-
mal devices and use of specialized detectors limits its applicability. A method in
[2] collected thermal video from the moving train and detected anomalous objects
around rails by thresholding geometric properties. A binary mask with the ther-
mal image is used for the correction to improve anomaly detection. However, this
method works only for the application considered. Gasparini et al. proposed a
neural network to inspect the railway at night using thermal videos. The method
required objects to be annotated for training involving manual annotations [10].
Fall detection as the anomaly detection task is addressed by [8]. They built a spatio-
temporal residual autoencoder that takes ROI from a temporal sliding window
method as the input. The explicit extraction of temporal information through
LSTM along with spatial information using ConvLSTM boosts the model’s per-
formance. While, Mehta et al. address fall detection using an adversarial approach
that reconstructs a thermal frame and optical flow. They computed the ROI of
a person using R-FCN in conjunction with contour box localization using Ostu
thresholding and tracking using Kalman filtering. The fusion of flow-ROI and the
thermal image-ROI yielded a better AUC [27]. All the above-mentioned models
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are based on the assumption that foreground objects are brighter than the back-
ground. These methods require the use of object detectors or trackers or flow detec-
tors [9] for extracting salient features from thermal videos. However, in thermal
modality, detecting objects becomes challenging in adverse weather and lightning
conditions e.g., detecting a person under bright sun.

Few approaches use visible and thermal images in pair to improve anomaly
detection. Lile et al. used VGG-16 to predict the thermal frame from its corre-
sponding visible frame. The predicted image was majorly blurred, and anomalous
regions were deducted as hotspots, confirming the low quality of the generated
image [23]. The methods [33,34] detect anomalies using paired images for mon-
itoring District Heating Systems. Sledz et al. fused the information of salient
maps of both images using Dempster-Shafer evidence theory [33]. Another study
detects the anomalies as high-temperature areas using Laplacian of Gaussian
blob detector. The method then performs segmentation of ROIs and classifica-
tion and localization of anomalies [34]. The use of handcrafted features lead to
degraded generalization capabilities of the method. These fusion models require
multimodal paired dataset which is an overhead of capturing scenes from both
cameras with the same viewpoint.

SSMCTB [26] is a transformer block which can be integrated with any DL
model to generate powerful features using 3D masked convolution and channel
attention. This block is applied on TRE dataset with MNAD [31] and showed
enhanced performance [26].

Anomaly Detection in Visible Imagery. Recently, He et al. proposed a low
cost model which works on compressed videos for anomaly detection. This allows
the use of the model directly on edge devices [14]. A two-stream framework is
proposed which utilizes the motion information for understanding the local con-
text of abnormal events along with the consistency between the testing event and
the knowledge accquired from normal events of the training data. The spatio-
temporal U-Net proposed by this method leverages the temporal information
for predicting the future frame without using explicit optical flow estimation
network [4]. Zhou et al. developed a multiscale flow-based method (MSFlow)
to detect varying-sized anomalous objects. MSFlow fuses the flow information
at different scales with the input frames and computes the anomaly score using
the log-likelihood [39]. Hong et al. mention that powerful deep networks can also
generate anamalous frame because of their generalization capabilities. Therefore,
distinguishing between normal and abnormal frames based on the reconstruc-
tion/prediction error is difficult [15].

Many approaches for ADVI in the unsupervised setting use object-level
approaches [12,13] and frame-level approaches [20,24,31,36]. Georgescu et al.
utilized multiple proxy tasks by an object-centric approach [12] using YOLOV3.
Authors in [24,31,36] exploit the memory module for learning the normalities
from training data. Particularly, [31] uses two separate approaches: reconstruct-
ing the input frame and predicting the future frame with reconstruction, com-
pactness and, seperatedness loss between feature maps and memory items. Liu
et al. proposed a multi-level memory-augmented mechanism to reconstruct opti-
cal flow. These reconstructed optical flows with the input video frames predict a
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future frame using conditional variational autoencoder [24]. Whereas Wang et al.
address the limitation which occurs because of ignoring the relationship between
normal and abnormal events. They proposed an autoencoder that learn motion
and appearance features by building a bridge between normal and abnormal
events using memory module [36].

In another work, the authors construct the pseudo-anomalous to overcome
the deficit of anomalous data during training. These examples are used for
training appearance and motion convolutional autoencoders [13]. ASTNet uses
WiderResNet to extract the spatio-temporal features with a spatial and temporal
branch. These features are concatenated and then passed to the decoder to pre-
dict the future frame [20]. Though these methods show a boost in performance
but their computation time is high.

In contrast to thermal images, visible images are information rich which
include color, texture, contours, etc. and lot of information in the background.
According to Nikolov et al., the object detectors pre-trained on visible images do
not work well on thermal images [29]. Also, the object-centric approach attained
poor results in [26] for the thermal domain. Moreover, the flow-based methods do
not generalize well with varying sizes of objects [39]. In view of above points we
propose a frame prediction framework with a disentanglement approach capable
of performing better for thermal images.

3 The Proposed Approach

3.1 Problem Statement.

Our proposed method, DEFD-Net, denoted by F , takes a sequence of frames as
input and predicts the middle frame as output. We denote the sequence of input
frames as S = {f−i, ...f−2, f−1, f1, f2...., fi}, where ith frame in input sequence
is represented as fi. We denote the middle frame as f0 and its predicted frame
as f̂0. The task of predicting the middle frame is defined as follows:

Given S, our proposed method F aims to predict the middle frame f̂0 as

f̂0 = F(S). (1)

3.2 Model Network.

DEFD-Net (F) consists of two CNN encoders, a feature disentanglement mod-
ule, the attention block, and a decoder. An overview of our proposed architecture
is shown in Fig. 1. We present the detail of each sub-module as follows:

Dual Encoder. DEFD-Net consists of two different encoders namely 2D CNN
(E2D) and 3D CNN (E3D). Since 2D CNN works on spatial dimension, i.e. width
and height taking the time dimension (all frames) with the channel dimension
of the image. On the other hand, 3DCNN learns features by keeping all frames
separately on time dimension. We give input to E2D as (B, (C × T), H, W) rep-
resenting batch size, channel, temporal offset (number of input frames), height,
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and width of the frame, respectively. It is built using U-Net [32]. E3D takes (B,
C, T, H, W) as the input and comprises the deep wide network of [12]. We have
modified the skip connections used in [32] as per our requirements. We concate-
nated the skip connections at three (384×384, 192×192, 96×96) resolutions of
two encoders at channel dimension. These concatenated skip connections from
three stages are sent to the decoder to preserve the high-frequency details in fea-
tures while propagating through the network. This avoids the vanishing gradient
problem, which helps more for thermal images as these have less information.

Channel-wise 
Concatenation

FDE

Attention Block

Feature
Disentanglement

(FDE)

Decoder

Skip
Connections 

Predicted
Middle Frame

Channel-wise concatenation

1

2

3

Fig. 1. The DEFD-Net Framework.

Part Affinity Fields and Heatmaps for Salient Information. We use a
2D pose estimation network [5], which estimates the pose of multiple people in a
frame. We exploit the heatmaps to extract salient information and part affinity
fields to fetch orientation characteristics from thermal images. The heatmaps
are the confidence maps representing the probability of a body part at that
pixel. PAFs are a set of 2D vector fields that encode the association between the
body part locations. Particularly, PAF represents the orientation and location
of limbs within a frame. We concatenate the PAF and HM with the input S at
the channel dimension. In this case, the input has the same configuration as
previously mentioned for S except for the channel dimension, which becomes
thrice the original channel dimension.

Feature
maps

Conv
1x1

Conv
1x1

Conv
1x1

Softmax

Attention
map

Self-attention
feature maps

Conv 1x1

Transpose

Refined
feature

Fig. 2. Attention mechanism used in the
attention block of Figure-1. ⊗ represents
the matrix multiplication and ⊕ element-
wise summation.

Attention Block. Incorporating the
attention mechanism in the network
architecture helps the model learn the
relevant details of the input image.
We use [37] to compute the attention
map from the feature maps of E2D

and E3D separately. These attention
maps capture the global and long-
range dependencies of the input fea-
ture maps. The attended feature maps
from the E2D and E3D are then con-
catenated at the channel dimension
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and refined with a separate attention layer to obtain final enriched feature maps
which are passed to the decoder for the middle frame prediction task.

Each attention map is obtained by dividing the feature map x into three
feature spaces f , g, h where f(x) = wf (x), g(x) = wg(x), h(x) = wh(x). Each
x, f, g, h has a configuration of C × H × W , indicating the channel, height, and
width of the feature map. wf (x), wg(x), wh(x) are the learned weight matrices.
The final output after using the attention mechanism is represented by x̂, which
is obtained by using the following eqs:

z = fT ∗ g, (2)

Aj,i =
exp(zij)∑
i,j exp(zij)

(3)

where T represents the transpose of the feature map, zij = f(xi)T g(xj), and
Aj,i represents the degree by which the model attends to the ith location of f
for generating the jth location of g.

v = h ∗ Aj,iL (4)

x̂ = x + v (5)

We also show the mechanism for obtaining the attention map in Fig. 2.

Feature Disentanglement Module (FDE). The objective of this module is
to explicitly exploit the distinct information from the features obtained from E2D

and E3D. The feature disentanglement technique leverages encoders to learn dis-
tinct features. We compute the cosine similarity between the maxpooled vectors
of feature maps obtained from dual encoders [19]. The feature disentanglement
approach is used as the learning objective, given in eq. (7), which minimizes the
similarity between features from different encoders.

Decoder. The final refined features from the attention module are given to the
decoder to predict the middle frame. We use 2D CNN in the decoder as we are
predicting a single frame. The decoder receives the concatenated skip connections
from E2D and E3D at various stages (384×384, 192×192, and 96×96 resolutions).
The feature maps after each stage in the decoder are concatenated with the
corresponding skip connection after upsampling at the channel dimension. The
output of the decoder is the predicted middle frame.

3.3 Learning Objectives.

We use two learning objectives to train F . The first objective is the Mean
Squared Error (MSE), which computes the average squared difference between
the predicted and the target frame. It is defined as:

LMSE = ||f̂0 − f0||2. (6)
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We also use the feature disentangled loss as our second learning objective. It
is formulated as below:

LFDE = max
(

m2D · m3D

||m2D||2||m3D||2 , 0
)

(7)

where m2D and m3D are the max pooled feature vectors obtained from the
feature maps of the E2D and E3D, respectively. A margin of 0 is given with the
loss function so that the dissimilarity between the feature maps will not affect
the representation of actual feature maps obtained from both encoders.

The goal of the total loss function is to minimize both LMSE and LFDE . The
total loss function for F is defined as.

Ltotal = LMSE + LFDE (8)

3.4 Anomaly Detection.

We follow the frame-level anomaly detection for calculating the abnormality
score during inference rather than object-level. We compute the abnormality
score using the Peak-Signal-to-Noise Ratio (PSNR) ratio and LMSE . The PSNR
is the measure for estimating the quality of the image. We compute the PSNR
between the predicted and the ground-truth middle frame defined as:

PSNR(f0, f̂0) = 10 log 10
(Maxî)

2

(1/N)ΣN
i=1(f0 − f̂0)2

(9)

N denotes the number of elements in a frame, which is #rows ×#columns,
and Maxi is the maximum intensity of the predicted frame.

Another measure, LMSE , computes the absolute difference between the pre-
dicted and the ground truth middle frame, as in eq. (6). The PSNR and LMSE

values are used separately as the abnormality score for DEFD-Net.

4 Experiments and Results.

4.1 Datasets.

We evaluate the proposed framework DEFD-Net on two publicly available ther-
mal datasets namely TSF [35] and TRE [26].

TSF Dataset. The dataset contains 9 training videos with normal activities and
35 testing videos with normal and abnormal activities. The frames are 640×480
in size. The normal training samples are the daily activities of living e.g., a person
entering a room or lying on the bed, an empty room, etc. Abnormal activities
include a person falling from a bed or from a chair, etc. This dataset contains
only one subject in a frame.
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Thermal Rare Event Dataset. The Seasons in Drift dataset [29] is manually
annotated at frame level by [26] to make its applicability for anomaly detection
problem. The dataset contains the activities near a harbor during the day and
night. It has 3,480 frames for training and 36,120 for testing, with a size of
384 × 288. The usual activities are people walking and sitting, vehicles moving,
etc. The abnormality constituted events are people embarking or debarking from
a boat, reverse driving, stalled car, group jumping, person near the pier, etc.

4.2 Methods for Comparison

We compare the proposed work DEFD-Net, against the seven best performing
models for ADVI and two methods for ADTI. We tested the performance of
these models on TSF and TRE datasets.

MNAD [31] learns the normality of training data and stores it in the mem-
ory module. During testing, the memory module is used resulting in a high
prediction error for anomalous frames. It computes the abnormality score by
the weighted sum of PSNR between the input and predicted frame and the L2
distance between the query and the nearest memory item.

SSMTL [12] integrated multiple tasks: arrow of time, motion irregularity,
middle bounding box prediction, and knowledge distillation into a single archi-
tecture for designing a self-supervised framework for anomaly detection. The
average sum of scores by four proxy tasks is the abnormality score.

HF2VAD [24] used multi-level memory modules for flow reconstruction.
These reconstructed flows with the input video frames are used to predict the
future frame in a unified way. They computed abnormality score as the weighted
sum of flow reconstruction and future frame prediction error, using L2 distance.

Background-Ag [13] framework has motion and appearance autoencoders,
each with binary classifiers. It uses an adversarial learning strategy to overcome
the limitation of anomalous data during training. The abnormality score is the
average of class probabilities using cross entropy loss of binary classifiers.

ASTNet [20] uses a residual autoencoder, in which the encoder exploits spa-
tial and temporal features, and the decoder uses channel attention from various
stages. The PSNR between the predicted and target frames is the anomaly score.

MAAM-Net [36] exploits an encoder with a memory module to reconstruct
the frame using an appearance decoder and predicts the flow using the motion
decoder. It uses Lp distance as the anomaly score, computed by the weighted
sum of motion and appearance error maps.

F2LM gen & dest [15] predicts future frame using a generator-destroyer archi-
tecture. The anomaly score is the weighted sum of triplet and MSE loss.

Motion and Region [27] built a unified framework for thermal frame and
flow reconstruction using the sliding window method. And mean and standard
deviation as the anomaly score. In Table 1, we have mentioned the abnormality
score used by each method for computing the frame-level AUC.
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SSMCTB [26] block is added at the penultimate layer of MNAD [31] network
with its reconstruction loss added to the loss function of MNAD. The anomaly
score used is the same as that of MNAD.

Video frame interpolation. Anomaly detection can be visualized as a frame
interpolation task where an intermediate frame is interpolated at any time step
t using the neighboring frames. Therefore, we compare our model with two video
interpolation methods CAIN [6] and UPR-Net [16]. In CAIN, the need for an
optical flow estimation network is eliminated and replaced it with a deep neu-
ral network that attends to the motion information from the multiple channels
required for frame synthesis. In UPR-Net, a pyramid network was designed to
synthesize an intermediate frame from a pair of consecutive frames using a bidi-
rectional flow module. We present the comparison in Table 5.

4.3 Experimental Setup

Architecture details. Our E2D consists of four blocks. The first three blocks
have a similar configuration, comprising two sequential sets of 2D convolution
(Conv2D), batch normalization (BN), and ReLU layers. The kernel size of each
Conv2D is 3 × 3, and the stride is set to 1. The last block consists of a set of
Conv2D, BN, ReLU, and Conv2D layers with 3× 3 filter size and stride 1. After
every first three blocks, a max-pool layer is used with the filter size 2 × 2 and
stride=2. The E3D comprises of six blocks. Each block contains a sequential
set of 3D convolution (Conv3D), BN, and ReLU layers. The kernel size of each
Conv3D is 3× 3× 3, with a stride of 1. After every two such blocks, a max-pool
layer is used with a filter of 1 × 2 × 2 and a stride of 1, 2 at the channel and
spatial dimensions, respectively. After the last block, the max-pool layer uses a
filter of size N × 2 × 2, where N denotes the input sequence length.

The last component of DEFD-Net is the decoder, which uses 2D CNN. The
first three blocks of the decoder resemble the structure of the first three blocks of
the 2D encoder with the same filter size and stride. After each of these blocks, an
upsampling operation is performed, and skip connections from the dual encoders
are concatenated with the corresponding intermediate features of the decoder at
the channel dimension. The last block consists of two sets of Conv2D, BN, ReLU
layers, and then a Conv2D and ReLU layer with 3 × 3 filter size and stride=1.

Parameter tuning. We use two settings for DEFD-Net, a sequence of fif-
teen frames by skipping two from a consecutive set of frames, and another
with SL=5, SF=0 where SL and SF are abbreviations for sequence length and
skipped frames, respectively. Each frame is resized to 384 × 384, and the inten-
sity of each frame is normalized to [0,1]. We use the Pytorch framework (ver-
sion 2.1.2+cu121) on Ubuntu ( version 20.04.4) operating system to implement
our approach. We used NVIDIA A100 80GB PCIe to perform all experiments
with a CUDA version 12.0. We train our model for 35 epochs using the Adam
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optimizer and learning rate of 2e−4. We also decay the learning rate using the
cosine annealing method. All the settings are same for both datasets, TSF and
TRE.

We performed experiments for best performing models [12,13,15,24,31,36]
of ADVI, using their default configuration. And we compare DEFD-Net against
MNAD + SSMCTB [26] as a comparison for ADTI using the default configu-
ration of MNAD. For dataset-specific parameters, we use the same setting as
UCSD Ped2 [22] for TSF and TRE because thermal data is more similar to
grayscale data than visible, e.g., we use the detection threshold=0.5 same as
given in [12,13].

4.4 Evaluation Metric

Taking inspiration from the prior works in anomaly detection [12,31,36] etc.,
we evaluate the performance of framework DEFD-Net using the Area Under the
ROC Curve (AUC) at frame level. Specifically, as suggested in [26], we are using
micro AUC, which means the frames of all videos are concatenated into a single
video, and then AUC is computed. We used PSNR and LMSE as the measure
to compute the abnormality score.

4.5 Results.

Table 1. Comparison of DEFD-Net with ADVI (†) and ADTI (∗) methods on TSF
and TRE thermal datasets using AUC (in %). ’-’ represents results could not obtained.

Year Methods TSF TRE AUC Criteria

2020 MNAD [31]† 78.04 57.60 Weighted sum of L2 distance and PSNR
2021 SSMTL [12]† 43.0 46.7 Averaged sum of proxy tasks
2021 HF2VAD [24]† 66.50 52.58 L2 distance
2021 Background-Ag [13]† 40.8 46.3 Averaging the Cross entropy loss
2023 ASTNet [20]† 83.0 57.2 PSNR
2023 MAAM-Net [36]† 65.33 52.35 Lp distance
2024 F2LM gen & dest [15]† 86.67 59.7 Weighted sum of triplet and MSE loss
2020 Motion & Region [27] ∗ 88.0 - Mean

90.0 - Standard deviation
2023 MNAD + SSMCTB [26]∗ 81.40 58.9 Weighted sum of L2 distance and PSNR
2024 DEFD-Net (ours)∗ 95.52 60.28 PSNR

94.98 61.05 MSE loss
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Table 2. Comparison of DEFD-Net with
existing methods on TSF and TRE ther-
mal datasets using AUC (in %). ’-’ repre-
sents results could not obtained. SL and
SF represent sequence length and skipped
frames, respectively. P and L represent
PSNR and LMSE , respectively.

(SL, SF) Method TSF TRE

(5, 0) MNAD 84.50 56.63
ASTNet - -
DEFD-Net 86.07 (P)

84.68 (L)
57.78 (P)
59.04 (L)

(5, 2) MNAD 94.16 60.20
ASTNet 76.7 59.3
DEFD-Net 94.95 (P)

93.62 (L)
57.96 (P)
58.38 (L)

(15, 2) MNAD 93.69 57.89
ASTNet 83.3 55.7
DEFD-Net 95.52 (P)

94.98 (L)
60.28 (P)
61.05 (L)

Table 3. AUC scores (in %) for DEFD-
Net using PAF and HM with thermal
images of TSF and TRE. P and L rep-
resent PSNR and LMSE , respectively.

Input TSF TRE

Thermal frames 86.07 (P) 57.78 (P)
84.68 (L) 59.04 (L)

Thermal frames +
PAF + HM

86.46 (P) 58.51 (P)

85.15 (L) 60.0 (L)

Table 4. Comparison of DEFD-Net
against ADVI and ADTI methods for
average running time during inference.

Method Time (ms)

MNAD 8.1353
HF2VAD 36.5724
ASTNet 44.4359
F2LM gen & dest 33.8534
MNAD + SSMCTB 8.2656
DEFD-Net 20.7816

Quantitative Analysis. We perform experiments to compare DEFD-Net using
top performing competitors, MNAD [31], ASTNet [20] (as per Table 1). We did
not use F2LM gen & dest [15] for comparison as it uses pretrained object detector
on visible images. We compare these three models on each others’ default settings
as MNAD: SL=5, SF=0; ASTNet: SL=5, SF=2 and DEFD-Net: SL=15 and
SF=2 and input size to 384 × 384. It can be seen from Table 2 that our model
surpasses MNAD and ASTNet in all cases except one i.e., for SL=5, SF=2. We
could not run ASTNet without skipping any frame; therefore, the results are not
available for SL=5, SF=0 settings.

In our next setup, we present the performance of MNAD, ASTNet, and
DEFD-Net with settings SL=5, 7, 15 and SF=1, 2, 3. in Fig. 3 on TSF and
TRE datasets. DEFD-Net surpasses both the models on all the settings except
one. This shows the our model’s robustness against setting parameters.

Fig. 3. Comparison of MNAD [31], ASTNet [20] and DEFD-Net using various sequence
lengths and skipped frames for TSF and TRE datasets.
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Ablation Study. We also present an ablation analysis of DEFD-Net. We ana-
lyze four cases: 1) removing all attention layers; 2) removing attention layer 3;
3) removing the attention layers 1 and 2; and 4) removing 2D encoder, attention
layers 1 and 3 (refer Fig. 1). The column 1 in the Table 6 represents the above
four cases. The performance of the TRE dataset reduced by 1.9% and 2.44%
while using PSNR and MSE, respectively in case 1. The performance of other
cases are between DEFD-NET and case 1. This is because the objects are of low
spatial resolution in compared to the frame. On the other hand, the performance
of the TSF dataset is not affected much because there is only one object in the
frame with a high spatial resolution.

Running Time. Table 4 reports the analysis of analysis of per frame inference
time. Our proposed model is faster than various competitive methods, including
top-performing methods except MNAD [31].

Table 5. Comparison of DEFD-Net with
VFI methods on TSF and TRE ther-
mal datasets using AUC (in %). SL and
SF represent sequence length and skipped
frames, respectively. P and L represent
PSNR and LMSE , respectively.

Year VFI Methods TSF TRE

2020 CAIN 85.39 (P)
83.99 (L)

52.46 (P)
52.5 (L)

2023 UPR-Net 82.54 (P)
83.23 (L)

55.55 (P)
56.83 (L)

2024 DEFD-Net
(SL=3, SF=0)

84.43 (P)
83.24 (L)

56.7 (P)
57.77 (L)

DEFD-Net
(SL=15, SF=2)

95.52 (P)
94.98 (L)

60.28 (P)
61.05 (L)

Table 6. Ablation study for DEFD-Net.

DEFD-Net TSF TRE

-x̂ 1,2,3 95.33 (P)
94.60 (L)

58.38 (P)
58.61 (L)

-x̂ 3 95.47 (P)
94.79 (L)

60.17 (P)
60.54 (L)

-x̂ 1,2 95.44 (P)
94.88 (L)

59.63 (P)
60.41 (L)

-E2D - x̂ 1,3 95.02(P)
94.78(L)

58.71 (P)
59.31(L)

- 95.52(P)
94.98 (L)

60.28 (P)
61.05 (L)

To our best efforts, we did not find any work on VFI for anomaly detection
in thermal videos using unsupervised setup except one [7] that too in visible
imagery. But, the code is not available. However, we compared DEFD-Net with
two popular methods of VFI from visible domain i.e., CAIN [6], UPR-Net [16]
which take two frames as input and output an intermediate frame. The results
are reported in Table 5. We present AUC in two settings for DEFD-Net - 1)
our default setting (SL=15, SF=2) and, 2) same as that of competitive models
(SL=3, SF=2).

Multitasking. We add a classification head with the prediction. For this, input
frame sequence is provided in original or reverse order randomly to the model
and classification head has to predict the input sequence class label i.e, 0 for
original sequence and 1 for reverse sequence. We used cross entropy loss with
our objective function defined for the task. Order classification is intended to
make the proposed model learn temporal dependencies in a better way. The
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resultant performance gets improved on both the datasets, i.e. an AUC of 95.71
(PSNR) & 95.501 (LMSE) on TSF; 60.76 (PSNR) & 61.203 (LMSE) on TRE in
comparison to 95.52 (PSNR) & 94.98 (LMSE) on TSF; 60.28 (PSNR) & 61.05
(LMSE) on TRE. Similarly, AUC may improve after adding more proxy tasks.

Finally, we exploit PAF and HM by using them as input to E2D and E3D

with thermal frames. Table 3 shows that with modified input DEFD-Net yielded
a better AUC. We have shown the results for SL=5 and SF=0.

Qualitative Analysis. We visualize the performance of DEFD-Net, using the
normal and abnormal samples from TSF and TRE datasets. Fig. 4 shows the
ground truth frames and the feature maps obtained after the final attention layer
with first and third rows having anomalous frames. A small size of object, girl,
is standing alone in a boat and person falling in first and third frames, respec-
tively are anomalies. It can be seen from the figure that clear visible features
are obtained by our model. These features improve after adding PAF and HM
channels, concluding the potency of using PAF and HM with thermal frames.
Though, the size of the object is small, feature maps obtained by the model has
white spot came in left bottom corner which gets brighter with the use of HM
and PAF channels. similar behavior is observed in third row.

TRE 
Dataset

TSF
Dataset

Fig. 4. Visualizing ground truth image, feature maps using thermal frames, and feature
maps using thermal frames, HM, and PAF from left to right columns. Red bold-lined
samples are the anomalous ones.

5 Conclusion.

We presented an anomaly detection framework for thermal imagery. We have
chosen thermal imagery as it preserves the privacy of subjects and handles illu-
mination challenges. We have proposed DEFD-Net which uses a dual encoder
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with disentanglement to learn distinctive features to identify anomalies in the
data. It has been shown through our extensive empirical study that our method
on global features not only outperforms object-centric and flow detection meth-
ods but also performs better when object size is comparatively very small than
that of the frame. Also, our qualitative results show that addition of PAF and
HM helps in enhancing the features of anomalous regions.

We take enhancing features for very small objects in images as future direc-
tion of the work.
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Abstract. Multi-Object Tracking and Segmentation (MOTS) is a crit-
ical task in autonomous driving, robotic perception, and video analy-
sis. The challenge lies in accurately identifying and associating objects
within video sequences, especially when the number of objects is uncer-
tain, motion patterns vary, and frequent object overlaps occur. In this
paper, we propose a method with pre-matching and selective association
(PS-Track) to adaptively combine motion and appearance cues to cope
with continuously changing scenes. Unlike solely relying on the single
cue or predetermined combination schemes, our method facilitates data
association by discerning similarities in appearance among tracks across
different scenarios through the dynamic selection of suitable schemes.
Through experimentation, we also found that our method exhibits advan-
tages in tracking efficiency compared to complex models. Our method
achieved outstanding results on the MOTS dataset, with scores of 61.0
for sMOTA, 56.4 for IDF1, 76.0 for MOTSA, and 76.5 for FPS.

Keywords: Data Association · Multi-object Tracking and
Segmentation · Online Tracking · Video Processing

1 Introduction

Multi-object Tracking [1,4] and Segmentation (MOTS) [28,34] is a critical
computer vision task [2,20,25,32] with various real-world applications, such
as autonomous driving [10,27], robotic perception [19,33], and video analysis
[22,23,30]. However, MOTS remains challenging in realistic scenarios due to
uncertainties in object counts, varied motion patterns and frequent occlusions.
Data association, a pivotal step in MOTS, plays a vital role in addressing these
complexities. Existing data association methods can be categorized into two main
groups: those relying solely on the single cue, and those using a predetermined
combination scheme with multiple cues. The single cue methods [2,5,31], like
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(a) solely on motion cue

(b) predetermined combination scheme

(c) adaptive combination scheme

Fig. 1. The flowcharts of different data association schemes.

motion-only cues, can be effective in certain situations but often struggle with
complex backgrounds and occlusions. As illustrated in Figure 1(a), when objects
are obscured for extended periods, relying solely on motion cues is insufficient
for effective object tracking. The predetermined schemes [6,7,9,16,36,37] aim
to improve association reliability by incorporating appearance and motion cues,
but the varying reliability of appearance features across different lighting and
viewpoint conditions can limit their performance. As illustrated in Figure 1(b),
when multiple objects share similar appearance features, depending on a prede-
termined scheme can result in Identity Switch (ID SW.) errors, due to unreliable
appearance features dismissing the combination.

To overcome the limitations of the two main groups above, our research
proposes a flexible and adaptive association method, as illustrated in Figure
1(c), which dynamically selects the most suitable scheme for each scene in a
video sequence. Unlike these above methods, our method enables the dynamic
adjustment of the association scheme based on specific circumstances, thus
selecting the most appropriate schemes depending on the context. For instance,
we believe that combining motion cues with appearance features is effective
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in scenarios involving prolonged occlusions or co-directional movements. Con-
versely, we consider motion-only schemes effective in situations characterized
by changes in lighting conditions or camera motion. To select the most suitable
schemes, we propose a Selective Association based on Pre-matching. This process
involves extracting appearance features, calculating appearance similarity cost,
and selecting matching pairs of tracks and detections with varying appearance
similarity for Pre-matching. During Selective Association, we associate match-
ing pairs with strong appearance similarity from pre-matching results using the
fusion of appearance features and Mask-IoU, while for other matching pairs, only
Mask-IoU is utilized. This method ensures that different scenes have the most
suitable scheme for data association.

As Figure 1(c) shows, similar-looking objects like pedestrians in white shirts
can confuse associations based on appearance features. Using Mask-IoU to metric
motion cues is more appropriate here. When there’s a resemblance of objects’
appearance features before and after occlusion like a pedestrian in a red shirt
re-emerging, relying solely on motion cues is insufficient due to the temporary
disappearance. Combining appearance features and motion cues at this stage
aids tracking effectively.

Recent advancements [1,4,8,11,13,15,21,24,26,29] in deep learning-based
tracking have significantly improved accuracy. However, the intricate network
architectures of these methods can impede tracking speed and increase compu-
tational expenses. Through experimentation, we unexpectedly discovered that
our method outperforms deep learning methods in terms of tracking efficiency.
This advantage arises from the incorporation of a versatile data association mech-
anism, which combines efficient frame-by-frame segmentation with a lightweight
re-identification model. Our proposed method, named PS-Track, was evaluated
on the MOTS dataset in the MOT challenge. Using the same detection input
as the baseline TrackRCNN [28] method, PS-Track achieved a sMOTA score of
61.3, which is about 34% higher, and a MOTSA score of 76.3, which is 27%
higher. Furthermore, when using the same re-identification model and similarity
measure as TRR [2], PS-Track outperformed TRR by around 10% in sMOTA.

2 Related Work

Multi-object tracking and segmentation are extensions of multi-object tracking
at the pixel level. Data association is a core component of these methods [6,7,
9,16,37,38]. Data association for object tracking has evolved through different
schemes.

Initially, methods [2,5,16] that rely solely on object motion cues from video
sequences were employed, analyzing position changes between frames and asso-
ciating objects with similar motion patterns. While effective in constant motion
states, these methods struggle in complex environments with diverse back-
grounds and object occlusions, leading to limited tracking capability. TRR [2]
is an extension of SORT [5] that incorporates Kalman filtering to predict the
mask positions of individual objects in the current frame. It computes Mask-IoU
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Fig. 2. We evaluated the sMOTSA and FPS of all methods on the MOTS dataset.
Some methods from the MOT Challenge benchmark were named.

to quantify motion cues and employs the Hungarian algorithm [18] for associa-
tion. If objects are occluded for an extended period or move at the same speed
between two objects, the motion cues between the objects become similar or are
lost, resulting in ID switches in the final matching results.

A predetermined combination scheme of object motion cues with appearance
features such as color and texture was proposed to address these limitations. In
DeepSORT [31], the first association is based on appearance features. If the
tracks remain unmatched after this initial round, a second association is con-
ducted, utilizing similarity in motion cues. TRR+ReID [2] builds upon TRR
by employing an additional ReID model to address occlusion issues. FWT [14]
achieves a more comprehensive tracking system by integrating multiple detectors
with different characteristics, such as full-body and body-parts detectors. JCC
[16] integrates motion segmentation with multiple object tracking. MHT-DAM
[25] utilizes the Multiple Hypothesis Tracking (MHT) algorithm with online
appearance model training.

Deep learning-based methods [1,4,14,16,17] have emerged to tackle data
association challenges in multi-object tracking and segmentation in recent years.
These methods utilize deep neural networks to learn intricate feature represen-
tations of objects, enabling more robust data association through end-to-end
training. MPNTrackSeg [1] utilizes message-passing networks within a struc-
tured graph framework to leverage contextual cues for accurate tracking. Point-
Track [35] follows a tracking-by-points paradigm, improving tracking by learning
instance embeddings from selected points and integrating diverse data modali-
ties. Additionally, MOTSNet [25] and MOTD [8]; MOTD utilizes deep learning
representations to enhance tracking accuracy. Despite their effectiveness, com-
plex network architectures may result in slower tracking speeds and increased
computational demands.
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Fig. 3. The workflow of PS-Track. PS-Track optimizes data association through selec-
tive association based on pre-matching. The system categorizes tracks into strong and
weak appearance similarity groups and conducts selective association based on pre-
matched inputs.

Algorithm 1 Pseudo-code of PS-Track
Input: A video sequence V and object detector Det
Output: Tracks T of the video
1: Initialization: T ← ∅
2: for frame fk in V do
3: Dk ← Det(fk)
4: for t in T do
5: t ← KalmanFilter(t)
6: end for

/* Pre-matching */
7: Pstrong ← ∅; Pweak ← ∅
8: Matched Pairs, Unmatched Pairs ← Associate Dk and T using cost Ca

9: Pstrong ← Matched Pairs
10: Pweak ← Unmatched Pairs

/* Selective Association */
11: Associate Pstrong using cost Cs from Equation 1
12: Associate Pweak using cost Cw from Equation 2
13: Tremain ← remaining matched tracks from T

/* Delete Unconfirmed tracks */
14: T ← T \Tremain

/* Initialize New tracks */
15: for d in Dk do
16: T ← T ∪ {d}
17: end for
18: end for
19: return T

Fig. 4. The flowchart of pre-matching
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Fig. 5. The flowchart of selective association mechanism

3 Methodology

3.1 PS-Track

We introduce a versatile and robust data association method called PS-Track. As
illustrated in Figure 3, PS-Track builds upon conventional detection and tracking
frameworks while incorporating a selective association based on pre-matching to
adapt to various tracking scenarios. The pseudocode of PS-Track is outlined in
Algorithm 1.

PS-Track takes a video sequence (V) and an object detector (Det) as input.
PS-Track outputs tracks (T) of the video, predicting new positions for each
track using the Kalman filter. PS-Track involves two key steps: pre-matching
and selective association.

During the Pre-matching stage, the method initially employs a simple ReID
model to extract features from objects, yielding feature vectors. Subsequently,
it calculates the cosine distance between feature vectors of detected tracks to
assess the appearance similarity across all tracks and detections. The Hungarian
algorithm is then applied to categorize matching pairs of tracks and detections
into groups based on the level of appearance similarity. Tracks matched with
detections by the Hungarian algorithm are classified as having strong appear-
ance similarity and denoted as Pstrong; conversely, those without such matches
are considered to possess weak appearance similarity and labeled as Pweak, as
delineated in lines 7 to 10 of Algorithm 1 and Figure 4.

In the Selective Association stage, when matching pairs of tracks and detec-
tions in strong appearance Pstrong are identified through pre-matching, the
method adopts a fusion method using ReID and Mask-IoU to consider appear-
ance feature and occlusion comprehensively. Here, Mask-IoU is used to evaluate
motion similarity between objects, ensuring accurate identification and tracking
even in crowded or occluded scenarios. ReID utilizes a simplified re-identification
model based on the ResNet architecture to extract feature vectors and compute
cosine distances between feature vectors to assist in handling occlusions. This
balanced fusion method is crucial for PS-Track to handle matching pairs with
strong appearance similarity, allowing the system to effectively combine motion
cues of different objects in highly similar appearance situations. For matching
pairs identified with weak appearance similarity during the pre-matching pro-
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cess, PS-Track directly calculates their Mask-IoU similarity, as shown in lines 11
to 12 of Algorithm 1 and Figure 5.

After association, unmatched tracks are removed from the tracklist. To pre-
serve track identity for long-term association, unmatched tracks Tremain are
placed into Tlost. Tracks in Tlost are removed from the track set T if they exist
for more than 70 frames; otherwise, they are retained in T . Additionally, new
tracks are initialized from unmatched detections Dremain after Selective Associ-
ation. The output of each frame consists of masks and identities of tracks T in
the current frame, excluding those in Tlost.

To enhance the tracking performance of Multiple Object Tracking and Seg-
mentation (MOTS), we integrate PS-Track with the TrackRCNN benchmark
method. This integration harnesses the potential of data association methods
for improved tracking accuracy.

3.2 Pre-matching

As illustrated in Figure 5, PS-Track initially evaluates appearance features
among objects in consecutive video frames through pre-matching. This process
generates feature vectors, which are used to calculate cosine distances, thereby
evaluating appearance similarity across all tracks and detections. Matching pairs
of tracks and detections are then categorized based on their appearance similar-
ity to detections, as processed by the Hungarian algorithm. Those matching pairs
with strong similarity are labeled pstrong, whereas others with weak similarity
are labeled pweak.

Building upon this, for tracks and detections with weak appearance similari-
ties, we posit that targets in dense scenes either share similar appearance features
or are undergoing rapid changes in occluded appearance cues. For tracks strongly
associated with appearance, we infer that objects in dense scenes possess intact
appearance features, facilitating the recovery of tracking for occluded objects.

3.3 Selective Association

In PS-Track, Selective Association is accomplished by integrating appearance
and motion cues through pre-matching, ensuring the adoption of the most appro-
priate scheme for diverse scenes.

During the pre-matching stage, feature vectors are extracted from each detec-
tion dj and track ti using a simplified ReID model based on the ResNet archi-
tecture. The cosine distance between these feature vectors yields the appearance
cost Ca(ti, dj). The matching pairs of tracks and detections with weak appear-
ance similarity pw and strong appearance similarity ps are selected using the
Hungarian algorithm.

In the selective association stage, for matching pairs with strong appear-
ance similarity, the motion cost Cm(ti, dj) is computed based on the Mask-IoU
between detection dj and track ti. Additionally, the appearance cost Ca(ti, dj)
is computed as the cosine distance between their appearance feature vectors.
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These costs are then fused to obtain the total cost Ct(ti, dj), where a weight
parameter λ balances the importance of appearance and motion costs.

Cs(ti, dj) = λ × Cm(ti, dj) + (1 − λ) × Ca(ti, dj) (1)

Where Cs(ti, dj) represents the fusion cost of associating detection dj with track
ti in the case where that matching pairs p have strong appearance similarity.
Ca(ti, dj) denotes the appearance cost, indicating the dissimilarity of appear-
ance features between the detection and the track, while Cm(ti, dj) represents
the motion cost, measuring dissimilarity in their motion patterns. Setting the
parameter λ balances the importance of appearance and motion costs.

In the case of matching pairs p of tracks and detections exhibiting weak
appearance similarity, only the motion cost Cm(ti, dj) is directly calculated.

Cw(ti, dj) = Cm(ti, dj) (2)

This equation represents the similarity cost Cw when associating a detection
dj with a track ti in the case where the matching pairs have weak appearance
similarity. In this scenario, only the motion cost Cm(ti, dj) is considered.

The final association cost is determined based on whether the matching pairs
belong to the strong Ps or weak Pw appearance similarity sets.

Ct(ti, dj) =

{
Cs(ti, dj), if pi,j ∈ Ps

Cw(ti, dj), if pi,j ∈ Pw

(3)

This equation defines the final association cost Ct(ti, dj) based on whether the
matching pairs pi,j belong to the set of tracks and detections with strong appear-
ance similarity Ps or weak appearance similarity Pw. If pi,j is in Ps, the cost is
determined by Cs(ti, dj); if pi,j is in Pw, the cost is determined by Cw(ti, dj).
Equations 1 and 2 are normalized before association. Consistency between the
fused costs is maintained, where a smaller value indicates a higher similarity. All
similarity of costs are between 0 and 1.

Through the fusion of Mask-IoU and Re-ID cues based on track visual
similarity and employing the Hungarian algorithm for further refinement, PS-
Track determines the optimal association scheme, thereby enhancing multi-
object tracking and segmentation performance.

4 Experiments

4.1 Setting

Datasets. The current study employs the MOTS20 dataset [28] within the
MOT-Challenge MOTS benchmark, with a specific focus on pedestrian tracking.
It’s noteworthy that the MOTS benchmark, within this challenge, places particu-
lar emphasis on handling crowded scenes, thus adding complexity to multi-object
tracking, especially in scenarios requiring precise multi-object segmentation. This
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benchmark expands upon traditional multi-object tracking benchmarks by intro-
ducing detailed segmentation masks at the pixel level. All tracking, segmenta-
tion, and evaluation tasks are performed in image coordinates to ensure stan-
dardized and rigorous assessment. It’s crucial to highlight that each sequence in
this dataset is meticulously annotated at the pixel level with a high degree of
precision, following a well-defined protocol.

Metrics. Various metrics [3] are commonly used to evaluate the effectiveness
of proposed methods on public datasets, including Multi-Object Tracking and
Segmentation Accuracy (MOTSA), Multi-Object Tracking and Segmentation
Precision (MOTSP), sMOTSA (Multi-Object Tracking and Segmentation Accu-
racy), and IDF1 (Intersection over Union of Detection and tracking F1 score).
MOTSA assesses performance regarding object detection and track maintenance,
with higher scores indicating greater accuracy. MOTSP measures the precision
of object positioning, primarily focusing on detector performance rather than the
tracker effect. The higher the score, the better the effect. sMOTSA is a crucial
statistic for evaluating the quality of detection, segmentation, and tracking. IDF1
represents the ratio of correctly identified detections over the average number
of ground-truth and computed detections. Other metrics include IDS (number
of identity switches), Frag (total number of times a track is fragmented), MT
(mostly tracked objects), ML (mostly lost objects), FP (total number of false
positives), FN (total number of false negatives), and FPS (processing speed in
frames per second, excluding the detector, on the benchmark).

Implementation Details. In PS-Track, we utilize the Mask R-CNN detector
[12,13] from the baseline method TrackRCNN for instance segmentation. The
default detection threshold is set to 0.5 unless specified otherwise. For MOTS
benchmark evaluation, we use Mask-IoU to measure motion cues similarity and
cosine distance to assess appearance similarity. In the linear assignment phase,
we perform two linear assignments. The first assignment categorizes tracks into
groups based on strong and weak appearance similarities, preparing data for
fusion during selective association. The second assignment processes the final
cost matrix to obtain the ultimate matching results. Regarding lost tracks,
we retain them for 70 frames in case of reappearance. For MOTS, we employ
the same Re-ID model as TRR. Our method was experimented on a machine
equipped with a GTX3060TI GPU, an i7 CPU, and 12GB of VRAM. The results
of all comparative methods were provided by their respective papers.

Results on MOTS20 dataset. We evaluate PS-Track against several associa-
tion methods, detailed in Table 1. Our comparisons include TRR, TrackRCNN,
and other methods using the MOTS dataset.

Our method differs from TRR in its adaptive data association approach,
despite utilizing the same Mask-IoU and ReID components. We find that PS-
Track improves TRR’s sMOTA metric from 55.0 to 61.0, IDF1 from 57.3 to 58.7,
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Table 1. Comparison of PS-Track with the methods on the MOTS20 test set, +MG
indicates Mask R-CNN generation mask using domain fine-tuning [35]. (Optimal data
are marked in bold).

Scheme Method sMOTSA↑MOTSA↑FPS↑
predetermined TRR[2] 55.0 68.3 54.5

TRR+RReID[2] 55.8 69.1 36.4
Track R-CNN [28] 40.6 55.2 2.0
jCC+MG[16] 48.3 63.0 -
FWT+MG[14] 49.3 64.0 -
MHT-DAM+MG[17] 48.0 62.7 -

deep-learning TraDeS[32] 50.8 65.5 -
TrackFormer[24] 54.9 69.9 -
MOTSNet[25] 56.8 69.4 -
PointTrack[34] 58.09 70.58 -
MOTDT+MG[8] 47.8 61.1 -
MPNTrackSeg[1] 58.6 73.7 2.3

adaptive PS-Track(ours) 61.0 76 76.5

and FPS from 54.5 to 76.5. This highlights the importance of fusion based on
pre-matching and demonstrates PS-Track’s ability to reduce the impact of weak
appearance similarity on association results.

TrackRCNN serves as the MOTS benchmark method. We find that com-
pared to TrackRCNN, under the same detector, PS-Track’s results also have
high gains. This indicates that designing association mechanisms can improve
tracking performance and achieve better sMOTA and FPS by adding accurate
enough pre-matching. We note that in cases of severe occlusion, Re-ID features
are easily affected, which may lead to identity switches, while the motion model’s
behavior is more reliable.

As shown in Table 1, compared to methods based on MOTS benchmarks,
we find that, in terms of FPS, the performance difference is significant when
compared to deep learning methods. As shown in Figure 2, PS-Track demon-
strates a remarkable ability to strike a balance between efficiency and cost by
adaptive data association. This optimization leads to improved tracking speed
while maintaining effective tracking results. In comparison to solely relying on
the single cue or utilizing a predetermined combination scheme with muti-cues,
our method has also demonstrated promising results on the test set.

Ablation Studies on Pre-matching. We explore various similarity metrics
for PS-Track’s pre-matching and selective association processes. The results are
shown in Table 2. In pre-matching, both Re-ID and Mask-IoU are considered
viable choices for similarity#1, with Mask-IoU achieving better IDF1 and Re-
ID achieving higher sMOTA. To enrich the metric scale, we fuse the cost of
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Table 2. Comparison of different types of similarity metrics used in the pre-matching
and selective association on the MOTS20 train set with equal effort. The best results
are shown in bold.

similarity#1 similarity#2 sMOTSA↑ IDF1↑ ID Sw.↓
Mask-IoU Mask-IoU & ReID 59.47 58.51 310
ReID Mask-IoU & ReID 59.72 58.19 244

Re-ID and Mask-IoU. However, in dense crowd scenes, while reliable appearance
features can improve tracking accuracy, similar appearance features may lead to
errors in the association process due to severe occlusion or motion blur. Mask-
IoU can be used to obtain more robust association results, in this case. Therefore,
selecting a suitable cue for similarity#2 in the selective association process is
crucial. To address this, we use Re-ID to divide tracks into two groups during pre-
matching: those with high appearance similarity and those with low appearance
similarity. Pre-matching is used to select reliable appearance cues for fusion with
motion information. From Table 3, it can be observed that introducing pre-
matching to select reliable appearance cues for fusion results in an approximate
increase of 4.9 in sMOTA and a 33% reduction in IDSW compared to solely
utilizing predetermined schemes of Mask-IoU or Re-ID & Mask-IoU.

