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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun



viii Preface

Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Long-tailed hashing is to learn hash functions in unbal-
anced distribution datasets to represent images as binary hash codes for
fast and accurate image retrieval. In contrast to balanced distribution
datasets, unbalanced distributions are more common in the real world.
However, Existing long-tailed hashing methods only focus on how to
better learn from unbalanced datasets to improve performance, without
giving good consideration to quantization error, which is very crucial in
hash learning. In this paper, we propose a simple but efficient quanti-
zation method for long-tailed hashing. Specifically, to address the lack
of samples in the tail classes, we take a uniform discrete distribution
as the optimal target distribution. We use the Sliced Wasserstein dis-
tance as a measure of distribution distance. It makes good use of the
discrete nature of hash functions and has low computational complexity.
Then we formulate the optimization objective of the quantization error
as minimizing the distance between the output of the learned hash func-
tion and this objective distribution, which can be added as an additional
term of the loss function to existing long-tailed hashing methods. We
conduct experiments on two long-tailed datasets, and the results show
that our proposed method greatly improves the performance of existing
long-tailed hashing methods.

Keywords: Image retrieval · Deep hashing · Long-tailed learning

1 Introduction

Hashing [21,24,27] is a widely used technique in image retrieval that can repre-
sent an image as a low-dimensional binary code using a function. It is charac-
terized by fast retrieval, high accuracy, and low storage cost. However, current
deep hashing methods are trained on ideally uniformly distributed data, which
is uncommon in the real world. Therefore, it is necessary to learn from unbal-
anced long-tailed datasets. Long-tailed datasets are characterized by the fact
that samples in the head classes account for most of the total sample volume,
while samples in the tail classes are only a tiny number.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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There are already some hashing methods that deal with long-tailed distribu-
tions, such as LTHNet [5] and ACHNet [13]. LTHNet proposes a Dynamic Meta
Embedding (DME) module to address the long-tailed distribution by transferring
the knowledge from head classes to tail classes. ACHNet employs the attention
mechanism and the contrastive learning of hash codes and proposes a Cross
Attention Feature Enhanced (CAFE) module to mitigate the information loss
caused by feature dimensionality reduction.

Tail classes Head classes

Fig. 1. Comparison of the average quantization error (angle between continuous codes
and hash codes in radian) per class for the original long-tailed hashing method in the
Cifar-100 dataset with the method after adding the quantization objective. The classes
are listed in ascending order of sample size, with the head class on the left and the tail
class on the right.

However, both methods only map the continuous output of the hash layer into
binary code directly in the network using the tanh function, without considering
the quantization error well. Quantization error is the loss of information that
occurs when replacing a discrete function with a continuous function due to the
difficulty of discrete optimization [27]. In long-tailed hashing, the quantization
error is much more crucial. Fig. 1 shows the quantization error of each class in
the long-tailed dataset. It can be found that the quantization error of the tail
classes is much larger than that of the head classes, which will severely affect
the retrieval performance. This is because the lack of samples in the tail classes
makes it more difficult to learn a good hash function. Therefore, the quantization
error generated by the long-tailed hashing during the learning process must be
handled.

In this paper, we propose a simple but efficient quantization method for
long-tailed hashing. First, we show that hash codes satisfying a uniform dis-
crete distribution are optimal. In this case, the classes are uniformly distributed
regardless of the number of samples. Meanwhile, data points of the same class
are aggregated together, and different classes are separated from each other.
Therefore, we set the quantization objective as minimizing the distance between
the output distribution of the hash layer and this optimal distribution. Then, we
introduce the Wasserstein-2 distance as a measure of the distance between two
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distributions. To estimate it more easily, we project the Wasserstein-2 distance
to the one-dimensional case to solve for it, which is called the Sliced Wasserstein
distance. Fig. 1 illustrates that the problem of quantization error in long-tailed
hashing is mitigated with the addition of our proposed quantization objective,
especially for the tail classes. Our main contributions are as follows:

– We use the Sliced Wasserstein distance as a measure of the distribution dis-
tance to set quantization objectives for long-tailed hashing.

– We reduce the quantization error by minimizing the quantization objective,
and it can be combined with existing long-tailed hashing methods as an addi-
tional term in the loss function.

– We conduct comparative experiments on two long-tailed datasets, and the
results show that the performance of existing long-tailed hashing methods
is significantly improved, which validates the effectiveness of our proposed
method.

2 Related work

2.1 Long-tailed learning

The phenomenon of long-tailed distributions is ubiquitous in reality, and it is
essential to study how to learn from such data. We present existing methods
in three aspects: data resampling, class rebalancing, and knowledge transfer.
Data resampling attempts to resample an unbalanced dataset to force the data
distribution to be balanced. This is done by repeatedly sampling the tail classes
[4] or removing some data from the head classes [11], but leads to overfitting [4]
and underfitting [11], respectively. Class rebalancing attempts to assign different
weights to the head and tail classes in learning. This can be done by weighting
the loss function [20] and the samples used [6]. The idea of knowledge transfer
is that hidden knowledge can be shared between different classes. This can be
done either by transferring the knowledge learned from the head class to the tail
class [26] or by designing an additional module to enrich the representation of
the samples in the head and tail classes [22].

2.2 Deep hashing

Deep hash learning obtains binary hash codes for fast retrieval by learning hash
functions from a dataset. CNNH [28] is the earliest deep hashing method, which
generates a binary hash code first and then learns the hash function from the
generated hash code using a CNN. DPSH [18] is an end-to-end deep hashing
model that optimizes the model using a loss function containing similarity infor-
mation and quantization error. DSDH [17] exploits the label information by
adding regularized linear regression loss to the optimization objective in addi-
tion to pairwise similarity information. HashNet [3] learns the exact binary hash
code by using continuation approximation. CSQ [29] aggregates samples of the
same class together and separates samples of different classes from each other
by presetting the hash centers.
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2.3 Wasserstein distance

The Wasserstein distance is derived from optimal transmission theory and is used
to measure the difference between two distributions. It has been widely used in
the field of computer vision, e.g., WGAN [2]. The advantage of the Wasserstein
distance over the commonly used KL and JS divergence is that it can measure
non-overlapping distributions [1]. However, estimating this distance is difficult
[2]. [8] explored estimating the Wasserstein-2 distance via an optimal transmis-
sion formula, but it is computationally very expensive and requires exponentially
large samples [7]. A variant called Sliced Wasserstein distance then has a poly-
nomial complexity. It projects the data points in many random one-dimensional
directions, called slices, and estimates the Wasserstein distance by taking the
average distance of each data point on these slices [12].

3 Method

3.1 Problem formulation

For a given long-tailed dataset x = {x1, x2, ..., xn} and label y = {y1, y2, ..., yn},
long-tailed hashing task first maps the data x into a real-valued feature vector
f using a feature extractor E parameterized by θ:

f = E (x|θ) (1)

Sorted classes

Number of images

Long-tailed dataset

E

Feature extractor

M

Feature enhancement module

0.2

-0.1

1.3

1.8

-1.5

-0.9

f

tanh

1

1

1

-1

-1

-1

Hash code

Fig. 2. The pipeline of general long-tailed hashing methods. The input long-tailed
dataset goes through a feature extractor and feature enhancement module to output
real-valued features, which are then mapped to binary hash codes using a tanh function.

To enhance the learning of tail classes, f usually goes through a feature
enhancement module. The aim of long-tailed hash learning is to transform the
feature f into a binary hash code consisting of {−1,+1}. Therefore, a hash layer
is connected behind the feature enhancement module for the binary transfor-
mation sgn(f). Due to the difficulty of discrete optimization, sgn() needs to be
replaced by a continuous function h : f → {−1,+1}m, where m is the length of
the hash code. h is usually a tanh() activation function. The pipeline of general
long-tailed hashing methods is shown in Fig. 2.
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Then, the optimization objective L of long-tailed hashing can be defined as:

min
θ

L (h (f) , y) (2)

3.2 Code quantization

In hash learning, a quantization objective is also usually required. This is impor-
tant to improve the retrieval performance of hashing methods because it reduces
the quantization error. The quantization error is the loss of information that
occurs when replacing a discrete function sgn() with a continuous function
tanh() described in 3.1. A lower quantization error reduces the cases where
data points belonging to the same class are assigned to hash codes with a larger
Hamming distance. [27] suggests that this is very important in hash learning
and helps to improve retrieval quality.

Original Input Uniform Discrete DistributionHigh Quantization Error

directly

Minimize Distance

Fig. 3. Visual illustration of the optimal distribution (right) and quantization error
of 2-bit hash codes (left). If the original input is mapped directly through the tanh
function at the hash layer, a high quantization error occurs. Our goal is to minimize
the distance between the original input and the uniform discrete distribution.

We consider the case of learning a 2-bit hash function. In Fig. 3, the learned
hash function projects data from the four classes into a two-dimensional space
as the original input to the hash layer. If these real-valued features are directly
mapped to a hash code through the tanh function of the hash layer, a case with
high quantization error will occur as shown in Fig. 3(left). Some data points
of the same class near the boundary are assigned to two different hash codes,
leading to a high false-negative rate and reducing the retrieval performance. Fig.
1 illustrates that this is more likely to happen with tail classes in long-tailed
hashing.

Fig. 3(right) demonstrates the optimal hash distribution, in which data points
of the same class are aggregated together and different classes are separated from
each other, regardless of the number of samples. It is not affected by the lack
of samples in the tail classes, ensuring a low quantization error. In addition,
the data points are equally divided into four quadrants, which also ensures code
balance. Therefore, we need to make the original distribution tend to the target
distribution, i.e., minimize the distance between the two distributions.
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3.3 Distributional distance

As described in 3.2, hash codes that follow a uniform discrete distribution are
optimal for low quantization error. We denote this distribution by U . In this
case, each bit of a hash code can be sampled independently and randomly as
-1 or +1 with equal probability, which ensures coding balance. [9] shows that
it is important and helps to reduce the average time complexity of retrieval.
Therefore, we can use U as the target to minimize the difference between the
output distribution of the hash layer and this optimal target distribution. We
define the quantization objective Lq as follows:

Lq(h(f)) = D(h(f)||U) (3)

where D denotes the distributional distance. However, minimizing D is difficult,
especially if the density of the hash distribution cannot be estimated. Further-
more, the choice of a metric for the distribution distance D is also an issue to
be considered.

The KL and JS divergences are well known and they are the most commonly
used methods to measure the similarity of two distributions. However, using them
to estimate D is not a good choice because they do not measure non-overlapping
distributions and are computationally expensive. Therefore, we introduce the
Wasserstein-2 distance to estimate D, which is more effective and computation-
ally efficient than the KL and JS divergence. When using the Wasserstein-2
distance to measure the difference between two distributions, the distribution
distance D is expressed as:

D (u, v) =

(
inf

γ∈Π(u,v)

∫
(a,b)∼γ

p (a, b) ‖a − b‖2dadb

) 1
2

(4)

where Π (u, v) is the set of all joint distributions γ (a, b) with marginal dis-
tributions u and v, respectively. In simple words, γ (a, b) denotes the "quality"
of the transmission from a to b in order to transform the distribution u to the
distribution v, and then the distance D is the "cost" of the optimal transmission
plan. In Eq. (4), u and v represent the continuous hash distribution h and the
discrete uniform distribution U , respectively. However, it is difficult to directly
compute the infimum of Eq. (4) because the continuous hash distribution of the
output of the network is not fixed or even unknown.

These problems can be avoided by using the Sliced Wasserstein distance.
First, we let ρu and ρv denote the density functions of u and v respectively, and
then the Wasserstein-2 distance W in the one-dimensional case is:

W (u, v) =
(∫ 1

0

‖F−1
u (w) − F−1

v (w) dw‖2
) 1

2

(5)

where Fu (w) =
∫ w

∞ ρu (η) dη, Fu (w) =
∫ w

∞ ρu (η) dη, which are the cumulative
distribution functions of u and v, respectively. Then, we can utilize linear projec-
tion to approximate the Wasserstein-2 distance as a one-dimensional projection
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of these functions, which is the Sliced Wasserstein distance:

D (h (f) , U) ≈
(

1
L

L∑
i=1

W
(
wT

i h (f) , wT
i U

)) 1
2

(6)

where wT
i h (f) and wT

i U are one-dimensional projections in the direction of wi

(call slice) of the samples of the hash distribution h and the samples from U ,
and L is the number of slices. wi is usually obtained by sampling on the unit
sphere.

Furthermore, random projections can be avoided in the estimation of Sliced
Wasserstein distance by choosing the direction that contains the information of
the two distributions to be measured. In this way, Eq. (6) can be written as:

D (h (f) , U) ≈
(

1
m

m∑
i=1

W
(
h (f)i,: , Ui,:

)) 1
2

(7)

where h (f)i,: and Ui,: are all one-dimensional samples of h(f) and U in the
i-dimensional direction respectively, m is the length of the hash code.

Finally, combining Eq. (2) and Eq. (3), we can define the quantization loss
and add it to the optimization objective for long-tailed hashing:

min
θ

L + λLq (8)

4 Experiments

4.1 Datasets

Cifar-100 [14] Cifar-100 is a widely used data set in various fields. It contains
100 classes with a total of 60,000 images. Each class has a database of 500 images
and a query set of 100 images. We use 50,000 of these images as a database,
averaging 500 images per class, and the remaining 10,000 images as a query
set, averaging 100 images per class. Here we randomly sample images from the
database following Zipf’s law, i.e. Ni = N1 × i−μ, where Ni denotes the number
of images from the i-th class and μ is an imbalance parameter. Then we build
three unbalanced benchmarks according to (Imbalance Factor) IF = 1, IF = 50,
and IF = 100 by choosing different μ. A larger IF means a more imbalanced
training set while IF=1 means a balanced training set.

ImageNet-100 [3] ImageNet-100 is a 100-class subset of the original dataset.
We construct an unbalanced dataset by randomly selecting 100 classes from all
1,000 classes. The database has a total of 130,000 images with 1,300 images per
class and the query set has a total of 5,000 images with 50 images per class, where
the training set follows Zipf’s law and is randomly sampled from the database
based on three different IF. For a fair comparison, we take only 100 images from
each class as the training set when IF = 1.

The details of the two datasets after random sampling according to different
IF are shown in Table 1 and Table 2.
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Table 1. Details of the Cifar-100 dataset with different IF

IF N1 N100 μ Ntrain Ndatabase Nquery

1 500500 0 50,00050,000 10,000
50 50010 0.833,732 50,000 10,000
1005005 0.992,598 50,000 10,000

Table 2. Details of the ImageNet-100 dataset with different IF

IF N1 N100 μ Ntrain Ndatabase Nquery

1 100 100 0 10,000130,000 5,000
50 130026 0.8459,437 130,000 5,000
100130013 0.99 6,834 130,000 5,000

4.2 Implementation Details

We add the proposed quantization objective to two existing long-tailed hashing
methods LTHNet[5] and ACHNet[13] with λ = 0.1, following the same hyper-
parameter settings as the original methods. In addition, we also compare with
four deep hashing methods, which are DPSH[18], HashNet[3], DSDH[17], and
CSQ[29]. For a fair comparison, we used ResNet34 as a feature extractor for all
methods. All the parameters of compared methods are optimized by a RMSprop
algorithm with weight decay 5e-4. Learning rate is set to 1e-5 for Cifar-100
while 1e-6 for ImageNet-100, and these learning rates are updated by a cosine
annealing schedule. Referring to previous methods, we use the mean average
precision (MAP) as the evaluation metric and conduct the experiments under
the settings of hash code lengths of 32bits, 64bits and 96bits, respectively. MAP
has been used as the retrieval performance measure in almost all the learning
to hash literature [10,15,16,19,25], models with higher MAP represent better
performance.

4.3 Results and Analysis

We report the experiment results of various methods to learn 32-bit, 64-bit, and
96-bit hash functions on the Cifar-100 and ImageNet-100 datasets in Table 3 and
Table 4, respectively. -Q denotes the addition of our proposed quantization objec-
tive to the original method, and bold values denote the performance improvement
relative to the original method. It can be seen that after adding the quantiza-
tion objective, the performance of LTHNet on the Cifar-100 dataset achieves
an improvement of 0.96%-3.06%, and the performance of ACHNet achieves an
improvement of 0.92%-2.67%. In the ImageNet-100 dataset, LTHNet achieved
a 0.82%-2.31% improvement in performance and ACHNet achieved a 0.85%-
2.17% improvement in performance. This is especially significant on unbalanced
benchmarks such as IF = 100, where LTHNet and ACHNet achieve 1.95%-3.06%
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Table 3. Retrieval performance of all methods compared on Cifar-100 for different IF
and code length settings.

Imbalance Factor IF1 IF50 IF100
hash bits 32bits 64bits 96bits 32bits 64bits 96bits 32bits 64bits 96bits

DPSH 0.3113 0.4506 0.4957 0.1069 0.1407 0.1634 0.0978 0.1216 0.1383
HashNet 0.4380 0.5719 0.6311 0.1726 0.1950 0.2079 0.1444 0.1559 0.1631
DSDH 0.5398 0.6100 0.6407 0.1119 0.1000 0.0999 0.0940 0.0872 0.0807
CSQ 0.7711 0.7984 0.7821 0.2221 0.2745 0.2669 0.1716 0.1992 0.1658
LTHNet(k=0) 0.8195 0.8336 0.8400 0.2427 0.3028 0.3309 0.1752 0.2240 0.2415

LTHNet(k=3) 0.8268 0.8416 0.8490 0.2687 0.3354 0.3484 0.1819 0.2376 0.2620
LTHNet-Q 0.84240.85280.8586 0.29020.35370.3629 0.21250.26290.2815
ACHNet 0.8218 0.8299 0.8314 0.3075 0.3624 0.3708 0.2246 0.2770 0.2957
ACHNet-Q 0.83570.84040.8406 0.32640.37920.3841 0.25130.29870.3126

and 1.69%-2.67% improvements respectively, which illustrates the effectiveness
of our proposed quantization objective on long-tailed distribution data. On the
balanced benchmark, our method also improves.

Note that the performance improvement of our method is greater for shorter
code lengths. The reason for this is that shorter hash codes contain less infor-
mation, and more information loss occurs when converting images to these
hash codes, which means greater quantization error. In addition, the proposed
method improves the performance on cifar-100 greater than ImageNet-100. This
is because the image sizes in the cifar dataset are small and the information
richness is insufficient, leading to more quantization error.

Table 4. Retrieval performance of all methods compared on ImageNet-100 for different
IF and code length settings.

Imbalance Factor IF1 IF50 IF100
hash bits 32bits 64bits 96bits 32bits 64bits 96bits 32bits 64bits 96bits

DPSH 0.4887 0.6055 0.6514 0.2186 0.3125 0.3791 0.1788 0.2832 0.3468
HashNet 0.4410 0.6006 0.6421 0.3465 0.4034 0.4240 0.3101 0.3770 0.3800
DSDH 0.6554 0.7015 0.7231 0.2568 0.2617 0.2744 0.1841 0.2134 0.2429
CSQ 0.8507 0.8733 0.8657 0.6629 0.7022 0.6823 0.5989 0.5620 0.5495
LTHNet(k=0) 0.7924 0.8267 0.8382 0.7369 0.7804 0.7920 0.6771 0.7350 0.7528

LTHNet(k=3) 0.8142 0.8453 0.8592 0.7612 0.8007 0.8157 0.7146 0.7665 0.7828
LTHNet-Q 0.82860.85540.8674 0.78100.81820.8288 0.73770.78200.7966
ACHNet 0.8592 0.8702 0.8779 0.8265 0.8427 0.8472 0.7965 0.8128 0.8163
ACHNet-Q 0.87220.88060.8864 0.84560.85880.8596 0.81820.82850.8308
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To highlight the performance of our method on the tail classes, we divide
all classes into four equal parts in order and evaluate MAP on the fourth part
in which all classes are tail classes (i.e., the last 25 classes). We compare the
results of our method with original long-tailed hashing methods in Table 5 and
Table 6, indicating the outstanding performance of our method specifically on
tail classes.

Table 5. On the IF=100 benchmark of Cifar-100, the performance comparison of
different methods on the tail classes.

Methods 32bits 64bits 96bits

LTHNet 0.0565 0.1194 0.1243
LTHNet-Q 0.10130.14050.1446
ACHNet 0.0953 0.1569 0.1764
ACHNet-Q0.13870.18140.1903

Table 6. On the IF=100 benchmark of ImageNet-100, the performance comparison of
different methods on the tail classes.

Methods 32bits 64bits 96bits

LTHNet 0.4493 0.5402 0.5660
LTHNet-Q 0.47170.55900.5796
ACHNet 0.6543 0.6782 0.6910
ACHNet-Q0.67650.70520.7098

4.4 Complexity Analysis

According to [12], the Sliced Wasserstein distance estimation in Eq. (6) has a
computational complexity of O(LN log(Nd)), where L is the number of random
directions, N is the number of samples, and d is the dimension of the data. In
most problems, Sliced Wasserstein distance requires a large number (L � N)
of random directions, typically between 1000 to 10,000, to provide a reliable
estimate of the distance [23]. To avoid random projections, we choose the direc-
tion that contains the information of the two distributions to be measured in
Eq.(7), called non-random projection, which has a computational complexity of
O(mN log(Nd)). In this way, the number of directions is fixed to the dimension
of the hashing space m, which is typically between 16 to 128 for many image
hashing applications.

Taking ACHNet as an example, Table 7 reports the average running time
for different quantization modes. We can observe that non-random projection
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is more computationally efficient than random projection, and relative running
times have decreased by 20% to 30%. This is because it has fewer projections
and omits the matrix-multiplication operation that projects the data points into
random directions. In addition, there is a slight increase in the average running
time compared to the original method, which is due to our additional calculation
of the quantization loss.

Table 7. Average running time per epoch for different quantization modes (in seconds).

Datasets OriginalRandom projectionNon-random projection

Cifar-100 19.5 27.3 21.7
ImageNet-10051.4 68.1 55.6

4.5 Quantization Visualization

Fig. 4. Two-dimensional t-SNE visualization of hash centers.
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In Fig. 4, we show the visualization of the hash centers of 100 classes in LTH-
Net and ACHNet, as well as after adding the quantization objective to them.
For the generation of these hash centers, we simply take the average of all the
hash codes of each class generated by the learned hash function as a prototype
of this class. We project these hash centers into a two-dimensional space using
t-SNE dimensionality reduction visualization. As shown in Fig. 4(a) and (c),
the distribution of hash centers of the original method is very tight, and some
hash centers even overlap, which usually belong to the tail classes. In contrast,
the hash centers generated from the hash functions learned by the method after
adding the quantization objective have better interclass separation, which alle-
viates the false negative problem described in 3.2 and improves the retrieval
performance.

4.6 Sensitivity Analysis

Fig. 5. (up) Sensitivity analysis of the parameter λ at 32bits on LTHNet-Q. (down)
Sensitivity analysis of the parameter λ at 32bits on ACHNet-Q.

We conducted experiments on the sensitivity analysis of the parameter λ in
Eq. (8). We choose LTHNet-Q and ACHNet-Q as the model and set the code
length to 32bits. The experiment results are shown in Fig. 5. λ is 0 which is the
original LTHNet and ACHNet method, and our proposed method achieves the
best performance when λ is 0.1. Close performance is achieved when λ is 0.2
and 0.3. But when λ is larger than 0.3, the performance of the model gradually
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decreases, indicating that our method is more sensitive to λ. This is because
when the value of λ is too large, the two models will be over-quantized, affecting
their own performance. Therefore, we set the value of λ in Eq. (8) to 0.1.

5 Conclusion

In this paper, we propose a quantization objective for existing long-tailed hashing
methods that do not consider the quantization error well. First, we take an
optimal uniform discrete distribution as the target and minimize the distance
between the continuous hash distribution and this target distribution. Then,
we use the Sliced Wasserstein distance, which is easy to optimize and has low
computational complexity, as a distance metric between the two distributions.
Through comparative experiments, we verify the effectiveness of the proposed
method, which significantly improves the performance of existing long-tailed
hashing methods on two datasets.

Acknowledgements. This work was supported by Guangdong Basic and Applied
Basic Research Foundation (2023A1515011400). The corresponding author is Yan Pan.
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Abstract. In this research, we propose a novel approach using unsuper-
vised metric learning tailored to datasets characterized by complex sim-
ilarities and connections, such as those found in paintings and makeup,
which are challenging to express linguistically. These datasets often
present the difficulty of adequately analyzing data points due to the intri-
cate interplay of defining elements, a limitation of traditional labeling
methods. Additionally, the high degree of specialization required makes
annotation significantly costly. Unsupervised metric learning emerges as
a powerful method for extracting more cost-effective features and for
the comprehensive analysis of these datasets. Expanding upon previous
research that utilized style transfer models, our study further explores
feature design, specifically focusing on extracting detailed information
about critical aspects of similarity assessment, such as color and shape.
Our model adeptly incorporates visual information, unveiling the hidden
abstract connections within datasets. We validated our approach using
a dataset of Ukiyo-e, a genre of Japanese painting, and achieved accu-
racy comparable to supervised learning models. This research opens up
new possibilities for the analysis of complex image datasets with abstract
relational depth, fostering a deeper understanding of the data.

Keywords: Unsupervised Metric Learning · Representation
Learning · Image Retrieval Model

1 Introduction

In recent years, the significant progress of social media has led to the generation
of vast amounts of image data. Effectively analyzing these data can offer numer-
ous benefits for businesses and researchers. For instance, cluster analysis can
identify trending patterns and help us understand people’s interests and behav-
ioral patterns. With advanced deep learning technology, analyzing these complex
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high-dimensional image datasets has become interpretable, allowing analysts to
transform them into lower-dimensional, valuable features. Metric learning, one
method that enables such feature extraction, involves learning the similarity
between data points. However, defining a similarity that suits the analysis target
is crucial. Metric learning primarily presupposes supervised learning. However,
annotation costs can become quite significant when expert knowledge is required
for similarity judgments or when the target dataset encompasses a wide range of
classes. Therefore, unsupervised metric learning is more desirable. This research
focuses on tasks where judging similarity is particularly challenging and aims
to build a model using unsupervised metric learning to reduce the cost of fea-
ture generation while providing valuable information for image analysis. Unsu-
pervised metric learning is advantageous for its adaptability to data requiring
expert knowledge and being difficult to articulate. In the study of image similar-
ity, themes such as painting and makeup are identified as examples that entail
significant annotation costs. Paintings are similar in many elements, including
the use of color and thematic choices, and are characterized by intricate simi-
larities that arise from the subtle differences in techniques of individual artists.
Similarly, makeup reflects individual creativity and fashion trends through col-
ors, application techniques, and styles, and it is profoundly similar. In this paper,
we define such similarity as "abstract connections". Utilizing unsupervised met-
ric learning allows for the clever use of visual information in images without
specifying similarity, revealing hidden abstract connections within the dataset
through cluster analysis and promoting a deeper understanding of the data.
Existing research on unsupervised metric learning primarily involves perform-
ing image transformations to create pairs based on the idea that the semantic
meaning remains unchanged. However, this approach is unsuitable for tasks that
require the detection of subtle differences in similarity. In these tasks, transfor-
mations could result in images with entirely different meanings. Previous studies
explored image similarity centered on "color" and "shape" information [9,29].
Therefore, this research proposes a new unsupervised metric learning model that
uses "color" and "shape" information to define abstract similarity effectively,
representing these aspects efficiently.

2 Related Works

2.1 Supervised Metric Learning

Metric learning has been widely adopted as a feature extractor. Unlike classifi-
cation models, which use the category of each image as supervised data, met-
ric learning uses the similarity between images as the criterion. This approach
directly targets how similar images are to each other. The main strength of
metric learning is its focus on the relationships between data, which enables
it to adapt effectively to scenarios such as class-imbalanced datasets and few-
shot learning. This approach has been broadly applied in areas such as image
retrieval model [4,16] and facial recognition [14]. Many methods have been pro-
posed under the framework of supervised learning. Contrastive loss [8], triplet
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loss [25], and their advanced forms [23,28] are representative methods where
the focus is placed on the design of input data based on labels of image sim-
ilarity. Furthermore, by adding an L2 normalization layer immediately before
the final layer of existing classification models [17], an approach has been intro-
duced that allows metric learning to be advanced while maintaining classification
learning. These advancements have led to attention being focused on the metic-
ulous design of features for embedding data on hypersphere space, resulting
in the development of methods [6,13,22,24] such as ArcFace [6]. While suited
to tasks with clear classification categories, supervised metric learning encoun-
ters difficulties in fields like art and makeup, where the definition of similarity
necessitates expert evaluations and incurs significant annotation costs. In such
scenarios, unsupervised metric learning is considered a more favorable method.

2.2 Unsupervised Metric Learning

As the introduction mentions, fields such as art and makeup feature similar-
ities based on diverse cultural backgrounds, suggesting hidden, complex rela-
tionships between data. Adopting unsupervised metric learning is essential to
unravel these abstract connections. Unsupervised metric learning and represen-
tation learning have been proposed [2,3,12,27]. The majority of these methods
are based on an approach where pseudo labels are employed for similarity labels.
For instance, such methods have been developed that exploit the property where
the semantic meaning of an image remains unchanged even when rotated [2],
and techniques using algorithms such as keypoint matching to define identical
images [12]. In the context of clustering tasks, as demonstrated by proposals
such as Deep Cluster [3], utilizing the results of K-means clustering as pseudo
labels allows for realizing unsupervised learning. This approach harnesses clus-
tering outcomes as pseudo labels to facilitate the learning process. We focus
on the similarity of fine details within images. Consequently, it becomes nec-
essary to refrain from any manipulations of the original images. Furthermore,
the challenge of dealing with data that embodies abstract relationships makes
the presetting of cluster numbers impractical. Learning models that require the
pre-establishment of cluster numbers are not suitable for addressing such prob-
lems due to inappropriate learning costs. Therefore, cluster analysis should be
undertaken as a separate task following the generation of features. For these rea-
sons, the necessity arises for conducting unsupervised metric learning without
resorting to clustering-based pseudo labels or manipulated images.

2.3 Feature Extractor with Style/Makeup Transfer Model

From the perspective of feature extractors, early image retrieval models uti-
lized image histograms to define similarity based on color and shape [9,29]. We
adopted this approach, effectively extracting information on color and shape
to evaluate their respective similarities. This concept is efficient for establish-
ing criteria for similarity assessment in unsupervised situations. Moreover, in



18 S. Obikane et al.

the context of similar image retrieval challenges, unsupervised learning meth-
ods using intermediate features of style transfer models have been proposed for
datasets with abstract relationships like paintings [1,15]. We aimed to further
develop this approach within the framework of unsupervised metric learning,
focusing on extracting information on color and shape to create more practi-
cal models. To separately and appropriately handle color and shape, the use
of the makeup transfer model [5,10,11,26], a form of style transfer, is consid-
ered adequate. Makeup transfer is the process of applying makeup from reference
images to face images in source images. This model includes source and reference
encoders, similar to style transfer, which are combined and processed through a
decoder to produce the result image. Unlike the challenges in style transfer, this
requires providing makeup colors from reference images while maintaining the
face from the source image, demanding a specific output. Navigating the intri-
cacies of facial features and adapting to a wide range of makeup styles present
significant challenges in makeup. Thus, the model needs precise makeup color
information from references and shape information from source images. This
approach aligns closely with our study’s concept, indicating a suitable direc-
tion for extending makeup transfer into unsupervised metric learning. Makeup
transfer methods, built on adversarial learning, propose various approaches to
accommodate diverse makeup styles. In reconsidering the roles of each encoder in
makeup transfer, it is observed that the source encoder extracts shape informa-
tion from source images, while the reference encoder extracts color information
from reference images. We aim to further develop these encoders within the
unsupervised metric learning framework to enhance them as effective feature
extractors. This allows for the construction of models that can precisely identify
similarities based on both shape and color. Through this approach, a broader
exploration of similarity becomes feasible, opening new possibilities in similarity
detection through unsupervised learning methods.

3 Method

3.1 Overview of our method

Let X = {x1, x2, ...xN} ⊂ R
H×W×3, where H is the height of the image, and W

is the width, be the entire target data. Based on these data, a makeup transfer
model is created. Isrc ∈ X, which represents the source image to be changed,
and a reference image Iref ∈ X with the change information (i.e., makeup
information assuming that makeup is the task) are sampled from X in the same
domain. The makeup transfer model G is created based on the paired data
{Isrc, Iref}. Pairs of source images and reference images are randomly selected
in the dataset. A characteristic of the model G is the inclusion of an L2 normal-
ization layer between the encoder and decoder. As shown in Fig. 1, each encoder
part of model G is used to perform the final learning as a feature generator. The
proposed method comprises three learning steps. Step 1 involves pretraining for
makeup transfer to make generator G suitable for the face image task. Then,
Step 2 involves pretraining for metric learning to make the generator G suitable
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Fig. 1. Our method G is composed of three steps. Our model G is structured by
connecting the source encoder, reference encoder, and decoder with an L2 normalization
layer. In Step 1, the model solves an image reconstruction task to facilitate the learning
process in Step 2. In Step 2, the model prepares for unsupervised metric learning in Step
3 by training within the makeup transfer framework. In Step 3, the model separates
the source encoderF shape and reference encoderF color, training them individually as
feature generators to extract shape and color information, respectively. The encoders
and the results G(Isrc, Iref ) generated in the makeup transfer model are effectively
utilized to achieve unsupervised metric learning.

for makeup transfer. Since features are created using a makeup transfer model,
we created a model that functions like this model does. Finally, in Step 3, the
encoders that comprise the generator are extracted as feature extractor F shape

for shape information and feature extractor F color for color information, and a
metric is used for each of these feature extractorsF shape,F color.

3.2 Step 1: Pretrain for makeup transfer model

First, to facilitate learning the makeup transfer task on step 2, we train gener-
ator G similar to an autoencoder model to pre-train a model suitable for the
facial image task. The same image I is inputted to the source and reference
encoders, and is trained with the aim of generating the same image as the input
image, using the same image I as the output label. The loss in Step 1 is repre-
sented as follows:

Lstep1 = ‖I − G(I, I))‖2. (1)

3.3 Step 2: Pretrain for metric learning (makeup transfer model)

Through the learning process in Step 1, generator G becomes a model special-
ized for the topic of the targeted dataset (for example, if it’s makeup dataset, the
task is face images, and if it’s paintings, the task is artwork images). We focused
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on the characteristics of the makeup transfer model; the makeup transfer task is
solved in Step 2 based on the results in Step 1. The loss function was designed
to effectively achieve makeup transfer, which involves providing the color infor-
mation of the reference image Iref to the target part of the source image Isrc;
its design is detailed below.

Adversarial loss : Adversarial loss is used to create natural output results.
Following the general adversarial loss approach, we introduce a discriminator D
to distinguish whether the input image is a generated image G(Isrc, Iref ) or
a source imageIsrc, and train the generator G to output realistic images that
can deceive the discriminator D. The entire adversarial loss can be described as
follows:

LD
adv = E[logD(Isrc)] + E[log (1 − D(G(Isrc, Iref )))], (2)

LG
adv = −E[log (D(G(Isrc, Iref ))]. (3)

Makeup loss : In makeup transfer, images that reflect the results to a certain
extent are used as the pseudo-ground truth. Histogram Matching (HM) [7], which
reflects the makeup of a reference image with respect to a source image, is often
used for makeup transfer. HM(x, y) is a method that creates an image with the
same color distribution as that of images x and y, while preserving the identity of
x. It is named "makeup loss" but the same process will be applied to all datasets.

Lmakeup = ‖HM(Isrc, Iref ) − G(Isrc, Iref )‖2. (4)

Perceptual loss : The identity of the source image should be preserved even
after transfer. The perceptual loss function is typically used for style transfers.
In our method, the source encoder F shape side of the model created in Step 1 is
used, some features are extracted in the same manner, and the perceptual loss
is calculated. The shape encoder l-th layer is defined as F shape−l , and L layers
are used; the perceptual loss is described as follows:

Lper =
L∑

l

‖F shape−l(G(Isrc, Iref )) − F shape−l(Isrc)‖2. (5)

Feature matching loss : In style transfer, which is the basis of makeup trans-
fer, the matching of the output feature values is set as a loss function (style loss,
content loss). Our method defines the feature matching losses Lshape

feat , Lcolor
feat from

the viewpoints of shape and color matching, respectively by the cosine similarity
cos(x, y) = xT ,y

‖x‖‖y‖ . Regarding shape Lshape
feat , the source image Isrc and gener-

ated image G(Isrc, Iref ) should have the same shape; accordingly, the following
relation is obtained:

Lshape
feat = 1 − cos(F shape(G(Isrc, Iref )),F shpae(Isrc)). (6)
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On the other hand, regarding color Lfeat−color, the reference image Iref and gen-
erated image G(Isrc, Iref ) should have the same color; therefore, the following
relation is obtained:

Lcolor
feat = 1 − cos(F color(G(Isrc, Iref )),F color(Iref )). (7)

Our loss functions for G and D are represented as follows:

LG = λadvL
G
adv + λperLper + λmakeupLmakeup + λshape

feat Lshape
feat + λcolor

feat Lcolor
feat (8)

LD = λadvL
D
adv (9)

where λadv, λper, λmakeup, λ
shape
feat , λcolor

feat are hyperparameters.

3.4 Step 3: Unsupervised Metric Learning

Following previous studies, it has been shown that features, including those from
style transfer (makeup transfer) models created at Step 2, are effective for mea-
suring similarity. At Step 3, we further refine the model obtained from Step 2
as a feature extractor. Our method employs unsupervised metric learning with
pseudo labels related to similarity. Such meticulous adjustments allow for the
creation of models that are adaptable even with a small number of samples. Ini-
tially, a single model G is divided into two models: F shape, for extracting shape
information, and F color, for extracting color information, with each undergo-
ing further training. For the sake of convenience in notation, the output result
G(Isrc, Iref ) will be denoted as Ioutput. The fundamental idea of our method,
similar to the feature matching loss at Step 2, focuses on the similarity of color
and shape information between the generated output and input data, creating
pairs that can be identified as similar or dissimilar. For F shape, since the input
data Isrc and the generated result Ioutput represent the same subject, they are
treated as identical pairs in terms of shape information. This is defined as Eq.
(10). Since Isrc and Iref could potentially form a pair with low similarity, they
are treated as dissimilar pairs. This is defined as Eq. (11).

Lshape
sim = 1 − cos(F shape(Isrc),F shape(Ioutput)) (10)

Lshape
dissim = 1 + cos(F shape(Isrc),F shape(Iref )) (11)

In F color, the input data Iref and the generated result Ioutput, sharing the
same coloration, are treated as identical in terms of color information. This is
also defined as Eq. (12). Similarly, Iref and Isrc are treated as dissimilar pairs,
as discussed for F shape. This is defined as Eq. (13).

Lcolor
sim = 1 − cos(F color((Iref ),F color(Ioutput)) (12)

Lcolor
dissim = 1 + cos(F color(Iref ),F color(Isrc)) (13)

The loss function designed to separate dissimilar pairs ceases to apply after a
certain number of epochs, epochstop. This is because Isrc and Iref , defined as
dissimilar pairs, might potentially form a similar pair, and ultimately, the focus
shifts solely to learning from identical pairs to enhance the accuracy of similarity
definitions.
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4 Experiments

4.1 Dataset

We utilized the ARC Ukiyo-e Faces Dataset [19], representing one of the gen-
res of Japanese paintings known as Ukiyo-e. As labels, we adopted "painters"
and focused on the abstract similarities in their unique painting techniques.
The data possessing abstract connections, which is the focus of our study, fre-
quently appears in various applications. In general image datasets, when per-
forming clustering analysis, the critical factor is often shape information alone.
For example, even if the color is different, the same car would be assigned to the
"car" class. However, in datasets with abstract relationships, color information
also contributes to similarity assessment and becomes a similarity criterion. It
is necessary to predict the background and measure similarity based on both
color and shape information. In cases where the dataset does not have a general
categorization and belongs to an unknown and difficult-to-explain category, it
may exhibit similarities that differ from general datasets, as it is unclear whether
color or shape information is the key factor. Therefore, compared to standard
datasets, a more abstract and complex form of similarity is required. However,
there are limited datasets available for quantitative evaluation. We identified
that evaluation using data labeled with "painters" is suitable for the concept
of data with abstract connections. Although validation with more general data
is also necessary, our study specifically targets data with abstract and complex
connections. Therefore, the evaluation was conducted using this dataset. Due
to insufficient samples for proper evaluation in some categories, we selected 17
categories, each containing over 80 images, as labels. Fifty images were randomly
chosen from each class as test data. The final dataset consisted of 3,195 images
for training and 850 images for testing.

4.2 Implementation detail

All the learning steps were trained with the Adam optimizer (β1=0.500,
β2=0.999). The learning rate for the generator in Step 1 was 5.0 × 10−2, that
for both the generator and discriminator in Step 2 were 1.0 × 10−3, and that
in Step 3 was 5.0 × 10−4. All the batch sizes were 32. The number of epochs
in Step 1, Step 2, and Step 3 was 200, 100, and 100, respectively. The encoder
utilizes a model similar to VGG [18], while the decoder is a five-layer model
employing deconvolution layers. In both the encoder and decoder, instance nor-
malization [20] is used as the batch normalization layer. In our method, the
dimensionality of the feature vectors is set to 512 dimensions. The network was
implemented using PyTorch with a single NVIDIA RTX A5000 GPU. Regard-
ing the hyperparameters, they were λadv = 1, λper = 1, λmakeup = 100, λshape

feat =
1, λcolor

feat = 1, α = 10, epochstop = 50.
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5 Result

5.1 Evaluation method

Performance assessments were conducted to evaluate the feature representation
of our method, focusing on its application in recommendation models and clus-
tering analysis. For the recommendation model, Precision@K (where K repre-
sents the number of reference images) was utilized as a measure of accuracy. Dur-
ing training, no labels were used; however, for evaluation, labels were assigned
to the training data as reference images as a recommendation model. The most
similar training data to each test data point was determined using cosine simi-
larity, and the class related to the painter was estimated. This approach allowed
us to verify whether the proposed method captured information relevant to sim-
ilarity. In the case of clustering analysis, Spectral Clustering [21] was applied
to the generated feature sets, and Normalized Mutual Information (NMI) was
used as the metric for evaluation. As for the accuracy comparison, our method is
an unsupervised learning technique, and the accuracy in the presence of actual
supervised data was set as the target. ArcFace [6], a standard method in super-
vised metric learning, was used as a comparison. Additionally, well-known unsu-
pervised learning methods such as DeepCluster [3], UEL [27], and UDMLSSS [2]
were employed for comparative analysis. Each backbone model employed in this
study utilizes ResNet50. The part that can be treated as an encoder is con-
nected to a decoder, forming an autoencoder, and the image reconstruction task
on the target dataset [19] is solved to perform pretraining. Through these eval-
uations, we assess whether the features generated by our method can aggregate
useful information when applied to various analytical techniques. Compared to
tasks with clearly defined general categories, the challenge of inferring the artist
from paintings requires a nuanced judgment criterion and represents a highly
specialized and challenging task setting. In experiments conducted with other
methods, the subjects are often readily identifiable items such as products or
biological categories, which differ in purpose. However, our evaluation design
aims to demonstrate the effectiveness of our method in uncovering abstract con-
nections within the targeted data by comparing it with previous methods. Our
method considers two feature types: shape and color, which are integrated using
a parameter μ (0 ≤ μ ≤ 1):

μF shape(I) + (1 − μ)F color(I). (14)

This parameter dictates the emphasis on shape or color, with a higher μ priori-
tizing shape information and a lower μ favoring color information.

5.2 Quantitative evaluation

Our method, unique in its reliance on unsupervised learning, is evaluated against
a hypothetical scenario where training data are accompanied by supervised
labels, a setting that represents ideal performance. For the benchmark in super-
vised learning, we employed the ArcFace [6] method. Our research follows a
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Table 1. The results of the accuracy evaluation using Precision@K, tailored for the
recommendation model, are presented. We used K values of 1, 5, 10, 20, and 30, with
the maximum value of 30 sets considering the minimum sample size per class in the
training data. The scores of each comparative method and the score at each learning
step are shown. Moreover, in step 3, a loss function designed to distance the features is
implemented. We provide results for our method without this loss function (our method
(1)) and with it (our method (2)). While achieving numbers close to the supervised
learning model ArcFace [6], our method also surpasses previous methods [2,3,27] in
terms of score. Additionally, accuracy improvements at each learning stage indicate that
each step effectively contributes to the overall performance. The increasing effectiveness
of our method with larger values of K suggests the richness of the feature information
and the excellent cohesion of the features.

No.Model Type Precision@1 Precision@5 Precision@10 Precision@20 Precision@30

1 ArcFace [6] 0.562 0.549 0.507 0.482 0.441

2 Deep Cluster [3] 0.315 0.315 0.287 0.271 0.250
3 UEL [27] 0.518 0.492 0.465 0.417 0.394
4 UDMLSS [2] 0.565 0.52 0.497 0.465 0.440
5 step 1 model 0.537 0.482 0.452 0.418 0.377
6 step 2 model 0.611 0.572 0.524 0.467 0.432
7 our method(1) 0.612 0.550 0.528 0.480 0.443
8 our method(2) 0.616 0.570 0.550 0.497 0.472

Table 2. Like Table 1, the results presented here use Precision@K for accuracy evalua-
tion, designed with the recommendation model. This result demonstrates the accuracy
within minor classes with limited sample sizes in the training data, precisely two classes
with only 38 and 31 samples. These sample sizes represent approximately 1% of the
total data and pose a significant challenge for unsupervised learning methods. The
results indicate that our method is highly effective for these minor classes, a notable
strength of our approach. Moreover, there are significant improvements across the learn-
ing stages (comparing step 1 and step 2), with a substantial impact of unsupervised
metric learning demonstrated in step 3.

No.Model Type Precision@1 Precision@5 Precision@10 Precision@20 Precision@30

1 ArcFace [6] 0.340 0.240 0.150 0.090 0.040

2 Deep Cluster [3] 0.060 0.080 0.040 0.040 0.010
3 UEL [27] 0.300 0.270 0.200 0.140 0.080
4 UDMLSS [2] 0.420 0.290 0.290 0.230 0.170
5 step 1 model 0.410 0.320 0.210 0.130 0.100
6 step 2 model 0.450 0.400 0.350 0.190 0.150
7 our method(1) 0.490 0.410 0.400 0.280 0.210
8 our method(2) 0.500 0.510 0.460 0.420 0.410

systematic approach, involving three stages of learning steps. To verify the effec-
tiveness of each step, we present the results as step 1, step 2, and our method,
corresponding to each stage of learning. This allows for a clear comparison and
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Table 3. The results of evaluating the functionality of feature representations in clus-
ter analysis. The evaluation utilized the Normalized Mutual Information (NMI) as the
scoring metric. Our method has achieved score close to that of ArcFace [6], a supervised
learning technique, and has demonstrated good accuracy compared to other previous
methods [2,3,27]. Furthermore, comparing the score between step 1 and step 2 shows a
progressive improvement in scores, indicating that the features retain similarity infor-
mation at each stage of learning while forming clusters effectively.

ArcFace [6] Deep Cluster [3] UEL [27] UDMLSS [2]
0.4194 0.1558 0.3631 0.3885

step 1 model step 2 model our method
0.3319 0.3840 0.3976

Table 4. The results using various values of the parameter µ (0, 0.25, 0.50, 0.75, 1.00)
are presented concerning the accuracy at Precision@1, 5, and 30. The accuracy varies
depending on the value of µ. This result indicates that µ is a critical parameter that
should be chosen based on whether shape or color information is more important for
the task.

µ 0.00 0.25 0.50 0.75 1.00

Precision@1 0.320 0.381 0.507 0.616 0.625
Precision@5 0.296 0.329 0.5620.571 0.565
Precision@30 0.236 0.413 0.4680.473 0.461

evaluation of our approach. Step 1 functions under the same conditions as a
conventional auto-encoder model; hence, the results are presented as such. Step
2 resembles the scenario of a makeup (style) transfer model and uses a similar
setup to existing methods [1,15] that employ style transfer features. Our method
represents the final proposed approach after completing all the learning steps. In
step 3, in addition to the loss function that brings the pseudo-similar pairs of each
source encoder and reference encoder closer, a loss function is also introduced to
treat the source and reference images as temporary dissimilar pairs To evaluate
the impact of this loss function, results without this loss function are noted as
our method(1) and with the loss function as our method(2). The results of using
Precision@K (where K is 1, 5, 10, 20, 30) for evaluating a recommendation model
are presented in Table 1. Table 1 displays the results for all 17 classes consid-
ered. As shown in Table 1, the proposed method achieves scores comparable to
ArcFace [6], a supervised learning method, indicating that it has reached a sat-
isfactory score as an unsupervised learning method. Furthermore, the proposed
method’s scores are superior to those of previous methods [2,3,27]. Additionally,
an examination of the results at each learning stage within the proposed method
reveals improvement scores at each learning step, demonstrating the effectiveness
of each training phase. Notably, as the number of reference images K increases,
the superiority of the scores also rises, indicating that our method effectively
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Fig. 2. Example of qualitative evaluation: The results of each method are listed in
numerical order based on similarity to the query image. If the query image matches
the painter, it is labeled as ’correct’; if it does not match, it is labeled as ’incorrect’.
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groups images with similar information, whether at a smaller or larger scale.
The strong results achieved in these unsupervised metric learning experiments
are likely due to the characteristics of the targeted task. Table 2 shows the score
for minor classes with limited sample sizes. Specifically, it targets two classes
in the training data with only 38 and 31 samples, respectively. These sample
sizes account for approximately 1% of the total data, making them particularly
challenging for unsupervised learning. The model type listed in the results is the
same as that in Table 2. Initially, compared to ArcFace, a supervised learning
model, our method achieves comparable accuracy and, as the number of reference
images K increases, significantly surpasses the ArcFace scores. This is consistent
even compared to existing methods, demonstrating that our approach is highly
effective for minor classes. The strength of our method in handling class imbal-
ance issues stands out as one of its most significant advantages in unsupervised
metric learning. Furthermore, substantial improvements in scores are observed
at each learning stage, indicating that the method is particularly effective for
minor classes. Our approach, which is robust against minor classes, enables the
design of feature vectors that capture intricate information, proving highly effec-
tive in unraveling abstract connections within the dataset. Although providing
supervised labels offers a more advantageous scenario for models, for the com-
plex, highly specialized tasks involving intricate image elements and expected
abstract connections targeted in this study, representing similarities based solely
on detailed image information without labels may be more appropriate. The
superiority of our method over previous methods lies in the deeper involvement
of color information in the feature elements, as explained earlier regarding the
dataset ( Sec. 4.1). Compared to the general datasets targeted by previous meth-
ods, it is evident that carefully extracting and utilizing both shape and color
information as features is effective in datasets with unique similarities. Table 3
presents the results using Normalized Mutual Information (NMI) as the metric
for evaluating the application of the generated features in cluster analysis. As
the results indicate, similar to the recommendation model-focused evaluations,
our method achieves scores comparable to supervised scenarios and produces
better clusters than existing methods. Our method can generate highly effective
features that efficiently group similar entities. Table 4 presents the results of
evaluating the parameter μ used to aggregate features. The value of μ was var-
ied at 0, 0.25, 0.5, 0.75, and 1 to assess its impact quantitatively. This parameter
μ indicates the emphasis on color information versus shape information: higher
μ values prioritize shape information, while lower values favor color information.
According to the results in Table 4, the highest accuracy was achieved when color
and shape information were equally considered (μ=0.75), and there was also a
relatively high accuracy trend when prioritizing shape information. Mainly for
this dataset, the results suggest that shape information is a crucial determinant
in similarity judgments. The importance of color versus shape may vary depend-
ing on the target dataset, necessitating adjustments to these parameters based
on which factor is more critical for assessing similarities. We also investigated the
aggregation parameter μ, varied from 0 to 1, to assess its quantitative impact. μ
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indicates the emphasis on color or shape information: a higher μ leans towards
shape, while a lower μ favors color. Results in Table 4 show the highest accuracy
at an equal treatment of color and shape information (μ = 0.5). It is indicated
that color information plays a key role in similarity assessment for this dataset.
Therefore, depending on the dataset, the importance of color versus shape must
be adjusted for optimal similarity determination.

5.3 Qualitative evaluation

Fig. 2 presents actual examples for qualitative evaluation. For each query image,
we displayed images with high similarity in order, based on cosine similarity.
The results of our method at each learning stage (Steps 1, 2, and 3) were com-
pared with those of the supervised learning model ArcFace [6] and previous
unsupervised models [2,3,27], with Step 3 representing the final outcome of our
approach. We observed a trend of features of images with high similarity pro-
gressively clustering at each learning stage. Notably, as with step 2 model like
style transfer (makeup transfer) models, satisfactory results could sometimes
be achieved as early as Step 2, as seen with Query Image 2. For quantitative
evaluation, despite treating the artist as a label, our method was able to effec-
tively extract images with similar styles, even when the artists differed a char-
acteristic not present in ArcFace [6], a supervised learning model and previous
unsupervised models [2,3,27]. This result suggests that our unsupervised metric
learning-based method is highly useful for generating features to explore latent
similarities and hidden connections within datasets. This study confirms the
effectiveness of unsupervised metric learning in aggregating features of images
with linguistically challenging and complex similarities and in uncovering hidden
relationships within datasets. Future research is expected to expand the utility
of this method through its application to a more diverse range of datasets.

6 Conclusion

In this research, we proposed an unsupervised metric learning model. This model
is particularly effective in capturing similarities that are difficult to express
in language and uncovering hidden connections within datasets, such as those
involving paintings and makeup. We conducted experiments using a dataset
of Ukiyo-e, a traditional form of Japanese art. By evaluating accuracy using
the artists as labels, we achieved a precision close to that of supervised mod-
els, thereby proving the effectiveness of our approach. Moreover, our method
involved a three-stage learning process, and we were able to confirm the effec-
tiveness at each stage. Furthermore, the greatest strength of our method lies
in its ability to handle minor classes effectively while keeping annotation costs
low. Moving forward, we aim to explore deeper into the latent similarities and
unravel hidden connections in a more diverse range of datasets.
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Abstract. With the growth of online fashion platforms and indepen-
dent content creators, there is a growing interest in visually search-
ing for similar clothing items as shown online. In real-world settings,
clothes are often covered by other objects, making retrieval challeng-
ing. To make fashion image retrieval more robust, we explore fashion
image retrieval with occlusion. We conducted various experiments on the
In-shop Clothes Retrieval dataset, a subset of the DeepFashion bench-
mark. We constructed variations of the dataset with different occlusion
types, including various sizes and locations of MSCOCO objects and
object masks to simulate realistic occlusion circumstances. We evaluate
the zero-shot and fine-tuned performance of the state-of-the-art models
on these datasets and observe performance drop. We observe that fine-
tuning models on one occluded dataset makes the model more robust to
other occlusion types and reduces performance drop. The dataset used
in this paper can be found in https://bit.ly/4749Mbo.

Keywords: Image Retrieval · Occlusion · Robust Model

1 Introduction

With the increasing influence of the fashion industry and independent content
creators, Fashion Image Retrieval (FIR) [7,22,37,41] has emerged as a crucial
task combining the fields of computer vision and fashion technology. FIR tasks
differ from general Image Retrieval tasks specifically in practical settings, where
input images may be corrupted or occluded. This becomes particularly relevant
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when considering images captured by consumers, as they may encompass diverse
viewpoints, shapes, and obstructions by unrelated objects.

Fig. 1. Existing fashion image retrieval methods often fail to perform properly when
given an occluded image. We investigate the impact of different properties of occlusions
– positions, sizes, and colored types, by creating 24 different occluded datasets and
analyzing the quantitative/qualitative results.

As illustrated in Fig.1, we first investigated the performance degradation of
existing FIR models when confronted with occluded images as queries, using
the models proposed by An [2] and Ermolov [11]. To conduct a more compre-
hensive analysis, we have constructed IS-Occ(InShop-Occluded) Datasets
that incorporates different occluded versions of an existing benchmark dataset,
InShop [24]. IS-Occ has two variations of the occluded InShop dataset: one with
black object masks sourced from the MSCOCO [21] dataset, and the other with
real objects also obtained from MSCOCO. Both versions showcase different types
of occlusions, including variations in occlusion ratio and positioning within the
image. These occlusions are designed to simulate real-world scenarios where fash-
ion images might be obstructed or incomplete. The diversity in occlusion types
allows us to explore the impact of different occlusion characteristics on FIR
model performance.

Our analysis goes beyond evaluating model performance and delves into the
underlying causes of distribution shift. We explore how different types and sizes
of occlusions influence the model’s ability to retrieve relevant fashion images. The
performance experiences a significant decline as the occlusion ratio increases,
with the lowest performance and most distribution shift observed particularly in
cases of center occlusion. With the model fine-tuned on the occluded dataset, we
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observed a more closely aligned distribution and successfully maintained perfor-
mance to a considerable degree.

2 Related Works

2.1 Unimodal Image Retrieval

Unimodal image retrieval refers to the task of finding images that are relevant to
a query image from a large database. The common approach involves two steps
– first, using an image encoder to obtain embeddings of query and database
images, and second, utilizing a ranking model to rank all database embeddings
relative to the query embedding. For the task of finding images from a database
containing an object present in the query image, several approaches have been
explored. The same object may appear differently in different real-world images,
and the embeddings of all the will lie on some manifold in the feature space.

To extract embeddings, CNN-based [15,23,40], or Transformer-based [10,
29,36] backbones are often used. In the ranking stage, an appropriate distance
measure is used to rank images. The choice of distance metrics depends on the
nature of the embedding space and manifold, such as cosine, Euclidean [4,26],
and hyperbolic distance measures [11]. Approaches such as query expansion [3,6,
12,13,34] and spatial verification [1,32] have been explored to improve the over-
all performance of image retrieval models. Image retrieval models are typically
either trained in a supervised metric learning setting [2,8,14,33,35,38,39,47], or
unsupervised metric learning setting [2,16–18,20,46].

Specifically in the domain of fashion image search and retrieval (FIR), deep
learning-based approaches have been previously explored [27,30,45,48]. The
DeepFashion [24] dataset provides a collection of datasets that are suitable for
various real-world scenarios. A subset of DeepFashion, called the InShop Clothes
Retrieval dataset, is a smaller dataset useful for FIR research.

2.2 Image Retrieval with Occlusion

Occluded image retrieval refers to the specific case of image retrieval where
the object to be searched for in the query image has been occluded by another
object, and only part of the object can be seen. Previous occluded image retrieval
focused on face image dataset as it can be used for the face identification of
criminal suspects from the facial images of CCTV cameras or mobile devices.

Park et al. [31] presented a partially occluded facial image retrieval method
based on a similarity measurement for forensic applications. It suggested the
novel occluded image retrieval algorithm measuring the similarity based on Scale
Invariant Feature Transform (SIFT) matching between normal gallery images
and occluded probe images.

Tu et al. [43] proposed two variational autoencoder(VAE)-based networks
for predicting a set of unoccluded images that are well matched to the input
occluded face, namely, the geometric prediction model and face recovery model.



34 J. Sohn et al.

Mask-FPAN [19] proposed a de-occlusion module that learns to parse occluded
faces in a semi-supervised manner regarding face landmark localization, face
occlusion estimations and detect head poses.

In the case of fashion image search, in real-world settings it is common for
fashion items to be occluded by other objects in view. To the best of our knowl-
edge, there does not exist a dataset of occluded fashion images to test vari-
ous models’ robustness to occluded fashion images in the space of search and
retrieval.

3 Occluded Fashion Image Dataset

Our main focus is on the real-world occlusions found in clothing websites, where
the query images are provided by the users. User-uploaded images are likely
to contain objects or regions that are partially occluded by other objects in
their foreground. To incorporate such occlusions into our experimental setup,
we construct datasets and evaluate how retrieval models perform with those
query images.

3.1 Problem Definition

To evaluate the robustness of an image retrieval model, we utilize a query set
Dqocc composed of occluded fashion images and a gallery set Dg composed of
non-occluded images. Occluded images for Dqocc are generated with the occlusion
generation process specified in 3.2. The retrieval process can be formulated as
follows:

R(xq) = min K
xi
g∈Dg

d(xq, x
i
g),

where xq ∈ Dqocc .
(1)

Given a query image xq, the retrieval system computes distance d between
xq and all images xi

g(1 ≤ i ≤ |Dg|) from the gallery set, and retrieves K images
with minimum distance. The retrieved images are expected to have the same
items as the query image.

3.2 Occlusion Generation Process

We applied different strategies to generate occluded images. There are 24 differ-
ent types of occlusions, varying in the colors, sizes, and positions of the occlusion
mask.

For colors, the mask is either black or real-colored objects. This is to inves-
tigate both cases of occlusion, where it is naively masked (black) or masked in
a way it is more likely to be in the real world. We set the two scenarios which
occlusion object has its own pattern and color, and the other that doesn’t have
pattern and color and has the same color with the background. The black occlu-
sion object indicates the situation that doesn’t have any pattern and color and



Fashion Image Retrieval with Occlusion 35

has the same color as background, and the color occlusion object indicates that
the occlusion object has its own pattern and color that distinguishes it from the
real clothes.

For sizes, we pre-define the ratio (e.g., 5%, 10%, 20%) of how many pixels
the mask will occupy out of the entire image, and apply an algorithm shown in
Algorithm 1 to adjust the size of the mask.

For positions, we give four options; top, bottom, center, and random. That
is, we locate the mask either at the top, bottom, center or a random position of
the original image. The algorithm for this process is shown in Algorithm 2.

3.3 IS-Occ Dataset

With the generation process specified in 3.2, we construct a new occluded dataset
that is built upon InShop Clothes Retrieval dataset [24]. On top of the original
dataset, we build 24 new sets of datasets with different types of occlusions and
name it IS-Occ Dataset (InShop-Occluded Dataset). Each subset contains
images occluded with a mask with specific color type, size, and position. We only
employ these occluded images as the query images, while gallery images remain
as original images.

InShop Clothes Retrieval dataset InShop Clothes Retrieval dataset is a sub-
set of DeepFashion database [24]. This subset encompasses considerable pose and
scale variations, along with diverse clothing items and comprehensive annota-
tions. The dataset comprises 7,982 clothing items, 52,712 in-shop clothes images,
and approximately 200,000 cross-pose/scale pairs.

Microsoft Common Objects in Context (MSCOCO) Image occlusion
is carried out by applying additional object masks from the MSCOCO object
detection 2017 dataset [21]. A curated ensemble of 36 distinct objects was metic-
ulously chosen to compose a mask set inclusive of entities such as bag, umbrella
and person. In addition to black object occlusion, we extracted 128 common
objects across 20 categories (e.g., backpack, tie, and cell phone) from the col-
ored common MSCOCO dataset, following [44].

Example of Occlusion Objects We selected two kinds of occlusion objects;
black occlusion objects and color occlusion objects. As shown in Fig.2, we chose
common objects in the real world that are often found with clothes such as bag
and tie from MSCOCO [21] dataset.

Applying Occlusions in Different Manner Given masks are applied in
several different manners as mentioned in 3.2, and we use abbreviations to refer
to the specific occlusion type throughout the paper. The occluded object color
types include black and real-colored, and for the abbreviation, we use ‘Black’
and ‘Color’, respectively. The occluded object size varies from 5%, 10%, and
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Fig. 2. Example of occlusion objects We chose common objects in the real world
that are often found with clothes from MSCOCO dataset.

20% of the total image pixels, and the location varies from top, center, bottom
and random location of the image. We put together the first letter of the location
and the percentage of the mask size together, e.g., ‘T10’, for the abbreviation.
The type of occlusion object is randomly determined for all images. The sample
images from the dataset are shown in Fig.3.

Fig. 3. Example of image with occluded objects of different ratios and loca-
tions We experimented with 3 different ratios (5%, 10%, 20%) and 4 different locations
(Top, Center, Bottom, Random) and 2 different colors (Black, Color) of the random
occluded objects on the Inshop dataset. In this example, for the black setting, bag and
umbrella are used as occlusion objects and for the color setting, suitcase and handbag
are used.
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Algorithm 1: Adjust the size of the mask
Function AdjustMaskSize(I, M , ρ):

input : original image I, mask M , masking ratio ρ ∈ {5, 10, 20}
output: resized mask M

h, w ← size(I)
M ← resize(M, (h, w))

ρcurr ← num_mask_pixels(M)
h∗w

s ←
√

ρ
ρcurr

hdest, wdest ← �h ∗ s�, �w ∗ s�
M ← resize(M, (hdest, wdest))
return M

Algorithm 2: Apply the mask to a certain position
Function LocateMask(I, M, pos ):

input : original image I, (resized) mask M , mask position pos ∈ {top, bottom,
center, random}

output: masked image IM

IM ← I
h, w ← size(I)
hM , wM ← size(M)

xc, yc ← �w
2 �, �h

2 �
xmc, ymc ← �wM

2 �, �hM
2 �

if pos = center then
xstart ← xc − xmc

ystart ← yc − ymc

else if pos = top then
xstart ← max(0, xc − xmc)
ystart ← 0

else if pos = bottom then
xstart ← max(0, xc − xmc)
ystart ← max(0, h − hM )

else if pos = random then
xstart, ystart ← random(2)
xstart ← min(xstart,max(0, w))
ystart ← min(ystart,max(0, h))

if xstart + wM ≤ w then
xend ← xstart + wM

else
xend ← w

if ystart + hM ≤ h then
yend ← ystart + hM

else
yend ← h

for i ← 0 to wM − 1 do
for j ← 0 to hM − 1 do

IM[xstart + i, ystart + j] = M[i, j]
end

end
return IM
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Table 1. Results of Black and Color Occluded Object Image Retrieval. We
experimented four models with 3 different ratios(5%, 10%, 20%) and 4 different loca-
tions (Top, Center, Bottom, Random) and 2 different colors (Black, Real-colored) of
the occluded image on the Inshop dataset. ZS, FT, FT* indicate zero-shot, fine-tuned
on original images, and fine-tuned on 5% occluded images, respectively. Numbers in
bold indicate the largest performance drop under each experimental setting.

Black
Original T5 T10 T20 C5 C10 C20 B5 B10 B20 R5 R10 R20

Unicom ZS 78.86 60.87 50.40 43.56 55.20 42.19 26.13 69.33 62.81 54.54 66.32 61.73 55.01
FT 95.56 92.29 86.66 76.42 91.56 85.31 71.70 94.34 92.64 89.04 93.96 92.29 87.27
FT* 95.68 92.83 87.34 77.75 91.48 85.56 72.50 94.44 93.06 89.58 94.27 92.63 87.54

Hyp_ViT ZS 43.19 26.59 16.68 8.70 23.94 13.04 4.54 29.66 18.38 9.88 31.21 21.49 12.84
FT 92.40 87.02 78.91 64.57 83.42 72.40 53.43 89.47 85.95 78.00 88.73 84.93 75.47
FT* 92.41 90.02 86.70 79.88 89.98 86.81 78.13 91.90 90.74 87.95 91.45 90.29 86.64

Hyp_Dino ZS 46.09 30.23 19.49 11.13 19.96 10.96 5.14 26.09 13.86 8.26 27.12 16.73 10.50
FT 91.19 85.14 77.09 64.43 80.12 69.24 54.13 88.79 85.36 76.92 85.91 80.69 69.05
FT* 89.25 87.79 83.44 76.04 87.99 82.92 72.24 90.29 88.67 85.18 89.63 87.90 81.45

Hyp_DeiT ZS 37.95 16.07 8.05 3.89 12.89 6.57 2.89 14.31 7.31 3.97 11.87 6.10 3.55
FT 91.12 83.85 76.23 63.90 80.17 70.05 54.69 88.16 84.89 78.08 86.40 81.37 70.80
FT* 88.39 87.00 82.66 74.19 87.14 82.40 71.24 88.98 87.38 83.29 88.74 87.14 81.17

Color
Original T5 T10 T20 C5 C10 C20 B5 B10 B20 R5 R10 R20

Unicom ZS 78.86 55.65 28.87 8.51 44.66 21.65 6.59 61.42 37.22 12.06 58.40 44.26 16.20
FT 95.56 92.43 83.55 64.02 91.43 83.58 59.11 94.20 91.74 80.63 93.58 91.45 79.93
FT* 95.68 93.01 84.54 65.17 91.60 84.05 59.46 94.52 92.12 81.59 93.71 91.68 80.34

Hyp_ViT ZS 43.19 27.11 16.03 5.35 22.82 11.52 3.71 28.86 17.34 6.98 28.79 21.77 9.06
FT 92.40 87.74 78.16 57.27 84.46 72.82 46.51 90.71 86.02 69.94 88.87 85.42 67.96
FT* 92.41 90.82 87.82 78.82 91.15 88.93 80.48 91.91 91.23 87.15 91.73 90.98 86.81

Hyp_Dino ZS 46.09 15.00 3.35 1.51 3.91 1.53 1.29 12.86 3.47 1.41 9.95 3.64 1.14
FT 91.19 77.49 50.06 14.56 58.13 26.60 7.08 83.30 61.90 18.33 76.29 59.09 18.45
FT* 89.25 88.90 83.90 71.70 88.85 85.17 70.87 90.42 88.48 80.71 90.34 88.99 79.91

Hyp_DeiT ZS 37.95 5.93 2.06 1.29 4.47 1.66 1.16 5.95 2.29 1.24 5.38 2.43 0.88
FT 91.12 79.50 56.54 21.01 69.54 41.05 13.25 85.26 73.54 33.57 81.74 71.33 33.00
FT* 88.39 87.62 82.94 71.51 88.00 84.30 70.59 89.15 87.47 79.58 89.24 88.19 79.03

4 Experiments

We run experiments to investigate how different types of occlusions affect the
retrieval performance. We evaluate the models of three settings; zero-shot, fine-
tuned on original images, and fine-tuned on Color-C5 occluded images. For zero-
shot experiments, we directly use the pre-trained models. For evaluation with
fine-tuned models, the pre-trained models are fine-tuned either on the original
In-Shop dataset or the corresponding 5% occluded dataset during query phase.
The overall results are shown in Table 1.

4.1 Implementation Details

We used pre-trained visual backbone encoders from Unicom [2], Hyperbolic ViT
[11], Hyperbolic Dino [5], and Hyperbolic DeiT [42] as our backbone model. The
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Fig. 4. Retrieval performance of Hyp_ViT in various setups. Different bar
colors represent different occlusion sizes, and filled patterns denote the model used.
The horizontal axis shows occlusion positions. The left plot shows results with black
mask occlusions, and the right plot shows results with colored object occlusions.

training is conducted on 1 NVIDIA T4 Tensor Core GPU. We use AdamW [25]
as the optimizer with an initial learning rate of 0.001, and a weight decay of
0.05. We used margin-based softmax loss, ArcFace [9], for both pre-training and
image retrieval tasks.

4.2 Ablations on Occlusion Strategies

We carry out the ablation studies on two occlusion types (black and real-object)
with four different locations (top, center, bottom, random) and three different
occlusion ratios (5%, 10%, 20%). To see which occlusion affects the retrieval
performance the most, we conduct image retrieval with entire sets of IS-Occ
datasets.

As shown in Table 1 and Fig. 4, different types and sizes of occlusions bring
different extents of performance drop. Among 24 occluded datasets we created,
Black-B5 had the least impact, especially when it was tested on fine-tuned mod-
els. On the other hand, Color-C20 had the most significant impact on the per-
formance.

We found out that real-colored objects rather than black masks more con-
fuse the model and lead to a drastic performance drop. One possible reason
might be the colors and patterns that the real-colored objects contain. Since
real-colored objects often contain irregular patterns unlike mono-colored masks,
it is more likely to confuse them with the clothes that the model has to concen-
trate on.

In terms of sizes, we found that the model gives poor performance with
the bigger masks. This could be seen obvious, since the bigger mask has more
probability of covering the entire clothes or a large portion of them.

Lastly, among different positions of occlusions, we find out that masking
the center part of the image affects the model to degrade in performance the
most. Since the In-shop dataset originally contains clean images with the clothes
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mostly in the center, this could be thought as a consequence of masking the core
part of the clothes. Among the top and bottom, masking the top part of the
image usually showed a larger performance drop even with 5% of occlusion.
By this, we carefully assume that masking the facial part of the image affects
the performance of fashion image retrieval. We leave further analysis on this
observation as future work.

Fig. 5. Retrieval performances in R@1 (%), for each occlusion scenario.

Fig. 5 clearly summarizes the result of our ablation with Hyp_ViT. Zero-
shot inference results (ZS) are represented in dark colors, indicating their poor
performance, particularly with big occlusions. While fine-tuned models—FT and
FT*—exhibit much better performance on occluded images compared to ZS, it
is especially prone to occlusions that are larger in size and placed in the top or
center of the image. Robustness against occlusion sizes and positions is largely
improved in FT*, the model trained on occluded images.

4.3 Qualitative Results

The examples of retrieved images with Hyp_ViT is shown in Fig 6. As shown in
the figure, zero-shot model suffers from retrieving correct gallery images in both
original and occluded dataset. In the case of model fine-tuned on the original
dataset, it performs well when the original query image is given, but it suffers
from retrieving correct gallery images when occluded query image is given. The
results show that the model fine-tuned on IS-Occ dataset is more robust to the
occlusion. Qualitative results for Hyp_Dino and Hyp_DeiT are provided in the
supplementary material.
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5 Analysis

5.1 Distribution Shift of Occluded Datasets

In this section, we analyze the results in terms of the distribution shift caused by
occlusion. Since the zero-shot model was only exposed to complete images during
the training phase, it would not have had the chance to learn how to generalize
to occluded images. This distribution shift between train and test data is known
to degrade the test performance.

To investigate how our occluded data has shifted in distribution, we use
PCA(Principal Component Analaysis) to visualize the feature space. We visual-

Fig. 6. Retrieved images with non-occluded (left) and occluded (right) query
image. Each row indicates the top 4 ranked retrieved images and their confidence
scores for each model—(a) ZS(zero-shot), (b) FT(fine-tuned on non-occluded images),
and (c) FT*(fine-tuned on occluded images). Correctly retrieved images are repre-
sented with red edges.

Fig. 7. PCA visualization of Hyp_ViT feature representation on original
images and occluded dataset The distribution of features from zero-shot, original
dataset finetuned, Black-20 and Color-20 occluded dataset finetuned Hyp_ViT model.
Extracted features of the original dataset are in red, those of the black-occluded dataset
are in blue, and those with real-colored-occlusions are in green.
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Table 2. CLIP score of IS-Occ dataset CLIP score between the representations
of DINOv2 of original image and occluded image. Mean and Std. refers to the average
and standard deviation of the clip scores of all the images, respectively. Numbers in
bold indicate the largest performance drop under each occlusion setting.

T5 T10 T20 C5 C10 C20

Mean 0.858 0.840 0.804 0.860 0.845 0.809
Std. 0.050 0.050 0.048 0.051 0.051 0.049

B5 B10 B20 R5 R10 R20
Mean 0.859 0.844 0.808 0.857 0.836 0.803
Std. 0.052 0.051 0.046 0.051 0.051 0.047

ize output features of original images and those of occluded images from three
evaluation settings, to see if the fine-tuning process affects the distribution gap
between two different sets of images.

Fig.7 shows the result of dimensionality reduction of the feature space with
query instances. Different types of occlusions yield different extents of shifts.
The result shows the existence of a distribution gap between the features of
original images and occluded images. Among the three models, the model with-
out fine-tuning on Inshop dataset yields the biggest shift, and also the poorest
performance. The distributions of original and occluded images become closer
along with better performance, as they are fine-tuned on Inshop dataset. Finally,
fine-tuning the model on the occluded dataset with Color-20 gives distributions
that almost overlap, along with its robust performance observed in Table 1.

To this end, we assume the main reason the model finds it hard to retrieve
images with occluded query images, is due to such distribution shift. Closing
the gap between representations of non-occluded and occluded data helps the
model to generalize with other types of occlusions as well, eventually achieving
robustness against occlusions.

5.2 CLIP score of Image Embeddings

We also compared the CLIP score of the image representation to explore the
similarity of images with different occlusion ratios and positions. CLIP score
is often used to calculate the similarity between two representation. We used
DINOv2.CLIP [28] model to first extract the feature representation of the origi-
nal image and occluded image and then calculate cosine similarity between two
representations.

As shown in Table 2, as occlusion ratio gets bigger, DINOv2’s clip score drops.
It shows that the model suffers from obtaining proper representation when the
image is occluded. Referring to Fig.7, the model fine-tuned on our IS-Occ dataset
makes the model robust to occlusion when the model without fine-tuning suffers
from perceiving the original image and occluded image are the same.
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6 Conclusion

This project tackles the challenge of fashion image retrieval under an occlusion
setting of the In-Shop Fashion Image Retrieval dataset. We introduced occlusions
from the MSCOCO dataset to simulate realistic scenarios of partially obscured
clothing items. Results show that state-of-the-art image retrieval models experi-
ence performance drop with occluded images. Fine-tuning on our IS-Occ dataset
with 5% occlusion significantly enhances model robustness, reducing the perfor-
mance drop. Principal Component Analysis of feature space distribution reveals
a substantial gap in models not fine-tuned on In-Shop, leading to poor occlusion
performance. Conversely, fine-tuned models on a 5% occluded dataset exhibit
nearly overlapping distributions and robust performance, indicating targeted
fine-tuning minimizes distribution shifts.

Despite our findings from exploring different types of occlusions, there still
remains diverse realistic scenarios that we could not fully cover. This paper is
vital in raising the problem caused by occlusions in fashion image retrieval, by
employing a basic set of synthetic occlusions. However, more realistic scenarios,
such as an obstructed view of the target item due to other people or a moving
vehicle, should be considered for future work. Furthermore, we would like to
explore the integration of a reconstruction approach, such as in-painting models
and adding adapters in fine-tuning.
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Abstract. Research on oracle bone inscription image retrieval is impor-
tant for applications in academic and cultural heritage areas. The current
oracle bone dataset faces problems such as the low similarity between
the same category, the high similarity between the different categories,
and imbalanced sample distribution. In addition, due to the complex
background of oracle bone images, existing network models have certain
limitations in extracting image features. To address these challenges,
this study first adopts a Siamese network-based image retrieval method
to learn feature representations of similar and dissimilar images. Subse-
quently, the existing dataset was partitioned, providing a practical and
usable retrieval dataset for the oracle bone image retrieval field. Finally,
an improved network model based on ResNet is proposed and integrated
into the Siamese network framework. The model achieves the highest
retrieval MP and MAP values of 83.26% and 90.68%, respectively, which
is better than the current research.

Keywords: Feature extraction · Image retrieval · Oracle bone
inscription · Siamese network · Sample imbalance

1 Introduction

As the earliest Chinese writing with a mature language system, oracle bone
inscriptions are widely regarded as an important source for the study of ancient
society, history, and culture. oracle bone inscription image retrieval aims to
retrieve images similar to the query image from a large number of databases and
sort them according to similarity. In contrast to the retrieval of modern Chinese
character images [1], there has been no systematic research on the retrieval of
oracle bone inscription images in China. First, there is the problem of low sim-
ilarity between the same class and high similarity between the different classes,
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which makes oracle bone inscription image retrieval much more difficult. Sec-
ond, due to historical reasons, most oracle bones have severe damage and a large
number of missing image structures, which causes a serious sample imbalance
problem. Finally, the background of oracle bone inscription images is complex,
and the existing network has insufficient feature extraction capability for oracle
bone images.

Oracle bone inscription has a large amount of data but lacks unified stan-
dards. To this end, Huang et.al [2] created a large-scale oracle bone image dataset
OBC306, providing the first publicly available real image dataset for oracle bone
image retrieval research. Oracle bone inscription image retrieval consists of two
main stages: feature extraction and similarity calculation [3]. In the feature
extraction, the image is converted into feature vectors to represent the image
content. In the similarity calculation stage, the algorithm evaluates the similar-
ity between the query image and each image in the database, usually by compar-
ing the feature vectors between images or using specific similarity measurement
methods. The application of oracle bone script image retrieval helps experts and
scholars quickly find images that are similar to the input image, thereby aid-
ing in the deciphering and interpretation of oracle bone inscription. However, at
present, there are relatively few studies on oracle bone image retrieval at home
and abroad, and this field still belongs to the cold field. Xiong et al [4] proposed
a new solution strategy to improve the completeness and accuracy check of lit-
erature search in the field of oracle literature by proposing an ontology-based
comprehensive search strategy for oracle literature and establishing an oracle lit-
erature ontology and an optimized search platform. Oracle image retrieval was
initially focused on copying Oracle bone inscriptions. For example, Lin [5] used
crawler software to obtain more than 40,000 images of copy oracle bone inscrip-
tion and used CNN and VLAD methods to generate the representation features
of oracle bone images, and its retrieval accuracy on copy oracle bones reached
84.1%. However, the images of the oracle bones have been altered over time
and many have been lost, resulting in a small amount of data for some of the
samples, and there are more variant characters in the oracle bones, which fur-
ther increases the difficulty of retrieving oracle bone inscription images. To solve
the problem of oracle bone variant character retrieval, Liu et al [6] proposed an
image retrieval method combining deep neural network (DNN) and clustering
techniques, which improved the retrieval accuracy while reducing the average
query time. However, they found that the inter-class similarity has a significant
negative effect on the check-all rate of image retrieval. Xu et al [7] constructed
an information system for oracle bone information processing (IsOBS), which
provides a search function for character and document databases to help users
quickly find characters and documents for further research. Although the above
studies can solve the problem of difficult oracle bone image retrieval to some
extent, most of them are aimed at copying oracle bone images. Due to the com-
plexity of the background of the real oracle bone inscription images, the presence
of severe noise, missing characters, broken characters, and long-tailed distribu-
tion problems, the retrieval difficulty is significantly higher than that of the copy
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oracle bone, the research in this area still needs to be explored in depth. In a
recent study on oracle bone inscription image retrieval, Yao [8] provided a clas-
sification network-based oracle bone image retrieval scheme, which can achieve
the retrieval of oracle bone images to a certain extent. However, the retrieval
dataset used is separated from the oracle bone inscription dataset, which cannot
solve the problem of retrieving unknown oracle bone images. The method lacks
a certain degree of generalizability. The contributions of this paper are:

– A Siamese network-based oracle bone inscription image retrieval method was
used to achieve a comparison between query images and the image library
to be queried. This method can learn feature representations to distinguish
similar and dissimilar images, thus achieving efficient retrieval.

– To solve the problem of imbalanced sample distribution, this article divides
the OBC306 dataset, providing a usable retrieval dataset for the field of oracle
bone inscription image retrieval.

– An improved network model based on ResNet is proposed: using a 7*7 large
convolution replaced by three 3*3 small convolutions; designing a skip con-
volution cascade module structure to pass and fuse features from the shallow
layers of the network to the deeper layers of the network.

2 RELATED WORKS

2.1 Image Retrieval and Siamese Network

Image retrieval is a technique used to retrieve and query similar images from a
database. It involves extracting image features and calculating similarity mea-
sures. This technology is widely used in digital libraries, Internet image search,
video surveillance, medical imaging, and other fields. In these fields, it is nec-
essary to quickly and accurately retrieve images similar to query images from
a large amount of image data, in order for users to browse, analyze, and apply
them. Image retrieval is essentially an operation that measures the similarity
between images [9]. In this study, oracle bone inscription image retrieval is con-
sidered a metric learning problem, which maps input data to a metric space
where similar objects have smaller distances and dissimilar objects have larger
distances for image similarity retrieval.

Researchers have proposed similarity measurement learning algorithms,
attempting to optimize distance measurement through training data or auxil-
iary information to improve the performance of image retrieval. A typical metric
learning architecture, such as a Siamese network [10] or a triplet network [11],
differs from classification in that it only requires object class labels, while for spe-
cific objects, the labels must be for each image pair. The distance measurement
effect is achieved by training with input matching or mismatched image pairs.
Therefore, this dual-branch or triple-branch network architecture is more suit-
able for metric learning tasks. Siamese neural networks have been widely studied
in many fields of computer science, such as Carlevaris et al [12] using a Siamese
neural network to learn the features of trained images. Pan. et al [13] consider
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the Siamese neural network as an effective metric learning method. In addition,
Hadsell et al.[14] utilized a siamese neural network to perform dimensionality
reduction operations on features. Filip Radenovi’ et al.[15] used a Siamese neu-
ral network in their paper, the two branches use the same construction method
and share parameters, extract the characteristics of the two pictures to be com-
pared, and then use the loss function to calculate the difference. Siamese Net-
works is a special type of neural network architecture designed to compare the
similarity between input samples. Twin neural networks have extensive applica-
tions in fields such as image recognition, image search, and image generation in
deep learning. They consist of two interrelated neural networks, which typically
have the same structure but may have different initialization weights. The core
idea is to evaluate the similarity between samples by feeding two input samples
into two neural networks and comparing their embedding representations in a
high-dimensional feature space [16].

3 Oracle Bone Inscription Image Retrieval Based on
Siamese Networks

The Siamese network framework used in this article is shown in Fig.1. This
Siamese network framework includes two parts: feature extraction and similarity
measurement. Two oracle bone inscription images are used as inputs in both the
training and retrieval stages, and the output of the entire framework is the
similarity between the two images.

Fig. 1. Image Retrieval of Oracle Bone Inscription Based on Siamese Networks

The goal of Siamese network training is to enable the network to map sam-
ples from the same category to nearby areas in high-dimensional space, and to
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map samples from different categories to distant areas. Fig.1 shows the train-
ing process of oracle bone image training, which mainly includes two parts:
feature extraction and similarity measurement. In the feature extraction stage:
First, input samples from the training stage, including two images from the
same or different categories. Secondly, preprocessing operations such as image
size adjustment and normalization of pixel values are performed on the input
image to ensure consistency Finally, the backbone network is used for feature
extraction to obtain feature descriptor vectors for two input images. In the sim-
ilarity measurement stage: Firstly, the feature descriptor vectors of two images
are unfolded, and subtracted, and the absolute value is taken to obtain the fea-
ture difference between the two input images. Then, the feature differences are
mapped to a hidden vector space through a fully connected layer. Finally, use the
activation function sigmoid to convert the hidden vector space into a probability
value. This probability value can represent the similarity between two images,
with higher values indicating greater similarity between the two input images.

By training the network to minimize the distance between feature vectors of
similar samples and maximize the distance between feature vectors of dissim-
ilar samples, the Siamese network can learn feature representations with good
discriminative power for similarity. In addition, for the problem of small tail
samples, the Siamese networks may provide a solution [17]. Due to the Siamese
network requiring a pair of samples for training, it can use categories with only
a small number of samples in the dataset for training. For these small sample
categories, the sample size is small, training them with negative sample pairs
composed of samples from other categories can also teach the characteristics of
these categories to a certain extent, which can better utilize small sample infor-
mation and alleviate the problem of sample imbalance to a certain extent. This
makes it a powerful tool for oracle bone inscription image retrieval.

When conducting retrieval, it is necessary to extract features from the query
image and the image library to be queried through the same feature extraction
network. By sharing network weights, the similarity between the query image
vector and each image library vector to be queried is obtained separately. Sort
the similarity according to the dictionary and output the similarity from highest
to lowest. Finally, based on the search results, a query evaluation is conducted
to evaluate the quality of the model.

4 Data Set

This article uses the oracle bone inscription dataset OBC306 constructed by
the Key Laboratory of Oracle Bone Information Processing at Anyang Normal
University, Ministry of Education. The dataset contains 309551 oracle bone char-
acter images, covering 306 types of oracle bone characters. The distribution of
category and sample size is shown in Fig.2. From the graph, it can be seen that
the OBC306 dataset has a serious long-tail distribution problem, and its severely
imbalanced data distribution will cause the model to focus more on categories
with larger sample sizes during training while paying insufficient attention to
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categories with smaller sample sizes. This may make it difficult for the model to
correctly learn and recognize categories with smaller sample sizes, and perform
better on categories with larger sample sizes.

Fig. 2. The category number and sample size distribution of OBC306

In response to the issue of imbalanced sample size distribution in OBC306,
many scholars have made different treatments for the tail dataset in OBC306.
Mao et al. [18] deleted all classes in the OBC306 dataset that only contained
one image, retaining 277 classes, resulting in a total of 309552 images. Zhang et
al. [19] selected 241 categories with a large number of samples in the recognition
of oracle bone script based on cross-modal deep metric learning, totaling 295466
samples. Each category had a minimum of 16, a maximum of 25898, and an
average of 1226 samples. During the research, OBC306 was also divided, and
the specific division rules are as follows:

Firstly, from Fig.2, it can be seen that there are 47 categories with less than
5 samples, and these categories contain a total of 74 oracle bone inscription
images, with an average of less than two samples per category. Considering that
in large-scale datasets such as 300000 levels, these categories with fewer samples
may not have a significant impact on overall performance, this study decided to
remove these 47 categories from the OBC306 dataset. In the field of oracle bone
inscription image retrieval research, both domestically and internationally, there
is relatively little research on oracle bone inscription image retrieval, which leads
to a lack of suitable datasets for retrieval research. Given the significant head
and tail differences in the sample size distribution of the OBC306 dataset, this
study decided to further segment the dataset after removing 47 categories. We
selected 40 categories at the end, with sample sizes ranging from 5 to 54 images,
totaling 1189 images. We named them TOBC40 (Tail-OBC40) and used them as
the retrieval dataset. The selection of TOBC40 as the retrieval dataset is mainly
based on the following considerations: firstly, it can further alleviate the impact
of insufficient tail sample learning; Secondly, provides a fixed retrieval dataset
for the field of oracle bone image retrieval; Finally, it can be verified that the
proposed method can retrieve unknown oracle bone images. Finally, 219 classes
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of samples were retained for training, with at least 55 images in each class and
a total of 308288 images, named OBC219

5 Backbone

This section will focus on the selection and design of the backbone network in
the Siamese network-based image retrieval framework for oracle bone inscrip-
tion. The effectiveness of the proposed improvements in improving the retrieval
performance is demonstrated through extensive experiments and visual analyses.

5.1 Oracle Bone Inscription Network

Residual networks (ResNet) are well known for their unique residual learning
architecture, see the study by He [20] for details.ResNet has demonstrated sig-
nificant performance advantages in image recognition tasks. However, for oracle
bone topography images, due to the high similarity between oracle bone charac-
ters, some characters with different meanings are almost indistinguishable from
each other in terms of contours, and only differ in subtle ways, which leads to a
reduction in recognition, thus ResNet’s performance on the oracle bone recogni-
tion task does not meet the expected results. In this chapter, ResNet18 is used
as the backbone network, and the following improvements are made to design
a network suitable for Oracle bone inscription image feature extraction: Oracle
bone inscription Network (OBINet).OBINet is improved in two aspects on top
of ResNet: The first 7*7 convolution of the ResNet network is replaced by three
3*3 convolutions. The skip convolution cascade module structure is designed
to transfer and fuse the features from the shallow layers of the network to the
deeper layers of the network. The overall structure of the network in this chapter
is shown in Fig. 3. In the next 2 subsections, these two improvements will be
introduced and the feasibility of the improved network will be experimentally
analyzed.

Fig. 3. Overall framework diagram of OBINet
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5.2 Design of Replacement Convolution

Oracle bone inscription images are usually created by topography from oracle
bones. Most of these image samples have an aspect ratio of about 1:2, with
a height of about 120 pixels and a width of about 50 pixels. Therefore, most
of the images are tiny images. As a deep learning model, ResNet solves the
problem of gradient vanishing in deep network training by constructing residual
blocks to achieve a deeper network structure. However, the 7*7 convolutional
kernel in a traditional ResNet network may not be the best choice for small-
resolution images such as Oracle. Since larger convolutional kernels typically
capture a wider range of features, this works well for information-rich images.
However, for lower resolution images, it may cause the network to learn too much
noise and unnecessary features, which in turn affects the recognition accuracy.
Therefore, in this paper, we choose to replace the first convolutional kernel of
the stage(0) layer in the ResNet network from 7*7 to 3*3 convolutional kernel
and add the ReLU activation function between each 3*3 convolutional layer to
increase the nonlinearity. Finally, a batch normalization layer is added between
the 3*3 convolutional layers to improve the stability and convergence speed of
the model. This modified model is referred to as ResNet-A. This adaptation was
originally proposed in Inception-v3 [21] and has been validated in other literature
[22]. Such a modification aims to reduce the model complexity while maintaining
a certain feature extraction capability, focusing more on extracting key features
in lower-resolution images.

5.3 Skip Convolution Cascade Module

Feature Visualisation In this subsection, the features of the oracle bone image
output in different convolutional layers of the neural network are analyzed. The
input oracle bone image“ rain ”is output through five stages of the VGG16 net-
work, and each stage contains a different number of convolutional layers, namely
2, 2, 3, 3, 3. To have a more comprehensive view of the response of the features
of the convolutional neural network in each convolutional layer to each region
of the oracle bone image, the feature maps of the output of each stage of the
VGG16 network are summed up. The feature maps output from each stage were
accumulated. The accumulated feature maps are shown in Fig.4.

From Fig.4, the process of extracting the features of the oracle image by the
convolutional neural network in different layers can be observed more clearly. In
the shallow network, the feature maps outputted by the convolutional layer retain
the low-level detail features of the image well and also have a strong response
to the noise in the image. These low-level features are important for recognizing
basic shapes and textures in the image. However, as the layers of the network
deepen and the resolution of the image decreases, the textual details in the oracle
image gradually become blurred in the feature map. This indicates that the
feature maps output from the convolutional layers in the deep network discard
a lot of textual detail information, and the extracted features are more abstract
and complex. These advanced features focus more on the semantic information
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of the image rather than just the visual appearance of the image. It can be
concluded that the low-level features output from the convolutional layer of the
shallow network are more concerned with the details of the target in the image,
while the high-level features output from the convolutional layer of the deep
network are more concerned with the semantic information contained in the
image.

Fig. 4. The feature map output after the accumulation of convolutional layers in each
stage of the VGG16 network

Design of Skip Connection and Convolutional Cascading Module In
oracle bone inscription image retrieval, if only the low-level features of the image
are utilized, the retrieval accuracy may not be guaranteed due to image changes
and only the set of images with high similarity can be retrieved. If only high-
level features of the image are utilized, the retrieval results will only take into
account the semantic information of the oracle image and may ignore the specific
details of the image and thus the accuracy of the retrieval. Therefore, to improve
the performance of Oracle image retrieval, it is necessary to combine both low-
level and high-level features to describe the images more comprehensively and
to improve the accuracy and robustness of retrieval.

The feature extraction structure of ResNet consists of five stage layers, each
of which contains a different number of convolutional and maximum pooling lay-
ers. As the number of network layers increases, the size of the extracted feature
maps decreases. This process may lead to the disappearance of gradients, loss of
feature information, and lack of local detailed features, which in turn affects the
network’s ability to distinguish between different oracle scripts. Especially when
it is necessary to distinguish between samples with high similarity, the network
may produce misclassification. In DenseNet [23], the connections between the
input and output layers are much shorter close together, and each layer accepts
the feature maps of all previous layers as inputs and also uses its own feature
maps as inputs for all subsequent layers. This design effectively mitigates the gra-
dient vanishing problem and enhances feature propagation and reuse. Inspired by
DenseNet, this subsection introduces skip connections in the ResNet18 network
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and uses a "convolutional cascade module" to dimensionally splice the output of
the previous stage with the output of the current stage. The module induces a
path after each Stage layer and splices it dimensionally to form a cascade struc-
ture. This design induces features to flow and interact between different Stages,
enhances feature transfer and utilization, and helps the network to better learn
richer feature representations. The skip connection structure designed in this
subsection is shown in Fig. 5.

Fig. 5. The design of the skip connection structure and the composition of the convo-
lutional cascade module

This design can be seen as introducing an additional "auxiliary path" in
each ResNet block, which better preserves the local details of the features to
increase the depth and complexity of the network, and helps to learn richer
feature representations. As a result, the network is able to distinguish highly
similar oracle characters more efficiently, thus improving the recognition rate.
In this subsection, the proposed convolutional cascade module is to concatenate
the output feature maps of the previous stage (i-1) with the output feature maps
of the current stage (i) at the channel level, which is then used as the input of
the next convolutional cascade module. This process requires that the summed
feature maps are consistent in dimension, width, and height. The same operation
is performed for each stage of the ResNet18 network, and the specific design is
shown in Fig. 3.

6 Experimental Setup and Analysis

6.1 Experimental Environment and Experimental Configuration

The experiments in this paper were conducted under the Pytorch1.7.0 deep learn-
ing framework built-in Windows environment. The specific experimental envi-
ronment: the CPU is Intel(R) Xeon(R) Platinum 8255C, the memory is 40G, the
GPU is NVIDIA GeForce RTX 3080, the operating system is ubuntu18.04, and
the programming language is Python 3.8. The experiments related to this paper’s
work use the same data format, i.e., adjust all the image sizes to 128*128*3. Dur-
ing the training process, the Batch Size is set to 32, the epoch is set to 30, and
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the Adam optimizer is used to update the model parameters, the size of the
initial learning rate is set to 0.001, and the learning rate is periodically reduced
according to the cosine function.

6.2 Evaluation Criteria

The evaluation metrics used in this paper are MP and MAP, where MP (Mean
Precision) denotes the average value of accuracy, and a higher MP value indicates
better retrieval. The calculation formula is shown below.

MP =
1
C

c∑

1

P@k (1)

where C denotes the number of search categories. P@k denotes the accuracy
of the first k of each query.

P@k =
correct

k
(2)

Where correct denotes the number of similar images retrieved correctly and
k denotes the total number of images retrieved.

Mean Average Precision Mean MAP (mean average precision) [24]is the most
commonly used evaluation metric in the field of image retrieval, which describes
the ranking quality of the retrieval results.MAP represents the average precision
(AP) of the query results accounted for by all the query-correct results summed
up and divided by the total number of categories. The higher the value of MAP,
the higher the retrieval results, and the higher the value of MAP. The MAP
calculation formula is shown below.

MAP =
1
C

c∑

1

AP@k (3)

where C denotes the number of retrieval categories, AP@k denotes the aver-
age precision of the first k per query

AP@k =
1
N

N∑

1

i
position(i)

(4)

Where N denotes the number of retrieved images, i denotes the ith retrieved
image, and position(i) denotes the position where the ith image is located.

6.3 Experimental Results and Analysis

In this section, the training set used is OBC219 and is divided into training
and validation sets in the ratio of 4:1. The retrieval dataset used is TOBC40
divided from OBC306. The evaluation metrics are uniformly MP and MAP, and
the highest scores in all experimental results are shown in bold, and the next
highest scores are shown with underlined wavy lines. All scores are reported as
percentages.
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Replacement Convolution Experiment To verify the effectiveness of replac-
ing the large convolution in the stage(0) layer of the ResNet network with a small
convolution, this subsection conducts a comparison experiment on the TOBC40
retrieval dataset. In Table 1, the retrieval performance metrics (MP and MAP)
for different model structures ResNet and ResNet-A (replacing 7*7 with three
3*3) are compared for multiple k values.

Table 1. Experimental results of Replacement convolutions on TOBC40

MP MAP
model k=5 k=10 k=25 k=10 k=50 k=100

ResNet 79.43% 73.31% 54.14% 86.45% 76.68% 68.82%
ResNet-A80.54%74.12%54.73%87.13%77.26%69.37%

From the experimental results in Table 1, it can be seen that among the
two model structures, ResNet and ResNet-A, ResNet-A achieves slightly better
performance in MP and MAP values at all k values, with the most significant
improvement in MP at k=5 and k=10. At k=5 and k=10, the performance
improvement of ResNet-A is more obvious, and the improvement of MP is more
significant, which is about 1.11% and 0.81% respectively. This indicates that
in the retrieval experimental results of the TOBC40 dataset, the number of
retrieved correct images is more in the results obtained by the ResNet-A model
structure.

Experiments on Skip Connections and Convolutional cascade mod-
ules Finally, to evaluate the effectiveness of the method of adding skip convolu-
tional cascade modules to the ResNet network, experimental comparisons of the
improved network with the ResNet18 and DenseNet121 networks are conducted
in this paper. The experimental results are shown in Table 2.

Table 2. Verification of the validity of the skip convolution cascade module on TOBC40

MP MAP
model k=5 k=10 k=25 k=10 k=50 k=100

ResNet 79.43% 73.31% 54.14% 86.45% 76.68% 68.82%
Improved ResNet80.79% 74.54% 55.03% 89.12% 77.56% 69.84%
DenseNet121 80.85%74.63%56.34%89.24%77.76%69.91%

Table 2 shows the performance comparison between the pre-and post-
improved ResNet networks, as well as the DenseNet121 network on the TOBC40
dataset with different numbers of images (k), returned. As can be seen from the
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table, the improved ResNet network outperforms the pre-improved ResNet net-
work for all k values. For the DenseNet121 network, its performance is compara-
ble to the improved ResNet network for most of the keypoint values, but slightly
better than the improved ResNet network at k=5 and k=10. It can be con-
cluded that the addition of the jump-convolution cascade module significantly
improves the performance of the ResNet network on the two different datasets,
especially on the TOBC40 dataset. The improved ResNet network shows a stable
performance improvement for most k-values, which indicates that the jumping
convolutional cascade module is an effective way to enhance the performance of
the ResNet network.

In order to more intuitively feel the difference between the feature maps
before and after adding jump connections, the output feature maps of each fea-
ture extraction layer before and after the improvement were summed up, and
then the summed-up feature maps were compared. The accumulated feature
maps are shown in Fig.6, from which the richness in details of the improved
feature maps can be clearly observed.

Fig. 6. The result of the accumulation of the output feature map after each feature
extraction layer before and after the improvement, where (a) and (b) represent the
ResNet network before and after the improvement, respectively.

From the figure, it can be clearly observed that the improved output cumula-
tive feature picture has higher clarity than the pre-improved one. This indicates
that the improved network is able to better fuse the shallow local detail infor-
mation with the deep global semantic information, which makes the feature
image richer in content and improves the effective utilization of the features.
This improvement helps to enhance the ability of the network to extract and
represent image features and also improves the accuracy and robustness of the
network in distinguishing and recognizing images.

Comparison Experiment Based on the ResNet network, this paper improves
the ResNet network in two aspects and confirms the effectiveness of the proposed
method through comparative experiments and visual analysis. In this section,
the first two improved modules will be integrated into the ResNet18 network and
the improved network will be called OBINet. In this section, we will discuss the
experimental results of the OBINet network compared to the existing network
used for Oracle image feature extraction. In this experiment, other conditions
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are fixed to be consistent to verify the influence of different feature extraction
networks on the experiment.

Table 3. Comparison of OBINet and other network models on TOBC40

MP MAP
model k=5 k=10 k=25 k=10 k=50 k=100

VGG16[2] 77.15% 71.49% 52.34% 84.24% 73.03% 66.54%
ResNet18[2] 879.43%73.31% 54.14% 86.45% 76.68% 68.82%
inception-v4[25]79.97% 73.54% 55.79% 87.53% 76.87% 68.94%
ResNeSt[18] 80.25% 74.32% 57.78% 88.38% 77.12% 69.47%
Yao[8] 82.14% 75.37% 58.47% 89.15% 78.24% 71.18%
OBINet(Ours) 83.26%76.53%59.12%90.68%79.29%72.47%

Table 3 shows the retrieval performance of the OBINet model compared to
several other network models on the TOBC40 dataset. The data in the table
gives the retrieval results of different models for different numbers of returned
images (k=5, k=10, k=25,k=50, k=100) in the form of MP, and MAP. From
the table, it can be seen that the OBINet model outperforms the other models
in all the evaluated metrics, especially at the larger number of retrieval k=100,
the OBINet model has the highest MAP value of 74.47%, which is 3.65% higher
than the MAP value of the pre-improvement network with ResNet18 as the
feature extraction network. This indicates that the OBINet model has a stronger
retrieval ability on the TOBC40 dataset.

7 Summary and Outlook

Image retrieval of oracle bone inscription is of great significance. It not only helps
to protect and study the oracle bone heritage, but also improves the efficiency
and level of oracle bone research, and promotes the process of digitization and
intelligence of oracle bones. To retrieve images similar to the query image more
accurately, this study firstly adopts a Siamese network-based image retrieval
method for oracle bone inscription, which learns feature representations that
distinguish between similar and dissimilar images and achieves efficient retrieval.
Next, the existing dataset is divided for the problem of unbalanced sample dis-
tribution, which provides a practically usable retrieval dataset for the field of
oracle bone inscription image retrieval. Finally, a backbone network for oracle
bone inscription image retrieval is proposed, which is optimized on the basis of
the ResNet network: the initial 7*7 large convolutional layers in the ResNet net-
work are replaced by three 3*3 small convolutional layers; a skip convolutional
cascade modular structure is designed to transfer and fuse features from the
shallow layer of the network to the deeper layer of the network;
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At present, the research on oracle bone inscription image retrieval is still
in the preliminary stage, and there are certain challenges and limitations. For
example, the low resolution of oracle bone inscription images and the severe
image background noise all have some impact on the accuracy of image retrieval.
Therefore, future research can further explore more efficient and accurate image
retrieval algorithms to improve the effectiveness of image retrieval of oracle bone
inscription.

Acknowledgements.. This study was Supported by the National Natural Science
Foundation of China(NO.62266044,62061045). It was also supported by the "Tianshan
Talents" Leading Talents Program for Scientific and Technological Innovation in Xin-
jiang Uygur Autonomous Region (2023TSYCLJ0025), and the Open Project of Key
Laboratory of Oracle Bone Inscription Information Processing, Ministry of Education
(OIP2021E004).

References

1. H. Zhan and Y. Qi, Chinese character image retrieval based on moment invari-
ants and shape context. 2015 IEEE International Conference on Computer and
Communications (ICCC), Chengdu, China, 2015, pp. 146-150

2. S. Huang, H. Wang, Y. Liu, X. Shi, and L. Jin, OBC306: A Large-Scale Oracle
Bone Character Recognition Dataset. 2019 International Conference on Document
Analysis and Recognition (ICDAR), Sydney, NSW, Australia, 2019, pp. 681-688

3. Q. Zhang, Z. Wang, X. Hu, and R. Chen, A Content-Based Image Retrieval
Scheme for Encrypted Domain Using Feature Fusion Deep Supervised Hash. 2023
IEEE International Conference on Sensors, Electronics and Computer Engineering
(ICSECE), Jinzhou, China, 2023, pp. 34-39

4. Jing, X., Gao Feng, W., Qinxia,: Research on Semantic Mining for Large-scale
Oracle Bone Inscriptions Foundation Data. New Technology of Library and Infor-
mation Service 31(2), 7–14 (2015)

5. T. Lin, Method of oracle bone inscription image retrieval based on Siamese neural
network(in Chinese). Xiamen University, 2020

6. Liu, G., Wang, Y.: Oracle character image retrieval by combining deep neural
networks and clustering technology. Int. J. Comput. Sci. 2, 199–206 (2015)

7. Han X, Bai Y, Qiu K, et al, IsOBS: An information system for oracle bone script.
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demon- stations. Association for Computational Linguistics,
2020: 227-233

8. Zhixi.Yao, Research on Oracle Bone Script Image Recognition and Retrieval Based
on Multi-Strategy Enhancement(in Chinese). Xinjiang University, 2022

9. K. R. N. Aswini, S. P. Prakash, G. Ravindran, T. Jagadesh and A. V. Naik,
An Extended Canberra Similarity Measure Method for Content-Based Image
Retrieval. 2023 International Conference on Evolutionary Algorithms and Soft
Computing Techniques (EASCT), Bengaluru, India, 2023, pp. 1-5

10. Kumar, G.V.R.M., Madhavi, D.: Stacked Siamese Neural Network (SSiNN) on
Neural Codes for Content-Based Image Retrieval. IEEE Access 11, 77452–77463
(2023)



62 J. Ding et al.

11. Sumbul, G., Ravanbakhsh, M., Demir, B., Relevant, A., Hard and Diverse
Triplet Sampling Method for Multi-Label Remote Sensing Image Retrieval.: IEEE
Mediterranean and Middle-East Geoscience and Remote Sensing Symposium
(M2GARSS). Istanbul, Turkey 2022, 5–8 (2022)

12. N. Carlevaris-Bianco and R. M. Eustice, Learning visual feature descriptors for
dynamic lighting conditions. 2014 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, Chicago, IL, USA, 2014, pp. 2769-2776

13. Z. Pan, X. Bao, Y. Zhang, B. Wang, Q. An, and B. Lei, Siamese Network-Based
Metric Learning for SAR Target Classification. IGARSS 2019 - 2019 IEEE Inter-
national Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019, pp.
1342-1345

14. F. Radenović, G. Tolias, and O. Chum, Fine-Tuning CNN Image Retrieval with
No Human Annotation. in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 41, no. 7, pp. 1655-1668, 1 July 2019

15. Razavian A S, Sullivan J, Maki A, et al, A Baseline for Visual Instance Retrieval
with Deep Convolutional Networks.ITE Transactions on Media Technology and
Applications, 2014, 4(3)

16. Chicco, D. (2021). Siamese Neural Networks: An Overview. In: Cartwright, H. (eds)
Artificial Neural Networks. Methods in Molecular Biology, vol 2190. Humana, New
York, NY

17. Linchang Zhao, Zhaowei Shang, et al, Siamese networks with an online reweighted
example for imbalanced data learning, Pattern Recognition, Volume 132,2022

18. Yafei MAO, BI Xiaojun. Rubbing oracle bone character recognition based on
improved ResNeSt network. CAAI Transactions on Intelligent Systems, 2023,
18(3): 450-458

19. Zhang, Y.-K., Zhang, H., Liu, Y.-G., et al.: Oracle character recognition based on
cross-modal deep metric learning. Acta Automatica Sinica 47(4), 791–800 (2021)

20. K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image Recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, 2016, pp. 770-778

21. C. Szegedy, V. Vanhoucke, S. Ioffe, et al, Rethinking the Inception Architecture
for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 2818-2826

22. Shen, Y. et al. (2020). Enabling Deep Residual Networks for Weakly Supervised
Object Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Com-
puter Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol
12353. Springer, Cham

23. Huang, G., Liu, Z.: Maaten L D, et al, Densely connected convolutional networks.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017,
2261–2269 (2017)

24. Christopher D, Manning P R, Schutze H. Introduction to information retrieval.
Cambridge University Press, 2008

25. Harbin Wang, Research on Oracle Bone Script Detection and Recognition Based
on Deep Learning(in Chinese). South China University of Technology, 2019



Novel Clustering Aggregation and Multi-grained
Alignment for Image-Text Matching

Shuming Zhang, Xiao-jun Wu(B), Tianyang Xu, and Donglin Zhang

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
6213113146@stu.jiangnan.edu.cn,

{wu xiaojun,tianyang.xu,zhangdlin}@jiangnan.edu.cn

Abstract. As a challenging multi-modal task, image-text matching continues to
be an attractive topic of research. The essence of this task lies in narrowing down
the semantic disparity between vision and language to align them better. Existing
works have either focused on coarse-grained alignment between global images
and texts or fine-grained alignment between salient regions and words. How-
ever, they do not distinguish between considering related and redundant pairs
(i.e., regions with no matching words or pairs with low relevance). We thereby
propose a Novel Clustering Aggregation and multi-grained Alignment network
(NCAA), which utilizes cross-modal contextual clustering to group regions based
on semantic information consistent with the text content. Specifically, we lever-
age textual fragments as clustering centers, similarity between regions and frag-
ments as propagation medium and delicately devise two mask mechanisms for
simultaneous and distinguishable consideration of both related and redundant
pairs. Two alignment modules of different granularities are also introduced to
achieve the multi-grained alignment. By incorporating both global and local sim-
ilarity into the training and inference phases, our model attains further enhance-
ments. Finally, we conduct extensive experiments on two benchmark datasets,
Flickr30K and MSCOCO, demonstrating the efficacy of our framework.

Keywords: Image-Text Retrieval · Multi-modality · cross-modal contextual
clustering

1 Introduction

As a fundamental multimodal task, image-text matching primarily focuses on reasoning
about image and text features to narrow the semantic gap between these two modalities.
The task is closely related to various multimodal tasks, such as image captioning [15]
and Artificial Intelligence Generated Content (AIGC) [7] task. Recently, image-text
matching has gained more and more attention and many related works have been pro-
posed. However, the persistent semantic disparities between visual content and textual
descriptions remain a significant challenge. We categorize previous methods designed
to address this problem from the perspective of alignment granularity into three classes:
coarse-grained alignment, fine-grained alignment, and multi-grained alignment.

Coarse-grained alignment methods [14,21,24] aim at discovering semantic corre-
spondences of the entire sentences and images, representing the global-level alignment.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15321, pp. 63–79, 2025.
https://doi.org/10.1007/978-3-031-78305-0_5
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Fig. 1. Illustration about our cross-modal contextual clustering module, revealing that this method
can not only cluster regions containing the same semantic information together, but also separate
unrelated regions into individual groups.

The prevalent framework for coarse-grained alignment methods typically involves a
dual-branch deep neural network, with one branch dedicated to images and another to
text. Due to the independence of these two branches, inference can be conducted sep-
arately for each branch when new data arrives. This design allows for fast inference
speeds but may not effectively bridge the semantic gap between the two modalities,
especially for complex image-text pairs.

Fine-grained alignment methods [5,13,25] focus primarily on aligning salient
region-word pairs, which stand for the local-level alignment. Most of them are based on
attention mechanisms. Here, cross-attention mechanisms are applied for fusing or align-
ing features between different modalities. The inter-modal interactions facilitated by
cross-attention mechanisms contribute to significant performance improvement. How-
ever, feature interactions between modalities can be highly computationally intensive.
As a consequence, fine-grained alignment methods may exhibit slower performance
than coarse-grained alignment methods during the inference.

Coarse- and fine-grained alignment methods have their own advantages and dis-
advantages when used separately. Therefore, multi-grained alignment methods [16,26]
combining advantages of both coarse- and fine-grained considerations have become
prominent, which makes these two grained alignment methods complement each other,
not only enhancing retrieval speed but also striking a balance between performance and
efficiency.

However, despite these extensive advancements, designing interaction patterns
within each modality and between different modalities have not been completely con-
quered. Discovering optimal solutions to bridge the complex cross-modal semantic gaps
remains an ongoing challenge. To better address these issues, we introduce the Novel
Clustering Aggregation and multi-grained Alignment network (NCAA) which falls
within the multi-grained alignment category. Unlike previous mainstream approaches
that primarily rely on attention mechanisms, based on our investigations, we are the first
to utilize cross-model clustering algorithm in image-text matching. As shown in Figure
1 (a), many existing methods do not consider semantic associations of visual region
features, resulting in a cluster of these features that lack interconnections. Furthermore,
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some regions exhibit low relevance to word features, making them appear redundant in
the alignment. Therefore, we employ a novel clustering approach, including two dif-
ferent propagation strategies to cope with related and redundant regions, respectively.
Related regions can be assigned to the same semantic clusters while redundant regions
are also categorized individually, as illustrated in Figure 1(b). It is worth mentioning
that we have also introduced the multi-glance reasoning module for fine-grained align-
ment and the global guidance module to accomplish coarse-grained alignment. Both
local and global perspectives are considered in the training and inference phases. Par-
ticularly, we employ a two-stage inference approach to leverage local and global simi-
larities more comprehensively. Compared to previous methods, our NCAA outperforms
them and achieves state-of-art performance. Detailed ablation experiments and visual-
izations confirm the effectiveness of our model.

In summary, our contributions can be summarised as follows:

– We propose a novel cross-model contextual clustering by ingeniously utilizing tex-
tual fragments as clustering centers and two aggregation strategies to cluster related
and redundant regions respectively.

– We intricately design two alignment modules with different granularities to imple-
ment multi-grained alignment.

– Experimental results show that our method NCAA achieves SOTA performance on
several public benchmarks.

2 Related Work

2.1 Multi-grained Alignment

Many early studies are primarily based on the coarse-grained alignment strategy, which
typically calculates the global similarity between image and text. These approaches
frequently enhance performances through the exploration of various training loss func-
tions. Among them, VSE++ [6] is the first to consider the hard negative sample mining
and the enhanced Max Hinge Loss. Some researches [4,9,10] also place emphasis on
aggregation strategies for obtaining global features with richer semantics.

With the development of attention mechanisms, many works have shifted towards
fine-grained alignment strategy recently. SCAN [8] , which is a very classic work, uti-
lizes differently weighted regions and words to infer the local similarity. Subsequently,
a plethora of work [19,20,27] has been inspired by it. For instance, [20] contemplate
the importance of different locations within each region. [27] explicitly considers both
positive and negative matching segments to jointly measure the similarity. Thus, it can
be seen that fine-grained alignment methods are dedicated to designing more sophisti-
cated models.

Coarse-grained alignment methods offer fast inference speed but lack high preci-
sion, while fine-grained alignment methods exhibit the opposite characteristics. There-
fore, multi-grained alignment methods that combine these two alignment methods have
become prominent. DIME [16] ,which is our baseline, designs a routing mechanism
to realize dynamic modality interaction, ultimately providing a comprehensive con-
sideration of global and local alignment. [18] develops a Scene Concept Graph as
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scene common-sense knowledge to achieve multi-grained alignment. Our model falls
under the category of multi-grained alignment methods, attaining an excellent balance
between performance and efficiency.

2.2 Contextual Clustering

Nowadays, mainstream deep learning frameworks predominantly rely on convolution
or attention mechanisms. Clustering algorithms are no longer commonly employed in
the field of deep learning anymore. However, researches continue on efficient clus-
tering algorithms [1,12,22]. SuperPixel [22] directly learns superpixel segmentation
results from input images in an end-to-end manner. SLIC [1] converges faster, restrict-
ing clustering operations within local regions and initializes K-means centers uniformly.
Inspired by [12], combining cross-model contextual clustering with image-text match-
ing is related to our work. Nonetheless, to the best of our knowledge, our work rep-
resents the first attempt to apply the cross-model clustering algorithm to image-text
matching.

Fig. 2. Architecture of our proposed NCAA model. Input images and texts are initially encoded
and subsequently mapped into a shared embedding space. Three modules are devised in blocks
with different colors and stacked in a hybrid connected way to form a multi-grained alignment
interaction stage. During training, the global loss and local loss simultaneously optimize the
network. During inference, a two-stage method based on global and local similarity achieves
both accuracy and efficiency.

3 Methodology

In this chapter, we extensively discuss each component of our model, as depicted in
Figure 2. Initially, in Section 3.1, we delve into the representation learning of two
modalities. Subsequently, in Section 3.2, we introduce three alignment modules, com-
prising the context clustering module for pre-alignment preparation, the multi-glance
reasoning module for local alignment, and the global guidance module for global align-
ment. Finally, in Section 3.3, we present the objective function and the two-stage infer-
ence strategy that we employ.
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3.1 Representation Learning

Visual Representation Given an input image I, following [2], our visual representa-
tion learning is established upon the Faster R-CNN detector [17]. We select K salient
image proposals, where the local region feature vector ri ∈ R

d along with the bound-
ing box vectors pi ∈ R

4 for each proposal. The aspect ratio and area are addition-
ally incorporated into bounding box vectors to enhance the position information. We
then concatenate ri and pi and feed them into a fully connected layer (FC) to obtain
region-level visual features denoted as vi ∈ R

D. Simply computing the average over
all local region features as the global image feature tends to lose a lot of fine-grained
details. Therefore, we employ the average and region features as the query and key of
the self-attention mechanism to obtain the global image feature v0 by aggregating local
information. Finally, we define the visual representation as I = {v0, v1, ..., vK}.

Textual Representation Currently, the best-performing language model is based
on the Transformer architecture. Given a sentence T containing Lwords, the pre-trained
Bert model [3] is utilized to extract word-level textual features which can be denoted as
T = {e1, e2, ..., eL}, where ei ∈ R

768 and 768 is the hidden-size of Bert. Afterward,
we deploy a FC to transform ei to a D-dimensional vector indicated as t̃i. Just like
humans understand a sentence, phrases can help us better grasp the semantic informa-
tion of a sentence. In practical terms, this requires considering several words at the same
time. Consequently, we exploit series convolutions with different kernels to acquire
phrase-level features that are context-enhanced. Then, we concatenate the features gen-
erated by different kernels and feed them into another FC layer to map them into the
D-dimensional space as t̂i. We sum the word-level and phrase-level features to acquire
the local textual features as ti = t̂i ⊕ t̃i. Finally, we employ the same strategy as the
visual branch to obtain sentence-level global textual features denoted as t0. So the whole
textual representation can be defined as T = {t0, t1, ..., tL}.

3.2 Alignment Modules

Our proposed NCAA is multi-grained alignment method. We deliberately refrain from
employing complex network structures to ensure efficient model inference. Instead, we
design three alignment modules in a simple model, which we describe in details below.

Cross-Model Contextual Clustering (CCC) Given image-text pairs (I, T ), it
contains a wealth of related or redundant pairs. The objective of the cross-modal con-
textual clustering module is to group these two types of pairs and process them sep-
arately using corresponding strategies. The cross-modal contextual clustering module
represents the core contribution of our work, as depicted in Figure 3.

Holistically, this module is designed specifically for local features. The operation
involves grouping region features into clusters, where semantically similar region fea-
tures are aggregated and mutually propagated. We implement it based on the local sim-
ilarity between regions and textual fragments and two allocation strategies to assign
regions with semantic relevance and redundancy to different clusters. We first linearly
project vi to vs

i for similarity computation and then calculate the contextual weight on
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Fig. 3. Illustration of our proposed Cross-model Contextual clustering module.

Fig. 4. Illustration of our proposed Intra-model Multi-Glance reasoning module.

each region with respect to each word as follows:

αij =
exp (λŝij)

∑K
i=1 exp (λŝij)

, (1)

here the weight αij is calculated by the softmax function with a temperature parameter

λ. ŝij = [sij ]+ /
√∑L

j=1 [sij ]
2
+ intents to normalize the similarity sij between vs

i and

tj . [x]+ = max (x, 0).
Then, we can obtain the attended features that are employed as the cluster center

cs ∈ R
L×D by: csj =

∑K
i=1aijv

s
i and the local pair-wise cosine similarity matrix

S ∈ R
L×K between vs

i and the center feature csj . Subsequently, we assign regions
to centers, resulting in L clusters. It is worth noting that each cluster may contain a
different number of regions. During feature aggregation, our work can simultaneously
focus on both related and redundant regions.

The strategy of distinguishing relevant and redundant regions before feature prop-
agation is performed through two masks. The magnitude of similarity S reflects the
degree of matching between local features. For regions that contain semantically simi-
lar information and match words, we aim to group them together as much as possible.
Meanwhile, for redundant regions that do not match clustering centers, it is preferable to
minimize the consideration of redundant information, thus reducing its negative effect
on alignment. So we design two mask mechanisms to mine the intrinsic connection of
regions and the semantic connections between regions and words as follows:

Mask(S) = Maskm([‖S‖1 − μ]+) + Maskr(Max(‖S‖1 − μ)), (2)
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Fig. 5. Illustration of our proposed Cross-model Global Enhancement module.

where ‖·‖1 means L1 normalization, and μ is an empirically manually adjusted rele-
vance boundary. If the similarity is greater than this threshold, it is considered as match-
ing pairs; otherwise, as redundant pairs. Maskm(·) is the matched mask that when the
input outweighs 0, it equals itself, otherwise it is 0. Meanwhile, Maskr(·) is the redun-
dant mask that we only select the maximum value belonging to the mismatched ones
so that its value is 1; otherwise it is 0. For redundant regions, we aim to consider them
separately, so we select the maximum value in the redundant pairing that is less than the
threshold value to participate in the feature aggregation. This can reduce the negative
effect of redundant regions on image text retrieval, but at the same time preserve their
representation ability to enrich the global features of the image and improve the image
understanding ability. Integrating these two masks to obtain the final Mask(·), where
the original 1s remain unchanged, and the original 0s are replaced with −∞ for the next
activation function.

We dynamically aggregate regions to their respective text centers using masked sim-
ilarity S̃ = Mask(S). We also map the region features vi to the value space to get vv

i

and obtain a value center cv using the same calculation method as for cs based on the vv
i .

The similarity between i-th region and the cluster center is represented as s̃i (a subset
in S̃). The aggregated feature f is given by :

wi = Softmax (αs̃i + β) , (3)

fi =
1
C

(

cv +
K∑

i=1

wi ∗ vv
i

)

, s.t., C = 1 +
K∑

i=1

wi, (4)

here α and β are learnable scalars to scale and shift the similarity. To control the mag-
nitude, the aggregated feature fi is normalized by a factor of C. We incorporate the
value centers cv , both for extracting global information and accelerating neural net-
work fitting to maintain training stability. The aggregated feature fi is then adaptively
propagated among each region in a cluster based on the similarity weight wi. By doing
so, regions can interact with all other regions in the same cluster, propagating features
to each other and enabling a better reasoning of the the aggregated features. We update
it by a FC and skip connection, which is formulated as :

v′
i = vi + FC (wi ∗ fi) , (5)

Finally, we feed the propagated features v′
i into an affine transformation composed

of MLP to facilitate channel-wise communications. Likewise, a shortcut connection is
employed here to obtain the last region features set Icc.



70 S. Zhang et al.

Intra-Model Multi-Glance Reasoning (IMR) Just as humans may focus on one
or multiple regions in a single glance while looking at an image. For better reason-
ing region features, we consider the interactions of regions from different views as
shown in Figure 4. This allows each region to capture semantic information from other
regions in different combinations thus grasping the semantic dependencies. Given the
clustered region features Icc, a parallel set of 2D convolutions is employed to calculate
the glance-specific vectors for each region. The convolution kernels are used to symbol-
ize the receptive field. For instance, if the size of the kernel is 3, it means that 3 regions
are simultaneously weighted and summed. In order to balance the performance of the
model and the computational cost, according to our experience, in this module, we
choose the number of convolution kernels as [1,2,3]. Then, we concatenate the feature
maps of these various convolutions and pass the result through a FC layer to obtain the
glance-specific region features. Concretely, we capture the intra-modal dependencies
from different subspaces as,

Imr = FC(Concat[I ′1
cc, I

′2
cc, ..., I

′n
cc ]), (6)

where Concat(·) represents the concatenation operation across the feature dimension.
I ′n
cc means the outputs of the n-th convolution.

Cross-Model Global Enhancement (CGE) Although the above two proposed
modules align local features from the fine-grained perspective, providing abundant
clues, it is still necessary to adopt the global features which are consolidated contextual
information and high-level semantics as guidance to refine and enhance the semantic
level of the local features as the Figure 5 illustrates and as follows:

I ′
ge = FC(Icc) ∗ t0, (7)

Ige = (1 +
∥
∥I ′

ge

∥
∥
2
) ∗ Icc, (8)

where t0 represents the global textual feature. ‖·‖2 denotes L2-Normalization across
the dimension of features.

Multi-grained Matching Combining the three modules elaborated above in a
hybrid-modal interaction forms one stage. Our proposed IMRmodule and CGE module
align image and text features from local and global perspectives respectively, narrowing
the semantic gap between two modalities. The outputs of these two modules from the
previous stage are averaged as the visual input for the next stage. After a series of
iterations, the outputs (Îge, Îmr) in the N -th stage serves as the enhanced local image
feature, capturing a more comprehensive interaction for similarity prediction.

For coarse-grained global matching, we first apply the same function that we use
to obtain v0 on the average of Îge and Îmr to acquire the enhanced image features
Îg. Adding it and the original image feature v0 accompanied by a batch normalization
obtains the final global image feature ṽ0. For any two samples, the global coarse-grained
similarity is defined as :

Sg(I, T ) =
ṽT
0 t0∥

∥ṽT
0

∥
∥
2
‖t0‖2

. (9)

For fine-grained local matching, the final local feature is accompanied by summing
all local features together by Î = BN(I + Îge + Îmr). Let Ĩ = {ṽ1, ..., ṽK} and
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T = {t1, ..., tL} be the local image and text features respectively. we first compute the
semantic relevance scores as:

rij =
tiv̂

T
j

‖ti‖2 ‖v̂j‖2
, i ∈ [1, L], j ∈ [1,K], (10)

here rij reflects the cosine similarity between textual fragment ti and visual region v̂j .
Afterward, the local similarity is computed by decomposing the relevance matrix rij
through the max-sum pooling:

Sl(I, T ) =
L∑

i=0

max
j∈K

rij . (11)

In the max-sum pooling function, the max operation computes the max over the
regions intended for finding the most matching visual region for each textual fragment.
Simultaneously, the summation operation is utilized to add the best matching similari-
ties of all textual fragments as the local similarity between two modalities.

3.3 Objective Function

Mixed Training The objective function practiced in this paper is consistent with
the approach adopted in many previous works [27], employing multi-modal contrastive
learning method with the hinge-based bidirectional triplet ranking loss for end-to-end
training. The specific process is as follows:

L(I, T ) = [δ − S(I, T ) + S(I, T−)]+
+ [δ − S(I, T ) + S(I−, T )]+ ,

(12)

where δ is a margin hyperparameter which forces the model to strive to make the dis-
tance value between anchor I and negative example T− larger while making the dis-
tance value between anchor I and positive example T smaller. Conversely, this holds
true when the anchor is T. S(·) denotes the similarity function. The corresponding
hardest negative text is T− = argmaxj �=TS(I, j) and the hardest negative image is
I− = argmaxi�=IS(i, T ) in a mini-batch .

Global matching is efficient but ignores local fine-grained details. Local matching
achieves high accuracy but lacks global high-level semantics. However, applying either
of them independently cannot strike a balance between efficiency and performance.
Our model mixes these two autonomous approaches, achieving multi-grained match-
ing. Given the global coarse-grained image-sentence similarity Sg(I, T ) and local fine-
grained region-fragment similarity Sl(I, T ), the overall training loss is as follows:

L = Lg(I, T ) + Ll(I, T ), (13)

here Sg(I, T ) and Sl(I, T ) serve as the similarity functions of Lg(I, T ) and Ll(I, T )
respectively.

Two-stage Inference To balance the trade-off between efficiency and accuracy,
we adopt a two-stage inference strategy. Simply put, first, the global similarity, includ-
ing the entire dataset is ranked and sorted, which can be done efficiently. Then the top
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m results are re-ranked by the local similarity. With these two-step strategies, we can
leverage the advantages of these two matching mechanisms in the inference stage to
quickly and accurately retrieve results based on queries. At last, the mixed similarity
composed by the global and local matching is applied as the final similarity.

More professionally, given a text query t and an image dataset containing M
images, we first obtain a subset of the top m images (where m � M ) with the highest
scores through global matching. Then, we retrieve the final most relevant image through
reranking by local matching. The specific process is as follows:

argmax
x∈m

Sl(I, T ) + Sg(I, T ). (14)

4 Experiments

In this chapter, we display the experiment results of our model NCAA on two bench-
mark databases to verify the superiority of our model. We conduct standard experiments
in two scenarios, including I2T (retrieving the most relevant sentence given an image)
and T2I (matching the most semantically consistent image with a given text query).
Additionally, a substantial number of comprehensive ablation experiments and visual-
ization results are also presented in this section.

Table 1. Performance comparison between our proposed NCAA and several modals on the
Flickr30K and MS-COCO datasets. The best performance is highlighted in bold.

Methods Flickr30K MSCOCO(1K)

Text Retrieval Image Retrieval R@sum Text Retrieval Image Retrieval R@sum

R@1R@5R@10R@1R@5R@10 R@1R@5R@10R@1R@5R@10

PFAN [20] 70.0 91.8 95.0 50.4 78.7 86.1 472.0 76.5 96.3 99.0 61.6 89.6 95.2 518.2

VSRN [10] 71.3 90.6 96.0 54.7 81.8 88.2 482.6 76.2 94.8 98.2 62.8 89.7 95.1 516.8

SGRAF [5] 77.8 94.1 97.4 58.5 83.0 88.8 499.6 79.6 96.2 98.5 63.2 90.7 96.1 524.3

CMCAN [26] 79.5 95.6 97.6 60.9 84.3 89.9 507.8 81.2 96.8 98.7 65.4 91.0 96.2 529.3

TERAN [13] 79.2 94.4 96.8 63.1 87.3 92.6 513.4 77.7 95.9 98.6 65.0 91.2 96.4 524.8

DIME [16] 81.0 95.9 98.4 63.6 88.1 93.0 520.0 78.8 96.3 98.7 64.8 91.5 96.5 526.6

NAAF [27] 81.9 96.1 98.3 61.0 85.3 90.6 513.2 80.5 96.5 98.8 64.1 90.7 96.5 527.2

RCAR [4] 82.3 96.0 98.4 62.6 85.8 91.1 516.2 80.9 96.9 98.9 65.7 91.4 96.4 530.2

NCAA 81.4 95.3 98.2 62.6 87.5 92.8 517.8 80.5 96.1 98.2 64.4 90.9 96.1 526.2

NCAA(ensemble) 83.1 96.0 98.8 64.1 88.5 94.0 524.5 81.4 96.9 99.0 65.4 91.7 96.7 531.1

4.1 Datasets

Flickr30K [23]: Flickr30K is a dataset curated from Flickr, comprising 31,783 images
and each image has five corresponding descriptive sentences. Following [8], we split
the dataset into 1000 test images, 1000 validation images and the rest training images.
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MSCOCO [11]: The MSCOCO dataset is an important large-scale computer vision
dataset that is equally substantial for vision-language tasks. This dataset contains
123,287 images, each with 5 annotated sentences. We split the dataset into 5000 images
for testing, 5000 images for validation and the rest for training. We report the evalua-
tion results directly computed on the full 5K test images (COCO-5K) and the match-
ing result by an average over 5 independent folds, each composed of 1000 test images
(COCO-1K).

4.2 Protocols

The rank at Top-K (R@K) is an evaluation metric widely used in the information
retrieval domain. R@K indicates the proportion of ground truth contained in the top K
samples of the retrieval results. A higher R@K value indicates a more accurate match.
R@1, R@5, R@10 are used to quantitatively test the performance of our model. Addi-
tionally, R@sum, obtained by summing up all the metrics, is used for comparison with
other competitive works.

4.3 Implementation Details

As most, we extract 36 region proposals for each image and 32 words for each sentence.
The visual and textual features are mapped into a shared 256-dimensional embedding
space. For the manually set hyperparameters, the temperature parameter λ in Eqn. (1)
is set to 9. The margin parameter δ in Eqn. (12) is set to 0.2. In addition, the boundary
parameter μ in Eqn. (2), representing the distinction between related and redundant
regions, is set to 0.2 based on previous method experience. We train and optimize our
model on a single 3090ti. The Adam optimizer is employed with a mini-batch size of
64 for 40 epochs. The learning rate is set to 0.0002 with a decay of 10 % every 20
epochs. The stage N is set as 3. We choose the snapshot with the best performance on
the validation set for testing.

4.4 Performance Comparison

We do not use external training data to augment negative samples to enhance the con-
trastive learning capability and directly list the experimental results provided in the
papers of each comparative method. It is worth noting that most methods provide an
ensemble result, i.e., averaging similarity scores of two trained models. We also present
the results of our ensemble model.

Comparisons on Flickr30K Results on the Flickr30K dataset are summarized
in the left column of Table 1. Methods compared most are based on local matching
through fine-grained alignment. Fine-grained alignment methods achieve better perfor-
mance than coarse-grained alignment methods. This is due to their increased emphasis
on cross-modal feature interactions, further bridging the semantic gap and enriching
representations, albeit at the cost of lower inference efficiency. But currently due to a
wide variety of sophisticated model designs and cutting-edge learning strategies, multi-
grained alignment methods can achieve better results. This fact indicates the extreme
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Table 2. Comparison of bi-directional retrieval results(R@K(%)) on MSCOCO 5K test set. The
best performance is highlighted in bold.

Method Text Retrieval Image Retrieval

R@1R@10 R@1R@10

SGRAF [5] 57.8 91.6 41.9 81.3

CMCAN [26] 61.5 92.9 44.0 82.6

TERAN [13] 55.6 91.6 42.6 82.9

DIME [16] 59.3 91.9 43.1 83.1

NAAF [27] 58.9 92.0 42.5 81.4

RCAR [4] 61.3 92.6 44.3 83.2

NCAA(ensemble) 61.7 93.2 44.7 84.1

Table 3. The ablation analysis on Flickr30K to study the effect of different interaction modules
and the similarity boundary µ.

Method Text Retrieval Image Retrieval

R@1R@5R@10R@1R@5R@10

w/o CCC 77.0 92.5 95.7 58.5 84.2 89.9

w/o IMR 79.3 93.8 96.6 60.8 86.0 91.1

w/o CGE 80.1 94.6 97.2 61.5 86.6 91.9

µ = 0.50 79.2 93.7 97.3 61.2 85.6 91.6

µ = 0.25 81.2 94.9 98.1 62.4 87.2 93.0

µ = 0.10 80.6 94.5 97.7 61.7 86.6 92.1

µ = 0.00 80.0 93.9 97.7 61.2 86.0 91.6

NCAA(µ = 0.20) 81.4 95.3 98.2 62.6 87.5 92.8

essentiality of elaborately establishing interactive modules for image-text retrieval. We
observe that our single model does demonstrate strong competitiveness in both text and
image retrieval, surpassing the performance of many previously ensemble models in
terms of the R@1metric, the most important indicator of model performance. This ver-
ifies the effectiveness of the strategy to group semantic-related features and redundant
features separately through clustering before aggregating high-order representations.
Our ensemble model leads by a significant margin in all metrics except R@5. While
our R@5 score is only 0.1% lower than the NAAF [27], we outperform them by a total
of 8.3% in all other metrics.

Comparisons on MSCOCO The results of COCO-1K and COCO-5K are
reported in the right column of Table 1 and Table 2, respectively. Our method out-
performs compared baselines regarding R@K with different depths in the COCO-1K
evaluation except the R@1 score of image retrieval, where it performs second-best and
exclusively 0.3% lower compared with the best RCAR [4]. This once again manifests
the remarkable ability of our proposed hybrid alignment stages. For the COCO-5K
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testing, our model continues to maintain superiority in all the evaluation metrics over
previous methods, further indicating the stability and robustness of our proposed model.

4.5 Ablation Studies

In this section, we carry out several experiments on the Flicker30K using the single
model to further analyze the effectiveness of our model. Specifically, we demonstrate
the impact of each component of our framework on performance.

Interaction Modules To gain further insights into our three alignment modules,
we conduct progressively incremental ablation experiments. We compare our single
model NCAA with the following variants: 1) w/o CCC, excluding the CCC module;
2) w/o IMR, without the IMR module; 3) w/o CGE, removing the CGE module. As
shown in Table 3, the performance drop of w/o CCC was the most dramatic. The R@1
score in both text retrieval and image retrieval demotes by 4.4% and 4.1%, respectively.
CCC, utilizing clustering algorithms, is the most critical module among the alignment
modules. This underscores the significance of considering semantic relations during
the process of feature aggregation, as it enhances the discerning clues across modali-
ties at a local level. Conversely, compared to the single model, w/o CGE exhibits the
most modest decrease, indicating that leveraging the global information of one modal-
ity to enhance the local representation of another modality is effective. Furthermore,
w/o IMR shows poorer performance than the single model, revealing that modality-
specific reasoning and the combination of different regions from different views can
strengthen the model performance. Overall, our model treating these three modules as
an alignment stage is comprehensive and potent.

Stage Numbers To explore impacts of the number of feature interaction stages,
we design experiments by gradually increasing the number of stages from 1 to 5. The
experimental results are illustrated in Figure 6. It is evident that the retrieval perfor-
mance steadily improves as the number of stages increases from 1 to 3. Enhancing the
capability of the intra- and inter-modality feature interaction is crucial to address the
heterogeneity between the two modalities. Increasing the number of stages enhances
the frequency of feature interactions, thereby contributing to the performance improve-
ment. However, beyond 3 stages, the increase in the number of stages has a fluctuating
effect on the model, with most metrics exhibiting a downward trend, but there are still
minor increases in metrics such as R@5. This phenomenon is attributed to the enlarged
model complexity, which limits the optimization of the model, leading to overfitting of
the feature interaction capacity and the inability to learn optimal representations. There-
fore, to strike a balance between performance and efficiency, we ultimately settled on
having 3 stages.

Boundary Analysis The parameter μ, serving as the boundary value, plays a
critical role in our clustering method. We determined the value of μ to be 0.2 after
considering the normalized similarity values in previous SOTA methods. In order to
prove the validity of this boundary value and thus further prove the validity of the two
masking mechanisms of matching and redundancy, we conduct a set of control experi-
ments by setting different values, and the results are shown in Table 3. It is evident that
the results are better than any set of control experiments when μ is 0.2. This strongly
demonstrates the effectiveness of using two masking strategies to distinguish redundant
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Fig. 6. results comparison on Flickr30K about number of interaction stages.

Fig. 7. The histograms display the attention weights on fragment-based alignments with the sim-
ilarity attention weight while the images reflect the relative weights on region-based alignments
based on the same weight.

and matching regions. Additionally, when the value of μ is larger, it means that the con-
ditions for matching regions are more stringent, resulting in fewer regions meeting the
criteria, while the conditions for redundancy are more lenient, leading to more regions
being grouped as independent redundant areas, and vice versa. Therefore, performances
decrease due to the unreasonable allocation of redundant or matching regions. It is
worth mentioning that when the boundary value changes slightly, the performance of
the model also fluctuates slightly around the optimal performance. This further presents
the insensitivity and robustness of our model.

4.6 Qualitative Results and Analysis

In order to gain a more intuitive understanding of the proposed cross-modal context
clustering module, we extract the attention weights w computed in this module in each
stage and visualize them, as illustrated in Figure 6. It is quite evident that in instances
of positive pairs, the salient regions within the image are significantly emphasized after
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several rounds of clustering operations. This indicates that the CCC module can selec-
tively identify semantically matched regions while filtering out redundant ones. Sim-
ilarly, the bar chart also demonstrates that alignment based on textual fragments can
emphasize discriminative alignments (such as ‘girl’, ‘shore’, ‘mountain’) while dis-
carding semantically irrelevant and redundant alignments (such as ‘a’, ‘the’, ‘at’). In the
visualization of negative sample, both text histogram and region attention map reflect
the tendency of model to align text and images globally rather than forcefully learning
incorrect alignments. This is well demonstrated by the high values of ‘[CLS]’ in the
histogram and the even distribution of attention in the regions of the image.

5 Conclusion

In this paper, we propose a Novel Cluster Aggregation and multi-grained Alignment
network. Specifically, we use textual fragments as clustering centers and group regions
into clusters by the local similarity. Besides, we develop two masking mechanisms to
categorize regions into relevant and redundant regions in the clustering process. In order
to make the model more capable of representation learning, we additionally use intra-
modal multi-glance reasoning and cross-modal global enhancement. Based on these,
our model NCAA can obtain intra-modal and inter-modal multi-grained features. Dur-
ing the inference, we also use a two-stage inference strategy. Extensive experiments
demonstrate the superiority of our model. In the future, we hope to make a unified
information retrieval model that makes full use of large language models(LLM) and
large visual models.
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Abstract. As the population of the earth grows, the demand for food
grows proportionally. Early and cost-effective detection of plant diseases
can result in less food loss. The current methods for image-based plant
disease detection tend to fail in field conditions. The proposed pipeline
uses an ensemble of an YOLOv8 model trained for disease detection
and a disease detection module made of YOLOv8 (as the localizer) and
Vision Transformer (as the classifier). The ensembling is performed with
a method called Soft-NMS. Our pipeline performs disease detection with
46.12% mAP, beating the YOLOv8 by 14.72%, which detects with 31.4%
mAP in the Plant-Doc dataset.

Keywords: Plant disease detection · Object Detection · Ensemble
models

1 Introduction

The world’s population is currently estimated to be over 8 billion people, and it
is growing by about 140 people every minute, according to the World Population
Review [1]. Food security becomes a pressing concern of the hour as population
grows. About 16% [2] of yield loss worldwide is attributed to plant diseases,
which is a considerable amount. Increased yield will directly affect the availabil-
ity of food. Farmers find it challenging and expensive to have a sample examined
by a professional in order to diagnose diseases accurately. Conventional plant dis-
ease diagnosis techniques require labor-intensive visual inspection by specialists,
which frequently causes responses to be delayed and may result in yield losses.
Machine learning (ML) can be used to overcome this issue. The effectiveness
of ML-based approaches in terms of cost and accuracy has been demonstrated
with a significant amount of labelled data. Just like humans, different diseases
cause distinct symptoms in plants also. One such significant indication is the pat-
terning of leaves. This makes the identification of diseases a problem involving
pattern recognition (Fig. 1).

The issue of disease identification in plants using leaf photos has been tackled
by researchers in the past using a variety of strategies. One such approach [3]
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15321, pp. 80–94, 2025.
https://doi.org/10.1007/978-3-031-78305-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78305-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-78305-0_6


Ensembling YOLO and ViT for Plant Disease Detection 81

(a) (b)

Fig. 1. In the images we can see predictions made by two different YOLOv8 [25] models
in the form of rectangular boxes called bounding boxes; each box is assigned a class
along with a confidence score by the model. (a)A trained YOLOv8 [25] on COCO 2017
datset for multiple objects, (b)A YOLOv8 trained on Plant-Doc [22] Object Detection
dataset detect leaves.

was to directly use convolutional neural networks (CNN) which take the leaf
image as input for disease classification.

The authors of a subsequent work [4] place greater emphasis on manually
created features derived from the leaf image for classification. In a different line
of work researchers have taken up this problem as an object detection task [5–7]
where they aim to both localize and classify the diseased leaf portion. Authors
have also explored transfer learning, feature fusion [8] and ensemble models [9]
for this task. The ensemble model proposed in [9] is state of the art for the
classification task.

The gradual improvement of YOLO’s [16] performance in detection and the
power of Vision Transformer (ViT) [24] in classification is the reason behind
the idea of bringing them together. In this work we take the object detection
approach for efficient leaf localization and propose a pipeline for disease detection
consisting of object detection models and classification models. In our pipeline
is an ensemble of two object detection models for disease detection. One being
the YOLOv8 (multiclass) [25] and the other is the module made up of YOLOv8
(leaf) [25] and Vision Transformer.

2 Related Work

Techniques for detecting plant diseases based on vision have been around for a
while. These approaches are quick and inexpensive, which makes them a great
replacement for lab-based methods, which are cost-intensive and lengthy. The
advancement of smartphones and the internet these days have paved the way for
image-based techniques to have higher penetration in remote areas. Data being
scarce in agricultural domain, it is very hard to train accurate deep learning
models. Also the absence of object detection models which can perform well
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in smaller dataset is another obstacle for deploying object detection models
in agricultural domain. For any kind of disease detection the accuracy of the
method is of utmost importance. In order to be used with reliability in field
circumstances, vision-based techniques must therefore be accurate.

2.1 Plant disease detection (As a classification task)

The domain of image classification has reached previously unattainable levels
thanks to important developments in CNNs and other machine learning models
in recent years. Particularly, CNNs have proven to be exceptionally effective
at extracting hierarchical elements from images, which allows them to perform
better on image identification tasks [11]. CNNs are now even more sophisticated
and efficient thanks to the development of designs like ResNet, Inception, and
EfficientNet [11]. Beyond CNNs, a variety of machine learning models continue
to shape the field of image categorization, such as Random Forests, Support
Vector Machines, and neural network variations like Capsule Networks [12].

Data being scarce in this domain, the first reliable Deep learning (DL) model
we come across is from the works of Mohanty et al. [3]. They use Plant Village
Dataset [10] for disease classification and attain a 99.34% accuracy rate using
pretrained GoogleNet and AlexNet for transfer learning. On the other hand
to make the model lite-weight and suitable for edge devices Ahmed et al. [4]
use conventional image processing with ML models for classification task on
Plant Village Dataset [10]. They generate handcrafted features and combine
them with all sorts of ML classifiers to achieve comparable performance.In [9]
the authors achieved 100% classification accuracy on Plant Village Dataset [10]
by creating an ensemble of two weak models trained on two different subsets
of the dataset for fast training and robust performance. Problem is that these
models can’t perform in field conditions. In field conditions there are multiple
objects present in the image like branches,insects and soil which interfere with
the disease classification. Also these models are trained on Plant Village [10]
dataset which has only single leaf present in the image with clear background
and good illumination.