Table 3. The results in the MOTS test set for different schemes.

Scheme sMOTSA↑MOTSA↑ IDF1↑ IDSW↓
Mask-IoU 49.5 67.0 53.6 797
ReID & Mask-IoU 55.1 68.8 53.4 826
PSTarck 61.0 75.6 56.2 619

Table 4. Ablation Studies on different weights of appearance and motion.

Mask-IoUReID sMOTSA↑MOTSA↑ IDF1↑ IDSW↓
1 0 58.80 72.16 62.91 491
0.9 0.1 59.05 72.41 60.86 423
0.8 0.2 59.23 72.58 64.59 376
0.7 0.3 59.72 73.08 58.19 244
0.2 0.8 59.41 72.77 58.16 325
0.1 0.9 59.37 72.73 56.62 336
0 1 59.35 72.71 57.19 343
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Ablation Studies on Combinations. We try different combinations of
weights for fusing Mask-IoU and Re-ID in PS-Track. Refer to Table 4 for the
outcomes of the MOTS20 train set. It’s evident that in MOTS, both Mask-IoU
and Re-ID alone can be effective choices for measuring similarity. Mask-IoU per-
forms better in IDF1, while Re-ID performs better in sMOTA and IDSW. On
the MOTS test set, the weight of Mask-IoU in fusion should be higher than
Re-ID. This is because MOTS encompasses a substantial amount of pedestrian
motion, and in densely populated areas, motion occlusion is inevitable, leading
to occasional unreliability of appearance cues. In densely crowded environments,
especially when facing occlusion or motion blur, it is crucial to incorporate both
Mask-IoU and Re-ID for similarity measurement on the dataset. This joint con-
sideration of motion and appearance enhances the reliability of similarity mea-
surement. From Table 4, it can be observed that compared to using Mask-IoU
alone, incorporating Mask-IoU as the primary measure supplemented with Re-ID
can increase sMOTA by approximately 1.0, indicating that reliable appearance
cues can enhance tracking accuracy.

5 Conclusion

PS-Track stands out as an uncomplicated yet versatile data association method
specifically crafted for multi-object tracking and segmentation. It adaptively
combines appearance and motion cues to facilitate tracking matching, thereby
elevating tracking performance. A key strength of PS-Track lies in its inclusion
of a pre-matching step, strategically designed to mitigate the influence of unreli-
able appearance data through Selective Association. On the MOTS benchmark’s
test set, PS-Track showcases remarkable results, achieving a MOTS score of 61.0
and an impressive MOTSA score of 76.0. The commendable performance of PS-
Track, characterized by its harmonious blend of accuracy, speed, and simplicity,
positions it as an appealing choice for practical applications in real-world sce-
narios. Additionally, the method’s efficacy prompts avenues for further research,
encouraging exploration into parameter fine-tuning, including thresholds, and
the investigation of diverse methods for effectively fusing appearance and motion
information.
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Abstract. Oracle bone scripts, being the oldest and most developed
writing system discovered in China till date, have been meticulously stud-
ied by numerous scholars. This paper presents the Multi–scale Feature
Fusion Attention Net (MFFA–Net) as a solution to the issue of variant
characters in the oracle bone affecting recognition accuracy. The network
is based on ResNet18 and employs asymmetric convolution alongside a
refined coordinate attention technique to acquire image features. It also
integrates perceptual field information of varying sizes through hierarchi-
cal bilinear pooling. Furthermore, knowledge from the Wide_ResNet101
and DenseNet169 is transferred to MFFA-Net using knowledge distil-
lation techniques. Finally, to validate the effectiveness of our proposed
method, we conducted rigorous experiments on the OBC306, OBC265,
and EOBC datasets, comparing our results with those of existing meth-
ods. The experimental results demonstrate that our method obtains
remarkable performance in oracle character recognition, reaching state-
of-the-art Top–1 accuracy with 92.42%, 94.78%, and 98.82% on the
OBC306, OBC265, and EOBC datasets, respectively.

Keywords: Oracle Recognition · Attention · Feature Fusion ·
Knowledge Distillation

1 Introduction

Oracle bone script recognition (OBS) employs computer technology to classify
oracle bone inscription (OBI) images, which hold crucial significance in various
fields, such as archaeology and palaeography. However, OBI images are noisy
and fragmented due to the prolonged burial and erosion of the tortoise bones. In
addition, during the Yin and Shang dynasties, script norms were non-uniform,
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and the ongoing evolution of the script led to numerous variants of each oracle
bone character. Furthermore, a few categories account for a significant portion
of the total number of OBI images, resulting in long-tail distribution issues. All
these challenges collectively hinder the accurate identification of oracle bones.

To solve the above problems, various researchers have carried out research on
oracle recognition using traditional methods and deep learning methods respec-
tively. Among them, [1] fused low–level features extracted by Gabor Filter with
middle–level features obtained from sparse encoders, utilizing convolutional neu-
ral network for classification, leading to promising recognition results. Although
it obtained a high accuracy rate, it used copied oracle bone characters rather than
the original oracle bone topographies. Besides, [2] employed cross–modal deep
metric learning approach and Generative Adversarial Network (GANs), achiev-
ing an accuracy of 86.7% on the OBC306 dataset. Despite these advancements,
existing methods still encounter challenges in accurately recognizing partially
similar OBI images. Although these techniques have achieved promising results,
they often suffer from low accuracy and poor generalization when dealing with
OBI images containing significant noise, cracks, missing fonts, numerous variant
characters, and uneven category distribution.

In this paper, we introduce a multi-scale feature fusion attention network
(MFFA-Net) as a solution to the aforementioned challenges. Given the rectan-
gular structure of oracle bone characters and the high similarity among different
classes, we innovate by incorporating asymmetric convolution and developing a
multi-scale fusion approach. Additionally, utilizing knowledge distillation com-
pression technology to guide the learning of MFFA-Net. The primary contribu-
tions of this paper are outlined as follows:

– The OBC265 and EOBC datasets were constructed based on the OBC306
dataset. In creating OBC265, we corrected misclassified images and elimi-
nated those contaminated with noise that was challenging for the human eye
to distinguish, ultimately yielding a dataset encompassing 265 distinct cate-
gories. Furthermore, the EOBC dataset builds upon OBC265 through a series
of data augmentation techniques, resulting in a comprehensive collection of
483,805 images.

– The introduction of asymmetric convolution reduces the information redun-
dancy and increases the feature representation capability of square convolu-
tion. Furthermore, by introducing coordinate attention, we enrich the model’s
focus on spatial information. By designing a multi–scale feature fusion mod-
ule, we achieve a robust fusion of low-level, medium-level, and high-level fea-
tures. This enables our network to capture detailed position information while
emphasizing semantic content during feature extraction, thereby boosting the
recognition accuracy of OBS.

– After using the knowledge distillation model compressiontechnique, the gen-
eralisation ability of MFFA-Net and the recognition of oracle bone characters
were enhanced.
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2 RELATED WORKS

The objective of OBS recognition is twofold: categorizing oracle bone charac-
ters and deciphering their meanings. Currently, the identification technology of
OBS can be divided into two types: traditional recognition techniques and deep
learning-based techniques.

2.1 Traditional OBS Recognition

Traditional OBS recognition technology primarily involves extracting features
from OBI fonts or topological graphics. [3] treated oracle bone characters as
undirected graphs, proposing a multi-level graph theory feature code for hierar-
chical OBS recognition. [4] considered OBI as graphical symbols, utilizing Fourier
descriptors derived from contour curvature histograms as novel features to calcu-
late similarity. However, the feature description obtained by this method is not
sufficiently accurate. [5] utilized the graph isomorphism determination algorithm
for OBS recognition. However, it’s algorithm complexity is high. [6] suggested
employing the Hough transforms and clustering to extract line feature points
and calculating the corresponding minimum distance to recognition, but there
was not enough experimental work.

2.2 Deep Learning-based OBS Recognition

Since AlexNet [7] secured victory in the 2012 ILSVRC [8], deep neural networks
have made significant strides in vision tasks such as object recognition, image
classification, and semantic segmentation. As a result, an increasing number
of scholars are exploring the application of deep convolutional neural networks
in OBS recognition. Deep learning technology can enhance the accuracy and
efficiency of OBS recognition by automatically extracting features from OBI
images, eliminating the need for human-defined features or criteria.

The oracle bone character dataset OBC306 [9], boasting the most labelled
samples to date, was jointly developed by Anyang Normal University and the
South China University of Technology. In their tests on this dataset, they
employed neural networks such as VGG-16, ResNet-50, and Inception-v4 to
benchmark the recognition accuracy of each network, setting a standard for
future research. [10] constructed an ancient Chinese character image dataset
(ACCID), encompassing annotations at both the radical and character levels,
and proposed a baseline method for zero-shot OCR. The experimental out-
comes quantitatively and qualitatively validate the efficacy of ACCID and the
baseline model. To mitigate the long-tail distribution issue, [11] proposed a
generative adversarial framework to augment oracle characters in problematic
classes. Experimental results showcased the notable performance of the pro-
posed algorithm in oracle character recognition. Moreover, [12] proposed a novel
unsupervised domain adaptation method, which achieved state-of-the-art result
on the Oracle-241 dataset surpassing the recently proposed network by 15.1%.
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[13]explored the integration of mixup data augmentation with a triplet loss for
further improvement.

On two oracle bone character datasets, [14] conducted experiments utilizing
nearest neighbor classification and deep metric learning algorithms, resulting
in accuracy rates of 92.43% and 83.47%, respectively. Additionally, by combin-
ing category masking with automatic recognition correction, [15] pioneered the
integration of OBS detection and recognition.

[16] proposed a structure-texture separation network (STSN), an end-to-
end learning framework for joint disentanglement, transformation, adaptation
and recognition. Experiments on Oracle-241 dataset demonstrated that STSN
outperforms other adaptation methods, effectively boosting recognition perfor-
mance.

3 METHODOLOGY

This paper adopts ResNet18 [17] as the backbone network and further enhances
its performance. The overall architecture of the proposed network is illustrated
in Fig. 1. Below, we provide a detailed description of our method.

Fig. 1. The network architecture.

3.1 Asymmetric Convolutional

The length-to-height ratio of the oracle bone character is mostly 1:2, while the
majority of conventional convolutional kernels are square. Compared with sym-
metric convolution, asymmetric convolution has a different perceptual field, and
can effectively make use of the four-neighbourhood framework information in the
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feature image. [18] raised the asymmetric convolutional network (ACNet), whose
core is the Asymmetric Convolution Block (ACB). ACB attains efficient feature
extraction via parallel K×K, 1×K and K×1 convolution kernels. In this paper,
we replace ResNet18’s initial 7×7 convolution with three 3×3 standard convo-
lutions. Subsequently, these three 3×3 convolutions are substituted with ACBs,
aiming to capture the directional features of oracle characters more efficiently.
Fig. 1 illustrates the design of ACB.

3.2 Spatial Coordinate Attention Mechanism

The goal of OBS recognition is to accurately classify the oracle bone charac-
ters present in an image. However, oracle bone images often contain irrelevant
background and noise, and they face the problem of high similarity between dis-
tinct classes and low similarity between similar classes. Attention mechanisms
enable the network model to focus on relevant local information, aiding in oracle
bone identification. [19] introduced a novel type of attention mechanism known
as Coordinate Attention (CA). It can acquire location information and enhance
the target localization capability of the network. The execution process of the
CA mechanism can be summarized into four key steps:

1. For input x, we use two one-dimensional pooling kernels ((H, 1) and (1, W))
to encode each channel in the vertical and horizontal directions, respectively.

2. We concatenate the feature maps obtained from these two directions and
feed them into a 1×1 convolutional layer for dimensionality reduction. The
resulting batch-normalized feature map, denoted as F1, is then passed through
a sigmoid activation function to generate a feature map f .

3. f is split along the spatial dimension to yield two separate feature maps, each
of which undergoes a 1x1 convolution operation. Subsequently, the attention
weights for the feature map in both width and height dimensions are obtained
via another sigmoid activation function.

4. Finally, the original feature map is weighted by the attention weights obtained
in the previous step.

Given that distinguishing highly similar oracle bone characters requires the
model to have excellent local detail feature extraction capabilities, this paper
introduces an additional branch to the CA mechanism. In this branch, for the
input feature maps, we first perform adaptive maximum pooling and adaptive
average pooling operations for each channel, computing the maximum eigen-
value and average eigenvalue for each channel, respectively. Subsequently, a 1×1
convolution is applied to obtain the attention feature map, which is then passed
through an activation function to generate the attention weights. Multiply this
resultant map with the original feature graph to get the spatial attention output
U . Finally, we add U to the original CA attention.

The enhanced CA attention, named SCA, is depicted in the implementation
flow chart shown in Fig. 2. SCA can capture the most critical fine features of the
oracle bone characters while effectively suppressing the background noise in the
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oracle bone images. This enhancement significantly boosts the network’s feature
extraction capability. In our approach, SCA is incorporated after the second
convolution within the basic block of ResNet18. Additionally, SCA is employed
in the multi-scale feature fusion module.

Fig. 2. Implementation process of SCA attention based on CA attention improvement.

3.3 Multiscale Feature Fusion

Given the absence of a standardized writing norm for oracle bone characters,
their forms evolve continuously over time. Therefore, it is possible for the same
text to have different writing styles, while unrelated texts may share significant
similarities. This variability poses significant challenges for oracle bone recog-
nition. Fine-grained image categorization is primarily concerned with discrimi-
nating highly similar objects on a macroscopic level, yet belonging to distinct
subcategories on a more granular level. Upon careful analysis, it becomes evident
that recognizing oracle bone characters that share strong similarities yet belong
to different categories can indeed be framed as a fine-grained image classification
task.

[20] introduced a hierarchical bilinear pooling(HBP) method, which can effi-
ciently capture complementary information and inter-layer feature interactions
from various convolutional layers. Given its relevance to extracting features for
similar oracle bone characters, this work integrates HBP into the ResNet18 archi-
tecture. Furthermore, this paper proposes an Multiscale Feature Fusion(MFF)
module based on HBP. The model structure of MFF is depicted in Fig. 3. Ini-
tially, the features extracted from the third asymmetric convolutional block,
stage 2, and stage 4 of the ResNet18 are individually processed by the SCA
mechanism. This ensures that the network focuses on the target regions while
ignoring background noise. Subsequently, adaptive average pooling and 1 × 1
convolution are applied to standardize the feature sizes across different levels.
Next, the feature map is up-dimensioned in the channel using 1 × 1 convo-
lution, and the three features are integrated through elemental multiplication.
Finally, high-dimensional features are compressed into compact representations
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Fig. 3. Network Model Structure of MFF.

using adaptive averaging pooling, and concatenated along the channel dimen-
sion. The MFF module effectively fuses low-level, medium-level, and high-level
features. This fusion approach helps preserve detailed information from oracle
scripts, aiding in the discrimination of variant and similar characters within
oracle scripts.

3.4 Multi-teacher Knowledge Distillation

Addressing the challenges posed by limited scenarios due to the intricate design
of current models and their extensive parameter counts, this paper introduces
knowledge distillation technology to the realm of oracle recognition for the first
time. This technique enables the compression and optimization of complex mod-
els, significantly enhancing their generalization capabilities.

Knowledge distillation [21], employs a Teacher-Student framework, where the
teacher model is more complicated than the student model, with more gener-
alizable knowledge. To enhance the learning of MFFA-Net, this article applies
two teacher models, namely Wide_ResNet101 and DenseNet169. Fig. 4 illus-
trates the training procedure of multi-teacher knowledge distillation: (1) Train-
ing teacher models, (2) Generating soft targets by utilizing high–temperature T,
(3) Training the student model using soft and hard targets simultaneously.

Knowledge distillation introduces a temperature parameter T (serving as a
modulator to fine-tune the softening level of the probabilistic output) into the
original softmax function. By doing so, it augments the informational richness
that each sample contributes to the student network, The refined SoftMax func-
tion is formulated as (1).

qi =
exp(zi/T )

∑
j exp(zj/T )

. (1)

where qi is the probability of each category output, and zi denotes the probability
of belonging to category I.
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The loss function comprises two components: distillation loss, which corre-
sponds to the soft target, and student loss, which corresponds to the hard target.
Distillation loss is further divided into two categories: distillation loss 1 and dis-
tillation loss 2. Here, we present only the formula for distillation loss 1, as the
formula for distillation loss 2 is similar to distillation loss 1. (2) is the formula
for distillation loss.

Ldistill1 = −
N∑

i

pTi log(qTi ) (2)

Where
pTi =

exp(vi/T )
∑N

k exp(vk/T )
, qTi =

exp(zi/T )
∑N

k exp(zk/T )
(3)

vi and zi represent the probabilities predicted by the teacher model and the
MFFA-Net, respectively, indicating the likelihood of an image belonging to class
I. Here, N denotes the total number of classes.

The student loss value is calculated by the cross-entropy between the SoftMax
output and the ground truth value of MFFA Net at T=1, as shown in (4).

Lstudent = −
N∑

i

cilog(q1i ), (4)

where ci is the true value of class I, ci ∈ {0, 1}. The final Loss function consists
of three parts:

L = αLdistill1 + βLdistill2 + γLstudent. (5)

In the experimental setup, α = β = 0.2, γ = 0.6.

Fig. 4. Training process for multi-teacher knowledge distillation.
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4 Experiments

4.1 Datasets

OBC306 Dataset OBC306, the first publicly available dataset with numerous
oracle bone characters, is also the largest publicly available dataset for OBS iden-
tification research. It comprises 309,551 OBI images, encompassing 306 oracle
bone character categories. Notably, a minority of high-frequency words, totaling
70 categories, accounting for 83.82% of the total image count. Conversely, the
remaining 236 low-frequency words taking up 16.18%. In our study, we excluded
29 classes with a single sample from OBC306, utilizing the remaining 277 classes
for our experiments. Fig. 5 presents a partial sample of the OBC306 dataset.
Numerous images in this dataset are exceedingly noisy, rendering them unrec-
ognizable. This poses a significant challenge for OBS recognition.

Fig. 5. Partial sample presentation of
the OBC306 dataset.

Fig. 6. Display of the characters “ ”,
“ ” and “ ”, as well as the misclas-
sification in the “ ” category. The
grey-shaded areas are the misclassified
images.

OBC265 Dataset In accordance with [22], this article has reorganized the
OBC306 dataset, renaming it as OBC265. The reorganization process involves
the following steps:

1) Remove images that were excessively noisy or severely damaged to the point
of being indistinguishable by the human eye. This ensured the quality and
clarity of the dataset.
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2) Correcting misclassified OBI images. The OBC306 dataset contained some
samples of misclassification, as illustrated in Figure 6. In the category of "三
千", there are two types of images that do not belong to "三千": "于" and
"千". Such errors have the potential to significantly undermine the accuracy
of OBS recognition.

3) The deletion method was chosen for categories with a sample size of less than
10.

EOBC Dataset OBC265 has a severe issue of uneven sample distribution, as
demonstrated in Fig. 7. To address the long-tailed distribution issue, this paper
augments the train and validation sets corresponding to classes with less than
1000 samples in the OBC265 dataset. Data enhancement operations include
rotate, contrast enhancement, affine transformation, erosion, etc. An example
of a transformed image is presented in Figure 8(a). After a series of data aug-
mentations, a total of 483,805 OBI images were obtained, and the augmented
dataset is named EOBC. To validate the effectiveness of the data augmentation
techniques, this paper utilizes the OBC265 test set as the EOBC test set.

Fig. 7. Number of samples in each category.

4.2 Denoising

To minimize the adverse effects of background noise on OBS recognition, the
images were denoised using bilateral filtering [23] and non-local means [24]. The
comparison images before and after processing are shown in Fig. 8(b-c), clearly
demonstrating the positive impact of the denoising process. The preprocess-
ing operations were only used on the OBC265 and EOBC datasets, while the
OBC306 dataset was unprocessed.
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Fig. 8. Comparison of images before and after denoising and data enhancement.

4.3 Experimental Settings

In all relevant experiments conducted in this work, a uniform data format was
employed. Specifically, all images were resized to 128 × 128 × 3 and subsequently
normalized to the range of [0,1]. Set the batch size to 16 and the epoch to 15
during training. The AdamW optimization algorithm [25] was chosen to effi-
ciently update the model parameters. To dynamically adjust the learning rate,
the CosineAnnealingLR scheduler [26] was utilized, with a maximum number of
iterations set to 3 and an initial learning rate of 0.001.

4.4 Experimental Results and Analysis

Table 1. Recognition results of different methods on the OBC306 dataset.

Model Top–1 AccTop–5 AccPrecisionRecall F1–scoreparameters

ShuffleNet_v2 89.715 97.376 74.309 68.446 70.261 1.63M
Wide_ResNet50 89.216 97.373 74.870 68.629 70.534 67.35M
DenseNet121 91.074 97.908 77.376 71.101 72.937 7.21M
MobileNet_v2 89.793 97.545 74.480 69.740 70.860 2.55M
ResNet50 89.569 97.431 76.174 70.508 72.203 24.05M
Wide_ResNet10190.127 97.470 75.640 70.423 72.087 125.38M
DenseNet169 90.620 97.833 78.678 72.083 73.022 12.91M
Ours 92.423 98.385 79.470 74.05475.925 12.85M

Compare with some typical CNN models In this section, MFFA–Net will
be evaluated against renowned models such as ShuffleNet_v2, WideResNet50,
DenseNet121, DenseNet169, MobileNet_v2, ResNet50 and Wide_ResNet101.
This evaluation will be conducted on three datasets: OBC306, OBC265, and
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Table 2. Recognition results of different methods on the OBC265 dataset.

Model Top–1 AccTop–5 AccPrecisionRecall F1–score

ShuffleNet_v2 92.406 98.463 80.770 73.985 75.806
Wide_ResNet50 92.620 98.341 81.554 76.454 77.445
DenseNet121 94.317 98.840 81.992 78.974 79.593
MobileNet_v2 93.042 98.566 82.174 77.954 78.944
ResNet50 93.433 98.603 83.212 78.380 79.546
Wide_ResNet10193.049 98.363 83.335 78.372 79.506
DenseNet169 93.917 98.710 84.750 80.516 81.298
Ours 94.778 99.024 88.162 81.71683.613

Table 3. Recognition results of different methods on the EOBC dataset.

Model Top–1 AccTop–5 AccPrecisionRecall F1–score

ShuffleNet_v2 94.564 99.169 87.190 96.295 90.305
Wide_ResNet50 97.835 99.797 95.911 98.860 97.111
DenseNet121 97.620 99.686 93.931 98.308 95.419
MobileNet_v2 95.399 99.375 87.609 97.019 90.841
ResNet50 98.108 99.749 96.066 98.774 97.124
Wide_ResNet10198.005 99.793 96.476 98.532 97.157
DenseNet169 97.846 99.782 95.545 98.791 96.795
Ours 98.821 99.863 97.112 99.38998.012

EOBC. The evaluation criteria will encompass Top–1 and Top–5 accuracy, Preci-
sion, Recall, and F1–score, ensuring a comprehensive assessment of our method’s
performance.

Tables 1, 2, and 3 present the experimental results on the OBC306, OBC265,
and EOBC datasets, respectively. The highest scores are shown in bold, and
the sub–highest scores are underlined. On the OBC306 dataset, our approach
achieves a remarkable Top–1 accuracy of 92.423%, surpassing all other methods.
Similarly, it demonstrates superiority in Precision, Recall, and F1–score, with
respective improvements of 0.792%, 1.971%, and 2.903% compared to the sub-
optimal model DenseNet169. On the Top–5 accuracy metric, our method also
outperforms the competition, improving by 0.477% compared to the sub-optimal
DenseNet121.

The trend continues on the OBC265 and EOBC datasets. Our method
achieves the highest scores in all evaluation metrics, demonstrating its consistent
superiority across different datasets. On the OBC265 dataset, the Top–1 accu-
racy of our approach stands at 94.778%, while on the EOBC dataset, it reaches
an impressive 98.821%. These results firmly establish the state-of-the-art per-
formance of our method compared to other leading models. The reason why our
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method outperforms other methods is that we take a multi-scale feature fusion
approach fusing different levels of features and retaining rich semantic infor-
mation. We also use the knowledge distillation model compression technique to
further enhance the generalisation ability and performance of the model in this
paper.

Meanwhile, we have conducted experiments on the OBC306 dataset regard-
ing the parameters of the different methods to be used, and the results of the
experiments are shown in Table1. It will be analysed next.In terms of the num-
ber of parameters in the model, this paper’s method is much lower than that
of Wide_ResNet101, which is about 125M, and this paper’s method is only
about 10% of it, but the accuracy of this paper’s method is 4.6% higher than
that of Wide_ResNet101, respectively. Although the number of parameters of
this method is not as low as that of the ShuffleNet_v2 model, the accuracy of
this method is 5.161% higher than that of the ShuffleNet_v2 model. Compre-
hensively, the method in this chapter can maintain a high level of oracle bone
character recognition effect while effectively reducing the number of parameters
in the model, which verifies the effectiveness and practicality of the method in
this paper.

Comparison with Existing Oracle Image Domain Methods To validate
the advancement of the method proposed in this paper, comparison experiments
with some latest algorithms with better comprehensive identification perfor-
mance are carried out on the public dataset OBC306. The comparison results
are detailed in Table 4.

Table 4. Verification of model advancement.

MethodsNumber of categoriesTop-1 Accuracy

[2] 241 86.7
[9] 306 70.28
[11] 277 93.86
[12] 241 62.2(Scan),93.6(Handprint)
[13] 277 91.59
Ours 277 92.423
Ours 265 94.778

From Table 4, it’s evident that among the comparison algorithms tested on
the same public dataset, they recognize a minimum of 241 classes and up to
306 classes. Notably, when the number of recognition classes for this paper’s
algorithm is set at 265, it achieves the highest recognition rate in terms of
performance. However, when the number of recognition classes was set to 277,
our method ranked second, trailing slightly behind the algorithm proposed in
[11]. We think the probable reason for this discrepancy lies in the fact that
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[11] employed Generative Adversarial Networks for data augmentation on the
OBC306 dataset. This augmentation technique likely led to a more balanced
distribution of samples, resulting in superior recognition performance. Despite
this minor gap, it is worth emphasizing that the method outlined in this paper
still demonstrates effectiveness.

Ablation Experiment To further investigate the impact of different modules
on the overall performance of our method, we conducted ablation experiments.
The ablation study results are presented in Table 5.

Effectiveness of ACB. The introduction of ACB resulted in a notable
enhancement in overall performance. Compared to the baseline, the utilization
of ACB led to improvements in Top-1 accuracy, Precision, Recall, and F1-score
by 1.038%, 2.934%, 4.139%, and 3.301%, respectively. This suggests that asym-
metric convolution proves more effective than square convolution in extracting
features from rectangular oracle images.

Effectiveness of MFF. By incorporating the multi-scale feature fusion
module (MFF) with CA attention introduced in this study, we observed a sig-
nificant enhancement in Top-1 accuracy and Precision, with respective improve-
ments of 0.477% and 1.809% compared to the baseline. This clearly demonstrates
the efficacy of the MFF module. Furthermore, when leveraging the enhanced CA
mechanism, namely SCA, we witnessed even more improvements in performance.
Specifically, Top-1 accuracy, Top-5 accuracy, Recall, and F1-score increased by
0.107%, 0.288%, 1.742%, and 2.42%, respectively. These findings further corrob-
orate the effectiveness of the SCA attention mechanism we proposed.

Effectiveness of Multi-teacher Knowledge Distillation. When com-
pared to MFFA-Net without knowledge distillation, the model incorporating
multi-teacher knowledge distillation exhibited remarkable improvements in mul-
tiple performance metrics. Specifically, there was an increase of 0.391% in Top-1
accuracy, 0.292% in Top-5 accuracy, 3.424% in Precision, 2.645% in Recall, and
3.164% in F1-score. These findings clearly demonstrate the significant role of
multi-teacher knowledge distillation in enhancing various evaluation indicators,
highlighting its crucial importance in improving model performance.

Table 5. Ablation studies of different components on the OBC265 dataset. All ratings
are reported as percentages.

Configurations Top-1 Top-5 PrecisionRecall F1–score

ResNet18 92.78398.33379.783 76.27477.077
+ACB Block 93.82198.57782.717 80.41380.378
+MFF (CA) 93.26098.28281.592 75.18577.055
+MFF (SCA) 93.36798.57084.598 76.92779.475
+ACB+MFF (SCA) 94.38798.73284.738 79.07180.449
+ACB+MFF (SCA) +KD94.77899.02488.162 81.71683.613
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5 Conclusion

In this paper, we introduce the MFFA-Net, a framework designed to capture the
intricate multi-scale information inherent in OBI images. Firstly, we incorporate
asymmetric convolution into the Resnet architecture, enabling it to effectively
extract features from rectangular OBI images in both width and height direc-
tions. Secondly, we design a multi-scale feature fusion module by combining
the improved coordinate attention and bilinear pooling mechanism. In addi-
tion, we leverage the knowledge distillation technique to transfer the knowledge
acquired from sophisticated models such as Wide_ResNet101 and DenseNet169
to the MFFA-Net, significantly enhancing its generalization capabilities and
OBS recognition performance. Extensive experiments on three datasets validate
the superiority of our proposed MFFA-Net, outperforming other state-of-the-art
models by a significant margin.
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Abstract. Adversarial attacks provide a simple and effective way to
fool neural networks by applying subtle perturbations to the network’s
input. However, to ensure a misclassification by an image classifier, the
attacker must often apply a significant amount of perturbation to the
input image, resulting in the characteristic noisy appearance of adversar-
ially perturbed images. This essentially reveals the attack to the human
visual system, limiting the use of adversarial attacks to applications with-
out human supervision. To address this issue, we present a novel app-
roach to disguise adversarial attacks on images with high-pass filtering
based on some assumptions of JPEG compression. Unlike other smooth-
ing approaches based on variation, we not only provide the ability to
locally adjust the amount of distortion, but also incorporate informa-
tion about salient regions to preserve the attack information in critical
parts of the input. Our frequency-aware method provides a more flexible
attack and higher imperceptibility compared to its vanilla counterparts.
At the same time, it preserves most of the attack performance, occasion-
ally even outperforming the standard attack. Finally, our model allows
for superior performance retention compared to related attack smooth-
ing approaches due to the inclusion of salient regions of the surrogate
model, while achieving smoothing results comparable to the state-of-the-
art. The code to reproduce the experiments can be found here: https://
github.com/amonsoes/salient-hpf.

Keywords: Image Classification · Adversarial Attacks · Smoothing

1 Introduction

In image processing, adversarial examples are obtained by making per-pixel
adjustments to the input image [1,12,21]. This effectively creates a noise pat-
tern that can be subtle or quite easy to detect, depending on the size of the
perturbation [1,24]. The attacker must choose a reasonably high perturbation
magnitude to ensure a successful attack. This often results in an image where
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a Comparison of noise patterns b Graph of our HPF attacks

Fig. 1. (a) This figure shows a comparison of the resulting noise patterns for different
perturbation magnitudes ε. The adversarial examples in the top row are generated
with vanilla FGSM, while those in the bottom row are generated with FGSM using
the proposed HPF extension. (b) A graph of our HPF extension. Elements in the
standard attack are colored gray, smoothing elements are colored blue, and performance
preserving elements are colored pink.

the characteristic noise pattern is easy to detect by human perception since the
noise pattern tends to become more obvious with a higher adaptation rate [24].
To address this problem, we present a novel approach that hides adversarial
attacks by creating a mask that reduces or increases the per-pixel adaptation in
certain regions depending on the local frequency information. These regions are
chosen based on assumptions about the capabilities and limitations of human
visual perception that form the basis of compression techniques such as GIF and
JPEG [9].

Exploiting this shortcoming of the human visual perception system, we design
a high-pass filter (HPF) by using a combination of the discrete cosine transform
(DCT) and the Laplacian of Gaussian (LoG) filters commonly used in edge
detection algorithms [19]. The HPF mask scales down the per-pixel adjustment
in low-frequency regions while maintaining the full perturbation magnitude for
pixel adjustments in high-frequency regions. In addition, we incorporate infor-
mation about salient regions of the surrogate model, which further improves
performance. Applying this concept to image classification, we find that our
approach makes the attack dramatically less perceptible to the human eye while
retaining most of the effectiveness of the attack. In some cases, the extended
attack even outperforms the vanilla attack in performance while being less dis-
ruptive. For a comparison of the standard attack and our extended attack, see
Figure 1a. Our contributions are as follows:

– We present a novel smoothing approach that makes adversarial attacks in
images less perceptible. Although frequency-based smoothing has been intro-
duced before for attacks based on optimization [16,24], this approach suc-
cessfully includes variation computation into gradient-projection attacks like
BIM [12], providing smoothing for attacks with other use cases.
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– We achieve superior attack retention for the extended attacks in our exper-
iments by incorporating salient regions of the surrogate model, leading to
attack performance preservation in regions that are critical to the attack per-
formance.

– We address the previously unaddressed problem of frequency-based smooth-
ing in lossy compression scenarios by designing boosting methods and com-
bining frequency filtering with chrominance isolation techniques which, to the
best of our knowledge, has not been attempted before.

– We show that this new approach can be used as a straightforward extension
for most existing pixel-based adversarial attacks. To prove that our samples
are smoother, we measure perceptibility using the most apparent distortion
(MAD) metric [14] and conduct a user study that supports our claim and
demonstrates the effectiveness of our approach.

2 Related Work

2.1 Adversarial Attacks

The goal of adversarial attacks is to generate a malicious example xadv from an
input x that causes a DNN to predict either a predefined target class yt or any
class y ∈ Y \ {ytrue} that is not the true class ytrue. To accomplish this, it uses
the gradient estimation of a DNN trained on similar data [1,12,21,24].

It is by the definition of the gradient estimation network φ̂ and the target
network φ that one usually separates white-box attacks and black-box attacks.
In a white-box attack, φ̂ = φ, which means that the attacker has access to the
network and its weights. In a black-box attack, the network type and its weights
are unknown, so φ̂ �= φ [21].

White-Box Attacks and Black-Box Attacks. By linearizing the cost func-
tion in the input space and performing pixel-wise perturbations in a single step,
the Fast Gradient Sign Method (FGSM) [12] generates an adversarial example.
Let xadv be the perturbed version of the image x, ε the perturbation magnitude,
∇xJ the gradient of the loss function J with respect to x, and sign() a function
that returns the sign of the input [12].

xadv = x + ε · sign (∇xJ(x, y; θ)) (1)

An iterative variant of this method has been proposed in [12]. The Basic Iterative
Method (BIM) extends the idea of slightly changing the input with a gradient
estimation in a single step to a multi-step variant.

xadv
t+1 = clipx,ε(xadv

t + α · sign(∇xJ(xadv
t , y; θ))) (2)

clipx,ε(xadv) = min(x + ε,max(xadv,x − ε)) (3)
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For each time step t ∈ T , BIM applies pixel-wise perturbations with a step size
of α. To limit the perturbation size to ε, clip()x,ε lets every pixel value be within
the ε neighborhood of the original image x [12].

Others [21] build on the iterative approach by adding a momentum term
to each perturbation step. Similar to the usage for adaptive optimization, the
momentum term contains gradient information from previous steps up to iter-
ation t. Let μ be a decay factor and gt be the momentum term at time step t
[21].

gt+1 = μ · gt +
∇xJ(xadv

t , y; θ)
||∇xJ(xadv

t , y; θ)||1
(4)

xadv
t+1 = xadv

t + α · sign(gt+1) (5)

White-box attacks are inefficient in black-box settings without additional modi-
fications [21]. To increase the portability of iterative gradient-based attack vari-
ants, Wang et al. [21] propose a new method called variance tuning. Their app-
roach builds on the iterative variant and adds a variance term in addition to the
momentum term. It uses gradient information in the neighborhood by randomly
sampling xi in a predefined range of x from the previous data point to adjust
the gradient of the current data point at each iteration [21].

V (x) =
1
N

∑N

i=1
∇xiJ(xi, y; θ) − ∇xJ(x, y; θ) (6)

vt+1 = V (xadv
t ) (7)

gt+1 = μ · gt
ĝt+1 + vt

||ĝt+1 + vt||1 (8)

2.2 Attack Smoothing

Applying adversarial attacks to images with a strong magnitude usually results
in a pattern that is easy to detect. Work on attack smoothing often attempts to
hide this perturbation pattern by applying frequency transformations [10,16,24].
Another approach is to perturb the image with an L0 constraint, which means
that only a few pixels are changed [8]. To address the issue of visible noise pat-
terns in adversarial attacks, Jia et al. [10] apply changes to the spectrum of
images by computing the DCT. Zhang et al. [24] have proposed a perturbation
smoothing method closely related to our approach. They present a technique for
generating perturbed images that locally match the smoothness (or roughness)
of the original image. A similar method has been proposed in [16], where instead
of scaling perturbations locally by means of frequency transformations, they
compute regions of high variation and hide the perturbations in these regions.
Croce and Hein [3] use constraints based on local variation to generate smooth
black-box adversarial samples. Recently, Luo et al. [17] presented an attack that
produces smooth samples by perturbing on semantic similarity and using a dis-
crete wavelet transform in the constrained optimization. Similar to our approach,
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Liu et al. [15] used a combination of salient regions and the DCT to compute
smooth adversarial samples.

Our method is conceptually similar. However, it differs from these
approaches:

– Like the related work on frequency-based smoothing [16,24], we integrate
frequency information to locally scale the attack, but we additionally include
salient regions of the surrogate model to preserve attack performance.

– Like Liu et al. [15], we use salient regions to identify critical areas for the
perturbation and use a DCT, but we do not need to perform a search to
determine the frequency cut-off and use the DCT localized. Additionally, we
include the LoG for a more diverse masking computation. Lastly, we also
include black-box evaluations, which are not present in [15].

– Unlike Zhang et al. [24] and their sC&W attack, our mask can smooth a
variety of other attacks and does not require difficult integration into the
attack’s loss function. We prove that a much simpler a-posteriori smoothness
constraint by masking works as well.

– Similar to Jia et al. [10], we hide the attack by using the DCT of the image.
However, we perturb directly in the RGB space.

– Different to Croce et al. [3], our method extends other attacks. Our extension
also includes information about salient regions from the surrogate model.

– Some attacks perturb the input minimally [1,16,17,24]. However, such attacks
usually require many iterations to converge, whereas ours requires only one
iteration in the case of HPF-FGSM.

– In addition, we present a novel way to locally perturb samples not only on
the basis of frequency but also on the basis of color, which, to the best of our
knowledge, has not been attempted before.

3 Approach

3.1 HPF Mask

To ensure a misclassification on a given input, an adversary typically uses a
high perturbation magnitude for an adversarial attack, which makes the changes
perceptible to human observers [10,24]. Inspired by previous work on adversarial
smoothing [16,24], our model aims to hide perturbations in regions with many
high-frequency components. Our approach constructs a mask based on local
frequency components and information about salient regions from the surrogate
model.

DCT and LoG Coefficient Mask. Similar to JPEG compression, we perform
a patch-wise DCT, where each patch is 8 × 8 (4 × 4 for small image resolution
such as CIFAR data [11]) pixels in size. 8 × 8 pixels is optimal for capturing
pixel dependencies at smaller resolutions (our images are scaled to 224 × 224),
while perturbations for larger images may require larger window sizes p × p [9].
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An 8 × 8 pixel patch results in an 8 × 8 matrix of coefficients representing the
frequency components of the original patch.

Xcoeff
i,j =

p∑

i=0

p∑

j=0

∣∣Xmasked
i,j

∣∣ (9)

Xmasked
i,j =

{
XDCT

i,j max(i, j) > ψ,

0 else
(10)

Where Xcoeff ∈ R
8×8 are the corresponding perturbation coefficients for the

original patch X, XDCT is the transform of the original patch, and ψ defines the
cutoff of the low frequency components. This procedure is now called DCTmask.

For more flexibility in computing appropriate coefficients, we construct a
second mask LoGmask by applying a Laplacian of Gaussian filter to the input
image. By identifying areas of rapid intensity change, the LoG mask will have
high values for edges and low values for areas of uniform intensity [6].

Combination and Tradeoff. The final HPF mask should contain coefficients
to appropriately reduce the effect of the perturbation. Therefore, it makes sense
to calculate these coefficients in [0, 1]. We tried several ways of combining them,
including linearly combining the normalized masks with coefficients that add up
to 1. However, it turns out that this adds an unnecessary layer of complexity and
another set of hyperparameters. So the addition of the two masks is therefore
simply projected to [0, 1] by the clip function, which performs value clamping
as clip(xi) = min(max(xi, 0), 1). Figure 2 shows a visual representation of the
masking process.

HPF (x) = clipx(DCTmask(x) + LoGmask(x)) (11)

Including Salient Regions of the Surrogate Model. To preserve the per-
formance of the attack, we include information about salient regions of the target
model as a mask. Essentially, this mask should contain coefficients in [0,1] that
define how much a data point affects the loss of the target model. Let SAL be
a function that returns the normalized absolute value of the gradient of the loss
function with respect to the input image x

SAL(x) =
|∇xJ(x, y; θ)|

max(|∇xJ(x, y; θ)|) (12)

The target model φ, which is used in the computation of J is only available
in the white-box case, since φ = φ̂. Due to the property of transferability of
adversarial attacks [2], ∇xJ(x, y; θ) ≈ ∇xJ(x, y; θ̂), where θ̂ are the parameters
of the surrogate model. This approach can therefore also be used for black-box
attacks. However, this means that our method requires an approximation of
the gradient of φ to work. The mask coefficients of SAL(x) are added to the
coefficients in HPF (x) and clipped to [0,1].
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a x b LoGmask(x) c DCTmask(x) d HPF (x)

Fig. 2. Example of the HPF mask applied to an image. The last image shows the HPF
mask, which is a clipped linear combination of the LoG mask and the DCT mask. White
areas indicate full perturbation magnitude, while completely black areas indicate that
no perturbation will be applied.

Epsilon Adjustment. Using the mask coefficients in the range [0,1] as scalars
results in a weaker perturbation magnitude for most pixels. To account for this,
we must adjust the total ε upward. For additional performance retention, we
can adjust ε according to the mean of the inverted HPF mask. The same can
be done with α for iterative attacks. However, the ε bounds must be set on a
pixel-by-pixel basis to allow for a higher perturbation at high-frequency regions
and lower ε at low frequencies. Note that even though we internally adjust ε, our
attack is always less perturbing according to the CAD metric (see Section 4).

HPFinv(x) = 1 − HPF (x) (13)

εHPF = ε(1 + μ(HPFinv)) (14)

3.2 Extending Attacks

The HPF mask provides a simple extension for many pixel-based attacks. It
locally scales the perturbation magnitude of both single-step methods and iter-
ative methods to obtain the desired perturbation in high-frequency regions and
less adjustment in low-frequency regions. For a single-step method like FGSM,
the mask coefficients scale the perturbation magnitude ε directly.

xadv = x + εHPF HPF (x) · sign (∇xJ(x, y; θ)) (15)

Where HPF (x) is defined as in Equation 11 (including the salient mask), and
J(x, y; θ) is the loss determined by some network φθ. Similarly, iterative attacks
can be extended by scaling the step size α, which is adjusted at each iteration
by the HPF mask.

xadv
t+1 = clipx,ε

(
xadv

t + αHPF HPF (x) · sign
(∇xJ(xadv

t , y; θ)
))

(16)

Where clipx,ε is defined as in the calculation in BIM [12] in Equation 3.In equa-
tions Equation 15 and Equation 16, the subscript HPF denotes the adjustment
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of the perturbation parameter according to Equation 14.The added perturbation
is scaled by the high and low frequency characteristics of the original image x.
Thus, it is not necessary to recompute the HPF mask at each iteration, which
minimizes the computational effort required and dramatically improves perfor-
mance. This procedure is not limited to FGSM and BIM, but works with most
pixel-based perturbations.

3.3 LF and CbCr Boosting

Although the HPF variants perform unexpectedly well on their own (even in
black-box scenarios), they can be further improved at the cost of some additional
attack visibility. This is especially helpful in cases where we can expect some
sort of lossy compression, which typically removes high frequency details [9]. We
introduce two boosting variants that reintroduce a small amount of noise in the
low to mid frequency range.

LF Boosting. LF boosting aims to reintroduce some perturbation into the
mid-to-low frequency ranges according to their frequency distribution. The HPF
mask can be inverted to specifically target and boost the mid-to-low frequencies.
Since high frequency components will have high coefficients, the inverted mask
HPFinv(x) ensures that high frequency components are not affected by the LF
boost. Let ρ ∈ [0, 1] be a scaling factor that controls the amount of LF boosting.

HPFLF (x) = ρHPFinv(x) + HPF (x) (17)

CbCr Boosting. JPEG compression also downsamples color information by a
predefined factor. This is possible because of the previous color conversion from
RGB to YCbCr, where Y contains brightness information and (Cb, Cr) contains
all color information. This can be used for boosting since Cb and Cr can be
perturbed with a higher magnitude without increasing the perceptibility of the
attack. We define a function h : Rc×m×n → R

c×m×n which maps an image xRGB

to its counterpart in YCbCr xY CbCr and its inverse1 h−1. Instead of working
directly in the YCbCr color space, we obtain the HPF mask and the gradient
estimation from the original RGB input xRGB. After obtaining the intermediate
adversarial example x̂adv from each attack, we map it to YCbCr with h and
obtain the perturbation map Δ by subtracting h(x̂adv) from h(x).

Δ = h(x) − h(x̂adv) (18)

Δ′
Y = ΔY · HPF (x) (19)

xadv = h−1(x + Δ′) (20)

1 Note that, strictly speaking, color conversion from RGB to YCbCr with rounding
errors is not a bijective function [4]. However, this can be ignored since an approxi-
mate approach is sufficient for our purposes.
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Having isolated the perturbation in the brightness details (Y of YCbCr) from
that in the color details, we can improve performance by applying HPF only to
the Y channel of the perturbation map Δ. We leave the chrominance channels
Cb, Cr of Δ unscaled. Finally, we add Δ′ to x and invert the color conversion.

Implementation Details. We isolate luminance from chrominance directly
in the RGB color space. This can be done by subtracting the grayscale repre-
sentation xlum of the image from the original image x. Given the assumptions
of JPEG compression, we combine the chrominance information of the original
attack output xadv

crom with the luminance information of the HPF attack out-
put xHPF

lum . This results in the adversarial example xadv
CbCr, which carries the full

perturbation magnitude in the color information and the scaled perturbation
magnitude by the HPF mask in the luminance information. Let g be a grayscale
transformation g : R3×m×n → R

1×m×n

xadv
crom = xadv − g(xadv) (21)

xadv
CbCr = xadv

crom + g(xHPF ) (22)

4 Experiments

4.1 Data

Table 1. ASR results in a white-box scenario with varying ε for the datasets NIPS17
and CIFAR100, denoted as N17 and CI100, respectively, and separated by a pipe
symbol. No LF boosting was used.

N17 |CI100 ε V HPF ΔD̄

FGSM 0.129 |0.036 0.501 |0.901 0.542 |0.901 4.100 |0.035

BIM 0.010 |0.006 0.903 |0.927 0.904 |0.960 0.502 |0.011

VMIFGSM 0.008 |0.007 0.899 |0.908 0.896 |0.900 0.276 |0.011

ImageNet and CIFAR. Our experiments are performed on the NIPS 2017
adversarial competition dataset (N17) [13] and the CIFAR10/100 (CI10/CI100)
dataset [11]. The NIPS 2017 dataset consists of 1,000 images from the ImageNet-
1K challenge, which contains a wide variety of image classes [13] and presents a
challenging and realistic problem. In addition to benchmarking against vanilla
attacks, this dataset provides the means to compare our method to related
approaches.
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4.2 Evaluation Metrics

Attack Success Rate (ASR). An appropriate metric should measure how
often an attack has successfully influenced the target network to force a misclas-
sification. To obtain a faithful metric of the performance of the attack, we need
to define a subset Xt of the original test dataset X, consisting of data points
that the target network correctly classified. On this subset, ASR defines the rate
of data points where the attack successfully forced a misclassification. Let t be
the ground truth of a data point x, φ the target network, N the number of data
points in Xt and α the attack [21,24].