After the introduction of ViT [24] it has given state-of-the-art performance in
classification tasks on multiple datasets like ImageNet, CIFAR-10, CIFAR-100,
Oxford-IIIT Pets, Oxford Flowers-102 etc. It has never been used for plant dis-
ease detection before. One important thing is that ViTs need very large amount
of data to beat state-of-the-art classifiers.

2.2 Plant disease detection

As a fundamental task in computer vision, object detection has a rich history
of research. Starting from the introduction of two stage region proposal based
detection networks [13–15] we can see rapid development of deep learning archi-
tectures for this task. Girshick et al. first comes up with region proposal based
detectors in [13] where they use selective search to propose regions and use a pre-
trained deep feature extractor (Convolution layers of a CNN) to generate features
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of the proposed regions which are then used for classifying the object present in
the proposed region of interest (RoI). In his later work [14] Girshick improves
speed of the network with the introduction of Fast-RCNN detector followed by
his work with Ren on Faster-RCNN [15] where they use a CNN architecture
for proposing regions making it a trainable part of the detection pipeline and
improving both speed and accuracy. In further works we find authors proposing
one stage detectors. The developement of YOLO [16] and SSD [18] show com-
parable results with very fast detection which can be used for realtime appli-
cations. Most recent works in object detection propose a paradigm shift where
they consider it as a set prediction task first introduced by Carion et al. [19].
The detection transformer (DETR) proposed in [19] simplifies the task of object
detection and is appreciated for it’s end-to-end framework which is favourable
for training.

Fuentes et al. in their work [7] frames plant disease detection as an object
detection problem. They explore the then state of the art deep learning architec-
tures for disease detection on their own tomato disease dataset. In the subsequent
works of the same author [5], they introduce a secondary diagnosis unit com-
prised of several disease specific lite-weight CNNs to decrease the number of
false positives. An increase in training data and number of training classes help
in learning more distinguishable representations is shown by experementation in
[6].

2.3 Post-processing techniques to refine bounding box predictions

Most of the the works related to object detection [5–7,13–16,18] use a post-
processing technique called Non-Maximum Suppression (NMS). NMS helps in
refining bounding box predictions by removing redundant bounding boxes and
keeping the best one. NMS uses a strong IOU threshold to quantify redundency
whereas Soft-NMS [20] uses a continuous function. Another technique proposed
by Solovyev et al. [21] called weighted boxes fusion does not remove redun-
dant boxes like NMS and Soft-NMS [20] but fuses the bounding boxes together
according to their scores to create a new bounding box. These techniques can
also be used to create an ensemble of different object detection models where it
will remove redundant predictions from different models,keeping only the best
predictions.

3 Our Method

Disease detection from leaf images is a hard task even for state of the art detec-
tors. Though they localize well,results show that they fail frequently in classifying
the diseases. To solve this, we use object detection models for leaf localization
followed by a deep classifier to classify each detected leaf.

Let there are Ncls classes of objects which can be present in an RGB image
I. The image I of resolution H × W tensor I of dimension H × W × 3. Two
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YOLOv8 [25] models take the tensor I as input. One of them is trained for
object detection, another one is trained for object localization.

The model trained for object detection will give an output in the form of a
dictionary containing boxes, scores and labels. The values of the keys in these
dictionary are tensors. Boxes are given as a tensor B of dimension N ×4 made up
of vectors bi of dimension 1×4 in a format of [x1, y1, x2, y2] where i ∈ 1, 2, ..., N .
(x1, y1) is the top left vertex and (x2, y2) is the bottom right vertex of a bounding
box bi. N is the number of bounding boxes predicted by the model for image
I. The scores are given as a tensor S of dimension N × 1 where each element
of the tensor si ∈ [0, 1]. si is a confidence score for the i’th bounding box. The
model predicts class labels as tensor L of dimension N × 1 where each element
li ∈ 0, 1, 2, ..., (Ncls − 1).

The other YOLOv8 [25] model trained for object localization is part of
a detection module consisting of YOLOv8 [25] and a ViT [24] classifier. The
ViTs [24] helps in classifying the objects localized by the YOLOv8 [25] model
and is trained on a cropped dataset of the original dataset. From the given
ground truth bounding boxes are cropped with corresponding labels to train the
ViTs [24] classifier. The YOLOv8 [25] model takes the tensor I as input and
generates N ′ predictions having boxes,scores and labels. The boxes are repre-
sented in the form of a tensor B′ of dimension N ′ × 4 made up of vectors b′

i′ of
dimension 1 × 4 in a format of [x′

1, y
′
1, x

′
2, y

′
2] where i′ ∈ 1, 2, ..., N ′. (x′

1, y
′
1) is

the top left vertex and (x′
2, y

′
2) is the bottom right vertex of a bounding box b′

i′ .
The scores of objectness are given as a tensor O of dimension N × 1 where each
element of the tensor oi′ ∈ [0, 1]. oi′ is a probability for the i′’th bounding box
having an object. The model predicts class labels as tensor of dimension N ′ × 1
where each element is 0. As we are trying to localize the object only, we consider
the object as only one class which is represented as 0 by the model (Fig. 2).

The N ′ boxes, B′ predicted by the YOLOv8 [25] model trained to localize
are cropped out of the tensor I creating ii′ smaller tensors warped in a pre-
defined dimension of w × h × 3. These ii′ tensors are sent to the ViTs [24]
classifier one by one for a Ncls class classification where the ViTs [24] gives us
probability of the object present in ii′ in the form of a Ncls×1 vector. The highest
probability is selected as pi′ and a label, l′i′ is assigned based on the position of
the highest probability in the Ncls × 1 vector. For all the N ′ bounding boxes b′

i′

a corresponding class label l′i′ ∈ 0, 1, 2, ..., (Ncls −1) and a probability pi′ ∈ [0, 1]
is generated. We create a tensor L′ and P , both of dimension N ′ × 1 keeping l′i′
and pi′as i′’th components for the corresponding tensors.

The objectness score oi′ for the i′’th bounding box can be interpreted as the
conditional probability of an object being present in tensor ii′ given the tensor
I. Also, the probability of the class of object present in tensor ii′ is represented
by pi′ which can be interpreted as the conditional probability of the object
belonging to class l′i′ given the an object being present there and the input I.
The score of object detection is the joint probability of an object being present
in the bounding box and the object belonging to a specific class. In our case the
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Fig. 2. Our complete pipeline for plant disease detection from leaf images. It consists
of ensemble of YOLOv8 [25] and ViT [24] where we are improving the grouping of their
detections via Soft-NMS [20]

score s′
i′ of the bounding box b′

i′ is oi′ × pi′ given in equation 1.

s′
i′ = oi′ × pi′ (1)

S′ = O � P (2)

Where � represents element-wise multiplication or Hadamard product. This
provides us with a tensor S′ of dimension N ′ × 1 which represents the scores of
object detection for the N ′ boxes present in B′ tensor.

Now we have N bounding boxes from YOLOv8 [25] having boxes B, labels
L, scores S and N ′ bounding boxes from our disease detection module having
boxes B′, labels L′, scores S′. We group them together by concatanating them
and create boxes B′′ of dimension (N+N ′)×4, labels L′′ of dimension (N+N ′)×1
and scores S′′ of dimension (N +N ′)× 1 for all the N +N ′ number of bounding
box predictions.

We use the Soft-NMS [20] mentioned in algorithm 1 to filter out redundant
detections from the N + N ′ detected bounding boxes. The algorithm takes two
hyper-parameters α, σ and two tensors B′′ and S′′ as input. The bounding
boxes b′′

i′′ are sorted according to their corresponding scores in descending order
s′′
i′′ and the tensors B′′,L′′ and S′′ are arranged accordingly. A IoU comparison

is done between two bounding boxes to change the score of the second box
accordingly. This method iteratively decreases scores for the redundant bounding
boxes according to the variance of the gaussian distribution σ which decides the
rate of soft score supression mentioned in the algorithm 1. The other hyper-
parameter α helps us to discard the boxes b′′

i′′ with score s′′
i′′ < α. Soft-NMS [20]
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Algorithm 1. Ensembling object detection models with Soft Non-Maximum
Suppression (Soft-NMS)
1: B, S ← Predictions from model 1 ; B ∈ RN×4, S ∈ RN×1

2: B′, S′ ← Predictions from model 2 ; B′ ∈ RN′×4, S′ ∈ RN′×1

3: B′′ ← concatanate(B′, B) ; B ∈ RN+N′×4

4: S′′ ← concatanate(S′, S) ; S ∈ RN+N′×1

5: procedure Soft-NMS(B′′, S′′, α, σ)
6: Sort the boxes by their confidence scores s′′

i′′ in descending order where i′′ ∈
1, 2, 3, ..., N + N ′

7: B′′ , L′′ and S′′ are arranged according to the descending order found in previous
step

8: N + N ′ ← number of boxes
9: for i′′ ← 1 to N + N ′ do

10: for j ← i′′ + 1 to N + N ′ do
11: IoU ← Intersection-over-Union (IoU) between B′′[i′′] and B′′[j]
12: s′′

i′′ ← s′′
i′′ · exp(− IoU2

σ
) � Soft score suppression

13: end for
14: end for
15: Apply threshold α to remove low-confidence boxes
16: return filtered detections in form of tensors BP , LP and SP

17: end procedure

returns us bounding boxes BP which have corresponding scores SP and labels
LP which is the final output of our detection pipeline.The tensors BP , LP and
SP has dimensions NP ×4, NP ×1 and NP ×1 respectively where NP < N +N ′

(Fig. 3).

4 Experiments and Results

4.1 Experimental Setup

We have used the PyTorch framework to implement this work on a system that
has an RTX 3060 GPU with 12 GB of RAM. The system runs on an Intel
i7-11700K processor and 16GB of RAM.

4.2 Dataset Description

All of our studies make use of the Plant-Doc [22] dataset, which is publicly
available [22]. This dataset is made up of leaf photos, the majority of which were
collected in fields. Plant-Doc [22] consists of 8923 instances of leaves in a total
of 2568 images. Training and testing data points are divided between 2355 and
243 for training and testing, respectively, in the dataset. There are a total of 29
classes of plant-disease pairs present in the dataset. Ground truth in the format
of bounding boxes and class labels is present in the dataset, making it suitable
for supervised learning.
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Fig. 3. (a)Precision-Recall curve of YOLOv8 [25] disease detection Model (b)Precision-
Recall curve of YOLOv8 [25] Leaf detection model showing us better and smoother
convergence for localization and classification when detecting leaves in place of directly
detecting diseaes

A cropped dataset is created by cropping all the labelled leaves from the
original dataset. There are total 8923 cropped leaves present in the dataset.
Among these we use 7351 for training, 586 for validation and 986 for testing.

4.3 Localisation

To localise the leaves efficiently, we use the YOLOv8 [25] object detection model.
For this task, YOLOv8 [25] gives us a mAP of 34.09%. On the other hand,
Faster-RCNN [15] reaches a mAP of 46.8%, and a fine-tuned DETR [19] fails
gravely, resulting in a mAP of 8.61% as it can be seen in Table 1. Though
Faster-RCNN [15] gives a higher mAP, YOLOv8 [25] is chosen due to its very
fast inference time, which is in the order of milliseconds and is very suitable for
creating ensembles.

Table 1. Leaf detection performancre of different state-of-the-art object detection
models on Plant-Doc [22] dataset

Architecture mAP(%)

YOLOv8 [25] 34.09

Faster-RCNN [15] 46.8
DETR [19] 8.61

4.4 Classification

In our pipeline, we assign the class of the bounding box with the help of a deep
classifier. To train these models, we used the cropped Plant-Doc [22] dataset.
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Fig. 4. (a)Confusion matrix of our pipeline for disease classification (b)Confusion
matrix of YOLOv8 [25] for classification of diseases(c) Difference matrix between the
confusion matrices of YOLOv8 [25] and our pipeline for disease classification
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On the experiments performed in this dataset, we find out that Vision Trans-
formers [24] perform the best, reaching an accuracy of 75.05% beating the
VGG16 [23], VGG19 [23], Inception-V3 [26] and DenseNet161 [25] models by a
large margin, where they perform inference with an accuracy of 59.47%, 57.59%,
61.93% and 69.82% respectively as reported in Table2.

In figure 4a, we can see the confusion matrix of the classification of diseases
done by our pipeline. In comparison to the confusion matrix of YOLOv8 [25]
seen in figure 4b, the principal diagonal in figure 4a is stronger, implying a
better classification of diseases. Figure 4c is the difference between the confusion
matrices of YOLOv8 [25] and our pipeline, showing us changes in detection in
all the classes.

Table 2. Accuracy of different state-of-the-art classification models on cropped Plant-
Doc [22] dataset

Architecture Accuracy(%)

VGG16 (trained on IMAGENET1K-V1 weights) [23] 59.46

VGG19 (trained on IMAGENET1K-V1 weights) [23] 57.59

Inception-V3(trained on IMAGENET1K-V1 weights) [26] 61.93

DenseNet161(trained on IMAGENET1K-V1 weights) [25] 69.82

ViT-b16 (trained on IMAGENET1K-SWAG-E2E-V1 weights)s [24] 73.07
ViT-base-patch16-224-in21ks [24] 75.04

4.5 Detection

When posed as a detection task where the object detection model has to localise
as well as classify the object, YOLOv8 [25] reaches a mAP of 31.4%, and the
Faster-RCNN [15] gives us a performance of 22.7%, which in terms of evaluation
metrics is not very reliable. The plots in 3 show that the model trained for disease
detection has a lower area under the curve (AUC) than the model trained for
leaf detection, implying better detection performance.

For this, we propose a pipeline of YOLOv8 [25] followed by a Vision Trans-
formers [24] classifier. This pipeline is able to reach a mAP of 26.52%, which is
not at par with the detection models. But further experiments show that this
pipeline is able to predict different sets of leaves present in an image other than
the ones predicted by the detection models.

4.6 Ensemble of multiple object detection models

YOLOv8 [25] being very fast,it is possible to create ensembles of multiple mod-
els to increase performance without much trading off with inference time. We
create an ensemble of a YOLOv8 [25] model trained for disease detection and
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Ground Truth YOLOv8 Our Pipeline

Fig. 5. In the figure above we can see three coloumns of images. In the first coloumn
we can see the ground truth bounding boxes given for the corresponding image.In the
second and third coloumn we can see the bounding boxes predicted by a YOLOv8 [25]
model and our pipeline respectively for plant disease detection

our YOLOv8 (leaf) + ViT [24,25] pipeline trained for the same task. We take
predictions from both models, put all of them together in one set, and refine
them with different techniques.

These detections being refined with NMS give our ensemble model 37.4%
mAP, which beats the SOTA methods by a minimum of 6% mAP. This implies
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that there are certain cases in the dataset that are being predicted by our
YOLOv8 (leaf) + ViT pipeline but are not being predicted by the YOLOv8 [25]
model; otherwise, the ensemble performance would not have improved.

On the other hand, when we apply Soft-NMS [20] in place of NMS, with
threshold α=0.5 and variance of the gaussian distribution σ=0.85 ,to refine
redundant detections, we can see that the ensemble model reaches a mAP of
46.12%, which beats the SOTA method by 14.72%. α and σ are hyper-parameters
of the pipeline and our experimental results in table 4 show that our chosen val-
ues are optimum for ensembling. In the qualitative results shown in Figure 5, one
can see that the YOLOv8 [25] misses out on localising a significant percentage of
leaves present in an image during inference. In the second row of images in Figure
5, we can see that our model is able to localise leaves even from their bottom
view, where the YOLOv8 [25] model is failing. In the third row, we can observe
that our model gives a much higher number of predictions than the YOLOv8 [25]
model, where a high number of leaves are present in the image. Even though the
qualitative and quantitative results are better than the baseline YOLOv8 [25]
we can see in Figure 5 that a lot of the leaves are missed when compared to the
ground truth. This happens due to the Soft-NMS [20] algorithm as it suppresses
low confidence detections and focuses more on accurate classification for precise
object detection.

The average inference time on the test set of the Plant-Doc [22] Object Detec-
tion Dataset by the YOLOv8 [25] disease detection model, our disease detection
module made up of YOLOv8 [25] and ViTs [24], and our whole pipeline are
135ms, 390ms and 401ms respectively. Which means the YOLOv8 [25] model,our
module, and our proposed pipeline can process 7.4, 2.56, and 2.49 frames per
second (FPS). The inference speed is a trade-off that we can accept in the task,
as precise and accurate detection of the disease is more important than a very
fast diagnosis (Table 3).

Table 3. Performance of plant disease detection on Plant-Doc [22] dataset

Architecture mAP(%)

Faster-RCNN [15] 22.7

YOLOv8 [25] 31.4

YOLOv8 (leaf) + ViT-base-patch16-224-in21k (Ours) [23,25] 26.52
Ensemble (Ours) with NMS 39.27
Ensemble (Ours) with Soft-NMS [20] 46.12
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Table 4. Resuls of ensembling with Soft-NMS as α and σ varies

Variance of gaussian distribution(σ) Threshold(α) mAP(%)

0.5 0.01 38.95

1 0.3 44.71

0.85 0.5 46.12
1 0.5 46.15

5 Conclusion

From the study, we can conclude that object detection models trained differently
on the same dataset learn to localize differently. The YOLOv8 [25] model trained
for disease detection misses out on some leaves, whereas the YOLOv8 [25] model
trained for leaf detection is only capable of localising some of this. This can be
clearly seen in the qualitative results.

Creating ensembles of object detection models and a secondary classifier can
help increase the mAP of detection models significantly, especially in complicated
tasks like ours where interclass and intraclass variation is very high. Also, it is
very important to use a proper ensembling scheme to increase the performance
of the model, like Soft-NMS [20].
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Abstract. Content creation and image editing can significantly benefit
from flexible user controls. A common interpretable low-dimensional rep-
resentation of an image is its semantic map, that has information about
the objects present in the image. When compared to raw RGB pixels,
the modification of semantic map to insert or remove objects is much
easier, especially for satellite images as the satellite images are typically
associated with an underlying semantic map. One can take a semantic
map and easily modify it to selectively insert, remove, or replace objects
in the map. The method proposed in this paper takes in the modified
map of a given geographic area and alters corresponding satellite image
to reflect the changes made to the map. We achieve this with traditional
pre-trained image-to-image translation GANs like CycleGAN or Pix2Pix
GAN, by fine-tuning them on a limited dataset of reference images asso-
ciated with semantic maps. We discuss the qualitative and quantitative
performance of our technique highlighting its potential for applications in
satellite imagery manipulation. We also demonstrate how this method
can effectively challenge numerous deep learning-based image forensic
techniques, emphasizing the urgent need for robust and generalizable
image forensic tools to combat the spread of manipulated data.

Keywords: Image Editing · Generative AI · Image Forensics

1 Introduction

In recent years, Generative Models (GMs) have made significant advancements
in their ability to generate high-quality synthetic images and videos [4]. In the
area of computer vision, these models can be applied in a variety of ways, such
as generating images from text prompts [17] and performing tasks such as image
to image translations. Generative Adversarial Networks (GANs) are a class of
GMs that are originally introduced in 2014 [7]. One area that has seen rapid
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(a) Pristine Semantic Map, 
downloaded using Google 

Maps API

(b) Manipulated Map, with 
building removed from 

center of the image

(c) Overhead Image, that 
corresponds to pristine map

(d) Manipulated Image, 
after object removal

Fig. 1. Illustration of our proposed method, in which a building is removed from the
center of an image.

growth in recent years is GAN based image-to-image translation tasks, some
of which include creating art [6,11,21], inpainting images [12,20,22] and super-
resolution [5,10,14]. However, generative models can also be used for more mali-
cious intentions, producing fake images and videos. Deepfakes refer to a particu-
lar application of these types of frameworks - manipulating or synthesizing fake
human faces.

In the satellite image domain, a recent paper [23] explored “deepfake geogra-
phy”, and the authors utilized CycleGAN [24] to transfer styles of different cities.
For example, a satellite image from Seattle may be stylized to have similar land-
scape features as a typical satellite image from Beijing. In this paper, we present
an extended, generalizable GAN based methodology that can be used for object
insertion or object removal from an image (as shown in Figure 1). Our method
specifically modifies (insertion/removal) specific localized regions in a semantic
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map, which we then translate to produce a fake image that agrees with the mod-
ified semantic map and resembles the original image in the unaltered regions.
This generated image is then blended with the pristine image in the same local-
ized region that the input map was manipulated, producing a doctored output
image whose pixels are identical to the pristine image in the unaltered regions.
These types of manipulations find potential use in applications such as defense,
the agricultural sector, and urban planning. For example, in urban planning, it
is quite common to have urban blueprints as maps that can undergo numer-
ous changes in the planning stage depending on required design choices. For
instance, swapping the locations of a park and a building to comply with local
zoning ordinances. Using the methodology presented in this paper, these changes
can be easily rendered into realistic scenes, facilitating better decision-making
and public consultations. In agriculture sector for example, the map layout of
an agricultural field can be modified to make way for new crops, and corre-
sponding visualizations can be previewed in advance, aiding in efficient planning
and resource management. However, the same technique can be used for mali-
cious purposes, such as removing important structures or landmarks from aerial
photographs. Therefore, it is essential to have tools for identifying such altered
images. In this paper, we also discuss the limitations of a variety of deep leaning
based image forensic techniques, so that the doctored images created with our
proposed method cannot be flagged.

Main contributions. (1) A novel, simple, and effective way to edit or manipulate
images by altering the underlying semantic map of the image. (2) Show the limits
of current image forensic techniques so that fake images made with the proposed
method cannot be caught.

2 Background

2.1 Generative Adversarial Networks

The GAN framework, as briefly mentioned in Section 1, consists of two neural
networks that are jointly trained: a generative model G and a discriminative
model D. In the most simple setup, the objective of this GAN is to gener-
ate images that are visually similar to those in the training data distribution
X. However, in image-to-image translation tasks, the objective of the GAN is
to learn a mapping between source domain X to the target domain Y such
that G(X) is indistinguishable from Y . Some example tasks include translating
images from day to night, black and white to color, or map to satellite. It can
be seen that D and G generally play a zero-sum game where the generator G is
trying to synthesize realistic samples to fool the discriminator D. In the following
subsections, we briefly cover two GAN frameworks tested with our methodol-
ogy - CycleGAN [24] and Pix2pixHD [19], while noting that any architecture
that can perform image-to-image translation is applicable within our proposed
framework.
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CycleGAN A core feature of CycleGAN [24] is its ability to learn image to
image translations without paired examples. The main innovation that allows
unpaired image to image translation is the addition of a cycle consistency loss
to the objective function that is being optimized. When training a CycleGAN
to learn translations between images x and y, two sets of GAN networks are
trained. The first network is composed of a generator G that learns a mapping
from x Ñ y, and a discriminator Dy. The second is composed of a generator F
that learns a mapping y Ñ x and a discriminator Dx.

Then, the cycle consistency loss is a measure that tries to enforce that the
image translation cycle should be able to bring x back to the original image
after passing it through both generators, i.e. x Ñ G(x) Ñ F (G(x)) « x. This is
called forward cycle consistency. Similarly, backward cycle consistency ensures
y Ñ F (y) Ñ G(F (y)) « y. We show a visual overview of this formulation for
generator F in Figure 2. Mathematically, this cycle consistency term can be
represented as shown in Eq 1

Lcycle(G,F ) “ Ex„pdata(x)[||F (G(x))´ x||1]` Ey„pdata(y)[||G(F (y))´ y||1] (1)

cycle-consistency 
loss

Fig. 2. CycleGAN Framework

This cycle consistency loss is added along with two unconditional adversarial
loss terms, one for each generator G and F . Unconditional in this context means
that the input y is not given to the generator or discriminator. This setup ensures
that for a given image x, we do not need a corresponding output y to optimize
the network. The full objective with a tuning parameter λ is shown in Eq 2, 3.

L(G,F,Dx,Dy) “ LGAN (G,Dy, x, y)`LGAN (F,Dx, y, x)`λ Lcycle(G,F ) (2)

where,

LGAN (G,D,X, Y ) “ Ey„pdata(y)[logDY (y)]` Ex„pdata(x)[log(1´ DY (y))] (3)

To better enforce color consistent generated images, CycleGAN also intro-
duces an optional L1 identity loss that encourages the generated images from
each generator network match the input.
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Lidentity(G,F ) “ Ex„pdata(x)[||F (x)´ x||1]` Ey„pdata(y)[||G(y)´ y||1] (4)

In terms of network architecture, both discriminator networks take the form
of a PatchGAN as in the Pix2Pix framework [9]. This PatchGAN discriminator
classifies each N x N patch in an image as real or fake. Once each patch is
classified, all the responses are averaged to provide a final classification from
D. This patch based network network is faster to run than a full sized image
classifier and is argued to take the form of a texture/style loss as it assumes that
pixels separated by more than a patch diameter are independent. The generator
networks are of an encoder-decoder form composed of ResNet blocks in between
downsampling and upsampling layers.

Pix2pixHD The second architecture explored is Pix2pixHD , which makes sev-
eral improvements over pix2pix to improve the quality of generated images that
are higher resolution. The first improvement is using multi-scale discriminators
and generators to ensure scene consistency at different resolution levels. The
second improvement is an improved adversarial loss that incorporates a feature
matching loss based on the discriminator.

In pix2pixHD, the generator G is composed of two subnetworks, G1 and G2

where G1 is called a global generator network and G2 is called a local enhancer
network. Both of these networks are composed of a convolutional front-end, a set
of residual blocks and transposed convolutional back-end, where the output of
the global generator is half the resolution of the input image in both dimensions
and the local enhancer network outputs the original input image size using the
output of the global generator. During training, the global generator and local
enhancers are each trained individually before being jointly trained.

The discriminator network D is also designed in a multi-scale fashion, with
three discriminators D1, D2 and D3 having the same network structure (Patch-
GAN), but D2 and D3 operating on 2x and 4x downsampled real and synthesized
images. Then, the learning problem becomes,

min
G

max
D1,D2,D3

∑

k“1,2,3

LGAN (G,Dk) (5)

The second improvement in pix2pixHD is the addition of a feature matching
loss. The idea here is to extract features from multiple layers in the discrimi-
nator as intermediate representations and ensure that these match for real and
synthesized images. If the ith-layer feature extractor of discriminator Dk is D

(i)
k ,

then the feature matching loss LFM (G,Dk) is

LFM (G,Dk) “ Ex,y

T∑

i“1

1
Ni

[
||D(i)

k (x,y)´ D
(i)
k (x, G(x))||1

]
(6)

where T is the total number of layers and Ni is the number of elements in each
layer. Then, the final full objective of the pix2pixHD GAN is
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min
G

⎛

⎝

⎛

⎝ max
D1,D2,D3

∑

k“1,2,3

LcGAN (G,Dk)

⎞

⎠` λ
∑

k“1,2,3

LFM (G,Dk)

⎞

⎠ (7)

3 Proposed Image Manipulation Framework

Dataset of
Images + Semantic Maps

Map2Img-GAN Trainer

(Finetune GAN on 
Tiny Input Dataset)

Map2Img-GAN

Manipulated 
Semantic Map

GAN Generated 
Image

Image Blending 
Software

Pristine Image

USER INPUT 1 USER INPUT 2

OUTPUT IMAGE

Fig. 3. Overview of proposed image manipulation framework.

We propose a simple yet effective technique for removing/replacing/inserting
objects in images. We postulate using a generative model (with traditional
CycleGAN or Pix2PiXHD GAN like architecture, pre-trained on standard large
datasets in such a way that it is capable of generating images based on their
semantic masks), along with a small collection of images tagged to their seman-
tic masks. We refer to this dataset as smalldata, D, from now on. Now, we fine
tune the pretrained GAN, G, on the smalldata, D, and finetune the model such
that GAN generates an image that closely resembles the original image from the
semantic mask that it was trained on. In other words, we mandate the GAN
to memorize the correspondence between the semantic map and image. Once
the GAN is trained, we generate the tampered semantic mask, T , for instance,
by removing an object from the original mask, M , which is a sample in the
smalldata, D. Tampering the semantic map can be easily accomplished using
open-source software such as Photoshop or GIMP. Using this tampered map,
T , GAN generates the image that corresponds to that tampered map, which
in this case involves the generation of the image similar to the original image,
that was paired with M , but with the object removed. In a similar way, one
can easily insert/remove objects from the images by altering the semantic mask
accordingly. This technique has produced qualitatively and quantitatively entic-
ing outcomes, which will be discussed in detail in Section 4.
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The overview of the entire framework is shown in Figure 3, where we feed
a manipulated semantic map as an input to the trained generator model. For
example, in the context of aerial imagery, one can remove a building and replace
it with an empty land. Some applications/examples of such manipulations are
discussed in detail in Section 4. Although the direct output of the generator can
be used as the final result, we blend the GAN generated satellite image with
the original to bolster the final manipulation’s authenticity and ensure that the
original pixels are preserved outside of the manipulated region. We leveraged
traditional Poisson blending [15] algorithm to blend the two images, so that the
pixels where semantic map is tampered will be blended into original image from
GAN generated image. Possible enhancements and further research opportunities
are explored in Section 6.

4 Image Forgery Experiments

4.1 Map2Sat Data Curation

In order to curate a dataset of map to satellite imagery, we gather around 555
pairs of 512 x 512 map and satellite images of US capital cities, scraped from
the google maps API. The latitude/longitude coordinates of each capital city are
randomly perturbed 10 times within a 5 mile radius to obtain multiple images for
each city, which differ in appearance. These resulting image pairs are manually
inspected for outliers in order to constrain the domain of the dataset to urban
areas. Removing these outliers brings the total number of image pairs to 470,
where images were tagged as outliers for three main reasons:

– Near duplicates due to random perturbation
– Large regions of the image are not urban
– Had visual artifacts from Google stitching images together

We denote this dataset throughout the rest of the document as map2sat-
urban and show a sample image pair in Figure 1a and Figure 1c.

4.2 Qualitative Results

In Figure 4, we show an object removal example where we’ve removed a building
region from the bottom left corner of the image. In Figure 5, we show an object
insertion example in which a body of water is removed, and a road and buildings
are inserted in its place. Both of these manipulations were generated using the
method outlined in Section 3 with pix2pixHD. In Figures 6 and 7 we show
manipulations generated using a trained CycleGAN model where a large cluster
of buildings has been removed in the first example (Fig 6), and a larger building
is removed in the third (Fig 7).
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Fig. 4. An illustration of object removal, using the proposed method with pix2pixHD
GAN, from a satellite image of Nashville (the capital of the U.S. state of Tennessee).
(a) Pristine Roadmap from Google Maps API. (b) Manipulated Roadmap (Objects
at bottom left removed). (c) Pristine Satellite Image, overlaid on removal mask. (d)
Blended Image, Objects at bottom left removed.

Fig. 5. An illustration of object insertion, using the proposed method with pix2pixHD
GAN, from a satellite image of Little Rock (capital of the U.S. state of Arkansas). (a)
Pristine Roadmap from Google Maps API. (b) Manipulated Roadmap, a water body
is replaced by road and buildings. (c) Pristine Overhead Image, overlaid on insertion
mask. (d) Manipulated Image (post blending)

Fig. 6. An illustration of the proposed method with CycleGAN, where a large cluster of
buildings are removed. (a) Pristine Roadmap. (b) Manipulated Roadmap. (c) Pristine
Overhead Image, overlaid on removal mask. (d) Manipulated Image (post blending).

Extensions to other datasets (Building2Sat and Cityscapes): The proposed
framework above can be easily extended to semantic maps of different nature
than those present in map2sat-urban dataset. In addition to map2sat-urban
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Fig. 7. An illustration of the proposed method with CycleGAN, where a building has
been removed. (a) Pristine Roadmap. (b) Manipulated Roadmap. (c) Pristine Overhead
Image, overlaid on removal mask. (d) Manipulated Image (post blending).

dataset, we demonstrate our method on two other datasets: Building2Sat
dataset [13] and Cityscapes dataset [3]. Building2Sat dataset is based on the Inria
Aerial Image Labeling Dataset [13], which contains 180 5k x 5k image/label pairs
from 5 locations: Austin, Chicago, Kitsap, Tyrol and Vienna. We select the 36
images from Austin to constrain the domain of the images, and split each 5k x 5k
image into 500 x 500 tiles to obtain 3,600 image/label pairs. Utilizing pix2pixHD
as our GAN, we show that our method can be used to insert/remove/add build-
ings in satellite images that are part of Building2Sat dataset. An example of an
image/label pair along with a pix2pixHD generated image is shown in Figure 8,
while Figure 9 show examples of building removal using the proposed framework.

The technique is applicable to any dataset with images and semantic maps,
although it has primarily been demonstrated on aerial images thus far. The
Cityscapes dataset [3], which consists of 5000 images with city street scenes
labeled with extremely rich semantic maps, is one such example where we used
our method. We used a subset of this dataset that has high-quality annotations,
that has 5000 image map pairs to retrain the Pix2PixHD GAN. Figure 10 shows
how our approach performed on this dataset with a few vehicles removed.

Fig. 8. An example of image/label pair from Building2Sat dataset along with a
pix2pixHD generated image.
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Fig. 9. An illustration of the proposed method on Building2Sat image, where a build-
ing has been removed. (a,c) Pristine Satellite Image, overlaid on removal mask. (b,d)
Manipulated Image (post blending)

Fig. 10. Demonstration on image from cityscapes dataset, where a couple of vehicles
have been removed. (a) Pristine Roadmap. (b) Manipulated Roadmap. (c) Pristine
Overhead Image, overlaid on removal mask. (d) Manipulated Image (post blending).

4.3 Quantitative Results

Quantitative evaluation of the suggested technique is rather tricky due to the fact
that the GAN-generated image is ultimately blended with the original image.
Nevertheless, it is evident that the final blended image can only look decent if the
GAN can memorize the map and image pairing and generate images with a highly
similar appearance when the original map is input. To quantify this capacity of
GANs, we relied on observing three standard metrics, shown in Table 1, that are
typically used in literature. (1) Fréchet Inception Distance (FID) [8], (2) Kernel
Inception Distance (KID) [1], and (3) Structural Similarity Index (SSIM) [18].
The following is how all three metrics are obtained. Excluding the manipulated
map regions, pristine image and GAN-generated image from the manipulated
map are divided into pairs of 64x64 patches. These patches are used to evaluate
the FID, KID, and SSIM scores. We used patches from 20 examples in each
dataset to calculate evaluation metrics. As the Build2Sat dataset has only masks
for buildings, we can see that quantitative metrics are not that great on that
dataset. Even though the quantitative metrics can be used for understanding the
compatibility of GAN-generated images with our image manipulation framework
on a very high level, manual qualitative observation is the recommended way to
understand the GAN for a given application.
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Fig. 11. Deep learning based forensic techniques struggling to detect post-processed
GAN generated images. Blue: Regularly Trained Model; Green: Barrage of Transforms
Model; Orange: Adversarially Trained Model; (Color figure online)

5 Localizing Manipulated Regions

Given that trained GANs are capable of effectively forging images by remov-
ing/inserting/replacing objects, we undertook extensive experiments to deter-
mine if these manipulations may be detected by typical Convlutional Neural
Network (CNN) based image forensic approaches.

The proposed framework for manipulation enables users to simply blend the
GAN-generated image with the actual image. Thus, a substantial chunk of the
altered image stays intact. This makes it more difficult to identify such modifi-
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(a) Blended Image 
as shown in Figure 5c

(b) Post Processed Image
 (Randomly selected post-processing)

(c) Heatmap generated by the 
“regularly” trained model on 

uncompressed image

(d) Heatmap generated by the 
“regularly” trained model on 

post-processed blended image

(e) Heatmap generated by the 
BaRT retrained model on blended 

image (no post-processing)

(f) Heatmap generated by the 
adversarially  trained model on 

post-processed image

Fig. 12. Deep learning-based forensic techniques have trouble finding GAN-generated
images that have been changed after they were produced.

cations for image level manipulation detectors. However, it is possible to train
a patch-based classification model, which can be a convolutional neural network-
based binary classifier trained on 64x64-pixel patches. We trained a compara-
ble patch-based ResNet50 model for detecting and localizing GAN-generated
or manipulated images. Using pristine and pix2pixHD GAN-generated images

Table 1. Quantitative metrics to measure the suitability of altered images. ↓ - Lower
the better. ↑ - Higher the better. The ‘Pristine Baseline’ represents the ideal scenario
where the GAN generated patches are exactly same as pristine patches, resulting in
FID and KID scores of zero, and an SSIM score of one.

Dataset
FID
(↓)

KID
(↓)

SSIM
(↑)

Map2Sat-Urban 40.77 0.027 0.65
Building2Sat 81.17 0.062 0.18
CityScapes 21.44 0.006 0.73

Pristine Baseline (Ideal) 0.00 0.00 1.00
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from the map2sat-urban dataset, we trained a patch-based model. Each image
is divided into 64 x 64 non-overlapping patches in order to generate a dataset of
54,144 training images/patches and 6,016 validation images/patches (50 percent
of them are GAN generated and the remaining half are pristine). When doing
inference, we divide the input image into 64 x 64 patches and make predictions
using our patch-based model with a stride of 1. With this setup, on the valida-
tion set, the trained CNN is able to achieve an AUC score of 99.99 percent and a
maximum accuracy of 99.95 percent. But, we found that simple post-processing
steps like rotation, scaling, gamma correction, or gaussian blurring can make the
detector significantly less accurate, as shown by the blue curve in Figure 11.

Adversarial Training (AT): To train the manipulation detectors that are
robust to such post-processing steps, we conducted an experiment to determine
if we could improve the robustness of the detectors by adversarially training [2]
the model by attacking each mini-batch during the training process with an
adversarial noise under L-infinity bound of ONE. The primary purpose of the
experiment is to determine whether the adversarially trained model may provide
increased robustness to post-processing operations in addition to its robustness
against adversarial attacks. We discovered that the adversarially trained model
provides robustness to multiple post-processing stages, but at the expense of a
decrease in patch-level accuracy from 99 percent to nearly 85 percent on average.
Heatmaps made by models that are only 85% accurate tend to have a lot of
noise, which makes them less reliable as real-time forensic detectors, as shown
in Figure 12.

Barrage of Random Transform (BaRT)-based re-training [16] is another
experiment that has been conducted in an effort to strengthen the forensic
method. In this experiment, images were randomly post-processed on the fly
while the patch-based model was being trained. The experimental setup for
training the detector is explained here. With a 50 percent probability, the sample
undergoes post-processing. If a sample is selected for post processing, we select
one of the following post processing steps: Gamma Correction (with different
gamma values), Additive Gaussian Noise (by setting mean to zero and varying
the standard-deviation), Gaussian Blurring (by varying the radius of the filter
from 0.1 to 5.0), Upscaling, Upscaling + Downscaling (with different scaling
factors), Rotate clockwise and anti-clockwise (with varying angles of rotation).

In summary, Barrage of Random Transform (BaRT)-based re-training
enables an analyst to re-train by selecting common transforms/post-processing
activities. In the majority of instances, the BaRT model outperforms the regular
model and the AT model, as shown in Figure 11.

On the other hand, Adversarially trained (AT) model is “universal” and
“blind” to any post-processing operations with its own limitations on L-infinity
bound (maximum per-pixel perturbation). It is observed that AT model outper-
forms regular model in some cases but is not as good as BaRT model for most
cases for which BaRT model was trained on. However, strength of the adver-
sarially re-trained model arises from the fact that the model does not know
beforehand what post-processing operations that might have taken place, but it
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can still detect most of the operations with more accuracy relative to regular
models.

AT and BaRT retraining have been proved to be more robust than naive CNN
classifiers in a number of instances, however they have not yet reached accuracy
levels that are regarded as reliable. However, the aforementioned forensic tech-
niques cannot be guaranteed to be generalizable to other trained GANs, which
is rather typical in our forgery pipeline given that users train GANs on smaller
datasets each time they forge a new image. But, this opens the avenues for a
combination of BaRT and AT models, which could prove to be far more robust.

6 Conclusion

This paper presents a framework for image manipulation with GANs. Specifi-
cally, we examined the fabrication of images from semantic maps utilizing two
distinct architectures: CycleGAN and Pix2pixHD. While pix2pixHD generates
images of great quality, CycleGAN has the advantage of training its generators
to translate images in both directions. This advantage of CycleGAN enables
manipulation of satellite images even in the absence of a semantic map, as the
map can be built from the image itself using the same GAN. The methodol-
ogy provided here preserves the vast majority of the original image’s pixels, and
can generate forgeries that are difficult for humans to identify visually. We also
illustrated the ability of the proposed forging pipeline by demonstrating how it
may circumvent many of the typical forensic techniques. As a future task, we
are in the process of developing the similar image editing framework using other
generative modeling techniques based on stable diffusion. We are also looking
into efficient quantitative metrics that can employed to understand the efficacy
of the pipeline. We are also exploring the possible ways to ensemble BaRT and
Adversarial training strategies to make image manipulation detectors more reli-
able.
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Abstract. The boundary between AI-generated images and real pho-
tographs is becoming increasingly narrow, thanks to the realism provided
by contemporary generative models. Such technological progress neces-
sitates the evolution of existing deepfake detection algorithms to counter
new threats and protect the integrity of perceived reality. Although the
prevailing approach among deepfake detection methodologies relies on
large collections of generated and real data, the efficacy of these methods
in adapting to scenarios characterized by data scarcity remains uncer-
tain. This obstacle arises due to the introduction of novel generation
algorithms and proprietary generative models that impose restrictions on
access to large-scale datasets, thereby constraining the availability of gen-
erated images. In this paper, we first analyze how the performance of cur-
rent deepfake methodologies, based on the CLIP embedding space, adapt
in a few-shot situation over four state-of-the-art generators. Being the
CLIP embedding space not specifically tailored for the task, a fine-tuning
stage is desirable, although the amount of data needed is often unavail-
able in a data scarcity scenario. To address this issue and limit possible
overfitting, we introduce a novel approach through the Low-Rank Adap-
tation (LoRA) of the CLIP architecture, tailored for few-shot deepfake
detection scenarios. Remarkably, the LoRA-modified CLIP, even when
fine-tuned with merely 50 pairs of real and fake images, surpasses the
performance of all evaluated deepfake detection models across the tested
generators. Additionally, when LoRA CLIP is benchmarked against other
models trained on 1,000 samples and evaluated on generative models not
seen during training it exhibits superior generalization capabilities.

Keywords: Deepfake Detection · Few-Shot Learning · LoRA

1 Introduction

With the recent emergence of diffusion models [26,49] and the related enhance-
ment in image quality, the text-to-image generative framework has facilitated the
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production of very realistic images from textual descriptions [5,41,42]. While
this technology has enabled a wider distribution of artistic ability, it has also
raised concerns about the spread of misinformation and social manipulation. To
counter these side effects, deepfake detection emerges as a critical task aimed at
identifying images that have been generated or altered by generative models.

Initial research in deepfake detection has mainly concentrated on identify-
ing counterfeit faces [32,44]. Sequentially, different studies have expanded their
scope to include the detection of natural images, considering a broader interest
in ensuring the authenticity of a wide range of visual content. In this context, the
CLIP (Contrastive Language-Image Pre-training) backbone [40] has been estab-
lished as one of the most effective feature extraction methodologies for deepfake
detection. Notably, when coupled with classification algorithms such as the k-
Nearest Neighbor (k-NN), Support Vector Machines (SVMs), or linear classifiers,
CLIP has demonstrated remarkable capabilities in discerning between generated
and authentic content [1,14,36]. However, these solutions rely on large datasets
comprising both real and generated images that may not be readily accessi-
ble with future generative models or commercial platforms [2,45]. Consequently,
the effectiveness of CLIP-based detectors in scenarios characterized by limited
data availability is still unclear and only partially approached in existing litera-
ture [14]. Further, despite the pre-trained CLIP embedding space demonstrating
an ability to identify discriminative features relevant to deepfake detection, it
is important to acknowledge that CLIP is optimized for a different task. For
this reason, the adaptation of CLIP embedding space in the task of deepfake
detection may result in improved classification results.

Low-Rank Adaptation (LoRA) [27], which originates for parameter efficient
fine-tuning of large language models [16,28], has demonstrated its effectiveness in
various tasks [7,8,39,48]. Specifically, LoRA allows the reshaping of an embed-
ding space of large-scale models (i.e. CLIP in our scenario) by optimizing a
small subset of parameters. This effect can be particularly useful in the task
of deepfake detection, especially when facing scarcity in data samples, as it
can effectively limit the overfitting phenomenon during fine-tuning [52]. In this
paper, we conduct an experimental investigation into the few-shot learning capa-
bilities of CLIP-based deepfake detection systems, evaluating their performance
against four different state-of-the-art generative models across training sets of
20, 50, 100, and 1000 samples. Moreover, we propose a low-rank adaptation [27]
of the CLIP backbone, demonstrating that efficient fine-tuning can consistently
outperform other methodologies, starting with 50 pairs of real and fake images.
Finally, we test the generalizable capabilities of our proposed methodology when
faced with generators unseen during training, finding that LoRA reshapes CLIP
embedding space toward generalized detection across different generators.

2 Related Work

Image generation models. Synthetic images are generally created using three
different approaches: autoregressive models [18,21,41,57], generative adversar-
ial networks (GANs) [6,11,29,33,50], and diffusion models [2,17,26,35,49]. Our
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work considers images coming from more than one family of approaches. In fact,
the generated data we consider originates from Stable Diffusion [42], both the 1.4
and 2.1 versions, ProGAN [29], and DALL-E 3 [4]. To structure the image distri-
bution, ProGAN starts with an easier task (images at low resolution) and then
incrementally improves resolution step-wise while progressively adding new lay-
ers to both the generator and discriminator. Differently, Stable Diffusion models
represent a specific variant of diffusion models. Indeed, these generative models
operate within the latent space [34,42], augmenting efficiency while preserving
the final image quality. Within the latent space, the diffusion process is condi-
tioned through cross-attention with the U-Net layers [43]. Lastly, we consider
DALL-E 3 [4], a state-of-the-art text-to-image commercial tool. This generator
is available through an API and is capable of aligning images closely with the
textual inputs, due to the adoption of ChatGPT [37] for prompt expansion.
Deepfake detection. The distinction between real and generated images has
been an active area of research, where new classifiers are needed as genera-
tion techniques improve. Initially, detectors focused on GAN-based face genera-
tors [44,51,55]. Subsequently, with the introduction of diffusion models, detectors
rapidly adapted to natural images, expanding the horizons of the face domain [1,
3,13,20]. Differently from analyzing RGB data, some approaches [13,22] have uti-
lized frequency analysis, as the generated images show spectral features that dif-
fer from real ones. Moreover, a different approach to diffusion models is explored
by Wang et al. [54], who works on the difference between the input image and
the one reconstructed by a pre-trained diffusion model.

Within the domain of deepfake detection, a significant challenge is the adap-
tation to generators not encountered during training, which tests the ability of
the model to generalize. Recent approaches respond to this issue by employing
CLIP as a pre-trained backbone from which to extract visual features used for
deepfake detection [1,14,36,47]. Notably, these approaches do not use the seman-
tic properties derived from the alignment of text and image during pre-training;
rather, they leverage distinctive patterns extracted from the visual backbone.
Subsequently, these visual features are utilized by classifiers to execute a binary
classification task. Classifiers that have been explored in this context include
Support Vector Machines (SVMs) [14], linear classifiers [1,36], and k-NN [36].
While the visual features extracted from the pre-trained CLIP embedding space
are not specifically trained for deepfake detection, our approach employs LoRA
fine-tuning [27] for remodeling the embedding space of CLIP with a small num-
ber of samples, with the final goal of improving deepfake classification.

3 Proposed Method

In this paper, we focus on the task of distinguishing real images (i.e. captured via
photographic devices) from those completely generated through AI systems. In
the existing literature, methodologies tackle this challenge through the creation
of extensive datasets, considering thousands of real and fake images. In contrast,
our research explores a distinct scenario where the availability of images from
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each generator for the training phase is significantly constrained. This assump-
tion is validated in a real-world context wherein a newly released generator is
unlikely to publish extensive samples, thereby restricting the availability of data
for training purposes. Similarly, for closed-source generators large quantities of
images are not publicly available.

Fig. 1. Illustration of the evaluated deepfake detection classifiers. On the left, images
are processed through a pre-trained backbone, with k-NN and SVM classifiers being
fitted on the resulting image embeddings. In the center, a linear classifier (LC) is
added on top of the backbone and trained using binary cross-entropy. On the right,
our proposed fine-tuning protocol using LoRA; where LoRA adapters are added with
pre-trained weights and concurrently trained with a linear classifier.

3.1 Preliminaries

CLIP architecture [40] has been recently applied in the realm of deepfake detec-
tion. Indeed, the visual features extracted from this large-scale model have been
proven discriminative in this task, leading to the introduction of multiple binary
classifiers (i.e. k-NN, SVMs, and linear layers) added on top of the frozen CLIP
backbone to perform the task of fake detection [1,14,36].

Employing CLIP for a few-shot classification task offers the advantage of
preventing the necessity for initial training. However, the CLIP model was orig-
inally developed with a distinct objective, i.e. the optimization of image-text
similarity. Consequently, the ability of the CLIP embedding space to differenti-
ate between synthetic and authentic images emerges as a secondary function of
the architecture, prompting us to adapt the embedding space specifically for the
task of deepfake detection.
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Given the constraints of few-shot scenarios and building on the hypothesis
that features relevant to deepfake detection occupy a compact subspace within
the CLIP embedding domain, we investigate the efficacy of LoRA [27] in address-
ing this issue. In Fig. 1, we represent detectors that leverage image embeddings
extracted from a pre-trained backbone. In particular, on the right, the adoption
of low-rank adaptation is illustrated.

3.2 LoRA for Deepfake Detection

Given a collection of real images R and fake images F , generated from a specific
deepfake generator, we select a small collection {(Fi, Ri), i ∈ (1, N)} of N pairs
each composed of a fake image Fi and a real image Ri. Images are firstly cropped
to a size of 2242 and then normalized by a pre-processing pipeline. Secondly, a
CLIP visual backbone is employed for feature extraction. Instead of maintaining
the weights frozen, we introduce trainable matrices (i.e. LoRA adapters), based
on rank decomposition and applied into every linear layer of the backbone.

From a mathematical perspective, given a rank r and an initial weight matrix
W0 ∈ Rd×k, where r << min(d, k), LoRA introduces a novel formulation for
weight matrices as delineated by:

W = W0 +
α

r
BA. (1)

Here, B ∈ Rd×r and A ∈ Rr×k represent the matrices introduced for adapta-
tion. Throughout the training process, the original weight matrix W0 remains
frozen, while B and A are optimized. Following the original implementation,
B is initialized with zeros, and A is initialized from a Gaussian distribution.
Conversely, α functions as a hyperparameter, modulating the degree of influence
imposed by the matrices introduced by LoRA.

After CLIP processing, each Ri and Fi image is embedded in CLIP embed-
ding space and represented as FRi

and FFi
features. A binary linear classifier

(LC) is then trained to separate these features into distinct classes through
a binary cross-entropy loss. The employment of LoRA adapters facilitates the
reshaping of the CLIP embedding space, to separate FR and FF in the low-rank
subspace. A better feature separation would result in an improved classification
boundary between real and fake data.

Notably, training images Ri and Fi are chosen to represent the same semanti-
cal content. This is done to avoid a real-fake separation inside the CLIP embed-
ding, based on the semantical properties of extracted features.

In Table 1, we detail the number of trainable parameters for each examined
LoRA configuration. Significantly, the most extensive configuration encompasses
25M parameters, which corresponds to merely 7% of the Vision Transformer
Large model (ViT-L) [19] employed in our experiments. During the evaluation
phase, the trainable parameters are combined with the frozen weights of the
backbone, as seen in Equation 1. This procedure does not result in an increase
in computational load during the inference phase, as the number of parameters
remains the same as in the original model.



116 S. Cappelletti et al.

Table 1. Number of trainable parameters for each examined LoRA configuration and
linear classifier (LC) baseline. At evaluation time, adapters and pre-trained weights are
merged resulting in the same number of parameters of CLIP LC.

Model r α Trainable Parameters

CLIP LC - - 3k

LoRA CLIP LC 16 32 6M
LoRA CLIP LC 32 64 12M
LoRA CLIP LC 64 128 25M

Notably, a reduced rank r reflects in the update of a smaller number of
parameters, making it advantageous for training processes that involve limited
data. However, this scenario imposes a dimensional limit on the deepfake sub-
space within the CLIP embedding space; an increased rank may alleviate this
limitation. Conversely, fine-tuning the whole visual backbone could face two
drawbacks. First, fine-tuning all parameters on a small quantity of data could
highly induce the overfitting phenomenon. Second, by completely redefining the
CLIP embedding space, it is possible to lose the generalization capability of the
network to unseen generators during training.

4 Experiments

In this section, we first describe the evaluation protocol detailing the training
data, the backbone used, the baselines employed for the experiments, and the
implementation details. Subsequently, we conduct experimental investigations on
our proposed LoRA methodology and competitors across various state-of-the-art
generative models. Within this context, we consider variations in the number of
samples and analyze the generalization capabilities on unseen generators.

4.1 Evaluation Protocol and Experimental Setting

Datasets. The study of the few-shot detection capabilities of deepfake detec-
tors requires an analysis across various deepfake generative methods. This neces-
sity stems from the assumption that different generators may exhibit divergent
behaviors in a limited-sample context, thereby requiring a varying quantity of
samples to achieve acceptable detection performance. Through our experimen-
tation, we analyze four different state-of-the-art generators, namely ProGAN,
Stable Diffusion v1.4, Stable Diffusion v2.1, and DALL-E 3.

In particular, ProGAN [29] represents a popular GAN generator trained on
the LSUN dataset [56], which has been deeply analyzed in the context of deepfake
detection [36,53]. Differently, Stable Diffusion v1.4 (SD 1.4) and Stable Diffusion
v2.1 (SD 2.1) [42] consist of two open-source diffusion models trained on the
LAION dataset [46] for text-to-image conditioned generation. Finally, DALL-E
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3 [4] represents the latest commercial tool introduced by OpenAI in the field of
diffusion models applied to image generation.

We consider a total of 728k images from the collection introduced by Wang et
al. [53], which includes fake images generated with ProGAN and real images com-
ing from the same LSUN [56] classes as the generated ones. We generate nearly
14k images for both SD 1.4 and SD 2.1. This generation is performed by col-
lecting 14k real images associated with a textual prompt from the LAION-400M
dataset [46], which are then used as conditioning text to the diffusion models.
Regarding the DALL-E 3 generator, we obtain 10k images from a publicly acces-
sible collection1. Given the absence of corresponding real images in the dataset,
we combine DALL-E 3 images with randomly selected real images from LAION-
400M dataset. From these data sources, we consider 4k and 1k real-fake image
pairs, respectively to create the test and validation sets for each of the four con-
sidered generators. Moreover, concerning the training set, we sample N pairs of
images from the data collection to explore various few-shot scenarios, as will be
introduced in Section 4.2.

Given the significant influence of image compression in the context of image
forensics [12,24] and acknowledging that the majority of real images from the
LAION dataset are encoded in JPEG format, we standardize all images by con-
verting them to JPEG. This ensures uniformity in the dataset, thereby mitigat-
ing any potential bias related to varying image compression formats.
Backbone and deepfake detectors. As previously introduced, we primarily
focus on the CLIP backbone. Specifically, we employ the CLIP ViT-L model
pre-trained on the DataComp dataset [23] and explore different classifiers added
on top of the network, such as k-NN, SVM, and linear classifiers.

Following previous literature [36], we implement a k-NN classifier, setting
k = 3 and employing cosine distance. In this case, a feature bank is constructed
by processing the training images and storing the extracted features. During the
evaluation phase, the class of an image is determined by identifying the three
feature vectors within the bank that exhibit the highest cosine similarity to the
feature vector of the given example image. Distinctly, another baseline introduces
a Support Vector Machine (SVM) classifier with a linear kernel, adopting the
approach proposed by Cozzolino et al. [14]. Both k-NN and SVM classification
processes are depicted on the left side of Fig. 1. Furthermore, we construct an
additional classifier by integrating a linear classifier (LC) for binary classification
on top of the CLIP backbone. This deepfake classifier is trained with binary
cross-entropy loss, and a threshold of 0.5 is employed for separating real and
fake images. Following previous research efforts [20,53], we additionally conduct
experiments using a ResNet50 architecture [25] pre-trained on ImageNet and
combined with a linear classifier.

Differently, our proposal consists of adding LoRA adapters to all the ViT-L
linear layers (i.e. multilayer perceptron and attention layers). In our experiments,
we apply the adapters only on the weight matrices, excluding the biases, and
maintain a constant ratio of α to r, fixed at a value of 2 to balance adaptation

1 https://huggingface.co/datasets/OpenDatasets/dalle-3-dataset

https://huggingface.co/datasets/OpenDatasets/dalle-3-dataset
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Table 2. Accuracy results when training with 20, 50, and 100 pairs of real and fake
images and testing on the same generator. The results represent the average on five
different runs with different pairs of images.

ProGAN SD 1.4 SD 2.1 DALL-E 3

Model 20 50 100 20 50 100 20 50 100 20 50 100

ResNet50 LC 50.2 50.5 50.5 51.0 51.6 51.7 50.3 51.1 51.2 52.0 52.0 52.2

CLIP k-NN 62.7 65.6 68.0 56.8 57.0 57.7 57.2 58.2 59.2 59.3 63.3 68.6
CLIP SVM 88.5 91.6 93.2 69.8 73.8 76.1 70.8 75.5 76.6 87.7 90.1 91.5
CLIP LC 85.8 90.8 92.6 68.3 73.7 76.7 68.8 74.9 77.7 82.9 88.4 91.0
LoRA CLIP LC 88.1 93.2 96.0 69.4 75.4 79.7 70.2 76.8 79.5 82.5 89.7 92.1

and stability. Additionally, our configuration leverages a linear classifier on top
of the backbone.
Implementation details. With a limited number of training samples, the use
of image transformations emerges as a critical operation to mitigate the risk
of overfitting. As a consequence, we select various types of image transforma-
tions, including blur, brightness, aspect ratio, pixelization, rotation, contrast,
saturation, encoding quality, opacity, overlay stripes, pad, scale, sharpen, skew,
grayscale, and horizontal flip. During training, each image is subjected to a
stochastic process where the number of transformations applied is randomly
selected from a range between 0 and 2. This approach is designed to intro-
duce controlled variability into the training data without visually compromising
images by applying too much data transformation. Moreover, to increase the
variability of our data, each chosen image transformation is applied with a ran-
dom strength value. This is sampled from five equally spaced ranges, generated
by dividing the interval between a minimum and maximum value that we set for
each transformation, with the aim of maintaining visual consistency and usabil-
ity. With this configuration, we obtain five unique variants for every transforma-
tion, each with a different bounded level of intensity. Considering this random
selection, all training images undergo random cropping to a dimension of 2242.
Conversely, during the evaluation phase, only a center-crop transformation is
applied, at 2242. Following this pre-processing step, each image is processed by
a visual backbone. Specifically, when employing the CLIP, feature extraction is
conducted from the next-to-last layer, following [14]. This approach avoids the
final linear projection into the shared image-text CLIP embedding space.

From a technical standpoint, model training is performed with batch size
16, a learning rate set to 1e−3, and the SGD optimizer. The training consists
of a maximum of 150 epochs, while the learning rate is reduced by a factor of
10 whenever no validation accuracy improvement is faced in the last 10 epochs.
Training is automatically stopped if the learning rate reaches 1e−7. Considering
the limited volume of training samples typically encountered, the evaluation
phase is scheduled to occur after every two epochs of training, thereby optimizing
computational efficiency.
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4.2 Experimental Results

We evaluate the performance of deepfake detectors across a variety of few-shot
scenarios. In particular, detectors are trained on varying numbers of pairs of sam-
ples (real and fake) N , specifically 20, 50, 100, and 1000. Considering the limited
sample size in scenarios where N ∈ {20, 50, 100}, we conduct the experiments
across five distinct random seeds, reporting the average results. This operation
allows the selection of diverse sets of image pairs for each iteration, to maximize
the robustness of the experimental configuration. Conversely, in the case where
N = 1000, the results from a single random seed are reported, given that the
increased number of samples inherently guarantees better stability.

Table 3. Accuracy results when training with 1000 pairs of real and fake images and
testing on the same generator.

ProGAN SD 1.4 SD 2.1 DALL-E 3

Model 1000 1000 1000 1000

ResNet50 LC 50.4 52.0 51.4 52.6

CLIP k-NN 76.3 62.7 65.9 79.3
CLIP SVM 96.6 82.2 79.7 91.8
CLIP LC 97.4 83.4 84.3 92.8
LoRA CLIP LC 99.5 94.1 90.7 95.7

Evaluation on few examples. In Table 2, we report the accuracy results
of our LoRA-modified CLIP model in comparison to other deepfake classifiers,
specifically in scenarios characterized by a limited number of examples, namely
N ∈ {20, 50, 100}. Notably, the efficacy of the detection models varies across
different generative models. For example, employing CLIP with an SVM classifier
yields accuracies of 88.5% and 87.7% for ProGAN and DALL-E 3, respectively,
with N = 20. However, the accuracy diminishes to 69.8% and 70.8% when
applied to SD 1.4 and SD 2.1, respectively. Similarly, with N = 50, our LoRA-
enhanced model achieves accuracies of 75.4% and 76.8% for SD 1.4 and SD 2.1,
respectively, whereas the results are notably higher for ProGAN and DALL-E 3,
standing at 93.2% and 89.7%. This variance in performance is attributed to the
various representations of different generators within the CLIP embedding space,
resulting in the importance of evaluating few-shot accuracy across a spectrum
of different types of generators.

When analyzing the effectiveness of detection strategies, it is noticeable
that the LC paired with ResNet50 underperforms. For instance, this classifier
achieves a mere 2.2% improvement in accuracy compared to random choice accu-
racy, i.e. 50%, on DALL-E 3 with N = 100. Differently, in the same configu-
ration, CLIP combined with LC obtains an accuracy of 91%. This proves the
effectiveness of leveraging large-scale models for few-shot deepfake detection.
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Comparing our LoRA detector with the classifiers, it is evident that while
performance is comparable with N = 20, our proposal obtains the best results
with N = 50 and N = 100. For instance, LoRA CLIP obtains 93.2% and 79.7%
with N = 50 and N = 100 respectively on ProGAN and SD 1.4, obtaining a gain
of 1.6% and 3.6% over the SVM mode. Also, our solution demonstrates superior
performance compared to the baseline CLIP LC in the majority of comparisons.
Notably, even with a smaller sample size N = 20, our model surpasses this com-
petitor across ProGAN, SD 1.4, and SD 2.1, with accuracy improvements of
2.3%, 1.1%, and 1.4% respectively. This indicates the efficacy of adapting the
CLIP embedding space for deepfake detection even with minimal data availabil-
ity, underscoring the adaptability of our proposal in a few-shot scenario.

Fig. 2. Trend of accuracy scores on multiple generators. Each classifier is trained on dif-
ferent numbers of samples N , with N ∈ {20, 50, 100, 1000} and tested on the same gen-
erator. An accuracy of 0.5 indicates that performance is equivalent to random choice.

Evaluation on more examples. In Table 3, we detail the accuracy scores of
detectors, now evaluated in the context of N = 1000 sample pairs. Although we
still consider this a few-shot scenario, it presents a relaxed constraint compared
to the previous analysis.

Our LoRA-enhanced CLIP model surpasses all competitor models across
all generators. Remarkably, our approach achieves accuracy improvements of
2.1%, 10.7%, 6.4%, and 2.9% over the CLIP LC model, which is the second
most effective in this comparison. Further, CLIP equipped with a linear classifier
demonstrates superior scalability in the N = 1000 scenario compared to the SVM
classifier across all generators, showing performance gains of 0.8%, 1.2%, 4.6%,
and 1% for ProGAN, SD 1.4, SD 2.1, and DALL-E 3, respectively.

Finally, while the performance of all methods across all generators tends to
increase, as expected, with the increase of N , our proposed model demonstrates
a more pronounced improvement in response to the increment of N . This trend is
visually delineated in Fig. 2, providing evidence of the scalability of our approach
when training size increases.
Effects of hyperparameters r and α on LoRA performance. In Table 4,
we report an ablation study on the LoRA hyperparameter rank r when tested
on ProGAN and SD 1.4 generators. Notably, the accuracy scores of the LoRA
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CLIP model show a positive correlation with the hyperparameter r. Specifically,
within the context of SD 1.4 and a sample size of N = 50, r = 16 obtains an
accuracy of 73.4%, while using r = 32 and r = 64 reach an accuracy of 74.9%
and 75.4% respectively. Moreover, considering N = 20, the r = 64 configuration
performs better than r = 16 on both ProGAN and SD 1.4 with accuracy gains of
2.6% and 0.5%. This performance improvement is particularly remarkable given
the substantial increase in learnable parameters, nearly 20M, associated with the
r = 64 configuration compared to r = 16. Moreover, across all configurations of
r, LoRA models demonstrate superior performance in comparison to the baseline
CLIP LC model, proving the validity of our introduced approach independently
by the analyzed hyperparameter choice.

Table 4. Accuracy results of different LoRA configurations when training with 20, 50,
100, and 1000 pairs of real and fake images and testing on the same generator. When
considering 20,50, and 100 samples, the results represent the average on five different
runs with different pairs of images.

SD 1.4 ProGAN

Model r α 20 50 100 1000 20 50 100 1000

CLIP LC - - 68.3 73.7 76.7 83.4 85.8 90.8 92.6 97.4
FT CLIP LC - - 65.3 69.9 77.2 96.1 52.6 54.8 60.5 99.1

LoRA CLIP LC 16 32 68.9 73.4 77.5 88.9 85.6 91.1 93.5 99.1
LoRA CLIP LC 32 64 68.3 74.9 78.8 90.9 86.5 92.2 94.7 99.2
LoRA CLIP LC 64 128 69.4 75.4 79.7 94.1 88.2 93.2 96.0 99.5

Additionally, we consider a traditional fine-tuned CLIP (FT CLIP LC) where
we update all the weights of the backbone for the deepfake task. As highlighted in
Table 4, a complete fine-tuning causes poor performance when N ∈ {20, 50, 100}.
For instance, when training on ProGAN generator we report an accuracy of
52.6%, 54.8%, and 60.5% when training respectively on 20, 50, and 100 couples
of real-fake images. This can be attributable to an overfitting scenario caused by
a lack of training data. When complete fine-tuning is applied, the performance
tends to increase when relaxing the few-shot constraint to N = 1000.
Validation on unseen generators. While the primary focus of this paper is on
evaluating the efficacy of deepfake detectors in few-shot learning scenarios, our
investigation extends to asses how the classifiers perform on images generated
by generative models not encountered during their training phase. Specifically,
we analyze results on different diffusion models, namely Guided [17], LDM [42],
GLIDE [35] and an autoregressive generator in DALL-E [41]. Further, we ana-
lyze a selection of GAN-generated images from ProGAN [29], CycleGAN [58],
BigGAN [6], StyleGAN [30], GauGAN [38], StarGAN [11], and other generative
models, namely Deepfake [44], SITD [9], SAN [15], CRN [10], and IMLE [31].
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We report in Table 5 and Table 6 the results of our LoRA CLIP and com-
petitors on images generated by the previously mentioned generative models,
following the datasets introduced by Ojha et al. [36] and Wang et al. [53] respec-
tively. In addition to our baselines, we report the results obtained with the
released checkpoints of the CLIP-based linear classifier introduced in [36] and
both ResNet50 versions proposed in [53]. It is worth noting that while our pro-
posal and baselines are trained on ProGAN with N = 1000, both the introduced
competitors are trained on 360k real-fake pairs from ProGAN and LSUN.

Upon analysis of Table 5, LoRA CLIP exhibits superior performance over all
baseline models, achieving accuracy improvements of 1.0%, 4.5%, and 11.7% in
comparison to CLIP LC, SVM, and k-NN classifiers, respectively. These results
underscore the effectiveness of LoRA-adapted embedding space in enhancing
detection capabilities on unseen generators, towards a generalized deepfake
detection embedding space. Compared to the CLIP linear classifier proposed
in [36], our LoRA CLIP obtains comparable results with an average loss on
performance of −0.4% but with leveraging 360 times fewer training samples.

Table 5. Accuracy results of detectors trained on ProGAN and tested on external
generators [36] unseen during training. The symbol † represents pre-trained models,
released by the authors, trained on 320k samples.

LDM GLIDE

Model Guided 200 200 (CFG) 100 100 (27) 50 (27) 100 (10) DALL-E Avg

CLIP LC† [36] 69.5 94.4 74 95.0 78.5 79.1 77.9 87.3 82.0
ResNet50 0.1† [53] 62.0 53.9 55.3 55.1 60.3 62.7 61.0 56.1 58.3
ResNet50 0.5† [53] 52.3 51.1 51.4 51.3 53.3 55.6 54.3 52.5 52.7

CLIP k-NN 61.3 73.6 67.2 73.9 71.4 72.1 71.3 68.8 69.9
CLIP SVM 63.5 85.4 64.5 87.3 82.0 82.0 81.8 70.2 77.1
CLIP LC 67.4 91.4 64.5 92.7 87.1 86.1 85.5 70.4 80.6
FT CLIP LC 54.3 76.4 67.1 77.1 61.9 62.1 62.9 72.9 66.8
LoRA CLIP LC 68.4 93.9 68.3 94.4 83.6 83.5 83.4 77.3 81.6

Differently, in Table 6 LoRA CLIP obtains the best result on average com-
pared to all the analyzed methodologies. Specifically, our solution outperforms
CLIP LC, SVM, and k-NN by respectively 9.0%, 10.2%, and 18.2% accuracy on
average. Additionally, improvements of 4.7%, 5.3%, and 9.4% are obtained in
comparison to the CLIP-based detector proposed in [36] and both detectors pro-
posed by Wang et al. [53]. This further provides evidence of the efficacy of LoRA
adaptation in the research field of deepfake detection. Furthermore, it is inter-
esting to note that traditional fine-tuning (FT CLIP) loses generalization capa-
bilities on unseen generators reporting a deficit accuracy on average of −14.8%
and −8.3% when compared to LoRA CLIP in Table 5 and Table 6 respectively.
This is likely due to the overfitting on the ProGAN generator observed during
training. Fine-tuning all parameters completely modifies the deepfake subspace
inside the CLIP embedding space, thus losing generalization capabilities.
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Table 6. Accuracy results of detectors trained on ProGAN and tested on external
generators [53] unseen during training. The symbol † represents pre-trained models,
released by the authors, trained on 320k samples.

Pro- Cycle- Big- Style- Gau- Star- Deep-
GAN GAN GAN GAN GAN GAN Fake SITD SAN CRN IMLE Avg

CLIP LC† [36] 99.8 98.3 95.1 84.9 99.5 95.8 68.6 62.2 56.6 56.6 69.1 80.6
ResNet50 0.1† [53] 100 85.2 70.2 87.1 78.9 91.8 53.5 90.3 50.5 86.3 86.2 80.0
ResNet50 0.5† [53] 100 80.8 59.0 73.4 79.3 81.0 51.1 78.3 50 87.6 94.1 75.9

CLIP k-NN 79.6 80.2 68.1 65.9 81.4 72.3 55.0 55.6 59.4 60.1 61.2 67.1
CLIP SVM 98.8 84.9 80.0 77.2 95.1 75.1 63.4 70.0 59.4 61.3 61.6 75.1
CLIP LC 99.1 85.9 81.3 77.8 96.9 69.8 61.2 71.1 64.2 61.4 70.2 76.3
FT CLIP LC 99.7 87.7 83.8 78.7 95.9 68.3 54.7 72.8 55.3 61.5 88.6 77.0
LoRA CLIP LC 99.8 95.8 91.7 85.0 99.6 77.4 59.2 75.0 66.0 91.8 97.6 85.3

5 Conclusion

In this study, we analyze the efficacy of CLIP-based deepfake detectors under
conditions of few-shot learning, assessing their performance across various gen-
erators. Moreover, we introduce LoRA CLIP, aimed at refining the CLIP embed-
ding space for the task of deepfake detection. The experimental results validate
the effectiveness of our proposed method in identifying synthetic images within
few-shot contexts. Further, the LoRA-enhanced CLIP model exhibits significant
generalization capabilities to previously not encountered generative models.
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Abstract. With the unprecedented success of generative models like
GANs, synthetic image manipulations such as deepfakes have emerged
as a serious concern in today’s world. Existing techniques demonstrate
promise in detecting deepfakes on which they are trained; however, their
performance drops significantly when applied to detect forgeries created
using other manipulation techniques, on which the model has not been
sufficiently trained. Thus, detecting new types of deepfakes without los-
ing prior knowledge about already learned faking techniques, is a problem
of immense practical importance. In this paper, we propose a novel multi-
source deep domain adaptation framework to address this challenge. Our
framework can leverage a large amount of labeled data (fake/genuine)
generated using one or more faking techniques (source domains) and a
small amount of labeled data generated using a target faking technique
of interest (target domain) to induce a deep neural network with good
generalization capability on all the source domains, as well as the target
domain. Further, our framework can efficiently utilize unlabeled data in
the target domain, which is more readily available than labeled data. We
design a novel loss function specific to the multi-source domain adapta-
tion task and use the SGD method to optimize the loss and train the deep
network. Our extensive empirical studies on benchmark datasets, using
different types of deepfakes, corroborate the promise and potential of
our framework for real-world applications. To the best of our knowledge,
this is the first research effort to develop a multi-source deep domain
adaptation technique for deepfake detection.