Xt = {x ∈ X|φ(x, θ) = t} (23)

Xsuccess
t = {x ∈ Xt|φ(α(x), θ) �= t} (24)

ASR(φ(Xt, θ), T ) =
|Xsuccess

t |
N

(25)

Conditional Average Rate (D̄). In addition to ASR, D̄ measures the average
distance of an adversarial example x̂ = f(x) from the original data point x,
where x ∈ Xsuccess

t . This metric, the L2 norm, is chosen as a distortion measure
to compare with Zhang et al. [24], who used the metric as a distortion measure.To
compare distortion results to [15], we benchmark against the reported results
in their work using the peak signal-to-noise ratio (PSNR).

D̄(f,Xsuccess
t ) =

1
|Xsuccess

t |
∑

x∈X success
t

|f(x) − x|2 (26)

4.3 Attack Evaluations

The model providing the gradient (φ̂) is a ResNet [22] that was pre-trained
on either ImageNet [13] or CIFAR10/100 [11]. For the white-box attack, φ̂ will
be the target model φ. To keep comparisons fair, we additionally report the
difference in average distortion, and all ε were chosen from an ε-grid with inter-
vals of 1 × 10−3, so that the vanilla attacks achieve a robust performance of
ASR >= 0.90. For the comparatively weaker FGSM attack, ASR >= 0.50 (for
CIFAR ASR >= 0.90). For the black-box evaluations, we extend the prior-
guided RGF [2] and VMIFGSM [21], which can also be used for black-box
attacks. We use white-box methods with and without our extension to attack
hardened models [18,23] and compare our approach with results obtained in
two closely related approaches [15,24]. Finally, we test our boosting methods
in lossy compression scenarios, which pose a challenging problem for frequency-
based smoothing approaches and are usually left unaddressed. In all experiments
and tables, V refers to the vanilla version of the attack and HPF refers to our
extended version of the attack.
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White-Box Attacks. Table 1 shows the ASR results in a white-box scenario
and the difference in average distortion (ΔD̄ = D̄V −D̄HPF ). In our experiment,
the HPF attack almost completely maintained the vanilla attack’s performance
for both datasets. To our surprise, sometimes the smooth extension increased
the performance of the attack while still having a much lower average distortion.
This is possible due to the internal epsilon adjustment and the emphasis of the
perturbation in salient regions of the model. We also observed that the average
distortion D̄ does not increase even though ε is internally adjusted in the HPF
attack.

Table 2. ASR results in a back-box scenario for the datasets NIPS17 and CIFAR100,
denoted as N17 and CI100, respectively, and separated by a pipe symbol. For PG-RGF,
we used the L2 bound version and a fixed λ. The other parameters were taken from
the experiments in [2]. For VMIFGSM, p is Linf .

N17 |CI100 ε α p V HPF ΔD̄

PG-RGF [2] 7.0 2.0 L2 0.141 |0.953 0.132 |0.951 0.110 |0.059

VMIFGSM [21] 0.07 2/255 Linf 0.462 |0.870 0.327 |0.842 4.924 |0.094

Black-Box Attacks. Table 2 shows the ASR results in a black-box scenario
and the difference in average distortion (ΔD̄ = D̄V − D̄HPF ). For our black-
box experiments, the target model was InceptionV3 (VGG for CIFAR). The
extended methods are PG-RGF [2] and VMIFGSM [21]. PG-RGF [2] uses a prior
to improve the computation of the gradient. In our experiments, we used a fixed
lambda λ to define the tradeoff between the prior and the RGF computation, we
used the L2 version and the parameters that were used in the original paper. For
VMIFGSM [21], N = 10 samples are taken in the neighborhood of x and used
to compute the final gradient. We chose a larger ε compared to our white-box
experiments to account for the increased difficulty of the black-box adversarial
attack. The HPF extension was able to almost completely preserve the ASR
for PG-RGF, while being less distorted according to the CAD norm. While the
adversarial sample was much less distorted by the HPF extension of VMIFGSM
(see ΔD), the extension of the attack also resulted in a greater decrease in ASR.

Evaluation on Adversarial Training. Table 3 shows the ASR results in a
scenario where the attacked model has been hardened by adversarial training.
We also show the difference in average distortion (ΔD̄ = D̄V − D̄HPF ). In our
experiments, the model denoted as PGD refers to a model that was adversar-
ially pretrained using one of the most common adversarial training protocols
that uses PGD and a min-max optimization [18]. The model denoted as FBF
[23] uses RFGSM to train competitively hardened models much faster [23]. For
both models, the HPF variant performed only slightly worse than the vanilla
attack, while having a lower average distortion on ImageNet. For CIFAR, the
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Table 3. ASR results for models hardened by adversarial training for the datasets
NIPS17 and CIFAR10, denoted as N17 and CI10, respectively, and separated by a
pipe symbol. The values for ε were taken from the white-box experiments. No boosting
techniques were used.

PGD [18] V HPF ΔD̄ FBF [23] V HPF ΔD̄

FGSM 0.341 |0.336 0.319 |0.360 0.490 |0.153 FGSM 0.446 |0.419 0.386 |0.438 0.429 |0.143

BIM 0.317 |0.050 0.309 |0.050 0.187 |0.007 BIM 0.416 |0.067 0.391 |0.067 0.294 |0.006

VMIFGSM 0.183 |0.041 0.197 |0.042 0.063 |0.024 VMIFGSM 0.224 |0.053 0.234 |0.056 0.033 |0.022

HPF attacks sometimes surpassed the ASR of the vanilla attack while being less
distorted. Surprisingly, for VMIFGSM [21], the HPF attack performed better in
both experiments while still being less distorted.

Comparison with other Smoothing Approaches. To provide a benchmark
against other smoothing approaches presented for attacks based on gradient pro-
jection, we report the performance of our approach on the NIPS 2017 untargeted
attack competition [13] and compare it to (1) sPGDL2 presented in [24] and to
(2) RGLF-FGSML2 presented in [15]. We do not use attacks where the base
attack obtained a score of 1.0 in [15], since it is unclear if the ε is set too high,
resulting in a skewed comparison of the base attack and the extended attack.
For (1), we perform a white-box attack experiment using Inception-V3 [24] with
an accuracy of 0.953 and its adversarially trained counterpart [22]. Because we
use different model weights for Inception-V3 [24]2, ResNet and different imple-
mentations of PGDL2 and FGSML2, we had to report the metrics in a different
way to keep the comparison fair.

Table 4. Comparison of our smoothing approach with [24] and [15] . Base shows the
indicated ASR of the base attack (PGDL2 for [24], FGSML2 for [15]), Ext shows the
ASR of the respective extensions, and ΔASR shows the difference between the ASR of
the base version and the extended smooth version. Finally, ΔD̄ = ( D̄V − D̄Smooth)
shows the difference in average distortion, and ΔPSNR = PSNRsmooth − PSNRV

shows the average difference in PSNR, with higher values being better for both Δ.

Inception Zhang et al. [24]Ours AdvInc Zhang et al. [24]Ours Resnet50 Liu et al. [15]Ours

Base 1.000 1.000 Base 1.000 0.988 Base 0.934 0.375

Ext 0.960 0.999 Ext 0.690 0.994 Ext 0.887 0.343

ΔASR 0.040 0.001ΔASR 0.310 0.005ΔASR 0.047 0.032

ΔD̄ -0.300 0.118ΔD̄ -3.970 0.239ΔPSNR 15.730 2.708

2 Our ported PyTorch weights perform slightly differently than the TensorFlow
weights used in [24].
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Instead of using ASR directly as the basis for comparing the smooth-
ing approaches, we instead report the difference in ASR (ΔASR) and ΔD̄ (
D̄V − D̄Smooth) from the original PGDL2 to the respective smoothed version
([24]’s sPDGL2 and ours). For comparison, we used the same settings for PGDL2

as those reported in [24]. The step size α is set to 3 and ε is set to 5. Our
Inception-V3 (or AdvInception-V3) achieves a base accuracy of 0.953 (0.867)
on the dataset, compared to 0.96 (0.94) in [24]. For (2) we compare RLGF-
FGSML2, HPF-FGSML2 and FGSML2. Since the average distortion L2 is not
reported in [15],we instead report the difference in peak-signal-to-noise ratio
(PSNR), denoted as ΔPSNR = PSNRsmooth −PSNRV , along with ΔASR from
FGSML2 to the respective smooth version, where the base attacks from both
works achieved approximately the same average PSNR.

Comparing our method to Zhang et al. [24] in Table 4, our smoothing app-
roach was able to better maintain performance in the case of PGDL2 while at
the same time providing better distortion reduction compared to the original
attack (ΔD̄ = D̄V − D̄Smooth). Furthermore, we note that our HPF extension
actually increased the performance of the vanilla attacks, showing that at least
some adversarial training protocols result in models that are susceptible to the
different properties of our adversarial samples. Comparing our method to Liu et
al [15], we note that our method is much less smooth according to PSNR, but
provides slightly better performance retention without the need to perform a
search over several cutoff-frequencies, as done in [15]. Furthermore, some stud-
ies [5] also suggest that PSNR may not be the best metric to mimic the HVS,
and therefore measure perceived distortion.

Table 5. Comparison of our boosting methods in compression scenarios. The com-
pression rate for JPEG compression was set to 0.5. In these experiments, FGSM was
extended and used to attack a ResNet trained on ImageNet. φ̂ is the target model and
ρ was set to 0.5.

τ = 0.5 lower ε ASR D̄ higher ε ASR D̄

HPF 0.0129 0.190 0.743 0.04 0.323 3.892

HPF+CbCr 0.0129 0.177 0.845 0.04 0.308 4.526

HPF+LF 0.0129 0.224 1.053 0.04 0.341 4.952

Vanilla 0.0129 0.216 1.097 0.04 0.338 5.286

Compression Experiments. Methods to generate adversarial samples that
are robust against JPEG compression [7,20] work by using a differentiable
approximation of the non-differentiable JPEG compression [20]. However, the
performance of these attacks depends heavily on the exact compression algo-
rithm and even the exact compression rate used [20]. Although the issue of
compression is rarely addressed in work on adversarial smoothing, it is a critical
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aspect to consider for approaches that perform smoothing by local variation.
Therefore, we examine how HPF attacks perform with and without boosting.
Table 5 shows the ASR results for the standard HPF attack and its boosted
counterparts. For this experiment, all images were taken from the ImageNet
subset and compressed with a high compression rate of τ = 0.5 and samples
were created with varying ε. For LF boosting, ρ was set to 0.5. Although stan-
dard HPF masking was able to maintain most of the performance of its vanilla
counterpart, LF boosting further improved the ASR and surpassed the ASR of
the vanilla attack, while being less distorted. CbCr boosting performed slightly
worse than even the standard HPF mask, while still being less noticeable than
LF-boosted counterparts with high values of ρ.

4.4 Measuring Imperceptibility

a Original b HPF-
VMIFGSM

c BIM d VMIFGSM

Fig. 3. Qualitative comparison of an HPF adversarial sample to the samples produced
by iterative attacks with no smoothing in addition to the comparison of patters to
FGSM found in Figure 1. For all attacks, ε was set to 0.02 for a stronger perturbation
to adjust for the small image resolution. Zooming in helps to identify the perturbations
better.

Imperceptibility is subjective and difficult to capture in a metric. In the adver-
sarial attack literature, L2 norms are usually presented as a measure of per-
turbation size and perceptibility [1]. However, the L2 norm only measures the
mean distance of pixel values of the original image x and the adversarial example
xadv, which has some disadvantages [24]. Instead, one can use a metric that was
designed to mimic the human visual system’s perception of distortion [14,24].
We use MAD [14] as a numerical estimator of the smoothing benefit of our
approach. In addition, we present a human evaluation study where users were
asked to choose the less noisy image from {xadv,xHPF } where the perturbation
magnitude ε is the same for both adversarial samples and taken from Table 1,
where both the vanilla attack and the HPF counterpart achieve approximately
the same performance for the same ε. A more detailed description of the study
can be found in the supplementary material. Figure 3 shows a visual comparison
of the perturbation patterns produced by a HPF attack (b) compared to attacks
with no smoothing, which can be best observed upon magnifying. Looking at
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areas with low variation, the adversarial sample produced by (b) has much less
noise. Zooming in on the motorcyclist with a lot of high-variation detail, it can
be observed that (b) contains more noise compared to the other samples, as the
HPF mask shifted the noise into areas of high variation.

Numerical Evaluation. MAD was designed to closely mimic the human visual
system in the perception of distortion [14]. Fezza et al. [5] compared fifteen
image quality metrics to the subjective perceptual judgments of a group of users
and concluded that MAD best mimicked their judgments [5,24]. We use the
parameters in our white box experiments to compute average MAD scores for
both vanilla attacks (denoted as V) and attacks with our HPF extension (denoted
as HPF), with lower scores indicating higher fidelity. Note that for ASR, the
results obtained by the respective ε were approximately the same and that HPF
outperformed the vanilla attack in two out of three cases (see Table 1).

Table 6. MAD scores with different ε. α has been set to 2/255 for BIM and VMIFGSM.
Lower scores indicate higher fidelity. In addition, we present the results of the survey.
Columns V and HPF show the percentage of people who consider the vanilla version
and the HPF version to be less noisy, respectively. UND denotes “undecided”.

MAD ε V HPF Survey V HPF UND

FGSM 0.129 206.69177.11FGSM 0.1250.8250.05

BIM 0.010 6.01 2.70 BIM 0.19 0.7750.031

VMIFGSM 0.008 5.77 3.36 VMIFGSM 0.2090.3980.392

Table 6 shows the average MAD scores for the vanilla attacks and their HPF
counterparts, which were computed using the same ε (and α) values that were
used to compute the ASR scores of Table 1. For all attack comparisons, the HPF
variant achieved a lower MAD score than the vanilla attack, indicating that our
HPF extension makes attacks less visually detectable.

Survey Evaluation. Table 6 shows the results of our survey. V denotes the
image produced by the vanilla attack, HPF denotes the adversarial sample pro-
duced by our HPF counterpart, and UND denotes that the user could not decide
on a sample. The results show that the adversarial example with the HPF attack
appears less noisy than the vanilla counterparts in all cases. However, due to the
overall small perturbation magnitudes ε needed for the white-box attack, many
users were undecided in the VMIFGSM case. In contrast, the perturbation mag-
nitude for the white-box attack of FGSM was set so high that perturbations were
visible in both cases. Since hardly any participant chose the vanilla adversarial
sample as the less noisy one, our survey results are consistent with our numerical
evaluation.
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5 Ethical Discussion and Conclusion

Adversarial attacks, which can manipulate a model into producing incorrect
outputs, have the potential to be exploited for malicious purposes. Therefore,
any research conducted in this field has ethical implications. However, seeing
that more and more applications rely on deep learning, it is important to expose
and address any flaws these models have before they can be safely used in any
high-security context. Smoothing methods like ours show that simply ignoring
the threat of adversarial samples due to the fact that they exhibit a characteristic
noise pattern does not hold anymore.

HPF masks provide a straightforward extension to most pixel-based adver-
sarial attacks that, unlike the standard perturbation size ε hyperparameter found
in regular attacks, provides a more flexible tradeoff between attack performance
and attack detectability. Including salient regions can sometimes increase the
performance of the attack while still being (1) less biased according to the
CAD metric and (2) less detectable by the HVS according to the MAD met-
ric. Our experiments demonstrate that, for the attacks we tested, our method
can maintain or even enhance attack performance more effectively than com-
parable frequency-based smoothing approaches., while providing a comparable
reduction in distortion compared to the state-of-the-art.
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Abstract. An efficient approach to camera deployment enhances the
cost-effectiveness and functionality of a multi-camera surveillance net-
work. Traditional camera placement strategies involve maximizing total
coverage over a surveillance region with predefined camera locations by
optimizing the camera orientations. However, some modern approaches
allow users to specify the desired total coverage over the surveillance
region, and the algorithms subsequently determine the optimal number
of cameras, as well as their exact locations and orientations, to meet
this specified coverage. The Reward Penalty Score (RPS) algorithm and
Extended Greedy Grid Voting (EGGV) algorithm are two innovative
algorithms designed to attain the coverage constraint by proposing an
optimal number of cameras and their locations and orientations. In cer-
tain scenarios, the number of cameras available for designing the surveil-
lance network is limited, which should be treated as an input constraint
rather than a specified coverage requirement. Under such conditions, the
primary objective becomes maximizing total coverage with the given
number of cameras by determining their optimal locations and orienta-
tions. Currently, there are no widely recognized algorithms specifically
designed to handle this particular scenario. In this paper, we effectively
modify the RPS and EGGV algorithms (m-EGGV and m-RPS), adapt-
ing them to optimally deploy the specified number of cameras over the
entire surveillance region in an efficient manner to maximize coverage.
Additionally, by employing the m-EGGV and m-RPS algorithms, we
address the scenario of coverage loss resulting from the failure of one
or more cameras. These modified algorithms facilitate the relocation of
a subset of potential cameras which can alleviate this loss in coverage
caused by the failure of cameras. The m-EGGV and m-RPS algorithms
demonstrate a robust performance through extensive testing in diverse
simulation environments.
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1 Introduction

Advancements in camera technology, along with strides in image processing and
machine learning, have significantly contributed to the expansion of intelligent
video surveillance applications [13]. As security and safety become increasingly
critical, the use of video cameras has expanded into various areas such as home-
land security, surveillance, smart housing, and robotics [19] [17] [16] [20]. The
optimal arrangement of cameras is crucial, as it determines the scope of surveil-
lance coverage, impacting the system’s effectiveness and cost [12]. Iteratively
refining the position and orientation of cameras are essential to achieving the
broadest possible coverage with a given number of cameras [22].

In scenarios involving fixed camera locations, camera placement algorithms
typically suggest optimal camera orientations to achieve specific coverage objec-
tives [12]. However, the coverage outcomes are often less than ideal due to
constraints and preferences involved in the original choice of camera locations.
Although some methods optimize both the locations and orientations of cameras,
their focus is restricted to maximizing coverage within certain predefined areas
[14]. For truly optimal camera placement, the algorithm should minimize the num-
ber of cameras used while fulfilling the required coverage specifications [24].

Effectively, the various optimization scenarios related to coverage maximiza-
tion over a surveillance network under various constraints can be summarized as
follows: (i) with an existing surveillance network where the cameras are already
installed,(ii) without an existing surveillance network, constrained by the number
of cameras, (iii) without an existing surveillance network, constrained by cover-
age requirement, and (iv) with an existing surveillance network in the event of
camera failure. Table 1 outlines these scenarios, detailing their input parameters
and the parameters targeted for optimization.

In our previous work [23] addressing Scenario 1, we had introduced two inno-
vative and efficient camera placement algorithms, the Alternate Global Greedy
(AGG) algorithm and the Greedy Grid Voting (GGV) algorithm, to determine
the optimal configuration of cameras in a surveillance network with fixed camera
positions. Thereafter, addressing Scenario 3, we proposed two new algorithms:
the Reward Penalty Score (RPS) algorithm and the Extended Greedy Grid Vot-
ing (EGGV) algorithm, to optimize coverage across a surveillance area without
an existing network limited by a specific coverage goal [22]. The RPS algorithm is
a versatile and scalable approach for the optimal placement of cameras, address-
ing both their locations and orientations to meet particular coverage criteria
with the fewest cameras possible. Building on the principles of the RPS algo-
rithm, the EGGV algorithm enhances the Greedy Grid Voting (GGV) algorithm
by expanding its scope to not only optimize camera orientations but also their
numbers and locations. Additionally, as part of our previous research, address-
ing Scenario 4, we proposed the Visibility Graph Reduction (VGR) algorithm,
which identifies a subset of potential neighboring cameras that are capable of
addressing the coverage loss due to the failure of cameras [21].

In certain circumstances, the number of cameras available for setting up the
surveillance network is limited. Therefore, the primary objective for this paper
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Table 1. Scenarios related to coverage maximization over a surveillance network

Scenario Optimizing
Problem

Input Parameters Optimizing Parameters Algorithms

1 Maximize total
coverage

No. of Cameras,
Camera Location

Camera Orientation LG, GG, AGG,
GGV

2 No. of Cameras Camera Location, Camera
Orientation

m-EGGV,
m-RPS

3 Coverage
Requirement

No. of Cameras, Camera
Location, Camera
Orientation

EGGV, RPS

4 Reduce coverage
loss due to camera
failure

Damaged Camera
Location, Active
Camera Locations

Total Coverage, Camera
Orientation

VGR+GGV
VGR+RPS

Total coverage, Location,
Orientation

VGR+m-EGGV
VGR+m-RPS

lies in addressing Scenario 2, where the goal is to maximize total coverage over
the surveillance region by proposing optimal locations and orientations for a
pre-specified number of cameras. In this paper, we have modified the EGGV
and RPS algorithms to maximize total coverage in the surveillance region by
determining optimal locations and orientations for a specific number of cameras.
The key objective of this paper is to determine the maximum coverage result
with the available resources through the optimal placement of a pre-specified
number of cameras. The modified-EGGV (m-EGGV) and modified-RPS (m-
RPS) algorithms generate a set of possible camera locations and corresponding
orientations to attain maximum coverage, provided a plan image of a surveillance
region along with the number of available cameras as input. Additionally, we have
also evaluated these modified algorithms in Scenario 4 for regaining coverage lost
due to the failure of one or more cameras. Initially, the VGR algorithm [21] is
used to identify the potential subset of cameras among the active cameras, which
can optimally alleviate the loss in coverage resulting from the failure of one or
more cameras. Subsequently, the m-EGGV or the m-RPS algorithm is used to
propose the new locations and orientations for the VGR subset of cameras to
alleviate the coverage loss. The key focus areas of this paper are as follows:

– Optimize the camera coverage for a surveillance scenario using a pre-specified
number of cameras.

– Relocate a potential subset of cameras in the event of coverage loss due to
failure of cameras.

– Evaluate the proposed algorithms over diverse indoor and outdoor surveil-
lance scenarios.

The remainder of this paper is structured as follows: Section 2 examines
related work on camera placement and coverage optimization in surveillance
networks. Section 3 describes the modifications to the RPS and the EGGV algo-
rithms to address the problem under consideration. Section 4 delves into our
simulation experiments and their outcomes, and section 5 concludes the paper.
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2 Literature Review

The objective of the coverage optimization problem is to maximize overall cover-
age with the minimum number of cameras. The optimization of camera coverage
has garnered considerable attention in research circles due to its critical impact
on sensor planning, selection, calibration, and optimal placement [15,18]. Mod-
eling camera coverage is crucial to ensure that the deployment and operation
of cameras adequately fulfill the specified requirements. Two principal methods
for modeling camera coverage are deterministic modeling [25] and probabilistic
modeling [1]. In deterministic modeling, coverage is quantified in a fixed man-
ner and the resulting coverage is used to evaluate performance. On the other
hand, probabilistic modeling employs a probabilistic function that incorporates
variables like camera range, visibility, and angle to calculate coverage.

Most studies on camera placement optimization algorithms, as highlighted
in previous research [10], concentrate on enhancing coverage within surveillance
networks with fixed cameras, employing methods from basic greedy techniques
to advanced dynamic programming strategies [2]. In these settings, greedy algo-
rithms are frequently chosen for their high efficiency. The effectiveness of cover-
age optimization often depends on the sequence in which cameras are optimized,
with greedy algorithms such as Local Greedy (LG), Global Greedy (GG), and
Alternate Global Greedy (AGG), typically starting at the first camera location
and proceeding in raster scan order. Departing from the typical greedy methods
that operate in a raster scan sequence, the GGV algorithm emphasizes cover-
ing unique and strategically critical areas that fixed-sequence approaches might
neglect [23].

Research on optimizing camera placement, which involves finding the best
locations and orientations has employed a variety of methods, including Integer
Linear Programming (ILP) [4], Genetic Algorithms [11], Binary Optimization
techniques [6], and iterative algorithms [8]. Furthermore, studies aiming to iden-
tify optimal locations and orientations to fulfill specific coverage goals with the
fewest cameras have utilized Genetic Algorithms (GA) [7], probabilistic opti-
mization frameworks [5], and combinatorial algorithms [3]. Generally, most of
the methods in the literature propose optimal camera locations within a surveil-
lance region to attain user-specific or application-specific constraints. The exist-
ing research on surveillance scenarios is often limited by its task-specific nature
or user-imposed constraints, leading to a lack of generalizability and scalabil-
ity. This issue was tackled in our previous work [22], where we introduced the
Reward Penalty Score (RPS) and the Extended Greedy Grid Voting (EGGV)
algorithms. These algorithms are generic and scalable, effectively addressing the
camera placement problem in varied indoor and outdoor settings. They optimize
the number of cameras, along with their locations and orientations, to fulfill spe-
cific coverage requirements efficiently. Although our algorithms are designed to
be versatile and not confined to particular tasks or domains, they are also adept
at managing a wide array of constrained situations, from areas needing redun-
dant coverage for security purposes to those requiring no coverage to protect
privacy.
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Fig. 1. A triangular layout of camera coverage area

Research on optimal camera reconfiguration in response to failures within
surveillance networks is limited. Our previous work involves a novel, cost-
effective, and computationally efficient graph-based algorithm that substantially
minimizes human intervention in adjusting cameras across a range of practi-
cal settings [21]. The lack of adequate research focused on maximizing coverage
over a surveillance region using a pre-specified number of cameras forms a key
motivation behind this paper.

3 Proposed Method

3.1 Problem Formulation

Let η denote the constraint in the case of camera coverage optimization prob-
lem, which for scenario 3 is the specified number of cameras given for deployment
Ngiv. In a surveillance environment ξ with coverage constraint η, the camera cov-
erage optimization problem involves determining the optimal locations L and
their corresponding orientations θ to maximize total subject to η. The objective
is to pinpoint the coordinate positions (x, y) for optimal camera locationsLi,
along with their respective orientations θj , using the specified number of cam-
eras Ngiv across the designated surveillance region. The following assumptions
regarding the surveillance network have been made for practical convenience :
(i) surveillance region is limited to 2D, (ii) similar camera with same Field of
View (FoV) α, focal length f , and range r (iii) each camera can take only a finite
number of possible orientations O = {θ1, . . . , θP }.
It is essential that there exists some function f (Ctot | η, ξ) that maximizes the
total coverage Ctot in the surveillance region ξ satisfying coverage constraint η,
by optimally placing the given number of cameras Ngiv; Ctot =

∑Ngiv

i=1 Ci. Here,
Ci represents the coverage provided by a camera optimally positioned at loca-
tion Li with orientation θj . Thus, Ci is defined by the function f(Li, θi) and the
optimization problem can be expressed as

Γ = argmax
Ctot

f(Ctot | η, ξ) (1)
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We have modeled the camera coverage using a triangular layout as in Fig. 1
and is calculated deterministically [25] considering the camera parameters such
as field of view α, focal length f of the camera, and range r. A camera’s field of
view defines the visible area which is calculated as.

α = 2× tan−1

(
WI

2f

)

(2)

where wI is the width of the image sensor and f is the focal length of the camera.
Let A and B be the coordinate positions of the triangular coverage area shown
in 1 and can be represented as (r, y) and (r,−y) respectively. The value of y will
be evaluated as:

y = r × tan
(α

2

)
(3)

We use Bresenham’s line algorithm [9] for ray tracing to handle occlusions in
the surveillance region while drawing the triangular coverage of a camera. The
Bresenham algorithm assesses the visibility of a point from the camera’s view-
point, considering the ray portion beyond the point where it intersects with the
boundary of an occluding object as invisible to the camera.

3.2 Optimization Approaches

In this paper, we have modified the EGGV and RPS algorithms to maximize
total coverage over the surveillance region by determining optimal locations and
orientations for a specific number of cameras. The major function of the RPS
algorithm is to select the minimum number of cameras, its corresponding loca-
tion, and orientations to attain the coverage requirement over the surveillance
region. In some scenarios, the constraint may be to deploy given number of
cameras over the surveillance region optimally instead of a specified coverage
requirement. The algorithms Extended Greedy Grid Voting Algorithm (EGGV)
& Reward Penalty Score Algorithm (RPS) [22] can be modified to maximize
total coverage with given number of cameras by changing the loop exit criteria
as these algorithms does not have any predefined execution order. The modified
EGGV (m-EGGV) and modified RPS (m-RPS) algorithm is shown in Algo-
rithm 1 & Algorithm 2. Here, we provide the number of cameras specified Ngiv,
as input to the algorithms. Both the modified algorithms place all Ngiv given
cameras over the surveillance region optimally.

The GGV algorithm is a novel grid-based two-stage voting method for opti-
mizing camera coverage across diverse scenarios. The GGV algorithm prioritizes
covering unique and strategically important areas. Our Extended Greedy Grid
Voting (EGGV) algorithm capable of optimizing camera location and orien-
taiton, is an extended version of our GGV algorithm, which was restricted to
optimizing only camera orientations. The EGGV algorithm generates all the
potential camera locations from a building blueprint or sketch map. In the next
step, it assumes that a camera is placed at each location identified in the previous
step. Thereafter, a 2-stage process of forward and reverse voting is performed
for each coverage field C produced by these cameras at various orientations. The
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Algorithm 1: Modified EGGV Algorithm (m-EGGV)
Input : Camera range r, width of the image sensor WI , plan image of

surveillance region I, and number of cameras given Ngiv

Output: A set LO containing optimal location orientation pairs (Li, θj) for the
Ngiv cameras

1 Initialize set of orientations O = {θ1, . . . , θP }
2 Initialize set of configured cameras SC = {}
3 Initialize Nfix = 0;
4 Compute field of view α using Eq. 2
5 while Nfix <= Ngiv do
6 call the EGGV algorithm to get a priority location and orientation.

(Li, θj) = EGGV (r, α, I)
7 Compute coverage C of selected (Li, θj) pair using Eq. 3.
8 LO = SC ∪ {(Li, θj)}
9 Nfix = Nfix + 1

10 SC = SC ∪ {C}

coverage field with highest vote is chosen for deployment and is considered as
configured. This process repeats until the number of configured cameras Nfix

matches the given number of cameras Ngiv.
The RPS algorithm begins by generating all potential camera locations from

a building blueprint or sketch map. In the next step, it posits that a camera
is placed at each location identified in the initial stage. The coverage field C,
produced by these cameras at various orientations is then evaluated and scored.
The coverage field with the highest score SC , is chosen for deployment. The
camera corresponding to this optimal coverage field is deemed configured, and
this procedure is repeated until the number of configured cameras Nfix, matches
the given number of cameras Ngiv.

We evaluate the complexity of the m-EGGV and m-RPS algorithms using
a 300 × 300 computer-generated map image as the surveillance region, with
no predefined cameras, and specifying the given number of cameras, Ngiv = 16.
Both m-RPS and m-EGGV are enhanced versions of the original RPS and EGGV
algorithms. Consequently, they share the same computational complexity O(n2),
as depicted in Fig. 2

Fig. 2. Computational complexity analysis: m-EGGV and m-RPS
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Algorithm 2: Modified RPS Algorithm (m-RPS)
Input : Camera range r, width of the image sensor WI , plan image of

surveillance region I, and number of cameras given Ngiv

Output: A set LO containing optimal location orientation pairs (Li, θj) for the
Ngiv cameras

1 Initialize set of orientations O = {θ1, . . . , θP }
2 Initialize set of configured cameras SC = {}
3 Initialize Nfix = 0;
4 Compute field of view α using Eq. 2
5 while Nfix <= Ngiv do
6 call the RPS algorithm to get a priority location and orientation.

(Li, θj) = RPS(r, α, I)
7 Compute coverage C of selected (Li, θj) pair using Eq. 3.
8 LO = SC ∪ {(Li, θj)}
9 Nfix = Nfix + 1

10 SC = SC ∪ {C}

Fig. 3. Indoor Environment: Plan image of an office (a) Coverage results before failure
(b) Coverage results after failure of one camera (c) Coverage results after relocating a
neighbouring camera using m-EGGV

3.3 Alleviating Coverage Loss in a Surveillance Network after
Failure of Cameras

Consider a scenario where a surveillance network faces the failure of one or more
cameras. Typically, due to cost considerations, the layout of cameras within the
network is not reconfigured unless necessary to address coverage gaps caused by
such failures. Rather than replacing the malfunctioning cameras, a more econom-
ical approach involves repositioning some of the adjacent cameras to reduce the
impact of the coverage loss. Our Visibility Graph Reduction (VGR) algorithm
[21] utilizes a graph-based method to identify which active cameras are best
suited to compensate for the lost coverage. This two-stage graph reduction pro-
cess prioritizes cameras based on overlapping coverage areas and visibility, select-
ing an optimal subset of active cameras for repositioning. Subsequently, using our
modified Extended Greedy Grid Voting (m-EGGV) or modified Reward Penalty
Score (m-RPS) algorithm, we can strategically relocate these selected neighbor-
ing cameras to a new setup that effectively mitigates the coverage deficit.
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Fig. 4. Simulation Environments (a) Plan image of an office (b) Plan image of a Uni-
versity building (c) Google map image of a campus (d) Map image of a crossroad
junction

Table 2. Camera specifications

Scenarios Camera Model Sensor Focal Length FoV

Plan Image of Office AXISP1357 1/3.2" RGBCMOS 2.8-8 mm 54 °
Plan Image of University AXISP1357 1/3.2" RGB CMOS 2.8-8 mm 54 °
Google Map BIPRO-540LA 1/3.2" SONY CCD 3.6 mm 74 °
Crossroad Junction DS2CE16C2T-IR 1/3" CMOS 6 mm 54 °

Fig. 3a shows the existing surveillance network across the office floor, equipped
with 27 cameras achieving 95% coverage, where areas covered by cameras are
indicated in blue. Fig. 3b demonstrates a reduction in coverage to 84.43% fol-
lowing the failure of one camera, with operational cameras highlighted in green
and the damaged camera in red. Fig. 3c displays the coverage outcome after
relocating a neighboring camera using the m-EGGV algorithm, which restored
coverage to 91%.

4 Experimental Results

We perform simulation experiments across diverse indoor and outdoor environ-
ments, as shown in Fig. 4. Our initial focus is on indoor environments ranging
from small to large surveillance regions. Thereafter, we focus on outdoor environ-
ments such as a university campus and a crossroad junction. Traditionally, indoor
surveillance networks rely on wall-mounted cameras. Therefore, building walls
are regarded as the optimal locations for camera placement. A primary challenge
while designing an outdoor surveillance network is to identify the optimal loca-
tions for fixing cameras. Therefore, the original EGGV and RPS algorithms use
a sketch map of the outdoor surveillance region as an input to the algorithm,
instead of a regular plan image. The sketch map is an image of a surveillance
region showcasing the appropriate areas for camera placement. The sketch map
for the Google map image of a campus (Fig. 5a) and the map image of a crossroad
junction (Fig. 5b) are illustrated in Fig. 5, where the appropriate areas for placing
cameras are highlighted in white. The cameras and their configurations for con-
ducting simulation experiments over these surveillance environments are listed
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Fig. 5. Sketch maps: (a) Google map image of a campus (b) Map image of a crossroad
junction

Fig. 6. Indoor environment : Plan image of an office (a) Coverage results of m-EGGV
algorithm (b) Coverage results of m-RPS algorithm (c) Comparison of coverage results

in Table 2. In this experiment, we consider 72 orientations for each camera by
initializing the set of possible camera orientations as O = {0◦, 5◦, 10◦, . . . , 355◦}.

Across all these environments, we initially focus on coverage maximization
by proposing optimal locations and orientations for a user-specified number of
cameras. Subsequently, we perform a failure analysis of cameras in the network.
Across all the experimental scenarios, we consider the failure of any one or two
of the cameras in the network and analyze the corresponding loss in coverage.
Subsequently, we propose new locations and orientations to the VGR algorithm-
generated subset of neighboring cameras using the m-EGGV and m-RPS algo-
rithms and evaluate the coverage results. We use boxplots to assess the coverage
outcomes from our failure analysis. The yellow box represents scenarios where a
single camera fails, while the green box indicates scenarios where two cameras
fail simultaneously within the surveillance network. The cyan horizontal line acts
as a baseline, showing the total coverage across the surveillance area before any
failures.
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Table 3. Comparison of coverage results of optimization algorithms on various surveil-
lance environments

Algorithms Plan image of Office Plan image of university building Google map
No. of Cameras Total Coverage No. of Cameras Total Coverage No. of Cameras Total Coverage

LG 46 81 54 72 17 81
GG 90 78 87
AGG 92 79 88
GGV 95 82 92
m-EGGV 26 94 44 78 14 93
m-RPS 26 92 44 82 14 94

4.1 Indoor Environment: Plan Image of an Office

We simulate a preinstalled surveillance network with 46 ‘AXIS P1357’ static net-
work cameras in an office building of 3800 square feet area as shown in Fig. 4a.
Initially, we evaluate the performance of coverage optimization algorithms such
as LG, GG, AGG, and GGV by proposing optimal orientation to the 46 cam-
eras mounted at predefined camera locations over the plan image of the Office.
The LG, GG, AGG, and GGV algorithms attained 81%, 90%, 92%, and 95%
coverage, respectively. Subsequently, we explore coverage optimization in the
same surveillance region without any pre-installed cameras, with only a limited
number of cameras available for deployment. In this scenario, we evaluate the
performance of the m-EGGV and m-RPS algorithms, using a user-specified input
of 26 cameras(Ngiv = 26). Both algorithms propose locations and orientations
for these 26 cameras, achieving total coverage of 94%, and 92%, respectively,
as illustrated in Fig. 6a and Fig. 6b. Fig. 6c presents the iterative coverage
results for each camera placement across various algorithms, with the red plot
representing the m-RPS algorithm and the blue plot representing the m-EGGV
algorithm. In this comparison, the m-EGGV algorithm yields superior coverage
by proposing optimal locations and orientations for the 26 cameras provided by
the user. The Table 3 lists the total coverage obtained with these algorithms
over the plan image of the office environment.

Following the coverage optimization experiments, we conduct a camera fail-
ure analysis on the office building’s plan image, which has an existing surveillance
network of 27 cameras achieving 95% total coverage. We consider all possible
scenarios involving the failure of one or two cameras, represented by combina-
tions 27C1 and 27C2 respectively. Upon camera failure within the network, the
VGR algorithm identifies a potential subset of neighboring cameras that could
alleviate the loss in coverage. Subsequently, we propose new locations and orien-
tations for the VGR-identified subset of cameras using the m-EGGV and m-RPS
algorithms and analyze the resultant coverage. Fig. 7a displays a box plot illus-
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Fig. 7. Coverage results on surveillance environments after camera failure and after
relocation (a) Plan image of an office (b) Plan image of a University building (c)
Google map image of a campus (d) Map image of a crossroad junction

Table 4. Coverage results on various surveillance scenarios after failure of cameras

Scenarios No. of Total Coverage No. of No. of Total Coverage No. of VGR Relocate VGR
Cameras Before Damage Damaged Cameras Samples After Damage Active Cameras Subset m-EGGV m-RPS

Plan Image 27 95% 1 27C1 = 27 86.07% 26 3 93.24% 94.71%
of Office 2 27C2 = 351 83.63% 25 7 91.82% 94.54%
Plan Image 56 85% 1 56C1 = 56 82.74% 55 6 85.22% 84.88%
of University 2 56C2 = 1540 80.66% 54 11 84.11% 84.73%
Google Map 15 95% 1 15C1 = 15 90.88% 14 4 93.12% 90.89%
of Campus 2 15C2 = 105 85.99% 13 6 91.23% 92.53%
Map Image 8 95% 1 8C1 = 8 88.02% 7 4 93.62% 89.35%
of Crossroad 2 8C2 = 28 70.15% 6 5 77.8% 74.9%

trating the coverage analysis post-camera failure and post-reconfiguration (in
terms of new locations and orientations proposed for the VGR set of cameras).
Additionally, Table 4 lists the median coverage values from this failure analysis.
Both algorithms demonstrate their ability to reduce the loss in coverage resulting
from camera damage.
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Fig. 8. Indoor environment: Plan image of a university building (a) Coverage results
of EGGV algorithm (b) Coverage results of RPS algorithm (c) Comparison of coverage
results

4.2 Indoor Environment: Plan Image of University Building

We simulate an existing surveillance network with 54 preinstalled ‘AXIS P1357’
static network cameras in a 7800 square feet area of a university building as
shown in Fig. 4b. Initially, we evaluated the performance of coverage optimiza-
tion algorithms such as LG, GG, AGG, and GGV by proposing optimal ori-
entation to the 54 cameras mounted at predefined camera locations over the
plan image of the university building. The LG, GG, AGG, and GGV algo-
rithms attained 72%, 78%, 79%, and 82% coverage, respectively. Subsequently,
we explore coverage optimization in the same surveillance region without any pre-
installed cameras, with only a limited number of cameras available for deploy-
ment. In this scenario, we evaluate the performance of the m-EGGV and m-RPS
algorithms, using a user-specified input of 44 cameras(Ngiv = 44). Both algo-
rithms propose locations and orientations for these 44 cameras, achieving total
coverage of 78%, and 82%, respectively, as illustrated in Fig. 8a and Fig. 8b.
Fig. 8c presents the iterative coverage results for each camera placement across
various algorithms, with the red plot representing the m-RPS algorithm and the
blue plot representing the m-EGGV algorithm. In this comparison, the m-RPS
algorithm yields superior coverage by proposing optimal locations and orienta-
tions for the 44 cameras provided by the user. Table 3 lists the total coverage
obtained with these algorithms over the plan image of the university building.

Following the coverage optimization experiments, we conduct a camera fail-
ure analysis on the university building’s plan image, which has an existing
surveillance network of 56 cameras with 85% total coverage. We consider all pos-
sible scenarios involving the failure of one or two cameras, represented by com-
binations 56C1 and 56C2 respectively. Upon camera failure within the network,
the VGR algorithm identifies a potential subset of neighboring cameras that
could alleviate the loss in coverage. Subsequently, we propose new locations and
orientations for the VGR-identified subset of cameras using the m-EGGV and m-
RPS algorithms and analyze the resultant coverage. Fig. 7b displays a box plot
illustrating the coverage analysis post-camera failure and post-reconfiguration
(in terms of new locations and orientations proposed for the VGR set of cam-
eras). Additionally, Table 4 lists the median coverage values from this failure
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Fig. 9. Indoor environment: Google map image of a campus (a) Coverage results of
EGGV algorithm (b) Coverage results of RPS algorithm (c) Comparison of coverage
results

analysis. Both algorithms demonstrate their capability to alleviate the loss in
coverage resulting from camera damage.

4.3 Outdoor Environment: Google Map Image of a Campus

In our third surveillance simulation, we focus on an outdoor setting with an
existing surveillance network consisting of 17 preinstalled ‘BIPRO-540L4’ static
network cameras, utilizing a Google map image of a campus environment shown
in Fig. 4c. Initially, we evaluated the performance of coverage optimization algo-
rithms such as LG, GG, AGG, and GGV by proposing optimal orientation to
the 17 cameras mounted at predefined camera locations over the Google image
of a campus. The LG, GG, AGG, and GGV algorithms attained 81%, 87%, 88%,
and 92% coverage, respectively. Subsequently, we explore coverage optimization
in the same surveillance region without any pre-installed cameras, with only a
limited number of cameras available for deployment utilizing the sketch map of
the surveillance region as shown in Fig. 5a. In this scenario, we evaluate the per-
formance of the m-EGGV and m-RPS algorithms, using a user-specified input of
14 cameras(Ngiv = 14). Both algorithms propose locations and orientations for
these 14 cameras, achieving total coverage of 93%, and 94%, respectively, as illus-
trated in Fig. 9a and Fig. 9b. Fig. 9c presents the iterative coverage results for
each camera placement across various algorithms, with the red plot representing
the m-RPS algorithm and the blue plot representing the m-EGGV algorithm.
In this comparison, the m-RPS algorithm yields superior coverage by proposing
optimal locations and orientations for the 14 cameras provided by the user. The
Table 3 lists the total coverage obtained with these algorithms over the Google
map image of a campus.

Following the coverage optimization experiments, we conduct a camera fail-
ure analysis on the Google map image of the campus, which has an existing
surveillance network of 15 cameras achieving 95% total coverage. We consider
all possible scenarios involving the failure of one or two cameras, represented
by combinations 15C1 and 15C2 respectively. Upon camera failure within the
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Fig. 10. Oudoor environment : Map image of a crossroad junction (a) Coverage results
of EGGV algorithm (b) Coverage results of RPS algorithm (c) Comparison of coverage
results

network, the VGR algorithm identifies a potential subset of neighboring cam-
eras that could alleviate the loss in coverage. Subsequently, we propose new
locations and orientations for the VGR-identified subset of cameras using the
m-EGGV and m-RPS algorithms and analyze the resultant coverage. Fig. 7c
displays a box plot illustrating the coverage analysis post-camera failure and
post-reconfiguration (in terms of new locations and orientations proposed for
the VGR set of cameras). Additionally, Table 4 lists the median coverage val-
ues from this failure analysis. Both algorithms demonstrate their capability to
alleviate the loss in coverage resulting from camera damage.

4.4 Outdoor Environment: Map Image of Crossroad Junction

Finally, we simulate a crossroad junction that spans over 500 square meters
without any existing surveillance network. This scenario is illustrated in Fig.
4d and the sketch map highlighting the suitable locations for camera placement
is shown in Fig. 5b. In this scenario, we evaluate the performance of the m-
EGGV and m-RPS algorithms, using a user-specified input of 8 DS2CE16C2T-IR
cameras(Ngiv = 8). Both algorithms propose locations and orientations for these
8 cameras and attain total coverage of 95% as illustrated in Fig. 10a and Fig.
10b. Fig. 10c presents the iterative coverage results for each camera placement
across these algorithms, with the red plot representing the m-RPS algorithm
and the blue plot representing the m-EGGV algorithm. Both algorithms exhibit
similar performance over the map image of the crossroad junction.

Following the coverage optimization experiments, we conduct a camera fail-
ure analysis on the map image of the crossroad junction, which has an existing
surveillance network with 8 cameras achieving 95% total coverage. We consider
all possible scenarios involving the failure of one or two cameras, represented by
combinations 8C1 and 8C2 respectively. Upon camera failure within the network,
the VGR algorithm identifies a potential subset of neighboring cameras that
could alleviate the loss in coverage. Subsequently, we propose new locations and
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Fig. 11. Plan image of (a) Office space with user-specified constraints (b) Coverage
results of m-EGGV algorithm

orientations for the VGR-identified subset of cameras using the m-EGGV and m-
RPS algorithms and analyze the resultant coverage. Fig. 7d displays a box plot
illustrating the coverage analysis post-camera failure and post-reconfiguration
(in terms of new location and orientation proposals for the VGR set of cam-
eras). Additionally, Table 4 lists the median coverage values from this failure
analysis. Both algorithms demonstrate their capability to mitigate the coverage
loss caused by camera damage.