Keywords: Deepfake detection · Domain adaptation · Deep learning

1 Introduction

The inception of image manipulation dates back to photography itself [8]; how-
ever, with the recent advances in generative AI (and the advent of models such
as generative adversarial networks or GANs [10] and autoencoders [11]), it has
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reached an unprecedented level of sophistication. Intense research in computer
vision and machine learning has resulted in the generation of manipulation tools
which are extremely easy to use and within everybody’s reach. Of particular
concern are human facial manipulations created using deep learning techniques,
called deepfakes [19] [39] [47] 1. For instance, using the FaceSwap deepfake, an
attacker can put the victim in place and settings they have never been. It is
also fairly easy to generate entirely synthetic faces even at very high resolutions
[13], animate a subject’s face to make it express the desired emotions [37], or
modify facial expressions [45]. These techniques can be used for several malicious
purposes, such as creating child sexual abuse materials, celebrity pornographic
videos and fake propaganda videos for gaining unlawful political influence [51]
[35] [7]. Against the backdrop of such growing concerns, deepfake detection has
gained increasing research attention in the machine learning community [29].
Techniques using deep Convolutional Neural Networks (CNNs) have depicted
promising performance for deepfake detection [1] [3] [21] [40] [54] [59] [60].

While effective, the deep neural networks (DNNs) often tend to overfit to
the manipulation specific artifacts and learn feature representations accordingly.
Thus, while they depict impressive performance on deepfakes on which the mod-
els have been trained, the learned features lack transferability, and their perfor-
mance drops drastically when applied on new types of forgeries, even though they
are semantically similar [56] [46] [6] [17]. Accurately detecting the new forgeries
necessitates abundant labeled data (fake / genuine) from the new domain. How-
ever, the field of digital forensics is progressing at a rapid pace and researchers
and practitioners are developing newer and sophisticated faking techniques on
a regular basis (for instance, OpenAI recently released Sora 2, that can create
realistic and imaginative scenes from text instructions). Thus, obtaining a large
amount of labeled data for every single forgery technique is not feasible. Our goal
is to detect forgeries given only a few (or none) labeled samples and a moderate
amount of unlabeled samples from the new faking technique (unlabeled data is
more readily obtained than labeled data; for instance, we may have access to
several images which may or may not be forged using the new faking technique,
and that information is not available to us, that is, the labels of these images are
unknown). Further, while accurately detecting new types of deepfakes is impor-
tant, it is also equally important to retain prior knowledge about already learned
faking techniques, to avoid the catastrophic forgetting problem [14] [48] [53].

We thus pose the research task as follows: we are given abundant data gen-
erated using different types of deepfakes (such as FaceSwap, Face2Face etc.);
each type of deepfake constitutes a particular source domain data. The data in
all the source domains are all labeled (genuine / fake). We are also given a
small amount (or none) of labeled data and a moderate amount of unlabeled
data generated using target faking technology of interest (target domain data).
Our objective is to train a deep CNN to accurately identify fake and genuine
images in all the source domains, as well as the target domain of interest.

1 we use deepfake as a generic term to denote any kind of image manipulation
2 https://openai.com/sora

https://openai.com/sora
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In this paper, we propose a novel multi-source deep domain adaptation tech-
nique to address this important problem in deepfake detection research. Domain
Adaptation (DA) or Transfer Learning (TL) algorithms utilize abundant labeled
data in one or more domains to develop a model for a related domain of inter-
est, where labeled data is scarce [33]. The domain of interest is referred to as
the target domain and all the other domains are called the source domains. The
probability distributions generating the data in all the source and target domains
are different, which implies that a deep model trained on the source domain data
may not directly generalize to the target domain. Our contributions in this paper
can be summarized as follows:
(i) We address the problem of multi-source DA for deepfake detection. We pro-
pose a novel loss function specifically designed for the multi-source DA task and
utilize the SGD algorithm to optimize the loss and train a deep CNN. To our
knowledge, multi-source domain adaptation has not been studied in the context
of deepfake detection.
(ii) We propose a strategy to leverage unlabeled data in the target domain in
training the deep CNN, which is more readily available than labeled data.
(iii) We extensively validate our framework on benchmark datasets with a vari-
ety of faking techniques, on challenging low resolution data, and also with var-
ied number of labeled images from the target domain. Our framework depicts
impressive performance even when the target domain contains only unlabeled
samples, and no labeled data is available in the target domain.

2 Related Work

Deepfake Detection: With the advent of sophisticated faking techniques, there
has been an increasing interest in developing deepfake detection technology in
the research community. Most of the current detection techniques use deep neu-
ral networks (DNNs) [28] [46] [38]. These methods attempt to detect specific
artifacts in the data, such as abnormal eye blinking [22], signal level artifacts
[23], irregular head poses [54] and peculiar behavior patterns [2] among others.
As mentioned before, these methods suffer from poor generalization, when tested
on deepfakes of a different type than those in the training data.

Domain Adaptation: Domain Adaptation (DA) algorithms transfer rele-
vant knowledge from a source domain with abundant labeled data, to a target
domain of interest, where labeled data is scarce, under the constraint of a prob-
ability distribution difference between the domains [33]. DA techniques using
deep learning have outperformed DA using hand-engineered features [32] [34].
Several metrics have been studied to quantify the disparity between the source
and target domains and learn domain invariant features using a DNN, such as
the Maximum Mean Discrepancy (MMD) [49] [27] [50], the Kullback Leibler
Divergence [31], the Jensen Shannon Divergence [43] among others. Techniques
based on adversarial training has depicted particularly impressive performance
in DA; algorithms in this category include the Domain Adversarial Neural Net-
work (DANN) [9], the Coupled Generative Adversarial Network (CoGAN) and
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its combination with Variational Autoencoder (VAE) [18], and Wasserstein GAN
[42] among others. Multi-source domain adaptation is an extension of DA, where
data from multiple source domains are available. Peng et al. [36] proposed
the moment matching algorithm for multi-source DA, which aims to transfer
knowledge learned from multiple labeled source domains to an unlabeled target
domain by dynamically aligning moments of their feature distributions. Adver-
sarial training techniques are also popular in aligning multiple source domains
and the target domain [57] [52] (similar to single source DA).

Domain Adaptation for Deepfake Detection: Even though both DA
and deepfake detection have been extensively studied, DA for deepfake detec-
tion is much less explored. Kim et al. [17] employed representation learning and
knowledge distillation to introduce FReTAL, a transfer learning-based method
for deepfake detection. They also proposed the CoReD framework by combining
the ideas of continual learning, representation learning and knowledge distilla-
tion to perform sequential DA on new deepfake datasets [16]. Tariq et al. [46]
adopted a fine-tuning strategy for DA, where the DNN was first trained on the
source domain data and then the deeper layers were fine-tuned using the target
domain data. Fine-tuning was also adopted by Cozzolino et al. [6] in their Foren-
sicTransfer framework, which first learned an autoencoder on the source domain
data, which was then fine-tuned using target domain data. All these methods
share a common drawback: they all require all the samples in the target domain
to be labeled. As mentioned in Section 1, we may encounter a situation where we
have access to a large number of images, but we are unable to verify whether they
are forged using the new faking mechanism of interest or not, that is, the labels
of these images are not available to us. Very recently, researchers have begun to
explore DA techniques which can utilize unlabeled data in the target domain.
Chen and Tan [5] and Seraj et al. [41] used the concept of adversarial DA for
deepfake detection. Zhang et al. [56] trained a CNN to learn domain invariant
features by minimizing the MMD between the source and target domains. These
methods require access to the domain labels (whether a sample is derived from
the source or target domain), rather than the task labels (fake/genuine) and can
thus leverage unlabeled data in the target domain. However, all the aforemen-
tioned methods assume a single source and a single target domain, and do not
address the challenge of detecting deepfakes in the target domain, when data
from multiple source domains are available.

In our framework, we use the concept of moment matching to address the
disparity between multiple source domains and the target domain. We also for-
mulate a class alignment loss term on the unlabeled target domain data, which
enforces each target sample to align to exactly one of the source classes (gen-
uine/fake) and be distinct from the other class. We conduct extensive empirical
studies on benchmark datasets with several types of deepfakes, under challeng-
ing real-world conditions, such as low-resolution images (which are common in
social media) and very few (including none) labeled samples from the target
domain of interest. We now describe our framework.
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3 Proposed Framework

3.1 Problem Setup

We are given data from NS source domains S1, S2, . . . SNS
and a target domain

T . Each domain represents data generated using a particular forgery technique
(such as FaceSwap, Face2Face etc.). Due to the difference in the faking tech-
nologies, the data in each domain is derived from a different probability distri-
bution. The data in all the source domains are all labeled: Si = {xj , yj}|Si|

j=1,∀i =
1, . . . NS . Here {xj} denotes the deep feature representation of a particular image
and {yj} denotes the binary label (fake/genuine). Let DS denote the combined
data from all the source domains: DS = S1 ∪ S2 ∪ . . . ∪ SNS

. We are also
given data from a target domain of interest, which contains labeled samples:
DL

T = {xj , yj}N
L
T

j=1, as well as unlabeled samples: DU
T = {xj}N

U
T

j=1. As explained
in Section 1, we do not have sufficient supervision in the target domain, that is,
|DL

T | � |DU
T |. Let DT = DL

T ∪ DU
T . Our objective is to train a deep convolu-

tional neural network (CNN) which will furnish good generalization performance
on all the source domains, as well as the target domain; that is, we would like
our trained CNN to reliably detect deepfakes generated using all the faking tech-
niques. We propose to formulate a novel loss function, specific to the task, and
train the deep network to optimize that loss. Our loss function consists of three
components: (i) supervised loss on the labeled data, which encourages the net-
work to incur minimal prediction error on the labeled source and labeled target
samples; (ii) a moment matching loss to align the source and the target data dis-
tributions, and learn domain invariant feature representations accordingly; and
(iii) unsupervised loss on unlabeled target data, which encourages the network
to predict the unlabeled target samples with high confidence. These are detailed
in the following sections.

3.2 Supervised Loss on the Labeled Source and Labeled Target
Data

The goal of the supervised loss term is to ensure that the network learns fea-
ture representations to accurately classify the labeled source and target sam-
ples. Let DL denote the labeled source and target samples: DL = DS ∪ DL

T =
{x1, x2, . . . , xnL

}, with corresponding labels {y1, y2, . . . , ynL
}. Since the labels

are binary in our problem (fake/genuine), we use the binary cross entropy (BCE)
[26] as the supervised loss to train the deep CNN:

Lsup = − 1
nL

nL∑

i=1

(
yi. log(p(yi)) + (1 − yi). log(1 − p(yi))

)
(1)

where p(yi) denotes the probability obtained from the softmax activation layer
of the CNN.
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3.3 Moment Matching Loss on Source and Target Data

The moments of distributions have been studied by the machine learning com-
munity for a variety of applications. In the context of domain adaptation, the
maximum mean discrepancy (MMD) metric has been used in previous research,
which aligns the first order moments of two distributions [27] [50]. Matching
second order and higher order moments have also been studied for DA [44]
[55]. With the advent of GANs, many GAN-based moment matching approaches
have been proposed, such as McGAN [30], GMMN [25] and MMD GAN [20].
Our strategy to address the disparity between the source and target domains is
motivated by the moment matching algorithm proposed by Peng et al. [36]. This
method not only aligns all the source domains with the target domain, but also
aligns the source domains with each other simultaneously, by directly aligning
the moments of their deep feature distributions. The loss function to align the
moments of the source and target distributions can be expressed as follows:

LMM =

M∑

m=1

⎛

⎝ 1

NS

NS∑

i=1

‖E(Xm
i ) − E(Xm

T )‖2 +
1

(NS
2

)
NS∑

i,j=1,i�=j

‖E(Xm
i ) − E(Xm

j )‖2
⎞

⎠ (2)

Here, X denotes the deep feature representations of the images obtained from
the underlying deep neural network, E(.) denotes the expectation operator and
‖.‖2 denotes the vector 2-norm. The first term inside the parentheses attempts to
align all the source distributions with the target distribution (by minimizing the
distance between their moments), while the second term aligns the moments of
the source distributions among themselves (considering one pair at a time). M is
the maximum order of the moments considered; we used M = 2 in our empirical
studies. Minimizing this term ensures that all the source and the target domains
are aligned, and the CNN learns domain invariant feature representations. Note
that, while our domain alignment strategy is motivated by the moment matching
technique of Peng et al. [36], we did not use their network architecture or the
other specific components in their pipeline (such as the feature extractor, source
domain classifiers etc.). We further formulated a loss term (described next) to
utilize the unlabeled target domain data in training the deep network, which
was not done in [36].

3.4 Unsupervised Loss on Unlabeled Target Data

As mentioned in Section 1, our framework can leverage the presence of unla-
beled data in the target domain of interest, to train the CNN to learn better
feature representations. From a practical standpoint, we may not have access
to a sufficient amount of labeled samples from the new deepfake that we are
trying to detect; but we may have access to a large number of images which
may or may not have been forged using the new technique (unlabeled data). We
formulate a loss term to utilize the presence of such unlabeled data in the target
domain. Our method is inspired by research in semi-supervised learning, where
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feature representations are learned such that the trained CNN furnishes confi-
dent predictions on the unlabeled samples [4] [50] [41]. Each unlabeled target
domain sample can belong to one of the two classes: fake (1) and genuine (2).
We assume the presence of K samples from each class j in the labeled source
data DS , where j ∈ {1, 2}. Let Fjk

S denote the learned feature representation of
the kth source sample from class j and F i

T denote the feature representation of
an unlabeled target sample xi. The fundamental rationale is to ensure that F i

T is
similar to all the K learned source representations from one of the classes j, and
dissimilar to the other class. We enforce the similarity with K source samples
(instead of a single sample) to result in a more robust alignment of the target
data sample. We define a measure to capture the extent of the alignment, which
quantifies the probability that the target sample xi is assigned to class j:

pij =
∑K

k=1 exp〈F i
T ,F jk

S 〉
∑2

j=1

∑K
k=1 exp〈F i

T ,F jk
S 〉

(3)

Here, 〈·, ·〉 denotes the dot product between two vectors (used to compute their
similarity), the exponential function exp(.) has been used for ease of differen-
tiability and the denominator ensures that the measure is normalized, that is,∑

j pij = 1. Ideally, for a given unlabeled target sample xi, we would want one of
the probabilities pij , j ∈ {1, 2}, to be high and the other to be low, denoting that
the target sample is similar to exactly one of the source classes (fake/genuine)
and dissimilar to the other class. In that case, pi tends to be a one-hot vec-
tor, which can be interpreted as the model having low prediction uncertainty
(entropy). We therefore define the unsupervised loss term as the entropy of the
target probability vectors:

Lunsup = − 1
NU

T

NU
T∑

i=1

2∑

j=1

pij log pij (4)

where NU
T denotes the number of unlabeled target samples. Minimizing this

loss produces probability vectors pi that tend to be one-hot vectors, that is,
the deep network furnishes confident predictions on the unlabeled target data.
Note that the probability values in Equation (4) are derived using the class
alignment score in Equation (3) and not using class prediction probabilities, as
done conventionally. The overall loss function to train the deep CNN can thus
be expressed as:

L = Lsup + λ1LMM + λ2Lunsup (5)

where λ1 and λ2 are weight parameters governing the relative importance of the
terms. We use the stochastic gradient descent (SGD) method to optimize the
loss and train the deep network.
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4 Experiments and Results

Datasets: We used the FaceForensic++ (FF++) benchmark dataset [38]
in our experimental studies. It contains 1, 000 pristine videos and 1, 000 fake
videos generated using each of the following four faking techniques: Face2Face
(F2F), FaceSwap (FS), DeepFakes (DF) and NeuralTextures (NT). Each video
was split to generate 50 images (128 × 128) and we used an off-the-shelf face
recognition software 3 to detect and crop the facial regions from these images.
We also conducted a cross-dataset study, where we used the Celeb-DF dataset
[24], which contains high-quality deepfake videos of celebrities .

Comparison Baselines: We used DA algorithms that have been explicitly
studied for the deepfake detection problem as comparison baselines in our work:
(i) Fine-tuning (FT) [46]; (ii) Transferable GAN-images Detection (TGD) [12];
(iii) Feature Representation Transfer Adaptation Learning (FReTAL) [17]; (iv)
Knowledge Distillation (KD) [17]; and (v) FeatureTransfer (FeatTran) [5]. All the
baselines, except FeatTran are supervised, that is, they require all the samples
in the target domain to be labeled (FeatTran was preferred over the MMD-
based unsupervised DA method for deepfake detection [56], as it uses GAN-based
adversarial domain alignment which is more popular in the DA community than
MMD based alignment). Further, all these baselines are only designed for a single
source and a single target domain; to extend them to the multi-source setting,
we combined all the source domain data and treated that as a single source
domain. This is the most straightforward strategy to extend single source DA to
the multi-source setting and has been used in previous research on multi-source
DA [36].

Experimental Setup: In each experiment, we were given images from mul-
tiple source domains and a target domain, where each domain represents a par-
ticular faking technique (DF, F2F, FS etc.). We experimented with two and
three source domains in this research. The data in all the source domains were all
labeled. The target domain contained a small amount of labeled data and a large
amount of unlabeled data (to appropriately capture a real-world situation). We
used 40, 000 images as the source domain data (taken equally from all the source
domains), 2, 000 images as the labeled target domain data and 18, 000 images as
the unlabeled target domain data. The test set contained 10, 000 images taken
equally from all the source domains and 10, 000 images from the target domain,
to validate the performance of the model on all the domains. Each experiment
was conducted 3 times, and the results were averaged to rule out the effects of
randomness. The parameters λ1 and λ2 were both taken as 1 in our experiments.

We used the Xception network as the base model due to its promising perfor-
mance on the FaceForensics++ dataset [39]. A schematic diagram of the network
architecture is shown in the Appendix. The F1 score was used as the evaluation
metric on the test set, similar to [17].

3 https://pypi.org/project/face-recognition/

https://pypi.org/project/face-recognition/
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Implementation Details: Please refer to the Appendix for details about
the implementation. Our code will be made publicly available upon acceptance
of our paper.

4.1 Main Results

Table 1 reports the results on 6 multi-source DA tasks (the notation x, y, z → w
implies that x, y, z are the source domains and w is the target domain). The
supervised DA techniques (FReTAL, KD, FT and TGD) cannot utilize the unla-
beled samples in the target domain, and thus depict much lower accuracy. Feat-
Tran utilizes the unlabeled target domain samples merely for domain alignment
and does not involve any other strategy to use the information in the unla-
beled target data. Thus, although it depicts better accuracy than the supervised
methods (in most cases), its performance is not as good as the proposed frame-
work. Further, none of these techniques are designed to handle multiple source
domains, and combining all the source domains into one results in sub-optimal
performance. Our framework can efficiently utilize unlabeled target domain data
in training the deep model through the class alignment loss term; it can also
address the disparity among multiple source domains and the target domain
and efficiently leverage data from all the domains. It thus consistently depicts
impressive performance and comprehensively outperforms all the baselines, for
all the 6 tasks (involving two and three source domains). Our framework not only
depicts high accuracy in identifying deepfakes in the new target domain, but also
retains already learned knowledge from all the source domains. The performance
improvement achieved by our method is quite substantial in some cases; for
instance, for the DF,FS,NT → sF2F experiment, the performance improvement
achieved by the proposed framework on the target domain is almost 10% com-
pared to the closest baseline (FReTAL). These results unanimously corroborate
the promise and potential of our method for out-of-domain deepfake detection
in real-world applications.

Table 1. Mean (± std) F1 scores (in percentage) of all the methods for 6 out-of-domain
deepfake detection tasks. Best F1 values are marked in bold. The notation x, y, z → w
implies that x, y, z are the source domains and w is the target domain. Results are
averaged over 3 runs.

DA Task Domain Proposed FeatTran [5] FReTAL [17] KD [17] FT [46] TGD [12]

DF,FS → F2F Source 98.34 ± 0.75 94.33 ± 0.22 88.6 ± 1.08 93.76 ± 0.20 87.15 ± 0.69 88.9 ± 1.46

Target 96.46 ± 0.62 87.22 ± 0.06 85.08 ± 0.42 70.98 ± 3.52 81.88 ± 0.08 76.16 ± 4.29

FS,F2F → DF Source 96.54 ± 2.20 94.14 ± 0.12 85.37 ± 4.01 91.78 ± 1.61 80.26 ± 1.76 87.02 ± 3.00

Target 96.72 ± 1.37 89.80 ± 0.36 89.61 ± 0.92 84.13 ± 0.81 90.79 ± 0.13 88.16 ± 1.26

DF,F2F → FS Source 96.15 ± 0.52 94.60 ± 0.05 86.98 ± 1.62 92.74 ± 1.30 80.84 ± 1.28 87.84 ± 0.33

Target 96.05 ± 0.41 87.33 ± 0.09 87.40 ± 0.89 75.45 ± 3.38 86.47 ± 0.04 80.47 ± 2.39

FS,F2F,NT → DF Source 96.96 ± 0.87 88.34 ± 0.01 84.31 ± 1.18 84.91 ± 1.41 74.62 ± 0.76 80.84 ± 0.78

Target 96.75 ± 0.22 86.88 ± 0.17 89.07 ± 0.31 88.07 ± 0.18 90.21 ± 0.49 89.08 ± 0.29

DF,F2F,NT → FS Source 97.12 ± 1.15 89.55 ± 0.15 70.94 ± 2.81 83.75 ± 4.31 70.41 ± 1.69 78.11 ± 0.57

Target 97.76 ± 0.90 82.96 ± 0.20 85.39 ± 0.30 71.56 ± 0.92 83.37 ± 0.67 79.17 ± 1.30

DF,FS,NT → F2F Source 97.62 ± 0.66 88.82 ± 0.09 84.35 ± 2.00 88.36 ± 1.01 80.72 ± 0.34 83.97 ± 2.27

Target 96.06 ± 1.45 85.09 ± 0.53 86.32 ± 0.46 80.25 ± 2.19 83.91 ± 1.07 77.74 ± 4.77
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4.2 Performance in Detecting Low Resolution Deepfakes

Data in social media often have low quality and resolutions [16]. We validate
the performance of our framework in identifying low quality deepfakes in this
experiment. We used images of 64×64 resolution for this experiment (as opposed
to 128 × 128 used in the previous experiment). The results are presented in
Table 2. Our framework once again outperforms all the baselines and achieves
the highest F1 score in the source and target domains consistently across all
the tasks. Here also, the performance improvement is quite substantial; for the
DF,FS → F2F experiment, the highest F1 score achieved by the baselines on
the target domain is 82.35, while our framework achieves an F1 score of 95.14,
demonstrating an improvement of almost 13%. This shows the robustness of
our framework to accurately identify deepfakes even in low quality data, and its
usefulness in detecting deepfakes in social media.

Table 2. Mean (± std) F1 scores (in percentage) of all the methods for detecting low
resolution deepfakes. Best F1 values are marked in bold. The notation x, y, z → w
implies that x, y, z are the source domains and w is the target domain. Results are
averaged over 3 runs.

DA Task Domain Proposed FeatTran [5] FReTAL [17] KD [17] FT [46] TGD [12]

DF,FS → F2F Source 97.55 ± 1.02 92.38 ± 0.11 87.69 ± 1.33 90.37 ± 3.19 86.94 ± 1.68 85.14 ± 1.56

Target 95.14 ± 2.10 82.35 ± 0.54 80.65 ± 1.84 64.82 ± 2.61 70.88 ± 6.66 79.47 ± 0.43

FS,F2F → DF Source 96.03 ± 1.71 91.94 ± 0.09 89.32 ± 0.46 91.25 ± 1.07 86.00 ± 2.74 83.95 ± 0.39

Target 95.34 ± 1.36 88.73 ± 0.23 88.97 ± 0.51 81.53 ± 3.38 85.61 ± 3.05 90.66 ± 0.10

FS,F2F,NT → DF Source 94.45 ± 3.85 84.61 ± 0.18 81.12 ± 0.95 81.00 ± 2.28 79.49 ± 4.08 73.06 ± 1.28

Target 94.27 ± 3.85 83.68 ± 0.10 88.49 ± 0.43 85.65 ± 0.62 88.07 ± 0.78 90.28 ± 0.68

DF,FS,NT → F2F Source 96.79 ± 1.61 85.74 ± 0.45 83.31 ± 5.70 85.87 ± 0.78 82.66 ± 1.27 79.43 ± 0.89

Target 95.77 ± 1.51 80.58 ± 0.03 78.54 ± 6.40 79.96 ± 0.34 79.42 ± 0.91 82.27 ± 0.69

4.3 Cross Dataset Study

We explored a different scenario in this study, where the source domain data is
derived from one dataset and the target domain data from a different dataset.
Our goal was to study whether the knowledge of deepfakes from one dataset can
be transferred to detecting image manipulations from a different dataset. We
conducted two experiments, one where the source domain data were taken from
FF++ and the target domain data from Celeb-DF [24]; and another, where the
source domain data were from FF++ and the target domain data from DFDC
4. The images in Celeb-DF and DFDC are manipulated using deepfake synthesis
algorithms, different from that used in FF++. The results are reported in Table 3
for the Celeb-DF dataset and Table 4 for the DFDC dataset. Consistent with the
previous results, our method achieves the highest F1 scores on both the source
and target domains for both the experiments, for both the multi-source DA tasks.
This shows that our framework is not only able to transfer relevant knowledge
from FF++ to accurately detect new types of deepfakes in Celeb-DF and DFDC,
4 https://ai.meta.com/datasets/dfdc/

https://ai.meta.com/datasets/dfdc/
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but also retains its knowledge about the deepfakes in FF++, and thus effectively
mitigates catastrophic forgetting. These results further corroborate the practical
usefulness of our framework.

4.4 Feature Visualizations

The goal of this experiment was to visualize the features learned by our frame-
work through t-SNE embeddings. We used the FeatTran method as a comparison
baseline, as it also utilizes unlabeled data in the target domain to train the deep
CNN. Figure 1 depicts the results of four different deepfake detection tasks. For
ease of interpretation, the data from all the source domains are represented with
a plus sign, while the data from the target domain are represented with a circle;
blue color denotes the Real / Genuine class and red color denotes the Fake class.
As evident visually, the proposed method shows a better separation of the two
categories (blue and red clusters) and a better overlap between the source and
target domains, compared to FeatTran. Thus, using the moment matching and
the unsupervised class alignment loss terms in our framework, the deep CNN is
able to learn discriminating feature representations that minimize the disparity
among all the source and target domains, and also separate the real and fake
images from the two domains. Thus, it is able to achieve impressive F1 scores
consistently across all the experiments.

Table 3. Mean (± std) F1 scores (in percentage) of all the methods for the cross dataset
study on the Celeb-DF dataset. Best F1 values are marked in bold. The notation
x, y, z → w implies that x, y, z are the source domains and w is the target domain.
Results are averaged over 3 runs.

DA Task Domain Proposed FeatTran [5] FReTAL [17] KD [17] FT [46] TGD [12]

FS,F2F → Celeb-DF Source 97.68 ± 1.31 94.47 ± 0.08 83.67 ± 10.47 69.94 ± 1.00 64.26 ± 1.55 63.42 ± 0.83

Target 94.91 ± 3.71 74.7 ± 0.82 73.22 ± 12.76 76.68 ± 0.05 86.62 ± 0.16 79.12 ± 1.91

FS,NT,F2F → Celeb-DF Source 97.14 ± 0.51 88.24 ± 0.41 90.30 ± 0.06 67.12 ± 0.37 60.21 ± 0.07 61.42 ± 6.56

Target 96.96 ± 0.74 73.70 ± 0.06 62.39 ± 0.33 75.06 ± 0.94 84.76 ± 0.12 74.75 ± 1.60

Table 4. Results for the cross dataset study on the DFDC dataset. Best F1 values are
marked in bold. The notation x, y → w implies that x, y are the source domains and
w is the target domain.

TL Task Domain Proposed FeatTran [5] FReTAL [17] KD [17] FT [46] TGD [12]

DF,FS → DFDC Source 98.18 96.53 82.31 75.29 65.45 75.70

Target 92.84 91.18 90.63 78.33 90.55 89.38

FS,F2F → DFDC Source 98.24 95.47 84.12 77.85 75.11 65.01

Target 92.42 90.56 89.43 84.19 88.04 90.52
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4.5 Ablation Study

We conducted ablation studies to assess the effects of the moment matching loss
term LMM and the unspervised loss term Lunsup in our framework (in Equation
(5)). The F1 score on the target test set for two multi-source experiments are
reported in Table 5. We note that the performance of our framework drops in
the absence of the moment matching loss term; this shows the utility of this
term to appropriately address the disparity among all the source domains and
the target domain, and learn domain invariant features. The performance of our
framework is also affected in the absence of the unsupervised class alignment
loss term; this shows its usefulness to leverage the information in the unlabeled
target domain data, and learn discriminating feature representations to improve
the detection accuracy of our method.

We also conducted experiments to study the effects of the size of the labeled
target domain data and the unlabeled target domain data on the detection per-
formance. These results are included in the Appendix due to space constraints.

Fig. 1. t-SNE visualization results. For ease of interpretation, the data from all the
source domains are represented with a plus sign. The data from the target domain
are represented with a circle. Blue color denotes the Real / Genuine class; red color
denotes the Fake class. Best viewed in color.

Table 5. Ablation study results

DA Task Proposed Proposed w/o Lunsup Proposed w/o LMM

DF,FS → F2F 96.46 89.79 94.32

DF,F2F → FS 96.05 84.91 94.50
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5 Conclusion and Future Work

With the tremendous progress of generative AI and the availability of sophis-
ticated tools, deepfakes have become ubiquitous. While state-of-the-art CNNs
have demonstrated promise in detecting deepfakes, their performance drops dras-
tically when applied on out-of-domain data (deepfakes generated using a new
faking technology). We proposed a novel multi-source DA technique using deep
learning to address this challenging and practical issue. Contrary to existing
methods, our framework can collate knowledge from multiple source domains
and also utilize unlabeled target domain data efficiently for model training.
Our extensive empirical studies demonstrated the promise of this method under
challenging real-world conditions, such as low quality deepfakes and absence of
labeled training data in the target domain of interest. To our knowledge, this
research is the first of its kind to study the performance of multi-source deep
domain adaptation techniques for deepfake detection. As part of future research,
we plan to study the performance of our framework on other types of deepfakes
besides images, such as audio [15] and text [58].
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Foundation under Grant Number: IIS-2143424 (NSF CAREER Award).
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Abstract. Large-scale text-to-image generative models are already pro-
ficient at producing high-quality results that closely match the intended
prompts. Nevertheless, the pivotal challenge in image editing tasks lies
in the difficulty of confining alterations within the editing region while
preserving the structure and details of the source image. In this paper,
we propose a zero-shot structure-preserved image-to-image translation
approach based on diffusion models. We combine the optimization of the
latent code and the injection of the U-Net features to strengthen the
structural preservation effect by alleviating the inconsistency between
the information contained in the latent code and the injected features.
Our method effectively preserves the structural and detailed informa-
tion of the source image while enhancing the quality of the generated
results. We exhibit comprehensive and high-quality experimental results
showcasing that our approach surpasses state-of-the-art methods across
various image-to-image translation tasks.

Keywords: Image-to-image translation · Image editing ·
Text-to-image generation

1 Introduction

Turning mountains to seas, transforming photos into colorful oil pastels, or
changing the autumn landscape to a snowy wonderland... as long as you can
imagine it, everything can be made true with generative models. Image-to-image
translation holds an immense perspective in the industrial production and design
fields. GAN-based methods [10,13,20,35,39] have made remarkable strides in the
field of image-to-image translation. These methods always require training spe-
cific models for an individual task, and the generated quality and resolution are
limited. Owing to the powerful generation capability and impressive generation
quality, diffusion models have found widespread applications in a variety of image
generation tasks. Some methods [4,16,30,32,36] have explored training diffusion
models for unpaired image translation. Text-guided diffusion models [19,26,29]
allow introducing text conditions to guide the generation process, which enables
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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more flexible image editing. Utilizing the pre-trained diffusion models, it is pos-
sible to generate high-quality results without any model training or fine-tuning.
However, simply using DDIM inversion [31] with text guidance is insufficient
to preserve the structure and details of the source image, which is crucial for
image-to-image translation tasks. Recent studies have enhanced the structural
preservation by optimizing the latent code [17,21] or replacing the intermedi-
ate features in U-Net [7,34]. Although these methods can maintain the overall
structure of the source image to some extent, the details and fine structures like
the texture and poses are always missed, as shown in Fig. 1.

Fig. 1. Results of existing methods and our SPI2I. Existing diffusion-based
methods struggle to transfer the structure and background details of the source image
to the editing results. Our method can not only preserve the structure but also transfer
the details like the texture of the source image, as circled in our results.

To enhance structural preservation, the following aspects should be consid-
ered: First, providing accurate textual descriptions is necessary. Recent methods
often utilize text-to-image generation models, where text conditions not only
introduce the translation objective but also provide content information for the
generated images. Some methods [4,12,36] only use a pair of words like ”cat”
and ”dog” to describe the source and target domains, which overlooks the cru-
cial structural and detailed information introduced through the guiding text, as
shown in Fig. 2 (a). Second, although injecting self-attention features [34] has
been proven to preserve the original image structure while maintaining editabil-
ity, it falls short in transferring detailed structures and information like colors
and layouts. This is caused by the inconsistency between the information con-
tained in the injected features and the noised latent code. In contrast, the method
optimizing the latent code [21] shows better performance in detail transfer and
perception quality but lacks the preservation of the overall structure, as shown
in Fig. 2 (b).

In this paper, we introduce a novel diffusion-based framework called SPI2I
to accomplish structure-preserved image-to-image translation without any model
training or extra user-provided conditions. Given a source image and a specific
editing task, our method only requires one reconstruction process to extract
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self-attention
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Fig. 2. Motivations. As shown in (a), when translating the source image into Monet
style, if the information ”house” is not provided in the text, the generated result will
miss this important content. In Figure (b), when injecting the features of the recon-
struction process into the reverse process of DDIM inversion, the inconsistency between
the structural information contained in the injected features and the latent code of
DDIM inversion leads to a decline in generation quality. In contrast, optimizing the
latent code before injecting features can both enhance generation quality and improve
structural preservation.

reference features. Then at each timestep of the editing process, we first opti-
mize the latent code reliant on the reference cross-attention features to incor-
porate a certain degree of structure and details from the source image. After
the optimization, we selectively inject the reference features of the residual and
self-attention blocks into the editing process. We also employ BLIP [14] as an
automatic description extractor to provide accurate prompts about the content
of the source images.

Our main contributions are: 1) We propose SPI2I, a diffusion-based frame-
work for zero-shot image-to-image translation, to enhance the structural preser-
vation effect using optimization-based and feature injection methods. 2) By opti-
mizing the latent code of diffusion, we alleviate the inconsistency between the
information contained in the injected features and the latent code, thus improv-
ing the perception quality. 3) We employ BLIP [14] to extract precise editing
prompts, which enhances editing accuracy while allowing large-scale automatic
editing. The experiment results show that our method achieves an outstanding
structural preservation effect, producing high-quality results that align well with
the target prompt, outperforming state-of-the-art methods in multiple metrics.

2 Related Work

Text-to-image generative models. Due to the versatile capabilities of the
multimodal model CLIP [23] aligning the image and text latent spaces, recent
image generative models like GANs and diffusion models tend to exploit the
CLIP model to enhance editing control. For example, Ramesh et al. [24,25]
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utilized a transformer as a prior model, aligning text and image latent spaces
using CLIP, and presented a CLIP ranking technique. Recent investigations have
focused on leveraging diffusion models to generate high-quality results. Nichol
et al. [19] investigated a Noised-CLIP-guided conditional generation method
and proposed classifier-free guidance, allowing for diverse conditional guidance
without additional classifiers. Latent diffusion models [26] reverse the image into
the latent space for the sampling process, saving the computational overhead
while enabling text-guided generation with CLIP. Recent explorations aim to
introduce enhanced control over the generation process using various forms of
conditions by training hypernetworks [18,37] or optimizing the latent code [28,
28], expanding the application scope of text-to-image generation models.

Image editing with diffusion models. Existing methods [19,24,29] can
generate high-quality results and guide the generation by introducing text con-
ditions. However, image editing tasks require stricter structural control. Kawar
et al. [11] proposed a fine-tuning method to accomplish a specific editing task on
a single image. Instruct-Pix2pix [4] utilizes GPT-3 to train the diffusion models
to edit images based on the given instruction. To avoid the additional training
overhead, Some work [1,2,15] offer extra conditions such as masks to enhance
controllability in image editing tasks. Other methods [6,7,34] extract and visual-
ize the intermediate features of diffusion models, analyzing the effects of different
features on structural preservation, thus transferring the structural information
by directly manipulating the features.

Image-to-image translation. Image-to-image translation aims to edit an
image from the source domain to the target domain while retaining other struc-
tures and details. Earlier GAN-based methods [20,35,39] train on paired images
by reconstructing the input image. To alleviate the dependency on paired data,
unsupervised image-to-image translation methods [10,13] adopt cycle consis-
tency loss to achieve domain translation. Recently, some methods [4,16,30,32,36]
have explored training diffusion models for unpaired image translation. However,
these approaches demand considerable computational resources and time over-
head on a specific task. DiffuseIT [12] incorporates CLIP Similarity and DINO-
ViT Similarity-based loss to disentangle the content and domain attributes and
optimize the latent code. Parmar et al. [21] leveraged GPT-3.5 to discover the
edit direction in the embedding space and optimized the latent code based on
the cross-attention maps. Although existing methods achieve zero-shot image-
to-image translation on multiple tasks, their capability of producing high-quality
images while preserving the original structure is still insufficient.

3 Preliminary

Diffusion models are probabilistic generative models that estimate noise in the
input data to recover the data distribution from the Gaussian noise. During
the DDIM forward process, the model adds random noise into an initial image,
yielding a noisy image xt:

xt =
√

ᾱt · x0 +
√

1 − ᾱt · z (1)
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where z ∼ N (0, I) and {ᾱt} are noise scheduler.
In the backward process, the model estimates the noise introduced at each

timestep of the forward process, gradually denoising and recovering the input
image.

xt−1 =
xt − √

1 − αt · εθ(xt, c, t)√
αt

(2)

αt = ᾱt

ᾱt−1
, εθ(xt, t, c) is the estimated noise at timestep t. c is the condition used

to control the generation process.
Classifier-free guidance [9] introduces conditional guidance into the genera-

tive process without additional classifiers. Given the condition c and an empty
condition ∅, classifier-free guidance is represented as follows:

ε = εθ(xt, ∅, t) + s · (εθ(xt, c, t) − εθ(xt, ∅, t)) (3)

where s ∈ [0, 1] is the scaling factor. We use ε instead of εθ(xt, c, t) in Eq. (2) in
classifier-free guidance during the generation process.

Diffusion models contain a U-Net architecture [27]. Residual layers, self-
attention layers, and cross-attention layers are arranged in sequence in U-Net.
Given query matrix Q, key matrix K, and value matrix V , the output of the
attention layer is represented by:

Attention(Q,K, V ) = M · V , where M = Softmax
(

QKT

√
d

)
(4)

The matrices Q, K, and V are obtained by applying the corresponding learned
projections on the input features. d is the dimension of the projection keys and
values. Features can refer to either spatial features or text embeddings according
to the type of attention layer.

4 Method

Our method first extracts accurate text descriptions from the input image. Then,
we employ two different structural preservation methods, named refined cross-
attention guidance and feature injection, to generate high-quality editing results
with exceptional structural preservation effects.

4.1 Prompt Extraction

Utilizing text descriptions to guide the generation process provides control over
the content of the image generated by diffusion models, therefore describing the
editing target accurately is essential for achieving precise editing.

In latent diffusion models, text conditions are first encoded into the CLIP
text embedding space, and then introduced into the cross-attention blocks in the
U-Net architecture. Using the image caption model BLIP [14], we extract text
descriptions as the representation of the source image content. Moreover, using
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DDIM
inversion

(b) Reconstruction process

(a) Editing prompt extraction

task

c
prompt

(c) Editing process

Refined cross-attention guidance

Fig. 3. Pipeline of our SPI2I. Given an input image and an editing task, such as
cat→dog, we guide the generation process with multiple structural constraints. Our
pipeline primarily contains three parts. (a) Extracting prompt using BLIP model. (b)
Extracting reference features during the reconstruction process. (c) Directing the edit-
ing process using structural constraints. Our method mainly leverages two different
structural preservation methods, named feature injection and refined cross-attention
guidance.

the image caption model instead of the manual annotation allows fully automatic
editing of a large number of images, which is useful in practical scenarios. After
extracting the description of the source image using BLIP, we swap or add the
target words in terms of the specified task into the text as the prompt guiding
the editing process.

4.2 Refined Cross-attention Guidance

The U-Net in latent diffusion models comprises cross-attention blocks at each
module. Text condition is introduced through these cross-attention blocks. At
timestep t, the output of the cross-attention layer is given by Eq. (4), where
matrix Q is acquired from the spatial features, and matrices K, V are derived
from text embeddings. Cross-attention guidance manipulates the cross-attention
blocks using an optimization-based method. By iteratively optimizing the initial
latent at each timestep using a loss named Lcag, this method can effectively
retain the structural and detailed information of the source image [21]. Our
method is inspired by this method.

Initially, we employ the description extracted from the reference image as
text conditions for the reconstruction of the reference image. During the recon-
struction process, a series of cross-attention maps from different indices of blocks,
denoted as

{
M ref

t

}
at timestep t, are obtained (see Fig. 4 (b)). The last dimen-

sion of each M ref
t corresponds to the length of the text condition tokens, with

each channel of this dimension representing the cross-attention feature of the
corresponding token.
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Refined cross-attention guidance

Reconstruction process

Editing process

Fig. 4. Refined cross-attention guidance and feature injection. In refined
cross-attention guidance, we utilize reference cross-attention features extracted during
the reconstruction process to optimize the latent space representation at each timestep,
the optimized representation at timestep t is denoted by x∗

t . Afterward, we directly
replace the selected residual block features and self-attention maps of the editing pro-
cess with the reference features of the reconstruction process, named feature injection.

Then, in the editing process, we obtain a series of cross-attention maps,
denoted as

{
Medit

t

}
. Feature Medit

t are then used to compute the cross-

attention guidance loss Lcag in relation to the corresponding M ref
t derived from

the reconstruction process, as expressed by:

Lcag =
∑

index

∥∥∥M edit
t − M ref

t

∥∥∥
2

(5)

∑
index represents the sum of losses in different indices of cross-attention blocks.
Finally, loss Lcag is used to optimize the initial latent code at timestep t.

However, this structural constraint relatively results in decreased editability
within the editing region, consequently diminishing the accuracy of the gener-
ated results. We introduce a novel refinement method within the cross-attention
guidance to alleviate this decline. As depicted in Fig. 4 refined cross-attention
guidance, considering a specific task, we can locate the editing tokens within the
tokens of the prompt, and then identify the corresponding channels within the
cross-attention map associated with the edited terms in the prompt. When cal-
culating optimization loss Lcag, we exclude these maps, thereby deviating from
the source image in the editing region, while preserving the background struc-
ture. We use a cross-attention mask to represent this refinement. The refined
cross-attention guidance loss Lrcag is given by:

Lrcag =
∑

index

∥∥∥m �
(
M edit

t − M ref
t

)∥∥∥
2

(6)

m is the cross-attention mask obtained from the text tokens, where the positions
corresponding to tokens changed for transferring from the source to the target
domain are set to 0, and other positions are set to 1. � donates the channel-wise
product between the mask m and cross-attention maps.
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4.3 Feature Injection

Semantic layout encapsulates essential structural information of the correspond-
ing images. Many studies [1,2,22] have sought to achieve precise control over
image editing regions by introducing various forms of semantic representations.
Baranchuk et al. [3] have proved that the spatial features of unconditional dif-
fusion models contain crucial semantic information, and thus exhibit a close
connection with the structure of the generated results. In [7,34], PCA analysis
is used to visualize spatial features from different layers of the diffusion model at
different timesteps, thereby confirming the relationship between the generated
image attributes and the features.

At timestep t in the editing process, we override the residual block features
with the corresponding features f l

t derived from the reconstruction process, we
add a ∗ to distinguish the modified estimated noise from the original one at
timestep t:

z∗
t−1 = ε∗

θ

(
x∗

t , c, t;
{

f l
t

})
(7)

ε∗
θ

(
·;

{
f l

t

})
denotes the modified noise output of the denoising process with

the injected features
{

f l
t

}
from residual block indices {l}.

Injecting self-attention maps into the editing process is proved to improve
the affinities between the spatial features and target semantics [34]. In residual
blocks, we directly replace the specific features with the injected features, while
the injection operation in self-attention blocks differs slightly. The self-attention
layer is defined in Eq. (4), and all matrices are computed on the input spatial
features. In our method, during the editing process, the query matrix Q and
key matrix K are substituted with the matrices from the reconstruction process.
Incorporating with the self-attention injection, the output of the U-Net can be
represented as follows:

z∗
t−1 = ε∗

θ

(
x∗

t , c, t;
{

f l
t

}
;
{

Ah
t

})
(8)

{
Ah

t

}
is the injected maps, corresponding to matrices Q, K in Eq. (4), obtained

from the reconstruction process at timestep t. h represents the self-attention
block index.

Feature injection directly incorporates structural information from the refer-
ence image into the editing process, thereby ensuring robust structural preser-
vation. However, using only the feature injection method can lead to decreased
generation quality, and the color and texture details transferring is unsatisfac-
tory. In practice, we first utilize the refined cross-attention guidance to optimize
the initial latent code at each timestep, then proceed with the feature injec-
tion method during the editing process. This arrangement enhances the affinity
between the injected features and the original features of the editing process,
thereby alleviating the decreased generation quality caused by feature injection,
and the feature injection method also helps avoid the blurring introduced by
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our optimization-based method in Sec. 4.2. The algorithm and implementation
details are provided in Appendix A.

5 Results

We apply our method described in Sec. 4 to diverse tasks and compare it with
the state-of-the-art zero-shot image-to-image translation methods. For each task
to translate the input image into the target domain, we select 200 images that
belong to the source domain from LAION-5B dataset. We apply our method on
real and synthetic images, following the setup in our baseline Pix2pix-zero [21].
For the synthetic image dataset, we employ Stable Diffusion to generate 200
images that belong to the source domain according to the prompts generated
by GPT-3.5, then translate these synthetic images to the target domain. Some
results are shown in Fig. 5. Implementation details and more results are shown
in Appendix.

cat → dog tiger → lion

horse → zebra

→winter →Monet →winter→photo →photo→Monet

pig → sheep

Fig. 5. Results of our SPI2I. We apply our method to diverse cross-domain image-
to-image translation tasks. Given a source image and a specific editing task, our method
can generate high-quality results aligned with the editing target while preserving the
structure of the source images without model training or fine-tuning.

5.1 Evaluation and Comparison

Metrics. We conduct quantitative evaluations of our method and the compar-
ative methods using multiple metrics, covering editing accuracy and structural
preservation. For editing accuracy, we utilize CLIP cosine similarity [8] to mea-
sure the similarity between the generated image and the editing prompt, where
a higher value indicates a better resemblance between the generated image and
the prompt. To evaluate the effect of structural preservation, two metrics are
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employed: the perceptual similarity [38] and the DINO self-similarity [33]. For
perceptual similarity, we use the AlexNet-based LPIPS to assess the structural
similarity between the generated image and the source image. A smaller LPIPS
value indicates a closer structural resemblance between the two images. DINO
self-similarity employs the DINO-ViT model to extract image patch features and
compute similarity, a smaller value indicates better structural preservation. To
further evaluate the quality of generated images, we conduct a user study and
present the result in Appendix C.

We compare our method against state-of-the-art zero-shot image-to-image
translation methods, including DiffuseIT [12], Prompt-to-prompt [7], Plug-and-
play [34], MasaCtrl [6] and Pix2pix-zero [21]. All experiments do not require
additional model training or fine-tuning. For a fair comparison, we employ the
same sampling steps and precision in all experiments. As a specific note, Pix2pix-
zero utilizes a technique involving GPT-3 [5] to derive the editing direction within
the CLIP text embedding space. Because this method is also applicable in our
approach, and we lack the explicit details regarding this method, we slightly

MasaCtrl

Pix2pix-zero

DiffuseIT

Source image

cat→dog tiger→lion pig→sheephorse→zebra →w/ glasses →Monet →photo realistic→portrait

Ours

Plug-and-play

Prompt-to-prompt

Fig. 6. Comparison with state-of-the-art methods. We compare our method
against state-of-the-art approaches across various tasks. Our method delivers high-
quality results, ensuring accurate adherence to the editing target and strong structural
alignment with the source image, surpassing other approaches.
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modify the method finding editing direction in Pix2pix-zero to word swap, which
is the same as ours. For tasks editing the whole image, like transferring an image
to Monet style, we insert the editing target words, such as Monet style, to the
prompt.

Qualitative results are presented in Fig. 6. As illustrated, our method achieves
high-quality editing outputs and demonstrates fidelity to the editing objectives,
outperforming state-of-the-art methods. Tab. 1 displays the quantitative eval-
uations, comparing our approach with state-of-the-art methods by (i) CLIP-
Sim(CLIP cosine similarity), (ii) LPIPS(Perceptual similarity) and (iii) DINO-
Sim(DINO self-similarity).

Table 1. Evaluation and Comparison. We evaluate our method on six different
tasks, including three real image editing tasks in sub-table (a) and synthetic image
editing tasks in sub-table (b). Our method surpasses all other methods in structural
preservation with the best LPIPS scores, showcasing superior structural preservation
with satisfactory editing accuracy. As a specific note, we dismiss the DINO-Sim score
of DiffuseIT as it employs this metric within its optimization loss.

cat→dog cat→cat with glasses Monet

CLIP-Sim↑ LPIPS↓ DINO-Sim↓ CLIP-Sim↑ LPIPS↓ DINO-Sim↓ CLIP-Sim↑ LPIPS↓ DINO-Sim↓
DiffuseIT 0.6760 0.4036 0.0458 0.7521 0.3989 0.0462 0.6765 0.4523 0.0551

Prompt-to-prompt 0.6206 0.3740 0.0804 0.7382 0.3428 0.0786 0.7612 0.3913 0.0744

Pix2pix-zero 0.7628 0.3915 0.0813 0.8314 0.3607 0.0776 0.7228 0.3685 0.0749

MasaCtrl 0.6278 0.3407 0.0859 0.7149 0.3327 0.0851 0.6823 0.3521 0.0800

Plug-and-play 0.6734 0.3968 0.0826 0.7788 0.3768 0.0797 0.7623 0.4965 0.0866

ours 0.7780 0.3401 0.0741 0.8369 0.3187 0.0737 0.7425 0.3263 0.0684

(a) Real image editing

pig→sheep painting→photo photo→portrait drawing

CLIP-Sim↑ LPIPS↓ DINO-Sim↓ CLIP-Sim↑ LPIPS↓ DINO-Sim↓ CLIP-Sim↑ LPIPS↓ DINO-Sim↓
DiffuseIT 0.6903 0.3884 0.0376 0.5749 0.4144 0.0483 0.5487 0.3663 0.0456

Prompt-to-prompt 0.7512 0.2420 0.0408 0.7763 0.1979 0.0379 0.7984 0.1803 0.0344

Pix2pix-zero 0.7955 0.2879 0.0454 0.7803 0.2431 0.0408 0.8080 0.2286 0.0429

MasaCtrl 0.7936 0.2411 0.0468 0.7817 0.1888 0.0357 0.8058 0.1932 0.0407

Plug-and-play 0.7898 0.2420 0.0320 0.7950 0.2020 0.0386 0.8165 0.2190 0.0304

ours 0.7956 0.2382 0.0276 0.7955 0.1867 0.0348 0.8081 0.1599 0.0207

(b) Synthetic image editing

As shown in Tab. 1, our method achieves the best structural preservation
indicated by the lowest LPIPS scores. An essential clarification is that, due to
the utilization of DINO self-similarity as the optimization loss in DiffuseIT, the
DINO-Sim score of DiffuseIT is naturally lower than other methods. As a result,
we think the DINO-Sim score of the DiffuseIT method does not have much
significance. Our method also shows fidelity to the target word, higher than
other methods in terms of the CLIP-Sim metric.

5.2 Ablation Study

Our approach primarily includes three techniques for structural preservation,
including refined cross-attention guidance, feature injection and extracting pre-
cise prompt using BLIP [14], as proposed in Sec. 4. To further substantiate
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Table 2. Quantitative evaluation of the ablation study. We combine different
components of our method separately in each group from config A to D. Our full
method in config E achieves the best structural preservation by the lowest LPIPS.

cat→dog tiger→lion cat→cat w/ glasses Monet

CLIP-Sim ↑ LPIPS ↓ CLIP-Sim ↑ LPIPS ↓ CLIP-Sim ↑ LPIPS ↓ CLIP-Sim ↑ LPIPS ↓

A w/ cag 0.7628 0.3915 0.7620 0.4296 0.8314 0.3607 0.7228 0.3685

B w/ refined cag 0.8109 0.4500 0.7972 0.4806 0.8878 0.4176 0.8153 0.4472

C w/ inj. 0.8024 0.3870 0.7934 0.4498 0.8551 0.3624 0.8105 0.4376

D w/o prompt extraction 0.6406 0.3616 0.6027 0.4070 0.7462 0.3450 0.7624 0.4821

E w/ refined cag and inj.(ours) 0.7818 0.3428 0.7749 0.3844 0.8369 0.3187 0.7691 0.3607

our method, we conduct an ablation study where we combine different compo-
nents of our method separately in each group, including (A)with cross-attention
guidance, (B)with refined cross-attention guidance, (C)with feature injection,
(D)without prompt extraction, and finally our method with all components in
config E. We evaluate the consistency between the generated images and the tar-
get prompt using CLIP-Sim, evaluating the structural preservation effect using
LPIPS scores in four different tasks.

Quantitative evaluation is presented in Tab. 2. In config A, we use the vanilla
cross-attention guidance, and then our refinement method is applied in config
B. We can see significant improvement in CLIP-Sim scores, indicating enhanced
editability. Config C shows the result of only using the feature injection method.
In config D, we simply use a prompt like ”a photo of a cat” instead of extracting
precise prompts using BLIP [14]. Our full method in config E achieves the best
structural preservation effect by the lowest LPIPS.

Source image Oursw/ inj.w/ refined cag

ca
t→

do
g

tig
er
→

lio
n

ca
t→

ca
t w

/ g
la

ss
es

→
M

on
et

 s
ty

le

(a)

w/ cag

(b)

w/ simple 
prompt

Fig. 7. Results of the ablation study. As shown in sub-figure (a), removing the
feature injection method (indicated by w/ refined cag.) results in decreased preservation
of overall structure and posture, while only using it incurs significant losses in the
preservation of details like color and texture, as highlighted by the green boxes in w/
inj. We further conduct an experiment to demonstrate the enhanced editability brought
by our refinement method in cross-attention guidance, results shown in sub-figure (b).
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Direct removal of feature injction(config B) and refined cross-attention guid-
ance(config C) from our full method(config E) can lead to a noticeable decline
in structural preservation. As shown in Fig. 7 (a), while the feature injection
method has a strong effect on structure preservation, it shows significant losses in
background details such as texture, which can be addressed by the refined cross-
attention guidance method. In contrast, using only the refined cross-attention
guidance method results in poor effectiveness in structure preservation. How-
ever, the results of config B and C show better CLIP-Sim metrics than our final
setting. Image-to-image translation involves a trade-off between editability and
fidelity. In our method, structural constraints relatively weaken the flexibility of
the editing process guided by text condition, thereby leading to a decrease in the
CLIP-Sim score. Our method does not exhibit a substantial decline in CLIP-Sim
score while preserving the overall structure and details of the source image, as
shown in Fig. 7 (a). We further conduct experiments to investigate the trade-off
between editability and fidelity in Appendix B.

Comparing config A and B on all tasks, our refinement method in cross-
attention guidance demonstrates a significant improvement in the CLIP-Sim
metric. To verify that this improvement is not merely a result of reducing struc-
tural constraints, we compare our method, donated as w/ refin, with randomly
masking the same amount of channels in the cross-attention maps with our refine-
ment method, denoted as w/ rand refin. Our method with vanilla cross-attention
guidance is denoted as w/o refin. The results are shown in Fig. 7 (b). The highest
CLIP-Sim scores across all tasks indicate that our refinement method in cross-
attention guidance can enhance the accuracy between the generated result and
the editing objective. The results of the user study in Appendix C can also prove
this.

In config D, we use simple prompts instead of using BLIP [14] to extract
precise text descriptions of the source image. Both the CLIP-Sim and LPIPS
scores worsen compared with our full method, showcasing the importance of the
prompt extraction method in enhancing text alignment and structural preser-
vation. Some results of config D are shown in Fig. 7 w/ simple prompt. We
can observe the loss of some background information due to the imprecise text
descriptions, as highlighted by the yellow boxes.

(a) Global color shift. (b)  Silhouette image editing. (c) Editing in complex scenes.

cat→doghorse→zebra horse→zebra

Fig. 8. Limitations. We show some cases where our method generates unsatisfying
results and discuss.
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6 Discussion and Conclusion

We introduce a novel image-to-image translation framework called SPI2I. Given
a single input image along with a specified editing task, our method can gener-
ate high-quality editing results, retaining the structure and background details of
the source image without model training or fine-tuning. Motivated by the incon-
sistency between the information contained in the latent code and the injected
features, our approach involves refined cross-attention guidance and a feature
injection method, ensuring robust structural preservation while accurately align-
ing with the editing target. We conduct adequate experiments and substantiate
that our method achieves strong structural preservation and high-quality gener-
ation. We also observed some shortcomings in our experiments.

As shown in Fig. 8 (a), We observed global color shifts in some results. We
further substantiate that this outcome is associated with the feature injection
method by comparing it with the result without feature injection. Optimization
of the latent code can alleviate it to some extent.

Fig. 8 (b) and (c) illustrate some bad results. For silhouette image editing, the
semantic layout is hard to locate, thus generating unsuccessful results. Fig. 8 (c)
displays scenes involving interactions between editing target objects and other
elements. Editing in complex scenes remains a persistent challenge. Introducing
additional constraints, such as mask conditions, can help address these issues,
but also leads to limited applicability at the same time.

Overall, our method is zero-shot and the results show that it can produce
high-quality images, tackling the issue of structural preservation in image-to-
image translation and image editing, outperforming state-of-the-art methods
across multiple metrics.
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Abstract. We introduce FIDAVL: Fake Image Detection and Attri-
bution using a Vision-Language Model. FIDAVL is a novel and effi-
cient multitask approach inspired by the synergies between vision
and language processing. Leveraging the benefits of zero-shot learn-
ing, FIDAVL exploits the complementarity between vision and language
along with soft prompt-tuning strategy to detect fake images and accu-
rately attribute them to their originating source models. We conducted
extensive experiments on a comprehensive dataset comprising synthetic
images generated by various state-of-the-art models. Our results demon-
strate that FIDAVL achieves an encouraging average detection accuracy
of 95.42% and F1-score of 95.47% while also obtaining noteworthy perfor-
mance metrics, with an average F1-score of 92.64% and ROUGE-L score
of 96.50% for attributing synthetic images to their respective source gen-
eration models. The source code of this work will be publicly released at
https://github.com/Mamadou-Keita/FIDAVL.

Keywords: Vision Language Model · Large Language Model ·
Deepfake · Image Captioning · Synthetic Image Attribution · Diffusion
Models

1 Introduction

Over the past two decades, the landscape of techniques for generating and
manipulating photorealistic images has undergone rapid evolution. This evo-
lution has ushered in an era where visual content can be easily created and
manipulated, leaving behind minimal perceptual traces. Consequently, there is
a growing apprehension that we are on the brink of a world where distinguish-
ing real images from computer generated ones will become increasingly chal-
lenging. Recent advancements in generative models have further propelled the
quality and realism of synthesized images, enabling their application in condi-
tional scenarios for contextual manipulation and broadening the scope of media
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synthesis. However, amidst these advancements, a prevailing concern persists
regarding the potential repercussions of these technologies when wielded mali-
ciously. This apprehension has garnered significant public attention due to its
disruptive implications for visual security, legal frameworks, political landscapes,
and societal norms [19]. Therefore, it is paramount to delve into the development
of effective visual forensic techniques capable of mitigating the threats posed by
these evolving generative patterns.

To tackle the challenges posed by generative models, several solutions have
emerged in the literature. Existing methodologies predominantly revolve around
binary detection strategies (real vs. AI-generated) [8,35] aimed at discerning
synthetic images from authentic ones. However, the task of attributing a gen-
erated image to its originating source remains relatively unexplored and inher-
ently complex. With the current level of realism achieved by modern generative
models, traditional methods reliant on human inspection for attribution have
become impractical. While identifying whether an image was generated by a
specific model may seem straightforward, it presents nuanced challenges. A sim-
plistic approach involves training a classifier on a dataset comprising both real
and generated images produced by the model in question. However, such an app-
roach is susceptible to dataset bias [31] and may struggle to generalize effectively
when applied to new data. Furthermore, detectors tailored to specific generative
models risk obsolescence as generation techniques evolve and the model they
were trained on becomes outdated.

Pre-trained large vision-language models have recently emerged as a promis-
ing solution for a multitude of natural language processing and computer vision
tasks. These models undergo training on vast image-text datasets sourced from
the Internet and exhibit proficiency as zero-shot and few-shot learners for down-
stream tasks, particularly in applications like image classification [36], detec-
tion [22], and segmentation [38]. Moreover, there has been a recent surge in
leveraging these models for the detection of synthetic images [4,8,15].

In the current state-of-art, the detection and attribution of synthetic images
often face significant challenges. One of the main difficulties lies in the fact that
these tasks are typically handled separately, which can lead to ineffective and less
robust solutions. Multi-level or cascade architectures are commonly proposed
to address these tasks, but they introduce complexity and can be difficult to
generalize across different types of synthetic images. The separation of detection
and attribution tasks overlooks the potential synergies that could be leveraged
by treating them as related tasks. Additionally, the generalization capabilities of
existing models are often limited, which hampers their effectiveness in handling
diverse and evolving state-of-the-art image generation techniques.

To address these challenges, we introduce FIDAVL, a novel and efficient mul-
titask method that combines synthetic image detection and attribution within
a unified framework. Leveraging a vision-language approach, FIDAVL harnesses
synergies between vision and language models along with a soft adaptation strat-
egy. This integration enables precise detection and accurate attribution of gen-
erated images to their original source models, capitalizing on shared features
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between the two tasks. Our approach benefits from the generalization capabilities
of VLMs, which represents a significant advancement over traditional methods.
By treating synthetic image detection and attribution as related tasks within a
single-step process, FIDAVL overcomes the limitations of multi-level or cascaded
architectures. Extensive experiments conducted on a large-scale dataset includ-
ing synthetic images generated by various state-of-the-art models demonstrate
the high accuracy and robustness of FIDAVL. This approach not only simpli-
fies the process of detection and attribution but also enhances its reliability and
scalability. To the best of our knowledge, this study pioneers the utilization of
vision-language models for synthetic image attribution and detection in a unified
framework.

Our contributions to this paper can be summarized as follows:

• We introduce FIDAVL, a novel single-step approach for synthetic image detec-
tion and attribution. Leveraging the complementarity between vision and lan-
guage, FIDAVL effectively detects and attributes synthetic images to their
respective source generation models.

• We adopt a soft prompt-tuning technique to refine the query of FIDAVL for
optimal effectiveness.

Through extensive evaluation on a large-scale dataset, our proposed app-
roach demonstrates competitive performance, underscoring its effectiveness in
synthetic image detection and attribution. FIDAVL achieves an average accu-
racy (ACC) exceeding 95% in the synthetic image detection task, and yielding
an average ROUGE-L score of 96.50% and an F1-score of 92.64% in the synthetic
image attribution task.

The remainder of this paper is organized as follows. Section 2 provides a brief
review of the background and related work. Section 3 describes the proposed
FIDAVL approach for the attribution and detection of synthetic images. Then,
the performance of the proposed approach is assessed and analysed in Section 4.
Finally, Section 5 concludes the paper.

2 Background and Related Work

In this section, we delve into generative models, examine advanced deepfake
detection and attribution techniques, and offer insights into vision-language
models and prompt tuning.

2.1 Generative Models

Generative models have emerged as powerful tools for synthesizing realistic data
across various modalities, including images, text, videos, and intricate structures.
These models, often harnessed through neural networks, adeptly learn to capture
and replicate the underlying patterns and distributions inherent in the training
data [10]. Within the domain of deep generative models, a prominent category is
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generative adversarial network (GAN) [11]. More recently, diffusion models [30]
have gained traction as a de-facto method for image generation. The extension of
such models to text-to-image synthesis [23,26] has ushered in a wave of models
characterized by remarkable quality and diversity, exemplified by models like
Imagen [27] and DALL-E-2 [24]. However, the proliferation of deep generative
models in image synthesis has also given rise to challenges pertaining to synthetic
image detection and attribution.

2.2 Synthetic Image Detection and Attribution

Recent strides in generative models, particularly diffusion-based architectures
and cutting-edge GAN models, present challenges to existing detection method-
ologies. Research highlighted in [7,25] underscores the struggle of current detec-
tors to adapt to these innovative models, underscoring the need for more effective
detection techniques. Consequently, a spectrum of novel approaches has emerged
in response. Coccomini et al. [6] experiment with multi-layer perceptrons (MLPs)
and conventional convolutional neural networks (CNNs), probing their efficacy
in this domain. Conversely, Wang et al.[33] introduce DIRE, a method tailored
for diffusion-generated images, which prioritizes the analysis of reconstruction
errors. Leveraging diffusion patterns, SeDID [21] achieves accurate detection,
with a focus on reverse and denoising computation errors. Amoroso et al. [2]
explore semantic-style disentanglement to bolster stylistic detection, while Xi
et al. [35] propose a dual-stream network that emphasizes texture for artificial
intelligence (AI)-generated image detection. Wu et al. [34] advocate for language-
guided synthesis detection (LASTED), treating detection as an identification
problem and leveraging language-guided contrastive learning. Ju et al. [14] pro-
pose a feature fusion mechanism, combining ResNet50 and attention-based mod-
ules, for global and local feature fusion in AI-synthesized image detection. Sinitsa
et al. [29] introduce a rule-based method harnessing CNNs to extract distinctive
features, achieving high accuracy even with limited generative image data. In a
departure from traditional approaches, Chang et al. [4] draw from VLMs, fram-
ing deepfake detection as a visual question-answering task. Finally, Cozzolino et
al.[8] propose a lightweight strategy based on contrastive language image pre-
training (CLIP) features and linear support vector machine (SVM), showcasing
an alternative avenue for effective detection in this rapidly evolving landscape.

Attributing deepfake content to its source constitutes a crucial aspect in the
realm of detection and prevention. Unlike conventional binary detection, attribu-
tion introduces a multi-class dimension, facilitating the identification of the spe-
cific generative model responsible for the content. Recent studies have shed light
on the importance of enhancing attribution techniques. He et al.[13] extended
detectors to explore textual attribution, revealing areas ripe for improvement in
this domain. In the realm of generative visual data, attribution methodologies
tailored for GANs have emerged. Bui et al. [3] introduced a GAN-fingerprinting
technique, which notably enhances source attribution in a closed-set scenario.
Recent advancements have also focused on diffusion models (diffusion models
(DMs)). Sha et al. [28] utilized ResNet for detecting and attributing synthetic
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images to their respective generators, while Guarnera et al. [12] proposed a
multi-level approach for synthetic image detection and attribution. Lorenz et
al. [20] introduced multiLID, a method tailored for diffusion-generated image
detection and attribution, leveraging intrinsic dimensionality for enhanced accu-
racy. Moreover, Wang et al. [32] addressed the attribution of generative data
to their training data counterparts, necessitating the identification of significant
contributors within the training set.

2.3 Vision Language Models

Recent advancements in VLMs have addressed limitations inherent in earlier
models, particularly in terms of task specificity and dataset constraints. Note-
worthy models such as CLIP, trained on an extensive dataset comprising 400
million image-caption pairs, exemplify this progress by featuring both image and
text encoders, thereby facilitating versatile image classification tasks. Leading
the charge in this domain are pioneering models such as LLaVA [18], BLIP2 [17],
InstructBLIP [9], and Flamingo [1], which represent the vanguard of VLMs
innovation. LLaVA, an open-source endeavor, seamlessly integrates vision and
language understanding within a vast multimodal framework. BLIP2, on the
other hand, achieves state-of-the-art performance through the integration of pre-
trained image encoders and language models. Building upon BLIP2, Instruct-
BLIP refines its architecture further, specifically tailoring it for visual instruction
tuning. Notably, Flamingo, a family of VLMs, stands out for its adeptness in
handling interleaved visual and textual data, thereby making significant strides
in adapting to downstream tasks and expanding zero-shot capabilities. These
advancements mark a significant leap forward in the realm of VLMs, showcasing
their potential to revolutionize various domains reliant on multimodal under-
standing and processing.

2.4 Prompt Tuning for Vision Language Models

VLMs excel in learning from multimodal data, yet encounter challenges when
tasked with adapting to specific downstream vision-related objectives. Ground-
breaking research by [37] introduced context optimization (CoOp) to augment
the efficiency of CLIP in image classification tasks. Diverging from conventional
prompt templates, CoOp learns prompt embeddings with minimal reliance on
downstream dataset samples. Prompt tuning manifests in two primary forms:
hard and soft. Hard prompt tuning, as proposed in [39], involves adjusting non-
differentiable tokens to align with user-defined criteria, albeit encountering diffi-
culties in achieving discrete improvements. Conversely, soft prompt tuning, show-
cased by [16], optimizes a trainable tensor through back-propagation, thereby
enhancing modeling performance. In a notable application, [5] employed subtle
prompt optimization techniques to enhance instruction generation in a black-
box machine learning (ML) model. These endeavors underscore the importance
of nuanced prompt tuning methodologies in enhancing the adaptability and per-
formance of vision-language models across various downstream tasks.
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3 Proposed Synthetic Image Detection and Localization

3.1 Problem Formulation

To harness the capabilities of a vision-language model, such as InstructBLIP,
we have embraced a framework known as visual question answering (VQA),
which we refer to as FIDAVL. FIDAVL is meticulously crafted to respond to
inquiries regarding a given image. The input comprises two crucial components:
a query image, denoted as I, which serves as the focal point of our scrutiny,
and a composite question, denoted as q, which guides FIDAVL in its analysis
of the query image. Subsequently, the image is classified as either real or fake;
if fake, it is then attributed to its source. The question q can take on various
forms, ranging from predefined inquiries like ”Is this photo fake, and what is its
source generator?” to customizable questions incorporating a pseudo-word S∗.
This adaptability empowers us to tailor our questioning strategy to the specific
requirements of our investigation.

Fig. 1. Architecture of the proposed synthetic image detection and localization.

The output of FIDAVL comprises a set of response texts, denoted as ŷ.
While ŷ theoretically encompasses any text, we impose specific constraints to
uphold consistency and clarity in our responses. If the query image is deter-
mined to be real, the response is articulated as ”No, it is a real sample.”.
Conversely, if it is deemed fake, the response adheres to the template ”Yes, it
is a fake sample generated by model name, a model categorymodel.”. Here,
model name signifies the name of the generating model, which could belong to
the set progan, diff-projectedgan, stylegan, ldm, glide, Stable diffusion, while
model category denotes the category of the generating model, which could be dif-
fusion or gan. This response structure aligns with our ground truth for synthetic
image detection and attribution. Finally, to evaluate the efficacy of FIDAVL, we
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gauge the accuracy of both the detection and attribution tasks. This quantitative
assessment offers insights into our model’s proficiency in accurately identifying
and attributing synthetic images.

Mathematically, the formulation of the single-step synthetic image detection
and attribution task is as follows:

ŷ = Mθ(I, q). (1)

where M is an VLM with parameters θ, which takes an image I and a
question q as input and generates an answer ŷ.

3.2 Soft Prompt Tuning

Our investigation harnesses soft prompt tuning within InstructBLIP, following
the outlined procedure. In InstructBLIP, the prompt serves as input to two
pivotal components: Q-Former and large language model (LLM). Initially, the
prompt undergoes tokenization and embedding before being concurrently fed
into both Q-Former and the LLM, as illustrated in Fig. 1. To facilitate prompt
tuning, we introduce a pseudo-word S∗ into the prompt, which acts as the target
for tuning. Specifically, we adopt the question pattern ”Is this photo fake, and
what is its source generator?”, appending the pseudo-word to the end of the
prompt. This modification yields the following adjusted prompt q∗: ”Is this photo
fake, and what is its source generator S∗?”. For real images, we assign the output
label y as ”No, it is a real sample.” Conversely, for fake images, the label y is set
as ”Yes, it is a fake sample generated by model name, a model category model.”
This labeling scheme facilitates soft prompt tuning.

We then proceed to freeze all model modules except the word embedding
v∗ corresponding to the pseudo-word S∗, which is randomly initialized. Subse-
quently, we optimize the word embedding v∗ of the pseudo-word across a triplet
training set {I, q∗, y} using the language modeling loss. Our aim is to align the
output of the VLM, denoted as ŷ, with the label y. Our optimization objective
can therefore be defined as :

fS∗ = arg min
S∗

E(I,y) [L(M(I, q∗), y)] (2)

where L is the language modeling loss function (cross-entropy loss).

4 Experimental Results

Dataset. The dataset utilized in this study is a meticulously curated col-
lection of images comprising two primary components: real images sourced
from the largescale scene understanding (LSUN) bedroom dataset and syn-
thetic data generated by three distinct GAN engines (ProGAN, StyleGAN, Diff-
ProjectedGAN), as well as three text-to-image DM models (LDM, Glide, Stable
diffusion v1.4). For each considered GAN, 20,000 images were generated for
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training and an additional 10,000 for testing, resulting in a total of 90,000 syn-
thetic images. Similarly, each DM architecture generated an equivalent number
of images for both training and testing, leveraging the prompt ”A photo of a
bedroom”, thus yielding another 90,000 images. Consequently, the cumulative
synthetic dataset comprises 180,000 images. In addition to synthetic data, the
dataset incorporates 130,000 real images. Notably, the real images designated
for testing remain consistent across all testing subsets.
Implementation Details. We use the GitHub repository of [4] based on LAVIS
library for implementation, training, and evaluation. To prevent out-of-memory
issues on small GPU, we employ Vicuna-7B as LLM. For prompt tuning, we ini-
tialize the model with an instruction-tuned checkpoint from LAVIS, exclusively
fine-tuning the word embeddings of the pseudo-word while freezing the rest of
the model. The model is prompt-tuned with a maximum of 5 epochs, employing
the AdamW optimizer with β1 = 0.9 and β2 = 0.999, batch size 16, and a weight
decay of 0.05. The initial learning rate is set to 10−8, and apply cosine decay
with a minimum learning rate of 0. The code is executed on an NVIDIA RTX
A4500 GPU with 16 GB and an Intel(R) i9-12950HX CPU with Windows 11
Pro. In terms of image processing, all the images are resized to 224 pixels on the
shorter side, maintaining the original aspect ratio. In training, random cropping
yields a final size of 224×224 pixels, while testing involves center cropping to
the same size.

Evaluation Metrics. In our synthetic image detection and attribution task,
we evaluate our FIDAVL model across multiple metrics including accuracy, F1-
score. Since we cannot directly compare results from textual data as if it were
binary classification, what we can do is calculate overlapping words between pre-
dictions and references. In this regard, we use the ROUGE score, which measures
the degree of correspondence between the content of the generated sentence and
the content of a set of reference sentences. The higher the value of these metrics,
the better the performance of the model.

4.1 Synthetic Image Detection

In this section, we delve into an extensive analysis of these results, meticu-
lously examining the model’s performance across our test set and elucidating
the strengths of our detection strategy. Through a comprehensive examination
of metrics such as accuracy (ACC) and F1 score, we aim to gain deeper insights
into the efficacy with which FIDAVL tackles the task of synthetic image detec-
tion.

Table 1 showcases the evaluation outcomes concerning the detection capabil-
ities of our proposed method, FIDAVL. Across all test subsets, FIDAVL show-
cased robust performance, consistently attaining high accuracy and F1 scores.
Remarkably, FIDAVL achieved an average accuracy of 95.42% alongside an
impressive F1 score of 95.47%, underscoring its effectiveness in precisely dis-
tinguishing between synthetic and authentic images.
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Table 1. Synthetic image detection task and comparison to baseline models. We report
ACC (%) / F1-Score (%). Note that, on average (two last columns), our model yields
better performance.

Method Testing Subset Average(in %)

LDM� SD v1.4� GLIDE� ProGAN ⊕ StyleGAN⊕ Diff-ProjectedGAN⊕

ResNet50 99.92 / 99.92 75.47 / 67.57 73.10 / 63.28 94.28 / 93.94 77.94 / 71.75 59.20 / 31.27 79.98 / 71.29

Xception 99.96 / 99.96 63.84 / 43.41 58.92 / 30.35 64.50 / 45.11 69.96 / 57.18 51.14 / 04.79 68.05 / 46.80

DeiT 99.83 / 99.83 96.02 / 95.86 98.15 / 98.11 93.28 / 92.81 95.08 / 94.84 77.06 / 70.32 93.23 / 91.96

FIDAVL 90.84 / 90.62 96.53 / 96.64 96.56 / 96.67 96.56 / 96.67 95.83 / 95.94 96.20 / 96.31 95.42 / 95.47

� Diffusion-based model. ⊕ GAN-based model.

The efficacy of FIDAVL can be attributed to its innovative approach, leverag-
ing the complementary strengths inherent in vision and language modalities. By
seamlessly integrating both vision and language models, FIDAVL harnesses the
semantic understanding embedded within each modality, enabling it to discern
nuanced cues and patterns indicative of synthetic image generation. This under-
scores the significance of interdisciplinary methodologies in crafting resilient solu-
tions to intricate challenges like synthetic image detection.

Fig. 2. Confusion matrices per testing subset on synthetic image detection task.

Fig. 2 provides a comprehensive overview of FIDAVL’s performance in dif-
ferentiating synthetic image samples from real ones. Each subfigure depicts a
confusion matrix corresponding to a specific testing subset, labeled accordingly.
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Across all subsets, a consistent false negative rate of 688 is observed, underscor-
ing a shared challenge in accurately detecting synthetic images. Notably, the
most promising results are observed in the glide and progan subsets, where all
synthetic images were detected. However, FIDAVL encounters challenges in accu-
rately detecting LDM-generated images, as evidenced by a significant number of
true positives, totaling 1144. This difficulty can be attributed to the homogene-
ity of our specific bedroom image dataset, which presents distinct characteristics
that may pose challenges for detection algorithms.

Fig. 3 provides an in-depth analysis of the distribution of well-detected
synthetic images according to whether they were generated by GAN-based or
diffusion-based models. In Fig. 2, we observed from the LDM confusion matrix
that 8856 synthetic images were well detected. Furthermore, in Fig. 3, the LDM
confusion matrix illustrates the distribution of these images based on their attri-
bution to the respective generator source model type, 8266 to diffusion and 590
to GAN. Fig. 3 shows that although the images have been well classified as
synthetic, FIDAVL encounters challenges in accurately attributing these images
to their specific source model type, a phenomenon particularly observed with
GAN-based test sets and LDM. Moreover, the best performances are obtained
on stable diffusion and glide.

Fig. 3. Confusion matrices indicate which synthetic images detected as synthetic are
correctly classified according to their generating source model.
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Comparative analysis. In this subsection, we conduct a comparative analy-
sis of FIDAVL against three baseline models: ResNet50, Xception, and DeiT.
To establish our baseline models, we fine-tuned these architectures by replacing
their final FC layers with a novel FC layer containing a single neuron dedi-
cated to distinguishing real images from fake ones. These models were initialized
with pre-trained weights obtained from the ImageNet dataset, thereby leverag-
ing the knowledge encoded in their learned representations. We evaluate each
model’s performance across multiple testing subsets, including LDM, SD v1.4,
GLIDE, ProGAN, StyleGAN, and Diff-ProjectedGAN. We present the average
performance across these subsets to offer a comprehensive view of the models’
effectiveness.

Table 1 summarized the obtained results from the experiment. ResNet50 per-
forms exceptionally well, particularly in the LDM subset with 99.92% accuracy
and 99.92% F1 score, and maintains good performance across other subsets with
an average accuracy of 79.98% and F1 score of 71.29%. Xception shows com-
parable accuracy in the LDM (99.96%), but declines considerably in the other
subsets, with an average accuracy of 68.05% and an F1 score of 46.80%. DeiT
demonstrates strong performance, especially in the SD v1.4 (96.02% accuracy
and 95.86% F1 score) and GLIDE (98.15% accuracy and 98.11% F1 score) sub-
sets, with an average accuracy of 93.23% and an F1 score of 91.96%. In contrast,
FIDAVL exhibits outstanding performance across all subsets, with an average
accuracy of 95.42% and an F1 score of 95.47%. In particular, FIDAVL excels in
SD v1.4, ProGAN, StyleGAN, and Diff-ProjectedGAN subsets, showcasing its
robustness and competitiveness compared to the baseline models.

To summarize, our approach shows competitive performance, albeit with
lower scores in testing subsets such as LDM and GLIDE. Notably, FIDAVL
reaches around 90.84% on LDM and maintains scores above 95% on other sub-
sets. FIDAVL adopts a multitask learning approach, which not only involves
image detection (distinguishing real from fake) but also includes an attribution
task aimed at identifying the model responsible for generating a given image.
This dual-focus training introduces additional complexity and objectives to the
model’s training regimen, which can likely influence its performance dynamics
as it must balance learning across multiple objectives.

Generalization to unseen generative models. In this subsection, we eval-
uate FIDAVL generalization capabilities on multiple unseen synthetic image
detection subsets, including ADM, DDPM, IDDPM, PNDM, Diff-StyleGAN2,
and ProjectedGAN. Each subset represents distinct characteristics and chal-
lenges within the detection task, enabling a comprehensive assessment of
FIDAVL’s generalization capabilities.

Results in Table 2 highlight FIDAVL’s generalization performance across
the different subsets. Overall, FIDAVL generalizes very well, with an average
accuracy of 86.04% and F1-score of 83.48% across all unseen test sets during
training.
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Table 2. Generalization results on synthetic images generated by unseen generation
models. We report ACC (%) / F1-Score (%).

Method Testing Subsets Average(in %)

ADM� DDPM� IDDPM� PNDM� Diff-StyleGAN2⊕ ProjectedGAN⊕

ResNet50 72.32 / 61.82 75.26 / 67.21 88.96 / 87.61 77.20 / 70.52 61.62 / 37.88 58.35 / 28.82 72.28 / 58.98

Xception 52.05 / 07.98 58.60 / 29.41 54.62 / 16.99 60.01 / 33.43 71.53 / 60.03 51.64 / 06.66 58.08 / 25.75

DeiT 50.40 / 02.01 50.18 / 01.17 50.14 / 01.01 56.25 / 22.54 93.26 / 92.79 79.84 / 74.82 63.34 / 32.39

FIDAVL 67.35 / 56.01 86.56 / 85.61 81.38 / 78.91 94.93 / 95.02 96.25/ 96.36 89.78 / 88.98 86.04 / 83.48

� Diffusion-based model. ⊕ GAN-based model.

ResNet50 demonstrates moderate performance across subsets, showing
notable strength in ADM and IDDPM, while Xception exhibits variable per-
formance, particularly struggling with ADM, DDPM, and IDDPM subsets.
DeiT performs similarly to Xception, facing challenges in ADM, DDPM, and
IDDPM subsets. FIDAVL shows superior performance across most subsets, espe-
cially excelling in DDPM, IDDPM, PNDM, and GAN-based subsets like Diff-
StyleGAN2 and ProjectedGAN.

Moreover, the results reveal patterns and considerations that need further
investigation:

– ADM� subset: FIDAVL achieves an accuracy of 67.35% and F1-score of
56.01%, indicating moderate performance.

– DDPM� subset: Fake Image Detect and Attribution using a Vision-Language
model (FIDAVL) achieved a commendable accuracy of 86.56% and an F1-
score of 85.61%, suggesting strong performance in detecting diffusion-based
models. However, deeper analysis is warranted to understand any potential
biases or limitations when handling these types of synthetic images.

– IDDPM� subset: FIDAVL’s performance (accuracy: 81.38%, F1-score:
78.91%) indicates slightly reduced effectiveness compared to other subsets,
suggesting potential challenges in detecting specific characteristics associ-
ated with this subset, and necessitating further investigation into the model’s
adaptability.

– PNDM� subset: FIDAVL excelled with an impressive accuracy of 94.93%
and an F1-score of 95.02%, indicating robust performance in detecting cer-
tain types of diffusion-based models. Besides, this highlights its strengths but
raises questions about its generalizability across all diffusion-based variants.

– Diff-StyleGAN2⊕ subset: FIDAVL demonstrated high accuracy (96.25%) and
a high F1-score (96.36%) in detecting this GAN-based model. Although this
achievement underlines the ability of FIDAVL to identify this specific GAN
architecture, further research is needed to assess its performance over a wider
range of GAN variations.

– ProjectedGAN⊕ subset: FIDAVL demonstrates strong performance with an
accuracy of 96.38% and an f1-score of 96.49%. This showcases FIDAVL’s
ability to accurately detect images generated by ProjectedGAN models.

Although FIDAVL shows promising performance, a rather critical aspect
deserves closer investigation. FIDAVL’s exceptional performance on certain sub-
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sets raises questions about its focus on specific model characteristics versus
broader synthetic image detection. However, the balance between model speci-
ficity and general applicability is essential for its deployment in the real world.
The results underline FIDAVL’s effectiveness in handling diverse synthetic image
datasets generated by unseen models. Its superior performance signifies strong
generalization potential, critical for real-world applications where model adapt-
ability to varying synthetic data sources is essential.

4.2 Synthetic Image Attribution

In this section, we assess the performance of FIDAVL in the synthetic image
attribution task using ROUGE scores as metrics, in conjunction with standard
classification metrics such as accuracy and F1-score. As detailed in Subsec-
tion 3.1, FIDAVL generates text as output. ROUGE scores are widely recog-
nized as metrics commonly used in text generation tasks. These scores primarily
gauge the quality of machine-generated text by comparing it to reference text,
measuring various aspects of text similarity, such as overlap in n-grams (consec-
utive sequences of words). Furthermore, the inclusion of accuracy and F1-score
provides a comprehensive understanding of FIDAVL’s performance in synthetic
image attribution. In our experiment, we utilize two ROUGE scores: ROUGE-2
and ROUGE-L.

Table 3. Performance evaluation of synthetic image attribution task.

Method
ROUGE-2 / ROUGE-L scores on different testing subsets Average

(in %)
LDM� SD v1.4� GLIDE� ProGAN⊕ StyleGAN⊕ Diff-ProjectedGAN⊕

FIDAVL 92.23 / 94.82 97.39 / 98.19 97.41 / 98.20 94.99 / 97.01 93.21 / 96.14 90.62 / 94.64 94.30 / 96.50

Method
ACC / F1-score on different testing subsets Average

(in %)
LDM� SD v1.4� GLIDE� ProGAN⊕ StyleGAN⊕ Diff-ProjectedGAN⊕

FIDAVL 87.89 / 89.27 96.10 / 97.96 96.12 / 98.00 87.39 / 93.17 84.57 / 90.95 77.92 / 86.54 88.33 / 92.64

� Diffusion-based model. ⊕ GAN-based model.

Table 3 presents a comprehensive evaluation of FIDAVL in synthetic image
attribution task across different test sets classified according to their underlying
architectures: diffusion models (LDM, Stable Diffusion v1.4, GLIDE) and GAN
models (ProGAN, StyleGAN, Diff-ProjectedGAN). The evaluation metrics used
are ROUGE-2, ROUGE-L, accuracy, and F1-score, measured on different test
subsets.

First, the results show that FIDAVL generally achieves competitive perfor-
mance in terms of ROUGE scores, accuracy, and F1-score on diffusion-based
models compared to GAN-based models. In particular, Stable Diffusion v1.4 and
GLIDE achieve higher ROUGE scores, accuracy and F1-score than ProGAN,
StyleGAN, and Diff-ProjectedGAN. This variation highlights the sensitivity of
FIDAVL to the characteristics inherent in different architectural models, poten-
tially indicating the model’s proficiency in specific image generation paradigms.
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Fig. 4 illustrates the distribution of accurately classified synthetic images
across various generative models. The diagonal elements (True Positive) depict
the number of correct predictions for each category. Remarkably, FIDAVL
demonstrates exceptional performance on stable diffusion and Glide, with 9909
and 9913 instances correctly classified, respectively. However, the matrix also
sheds light on areas of concern. FIDAVL encounters difficulties in accurately
attributing GAN-based generated images to their specific source models. Many
GAN-based generated images are incorrectly attributed to LDM and other GAN-
based models. This may be attributed to the fact that unconditional diffusion
models, such as LDM, share similarities with GAN-based generative models,
posing challenges for accurate attribution.

Fig. 4. Confusion Matrix for Attribution Task: Synthetic data correctly classified as
synthetic but attributed to a different source from the generating source.

5 Conclusion and Future Work

In this paper, we have proposed FIDAVL, a novel multitask framework for AI-
generated image detection and attribution leveraging vision-language models.
Through the integration of vision and language modalities, FIDAVL exhib-
ited exceptional performance in accurately discerning and attributing AI-
generated images to their respective source models. Extensive experimenta-
tion validated the effectiveness of FIDAVL in addressing the challenges of syn-
thetic image detection and attribution simultaneously. Our findings underlined
the significance of interdisciplinary approaches in tackling complex problems
in today’s rapidly evolving technological landscape. With its promising perfor-
mance, FIDAVL presented a valuable solution to enhance accountability and
trust amidst the proliferation of fake images. In future endeavors, we aim to
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conduct additional experiments to evaluate the robustness and generalization
capabilities of FIDAVL in real-world scenarios. This includes exploring scenarios
involving JPEG compression, scaling, unseen images from new generative mod-
els, and added noise. Additionally, we plan to extend FIDAVL into a multi-head
vision-language framework to further enhance its capabilities and versatility.
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Abstract. Deepfakes, synthetic images generated by deep learning algo-
rithms, represent one of the biggest challenges in the field of Digital
Forensics. The scientific community is working to develop approaches
that can discriminate the origin of digital images (real or AI-generated).
However, these methodologies face the challenge of generalization, that
is, the ability to discern the nature of an image even if it is generated
by an architecture not seen during training. This usually leads to a drop
in performance. In this context, we propose a novel approach based on
three blocks called Base Models, each of which is responsible for extract-
ing the discriminative features of a specific image class (Diffusion Model-
generated, GAN-generated, or REAL) as it is trained by exploiting delib-
erately unbalanced datasets. The features extracted from each block are
then concatenated and processed to discriminate the origin of the input
image. Experimental results showed that this approach not only demon-
strates good robust capabilities to JPEG compression and other various
attacks but also outperforms state-of-the-art methods in several general-
ization tests. Code, models and dataset are available at https://github.
com/opontorno/block-based deepfake-detection.

Keywords: Deepfake Detection · Multimedia Forensics · Generative
Models

1 Introduction

Generative models have achieved a high degree of fidelity in content genera-
tion, producing increasingly realistic and convincing results. Thanks to the vast
amount of data available today and the continuous development of complex
architectures, such as Generative Adversarial Networks (GANs) [17] and Dif-
fusion Models (DMs) [25,46], these models are able to produce images, text,
sound and video with an astonishing quality that can hardly be distinguished
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from those created by human beings. This ability to generate high-fidelity con-
tent has opened up new opportunities in a wide range of fields, from art and
entertainment to scientific research and multimedia content production. How-
ever, along with their powerful creative capabilities, generative models also have
several negative aspects. One of the main problems is the possibility of abuse, as
such models can be used to generate fake or convincingly manipulated content,
fuelling the spread of misinformation and fraud [45,48]. Moreover, they can raise
ethical concerns regarding intellectual property and privacy [33], especially when
they are used to create content based on personal data without the consent of
the involved people. The proper and preventive detection of AI-generated con-
tent therefore becomes a critical priority to combat the spread of deepfakes and
maintain the integrity of online information.

The scientific community is striving to find increasingly new and effective
techniques and methods that can discern the nature (real or generated) of digi-
tal images. These techniques can be based on analysis and processing of statis-
tics extracted from images (e.g. analytical traces) or on deep learning engines.
Among other we recall the analysis of image frequencies, such as the Discrete
Cosine Transform (DCT) and the Fourier Transform to map image pixels from
the spatial domain to the frequency domain, facilitating greater interpretabil-
ity in the task of deepfake recognition [2,22]. Deep learning-based methodologies
involve the construction of neural models achieving in general better results than
the previous techniques [1,16], but at the expense of a lower generalization.

These approaches showed that GAN-generated and Diffusion Model-
generated images have different traces in the Fourier domain. Using a single
architecture to classify real and deepfake images can lead to feature contamina-
tion. For this reason, in this paper we propose a deep learning based architecture
that exploits three backbones, called “Base Models” (BM) trained and special-
ized to specific classification tasks with special emphasis to DM-generated data,
GAN-generated data, and real ones. The fundamental concept is based on util-
ising the inherent capabilities of the basic models, each of which is dedicated
to extracting discriminating features specific to a generating architecture left
behind during the image generation process. This approach aims at enhancing
the final model by making it more resilient and robust to JPEG compression
attacks, commonly employed by social networks, as well as other perturbations
such as Gaussian noise, mirroring, rotation, and resizing. The goal is to improve
the model’s ability to generalize its acquired knowledge and maintain high per-
formance across a range of image modifications. Focusing on specific distinctive
features associated with different image generation technologies allows the model
to develop a deeper and more focused understanding of the peculiarities of each
image category, thus improving its ability to distinguish between genuine and
synthetic images in real and variable contexts. With this work we face the dif-
ficulty, often encountered in the state-of-the-art, of generalizing the recognition
capabilities acquired in the training phase both to images generated by AIs not
belonging to the dataset used in that phase and to synthetic images of generat-
ing architectures other than those taken into consideration.
The main contributions of this paper are:
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– A new approach for extracting main features from digital images using Base
Models.

– A model capable of retaining its discriminating capacity even in the presence
of different attacks such as JPEG compression, Mirroring, Scaling, and many
others.

The paper follows the following structure: Section 2 provides an overview of
the main deepfake detection methods currently present in the state-of-the-art;
in Section 3, a detailed description of the dataset of images used to conduct the
experiments is provided; subsequently, in Section 4.2, the architecture proposed
in this study and the stages of the training method are presented in detail;
the experimental results obtained during the testing phase are reported in a
Section 5.2; finally, the paper concludes with a concluding section where the
main findings are summarized and the future directions of research are outlined.

2 Related Works

Most deepfake detection methods are based on intrinsic trace analysis to classify
real content from synthetic ones. The Expectation-Maximization algorithm was
used in [19] to capture the correlation between pixels, resulting in a discrimina-
tive trace able to distinguish deepfake images from pristine ones. McCloskey et
al. [38] showed that generative models create synthetic content with color channel
curve statistics different from the real data, resulting in another discriminative
trace. In the frequency domain [21,37], researchers highlighted the possibility
of identifying abnormal traces left during generative models, mainly analyzing
features extracted from DCT [3,9,15]. Liu et al. [35] proposed a method called
Spatial-Phase Shallow Learning (SPSL) that combines spatial imaging and phase
spectrum to capture artifacts from up-sampling on synthetic data, improving
deepfake detection. Corvi et al. [11] analyzed a large number of images gener-
ated by different families of generative models (GAN, DM, and VQ-GAN (Vector
Quantized Generative Adversarial Networks)) in the Fourier domain to discover
the most discriminative features between real and synthetic images. The exper-
iments showed that regular anomalous patterns are available in each category
of involved architecture. Another category of detectors are deep neural network-
based approaches. Wang et al. [50] used a ResNet-50 model trained with images
generated by ProGAN [28] to differentiate real from synthesized images. Their
study demonstrated the model’s ability to generalize beyond ProGAN-generated
Deepfakes. Wang et al. [49] introduced FakeSpotter, a new approach that relies
on monitoring the behaviors of neurons (counting which and how many activate
on the input image) within a dedicated CNN to identify Deepfake-generated
faces. Many researchers have focused their research on trying to investigate how
possible it is to detect images created by diffusion models. Corvi et al. [10] were
among the first to address this issue, exploring the difficulties in distinguishing
images generated by diffusion models from real ones and evaluating the suitabil-
ity of current detectors. Sha et al. [44] proposed DE-FAKE, a machine learning
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classifier designed for detecting diffusion model-generated images across four
prominent text-to-image architectures. The authors then proposed a pioneering
study on the detection and attribution of fake images generated by diffusion mod-
els, demonstrating the feasibility of distinguishing such images from real ones
and attributing them to the source models, and also discovering the influence of
prompts on the authenticity of images. Recently, Guarnera et al.[20] proposed a
method based on the attribution of images generated by generative adversarial
networks (GANs) and diffusion models (DMs) through a multi-level hierarchical
strategy. At each level, a distinct and specific task is addressed: the first level
(more generic), allows discerning between real and AI-generated images (either
created by GAN or DM architectures); the second level determines whether the
images come from GAN or DM technologies; and the third level addresses the
attribution of the specific model used to generate the images.

The limitations of these methods mainly concern the presence of experimental
results performed only under ideal conditions and, consequently, the almost total
absence of generalization tests: the classification performance of most state-of-
the-art methods drops drastically when testing images generated by architectures
never considered during the training procedure.

3 Dataset details

The dataset comprises a total of 72, 334 images, distributed as shown in Table 1.

Table 1. Number, sizes and sources of involved images. The column Type specifies
whether the image category represents Faces (F) and/or Other (O) (e.g. animals, stat-
ues, etc.).

Nature Architecture Type # Images Total Different Sizes

GAN AttGAN [24] FO 6005 37.572 256 × 256

BigGAN [4] O 2600 256 × 256

CycleGAN [54] FO 1047 256 × 256; 512 × 512

GauGAN [40] O 4000 256 × 256; 512 × 512

GDWCT [5] O 3367 216 × 216

ProGAN [29] O 1000 256 × 256; 512 × 512

StarGAN [6] F 6848 256 × 256

StyleGAN [31] O 4705 256 × 256; 512 × 512

StyleGAN2 [32] FO 7000 256 × 256; 512 × 512; 1024 × 1024

StyleGAN3 [30] F 1000 256 × 256; 512 × 512; 1024 × 1024

DM DALL-E 2 [41] FO 3421 15.421 512 × 512; 1024 × 1024

DALL-E MINI O 1000 256 × 256

Glide [39] O 2000 256 × 256

Latent Diffusion [42] FO 4000 256 × 256; 512 × 512

Stable Diffusion FO 5000 256 × 256; 512 × 512

Nature Sources Type # Images Total Different Sizes

REAL CelebA [36] F 5135 19341 178 × 218

FFHQ [31] F 4981 1024 × 1024

Others: [33][10] O 9225 256 × 256; 512 × 512; 1024 × 1024
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The image sizes vary considerably, ranging from 216x216 pixels up to
1024x1024 pixels, thus offering a wide spectrum of resolutions for analysis.
Images with different semantics (Faces (F), Other (O)) were considered. In par-
ticular, the category ‘Other’ includes images with semantics other than faces,
such as cars, statues, paintings, etc. For each generative architecture, special
attention was paid to the internal balancing of the corresponding subset of
images. This balancing was pursued in terms of both semantic content and size
in order to minimise potential bias and ensure a fair representation of the dif-
ferent types of visual input. Fig. 1 (a) show some examples of used images. All
images are in PNG format.

Initially, the dataset was divided into three parts: a first 40% was used for
training and validation of the BMs (refer to Section 4.1); another 40% was used
for training and validation of the complete models (refer to Section 4.2); finally
the remaining 20% was used as testing dataset for both phases.

4 Proposed Method

The model proposed in this paper consists of exploiting three CNN backbones
as feature extractors, which are then concatenated and processed to solve the
classification task. The key idea of the model lies in the training of the three back-
bones, each of which is trained using a specially unbalanced dataset of images
(as detailed below). The purpose of this procedure is to force each backbone
to focus on finding the discriminative features, left by each type of generative
model during the generation phase, contained in the images belonging to a spe-
cific class (REAL, GAN-generated, DM-generated). We give the name of ‘Base
Model’ (BM) to backbones trained on a highly unbalanced dataset and later
used as feature pullers in the complete model. Figure 1 shows the entire pipeline
of the proposed method.

4.1 Training of Base Models

As mentioned above, each of the three BMs was trained using a subset of the
training data set. In particular, from the original image are extracted three sub-
sets that are somewhat unbalanced with respect to each of the classes following
a 90:10 ratio. In this training phase, a pre-trained Convolutional Neural Net-
work (CNN) standard is adapted by performing a binary classification between
the predominant class and the one named ‘others’, composed of some images
taken randomly by the other two remaining classes. Figure 1 (a) summarizes the
overall process. Once the training is completed, the three BMs are first frozen,
the last linear layer (delegated to the binary classification) removed so that the
characteristics maps of the last convolution layer are returned as output. Our
hypothesis, verified during the test phase, is that, following this training pro-
cedure, the backbones focus on the search for the main characteristics of the
predominant class in order to be able to recognize their presence/absence, dur-
ing inference. In conducting the experiments, the following CNNs were used as
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Fig. 1. Entire pipeline of the proposed method. (a) shows the process of dividing the
training dataset into three unbalanced subsets, each with respect to a specific class
(DM, GAN, REAL) used for training a specific BM. (b) illustrates the architecture
of the final model, which takes the three BMs φc trained in the previous phase with
frozen weights, and uses them to extract the features from a digital image φc(I), where
c ∈ C = {DM, GAN, REAL}. These are then concatenated in channel dimension
φ(I) = φDM (I)⊕φGAN (I)⊕φREAL(I) and processed to solve the classification task.

backbone: DenseNet 121, DenseNet 161, DenseNet 169, DenseNet 201 [26], Effi-
cientNet b0, EfficientNet b4 [47], ResNet 18, ResNet 34, ResNet 50, ResNet 101,
ResNet 152 [23], ResNeXt 101 [53], ViT b16, ViT b32 [13]. All backbones have
been pretrained on the Imagenet [12] dataset. All experiments were conducted
on GPU NVIDIA RTX A6000 with an average training time of 90 minutes for
each backbone and 210 minutes for the complete model. The parameters of each
model were selected by choosing those that obtained the minimum loss value
during model validation.
Table 2 shows the accuracy, recall, precision, and F1 score values obtained by
evaluating all backbones on testing images. From the results we can observe how
this training led to maximizing the recall value, this indicates that the classifi-
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Table 2. Percentage values of the metrics Accuracy (Acc), Recall (Rec), Precision
(Pre), and F1 Score (F1) obtained by testing the BM to the binary classification
between the predominant class and the class ’others’.

Backbone DM Base Model GAN Base Model REAL Base Model

Acc Rec Pre F1 Acc Rec Pre F1 Acc Rec Pre F1

DenseNet 121 76.34 99.00 47.60 64.29 92.34 99.25 87.64 93.08 73.17 99.08 49.73 66.22

DenseNet 161 83.96 98.64 57.40 72.57 94.62 99.45 91.03 95.05 77.39 99.21 54.04 69.97

DenseNet 169 78.83 99.16 50.40 66.83 93.86 99.32 89.91 94.38 71.20 99.29 47.95 64.67

DenseNet 201 79.11 98.90 50.75 67.08 92.61 99.37 87.96 93.32 72.97 99.29 49.54 66.10

EfficientNet b0 85.74 97.09 60.50 74.55 88.77 98.81 82.87 90.14 77.91 97.56 54.70 70.10

EfficientNet b4 78.00 97.47 49.43 65.59 87.14 98.74 80.78 88.86 74.31 97.27 50.84 66.78

ResNet 18 76.64 98.03 47.90 64.36 84.28 99.06 77.16 86.75 65.14 99.03 43.17 60.13

ResNet 34 77.29 98.12 48.62 65.02 83.33 99.40 75.93 86.10 66.75 98.82 44.33 61.21

ResNet 50 78.14 98.61 49.59 66.00 90.34 99.14 84.82 91.42 70.79 99.13 47.59 64.31

ResNet 101 77.20 99.00 48.53 65.13 90.85 98.87 85.71 91.82 69.10 99.08 46.17 62.99

ResNet 152 76.48 99.00 47.75 64.43 93.42 99.32 89.23 94.00 70.59 98.92 47.41 64.10

ResNeXt 101 75.38 98.58 46.60 63.28 93.82 98.40 90.53 94.30 66.26 98.66 43.96 60.82

ViT b16 76.53 98.58 47.80 64.38 83.58 99.69 76.11 86.32 68.45 99.24 45.67 62.55

ViT b32 74.05 96.92 45.20 61.65 80.83 98.99 73.39 84.29 60.44 99.61 40.13 57.21

cation model is able to correctly identify all the positive examples of the interest
class (the unbalanced one). In other words, the model tends to minimize false
negatives; that is, there are no cases where the model wrongly classified a posi-
tive example as negative. This confirms our initial hypothesis that, following the
training procedure described above, BMs are able to capture the discriminative
features of each generating architecture.

4.2 Overall architecture

The final model uses the three BMs trained as described in Section 4.1 as feature
extractors, at this stage they will no longer be trained as the weights have been
frozen. Each BM receives the same digital image as input and is tasked with
identifying and extracting the discriminative features of each class. These are
then concatenated to obtain a three-channel tensor, which is then processed
through a custom CNN, consisting of a sequence of 5 convolutions 1D with
respectively kernel size of 7, 5, 3, 3, 3, all with padding 1 and stride 1; This
was followed by a Global Average Pooling operation and a three-node linear
output classifier. Figure 1 (b) presents both the entire pipeline and a graphical
representation of the model.

For the training phase of the complete models we used the Cross Entropy
Loss weighed with respect to the frequency of each class in the dataset (Equation
1). This choice was necessary to avoid that the models were too influenced by
the imbalance present in the dataset of used images.
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Fig. 2. Sample of images subjected to robustness attacks. (a) shows the loss of detail
and quality due to JPEG compression, (b) shows various robustness attacks considered
in the paper.

Weighted Cross Entropy Loss = − 1
N

N∑

i=1

∑

c∈C
wcyi,c log(ŷi,c) (1)

where N is the number of samples, C = {GAN,DM,REAL} is the set of
classes, yi,c is the ground truth label for sample i and c, ŷi,c is the predicted
probability for sample i and class c, and wc is the weight for class c. In particular:

wc =
1

#images of class c
∀c ∈ C.

5 Experimental results

Two types of experiments were conducted: inference and robustness tests to
assess the effectiveness and robustness of the classification models, and compar-
ison with the state-of-the-art in the generalization test.

5.1 Inference and robustness tests

In this first testing phase, we tested the proposed architecture by varying the
backbone of the BM in order to choose the best model. For this testing phase,
20% of the images of the original dataset (Sec. 3) were used. Furthermore, in
order to make the accuracy metric more meaningful, both validation and testing
datasets were balanced so as to have the same number of images for each class
(DM-generated, GAN-generated, REAL).

Initially, the models were tested using only raw images. Subsequently, various
attacks were applied: JPEG compression with decreasing Quality Factors (QF90
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to QF50), Gaussian noise with kernel size 3 × 3 (GN3), mirroring, rotations at
+45 and -45 degrees, and 2× and 0.5× factor resizing. Fig. 2 shows an example
of images under some of these attacks.

In Fig. 3 (a) the performance of both tests in the three-class classification is
shown. From the results obtained, it can be seen that, regardless of the backbone
used in the BM, in general this approach succeeds in achieving accuracy values
in excess of 85%. In particular, the use of a model belonging to the DenseNet
family as a backbone gives a boost to the overall performance of the models.

Fig. 3. Performance obtained by the proposed model using different backbones in infer-
ence and robustness tests. (a) shows the metrics in three-class classification (REAL vs
GAN vs DM), (b) converts these results to binary classification (REAL vs Deepfake).
On the left side of each row, line graphs show how accuracy changes as image quality
decreases (RAW to QF50). On the right-hand side, bar graphs compare the perfor-
mance of models subjected to various robustness attacks.

To better understand the model’s ability to distinguish between real and AI-
generated images (from GAN or DM), we recalculated the previous performance
values in the binary classification: the calculation was performed considering the
predicted classes GAN and DM as deepfakes and keeping the predictions of the
REAL class unchanged, then the metrics were recalculated. Fig. 3 (b) shows the
metrics obtained from the recalculation.

Comparing Fig. 3 (a) and Fig. 3 (b), it’s evident that the performance
increased in terms of accuracy for the binary classification task. This improve-
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ment is observed both in the inference test on raw images and, notably, across
the various robustness tests.

From the results obtained, DenseNet 161 represents the backbone of the
Base Model as it leads to the best classification results and demonstrates good
robustness at all attacks: despite the fact that the model was trained using
only raw images, the accuracy values tend not to decrease drastically even after
robustness attacks.

5.2 Comparison with S.O.T.A. in generalization

In this section, we examine the generalization capacity of our approach. The
selected final model uses DenseNet 161 as the backbone of the BM, chosen for
its excellent performance found in the tests described in Section 5.1.

Initially, we conducted an analysis of the baselines: the models used as the
backbone of the BMs were trained in the same conditions of our method and
subsequently evaluated in terms of generalization. This process allowed us to
compare the effectiveness of our model with the use of standard architectures.
Next, we compared our model with state-of-the-art models trained on similar
tasks, namely the distinction between AI-generated images and real images.

In order to assess the generalisation capability of the models, we used differ-
ent test sets. These test sets were divided into two categories: images generated
by generative models previously observed during the training phase, but with
different semantic variations and initial conditions, factors that often compli-
cate classification, and images generated by models not included in the training
phase. In addition, we conducted further tests distinguishing between images
generated exclusively by GANs technologies, images generated exclusively by
DMs technologies and images generated by both technologies. We use the nota-
tion whereby we define: T i

∗ (i stays for ‘inner-set’) the dataset containing images
generated by models already considered in the training phase; T o

∗ (o stays for
‘outer-set’) the dataset containing images generated by architectures not con-
sidered in the training phase; T i/o

∗ contains images generated by both type of
architectures during the training phase; T ∗

G the dataset containing only images
generated by GANs as fakes; T ∗

D the dataset containing only images generated
by DMs as fakes; T ∗

D/G contains images generated by both GANs and DMs
architectures. Explicitly:

– T i
G contains a fake image sample of 2000 divided equally between images

generated by GauGAN [40], BigGAN [4], ProGAN [29], and CycleGAN [54].
– T o

G contains a fake image sample of 2000 divided equally between images gen-
erated by Generative Adversarial Transformers (GANformer) [27], Denoising
DiffusionGANs [52], DiffusionGANs[51], ProjectedGANs [43], and Taming
Transformers [14].

– T i/o
G contains a fake image sample of 2000 divided equally between images

generated by the same generative models of T i
G and T o

G.
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Fig. 4. Image samples generated for the generalization test. Each block also contains
samples of real images taken randomly from the AFHQ [7], Imagenet [12] and COCO
[34] datasets.

– T i
D contains a fake image sample of 2000 divided equally between images gen-

erated by Diffusion and images taken randomly from the COCOFake dataset
[8], generated by Stable Diffusion 1.

– T o
D contains a fake image sample of 2000 divided equally between images gen-

erated by Vector Quantized Diffusion Model (VQ Diffusion) [18], Denoising
Diffusion Probabilistic Model (DDPM) [25], and images taken randomly from
the COCOGlide dataset, generated by Glide [39].

– T i/o
D contains a fake image sample of 2000 divided equally between images

generated by the same generative models of T i
D and T o

D.
– T i

D/G contains a fake image sample of 2000 divided equally between images
generated by the same generative models of T i

D and T i
G.

– T o
D/G contains a fake image sample of 2000 divided equally between images

generated by the same generative models of T o
D and T o

G.
– T i/o

D/G contains a fake image sample of 2000 divided equally between images
generated by all the same previous generative models.

We also specify that each of the datasets listed above contains a sample of
2000 real images taken randomly in equal numbers from the datasets We also
specify that each of the datasets listed above contains a sample of 2000 real
images taken randomly in equal numbers from the AFHQ [7], Imagenet [12] and
COCO [34] datasets. Examples of generated images are shown in Fig. 4.

1 github.com/CompVis/stable-diffusion

https://github.com/CompVis/stable-diffusion
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Table 3. Percentage values of the accuracy obtained in generalization phase. The tests
distinguished between images generated from architectures seen in the training phase,
but with different initial conditions (superscript i), and images generated from archi-
tectures never seen before (superscript o), and mixed (superscript i/o). Furthermore,
the tests distinguished between using only images generated by GANs (G-index), those
by DMs (D-index), and mixed (G/D-index).

T i
G T o

G T i/o
G T i

D T o
D T i/o

D T i
G/D T o

G/D T i/o

G/D

Baselines DenseNet 121 56.57 74.02 66.96 72.07 48.20 58.68 60.58 64.23 63.13

DenseNet 161 53.56 73.97 66.21 69.19 48.12 56.93 58.55 64.51 61.98

DenseNet 169 52.03 66.73 61.10 65.25 43.98 52.61 56.80 57.93 57.51

DenseNet 201 55.93 70.03 64.14 67.39 48.70 56.10 60.71 62.35 62.72

EfficientNet b0 49.58 71.81 62.99 69.22 45.12 55.19 55.78 61.67 59.85

EfficientNet b4 50.37 68.64 61.36 69.42 46.60 55.92 56.75 60.98 60.00

ResNet 18 63.77 68.89 66.65 66.23 55.03 58.30 63.70 62.30 62.82

ResNet 34 53.87 70.03 63.25 65.48 48.55 54.76 57.31 61.84 60.98

ResNet 50 59.58 73.13 67.95 67.89 53.38 58.50 62.10 65.01 63.90

ResNet 101 60.35 68.08 65.40 72.12 56.45 59.68 64.21 63.62 63.20

ResNet 152 53.94 68.61 61.84 63.90 50.15 55.27 55.27 61.51 60.00

ResNeXt 101 54.35 67.42 62.86 74.18 50.23 59.57 61.19 61.06 61.87

ViT b16 65.81 73.31 69.46 68.59 52.69 58.30 66.62 64.53 62.72

ViT b32 54.07 61.91 58.87 60.34 41.87 47.92 56.22 54.25 57.38

SOTA Gandhi2020 [16] 52.30 50.79 51.71 49.91 50.86 50.34 51.54 50.57 51.06

Wang2020 [50] 62.41 53.18 57.87 50.13 50.93 50.44 58.26 52.14 54.86

Arshed2024 [1] 47.46 47.65 48.54 52.69 50.00 51.04 49.89 48.94 52.20

Guarnera2024 [20] 55.00 55.63 56.23 54.11 45.98 49.97 56.07 52.21 57.17

Our 65.84 72.47 69.89 68.09 60.82 59.96 66.06 65.02 64.39

Table 3 shows the percentage values of the accuracies obtained by the various
models in the different contexts T . When reading the results, it is important to
consider that all images in the test sets are compressed in JPEG format, which,
taking into account that our model was trained using only raw images, may
have lowered its performance as demonstrated in Section 5.1. The state-of-the-
art approaches used for comparison are [1,16,20,50]. This choice is due to the
fact that almost all these methods were trained using generative architectures
considered in our experiments. Wang et al. [50] and Gandhi et al. [16] used only
images generated by GAN models and represent some of the best approaches in
literature able to solve well the deepfake detection task (in the specific domain
of GAN generated images). Despite this, experimental results reported in Table
3 show that these approaches are able to achieve similar classification results
compared to methods trained considering images generated by also DM engines.
However, these results show little ability to generalize. Our approach is able to
generalize better, outperforming such state-of-the-art methods with classifica-
tion accuracy over 10%, in any context. Arshed et al. [1] and Guarnera et al.
[20] used one specific architecture to extract features for images generated by
GAN and DM engines. The main limitation compared to our approach regards
the strategy for feature extraction, since we used three specific models to bet-
ter extract the most discriminative characteristics of the input data for each
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involved image category (GAN-generated, DM-generated, REAL).

In summary, from the obtained results (Table 3), our approach succeeds on
average in generalizing better in most of the performed tests. Although baselines
perform well in generalization when the dataset is composed of deepfake images
generated by a single technology, they encounter difficulties when the dataset
contains images from multiple generating architectures, both seen and unseen
(column T i/o

G/D). Then, the proposed model outperforms all other state-of-the-art
methods, confirming the good generalization ability in different contexts.

6 Conclusion and Future Works

The challenge of generalization emerges as a major obstacle in the context of
deepfake detection. The ability to accurately distinguish between AI-generated
and real images is crucial to monitor the ongoing development of generative
models. In this article we proposed a new approach that can ensure robustness
to JPEG attacks, typically used by social networks, and other various attacks,
and contributed to a small step forward in solving the problem of generaliza-
tion of detectors. The use of three different blocks specialized in the extraction
of discriminative features of a specific images category (GAN-generated, DM-
generated, real) allows our approach to develop a deeper understanding of intrin-
sic characteristic between real and synthetic images. This approach aims to pro-
vide a solid basis for the accurate identification of images even in the presence of
variations and complexity introduced by different image generation techniques.
This is the starting point for our future research: we want to strengthen the
capabilities of the three discriminative feature extractors, analyze their outputs
spatially and model new high-performance and structure-independent architec-
tures.
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Abstract. With the rapid advancement of image synthesis and manip-
ulation techniques from Generative Adversarial Networks (GANs) to
Diffusion Models (DMs), the generated images, often referred to as
Deepfakes, have been indistinguishable from genuine images by human
and thus raised the public concerns about potential risks of mali-
cious exploitation such as dissemination of misinformation. However, it
remains an open and challenging task to detect Deepfakes, especially
to generalize to novel and unseen generation methods. To address this
issue, we propose a novel generalized Deepfake detector for diverse AI-
generated images. Our proposed detector, a side-network-based adapter,
leverages the rich prior encoded in the multi-layer features of the image
encoder from Contrastive Language Image Pre-training (CLIP) for effec-
tive feature aggregation and detection. In addition, we also introduce
the novel Diversely GENerated image dataset (DiGEN), which encom-
passes the collected real images and the synthetic ones generated from
versatile GANs to the latest DMs, to facilitate better model training and
evaluation. The dataset well complements the existing ones and contains
sixteen different generative models in total over three distinct scenarios.
Through extensive experiments, the results demonstrate that our app-
roach effectively generalizes to unseen Deepfakes, significantly surpassing
previous state-of-the-art methods. Our code and dataset are available at
https://github.com/aiiu-lab/AdaptCLIP.

Keywords: Deepfake Dataset · Deepfake Detection · Foundation
Model Adaptation · Diffusion Model

1 Introduction

Image synthesis has been a popular research topic in computer vision since the
introduction of Generative Adversarial Networks (GAN) [9], which can gener-
ate photo-realistic images indistinguishable from real-world photos by human.
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Recently, Diffusion Models (DM) [10] have further advanced the image gener-
ation quality and diversity over GAN-based methods. In addition, many open
sourced text-to-image (text2image) models (e.g., Stable Diffusion [28]) and com-
mercial online services (e.g., Midjourney1) based on DMs showcase the remark-
able generation results. However, these tools also raise the public concerns about
the potential privacy and copyright issues. To address the concerns, synthetic
image detection, also known as generalized image-based Deepfake detection, has
been proposed and researched for years. Nevertheless, it is still an open and
challenging problem to develop an effective detector generalizing well on newly
developed unseen Deepfakes. Recently, although there exists some works [5,23]
proposing to adapt the backbone of the foundation model (i.e., Contrastive Lan-
guage Image Pre-training (CLIP) [26] which has been trained on 400 million
image-text pairs and exhibits strong zero-shot and few-shot performance across
various task.) for the generalized image-based Deepfake detection task, their
approaches often underutilize the rich information of CLIP, leading to subopti-
mal performance. On the other hand, the task also requires a new dataset for a
more comprehensive performance evaluation of generalized image-based Deep-
fake detection upon the synthetic images generated by more recent GANs and
DMs.

To handle these issues, we first introduce a new Diversely GENerated image
dataset (DiGEN) to cover more scenes and generative models. The dataset
contains the real images and the synthetic images generated by the unconditional
models pre-trained upon the LSUN-Bedroom [38] and FFHQ [13] datasets and
the conditional text-to-image ones upon the MSCOCO [15] dataset, respectively,
involving sixteen recent generative models in total (i.e., seven GANs and nine
DMs.). The proposed dataset not only complements the existing ones with the
latest publicly available DMs but also provides a unified evaluation protocol.

Furthermore, we propose a novel generalized image-based Deepfake detec-
tor. This detector utilizes the multi-layer features of CLIP through our pro-
posed side-network-based adaptation method, enabling superior adaptation of
the foundational model for better generalized image-based Deepfake detection
than previous approaches. With extensive experiments, the evaluation results
demonstrate the proposed method not only generalizes well to various unseen
Deepfakes but also outperforms other previous state-of-the-art methods by a
large margin. To sum up, the main contributions of this paper are summarized
as follows:

– We introduce the DiGEN dataset and a unified evaluation protocol, where
the dataset encompasses the generated images from sixteen recent generative
methods under three different scenarios.

– We propose a novel and effective side-network-based adapter of CLIP for
generalized image-based Deepfake detection. The proposed model exhibits
strong generalization to unseen Deepfakes, outperforming other state-of-the-
art methods by a large margin.

1 https://www.midjourney.com

https://www.midjourney.com
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2 Related works

Generalized Deepfake Image Dataset. In recent years, an increasing num-
ber of synthetic image generation methods have been introduced, accompanied
by the emergence of many datasets consisting of AI-generated images, such as
CNNDet [35], are solely based on the images produced by GAN. Sha et al. [31]
present a dataset derived from images generated by four distinct text-to-image
DMs. Similarly, Bird et al. [1] present a dataset consisting of general images
solely generated by Stable Diffusion 1.42. Ricker et al. [27] establish a diverse
dataset that includes images generated by both GANs and DMs. Wang et al. [36]
present a dataset comprising two distinct scene categories and nine DM archi-
tectures. Nevertheless, with the rapid and lasting development of new generative
models, generalized image-based Deepfake detection is still a challenging prob-
lem, underscoring the continuing need for a new dataset to cover more recent
generative model in more diverse scenarios.
Generalized Image-based Deepfake Detection. In response to the grow-
ing security and privacy apprehensions regarding generative models, numerous
studies have been conducted to tackle the challenge of identifying AI-generated
images through various approaches, including image-based methods [17,36,40],
frequency-based approaches [25,33], and the methods based on pre-trained mod-
els [23]. Wang et al. [35] have first shown that the detector trained upon the syn-
thetic images generated by ProGAN [11] generalizes well to other unseen GAN-
generated images, but this approach still fails to detect recent DM-generated
ones. Many other works [3–5,7,39] have recently been proposed to further
advance the detection performance and to highlight the structural differences
between DMs and previous generative methods. Recent studies have focused on
leveraging a fixed foundation model that, having been pre-trained on large-scale
datasets, encodes a wealth of information within its features. This approach has
shown to offer superior zero-shot or few-shot performance across various down-
stream tasks. For instance, Gao et al. [8] develop feature adapters to fine-tune
the features from the encoders of foundational model, i.e., CLIP, tailoring them
for specific applications. Similarly, Ojha et al. [23] propose UniFD, which uti-
lizes the rich feature space of CLIP, for Deepfake detection. They investigate the
encoding capabilities of CLIP’s frozen image encoder, which was trained on a
vast dataset of text-image pairs, and they adapt this encoder by coupling it with
a linear classifier. In this work, our motivation diverges from that of the related
UniFD approach. Compared to UniFD, which tends to utilize the features from
the final layer of the image encoder without any training or even employs a linear
layer to fine-tune the frozen image encoder, our method utilizes a side-network-
based adaptation technique to fully exploit the multi-layer features of the frozen
image encoder. By conducting a thorough analysis of the multi-layer features
from the frozen image encoder, we were able to pinpoint the most effective fea-
tures for adaptation. Our experiments demonstrate that employing this method
of adaptation markedly enhances the generalization capabilities for detecting
Deepfakes.

2 https://huggingface.co/CompVis/stable-diffusion-v1-4

https://huggingface.co/CompVis/stable-diffusion-v1-4
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Fig. 1. Framework Overview: Our method adapts the frozen CLIP image encoder
using the proposed side-network-based adapter, consisting of a series of decoder blocks,
to the downstream task of generalized image-based Deepfake detection. Through this
design of the multiple cascaded decoder blocks, our approach can progressively refine
the query tokens to fully exploit the rich features across various layers of the frozen
image encoder, ensuring better adaptation. Ultimately, the learnable query token is
transmitted from the top-most to the bottom-most decoder block, culminating in a
final prediction via the classification head.

3 Method

This section begins with an introduction to our DiGEN dataset, detailed in
Section 3.1. Subsequently, in Section 3.2, we demonstrate the details of the pro-
posed side-network-based adapter to fine-tune the foundation model (i.e., CLIP)
for better generalized image-based Deepfake detection. An overview of our frame-
work is illustrated in Fig. 1.

3.1 DiGEN Dataset

First, to better assess the performance of a generalized image-based Deepfake
detector considering both traditional GANs and the lastest DMs, we collect a
diverse dataset, DiGEN, composed of images generated by sixteen different gen-
erative models, seven GANs and nine DMs, in three different scenarios, includ-
ing LSUN-Bedroom [38], FFHQ [13], and MSCOCO [15], also serve as the three
subsets for the experiment. The details of our dataset and the comparisons with
others are presented in Table 1 and Table 2, respectively. We also showcase
qualitative results, as illustrated in Fig. 2. Furthermore, we provide a detailed
description of the three scenarios as follows:
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Table 1. Generation details for each image category of the proposed DiGEN
dataset. We provide comprehensive documentation of the generative models and the
corresponding quantities of real and fake images for each image category in our DiGEN
dataset. Additionally, we report the Fréchet Inception Distance (FID) metric to eval-
uate the quality of the generated data.

Image Category Generator # of images (real/generated) FID

LSUN-Bedroom [38]
(LSUN-B)

ADM [6] 50K/50K 1.90

DDPM [10] 50K/50K 6.36
IDDPM [22] 50K/50K 4.24
PNDM [18] 50K/50K 5.68
LDM [29] 50K/50K 3.42
ProGAN [11] 50K/50K 8.34
StyleGAN [13] 50K/50K 2.65
Projected-GAN [30] 50K/50K 1.52
Diff-StyleGAN2 [37] 50K/50K 3.65
Diff-ProjectedGAN [37] 50K/50K 1.43
LDM [29] (text2image) 10K/10K 71.11
SD v1.4 [28] (text2image) 10K/10K 44.37
SD v2.0 [28] (text2image) 10K/10K 45.06
SDXL v1.0 [24] (text2image) 10K/10K 54.99

FFHQ [13] ADM* [2] 50K/50K 6.92
LDM [29] 50K/50K 4.98
Projected-GAN [30] 50K/50K 3.39
Diff-StyleGAN2 [37] 50K/50K 2.83
StyleGAN [13] 50K/50K 4.40
StyleGAN v2 [14] 50K/50K 2.84
StyleGAN v3 [12] 50K/50K 3.07

MSCOCO [15] SD v1.4 [28] (text2image) 60K/60K 20.61

Table 2. Comparisons with other existing datasets. We compare DiGEN with
existing datasets according to three major criteria: Category, Generator, Public Access,
and Real/Fake Images.

Dataset Category Generator Public Access Real/Fake

CNNDet LSUN, General 1 GANs Yes 362K/362K
DE-FAKE General 4 DMs No 20K/60K
CiFAKE General 1 DMs No 60K/60K
Towards. LSUN-B 5 GANs, 5 DMs Yes 500K/500K
DIRE LSUN-B, Face, General 1 GANs, 9 DMs Yes 488K/134K
DiGEN LSUN-B, Face, General 7 GANs, 9 DMs Yes 950K/950K
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1) LSUN-Bedroom (LSUN-B). Following the protocol of [35], we expand
the dataset3 which includes images from five GAN models (ProGAN [11], Style-
GAN [13], etc.) and five DM models (DDPM [10], iDDPM [22], etc.) pre-trained
on LSUN-Bedroom [38]. Specifically, we complements the prior datasets with the
latest text-to-image DM frameworks (LDM [29], SD-v14, SD-v25, even the most
advanced SDXL-v1.0 [24]) and the prompt “A photo of a bedroom” for synthetic
image generation. For unconditionally generated images, each model produces
50K images, with 39K designated as the training set, 1K as the validation set,
and 10K as the test set. For the images generated using text-to-image models,
we collect 10K images each for the test set.

Fig. 2. Uncurated samples from the DiGEN dataset. We present a diverse selec-
tion of images randomly sampled from our DiGEN dataset, showcasing the output of
various generative models across different scenarios.

2) FFHQ. DiGEN also aims to provide more diverse scenarios (e.g., face)
with higher quality data than other similar ones (e.g., CelebA-HQ subset in
DIRE [36]). Thus, we have specifically collected images generated by more
recent and publicly available pre-trained weights on the FFHQ facial dataset.
These consist of seven unconditional generation models (ADM* [2], LDM [29],
Projected-GAN [30], Diff-StyleGAN2, Diff-ProjectedGAN [30], StyleGAN [13],
StyleGANv2 [14], StyleGANv3 [12], and ADM* is a smaller version of ADM
with 93M instead of more than 500M parameters due to the available pre-trained
weights.). We have collected 50K generated images from each of these models,
divided into 39K for training, 1K for validation, and 10K for testing.
3) MSCOCO. For more comprehensive and unbiased evaluations, we collect
“Natural” scene images using text-to-image DM SD-v1 [28]. Instead of using “A
photo of {class name}” as a prompt, we employ the complete image caption from
the MSCOCO dataset to guide the generation.

3 https://github.com/jonasricker/diffusion-model-deepfake-detection
4 https://huggingface.co/CompVis/stable-diffusion-v1-4
5 https://huggingface.co/stabilityai/stable-diffusion-2-1

https://github.com/jonasricker/diffusion-model-deepfake-detection
https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/stabilityai/stable-diffusion-2-1
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3.2 Foundation Model Adaptation for Generalized Image-based
Deepfake Detection

6 Recent studies [16,23] highlight the powerful zero-shot capabilities of CLIP’s
image encoder, which are attributed to its text-image multimodal training frame-
work. This multimodal approach endows the model with robust semantic under-
standing and encoding capabilities. CLIP model’s image encoder, trained on
an extraordinarily large dataset of 400M image-text pairs, has gained extensive
exposure to the visual world, resulting in formidable visual encoding capabili-
ties. This makes it an ideal candidate for addressing various downstream tasks.
In contrast to directly employing CLIP model’s image encoder feature space or
using linear probing for transfer learning [23], we posit that the frozen backbone
encodes valuable implicit information. To effectively leverage the feature space of
the foundation model, we present our novel lightweight side-network adaptation
method to facilitate the model’s improved generalization in image-based Deep-
fake detection tasks. As depicted in Fig. 1, we reprogram CLIP model’s frozen
image encoder by pairing it with multiple decoder blocks. The latents encoded by
the image encoder encapsulate rich and versatile features, while our multi-layer
adapters capture general Deepfake cues implicit at different levels. This adap-
tation strategy allows us to maximize the utilization of rich features from each
layer of the foundational model, thereby enhancing the generalization capability
of our image-based Deepfake detection task.To implement our multi-layer adap-
tation strategy, we extract specific features from each layer of the CLIP model’s
image encoder. These features serve as the basis for our AdaptCLIP method,
allowing us to fully utilize the information encoded in the frozen backbone.

Moreover, from each layer of the ViT-based image encoder, we export patch
embeddings Pl ∈ R

P×(H×D) and an attention attribute Al ∈ R
P×H×D, repre-

senting one of the attention attribute types (i.e., query, key, and value), where
1 ≤ l ≤ L indicates the layer index, L the number of transformer layers, P
the number of patches, H the number of attention heads in the multi-head self-
attention mechanism, and D the feature dimension per head for each transformer
layer of the image encoder.

We consider q0 as the initial learnable query token parameters, learning from
the top layer to the bottom, then projecting to a classification prediction via a
linear layer. Formally, the operations of the adaptation method can be formu-
lated as:

ql = DecoderBlock(ql−1,Pl,Al), l = 1, ....., L (1)
p = softmax(FC(qL)), (2)

where Pl and Al are extracted from the lth layer of the frozen image encoder. ql is
the progressively tuned query token and FC(·) is a linear layer that projects the
final query token qL to class predictions. Finally, p represents the final prediction
results, indicating the probability distribution for a prediction being either Real

6 https://github.com/crywang/face-forgery-detection

https://github.com/crywang/face-forgery-detection
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Table 3. Performance comparisons of our AdaptCLIP and other generated
image detectors. * denotes we retrain the detection models using their official codes
upon the synthetic images generated by ADM which is trained on LSUN-B. In the case
of TwoStream[20], we produce the results from an unofficial github repository9due to
the official code is unavailable. We report the evaluation results in ACC (%)/AP (%).

Detection
method

Training
dataset

Generation
model

Testing DMs Testing GANs Total
Avg.

ADM DDPM IDDPM PNDM LDM Pro-
GAN

Style-
GAN

Proj.-
GAN

Diff-
StyleGAN2

Diff-
Proj.GAN

CNNDet LSUN ProGAN 50.1/66.4 50.3/82.5 50.1/78.9 50.1/77.5 50.2/75.9 99.7/100 59.2/97.1 52.6/92.6 80.9/99.7 51.6/91.2 59.5/86.2
GANDet LSUN ProGAN 50.0/61.2 50.0/59.0 50.1/64.6 50.4/73.4 50.1/56.9 54.4/89.9 51.4/90.0 50.1/58.5 95.1/99.6 50.3/62.8 55.2/71.6
SBI FF++ Multiple 49.5/49.3 50.2/50.0 50.7/50.6 49.6/49.9 50.2/50.2 50.0/50.2 49.8/50.2 49.4/49.5 50.1/50.0 50.8/50.9 50.0/50.1
TwoStream FF++ Multiple 50.0/49.9 50.0/52.3 50.0/50.9 50.0/56.2 50.0/50.3 50.0/53.4 50.0/53.0 50.0/47.9 50.0/52.9 50.0/49.2 50.0/51.6
DIRE LSUN-B. ADM 50.2/63.5 50.2/64.1 50.3/64.5 50.1/56.4 50.2/61.1 50.3/63.2 50.2/58.8 50.3/62.5 50.3/66.1 50.2/61.1 50.2/62.1
UniFD LSUN ProGAN 53.9/81.3 65.9/95.9 62.5/91.5 74.5/97.1 66.8/94.4 97.7/99.9 60.1/92.4 81.8/98.8 83.2/98.4 76.5/98.4 72.3/94.8
FreqNet LSUN ProGAN 52.7/87.5 81.4/99.3 55.5/90.1 56.6/91.8 99.4/100 99.1/100 89.3/99.6 99.8/100 94.5/99.9 99.7/100 82.8/96.2
CNNDet* LSUN-B ADM 92.8/99.4 93.3/99.5 98.4/99.9 95.4/99.8 85.4/98.7 94.3/98.8 82.5/97.5 63.5/82.6 61.5/87.4 61.8/85.6 82.9/94.9
DIRE* LSUN-B. ADM 97.1/99.9 94.5/98.9 96.9/99.5 92.5/97.9 74.2/91.4 67.4/88.9 60.2/83.6 64.7/87.5 66.0/86.9 62.1/86.2 77.5/92.1
UniFD* LSUN-B. ADM 82.2/90.9 91.5/98.7 89.8/97.2 92.1/99.3 91.5/98.8 92.4/99.9 89.4/96.1 91.3/98.6 91.7/99.0 91.6/98.5 90.3/97.7
FreqNet* LSUN-B. ADM 99.1/100 99.0100 99.1/100 50.0/45.2 66.0/93.3 87.4/99.0 78.1/94.3 87.4/99.0 73.9/89.4 87.2/99.0 83.3/91.9
AdaptCLIP
(Ours)

LSUN-B. ADM 94.3/99.7 99.0/100 99.4/100 99.8/100 99.8/100 99.8/100 99.3/100 99.6/100 98.9/100 99.6/100 98.9/100

LSUN-B. IDDPM 87.1/97.6 99.0/100 98.7/99.9 99.0/100 99.9/99.9 99.0/100 97.6/99.7 97.7/98.9 98.6/99.9 97.4/99.7 97.4/99.6
LSUN-B. LDM 68.3/97.5 94.9/99.9 93.3/100 99.9/100 99.4/100 100/100 97.2/100 99.3/100 99.2/100 98.9/100 94.6/99.7

or Fake. We employ binary cross-entropy loss for adaptation training.

The DecoderBlock(·) is designed to aggregate and utilize the cues from the
image encoder’s generalizable features with a learnable query. Formally,

DecoderBlock(q,P,A) = M̂ + Adapter(q), (3)

where M̂ = M · P, and M = CA(q,A), (4)

with the query q from the previous layer, we employ Cross-Attention (CA(·)) on
the attribute A to produce an affinity map M. We apply matrix multiplication
between the affinity map M and the patch embeddings P to produce the inter-
mediate query feature map M̂. At the core of DecoderBlock, an Adapter(·),
parameterized by two fully connected (FC) layers with a GELU activation in-
between, transforms q into forgery-aware features, which are then summed with
M̂ and passed to the next layer. We apply the layer normalization (LN) on q
before feeding it to the Adapter(·). In summary, the aggregated query collects
all the rich information from the frozen features of the l-th encoder layer and
passes it to the (l + 1)-th blocks.

4 Experiment

In this section, we first introduce our experimental setup followed by extensive
experimental results in various scenarios and ablation studies.

4.1 Experimental Setup

Implementation Details. For our base model, we choose CLIP ViT-L/14 for
its superior performance. Our training details include using AdamW [19] opti-
mizer with a batch size of 256 and a learning rate of 1e-3, along with cross-entropy
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loss to guide model convergence. Training spans 30 epochs, incorporating early
stopping with a patience of 5 steps to preserve the best weights.

Evaluation Metrics. We report accuracy (ACC) and the average precision
(AP). The threshold to compute ACC is set to 0.5.

Baseline Models. We adopt the following methods for comparisons.

1. CNNDet [35]: Wang et al. propose a generalized image-based Deepfake
detector trained using ProGAN-generated images.

2. GANDet [21]: GANDet employs an ensemble of multiple EfficientNet-B4 [34]
models to enhance the generalization performance of Deepfake detection.

3. SBI [32]: SBI adopts a self-supervised learning method, simulating fake
images from real images to achieve superior detection performance.

4. TwoStream [20]: It utilizes high-frequency features and residual-guided
fusion for improved generalized Deepfake detection.

5. DIRE [36]: DIRE introduces a novel image representation technique that
assesses the discrepancy between an input image and its reconstructed coun-
terpart using a pre-trained diffusion model. This serves as a bridge to differ-
entiate between the real and generated images.

6. UniFD [23]: UniFD employs pre-trained CLIP [26] models, utilizing its rich
features alongside the nearest neighbor classifier and linear probing techniques
to distinguish between real and fake.

7. FreqNet [33]: FreqNet focuses on learning the generalized cues in the fre-
quency domain for Deepfake detection.

Additionally, we retrain the models of CNNDet, DIRE, UniFD, and FreqNet
with their official codes and settings on the images generated by ADM which is
trained on LSUN-B (i.e., we denotes it as LSUN-B-ADM subset of the DiGEN
dataset.) and subsequently evaluate their performances.

4.2 Comparisons with Other State-of-the-art Detectors

Recent advancements in generative models have notably improved image gener-
ation. While prior studies detect such images well, few explore the newer mod-
els’ generalization. In this study, we assess the performance of several notable
detectors—CNNDet [35], GANDet [21], SBI [32], TwoStream [20], DIRE [36],
UniFD [23], and FreqNet [33]—on the LSUN-B subset of the DiGEN dataset.
The quantitative results can be found in Table 3. All detectors show decreased
performance against novel diffusion models, indicating DM-generated images
differ structurally from past GAN-generated ones, resulting in reduced general-
ization for unseen images. We utilize images generated by ADM [6] as our train-
ing set, subsequently retraining baseline models for the same number of steps
as outlined in their official open-source implementation. * indicates our LSUN-
B-ADM subset training on DiGEN using official codes. Despite encountering
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Fig. 3. Detection performance for the proposed AdaptCLIP trained on the
FFHQ face subset of DiGEN dataset. The rows and columns respectively repre-
sent models trained on and tested on samples from various GANs and DMs.

generalization challenges, our proposed AdaptCLIP method exhibited remark-
able zero-shot generalization capabilities across nine different architectures. It
achieved average ACC and average AP scores of 98.9% and 100%, respectively,
even when applied to GAN-generated images. In the following two subsections,
we provide more evaluation results across different domains

4.3 Cross-Facial Domain Generalization over FFHQ.

Given the growing concerns of Deepfakes generated by AI, facial privacy threats
are becoming increasingly alarming. We also verify the effectiveness of the pro-
posed method in the FFHQ scenario. Employing the facial subset mentioned
in Section 3.1, we train our model on the images from seven different gener-
ative methods and conduct zero-shot evaluation on six others, with the results
depicted in Fig. 3. The results show that by adapting the foundation model, we
can effectively apply our method to different domains for detection. (i.e., in this
setting, both training and test sets are in the FFHQ scenario.)

4.4 Cross-Content Domain Generalization.

Besides the cross-facial domain evaluation, we further design a challenging cross-
content domain evaluation to train on images from an unconditional generative
method (the ADM subset of the Generated-LSUN-B) and evaluate the gen-
eralization towards text-to-image generative methods (the Generated-LSUN-B
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subset with four GAN and DM models; the Generated-FFHQ subset with seven
GAN and DM models; and the Generated-MSCOCO subset with 80 real-world
categories).

Adaptation Method Effectiveness To validate the efficacy of our proposed
method, we conduct a comprehensive comparative analysis against other base-
line models and various adaptation techniques under the cross-domain gener-
alization scenario: (a) CNNDet, which involves retraining from scratch as per
the approach in [35], (b) UniFD, also fine-tuned following the settings as in [23],
(c) EVL [16], which employs multi-layer frozen features from CLIP for enhanced
video recognition capabilities, (f) LinearCLIP (ViT-L/14) utilizing a straightfor-
ward linear layer and layer normalization for the classification task. In contrast to
UniFD, LinearCLIP directly harnesses the features from the final decoder block
without projecting them into a 768-dimensional feature space. (d), (e), and (g)
denote our AdaptCLIP using the available pre-trained CLIP image encoders
in different backbone architectures, including ViT-B/16, ViT-B/32, and ViT-
L/14. The results are shown in Table 4. Our AdaptCLIP methodology, which

Table 4. Evaluation of different adaptation methods. We conduct experiments
with various foundation model adaption methods to evaluate the AP(%) for cross-
domain performance. * denotes the retrained on the LSUN-B-ADM subset of the
DiGEN dataset using the official codes.

Adaptation
Method

Bedroom
(Text2Image)

FFHQ MSCOCO Avg.

(a) CNNDet* 60.3 63.4 45.5 56.4
(b) UniFD* 86.8 88.3 86.4 87.2
(c) EVL* 88.3 90.6 75.0 84.6
(d) AdaptCLIP (ViT-B/32) 58.1 58.3 60.1 58.8
(e) AdaptCLIP (ViT-B/16) 73.0 67.7 64.2 68.3
(f) LinearCLIP (ViT-L/14) 85.1 89.5 88.5 87.7
(g) AdaptCLIP (ViT-L/14) 89.5 92.8 93.1 91.8

Table 5. Evaluation of feature attribute selection. To assess our model’s effec-
tiveness, we meticulously chose a variety of features—specifically q, k or v —from the
frozen image encoder. This selection process is critical for verifying the robustness and
adaptability of each attribute across different domains.

Al Bedroom
(Text2Image)

FFHQ MSCOCO Avg.

Al = k 89.5 92.8 93.1 91.8
Al = q 82.7 83.9 80.9 82.5
Al = v 84.1 57.7 65.7 69.2
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Fig. 4. Visualization of the features from the image encoder of the frozen
CLIP [26]. We present comprehensive visualizations of the q, k and v features from
the frozen image encoder across multiple layers, focusing on images from three dis-
tinct subsets of the DiGEN dataset: LSUN-B, FFHQ, and MSCOCO. Our goal is to
meticulously examine how features from various layers and attributes influence the
effectiveness of our proposed method. This analysis sheds light on the nuanced impact
of different feature layers on model performance, providing valuable insights into the
adaptability and robustness of our approach.

adeptly harnesses multi-layer features from foundational features, outperforms
other approaches, demonstrating its superior efficacy in cross-domain generaliza-
tion scenario. Moreover, our experiments reveal the method’s remarkable adapt-
ability to CLIP image encoders of various sizes, highlighting a trend where larger
models tend to achieve better generalization. This finding not only showcases the
versatility of AdaptCLIP but also affirms the strategic advantage of leveraging
foundational model features to enhance detection capabilities.

Feature Selection from Frozen Backbone In our analysis, we commence by
illustrating the diverse attributes of the frozen features at each layer within the
image encoder, as depicted in Fig. 4. For clearer presentation, we showcase the
attributes every two layers instead of every layer. Specifically, we meticulously
extract and normalize the multi-layer frozen features of q, k, and v from the
image encoder to present them. These results are then distinctly showcased for
the LSUN-B, FFHQ, and MSCOCO subsets of the DiGEN dataset. Our analysis
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uncovers that each layer of the encoder contains a wealth of unique information:
in the shallower layers, the features focus on fine-grained details, while in the
deeper layers, they emphasize semantic information of the whole image.

Additionally, we find that for q, k, and v, each captures different types of
information, showcasing the complex and multi-dimensional nature of the encod-
ing process.

In Table 5, we conduct an examination of various attribute selections to
determine their impact on leveraging the image features of the frozen CLIP for
improving the generalizability of our model in the image-based Deepfake detec-
tion task. The findings highlight that selecting either q or k as attribute boosts
the model’s generalization capabilities, while v exhibits worse performance. Our
assumption is based on the inherent design of q and k within the attention
block to foster affinity, in contrast, opting for v leads to a notable decrease in
performance since it is not intended for the purpose.

Furthermore, we have included an investigation into the number of frozen
layers, as shown in Table 5. In our experiment, we select layers at regular inter-
vals. Specifically, when L = 12, we select layers 0, 2, ..., 22; when L = 6, we
select layers 0, 4, ..., 20, and so forth. We find that using all layers (L = 24,
as CLIP:ViT-L/14 is our selected foundational model.) yields the best general-

Table 6. Evaluation of forzen layers selection. We investigated the impact of
adapting different numbers of frozen layers on the model’s generalization capability.
Our experiments revealed that increasing the number of adapted layers led to improved
generalization performance, thereby demonstrating the effectiveness of our method.

L Bedroom
(Text2Image)

FFHQ MSCOCO Avg.

L = 24 89.5 92.8 93.1 91.8
L = 12 86.3 86.8 79.0 84.0
L = 6 88.3 73.0 69.8 77.1

Table 7. Generalizability across proportionally scaled training datasets To
confirm the effectiveness of our adaptation strategy, we conduct an evaluation focusing
on how well it generalizes across domains when trained with varying quantities of
training data. This assessment aims to understand the robustness and efficiency of our
method under different numbers of training data.

# of Training Data Bedroom
(Text2Image)

FFHQ MSCOCO Avg.

10% 69.8 86.4 77.8 81.4
25% 88.1 92.0 92.1 90.7
50% 87.4 92.1 92.7 90.7
70% 86.7 92.0 91.8 90.2
100% 89.5 92.8 93.1 91.8
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ization performance. Our comprehensive analysis reveals that each layer of the
encoder encapsulates a wealth of unique information. Consequently, the design of
AdaptCLIP effectively leverages features from all layers, significantly enhancing
the generalization performance in Deepfake detection.

Data Efficiency of AdaptCLIP In our experiment, we explore how varying
the number of training data influences the efficacy of our method. The findings
are detailed in Table 7, where we train our model using different proportions of
the LSUN-B-ADM subset of DiGEN dataset and subsequently conduct cross-
dataset evaluations. Remarkably, our method demonstrates robust performance
and notable generalization capabilities, even when trained with only 25% of the
training data. This resilience is largely attributed to our innovative multi-layer
feature adaptation strategy. By optimizing the foundational model’s (i.e., CLIP)
generalization capabilities, our method effectively identifies universal Deepfake
features serving as reliable cues to differentiate between real and fake. This is
particularly useful under the conditions of reduced data availability, underscoring
the efficiency of our approach in learning from limited data.