4.5 Indoor Surveillance Environments with Constraints

Creating an efficient indoor surveillance network, while taking into account fac-
tors like critical regions and privacy-sensitive regions, presents a significant chal-
lenge. Critical regions are high-priority areas, such as bank vaults, that mandate
redundant or backup camera coverage for security purposes. In contrast, privacy-
sensitive regions, like restrooms, are areas where camera coverage should be
avoided to protect privacy. These specific regions are highlighted on the building
plan images, which are then provided as modified inputs for the m-EGGV and
m-RPS algorithms, as detailed in [22]. In the context of surveillance, privacy-
sensitive regions are treated as occlusions. In our experiments, areas requiring
no coverage are marked in green to denote privacy sensitivity, while critical areas
are highlighted in red to indicate a need for enhanced surveillance, as shown in
Fig. 11a.

The original EGGV and RPS algorithms create a priority map from the
input sketch map as described in [22]. In this priority map, critical regions are
assigned as m, regions requiring privacy are set to 0, and the remaining regions
are assigned as 1. These priorities guide the EGGV and RPS algorithms in opti-
mizing coverage considering user constraints. Similarly, our modified versions,
the m-EGGV and m-RPS algorithms, are designed to manage various constraints
within the surveillance area while configuring a specified number of cameras
Ngiv Fig. 11b shows the coverage outcomes from our m-EGGV algorithm when
assigned to deploy 25 cameras, (Ngiv = 25). The algorithm strategically places
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cameras to ensure coverage of critical regions while avoiding privacy-sensitive
areas.

5 Conclusions

In this work, we have presented robust algorithms for deploying multi-camera
surveillance networks, emphasizing cost-effectiveness and functionality. Our
modified versions of the Extended Greedy Grid Voting (m-EGGV) and Reward
Penalty Score (m-RPS) algorithms demonstrate a significant advancement in
optimizing camera placement. As part of this work, we have effectively tackled
two key challenges in coverage optimization across diverse indoor and outdoor
environments, (i) maximizing coverage with a specified number of cameras by
identifying optimal locations and orientations when the number of cameras avail-
able for setting up the surveillance network is limited, and (ii) alleviating cov-
erage loss when one or more cameras in a surveillance network is damaged, by
proposing new locations and orientations for potential cameras that can compen-
sate for the coverage loss. Overall, our findings contribute valuable insights into
efficient surveillance design, proving especially useful for environments where
camera resources are limited, but broad coverage is imperative.
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Abstract. In copy-move forgery detection, most relevant studies con-
cern locating the copy-move areas without the distinction of source and
target regions. This paper proposes an end-to-end network, DSTNet, to
identify the source and target based on consistency detection between the
copy-move region and the non-copy-move region. The DSTNet is com-
posed of two stages, the Pre-processing stage and the Discrimination
stage. Pre-processing Stage extracts internal information of copy-move
and non-copy-move areas and conducts a series of operations to meet
the requirements of network input. Discrimination stage allows multiple
patches for input and classifies the input patches. Specifically, the Pre-
processing stage, contains the Copy-move Patches Selection (CM Patches
Selection) and Genuine Patches Selection, can select pairs of copy-move
and none copy-move patches. We train the proposed DSTNet on two
large synthetic datasets and use the public datasets CASIA and Comofod
for evaluation. The experiment shows that our method achieves excellent
results. Particularly, we achieve a 5.4% higher F1 based on ground-truth
of copy-move mask (GT-CM) on CASIA dataset.

Keywords: Copy-move forgery detection · Source and target areas
distinguishing · Deep learning for forensics · Siamese network

1 Introduction

Due to the development of digital media technology, some image-processing
tools have been extensively applied to society. Most of them change the content
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of images to satisfy people’s needs, such as removal, splicing, and copy-move.
Although image processing can improve the viewing of the content and attract
the attention of many people, if misused, it can lead to many negative behav-
iors. In recent years, image forgery detection methods are designed to settle
these problems, including image copy-move forgery detection (CMFD), which is
copying one or more source areas and pasting it or them to the target areas of
the same image.

Most CMFD methods can only detect the copy-move mask of Fig. 1, with-
out distinguishing the source and target areas. These CMFD methods contains
traditional and deep learning methods. In traditional methods, the substance
of block-based methods is to compartmentalize the forged image into several
blocks and expose the copy-move areas. Some approaches of feature extraction,
such as DCT [8], DWT [19], and Zernike [4] have been applied in overlapping
blocks. To decline the computational cost, the keypoint-based methods extract
the key points by SIFT [10] and SURF [5]. In addition to these hand-crafted fea-
ture based methods, recent deep learning methods have also been proposed in
CMFD. [17] presents a dense-inception net by combine DenseNet [9]and Incep-
tionNet [12] to locate the copy-move areas. Later, [18] develops an adaptive
attention module to focus more attention on the principal features. Although
some methods have contributed to CMFD, they only locate the copy-move areas
to produce the binary copy-move mask but do not distinguish between source
and target areas. According to our investigation, there are currently three CMFD
methods that can distinguish source and target regions. BusterNet [15] uses
part of splicing images for training on the second branch, resulting in a limited
ability to detect forged regions. As is shown as Fig. 1, Copy-move mask is a
binary graph, the black part represents genuine regions and the white part rep-
resents copy-move regions. In our experiment, it can be the copy-move binary
ground-truth in the dataset or the result detected by the copy-move modules
(CM-Module). Copy-move patches are the smallest external rectangles clipped
in copy-move images according to the copy-move mask. In Fig. 1(a), CMSTD [2]
uses the image classification, however, copy-move forgery usually goes through a
lot of post-processing, and it is difficult to learn the corresponding features only
for individual targets or sources. Unlike image classification based on semantic
information, the features of the target and source are not simple and contain
major distinguishing information. In [1], which is shown as Fig. 1(b), only copy-
move images corresponding to copy-move masks containing two independently
connected domains can be detected.

Given the shortcomings exposed by the above methods, we proposed DST-
Net, a discriminate method to distinguish the source and target regions in copy-
move areas, and contributions are (1) Since it is hard to detect the boundary of
copy-move regions with 100% accuracy in the CM-Module, we chose to distin-
guish the source and target regions based on content. And we cut corresponding
background patches from images according to the size of the copy-move areas
to ensure that the size of each pair is consistent before entering the network In
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the Genuine Patches Selection. (2) in the Discrimination stage, we use consis-
tency detection based on the Siamese network. The Discrimination stage accepts
input from multiple patches, therefore, we can detect altered images containing
multiple sources or targets.

The rest of this paper is organized as follows: Section 2 focuses on the pro-
posed method in detail. The training setting, ablation studies, experimental
results, and comparisons are illustrated in Section 3. At last, the conclusion is
given in Section 4.

2 Method

In CMFD, it is difficult to locate directly in the whole image because of the high
similarity between source and target region and the lack of obvious forgery fea-
tures. Therefore, we propose an idea to divide cmfd into two phases, namely CM-
Module and source-target distinction module (ST-Module). We have described
the methods of the first phase in detail in the previous article, which are used
to detect all copy-move regions without distinguishing between source and tar-
get. In this section, for the second phase, we propose a ST-Module based on the
internal features of copy-move region and the consistency of genuine regions. Our
approach consists of two stages, the Pre-processing Stage and the Discrimination
Stage, which are shown in Fig. 2.

2.1 Pre-Processing Stage

Before the discrimination, we need to perform some operations on the image,
which is shown in Fig. 2. Pre-processing stage includes CM Patches Selection
and Genuine Patches Selection. Given a copy-move binary mask, we first find the
connected domains in the Mark Connected Domains step of CM Patches Selec-
tion. Since the detection results of CM-Module may not be completely accurate,
the copy-move binary mask is usually rough. In the case of this copy-move binary
mask with many interference regions, we use morphological processing to clear
the smaller interference regions before looking for connected domains. We clip
the connected domain before selecting the copy-move image patches by the step
of Mark Internal Mask to find the internal areas, and the margin threshold of
clipping was set to 10-20 experimentally. Furthermore, we add the internal mask
and copy-move image to generate the copy-move patches.

When addressing the issue of copy-move patches, both [2] and [1] directly
alter the shape of the image, thereby making the source region susceptible to
tampering as well. In our method, we opt for the genuine area as the reference
to compare the consistency for each pair of copy-move region and genuine area.
In the process of Generate genuine patches, we ensure their consistency with the
copy-move area, so that during the reshape, each pair of genuine and copy-move
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(a) The discrimination structure of CMSTD-Std [2].

(b) The discrimination structure of MB [1].

(c) The discrimination structure of the proposed method.

Fig. 1. The motivations of the proposed method. Image classification is carried out
after the copy-move areas are reshaped in (a), which is also a tampering of the source
areas. (b) uses bounds and internal detection, it can only accept copy-move areas that
contain two independently connected domains. (c) is our proposed method, we accept
one or more copy-move areas, and use the genuine patch as the third party by reshaping
both genuine and copy-move patches to reduce the error.

patches has an equivalent degree of changes and errors to a certain extent. To
reduce errors, we determine the size of each copy-move area patch generated at
the CM Patches Selection to select genuine patches of the same size. Specifically,
in the Discriminate stage, each input patch needs to be the size of 128×128. If the
sizes of the genuine and copy-move patches are different, during the reshaping
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Fig. 2. The Structure of DST-Net containing Pre-processing and Discriminate Stages,
the Pre-processing stage is formed from CM Patches Selection and Genuine Patches
Selection. xi is the copy-move patch, yi is the corresponding ordinary patch. ri is the
detection result with the range of (0,1).

process to the size of 128 × 128, there will be an out-of-sync stretch, which can
also be seen as a form of image forgery to some extent. If they are the same size,
during the reshape, the original copy-move forgery regions and none forgery
regions are uniformly stretched, and the original copy-move tamper error can
be ignored. After the CM Patches Selection and Genuine Patches Selection, we
reshape the copy-move patch and corresponding genuine patch to 128× 128× 3,
each pair is entered into the network in turn.

2.2 Discrimination Stage

We first detect the copy-move area through CM-Module. Then, the source and
target in the copy-move area are determined by checking the consistency between
the copy-move and the genuine areas. In addition, after CM-Module determined
the copy-move regions, we could start with the statistical characteristics of the
boundary and content.

It is worth mentioning that in the Fig. 2, we only show the copy-move mask
containing two separate connected domains. However, our method can also detect
overlapping connected domains and copy-move masks that contain more than
two connected domains. Our network structure can accept multiple pairs of
inputs. The Pre-processing Stage can generate multiple pairs, assuming a Pair
i, it has a copy-move region xi and a corresponding genuine area yi. In the
Discrimination stage, we use Siamese network to detect the consistency of each
pair. For the backbone, we use vgg16 convolutional network structure, Siamese
network has two inputs xi and yi, and one output ri. Among them, xi and yi
output a 512-dimensional vector after passing through the same network layer,
and then we test the consistency of these two 512-dimensional vectors. SoftMax
function is applied to this distance, and the output result ri is obtained, which
ranges from 0 to 1. The larger the value of ri is, the higher the similarity of Pair
i is.
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3 Experiments and Discussions

The experiments are implemented with TensorFlow on a GPU with Tesla V100-
SXM3-32GB. We compile the network by using the binary_crossentropy loss,
and the optimizer we select is Adam with an initial learning rate of 0.0001. We
train the model for approximately 30 epochs, and the batch size of each epoch is
8. Next, we introduce the details of training/testing datasets, evaluation metrics,
and comparisons.

3.1 Datasets

Training Dataset: We select 756 and 1923 images and their corresponding
ground truth in the SPACMFD [16] and Uscisi [15] datasets, respectively. Fig. 3
are several examples from the SPACMFD [16]. As mentioned in Section 2.1,
we extract 2679 source patches, 2757 target patches, and corresponding genuine
patches respectively. The source patch and its corresponding genuine patch form
a positive pair. The target patch and its corresponding genuine patch form a
negative pair. To enrich the dataset and increase the robustness of the network,
we added Gauss Blur (GB) and Gauss Noise (GN) to each pair to form 16308
pairs.

Fig. 3. Copy-move images (a) and their corresponding binary copy-move ground-truth
(b) and source-target ground-truth (c) on SPACMFD [16].

Testing Dataset: To evaluate the results between existing and our method
on CASIA V2 [6] and CoMoFoD dataset [13]. CASIA v2 [6] has 7,491 genuine and
5,123 forgery images divided into splicing and copy-move. We refer to [15], and
1313 copy-move forgery images are used to evaluate the performance. The binary
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mask is provided by [15]. Furthermore, in [15], the source-target ground-truth
(ST-GT) is labeled source and target areas. CoMoFoD [13] contains 200 basic
images and 4800 copy-move forged images generated by applying various post-
processing approaches, including JPEG compression, CA, NA, IB, BC, and color
reduction (CR). In our experiments, we use CA, CR, IB, and JC to illuminate
the performance of the proposed DST-Net.

3.2 Evaluation Metrics

Among the existing methods that can distinguish, copy-move areas are detected
as either source or target. Therefore, we can evaluate the pixel-level recognition
of one of the two (source and target areas). The evaluation metrics [3,7,14] we
use are Precision, Recall and F1, their calculation formulas are as follows:

Presicion =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 × Precision × Recall

Precision+Recall
(3)

To evaluate the performance of the proposed method, similar to CMSTD
[2], We regard the correct distinguishment number of copy-move images and
the accuracy rate as an evaluation criterion. The accuracy rate refers to the
ratio of the correct distinguishment number to the number of detected images.
When calculating the correct distinguishment number, we adopt the following
strategy: set the number of pixels in the source (green) and target (red) regions
in the ST-GT as Ps−gt and Pt−gt respectively, let the source (green) and target
(red) regions in the detection result be Ps−det and Pt−det. On the condition that
Ps−gt ∩ Ps−det and Pt−gt ∩ Pt−det are more than 50, we hold the view that this
is a correct prediction, otherwise it could be considered a failure.

3.3 Performance and comparison based on known copy-move binary
ground-truth

In the case of perfectly correct detection of copy-move regions, we view copy-
move images and ground-truth of copy-move mask (GT-CM) of CASIA and
CoMoFoD-based datasets as the inputs of DST-Net. To stick out the advantages
of DST-Net, we consider DST-Net as the module for distinguishing the source
and target (ST-Module) and compare it with the other two methods, CMSTD-
Std [2] and MB [1]. Table 1 shows the comparisons of probing the source areas at
the pixel level and image level, the metrics in pixel level are Precision, Recall, and
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F1. Initially, our method performs best, followed by CMSTD-Std [2]. It should
be noted that MB [1] having the worst result. In CASIA and CoMoFoD, GT-
CM not only contains two non-overlapping copy-move areas but also contains
the following two cases: (1) copy-move areas overlap, that is, only one connected
region; (2) there are more than two copy-move areas. However, MB [1] rules input
containing both cases as discarded. In contrast to our method, we can detect all
the above three cases. One reason is that our network supports the detection
of multiple patch pairs of copy-move area and genuine area. Additionally, we
evaluate the results of image level, the total number of images in CASIA and
CoMoFoD datasets are 1313 and 200, the number of correctly distinguishing the
source and target areas in CMSTD-Std [2], MB [1] and proposed DST-Net as
Corr.. Compared with CMSTD-Std [2] and MB [1]. Our method has a better
performance in the two datasets. Besides, we also take a test on CoMoFoD
dataset to evaluate the robustness of CMSTD-Std [2], MB [1] and proposed
DST-Net, which is shown in Fig. 4. In most post-processing, our method correctly
distinguishes the largest number of images. In particular, some copy-move forgery
images in CoMoFoD dataset have more than one source region and one target
region, they may have one source and multiple targets.

Table 1. Comparisons of pixel level and image level based on GT-CM, which are in
terms of Precision, Recall, F1, Corr., and Accuracy. The values in bold and underlined
represent the first and second values in this evaluation..

Dataset ST-Modules GT-CM
Precision Recall F1 Corr. Accuracy

CoMoFoD CMSTD-Std [2] 0.505 0.456 0.479 108 54%
MB [1] 0.438 0.423 0.431 93 46.5%
Ours 0.521 0.461 0.489 121 60.5%

CASIA CMSTD-Std [2] 0.431 0.487 0.457 542 41.28%
MB [1] 0.364 0.417 0.389 543 41.36%
Ours 0.474 0.553 0.511 658 50.1%

3.4 Performance and comparison based on CM-Modules

To evaluate DST-Net under the condition that the location of copy-move regions
is not ideal, we combine the effective methods of locating copy-move regions
and the proposed DST-Net as an end-to-end detection. We use the CMSTD-
Cm [2] as the location method of copy-move regions, named CM-Module, and
we compare DST-Net with CMSTD-Std [2] and MB [1] to verify the ability
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Fig. 4. The comparisons in the number of correctly distinguishing images based on
GT-CM and CMSTD-Cm [2] on CoMoFoD-post datasets.

of DST-Net. Additionally, when the F1 score of the result in CM-Module is
larger than 0.5, we think the location of copy-move areas is meaningful, then
we bring the results of the binary mask to the DST-Net to generate a mask
with the source and target labeled. Table 2 exposes pixel-level comparisons in
distinguishing the source areas. Our method ranks the top two in both CASIA
and CoMoFoD. In particular, compared with the other two methods, we achieve
the highest F1 value in CASIA. CMSTD-Std [2] also performs well on these
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test datasets, and it is reasonable to assume that this is because CMSTD-Cm
and CMSTD-Std [2] are originally two serial structures in the same network.
CMSTD-std [2] is somewhat inferior to the detection combined with its original
Cm-module, CMSTD-Cm [2]. The results based on GT-CM and CMSTD-Cm [2]
further demonstrate that our method has better generalization. Table. 2 shows
the evaluation of image level, the numbers of meaningful results from the CM-
Modules on CASIA and CoMoFoD datasets are 729 and 109, respectively. And
the number of correctly distinguishing images based on Cm-Modules as Corr. .
We also take robustness tests on the CoMoFoD-post dataset, and the results are
shown in Fig. 4.

Table 2. Comparisons of pixel level and image level based on CM-Modules, which
are in terms of Precision, Recall, F1, Corr., and Accuracy. The values in bold and
underlined represent the first and second values in this evaluation.

Dataset ST-Modules CMSTD-Cm
Precision Recall F1 Corr. Accuracy

CoMoFoD CMSTD-Std [2] 0.377 0.409 0.392 67 61.47%
MB [1] 0.245 0.273 0.258 33 30.28%
Ours 0.325 0.291 0.307 65 59.63%

CASIA CMSTD-Std [2] 0.388 0.488 0.432 278 38.13%
MB [1] 0.298 0.413 0.347 247 33.88%
Ours 0.409 0.492 0.447 344 47.19%

3.5 Visualizations

To observe the results of our method more directly, we list the detection results
based on GT-CM and CMSTD-Cm [2] in different datasets, which are shown
in Fig. 5(a) and Fig. 5(b) respectively. Compare with CMTSD-Std [2] and MB
[1], the detection results of our method are more accurate when the copy-move
region overlaps or the copy-move region contains more than two independent
connectivity areas. What’s more, our method is outstanding in the distinction of
images containing transformed target regions, such as geometric transform and
blur, because we choose the genuine region as the third party, which is mainly
used to find the difference between the target region and it. MB [1] discards
images that it cannot detect, we mark its visualization in black. Since MB [1]
only be able to distinguish the copy-move region that has only two independently
connected areas, whereas CMTSD-Std [2] and our method can accept inputs from
other cases.
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Fig. 5. The visualizations based on GT-CM and CMSTD-Cm [2].
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4 Conclusion

In this paper, we have introduced a CMFD method to distinguish the source and
target regions in copy-move forgery images. We utilize a third party, the gen-
uine region, to calculate the consistency between them. In this process, we use
the Siamese network to extract key feature information to perform the discrim-
ination. The experiments show that our method outperforms other methods in
CASIA and CoMoFoD datasets, whether based on GT-CM or binary copy-move
mask from CM-Modules. In addition, our method, which has a good general-
ization, can be used as a plug-and-play module in combination with other deep
learning based and traditional methods that cannot distinguish source and target
areas but can locate copy-move areas. Although our method has achieved good
results, when the target region has not been transformed by any geometric pro-
cessing, the accuracy of our network still needs to be improved. In future work,
we tend to use deep learning explanations, such as Grad-cam [11], to generalize
consistent or non-consistent features between target/source areas and genuine
areas, thereby focusing more attention on important features.
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Abstract. The continual advancement of image editing techniques has
made manipulated images easier to create. Improper use may lead to the
proliferation of forged images. In order to detect and locate forged regions
within forged images, existing research utilizes various feature views to
capture subtle forgery traces. However, forged images exhibit complex
higher-order relationships, such as group interaction among regions. The
interaction reflects inconsistencies among regions. Therefore, we propose
a novel Dual Hypergraph Convolution Network (DHC-Net) to enhance
the localization of forged regions by representing group interactions using
hypergraphs. The DHC-Net constructs region-wise and edge-wise hyper-
graph convolution branches to refine the localization of forged region.
We validate the DHC-Net on four widely used public datasets, includ-
ing CASIA1.0, NIST, Columbia, and Coverage. The results demonstrate
that the proposed DHC-Net achieves advance localization accuracy.

Keywords: Image Forgery Localization · Hypergraph · Hypergraph
Convolution Networks

1 Introduction

Image editing techniques manipulate images through pixel-level content alter-
ations. Due to the rapid advancement of image editing technologies, this capa-
bility has been widely applied in domains such as entertainment and advertising
creativity. However, improper use has led to the inappropriate purposes of forged
images. For instance, modifying images in news reports can distort their original
meaning, while altering photos can facilitate insurance fraud. Consequently, the
development of methods for identifying and localizing forged regions is increas-
ingly crucial. Image forgery localization typically encompasses various forgery
types, such as copy-move, splicing, and inpainting. The manipulation leave sub-
tle traces in certain image areas, distinguishing them significantly from tasks like
semantic segmentation.
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Existing methods [26,29,33] for image forgery localization focus on captur-
ing subtle artifacts within forged regions to differentiate them from authentic
ones. Traditional methods [9,23] capture clues of forgery through inconsisten-
cies in JPEG compression artifacts or noise distributions. These approaches offer
meticulously handcrafted feature methods, whereas deep learning-based meth-
ods provide more generalized solutions. RGB-N [37] constructs a dual-stream
network using Fast R-CNN and SRM [7] filters for end-to-end image forgery
detection. CR-CNN [1] proposes a constrained convolutional operator for cap-
turing local subtle forgery traces. HP-FCN [15] introduces a deep neural network
model based on high-pass filtering residuals. DenseFCN [38] proposes a deep fully
connected network demonstrating that sufficiently deep networks can general-
ize forgery traces that are not easily observable. ManTra-Net [30] provides a
robust image forgery localization method, training on 385 manipulation types.
SPAN [12] proposes a spatial pyramid attention network encoding spatial corre-
lations between image blocks at different scales. GSR-Net [36] divides the image
forgery localization task into three steps: generation, segmentation, and refine-
ment, with specific network structures designed for each step. Furthermore, some
methods approach network design from multi-view and multi-scale perspectives.
For example, MVSS-Net [3] constructs a multi-view approach based on noise,
RGB, and edge supervision, learning the consistency of multiple feature maps
across views. PSCC-Net [17] introduces a progressive spatial-channel correlation
network for localizing target regions of varying sizes. NEDB-Net [35] introduces
a dual-branch network based on noise and edges, incorporating an effective edge
merge module design.

However, existing methods have not yet fully considered the complex higher-
order relationships within forged images. The higher-order relationship manifest
spatially as group interaction among regions. By modeling group interactions
among regions, networks can better learn the inconsistencies between authentic
and forged regions. Therefore, to address this problem, we propose a novel Dual
Hypergraph Convolution Networks (DHC-Net). Hypergraphs are data struc-
tures used to represent complex higher-order relationships among objects, widely
applied in fields such as complex network analysis [5] and recommendation sys-
tems [31]. The proposed DHC-Net consists of three components: a dual-view fea-
ture extraction module (DFEM), a region-wise hypergraph convolution branch
(RHCB), and an edge-wise hypergraph convolution branch (EHCB). The dual-
view feature extraction module comprises a feature extraction networks and
an edge extraction block. The region-wise and edge-wise hypergraph convolu-
tion branches construct dual-channel group interaction learning, focusing on the
forgery traces within regions and edges. Our contributions can be summarized
as follows.

– We propose a Dual Hypergraph Convolution Networks (DHC-Net) for image
forgery localization. We explore for the first time the potential of hypergraphy
in image forgery localization.
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– We design a spatial hypergraph modeling approach, constructing hypergraph
convolution branches at the region-wise and edge-wise for group interaction.
This approach preserves rich information of regions and edge details.

– Experimental results demonstrate that the proposed DHC-Net achieves
advanced localization accuracy in image forgery localization. Visualization
with Grad-CAM showcases the attention region of the hypergraph convolu-
tion branches.

2 Related Works

2.1 Image Forgery Detection

In this section, we primarily introduce deep learning-based methods for image
forgery detection. Due to the remarkable performance achieved by deep neural
networks in various tasks, it has become a popular practice to learn subtle forgery
traces through neural networks. In earlier works such as RGB-N [37], HP-FCN
[15], and CR-CNN [1], forgery traces were predominantly captured through spe-
cific filters. For instance, RGB-N captures particular noise in forged images using
the SRM filter, which has been widely applied in subsequent works. As the SRM
filter involves manual parameter tuning, CR-CNN proposes trainable constrained
convolutional operators to locally capture specific noise. Furthermore, HP-FCN
devises a high-pass filtering residual approach to capture high-frequency infor-
mation of artifacts. ManTra-Net [30] adopts a unique training strategy by gen-
eralizing forgery traces across 385 manipulation types, offering a robust method
for image forgery localization. Additionally, MVSS-Net [3] and PSCC-Net [17]
approach detection from the perspectives of multi-view and multi-scale respec-
tively. Specifically, MVSS-Net constructs edge view and noise view using Sobel
operators and constrained convolutional operators, while PSCC-Net designs a
top-down spatial channel correlation network to accommodate scale variations
in forged images. Some works [10,20] integrate graph structures to transform
forgery localization into a community detection problem. In contrast, we pro-
pose a deep learning solution based on hypergraph neural networks, capturing
inconsistencies between regions. Moreover, certain works focus on the robustness
of image forgery detection. CAT-Net [14] and OSN [28] respectively devise meth-
ods to counter post-processing attacks and online media compression in image
forgery detection.

2.2 Hypergraph Neural Networks

Hypergraphs [2] are used to model higher-order relationships among components
in complex systems. Unlike graphs, hypergraphs enable interaction between
groups through message passing among node-hyperedge-node. HGNN [6] is the
first neural network method based on hypergraphs. HGNN utilizes the normal-
ized hypergraph Laplacian for convolution operations and designs hypergraph
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convolutional layers. Subsequently, numerous works propose variants of hyper-
graph neural networks, such as UniGNN [13], HyperGCN [32], and others. Hyper-
graph neural networks make significant progress in various fields, including rec-
ommendation systems [31], protein prediction [21], and computer vision [16,34].
For example, Wadhwa et al. [25] devise a hypergraph method for hyperreal-
istic image inpainting to learn contextual information from images. Fu et al.
[8] employ hypergraph convolutional networks for continuous image deraining.
These works demonstrate the significant role of hypergraphs in computer vision,
yet the potential of hypergraph remains to be fully explored.

3 Methodology

Fig. 1 illustrates the framework of the proposed DHC-Net. DHC-Net consists of
three components: a dual-view feature extraction module, a region-wise hyper-
graph convolution branch, and an edge-wise hypergraph convolution branch. In
the dual-view feature extraction module, we employ the pre-trained ConvNeXt
as the feature extraction network to extract high-level feature maps. Then, we
utilize an edge extraction block for edge learning. In the region-wise and edge-
wise hypergraph convolution branches, we first model the group interaction rela-
tionships of feature maps using spatial hypergraph. To achieve group interaction
learning, we utilize hypergraph convolution in both two branches. Subsequently,
we merge the feature maps from both branches and proceed with localization.
Finally, we optimize the network through region-wise and edge-wise loss func-
tions.

Given an input image X ∈ R
C×H×W , we employ ConvNeXt [18] as the

feature extraction network to obtain high-level feature maps Xr ∈ R
768× H

32×W
32 .

Subsequently, we extract edge feature maps Xe ∈ R
768× H

32×W
32 using an edge

extraction block. As illustrated in Fig. 1, the edge extraction block consists of
three convolutional layers with kernel sizes of {1, 3, 3}. We utilize the high-level
feature maps Xr and edge feature maps Xe as inputs to the region-wise and
edge-wise hypergraph convolution branches, respectively, forming a dual-view
feature extraction.

Given the feature map Xr, we construct the region-wise hypergraph from
the perspective of spatial correlation. As shown in Fig. 1, we further extract
Xr into node features XN , and hyperedge features XHE , through two convo-
lutional layers with kernel sizes {1, 3}. This approach captures spatial corre-
lations by exploiting resolution differences of feature maps, representing high-
order relationships among regions. We reshape XN and XHE into R

512× HW
32∗32 and

R
512× HW

64∗64 , respectively. Therefore, the process of constructing the region-wise
hypergraph is represented as follows:

H = |XT
NXHE | (1)

Next, we construct the hypergraph convolution layer [6] by the hypergraph
Laplacian operator. The hypergraph Laplacian operator is defined as follows:

G = I − D−1/2
v HWeD−1

e HTD−1/2
v (2)
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Fig. 1. The framework of the proposed DHC-Net. DHC-Net consists of dual-view fea-
ture extraction module (DFEM), region-wise hypergraph convolution branch (RHCB),
and edge-wise hypergraph convolution branch (EHCB). Specifically, DFEM comprises a
feature extraction network and an edge extraction block. The structures of RHCB and
EHCB are consistent, modeling group interactions through spatial hypergraphs and
further learning via hypergraph convolution. Before outputting the prediction map for
localization, we fuse the feature maps from the two branches.

where Dv denotes the node degree, De denotes the hyperedge degree, and We

represents the hyperedge weight set to 1. Thus, the hypergraph convolution layer
is represented as follows:

X
′
r = ReLu(GXrΘ) (3)

where Θ represents the learnable parameter matrix. We reshape Xr and input it
into the hypergraph convolution layer to obtain the feature map X

′
r, facilitating

the learning of group interaction relationships among regions. To enable X
′
r for

forgery localization, we restore its dimension to a low-resolution feature map.
Consistent with the region-wise hypergraph convolution branch, we construct a
hypergraph for the edge feature maps Xe. By employing hypergraph convolution
layer, the model learn group interaction relationships at the edge feature maps,
resulting in the feature map X

′
e.
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Through the region-wise and edge-wise hypergraph convolution processes,
we perform element-wise addition of the feature maps X

′
r and X

′
e to obtain

feature map Xseg . Subsequently, we utilize a convolution layer with a kernel
size of 3 to reduce the number of channels of Xseg to 1, followed by upsampling
to restore it to the original input size for localization. Thus, we construct the
region-wise loss function using binary cross-entropy (BCE). To supervise the
edge-wise hypergraph convolution branch, we reduce the number of channels of
X

′
e to 1 using a convolution layer with a kernel size of 3, and then upsample it to

1/4 of the original input size. We utilize binary cross-entropy for edge-wise loss
function. Therefore, the loss function of the DHC-Net is represented as follows:

L = Lregion(Xseg,Xgt) + α(Ledge(X
′
e,X

′
gt)) (4)

where X
′
gt denotes the edge map of the ground truth, following the edge map

generation of [3]. For the balance parameter α, we empirically set it to 0.5.

4 Experiments and Discussions

4.1 Datasets and Evaluation metric

To evaluate the performance of the proposed DHC-Net, we employed widely
used cross-dataset evaluation methods and publicly available datasets. Specifi-
cally, we utilized CASIA2.0 [4] as the training set, comprising 5063 pairs of forged
images and ground truth images. The test set includes CASIA1.0 [4], NIST [11],
Columbia [22], and Coverage [27] datasets. CASIA1.0 contains 920 images of
splicing and copy-move types, NIST contains 564 images of splicing, copy-move,
and inpainting types. Columbia and Coverage are single-type datasets, consisting
of 180 splicing-type images and 100 copy-move-type images, respectively. Addi-
tionally, we randomly sample 2000 images from DEFACTO [19] as a validation
set to supplement the deficiencies in the validation set. Detailed summaries are
provided in Table 1.

We employ commonly used pixel-level metrics as in previous works [3,35]:
Area Under Curve (AUC), F1 score (F1) and Intersection over Union (IoU).
Specifically, the calculation approach for pixel-level F1 score is as follows:

F1 =
2 × TP

2 × TP + FP + FN
(5)

The calculation approach for IoU is as follows:

IoU =
P ∩ G

P ∪ G
(6)

4.2 Implementation Details

We implement the proposed DHC-Net using PyTorch. For the feature extraction
network, we utilize the ConvNeXt-Small which pre-trained on the ImageNet1k
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Table 1. Summary of the datasets.

Datasets TotalCopy-moveSplicing Inpainting

Train CASIA2.0 5063 3235 1828 0
ValidationDEFACTO2k2000 500 1000 500
Test CASIA1.0 920 459 461 0

NIST 564 68 288 208
Columbia 180 0 180 0
Coverage 100 100 0 0

dataset. We use Adam as the optimizer, with a learning rate set to 3e− 5, and a
batch size of 16. We set the input image size to 512×512. The maximum number
of training epochs was set to 100, and we employ early stopping to select the
model weights corresponding to the best AUC score on the validation set. Com-
mon data augmentations used on the training set include image compression,
Gaussian blurring, scaling and flipping, and more.

4.3 Comparisons and Visualizations

Table. 2 presents the AUC, F1 and IoU scores of the proposed DHC-Net and
the comparative methods on four test datasets. For HP-FCN, ManTra-Net, and
NEDB-Net, we conduct testing using the model weights provided by the authors.
For MVSS-Net, GSR-Net and SPAN, we refer to the testing results provided by
[3]. For PSCC-Net, we train the model on the CASIA2.0 dataset using the code
provided by the authors. The results in Table. 2 indicate that DHC-Net outper-
forms previous methods in most metrics. Specifically, on the CASIA1.0 dataset,
DHC-Net achieve improvements of 10.7%, 0.9% and 2.5% in AUC, F1 and IoU
metrics, respectively. Compared to previous methods, the results of DHC-Net
demonstrate that learning group interaction relationships can enhance the accu-
racy of forgery localization. Overall, the results in Table. 2 show the advance per-
formance of DHC-Net in forgery localization, indicating that leveraging hyper-
graph convolution to capture group interaction relationships is a viable solution.

Fig. 2 presents the output visualizations of DHC-Net and the comparative
methods across four testing datasets. Compared to previous methods, DHC-
Net demonstrates more accurate localization of forged regions and richer edge
details. Furthermore, for authentic regions, DHC-Net is less prone to misjudg-
ments. This may be attributed to the learning of group interactions, which can
effectively capture the differences between authentic and forged regions. Overall,
the proposed DHC-Net exhibits superior performance in forged region localiza-
tion, validating the positive role of hypergraphs in forgery localization.
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Table 2. Comparison on CASIA1.0, NIST, Columbia and Coverage datasets. The
image forgery localization results are measured in terms of AUC(%), F1(%) and IoU(%)
scores. Best test results are highlighted in bold while the second best are underlined.

Method CASIA1.0 NIST Columbia Coverage
AUC F1 IOU AUC F1 IOU AUC F1 IOU AUC F1 IOU

HP-FCN [15] 53.0 11.2 6.5 50.6 11.7 7.1 50.7 29.8 17.8 49.6 1.6 0.8
ManTra-Net [30] 54.8 15.1 8.7 60.0 12.2 7.5 53.0 40.9 26.4 51.0 43.5 27.8
SPAN [12] - 18.4 - - 22.1 - - 48.7 - - 17.2 -
GSR-Net [36] - 38.7 - - 28.3 - - 61.3 - - 28.5 -
PSCC-Net [17] 72.8 30.7 21.8 70.1 18.9 13.2 75.0 34.2 24.3 54.5 20.1 12.1
MVSS-Net [3] - 51.3 - - 30.4 - - 66.0 - - 48.2 -
NEDB-Net [35] 81.2 51.1 44.1 71.3 29.7 22.3 88.9 76.9 68.2 80.5 42.6 30.7
Proposed DHC-Net 91.9 52.2 46.6 83.3 28.2 22.6 90.0 77.3 71.2 89.1 31.7 25.1

Fig. 2. Visualization results for proposed DHC-Net and compared methods. From top
to bottom, we show examples from CASIA1.0, NIST, Colmnbia, and Coverage datasets.
We present the visualization results of HP-FCN [15], ManTra-Net [30], PSCC-Net [17],
MVSS-Net [3], NEDB-Net [35], and the proposed DHC-Net in columns respectively.

4.4 Ablation Study

Table. 3 presents the ablation results of DHC-Net, where RHCB denotes the
removal of edge-related components, including edge extraction block, EHCB,
and edge-wise loss function. RHCB+EHCB represents the complete DHC-Net.
We report the AUC, F1, and IoU scores on CASIA1.0, NIST, Columbia, and
Coverage datasets in Table. 3. It can be observed from Table. 3 that the results
of RHCB+EHCB surpass RHCB in all cases. This indicates the significant role
of edge-related components in forgery localization, where these components are
utilized to enhance the edge details of localization. The EHCB supervised by
edge-wise loss not only enhances the edge details but also, through fusion with
the RHCB, improves the accuracy of localization.
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Fig. 3 illustrates the gradient-based class activation map (Grad-CAM) [24] of
different components of DHC-Net. We visualize the weights of the first block of
DFEM, RHCB, EHCB, and the output layer to observe the attention region of
each component on the forged image. In the activation map visualizations across
the four datasets, we observe that the first block of the DFEM primarily learns
low-level features of the images, such as textures and edges. These low-level
features aid the network in further extracting forgery traces. In the visualization
of RHCB, we notice that region-wise hypergraph can maintain localization of the
forged regions, with its weights focusing more on the center of the forgery. On
the other hand, EHCB exhibits a broader localization towards the edge portions
of the forged regions, indicating that the design of EHCB enables it to learn the
edges of the forged regions. The output layer combines the feature maps from
RHCB and EHCB, thus resulting in more accurate final output results focusing
on both the region and the edge of the forged image.

Table 3. Ablation study for DHC-Net. RHCB represents the DHC-Net without edge-
related components, including edge extraction block, EHCB, and edge-wise loss func-
tion. RHCB+EHCB represents the full DHC-Net. The results include the AUC(%),
F1(%), and IoU(%) scores on CASIA1.0, NIST, Columbia, and Coverage datasets.

Method CASIA1.0 NIST Columbia Coverage
AUC F1 IoU AUC F1 IoU AUC F1 IoU AUC F1 IoU

RHCB 91.0 49.2 43.3 80.9 27.1 21.1 86.7 72.1 65.0 86.6 31.5 23.6
RHCB + EHCB 91.9 52.2 46.6 83.3 28.2 22.6 90.0 77.3 71.2 89.1 31.7 25.1

Fig. 3. Activation map for proposed DHC-Net. We utilize the gradient-based class
activation map (Grad-CAM) for visualization. From top to bottom, we show examples
from four datasets by different part: the first block of DFEM, RHCB, EHCB, and
output layer. The activation map shows the response of the module’s parameters to
the forged regions.



Dual Hypergraph Convolution Networks for Image Forgery Localization 343

5 Conclusion

Due to the harm caused by forged images in social media, news, and
other domains, methods for locating forged regions in images have received
widespread attention. In order to address the problem of group interaction
among forged regions, we propose a dual hypergraph convolution networks
(DHC-Net) by introducing hypergraphs. DHC-Net learns group interaction rela-
tionships between regions through region-wise and edge-wise hypergraph learn-
ing. Through cross-dataset validation on publicly available datasets include
CASIA1.0, NIST, Columbia, and Coverage, DHC-Net surpasses previous meth-
ods in most metrics, demonstrating its effectiveness. In future work, we will
consider fully exploiting the potential of hypergraph structures in image forgery
localization, such as dynamic hypergraph structure learning, to further enhance
the expressive power of complex relationships.
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Abstract. Deep neural networks (DNNs) are deemed vulnerable to adversar-
ial examples (AEs). Transfer-based attacks enable attackers to craft adversarial
images based on local surrogate models without feedback from remote ones. One
of the promising attacks is to distract the attention map of the surrogate model that
is likely to be shared among remote models. However, we find that the attention
maps calculated from a local model are usually over-focus on the most critical
area, which limits the transferability of the attacks. In response to this challenge,
we propose an enhanced image transformationmethod (EIT), which guides adver-
sarial perturbations to distract not only themost critical area but also other relevant
regions. The proposed EIT effectively mitigates the differences in attention maps
between multiple models and better neutralizes model-specific features, thereby
avoiding getting stuck in local optima specific to the surrogatemodel. Experiments
confirm the superiority of our approach to the state-of-the-art benchmarks. Our
implementation is available at: github.com/britney-code/EIT-attack.

Keywords: Deep Neural Networks · Adversarial Examples · Transfer-based
Attack · Attention Map

1 Introduction

It is widely recognized that adversarial examples (AEs) help identify the deep neural
networks’ (DNNs) vulnerability, which is essential for security-sensitive applications.
Since the details of the victim model are usually unavailable, attackers have to craft AEs
according to a local surrogate model.

Recently, tremendous efforts have been dedicated to improving the transferability
(from the surrogate model to the victim model) of AEs [1–8]. Among them, attention
modification approaches that assume different DNNs attend to similar regions for a given
image have achieved competitive performance [4, 5, 11, 12]. In this paper, we revisit
this hypothesis and find it is not always valid, especially when the structure of the victim
model is strikingly different from that of the surrogate model. Our experiments show that
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existing attention modification-based attacks tend to overemphasize the critical region
while neglecting other related areas to a certain extent (Fig. 1(b)), causing insufficient
attacks in many object-relative regions. Moreover, model-specific features, i.e., gradient
noise dispersed over object-irrelevant regions, distract the attack from focusing on the
real object, resulting in limited transferability.

Fig. 1. Visualization of saliency maps. The saliency maps [23] are calculated based on an Inc-v3
model. (a, b) original image and its saliency map. (c, d) masked image and its saliency map.

To address these shortcomings, we propose an enhanced image transformation
method (EIT) consisting of random patch masking, noise addition, and scaling. EIT
encourages the attack to paymore attention to relevant but non-critical regions by contin-
uously masking the most critical region (Fig. 1(d)) and better neutralizes model-specific
information. We summarize our contributions as follows:

• We discover that existing attention modification-based attacks tend to overemphasize
the critical region while neglecting other related areas. Additionally, object-irrelevant
regions’ noise can interfere with the effectiveness of these attacks.

• Inspired by the above observations, a novel attack method EIT is proposed to guide
the perturbation to disrupt more object-related features, thereby exhibiting stronger
transferability on multiple models.

• Experiments on diverse classification models demonstrate the superior transferability
of the proposed EIT method compared to the benchmark attacks.

2 Related Work

Given a classification model f that outputs a label y for an input x, crafting an AE x′
that is visually indistinguishable from x can be formulated as the following optimization
problem:

argmax
x′ L(x′, y), s.t.‖x′ − x‖p ≤ ε (1)

where L(·, ·) is a loss function, ε is the maximum perturbation and ‖ · ‖p is the lp norm
distance. In this paper, we use l∞-norm to measure the distance between x and x′.

2.1 Adversarial Attacks

Roughly speaking, existing attacks fall into three categories: optimization, smoothing,
and attentionmodification. Since this paper follows the last direction, we briefly summa-
rize the first two in this subsection and comprehensively review attention modification
approaches afterward.
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Optimization The optimization approach utilizes the gradients of a surrogate model
to optimize a standard objective function, such as maximizing an entropy loss or mini-
mizing the logit output. Goodfellow et al. propose a one-step fast gradient sign method
(FGSM) [1], which is subsequently extended to an iterative version, denoted as I-FGSM
[9]. Dong et al. [10] and Lin et al. [17] incorporate a momentum term or a Nesterov
momentum term into the I-FGSM, denoted as MI-FGSM or NI-FGSM, to encourage a
stabilized optimization direction.

Smoothing The smoothing approach aims to avoid over-fitting the decision surface
of the surrogate model. It uses smoothed gradients derived from multiple points of the
decision surface or resorts to estimate the gradient from a smoother surface. Xie et al. [6]
introduce a random transformation to the input, whereas Dong et al. [7] shift the input
images to obtain an ensemble of AEs that can improve the performance. Wang et al.
[8] utilize the gradient information obtained at the last iteration to correct the current
gradient. Lin et al. [17] leverage the scale-invariant property of DNNs and average the
gradients for different scaled images to update AEs. Wang et al. [19] connect AEs with
flat maxima, enhancing the transferability by constraining the gradient norm within
the neighborhood range. Spectrum Simulation Attack (SSA) [20] performs the model
augmentation in the frequency domain to enrich the diversity of substitute models. Ge
et al. [37] use style transfer networks to generate diverse images from various fields
to enhance the transferability of AEs. However, finetuning the style transfer network
requires access to multiple surrogate models and consumes significant time.

2.2 Attention Modification-Based Attack

The attention modification approach presumes that different DNNs classify the same
image based on similar features. Consequently, AEs generated by altering the features
in benign images are anticipated to be more transferable. Jacobian-based Saliency Map
Attack (JSMA) [11] employs the Jacobian matrix to compute its attention map, but its
objective function remains ambiguous. Attack on Attention (AOA) [5] utilizes Softmax
GradientLayer-wiseRelevancePropagation (SGLRP) [15] to compute the attentionmap.
Attention-guided Transfer Attack (ATA) [12] derives its attentionmap from the gradients
of an objective function concerning neuron outputs. BothAOAandATAaim tomaximize
the difference between the attention maps of AEs and benign samples. Transferable
Adversarial Perturbations (TAP) [13] maximizes the difference of the feature maps for
all layers between benign samples and AEs, whereas Intermediate Level Attack (ILA)
[14] finetunes AEs by enlarging the similarity of the feature difference at a given layer.
Random Patch Attack (RPA) [39] leverages random patch transformations to aggregate
gradient information from feature layers, preserving important object-related regions to
guide the successive AE generation.

Another critical aspect of the attention modification attack is how to calculate an
accurate attention map for a given image under a given model. As a representative
scheme, Integrated Gradients (IG) [16] attributes the DNN prediction by calculating a
straight-line path integral of the gradients from a reference image r to x

IGi(f , x, r) = (xi − ri) × ∫ 1
η=0

∂f (r+η×(x−r))
dxi

dη, (2)
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where i denotes the entrance of the image. Huang et al. [4] propose two versions of attack
(TAIG-S and TAIG-R) based on IG. TAIG-S uses the original IG to generate AEs:

xadvn+1 = clipε
x

(
xadvn − α × sign

(
IG

(
xadvn , y

)))
, (3)

where α is the fixed step size. Due to the sensitivity of IG to noise, TAIG-R implements
a random piecewise linear path to mitigate the noise influence. Specifically, a uniformly
distributed noise v with support (-τ, τ ) is added to all points along the straight-line path
of IG, that is, xe = r + e

E (x − r) + v, e ∈ (0,1, . . . ,E), where E represents the number
of turning points.

Fig. 2. Attention maps [21] calculated from different models. Starting from the second one on
the left: VGG16 [24], InceptionV3 [25], ResNet152 [26], DenseNet121 [27].

3 The Proposed Method

3.1 Motivation

Dong et al. [7] point out that different models focus on different discriminative regions
during recognition. As shown in Fig. 2, although all models emphasize the bird region
more than the background, the regions with the highest attention vary by models. For
example, the VGG16 focuses on the head of the bird only, whereas the DenseNet121
and the ResNet152 also highlight the legs. In this paper, we categorize the image into
three types of regions based on its attention map: critical region, relevant but non-critical
region, and irrelevant region. The critical region represents the most concerned area for
classification (e.g., the bird’s head). Relevant but non-critical regions represent areas
relevant to decisions, yet the surrogate model pays little attention to (e.g., the feathers
and legs of the bird in the attention map of VGG16). Irrelevant regions represent regions
irrelevant to the decision (e.g., the grass). Existing attention modification attacks amend
the features of salient attention on the surrogate model (e.g., TAIG, AOA). However, the
computed attention maps tend to overemphasize the critical region, which undermines
the transferability of AEs. An intuitive idea of avoiding overfitting the critical regions
of a single surrogate model is to aggregate gradient information from multiple models
[40]. The ensemble attack eliminates the differences between the attention maps of
different models, i.e., the attention maps highlight the head, feathers, and other parts
of the bird, thereby enhancing transferability. However, in practice, accessing multiple
models is often challenging and costly. Therefore, we focus on the transferability under
the single-model scenario here.



350 Q. Wan et al.

Fig. 3. Gradient saliency maps (GSM). (a) Raw input. (b) the GSM of the raw input. (c) the GSM
after RPM. (d) the GSM after RPM and ARN.

3.2 Enhanced Image Transformation

To avoid the attacks overemphasizing the critical region, we propose an enhanced image
transformation consisting of three steps: random masking, noise addition, and scaling.

RandomPatchMasking (RPM) Since wewant to highlight relevant but not-critical
regions, an intuitive solution is masking the most discriminative area, forcing the surro-
gate model to look for more object-related regions in calculating the attention map, such
as Fig. 1(c, d). However, the boundary of themost critical region in practicemay not be as
clear as in Fig. 1(b), making it hard to locate and mask with a single patch. Additionally,
masking only themost discriminative area may not reveal enough object-related regions.
Hence, we opt for a random patch masking strategy to highlight relevant but non-critical
regions in attention map calculation. This idea is partially inspired by [22], in which the
authors randomly masked some patches of the training images to improve the model’s
generalizability. Specifically, given a clean image x of size H ×W × 3, we divide it into
patches of size s × s × 3, where s ∈ S = {s1, s2, . . . sn} and S is the candidate size set.
Then, we substitute each patch with a uniformly distributed noise patch according to a
constant probability p1.

There are twomerits of the adopted RPM. First, it helps reveal more relevant but non-
critical regions as shown in Fig. 1(d). These object-related features are less important
for the surrogate model but may be important for the victimmodels in making decisions.
Second, aggregating the attention maps for the masked images can neutralize model-
specific elements (e.g., the noise in the irrelevant regions), as shown in Fig. 3(b, c).

Add Random Noise (ARN) To further suppress model-specific features, we draw
inspiration from interpretability research [23] and inject random noise γ ∼ U

[−p2, p2
]

into the input image to calculate the average gradient, whereU [, ] is the uniform distribu-
tion, and p2 represents the amplitude of the noise addition. In this manner, the calculated
gradient can better represent the importance of image pixels, and regions related to
decision-making will be more pronounced and clustered, as shown in Fig. 3(d).

The key to generating highly transferable AEs is to identify which features are easier
to transfer. A DNNmodel learns features related to the object and retains model-specific
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features [38]. Different models result in different model-specific features and share sim-
ilar object-aware features. Thus, distorting the object-aware features of relevant regions
instead of noise on irrelevant regions will effectively improve adversarial transferabil-
ity. Unfortunately, model-specific noise is often mixed with object-aware features in
gradient saliency maps (Fig. 3(b)). Directly destroying these features is likely to lead
to a model-specific local optimal solution [18]. Introducing RPM and ARN will effec-
tively suppress model-specific features, whereas transferable object-aware features will
be highlighted.

Scale Transformation (ST) Due to the generation of perturbations relies on the
sign of the gradient, and the reference image r is usually a black image, we can ignore
(xi − ri) and approximate Eq. 2 as

∫ 1
η=0

∂f (r+η×(x−r))
dxi

dη ≈ 1
N �N

i=1

∂f
(

i
N ×x

)

dxi
(4)

to address the gradient saturation issue [4, 16] and provide more precise gradient infor-
mation. Equation (4) can be efficiently implemented by calculating the gradient of the
scale-transformed inputs i

N × x.

3.3 The Attack Algorithm

The general framework is shown in Fig. 4. With the enhanced image transformation
presented in Sect. 3.2, an image is transformed N times, and the average gradient is
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calculated, denoted as the importance gradient. Guided by the importance gradient, the
generated perturbations undermine the intrinsic features of these objects that can be trans-
ferred across models, making the AEs exhibit stronger transferability. We summarize
the proposed algorithm in Algorithm 1.

Fig. 4. General framework of the EIT.

4 Experiments

4.1 Experiment Setup

DatasetsWe conduct experiments on the ImageNet-compatible dataset, which contains
1000 images used for the NIPS 2017 adversarial competition.

Models We craft AEs against four surrogate models: Inc-v3 [25], Inc-v4, IncRes-
v2 [28], and Res101. Due to page limitation, only the results of Inc-v4 and IncRes-
v2 are reported in this paper, while the remaining are provided in the supplementary
material: supp.pdf . For victim models, we use six normally trained models (Inc-v3, Inc-
v4, IncRes-v2, Res50, Res101, and Res152 [26]), four defense models [29] (Inc-v3adv,
Inc-v3ens3, Inc-v3ens4, and IncRes-v2ens), and three state-of-the-art vision transformers
(ViTs) (PiT-S [30], CaiT-S-24 (CaiT-S) [31], DeiT-B [32]). We also evaluate different
attacks on four defense methods, including JPEG [33], Bit-Red [34], FD [35], and NRP
[36]. Four defensemethods are combinedwith Inc-v3ens3.We further evaluate the attacks
on a real-world model: Baidu AI Cloud (https://cloud.baidu.com).

Competitors We compare the proposed EIT to diverse state-of-the-art attacks,
including VT-MI [8], TAIG-S [4], TAIG-R [4], RPA [39], SSA [20], PGN [19], and
STM [37]. To be fair, we add momentum terms to TAIG-S and TAIG-R.We also include
combined versions of DI [6] and TI [7], denoted as DT, such as DT-TAIG-R, DT-SSA,
DT-EIT, etc.

Parameter Settings In all experiments, the maximum perturbation ε = 16, the
iteration T = 10, and the step size α = 1.6. For DI, we set the transformation probability
p = 0.5. For TI, we set the kernel size k = 7. For VT-MI, we let the sample quantity
be 20 and the sample range factor β be 1.5. For TAIG-S and TAIG-R, the number of
turning points E is set to 20, and τ is set equal to ε. For RPA, the ensemble number N is

https://cloud.baidu.com
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60, the modification probability pm = 0.3, 0.2, and 0.2 when attacking normally trained
models, defense models, and vision transformers. For SSA, we set the tuning factor
p = 0.5, and the number of spectrum transformations N = 20. For PGN, the upper
bound of neighborhood ζ = 3.0, the balanced coefficient δ = 0.5. For STM, we set the
mixing ratio γ = 0.5, the noise upper bound β = 2.0, and the number of style transfer
images N = 20. For the proposed EIT, we let the masking probability p1 = 0.1, the set
of alternative sizes S = {0, 20, 40, 60, 80}. For the amplitude of the noise addition, we
set p2 = 0.2, 0.4, and 0.4 when attacking the normally trained model, the defense model,
and vision transformers, respectively. The number of image copies N = 20.

Table 1. Attack success rate (%) on six normally trained models. “*” indicates white-box attacks.
The result in bold is the best.

Attack Inc-v3 Inc-v4 IncRes-v2 Res152 Res50 Res101 AVG

Inc-v4 VT-MI 78.8 99.8* 71.0 63.3 65.8 64.6 73.9

TAIG-S 84.5 99.9* 77.1 71.9 75.6 72.9 80.3

TAIG-R 88.2 97.8* 84.1 80.8 82.6 79.7 85.5

RPA 90.4 98.1* 85.7 79.2 82.7 80.1 86.0

SSA 90.8 99.6* 86.6 81.1 83.7 82.5 87.4

PGN 91.8 99.5* 88.1 83.8 84.5 83.9 88.6

STM 93.9 99.0* 89.5 86.3 86.0 84.7 89.9

EIT 94.6 99.7* 91.7 89.0 88.9 88.4 92.1

IncRes-v2 VT-MI 81.0 75.9 99.2* 66.5 69.3 68.8 76.8

TAIG-S 87.0 82.6 98.8* 77.5 81.2 79.9 84.5

TAIG-R 85.3 83.1 95.3* 80.3 82.0 81.5 84.6

RPA 87.8 85.1 94.3* 80.6 83.6 82.1 85.6

SSA 90.5 89.4 98.1* 84.6 85.5 83.9 88.7

PGN 93.9 92.5 99.8* 88.6 88.5 88.9 92.0

STM 91.9 90.9 98.6* 88.3 87.5 87.7 90.8

EIT 93.9 93.2 99.4* 89.3 90.7 90.0 92.8

4.2 Comparison of Transferability

This section compares the proposed EIT with the competitors against normally trained
models, defense models, and vision transformers.

Attacking normally trained models As reported in Table 1, our approach signifi-
cantly improves the transferability of AEs compared to state-of-the-art attacks. Specif-
ically, AEs crafted by our proposed EIT are capable of getting a 92.5% success rate
on average, outperforming VT-MI, TAIG-S, TAIG-R, RPA, SSA, PGN, and STM by
17.1%, 10.1%, 7.4%, 6.7%, 4.4%, 2.2%, 2.1%, respectively.

Attacking defense models Although many attacks can easily fool normally trained
models, they may fail in attacking models with the defense mechanism. Table 2 reports
the black-box attack success rates of the proposed EIT and competitors against defense
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models. Without the combination of DT, our proposed method trumps almost all com-
petitors, resulting in an average success rate increase of 5.6%. Further, we combine our
EIT and other baselines with DT, and our method continues to beat the other approach.
For instance, considering the generated AEs on IncRes-v2, EIT’s average attack success
rate surpasses SSA and PGN by 4.2% and 1.8%. Although the attack performance of the
STM is comparable to EIT, it is computationally much more expensive due to finetuning
the style-transfer networks.

Table 2. Attack success rate (%) against four defense models.

Attack Inc-v3adv Inc-v3ens3 Inc-v3ens4 IncRes-v2ens AVG

Inc-v4 VT-MI 40.7 40.8 41.1 27.2 37.5

TAIG-S 47.7 48.7 46.1 32.1 43.7

TAIG-R 66.8 67.4 65.3 52.9 63.1

RPA 50.4 47.3 44.6 26.8 42.3

SSA 66.8 65.0 60.8 42.4 58.8

PGN 64.3 66.5 64.3 49.5 61.2

STM 65.4 67.6 66.2 49.0 62.1

EIT 72.4 75.6 74.4 57.8 70.1

DT-TAIG-R 77.8 78.0 76.4 69.7 75.5

DT-RPA 68.7 71.0 67.0 56.5 65.8

DT-SSA 82.2 80.6 80.2 72.9 79.0

DT-PGN 81.8 82.4 82.2 75.8 80.6

DT-STM 83.2 83.0 82.8 74.5 80.9

DT-EIT 83.2 84.5 82.9 75.5 81.5

IncRes-v2 VT-MI 46.2 48.4 44.7 38.3 44.4

TAIG-S 59.1 60.1 52.8 44.2 54.1

TAIG-R 71.3 70.6 66.0 62.3 67.6

RPA 68.6 61.8 54.9 49.1 58.6

SSA 73.1 73.3 68.1 61.1 68.9

PGN 75.8 75.2 70.3 66.3 71.9

STM 74.7 76.5 72.7 64.5 72.1

EIT 78.8 79.2 74.9 67.9 75.2

DT-TAIG-R 79.7 78.6 77.4 76.2 78.0

DT-RPA 74.0 71.5 68.1 65.6 69.8

DT-SSA 83.1 83.8 81.7 80.3 82.0

DT-PGN 85.8 85.0 83.3 83.4 84.4

DT-STM 87.1 87.2 85.6 85.4 86.3

DT-EIT 87.1 88.5 85.2 84.0 86.2

Model ensemble [40] is widely adopted to improve the transferability against defense
models. Table 3 shows that even under advanced defense methods, EIT can achieve an
average attack success rate of 82.5% and exceeds PGN attack by more than 1.8%,
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Table 3. Attack success rate (%) of AEs crafted on an ensemble of Inc-v3, Inc-v4, IncRes-v2,
and Res-101.

Model Attack Inc-v3ens3 IncRes-v2ens Bit-Red JPEG FD NRP Baidu AI Cloud AVG

Ens TAIG-R 87.6 81.2 86.6 91.9 89.6 28.3 83.7 78.4

SSA 88.9 81.6 86.8 93.0 90.4 26.8 82.5 78.6

PGN 90.7 85.9 88.9 93.1 90.1 27.9 82.3 79.8

STM 94.3 88.4 92.3 96.9 93.0 26.0 84.8 82.2

EIT 93.0 88.4 91.7 96.2 93.1 27.8 87.4 82.5

Table 4. Attack success rate (%) of against vision transformers.

Attack PiT-S DeiT-B CaiT-S AVG

Inc-v4 VT-MI 42.9 32.6 35.4 37.0

TAIG-S 46.2 34.1 36.9 39.1

TAIG-R 62.1 50.3 56.5 56.3

RPA 52.0 37.4 43.6 44.3

SSA 60.9 45.8 53.7 53.5

PGN 64.3 50.6 57.5 57.5

STM 66.6 50.8 62.2 59.9

EIT 68.5 54.1 63.8 62.1

DT-TAIG-R 63.7 53.7 61.4 59.6

DT-RPA 58.1 46.0 57.8 54.0

DT-SSA 68.5 56.9 66.8 64.1

DT-PGN 70.3 59.1 68.4 65.9

DT-STM 70.1 58.0 70.2 66.1

DT-EIT 70.3 59.0 68.9 66.1

IncRes-v2 VT-MI 44.6 34.3 36.9 38.6

TAIG-S 50.1 36.8 42.6 43.2

TAIG-R 59.4 50.3 57.2 55.6

RPA 58.4 44.6 51.1 51.4

SSA 65.4 50.8 59.7 58.6

PGN 67.8 53.4 62.2 61.1

STM 69.7 55.8 66.9 64.1

EIT 68.5 54.4 63.5 62.1

DT-TAIG-R 60.7 52.9 59.4 57.7

DT-RPA 60.5 49.1 59.4 56.3

DT-SSA 69.7 60.2 70.3 66.7

DT-PGN 72.2 63.0 71.6 68.9

DT-STM 73.1 63.1 75.7 70.6

DT-EIT 71.3 61.5 72.2 68.3
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demonstrating our attack’s effectiveness. It is worth noting that the EIT exceeds the
STM attack by 2.8% when attacking real-world online models.

Attacking Vision Transformers Table 4 compares different attacks against ViTs.
Previous works demonstrate that ViTs present better adversarial robustness than con-
volutional neural networks (CNNs), and transferring from CNNs to ViTs is even more
arduous. With EIT, the black-box attack success rate has increased by 6.0%, and 2.8%
on average compared to SSA and PGN. Furthermore, combining with DT can further
improve the proposed EIT’s transferability.

Fig. 5. The impact of (a) the masking probability p1, and (b) the amplitude of noise addition p2.

Fig. 6. The impact of each step of EIT on transferability.

4.3 Ablation Study

We conduct a series of experiments to study the impact of different parameters, including
the masking probability p1, the amplitude of noise addition p2 and the number of image
copies N , the set of alternative sizes S will be illustrated in the supplementary material.
To simplify the analysis, we fix the surrogate model as the Inc-v3.

Themasking probability p1. Figure 5(a) shows the effect of the p1 in the black-box
setting. As p1 increases, the transferability continues to increase and reaches a peak at
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p1 = 0.1. Excessive masking image patches may cause a large amount of information
loss in the image, resulting in a significant decrease in transferability. Therefore, we set
p1 = 0.1.

The amplitude of noise addition p2. Figure 5(b) studies the impact of the amplitude
of noise addition p2 on the transferability. As p2 increases, the transferability peaks at
p2 = 0.2 for the normally trained models, while it peaks at p2 = 0.4 for the defense
model. Therefore, we set p2 = 0.2 for normally trained models and p2 = 0.4 for more
robust models, e.g., defense and transformer-based models.

The impact of each step on transferability. In Fig. 6, we study each EIT step’s
impact on transferability. Specifically, we divided it into four variants: no additional
steps (L1) (equivalent to the method proposed in [10]), only noise addition (L2), noise
addition and scaling (L3), and the complete EIT method (L4). It can be seen that each
step contributes to transferability.

5 Conclusion

We propose an enhanced image transformation method to improve the transferability of
AEs. Specifically, we perform three operations for each image, namely random patch
masking, noise addition, and scaling, to obtain a series of images and calculate the aver-
age gradient. When used to guide the AEs generation, the average gradient encourages
the attack to pay more attention to relevant but non-critical regions and better neutral-
ize model-specific information. Experimental results show that our method can achieve
higher transferability than existing transfer-based attacks. We believe further improve-
ments in attention-modified attacks could be obtained by fully utilizing more diverse
attention maps, which is our future work.
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Abstract. Most image tamper detection and localization schemes in the present
day rely on huge volumes of training data to achieve perfect performance. To the
best of our knowledge, the state-of-the-art schemes rely on thousands of train-
ing samples (ranging from 1K to over 84K) to localize forged image regions. In
this work, we aim to come around the problem of reliance on huge volumes of
training images in order to efficiently locate a tampered image region; in fact, we
succeed to achieve zero training data dependency for image tamper localization.
In this paper, we have shown our work on a specific class of image forgery, viz.
image splicing attack. To state more specifically, in this paper, we propose a set of
optimal image features, which are subsequently fed to a hierarchical agglomera-
tive clustering module, thereby detecting and localizing spliced region(s) within
an image. Our experiments prove that the proposed method achieves close to 90%
accuracy while completely bypassing any training data requirements and solely
relying on the unsupervised clustering concept.

Keywords: Feature Optimization · HAC · Splicing Localization ·
Unsupervised Clustering

1 Introduction

Due to the easy availability of several image modification software to the general pub-
lic, image tampering has become a widespread problem. The altered photographs may
be purposefully utilized for unlawful ends, such as to deceive unwary users or harm the
social standing of a well-known individual or group. National security problems might
result from criminals or terrorists using fake identification documents to commit dam-
aging acts. Therefore, analysing, identifying, and detecting digital image forgeries is
essential for any company or country’s security. Image splicing [1,14] forgery is done
by merging fragments of many source images to create a single, fabricated composite
image that seems natural.

Researchers are primarily investigating various feature sets and classifiers in the
current state-of-the-art, representing the identification of image splicing as a digital
forensics classification task. While some work [1,5,13] only focuses on identifying a
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spliced image, others focus on localizing the spliced region(s) within it [10,21]. Among
the feature engineering and machine learning-based works, Prasanna et al. [13], and
Shen et al. [15] only detected image splicing without any optimization of feature sets
and localization. The works in [5,19] optimized the feature sets, but localization was not
performed. Walia et al. [18] and Zhu et al. [22] localized the spliced region but without
feature set optimization. All of these works needed vast training datasets as well.

Deep learning-based techniques usually provide better results, but they require
extensive data resources for training and superior computing architecture. Among the
recent deep learning-based approaches, in [9], the authors used local and global features
in a deep neural network. For image splicing localization, Zeng et al. [21] suggested a
dual path-way deep neural network with multiscale fusion. In [16], the authors pro-
posed a MobileNetV2-based localization method, while Kadam et al. [7] suggested a
splicing localization scheme implemented with MobileNetV1. In [10], Peng et al. pro-
posed CAU-Net to localize the spliced area. All these works localize spliced regions in
an image, but require very large training datasets and extensive computing. A compar-
ative analysis of the related works with our proposed scheme is given in Table 1.

Table 1. A Comparative Analysis

Methods Independent of
training set?

Optimized
feature set?

Independent
of deep
learning?

Localization
of spliced
region(s)?

Prasanna et al. [13]
Shen et al. [15]

×
×

×
×

�
�

×
×

Walia et al. [18]
Zhu et al. [22]

×
×

×
×

�
�

�
�

Jaiprakash et al. [5]
Li et al. [8]
Wang et al. [19]

×
×
×

�
�
�

�
�
�

×
×
×

Peng et al. [10]
Peng et al. [11]
Shi et al. [16]
Zeng et al. [21]

×
×
×
×

×
×
×
×

×
×
×
×

�
�
�
�

Proposed � � � �

1.1 Our Contribution

Most of the recent deep learning-based approaches require superior computing and very
large training datasets. Some feature extraction-based works can localize the spliced
area, but they also suffer from high dimensionality and complexity. Almost in every
mechanism, the data requirement is very high for training the model, which is not avail-
able in practice and also increases the complexity and execution time of the model. Our
proposed scheme, suggested in this work, attempts to address these shortcomings. The
following are the major contributions of our proposed method:
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• Our proposed feature engineering and unsupervised clustering-based scheme can
successfully detect and locate spliced regions within a forged test image with com-
paratively better performance than existing schemes.

• We have established an image splicing detection and localization scheme that does
not need any additional dataset like it is needed in supervised classification to train
the model.

• The proposed scheme consists of a highly optimized feature set fed to the Hierar-
chical Agglomerative Clustering (HAC) for splicing localization from a single test
image.

• Our method is independent of deep learning requirements of superior computing and
extensive training data.

The rest of the document is arranged as follows: we demonstrate and discuss our
proposed approach in Section 2 along with a quick summary of the feature sets we
looked into. We provide and discuss the findings of the experiments we conducted in
Section 3. Finally, this paper concludes with a brief overview of the potential continua-
tion of the work in Section 4.

2 Proposed Model

Our work seeks to identify image splicing from a single test image and localize the
spliced region without requiring any training dataset. In this approach, we work with
two features: Histogram of Oriented Gradients (HOG) and Gray Level Co-occurrence
Matrix (GLCM). The input image must first be preprocessed, and then feature extrac-
tion is performed. We have focused on feature optimization to reduce the dimension of
the feature set. We have implemented an unsupervised clustering technique - HAC, for
clustering-based localization of the image blocks, and thus, there is no need for a train-
ing dataset. If spliced blocks are found in the test image, it will be marked as a spliced
image, and the associated spliced blocks will be localized. The overall operational flow
of the proposed method is provided in the form of an overview in Section 2.1.

2.1 Overview of the Proposed Methodology

To provide a comprehensive understanding of our complete workflow, we present below
a brief overview of the operational steps followed by the proposed method. Following
this, Section 2.2 onwards, we discuss individual components of the proposed model in
detail.

– The test image is converted into grayscale and then segmented into non-overlapping
blocks of 32× 32. The original test image without grayscale conversion is also seg-
mented into non-overlapping blocks similarly. Each of these image blocks is consid-
ered as an image sample.

– From each color block, a set of HOG features are extracted, and correspondingly,
from each grayscale block, a set of GLCM features are extracted.

– The combined feature set is formed for each image block of the test image, and then
correlated features are removed.
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Fig. 1. Proposed Scheme: Operational Flow

– The feature set is standardized and optimised further using Principal Component
Analysis (PCA) based on Cumulative Explained Variance (CEV) to improve the
efficiency.

– Each image block with the optimized feature set is then fed as a singleton cluster to
the HAC, and clustering is performed sequentially. The final two clusters represent
the predicted authentic and spliced blocks by our model.

– If all the image blocks are mapped to form only one cluster in the threshold zone of
HAC, then the test image will be marked as a completely authentic image; otherwise,
it will be marked as a spliced image with localizing the spliced regions.

In Fig. 1, we provide an operational flow diagram to represent the complete workflow
of the proposed model. Individual components are elaborated next.

2.2 Feature Sets Explored

In our scheme, we adopt a feature extraction-based unsupervised clustering approach.
This section briefly overviews the two image feature sets extracted in this work: HOG
and GLCM.

Histogram of Oriented Gradients (HOG) HOG [3,6] is frequently used as an object
detection tool and as a feature descriptor of images in Computer Vision. It is advanta-
geous as it describes the appearance and shape of the forged object by describing the
intensity gradient distribution. The following formulas can be used to find the angle’s
magnitude and orientation for each pixel if the gradients along the axes are denoted by
Gx and Gy:

Magnitude =
√

Gx
2 + Gy

2 (1)

Orientation(θ) = tan−1 Gy

Gx
(2)
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Each small region produces a different histogram, and the HOG feature of the test
image is created by normalizing and concatenating all of the histograms.

Gray Level Co-occurrence Matrix (GLCM) For the study of image texture, the
GLCM [17,18] has been widely employed. It is produced by calculating the frequency
with which different pixel value pairs appear together in a grayscale picture. The two
most important GLCM factors are direction and distance.

This research has extracted five distinct texture features-contrast, correlation, dis-
similarity, energy, and homogeneity-from each GLCM. Appendix-A contains detailed
definitions for these textural features.

2.3 Proposed Model for Localisation of Spliced Region Using Optimized Feature
Set and Unsupervised Clustering

Here, we offer our suggested method for locating spliced areas from the input image
using the feature sets mentioned above.

Preprocessing We convert a test image into grayscale, before GLCM feature extrac-
tion, by the following:

I = 0.299× R + 0.587× G + 0.114× B (3)

where I is the grayscale intensity of the gray image, and R, G, and B denote the
color components of the RGB image, respectively. After converting into grayscale, The
test image is broken into multiple 32 × 32 equal-sized non-overlapping blocks. For
HOG feature extraction, the grayscale conversion has not been applied. Our experiment
treated each small image block as an individual sample for feature extraction.

Feature Extraction After the preprocessing, we perform feature extraction from each
block. While extracting the HOG features, we considered the RGB image blocks, and
from each block, a total of 672 HOG features are extracted.

Next, we determine each block’s GLCM at three distances and four angles. As a
result, a total of 3 × 4 = 12 unique GLCMs are calculated for each image block. We
have retrieved five unique GLCM texture features from each of these, as detailed in
Appendix - A. Consequently, a total of 3×4×5 = 60 GLCM texture features have been
extracted from each input image block.

Feature Optimization The combined feature vector set of dimension 732 has been
taken for optimization. We first eliminate the correlated features with 90% correlation
or above to remove redundant data. Next, we perform standardization and implement
Principal Component Analysis (PCA) [20], an unsupervised dimension reduction tech-
nique, to further optimise the feature set and represent it using HAC with much lower
dimension. The number of components to be selected in PCA has been decided based
on the Cumulative Explained Variance (CEV). If the initial feature set has d dimension,
then the CEV of the first m principal components (mpc) can be calculated as:
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CEVmpc
=

∑mpc

j=1 λi∑d
j=1 λi

(4)

where λi represents the eigenvalue of i-th eigenvector. We have empirically selected the
number of components in PCA that exceeds the cumulative explained variance thresh-
old of 0.90 to preserve at least 90% of the total data’s variance while optimizing the
feature set further.

Algorithm 1: Block clustering for localization of spliced regions

1 Input: No. of clusters Nc as total no. of image blocks
2 Output: Final two clusters (one representing a group of spliced blocks and the other

representing a group of authentic blocks)
3 With an optimized feature set, each image block is represented
4 Initialize Nc ← total number of blocks;
5 Initially, each image block forms a singleton cluster, i.e., total Nc clusters, viz., C1, C2

. . ., CNc

6 for i ← Nc to 2 do
/* Each iteration used to merge the cluster pair

demonstrating minimum inter-cluster distance */
7 Initialize dmin ← 9999 ; /* dmin stores the minimum of distances

between all cluster pairs */
8 foreach pair of clusters (Ci, Cj) do
9 Compute di,j ; /* Euclidean distance between clusters Ci

and Cj */
10 if di,j < dmin then
11 dmin ← di,j ;
12 end
13 end
14 if dmin = dx,y then
15 Cx ← merge(Cx,Cy) ; /* Cx and Cy merged, resultant stored

in Cx */
16 Discard Cy;
17 end
18 i ← i − 1;
19 end

Unsupervised Learning Model using HAC for Splicing Localization We employ
Hierarchical Agglomerative Clustering (HAC) on the optimized feature set, which is
a connectivity-based model that clusters data points close to one another according
to a distance or similarity metric (closeness of data points). HAC follows a bottom-
up approach to form the overall clustering structure. In our work, we have adopted
Euclidean Distance to measure the closeness of data points, which are nothing but our
test image blocks.
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Each smallest image block is fed as an individual sample to the HAC algorithm,
and clustering is performed to distinguish the authentic blocks from the spliced blocks.
Each smallest image block is initially treated as a singleton cluster at the outset, and
then pairs of clusters are agglomerated until all the clusters have been merged into two.
The final two clusters represent the authentic and spliced image blocks, respectively.
Here, the total number of clusters is set as two as it is designed as a binary classifi-
cation. Each block is predicted as either an authentic or a spliced block, and finally,
after complete clustering, the spliced region is localized. The block clustering-based
algorithm for localizing the spliced regions is represented in Algorithm 1.

Splicing Detection and Localization If the number of clusters in the test image is
predicted as two, having one authentic and one spliced cluster, then the test image is
marked as a spliced image. If all the image blocks are mapped to form only one cluster,
then the test image will be marked as an authentic image with no spliced region. The
splicing localization output of our model has been visually presented in Fig. 2.

The predicted result of each image block is compared with the corresponding
ground truth image block to evaluate our model’s performance for splicing image local-
ization. Our experimental results are presented next.

3 Experimental Results

3.1 Dataset and Implementation

In our research, we have explored the CASIA V1.0 [4] and the CASIA V2.0 [4,12],
two color image forgery datasets. The CASIA V2.0 comprises 3274 copy-move, 1849
spliced, and 7491 authentic color images. The CASIA V1.0 is made of 1721 images, out
of which 800 are pristine and the remaining 921 are tampered with. We have selected
the spliced images from the 1849 spliced image samples of CASIA V2.0 and from the
921 tampered images of CASIA V1.0 as our input test image.

With the aid of Python 3.7.6, the Jupyter Notebook IDE, and the scikit-learn library,
we implemented our suggested model into practice. The workstation used for this exper-
iment has a 4th generation Intel i3-4005U CPU running at 1.70 GHz processor base
frequency.

3.2 Performance Evaluation Metrics

We have taken only spliced images as the input image in each set of experiments. The
performance is evaluated by comparing the predicted result of each block with the cor-
responding ground truth image block, using the generated confusion matrix having four
values: True Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN), for each test image. Different performance metrics such as accuracy, precision,
recall, F1-Score, and Matthews Correlation Coefficient (MCC) are computed from the
confusion matrix. An assessment of the model’s overall correctness is provided by accu-
racy as follows:

Accuracy (%) =
TP + TN

TP + TN + FP + FN
× 100% (5)
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Model Precision and Recall is computed as follows:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(6)

F1-Score and MCC When the input samples are not properly balanced, i.e. if class
imbalance is present among the input samples, then F1-Score and MCC can be used as
more accurate performance evaluation metrics. The formulation of the F1-Score is as
follows:

F1− Score = 2× Precision × Recall

Precision + Recall
(7)

The MCC [2] score effectively overcomes the unbalanced dataset problem and
ranges between -1 and +1. It is calculated as:

MCC =
(TP · TN)− (FP · FN)√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(8)

3.3 Testing Protocol

We run the proposed clustering (Algorithm 1) on each test image, which aims to iden-
tify each smallest image block as either spliced or authentic. Ideally, all spliced blocks
constitute clusterSpl, and all authentic blocks merge to form clusterAuth. In our exper-
iments, while validating the correctness of the proposed clustering method, we perform
the validation by comparing the clustering output on a certain image block by the pro-
posed method (whether it belongs to clusterAuth or clusterSpl) against the information
present in the ground truth image, corresponding to that respective image block. Each
image block is fed to HAC initially as a singleton cluster, which gradually forms the
final two clusters clusterAuth and clusterSpl.

3.4 Experimental Findings and Analysis

This section includes a detailed presentation of our experimental results and a per-
formance analysis of the suggested image-splicing localization methodology. We con-
ducted our experiments on the selected spliced images and documented the performance
of our proposed model accordingly. Fig. 2 presents the visualization of the localization
results of our proposed scheme, where the first row represents the spliced test images,
the second row represents the corresponding ground truth images, and the third row
shows the detected spliced blocks of each image by our method.

A dendrogram that shows the hierarchical relationship between the clusters and is
formed based on the Euclidean distance between the clusters while initially taking each
block as a separate cluster is represented in Fig. 3. The threshold selection zone for
finally having two clusters is shown in red. The clustering of spliced image blocks over
all iterations at different threshold distances until two clusters are formed for individual
test images is represented in Table 2. Fig. 4 displays the visual representation of cluster
formation at different distance thresholds for our experiments.
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Fig. 2. Visual representation of localization results. (a)-(h) Spliced test images. (i)-(p) Ground
truth of the spliced test images. (q)-(x) Spliced region localization of the test images.

Fig. 3. Evolution of clusters starting from initial iteration, where each image block represents one
cluster, upto the final iteration, where all blocks are grouped into two clusters: one representing
spliced image blocks (orange), and the other representing authentic image blocks (green). The
figure shows the gradual convergence of all blocks into two clusters through subsequent clus-
ter merging based on inter-cluster distances. Two clusters formed within threshold inter-cluster
distance in the range [48,65].

An evaluation of our proposed model’s effectiveness in comparison to other recent
cutting-edge techniques for image splicing localization is given in Table 3, where the
performance metrics for comparison are taken as F1-Score, MCC, dependency on deep
learning and number of training samples. We have also considered the corresponding
operating principle and the dataset used for the respective scheme. The F1-Score and
MCC serve as two appropriate performance indicators, as in most test situations, image
datasets or image blocks are not adequately balanced. The results of Table 3 prove
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Fig. 4. Cluster formation at different distance thresholds.

Table 2. Performance of the proposed model for spliced image block clustering over 0 − 94
iterations (in steps of 8) in terms of distance threshold (T ) vs. number of clusters formed (Nc)

Test It. 0 (Initial) It. 8 It. 16 It. 24 It. 32 It. 40 It. 48 It. 56 It. 64 It. 72 It. 80 It. 88 It. 94

T Nc T Nc T Nc T Nc T Nc T Nc T Nc T Nc T Nc T Nc T Nc T Nc T Nc

1 - 96 13.78 88 15.76 80 16.99 72 18 64 19.01 56 20.25 48 21.66 40 23.66 32 25.04 24 28.18 16 32.97 8 63.92 2

2 - 96 14.63 88 15.69 80 16.37 72 17.42 64 18.20 56 19.39 48 20.10 40 21.50 32 23.37 24 25.90 16 30.70 8 64.25 2

3 - 96 12 88 13.86 80 14.95 72 16.73 64 17.90 56 18.74 48 20.63 40 22.41 32 24.11 24 27.29 16 34.45 8 57.59 2

4 - 96 18.21 88 20.04 80 21.32 72 22.71 64 24.06 56 24.58 48 26.42 40 27.98 32 29.71 24 32.30 16 37.41 8 51.19 2

5 - 96 12.51 88 15.79 80 17.68 72 18.82 64 19.87 56 21.32 48 22.12 40 23.32 32 25.41 24 28.09 16 34.54 8 60.51 2

6 - 96 13.79 88 15.22 80 15.83 72 16.90 64 18.09 56 18.71 48 20.80 40 22.30 32 23.68 24 26.75 16 33.45 8 61.01 2

7 - 96 12.31 88 16.22 80 17.47 72 18.79 64 19.93 56 20.62 48 21.98 40 22.90 32 24.44 24 27.68 16 34.99 8 55.03 2

8 - 96 12.69 88 13.74 80 15.09 72 16.35 64 17.35 56 18.63 48 20.60 40 22.30 32 26.07 24 29.67 16 34.65 8 58.98 2

the superiority of the proposed model as compared to the majority of the state-of-the-
art (except the scheme of Shi et al. [16] which is closely followed by our method,
when tested on CASIA V1.0), despite our model being independent of training samples
requirement as well as overcoming the computational intensity inherent in deep learning
models. While all other compared works require extensive training samples, our method
does not need any training data set, as it can directly locate the spliced regions from a
single test image. Additionally, our method minimizes the complexity of the modelling
structure as it is based on unsupervised clustering, so it does not need any training
dataset and is designed with an optimized feature set.

To understand the performance of our model on individual test subsets, we have
conducted multiple different experiments on varied subsets of the test dataset.
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Table 3. Performance Analysis and Comparison

Author, Year Operating Principle Dataset No. of
Training
samples

F-1
Score

MCC Extensive
computing
needs for deep
learning

Kadam et al. [7] (2021) Mask R-CNN, MobileNetV1 CASIA V1.0 2505 0.64 - �
Li et al. [9] (2022) Multi-scale guided learning CASIA V1.0 5123 0.64 0.59 �
Peng et al. [10] (2023) CAU-Net CASIA V2.0 4488 0.58 - �
Shi et al. [16] (2023) MobileNetV2, SRM CASIA V1.0 4780 0.75 0.73 �
Peng et al. [11] (2023) GP-Net, TcFusion CASIA V2.0 5078 0.61 - �
Zeng et al. [21] (2024) Dual-path model, multiscale fusion CASIA V1.0 84288 0.65 - �
Proposed method Feature extraction, optimization, HAC† CASIA V1.0 0 0.71 0.66 ×
Proposed method Feature extraction, optimization, HAC† CASIA V2.0 0 0.78 0.74 ×

† Our method eliminates the requirement of the training data set and deep learning environments
requiring extensive computing and data, which is in contrast to the other schemes shown in the
table

Table 4. Performance of our proposed model for five sets of experiments

Exp. No. Accuracy F1- Score Precision Recall MCC

1 0.84 0.70 0.79 0.65 0.66

2 0.81 0.66 0.73 0.63 0.61

3 0.89 0.78 0.90 0.72 0.74

4 0.82 0.67 0.77 0.61 0.62

5 0.87 0.75 0.84 0.71 0.70

Here, we report the performance of our model on five selected subsets of test
images, each of which consists of five test images. We have performed our test on five
randomly selected test images in each experiment and have reported the average per-
formance of these as the result of each experiment set in Table 4. The proposed method
achieves the best performance with an accuracy of 0.89, an F1-Score of 0.78, Precision
and Recall of 0.90 and 0.72, respectively, and a MCC score of 0.74. The composite bar
diagram representing the proposed model’s performance is given in Fig. 5.

Fig. 5. Composite bar diagram representing the performance of our proposed model
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4 Conclusion and Future Scope

This work proposes an effective method to detect image splicing and locate the spliced
regions from an input test image without the requirement of a training dataset. We
have extracted HOG and GLCM features from each block of a test image after it is
subdivided into multiple non-overlapping blocks, the combined feature vector is opti-
mized, and finally, an unsupervised clustering method named HAC is implemented for
clustering the authentic blocks and spliced blocks of the detected spliced image. If the
number of clusters in the resultant dendrogram is two, the test image is detected as a
spliced image, and the spliced blocks will be localized; otherwise, if all image blocks
form a single cluster, it will be marked as an authentic image. We assess the efficiency
of our suggested method by comparing the predicted result of each image block with
the associated ground truth image. The experiment’s findings indicate that our scheme
can successfully detect whether the test image is spliced or authentic and also locates
the spliced regions of the spliced image with better performance without requiring any
additional training dataset. The future direction of this work includes exploring the suit-
ability of HAC in large-scale test data scenarios as well as investigating the robustness
of unsupervised splicing detectors against post-processing image attacks.

Appendix-A

Contrast: It calculates the intensity difference between a pixel and its surrounding pixels
over the whole image. If contrast is high, it indicates that the image is visually more
clear [15] and sharp. It is formulated as follows:

Contrast =
N−1∑
i,j=0

Gij · (i − j)2 (9)

Correlation: It measures how a pixel value is correlated to its neighbour pixel over the
entire image. A high value in correlation means the elements in GLCM are uniform
[15]. The range of value of correlation is -1 to 1. If μ represents the GLCM mean, and
σ2 depicts the variance of intensities within the GLCM, then the correlation will be
calculated as:

Correlation =
N−1∑
i,j=0

Gij · (i − μ) · (j − μ)
σ2

(10)

Dissimilarity: Weight in dissimilarity is calculated as |i − j|, and, therefore, as a pixel
shifts away from the diagonal, its weights grow linearly. Consequently, the formulation
of dissimilarity is as follows, if Gij is the element at (i, j)th position in the GLCM and
N is the number of gray levels:

Dissimilarity =
N−1∑
i,j=0

Gij · |i − j| (11)
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Energy: Energy calculates the sum of squared elements in GLCM. Energy has a value
between 0 and 1. It is computed as follows if Gij is the element at location (i, j) in the
normalized GLCM and N is the number of gray levels:

Energy =
N−1∑
i,j=0

(Gij)2 (12)

Homogeneity: It estimates howmuch the distribution of GLCM elements resembles that
of the GLCM diagonal. It is expressed as follows, and it has a range of 0 to 1.

Homogeneity =
N−1∑
i,j=0

Gij

1 + (i − j)2
(13)
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Abstract. Identifying user-defined keywords is crucial for personaliz-
ing interactions with smart devices. Previous approaches of user-defined
keyword spotting (UDKWS) have relied on short-term spectral features
such as mel frequency cepstral coefficients (MFCC) to detect the spo-
ken keyword. However, these features may face challenges in accurately
identifying closely related pronunciation of audio-text pairs, due to their
limited capability in capturing the temporal dynamics of the speech sig-
nal. To address this challenge, we propose to use shifted delta coeffi-
cients (SDC) which help in capturing pronunciation variability (transi-
tion between connecting phonemes) by incorporating long-term temporal
information. The performance of the SDC feature is compared with vari-
ous baseline features across four different datasets using a cross-attention
based end-to-end system. Additionally, various configurations of SDC
are explored to find the suitable temporal context for the UDKWS task.
The experimental results reveal that the SDC feature outperforms the
MFCC baseline feature, exhibiting an improvement of 8.32% in area
under the curve (AUC) and 8.69% in terms of equal error rate (EER) on
the challenging Libriphrase-hard dataset. Moreover, the proposed app-
roach demonstrated superior performance when compared to state-of-
the-art UDKWS techniques.

Keywords: shifted delta coefficients · mel spectrogram ·
cross-attention · user-defined keyword spotting

1 Introduction

Advancements in deep learning technology have transformed voice-activated
interactions with machines from science fiction to reality. The proliferation
of voice assistants like Amazon’s Alexa, Apple’s Siri, Google’s Assistant, and
Microsoft’s Cortana are good proof of this [1]. These voice assistants are acti-
vated using a technology called spoken keyword spotting, or simply keyword
spotting, which detects specific wake-up words within a continuous audio stream
[2]. This helps to avoid activating the more computationally intensive automatic
speech recognition (ASR) when unnecessary. For instance, Google’s voice search

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15322, pp. 374–386, 2025.
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responds to the phrase "Okay Google," while Apple’s conversational assistant
is activated with the phrase "Hey Siri" [3]. However, these keywords are not
personalized.

With the growing demand for personalized voice assistants, user-defined key-
word spotting (UDKWS) [4,5], also known as custom keyword detection or open
vocabulary keyword spotting, has gained considerable attention. Unlike closed
vocabulary keyword spotting [6], where only predetermined keywords are recog-
nized, open vocabulary keyword spotting deals with the challenge of identifying
random keywords that the model may not have encountered during training,
adding an additional layer of complexity to the task.

Over the years, various techniques have been explored for UDKWS. One of
the earliest approaches involves the use of large-vocabulary continuous speech
recognition (LVCSR) systems [7,8]. These systems decode the speech signal,
after which the keyword is searched in the generated lattices. Another approach
is keyword/filler hidden markov model (HMM) [9,10]. In this approach, separate
HMMs are trained to model keyword and non-keyword audio segments. While
these architectures allow for customization of the keyword by modifying the
decoding graph, the computational requirements remain significant.

Recent works in UDKWS have focused on developing end-to-end systems
that take two inputs: the enrolled keyword references and the speech data to be
detected. One such classical approach is the query-by-example (QbyE) [11,12]
approach, which involves matching input queries with pre-enrolled examples.
However, the effectiveness of the QbyE method relies heavily on the similarity
between the recorded speech during enrollment and the subsequent evaluated
speech recordings. Challenges such as diverse vocal characteristics among users
and background noise in different environments can significantly impact the
consistency of the QbyE method’s performance. To address these challenges,
researchers have explored text enrollment-based methods [4,13].

For instance, [14] proposes an ASR-free end-to-end system that generates
audio embedding and keyword embedding using an acoustic encoder and a key-
word encoder, respectively. These embeddings are then merged into a multilayer
perceptron for keyword existence prediction. In [13], an attention-based cross-
modal matching approach is proposed to learn the agreement between audio
and text keyword at the utterance level. In [15], a novel zero-shot UDKWS
is proposed to learn the audio-phoneme relationship of the keyword through
phoneme-level detection loss. Also, [16] introduced dynamic sequence partition-
ing to optimally partition the audio embedding sequence into the same length
as the text sequence. These recent end-to-end techniques [13,15,16], primarily
depend on evaluating speech and text representations in a common latent space,
demonstrated promising results in the custom keyword spotting task. Despite
these significant advancements in the field of UDKWS, the predominant focus
has been on the advancement of deep learning models and training approaches.
There has been relatively limited exploration of feature engineering which plays
a crucial role in enhancing the performance of any speech application. This
observation has motivated us to perform feature-level exploration for UDKWS
task.
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In literature, mel-scale related features such as MFCC and mel spectrogram
are the most commonly used features in UDKWS [13,15,16]. While these fea-
tures provide a good estimation of the local spectra, they may not fully capture
the temporal dynamics, such as changes in pronunciation over time, present in
spoken keywords. Incorporating contextual information could help the system
in capturing this pronunciation variability by modeling frame-level dependen-
cies. Notably, in some studies [17,18], SDC is well-regarded for their ability to
capture long-term temporal information (stacking delta features across several
frames) for language identification tasks. Motivated by this fact, we propose to
use the SDC feature to enhance the robustness of UDKWS, especially in dis-
tinguishing between similar pronunciations of audio-text pairs. To the best of
our knowledge, this is the first study that explored the importance of long-term
temporal information at feature level for UDKWS task. The key contributions
of this study include:

– Performance comparison of SDC features with commonly used short-term
spectral features, namely MFCC, mel spectrogram, perceptual linear pre-
diction coefficients (PLP), and relative spectral-perceptual linear prediction
coefficients (RASTA-PLP) in a common experimental setup.

– Exploration of different configurations of SDC features to determine the
appropriate temporal context for the UDKWS task.

– Examination of the system’s performance for keywords of different word
lengths.

– Assessment of the efficiency of the proposed approach through comprehensive
comparisons with various state-of-the-art UDKWS systems.

The organization of this paper is as follows: Section 2 provides details about
the architecture, Section 3 discusses the feature extraction techniques, Section 4
describes the experimental setup, Section 5 presents the results and discussion
and Section 6 concludes the study.

2 Architecture

In this section, we will discuss the details of the architecture that is used for
studying different audio features for the UDKWS task, as shown in Fig. 1. The
proposed architecture is adopted from [19]. It consists of four submodules: audio
encoder, text encoder, pattern extractor, and pattern discriminator.