Fig. 5. Robustness against unseen perturbations. The left columns show robust-
ness to JPEG compression, while the right columns display robustness to Gaussian
blur. Performance is reported separately for GANs and DMs.

4.5 Robustness Against Unseen Perturbations.

In real-world applications, images are often subject to a variety of post-processing
techniques, which underscore the importance of developing robust detectors
against these unseen perturbations. To assess the model robustness, we examine
the performance of detectors against two common types of image perturbations,
JPEG compression (quality = 100, 65, 30) and Gaussian blur (σ = 1, 2, 3). We
explore the robustness of our retrained baseline models UniFD [23], DIRE [36],
CNNDet [35] and the proposed AdaptCLIP. The results are shown in Fig. 5.
Our findings reveal that AdaptCLIP exhibits remarkable performance, main-
taining its efficacy without significant degradation even when confronted with
these real-world post-processing operations. This robustness can be attributed
to the utilization of the multi-layer feature adaptation strategy that leverages
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the comprehensive feature set of the foundation model, effectively mitigating the
impact of perturbations.

5 Conclusion

In this paper, we introduce an innovative adaptation mechanism tailored for
foundation models (FM) (i.e., CLIP [26]), aiming at creating a generalized image-
based Deepfake detector capable of identifying AI-generated images from both
GANs and DMs. Additionally, we present the DiGEN dataset, a diverse and
challenging dataset (i.e., it includes indoors, face, natural images from seven
GANs, nine DMs) which can effectively complement the prior datasets. Our
experimental evaluations reveal a critical insight: conventional detectors often
struggle to accurately identify images generated by DMs. However, the extensive
evaluation results demonstrate a remarkable ability of the proposed approach to
generalize well to previously unseen Deepfakes. This capability also marks a sub-
stantial progression in the realm of generalized image-based Deepfake detection.
By bridging advancements in generative AI with parallel developments in detec-
tion techniques, we envision a balanced progression in the field, ensuring both
innovation and safety in generative AI.
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Abstract. In an era where digital authenticity is frequently com-
promised by sophisticated synthetic audio technologies, ensuring the
integrity of digital media is crucial. This paper addresses the critical
challenges of catastrophic forgetting and incremental learning within the
domain of audio deepfake detection. We introduce a novel methodology
that synergistically combines the discriminative feature extraction capa-
bilities of SincNet with the computational efficiency of LightCNN. Our
approach is further augmented by integrating Feature Distillation and
Dynamic Class Rebalancing, enhancing the model’s adaptability across
evolving deepfake threats while maintaining high accuracy on previously
encountered data. The models were tested using the ASVspoof 2015,
ASVspoof 2019, and FoR datasets, demonstrating significant improve-
ments in detecting audio deepfakes with reduced computational over-
head. Our results illustrate that the proposed model not only effectively
counters the issue of catastrophic forgetting but also exhibits superior
adaptability through dynamic class rebalancing and feature distillation
techniques.

Keywords: Audio deepfakes · Continual learning · Catastrophic
forgetting · Feature Distillation · Dynamic Class Rebalancing

1 Introduction

The rapidly evolving landscape of audio deepfake detection has become a critical
area of research, with the advent of sophisticated speech synthesis and voice con-
version technologies. These advancements have led to the generation of highly
realistic audio deepfakes, posing significant threats to individual privacy, security,
and the integrity of information. Consequently, the imperative for the establish-
ment of robust and adaptable detection mechanisms has been accentuated. The
inception of challenges such as the ASVspoof [1] and the Audio Deep Synthesis
Detection (ADD) [2] challenge has propelled the field forward, showcasing the
efficacy of deep neural networks in identifying audio deepfakes. These compe-
titions have highlighted the crucial role of innovative architectures and feature
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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extraction techniques in enhancing detection performance. However, the con-
tinual emergence of new deepfake variants presents a formidable challenge, as
existing models often struggle to maintain their effectiveness against previously
unseen attacks [3].

Convolutional Neural Networks (CNNs) have been a cornerstone in the area
of audio deepfake detection systems, owing to their ability to extract hierarchical
features from spectrograms and raw audio signals [4]. The adaptability and depth
of CNNs make them suitable for capturing the nuances of genuine and fake audio,
thus providing a solid foundation for classification. Despite their strengths, CNNs
face limitations such as vulnerability to adversarial attacks, difficulty in handling
audio’s temporal dynamics, and catastrophic forgetting, where they lose the
ability to detect older threats as they adapt to new ones [5].

Continual learning emerges as a promising solution to the challenges of audio
deepfake detection, enabling models to incrementally learn from new data while
retaining knowledge of past learnings [16]. This approach is crucial in address-
ing the dynamic nature of audio deepfake threats, where the constant evolu-
tion of attack methods necessitates adaptable models that can evolve over time
without succumbing to catastrophic forgetting. By employing continual learn-
ing strategies, audio deepfake detection systems can maintain their effective-
ness against new and evolving threats, ensuring a higher level of security and
integrity in digital scenarios. Regularization-based continual learning methods
offer an alternative approach that eliminates the need for retaining previous
data [10]. These methods impose constraints on the model’s parameters to pre-
vent significant deviations from previously learned weights, thereby preserving
the knowledge acquired from older tasks. Among the regularization-based tech-
niques, the Detecting Fake Without Forgetting (DFWF) framework has been
specifically designed for audio deepfake detection [10]. DFWF employs a reg-
ularization term that penalizes changes to crucial parameters responsible for
detecting previously encountered deepfakes, effectively reducing the forgetting
of past knowledge. While DFWF helps mitigate forgetting, it can struggle with
new attack types due to the constraints it imposes on the model, limiting adapt-
ability. In contrast, fine-tuning allows for better performance on new tasks by
retraining the model without constraints, but this approach risks increased for-
getting of previous tasks.

To address the challenges of catastrophic forgetting and incremental learning
in audio deepfake detection, we propose a novel methodology that combines the
strengths of SincNet [11] and LightCNN [12] with Feature Distillation (FD) and
Dynamic Class Rebalancing (DCR), utilizing the ASVspoof 2015 [13], ASVspoof
2019 [14], and FoR [15] datasets for evaluation. In our framework, SincNet,
renowned for its rich and discriminative feature representations through param-
eterized sinc functions that capture essential speech characteristics, serves as the
teacher model. LightCNN, recognized for its lightweight and efficient architec-
ture, acts as the student model, inheriting distilled knowledge from SincNet to
learn crucial features necessary for accurate audio deepfake detection without the
computational overhead. DCR further enhances our approach by adapting the
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learning strategy to address imbalanced and evolving data distributions, ensur-
ing a balanced focus between preserving knowledge of previously encountered
deepfakes and adapting to new ones. This integrated methodology effectively
addresses catastrophic forgetting and ensures continuous learning in the face of
evolving audio deepfake threats, as demonstrated by our experiments on the
ASVspoof 2015, ASVspoof 2019, and FoR datasets.

2 Related Works

Recent advancements in continual learning approaches have significantly con-
tributed to the field of audio deepfake detection, particularly in the context of
the ASVspoof dataset. Continual learning aims to address the challenge of learn-
ing new tasks without forgetting previously acquired knowledge, which is crucial
for adapting to evolving audio deepfake techniques. In this section, we review
recent works that have explored various continual learning strategies and other
deep learning architectures for audio deepfake detection using the ASVspoof
datasets and FoR dataset.

H. Ma et. al., [16], introduced Detecting Fake Without Forgetting (DFWF),
a continual learning approach for fake audio detection using the ASVspoof 2019
dataset. DFWF combined Learning Without Forgetting (LwF) with a Positive
Sample Alignment (PSA) constraint and used LFCC features and a Light Convo-
lutional Neural Network (LCNN) for classification. Evaluated with Equal Error
Rate (EER) metrics, DFWF showed significant improvements over fine-tuning
in sequential training tasks and offered a faster alternative to multi-condition
training without needing previous data access.

X. Zhang et. al., [17] presented Radian Weight Modification (RWM), a con-
tinual learning approach that categorized classes based on feature distribution
similarities and optimized gradient modification directions using a self-attention
mechanism. The Wav2vec 2.0 model and a self-attention convolutional neu-
ral network (S-CNN) were employed for feature extraction and classification,
respectively. Performance was evaluated on ASVspoof 2015, ASVspoof 2019 and
In-the-Wild dataset [18] using the Equal Error Rate (EER), with RWM demon-
strating superior ability in mitigating forgetting and acquiring new knowledge
compared to other continual learning methods. In another work, X. Zhang et.
al., [19], introduced Regularized Adaptive Weight Modification (RAWM), that
adaptively modified the weight direction based on the ratio of genuine to fake
utterances and incorporated a regularization constraint to preserve the old fea-
ture distribution of genuine audio. The approach effectively learned new spoofing
attacks incrementally and mitigated catastrophic forgetting.

P. Kawa et. al., [20] investigated the robustness of audio DeepFake detec-
tion models against adversarial attacks and introduced an adaptive adversarial
training method to enhance their robustness. Three models (LCNN, RawNet3,
and SpecRNet) were evaluated on a combined dataset from ASVspoof2021 (DF
subset), FakeAVCeleb, and WaveFake. The adaptive training method improved
the robustness of the LCNN model, reducing the Equal Error Rate (EER)
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from 0.7870 to 0.1247 and showing improved performance in the transferability
benchmark. This approach demonstrated the effectiveness of adaptive training
in defending against adversarial attacks in deepfake detection.

J. Khochare et. al., [21] presented a deep learning framework for audio deep-
fake detection using the Fake or Real (FoR) dataset, which contained data
generated by the latest text-to-speech models. Two approaches were adopted:
a feature-based approach using machine learning algorithms (SVM, LGBM,
XGBoost, KNN, and RF) with various spectral features (Mean Square Energy,
Chroma Features, Spectral Centroid, Spectral Bandwidth, Spectral Rolloff, Zero
Crossing Rate, and MFCCs) and an image-based approach using deep learning
algorithms (Temporal Convolutional Network (TCN) and Spatial Transformer
Network (STN)) with mel-spectrograms as input. TCN model outperformed
machine learning algorithms and STN with a test accuracy of 92%, demonstrat-
ing the effectiveness of deep learning algorithms, particularly TCN, in audio
deepfake detection.

Building on the state-of-the-art works in continual learning for audio deepfake
detection, we propose a novel methodology that leverages the strengths of Sinc-
Net and LightCNN, complemented by Feature Distillation and Dynamic Class
Rebalancing, to address the challenges of catastrophic forgetting and incremen-
tal learning. In our framework, SincNet serves as the teacher model, providing
rich feature representations for audio data, while LightCNN acts as the student
model, learning efficiently from the distilled knowledge of SincNet. Feature Dis-
tillation ensures that LightCNN inherits the comprehensive knowledge captured
by SincNet, enabling it to learn essential features for accurate audio deepfake
detection. Dynamic Class Rebalancing adapts the learning strategy based on the
similarity of class features across tasks, maintaining a balance between preserving
old knowledge and acquiring new information. This fine-tuned learning process
prevents catastrophic forgetting, allowing the model to continuously learn from
new data without losing previously acquired knowledge, thus offering a robust
and adaptable solution for audio deepfake detection in a continual learning app-
roach.

3 Proposed Methodology

In this study, we present a novel approach for audio deepfake detection that
combines SincNet as a teacher model with LightCNN as a student model within
a continual learning framework. The process begins with data collection from
three datasets: ASVspoof 2015 (A), ASVspoof 2019 (B1), and FoR (for-original
(B2), for-normalization (B3), for-2second (B4), and for-rerecording (B5). This
is followed by preprocessing steps, including noise reduction, normalization, and
silence removal, to prepare the data. SincNet, the teacher model, is trained
on this preprocessed data to extract rich feature representations. These repre-
sentations are then distilled into LightCNN through Feature Distillation (FD),
enabling LightCNN to leverage these detailed features along with the MFCC and
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LFCC features extracted from the preprocessed data while maintaining compu-
tational efficiency. LightCNN is incrementally trained with the distilled knowl-
edge, and Dynamic Class Rebalancing (DCR) is employed to adjust the learning
process based on class similarity, preventing catastrophic forgetting while learn-
ing new data. The model’s performance is continually evaluated, and necessary
adaptations are made to ensure optimal performance. This cyclical process, with
continual updates as new datasets are introduced, ensures the model remains
robust and accurate over time. The proposed methodology for audio deepfake
detection is illustrated in Figure. 1.

Fig. 1. Proposed pipeline for the Audio Deepfake Detection: including steps for data
collection from various datasets, preprocessing, feature extraction using LPCC and
MFCC, initial training of LightCNN, processing of raw audio waveforms through Sinc-
Net, Feature Distillation, LightCNN refinement, dynamic class rebalancing, evaluation,
and adaptation for improved performance.

3.1 Data Preparation and Feature Extraction

The first step involves the collection of a comprehensive dataset comprising both
real and fake audio samples. To ensure the robustness of our models, we include
a diverse range of deepfake datasets, encompassing various techniques used for
audio manipulation. The preprocessing phase includes several key steps, such
as noise reduction to eliminate background noise that could obscure important
audio features, normalization to ensure uniform amplitude levels across all sam-
ples, and silence removal to exclude non-informative segments of the audio. These
preprocessing steps are essential for reducing variability in the data and improv-
ing the model’s ability to focus on relevant audio characteristics.

Feature extraction is a pivotal component of the methodology, as it trans-
forms raw audio data into a format that is more suitable for analysis by our
deepfake detection models. For the SincNet model, we utilize raw audio wave-
forms directly, leveraging the model’s capability to learn effective filterbanks
from the data. For LightCNN, we extract two types features, Mel-Frequency Cep-
stral Coefficients (MFCCs) and Linear Frequency Cepstral Coefficients (LFCCs),
which provide a compact representation of the audio’s spectral properties.
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Finally, we split the dataset into training, development, and evaluation, ensuring
that each set contains a stratified distribution of classes. This division is crucial
for maintaining balance between real and fake samples in all subsets of the data,
which helps prevent bias in the model training and evaluation processes.

3.2 Model Setup

In the second step of the methodology, we establish the foundational models for
our audio deepfake detection system. This involves setting up both the teacher
model, which provides a source of rich audio feature representations, and the
student model, which learns from the teacher while adapting to new data in a
continual learning framework.
Teacher Model (SincNet). We selected SincNet as the teacher model due
to its specialized design for processing raw audio waveforms. SincNet employs
parameterized sinc functions to create learnable band-pass filters, which effi-
ciently extract fine-grained speech features directly from the audio input [11].
This capability makes SincNet particularly well-suited for tasks involving speech
and audio analysis, such as deepfake detection.To train the SincNet model, we
use the training set prepared in the step 1. The objective of the training is to
minimize a loss function, typically the cross-entropy loss, which is defined as:

LSincNet = −
N∑

i=1

C∑

c=1

yi,c log(ŷSincNet
i,c )

where N is the number of samples, C is the number of classes, yi,c is the true
label, and (ŷSincNet

i,c ) is the predicted probability by the SincNet model for class
c of the i − th sample.
Student Model (LightCNN). For the student model, we select LightCNN
due to its lightweight architecture and efficiency in learning. It employs Max-
Feature-Map (MFM) activations instead of traditional ReLU activations, which
helps in reducing the model size while maintaining performance. Compared to
SincNet, LightCNN offers efficient runtime and memory savings. Due to its sim-
pler architecture, LightCNN reduces memory usage by approximately 30-50%
and improve inference speed by 20-40%. These efficiencies make it particularly
suitable for the applications where computational resources are limited. The
LightCNN model undergoes incremental training on new tasks, with the initial
training phase involving knowledge distillation from the SincNet teacher model.
This process allows LightCNN to inherit the rich audio feature representations
learned by SincNet, providing a strong foundation for its subsequent adaptation
to new deepfake types.

3.3 Initial Training on Base Task

In Step 3 , we focus on the initial training of the LightCNN student model and
the transfer of knowledge from the SincNet teacher model through feature distil-
lation. Training LightCNN.The LightCNN model is first trained on an initial
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dataset or task, which serves as the base task for the subsequent incremental
learning process. This initial training phase is essential for establishing baseline
performance and preparing the model for future adaptations. The training objec-
tive for LightCNN is typically to minimize a task-specific loss function, such as
cross-entropy for classification tasks. The cross-entropy loss is defined as:

LLightCNN = −
N∑

i=1

C∑

c=1

yi,c log(ŷLightCNN
i,c )

where N is the number of samples, C is the number of classes, yi,c is the true
label, and ŷLightCNN

i,c is the predicted probability by the LightCNN model for
class c of the i-th sample. This loss function measures the discrepancy between
the predicted class probabilities and the true labels, guiding the model to learn
accurate representations of the audio data.
Feature Distillation. After the initial training of LightCNN, we employ fea-
ture distillation to transfer knowledge from the SincNet teacher model to the
LightCNN student model. This process involves minimizing a distillation loss
that encourages the student model to mimic the feature representations of the
teacher model. The distillation loss can be defined as the mean squared error
(MSE) between the features extracted by the two models:

Ldistill =
1
N

N∑

i=1

‖φ(xLightCNN
i ) − φ(xSincNet

i )‖2

where φ(·) represents the feature extractor function of the model, and
xLightCNN
i and xSincNet

i are the features extracted by the LightCNN and SincNet
models, respectively, for the i-th sample. By minimizing this loss, the LightCNN
model learns to produce feature representations that closely resemble those of
the SincNet model, effectively inheriting the teacher model’s knowledge about
the audio data.

3.4 Incremental Learning for New Tasks

In Step 4, we address the challenge of incremental learning for new tasks,
enabling the LightCNN student model to adapt to emerging deepfake types
while retaining knowledge from previous tasks. This step involves a combination
of Dynamic Class Rebalancing (DCR) mechanism and Feature Distillation.
DCR Mechanism (Class Categorization). DCR is a mechanism that

adjusts the training process based on the similarity of class features across differ-
ent tasks. Classes with similar features across tasks are grouped together, while
those with distinct features are placed in separate groups. Clustering algorithms
or similarity metrics, such as cosine distance, is used for this purpose:

cosine distance(x, y) = 1 − x · y

‖x‖‖y‖
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By identifying classes with similar feature distributions, the model focuses
on preserving knowledge for these classes while adapting more freely to classes
with new or distinct features.
DCR Mechanism (Gradient Modification). Once classes are categorized,

the DCR mechanism adjusts the gradient update strategy during training. For
classes with similar features across tasks, the model minimizes gradient modifi-
cation to prevent the loss of previously learned knowledge. This might include
adopting a lower learning rate or implementing regularization methods for these
classes. Conversely, for classes with dissimilar features, the model updates the
weights by modifying the gradient direction to be orthogonal to the previous
data plane. This orthogonal modification involves projecting the gradient onto
the subspace that is orthogonal to the gradient direction associated with previ-
ously learned tasks. This is mathematically expressed as:

P⊥(∇L) = ∇L − ∇L · ∇Lprev

‖∇Lprev‖2 ∇Lprev

∇L is the current gradient and ∇Lprev is the gradient from previous tasks.
By ensuring the new gradient is orthogonal, the model can learn new information
without interfering with the knowledge acquired from earlier tasks. The detailed
algorithm for DCR is outlined in Algorithm 1.

The DCR mechanism employs a directional adjustment of gradient vectors,
which is particularly effective in rebalancing the learning process for classes with
imbalanced feature distributions. By orienting gradient vectors towards the deci-
sion boundary that separates similar from dissimilar classes, DCR dynamically
corrects the learning trajectory to prioritize underrepresented classes. This app-
roach enhances the model’s ability to adapt to new data while maintaining per-
formance on previously learned tasks. This method contrasts with the Radian
Weight Modification (RWM) approach [17], which adjusts gradients based on a
fixed radial angle. The RWM method, while effective, is less responsive to evolv-
ing data topology compared to DCR, potentially limiting its ability to enhance
class discriminability in the learned feature space. Fig. 2 illustrates these con-
ceptual differences in continual learning strategies. Fig 2(a) demonstrates the
Dynamic Class Rebalancing (DCR) method, with blue and red vectors indicat-
ing the gradients for classes with similar and dissimilar features, respectively.
The minimal adjustment of similar class gradients and the orthogonal modifi-
cation of dissimilar class gradients help maintain a balanced focus between old
and new information. Fig 2(b) shows the Radian Weight Modification (RWM)
method, where the green vector represents the original gradient and the purple
vector represents its RWM-adjusted direction. The fixed radial angle adjustment
in RWM is less adaptive compared to the dynamic nature of DCR.
Feature Distillation (FD Technique). Throughout the incremental learning
process, the FD technique continues to transfer knowledge from the SincNet
teacher model to the LightCNN student model. This is achieved by minimizing
the distillation loss, which encourages the student model to align its feature
representations with those of the teacher model. Feature distillation ensures
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Fig. 2. The conceptual representations of Continual Learning strategies. (a) The DCR
method shows how gradients are adjusted based on class feature similarities across
tasks. The blue vector represents the Similar Class (S) Gradient and the red vector
represents the Dissimilar Class (D) Gradient. (b) The RWM method illustrates the orig-
inal gradient (green vector) and its rotated counterpart (purple vector) after applying
a self-adaptive rotation. (Color figure online)

that the student model retains the rich and nuanced understanding of audio
data provided by the teacher model, even as it learns from new tasks.

3.5 Evaluation and Adaptation

After training the LightCNN model on each new task, we perform a compre-
hensive evaluation to assess its performance. This evaluation includes measuring
detection accuracy on the test sets of all seen tasks and EER%, which provides
insight into the model’s ability to correctly identify real and fake audio samples.
Additionally, we evaluate the extent of catastrophic forgetting by comparing
the model’s performance on previous tasks before and after training on the new
task. This helps us understand how well the model retains knowledge from ear-
lier tasks while learning new information. Based on the evaluation results, we
adapt the LightCNN model to ensure optimal performance. Model adaptation
involves fine-tuning the model parameters, adjusting the learning rate, or revis-
iting the feature distillation process to reinforce the knowledge transfer from the
SincNet teacher model. The goal of this adaptation is to enhance the model’s
performance on new tasks while preserving its accuracy on previously learned
tasks. Continual Learning Cycle. The process of incremental learning, eval-
uation, and adaptation forms a continual learning cycle that is repeated for each
new task. By continually updating the LightCNN student model, we enable it to
learn from new data without forgetting the knowledge acquired from previous
tasks. This cycle is essential for keeping the model up-to-date and effective in
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Algorithm 1 Dynamic Class Rebalancing (DCR) for Continual Learning
Require: Training data from multiple tasks, {Dt}; Learning rate, γ; Regularization

constant, λ; Task count, t; Feature extractor function of the teacher model, Φteach

1: Initialize LightCNN model weights, W0

2: for each task t in {Dt} do
3: for each class c in task t do
4: Compute class mean feature vector using the teacher model, μc =

Φteach(mean(Dt[c]))
5: end for
6: Compute pairwise cosine similarities for all classes, S = {s(ci, cj)}
7: Categorize classes into groups based on S:
8: Gsim = {c | ∀ci in task t, ∀cj in task t, s(ci, cj) > similarity threshold}
9: Gdiff = {c | c /∈ Gsim}

10: for each training iteration i do
11: Compute the batch loss, L, and its gradient, ∇L
12: if class of batch in Gsim then
13: Perform regularized update on W : Wi+1 = Wi − γ∇L + λR(Wi)
14: else
15: Compute orthogonal projection of ∇L onto subspace orthogonal to Gsim,

P⊥(∇L)
16: Perform update using orthogonal gradient: Wi+1 = Wi − γP⊥(∇L)
17: end if
18: end for
19: Evaluate and adapt model based on the validation set for task t
20: end for
21: return adapted LightCNN model weights, Wt

detecting evolving deepfake techniques. At the end of the learning process, we
conduct a final comprehensive evaluation of the LightCNN student model. This
evaluation assesses the model’s overall performance across all tasks, providing a
comprehensive view of its capabilities in audio deepfake detection.

4 Experimental Setup and Results

4.1 Datasets

We have employed a structured approach to training, evaluation, and develop-
ment using the ASVspoof 2015, ASVspoof 2019, and FoR datasets for audio
deepfake detection in a continual learning framework. We begin with the
ASVspoof 2015 dataset, which serves as the initial training set (A). This dataset
lays the foundation for our model, enabling it to learn the essential features of
audio deepfakes. We divide this dataset into training, development, and evalua-
tion subsets to effectively train and validate the model’s performance. Once the
model is trained on the ASVspoof 2015 dataset, we incrementally introduce the
ASVspoof 2019 dataset (LA senario) (B1) to the training process. This step is
crucial for continual learning, as it allows the model to update its knowledge
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with new data while retaining the information learned from the ASVspoof 2015
dataset. We use a subset of the ASVspoof 2019 dataset for training and another
subset for evaluation, ensuring a balanced approach to learning and validation.

Following the incorporation of the ASVspoof 2019 dataset, we further extend
the model’s learning with the FoR dataset. FoR dataset has four different
versions, for-original (B2), for-normalization (B3), for-2seconds (B4) and for-
rerecording (B5). This dataset adds diversity and complexity to the training
process, challenging the model’s ability to adapt and learn incrementally. Simi-
lar to the previous datasets, we divide B2, B3, B4 and B5 datasets into training,
development and evaluation subsets, allowing for continuous assessment of the
model’s performance.

Throughout the training and incremental learning process, we consistently
evaluate the model on separate evaluation sets that are not used during train-
ing. This continuous evaluation is critical for monitoring the model’s ability to
generalize to unseen data. Additionally, we utilize development sets from each
dataset to fine-tune hyperparameters and make informed decisions regarding the
model’s architecture. This structured approach ensures that our model under-
goes a comprehensive and effective continual learning process, addressing the
challenges of catastrophic forgetting and incremental learning in audio deepfake
detection. Table 1 showcases the comprehensive statistics of the datasets used.

Table 1. Comprehensive statistics of datasets with real and fake utterances.

DatasetsA B1 B2 B3 B4 B5

Phases Real Fake Real Fake Real Fake Real Fake Real Fake Real Fake

Train 3,750 12,625 2,580 22,800 39,254 57,060 26,927 26,941 5,104 5,104 6,978 6,978

Dev 3,497 49,875 2,548 22,296 14,265 24,262 5,398 5,400 1,143 1,101 1,413 1,413

Eval 9,404 1,84,000 7,355 63,882 24,215 36,485 2,370 2,264 408 408 544 544

4.2 Experimental Setup

We deploy a two-tier architecture integrating SincNet as the teacher model for
its feature extraction capabilities from raw audio data and LightCNN as the
student model, optimized for efficiency and performance. We utilize the Adam
optimizer for its adaptive learning rate capabilities, with a batch size of 4 and
an initial learning rate of 0.0001, which is dynamically adjusted based on vali-
dation performance. To enhance the precision and robustness of our model, we
have implemented a thorough training strategy, extending over 100 epochs. For
Feature Distillation, weight parameters are tuned to optimize knowledge trans-
fer from SincNet to LightCNN and DCR parameters are adaptively set based
on evolving data distributions and class similarity metrics, ensuring effective
learning from both balanced and imbalanced data scenarios.
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4.3 Results and Analysis

The initial training phase of our model utilized the ASVspoof 2015 dataset (A).
Table 2, depicts the EER% for the baseline model across various evaluation sets.
It is important to note that these results represent the performance of the base
model trained only on the initial dataset without incremental learning. As shown
in Table 2, while the model demonstrates good performance on the A, a decline
in detection accuracy is observed when applied to other datasets (B1 → B5).
This clearly illustrates the critical challenge of generalization and the need for
incremental learning techniques to maintain performance across diverse audio
datasets.

Table 2. Baseline Equal Error Rate (EER)% across various evaluation sets.

Model A B1 B2 B3 B4 B5

Baseline 1.45 10.56 45.98 35.16 64.78 75.89

Performance with SincNet directly We conducted experiments involving
only SincNet with DCR and FD techniques. Table 3 shows the EER% for using
SincNet directly with different η values across various datasets (A, B1, B2, B3,
B4, B5). The parameter η plays a pivotal role in mediating the balance between
FD and DCR. Specifically, η regulates the extent to which the model priori-
tizes the retention of previously distilled features over adapting to novel class
distributions encountered in new datasets.

Table 3. EER% for using SincNet directly with different η values across all datasets.

η A B1 B2 B3 B4 B5

0 3.13 4.56 5.50 7.04 7.89 9.06

0.5 2.35 4.45 3.98 5.67 5.21 7.57

1 3.51 4.31 5.11 4.80 6.72 8.61

Table 3 indicates that using SincNet directly in the continual learning process
with DCR and FD techniques leads to performance degradation from dataset
A → B5, regardless of the η value, as the model encounters more complex and
diverse datasets.

Performance Using the Proposed Method Table 4 presents the EER%
across evaluation sets for the proposed method under varying η values. An ele-
vated value of η emphasizes the conservation of distinct, discriminative feature
representations extracted by SincNet and subsequently distilled into LightCNN.
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The varied η values reveal insights into the model’s learning and forgetting
behaviors, as shown in Table 4. A balanced η value (0.50) enhances the model’s
performance on both familiar and novel datasets. The experimental results, par-
ticularly in the sequential training from (A → B5), underscore our method’s
capability to minimize performance degradation across datasets, with η = 0.50
leading to the lowest EERs.

Table 4. EER% under different η values. (a), (b), (c), (d) and (e) detail the training
from dataset A → Bn dataset, with evaluations conducted on both A and the respective
Bn dataset. (f) describes the training sequence from A → B1 → B2 → B3 → B4 →
B5, with evaluations performed across all datasets.

(a)

η A B1

0 1.41 0.63

0.5 0.54 0.42

1 1.32 0.54

(b)

η A B2

0 1.63 1.23

0.5 0.94 1.02

1 2.63 1.98

(c)

η A B3

0 2.18 1.84

0.5 1.63 1.21

1 2.25 2.41

(d)

η A B4

0 2.61 3.4

0.5 2.23 2.19

1 3.65 2.32

(e)

η A B5

0 3.46 2.43

0.5 1.90 1.46

1 2.83 3.21

(f)

η A B1 B2 B3 B4 B5

0 1.94 2.41 2.01 3.65 2.23 3.12

0.5 1.21 0.98 1.46 1.23 1.84 2.22

1 2.67 1.86 2.25 3.77 3.18 3.35

In Table 4(f), EER% represents the performance of the model after incremen-
tal learning. This includes evaluations on the new dataset as well as all previously
seen datasets, ensuring that the model continues to retain knowledge from ini-
tial learning while adapting to new information. The results demonstrate the
effectiveness of our continual learning approach, which mitigates catastrophic
forgetting and maintains high detection accuracy across all tasks.

Comparing Table 4(f) and Table 3 shows that the proposed method con-
sistently outperforms using SincNet directly across all datasets and η values.
The proposed method, especially with η = 0.5, demonstrates better adaptability
and robustness in audio deepfake detection, while using SincNet directly results
in higher EERs and less effective handling of evolving threats. This highlights
the effectiveness of integrating SincNet with LightCNN, FD, and DCR in our
approach.
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4.4 Evaluation on ASVspoof 2021 dataset

We also conducted experiments where the model was trained using an incremen-
tal learning approach. The training sequence followed the order of A → B1 →
B2 → B3 → B4 → B5 and was subsequently tested on the ASVspoof 2021
dataset [22]. This approach ensures that the model’s performance, including
its generalizability, is assessed against the latest benchmark in audio deepfake
detection, which presents new challenges and variations in deepfake audio.

Table 5. EER% for incremental learning performance tested on ASVspoof 2021.

η Training Datasets Test Dataset EER (%)

0 A → B1 → B2 → B3 → B4 → B5 ASVspoof 2021 3.04

0.5 A → B1 → B2 → B3 → B4 → B5 ASVspoof 2021 2.67

1 A → B1 → B2 → B3 → B4 → B5 ASVspoof 2021 3.16

The results in Table 5 indicate that our proposed methodology effectively
handles new variations and challenges presented by the latest deepfake audio
samples. The model achieves a competitive EER on the ASVspoof 2021 dataset,
with the lowest EER observed at η = 0.5. This demonstrates the model’s ability
to generalize to unseen data while maintaining robust performance.

4.5 Ablation Study

We conducted the ablation study to evaluate the independent contributions of
the FD and DCR components in our proposed methodology as shown in Table 6.
The study revealed that the full incorporation of both FD and DCR consistently
yielded the lowest EER, signifying their critical roles in enhancing detection accu-
racy. Specifically, removal of FD generally led to moderate increase in EER, while
exclusion of DCR resulted in more substantial deteriorations, indicating DCR’s
significant impact on maintaining model robustness across varying deepfake sce-
narios. These results underscore the effectiveness of our integrated approach in
reducing error rates and highlight the importance of each component in fortifying
the model against evolving audio deepfake challenges.

4.6 Comparison with state-of-art methods

We have compared our Dynamic Class Rebalancing (DCR) approach against
established state-of-the-art methods in the area of continual learning and audio
deepfake detection, as illustrated in Table 7. The benchmarked methods include
Elastic Weight Consolidation (EWC), Learning without Forgetting (LwF), Deep-
Fake WaveForm (DFWF), Orthogonal Weight Modification (OWM), Copy
Weight Regularization (CWR), and Gradient Descent Feature (GDF).
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Table 6. EER % determined for the evaluation datasets of the ablation studies, (a),
(b), (c), and (d) were trained on the training set according to the sequence A → Bn

and evaluated using the evaluation sets for A and Bn. (e) was trained using a sequential
training set structured as A → B1 → B2 → B3 → B4 → B5 and was assessed using
the corresponding evaluation sets.

(a)

Method A B1

Proposed 0.08 1.69

-FD 2.21 1.93

-DCR 3.68 4.41

(b)

Method A B2

Proposed2.93 1.74

-FD 4.31 3.29

-DCR 3.68 4.38

(c)

Method A B3

Proposed2.18 1.84

-FD 7.81 6.32

-DCR 10.42 8.17

(d)

Method A B4

Proposed3.65 2.11

-FD 5.12 3.87

-DCR 6.43 4.18

(e)

Method A B5

Proposed3.41 1.98

-FD 7.13 6.43

-DCR 9.26 5.67

(f)

Method A B1 B2 B3 B4 B5

Proposed1.18 4.64 2.86 3.19 3.62 5.19

-FD 3.47 6.82 7.54 5.32 8.55 6.72

-DCR 6.19 7.48 9.56 4.09 7.72 8.3

EWC and LwF have shown efficient adaptability, with EERs of 5.97% and
3.14% on dataset A, respectively. DFWF, while superior in mitigating forgetting,
reveals limitations to new dataset conditions, demonstrated by a 2.21% EER
on dataset A which then escalates in dataset B5. OWM, CWR, and GDF also
perform well but show higher EERs compared to our proposed method in several
datasets.

In contrast, our DCR methodology showcases better performance, signif-
icantly lowering the EER across all datasets and demonstrating remarkable
adaptability and memory retention. Specifically, DCR records an EER of 1.21%
on dataset A, outperforming EWC, LwF, DFWF, OWM, CWR, and GDF, and
maintains the lowest EER across datasets B1 through B5. This exemplifies our
method’s efficiency in learning from new datasets while effectively preserving
knowledge from previous datasets, with notable performance on dataset B1 with
an EER of 0.98% and on dataset B5 with an EER of 2.22%.

5 Conclusion

In this paper, we presented a novel methodology combining SincNet’s feature
extraction with LightCNN’s efficiency, enhanced by Feature Distillation and
Dynamic Class Rebalancing (DCR), to address audio deepfake detection. Eval-
uated on challenging datasets like ASVspoof 2015, 2019, and FoR, our approach
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Table 7. Comparative EER% between our proposed and existing methods ( η = 0.5).

Methods A B1 B2 B3 B4 B5

EWC 5.97 4.23 3.18 3.45 4.72 3.01

LwF 3.14 2.46 4.19 4.81 3.10 3.46

DFWF 2.21 1.48 3.32 2.91 3.65 4.65

OWM 3.78 2.17 2.89 4.11 3.54 3.11

CWR 4.23 2.81 3.72 3.17 2.47 2.91

GDF 5.39 3.66 2.47 3.67 4.34 3.45

DCR(Ours) 1.21 0.98 1.46 1.23 1.84 2.22

significantly outperformed state-of-the-art methods by achieving lower Equal
Error Rate (EER) percentages. The strategic use of η for balancing knowl-
edge retention and adaptation to new data was key to our success, enabling
our model to excel in detecting audio deepfakes while minimizing catastrophic
forgetting. This advancement not only sets a new benchmark in the field but
also underscores the potential of integrating advanced distillation and rebalanc-
ing techniques for enhanced detection accuracy in the ongoing battle against
audio deepfakes. Future directions could explore the integration of generative
adversarial networks (GANs) for generating more diverse training data.
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N., Todisco, M., Delgado, H.: ASVspoof: the automatic speaker verification spoof-
ing and countermeasures challenge. IEEE Journal of Selected Topics in Signal
Processing 11(4), 588–604 (2017)

2. J. Yi, R. Fu, J. Tao, S. Nie, H. Ma, C. Wang, T. Wang, Z. Tian, Y. Bai, C. Fan,
et al., ”Add 2022: the first audio deep synthesis detection challenge,” in ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 9216–9220, 2022

3. Dixit, A., Kaur, N., Kingra, S.: Review of audio deepfake detection techniques:
Issues and prospects. Expert. Syst. 40(8), e13322 (2023)

4. T. M. Wani and I. Amerini, ”Deepfakes audio detection leveraging audio spectro-
gram and convolutional neural networks,” in International Conference on Image
Analysis and Processing, pp. 156–167, 2023

5. Zhang, B., Tondi, B., Barni, M.: Adversarial examples for replay attacks against
CNN-based face recognition with anti-spoofing capability. Comput. Vis. Image
Underst. 197, 102988 (2020)



Audio Deepfake Detection 227

6. H. Ma, J. Yi, J. Tao, Y. Bai, Z. Tian, and C. Wang, ”Continual learning for fake
audio detection,” arXiv preprint arXiv:2104.07286, 2021

7. H. Shin, J. K. Lee, J. Kim, and J. Kim, ”Continual learning with deep generative
replay,” Advances in Neural Information Processing Systems, vol. 30, 2017

8. Tadros, T., Krishnan, G.P., Ramyaa, R., Bazhenov, M.: Sleep-like unsupervised
replay reduces catastrophic forgetting in artificial neural networks. Nat. Commun.
13(1), 7742 (2022)

9. Y. Patel, S. Tanwar, R. Gupta, P. Bhattacharya, I. E. Davidson, R. Nyameko,
S. Aluvala, and V. Vimal, ”Deepfake Generation and Detection: Case Study and
Challenges,” IEEE Access, 2023

10. L. Wang, X. Zhang, H. Su, and J. Zhu, ”A comprehensive survey of continual learn-
ing: Theory, method and application,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024

11. M. Ravanelli and Y. Bengio, ”Speaker recognition from raw waveform with Sinc-
Net,” in 2018 IEEE Spoken Language Technology Workshop (SLT), pp. 1021–1028,
2018

12. C. Liu, J. Li, J. Duan, H. Shen, and H. Huang, ”LightCvT: Audio forgery detection
via fusion of light CNN and transformer,” in Proceedings of the 2021 10th Inter-
national Conference on Computing and Pattern Recognition, pp. 99–105, 2021

13. Z. Wu, J. Yamagishi, T. Kinnunen, C. Hanilçi, M. Sahidullah, A. Sizov, N. Evans,
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Abstract. This paper explores leveraging representations of the data
distribution learned by diffusion models to improve a downstream task
of deepfake image detection. With the recent upsurge in the popularity
of generative AI, it has become increasingly common to encounter disin-
formation in modalities such as language and text, images and speech.
However, a significant portion of disinformative content can solely be
attributed to deepfake images. Effective countermeasures in the past have
relied upon classifying deepfake images based on spatial irregularities,
inconsistencies in high frequency content and fingerprint matching with
known residuals from popular deepfake generation models. However, as
the technology behind deepfakes continues to advance, there is a grow-
ing need for robust detection methods and tools to ensure the integrity
of visual information and mitigate the risks associated with the spread
of misleading or malicious content. Thus, we investigate using diffusion-
generated reconstructions and latent space inversion to enhance deepfake
detection, adapting to the changing landscape of visual disinformation.
We explore the feasibility of using diffusion generated reconstruction,
diffusion generated latent space inversion and high frequency feature
extraction for improving the performance of detecting deepfakes.

Keywords: Deepfake · Representation Learning · Diffusion Models

1 Introduction

Deepfake images are digitally manipulated media content created using advanced
artificial intelligence techniques, particularly deep learning algorithms. These
sophisticated tools enable the seamless insertion or substitution of faces and
facial expressions in existing images or videos, making it increasingly challeng-
ing to discern between real and fabricated content. The necessity to identify
deepfake images arises from the potential for misuse and deception, as these
manipulations can be exploited to spread false information, damage reputations,
or even influence public opinion. The creation of these deepfake images are usu-
ally facilitated by readily accessible off the shelf/opensource unconditional or
text-to-image deep generative networks based on GANs [22] or Diffusion mod-
els [28]. Besides this, procedures such as image editing [3], inpainting [20] as
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well as image blending [15] are also some of the other techniques used to create
counterfeit images by changing one or multiple aspects of some original image.
Traditional approaches to identify such images typically comprise directly train-
ing discriminative deep learning architectures derived from CNNs [1]. Although
robust for the vast majority of cases, this approach typically relies solely on iden-
tifying irregularities in the semantic representation of an image, such as edges,
colors, textures etc. More recent, methods also invoke the use of augmentations in
the training data to magnify and accentuate these irregularities [13], making this
class of models more robust to slight changes in the patterns observed in a purely
synthetic or modified image. Besides classifying the raw images directly through
a classifier, there are other approaches that utilize Discrete Fourier Transforms
(DFT) [25] or Discrete Cosine Transforms (DCT) [6] of the raw images as the
input to make the model learn high frequency trends that might differ for syn-
thetic images as opposed to real images. Another method for detecting deepfake
generations involves the study of residual noise or ‘fingerprints’ from images and
comparing them to a vector representation of similarly obtained fingerprints of
popular synthetic image generators [35]. However, despite the progress made in
this domain, synthetic images obtained from recent image generators incremen-
tally have lower FID scores and higher likelihood [4] compared to their former
counterparts. One intriguing avenue within this domain is the study of diffusion
models [11], a class of architectures that uniquely captures the flow of infor-
mation through neural networks. Unlike traditional feedforward architectures,
diffusion models introduce a dynamic learning process. They do this by allowing
information to iteratively diffuse through the network layers. This iterative pro-
cess involves destroying the semantics of the input image with Gaussian noise. It
also includes a denoising sampling process to return to a less noisy version of the
input. This denoising sampling process forms the mathematical backbone of this
class of models. Unlike static feedforward propagation, this approach allows for
modeling the entire reverse denoising process and allows for capturing complex
dependencies in data. This enables more expressive representations and enhanced
modeling capabilities for further downstream tasks, such as classification.

For this reason, we explore the utility of diffusion models as representation
learners for detecting deepfakes. We first, verify the performance of diffusion
reconstructions for the purpose of detecting deepfakes. We also compare the
results between this method and our latent noise-injected ResNet approach,
alongside evaluating the usefulness of frequency transformations for this task.

2 Related Work

One of the earliest and most common approaches to detect generated images
primarily focused on identifying image artifacts. These were mostly carried out
using approaches that heavily rely on handcrafted feature design. Works such
as [2,12,18,29], focused on this problem as a classification task. Although this
worked, it failed to generalize properly to data other than the ones the classifier
was trained on. Further research in this area led to better results such as the
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work by [33]. In this work, Pro-GAN [14] generated images were used to train
multiple classifiers for each class of the LSUN bedroom dataset. Although this
work performed well on GAN models and generalized to other GAN generated
images the process was expensive.

This was followed by the advent of methods that analyzed the frequency
domain of images such as the work proposed by [5,39]. This particular class
of approaches relied on detecting artifacts present in the frequency domain
of images, caused by up-sampling operations in GAN models. The authors of
[19,38] proposed a method for detecting GAN-generated fingerprints in synthe-
sized images. The ineffectiveness of this approach was then highlighted by [26]
when it was used to attempt to detect images generated by the SoTA diffu-
sion models. Although these techniques and even later works involving ensemble
based approaches [17] generalize to some extent on GAN models, their perfor-
mance on diffusion models is suboptimal.

Recent works, such as [34] and [8], however, compare the diffusion reconstruc-
tion error and use it either as a feature map to train a binary classifier or as
a score threshold respectively to classify images from different distributions. In
[34], the authors specifically suggest that, unlike autoregressive models, diffusion
models learn the data distribution through a surrogate that is noise-based (by
denoising at distinct time steps). In this work, we investigate the feasibility of
using diffusion models to learn the distribution of data on a dataset generated
with and without diffusion. In addition, we explore alternative methods for inte-
grating latent spaces and noisy representations obtained by temporal inversion
or perturbation. The aim of these approaches is to improve deepfake detection.

3 Method

We employ distinct frameworks to investigate the impact of incorporating a
representation derived from a diffusion model. Initially, we examine the recon-
struction of input images using the diffusion model before feeding them into
a classification model. Subsequently, we introduce a classifier architecture with
latent noise injected at various layers as a temporal perturbation regularizer.
This is done to assess whether our model can capture potential trends in the
noise generated by a diffusion model for a given image. Finally, we contrast
these approaches with the utilization of a frequency transformation of the orig-
inal images or the reconstruction errors.

Denoising diffusion probabilistic models (DDPMs) [11] have been success-
ful at generating high-quality images without relying on adversarial learning.
However, their drawback is the time-consuming simulation of a Markov chain
to produce a sample. Diffusion implicit models (DDIMs) [28] have been intro-
duced to speed up the sampling process. DDIMs are a more efficient class of
iterative implicit probabilistic models that share the same learning procedure as
DDPMs. Unlike DDPMs, DDIMs can perform semantically meaningful image
interpolation by manipulating the initial latent variable. Overall, DDIMs offer a
faster and more controlled way of generating high-quality images with meaning-
ful interpolations.
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Fig. 1. ResNet50 [7] model with latent noise injected into first convolution layer of
each of the 6 blocks in stage 4 of ResNet50. Our modified architecture for each block
in stage 4 that adds latent noise to the input post-activation of the previous block.

More recently, inversion processes have gained attention for enhanced image
reconstruction and editing [23]. The application of DDIM inversion is pivotal
for extracting latent space representations in the diffusion domain, providing
a deterministic approach. DDIM inversion involves executing DDIM sampling
in reverse order, offering a valuable tool for improved image manipulation and
reconstruction.

3.1 DDIM inversion

Fig. 2. DDIM inversion on a single normalized image from FF++ [27] to obtain it’s
latent space noise vector



232 R. Ganguly et al.

A diffusion model comprises of a forward diffusion process (noising process)
which degrades the input x0 over timesteps T (T = 1000) resulting in pure noise
xT and an associated reverse diffusion process (denoising process) that is used
to generate back x0 from xT . Typically, the diffusion noising process is a closed
form process given by equation 1. Here, xt is the noisy version of our input x0 at
a specific timestep t, αt = 1− βt where βt denotes the forward noising schedule
(linear, cosine etc) and therefore ᾱt =

∏t
i=1 αi (Fig. 2).

xt =
√

ᾱtx0 +
√
1 − ᾱtε (1)

The generalized sampling equation for diffusion models as described by the
authors in [28] is given by equation 2 where σt controls the stochasticity of the
sampling process and ε

(t)
θ (xt) is the model which takes noisy image xt as input

and predicts εt, the added noise.

xt−1 =
√

αt−1

(
xt − √

1 − αtε
(t)
θ (xt)√

αt

)

+
√

1 − αt−1 − σ2
t · ε(t)θ (xt) + σtεt (2)

If we substitute the value of σt as 0 (DDIM) in equation 2 we can configure
a purely deterministic diffusion sampler given by equation 3, implying that for
a unique noise vector the generated image will be unique as well.

xt−1 =
√

αt−1

αt
xt +

√
αt−1

(√
1

αt−1
− 1 −

√
1
αt

− 1

)

εθ (xt, t) (3)

However, in DDIM inversion [21], we substitute the forward diffusion (nois-
ing) process described in equation 1 as shown below:

xt+1 =
√

αt+1

αt
xt +

√
αt+1

(√
1

αt+1
− 1 −

√
1
αt

− 1

)

εθ (xt, t) (4)

As this suggests, now instead of performing a close form noising step for an
image as shown in equation 1, we perform a model forward pass using the above
sampling equation to obtain a noisy version of the image given at timestep t since
the new form is reparameterized over εθ as opposed to ε ∼ N (0, I) in equation 1.
Since this process is deterministic the reverse process adheres to the same data
distribution as that of the input.

3.2 Reconstruction Network

Our classification model comprised of a learned reconstruction network followed
by a ResNet50 [9] classifier with pretrained ImageNetV2 [24] weights. As illus-
trated in [28], due to the removal of the Markovian dependency for sampling
operations, a subset of the total number of timesteps T any diffusion model
was trained for, can be used for the generative (denoising/sampling) task. For
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Fig. 3. Comparison of learned reconstruction using DDIM with deterministic denoising
allowing us to sample the latent space for the image and therefore denoising it enables
us to get back to the original image (top) vs. naive reconstruction using PNDM [16]
where Gaussian noise is added and then denoised resulting in a completely new image
as the process is not determinsitic without the use of DDIM (bottom)

T = [1, 2, 3, ..., 1000] we can instead only sample on τ = [10, 20, 30, ..., 1000] for
little or no loss in quality provided that the number of steps is suited to the
complexity of the data. For our method, in the first step, we apply DDIM inver-
sion to the input image with number of denoising steps represented as S. This
step involves deriving the latent space representations of the input images. To
generate the latent space noise vector, the model undergoes S forward passes
in a non-Markovian, deterministic inverted denoising procedure. For the first
step of our experiments involving PNDM we instead add Gaussian noise for 200
timesteps to obtain a noisy image. Subsequently, the obtained latent space or
noisy image for DDIM and PNDM respectively is employed as the input for the
pretrained denoising diffusion model and denoised using the sampler DDIM and
PNDM [16] respectively, with a fixed step size, aiming to reconstruct the original
images (Figure 3). This process completes the reconstruction by leveraging the
information present in the latent noise vector or noisy image.

3.3 Latent ResNet

In addition to using reconstructed original images and their corresponding recon-
struction errors, we also proposed using the latent space noise during the classifier
training process. This idea is inspired by the original ResNet paper [9], which
employed residual connections to facilitate the mapping of an identity function
in deeper networks.
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To implement this, we experiment with a “residual connection” mapping of
the latent space noise vector to the convolution layers of the fourth stage in
ResNet50. ResNet50 comprises of 5 distinct stages, each consisting of Conv and
Identity(ID) blocks repeated a specific number of times. Stage 4 in particular
comprises of 6 such blocks and we add our latent noise representations to the first
Conv layer of each such block. Since there are 6 blocks we choose to invert the
image across 6 timesteps since DDIM inversion allows us to sample a subset of the
total number of steps. We choose ResNet50 since it is efficient and comparatively
faster to train, which compensates for the time consuming diffusion process. The
fourth stage of ResNet50 consists of 6 blocks as shown in Figure 1 as well as the
fifth stage of ResNet50 that comprises of 3 blocks in a separate experiment. We
refer to this in short as “Latent S4” and “Latent S5” respectively in our results
table. It is known that the upper layers of convolution networks learn low level
features while the higher level features are learned deeper into the network. Our
assumption is that subtle changes in high level features are key in distinguishing
between deepfakes and real images. Therefore, we add the latent space noise to
the first convolution layer of each block in the fourth stage of ResNet50. We also
make the choice of adding the latent noise vectors after the ReLU activation
of the previous layer to ensure negative values do not get reduced to zero. The
latent representation of each input image is obtained using DDIM inversion, a
process that is repeated in six steps until a specified iteration limit (T = 1000)
using a pretrained diffusion model. To ensure compatibility with the convolution
layers, “1x1” convolutions are applied to the latent noise vectors, followed by a 2D
adaptive average pooling layer. The denoised output from each of the six steps in
the DDIM inversion process is then combined with the subsequent input for the
convolution layers within the convolution and identity blocks of the fourth stage
of the ResNet50 classifier. We also further experiment with a similar modification
but for stage 5 of ResNet50 which we refer to as “Latent S5” in our experiments
as mentioned above.

The frequency component of images is also an interesting avenue to explore
for deepfake analysis, as demonstrated in works such as [5]. Hence, we also
investigated high-frequency feature extraction by utilizing discrete Cosine and
Fourier transforms on our original samples as well as our reconstruction error
feature maps.

3.4 Frequency transforms

Typically the process of performing a 2D DFT on an image yields a symmetric
result with the low frequencies at the corners of the image. This is due to the
periodicity of the function itself. A traditional 1D DFT of a sequence of length
2n for example would produce a symmetric sequence of coefficients that comprise
of real numbers, their complex and conjugate components. In 1D, the amplitude
spectrum would generally be the moduli of the first n+1 coefficients. In contrast
to this a 2D DFT is usually implemented in a separable fashion across specific
dimensions (here we choose the spatial height and width dimensions). Each col-
umn of the resultant spectrum is akin to the 1D spectrum described above. Since



Diffusion Models as a Representation Learner for Deepfake Image Detection 235

images have many low-frequency features (high-level features) they tend to get
concentrated in the corners. On centering, owing to the periodicity of the output
changing from a range of [0, 2π] to [−π, π] the low-frequency components move
from the corners to the center and manifest as a cross. Compared to the DFT,
the DCT is instead used for compression. In essence, the higher level of detail
spatial regions (e.g., nearly uniform blue sky in the photo of a sunny day) in an
image are compressed while the low level features, spatial areas with high level
of detail are exploded. To express this mathematically, a low-rank matrix is now
used to represent the approximation of the same image matrix as before.

4 Experimentation and Results

The FF++ dataset [27] comprises of 1000 authentic video sequences. FF++
includes four manipulation methods to alter an existing authentic frame. The
methods used to this end include Deepfakes [3], Face2Face [15], FaceSwap [31]
and NeuralTextures [30]. This presents a uniquely different challenge for experi-
menting with our detection methods. It also allows us to measure and conclude if
the current approaches of using reconstruction error as a means of distinguishing
the sampling distribution from the data distribution is effective under a different
set of circumstances as ones experimented on in [34]. Due to the longer infer-
ence time of diffusion models, we use a subset of the total frames present in
the full FF++ dataset after normalizing their pixel values. We select, 90, 126
images for training, with 74, 295 images being deepfakes while 15, 831 are real.
Our validation set comprises of 30, 042 images with 24, 655 and 5, 387 deepfakes
and real images respectively. Finally our unseen test data comprises of 4, 476
images with 764 real images and 3, 712 deepfakes. The FF++ dataset we use
for our experiments is clearly not balanced however, the class proportions are
stratified across each split. In the literature since ROC AUC is the most widely
used metric for FF++ dataset and because the class distribution roughly meets
the requirement for using accuracy, we choose these as our metrics for evalu-
ation. Furthermore, since the preprocessing step for many of these techniques
involve capturing the face structure using the first frame of a video, there are
also the presence of temporal artifacts in each sequence. Some of these temporal
artifacts such as blurring and chromatic aberration also exist in the source video
frames as well as the deepfakes with varying degrees. Furthermore, the roughly
unbalanced nature of the dataset make it a challenging dataset for our task.

For our classifier we utilize a ResNet50 pretrained on ImageNetV2. Our input
data is normalized for all our experiments. Furthermore, a batch size of 64 was
used to finetune the classifier for 30 epochs in each experiment for parity. Binary
cross entropy loss was used in conjunction with an L2 regularizer of 1e−4 for
mixed precision training of the model.

We select a pretrained diffusion model, that has been trained on CELEBA-
HQ (256 × 256) as the backbone of our reconstruction network for two of our
experiments. We also perform further experiments by choosing the same back-
bone pretrained model for fine tuning since CELEBA-HQ contains high-quality
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facial images of celebrities captured in diverse lighting conditions, poses, and
expressions. As such features like contours, textures are highly transferable to
images in FF++ images due to the inherent similarity in the domain encom-
passing facial features. We finetuned this diffusion model on 12, 403 real images
from the FF++ dataset with a batch size of 32 over 100 epochs. The noising
schedule used was linear with minimum and maximum values of βt as 0.0001 and
0.02 respectively. We used the AdamW optimizer with a learning rate of 1e−5
with an exponential learning rate with a gamma of 0.9. The maximum timestep
for noising process was set to T = 1000. On input our finetuned diffusion model
carried out DDIM inversion with a step size of S = 10 using the inverted DDIM
sampler to first obtain the latent space representations of the input images. This
implies, to generate our latent space noise vector we perform 10 model forward
passes in a non markovian, deterministic inverted denoising process. Following
this the non inverted DDIM sampler is used to reconstruct the original image
from the latent noise vector. We used this model to test the efficacy of not
only the reconstruction error but also the reconstructions obtained through the
diffusion model. Finally, we experimented with our latent ResNet (S4 and S5)
models to determine if temporal perturbations when training the model can help
the model learn some discriminating features from the latent space inversions of
the input data.

For our comparison with frequency transformed data, we used both Discrete
Cosine Transform as well as Discrete Fourier Transform to augment our data
before passing them into the same classifier as used for our other experiments.
We apply DCT and DFT to both the normalized RGB input images as well as
experiment with the DCT and DFT of the reconstruction error obtained between
the normalized RGB images and their reconstructed versions. This is done to
determine if the frequency domain has sufficient distinct features compared to
the spatial domain to improve our classification task.

Upon experimentation, our stage 4 Latent ResNet model (Latent S4) incorpo-
rating latent space noise vectors generated through a diffusion model, pretrained
on CELEBA-HQ (256) without further fine tuning, followed by adding their aver-
age to convolutional layers yielded the best results with an AUC of 0.9655. Our
baseline model which includes ResNet50 classifier pretrained on ImageNetV2
performed the second best AUC score of 0.9606. The latent S4 model finetuned
on FF++ obtained a slightly less good AUC of 0.9602, which leads us to con-
clude that finetuning was overall detrimental to the prior representations already
learned by our pretrained diffusion backbone. The Latent S4 model also outper-
formed our Latent S5 model. The diffusion reconstruction error as proposed in
[34] performed suboptimally compared to our baseline and obtained an AUC
of 0.9085. Evidently, on this dataset the DFT and DCT of the images were
also outperformed, as frequency domain features between the deepfakes and the
real images were much harder features to learn from compared to spatial incon-
sistencies. We also observed that utilizing similar frequency transforms on the
reconstruction error did not improve performance. An interesting point to note,
is that compared to the study conducted on diffusion generated LSUN bedroom
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Table 1. Classification performance comparison on FF++ dataset using learned DDIM
reconstructions.

Method Accuracy AUC

Baseline 92.25 0.9606
DDIM Reconstruction 82.93 0.5968
DIRE [34] 89.10 0.9085
DFT 82.93 0.6675
DCT 83.45 0.7197
DFT + DIRE 82.93 0.5888
DCT + DIRE 82.93 0.5948
Latent S4 93.17 0.9655
Latent S5 91.95 0.9483
Latent S4 (FF++ finetuned) 92.47 0.9602
Latent S5 (FF++ finetuned) 92.87 0.9604

[37] deepfakes in [34], the performance of diffusion reconstruction error deterio-
rated compared to our baseline for FF++. Moreover, we observed that with the
reconstructions themselves having a lower AUC of 0.5968, finding an absolute
difference between them and the original images only makes the performance of
the model decrease compared to our baseline.

Table 2. Classification performance comparison on LSUNB dataset using naive PNDM
reconstructions.

Method Accuracy AUC

Baseline 100 1.0
PNDM Reconstruction 93.44 0.9876
Naive DIRE 96.56 0.9940
DFT 99.97 1.0
DCT 100 1.0
DFT + Naive DIRE 80.11 0.9028
DCT + Naive DIRE 82.32 0.8886

Thus the diffusion reconstructions only impede our models performance.
Further experimentation was also carried out using naive fourth order PNDM
[16] reconstructions (as shown in table 2) on diffusion generated LSUN bed-
room images. We sampled 30, 000 real images from LSUN-B alongside 30, 000
fake/synthetic images using an unconditional diffusion model using DDIM for
faster generation. For this experiment we used the U-Net from the same pre-
trained diffusion model that had been trained on LSUN-B images without further
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finetuning as the backbone for our reconstruction network. Although for genera-
tion of our fake data we used DDIM sampling, we utilize a naive reconstruction
approach using PNDM for our reconstruction network. For this purpose we add
Gaussian noise to our input images for 200 steps using the traditional [11] process
with a linear schedule followed by a strided PNDM denoising over S = 20 steps.
In both circumstances, although the diffusion reconstruction led to a high AUC
overall, it performed worse than the baseline of just using the original images,
signifying that the reconstructions only impeded performance for our classifier.
Despite the poor performance of reconstruction error, we did observe that the
latent ResNet architecture performed almost at parity with our baseline. This
indicates that the latent space noise vectors could be a better representation
compared to the reconstructions which might induce more variance in the data.
Furthermore, although diffusion reconstruction error performed better than tra-
ditional frequency based approaches like DCT and DFT, the reconstructions by
themselves exhibit unfavorable performance.

5 Conclusion

In this paper, we showcased, the performance of diffusion model based represen-
tations for a discriminative task. We observe that despite good performance by
diffusion reconstruction error, an approach primarily highlighted in [34] for dif-
fusion based deepfakes, their performance cannot be attributed to the diffusion
reconstructions. Instead, they only benefit from spatially classifiable features.
Traditional methods like DCT and DFT achieved higher scores than reconstruc-
tions, plausibly because frequency domain approaches preserve high frequency
inconsistencies in the data to a higher degree than diffusion reconstructions. Dif-
fusion models have an inductive bias that allows them to preserve low-frequency
features first and then recover high-frequency details. This results in a biased
recovery of frequencies that are in a minority as explained in [36]. However, using
latent vectors instead as a regularizer during classification resulted in competi-
tive performance to our baseline.

As a future prospective, we intend to experiment with frequency components
of the latent vectors instead of diffusion reconstructions since they fundamen-
tally introduce more bias in the sampling process due to more model forward
passes. Another aspect of the current pipeline we want to improve is latency,
post training quantization to int8 [32] for convolutional layers as well as linear
layers alongside layer fusing can lead to faster inference times and newer state-
of-the-art approaches to quantizing diffusion models, post training can also be
explored [10]. Furthermore, we plan to make use of better, more comprehen-
sive datasets that curate both high quality manipulated images and high quality
synthetic images in order to test the robustness of the proposed approach.
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Abstract. This study introduces a hybrid deep learning framework
for turbulence mitigation (HATM) in videos, integrating a transformer-
based followed by CNN-based attention modules. Due to the compu-
tational demands associated with transformers, we propose a simple
technique within the transformer module to enhance computational effi-
ciency. Additionally, to better exploit spatial and channel information,
we introduce a CNN-attention module which captures global and local
inter- and intra-frame dependencies. The overall structure of the model
follows U-net, while the skip connections are replaced by our attention
blocks to further explore local, spatial, and temporal dependencies. Our
model is trained on a simulated turbulence dataset and evaluated on
both simulated and real-world datasets to gauge its generalization per-
formance. The effectiveness of each component within our model is also
evaluated through ablation studies. Experimental outputs show that our
model improves PSNR and SSIM scores, and notably enhances the recon-
struction of text images, making the restored text images more readable
and cleaner. Overall, our HATM framework represents an advancement
towards addressing turbulence distortion in video sequences, showcasing
improvements both qualitatively and quantitatively, and offering promis-
ing solutions for various applications requiring enhanced video content
restoration and mitigation of turbulence-induced artifacts.

Keywords: Video turbulence mitigation · Transformer · Hybrid
Attention

1 Introduction

Video turbulence mitigation is the process of eliminating tilting, blurriness,
noise, and other visual distortions caused by atmospheric turbulence particu-
larly when capturing videos from long distances. Conventional image processing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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techniques [8,32,33] employed for turbulence elimination are constrained in their
ability to overcome complex turbulence distortions. Consequently, researchers
have turned their attention towards more advanced models e.g., Convolutional
Neural Networks (CNNs) and Transformers.

Recently, Transformers have exhibited superior performance in capturing
spatial and temporal features, thereby achieving high performance in address-
ing many applications such as text detection and segmentation [28,36], object
localization [25], and classification [21], etc. In the realm of image and video
enhancements, transformer models also demonstrated remarkable performances
[5,29,35,38]. For instance, as a de-blurring model, S. W. Amir et al. presented
a transformer based architecture "Restormer" to efficiently exploit correlations
among long-distance features [35]. Chen et al. proposed "DAT" which includes
consecutive Transformer blocks separately exploring spatial and channel correla-
tions using the self-attention technique for image super-resolution [5]. Recently,
Zhang et al. introduced TMT [37], a multi-stage deep learning (DL) method,
involving de-warping and de-blurring architectures. In the de-warping model,
they employed a simple U-net structure, while for the de-blurring, they inte-
grated the Restormer [35] structure, introducing a shuffle attention mechanism
to incorporate temporal correlations between frames.

Besides advancements in transformer-based models, researchers have also
explored CNNs architectures [18,38]. For example, Zhong et al. presented a
deep convolutional recurrent architecture for eliminating blurring of adjacent
frames in videos [38]. Liu et al. [18] introduced fully convolutional networks
incorporating multi-scale features fusion, which integrates information from low
to high resolution and vice versa to effectively eliminate blurriness in video
frames. Their results demonstrate superior performance compared to several
state-of-the-art (SOTA) de-blurring algorithms. Son et al. [29] also proposed a
novel video de-blurring network based on motion estimation compensation and
showed the superiority of their model over other cutting-edge models in video
de-blurring. For turbulence mitigation, Vint et al. initially applied existing DL
approaches, originally designed for noise and blurriness removal tasks [31]. Mao
et al. subsequently introduced a simplified U-net structure, which operates on 50
input frames and employs mean square error as the loss function during super-
vised training [19]. They also proposed the phase-to-space (P2S) transform for
generating training datasets, a technique that we also used in our study.

This paper introduces a hybrid attention model for turbulence mitigation
(HATM) by integrating a simplified attention module [4] and a transformer
module [19,35] to leverage both structures for enhancing video turbulence miti-
gation. In terms of intra-block design, recognizing the substantial computational
demands associated with computing transformer-based attention, we introduce
a simple strategy to mitigate the computational complexity of the Transformer
module while preserving the performance. Additionally, the integration of a
simplified CNN-based attention mechanism within each block demonstrated
an improvement in the final video quality. Regarding inter-block architecture,
unlike [19], we replace skip connections with an attention block to perform a more
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in-depth analysis of low-level features. We conduct experiments by training and
evaluating the proposed model using our simulated dataset. Additionally, we per-
form an ablation study to illustrate the effectiveness of the proposed attention
block in achieving higher PSNR and SSIM scores. We also used another dataset
(BVI-CLEAR [2]) to evaluate the generalization performance of the proposed
model compared to recent SOTA models. The results show the superior visual
performance of the proposed model, particularly in restoring turbulence text
image sequences. The key highlights of HATM can be outlined as the following:

– Introducing an attention mechanism incorporating a transformer-based fol-
lowed by a CNN-based attention modules.

– Introducing a simple technique within the transformer-based attention mod-
ule for reducing computational load.

– Evaluating the proposed structure through experiments on three datasets
including static and dynamic videos to showcase the impact of the proposed
model on turbulence elimination and validate its generalization.

This paper unfolds in the following sections: First, Section 2 critically dis-
cusses the related works. Then, Section 3 introduces the methods and materials.
In Section 4, detailed information about the dataset, implementation, and com-
parisons is presented. Finally, the last section delves into a discussion of the
research achievements.

Fig. 1. Structure of the proposed Hybrid Transformer-Convolutional Turbulence Miti-
gation Model (HATM). CA and LN indicate channel attention and layer normalization,
respectively.



HATM 245

2 Related works

Various attention mechanisms are extensively utilized in enhancing images and
videos restorations. Recent advancements in deep enhancement techniques can
be categorized into two main types: CNN-based and transformer-based models.
This section provides a brief analysis of these DL models.

2.1 CNN-based Image and Video Enhancement

In image enhancement, convolutional structures such as U-net have been widely
used in recent years. For example, Guo et al. [9] applied the U-net structure to
restore high-light images from low-light ones, aiming to enhance object detec-
tion performance. They applied high-light enhancement techniques as a pre-
processing stage for detection. Moran et al. [22] used convolutional structures to
enhance image properties such as color and luminance. There is also recent image
enhancement research introduced by Chen et al. [6], which applied CNN-based
attention techniques for the image enhancement task. Wang and his colleagues
also proposed a pioneering generative adversarial framework specifically designed
for image restoration [34]. Their approach involved the removal of batch normal-
ization from the residual units, coupled with the incorporation of perceptual
loss before the ReLU activation functions. These strategies enable the model
to further enhance the brightness and sharpness of the final outputs, leading
to visually appealing results. Park et al. introduced an inner-recurrence mod-
ule inside an recurrent neural networks (RNN) cell to cope with the constraints
associated with short-term memory limitations [23]. This innovative approach
enhances the ability of exploring large dependencies, thereby improving its per-
formance on tasks requiring temporal coherence. Additionally, Liu et al. [18] pre-
sented a novel approach aimed at improving de-blurring in dynamic video frames.
They introduced blur-invariant motion estimation and Pixel Volume modules to
effectively utilize motion estimation, resulting in sharper frames with reduced
artifacts. This innovative technique demonstrates significant advancements in
dynamic video de-blurring, paving the way for improved video quality in various
applications.

2.2 Transformer-based Image and Video Enhancement

Recently, video enhancement utilizing transformers has emerged as a cutting-
edge technique in computer vision. Originally designed for natural language pro-
cessing tasks, transformers have been repurposed to effectively model tempo-
ral dependencies in image and video sequences. Using self-attention, transform-
ers can explore distant spatial and spectral dependencies and efficiently propa-
gate information across frames [24]. For instance, Souibgui et al. [30] exploited
the transformer’s capability to enhance textual image reconstruction from dis-
torted document images. In the realm of turbulence mitigation, Zhang et al. [37]
introduced a hybrid transformer-CNN module embedded within a U-net struc-
ture to address turbulence distortions in sequential frames. They adopted the
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hybrid structure initially proposed in [35], which was originally applied for image
restoration. Furthermore, they introduced a novel shuffle attention block to effi-
ciently harness spatial and sequential information in video sequences during the
training process. In our paper, we have enhanced both the transformer and CNN
components of the model to further improve performance.

3 Methodology

Fig. 1 illustrates an overview of the proposed turbulence mitigation model
(HATM). The model takes turbulence video frames as an input and produces the
corresponding restored frames. In this section, we introduce transformer-based
and convolution-based attention modules which are subsequently applied in a
single attention block.

3.1 Transformer-based Attention Module

The structure of the transformer module is detailed as follows: Within each
transformer module, the input feature map is denoted as F ∈ R

T×C×H×W ,
where T represents the frame number, C represents the channel number, and H ×
W represents the spatial dimensions of the feature map. The transformer module
initiation involves two depth-wise 3D convolution layers with dilation factors 2
and 3, designed to augment the receptive field. Subsequently, a 3D depth-wise
encoder layer is employed to reduce the spatial dimensions of the feature map by
a factor of 1/2. This decoder is introduced to alleviate the computational load
associated with computing the self-attention map. The output of the encoder is
denoted as Fenc ∈ R

T×C×H/2×W/2.
According to the self-attention techniques [7,10,13,27], the computation of

Query (Q), Key (K), and Value (V ) involves reshaping the feature map to (C ×
T,W/2×H/2). The individual components are calculated as Q = W q×Fenc, K =
W k ×Fenc, and V = W v ×Fenc, where, W q ∈ R

CT×HW/4, W k ∈ R
CT×HW/4,

and W v ∈ R
CT×HW/4. The recalculation of X is performed utilizing the self-

attention map in the following manner:

F̂enc = Softmax(
QKT

α
) × V, (1)

where, α is a learnable scaling parameter to control the magnitude and X̂ is
the output of the self-attention operation. The F̂enc is reshaped to T ×C×H/2×
W/2 and then fed into the decoder layer to upsample F̂enc to the original spatial
size H × W . The computational complexity of the above attention mechanism
is expressed as O(HW×(CT )2

h ). So, reducing spatial sizes to H/2 and W/2 leads
to a quadratic decrease in computational complexity.
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3.2 Convolution-based Attention

In the proposed framework, we introduce a CNN-based module designed to facil-
itate the interaction of global and channel-specific information within the feature
space. To achieve this objective, we implement a simplified attention module [4],
comprising two primary components: a simplified channel attention mechanism
and a gated operation defined as Gate(X,Y ) = X � Y . The computation of X
and Y involves a 3D convolution that condenses spatial information into chan-
nels, followed by a division of features across channels. The resulting output
from the Gate() operator feeds into the CNN-based channel attention, where
the feature map is compressed in channels and then multiplied with the original
feature map. This facilitates the model in focusing more attention on significant
channels. Note that, in Fig. 1, LN indicates layer normalization on 3D feature
space.

The overall structure of the proposed model follows U-net. Considering the
significance of enhancing low-level features to improve PSNR scores, we replace
the skip connections, which bridge encoder to decoder layers, with the proposed
attention blocks. Moreover, in image and video enhancement, especially in tur-
bulence mitigation and de-blurring algorithms, researchers commonly apply skip
connections from the input to the output. Based on our experience, adding this
skip connection can significantly speed up the training process and enhance per-
formance. Consequently, following other recent models [2] in this area, we incor-
porate the skip connection in our structure. We also apply group convolution
in all 3D convolution layers to address the complexity. This approach reduces
computational complexity and memory usage by dividing input channels into
smaller groups channels and performing convolutions separately. Consequently,
processing times are faster, and fewer parameters are needed, increasing the
applicability of our HATM.