2.1 Audio Encoder

In this study, various short-term and long-term spectral features (discussed in
Section 3) are used as input to the audio encoder. The encoder utilized two 2-D
convolutional layers (Conv2D), each consisting of 32 filters with a kernel size
of 3. To enhance computational efficiency, the initial convolution layer employs
a stride of 2 to skip processing of consecutive frames. Additionally, batch nor-
malization is applied after each Conv2D operation to ensure stable training.
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Fig. 1. Proposed architecture for user-defined keyword spotting

Following the Conv2D layers, two bidirectional gated recurrent units (Bi-GRU)
with a dimension of 64 each are utilized. Finally, a 128-dimensional audio embed-
ding is produced by passing the output from the final Bi-GRU layer to a dense
layer. The output from the audio encoder is denoted as Ea ∈ R

m×D, where m
and D denote the length of the audio (i.e. number of frames) and embedding
dimension, respectively.

2.2 Text Encoder

It includes a pre-trained Tacotron 2 [20] model, a recurrent sequence-to-sequence
text-to-speech (TTS) system, which takes character sequences as input to pro-
duce the corresponding audio output. The integration of a pre-trained TTS sys-
tem in the text encoder is inspired by [19]. The main motivation for including
the TTS system is to generate text representations that are aware of audio
projections. According to [19], employing intermediate representations from the
pre-trained TTS model leads to superior performance compared to using char-
acter embeddings as text features. It is also demonstrated that representations
from the LSTM block of the Tacotron 2 encoder, with a dimension of 512, effec-
tively act as text features. Consequently, this study adopts a similar approach.
The resulting intermediate representations from the TTS model are then passed
through a Bi-GRU layer with a dimension of 64. The output from the Bi-GRU
layer is subsequently fed into a dense layer with 128 units. The output from the
text encoder is denoted as Et ∈ R

n×D, where n and D denote the length of the
text (i.e. number of characters) and embedding dimension, respectively.

2.3 Pattern Extractor

Motivated by [21], the pattern extractor employs a cross-attention mechanism to
capture temporal correlations between audio and text embeddings. All hidden
states from the output of audio and text encoders are fed into the cross-attention
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layer to preserve the temporal information. In this setup, the audio embedding
Ea functions as both the key and value, while the text embedding Et acts as the
query. The resulting context vector from the pattern extractor contains infor-
mation regarding the agreement between audio and text.

2.4 Pattern Discriminator

The pattern discriminator determines whether audio and text inputs share the
same keyword or not. To achieve this, it consists of a single Bi-GRU layer with
a dimension of 128 that takes the context vector from the pattern extractor
as input. Subsequently, the output from the last frame of the Bi-GRU layer is
passed through a dense layer with sigmoid as an activation function.

3 Feature Extraction

Representing a speech utterance in a vector of parameters is defined as fea-
ture extraction [22]. The significant aim of performing this step is to derive the
appropriate/relevant information. In this section, we discuss about five impor-
tant feature extraction techniques, namely mel spectrograms [13], MFCC [23],
PLP [24], RASTA-PLP [25], SDC [17]. These five features are selected after
reviewing several works [26–30] on speech related applications.

3.1 Mel Spectrogram

The mel spectrogram is derived from the magnitude spectrogram, but it’s differ-
ent because the mel filter bank mimics the human ear’s perception and empha-
sizes the lower frequency region more than the higher frequencies. Initially, the
magnitude spectrogram-time-frequency representation-is obtained by segment-
ing the speech waveform into windowed segments and applying the fast fourier
transform to each segment. Following this, the computed magnitude spectro-
gram is mapped to a mel-scale using 40 mel filter banks, and then subjected to
a logarithmic operation to generate the mel-spectrogram.

3.2 Mel-Frequency Cepstral Coefficients

MFCC, a popular feature in speech signal processing, captures vocal tract char-
acteristics by representing the short-term power spectrum through a linear cosine
transform. This transformation operates on a logarithmic power spectrum, non-
linearly scaled to the mel frequency range. The process of calculating MFCC
involves windowing the signal, calculating discrete Fourier transform (DFT) coef-
ficients for each window, taking the logarithm of the DFT magnitude, filtering
frequencies with the mel scale, and finally extracting the MFCC coefficients.
The first 13 cepstral coefficients are considered as MFCC features. The first and
second derivatives of 13-dimensional MFCC features have been combined with
static MFCCs, referred to as MFCC+Δ+ΔΔ, to capture the temporal dynamics
present in the speech signal.
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3.3 Perceptual Linear Prediction

Several alternatives to MFCC have been proposed for representing short-term
speech signals - One such alternative is PLP (perceptual linear prediction coef-
ficients). PLP is a feature that gives representation conforming to a smoothed
short-term spectrum that has been equalized and compressed, similar to human
hearing, thus making it similar to the MFCC. The process of calculating PLP
features starts with windowing the signal, computing discrete Fourier transform
(DFT) coefficients for each window, and taking the logarithm of the DFT mag-
nitude to obtain power spectral estimates. Next, a trapezoidal filter is applied at
1-bark intervals to merge overlapping critical band filter responses in the power
spectrum, thereby compressing higher frequencies into a narrow band. Finally,
the spectral amplitude is compressed by taking the cubic root to match the
nonlinear relationship between sound intensity and perceived loudness.

3.4 Relative Spectral - Perceptual Linear Prediction

RASTA-PLP builds upon the PLP technique by introducing a crucial addi-
tion: a bandpass filter at each sub-band. By suppressing undesirable frequencies,
RASTA-PLP increases the robustness of PLP to noise. The process of RASTA-
PLP involves several steps. Initially, it calculates the critical-band power spec-
trum, followed by the application of a compressing static nonlinear transfor-
mation to the spectral amplitude. Subsequently, it filters the time trajectory
of each transformed spectral component with a bandpass filter. After this, the
filtered speech undergoes further transformation using an expanding static non-
linear transformation. Additionally, it includes equal loudness curve adjustment
and the application of the intensity-loudness power law to replicate the human
auditory system. In essence, RASTA filtering acts as a modulation-frequency
bandpass filter, emphasizing the modulation frequency range most relevant to
speech, while disregarding lower or higher modulation frequencies.

3.5 Shifted Delta Coefficients

SDC features, extensively utilized in language identification [18], are pivotal for
capturing long-term temporal information. Inspired by this, we propose to use
the SDC features for the UDKWS task. The main motivation is to enhance the
model’s ability to capture the pronunciation variability of the spoken keyword,
thus improving the overall performance of UDKWS. In this study, SDC features
are computed from Mel-spectrogram, since it gives better performance compared
to all other short-term spectral features. The calculation of the SDC feature
depends on four parameters, and it is represented as N-d-p-k. Here N represents
the number of cepstral coefficients for every frame, d denotes the amount of shift
(delay) from the current frame, p denotes the shift between the consecutive delta
blocks, and k denotes the number of frames whose deltas are to be concatenated.
The delta feature vector for tth frame in the ith iteration is computed as
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δc(t, i) = c(t + ip + d) − c(t + ip − d), where 0 ≤ i ≤ k − 1 (1)

These k delta computations are stacked as in (2) to form k×N dimensional
shifted delta coefficients

SDC(t) =

⎛
⎜⎜⎜⎝

δc(t, 0)
δc(t, 1)

...
δc(t, k − 1)

⎞
⎟⎟⎟⎠ (2)

The computed stacked delta features are then combined with the static mel
spectrogram features to obtain the final SDC feature vector. The effect of vari-
ation in parameters (d and k), which control the amount of temporal context,
has also been studied.

4 Experimental Setup

4.1 Database

The LibriPhrase dataset [13], derived from the LibriSpeech corpus [31], is utilized
for both training and evaluation. It comprises short phrases with varying word
lengths, ranging from 1 to 4. The training set of LibriPhrase was generated
using the train-clean-100 and train-clean-360 subsets, while the evaluation set
was derived from the train-others-500 subset. The evaluation set consists of
4391, 2605, 467, and 56 episodes of each word length respectively. Each episode
has three positive and three negative pairs. The negative samples are further
categorized into easy and hard based on Levenshtein distance [32], leading to the
creation of the LibriPhrase Easy (LPE) and LibriPhrase Hard (LPH) datasets.
Each example is denoted by 3 entities: (audio, text, target) where the target
value is 1 for a positive pair and 0 for a negative pair.

For a comprehensive evaluation of model performance, we expanded our
assessment beyond the LibriPhrase dataset by including two additional datasets:
the Google Speech Commands V1 dataset (G) [33] and the Qualcomm Keyword
Speech dataset (Q) [34]. The Google Speech Commands V1 dataset (G) con-
tains speech recordings from 1,881 speakers, emphasizing 30 small keywords.
From that, the validation dataset corresponding to 30 keywords is used for eval-
uation. On the other hand, the Qualcomm Keyword Speech dataset (Q) includes
4,270 utterances of four keywords spoken by 50 speakers. Each speaker in this
dataset contributes approximately 22-23 instances for each keyword.

4.2 Implementation Details

In the feature extraction, all spectral vectors are obtained by block processing the
whole speech into short segments using a window length of 25 ms and overlap
of 10 ms. A pre-emphasis factor of 0.97 is applied to emphasize the amount
of energy in the high frequency regions. Hamming window is used during the
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windowing process of feature extraction to reduce the spectral leakage. Zero
padding is applied along the time dimension to ensure that the input feature
representation is of equal size, as required by the input of the Conv2D layer.

The training pipeline is structured as a binary classification task with the
objective of classifying the similarity of input pairs {audio, text}. The training
process utilizes binary cross-entropy loss as the training criterion and employs
the Adam optimizer [35] with default parameters for optimization. The model is
trained with a batch size of 128 and a fixed learning rate of 10−4. A dropout of 0.2
is applied after each layer in both audio and text encoders to prevent overfitting.
The best-performing model is selected based on the model performance on the
validation set. For training, we used four NVIDIA GeForce RTX 2080 Ti GPUs.

5 Results and discussions

The proposed approach provides comprehensive insights about the spoken key-
word by leveraging SDC features, which are well-regarded for their ability to
capture long-term temporal information. To validate the effectiveness of our
approach, we conducted extensive experiments across diverse datasets, with the
results and corresponding plots presented in this section.

5.1 Comparison of different front-end features

In this section, the performance comparison between SDC features and various
short-term spectral features is discussed to study the importance of long-term
temporal information in the UDKWS task. The results are presented in Table 1.
Upon analysing the results, it’s clear that SDC features consistently outperform
all baseline features across all datasets. Furthermore, when compared to the
MFCC feature, the SDC feature demonstrates a notable improvement of 8.69%
in AUC and 8.32% in EER on the challenging LPH dataset, which comprises
similar pronunciations of audio-text pairs (e.g., "madame" and "modem"). This
improvement is attributed to their ability to capture the temporal dynamics of
speech signals by incorporating contextual information. On the other hand, PLP,
RASTA-PLP, and mel spectrogram exhibit competitive performance with con-
sistently good AUC scores, indicating them as preferable alternatives to SDC.
In contrast, MFCC performs poorly compared to all other features. Compared
to MFCC alone, MFCC+Δ+ΔΔ which models the temporal dynamics of the
speech signal to some extent by concatenating their first and second deriva-
tives to the original MFCC feature, provides significant improvements. Overall,
the observations from Table 1 suggest that speech information extracted over a
longer context plays a pivotal role in the development of systems for UDKWS
tasks.

5.2 SDC configuration

The calculation of SDC features relies on four parameters: N, d, p, and k. Varia-
tions in these parameters can significantly affect the amount of temporal context
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Table 1. Performance comparison of SDC features with various short-term spectral
features across different datasets: Google Commands V1 (G), Qualcomm Keyword
Speech dataset (Q), Libriphrase-Easy (LPE), and Libriphrase-Hard (LPH)

Features EER (%) AUC (%)
G Q LPE LPH G Q LPE LPH

MFCC 32.24 12.59 7.99 29.8 73.95 91.2 97.8 77.21
MFCC+Δ+ΔΔ 30.28 11.8 6.8 27.01 76.5 93.29 98.06 78.54
Mel Spectrogram 27.91 16.7 5.89 26.45 79.13 90.97 98.21 79.81
PLP 28.43 15.37 6.58 25.22 77.65 90.47 97.88 78.81
RASTA-PLP 27.4 14.32 6.42 25.84 78.05 91.24 97.82 79.7
SDC 23.54 9.61 3.84 21.48 83.56 96.73 98.34 85.90

captured. Therefore, an ablation study is conducted by varying d and k values to
determine the suitable temporal context for UDKWS, with the results depicted
in Fig. 2. Fig. 2 (a) & (b) illustrates the performance change in terms of AUC
and EER for varying d values (amount of shift from the current frame) from 1 to
4 while keeping the other parameters fixed. It can be observed that as the d value
increases, the performance drops across all datasets, indicating a loss of infor-
mation when the shift is increased in calculating SDC features. Fig. 2 (c) & (d)
show the effect of varying k values (number of frames whose deltas are stacked)
ranging from 5 to 10, while keeping the other parameters fixed. It is evident that
as the k value increases from 5 to 8, the performance in terms of AUC and EER
also increases across all datasets, demonstrating the effect of the context win-
dow on UDKWS. However, beyond a k value of 8, performance either saturates
or declines, indicating the need for precise contextual information to reliably
recognize keywords. Overall, it is evident that the SDC configuration 40-1-3-8
exhibits the best performance with optimal temporal context for UDKWS.

5.3 Analysis on the length of keywords

The evaluation of the system across different word lengths for mel spectrogram
(best performing among baseline) and SDC features is studied on the LibriPhrase
evaluation dataset. The results in terms of EER, AUC and F1-score are presented
in Table 2. When compared to the mel spectrogram, SDC demonstrates absolute
improvements of 3.24%, 2.33%, 1.81%, and 2.02% in F1-score for word lengths 1,
2, 3, and 4 respectively. Despite the improvements, SDC encounters challenges
similar to the mel spectrogram in keyword recognition as word length increases.
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Table 2. Performance comparison of SDC and mel spectrogram features across differ-
ent word lengths

Feature Word LengthEER (%)AUC (%)F 1 score (%)

Mel Spectrogram 1 7.67 97.01 91.11
2 8.55 96.57 90.98
3 9.05 95.6 89.76
4 9.25 95.34 88.30

SDC 1 5.37 98.25 94.34
2 6.35 97.87 93.31
3 7.24 96.91 91.57
4 8.29 96.31 90.32

5.4 Comparison of various UDKWS techniques

In this section, the performance of the proposed approach is compared with
various state-of-the-art UDKWS techniques across G, Q, LPE, LPH datasets,
and the results are presented in Table 3. Evaluation results show that among
all the baselines, CMCD (cross-modlaity correspondence detector) [13] demon-
strates strong performance, while Triplet [4] shows weak performance across the
Q, LPE, and LPH datasets. The attention-based QbyE method demonstrates
superior performance on the G dataset due to its similarity scoring mechanism,
particularly when the keyword is included in the training set. However, it shows
degraded performance when the keyword is unfamiliar as observed in Q and Lib-
riPhrase. In contrast, our proposed approach outperforms all the baselines on all
datasets except G. Specifically, compared to the CMCD baseline, our proposed
method demonstrates a substantial improvement in EER of 4.58% in the LPE
dataset and 11.42% in the LPH dataset. Additionally, the model is evaluated
on datasets G and Q without any fine-tuning to assess its generalization capa-
bility. We observe a consistent improvement of approximately 2% on the AUC

Table 3. Performance comparison of the proposed method with various UDKWS
techniques across different datasets: Google Commands V1 (G), Qualcomm Keyword
Speech dataset (Q), LibriPhrase-Easy (LPE), and LibriPhrase-Hard (LPH).

Method EER (%) AUC (%)
G Q LPE LPH G Q LPE LPH

CTC [12] 31.65 18.23 14.67 35.22 66.36 89.69 92.29 69.58
Attention [11] 14.75 49.13 28.74 41.95 92.09 50.13 78.74 62.65
Triplet [4] 35.6 38.72 32.75 44.36 71.48 66.44 63.53 54.88
CMCD [13] 27.25 12.15 8.42 32.9 81.06 94.51 96.7 73.58
Proposed 23.54 9.61 3.84 21.48 83.56 96.73 98.34 85.9
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metric and 3% on the EER metric across datasets G and Q compared to the
CMCD baseline. This demonstrates the effectiveness of the proposed approach
in recognizing user-defined keywords that are not seen during training.

Fig. 2. Performance Analysis of SDC Configuration across four datasets. (a) & (b)
illustrate the effect of varying d values. (c) & (d) illustrate the effect of varying k
values.

6 Conclusion

This study presented the importance of long-term temporal information for the
UDKWS task. The evaluation results indicated that SDC features outperformed
the widely used short-term spectral features. Notably, it showcased its potential
in distinguishing similar pronunciations of audio-text pairs in the Libriphrase
hard dataset. Furthermore, the ablation study on different SDC configurations
revealed that configuration 40-1-3-8 exhibited the best performance with a suit-
able temporal context. Moreover, the proposed approach demonstrated superior
performance compared to state-of-the-art UDKWS approaches. In future work,
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the focus will be on improving the performance of the UDKWS system by explor-
ing the potential of hybrid feature extraction approaches rather than relying on
individual counterparts.
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Abstract. Voice Conversion (VC) has gained attention due to its rapid
development and increased accessibility. However, this also brings a
potential threat for misuses. Consequently, it is crucial to thoroughly
assess the performance of VC models. Current research, however, pre-
dominantly focuses on the evaluation of VC models on English, neglect-
ing other languages during evaluation and focusing on one conversion
scenario. To address this research gap, this paper aims to evaluate four
VC models, namely kNN-VC, FreeVC, QuickVC, and RVC, on German
speakers across three different conversion settings: any-to-any conversion
(i.e., without fine-tuning), VC with speaker fine-tuning, and VC with lan-
guage (German) fine-tuning. Additionally, we examined the influence of
target speaker audio length using data ranging from 10 to 2400 seconds
for generation.

Keywords: Voice Conversion · German · Quality · Similarity

1 Introduction

With the increasing use of social media platforms like Instagram or TikTok, high-
quality recordings of individuals can be easily found on the internet. Together
with the advances in artificial intelligence, the quality of audio deepfakes is
rapidly improving, posing a potential threat for malicious purposes. For instance,
it becomes feasible to attain believable syntheses, even when only a limited num-
ber of short high-quality recordings are available from the target speaker. The
synthesized voices can then be used as impersonation attack to fool people or
automatic speaker verification/recognition systems, for example to log into a
bank account [20]. Voice conversion (VC) is one method of creating such audio
manipulations and uses audio recordings of the target and source speakers in
order to alter the voice of a source speaker to a target style, such as speaker
identity, prosody and emotion, while keeping the linguistic content unchanged
[7]. Another method is called text-to-speech synthesis (TTS). It can be assumed
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that the impact of language differences is less for VC than for TTS, as long
as VC methods do not rely predominantly on the TTS method. However, this
assumption has not yet been observed and discussed in detail. Instead, we can
observe that most of the VC methods presented recently have largely been evalu-
ated only on English or Mandarin speakers. An analysis of the papers presented
at ICASSP 2024 revealed that, out of 11 VC papers, five papers [8,9,11,12,21]
were evaluated on English speakers and four trained and evaluated on Mandarin
[13,16,22,23]. Another paper was evaluated on Japanese [14] and a further on
Portuguese and English [19]. The search found no publications with a focus on
VC in German. A search of Google Scholar with the terms “voice conversion”
and “German” yielded no results indicating the analysis of VC in the German
language (as of 5 July 2024). Consequently, it can be reasonably concluded that
our research represents the inaugural investigation into the applicability of state-
of-the-art VC models to the German language.

This paper evaluates VC models on German speakers of two genders (male
and female) in three different settings: 1) an any-to-any conversion setting, where
the target and source speakers are unseen during training, 2) fine-tuning the
models on the target speaker using different amounts of target speaker record-
ings, and 3) fine-tuning the models on a German dataset before performing
any-to-any conversion. Moreover, we examined the influence of target speaker
audio length using data ranging from 10 to 2400 seconds for generation, as this
has not been comprehensively evaluated and compared on VC methods for the
best of our knowledge. In doing this research we wanted to extend the applica-
tion area of VC to German and evaluate the applicability and generalizability of
models initial trained only on English data for generating German audio record-
ings. Given that the domains of application for VC, such as gaming or health,
are not confined to the English language.

In the following, the related work is presented (Section 2), followed by an
introduction of the four VC methods examined (Section 3). In Section 4 the
experiments conducted are explained, followed by the results (Section 5), a com-
parison with the results obtained in the paper on English data (Section 6) and
a conclusion (Section 7).

2 Related Work

When performing VC based on deep learning models, the typical first step is
to disentangle content information and speaker information from the source and
target speech. Subsequently, this information is used to convert the voice of the
speech. As a result, the quality of the converted speech relies on 1) the disen-
tanglement ability of the VC model, and 2) the reconstruction ability of the VC
model [7]. A major problem in VC is the speech representation disentanglement
(SRD). For SRD using text, an automatic speech recognition (ASR) model can be
used to extract the content representation. Another method is the use of shared
linguistic knowledge from a TTS model [7]. But these require a large amount of
annotated data for training the ASR or TTS. Therefore, text-free methods were
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introduced. Text-free methods learn to extract content information without the
guidance of text annotation. Common text-free VC approaches use for exam-
ple an information bottleneck, vector quantization, and instance normalization
for SRD [7]. However, their performance is, in general, lower in comparison to
text-based approaches [25]. Another way to differentiate between VC models is
their structure. Inspired by image style transfer in computer vision, variational
autoencoders (VAEs) and generative adversarial networks (GANs) were used in
VC. In this work, we focused on four state-of-the art voice conversion methods.
The models were selected mainly for their ability to work with little data from
the target speaker, focusing on many-to-many or any-to-any conversions, and/or
high-quality audio output.

3 Methods

For the selection of the four VC models, the state-of-the-art of VC models were
viewed. The RVC method was selected as the most well-known publicly available
method. FreeVC and QuickVC have a similar structure, also similar to RVC,
which is why they were chosen. Deviating from this, kNN-VC employs a distinct
structural configuration, yet has demonstrated promising outcomes with limited
data from the target speaker. In the following, the selected VC methods are
introduced in more detail.

kNN-VC1 [1], standing for k-nearest neighbours voice conversion, uses text-
free speech representation disentanglement and consists of an encoder-converter-
vocoder structure. kNN-VC extracts self-supervised representations of the source
and target speech using WavLM [2]. To convert the source utterance to the tar-
get speaker, each frame of the source representation is replaced with its nearest
neighbour in the target, whereby the average of its k-nearest neighbours in the
matching set, created from the target speakers utterances, is calculated. One
advantage of this model is that the kNN regression algorithm requires no train-
ing. Instead, different values for k, therefore different amounts of neighbours
from the target speaker set, need to be tested to find the most optimal k. The
authors obtained good and robust results at k=4. However, they also mentioned
that with more reference audio (>= 10 minutes) a larger value for k (around
k=10,20) is recommended to improve the quality. Therefore, we tested kNN-VC
with k=4, 10, and 20. As vocoder, HiFi-GAN is used and adapted to take self-
supervised features as input. For this, HiFi-GAN is trained on the LibriSpeech
train-clean-100 dataset [15], which consists of 40 English speakers.

FreeVC2 [7] adopts the end-to-end framework of the TTS method VITS [5]
(a conditional VAE augmented with GAN training) for high-quality waveform
reconstruction [18], but learns to disentangle content information without the
need of text annotation. FreeVC uses, as kNN-VC, the pre-trained WavLM [2]
model to extract linguistic features from the waveform and disentangles con-
tent information by imposing an information bottleneck to WavLM features, to
1 https://github.com/bshall/knn-vc
2 https://github.com/OlaWod/FreeVC

https://github.com/bshall/knn-vc
https://github.com/OlaWod/FreeVC
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extract the content information and removing speaker information. Furthermore,
spectrogram-resize-based (SR) data augmentation was proposed, which distorts
speaker information without changing content information, to strengthen the dis-
entanglement ability of the model. With this, instead of tuning the bottleneck
size, SR-based data augmentation is used to help the model learn to extract
the clean content information by distorting speaker information in the source
waveform. A pre-trained speaker encoder, adopted from [10], was used for the
target speakers encoding. During training, a discriminator is used to classify the
created speech recordings as real or fake. FreeVC was trained on the VCTK
dataset with 107 English speakers, the LibriTTS dataset (English) [24] was used
for testing. Again, HiFi-GAN was used as vocoder.

QuickVC3 [3] is, as FreeVC, based on VITS. Unlike the original VITS model,
QuickVC uses the inverse short-time Fourier transform (iSTFT) as part of the
decoder to speed up the inference, and HuBERT-Soft [4] as part of the prior
encoder to extract content information features, eliminating the need for text
transcription. Speaker embeddings are extracted by a speaker encoder which
is trained from scratch with the rest of the model. As with FreeVC, QuickVC
performs SR data augmentation on the speech in the training dataset so that the
content encoder learns to better extract the content information. For training,
the VCTK dataset was used (107 English speakers).

RVC4 is similarly structured as FreeVC and QuickVC, but is known not
through academia but through social media and discord server such as AIHub5.
AIHub Discord is one of many online presences, where people are meeting and
discussing novel methods for creating audio deepfakes. Originally, the server
started with So-Vits-SVC6 and then introduced RVC7, which is a newer AI app-
roach which usually produces audio recordings with the same or higher quality
than So-Vits-SVC, but needs less training time. Retrieval-based Voice Conver-
sion (RVC) is, again, based on VITS, but unlike FreeVC, RVC uses HuBERT
for embedding. According to its GitHub repository, RVC needs around 10 min-
utes to 1 hour of high-quality clear voice recordings (no background noise or
instrumental parts) for transformation. One can train an own voice model or
use a pretrained one. Pre-trained models can be found on rvc-models.com (e.g.
Donald Trump, Joe Biden, Vladimir Putin), AIHub Discord, and Huggingface.
We used the pre-trained model (v2; f0G40k) provided by the creators of RVC,
pre-trained on nearly 50 hours of audio from the VCTK dataset, and fine-tuned
it on the respective speaker.

3 https://github.com/quickvc/QuickVC-VoiceConversion
4 https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI
5 https://discord.com/invite/aihub
6 https://github.com/svc-develop-team/so-vits-svc
7 https://github.com/Mangio621/Mangio-RVC-Fork

https://github.com/quickvc/QuickVC-VoiceConversion
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI
https://discord.com/invite/aihub
https://github.com/svc-develop-team/so-vits-svc
https://github.com/Mangio621/Mangio-RVC-Fork
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4 Experiments

4.1 Experimental Setup

The experiments were performed in three different settings, for an overview of
these settings see Figure 1. For all experiments, the officially provided imple-
mentation of each VC model was used (see footnotes in Section 3).

Fig. 1. The processes of the three conducted experiments. As models, kNN-VC,
FreeVC, QuickVC, and RVC were used.

1) Any-to-Any Conversion First, the pre-trained models were used as
they were available on the respective GitHub repositories. These models were
applied on the test set (see Section 4.3) for record generation using three of the
four VC models introduced in Section 3. As for RVC, the model has to be trained
on the target speaker, therefore, no results for RVC are given in this setting. As
all models were trained on English data, we are sure that the target and source
speaker were not seen during the training of the used models. Therefore, the
conversion we performed is called any-to-any conversion. To evaluate the effect
of the amount of target speaker recordings used, different amounts were tested,
ranging from 10 seconds to 2400 seconds. As source speaker, the same speaker
was used for all experiments.

2) Fine-tuning on Target Speaker Secondly, the pre-trained models were
fine-tuned on each target speaker for up to 1000 epochs. Therefore, in this setting,
the target speakers are seen during model training. From the target speaker
recordings, 180, 300, and 900 seconds were used for fine-tuning. After fine-tuning,
the models were used to generate recordings. For kNN-VC, to evaluate the effect
of different values of k, for two target speakers the models were fine-tuned with
setting k=4, k=10, and k=20.
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3) Fine-tuning on German Data In the last setting, the pre-trained
models were fine-tuned on a German dataset for 100 and 700 epochs. With this,
we tried to find out if the results improve if the models were trained on until
then unseen German data, before performing any-to-any conversion, as done in
the first experiment. Again, only the results of FreeVC, QuickVC, and kNN-VC
are given. For the training, five hours of German audio recordings were used
(see Section 4.3). As we found that as much data as 2400 seconds of the target
speaker is not necessary to achieve good results, when fine-tuning the models
on German data we calculated results using 10 to 900 seconds of target speaker
data.

4.2 Evaluation Metrics

While evaluating, we focussed on two scores, one for the quality of the recording
and the other examining the similarity of the generated recording to the target
speaker. For evaluating the quality of the generated audio recordings, UTMOS
[17], which achieved the first place at the VoiceMOS Challenge 2022, was used.
For evaluating the similarity to the target speaker, the widely used voice simi-
larity metric provided by resemblyzer8 was applied, taking the generated audio
recording and a 5-minute recording of the respective target speaker as input.

4.3 Datasets

As dataset, the spoken wikipedia corpora (SWC)[6] was used. The SWC corpora
contains hundreds of hours of audio recordings in English, German, and Dutch
from divers readers about different topics. We used the German partition for
creating two subsets. One contains target and source speaker for testing. The
second dataset was used for fine-tuning the models in experiment three. As in
the SWC corpora each article is read only by one speaker, all recordings used
contained different content.

Test Dataset In the test set, records of five persons (P1-5), 3 men and 2
women, were used as target speakers. As source speaker (S), we used the first 100
seconds of the recording named 3D from the SWC Corpora (male). In Table 1
the test set, with the five target speakers and one source speaker, is introduced.
We selected target speakers with recordings in different quality. By doing this
we wanted to evaluate the effect of the quality of the target speakers recording
on the generated samples. The quality of the target speaker recording is given
in form of the UTMOS score and a subjective evaluation in Table 1. The target
speaker P1, which is a clear recording with little background noise or static, has
the best quality, while P2 was the worst, with noise and a voice playing in the
background9.

German Dataset In the experiment with the third setting, the models
are fine-tuned using German data. For this, another dataset was created with

8 https://github.com/resemble-ai/Resemblyzer
9 Listen to the recordings: https://nats.gitlab.io/swc/

https://github.com/resemble-ai/Resemblyzer
https://nats.gitlab.io/swc/
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Table 1. Test Dataset with 5 Target Speakers (P1-5) and 1 Source Speaker (S).

ID Article name Speaker Gender UTMOS Subjective evaluation

S 3D RBEReader male 2.86 Very clear.
P1 Atom Anhezu male 2.76 Very clear, no background noise.
P2 Aeneis Die keimzelle male 1.32 Recording plays in the background, slight

noise.
P3 Angriff auf Pearl Harbor Blik Blik male 2.35 Clear (swallowing at the beginning); slightly

worse than P1.
P4 Geschichte der Juden in

Braunschweig
Steffi Bütger female 1.93 Clear, but not as clear as P1.

P5 Hanseat Brigitte Trübenbach female 2.11 Very clear, minor background noise,
somewhat singing voice.

recordings of three persons. This dataset contains 5 hours of German recordings,
with one voice (P3) shared with the test dataset. All six recordings used for fine-
tuning on German data were of medium to good quality according to UTMOS,
and were therefore included in this study. In both, the test and fine-tuning
datasets, the first 20-30 seconds of the recording were removed to exclude the
introduction of the SWC corpora, which always contains the same content.

5 Results and Analysis

The following section presents the results of the experiments conducted in the
three settings, along with an overall comparison of the results. The results are
presented in the form of graphs, with the amount of target speaker data used,
in seconds, on the x-axis and the quality or similarity score on the y-axis.

5.1 Any-to-Any Conversion

For RVC the model has to be trained on each speaker, therefore, only the results
of kNN-VC (k=4), FreeVC, and QuickVC are given in Figure 2, containing the
quality evaluation using UTMOS, and Figure 3, with the evaluation results of
the similarity to the original target speaker. Table 2 shows the minimum, mean,
and maximum values of UTMOS (quality) and similarity to the original target
speaker, calculated over the target speaker lengths.

In Figure 2 one can see that for FreeVC and QuickVC, the quality does not
increase much when giving more data of the target speaker as input. For kNN-
VC, the quality increased slightly, with the amount of target speaker recordings
used. Furthermore, Figure 2 and Table 2 show, that the best quality recordings
for all five target speakers were generated using QuickVC.

When only viewing the results of kNN-VC, on target speaker P1 the best
quality results were obtained (min: 2.04; mean: 2.58; max: 2.71), compared to
kNN-VC on the other target speakers. On target speaker P2 the worst quality
results were reached (min: 1.33; mean: 1.71; max: 1.97), which was to be expected
as P1 has the best quality input and P2 the worst. Similarly, when viewing
FreeVC, the best minimum and mean value is obtained on P1, the best maximum
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Table 2. VC Models in any-to-any Conversion, evaluated based on Quality (qual) and
Similarity (sim). With +, P1 is marked as the target speaker with the best quality
audio recordings as input and P2 with − as the one with the worst quality. Best values
for each target speaker are bolded. The best scores per model are highlighted in dark
grey, the worst in light grey.

kNN-VC; k=4 FreeVC QuickVC
P1+ P2− P3 P4 P5 P1+ P2− P3 P4 P5 P1+ P2− P3 P4 P5

minqual 2.04 1.33 1.64 1.56 1.49 2.85 2.57 2.68 2.57 2.56 2.91 2.41 3.02 2.77 2.56
meanqual 2.58 1.71 2.51 2.12 2.19 2.95 2.66 2.93 2.70 2.69 2.98 2.84 3.28 2.89 2.76
maxqual 2.71 1.97 2.74 2.28 2.41 3.03 2.74 3.09 2.82 2.78 3.07 3.12 3.46 3.03 2.96
minsim 0.89 0.87 0.83 0.90 0.87 0.84 0.72 0.78 0.76 0.72 0.67 0.56 0.67 0.68 0.66
meansim 0.92 0.88 0.87 0.91 0.89 0.84 0.74 0.80 0.78 0.73 0.69 0.57 0.69 0.70 0.69
maxsim 0.93 0.89 0.88 0.92 0.90 0.85 0.75 0.81 0.79 0.74 0.70 0.63 0.71 0.71 0.70

Fig. 2. Results for Quality (UTMOS) of Any-to-Any Conversion (Setting 1) with vary-
ing target speaker length.

value on P3. On P2 the worst mean and maximum value is reached, but with
comparatively smaller differences than with kNN-VC (see Table 2). For QuickVC
in Table 2, the best quality results can be viewed on P3. Also, P2 does not stand
out with particularly poor quality results. This indicates that the quality of
the target speaker input is not that important for QuickVC (and FreeVC), at
least when measuring the output quality. Moreover, the overall quality results
of FreeVC and QuickVC were better than them of kNN-VC.

In Figure 3 the results for the similarity evaluation are given. When viewing
the similarity scores, contrary to the quality evaluation, with kNN-VC the best
scores on all five target speakers were reached (see Table 2). Again, when viewing
Figure 3, the scores do not improve much with more target speaker data. In
this setting, overall, only slight improvements were obtained when using more
target speaker data. For FreeVC and kNN-VC (Table 2), the best similarity
scores were obtained on P1, which could be due to the high-quality recordings.
However, different from previous observation, the worst similarity scores were
obtained on P3 (min:0.83; mean:0.87; max:0.88) and not on P2. When using
QuickVC, however, on target speaker P2, the similarity scores were much worse
(see Table 2) and even decreased further with the use of more recordings from the
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Fig. 3. Results for Similarity (Resemblyzer) of Any-to-Any Conversion (Setting 1) with
varying target speaker length.

target speaker (Figure 3). This indicates that the quality of the target speaker
recordings could have an impact on the similarity of the generated recordings
similarity when using QuickVC in the any-to-any setting, but not kNN-VC. Thus,
kNN-VC may be less dependent on the quality of the recordings.

As no improvements were visible after using 900 seconds of target speaker
data, only the kNN-VC results with k=10, and k=20 for up to 900 seconds of
target speaker data were used for calculating the minimum, mean and maximum
value in Table 3. A higher k slightly improved the quality results of kNN-VC
on target speaker P1. On the rest of the target speaker, the best minimum,
mean, and maximum values over different target speaker lengths were obtained
when using k=4 and k=10. Also, the best similarity score for each target person
didn’t improve much with a higher k. Again, the best minimum, partially mean
(exception: P2), and maximum values of all five target speaker were reached
when setting k=4.

Due to space limitations, no figure is provided, but when visualizing the
amount of target speaker data and the resulting UTMOS by different k’s, as
suggested by the authors of kNN-VC, a higher k and more data resulted in a
slightly better quality, however overall k=4 achieved best results (Table 3).

Table 3. kNN-VC with k=4/10/20 in any-to-any Conversion, evaluated based on Qual-
ity (qual) and Similarity (sim). Best values for each target speaker are bolded.

P1+ P2− P3 P4 P5

minqual 2.04/1.99/1.84 1.33/1.33/1.31 1.64/1.58/1.44 1.56/1.57/1.48 1.49/1.46/1.40
meanqual 2.58/2.61/2.61 1.71/1.60/1.57 2.51/2.43/2.41 2.12/2.10/2.10 2.19/2.13/2.13
maxqual 2.71/2.77/2.79 1.97/1.80/1.78 2.74/2.79/2.81 2.28/2.28/2.32 2.41/2.46/2.47
minsim 0.89/0.87/0.83 0.87/0.85/0.83 0.83/0.80/0.77 0.90/0.88/0.85 0.87/0.84/0.81
meansim 0.92/0.92/0.91 0.88/0.89/0.88 0.87/0.86/0.85 0.91/0.91/0.90 0.89/0.88/0.87
maxsim 0.93/0.93/0.93 0.89/0.89/0.89 0.88/0.88/0.88 0.92/0.92/0.91 0.90/0.89/0.89
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5.2 Fine-tuned on Target Speaker

In Figure 4 the results for the quality evaluation and the similarity scores of the
VC models when fine-tuned on the respective target speaker (ft_on_Person)
and without are displayed. Again, only slight improvements were achieved when
using more than approximately 300 seconds of target speaker data. In Table 4
the results of any-to-any conversion are compared to the results when fine-tuning
the model on the target speaker.

Fig. 4. Results for all Models with/without Fine-tuned on the respective Target
Speaker (Setting 2). Abbreviation: ft_on_Person:fine-tuned on the respective speaker.

Among the fine-tuned models, Quick VC had the best quality for the target
speakers P1, P3, P4, and P5. Considering each value instead of the mean values,
the quality of the generated recordings deteriorated when using the model fine-
tuned instead of the models without fine-tuning (see Figure 4). The best quality
scores are reached without fine-tuning using QuickVC (see Table 4). The best
similarity scores were obtained with QuickVC fine-tuned on the target speaker,
and for P1, P3, and P5, FreeVC received same scores (0.97), see Table 4. Thus,
the similarity scores increased significantly with FreeVC and QuickVC fine-tuned
on the respective speaker. However, for quality, higher scores were obtained with-
out fine-tuning (see FreeVC and QuickVC in Table 4). Overall, QuickVC showed
a superior performance of similarity and quality on the five target speakers (see
bold in Table 4).

RVC, which we were only able to evaluate in this setting, achieved compa-
rably lower scores, followed by fine-tuned kNN-VC in terms of similarity. With
RVC, similarity scores of 0.87 (P4) to 0.94 (P1) were calculated, which were all
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Table 4. VC Models in any-to-any Conversion vs. fine-tuned on the Target Speaker.
Best values for each target speaker are in bold. The best scores per model are high-
lighted in dark grey, the worst in light grey.

Quality
no fine-tuning (mean) ft_on_Person (mean)

P1+ P2− P3 P4 P5 P1+ P2− P3 P4 P5
kNN-VC; k = 4 2.58 1.71 2.51 2.12 2.19 2.68 1.39 2.14 1.98 2.03
FreeVC 2.95 2.66 2.93 2.70 2.69 2.86 1.36 2.44 2.19 2.29
QuickVC 2.98 2.84 3.28 2.89 2.76 2.91 1.36 2.90 2.41 2.50
RVC - - - - - 2.96 1.35 2.61 2.27 2.13

Similarity
no fine-tuning (mean) ft_on_Person (mean)

P1+ P2− P3 P4 P5 P1+ P2− P3 P4 P5
kNN-VC; k = 4 0.92 0.88 0.87 0.91 0.89 0.96 0.90 0.91 0.93 0.93
FreeVC 0.84 0.74 0.80 0.78 0.73 0.97 0.96 0.97 0.97 0.97
QuickVC 0.69 0.57 0.69 0.70 0.69 0.97 0.97 0.97 0.98 0.97
RVC - - - - - 0.94 0.89 0.93 0.87 0.89

lower than the ones of the other models. Regarding the quality, RVC was com-
parable with a UTMOS score of 2.96 on P1 which was even better than FreeVC
and kNN-VC but not as good as QuickVC.

The best quality and similarity scores per model were reached on P1 when
using the fine-tuned models. Also, the worst quality scores were, for all models,
on target speaker P2 (see Table 4). This shows a possible effect of the quality of
the used target speaker recordings, being the best for P1 and the worst for P2.

A higher k in kNN-VC fine-tuned on the respective target speaker, had only
slight effects on the results and were therefore excluded from Figure 4 for better
readability. Considering the similarity, for k=4, 10, and 20 no or only slight
improvements of 0.01 points were viewed. The quality scores were slightly higher
with a higher k. For example, for target speaker P2 with k=4 an UTMOS score
of 1.38, with k=10 a score of 1.43, and with k=20 a score of 1.45 was reached.
The scores were only marginal improved with varying k.

5.3 Fine-tuned on German Data

In Figure 5 the quality and the similarity scores for all settings are displayed.
With ft_on_german the results of the models when fine-tuned on the German
dataset are given. It should be noted that recordings of P3 are present in the
German dataset used for fine-tuning, as mentioned in Section 4.3.

When fine-tuning the models on the German dataset, all results of kNN-VC
are with setting k=4, as no substantial improvements were observed with a higher
k. The models were fine-tuned for 100 and 700 epochs. Results for both numbers
of training epochs are given in Figure 5. One can see that the results do not
improve with a higher number of training epochs (100 to 700). One exception
is target speaker P4 when using QuickVC fine-tuned on the German dataset,
here the quality improved by 0.78 on average when fine-tuning for 743 epochs
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(mean: 118 epochs: 1.48; 743 epochs: 2.26). For the rest of models and target
speakers the quality and similarity did not improve. Interestingly, the similarity
results of FreeVC (ft_on_german) on target speaker P4 dropped by 0.07 on
average when trained for more epochs (mean: 160 epochs: 0.81; 754 epochs:
0.74). Additionally, one cannot see a particular overall quality improvement in
P3, despite the presence of samples of target speaker P3, in addition to other
speakers, in the German training set.

Among the models fined-tuned on the German dataset, FreeVC and QuickVC
have the best quality scores, and they were achieved with only 10-20 seconds
of target speaker input. In terms of similarity, the best results of FreeVC and
QuickVC fine-tuned on the German dataset, are, all achieved when using 10-60
seconds of target speaker input. This shows, again, that a large amount of data
of the target speaker is not always required. QuickVC fine-tuned on the German
dataset has the best quality results for four of the five speakers, among other
models fine-tuned on the German dataset. When using kNN-VC, fine-tuned on
the German dataset, the best similarity scores for four of the five speakers were
achieved.

Fig. 5. Results for all Models on the five Target Speakers in all three Settings. Abbrevi-
ation: ft_on_Person:Fine-tuned on the respective speaker; ft_on_german:Fine-tuned
on the German dataset.

5.4 Overall Comparison

One can see that for all five target speakers the best similarity scores were reached
when fine-tuning the model on the target speaker. Whereby, the fine-tuning
on the target speaker was particular beneficial for FreeVC and QuickVC. Fine-
tuning kNN-VC on the target speaker improved the similarity scores slightly.
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When viewing the results for the quality evaluation, the quality of the results of
FreeVC and QuickVC fine-tuned on the target speaker are lower than when using
the models as they are (any-to-any conversion). Overall, the similarity does not
change much for all models and target speakers after giving 100-200 seconds of
target speaker data as input.

As with fine-tuning the models on the German dataset, the results differenti-
ate much, depending on the target speaker and model viewed. For QuickVC, the
similarity scores were improved on P2, P3, and P5 when fine-tuning QuickVC on
the German dataset. For P1 and P4 (and P5 fine-tuning for 743 epochs) the sim-
ilarity results deteriorated. Similarly, for FreeVC, on P3, P4, and P5 the results
could slightly be improved over them of the basic model with fine-tuning on the
German dataset. For both models, the best similarity scores are still reached with
fine-tuning on the target speaker. For kNN-VC, the similarity worsens for four
of the target speakers when fine-tuning on the German dataset, the exception
being P3, which is probably because of the presence of the target speaker in the
German dataset. For all five target speakers, the quality of FreeVC and QuickVC
fine-tuned on the German dataset worsened compared to the basic model. The
same applies to kNN-VC, except for P2, where the quality improved with the
fine-tuning on the German dataset for 707 epochs.

6 Comparison with English Results

In their respective papers, kNN-VC, FreeVC and QuickVC were evaluated using
subjective evaluation to measure naturalness and similarity on English datasets.
This involved calculating a 5-scale mean opinion score (MOS) and a similarity
mean opinion score (SMOS). Additionally, the authors of QuickVC used, as us,
Resemblyzer to calculate the speaker similarity. For kNN-VC, in the paper, only
results are presented for the any-to-any conversion scenario. For QuickVC, only
results for the model fine-tuned on the speaker are given, and therefore presented
in Table 5. The results in German in Table 5 are taken as the mean over the five
speakers presented in Table 4. It is not possible to provide ratings for RVC in
Table 5, as no scientific publications or ratings are available.

Table 5. Results given in the paper on English Data vs. our results in German. Abbre-
viations: aa: any-to-any conversion; ft: fine-tuned on target speaker.

Model Paper Results - English Ours - German
Datasets used MOS SMOS Quality (UTMOS) Similarity

(resemblyzer)

kNN-VC LibriSpeech test-clean aa: 4.03± 0.08 aa: 2.91± 0.11 aa:2.22
ft: 2.04

aa: 0.89
ft: 0.93

FreeVC LibriTTS aa: 4.06± 0.08
ft: 3.99± 0.09

aa: 2.83± 0.08
ft: 3.80± 0.09

aa: 2.79
ft: 2.22

aa: 0.78
ft: 0.97

QuickVC LibriSpeech, LJ Speech ft: 4.28± 0.15 ft: 3.58± 0.20
(resemblyzer: 0.86)

ft: 2.42 ft: 0.97
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The results between the scores in the papers (obtained on English data) and
ours differed significantly. This discrepancy can be attributed to the different lan-
guages used. But, the divergence in results may also be attributed to the use of
different datasets and evaluation metrics. In the aforementioned papers, subjec-
tive evaluations such as MOS and SMOS were employed, which may diverge from
objective measures such as UTMOS and the similarity calculated by Resemblyzer
used by us. Consequently, the results of the comparisons should be interpreted
with caution. In general, it can be stated that in the any-to-any condition, view-
ing kNN-VC and FreeVC, FreeVC has the superior MOS/UTMOS and kNN-VC
the superior SMOS/Similarity Scores in English and German. Upon examination
of the results of the fine-tuned models, FreeVC and QuickVC, it was found that
QuickVC exhibited superior MOS/UTMOS scores, while FreeVC (in the German
setting, in conjunction with QuickVC) demonstrated superior SMOS/Similarity
Scores. The authors of QuickVC [3] employed, as us, Resemblyzer for evaluation.
Comparing the English and German results, our results achieved a higher score
of 0.97 than the result presented in the original paper on English data (0.86).
In general, when comparing English and German results based on UTMOS and
MOS (both of which provide values on a 5-point scale), the English results were
considerably more favourable. However, as Resemblyzer provides a value between
0 and 1, it is not possible to make a direct comparison in terms of similarity.
This preliminary analysis indicates that the models exhibit similarities when
compared with each other using English and German data. However, it also
reveals significant discrepancies in the performance values of each model when
contrasting English and German samples.

7 Conclusion

Different settings for FreeVC, QuickVC, kNN-VC, and RVC were analysed. We
showed, that when using the models as they are, QuickVC achieved the best qual-
ity results and kNN-VC the best similarity scores. Whereby, only a few minutes
of target speaker input is needed for acceptable results. When fine-tuning the
models on the target speaker, with QuickVC the best quality and similarity
scores for four of the five target speakers were achieved. Whereas, the qual-
ity decreased with the fine-tuning process and the similarity increased. On the
other hand, with FreeVC comparably good similarity scores were achieved when
fine-tuned on the target speaker and the results of kNN-VC were just slightly
improved. When using RVC, good quality recordings were generated, but with
comparatively lower similarity to the target speakers. When fine-tuning on the
German dataset, again, with kNN-VC the best similarity scores were achieved,
and with QuickVC the best quality. Whereby, the results of the basic models were
only partially improved through the fine-tuning on German data. For kNN-VC,
different parameters of k were examined, however, no major differences in the
results were observed, the default setting of k=4 still being the best with little
data.

In addition, we analysed target speakers with varying quality recordings as
input. The target speaker P1, is represented by higher quality recordings, while
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P2 is represented by lower quality recordings. We found that the quality of the
recordings used as input has an effect on the generated audio recording, but
primarily on the similarity of the generated recording to the target speaker. The
quality of the generated recording is only marginally effected by the quality of
the recording used as input.

Overall, generating German recordings with VC models trained on English
data, the results of all models were rather good achieving good results on both,
quality and similarity. This is also reflected in our subjective analysis, when
listening to the recordings, the recordings were convincing and didn’t contain
accents or strangely pronounced words. Models trained on English can also be
used to generate convincing German recordings. Nevertheless, it was observed
that there were differences in the quality and similarity of the generated record-
ings when English or German was used as input.
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Abstract. The continuum of eXtended Reality Displays consists of Augmented
Reality, Mixed Augmented Reality or Mixed Reality and Virtual Reality systems.
Among these systems, mixed reality systems promise new set of applications as
it combines both 3D rendering of virtual reality and real world mapping of aug-
mented reality interfaces. Many mixed reality headsets like Microsoft HoloLens
relies on holograms to render 3D imagery on realworld objects. However, ensuring
the stability of these holograms, popularly known an swimming effect, is crucial,
as their position appears altered from the user’s perspective when viewed through
a Head-Mounted Display (HMD). This paper proposed a new way of tracking
object in real time and analysis of swimming effect of the hologram using robot. A
user study involving 10 users using 50 randomly chosen viewpoints found that the
proposed method is as accurate as the state of the art World Locking Tool (WLT)
with additional advantage of tracking dynamic objects.

Keywords: Extended Reality · Augmented Reality ·Mixed Reality · Hologram
Stability · Swimming effect

1 Introduction

Recently, XR has been explored in many areas such as manufacturing, healthcare, con-
struction, education, and so on. XR encompasses Virtual Reality (VR), Augmented
Reality (AR), and Mixed Reality (MR). VR is computer-generated graphics where the
user can navigate and interact with virtual objects with their senses. The AR refers to
overlaying computer-generated graphics onto the real world. The MR is the combina-
tion of the real environment and virtual environment where the user can interact with
each environment. The difference between AR and MR is the AR can just project the
virtual object in the real world. In contrast to AR, the MR can blend the real and virtual
world together [6]. The International Standardization Organization defined mixed and
augmented reality system as a system that uses a mixture of representations of physical
world data and virtual world data as its presentation medium [ISO 18039].

Traditional Augmented Reality systems can broadly be classified into video see
through and Optical see through systems. In video see through systems, an external
camera captures the reality while in optical see through system, the user can see the
reality directly. Theoptical see through systemsdonot compromise the quality of viewing
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outside environment by resolution or limitedfield of viewof a camera. Similarly, inmixed
reality headsets, Meta Quest series of headsets and Ajna Lens uses cameras mounted
outside the headset to capture environment while Microsoft HoloLens uses Holograms
to directly render 3D imagery on real world objects. The International Standardization
Organization defined hologram as interference pattern formed between the wave emitted
from the object and its coherent reference wave, which is recorded in the recording
material [ISO 17901].

Hologrambasedmixed reality systems foundmany applications in industrial automa-
tion, robotic teleoperation and so on. A set of use cases are described in section III of this
paper. However, all such applications require stable rendering of holograms as well as
synchronous updateswith users’ interaction. Change in the position of the hologramwith
respect to the user view will lead to difficulty in interaction. The term swimming effect
refers to the position of the hologram appearing different depending on the user’s view-
point. We require holograms to remain still, maintaining a consistent position regardless
of the viewing angle. However, it has been observed that there is a significant displace-
ment in the position of holograms when viewed from different angles. This phenomenon
can be attributed to Motion Parallax [Malla 2016]. When the viewpoint changes, vari-
ous objects in the scene undergo different displacements based on their depth. Motion
Parallax plays a crucial role in depth perception. Various methods have been introduced
to reduce the swimming effect of the hologram – the most popular one is the World
Locking Tool (WLT) discussed in details in next section. However, WLT requires to set
up anchors before start of mixed reality interaction. There are use cases like tracking a
drone or assembling components, where new components or objects may appear within
the visual field of a mixed reality headset during interaction (runtime), which cannot be
tracked and locked by WLT without halting the interaction.

In this paper, we proposed a new Computer Vision based method to track objects
within the visual field of a MR headset in real time and also proposed a method to
compare and analyze the swimming effect of the hologram with respect to operating a
fixed base robot. We compared proposed CV based method with the WLT.

2 Literature Review

The AR and MR technologies enable users to manipulate the real world by interacting
with the virtual world. In such cases, the stability of the virtual controls directly impacts
the accuracy of manipulating real-world objects. Holloway et al. [1997] analysed the
registration error of the HMD and identified several reasons for this error, including
system delay, tracker error, calibration error, and optical distortion. As the viewpoint
changes, the virtual object may appear misaligned with the real object, resulting in the
swimming effect that affects the user’s understanding of the real and virtual objects. The
researchers discovered that even slight head movements could lead to significant regis-
tration errors due to system delay. A conventional method for registering holograms onto
real objects involves three steps: first, calibrating the system parameters, then tracking
the object to be augmented, and finally generating appropriate virtual content to overlay
onto the real world. Zheng et al. [2013] proposed a closed-loop registration method to
accurately register holograms onto the real world. This method involves comparing the
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target image with an image that consists of both real and virtual objects, allowing for
precise registration of the virtual objects onto the real world.

Vassallo et al. [2017] investigated this stability in a clinical environment while using
HoloLens. They found manageable drift in the holograms. However, this drift did not
significantly impact the device’s usability in clinical settings, as they attributed it to the
device’s simultaneous localization and mapping capabilities. Liu et al. [2018] focused
on analysing hologram stability during head movement, discovering that the holograms
drifted along with the user’s head movement. For slow head movements, the deviation
of the head tracking value compared to the reference value was 0.56 cm, and for fast
head movements, it was 2.63 cm. Guinet et al. [2019] examined HoloLens head tracking
accuracy using a MOCAP system. Their analysis revealed a root mean square error
ranging from 9 to 53 mm between the two datasets. They also found that sudden changes
in trajectory increased the tracking error, while variations in head movement speed did
not significantly affect HoloLens’s head tracking accuracy.

Holograms can be rendered on real objects with the help of markers. Gsaxner et al.
[2019] proposed amarkerless virtual object registrationmethod on the realworld to assist
surgeons. They utilized image-to-face mapping to register the holograms. The proposed
method detects the patient’s face from the image and registers the virtual object. The
mean registration error of the proposed method was noted to be 9.2mm. Sun et al.
[2020] proposed a method to register holograms using a combination of optic tracker
data points and HoloLens depth map data. Jiang et al. [2020] evaluated the HoloLens-
based vascular localization system. They used a 3D model to render the hologram and
noted the registration error to be a minimum of 1.35 mm and a maximum of 3.18 mm.

Krupke et al. [2019] introduced a taxonomy for classifying MR based Robot User
Interfaces (MRHUI) into four categories based on their usage as interaction, mediation,
perception, and acting. In a survey by Cheng et al. [2020], challenges in implementing
MR technology across various applicationswere identified. The challenges encompassed
spatial information accuracy, User Interface (UI) design, data storage and transfer, and
multiuser collaboration. Weinmann et al. [2021] conducted an experiment to assess
HoloLens spatialmapping accuracy and localization in indoor environments. Comparing
laser scanners with HoloLens, they found laser scanners to produce more precise data.
Nevertheless, HoloLens still exhibited mapping accuracy and localization within a few
centimetres. In a comparative study by Soares et al. [2021] between HoloLens and
HTC VIVE tracking, HoloLens demonstrated lower accuracy compared to HTC VIVE.
Consequently, HoloLens is preferred for applications where slightly reduced accuracy
is tolerable in exchange for better performance. Analysing HoloLens 2 spatial mapping
capabilities in vast monumental heritage environments, Teruggi et al. [2022] observed
that the spatial model produced by HoloLens showed negligible deviation in close range
but increased linearly with distance when compared to reference data. The study also
highlighted challenges with tracking objects in low-light conditions and difficulties in
tracking single architectural structures and uniform surface patterns.

Through the literature review, several factors contributing to hologram registration
error were identified, including system delay, tracking error, and calibration error. Addi-
tionally, the stability of the hologram is influenced by head movement, with the extent
of drift dependent on the speed of the movement. To mitigate hologram drift, the use of
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anchors within the hologram and the application of theWorld Locking Tool (WLT) have
shown promise. However, there has been a lack of comparative studies on the swimming
effect of holograms using different methods. The position of the hologram appears to
vary depending on the viewpoint, making hologram stability crucial for applications in
Human-Robot Interaction (HRI) to define waypoints for robots. In this paper, we pro-
posed a new way of analyzing the swimming effect of the hologram. We conduct an
analysis of three methods for evaluating hologram stability: spatial anchor, World Lock-
ing Tool (WLT), and the base method, which involves rendering holograms without
using anchors or WLT.

3 Applications

Mixed Reality systems found many applications in both research and industry. In this
section, we have described a set of applications justifying the need for our subsequent
study on stability of holograms.

We developed a MR based guidance system for factory shop floor workers to assist
them in performing component assembly tasks obviating the need of repeated training
and by not making any assumptions about the skill level of the worker (https://youtu.
be/3ftXEYmZ21g). Assembly task is one of the most complex tasks performed by shop
floor workers. A shop floor worker assembles various manufactured components in a
structured manner during the assembly task leading to the final product. These compo-
nents vary in size, geometry, weight and several parts might look similar with subtle
variations in terms of geometry. A computer vision algorithm was integrated with MR
to continuously map and track real objects and virtual instructions. Instructions were
given to the user visually by changing color, animating a virtual hand grabbing, using
audio, and displaying text messages. The multimodal user interface enabled the user to
interact with the system through either voice commands or selecting buttons, reducing
the complexity of interaction and allowing the user to choose a preferred interaction
modality. Instructions about the next assembly step were provided to the user by chang-
ing the virtual replica’s color of the real component and animating the virtual hand to
pick up the right component. The animation of the assembly step allowed the user to
learn the assembly step in real time and perform the assembly task. Multiple user studies
confirmed users could undertake assembly tasks in the proposed method faster than a
fully automated assembly and video based instruction [Raj 2023] (Fig. 1).

We extended this MR assisted manual assembly process towards a teleoperated
assembly process, where users operated a robot frommixed reality environment (https://
youtu.be/HeuO0WgQa0A). The robot followed a path defined through the mixed reality
interface for picking up component and then placed it in appropriate location (Fig. 2)
[Raj 2024].

The MR based path definition was further explored on developing a tele-operated
welding assistant where the user defined an arc-welding path through his fingers and
a tele-operated robot followed the exact path (Fig. 3, https://youtu.be/oZ6rcBwvrwM).
We also undertook comparative studies between VR and MR assisted robotic welding
system [Rao, 2023].

In all of these applications, the 3D hologram helped users to visualize and track the
6-DoF of virtual objects corresponding to real objects. It was also essential to anchor the

https://youtu.be/3ftXEYmZ21g
https://youtu.be/HeuO0WgQa0A
https://youtu.be/oZ6rcBwvrwM
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Fig. 1. MR based Component Assembly System
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Fig. 2. MR based Robot Teleoperation

Fig. 3. TeleRobotics Welding Application

virtual object at a fixed offset from the real object as the visual field was often cluttered
with multiple real and virtual objects based on the number of assembly or welding
related components. The stability of holograms was essential for the user acceptance of
each system. The subsequent sections present the anchoring tool and proposed study on
quantitatively evaluating the stability of hologram using a robotic manipulator.

4 Computer Vision Based Tracking and Swimming Effect

MR is a user environment where physical reality and digital content are combined to
enable interaction with and among real-world and virtual objects. Virtual instructions
are registered on real objects by attaching markers. However, attaching and tracking
markers on small and dynamic objects is challenging. We propose a CV based holo-
gram registration method that uses image processing and machine learning techniques.
This paper utilizes template matching, an image processing method, for object detec-
tion, and a regression-based mapping method to render holograms. We used opencv
TM_CCOEFF_NORMED function for matching template. Template matching detects
the position of objects in the real world. These position values are then sent to a regres-
sion model to predict real-world positions. To improve hologram registration accuracy,
we placed four markers around the robot workspace, as shown in Fig. 4. The positions
of these markers are detected from the input image and perspective transformation is
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applied to focus on the robot workspace, ensuring a consistent workspace regardless of
the image capture position. The proposed hologram registering method does not depend
on the model which we choose for detecting objects. For large number of components
and cluster environment, we can choose the most suitable object detection model to
detect the object such as Yolo, Faster RCNN, etc.

For training the regression model, pixel values in the image were randomly selected,
and corresponding robot position values were obtained by manually moving the robot.
Various regression models such as linear regression, polynomial regression, support
vector regression, and random forest regression were trained with this data. We trained
the model with 20 data points. The training error of different models is shown in Table 1.
The linear regression model yielded superior results with an R-squared value of 0.998
compared to other models. To render the hologram, we capture an image of the robot
workspace, apply perspective transformation to it, and use template matching to detect
object positions in the transformed image, providing the center of the bounding box
value. This bounding box value is then inputted into a regression model to predict the
actual X and Y positions of the object in the real world. Finally, the system sends these
X and Y values to the HMD, where they are used to render a sphere-shaped hologram
with a diameter of 1 cm.

Table 1. Machine Learning Model Comparison

Model Name Mean Square Error (mm)

Linear Regression 1.61

Random Forest Regression 208.51

Polynomial Regression 15.10

Support Vector Regression 834.88

TheWLT anchors the hologram in the real world by continuously adjusting the head
coordinate system. As a result, the user moves around the real world, the holograms
stay precisely on the same position. The technology behind the WLT locks the entire
holograph space of an application to the physical world. A hologram put in position
relative to physical world features will stay fixed relative to those features, as well as
remaining fixed relative to other holograms. When multiple users share the same world-
locked environment, they can interact with the same virtual elements from different
perspectives.

5 Evaluation

We evaluated the swimming effect of the hologram and the proposed hologram
registration method in this section.

Experiment Setup
We developed an MR application to analyse the stability of holograms in the robot’s

workspace. We used HoloLens 2 to experience the MR environment. HoloLens2 is a
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standalone computer system that has a Qualcomm snapdragon 850 compute platform,
and a second-generation custom build holographic processing unit. The robotic manipu-
lator (DobotMagicianLite) is used here to evaluate the swimming effect of the hologram.
The robot has the following specifications, a maximum payload of 250g and a repeata-
bility of± 0.2mm. The application was created with the help of Unity andMRTK. After
developing the application, it was built and deployed on HoloLens 2.

The MR-based application requires a common origin between the robot and MR
application because both systems have different coordinate systems and origins. The
marker (QR code) is an effective way to define the common origin for the robot and MR
environment. We attached the QR code to the robot’s origin, and then we rendered the
hologram in the MR environment with respect to the marker, shown in Fig. 4. Now, we
can define the position of the robot and hologram relative to the marker, as the marker
acts as a common reference point for both the robot and hologram.

Fig. 4. Experiment Setup

User Study
We conducted a study to analyse the effect of swimming on robot path planning.

We recruited 10 male participants with an average age of 25.8 years. We developed
two applications in UNITY, a game engine, and deployed them on HoloLens2. In one
application, we used the WLT method, while the other employed CV-based hologram
rendering, which we did not use. In the WLT method, holograms were rendered ran-
domly in the robot’s workspace. For CV-based rendering, we detected randomly placed
objects from input images and then rendered the hologram accordingly. Once the holo-
gram was rendered, users manually moved the robot to its position. After aligning the
robot end effector with the hologram, they clicked a virtual button to confirm align-
ment. We recorded both the robot end effector and hologram positions with respect to a
marker. Once these positions were recorded, users moved to a different viewpoint and
observed the hologram’s position relative to the robot end effector. If the alignment was
not satisfactory, users adjusted the robot’s position to match the holograms. Otherwise,
no movement was necessary. Users then recorded the position values. Similarly, users
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collected robot and hologram positions from 10 randomly chosen viewpoints. Addition-
ally, users followed these steps to collect positions for 5 holograms placed at different
locations in the robot’s workspace. We collected data from a total of 10 users.

We analysed the data and calculated the perceived position error due to the swimming
effect. The Root Mean Square Error (RMSE) due to the swimming effect between CV-
based rendering and WLT is shown in Figs. 5 and 6. From the analysis, we found that
the swimming effect of the hologram can impact robot path planning when placing
holograms. We conducted the t test on analyzing the swimming effect. The statistical
significance level was set at 5% (α = 0.05). There was no significant difference in
the swimming effect between the proposed method and WLT in XYZ directions. The
swimming effect of the hologram along the X axis in the proposed method compared to
WLT. If we compare the swimming effect among all directions, the swimming effect in
X direction is less compared to other directions. From the participant answer, they found
that when they change viewpoint height, they felt more swimming effect. Therefore, the
study suggests that the swimming effect of holograms should be considered while using
the holograms to define the robot way points.
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Fig. 5. Swimming effect comparison

We analyzed the discussed hologram registration method using different camera
inputs: specifically, the chin camera and the external camera.We selected the HoloLens2
RGB camera as the chin camera and the Logi HD 1080p camera as the external camera,
which is mounted above the robot workspace to capture images. The hologram rendering
method remains consistent for both camera inputs. Next, objects were randomly placed
in the robot workspace. Images of the workspace were captured from the chin camera
and the external camera and then sent to the proposed method to render the hologram.
The position of the object and the registered hologram with respect to the robot were
recorded. We calculated the RMSE value between the chin camera and the external
camera, as shown in Figs. 7 and 8. From the analysis, we found that the mapping error
is lower with the external camera compared to the chin camera. We conducted the t test
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Fig. 6. Swimming Effect Comparison on each axis

to analyse the mapping error due to two cameras. The statistical significance level was
set at 5% (α = 0.05). We found that there was no significant difference in the mapping
error in X and Y direction. The increased mapping error along Y direction when using
the chin camera results from changes in the capture pose and shape of the component,
which affects the accurate prediction of drawing bounding boxes on objects and leads
to registration errors. Conversely, the discrepancy between the predicted pixel position
of the bounding box and the actual pixel position of the object occurs due to the object’s
shape. This mapping error can potentially be reduced by training the regression model
by considering the centre of the bounding box.

Discussion
This paper introduces a novel approach to assess the swimming effect of holograms

by aligning a robot end effector with the perceived hologram position. The state-of-the-
art WLT method enhances tracking accuracy by adjusting the head’s coordinate system
but does not effectively mitigate the hologram’s swimming effect during changes in
viewpoint. This phenomenon has implications for the precision of robot path planning.

Additionally, the proposedCV-based hologram registrationmethod successfully reg-
isters holograms without requiring markers on objects, making it suitable for environ-
ments with movement constraints. Analysis of hologram registration errors highlights
the need to minimize mapping errors, which can be achieved through improved object
detectionmodels that focus on the center of bounding box values.While templatematch-
ing was initially used for object detection in this study, employing advanced object
detection models can enhance accuracy in capturing bounding box values for hologram
registration.
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Fig. 7. Camera mapping error comparison
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Fig. 8. Camera mapping error comparison about each axis

6 Conclusion

We introduced a novelmethod to analyze the swimming effect of holograms using a robot
within a MR environment. This study compared the swimming effects of holograms
between the WLT method and the proposed hologram registration method. The findings
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indicate that the swimming effect of holograms can significantly impact the definition of
robot paths. Furthermore, we evaluated the registration accuracy of the proposedmethod
using inputs from both the chin camera and an external camera. The results showed a
reduction in hologram registration errors when using the external camera input. In future
research, we plan to delve deeper into understanding the swimming effect of holograms
by exploring additional variables such as head rotation and movement. Additionally, we
enhanced mapping accuracy by incorporating shape of the object and image captured
position as a factor in the regressionmodel. This approach lays a foundation for analyzing
hologram stability and hologram registration precision in MR applications.
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Abstract. Neural radiance field (NeRF) is a technique for synthesiz-
ing novel-view images based on an understanding of scene geometry.
Recently, there have been studies that remove objects from NeRF, which
makes it possible to synthesize novel-view images with objects removed.
Most existing methods apply a pretrained inpainting model to each
multi-view image to remove objects, and use these images to train the
NeRF model. However, these approaches not only require a lot of feed-
forward of the inpainting model, but also lead to inconsistency problems
between the inpainted images. To address these limitations, we propose a
method to minimize the areas that need to be filled. To this end, we esti-
mate never-seen regions that are occluded in all images based on density,
and apply inpainting only to those regions. After removing target objects,
we select the images that allow the final trained NeRF to consistently
fill in the removed regions. Therefore, the proposed method consistently
removes target objects from NeRF, and the effectiveness of the proposed
method is demonstrated through various experiments. Furthermore, we
suggest practical techniques to simplify the training processes and pro-
vide a new 360◦ real-world dataset for inpainting in NeRF.

1 Introduction

Neural radiance field (NeRF) [16] has gained significant popularity in the task
of novel view synthesis, owing to its outstanding performance. There have been
previous works that aim to improve NeRF [1,2,32], which have resulted in an
accurate representation of 360◦ real-world data. As the ability of NeRF to recon-
struct real-world scenes continues to improve, a variety of practical applications
are emerging. One of the promising applications is object removal from the
NeRF, which can be applied to various fields such as immersive content manipu-
lation, VR/AR algorithms and game engines. A simple way to remove the target
object is to recapture the scene without the object and retrain the NeRF model.
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Fig. 1. Left: The bag is not visible in the image taken with CAM02, but is visi-
ble in the other images. Right (Inputs): Captured images using different cameras.
Right (Masks): Comparison between an input object mask and an estimated never-
seen mask. Right (Results): Comparison of results between SPIn-NeRF w/o R and our
method. Note that the bag hidden behind the target object has been restored from the
other-view image through our method.

However, this is impractical, cumbersome, and may not accurately reproduce
the original scene. Therefore, a method for removing objects from the original
NeRF model becomes necessary. Recently, there have been studies [14,17,28]
that use an inpainting model to get rid of objects from the NeRF. Specifically,
these methods remove the target objects for each image with masks, fill in erased
regions using the inpainting model, and then train the NeRF by the inpainted
images. These methods are very simple, but are highly dependent on the quality
of the inpainting model. When the erased area becomes large and the back-
ground clutter becomes complex, inpainting quality is significantly degraded.
Also, the contents generated by the inpainting model for each input image are
inconsistent, which limits the performance of the NeRF.

To relieve these problems, we exploit information that is occluded by the
target object but visible in the other-view images. We observe that other-view
images have information beyond the object and the NeRF can fill the masked
regions with contents from other-view images, as in [10,25]. As shown in Figure 1,
the bag behind the target object is not visible in the image taken with CAM02,
but it is captured in the images taken with CAM01 and CAM03. Thus, there is no
need to fill the area (i.e. bag) behind the target object with the inpainting model
in the image taken with CAM02. In other words, we can fill those regions from
other-view images by training a NeRF excluding pixels in masked regions.

However, training the NeRF cannot fill in occluded regions in the all-view
images, thus we define it as never-seen regions. Based on above observations, in
this paper, we propose a method to fill erased object regions by using informa-
tion from other-view images as much as possible, and then apply an inpainting
model to fill only the remaining never-seen regions. Since the inpainting model
is applied to a minimal (i.e. never-seen) area, there are fewer inconsistencies



418 Y. Lee et al.

between restored images and less sensitivity to the inpainting model. As a result,
a method for the never-seen region estimation is required, and for this purpose,
we utilize densities provided by the NeRF models. Specifically, we estimate the
never-seen region using the characteristics of the original NeRF trained with
input images containing the target object and the masked NeRF model trained
by excluding pixels in the object region. As a result, our proposed method dra-
matically reduces the mask area that needs to be filled, resulting in a noticeable
improvement in the performance of NeRF object removal. We train all the pro-
cesses with our proposed efficient training strategy. To validate our methods, we
make our new dataset, our dataset consists of real-world images captured in 360◦,
and includes ground truth (GT) for the evaluation of the object removal task.
We validate that our proposed method is superior to the state-of-the-art object
removal in NeRF [17,28] on both existing benchmarks [8,9,34] and our newly
constructed data. To summarize, our paper has the following contributions.

– We introduce the concept of never-seen regions that are invisible in all-views,
then remove objects from NeRF by inpainting only the never-seen regions.

– We analyze density profiles of original and masked NeRF with respect to
never-seen regions, and propose a method for never-seen region estimation.

– We present an efficient training strategy that reduces the training time by
finetuning the never-seen regions in the trained NeRF.

– We provide a real-world 360◦ dataset with GT to facilitate evaluation that
can be useful in NeRF object removal tasks.

2 Related work

Image Inpainting. Image inpainting is a task of plausibly filling in dam-
aged (i.e. erased) areas of an image. It is most commonly used when removing
objects from the image. Traditionally, there have been many studies in image
inpainting using patch-based methods [20]. With the progress of deep learning,
inpainting techniques [5,38] have been actively researched and have achieved
significant performance improvements in a variety of settings. Many convolution
neural network based inpainting methods [3,13,23,31] have been introduced and
have shown promising results, but tend to perform poorly on very large masks.
Recently, diffusion-based inpainting methods [12,15,19] have emerged for more
realistic reconstructions. However, these methods use information from only one
image, thus they cannot restore a fully occluded object. For video inpainting,
there have been methods [33,35] that use the optical flow and utilize the infor-
mation in other frames. NeRF data can also be treated as a type of video, but it
is not suitable to apply video inpainting because the movement between frames
is large and the trajectory is often not continuous. Therefore, for multi-view
images, including NeRF data, a specialized inpainting method is required.

Object Removal from NeRF. Since the first NeRF model [16] was intro-
duced to synthesize realistic novel-view images, much follow-up research has
been conducted in various directions, including synthesis quality [1,2,26,32] and



Consistent Object Removal by Estimating Never-Seen Regions 419

generation speed [4,6,18,22]. In the case of scene manipulation field, there has
also been various research on the object removal from NeRF. The general process
of removing object from NeRF consists of erasing target objects and restoring
space where objects were located. Typically, there are feature-based and RGB-
D prior-based methods for removing objects from NeRF. Feature-based meth-
ods [7,10,24] focus on creating an accurate segmentation mask, and decompose
object from NeRF. RGB-D prior-based methods [14,17,28,30] utilize the guid-
ance of the restored color and depth maps, and restoration process normally uses
inpainting; however, this method has the following two limitations. First, their
performance highly depends on the quality of the inpainting model. Usually, per-
formance of inpainting models deteriorates as the area to be filled becomes larger
and the background becomes more complex. Second, inconsistencies between
inpainted images cause quality degradation. In the case of 360◦ data with large
movements between images and background clutters, objects will cause different
occlusions in each view, resulting in inconsistent inpainting results. Although
Weder [28] recently introduced a method to increase the consistency of object
removal through view selection, it still has the limitation of having to fill a large
area with the inpainting model. To overcome these limitations there are methods
to improve quality by reducing the area to be filled, but they have only been
effective in certain situations. Multi-view inpainting [11] uses traditional warping
method and mask refinement [17] uses distance similarity to utilize other views
information. These methods are pose based and they can find never-seen regions
in ideal case on forward facing data. However, they are not suitable for 360◦

data, because of large angles between images on 360◦ data. To find never-seen
region on 360◦ data, we need a pose-independent method. To this end, we pro-
pose a novel density-based never-seen region estimation method, and show its
effectiveness.

3 Method

In this section, we briefly review the neural radiance field (NeRF) as back-
ground knowledge (Section 3.1) and explain a masked NeRF for the object
removal (Section 3.2). Then, we describe a density-based method for esti-
mating never-seen regions across all images using both original and masked
NeRFs (Section 3.3). Finally, we describe a view selection process to make the
final NeRF model consistently fill erased regions (Section 3.4). Additionally, we
introduce techniques to speed up the training processes (Section 3.5). The overall
pipeline of our method is illustrated in Figure 2.

3.1 Background: NeRF

Basically, the NeRF [16] is mainly used for novel-view synthesis based on under-
standing the 3D geometry of the scene. The NeRF consists of multi-layer per-
ceptrons (MLPs) that take 3D position x and 2D ray direction d as inputs and
estimate color c and density σ as follows.

FΘ : (x, d) → (c, σ) , (1)
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Never-seen region
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Inpainting

Result

Masked NeRF

Never-seen region
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Original NeRF

Masked NeRF

Final NeRF

Input images, masks

Input images

Inpainted image

Fig. 2. Overview of our method. We take the image In and the mask Mn as input
to train masked NeRF. We train the original NeRF starting from the weights of the
masked NeRF model. Then, we use the density σm, σo of the two NeRFs to create a
never-seen mask. Using an estimated never-seen mask, we apply an inpainting model
to get inpainted images ĨM

n . Finally, we further train the final NeRF starting from the
weight of the masked NeRF using inpainted images ĨM

n .

where FΘ denotes MLPs with learnable parameters Θ. To get the color of the
pixel in the image corresponding to each viewpoint, the NeRF uses a volume
rendering using the color and density of the rays passing through that pixel.
Specifically, since rays are continuous, the c and σ are sampled with a discrete
grid, and the color of a pixel, Ĉ(r), is calculated as follows.

Ĉ(r) =
N∑

i=1

Ti(1 − exp (−σiδi))ci, (2)

where Ti and δi are the transmittance and the distance between adjacent sam-
ples. Also, ci and σi are the color and density of the ith sample. To train a NeRF,
we use a reconstruction loss for the set of rays R in each batch as follows.

L =
∑

r∈R

∥∥∥Ĉ(r) − C(r)
∥∥∥
2

2
, (3)

where C(r) represents the pixel value for a ray r in the training images. Fur-
thermore, hierarchical volume rendering [16] and distortion loss [2] are utilized
to focus more on objects rather than empty space when grid sampling.

3.2 Masked NeRF for Object Removal

To remove a target object from NeRF, an inpainting model should be applied
to each training image, given a mask of the object to be removed. This requires
many feedforward of the inpainting model and leads to inconsistencies between
inpainted images. To mitigate these drawbacks, a masked NeRF is considered
as mentioned in [27–29] as a baseline method, which trains the NeRF model by
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excluding rays corresponding to objects that need to be removed. Specifically,
when training the NeRF model based on Equation 3, we utilize only the sampled
ray set Rm, excluding rays corresponding to the target object to be removed,
using masks for each training images. Since what is invisible in one-view is visi-
ble in another, it can work without applying the inpainting model, and there is
less inconsistency problem. Unlike individually applying a 2D inpainting model
for each image to fill the mask regions, the masked NeRF compounds informa-
tion from multi-view images. Especially for 360◦ data with abundant multi-view
information, masked NeRF outperforms inpainting models.

Even the masked NeRF restores regions that are visible in other-view images,
it does not properly recover never-seen regions that are completely invisible in
the all other-view images. Therefore, we introduce a method for never-seen region
estimation and only apply the inpainting model to the never-seen regions. Note
that all areas except never-seen regions are filled by masked NeRF.

3.3 Never-Seen Region Estimation

Our goal is to fill the never-seen region by finetuning the masked NeRF with
inpainting, therefore we have to estimate never-seen region. In this paper, we
analyze the density characteristics of the original NeRF and the masked NeRF
for the same scene, and use them to estimate never-seen regions. As shown
in Figure 3-(a), if the area to be removed is occluded in a one-view, but visible
in others, the Ray1 from the original NeRF will pass through the object and then
go back into the empty space again. On the other hand, for never-seen regions
that are not visible in all-views, the Ray2 will not emerge back into the empty
space. The ideal density profiles of the original NeRF for the two rays are shown
in Figure 3-(b,c). Based on these density profiles, if t is the distance where the
object is erased, density at the distance immediately in front of t is small for the
visible region from other-views, and large for the never-seen region.

Therefore, in order to distinguish the visible region and the never-seen region,
we need to estimate the distance of the end location where the object is removed.
To this end, we utilize a masked NeRF trained using sampled rays in the only
non-masked regions. As shown in Figure 3-(d), we observe that the density from
the masked NeRF for rays passing through the region where the object is erased
is empty. In particular, density profiles of both Ray1 and Ray2 are opaque (high
density) only at the very end, as shown in Figure 3-(e,f). In fact, densities of
the regions for the erased object should be unknown because they are excluded
when the masked NeRF is trained. However, by using the distortion loss proposed
in [2], we can take advantage of the fact that uncertain densities floating around
like clouds are absorbed by opaque (dense) regions. Therefore, for each ray, based
on these profiles, we can estimate the distance t when the object is erased. As a
result, we can utilize the density profiles of the original NeRF and the masked
NeRF to estimate the never-seen region, which is described in detail as follows.

Density Binarization. We denote the densities obtained from the original
NeRF and the masked NeRF as σo and σm, respectively. Estimated densities
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Fig. 3. (a) Ray profiles of original NeRF with objects. Density profiles of a ray pass-
ing (b) and a ray non-passing (c) through the object, in the original NeRF. (d) Ray
profiles of masked NeRF without objects. Density profile of a ray passing through
empty space in a masked NeRF. (e) and (f) are the rays at the same location as (b)
and (c), respectively.

are continuous values, thus we perform binarization to convert them like the
profiles in Figure 3. Since the densities estimated from the original and masked
NeRFs have different scales, we set thresholds for each model as τo and τm,
respectively. For the original NeRF, we set τo relatively high because there are
clearly dense target objects. On the other hand, the density of the masked NeRF
is relatively low, thus we set τo to be low. Based on thresholds τo and τm, we
compute binarized densities for the original and masked NeRFs as follows.

σ̂o = 1 [σo > τo] , σ̂m = 1 [σm > τm] × σ̂o, (4)

where 1 [·] is an indicator function. Note that the reason why σ̂o is multiplied
when computing σ̂m is that σ̂o is zero except in areas with opaque objects (high
density), which suppress areas where there are no obvious objects.
Never-Seen Pixels Classification. Based on the estimated σ̂o and σ̂m, we
determine the never-seen regions. Specifically, we find the smallest index i such
that σm

i = 1. In other words, i means the index of the nearest opaque place where
the ray would hit after the target object is erased. After that, by looking at σo

i−1,
we can determine if that region is completely obscured by the target object or
not. If σo

i−1 = 1, it is a never-seen region, otherwise, it is a region visible in the
other-view images. We create a never-seen region mask by applying the above
processes to all pixels in the mask regions. The entire processes for detecting
never-seen regions are summarized in Algorithm 1.

3.4 View Selection for Masked NeRF

With obtained never-seen masks, a pretrained inpainting model is applied and
the NeRF is trained with the inpainted images. In 360◦ data, masked NeRF
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Algorithm 1: Never-Seen Region Estimation
1 Input: original NeRF F o

Θo
, masked NeRF F m

Θm
, masks Mn, thresholds τo, τm

2 Output: never-seen masks Mns
n

3 foreach r ∈ Mn do
4 σo ← F o

Θo
(r), σm ← F m

Θm
(r)

5 σ̂o ← 1 [σo > τo], σ̂m ← 1 [σm > τm] × σ̂o

6 i ← list of indexes having σ̂m = 1
7 if i = ∅ then
8 Mns

n (r) ← 0
9 else

10 i ← min (i)
11 if σo

i−1 = 1 then
12 Mns

n (r) ← 1
13 else
14 Mns

n (r) ← 0

reconstructs the entire scene, except for never-seen regions. We only need to
finetune the never-seen region from masked NeRF with inpainting, and never-
seen region is small and simple, thus this does not require inpainting in all-
views. When using fewer images, the results are similar to using all images, but
there is a computational advantage. We observed that it is better to select views
evenly in all directions when training with a smaller number of inpainted images.
Therefore we select 32 views in all directions along the input images. This results
in consistent results with fewer inpainted images.

3.5 Training Strategies

Note that existing NeRF object removal methods [14,17,28] also have multiple
trainable NeRF branches. Each branch in these methods is individually trained
from scratch using all images. However, training different NeRF branches indi-
vidually is time-consuming. In our method, to estimate the never-seen regions, we
need to train both the original NeRF F o

Θo
and the masked NeRF Fm

Θm
. Therefore,

to reduce training time, we train the masked NeRF first, then conduct finetun-
ing with very small iterations only on the mask regions to get the weights of the
original NeRF. Also, since the original NeRF is only used to estimate never-seen
regions, it does not require a detailed texture representation as it only needs
density and shape information, thus few iterations are sufficient.

Finally, even when training the final NeRF model F f
Θf

using inpainted images
with a never-seen region mask, we reduce the training time by finetuning from the
masked NeRF Fm

Θm
. To improve our result, we also apply depth and perceptual

losses in [17]. This is a feasible strategy because the masked NeRF model Fm
Θm

has already been trained for regions other than the masked region. This means
that only the masked areas need to be further trained.
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4 Experiments

4.1 Dataset

There is few public 360◦ data for the task of removing objects from NeRF. There-
fore, we build a new dataset captured from all 360◦ viewing angles for object
removal from novel-view synthesis. It consists of a set of images taken from 11 dif-
ferent real-world scenes, including objects of different sizes from indoor/outdoor
for variety. Each dataset is 3,840 × 2,160 in size and each scene dataset consists
of 150-200 images. For quantitative evaluation of the object removal task, we also
provide ground truth (GT) data taken without the target object. We validate
the proposed method on our new dataset as well as existing 360◦ datasets [2,26].

4.2 Evaluation Metrics

For a quantitative comparison, we leverage our new dataset containing GT
images with the target object erased. To focus on more object areas, we only
evaluate the region inside the bounding box of the mask to minimize the influence
of non-target background. As evaluation metrics, we adopt PSNR and SSIM [9],
which are traditional methods for assessing the performance of the image recon-
struction. We also leverage LPIPS [34] and FID [8] to evaluate the visual quality
of the synthesized image. In the case of experiments using the existing dataset,
due to the absence of GT, we utilize HyperIQA [21] and MetaIQA [36] as eval-
uation metrics, which is one of the best blind image quality assessments.

4.3 Baseline and Implementation Details

Baselines. To demonstrate the effectiveness of our method, we compare it with
six baseline approaches tailored to object removal from NeRF as follows. (1)
Inpainted NeRF is a method that is simply trained with inpainted images.
(2) Video inpainted NeRF is similar to the inpainted NeRF, but uses a video
inpainting model for consistency across the training images. (3) SPIn-NeRF is
the method in [17]. (4) SPIn-NeRF w/o R is the method in [17] excluding the
mask refinement method. The reason for excluding the mask refinement method
is that it is likely to fail on 360◦ data (please see supplement for more details).
It is equivalent to adding depth loss and perceptual loss to Inpainted NeRF. (5)
Remove-NeRF is a method in [28]. We additionally apply perceptual loss in [17]
to better performance. (6) Masked NeRF is a model that excludes regions con-
taining objects from the training process.

Implementation details. As mentioned in Section 3.5, our method needs to
train three NeRF models: Fm

Θm
, F o

Θo
, and F f

Θf
. We train all NeRF with a batch

size of 8,192 using two RTX 3090. For Fm
Θm

, we train 100k iterations with using
the reconstruction loss multiplied by the mask. Then, F o

Θo
is finetuned from Fm

Θm

by 100N iterations, where N is the number of images. Also, F f
Θf

is updated from
Fm

Θm
using 32 inpainted images and depths. We trained 12,800 iterations to train
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Table 1. Quantitative comparisons on 360◦ real-world data. The bold score is the
best score, and the underlined score is the second.

Our data Existing data
Method PSNR↑ SSIM↑ LPIPS↓ FID↓ HyperIQA↑ MetaIQA↑
Inpainted NeRF [23] 19.53 0.76 0.33 165.06 52.91 0.278
Video inpainted NeRF [35] 20.55 0.79 0.30 191.51 47.11 0.244
SPIn-NeRF [17] 19.16 0.76 0.27 145.87 48.76 0.262
SPIn-NeRF w/o R [17] 20.14 0.78 0.24 119.48 50.19 0.277
Remove-NeRF [28] 20.74 0.80 0.19 99.41 52.31 0.285
Masked NeRF 20.07 0.78 0.20 97.14 52.18 0.269
Ours 21.43 0.81 0.18 86.06 53.02 0.290

Input SPIn-NeRF w/o R Remove-NeRF Masked NeRF Ours GTSPIn-NeRF

Fig. 4. Qualitative comparisons on our 360◦ real-world data. The areas overlaid in blue
is the target object. Our method outperforms the baselines.

32 images 400 times each. As a result, when training with 200 images, the total
iterations are 132,800. The number of iterations for the finetuning phases is much
smaller compared to iterations when training the masked NeRF from scratch.
For a fair comparison, we use the same model with the image inpainting as [23],
video inpainting as [35], and NeRF as [2]. We apply appropriate morphological
operations to the never-seen mask in each data to reduce the impact of noise.

4.4 Results

For quantitative comparisons, we compare our method to six baselines for four
evaluation metrics: PSNR, SSIM, LPIPS, and FID. As reported in Table 1, the
proposed method consistently achieves the best performance on all metrics. In
other words, it shows that the proposed method not only restores erased areas
well, but also produces visually pleasing results. In order to quantitatively evalu-
ate the proposed method on the existing 360◦ datasets [2,26], we use HyperIQA
and MetaIQA as no-reference blind assessments. In Table 1, we report that our
method achieves best performance in both evaluation metrics. These quantitative
results on various dataset demonstrate the versatility of our method. In Figure 4,
we provide qualitative comparisons of our method with four NeRF object removal
methods including SPIn-NeRF [17], SPIn-NeRF w/o R [17], Remove-NeRF [28]
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Input SPIn-NeRF w/o R Remove-NeRF Masked NeRF OursSPIn-NeRF

Fig. 5. Qualitative comparisons on the existing 360◦ datasets. These scenes are
obtained from [2,26]. The areas overlaid in blue is the target object.

Never-seen maskImage Mask refinement Image Never-seen maskMask refinement

Fig. 6. Qualitative result of never-seen region estimation and mask refinement. The
areas overlaid in blue is the target object. Our never-seen mask estimation produces
more clear and correct masks than the mask refinement method in [17].

and Masked NeRF on our new 360◦ real-world NeRF object removal dataset.
SPIn-NeRF can restore occluded region, but has many artifacts due to failure
of mask refinement. SPIn-NeRF w/o R successfully fills in the erased regions
when the background is simple or there are no objects occluding the target
object. However, when there is an object occluded by the target object, it can-
not properly restore occluded regions. In addition, when the mask is large and
the background is complex, inpainting results for both color and depth are inac-
curate, which causes smoke-like artifacts to remain where the object used to
be. Remove-NeRF mitigates this problem, but artifacts still remain. Meanwhile,
Masked NeRF uses information from other-views as described in Section 3.2 to
fill in occluded regions, but it cannot properly restore the color and texture of
never-seen regions. Finally, our method fills in the never-seen regions, showing
plausible and consistent results in all directions.

Figure 5 shows qualitative results on the existing 360◦ datasets. These data
samples are very challenging to fill in the erased areas naturally because the
target objects are very large. However, our method favorably fills in the never-
seen regions as well as the regions that are occluded but visible in other-view
images. Figure 6 shows qualitative results of our never-seen region estimation and
mask refinement [17]. Both methods aim to reduce the masked areas that needs
to be erased. Mask refinement [17] makes noisy masks, however our never-seen
region estimation makes clean and correct masks.

As described in Section 3.4 and Section 3.5, we simplify overall process of our
method. To present time efficiency of our method, we measure the run-time with
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Table 2. Comparisons on run-times.

Method TrainingRendering InpaintingMask estimationTotal

SPIn-NeRF [17] 16.92h 0.95h ∼1m 51.78h 69.67h
Remove-NeRF [28] 17.25h 0.98h ∼1m - 18.25h
Ours 11.16h 0.93h ∼0.2m 1.95m 12.13h

Table 3. Ablation study on view selection. Our even view selection uses 32 images,
but achieves similar results to using all images.

Method PSNR↑SSIM↑LPIPS↓FID↓
Masked NeRF 20.07 0.78 0.198 97.14
(a) No view selection with all views 21.87 0.81 0.173 82.92
(b) Confidence based view selection with all views 21.80 0.81 0.174 85.11
(c) No view selection with even 32 views (Ours) 21.43 0.81 0.176 86.06
(d) Confidence based view selection with even 32 views21.39 0.80 0.178 87.26

the baselines. Note that we measure it assuming a fixed setting with 200 images
of size 960 × 540 because the overall time can vary depending on the data. For
the mask estimation methods, we assume 128 sampling points for each ray and a
mask size of 50,000 pixels per image. As shown in Table 2, our method is faster
than other baselines. Specifically, mask refinement takes a very long 51.78 hours
in the official code, while never-seen mask estimation takes only two minutes.

4.5 Ablation Studies

View selection ablation. The difference between SPIn-NeRF w/o R and
Remove-NeRF is the absence or presence of confidence based view selection.
As repored in Table 1 Remove-NeRF outperforms SPIn-NeRF w/o R by apply-
ing confidence based view selection. To show whether confidence based view
selection even effectively works in our method, we perform ablation experiments
as follows. (a) No view selection with all-views. (b) Confidence based view selec-
tion [28] with all-views. (c) No view selection with even 32 views (Ours). (d)
Confidence based view selection [28] with even 32 views. Note that the final
NeRF in our method uses evenly selected 32 views, but SPIn-NeRF w/o R and
Remove-NeRF use all-views. Figure 7 shows the results of four experiments. As
reported in Table 3, we can see that the performance decreases when the con-
fidence based view selection method is applied to our method. We guess that
this is because the input view images in our final NeRF training stage are nearly
consistent. In other words, there is no need to apply confidence based view selec-
tion in our method. Therefore, confidence based view selection does not provide
sufficient benefit in our setting, thus we does not include it in our final method.
In addition, comparison in Table 3-(a,c) shows that training with even 32 views
can achieve similar results with training with all-views.
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Fig. 7. Qualitative comparisons on view selection ablations. (a) No view selection with
all-views. (b) Confidence based view selection [28] with all-views. (c) No view selection
with even 32 views (Ours). (d) Confidence based view selection [28] with even 32 views.
The areas overlaid in blue is the target object.

Table 4. Quantitative comparisons on other inpainting model. Our method achieves
the best on all metrics.