4 Results and Discussion

In this section, we conduct experiments to evaluate the proposed model, as
discussed earlier in previous section. We applied DIV2K dataset [1] to generate
the test and training videos, which is explained in Section 4.1. For evaluating
the proposed model, we apply three datasets including the BVI-CLEAR [3], the
real world turbulence [2,11] dataset, and the real-world text dataset [20].

4.1 Data Preparation

For training purposes, our dataset was expanded by incorporating images from
the DIV2K dataset [1]. De-blurring and de-noising degradation functions were
applied to images using the provided TurbulenceSIMP2S simulator [19]. We
collected images from the DIV2K dataset [1] and generated simulated turbu-
lence video frames using the TurbulenceSIMP2S simulator [19]. This software
offers degradation functions such as blurring, warping, and noise. Initially, 800
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Fig. 2. Qualitative comparison between the proposed model (HATM) and TMT [37]
using simulated static sequential images. (a) represents first frame of input sequential
images. (b) shows the output of TMT [37]. (c) represents the output of the proposed
model (HATM). (d) represents the corresponding GT images.

images were selected from the DIV2K dataset, and images are transformed into
a sequence of distorted frames. We generate 50 disturbed frames per image,
simulating blurring, noise, and warping effects. Additionally, different distortion
levels were applied to further augment the dataset. Out of the 800 videos gen-
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erated from each image, 20 videos were randomly selected for testing, and the
remaining videos were allocated for training.

To generate dynamic turbulence videos, we gather 300 videos from the
Sport1M dataset [12], a comprehensive action recognition dataset comprising
1.1 million videos spanning 487 sport action classes. Among them, 250 videos
are selected. A partition of 200 videos is assigned for training purposes, while the
remaining videos are designated for testing. Each video is resized to 512 × 512.
Since each video has different length, first 100 frames of each video are selected
for the training and testing. Similar to the static dataset, for further augmenting
the dataset, various distortion levels and conventional augmentation techniques,
including cropping, flipping, and noise addition, are applied during the training
phase.

In addition to the simulated datasets, we included other turbulence video
datasets in the test phase to assess the generalization capability of the pro-
posed model. Specifically, we utilized the BVI-CLEAR [3] Dataset, which com-
prises eight distinct static turbulence videos, including barcodes, books, boxes,
carback, carfront, faces, plant, and toys. We additionally apply another real-
world dataset [2,11] comprising 14 turbulence videos, encompassing both static
and dynamic scenarios. We present results obtained from the test datasets to
visually demonstrate the generalization performance of the proposed model.

Note that, for the training phase of the static model, only synthetic static
data is utilized. Since dynamic videos can include both static and dynamic
scenes, the model, intended for turbulence removal in dynamic videos, is trained
on a combination of synthetic dynamic and static datasets.

4.2 Comparison With Recent Models

We conduct qualitative and quantitative comparisons in Sections 4.2, 4.3, and 4.4
using some recent models such as Dnet [14], NDIR [15], VRT [16], U-net [26],
RVRT [17], and TMT [37]. U-net [26], a widely used reference for enhancing
image and video processing, RVRT [17], a recent video restoration model, and
TMT [37], recognized as the current SOTA model for video turbulence mitiga-
tion. Dnet and NDIR are both developed for turbulence mitigation and VRT is
originally designed for video restoration. It is important to note that we trained
all models with our training dataset to ensure a fair comparison. Fig. 2 illustrates
the performance of TMT and the proposed model on our synthesized dataset
and Table 1 presents the average objective qualities, including PSNR and SSIM,
of the restored and ground truth static videos. Note that, all models are trained
with the dataset outlined in Section 4.1 and the number of input frames per video
is set to 12 for all experiments conducted in this study. The results demonstrate
that our HATM achieves higher PSNR and SSIM scores outperforming other
U-net, TMT, and RVRT models on our synthesized datasets.

We also conduct turbulence mitigation experiments on dynamic datasets. To
address turbulence removal in dynamic videos, we train the model using both
static and dynamic synthetic datasets. The results in Table 2 demonstrate that
our model outperforms TMT and has performance comparable to RVRT.
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Table 1. Average inference PSNR and SSIM scores of different models across static
video scenes with varying distortion levels. Input image size is 256×256 and the number
of input frames is 12 for all experiments.

Methods
Turbulence level

D=0.1, r=0.1 D=0.1, r=0.2
PSNR SSIM PSNR SSIM

U-net [26] 23.32 0.7254 23.37 0.7379
TMT [37] 23.64 0.7412 24.14 0.7519
RVRT [17] 23.57 0.7401 23.98 0.7448

HATM (ours) 24.03 0.7798 26.03 0.8521

4.3 Ablation Study on Different Attention Modules

In our proposed model, we introduced a block attention mechanism comprised
of two attention modules: CNN-based and Transformer-based attentions. This
section explores the influence of this hybrid attention block on the PSNR and
SSIM scores. Table 3 presents the outcomes of models employing three dis-
tinct attention blocks. The first model exclusively utilizes a CNN-based atten-
tion block, the second model follows the approach outlined in [37], incorporat-
ing a transformer block with a Gated Feed-forward (GF) [4,35], and the third
model represents our proposed architecture which uses the transformer with the
CNN-based attention blocks. Inspired by Chen et al. [4], which demonstrated a
fully CNN-based model for image enhancement achieving state-of-the-art per-
formance, we incorporated channel attention within the module and adapted it
for time-series images. We integrated this modified CNN module into our struc-
ture. Our findings show that applying the CNN-based attention module after the
transformer enhances PSNR and SSIM by better capturing local dependencies,
resulting in sharper output frames compared to the original TMT. We believe
that this integration effectively leverages the strengths of both CNNs and trans-
formers, contributing to the simplicity and effectiveness of our network.

We have also conducted a qualitative analysis on how the number of input
frames affects the turbulence mitigation task. Fig. 4 illustrates the model outputs
with varying numbers of input frames, ranging from 1 to 20. Fig. 4 shows that
increasing the number of input frames clearly enhances turbulence mitigation
because the warping effect is closely tied to temporal variation.

4.4 Assessing the Generalization Performance

For the generalization assessment, we evaluate the models on the BVI-
CLEAR [3], the real-world dataset [2,11], and a real-world text dataset [20]. The
CLEAR dataset comprises static disturbed sequential frames with their corre-
sponding ground truth images. This dataset mostly contains images with textual
information. The objective of this experiment is to assess the models’ capacity in
exploiting textual information from turbulence-distorted videos. Fig. 3 illustrates
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Fig. 3. Qualitative comparison on BVI-CLEAR [3] dataset. (a) represents the input
while (b) shows the output of TMT [37]. (c) represents the output of the proposed
HATM.



252 M. A. Kiasari et al.

Table 2. Average inference PSNR and SSIM scores across dynamic video scenes for
SOTA models.

Methods PSNR SSIM

TMT [37] 31.58 0.9209
RVRT [17] 32.38 0.9316
HATM (ours)32.37 0.9332

Table 3. Quantitative comparison analysis of PSNR and SSIM scores obtained by
different attention blocks on static dataset.

Methods PSNR SSIM
Vanilla CNN-based Attention Block 22.63 0.5821
Transformer+ Gated Feed-forward Block (TMT) [37] 23.64 0.7412
Our Transformer-CNN-based Attention Block (HATM)24.03 0.7798

the results of TMT and our proposed model on the BVI-CLEAR dataset. The
first column displays the first input frames of four different videos. The second
column shows the corresponding output frames of TMT model. The last col-
umn shows the corresponding results of the proposed HATM model. The results
demonstrate that HATM excels in reconstructing text content of turbulent video
sequences. More specifically, for instance, the second row of Fig. 3 shows that
HATM reconstructs the text "MAGAZINE" more effectively compared to TMT,
highlighting its superior performance in preserving textual details amidst turbu-
lence distortion.

We also evaluated the performance of the proposed model alongside TMT,
using the real-world dataset [3] which includes static and dynamic real world
turbulence-affected videos. The first row in Fig. 5 shows the models’ outputs
for the ’hill house’, a static scene, while the second row presents results for the
’moving car ’, a dynamic video sequence. Our proposed model produces clearer
and sharper images, outperforming TMT.

Fig. 4. Qualitative analysis of the proposed model’s outputs with varying numbers of
input frames. The outputs are displayed from left to right, corresponding to 1 to 20
input frames.
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Fig. 5. Qualitative comparison on real world dynamic dataset. The first and second
row demonstrate the performance of the models on a static ’hill house’ and dynamic
’moving car ’ videos, respectively.

Fig. 6. Qualitative analysis on real world text dataset. Dnet [14], NDIR [15], and
TMT [37] are specifically designed for turbulence mitigation, whereas VRT [16] was
originally developed for video restoration.
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For further supporting our experiments, Fig. 6 illustrates qualitative compar-
isons on a real-world text dataset [20], involving recent turbulence mitigation
and video restoration models, including Dnet [14], NDIR [15], VRT [16], and
TMT [37]. All models were fine-tuned on our synthesized dataset, starting from
their provided pre-trained weights.

5 Conclusion

In this study, we proposed a hybrid transformer-CNN-based attention model
for video turbulence mitigation (HATM). HATM incorporated attention blocks,
where each block integrated a combination of CNN-based and Transformer-based
attention modules to effectively eliminate turbulence distortions in videos. To
assess the performance of HATM, we conducted experiments on our simulated
dataset as well as real data. The results of our study demonstrate the superior
performance of HATM on our simulated video dataset over some recent SOTA
models. We also evaluated the proposed model on the BVI-CLEAR, CLEAR,
and real world turbulence-affected text datasets including static and dynamic
videos to assess its generalization performance. The results demonstrate that
our proposed model provides superior visual performance in handling turbulence
mitigation in various scenes and delivers more clear and sharp frames. As a future
work, we will train the model on larger datasets and enhance its capabilities to
further improve the clarity of text images in the turbulence situation.
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Abstract. In this paper, we address the challenge of single image reflec-
tion removal (SIRR), a crucial task in computer vision that involves
eliminating undesirable reflections from images captured through glass
surfaces. Current state-of-the-art methods typically rely on convolutional
neural networks (CNNs) and often make certain assumptions about the
appearance of reflections, which may not hold true in real-world sce-
narios. To overcome these limitations, we propose a novel Transformer-
based approach, DereflectFormer, inspired by the Swin Transformer. Our
architecture introduces a new module, the Depthwise Multi-Activation
Feed-Forward Network (DMFN), which leverages depthwise convolution
and a dual-stream ReLU-GELU activation function to enhance detail
extraction capability. We also employ a synthetic dataset and a syn-
thesis method for training, which allows our model to fully exploit the
capabilities of Transformer architectures. Based on experimental results,
we demonstrate that our approach performs better than state-of-the-art
methods, providing more accurate and robust results in various real-
world scenarios. Furthermore, our ablation studies reveal that each com-
ponent of our architecture contributes significantly to its performance,
offering valuable insights for future research in the field of single image
reflection removal. The code and dataset is available at https://github.
com/Agent76ow/DereflectFormer.

Keywords: Single Image Reflection Removal · Transformer-based
Approach · Depthwise Multi-Activation Feed-Forward Network

1 Introduction

1.1 Background

In daily life, images captured through glass surfaces are frequently subject to
undesirable reflections, which substantially degrade their quality and hinder the
performance of various computer vision tasks, such as object recognition, seman-
tic segmentation, and scene understanding. These challenges make single image
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15321, pp. 257–274, 2025.
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reflection removal (SIRR) an essential low-level vision problem that has gar-
nered significant attention from researchers in the computational photography
and computer vision communities.

1.2 Challenges of Existing SIRR Methods

Current state-of-the-art SIRR methods [9,14,17] typically rely on convolutional
neural networks (CNNs) and involve assumptions about the appearance of reflec-
tions, such as blurriness, ghosting cues [17,29] from thick glass, and differences
in focus between reflection and transmission. However, these assumptions may
not always be valid in real-world scenarios, where reflection appearances can
be diverse and complex. Consequently, existing methods encounter difficulties
in effectively handling and removing reflections with varying appearances from
single input images.

Recently, there has been growing interest in leveraging the self-attention
mechanism provided by Transformer [32] architectures for various computer
vision tasks. While CNN-based approaches have rapidly advanced the state-of-
the-art in low-level vision tasks, Transformer models, with their unique capabil-
ities, present new possibilities for improved performance. Notably, Transformers
have demonstrated their potential in high-level tasks through the success of
Vision Transformers (ViT [8]), which outperforms the majority of CNN archi-
tectures. Following this success, many modified architectures [5,25,27,40] have
been proposed to further adapt and refine the original model.

Despite these modifications primarily focusing on high-level tasks, several
variations have recently emerged to address low-level challenges [4,15,24,36,41].
The inherent advantages of Transformer models, such as the ability to effectively
capture long-range dependencies and contextual information within images,
make them a promising choice for low-level tasks, such as reflection removal. As
a result, this presents an opportunity to investigate how the strengths of Trans-
former models can be harnessed for reflection removal, potentially offering more
accurate and robust results compared to traditional CNN-based approaches.

1.3 Proposed Solution: DereflectFormer

In this paper, we propose a novel Transformer-based approach dubbed Dere-
flectFormer for SIRR, which is inspired by Swin Transformer [25]. Through
our research, we have observed that the GELU activation function commonly
employed in Vision Transformer models tends to underperform in reflection
removal tasks. Additionally, the Multi-Layer Perceptron (MLP) layers strug-
gle to effectively restore fine image details. To address these issues, we introduce
a novel MLP module called Depthwise Multi-Activation Feed-Forward Network
(DMFN). DMFN leverages depthwise convolution for extracting more hierarchi-
cal detail information and utilizes a dual-stream ReLU-GELU activation func-
tion to enhance detail extraction capability. The combined use of GELU [13]
and ReLU [12] activation functions captures distinct types of nonlinear features,
emphasizing their complementary effects. The depthwise separable convolution
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design of DMFN targets individual channels separately, reducing computational
complexity while delivering substantial improvements in image restoration qual-
ity with a modest increase in the number of parameters.

Due to the need for a large amount of training data to fully exploit Trans-
former capabilities, the existing datasets are insufficient to unleash their full
potential. Therefore, we employ a synthetic dataset and introduce a synthesis
method (to be detailed in Sec. 4.2) to better support the training of our Dere-
flectFormer model.

Fig. 1. Compared to other methods of image reflection removal, the DereflecFormer’s
performance is illustrated, with dot size representing the number of parameters and
MAC values plotted on the X-axis.

1.4 Comparison and Contributions

In conclusion, the necessity for reflection removal in real-world images empha-
sizes the importance of continued research in single image reflection removal.
Our work focuses on developing an approach that uses Transformer architec-
tures named DereflectFormer, accompanied by the novel MLP module, DMFN.
To further facilitate the learning of our DereflectFormer model, we make use of
a synthesized dataset specifically tailored for this task. To demonstrate the effi-
ciency of our solution, we have compared DereflectFormer with existing models.
Fig. 1 demonstrates the superior performance of DereflectFormer in comparison
to other image reflection removal models in terms of computational efficiency
and performance metrics, underscoring the advantage of our method.
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Building upon the previously discussed insights, we set forth our main con-
tributions in this work as follows:

– We propose DereflectFormer, Transformer-based architecture for single-image
reflection removal (SIRR). Using Swin Transformer blocks and a U-Net-like
structure, our model offers effective image reflection removal across various
real-world scenarios.

– We introduce the Depthwise Multi-Activation Feed-Forward Network
(DMFN) module. Supplanting traditional GELU-based activations and MLP
layers, DMFN enhances fine detail capture and restoration, improving overall
reflection removal quality.

– To boost DereflectFormer’s capabilities, we use a synthetic dataset and a
synthesis method for training. This strategy provides diverse training samples,
enhancing our model’s applicability and generalization in real-world reflection
removal scenarios.

2 Related Work

2.1 Image Reflection Removal

Early single image reflection removal methods were primarily non-learning based
approaches. The majority of these methods relied on the defocused reflection
assumption, which posits that reflections are usually more blurry compared to
the true transmission [1,18,22,31,33]. By exploiting the blurry nature of defo-
cused reflections, these methods attempt to suppress the reflection by leveraging
image gradients. Another cue often utilized in this line of research is the ghost-
ing cue, whereby multiple reflections are visible on the glass [17,29,31]. However,
this cue is largely dependent on glass thickness, resulting in potential failure on
thin glass surfaces.

With the development of deep learning techniques, learning-based methods
have emerged as a dominant paradigm for single image reflection removal [9,42].
Generative Adversarial Networks (GANs) were employed by Wei et al. [38] and
Ma et al. [26] to synthesize realistic reflections under guidance from real-world
data. Another notable contribution was made by Kim et al. [16], who proposed
a physics-based method to render reflections and mixed images, significantly
improving the quality of training data. Despite these advancements, existing
methods still face difficulties in perfectly removing reflections for a wide range
of real-world data [2,9,30].

Various network structures have also been explored for reflection removal.
Fan et al. [9] proposed CEILNet, a two-stage architecture that predicts edge
maps before estimating the transmission layer. This two-stage approach was
further developed by DMGN [10], Dong et al. [7], and RAGNet [23], who added
the estimation of the reflection layer at the first stage. VGG-19 features were
also combined with SIRR models by Zhang et al. [42], leading to a substantial
improvement in results. Other advancements include recurrent neural network-
based techniques for iterative reflection and transmission layer prediction [7,10,
19].
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2.2 Vision Transformers.

The success of CNNs in a variety of computer vision tasks has been well-
documented. However, CNNs have certain limitations, such as restricted recep-
tive fields and a large number of parameters, which can hinder their perfor-
mance in more complex tasks. To address these issues, researchers have turned
to the transformer architecture, which has shown promising results in the natural
language processing domain with models such as BERT [6]. The self-attention
mechanism in transformers facilitates the capturing of long-range dependencies
and enhances interpretability. Vision Transformers (ViTs) have proven effective
in computer vision tasks [8], demonstrating their potential as a fundamental
building block in lieu of convolutions. The DereflectFormer is similar to Swin
Transformer[25] and U-Net[28], but it offers several critical modifications to
remove image reflections.

ViTs have found success not only in high-level visual tasks but also in
low-level image restoration tasks, such as super-resolution and denoising. For
instance, based on the Swin Transformer, SwinIR[24] is a strong baseline model
for image restoration, has shown improved performance in these low-level tasks.
Notably, Zamir et al. proposed an efficient Transformer model called Restormer
[41], which excels in high-resolution image restoration tasks. Restormer achieves
this by making key design choices in basic components, such as multi-head atten-
tion and feed-forward networks, allowing it to capture long-range pixel interac-
tions and remain applicable to large images. Uformer [36], a novel model that
capitalizes on Swin Transformer blocks to establish a U-Net-like network and
incorporates depth-wise convolution (DWConv [11]) into the feed-forward net-
work (FFN) in a semblance with the LocalViT strategy [21]. The Uformer inge-
niously combines the ability of the Transformer to handle long-range dependen-
cies with the strengths of U-Net in image processing tasks.

3 Method

3.1 Overall Pipeline

The DereflectFormer architecture, our proposed model, is specifically designed
to efficiently tackle single-image reflection removal tasks. This architecture is
built upon the popular Swin Transformer [25], with significant improvements
to adapt to the unique challenges posed by reflection removal tasks. The loss
function adopted by the network is the L1 loss, which is commonly used for
regression problems and works well for image reflection removal tasks due to its
robustness against outliers.

The overall pipeline of our architecture is presented in Fig. 2. The pipeline
begins with a degraded input image I ∈ R

H×W×3, where H×W denotes the spa-
tial dimension and 3 represents the number of channels in the RGB color space.
The DereflectFormer initially applies a convolution operation to this input image
to obtain low-level feature embeddings F0 ∈ R

H×W×C, where C signifies the
number of output channels. These shallow features F0 are then passed through a
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symmetric encoder-decoder structure, where they are transformed into deep fea-
tures Fd ∈ R

H×W×2C. There are multiple DereflectFormer blocks at each level
of this encoder-decoder structure, with the number of blocks gradually increasing
from the top to bottom levels to maintain computational efficiency.

The encoder part of the structure operates by progressively reducing the
spatial size of the input while expanding the channel capacity, utilizing down-
sampling techniques. The decoder, on the other hand, starts with low-resolution
latent features Fl ∈ R

H
4 ×W

4 ×4C and progressively recovers the high-resolution
representations using upsampling techniques. To assist in the recovery process,
the features from the encoder are concatenated through SK fusion with the fea-
tures from the decoder via skip connections, a technique inspired by the U-Net
architecture [28]. This process helps preserve the high-frequency details in the
input image, which are crucial for reflection removal tasks.

Fig. 2. The DereflectFormer is a five-stage U-Net-like architecture that incorporates
several novel components specifically designed for single image reflection removal
tasks. The architecture introduces a Depthwise Multi-Activation Feed-Forward Net-
work (DMFN) module and SpatialLayerNorm into the DereflectFormer blocks to
allow for controlled feature transformation and to better manage spatial structures in
the image data. It also includes window-based multi-head self-attention (W-MHSA),
enhancing the model’s ability to aggregate spatial information. The SK fusion layer,
an additional feature of this architecture, replaces traditional concatenate to improve
feature fusion.

Finally, a convolution layer is employed on the refined features to generate
a residual image R ∈ R

H×W×3. The degraded input image is then added to
this residual image to obtain the restored image : Î = I + R. In addition to the
above, our DereflectFormer architecture includes another components: the SK
fusion layer, which replace the original concatenation fusion. The SK fusion layer
is inspired by SKNet [20], and it is designed to adaptively recalibrate channel-
wise feature responses for better feature fusion. Next, we present the details of
the DMFN module.
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3.2 Depthwise Multi-Activation Feed-Forward Network (DMFN)
Module

In the Depthwise Multi-Activation Feed-Forward Network (DMFN) module, we
introduce two fundamental modifications to the traditional feed-forward network
(FN) [32] to improve representation learning: (1) multi-activation mechanism,
and (2) depthwise convolutions. The architecture of our DMFN is depicted in
Fig. 2, as seen on the right-hand side of the figure.

Feed-forward networks (FN) operate on each pixel location individually using
two 1×1 convolutions to expand and reduce the feature channels (usually by a
factor γ = 4) with a non-linearity applied in the hidden layer. In contrast, our
DMFN module incorporates a multi-activation mechanism that combines the
strengths of two different activation functions, ReLU [12] and GELU [13], in
parallel paths. This design allows the module to capture a richer set of fea-
ture representations, as different activation functions may excel in modeling
different aspects of the data.Depthwise convolutions [11] are also integrated into
the DMFN module to encode information from spatially neighboring pixel posi-
tions, which is essential for learning local image structure and achieving effective
restoration. Depthwise convolutions apply separate filters to each input channel,
enabling the efficient learning of local features while keeping the computational
burden low.

Given an input tensor X ∈ R
H×W×C, the DMFN module can be formulated

as follows:

X̂ = MLA(LN(X)) +X. (1)

In Eqn. 1, the DMFN module consists of a MultiActivation (MLA) function,
a residual connection, and layer normalization (LN) [3]. The MLA function,
which is a key component in the DMFN module, combines the advantages of
two different activation functions, ReLU and GELU. This mechanism enhances
representation learning for reflection removal tasks by allowing the module to
capture a richer set of feature representations.

The detailed operation of the MLA function unfolds as follows:

MLA(X) = φ(ReLU(ε(X)) + GELU(ε(X))). (2)

In the above equation, φ denotes a 1×1 convolution operation that reduces
the dimensionality of the output, and ε represents a sequence of operations: a
1×1 convolution that expands the dimensionality, followed by a 3×3 depthwise
convolution for feature extraction. This function first expands the dimensionality
of the input through a 1×1 convolution operation, represented by ε. It then
applies a 3×3 depthwise convolution to extract spatial information from the
input, before applying the ReLU and GELU activation functions in parallel.
The outputs of these two activation functions are then summed, which allows the
function to capture a richer set of feature representations. The summed output
is finally reduced back to the original dimensionality through a 1×1 convolution
operation, represented by φ.
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The channel expansion factor in the DMFN module varies between different
DereflectFormer blocks in the network. Specifically, the pattern expansion ratio,
denoted as γ, is defined as [2, 4, 4, 2, 2], meaning that the first and last blocks
double the number of channels, while the second and third quadruple them. This
design allows the DMFN module to control the information flow through different
hierarchical levels in our pipeline, and maintain a similar number of parameters
and computational burden compared to traditional feed-forward networks (FN
[32]). This way, the DMFN module is able to capture both fine-grained details
and high-level contextual information effectively and efficiently.

3.3 SpatialLayerNorm and W-MHSA Components

We integrate SpatialLayernorm and W-MHSA components into our Dereflect-
Former architecture to further improve its performance. These components are
designed to better address the unique challenges presented by single image reflec-
tion removal tasks. The SpatialLayerNorm is a variant of the traditional Layer
Normalization (LayerNorm [3]). The main difference lies in the dimensions used
for calculating the mean and standard deviation.

In the original LayerNorm, these statistics are computed along the last dimen-
sion of the input (dim = -1). This means that normalization is performed inde-
pendently for each feature in the input, making it suitable for handling structured
2D inputs, such as the outputs of fully connected layers.

In contrast, SpatialLayerNorm computes these statistics along the channel,
height, and width dimensions of the input (dim = (1, 2, 3)). This means that nor-
malization is performed independently for each channel. This adjustment allows
SpatialLayerNorm to better handle 4D inputs with spatial structure, which are
typical in our application (i.e., image reflection removal tasks). The 4D inputs
refer to a batch of color images, where the dimensions represent (batch size,
channels, height, width). The spatial normalization operation enables the model
to effectively account for the variations in different spatial locations across the
channel dimension, enhancing the capability of the model to capture spatially
varying patterns in the input image.

The W-MHSA (Window-based Multi-Head Self-Attention) component is a
variant of the traditional MHSA that aims to enhance the capability of the
model to aggregate spatial information. Inspired by the Swin Transformer [25],
we first partition the input feature map X into several non-overlapping windows
and then apply the W-MHSA within each window.

Given an input feature map X ∈ R
b×h×w×c, where b, h, w, and c denote the

batch size, height, width, and number of channels, respectively, we project X into
Q,K, and V (query, key, and value) using linear layers. Let Q,K, V ∈ R

b×l×d

correspond to a single window & header, where l is the number of tokens in a
window and d is the dimension. The self-attention is computed by :

Attention(Q,K, V ) = Softmax
(

QKT

√
d

+ B

)
V, (3)
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where B denotes the relative position bias, with a linear layer positioned to
transform the attention’s yield.

In addition to the attention mechanism, we also apply a convolution operation
on V to aggregate information from the neighboring pixels without considering
window partitioning. The methodology for aggregating spatial information is
therefore designed as follows:

Aggregation(Q,K, V ) = Softmax
(

QKT

√
d

+ B

)
V

+ Conv(V̂ ),
(4)

where V̂ ∈ R
b×h×w×c signifies V prior to window partitioning, and Conv(·) can

be either a depthwise convolution denoted as DWConv, or a ConvBlock, which
is a sequence of Conv-ReLU-Conv operations. This aggregation scheme allows
us to capture both intra-window and inter-window dependencies, resulting in a
more effective representation learning process for reflection removal tasks.

4 Experiment and Analysis

4.1 Experimental Setup

We experiment with five DereflectFormer variants (denoted as -T, -S, -B, -M and
-L for tiny, small, basic, middle, and large, respectively). The attention ratio in
this context refers to the proportion of blocks that incorporate multi-head self-
attention (MHSA), and we place the blocks containing MHSA at the end of
each stage. For the three smaller models (-T, -S, -B, -M), we use depthwise
convolution (DWConv) with a kernel size of 5 as the parallel convolutions. Since
DWConv is an operation with low computational cost but high memory access
cost, we use a ConvBlock with a kernel size of 3 for the large model (-L).

During the training phase, images are randomly cropped into patches of 224
× 224. For training diverse variants, we establish separate mini-batch sizes, i.e.,
32, 16, 16, 16, 8 for −T, −S, −B, −M, −L, respectively. Referring to the linear
scaling rule, we set the initial learning rate to 2, 1, 1, 1, 0.5 × 10−4 for −T, −S,
−B, −M, −L, respectively. We train the models utilizing the AdamW optimizer
and a cosine annealing scheme, where the learning rate is gradually lowered from
the initial value down to 2, 1, 1, 1, 0.5 × 10−6. To evaluate the overhead, we
utilize the number of parameters (#Param) and multiply-accumulate operations
(MACs). MACs are measured on 224 × 224 images.

4.2 DataSet

To train our DereflectFormer model, we create a synthetic dataset and employ a
synthesis method. These resources enable the model to learn complex reflection
patterns in a controlled environment, ultimately improving its performance on
real-world images. We use a total of 329 images from the CID [35] dataset, along
with 90 real images and 13700 synthetic images from Zhang et al. [42] to train
our DereflectFormer model.
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The synthetic images were generated using a novel method, distinct from
that proposed by Zhang et al. [42]. Although their dataset was employed for
the image synthesis, but their synthetic data images are biased and don’t work
well for my model training, the method I developed is entirely new and differs
from the approach used by Zhang et al. To synthesize an image, two images are
selected: A background image B and a reflection image R. Then, both B and
R images are converted to NumPy arrays and normalized to a range between
0 and 1. Following this, a Gaussian kernel is created with a magnitude propor-
tional to the kernel size and sigma values (which are randomized from predefined
ranges for each iteration). This kernel is then convolved with the R image to
produce a blurred version of the reflection image dubbed Rblur. Fig. 3 visually
illustrates the transformation process, presenting the original background image
B, reflection image R, the blurred reflection image Rblur, and the final synthetic
image M. The final synthetic image M is created by adding B and Rblur. If the
maximum value in M exceeds 1 (the maximum value in the normalized range),
a correction is applied to Rblur and M to ensure all values are restricted within
the normalized range. The created synthetic image M is then saved and can be
utilized for further testing or training a model for image reflection removal.

Fig. 3. This figure illustrates the process of synthesizing images. Here, R represents
the reflection image that undergoes Gaussian blurring to yield Rblur, a blurred version
of the original reflection. B refers to the background image, and M signifies the final
synthesized image, produced by combining B and Rblur. Additionally, four examples
of synthesized reflection images are presented at the bottom of the figure.
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4.3 Results

In this subsection, we present the results of our experiments. We compare the
performance of our proposed DereflectFormer model with state-of-the-art reflec-
tion removal methods on various datasets. We also provide quantitative analyses
of the results to establish the effectiveness of our Dereflectformer. We quantita-
tively compare the performance of our DereflectFormer and some other reflection
removal methods, including BDN [39], RmNet [38], IBCLN [19], ERRNet [37]
and YTMT-UCT [14], on five real-world dataset, involving Real20 [42], three
subsets of SIR2 [34], and CID [35]. In Table 1, the average PSNR(Peak Signal-to-
Noise Ratio), SSIM(Structural Similarity Index Measure), and overhead metrics
for these models across five datasets are displayed. We provide a quantitative

Table 1. Single image reflection removal results. Quantitative comparison (average
PSNR/SSIM on the 5 testing datasets and computational overhead) with different
methods for single image reflection removal.

Method AVG PSNR AVG SSIM Overhead
#Param MACs

BDN 20.068 0.801 75.1626M 38.7042G
RmNet 21.386 0.83 65.4328M 37.4309G
IBCLN 22.478 0.843 10.8042M 127.3909G
ERRNet 22.508 0.832 18.9534M 337.2426G
YTMT-UCT 22.738 0.847 38.4485M 142.8246G
DereflectFormer-T 22.152 0.85 0.9434M 6.7481G
DereflectFormer-S 22.52 0.858 1.7978M 13.1525G
DereflectFormer-B 22.678 0.859 3.5435M 25.9384G
DereflectFormer-M 22.836 0.864 13.7527M 103.8233G
DereflectFormer-L 22.982 0.865 26.4934M 234.1255G

Table 2. Quantitative comparison on the testing datasets of different reflection removal
methods. The best results are highlighted in red and the second best results in blue.

Method Real20 CID Wild Solid Postcard
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BDN 18.18 0.717 17.55 0.738 21.35 0.846 22.66 0.852 20.60 0.851
RmNet 18.86 0.735 18.64 0.772 24.71 0.900 23.78 0.875 20.94 0.866
IBCLN 20.43 0.755 18.82 0.791 24.13 0.899 24.51 0.886 24.50 0.885
ERRNet 21.96 0.786 18.99 0.740 25.18 0.886 24.78 0.890 21.63 0.856
YTMT-UCT 21.21 0.773 19.51 0.787 25.48 0.909 24.84 0.895 22.65 0.872
DereflectFormer-T 20.20 0.772 21.39 0.816 24.06 0.908 23.85 0.896 21.26 0.858
DereflectFormer-S 20.70 0.789 21.85 0.825 24.44 0.914 24.43 0.903 21.18 0.861
DereflectFormer-B 21.07 0.792 22.26 0.828 25.03 0.918 24.28 0.903 20.75 0.853
DereflectFormer-M 21.27 0.798 22.37 0.836 24.40 0.918 24.38 0.906 21.76 0.860
DereflectFormer-L 21.31 0.804 22.77 0.840 25.00 0.919 24.85 0.912 20.98 0.852
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comparison between the performance of DereflectFormer and several other mod-
els, with the results presented in Table 2. Results where DereflectFormer sur-
passes the other models are highlighted in bold for clear emphasis. The visual
comparison is also conducted in Fig. 4.

In Table 2, the performance on the postcard dataset is notably worse com-
pared to other datasets. This is because the postcard dataset is a synthetic
dataset that includes extensive high-saturation reflections. Our model underper-
forms on this dataset due to the lack of training data with similar characteristics,
which leads to more frequent failures in handling these challenging reflections.

4.4 Ablation Studies

In this section, we provide an in-depth ablation study to clarify the contribu-
tions of various components of our proposed DereflectFormer architecture in
the task of single-image reflection removal. The detailed quantitative results are
illustrated in Fig. 5 and Table 3.

Fig. 4. Qualitative comparison of image reflection removal methods on real-world
images. The images are obtained from ‘Real20 [42]’ (Rows 1-3), ’Solid [34]’ (Row 4)
and CID [35] (Rows 5-6). The first column is the reflect images and the last column is
the corresponding ground truth.

To assess the impact of SpatialLayerNorm in our DereflectFormer, we
replaced it with standard LayerNorm and observed a notable drop in perfor-
mance. Standard LayerNorm, which normalizes features independently and is
suitable for 2D data, is less effective for our 4D image data (batch size, channels,
height, width). This change resulted in lower PSNR values, illustrating that
SpatialLayerNorm’s channel-wise normalization is crucial for handling spatial
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variations in reflection removal tasks. The experiment confirms the importance
of SpatialLayerNorm in enhancing our model’s ability to reduce reflections effec-
tively.

We remove the Depthwise Convolution (DwConv) from the DereflectFormer-
B model. The DwConv is designed to replace regular convolutions, while con-
volutions results in a slight improvement in performance, leads to a substantial
increase in the number of model parameters and computational cost. Thus, our
findings suggest that the Conv module may be less suitable for practical appli-
cations due to its demanding resource requirements.

We ablate the SKfusion module, which is devised to replace the traditional
concatenate operation. Our results demonstrate that the omission of this compo-
nent leads to a performance decrease, underlining its critical role in information
fusion and feature intermixing.

We scrutinize the dual activation function approach implemented in the
DMFN module, paying particular attention to the ReLU and GELU functions.
Through trials with models employing either ReLU or GELU solely, the empir-
ical evidence advocates that the dual usage of these activation functions sig-
nificantly betters the model performance. This denotes that multi-activation
function strategy substantially amplifies the model’s representation capabilities
and its adaptive performance across varied datasets.

Expanding on the activation function analysis, we introduce two supplemen-
tary ablations: "Double GELUs" and "Double ReLUs", both of which incor-
porate doubled instances of GELU and ReLU, respectively, within the DMFN
module. Remarkably, models harnessing the double activation approach fail to
outperform the original DMFN configuration, emphasizing that a mere increase

Fig. 5. Visual comparison of reflection removal results using DereflectFormer-B and its
ablated variants. Each column showcases the effects of ablation on image quality and
reflection suppression efficacy.
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Table 3. Ablation experiments for Dereflectformer-B. PSNR is calculated as an average
PSNR across 5 testing datasets, and #Param and MACs represent the computational
overhead.

Method PSNR SSIM #Param MACs

DereflectFormer-B 22.678 0.859 3.5435M 25.9384G
w/o SpatialLayerNorm 22.188 0.858 3.5435M 25.9384G
w/o DwConv 22.784 0.859 7.1897M 55.7164G
w/o SKfusion 22.276 0.858 3.5423M 25.9365G
GELU only 21.970 0.854 2.5078M 18.1350G
ReLU only 22.310 0.847 2.5078M 18.1350G
Double GELUs 22.200 0.856 3.5435M 25.9384G
Double ReLUs 22.120 0.851 3.5435M 25.9384G
No Activation Functions 22.080 0.851 3.5435M 25.9384G

in activation function frequency does not correlate with enhanced performance.
These instances reaffirm that strategic diversity, rather than redundancy, in acti-
vation functions is integral to achieving optimal model results.

Furthermore, the "No Activation Functions" scenario, whereby our model
employs dual residual connections without any activation functions, serves to
further manifest the indispensability of the activation role within the DMFN.
Ablating the activation function results in a model with notably poorer capa-
bilities in representation learning and non-linear transformation handling. This
underscores the non-trivial role that activation functions play in the overall neu-
ral network architecture and their influence on model performance.

These comprehensive studies collectively amplify the understanding of
each component’s function, and inform the fine-tuning of our architecture for
enhanced performance in reflection removal applications.

5 Discussion and Conclusion

5.1 Discussion

Through extensive experimentation and detailed analy- sis carried out in this
work, we have gained a deeper understanding of the challenges associated with
single image reflection removal, as well as potential solutions to tackle these prob-
lems. Our proposed DereflectFormer model and the introduction of the DMFN
module have demonstrated promising results.

The data from our experiments show that DereflectFormer notably excels
over other methods of the same period with a lower overhead. Fig. 1 shows the
comparison of DereflectFormer with other image reflection removal methods on
the five test dataset. Our small model defeats the IBCLN [19] with only 16.6%
#Param and 10.3% computational cost. Our middle model outperforms in all
fronts than the previous state-of-the-art method , YTMT-UCT [14]. Our large
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model performs better and still has a lower number of parameters than the
previous state-of-the-art method, substantially outperforming contemporaneous
methods.

While significant progress has been made, we acknowledge that there are
still many unknowns and potential areas for improvement. For example, we plan
to continue refining our model by exploring different activation functions, fur-
ther optimizing parameters, and testing on more diverse datasets. The synthetic
dataset and synthesis method we used for training also call for robust and com-
prehensive evaluation.

One critical limitation of our model is its dependency on large datasets for
effective training. Insufficient or low-quality data can lead to overfitting or under-
fitting, thereby compromising the model’s generalizability and robustness. Fur-
thermore, the synthetically generated training data might not adequately repre-
sent the complexities and fine distinctions of real-world environments, thereby
limiting the model’s applicability to practical challenges. Future research should
focus on curating high-quality datasets to mitigate these issues and enhance the
model’s reliability and performance.

5.2 Conclusion

This paper has presented a novel Transformer-based approach, DereflectFormer,
specifically designed for the challenging task of single image reflection removal.
The innovative DMFN module, coupled with the use of a synthetic dataset for
its training, has boosted the performance of the DereflectFormer architecture.

Acknowledgements. This work is supported by the Shanghai Innovation Center for
Processor Technologies.

References

1. Agrawal, A., Raskar, R., Nayar, S.K., Li, Y.: Removing photography artifacts
using gradient projection and flash-exposure sampling. In: ACM SIGGRAPH 2005
Papers, pp. 828–835 (2005)

2. Arvanitopoulos, N., Achanta, R., Susstrunk, S.: Single image reflection suppression.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 4498–4506 (2017)

3. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

4. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration.
In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part VII. pp. 17–33. Springer (2022)

5. Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T.,
Hawkins, P., Davis, J., Mohiuddin, A., Kaiser, L., et al.: Rethinking attention with
performers. arXiv preprint arXiv:2009.14794 (2020)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/1810.04805


272 A. Wei et al.

7. Dong, Z., Xu, K., Yang, Y., Bao, H., Xu, W., Lau, R.W.: Location-aware single
image reflection removal. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. pp. 5017–5026 (2021)

8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

9. Fan, Q., Yang, J., Hua, G., Chen, B., Wipf, D.: A generic deep architecture for
single image reflection removal and image smoothing. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV) (Oct 2017)

10. Feng, X., Pei, W., Jia, Z., Chen, F., Zhang, D., Lu, G.: Deep-masking genera-
tive network: A unified framework for background restoration from superimposed
images. IEEE Trans. Image Process. 30, 4867–4882 (2021)

11. Fran, C., et al.: Deep learning with depth wise separable convolutions. In: IEEE
conference on computer vision and pattern recognition (CVPR) (2017)

12. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the fourteenth international conference on artificial intelligence and
statistics. pp. 315–323. JMLR Workshop and Conference Proceedings (2011)

13. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (2016)

14. Hu, Q., Guo, X.: Trash or treasure? an interactive dual-stream strategy for sin-
gle image reflection separation. Adv. Neural. Inf. Process. Syst. 34, 24683–24694
(2021)

15. Ji, H., Feng, X., Pei, W., Li, J., Lu, G.: U2-former: A nested u-shaped transformer
for image restoration. arXiv preprint arXiv:2112.02279 (2021)

16. Kim, S., Huo, Y., Yoon, S.E.: Single image reflection removal with physically-based
training images. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 5164–5173 (2020)

17. Lei, C., Jiang, X., Chen, Q.: Robust reflection removal with flash-only cues in the
wild. arXiv preprint arXiv:2211.02914 (2022)

18. Levin, A., Weiss, Y.: User assisted separation of reflections from a single image
using a sparsity prior. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1647–1654
(2007)

19. Li, C., Yang, Y., He, K., Lin, S., Hopcroft, J.E.: Single image reflection removal
through cascaded refinement. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 3565–3574 (2020)

20. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 510–519
(2019)

21. Li, Y., Zhang, K., Cao, J., Timofte, R., Van Gool, L.: Localvit: Bringing locality
to vision transformers. arXiv preprint arXiv:2104.05707 (2021)

22. Li, Y., Brown, M.S.: Exploiting reflection change for automatic reflection removal.
In: Proceedings of the IEEE international conference on computer vision. pp. 2432–
2439 (2013)

23. Li, Y., Liu, M., Yi, Y., Li, Q., Ren, D., Zuo, W.: Two-stage single image reflection
removal with reflection-aware guidance. Applied Intelligence pp. 1–16 (2023)

24. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: Image
restoration using swin transformer. In: Proceedings of the IEEE/CVF international
conference on computer vision. pp. 1833–1844 (2021)

http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/2112.02279
http://arxiv.org/abs/2211.02914
http://arxiv.org/abs/2104.05707


DereflectFormer: Vision Transformers for Single Image Reflection Removal 273

25. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF international conference on computer vision. pp. 10012–10022
(2021)

26. Ma, D., Wan, R., Shi, B., Kot, A.C., Duan, L.Y.: Learning to jointly generate and
separate reflections. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 2444–2452 (2019)

27. Messina, N., Falchi, F., Esuli, A., Amato, G.: Transformer reasoning network for
image-text matching and retrieval. In: 2020 25th International conference on pat-
tern recognition (ICPR). pp. 5222–5229. IEEE (2021)

28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomed-
ical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi,
A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4_28

29. Shih, Y., Krishnan, D., Durand, F., Freeman, W.T.: Reflection removal using ghost-
ing cues. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 3193–3201 (2015)

30. Souibgui, M.A., Biswas, S., Jemni, S.K., Kessentini, Y., Fornés, A., Lladós, J.,
Pal, U.: Docentr: An end-to-end document image enhancement transformer. In:
2022 26th International Conference on Pattern Recognition (ICPR). pp. 1699–
1705. IEEE (2022)

31. Sun, C., Liu, S., Yang, T., Zeng, B., Wang, Z., Liu, G.: Automatic reflection removal
using gradient intensity and motion cues. In: Proceedings of the 24th ACM inter-
national conference on Multimedia. pp. 466–470 (2016)

32. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

33. Wan, R., Shi, B., Duan, L.Y., Tan, A.H., Gao, W., Kot, A.C.: Region-aware reflec-
tion removal with unified content and gradient priors. IEEE Trans. Image Process.
27(6), 2927–2941 (2018)

34. Wan, R., Shi, B., Duan, L.Y., Tan, A.H., Kot, A.C.: Benchmarking single-image
reflection removal algorithms. In: Proceedings of the IEEE International Confer-
ence on Computer Vision. pp. 3922–3930 (2017)

35. Wang, C., Xu, D., Wan, R., He, B., Shi, B., Duan, L.Y.: Background scene recovery
from an image looking through colored glass. IEEE Transactions on Multimedia
(2022)

36. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: A general u-shaped
transformer for image restoration. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 17683–17693 (2022)

37. Wei, K., Yang, J., Fu, Y., Wipf, D., Huang, H.: Single image reflection removal
exploiting misaligned training data and network enhancements. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
8178–8187 (2019)

38. Wen, Q., Tan, Y., Qin, J., Liu, W., Han, G., He, S.: Single image reflection
removal beyond linearity. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 3771–3779 (2019)

39. Yang, J., Gong, D., Liu, L., Shi, Q.: Seeing deeply and bidirectionally: A deep learn-
ing approach for single image reflection removal. In: Proceedings of the european
conference on computer vision (ECCV). pp. 654–669 (2018)

https://doi.org/10.1007/978-3-319-24574-4_28


274 A. Wei et al.

40. Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.H., Tay, F.E., Feng, J., Yan,
S.: Tokens-to-token vit: Training vision transformers from scratch on imagenet. In:
Proceedings of the IEEE/CVF international conference on computer vision. pp.
558–567 (2021)

41. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer:
Efficient transformer for high-resolution image restoration. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5728–
5739 (2022)

42. Zhang, X., Ng, R., Chen, Q.: Single image reflection separation with perceptual
losses. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 4786–4794 (2018)



LK-Net: Efficient Large Kernel ConvNet
for Document Enhancement

Qijun Shi1, Hongjian Zhan1(B), Yangfu Li1, Weijun Zou2, Huasheng Li2,
Umapada Pal3, and Yue Lu1

1 Shanghai Key Laboratory of Multidimensional Information Processing, East China
Normal University, Shanghai 200241, China

qijun.shi@stu.ecnu.edu.cn, ecnuhjzhan@foxmail.com, ylu@cs.ecnu.edu.cn
2 Shanghai Hex Information Technology Co., Ltd., Shanghai, China

{wj.zou,colin.lee}@hexinfo.cn
3 Indian Statistical Institute Kolkata, Kolkata, India

umapada@isical.ac.in

Abstract. Various types of degradation in document images, such as
blurring, shadow, and physical wear and tear, significantly impact the
effectiveness of downstream tasks in multimedia applications. The need
for document image enhancement arises from the urgent need to improve
the legibility and quality of these images, which are integral for accu-
rate Optical Character Recognition(OCR), information retrieval, docu-
ment analysis, etc. This paper introduces a novel and simple approach
employing Large Kernel Convolutional Networks (ConvNets) for docu-
ment image enhancement, capitalizing on their ability to encapsulate
expansive contextual information to improve image quality. Extensive
experimental evaluations across multiple benchmarks have demonstrated
that our method achieves state-of-the-art (SOTA) while maintaining
low computational cost. Code and pre-trained models are available at
https://github.com/qijunshi/LKNet.

Keywords: Document Enhancement · Document Deblurring ·
Document Binarization

1 Introduction

In the realm of multimedia, document images play a pivotal role, serving
as the foundation for a plethora of applications ranging from digital archiv-
ing and retrieval to automated content analysis. However, the performance
of downstream tasks such as OCR[17], document classification[1], and content
extraction[30] is significantly impeded by prevalent issues like document blur
and noise. These challenges stem from a variety of factors, including poor scan-
ning quality, physical wear and tear of documents, and environmental conditions
affecting the document at the time of digitization.

In response to these challenges, a diverse array of document enhancement
models[21,38] have emerged, leveraging the advancements in deep learning to
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enhance the quality and readability of degraded document images. Among these,
ConvNets have been at the forefront, attributed to their proficiency in capturing
spatial hierarchies of features within images. ConvNet-based models[10] provide
substantial improvements in document enhancement. However, they often strug-
gle with understanding the global context of document images due to their local
receptive fields. To mitigate this issue, integration of multi-scale feature extrac-
tion methods is necessary, which can expand the receptive field and enhance the
model’s ability to comprehend broader contexts.

Generative Adversarial Networks (GANs)[8] introduce a novel paradigm
where two neural networks, the generator and the discriminator, are pitted
against each other in a game-theoretic framework. This approach[33] has proven
effective for document enhancement, particularly in generating sharp, high-
resolution images. GANs are adept at filling in missing information in document
images, making them highly suitable for more severe cases of document dete-
rioration. Nevertheless, GAN-based models can sometimes generate unrealistic
artifacts or fail to preserve the fidelity of original content, posing challenges for
their application in sensitive domains.

Transformer[35], originally designed for natural language processing,
have recently been adapted for image processing tasks, including image
classification[40], object detection[15], and document enhancement[32]. Their
ability to capture long-range dependencies within the data makes them par-
ticularly suitable for understanding the global context of document images.
Transformer-based models have shown promising results in capturing the intri-
cate details of text and layout in document images. However, their high com-
putational demand and the necessity for large-scale datasets for training are
notable drawbacks.

ConvNets have predominantly utilized small kernels, such as 3× 3 or 5× 5,
motivated by the belief that small, local features aggregate to form more com-
plex patterns through the depth of the network. Small kernels often struggle to
capture the broader context and the structural integrity of text and graphics in
document images, leading to suboptimal restoration outcomes where the global
coherence of the document layout is essential. Large kernels, extending beyond
the conventional sizes, enable the network to encompass a large receptive field
of view in a single convolutional step. This capacity allows for a more compre-
hensive understanding of the document image’s global structure, facilitating the
restoration of text and imagery with greater accuracy and fidelity. Moreover,
large kernel ConvNets can achieve superior performance with fewer layers and
parameters compared to their small-kernel counterparts, thanks to their effi-
ciency in capturing spatial relationships over larger areas. This efficiency not
only improves the quality of the restored images but also reduces the compu-
tational complexity and training time, making large kernel ConvNets a more
practical solution for document enhancement.

The demand for generating high-resolution images has made the application
of attention mechanisms in the field of image restoration challenging due to their
high computational cost. The success of Transformers lies in their ability to eas-
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ily capture global features and model the relationships between global pixels.
Research[5] indicates that the receptive fields of networks with deep, small con-
volutional kernels are not as large as commonly believed. Conversely, networks
with shallow, large convolutional kernels can have significantly large receptive
fields, allowing them to capture global features similar to Transformers while
requiring less computational cost. This realization points towards an innovative
direction in document enhancement, where the adoption of large convolutional
kernels offers a promising alternative to attention mechanisms, providing a bal-
ance between computational efficiency and the ability to capture and utilize
global image features effectively.

Our contributions can be summarized in three points:

– We have successfully introduced large convolutional kernels into the field
of document enhancement, achieving SOTA performance while maintaining
low computational costs. This accomplishment demonstrates that ConvNets
still hold the potential to rival Transformers in the document enhancement
domain, highlighting the efficiency and effectiveness of large kernel ConvNets
in capturing global features for image restoration tasks.

– By removing the need for re-parameterizing large convolutional kernels,
we have significantly reduced computational consumption. Additionally, we
incorporated a simple local feature aggregation network, enabling our model
to balance the capture and integration of both global and local features effec-
tively. This innovative approach ensures that our model not only excels in
recognizing and enhancing overall image structures but also pays meticu-
lous attention to the finer details, resulting in superior quality enhancements
across a variety of document types.

– We developed a clear model composed of simple modules with a minimal num-
ber of parameters. Our method is straightforward yet effective, demonstrating
that excellent performance can be achieved without the need for complex net-
work architectures. This finding is pivotal for advancing research in the field,
as it shows that simplicity can often lead to robust results, encouraging more
efficient and accessible approaches to document image enhancement.

2 Related Work

2.1 Document Enhancement

Document enhancement is a crucial field in digital image processing aimed
at improving the quality of scanned or captured document images. Key tasks
include document deblurring[11], which sharpens images blurred during cap-
ture, and document binarization[34], which separates text from the background,
enhancing readability for both humans and OCR systems. Other tasks involve
document denoising[6], which cleans up visual artifacts like dust and scratches,
and shadow removal[36], which corrects brightness inconsistencies caused by
shadows across the document. Each of these tasks enhances different aspects
of a document’s visibility and legibility, making them more suitable for further
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processing and analysis. Recently, deep learning has significantly contributed to
this field, with ConvNets, GANs, and Transformers leading in enhancing docu-
ment image quality.

Hradiš et al.[10] applied ConvNets to document image deblurring. Souibgui et
al.[33] innovatively introduced GANs to the task of document image binarization,
developing a framework named DE-GAN aimed at restoring severely degraded
document images. They further integrated Vision Transformers (ViT) into the
document binarization task, presenting a new encoder-decoder architecture[32]
that operates directly on pixel patches to enhance both machine-printed and
handwritten document images. Yang et al. introduced DocDiff[37], a document
enhancement framework utilizing residual diffusion models to tackle various doc-
ument enhancement challenges like deblurring and binarization.

As the model performance improves, the computational load increases, and
the inference time becomes longer, which poses challenges for practical appli-
cations. Document images often have repetitive backgrounds and regular text
structures, it is possible to propose a simple yet effective method.

2.2 Large Kernel Convolutional Neural Network

Regarding large-kernel convolutional neural networks, there has been a resur-
gence of interest due to their appealing performance and efficiency. The transi-
tion from small to large kernel convolution marks a significant evolution in con-
volutional neural network design. Initial explorations like AlexNet[13] utilized
larger kernels, but the trend shifted towards smaller kernels due to computa-
tional efficiency. However, recent studies have revisited large kernel sizes, finding
them advantageous for achieving larger effective receptive fields and better per-
formance on various tasks. For instance, RepLKNet[5] leveraged structural repa-
rameterization to scale kernel size up to 31 × 31, achieving results comparable
to or superior to those of Swin Transformer[15].

Furthermore, PeLK[3] proposes a parameter-efficient approach for large ker-
nel ConvNets, introducing peripheral convolution that mimics human vision
by efficiently reducing parameter count through parameter sharing, enabling
scaling up kernel sizes to 101 × 101 without compromising performance. This
method outperformed modern Vision Transformers and ConvNets architectures
like Swin[15] and ConvNeXt[16] on several vision tasks, showcasing the potential
of large kernels in ConvNets.

3 Method

3.1 Overall Architecture

Fig. 1 shows the overall structure of our method, we opted for a simple U-Net
structure. Research by Chen et al.[4] demonstrated that an improved intra-block
single-stage U-Net could achieve an optimal balance between computational effi-
ciency and model complexity. Our model employs a four-layer U-Net configu-
ration tailored to a specific structure to ensure efficiency and effectiveness in
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Fig. 1. Overview of LK-Net, the Figure is best readable in 300% zoom.

document image enhancement tasks. In designing the encoder architecture, we
referred to RepLKNet, where the network layers are structured as [2, 2, 18, 2]. To
reduce computational load in the encoder design, we shifted the largest number
of layers to the final stage and reduced the other layers to 1. Since RepLKNet
uses 31×31 convolutional layers, to maintain the capability of extracting global
features, we increased the number of layers in the final stage to 24. As a result,
the encoder comprises a sequence of blocks with the arrangement [1, 1, 1, 24],
followed by a middle section consisting of 1 block. To reduce computational
load, we kept the decoder with a minimal number of layers. The decoder part
inversely mirrors the encoder’s complexity, with block numbers set to [1, 1, 1, 1].
This design choice is inspired by advancements in network architecture optimiza-
tions, aiming for a balance between model simplicity and performance capability.

Each large kernel block in our network comprises two key modules: the Large
Kernel Network (LKN) and the Local Feature Aggregation Network (LFAN).
These components are designed to work in tandem, with LKN handling the
broad strokes of image processing using large convolutional kernels for global
feature extraction and LFAN aggregating the local features to enhance image
details and quality.

The backgrounds in document images are usually uniform and repetitive.
For example, paper textures, grid lines, or background colors typically remain
consistent throughout the image. This consistency makes large convolutional
kernels very effective in extracting global background features. Large convolu-
tional kernels can cover larger areas of the image, capturing the global patterns
of the background. This helps to remove noise. And the text structures in docu-
ment images exhibit high repetition and regularity. Whether it’s printed text or
handwritten text, characters such as letters, numbers, and symbols often have
fixed shapes and layouts. This repetition makes small convolutional kernels excel
in extracting local text features. Small convolutional kernels can finely capture
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the edges, curves, and details of the text, ensuring the accurate extraction and
restoration of textual information.

Combining large and small kernels forms a powerful multi-scale feature
extraction system. Large kernel provide smooth and consistent processing of
the global background, while small convolutional kernels focus on detailed text
structure extraction and reconstruction. Through this multi-scale feature fusion,
the model can better balance global information and local details.

3.2 Large Kernel Network

In Large Kernel Network, we incorporated 13 × 13 depth-wise convolution
(DWConv) along with shortcuts to enhance feature extraction capabilities. Fol-
lowing common practices, we employed 1× 1 convolutions both before and after
the DWConv. This approach optimizes the network’s computational efficiency
and model complexity, effectively enhancing its performance in processing doc-
ument images.

3.3 Local Feature Aggregation Network

In the Local Feature Aggregation Network, shortcuts are utilized for feature
preservation. The network introduces a 1 × 1 convolution to stabilize parame-
ters, followed by a depth-wise (DW) 3 × 3 convolution for local feature extrac-
tion. GELU (Gaussian Error Linear Unit)[9] is used to introduce non-linearity,
enhancing the network’s ability to process complex image textures and details.

3.4 PSNR Loss

We adopted PSNR loss from NAFNet[4] as our loss function for image restoration
tasks. Compared to Mean Squared Error (MSE) loss and L1 loss, PSNR loss
offers better convergence and outcomes, making it more effective for achieving
high-quality image restoration results. Peak Signal-to-Noise Ratio (PSNR) is as
follows:

PSNR = 10 · log
(
Max2

MSE

)
=

10
ln(10)

· ln(Max2)− 10
ln(10)

· ln(MSE) (1)

By simplifying PSNR, we can derive the PSNR loss as follows:

LPSNR =
10

ln(10)
· ln( 1

n

n∑
i=1

(predi − targeti)
2) (2)
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4 Experiments and Results

4.1 Document Deblurring

For document deblurring, we conducted our experiments on the widely utilized
document deblurring dataset [10], which comprised 66,000 blurred document
images with a resolution of 300 × 300 pixels. We randomly selected a subset of
this dataset, using 30,000 images for training, 5,000 for validation, and 10,000
for testing.

The evaluation metrics we chose for document deblurring were PSNR and
the Structural Similarity Index Measure (SSIM). PSNR is a widely recognized
metric that quantifies the quality of reconstructed or processed images by mea-
suring the peak error between the original and the enhanced image. SSIM, on
the other hand, evaluated the perceptual quality of the enhanced images by con-
sidering the changes in structural information, contrast, and luminance, offering
a more comprehensive assessment of image quality that aligns well with human
visual perception. We evaluated the computational efficiency of the models by
comparing the inference time for processing a single 300× 300 input image.

As shown in Table 6, our method balanced computational and parameter
efficiency, ensuring a lean and powerful network. This efficiency did not come at
the cost of performance; on the contrary, in document deblurring, our approach
demonstrated exceptional results. Specifically, our method outperformed the cur-
rent SOTA by a significant margin, achieving a PSNR that was higher by 4.5214
dB and a SSIM that improved by 0.0272. These advancements underscored the
effectiveness of our network design in enhancing document image quality, show-
casing our model’s capability to produce clearer and more accurate images while
maintaining a high level of efficiency. Fig. 2 showed that our method achieved
better results in detail recovery.

4.2 Document Binarization

For document image binarization, our testing involved the H-DIBCO‘14[19], H-
DIBCO‘18[26], and DIBCO‘19[29] datasets. Specifically, for H-DIBCO‘14 and H-
DIBCO‘18, we used the DIBCO‘19 dataset as the validation set and a combina-
tion of the remaining DIBCO datasets[7,22–25,27,28] (excluding the years under
test) and the PALM[2] dataset as the training set. For testing on DIBCO‘19,
DIBCO‘16[27] served as the validation set, while the other DIBCO datasets

Table 1. Result of document deblurring on document deblurring dataset[10].

Method Parameters Time PSNR↑ SSIM↑
DE-GAN[33], TPAMI2020 31M 1.71s 21.5785 0.9029
DocDiff[37], ACM MM2023 8.20M 1.68s 23.9818 0.9475
Ours 14.54M 0.71s 28.2149 0.9729
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(excluding 2018 and 2019) and PALM formed the training set. Images in the
training set were segmented into smaller patches of 256× 256 pixels.

We aligned our evaluation metrics with those employed in the DIBCO compe-
titions. Specifically, we used PSNR, F-Measure (FM), and F-Measure for pixel-
level evaluation (FPS). PSNR served the same purpose as in the other tasks, pro-

Fig. 2. Qualitative comparison of document deblurring, the Figure is best readable in
300% zoom.
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Table 2. Result of document binarization on DIBCO‘19[29] dataset.

Method Venue Model Parameters Time DIBCO’19
PSNR↑ FM↑ FPS↑

Otsu[20] TSMC Thresholding - - 9.08 47.83 45.59
Sauvola[31] PR2000 Thresholding - - 13.72 51.73 55.15
Kligler et al.[12] CVPR2018 CNN - - 11.23 53.49 53.34
DE-GAN[33] TPAMI2020 GAN 31M 40.38s 12.29 55.98 53.44
DocEnTr[32] ICPR2022 Transformer 68.94M 6.82s 13.43 58.19 53.35
Ours - CNN 14.54M 1.90s 14.29 66.15 63.30

Fig. 3. Qualitative comparison of document binarization on DIBCO’19[29] dataset, the
Figure is best readable in 300% zoom.

viding a basis for comparing image quality in terms of error levels. FM assessed
the binarization quality by considering both the precision and recall of the bina-
rized text against its ground truth, which was crucial for understanding how
well the text was preserved and separated from the background. FPS further
refined this assessment by focusing on precision and recall at the pixel level,
offering a detailed insight into the model’s performance in accurately rendering
the fine details of text and background separation. We choose the largest image
in DIBCO‘19 dataset with resolution 2575 × 3465 for comparing the inference
time.

As shown in Table 2, our method demonstrated exceptional performance on
the DIBCO‘19 dataset. In comparison to the current SOTA, our approach sur-
passed it with a PSNR improvement of 0.86 dB, an FM increase of 7.96, and
a further enhancement in FPS by 9.95. Notably, these significant improvements
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Table 3. Result of document binarization on H-DIBCO‘14[19] dataset.

Method Venue Model H-DIBCO’14
PSNR↑ FM↑ FPS↑

Otsu[20] TSMC Thresholding 18.73 91.62 95.69
Sauvola[31] PR2000 Thresholding 17.48 83.72 87.49
Zhao et al.[41] PR2019 GAN 18.37 87.73 90.60
DocEnTr[32] ICPR2022 Transformer 22.99 97.16 98.28
NAFNet[4] ICCV2022 Transformer 23.29 97.40 97.75
Ours - CNN 24.03 97.70 98.27

were achieved with our model’s parameters being almost one-fifth those of the
SOTA model. This achievement not only showcased the efficiency and effective-
ness of our method in handling one of the most difficult datasets in document
image processing but also highlighted the innovative design of our network that
ensured superior performance while maintaining a lean parameter footprint. As
demonstrated in Table 3, our method also surpassed SOTA performance in the
H-DIBCO‘14 dataset, with a PSNR improvement of 0.74 dB. Specifically, we
introduced the natural scenes image restoration model called NAFNet. In terms
of document binarization, NAFNet performed well but was slightly inferior to
our model. This enhancement further demonstrated our model’s robustness and
effectiveness across different benchmarks within the document image process-
ing domain. However, as referred to in Table 4, in the H-DIBCO‘18 dataset,
our method achieved performance comparable to, but slightly below, the cur-
rent SOTA, with a PSNR that was 0.01 dB lower. Fig. 3 demonstrated that our
method was more effective in accurately binarizing handwritten text. Although
our performance did not surpass the SOTA on DIBCO‘18, Fig. 4 showed that
our binarization results were cleaner.

To explore the potential of the model, we also conducted experiments on the
GoPro[18] dataset for deblurring in natural scenes. As shown in Table 5, In the
task of complex natural scene image restoration, our method is not particularly
outstanding. We believe this is due to the low complexity of the model and

Table 4. Result of document binarization on DIBCO‘18[26] dataset.

Method Venue Model DIBCO’18
PSNR↑ FM↑ FPS↑

Otsu[20] TSMC Thresholding 9.74 51.45 53.05
Sauvola[31] PR2000 Thresholding 13.78 67.81 74.08
DE-GAN[33] TPAMI2020 GAN 16.16 77.59 85.74
DocEnTr[32] ICPR2022 Transformer 19.47 92.53 95.15
Ours - CNN 19.46 90.76 94.03
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Fig. 4. Qualitative comparison of document binarization on H-DIBCO’18[26] dataset,
the Figure is best readable in 300% zoom.

Table 5. Result of natural scene deblurring on GoPro[18] dataset.

Method Venue Model GoPro
PSNR↑ SSIM↑

Nah et al.[18] CVPR2017 CNN 29.08 0.913
DeblurGAN-v2[14] ICCV2019 GAN 29.55 0.925
Restormer[39] CVPR2022 Transformer 32.92 0.961
NAFNet[4] ECCV2022 Transformer 33.69 0.967
Ours - CNN 30.97 0.942

the limited feature extraction capabilities of combining large and small convolu-
tion kernels. To achieve better results in natural scenes, it may be necessary to
increase the model complexity and the kernel size.

4.3 Ablation Studies

We conducted comparative experiments by changing the convolutional kernels
to 3×3 and 7×7. To ensure a fair comparison, we adjusted the number of blocks
in the last encoder to keep the model size similar. The comparison demonstrated
that larger kernels had superior performance in document enhancement tasks.
This suggested that the architecture benefited significantly from the larger recep-
tive field provided by bigger kernels, enhancing the model’s ability to capture
and improve document image quality effectively.

As shown in Table 6, our chosen 13× 13 convolutional kernel yielded better
enhancement results. Specifically, PSNR for the 13 × 13 kernel was higher by
0.32 dB compared to the 7 × 7 kernel and by 0.26 dB compared to the 3 × 3
kernel. Moreover, the FM increased by 6.28 over the 7×7 kernel and by 3.7 over
the 3× 3 kernel. Similarly, the FPS improved by 5.85 over the 7× 7 and by 2.93
over the 3× 3 kernel.

However, Fig. 5 showed that the 7 × 7 kernel did not outperform the 3 × 3
kernel. This indicated that for specific tasks and varying input sizes, selecting
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Table 6. Result of document binarization on DIBCO‘19[29] dataset with different
kernel size.

Kernel Size Num of Encoders Parameters DIBCO’19
PSNR↑ FM↑ FPS↑

3 × 3 [1, 1, 1, 28] 14.97M 14.03 62.45 60.37
7 × 7 [1, 1, 1, 28] 15.31M 13.97 59.87 57.45
13 × 13 [1, 1, 1, 24] 14.54M 14.29 66.15 63.30

Fig. 5. Qualitative comparison of document binarization with different kernel size, the
Figure is best readable in 300% zoom.

the appropriate size of the large convolutional kernel was crucial to achieving
optimal results. If the size of the convolutional kernel chosen was neither large
nor small enough, it was likely that it would neither capture global features
well nor local features effectively. This highlighted the importance of tailoring
the kernel size according to the specific requirements of the task at hand, as
larger kernels could capture wider contextual information but might not always
be the most efficient choice depending on the complexity and characteristics of
the input data.

To validate the effectiveness of PSNR loss, we conducted additional training
on the DIBCO‘19 dataset using MSE loss for comparison. Fig. 6 showed that
PSNR loss achieved better outcomes and it had a better effect on removing the
background of the text.

In typical image restoration tasks, researchers often used MSE loss and L1
loss as their primary loss functions. However, as illustrated in Table 7, using
PSNR as a loss function in our experiments yielded more favorable results com-
pared to using MSE and L1 loss. Specifically, the PSNR was higher by 0.42 dB
than when using MSE and L1 loss. Furthermore, the FM improved by 1.3 over
MSE and by 1.46 over L1 loss. In terms of FPS, there was an increase of 0.32
over MSE and 0.42 over L1 loss. This observation underscored the potential of
PSNR loss in the field of image restoration, suggesting that it may be a more
effective measure for optimizing image quality during the restoration process.
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Table 7. Result of document binarization on DIBCO‘19[29] dataset with different loss
functions.

Loss DIBCO’19
PSNR↑ FM↑ FPS↑

L1 13.87 64.69 62.88
MSE 13.87 64.85 62.98
PSNR 14.29 66.15 63.30

Fig. 6. Qualitative comparison of document binarization with different loss functions,
the Figure is best readable in 300% zoom.

5 Conclusions

In this paper, we introduce a simple and novel large kernel network, achiev-
ing SOTA performance across multiple document enhancement benchmarks. We
constructed a baseline for document enhancement using a convolutional neural
network, incorporating shortcuts and the GELU activation function. We believe
that this approach will facilitate future research by providing a straightforward
benchmark for comparative experiments. This baseline setup is designed to be
both effective and easy to replicate, offering a solid foundation for further inno-
vation and evaluation in the field of document image processing. This approach
underscores the effectiveness of large convolutional kernels in improving doc-
ument image quality. We believe this work will redirect researchers’ attention
towards designing simple and effective networks to enhance the performance of
document enhancement.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China under Grant No.62176091.
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Abstract. Recently, transformers have captured significant interest in
the area of single-image super-resolution tasks, demonstrating substan-
tial gains in performance. Current models heavily depend on the net-
work’s extensive ability to extract high-level semantic details from images
while overlooking the effective utilization of multi-scale image details and
intermediate information within the network. Furthermore, it has been
observed that high-frequency areas in images present significant com-
plexity for super-resolution compared to low-frequency areas. This work
proposes a transformer-based super-resolution architecture called ML-
CrAIST that addresses this gap by utilizing low-high frequency informa-
tion in multiple scales. Unlike most of the previous work (either spatial
or channel), we operate spatial and channel self-attention, which con-
currently model pixel interaction from both spatial and channel dimen-
sions, exploiting the inherent correlations across spatial and channel axis.
Further, we devise a cross-attention block for super-resolution, which
explores the correlations between low and high-frequency information.
Quantitative and qualitative assessments indicate that our proposed
ML-CrAIST surpasses state-of-the-art super-resolution methods (e.g.,
0.15 dB gain @Manga109 ×4). Code is available at: https://github.com/
Alik033/ML-CrAIST.

Keywords: Transformer · Image super-resolution · Spatial domain ·
Frequency domain · Cross attention

1 Introduction

The task of single image super-resolution (SR) [7] remains an enduring low-
level challenge that centers on the restoration of high-resolution (HR) images
from degraded low-resolution (LR) inputs. As an issue with inherent ambigu-
ity and numerous possible solutions for a given LR image, several methods have
emerged in recent years to address and overcome this challenge. Numerous meth-
ods in this context use convolution neural networks (CNNs) [9,10,15,32,35,47]
to improve performance in a variety of applications. These methods mostly use
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residual learning [15], dense connections [35], or channel attention [47] to build
network architectures, significantly contributing to developing super-resolution
models. However, the CNN-based approach exhibits a limited receptive field due
to the localized nature of convolution, which hampers the global dependencies,
consequently restricting the overall performance of the model.

In recent times, the Transformer architecture, initially introduced in natu-
ral language processing (NLP), has demonstrated significant success across a
wide range of high-level vision tasks [3,4,40]. This success is attributed to its
incorporation of a self-attention mechanism, which effectively establishes global
dependencies. A notable advancement in SR is SwinIR [20], which presents
the Swin Transformer, leading to significant enhancements over state-of-the-art
CNN-based models across different standard datasets. Subsequent developments,
including Swin-FIR [43], ELAN [45], and HAT [6], have extended the capabil-
ities of SwinIR by utilizing Transformers to develop various network architec-
tures for SR tasks. These methods demonstrate that appropriately enlarging
the windows for the shifted window self-attention in SwinIR can lead to obvi-
ous improvements in performance. However, the increase in computational bur-
den becomes a significant concern as the window size grows more prominent.
Furthermore, Transformer-based methods rely on self-attention and need net-
works with more channels than previous CNN-based methods [1,14,16]. Also,
they use uni-dimensional aggregation operations (either spatial or channel) and
homogeneous aggregation schemes (simple hierarchical stacking of convolution
and self-attention). Wang et al. [37] consider the above problem and design
OmniSR to achieve superior performance. Despite substantial progress in super-
resolution methods, they even encounter visual artifacts in the resulting images,
such as inadequate texture representation and loss of details. Further, it has been
observed that super-resolving high-frequency image areas are more challenging
than low-frequency areas. Numerous existing SR methods work solely within
the spatial domain, concentrating on improving the resolution of low-resolution
pixels to obtain a high-resolution image. They often overlook the potential ben-
efits of the frequency domain, which could offer a better method for retrieving
lost high-frequency information. Also, it needs to include more texture patterns
of multi-scales, which is required in SR tasks. Similar textures with multiple
scales may exist within a single image at different positions. For instance, repet-
itive patterns at different scales (such as facades, windows, etc., in a building)
may appear in various locations within a single image. The multi-scale aware
framework is required to use the beneficial non-local detail, which aggregates
the information from all the different scales of the LR image.