LDM MADF
Method PSNR↑SSIM↑LPIPS↓FID↓ PSNR↑SSIM↑LPIPS↓FID↓
Inpainted NeRF [23] 19.39 0.76 0.32 157.76 19.53 0.76 0.33 174.99
SPIn-NeRF w/o R [17] 20.07 0.78 0.24 124.47 20.02 0.78 0.26 133.17
Remove-NeRF [28] 20.74 0.80 0.20 94.97 20.72 0.81 0.20 100.09
Ours 20.83 0.81 0.18 87.10 21.31 0.82 0.19 93.50

Inpainting model ablation. To show that our method is less affected by the
inpainting model, we conduct an ablation study on other inpainting models. We
choose the latent diffusion model (LDM) [19] as the recent model and MADF [37]
as the old model. We train the same as the experiment in Section 4.4 except for
the inpainting model. Existing NeRF object removal methods that do not use
masked NeRF are have to fill entire mask with inpainting model, thus they highly
affected by inpainting model. However, our method minimizes the mask, thus
it is less affected by the inpainting model. As shown in Figure 8, while other
methods have varying performance depending on the inpainting model, but ours
always achieves similar performance. Comparing Table 1 with Table 4, we can
see that our method has small change and still outperforms the other methods.

4.6 Limitation

Because the proposed technique aims to perform consistent inpainting by reduc-
ing the area to which the inpainting model is applied by fully utilizing informa-
tion from wide viewpoints, there are fundamental limitations to forward-facing
data with limited viewpoint information. As shown in Figure 9-(Left), when the
angle between images is very small, the estimated never-seen mask is almost
similar to the given input mask, thus the advantage of the proposed method is
not revealed. In contrast, as shown in Figure 9-(Right), as the angle between
input images increases, the effectiveness of the proposed method increases.
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Fig. 8. Qualitative comparisons on inpainting model ablations. Ours always consistent
regardless of the inpainting model, and outperforms other methods.

Input

Original Mask Never-seen mask

Input

Original Mask Never-seen mask

Camera pose Camera pose

Fig. 9. Results of never-seen region estimation on forward-facing data. (Left): Narrow
baseline. (Right): Wide baseline (approximately 180◦ angles).

5 Conclusion

In this paper, we have proposed a never-seen region estimation method for the
consistent inpainting from NeRF. Specifically, the masked NeRF is trained by
using only rays sampled from non-object regions. Then, we obtain the original
NeRF finetuned from the masked NeRF. Based on the density profiles of the
original and masked NeRFs, we find the never-seen regions. The final NeRF
model is also finetuned from the masked NeRF using the inpainted images. For
evaluation, we have constructed a new real-world 360◦ dataset for NeRF object
removal. Our method has achieved competitive performance on both our new
dataset as well as existing 360◦ dataset.
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Abstract. Crowd rendering and animation was a very active research
area over a decade ago, but in recent years this has lessened, mainly
due to improvements in graphics acceleration hardware. Nevertheless,
there is still a high demand for generating varied crowd appearances and
animation for games, movie production, and mixed-reality applications.
Current approaches are still limited in terms of both the behavioral and
appearance aspects of virtual characters due to (i) high memory and
computational demands; and (ii) person-hours needed of skilled artists
in the context of short production cycles. A promising previous app-
roach to generating varied crowds was the use of pre-computed impostor
representations for crowd characters, which could replace an animation
of a 3D mesh with a simplified 2D impostor for every frame of an ani-
mation sequence, e.g., Geopostors [1]. However, with their high memory
demands at a time when improvements in consumer graphics accelerators
were outpacing memory availability, the practicality of such methods was
limited. Inspired by this early work and recent advances in the field of
Neural Rendering, we present a new character representation: Neuropos-
tors. We train a Convolutional Neural Network as a means of compressing
both the geometric properties and animation key-frames for a 3D charac-
ter, thereby allowing for constant-time rendering of animated characters
from arbitrary camera views. Our method also allows for explicit illu-
mination and material control, by utilizing a flexible rendering equation
that is connected to the outputs of the neural network.

Keywords: Crowd Simulation · Virtual Characters · Neural
Rendering

1 Introduction

The quality of 3D virtual characters has reached new levels of quality in recent
years, with tools such as MetaHuman CreatorTM enabling content creators to
quickly create highly realistic models of virtual humans for games and interac-
tive applications [2]. However, most rendering and animation methods depend
on a rigged 3D polygonal mesh representation, which may be costly in terms of
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computational power and memory for some applications, such as crowd simu-
lation, especially if the model itself is very detailed. Multi-view pre-computed
impostor representations, where a complex 3D model is replaced by a set of an
image-based 2D impostor for every frame of an animation sequence [1,3] have
been proposed as an alternative, with the advantage of (i) constant-time render-
ing, irrespective of the complexity of the model or animation; and (ii) leveraging
graphics hardware to generate appearance variety for a large number of crowd
characters. However, applicability and motion variation is limited due to the
memory requirements of creating and storing a full impostor set for every new
animation sequence.

Fig. 1. We propose a hybrid classical graphics (G) and neural (N) rendering pipeline
tailored for crowd simulation. (G) Line primitives (a) are first assembled and ren-
dered as a stick figure (b) to animate a crowd character. (N) The skeleton is then
translated into a set of intrinsic maps (c, d, e) using a small image-to-image transla-
tion module. The predicted intrinsics are later combined via the rendering equation,
allowing for the generation of realistic characters and utilizing various controls from G.

Inspired by these ’Geopostors’ [1] and recent developments in Neural Ren-
dering [4], we propose a new representation (Neuropostors) that retains all the
advantages of this image-based approach to character simulation, while over-
coming most of the disadvantages. We propose a neural network approach that
predicts the decomposition of an animated character into a set of intrinsic 2D
maps that encode information such as vertices, normals and colors. (See Fig. 1).
We also provide explicit illumination and material control, by utilizing a flexible
rendering equation that is connected to the outputs of the neural network. Our
method delivers constant speed character rendering, irrespective of the under-
lying model’s complexity, and provides enhanced variation by allowing different
characters to be rendered with the same network.

Our rendering pipeline contains three parts. (I) Synthetic data comprising
2D images of a 3D animated character at multiple keyframes, from multiple cam-
era viewpoints (uniform sampling) is generated. These images encode vertices,
normals, colors and other maps and provide the output for supervised learning.
Images are also generated for 2D keypoints, camera pose and character id, as
input controls for our model. (II) We train a neural network that translates from
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joints, camera pose and character id (in the case of multiple characters) to the
normal, vertex and texture maps that are mapped onto the character. This allows
for (a) pose control (unlimited interpolation between animation keyframes); (b)
camera view control (unlimited interpolation between views); and (c) character
control (multiple characters can be compressed and represented together with
one neural network). (III) We then use a modified rendering equation to combine
the previously generated maps to generate a fully shaded character representa-
tion with full (d) illumination and (e) material control. (See Fig. 2).

The main advantages of our approach are as follows: (i) a novel method that
compresses multiple characters using a neural network and allows for
pose, camera view, character, illumination, and material control – multi-view and
pose-dependent appearance data is only needed when we train our model and not
at runtime; (ii) viewpoint and animation interpolation, which overcomes
the problem of limited views and animation keyframes due to memory limitations
in previous methods; and (iii) the flexibility to incorporate multiple types of
maps and different rendering equations, because memory is only needed
during training, and not at run-time.

Table 1. Comparison with 3D graphics and other efficient crowd rendering methods.

Method Visual Quality Advantages Disadvantages

3D Graphics High High visual fidelity,
smooth transitions

High computational cost

Geopostors High for close-up, low for distant Balances detail and
performance

Quality degradation for
distant objects

Polypostors Moderate Better silhouette
approximation than in
Geopostors

Moderate quality for close
objects

NeuropostorsHigh for close-up, adjustable for distantHigh visual fidelity,
smooth transitions, low
impostor memory

NNet training and data
generation costs

2 Related Work

While numerous studies exist at the intersection of Computer Graphics and Neu-
ral Rendering, conducting an exhaustive review falls beyond the scope of this
paper. Our emphasis is on research pertinent to the application of neural ren-
dering techniques for character and crowd rendering and animation, rather than
real-world image processing. Notably, recent advancements in crowd simulation
and Neural Rendering are detailed in [5] and [4] respectively, providing valuable
insights into the current state-of-the-art in these domains.

Crowd Simulation. Crowd generation algorithms often draw from classi-
cal models such as the somatotype model proposed by Sheldon et al. [6], which
delineates three primary human body types (endomorph, mesomorph, and ecto-
morph). By applying predefined equations to human body specifications and
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templates, a wide range of body shapes can be derived. However, in crowd sim-
ulation, factors beyond physical attributes, such as appearance (e.g., colors, tex-
tures, and accessories) and behavioral patterns, also play crucial roles.

One notable method incorporating these principles is Geopostors, introduced
by Dobbyn et al. [1]. Building upon earlier work by Tecchia et al. [3], Geopos-
tors pioneers a hybrid crowd rendering approach, seamlessly blending real-time
rendering of 3D geometric primitives with pre-rendered 2D "impostors" of indi-
viduals. Through extensive perceptual evaluation studies, the authors ensure
the perceptual realism of rendered crowds in terms of both character diversity
and quantity. Specifically, characters close to the camera undergo traditional 3D
rendering to maintain realism and avoid pixelation, while those further away
are represented as 2D impostors, ensuring efficient rendering of large crowds.
Another approach is Polypostors, introduced by Kavan et al. [7]. Polypostors
convert 3D characters to 2D textured polygons, achieving significant simplifica-
tion with low memory overhead, suitable for real-time crowd rendering. While
they offer high rendering efficiency and enable smooth animation transitions,
Polypostors may produce artifacts with overhead views or complex animations.
Our approach extends the Geopostors paradigm by replacing pre-rendered 2D
impostors with neural representations, allowing for more dynamic and adaptable
crowd rendering while retaining efficiency (see Table 1 and Table 2).

Image Synthesis. Image synthesis techniques are broadly categorized as
unconditional and conditional methods. Unconditional methods encompass ear-
lier models such as variational autoencoders (VAEs) [8,9], autoregressive mod-
els [10,11], and Generative Adversarial Networks (GANs) [12], including vari-
ants like DCGAN [13], LS-GAN [14], Wasserstein GAN [15], and LR-GAN [16].
Recently, diffusion models have gained prominence in the field of image synthesis
due to their ability to generate high-fidelity images. Models such as the Denois-
ing Diffusion Probabilistic Model (DDPM) [17] and its variants [18], including
latent diffusion models [19], have shown impressive results in generating realistic
images. These models leverage a diffusion process to iteratively refine samples.

Conditional methods, on the other hand, are tailored to specific tasks such
as category-to-image [20–22], text-to-image [23], sketch-to-image [24–27], and
image-to-image translation. Notable examples in this category include pix2pix
[28], pix2pixHD [29], CycleGAN [30], Cascaded Refinement Networks [31],
CoGAN [32], and UNIT [33]. Conditional latent diffusion models like ControlNet
[34] have also shown remarkable capabilities in generating realistic images. While
these advances offer state-of-the-art performance in terms of image quality and
fidelity, they are computationally expensive. In this work, we use a small and
compact Convolutional Network that does not require a lot of memory and is
fast at generating small crowd characters.

Image Decomposition for Relighting. In recent years, the rapid develop-
ment of Neural Rendering has spurred a significant body of work on relighting,
with notable contributions highlighted in [35] and [36]. Particularly relevant is
the neural pipeline for controllable image generation introduced by Chen et al.
[37]. However, their method is tailored for static objects and lacks support for
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articulated 3D character representation. In contrast, our focus is on replicating
existing articulated 3D models of virtual humans, emphasizing efficiency and
scalability.

Table 2. Analysis of impostor representation, time, and memory complexities among
3D graphics and efficient crowd rendering methods. Our method excels in (1) interpo-
lation capabilities and (2) memory efficiency compared to geopostors and polypostors,
particularly for compressing extensive animation sequences and diverse crowd charac-
ters. Notes: n: number of crowd characters, v: number of vertices per character, ng:
number of geometric models (close-up characters), ni: number of impostors (distant
characters), NN: Memory required for the NNet model used for impostor compression.

Method Impostor RepresentationTime ComplexityMemory Complexity

3D Graphics Triangles for geometry O(n · v) O(n · v)
Geopostors 2D billboards O(ng · v + ni) O(ng · v + ni)

Polypostors Body part polygons O(ni) O(ni)

NeuropostorsNeural network O(ng · v + ni) O(ng · v) +O(NN)

3 Method

In this section, we outline the three main stages of our comprehensive 3D virtual
character animation and rendering process:

1. Synthetic Data Generation: We provide insights into our OpenGL imple-
mentation, detailing the setup for multi-view 3D virtual character animation
and rendering.

2. Neural Decomposition Representation: Here, we discuss our approach to
neural modeling, focusing on the representation of characters through decom-
position maps.

3. Shading with a Rendering Equation: We delve into the application of
a rendering equation for shading, explaining how it is integrated into our
pipeline to achieve realistic rendering results.

These three stages collectively form our methodological framework for animating
and rendering virtual characters with neural techniques.

3.1 Synthetic Data Generation

In the initial stage of our pipeline, synthetic data is generated to facilitate train-
ing of our machine learning model. Utilizing a 3D model of a virtual character
and a specified animation sequence, we produce a collection of images capturing
the virtual character in various poses across multiple viewpoints. These images
serve as the training dataset for our subsequent machine learning model.
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Fig. 2. System Overview: Our pipeline consists of three main stages: (I) Syn-
thetic data generation from multiple views of a 3D character performing an animation
sequence. (II) Simultaneous input and output of information including camera view 1©,
2D pose 2©, character ID 3©, and ground truth vertex, normal, and texture maps for
image-to-image translation in the ML module. (III) Integration of predicted intrinsic
maps using the rendering equation to create a neural impostor, allowing for explicit
control over illumination 4© and material properties 5©.

Multi-View Camera Setup. To determine the optimal number of camera
views needed for model training, we use uniform sampling. This involves dividing
an icosahedron’s triangular faces into smaller triangles and projecting them onto
a sphere to create geodesics of varying levels. These geodesics represent densely
sampled spheres of camera views. The virtual character is positioned within this
sphere, typically with the hips joint at the sphere’s center or slightly offset (as
shown in Section 4). We focus on camera views where the camera is positioned
above the character’s hips, reducing the required samples by about half. While
we could further reduce viewpoints for symmetric characters and animations
by mirroring results from one hemisphere, we choose to use the entire upper
hemisphere to accommodate asymmetric characters and animations, aligning
with data augmentation principles for better model generalization.

Input Data. We collect essential information for each generated image,
including the character’s 2D pose, camera location, and light position. The 2D
pose data is represented as a raster image in RGBA format. Camera locations
and light positions are structured into a 3-channel tensor, with each channel
representing the X, Y, or Z coordinate axis. In scenarios involving multiple char-
acters, we also record each character’s ID and normalize it within the [−1, 1]
range. This ID data is converted into a grayscale image, similar to how cam-
era locations and light positions are converted into RGB images, to suit the
Convolutional Neural Network (CNN) architecture.
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Output Data. For each image, we generate three types of maps: vertex
maps, normal maps, and texture maps.

1. Vertex Maps: These maps represent the 3D coordinates of each vertex in
the character’s mesh. We project these coordinates onto the 2D image plane
to create a vertex map. Since each vertex has its own 3D position, we can
interpolate between these positions to obtain smooth surfaces when rendering
the character in 2D.

2. Normal Maps: Normal maps encode the surface orientation at each point
on the character’s surface. Similar to vertex maps, we interpolate between
the normal vectors assigned to each vertex to obtain smooth surface normals
across the character’s body.

3. Texture Maps: Texture maps contain color information for each point on
the character’s surface. These maps can be directly sampled from a texture
image applied to the character’s mesh, providing detailed color information
for rendering the character in 2D.

In summary, these maps allow us to accurately represent the geometry, sur-
face orientation, and texture of the character in each image, enabling realistic
rendering from different viewpoints. Examples of these maps can be seen in
Figure 1 and will be further discussed in the evaluation section.

3.2 Neural Decomposition Pipeline

The neural decomposition pipeline, depicted in Figure 2, focuses on training
a neural network to learn a mapping function � : (ImgJ , ImgCxyz

) ⇒ ImgR.
Here, ImgJ represents RGBA images containing character-specific colored 2D
keypoints, while ImgR comprises decomposition maps, including vertex, normal,
and texture maps, rendered based on the specified keypoints.

For our image-to-image translation task, we incorporate a rendering equa-
tion function into the neural network’s output. This function allows for explicit
control over illumination and materials, aligning with the task requirements.

Model Architecture: Our experiments employ the U-Net model [38], a type
of Convolutional Neural Network (CNN) commonly used for tasks like image
segmentation. Comprising an encoder E and decoder D, each with 5 blocks of
layers, our U-Net model leverages bypass connections to capture high-resolution
details from lower layers. In the encoder, each block consists of convolutional
and batch normalization layers followed by ReLU activation, with subsequent
max-pooling layers downsampling the tensor’s width and height while doubling
the number of feature maps. Once the bottleneck layer is reached, the decoder D
mirrors the encoder, replacing pooling layers with upconvolutions to upsample
width and height while downsampling the number of feature maps. Convolutional
feature maps from D are concatenated with corresponding feature maps from E,
followed by a 1x1 convolution layer to match the desired decomposition image
channels, normalized to the [−1, 1] range.

Training Details: Training utilizes the Adam optimizer with batch size
typically set to 32 and learning rates ranging from 0.01 to 0.001. L1 loss is
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employed as the error function, and training time varies based on image res-
olution and desired detail level, typically requiring less than 24 hours for the
presented results in Section 4.

3.3 Rendering Equation

To compose the decomposition maps (vertices, normals, and textures) and create
a shaded model, we utilize a series of rendering equations that consider both
ambient and diffuse lighting components.

First, the ambient lighting contribution is calculated using the following equa-
tion, where the ambient reflection from the material and the ambient component
of the light model are multiplied:

REA = AmbientlightModel × Ambientmaterial (1)

Next, to account for the diffuse lighting, we compute the diffuse reflection
using the equation below. This involves taking the dot product of the light
vector and the vertex normal, clamping the result to a minimum of zero, and
then multiplying by the diffuse components of both the light and the material:

REDiff = max(vectorlight · normalvertex, 0)
× Difflight

× Diffmaterial (2)

Finally, the vertex color is determined by combining the ambient and diffuse
components, as shown in the equation below:

VertexColor = REA +REDiff (3)

In summary, these equations work together to produce the final shaded model
by considering how light interacts with the material properties at each vertex.

4 Results

In our experiments, we focus on exploring humanoid characters’ morphology.
We strategically position camera viewpoints around a sphere centered at the
character’s pelvis, mainly concentrating on the upper hemisphere for observa-
tion. Before sampling, we ensure that the data remains diverse and free from
duplicates for symmetrical characters. This step ensures that our dataset accu-
rately represents the variability within the characters. Following this, we care-
fully determine the sampling method and the number of viewpoints, which are
crucial factors in shaping the outcome and accuracy of our experiments.

Control I: Camera View. We begin by conducting a series of experi-
ments to determine the optimal number of camera viewpoints and the most
effective sampling strategy. For this investigation, we utilize a high-quality static
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Fig. 3. Pose and Camera View Control: Punching sequence shown from 5 camera
views (rows) with keyframes displayed across columns.

humanoid character of a woman (Figure 1), comprising 83, 432 polygons (44, 852
triangles). The image resolution is fixed at 128 × 128 pixels. The experiment is
repeated five times, each time varying the geodesic levels from 1 to 5. The results
are then analyzed based on the vertices of the geodesic at level 6 (Figure 5).
Notably, we observe an increase in error, particularly evident around the poles
and at greater distances from the original geodesic training samples. This dis-
crepancy is visually apparent in Figure 5, where the training views are rep-
resented as clusters of blue color. Particularly on the geodesic of level 1, four
distinct clusters correspond to the four camera views available in the training
set only. To address the issue of increased error around the poles, an adaptive
polar sampling approach may be suitable, wherein the viewpoints are denser
towards the poles of the view sphere. However, our analysis reveals that increas-
ing the number of viewpoints reduces the error around the poles. Therefore,
to maintain uniformity across views and for simplicity, we adopt the uniform
sampling method. Additionally, Figure 6 illustrates the training loss, indicating
that using more viewpoints yields better results, as expected. Qualitative results,
decomposed into vertices, normals, and textures, are presented in Figure 7.

Control II: Animation (Pose). By feeding a character’s pose data into the
ML model, we can animate the character with articulated movements. This app-
roach allows us to encode animation information within the network. First, we
decompose the desired animation into a series of key-frames. Then, for each key-
frame, we obtain the corresponding 2D poses and additional data, as described
in Section 3. However, generating animation data for numerous key-frames can
be resource-intensive. To mitigate this, we employ a sampling strategy. Initially,
we sample the animation at a frame rate of F1 fps, discarding similar key-frames.
Additionally, we vary the animation’s starting point across different viewpoints
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Fig. 4. Pose and Camera View Control: Walking sequence shown from 5 camera
views (rows) with keyframes displayed across columns.

Fig. 5. Quantitative Evaluation: Losses for different numbers of views on the L1-L5
geodesics visualized on the camera dome sphere. As expected, the more views available
during training, the smoother the resulting test interpolations.

to ensure robust reconstruction. For instance, by starting the animation sequence
at slightly different offsets for each view, we effectively expose the model to inter-
mediate frames between the original key-frames. We typically set F1 to approxi-
mately 6 fps, a value that yields satisfactory results, as demonstrated in Figure 3
and Figure 4. The choice of F1 can influence the model’s animation interpola-
tion properties. Moreover, to reduce the dataset size, we randomly discard a
portion of data by assigning a dropout probability to each (keyframe, view)
pair. Typically, we set this probability to 50%, halving the storage requirements.
The results presented in Figure 3 and Figure 4 showcase animations of a virtual
character performing punching and walking actions, respectively, from various
viewpoints.

Control III: Character. In this section, we expand our model to represent
multiple characters simultaneously and render them in a controllable manner,
based on their IDs and from various viewpoints. To accomplish this, we initially
select five female and five male characters from the MS Rocketbox 3D Avatar
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Fig. 6. Ablation Studies: Top left - input control ablation: test error curves over
time for various input control (skeleton) representations are calculated using the L3
geodesic views. Top right - camera views ablation: test error curves over time for the
L1-L5 geodesics camera setup with varied # of views. Bottom: Ablated skeleton rep-
resentations (see top left for losses). We chose "E" since the distance between E and
its corresponding dotted representation ("D") is low (compared to "C" and "F").

Fig. 7. Camera View & Animation (Pose) Control: Test Results showcasing
camera view, 2D pose, vertices (predicted and ground truth), normals (predicted and
GT), textures (predicted and GT), and the shaded model (predicted and GT).
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Fig. 8. Test Results for Rocketbox 10 Characters: Shaded models representing
different characters are displayed in this figure. Characters are denoted as M for Male
and F for Female. Our predictions are labeled as "Pred" while ground truth is "GT".

Fig. 9. One Character Across Multiple Views: This figure showcases consistent
results of a single character rendered across multiple viewpoints.

dataset [39], totaling 10 characters for training. We extend our neural network
architecture to include an additional input representing the character ID. This
ID input, normalized to the range [−1, 1], is transformed into a tensor with the
same resolution as our desired output image and passed to the network’s input
layer. During experimentation, we observed that distinguishing between different
characters in the MS Rocketbox dataset, which share similar skeletons but have
varying appearances, posed a challenge for the network. Therefore, incorporating
the character ID as a control parameter became necessary. To aid the network
in distinguishing between characters, we adopt a progressive training approach.
We begin by training the model on 32 × 32 image resolution and utilize these
weights to initialize training for a 64 × 64 resolution model. Subsequently, we
use the weights from the 64 × 64 model to initialize training for a 128 × 128
resolution model, and so forth up to a 256 × 256 output resolution. The model
architecture remains unchanged throughout this process, as convolutional neural
networks (CNNs) are resolution-independent. We showcase the model’s ability
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to accurately distinguish between different characters by employing different
character control IDs on the test set, as illustrated in Figure 8. Additionally, we
present renderings of a single character from multiple viewpoints in Figure 9,
where predictions remain consistent without any noticeable artifacts. However,
it is worth noting that our current model may not capture all details present in
the images, as seen in Figure 8. For instance, certain intricate details like stripes
on a character’s t-shirt may not be accurately reconstructed. This limitation
could potentially be addressed by increasing the number of feature maps in our
neural network, as discussed in Section 3. Nevertheless, for applications involving
crowds comprising many small/distant characters, such adjustments may not be
necessary and could significantly extend the training time.

Fig. 10. Illumination Control: This figure illustrates the manipulation of illumina-
tion by adjusting the light position in the rendering equation (Eqn. 3). By varying the
position of the light source, different lighting effects can be achieved, providing control
over the illumination of the scene.

Fig. 11. Material Control: This figure demonstrates the manipulation of material
properties using the rendering equation (Eqn. 3). By adjusting the equation’s param-
eters, finer control over desired material properties can be achieved, even on specific
body parts. Here, the material of the top garment is randomly altered, showcasing the
versatility of the approach.

Control IV: Illumination. Illumination control is facilitated by leverag-
ing the classical graphics rendering equation, as outlined in Section 3. Since our
network predicts the decomposition of an image containing both vertex and nor-
mal information, lighting calculations can be performed. Figure 10 demonstrates
this capability with different basic directional lighting configurations applied to
a neuropostor.
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Control V: Materials. Another property enabled by utilizing the rendering
equation is explicit control over the materials. This can be achieved by masking
certain parts of a character (e.g., crop top in Figure 11) and adjusting its material
properties. In Figure 11, we demonstrate this by randomly changing the material,
resulting in a variety of colors.

Memory Efficiency. Neuropostors excel in memory efficiency with their
neural representation, offering flexible rendering and reduced memory require-
ments. Polypostors [7] convert 3D characters to 2D textured polygons, minimiz-
ing texture memory but potentially introducing artifacts in complex animations
or overhead views. Geopostors balance detail and performance by using 3D ren-
dering for close characters and 2D impostors for distant ones, resulting in mod-
erate memory savings. Table 3 details memory usage across different feature
map counts in Neuropostors, highlighting the trade-off between memory and
visual fidelity. Adjusting feature maps for larger crowds with distant characters
is straightforward, yielding significant memory savings without compromising
visual quality or interpolation capabilities of the system.

Table 3. Memory consumption for different numbers of feature maps (N is set to
32 in the paper). N denotes the number of feature maps in the first convolutional block,
which is doubled in each subsequent block. Lower values of N can be chosen for larger
crowds where characters are more distant, balancing memory usage and visual fidelity.

No. of Feature Maps32 16 8 1

Memory Usage 31.1 MB7.82 MB1.99 MB72.8 kB

5 Conclusion

We introduced Neuropostors, a novel approach that merges classical graphics
with neural rendering techniques for crowd simulation. Our method accurately
decomposes animated characters into intrinsic 2D maps, offering precise control
over illumination and material properties. By compressing multiple characters
into a single neural network and enabling viewpoint and animation interpolation,
Neuropostors deliver a rendering solution with constant speed, independent of
mesh polygon count, optimizing hardware resource use.
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Abstract. In current medical image segmentation tasks, the combined
transformer and convolutional architectures excel in capturing global
cues and local details, but still pose two main concerns from a layer-
level perspective: (1) intra-layer issue: the existing methods inefficiently
obtain and fuse global-local information, potentially resulting in incom-
plete feature extraction; (2) inter-layer issue: the most of methods follow
the classical U-shape structure, which inevitably leads to information
weakening in the encoder-decoder. In light of these, we propose Injec-
tionNet from the perspective of layers, mainly comprising the Intra-layer
Global-Local Injection (GLI) module and Inter-layer Weight Injection
(WI) modules. GLI employs multi-scale convolution for local informa-
tion extraction and flexibly uses a multi-head self-attention mechanism
for efficiently capturing global information and fusing them effectively.
WI enhances information transfer by injecting generated feature weights,
with different variants to suit various network stages. Extensive experi-
ments on three medical imaging public datasets demonstrate the superior
performance of InjectionNet compared to previous works.

Keywords: CNNs · ViTs · Inter-layer · Intra-layer · Medical Image
Segmentation

1 Introduction

Medical image segmentation is crucial for diagnosis and treatment decisions.
Convolutional neural network (CNN)-based models such as UNet [1] and its
variants have achieved remarkable success in medical image processing. However,
CNNs can only share information within limited local regions and thus lack the
capacity to establish long-range dependencies, which may be necessary for image
segmentation tasks.

Visual transformers (ViTs) have made a significant impact on computer
vision, excelling at modeling global relationships. Consequently, several studies
have focused on hybrid CNN-Transformer architectures to combine global and
local information, enhancing feature representation. For example, TransUNet [4]

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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adds the transformer to the high-level features of CNNs to learn global infor-
mation. Similarly, SwinUNet [5] and CMT [6] combine CNNs and transform-
ers through serial fusion, obtaining a better trade-off in accuracy and efficiency.
Another popular architectures, e.g. TransCeption [7] fuses global and local infor-
mation through concatenation operations. TransFuse [8] proposes the BiFusion
module to fuse global dependencies and spatial details in a parallel manner.
Additionally, some works such as ScaleFormer [10] and TransWnet [11] propose
mitigating solutions to the problem of information weakening in the encoder part
of a typical U-shaped structure. Despite the promising results of these works,
three limitations persist: (i) global and local feature representations are not
simultaneously captured at the same feature level, so the extracted feature rep-
resentations may be incomplete. Medical images contain abundant local details
and global cues, so how to extract the global-local information is important
to obtain a comprehensive feature representation of the image. (ii) global and
local information have differences. Therefore, it is essential to find an effective
fusion method to alleviate the information gap between them and to improve
the efficiency of modeling the global context while maintaining a firm grasp of
the local details. (iii) to enhance information flow between neighboring layers,
traditional methods typically use concatenation operation to reuse information
from neighboring layers in the encoder. However, they may not fully realize that
it is also equally important to enhance the information flow in the decoder.
Moreover, concatenation operations may not be fully effective. Therefore, how
to effectively mitigating information weakening to assist the encoding-decoding
process becomes a problem.

To address these important issues, we design a new encoder-decoder network,
called InjectionNet, from the perspective of layer relationships. (i) in the intra-
layer, we design a Global-Local Injection (GLI) module, which aims to combines
global-local information from the input feature map to achieve richer feature rep-
resentations. The Global Extraction (GE) and Multi-Scale Mixed Convolution
(MSMC) modules in GLI capture the global and local information respectively,
and the Injection approach in GLI fuses the information from the GE and MSMC
modules to obtain a more comprehensive feature representation. (ii) to allevi-
ate the information flow weakening during the encoding-decoding process in
the network, we propose different Inter-layer Weight Injection (WI) modules for
different network phases. This includes Encoder Weight Injection (E-WI) dur-
ing the encoder stage, and Decoder Weight Injection(D-WI) and Final Decoder
Weight Injection (FD-WI) at the decoder stage.

In general, our contributions are three-folded: (1) We propose the Global-
Local Injetion(GLI) module in intra-layers, which efficiently extracts and fuses
global-local information. (2) We propose different Inter-layer Weight Injec-
tion(WI) modules in inter-layers to address the problem of information weak-
ening during encoding-decoding. (3) We propose a novel network InjectionNet
from the perspective of layer relations and verify its effectiveness on three public
medical imaging datasets.
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Fig. 1. Overview of InjectionNet. First, the image fuses the generated global cues and
local details by GLI. Then, the interaction of upper layer information with lower layer
information is realized by WI. Finally, the enhanced output is further combined with
CNN features of the same scale and sent to the corresponding decoder block.

2 Methods

Overall Pipeline The proposed InjectionNet extracts global-local features
within layers and enhances information flow between layers as shown in Fig. 1.
The encoder utilizes the five CNN blocks for hierarchical extraction of local fea-
tures, reducing feature map resolution by both max-pooled and average-pooled.
The GLI module(in Sec.2.2), including GLI-M and GLI-T, extracts global and
local information within layers and facilitates cross-semantic interaction between
them. Then, the features enhanced by GLI are injected into the next layer by the
E-WI module(in Sec.2.3). The Fusion module(in Sec.2.4) complements features
with CNNs at the same feature level before transmission to the decoder. In the
decoder, GLI modules are reused in separate layers, connected by corresponding
WI modules(in Sec.2.3) for the final prediction. In the following, we describe
each module in InjectionNet in detail.

2.1 Intra-layer Global-Local Injection

As depicted in Fig. 2(a), GLI comprises three key parts: Global Extraction (GE),
Multi-Scale Mixed Convolution (MSMC), and Injection. We will describe these
three parts as follows.
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Fig. 2. (a) Overview of GLI. (b) MSMC denotes the Multi-Scale Mixed Convolution
module, which is used to extract the local information of the features. GE denotes
the Global Extraction module, which is used to extract the global information of the
features.

Global Extraction. The Global Extraction (GE) module captures global
information from the feature map. Recent studies such as [9] has shown that the
multi-head self-attention (MSA) mechanism is less sensitive to capture global
information in the early stages of the model, and there also exists a quadratic
complexity problem in computing high-resolution image. To address these issues,
as shown in Fig. 2(b), we employ the GE-M Block at the shallow layer to learn
the global context only by MLP. Moreover, using MSA in the later stages is quite
efficient. Therefore, for deeper layers, the GE-T Block strikes a balance between
computational efficiency and maintaining the ability of MSA to capture long-
range dependencies. GLI-M and GLI-T refer to embedding GE-M and GE-T in
the GLI module, respectively.

Multi-Scale Mixed Convolution. Recognizing the limitations of single-
scale convolution, we introduce Multi-Scale Mixed Convolution (MSMC) to
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extract spatial features at different scales in the same feature layer. As shown
in Fig. 2(b), MSMC divides the input feature map into equal parts along the
channel dimension (default is 4 parts) and utilizes multi-scale convolution ker-
nels. Here we use depth-wise separable convolutions to reduce computational
overhead. For larger resolutions, larger kernel sizes are favored, while smaller
kernel sizes are sufficient to capture localized details. Therefore, in GLI-M, we
incorporate branches with convolution kernel sizes of 5×5, 7×7, and 9×9 along-
side the original 3×3 kernel. In GLI-T, we introduce additional branches with
1×1, 5×5, and 7×7. Inspired by [10], we shuffle multi-scale spatial information
through a Group operation. Channels from each part are aggregated through a
convolutional layer and modulate input features through the product, enhancing
modeling capability. The output Y is expressed as follows:

Xcat = Concat
(
DW k1×k1(X

1), . . . , DWkn×kn
(XN )

)
(1)

X̃ = Group(Xcat) (2)

Y = X � Conv1×1(X̃) (3)

where X = [X1,X2, . . . , XN ] means to split up the input feature X ∈ R
H×W×C

channel C equally into N parts. kn denotes the depth-wise separable convolu-
tions kernel size. Group(·) indicates the Group operation. � is the element-wise
multiplication.

Injection operation. To endow multi-scale low-level spatial features with
rich high-level global semantic information, we utilize an Injection operation. As
illustrated in Fig. 2(a), we first input the global information into a sigmoid layer
to generate semantic weights, which are then multiplied with multi-scale local
information to dynamically adjust the attention of local information according
to the relative importance of global information, while preserving the original
global information. Subsequently, passing through the normalization and FFN
layers. Also, shortcut connection is adopted.

2.2 Inter-layer Weight Injection Modules

Lower-layer information is typically derived from upper-layer information, so
features from neighboring layers can compensate for missing information during
transfer. To facilitate cross-layer interactions, we introduce WI modules (see
Fig. 1), including Encoder Weight Injection (E-WI), Decoder Weight Injection
(D-WI) and Final Decoder Weight Injection (FD-WI). We will describe each of
these modules.

E-WI. During the encoder stage, we use the E-WI module for inter-layer
information interaction. This involves inputting information from different lay-
ers: one skip branch from the CNN block and the other input branch is derived
from the upper-layer feature map, which is enhanced by the corresponding GLI
module. Input branch is first scaled according to the size of the skip branch
to ensure proper alignment. Then, a sigmoid function is applied to the aligned
input branch information to obtain attention weights. These attention weights
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are then combined with the CNN branch to augment the perception of crucial
information in the upper layer and to focus more specifically on different regions
of the input image. To minimize the weakening of information during transmis-
sion, to the greatest extent, two shortcuts are added at the end. Let i index the
downsampling layer along the GLI branch, N denotes the layer of GLI, and the
E-WI process is:

EWI(Xi+1
cnn,Xi

GLI) = Conv3×3(Xi+1
cnn � σ(Down(Xi

GLI)
)

+ Down(Xi
GLI) + σ(Down(Xi

GLI))) (4)

where EWI denotes the E-WI module, Xi+1
cnn denotes the branched input from

the (i+1)-th layer CNN block, Xi
GLI denotes the i-th layer representation

enhanced by the GLI module. Down(·) denotes the patch embedding, which
is realized by a convolution with stride of 2 and followed by a batch normaliza-
tion and a ReLU activation function. σ denotes the sigmoid function. � is the
element-wise multiplication.

D-WI. In the early stage of the decoder, we use the D-WI for inter-layer
information interaction. As shown in Fig. 1, by first changing the channel through
a convolutional layer, we find information from the decoder stage is important
for accurate prediction, therefore, to avoid information loss, we did not use the
RELU activation function for the input branch. The feature maps of the two
branches are then correctly aligned by bilinear interpolation. Then the informa-
tion of the skip branch is weighted according to the obtained attention weights
based on the same attention mechanism as in E-WI.

FD-WI. In the final stage of the decoder, we use the FD-WI module as
an information fusion method, which takes the features from the previous level
and the initial CNNs. As shown in Fig. 1, slightly different from D-WI, the
convolutional layer is moved to the end of the module.

2.3 Fusion

Following enhancement by inter-layer E-WI and intra-layer GLI modules, we
aggregate the improved representation X ′ with CNNs at the same scale level.
Potential information redundancy can significantly affect segmentation perfor-
mance. Our Fusion module is designed to alleviate this problem. The process
involves refining sophisticated channel information into high-quality data and
subsequently integrating it with corresponding CNN branches. The complete
formulation is:

{
XAG = X ′ � σ(Conv1×1(Xcnn + X ′)),
Fusion = Conv1×1([Xcnn,XAG]).

(5)

where X ′ is the augmented representation, Xcnn comes form the CNNs features,
σ denotes the sigmoid function, � denotes element-wise multiplication and [·]
denotes concatenation.
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2.4 Loss Function

To optimize our segmentation model, we employ the combined DICE (LDICE)
and CrossEntropy (LCE). The dice-coefficient loss has high flexibility towards
class imbalance, while the cross-entropy loss helps with the curve smoothing.

LDICE(ŷ, y) = 1 − 2yŷ + λ

y + ŷ + λ
(6)

LCE(ŷ, y) = − 1
N

N∑

i=1

yi · log(ŷi) (7)

Here, y is the ground truth value, and ŷ is the predicted value. And λ is added
to the numerator and denominator for numerical stability. We aggregate all
estimated losses using the following function to compute the final loss.

Ltotal = γLDICE + (1 − γ)LCE (8)

where γ = 0.5 and 1−γ = 0.5 are the weights for LDICE and LCE , respectively.

3 Experiments

3.1 Dataset

Synapse datasets. Synapse consists 30 abdominal CT scans. Following [2],
we split 18 cases for training and remaining 12 cases for testing. We reported
the Dice Coefficient (DSC) and Hausdorff Distance (HD) on 8 different organs.
Automated cardiac diagnosis (ACDC) datasets. The automated cardiac
diagnosis challenge contains 100 MRI scans involving three organs: myocardium
(MYO), right ventricle (RV), and left ventricle (LV). Consistent with [17], we
present the DSC results using a random split of 70 training cases, and 30 testing
cases.
ISIC2018 datasets. It is a skin lesion segmentation dataset, consisting of
2594 images and corresponding labels. We randomly divide the dataset into
1816, 260, and 518 for training, validation, and testing, respectively.

3.2 Implementation Details

Our InjectionNet is implemented based on PyTorch and trained on NVIDIA
Tesla A100 GPU. We set the input image size as 224×224. Here, we list the
batch size (bs), learning rate (lr), maximum training epochs (ep), optimizer
(opt) for three datasets:

– Synapse: bs=8; lr=7e-3; ep=800; opt=SGD;
– ACDC: bs=8; lr=4e-3; ep=800; opt=SGD;
– ISIC2018: bs=8; lr=1e-4; ep=400; opt=Adam;

All models were trained with momentum 0.9 and weight decay 1e-4. For fair
comparison, we used the same settings and combined cross entropy loss and dice
loss for all experiments.
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Table 1. Comparison to state-of-the-art (SOTA) methods on Synapse dataset. The
best results are highlighted in Bold fonts.

Methods DSC(uparrow) HD(downarrow) Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

V-Net [11] 68.81 - 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98
U-Net [1] 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58

AttUNet [12] 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
TransUNet [2] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
SwinUNet [3] 79.12 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

UCTransNet [13] 78.23 26.75 88.86 66.97 80.19 73.18 93.17 56.22 87.84 79.43
MTUnet [14] 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81
HiFormer [15] 80.69 19.14 87.03 68.61 84.23 78.37 94.07 60.77 90.44 82.03

MissFormer [16] 81.96 18.20 86.99 68.65 85.21 82.00 94.41 65.67 91.92 80.81
CASTformer [17] 82.55 22.73 89.05 67.48 86.05 82.17 95.61 67.49 91.00 81.55
ScaleFormer [7] 82.86 16.81 88.73 74.97 86.36 83.31 95.12 64.85 89.40 80.14
InjectionNet 85.10 16.28 89.13 72.91 86.32 85.38 95.08 73.40 92.48 86.07

Table 2. Comparison to SOTA methods on ACDC dataset.

Methods DSC(uparrow) RV Myo LV

U-Net [1] 87.55 87.10 80.63 94.92
AttUNet [12] 86.75 87.58 79.20 93.47
TransUNet [2] 89.71 88.86 84.53 95.73
SwinUNet [3] 90.00 88.55 85.62 95.83

MissFormer [16] 90.86 89.55 88.04 94.99
ScaleFormer [7] 90.17 87.33 88.16 95.04
InjectionNet 91.97 89.84 89.97 96.09

3.3 Comparison with State-of-the-Art Methods

Quantitative Comparison: To verify the effectiveness of the proposed Injec-
tionNet, we compare it with 11 state-of-the-art (SOTA) networks on the Synapse
dataset, including V-Net [11], U-Net [1], AttUNet [12], TransUNet [2], Swi-
nUNet [3], UCTransNet [13], MTUnet [14], HiFormer [15], MissFormer [16],
CASTformer [17], and ScaleFormer [7]. The experimental results are shown in
Table 1, using the Dice Coefficient (DSC) and Hausdorff Distance (HD) as eval-
uation metrics. It is clear that the proposed InjectionNet outperforms all other
methods in both regional measures DSC (85.10%) and boundary-aware measure
HD(16.28mm). The quantitative results make us believe that InjectionNet excels
in precisely localizing small objects, notably surpassing the prior leading method
ScaleFormer. For instance, InjectionNet enhances the DSC score in the stomach
and pancreas by 5.93% and 8.55%, respectively. Table 2 shows DSC scores on
the ACDC dataset, with InjectionNet achieving the highest average DSC score
among all methods. For instance, compared to the ScaleFormer, the InjectionNet
improves the average Dice by 1.8% and achieves consistent improvements on all
three individual classes, demonstrating the superior performance.
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Table 3. Comparison to SOTA methods on ISIC2018 dataset.

Methods DSC(uparrow) SE(uparrow) SP(uparrow) ACC(uparrow)

U-Net [1] 85.45 88.00 96.97 94.04
AttUNet [12] 85.66 86.74 98.63 93.76
TransUNet [2] 84.99 85.78 96.53 94.52
SwinUNet [3] 89.46 90.56 97.98 96.45
TMU-Net [18] 90.59 90.38 97.46 96.03

TransCeption [5] 91.24 91.92 97.44 96.28
InjectionNet 92.40 93.63 97.68 96.87

U-Net AttUNet MissFormer ScaleFormer InjectionNet Ground Truth

aorta gallbladder left kidney right kidney liver pancreas spleen stomach

Fig. 3. Qualitative results of different models on Synapse dataset. InjectionNet achieves
superior performance.

To further validate the generalization of InjectionNet, we evaluate Injection-
Net on the ISIC 2018 skin lesion dataset and compare the results with other
SOTA methods. As shown in Table 3, InjectionNet achieves the best perfor-
mance in DSC (92.40%), Sensitivity (93.63%), Specificity (97.68%), and Accu-
racy (96.87%). Notably, InjectionNet outperforms the pure-transformer network,
TransCeption, with a 1.16% improvement in DSC. These quantitative results on
three datasets substantiate the fine effectiveness and generality of our Injection-
Net.
Visual Comparison: In Fig. 3, we illustrate the qualitative results of different
methods on the Synapse dataset, including UNet, AttUNet, MissFormer, and
ScaleFormer. The segmentation results of InjectionNet closely align with the
ground truth, demonstrating accurate and comprehensive organ segmentation
across diverse sizes, shapes, and locations.



458 X. Zhu et al.

Fig. 4. Visualization of feature maps for various methods of inter-layer information
interaction on Synapse dataset. (a) represents the ground truth and (b) represents
the feature map from InjectionNet. (c) and (d) indicate no inter-layer WI modules in
encoder and decoder respectively.

3.4 Ablation Study

We perform ablation experiments on the Synapse dataset for both intra-layer
GLI module and inter-layer WI module, the experimental results are shown in
Table 4. We first try to remove the GLI module and change its global-local infor-
mation fusion method to verify the effectiveness of our design. With (No.3-5), we
find that global-local information fusion is necessary and the proposed Injection
method improves the DSC compared to simple concatenation and summation
operations. The effectiveness of the proposed WI module is evident in mitigat-
ing information transmission weakening during both encoder stages (No.6-8) and
decoder stages (No.9-11). Compared to basic operations, this enhancement con-
tributes to an increased Dice coefficient. Finally, the necessity of both inter-layer
(No.3) and intra-layer (No.2) information interactions is validated, underscoring
the indispensability of our proposed modules. Notably, a significant performance
drop occurs when the decoder is ×, attributed to the absence of the initial CNNs
branch in the final decoder stage, an issue addressed by UNet [1].

Additionally, we visualize the feature map from the final decoder in Fig. 4.
Compared to scenarios without inter-layer WI modules in the encoder-decoder
stage (depicted in (c) and (d), respectively), InjectionNet exhibits more effective
activation of the target region, successfully addressing the issue of information
weakening.
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Table 4. Ablation studies on the Synapse dataset. ’cat’, ’add’ denotes corresponding
connection methods, ’�’ denotes our proposed methods, ’×’ denotes not applicable.

Ver GLI Encoder Decoder DSC(uparrow) HD(uparrow)

No.1 × × × 72.15 16.44
No.2 � × × 72.51 15.49
No.3 × � � 84.25 16.79
No.4 cat � � 84.32 18.78
No.5 add � � 84.63 12.19
No.6 � cat � 84.32 17.39
No.7 � add � 84.43 16.54
No.8 � × � 84.10 14.94
No.9 � � cat 83.57 21.01
No.10 � � add 83.93 15.82
No.11 � � × 73.33 13.43
No.12 � � � 85.10 16.28

4 Conclusion

In this work, we propose a layer-relationship-based network for medical image
segmentation, called InjectionNet. Within the layers, a GLI module rationally
utilizes the MSA mechanism, employing multi-scale convolutional kernels to
extract global-local information and combine them effectively. Besides, various
WI modules enhance the information flow by injecting the weights of neighboring
layers. Our experimental results consistently show that InjectionNet outperforms
other existing methods across three different public datasets.
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