To address the above mentioned issues and achieve higher performance, this
work proposes a novel super-resolution model that simultaneously exploits fre-
quency and spatial domain information at different scales. 2D Discrete Wavelet
Transformation (2dDWT) is used to analyze both the high (LH, HL, and HH)
and low (LL) frequency wavelet sub-bands. To carefully design a cross-attention
block, we fuse low and high frequency information to boost SR performance.
We explore the features in multiple scales and systematically combine informa-
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tion across all scales at each resolution level, facilitating meaningful information
exchange. Simultaneously, another fusion technique is proposed to combine the
high-frequency sub-bands while maintaining their unique complementary char-
acteristics that differ from simple concatenation or averaging of the sub-bands.
The major contributions of this paper are as follows:

1. A novel multi-scale model is proposed by utilizing both spatial and frequency
domain features that is capable to enhance the spatial resolution of an low-
resolution image.

2. In addition, a low-high frequency interaction block (LHFIB) is introduced to
exchange the information between low and high frequency sub-bands through
the proposed cross attention block (CAB).

3. A non-linear approach is proposed to fuse high-frequency sub-bands using an
attention mechanism for more precise restoration of high-frequency details.

4. Informative features are obtained from different scales using CAB while pre-
serving the high-resolution features to represent spatial details accurately.

2 Related Work

� Conventional CNNs for SR. CNNs have achieved remarkable success in
the task of image super-resolution. SRCNN [10] is notable as the pioneer-
ing CNN-based super-resolution method, outperforming the performance of
traditional approaches (e.g., bicubic, nearest-neighbor, and bilinear inter-
polation). After this initial advancement, significant attention has been
directed towards expanding the network depth and incorporating resid-
ual learning techniques to enhance super-resolution performance [15,35,47].
EDSR [21] further improves peak signal-to-noise ratio (PSNR) results signif-
icantly by removing the unnecessary Batch Normalization layers. Addition-
ally, RCAN [47] integrates a channel attention mechanism to enhance feature
aggregation efficiency, enabling improved performance even with deeper net-
work architectures. Subsequent models such as SAN [9], NLSA [28], and
HAN [29] have introduced a range of attention mechanisms, either focusing
on spatial or channel dimensions, reflecting a growing trend in attention-
based approaches within the field. To improve reconstruction quality while
working within constrained computing resources, DRCN [16], DRRN [34],
CARN [1], IMDN [14] delve into lightweight architectural designs. Another
research direction is operating model compression strategies like knowledge
distillation [11,46] and neural architecture search [8] to decrease computing
costs.

� Generative adversarial networks (GANs) for SR. GANs [12] pro-
vide a fundamental method to balance perception and distortion by reg-
ulating the weights of perceptual and fidelity losses, generating realistic
images. [18] introduced SRGAN, which incorporates adversarial training with
the SRResNet generator. [38] presented ESRGAN featuring the residual-in-
residual dense block framework for super-resolution. Later, [33] enhanced
ESRGAN by auxiliary noise injection and proposed ESRGAN+. Park et
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al. [31] suggested Flexible Style SR, which optimizes the SR model with
image specific objectives without viewing the regional features. These meth-
ods [18,30,33,38] suffer from the computational burden posed by numerous
image maps.

� Transformer-based methods for SR. Recently, Transformers have shown
significant promise in a range of vision tasks, including image classifica-
tion [40], object detection [4], semantic segmentation [3], image restora-
tion [5,22,39], etc. Among these approaches, the most prominent exam-
ple is the Vision Transformer (ViT), demonstrating that transformers
can outperform convolutional neural networks in feature encoding tasks.
Designing transformer-based models for image super-resolution poses a sig-
nificant challenge as it requires preserving the structural details of the
input image. IPT [5] is a pre-trained model built upon the transformer
encoder and decoder structure and has been used for super-resolution.
SwinIR [20] employs a window-based attention mechanism to tackle image
super-resolution tasks, demonstrating superior performance over CNN-based
methods. ELAN [45] facilitates the architecture of SwinIR and utilizes self-
attention calculated in different window sizes to capture correlations between
long-range pixels. Choi et al. [7] introduce N-gram context into low-level
vision tasks using Transformers for the SR task. Most recently, OmniSR [37]
explored spatial-channel axis aggregation networks to enhance SR perfor-
mance.

Our approach also relies on the transformer architecture. Unlike the aforemen-
tioned methods, which predominantly utilize spatial domain information and
compute self-attention for model construction, our primary focus is on lever-
aging spatial-frequency domain features and multi-scale features through cross-
attention to improve the performance of the super-resolution model.

3 Proposed Method

Figure 1 shows the proposed architecture that aims to generate an SR image
from the degraded LR image.

3.1 Overall Pipeline

This section presents a comprehensive description of the overall network archi-
tecture. Given an LR image ILR ∈ R

H×W×3, we pass it through a convolution
layer to extract the initial feature f0. The acquired feature is then fed into N
spatial-channel attention-based transformer blocks (SCATB), from which the
deep spatial and channel-wise correlated features fd are extracted.

f0 = C3×3(ILR), fi = F i
SCATB(f

i−1), fd = fN , (1)

where C3×3 refers a convolution with 3 × 3 kernel size, F i
SCAT B represents the

i-th SCATB, and f1, f2, .., fN denote intermediate features.
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Fig. 1. (a) Multi-level wavelet sub-bands of a LR image. (b) Overview of the Proposed
ML-CrAIST. N× indicates that the block is stacked N times.

Simultaneously, we input ILR into the first low-high frequency interaction
block (LHFIB) to extract spatial-frequency information f1

sf ∈ R
H
2 ×W

2 ×c and
LL cube. The LL cube of the first LHFIB is fed into the second LHFIB to
extract further spatial-frequency information (f2

sf ∈ R
H
4 ×W

4 ×c) in different
scales. Each LHFIB contains an attention-based fusion block (AFB) to fuse
the high-frequency sub-bands, N number of SCATBs to capture spatially and
channel-wise refined features from the low-frequency sub-band, and a cross
attention block (CAB) for message passing between refined low-high frequency
features. Next, we up-sample f2

sf and combine it with f1
sf within the cross-

attention block (CAB) to obtain informative multi-scale features, denoted as
f1′
sf ∈ R

H
2 ×W

2 ×c. Next, we up-sample the f1′
sf feature and fed it alongside fd into

the CAB module to generate meaningful features (f0
sf ∈ R

H×W×c) that contain
refined multi-scales feature information.

f1
sf , LL1 = FLHFIB(ILR), f2

sf , LL2 = FLHFIB(LL1),
f1′
sf = FCAB(f1

sf ,U(f2
sf )), f0

sf = FCAB(fd,U(f1
sf )),

(2)

where, FLHFIB , FCAB , and U represent the LHFIB, CAB and bicubic up-
sampling operation. Next, we employ a convolution layer and set the output
channels to 3s2 , where s denotes the scale factor by which the spatial res-
olution is to be enhanced. Finally, a PixelShuffle (PS) layer takes the low-
resolution feature maps (fl ∈ R

H×W×3s2) and produce the high-resolution image
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IHR ∈ R
s.H×s.W×3. Then, the reconstructed HR image IHR can be written as

IHR = PS(fl) + U(ILR), fl = C3×3(f0
sf ) (3)

The proposed ML-CrAIST is optimized using the L1 loss:

L1(I
g
HR, IHR) =

1
M

M∑

a=1

‖(IHR)a − (IgHR)
a‖1, (4)

where IgHR indicates the ground-truth image.

3.2 Spatial-channel attention-based transformer block (SCATB)

Wang et al. [37] introduced the omni-self attention (OSA) block, which has
been integrated to capture pixel interactions from spatial and channel dimen-
sions simultaneously, enabling the exploration of potential correlations across
spatial and channel dimensions. Instead of using a standard transformer block,
we leverage the OSA block along with LCB [37] and ESA [17] block as a SCATB
to capture useful local details and long-range dependencies effectively.

To formally define its operational principle, let J ∈ R
H×W×C be the interme-

diate feature map that passes through an LCB block (FLCB) to aggregate local
contextual information (f l

c), then SCATB generates query (Q), key (K) and value
(V) projections by using a 1×1 convolution (C1×1) followed by 3×3 depth-wise
convolution (D3×3

c ) on f l
c, where Q,K, V ∈ R

H×W×C . Next, we reshaped query
(Q̂s ∈ R

HW×C), key (K̂s ∈ R
C×HW ), and value (V̂s ∈ R

HW×C) projections,
and calculate the attention map of size R

HW×HW between Q̂s and K̂s in spatial
dimension which is multiplied with the V̂s to get the spatially enriched attentive
features J

′
. Next stage, to get the attention map of size R

C×C in channel dimen-
sion, we reshape query (Q̂c ∈ R

C×HW ), key (K̂c ∈ R
HW×C) and J

′
as value

(V̂c ∈ R
C×HW ). Then, we perform the matrix multiplication between Q̂c and K̂c

followed by a softmax operation and get the channel-wise attentive feature map.
Finally, the channel-wise attentive feature maps are multiplied with the V̂c and
get the spatial and channel-wise correlated feature maps. Lastly, these feature
maps are fed into the ESA block (FESA) to refine the features further. Overall,
the procedure is described as:

Q,K, V = D3×3
c (C1×1(f l

c)), f l
c = FLCB(J), K̂s = R(K),

Q̂s = R(Q), V̂s = R(V ), J
′
= S(K̂s.Q̂s).V̂s, K̂c = R(K̂s),

Q̂c = R(Q̂s), V̂c = R(J
′
), J

′′
= FSCATB(J) = FESA(S(K̂c.Q̂c).V̂c),

(5)

where S, R, and FSCATB , indicate the softmax function, reshape, and spatial-
channel attention-based transformer operation, respectively. We encourage the
reader to refer [37] for more details. We have demonstrated that OSA is advan-
tageous over standard transformer block [41] in producing visually pleasing SR
images in the experiments section.
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3.3 Low-High Frequency Interaction Block (LHFIB)

In this work, to integrate frequency domain information with spatial domain, we
apply the Haar wavelet transformation as a 2D discrete wavelet transformation
to the LR image (ILR) and decompose it into four sub-bands (LL, LH, HL,
and HH) where every sub-band ∈ R

H
2 ×W

2 ×1. The LL sub-band characterizes
the background details within the image, while LH, HL, and HH sub-bands
characterize variations along vertical axis, variations along horizontal axis, and
diagonal information present in the image. The LL sub-band and the original
degraded image are typically employed for analyzing spatial information. Since
LH, HL, and HH sub-bands preserve high-frequency components, they provide
richer content for enhancing high-frequency detail during the super-resolution
process. To leverage the benefit of frequency and spatial details, we design a
low-high frequency interaction block.

In detail, let it take I as input and break it down into LL,LH,HL, and HH
components. Next, we combine the high-frequency sub-bands (i.e., LH,HL, and
HH) using an attention-based fusion block (AFB) and get the refined high-
frequency information ff . The low-frequency (i.e., LL) sub-band is fed into
SCATB to extract useful spatial information fs. Finally, we have performed
the cross-attention between low and high-frequency features to enable intelli-
gent feature aggregation. The entire approach can be formulated as:

LL,LH,HL,HH = FDWT (I), ff = FAFB(LH,HL,HH),
fs = FSCATB(LL), fsf = FCAB(ff , fs), fsf , LL = FLHFIB(I),

(6)

where FDWT , FAFB , FCAB and FLHFIB refer 2dDWT, attention-based fusion,
cross-attention, and low-high frequency interaction operation, respectively.

3.4 Attention-based fusion block (AFB)

The conventional method for feature aggregation typically involves either simple
concatenation or summation. However, these types of selection offer restricted
expressive capabilities of the network, as [19] suggested. In this context, we
present a nonlinear method for merging features through an attention mechanism
to identify and amplify the more relevant features. As shown in Figure 1, we
propose an attention-based fusion block (AFB) to combine the high-frequency
cubes so that only useful information can be processed further. We pass the
high-frequency sub-bands through a convolution layer with 1 × 1 kernel size
and a depth-wise convolution layer with 3 × 3 kernel size. Next, we reshape the
features to obtain fr

LL, f
r
HH ∈ R

C×HW and fr
HL ∈ R

HW×C . We compute the
matrix multiplication between fr

LH and fr
HL followed by a softmax operation to

get the attentive map (fa) of size R
C×C . This attention map fa is multiplied

with fr
HH to obtain attentive feature fat. Finally, the concatenated LH, HL, and

HH sub-bands are convolved through a 1 × 1 convolution and added with the
reshaped attentive feature to produce the attention-based fused high-frequency
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features. Such an operation can be defined as:

fsb = D3×3
c (C1×1(sb)), fr

sb = R(fsb), sb ∈ {LH,HL,HH}
fat = FAFB(LH,HL,HH) = C1×1(LH � HL � HH)

+C1×1(R(S(fr
LH .fr

HL).f
r
HH)),

(7)

where S, R, � refer to softmax function, reshape operation, and concatenation
operation, respectively. Through ablation, we have shown that the AFB yields
more promising outcomes than regular concatenation and addition.

3.5 Cross Attention Block (CAB)

CAB integrates two distinct embedding sequences of identical dimensions. It
employs query from one sequence and key and value from the other. The atten-
tion masks from one embedding sequence are used to emphasize the extracted
features in another embedding sequence. We introduce two cross-attention blocks
(CAB) with similar architectures for message passing: one operates between low-
high frequency features, and the other operates between multi-scale features. For
low-high frequency features, it leverages the low frequency features (F

′
) to gen-

erate a query projection and employs high frequency features (F
′′
) to create key

and value projections through a standard 1 × 1 convolution and a 3 × 3 depth-
wise convolution layer. Similarly, in the multi-scale scenario, one scale feature
(F

′
) is used to generate the query projection, while another scale feature (F

′′
)

is used to create the key and value projections. Overall, cross-attention can be
obtained by

Q = D3×3
c (C1×1(F

′
)), K, V = D3×3

c (C1×1(F
′′
)), Qr = R(Q),

Kr = R(K), Vr = R(V ), CA(Qr,Kr, Vr) = S(Qr · Kr) · Vr,

fc = FCAB(Q,K, V ) = C1×1(R(CA(Qr,Kr, Vr))) + F
′
,

(8)

where Q,V ∈ R
C×HW , K ∈ R

HW×C , and CA represents the cross-attention
function.

4 Experiments

4.1 Datasets & Evaluation Metrics

Following prior research [7,20,37], we employ the DIV2K dataset [36] for train-
ing. For testing purposes, we utilize five widely recognized benchmark datasets:
Set5 [2], Set14 [42], B100 [26], Urban100 [13], and Manga109 [27]. The test-
ing results are assessed based on PSNR and structural similarity index measure
(SSIM) values computed on the Y channel (i.e., luminance) within the YCbCr
color space. Also, we evaluate the learned perceptual image patch similarity
(LPIPS) metrics. It measures how similar two images appear to the human
visual system.
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4.2 Implementation Details

We augment the data during training by applying random horizontal flips and
90/180/270-degree rotations. For a fair comparison with the existing works, LR
images are obtained through bi-cubic down-sampling from HR images. Empiri-
cally, the number of SCATBs in ML-CrAIST is set to 5. Also, the attention head
number is set to 4, and the window size is set to 8. We train the model using
the Adam optimizer with a batch size of 32 for 1000K iterations, starting with
an initial learning rate of 10−4, which is decreased by half after every 200k iter-
ations. During each training iteration, LR patches of size 64 × 64 are randomly
cropped as input. We have set the number of channels 64 in each convolution
layer for ML-CrAIST (Ours). The proposed work is implemented using PyTorch,
and all experimentations are performed on a single NVIDIA V100 GPU. Figure
5(b) shows the convergence of the model that we observed.

In our lighter version of ML-CrAIST (Ours-Li), we have used the same archi-
tecture shown in Figure 1 with a reduced number of channels in each convolution
layer from 64 to 48.

Table 1. PSNR and SSIM comparison with the state-of-the-art on five datasets. Best,
second best , and third best performance are presented in red, blue, and green.

#params FLOPs Set5 Set14 B100 Urban100 Manga109

Method Years (K) (G) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
VDSR CVPR’16 666 613 36.66 0.9542 33.05 0.9127 31.90 0.8960 30.76 0.9140 37.22 0.9750

MemNet ICCV’17 678 2662.4 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 37.72 0.9740
SRMDNF CVPR’18 1511 - 37.79 0.960 33.32 0.915 32.05 0.8985 31.33 0.9204 38.07 0.9761
CARN ECCV’18 1592 222.8 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
IMDN MM’19 694 158.8 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774

LatticeNet 2× ECCV’20 756 169.5 38.06 0.9610 33.78 0.9193 32.25 0.9005 32.43 0.9302 38.94 0.9774
SwinIR ICCVW’21 878 195.6 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783
ESRT CVPRW’22 677 191.4 38.03 0.9600 33.75 0.9184 32.25 0.9001 32.58 0.9318 39.12 0.9774

NGSwin CVPR’23 998 140.4 38.05 0.9610 33.79 0.9199 32.27 0.9008 32.53 0.9324 38.97 0.9777
OmniSR CVPR’23 772 147.2 38.22 0.9613 33.98 0.9210 32.36 0.9020 33.05 0.9363 39.28 0.9784
Ours-Li 743 97.2 38.15 0.9615 33.64 0.9213 32.35 0.9020 32.93 0.9361 39.23 0.9785
Ours 1259 165.7 38.19 0.9617 33.77 0.9220 32.36 0.9022 33.04 0.9370 39.26 0.9786

VDSR CVPR’16 666 613 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279 32.01 0.9340
MemNet ICCV’17 678 2662.4 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376 32.51 0.9369
EDSR CVPRW’17 1555 160.2 34.37 0.9270 30.28 0.8417 29.09 0.8052 28.15 0.8527 33.45 0.9439

SRMDNF CVPR’18 1528 - 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403
CARN ECCV’18 1592 118.8 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
IMDN MM’19 703 56.3 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445

RFDN-L 3× ECCV’20 633 65.6 34.47 0.9280 30.35 0.8421 29.11 0.8053 28.32 0.8547 33.78 0.9458
LatticeNet ECCV’20 765 76.3 34.40 0.9272 30.32 0.8416 29.10 0.8049 28.19 0.8513 33.63 0.9442

SwinIR ICCVW’21 886 87.2 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478
ESRT CVPRW’22 770 96.4 34.42 0.9268 30.43 0.8433 29.15 0.8063 28.46 0.8574 33.95 0.9455

NGSwin CVPR’23 1007 66.6 34.52 0.9282 30.53 0.8456 29.19 0.8078 28.52 0.8603 33.89 0.9470
OmniSR CVPR’23 780 74.4 34.70 0.9294 30.57 0.8469 29.28 0.8094 28.84 0.8656 34.22 0.9487
Ours-Li 749 49.6 34.58 0.9294 30.23 0.8474 29.28 0.8106 28.73 0.8651 34.26 0.9492
Ours 1268 84.1 34.70 0.9302 30.39 0.8488 29.31 0.8111 28.89 0.8676 34.42 0.9501

VDSR CVPR’16 666 613 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8870
MemNet ICCV’17 678 2662.4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942
EDSR CVPRW’17 1518 114.0 32.09 0.8938 28.58 0.7813 27.57 0.7357 26.04 0.7849 30.35 0.9067

SRMDNF CVPR’18 1552 - 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024
CARN ECCV’18 1592 90.9 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
IMDN MM’19 715 40.9 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075

RFDN-L 4× ECCV’20 643 37.4 32.28 0.8957 28.61 0.7818 27.58 0.7363 26.20 0.7883 30.61 0.9096
LatticeNet ECCV’20 777 43.6 32.30 0.8962 28.68 0.7830 27.62 0.7367 26.25 0.7873 30.54 0.9075

SwinIR ICCVW’21 897 49.6 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151
ESRT CVPRW’22 751 67.7 32.19 0.8947 28.69 0.7833 27.69 0.7379 26.39 0.7962 30.75 0.9100

NGSwin CVPR’23 1019 36.4 32.33 0.8963 28.78 0.7859 27.66 0.7396 26.45 0.7963 30.80 0.9128
OmniSR CVPR’23 792 37.8 32.49 0.8988 28.78 0.7859 27.71 0.7415 26.64 0.8018 31.02 0.9151
Ours-Li 758 25.5 32.15 0.8962 28.40 0.7863 27.73 0.7426 26.53 0.8019 31.11 0.9162
Ours 1280 42.9 32.36 0.8984 28.53 0.7895 27.78 0.7446 26.68 0.8057 31.17 0.9176
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4.3 Comparisons with the SOTA

To validate the superiority of ML-CrAIST, we compare it against recent state-
of-the-art methods (SOATs) under a scale factor of 2, 3, and 4, respectively. In
particular, former works, VDSR [15], MemNet [35], EDSR [21], SRMDNF [44],
CARN [1], IMDN [14], RFDN-L [23], LatticeNet [25], SwinIR [20], ESRT [24],
NGSwin [7], and OmniSR [37] are introduced for comparison.

� Quantitative results. The quantitative results are presented in Table 1. In
order to be fair comparison throughout the evaluation process, all models
undergo training and testing processes using the same dataset. It is clear
from the results that our method achieves the highest performance across all
testing datasets. Compared to [37], ML-CrAIST has 0.20 dB improvement
on Manga109 (×3). Also, we noticed that our method demonstrates the
most significant improvement on B100, Urban100, and Manga109 datasets
compared to existing methods, indicating its suitability for images rich in
textured regions, geometric structures, and finer details of SR images. As
shown in Table 2, we obtain a lower LPIPS score, suggesting a higher per-
ceptual quality of the SR image. It is worth noting that by incorporating the
frequency details and analyzing the features in multiple scales, ML-CrAIST
surpasses the performance of the existing methods. Additionally, in Table
1, we have shown the results of our lighter method (Ours-Li) with reduced
parameters and FLOPs. It takes the minimum FLOPs among all the existing
schemes with comparable results. The FLOPs are ∼ 1.5× lesser than NGSwin
with 1.01% and 0.37% PSNR and SSIM gain on Manga109 (4×). Further,
We have shown the computational overhead during inference in Table 3.

Table 2. LPIPS score Comparison on 4×. Best performance is presented in red. Lower
score is better.

Model Set5 Set14 B100 Urban100 Manga109
IMDN 0.1317 ± 0.0659 0.1242 ± 0.0866 0.1907 ± 0.0601 0.0131 ± 0.0124 0.0038 ± 0.0032
SwinIR 0.1287 ± 0.0642 0.1209 ± 0.0870 0.1857 ± 0.0596 0.0111 ± 0.0106 0.0033 ± 0.0026
NGSwin 0.1291 ± 0.0640 0.1210 ± 0.0869 0.1861 ± 0.0595 0.0109 ± 0.0101 0.0035 ± 0.0029
OmniSR 0.1293 ± 0.0641 0.1193 ± 0.0848 0.1829 ± 0.0595 0.0102 ± 0.0093 0.0034 ± 0.0029
Ours-Li 0.1354 ± 0.0651 0.1197 ± 0.0859 0.1842 ± 0.0595 0.0105 ± 0.0097 0.0033 ± 0.0028
Ours 0.1312 ± 0.0642 0.1173 ± 0.0845 0.1812 ± 0.0591 0.0101 ± 0.0094 0.0032 ± 0.0027

Table 3. Single image inference time for 2×, 3×, and 4×, respectively

Inference time (second)
scale Input dimension Output dimension OmniSR Ours-Li Ours
2× (512, 382) (1024, 764) 4.98 4.24 5.99
3× (341, 254) (1023, 762) 2.73 2.12 3.35
4× (256, 191) (1024, 764) 2.05 1.94 2.61
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� Visual Comparison. Figure 2 shows the visual comparison of our method
with SOTAs at ×2, ×3, and ×4 scales. It is observable that the HR images
generated by ML-CrAIST exhibit more fine-grained details, whereas other
methods produce blurred edges or artifacts in complex regions. For example,
in the third image of Figure 2, our model can pleasantly restore the precise
texture of the road. The visual results demonstrate that incorporating fre-
quency information and analyzing features across multiple scales enables us
to capture more structural information, preserve the geometric structure of
the image, and generate realistic HR results.

4.4 Ablation Study

In this subsection, we perform a set of experimentations to exhibit the efficacy
of ML-CrAIST in different settings.

� Number of SCATBs. Experimentally, we have set the number of SCATBs
to 5. We also analyze the model performance by varying the SCATB number
N. As depicted in Figure 4, compared to the smallest number of SCATB,
increasing the number of SCATB leads to performance gains. It can be seen

Fig. 2. Visual Comparison of our ML-CrAIST with the SOTA.
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that ML-CrAIST with N = 6 or 7 produces a similar kind of result as N = 5
with higher parameters (refer to 4(d)).

� Effect of LHFIB. We remove the frequency information and only take the
spatial information to train our model. Figure 3(a) and 3(b) represent the dia-
gram with and without the frequency information, respectively. The results
are reported in the 5th row of the Table 4. The results of ML-CrAIST are
superior with the frequency information, displaying that the frequency details
can offer global dependency to enhance the representation capability of the
model.

Table 4. Ablation studies with different settings of our model on 4×. Best result is
represented in red.

FLOPs Set5 Set14 B100 Urban100 Manga109

Model (G) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
w/o AFB (Addition) 42.80 32.28 0.8974 28.47 0.7886 27.56 0.7431 26.64 0.8041 31.14 0.9174

w/o AFB (Concatenation) 42.82 32.29 0.8974 28.45 0.7885 27.68 0.7435 26.63 0.8056 31.09 0.9174
DWT Level-1 41.11 32.15 0.8957 28.46 0.7872 27.72 0.7423 26.58 0.8022 31.04 0.9157

w/o CAB 41.79 32.31 0.8977 28.52 0.7881 27.76 0.7433 26.65 0.8043 31.10 0.9175
w/o LHFIB 42.53 32.29 0.8975 28.42 0.7888 27.26 0.7434 26.66 0.8050 31.11 0.9164
Full Model 42.91 32.36 0.8984 28.53 0.7895 27.78 0.7446 26.68 0.8057 31.17 0.9176

� Effect of CAB. We execute experiments to investigate the significance of
the CAB. Specifically, we compare the results of the model with and without
CAB in the 4th row of Table 4. While removing the CAB, we used a simple
element-wise addition operation. From the aspects of quantitative metrics,
the use of CAB can obviously improve the SSIM and PSNR performance of
the model. The visual comparison is shown in Figure 5(a).

Fig. 3. (a) indicates the LHFIB, (b) indicates the diagram without frequency informa-
tion. D© indicates the bi-cubic down-sampling operation.

Fig. 4. (a), (b), and (c) refer the SSIM comparison, and (d) refers the number of
parameters on 3× with different number of SCATBs.
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� Effect of AFB. We explore the feature aggregation process in the 1st and 2nd

row of Table 4. The results demonstrate that the proposed AFB produces
promising outcomes compared to summation and concatenation methods.

� Effect of multi-scale or multi-level DWT. Third row of Table 4 justifies
the importance of the 2-level 2dDWT or multi-scale analysis in our model.

Further, to validate each component of ML-CrAIST, in Figure 6, we have shown
results in three different measurements: LPIPS, Blind/Referenceless Image Spa-
tial Quality Evaluator (BRISQUE), and Edge Preservation Index (EPI). It can
be seen that the full model has a lower LPIPS and BRISQUE and a high EPI
value, which indicates that the image has fewer distortions, artifacts, and bet-
ter edge preservation, aligns more closely with natural scene statistics, and is
visually pleasing to human observers.

Fig. 5. (a) Visual comparison of different settings of ML-CrAIST. (b) Convergence
graph of ML-CrAIST.

Fig. 6. LPIPS (↓), BRISQUE (↓), and EPI comparison between different components
of ML-CrAIST. ↓ indicates lower is better.

Fig. 7. Key-point and canny edge detection comparison between existing methods and
ML-CrAIST. The top corner of the first row indicates the number of key points.
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4.5 Impact on various application

To validate the practical applicability of our model, we employ ML-CrAIST
as a prepossessing technique for image key-point detection and edge detection
tasks, as shown in Figure 7. Initially, we employ scale-invariant feature transform
(SIFT) to compute the key points. It can be observed that the key-point detec-
tion significantly increases after super-resolving the images using our method.
Subsequently, we employ Canny edge detection to identify edges in the super-
resolved images. Compared to the super-resolved image by SOTA models, our
super-resolved image exhibits more localized edge features. In the second row
of Figure 7, we have marked using a red box where our method captures edges
perfectly, but others fail.

5 Conclusion

In this paper, we propose a transformer-based multi-scale super-resolution archi-
tecture called ML-CrAIST, demonstrating the advantage of modeling both spa-
tial and frequency details for the SR task. Our cross-attention block seamlessly
performs message passing between low and high-frequency features across mul-
tiple scales in the network and acknowledges their correlation. Furthermore,
we propose AFB to effectively fuse the high frequency cubes, which boosts
the overall performance. Finally, we validate the rationale and efficiency of the
ML-CrAIST by conducting extensive experimentation across various benchmark
datasets. We additionally conduct an ablation study to assess the impact of var-
ious configurations within ML-CrAIST.
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Abstract. Underwater imagery often suffers from issues like color dis-
tortion, haze, and reduced visibility due to light’s interaction with water,
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To address these obstacles effectively, we introduce the Attentive Color
Fusion Transformer Network (ACFTNet) for underwater image enhance-
ment. At the core of our proposal lies a novel Adaptive Dual-Gated
Attentive Fusion Block (ADGAFB), which seamlessly integrates local-
ized transmission features and global illumination characteristics. Sub-
sequently, it employs a dual-gated mechanism to generate attentive fea-
tures for each channel (R, G, and B). To ensure accurate color fidelity, we
introduce the Color-Attentive Fusion Block. This block adeptly merges
attentive features obtained from each R, G, and B channel, ensuring
precise color representation. To selectively transmit features from the
encoder to the corresponding decoder, we utilize an Adaptive Kernel-
Based Channel Attention Module. Moreover, within the transformer
block, we propose a Multi-Receptive Field Feed-Forward Gated Network
to further refine the restoration process. Through comprehensive eval-
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1 Introduction

Enhancing underwater imaging is crucial for effective observation of marine envi-
ronments, aiding in the identification and visibility of objects and marine life.
Such algorithms find applications in diverse fields like underwater mine detec-
tion, inspection, surveillance, autonomous vehicles, and robotics systems [11,51].
Despite advancements in imaging technology, underwater environments present
significant challenges, including poor equipment quality [27], illumination, scat-
tering, and absorption [41], resulting in degraded images with color casts, low
visibility, and contrast issues. These obstacles hinder the accuracy of underwa-
ter applications, necessitating advanced algorithms tailored to enhance image
quality for more effective exploration and application across diverse fields.

Underwater image enhancement (UIE) methods typically fall into three cat-
egories. The first approach involves physically modeling the underwater environ-
ment, like computing transmission maps [5,10], but they are limited by under-
water complexities. In the second category, visual prior-based methods [1,23]
focus on adjusting pixel values for contrast and brightness to enhance percep-
tual quality, yet they overlook the physical deterioration process.

Deep learning methods [8,9,24,28] constitute the third category, showing
significant progress in underwater image enhancement by addressing UIE chal-
lenges. Transformers [48] have further enhanced performance metrics by lever-
aging global dependencies in vision tasks. Underwater imaging relies on spatial
features like pixel values and positions, and spectral features such as fine details
and consistent patterns, where features from R, G, and B channels are treated
differently based on their wavelengths. Processing both spatial and spectral fea-
tures is crucial for improving visibility, color effectiveness, and handling noisy
spikes caused by light scattering from suspended particles in water. Recogniz-
ing the pivotal role of underwater image enhancement as the foundational step
in underwater vision tasks, our goal is to enhance the visibility of underwater
images. With this objective, we introduce the Attentive Color Fusion Trans-
former Network (ACFTNet) for underwater image enhancement. Unlike Spec-
troformer [20], the proposed ACFTNet harnesses color-wise spectral and spatial
features to improve color fidelity and capture essential details in underwater
images. Our proposed method, ACFTNet, addresses various degradation fac-
tors in underwater images such as scattering, color casts, and absorption-based
transmission maps. It incorporates essential information from separate R, G,
and B color spaces at both local and global levels, encompassing both spatial
and frequency domains, thereby mitigating various underwater degradation fac-
tors. We propose the Adaptive Dual-Gated Attentive Fusion Block (ADGAFB)
seen in Fig. 1, seamlessly integrating localized transmission features and global
illumination characteristics. Subsequently, it employs a dual-gated mechanism
to generate attentive features for each channel (R, G, and B), leading to efficient
learning of fine details and the structural details of degraded underwater images.
To uphold color fidelity, we introduce a novel Color Attentive Fusion Block. This
block maintains color fidelity by integrating color-wise attentive features from
the R, G, and B channel features obtained from the Adaptive Dual-Gated Atten-
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tive Fusion Block (ADGAFB) with the original RGB features at each level. This
approach effectively addresses challenges related to color distortion and con-
trast reduction. To enhance the recovery process, encoder features are typically
relayed to decoder features via direct skip connections [54]. However, this direct
forwarding can degrade the decoder’s performance, leading to inefficiencies in
image enhancement [19]. To address this, we employ an Adaptive Kernel-Based
Channel Attention Module, selectively enhancing the transmission of encoder
features to decoder features, as shown in Fig. 1. Furthermore, within the trans-
former block, we introduce a Multi-Receptive Field Feed-Forward Gated Network
to transmit the most important multi-receptive and diverse information from the
input-degraded side to the output-enhancing side, facilitating better refinement
and reconstruction of textures and periodic patterns. The main contributions of
this work can be summarized as:

– A novel Attentive Color Fusion Transformer Network (ACFTNet) architec-
ture is proposed for underwater image enhancement.

– We propose the Adaptive Dual-Gated Attentive Fusion Block (ADGAFB),
seamlessly integrating localized transmission features and global illumination
characteristics. Subsequently, it employs a dual-gated mechanism to generate
attentive features for each channel (R, G, and B), leading to efficient learning
of fine details and the structural details of degraded underwater images.

– We propose Color Attentive Fusion Block, which attentively combines the out-
put feature of the encoder’s transformer block with the output of (ADGAFB)
for each separate R, G, B feature, resulting in comprehensive enhancement
of degraded underwater images through efficient color feature acquisition.

– Moreover, within the transformer block, we propose a Multi-Receptive Field
Feed-Forward Gated Network facilitating refined texture and periodic pattern
reconstruction by transmitting crucial multi-receptive and diverse informa-
tion from the degraded input to the enhancing output side.

The ablation study examines various configurations of the proposed approach.
We conduct multiple experiments to demonstrate the effectiveness of the pro-
posed method on both synthetic and real-world underwater images.

2 Related Work

2.1 Underwater Image Enhancement

Enhancing underwater images is vital for advanced computer vision tasks like
object detection, recognition, and tracking. Existing methods for Underwater
Image Enhancement (UIE) are categorized into four main groups: hardware-
dependent, physical model-dependent, non-physical model-dependent, and deep
learning-dependent methods.
Hardware-based Methods: For underwater image enhancement, some
approaches employed specialized hardware, stereo-vision techniques, and polar-
ization filters [40,47]. However, these approaches come with certain drawbacks.
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Hardware-based methods can be costly and complex, introducing challenges for
widespread adoption. Methods that rely on multiple images may be unsuitable
for real-time applications. In contrast, [6] single-image enhancement stands out
for challenging underwater scenes, offering a distinctive approach to address the
complexities of underwater imaging.
Physical or Optical Methods: These methods rely on underwater image for-
mation models, where the degraded image quality depends on the transmis-
sion map and underwater backlighting. Yang et al. [52] introduced a modified
algorithm using the dark channel prior, while Chiang et al. [4] enhanced it
with wavelength-dependent compensation. The Underwater Dark Channel Prior
(UDCP) [12] specifically addresses red channel unreliability. Additionally, Peng
et al. [38] proposed the Generalized Dark Channel Prior (GDCP) for adaptive
color correction and comprehensive image restoration.
Non-Physical model based Methods: These methods aim to spatially
enhance degraded underwater images by adjusting pixel values. Iqbal et al. [14]
widened the pixel range in RGB and HSV color spaces to amplify contrast and
saturation in underwater images. Ancuti et al. [2] introduced a fusion technique
blending contrast-enhanced and color-corrected images using a multi-scale app-
roach. Fu et al. [34] proposed a retinex-based method incorporating color cor-
rection, layer decomposition, and overall enhancement.
Deep Learning approaches: With the continuous advancement of deep learn-
ing, computer vision tasks have seen significant performance improvements.
Supervised methods like UWCNN [25], WaterNet [46], and Spectroformer [20]
employ deep learning for underwater image enhancement. UWCNN uses deep-
supervised learning, while WaterNet utilizes a gated fusion network with gamma-
corrected, contrast-enhanced, and white-balanced inputs. Spectroformer incor-
porates a multi-query-based attention mechanism. For unsupervised methods,
Jiang et al. [17] proposed a perceptual adversarial network with adaptive fea-
ture fusion, and Li et al. [28] introduced WaterGAN, generating underwater-
style images without paired training samples. Yang et al. [53] introduced a con-
ditional generative adversarial network (cGAN) to enhance underwater image
visual quality significantly. Du, D., et al. [7] proposed UIE with Diffusion Prior
(UIEDP), a novel framework treating UIE as a posterior distribution sampling
process of clear images conditioned on degraded underwater inputs. Their prob-
abilistic nature, similar to Markov processes, adapts to local image gradients,
enhancing versatility in image enhancement tasks [45].

2.2 Transformers in Computer Vision

Transformers based attention mechanisms, revolutionize computer vision by effi-
ciently capturing long-range dependencies in input features, making them ideal
for various tasks from low to high-level vision. Specifically tailored for restoration
tasks like image denoising, deraining, and deblurring, Restormer [54] presents
an efficient transformer network. Peng et al. [37] propose a U-shaped trans-
former for enhancing underwater images. Kong et al. [22] introduce an alterna-
tive Transformer-based approach for high-quality image deblurring, streamlining
attention using frequency-domain characteristics.
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3 Proposed Work

Our primary objective is to improve the quality of underwater degraded images
by employing techniques from both the spatial [19] and frequency domains [49].
Our approach aims to retain fine details such as edges, enhance color compo-
nents, improve contrast, and eliminate undesirable noise artifacts caused by light
scattering. Now, let’s delve into the primary pipeline of our proposed network,
ACFTNet depicted in Fig. 1. After that, we provide more details of the individual
proposed blocks.

Fig. 1. The architectural schematic of ACFTNet for underwater image enhancement
includes four key components: Adaptive Dual-Gated Attentive Fusion Block
(ADGAFB), Color Attentive Fusion Block, Multi-Receptive Field Feed For-
ward Gated Network, and Adaptive kernel- based channel attention mod-
ule. ADGAFB combines spatial and frequency domain features to enhance underwater
imaging, addressing challenges like scattering, absorption, and structural pattern loss,
it operates on individual R, G, and B channels, producing color-dependent enhance-
ments. The Color Attentive Fusion Block combines attentive features by R, G, and B.
The Multi-Receptive Field Feed Forward Gated Network refines the enhancement pro-
cess within the transformer block. Adaptive Kernel-based Channel Attention Module,
enhances feature transmission between encoder and decoder, improving performance
and feature augmentation.

Overall Pipeline The initial step involves decomposing the degraded input
RGB image I into separate Ir, Ig, and Ib channels, as depicted in Fig. 1. Sub-
sequently, convolution operations are applied to Ir, Ig, Ib channels and the
degraded input RGB image I, resulting in the generation of shallow features
Fo, Fr, Fg, Fb ∈ R

H×W×C corresponding to I, Ir, Ig, and Ib, respectively. The
shallow features Fr, Fg, and Fb are processed by Adaptive Dual-Gated Attentive
Fusion Block (ADGAFB), smoothly and effectively integrating localized trans-
mission features and global illumination characteristics. Subsequently, it employs
a dual-gated mechanism to generate attentive features for each channel (R, G,
and B). Meanwhile, Fo undergoes processing in the Transformer Block which
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consists of multi-head self-attention and novel Multi-Receptive Field Feed For-
ward Gated Network, to extract features as depicted in Fig. 1. Color Attentive
Fusion Block attentively combines the output feature of the encoder’s trans-
former block with the output of (ADGAFB) for each separate R, G, and B fea-
ture. An Adaptive Kernel-based Channel Attention Module is used to transmit
attentive information from the encoder to the respective decoder, enhancing the
effectiveness of the underwater image. We utilize pixel-unshuffle and pixel-shuffle
operations [43] for downsampling and upsampling features, respectively. At the
end, a convolution layer is applied to the resulting deep features Fd ∈ R

H×W×C

to produce the final output, resulting in the enhanced image O.

3.1 Adaptive Dual-Gated Attentive Fusion Block

To address challenges in underwater image processing, such as loss of fine details
and visibility due to scattering and absorption, we introduce the Adaptive
Dual-Gated Attentive Fusion Block (ADGAFB). Traditional spatial domain-
only methods often lack a holistic understanding of the global image struc-
ture [30]. Exploiting frequency domain features, which provide advantages like
illumination-invariant representations and capturing global information [33], our
approach incorporates a dual-gated attentive fusion mechanism.

Initially, to extract frequency domain features to capture essential global
information, illumination invariance, and fine details associated with high-
frequency components [44], we apply FFT (Fast Fourier Transform) on feature
f and split it into its frequency domain components: φf and magnitude compo-
nent Mf . These components then sequentially pass through a 1×1 convolution,
GeLu activation function, and a 3×3 convolution block. The learned phase (φd)
and magnitude (Md) are then passed to an IFFT (Inverse Fast Fourier Trans-
form) block, resulting in the feature transformed back into the spatial domain
fd. Subsequently, the Adaptive Dual-Gated Attentive Fusion Block (ADGAFB)
is applied, integrating both spatial and frequency domain features f and fd
respectively, thereby enhancing the overall representation. The adaptive nature
of the fusion block allows for dynamic adjustment of the importance of spatial
and frequency domain features based on input image characteristics, ensuring
robustness across diverse underwater conditions. By amalgamating the strengths
of spatial and frequency domain features through the ADGAFB, our proposed
method aims to elevate the quality of underwater image processing, mitigat-
ing challenges posed by scattering, absorption, and loss of structural patterns.
ADGAFB operates on each R, G, and B channel feature separately, generat-
ing color-dependent enhancements for underwater images, as depicted in Fig. 1.
Mathematically, ADGAFB can be expressed as:

φf ,Mf = FFT (f) (1)

φfd ,Mfd = ψ3(GeLu(ψ1(φf ))), ψ3(GeLu(ψ1(Mf ))) (2)

fd = IFFT (φfd ,Mfd) (3)
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f ′ = 〈GeLu(λ1 ∗ ψ1(fd)) ∗ fd, GeLu(λ2 ∗ ψ1(f)) ∗ f〉 (4)

where < · > represents the concatenation operation, λ2+λ1 = 1, and λi = σ(w),
i ∈ (1, 2). (ψm) denotes a convolutional layer with kernel size m×m, f ′ represents
the output of ADGAFB, and f and fd are the original spatial feature and the
frequency domain learned feature, respectively. λ represents the mixup weighting
parameter [55].

3.2 Color-Attentive Fusion Block

This module plays a crucial role in enriching the color characteristics of the
red (R), green (G), and blue (B) channels. In underwater environments, issues
like scattering and under-illumination often result in diminished color visibility
and color cast problems. To address these challenges, fine and color-riched details
from the ADGAFB are fed into this block during subsequent stages of processing.
Initially, the 1×1 convolutions extract global color information separately from
the incoming R, G, and B features. These outputs then pass through the GeLu
activation function, aiding the model in capturing non-uniformities within the
color context. To preserve the color correlation of each channel with the original
RGB stream, the enhanced color components are providing the attention to
the RGB features using the sigmoid function, resulting attentive feature are
fused depicted in Fig. 1. This mechanism ensures a natural color touch to the
degraded images. Finally, for further fine-tuning of color characteristics, a 1×1
convolutional layer is applied. This process facilitates the refinement of color
attributes, contributing to the overall enhancement of underwater image quality.

3.3 Multi-Receptive Field Feed Forward Gated Network

Underwater images contain a variety of entities, including fishes, coral reefs,
underwater terrain, and man-made structures, each distinguished by their forms
and scales. A prominent challenge in underwater image enhancement involves the
processing of these complex and diverse entities [32,35,36]. Traditional methods
often rely on kernels of fixed dimensions to account for variations in size and
shape, which restricts their ability to extract multi-scale information. In light
of this, we propose a Multi-Receptive Field Feed Forward Gated Network (see
MRFFN in Fig. 1). The proposed MRFFN can be detailed mathematically as:

yg(y) = ψ3

(〈℘ (
ψd
3(θ), ψ

d
1(θ)

)
, ℘

(
ψd
5(θ), ψ

d
1(θ)

)〉) (5)

℘(a, b) = a ∗ ζ(b) (6)

θ = ψ1 (y) (7)

where, 〈a, b〉 represents the concatenation of a, b, ℘(·) is the gating operation, ζ(·)
is Softmax activation. Such multi-receptive learning captures the various objects
in the underwater images with various shapes and sizes to ensure meaningful
enhancement of the images. The effectiveness of the proposed MRFFN block is
analyzed in the ablation study (Sec. 5).
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3.4 Adaptive Kernel-based Channel Attention Module

In an encoder-decoder UNet-like structure aimed at facilitating the recovery pro-
cess, encoder features are commonly relayed directly to corresponding decoder
features via skip connections [54]. Nevertheless, this direct feature forwarding can
inadvertently introduce degradation to the decoder, resulting in inefficiencies in
generating a fully enhanced image [19]. To mitigate this challenge, we utilize
an Adaptive Kernel-Based Channel Attention Module. This module selectively
enhances the transmission of encoder features to corresponding decoder features,
as illustrated in Fig. 1. Mathematically, it can be explained as:

Zi = φ1(〈Zi, σ(ϕ(GAP (XN−i))) ∗ XN−i〉) (8)

where, < · > is concatenation operation, GAP Global Average Pooling, ϕ is
Adaptive Kernal Convolution, σ(·) Sigmoid activation, N = 4 and i ∈ (1, 2, 3).
Attentively transferring the feature(XN−i) from the encoder aids the network in
sharing essential information for the reconstruction process. Additionally, φ1 is
employed to halve the channels of the combined attentive encoder feature and
the respective decoder feature. This reduction facilitates the network in learning
the effective constraints for feature consideration pertinent to the enhancement
task.

3.5 Training Loss Functions

To train our proposed model, inspired by Spectroformer [20] we have integrated
the following loss functions as illustrated in the equation below:

LT = α1LC + α2LG + α3LM + α4LP (9)

where α1, α2, α3, α4 ∈ {0.25, 0.3, 0.7, 0.9} are the weight coefficients of various
loss functions are set empirically. During training, we are using a total loss

Fig. 2. ACFTNet achieves enhanced results on the UIEB and EUVP dataset: improved
PSNR(dB) values, superior SSIM metrics, enhanced low-quality features with deep
details, and efficient restoration of color casts.
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Table 1. Comparative analysis of our proposed method (referred to as Ours) alongside
established state-of-the-art techniques on the UIEB and EUVP datasets for enhancing
underwater images. (↑ denotes higher is better, with bold representing best, and
underline represents second best results).

Dataset Method Publications PSNR ↑ SSIM ↑ UIQM ↑
UIEB RGHS [13] RAL-20 14.57 0.791 2.410

WaterNet [26] TIP-19 19.81 0.864 2.818
CLUIE-Net [29] TCSVT-22 20.37 0.890 2.674
U-shape [37] TIP-23 22.91 0.910 2.725
TWIN [34] TIP-22 23.72 0.830 3.024
Spectroformer [20] WACV-24 24.96 0.917 3.075
Ours - - 26.02 0.931 4.792

EUVP UDCP[31] CGA-16 20.31 0.519 3.702
RGHS[13] RAL-20 23.42 0.641 3.282
FUniE-GAN[21] JOET-22 26.22 0.790 4.770
UGAN[9] JOET-20 26.55 0.800 4.382
Deep-SESR[15] RSS-20 26.55 0.800 4.527
Deep-WaveNet[42] ACM-23 28.62 0.830 3.040
ours - - 29.44 0.847 4.298

Table 2. Comparative analysis of our proposed method and established state-of-the-art
techniques on real-world datasets for underwater image restoration. (↑ denotes higher
effectiveness, while ↓ indicates lower effectiveness).

Dataset Method UIQM ↑ UISM ↑ NIQE ↓ BRISQUE ↓
U45 RGHS[13] 2.506 5.558 3.8727 18.5190

WaterNet[26] 3.091 6.187 4.5966 21.1563
CLUIE-Net[29] 2.890 5.988 3.8743 20.6126
U-shape[37] 2.923 5.567 4.3098 21.5656
TWIN[34] 3.135 6.698 3.9929 20.0891
Spectroformer[20] 3.243 7.354 3.8420 19.9573
Ours 4.405 7.247 3.780 18.104

UCCS RGHS[13] 2.506 5.558 4.209 26.360
WaterNet[26] 3.134 6.187 6.104 24.275
CLUIE-Net[29] 3.066 6.715 4.420 29.524
U-shape[37] 2.874 5.391 4.401 23.549
TWIN[34] 3.119 6.732 4.370 25.755
Spectroformer[20] 3.209 6.563 3.982 23.258
Ours 4.375 6.953 4.264 27.042
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Fig. 3. Qualitative comparison of the proposed method (Ours) with existing
methods (RGHS [13], WaterNet[26], CLUIE-Net[29], U-shape[37], TWIN[34], and
Sprectroformer[20]) for underwater image enhancement on real-world UCCS, C60 and
U45 datasets.

function LT as a combination of Charbonnier loss LC [3], Gradient loss LG [39],
Multiscale Structural Similarity Index (MS-SSIM) loss LM [50], and Perceptual
loss LP .[18]. The effectiveness of the combination of losses is demonstrated in
Table-b of Table 3.

4 Experimental Analysis

This section encompasses datasets, training particulars, and comparative anal-
ysis of the proposed network.

4.1 Datasets

To perform a comparative analysis, we employed the synthetic Underwater Image
Enhancement Benchmark (UIEB), a paired dataset [26], and EUVP[16] dataset
includes 11,435 image pairs (clean and degraded) for training and 515 pairs for
testing, captured with various cameras and configurations. alongside real-world
underwater datasets U45, UCCS, and Challeging 60. Our training dataset com-
prises 800 randomly selected image pairs, with the remaining 90 images desig-
nated for testing. The U45 dataset encompasses 45 real-world images displaying
characteristics such as low contrast, color casts, and degradation effects simi-
lar to underwater haze. The UCCS dataset comprises 300 genuine underwater
images, presenting a diverse array of marine organisms and environments for
analysis.

4.2 Training Details

Transformer-based networks necessitate a substantial amount of data samples
for effective training, and to enhance the network’s generalization capabilities,
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various data augmentations are applied, including vertical flipping, horizon-
tal flipping, noise addition, and contrast variation. Approximately 4800 images
were generated from the UIEB dataset for training purposes, while 90 images
from UIEB were allocated for testing. Additionally, we trained our model on
the EUVP dataset, which includes 11,435 image pairs (clean and degraded) for
training and 515 pairs for testing. To ensure consistency, all training images were
resized to a resolution of 256×256. We employed the Adam optimizer with an
initial learning rate of 2 × 10−4. We adjust the learning rate using a scheduler
based on the cosine annealing technique. We implemented our model in Pytorch,
trained on NVIDIA RTX A4000 16GB GPU.

4.3 Analysis of Synthetic Datasets

The proposed method undergoes a quantitative comparison against existing
state-of-the-art techniques, utilizing evaluation metrics such as SSIM, PSNR,
and UIQM. Table 1 presents quantitative results for the widely used UIEB and
EUVP datasets, while Fig. 2 showcases qualitative results. Our method exhibits
competitive performance when compared to state-of-the-art techniques.

4.4 Real-world Dataset Analysis

To evaluate our proposed approach’s effectiveness in real-world scenarios, we
present results from the U45 and UCCS datasets in Table 2. Our quantitative
analysis covers various metrics, including UIQM,UISM, NIQE, and BRISQUE.
Summarized results are shown in Table 2. Additionally, qualitative analyses of
the U45, UCCS, and C-60 datasets are depicted in Fig. 3. These results highlight
significant improvements in color balance and visibility in the enhanced images,
attributed to the innovative modules integrated into our proposed method. More
visual results are provided in the supplementary material.

Table 3. Quantitative results comparison of various network settings (Table-a) and
losses settings (Table-b) . Note: B- Baseline, C- Adaptive Dual-Gated Attentive Fusion
Block, D- Adaptive Kernel-based Channel Attention Module, E- Multi Receptive Field
Feed Forward Network, F- Color-Attentive Fusion Block module.

Table-a Table-b
Network Setting PSNR SSIM Losses Setting PSNR SSIM

B 23.53 0.902 LC 24.16 0.913
B & C 24.26 0.907 LC& LG 24.92 0.920
B & C & D 25.41 0.916 LC&LG & LM 25.17 0.916
B & C & D & E 25.79 0.929 LC & LG & LM & LP 26.02 0.931
Ours(B & C & D & E & F) 26.02 0.931 Ours 26.02 0.931
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Fig. 4. Qualitative results comparison of various network settings.Note: B- Baseline, C-
Adaptive Dual-Gated Attentive Fusion Block, D- Adaptive kernel-based channel atten-
tion, E- Multi Receptive Field Feed Forward Network, F- Color-Attentive Fusion Block
module.

5 Ablation Study

To study the ablation and effectiveness of the proposed blocks, we are using the
UIEB [26] dataset.

5.1 Effectiveness of Adaptive Dual-Gated Attentive Fusion Block
(ADGAFB)

The Adaptive Dual-Gated Attentive Fusion Block (ADGAFB) combines spatial
and frequency domain features to enhance underwater imaging, addressing chal-
lenges like scattering, absorption, and structural pattern loss. ADGAFB operates
on individual R, G, and B channels, producing color-dependent enhancements.
Experimental results confirm its effectiveness, as seen in Table 3.

5.2 Effectiveness of Color-Attentive Fusion Block

This block maintains color fidelity by providing color-wise attention from each
R, G, and B channel feature with the incoming original RGB features, effec-
tively addressing challenges related to color distortion and contrast reduction.
This operation achieves a natural global enhancement of color and contrast in
degraded image features. Experimental results confirm its effectiveness, as shown
in Table 3 and Fig. 4.

5.3 Effectiveness of Multi Receptive Field Forward Network

Within the Transformer architecture, the Multi-Receptive Field Forward Net-
work (MRFFN) efficiently forwards attentive features of degraded images, both
globally and locally, helps in the deep reconstruction of distinct objects. Exper-
imental results confirm its effectiveness, as shown in Table 3 and Fig. 4.

5.4 Effectiveness of Adaptive Kernel-based Channel Attention
Module

The Adaptive Kernel-Based Channel Attention Module enhances feature trans-
mission between the encoder and decoder, improving performance and feature
augmentation. Experimental results confirm its effectiveness, as shown in Table
3 and Fig. 4.
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5.5 Effectiveness of various loss functions

We have evaluated the impact of different loss functions, including Charbonnier
loss (LC), Gradient loss (LG), Multiscale Structural Similarity Index (MS-SSIM)
loss (LM ), and Perceptual loss (LP ). As shown in Table-b of Table 3, these
experiments have helped us verify the training stability and robustness of our
proposed method.

6 Downstream Application of Our Proposed Model
(ACFTNet)

Our proposed ACFTNet demonstrates versatility across multiple downstream
applications, such as image segmentation, underwater monocular depth estima-
tion, and saliency detection. Specifically, we highlight saliency detection, which
involves identifying the most significant regions within images, as depicted in
Fig. 5.

Fig. 5. Qualitative comparison for saliency detection map of the outputs of proposed
method (Ours) with existing methods.

7 Limitation and Conclusion

7.1 Limitation

The current methods encounter significant difficulties in enhancing muddy and
blurry underwater images. Our approach consistently surpasses state-of-the-art
techniques, demonstrating superior performance. However, deblurring remains
an area requiring further improvement, which will be a primary focus for our
future work.

7.2 Conclusion

In this paper, we proposed ACFTNet: Attentive Color Fusion Transformer
Network, an underwater image enhancement model designed as a supervised
method featuring several key components. Central to ACFTNet is the Adap-
tive Dual Gated Attentive Feature Fusion block, which effectively extracts and
integrates localized and global illumination features from both spatial and fre-
quency domains. Additionally, we introduce a Color-Attentive Feature Fusion
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block aimed at enhancing individual R, G, and B color channels and correlating
these features with the original RGB image to improve color efficacy. Further-
more, the Multi-Receptive Field Feed Forward Network facilitates the propa-
gation of diverse deep features, offering detailed preservation of edges and tex-
tures for superior reconstruction. Extensive testing and analysis were conducted
on various datasets, including real, synthetic, paired, and unpaired datasets,
demonstrating the effectiveness of our model through quantitative and quali-
tative results. Moreover, our model exhibits versatility and applicability across
different applications.
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Abstract. Conventional learning-based approaches for enhancing low-
light images typically rely on a large amount of paired training data,
which is challenging to obtain in practice. To address this issue, some
algorithms have been proposed using the generative adversarial mecha-
nism to utilize unpaired data. However, these methods commonly utilize
perceptual constraints to preserve content information, leading to incor-
rect lightness enhancement. In this paper, we propose a dual contrastive
learning scheme for unsupervised low-light image enhancement (LLIE),
aiming to balance the lightness enhancement and content preservation.
Specifically, we introduce two models with distinct biases towards light-
ness enhancement and content preservation, respectively. These models
produce intermediate results that serve as negative and positive samples,
guiding the final model to generate the desired outcome. Considering the
coupling of luminance and noise in low-light conditions, we propose a
Frequency-Spatial Attention Module to obtain an adaptive illumination
map to guide light enhancement and noise removal. Extensive experi-
mental results demonstrate our superiority over several state-of-the-art
methods.

Keywords: Low-light image enhancement · Contrastive learning ·
Generative adversarial networks

1 Introduction

Images captured in low-light conditions commonly exhibit issues such as poor vis-
ibility, color inaccuracies, and acute noise, leading to unfavorable visual percep-
tion and hindering human annotation. Consequently, researchers have proposed
several low-light image enhancement methods over the past decades. These meth-
ods aim to enhance visibility, mitigate noise, and improve overall visual quality.
As a result, they have proven beneficial for various downstream computer vision
tasks, including object detection and action recognition.

Y. Wang and B. Li—Both authors contributed equally to this research.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15321, pp. 325–338, 2025.
https://doi.org/10.1007/978-3-031-78305-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78305-0_21&domain=pdf
http://orcid.org/0009-0004-6021-8412
http://orcid.org/0009-0005-8863-5450
http://orcid.org/0000-0002-3518-3404
http://orcid.org/0000-0001-6767-8105
https://doi.org/10.1007/978-3-031-78305-0_21


326 Y. Wang et al.

Traditional approaches such as classical histogram equalization (HE)[11] and
Gamma Correction (GC) methods focus on compressing the dynamic range and
non-linearly adjusting the input to enhance image contrast. However, these meth-
ods overlook the interconnections among pixels and the preservation of natu-
ralness in the enhanced results. Another research direction involves leveraging
the Retinex theory [14] to model the process of decomposing input images into
separate components: illumination and reflectance. This approach considers the
reflectance component as the enhanced output or generates enhanced results by
manipulating the illumination component [8,25].

Nevertheless, a common issue encountered in enhancement methods is the
tendency to amplify latent noise. To address this concern, several approaches
have been proposed to mitigate the residual noise present in the reflectance
component [17,39]. However, these methods have exhibited limited effectiveness
due to the spatially-varying nature of noise measurement.

Recently, data-driven low-light enhancement techniques have achieved sig-
nificant progress under the rapid development of deep learning, demonstrating
markedly superior performance compared to traditional methods[1–4,13,18,19,
32,35,37–39]. A kind of learning-based approaches follow the Retinex theory that
decomposes the low-light image into illumination and reflectance, then restore
them respectively in a data-driven manner [1,3,35,37–39]. Another research
direction involves the acquisition of diverse frequency representations followed
by progressive recovery[32]. However, these methods require a large amount of
paired data, which is difficult to obtain in the real-world scenario, limiting their
wide-range application.

To eliminate the reliance on paired data, unsupervised learning methods[5,7,
12,20,23,39,40] have been developed for image enhancement.While unsupervised
learning methods employ generative adversarial mechanism [6] to encourage the
distribution of the enhanced image to be close to the target normal-light image
[12,28,34], EnlightenGAN [12] employs a global-local discriminator structure
and self-regularization loss that assist the generator in enhancing lightness.With
the employ of the GAN mechanism, these approaches can generate images with
a similar overall appearance with normal-light images in some cases. Neverthe-
less, GAN mechanism usually generates results with content distortion [31]. To
address this issue, EnlightenGAN [12] employ the perceptual constraint between
the input and output to ensure their consistent content, and this constraint is
usually implemented by the pre-trained classifier. However, as depicted in Fig. 1,
the features of the low-light images in the pre-trained VGG [27] classifier are sig-
nificantly different from those of normal-light images. Based on this, the percep-
tual constraint often misleads the enhancement model to learn the degradation
of the low-light input, resulting in generating lightness distortion in the enhanced
result.

To break this limitation, we propose a dual contrastive learning scheme to
assist an unpaired learning strategy for low-light image enhancement. As shown
in Fig. 3, we find that the model trained dominantly by the GAN mechanism
generates images with correct lightness but corrupted content, while the model
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trained dominantly by the perceptual constraint produces images with preserved
content but distorted lightness. These two kinds of results are complementary to
each other and thus can guide the enhancement of the low-light image. To this
end, we decouple the whole process of unpaired learning into two stages. In the
first stage, we propose learning two models mainly driven by the GAN mecha-
nism and the perceptual constraint, respectively. While in the second stage, we
train a model driven by the contrastive term and GAN mechanism. Specifically,
the two types of intermediate results produced during the initial stage function
as reciprocal positive and negative samples, which guide the enhancement model
to learn correct lightness and content representations in a pixel constraint way
as shown in Fig. 2. In addition, current approaches commonly utilize the maxi-
mum channel of the image as the illumination map, which neglects the inherent
stochastic degradation and the coupling of illumination enhancement and degra-
dation present in the image. To tackle the issue, we propose a Frequency-Spatial
Attention Module (FSAM) that enables the model to acquire an adaptive illu-
mination map to guide illumination enhancement and noise removal.

In summary, our primary contributions are:

– We perform a comprehensive analysis of previous unpaired learning methods
which reveals the deficiencies of perceptual loss in low-light image enhance-
ment and propose a dual contrastive learning scheme to enhance the effec-
tiveness of unpaired low-light image enhancement.

– We propose to train two models, each with a specific bias towards light-
ness enhancement and content preservation. Their outputs are categorized
as positive and negative samples relative to each other, thereby guiding the
enhancement process of the final enhancement model.

– We introduce a Frequency-Spatial Attention Module to acquire an adaptive
illumination map to guide lightness enhancement and noise removal.

– Extensive experiments are conducted to illustrate the superiority of our
method against other state-of-the-art approaches.

Fig. 1. (a) and (b) are the feature maps of low-light image and normal-light image on
the pre-trained VGG extractor, respectively. (c) The feature distribution of (a) and
(b). The feature distribution of the low-light image is significantly different from that
of normal-light image.
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2 Method

2.1 Preliminary Analysis

We provide feature maps visualization and a TSNE analysis in Fig. 1 to ana-
lyze the statistical distribution of enhancement results and realistic normal-light
targets.

As shown in Fig. 1, low-light and normal light features extracted by the pre-
trained VGG model have different attentions, where specific objects and overall
texture are focused, respectively. In addition, the TSNE analysis of low-light and
normal-light features distribution also indicates that though extracting features
with pre-trained VGG models reduces the domain gap, it is still quite easy to
distinguish different domains. Given the aforementioned analysis, we draw the
conclusion that performing constraints between low-light inputs and normal-light
outputs with VGG network to preserve texture information is not reasonable.

We further observe that the outcomes produced by the GAN mechanism-
dominated model and the perceptual-dominated method exhibit complementary
characteristics in terms of brightness and texture. Consequently, we propose
employing contrastive learning to address these disparities, as detailed in Sec. 2.4.

2.2 Overview

As shown in Fig. 2, our method consists of two phases: the Sample Preparation
Stage and the Refinement Stage with generators (GGAN , GPer and GRef )
of the same architecture. The Samples Preparing Stage first trains GGAN and
GPer dominated by GAN mechanism and perceptual constraint, respectively.
The Refinement Stage then takes advantage of the complementary models from
the first stage and constructs dual contrastive terms to refine illumination and
achieve perceptual satisfaction for GRef .

Fig. 2. The overall architecture of our generator and dual contrastive method. Stage I
is the samples preparing stage and Stage II is the refinement stage (see Section 2).
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2.3 Stage I: Sample Preparation Stage

We briefly describe our generator architecture as follows. As illustrated in Fig. 2,
our generator is built based on U-Net with skip connections modulated by an
illumination guidance block. Given a low-light input Ilow, we concatenate low-
light Ilow with the corresponding illumination map Iillu which is estimated by
seeking the maximum value of the RGB three color channels for each individ-
ual pixel[8], together forming the initial inputs [Ilow, Iillu].Then we apply the
Frequency-Spatial Attention Module (FSAM) to get an adaptive illumination
map which is propagated to the subsequent layers for further processing. After
that we combine the low-light input with the network output via a skip connec-
tion, and the final result is the prepared sample.

To achieve two models with distinct biases, we assign varying loss weights to
the adversarial and perceptual components. Specifically, the lightness-accurate
samples generator is obtained by setting the loss weights of the adversarial and
perceptual as λAdvHeavy and λPerLight, respectively. Conversely, the content-
preserving sample generator is obtained by setting the loss weights of the adver-
sarial and perceptual as λAdvLight and λPerHeavy.

Due to the coupling of luminance and noise in low-light conditions [29], it
is significantly challenging to address both noise removal and light enhance-
ment simultaneously. Prevailing enhancement methods commonly adopt a direct
approach by utilizing the max-channel as the illumination map to guide light
enhancement. This approximation can be easily influenced by color information,
which results in a deterministic mapping as it overlooks the stochastic nature of
noise.

Through the analysis of the relationship between noise and lightness[32],
regions characterized by inadequate lightness tend to exhibit higher levels of
noise, while regions with sufficient lightness typically have lower noise levels.
Addressing regions with insufficient light and higher noise necessitates long-
range (global) operations for restoration, whereas regions with lower noise and
adequate lightness favor short-range (local) operations. Previous studies [10,16]
have demonstrated that the Fourier Transform can partially decompose lumi-
nance and noise in the Fourier domain, with luminance information predomi-
nantly represented as amplitudes and noise manifested in phases. It inspires us
to implement phase enhancement and amplitude enhancement in parallel in the
Fourier domain, and feature enhancement in the spatial domain. Furthermore,
the Fourier Transform possesses the capability to extract global information
without imposing an excessive number of parameters on the neural network.
Motivated by these observations, we propose a Frequency-Spatial Attention
Module (FSAM) to modulate the max channel map, enabling the acquisition
of an adaptive illumination map that guides both luminance enhancement and
noise removal. Detailed elaboration on the FSAM will be provided in section 2.5.

To adapt to current research conditions and achieve unpaired learning, a
generative adversarial strategy is adopted in the process of training, and we
keep the same discriminator design with EnlightenGAN [12].
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Fig. 3. We employ the results of the Prewitt operator to measure the texture of the
image. (a), (b), and (c) are the results of the Prewitt operator applied to normal-light
image, and outputs of the generator dominated by GAN mechanism and perceptual
constraint, respectively. As for the illumination measurement, we first decompose the
images into a luminance component (Y) and a chromatic component (UV). Then, we
employ the luminance component to measure the illumination of the image. (d), (e),
and (f) are the luminance components of the normal-light image, and outputs of the
generator dominated by the GAN mechanism and perceptual constraint, respectively.
(g) is the absolute value of the pixel-by-pixel difference between (d) and (e), while (h)
is the absolute value of the pixel-by-pixel difference between (d) and (f).

2.4 Stage II: Refinement Stage

After obtaining results from Stage I, it is worth noting that results generated by
GAN mechanism-dominated model is well enlightened but with corrupted con-
tent, while the model trained dominantly by the perceptual constraint produces
images with distorted lightness and preserved content. We fully take advantage
of both GAN mechanism-driven model and perceptual constraint-driven models,
thus proposing the dual contrastive term.

For texture contrastive term LG
texture, we still apply VGG to extract compo-

nent of high-frequency and state as

LG
texture =

||φ(ĨPer
y ) − φ(Ĩy)||1

||φ(ĨGAN
y ) − φ(Ĩy)||1

, (1)

where ĨGAN
y and ĨPer

y denote the outputs of GAN mechanism-dominated model
and perceptual constraint-dominated model, respectively.

We define lightness contrastive term LG
illu as

LG
illu = ||1 − l(ĨGAN

y , Ĩy)

l(ĨPer
y , Ĩy)

||1, (2)

with definition of l(x,y) = 2μxμy+C1
μ2
x+μ2

y+C1
from SSIM loss, C1 = (K1L)

2. Small
constant K1 � 1. L, μx and μy are the dynamic range of the pixel values, mean
intensity of image x and mean intensity of image y, respectively.

Dual contrastive loss LG
contrast is therefore expressed as

LG
contrast = λ1LG

texture + λ2LG
illu. (3)

To summarize, total loss function for Generator in stage II is as follows:

LG
total = LG

Adv + λ3LG
contrast, (4)
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where we keep the adversarial term LG
Adv for unpaired learning and naturalness

preservation. In this work, λ1,λ2,λ3 are empirically set to 2.5,0.5,1, respectively.

2.5 Frequency-Spatial Attention Module

Fourier Transform Given an image input x ∈ RH×W×C , we can convert it to
the Fourier space by using The Fourier Transform, which can be formulated as
follows:

F (X)(u, v) =
1√
HW

H−1∑

h=0

W−1∑

w=0

x(h,w)e−j2π( h
H u+ w

W v). (5)

We can get the amplitude component A(x)(u,v) and phase P(x)(u,v) by the
equation:

A(x)(u, v) =
√

R2(x)(u, v) + I2(x)(u, v), (6)

P (x)(u, v) = arctan[
I(x)(u, v)
R(x)(u, v)

], (7)

where R(x)(u, v) and I(x)(u, v) denote the real and imaginary part, respectively.
Frequency-Spatial Attention Module As shown in Fig. 4, the input concate-
nated features are bifurcated into two distinct branches: the frequency branch
and the spatial branch, which are depicted on the left and right sides, respec-
tively. We apply the Fast Fourier Transform (FFT) on the frequency branch to
decompose the luminance and noise to a certain extent in the Fourier domain
and obtain the amplitude and phase components. To process luminance and
noise separately and extract global information, we apply two 1 × 1 convolu-
tional layers with a Leaky-ReLU activation separately to the amplitude and
phase components. Finally, we transform them back to the spatial domain by
Inverse FFT to fuse them with the results obtained by the spatial branch, and
a 3 × 3 convolutional layer is applied to stabilize the training of the FSAM.

As a spatial local detail complementary branch, the spatial branch uses the
3 × 3 convolution and ReLU to effectively model the structural dependency in
the spatial domain.

Given the input Xin = contact(Ilow, Iillu), the frequency branch F (Xin) and
spatial branch S(Xin), the final output feature I ′

illu ∈ RCillu×H×W by FSAM
can be obtained as follows:

I ′
illu = Iillu ⊗ M(Xin) = Iillu ⊗ σ(F (Xin) + S(Xin)), (8)

where M(Xin) ∈ RCillu×H×W represent the attentional map generated by
FSAM. ⊗ represents the element-wise multiplication.

3 Experiments

Dataset and Evaluation. We perform experiments on unpaired no-reference
datasets which include LIME [8], MEF [22], NPE [30], DICM [15], and paired
LOL dataset [33] but with unpaired learning manner. The LOL dataset [33]
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Fig. 4. The Frequency-Spatial Attention Module.

Fig. 5. Qualitative results on the LOL dataset. En.GAN denotes EnlightenGAN. Please
zoom in for details.

Fig. 6. Qualitative results on the no-reference dataset, where the first row is the results
on the MEF dataset, and the second row is the results on the DICM dataset. En.GAN
denotes EnlightenGAN. Please zoom in for details.
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Table 1. Ablation studies on the LOL dataset.

Type PSNR ↑SSIM ↑MS-SSIM ↑LPIPS ↓FID ↓ NIQE ↓
Baseline 18.76 0.731 0.835 0.2416 93.21 4.2478
GAN-dominated 18.96 0.750 0.893 0.1733 96.68 4.3012
Perceptual-dominated 19.09 0.733 0.891 0.1958 88.40 4.1843
w/o texture term 19.15 0.729 0.871 0.1693 113.544.8218
w/o illu term 19.63 0.733 0.902 0.1805 88.66 4.0659
w/o FSAM 19.42 0.732 0.894 0.1816 92.55 4.2878
GAN only 18.25 0.685 0.835 0.2322 161.744.2822
Ours 20.27 0.754 0.905 0.1552 78.31 3.9435

Fig. 7. Qualitative results of different settings of the ablation studies in Table. 1. "Per-
dominated" denotes perceptual-dominated. Please zoom in for details.

consists of 485 pairs for training and 15 pairs for testing, we randomly shuffled
images to guarantee unpaired learning.

For evaluation with the ground truth (GT), we apply the following metrics:
PSNR, SSIM, MS-SSIM and LPIPS [36]. In addition, we adopt non-reference
image quality metrics including FID [9] and NIQE [24](lower is better).

Implementation Details. During training, we randomly crop input images
into 256x256. and the whole training process takes total 200 epochs and we
optimize our model with Adam optimizer, of which the initial learning rate is
set as 1e-4 and decreases linearly from the 100th epoch. We implement our
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framework with PyTorch and all experiments are performed on a single GPU of
3080Ti.

Table 2. Quantitative results on the LOL dataset. "T", "S", and "U" represent "Tra-
ditional", "Supervised", and "Unsupervised" methods, respectively. En.GAN denotes
EnlightenGAN.

TypeMethod PSNR ↑SSIM ↑MS-SSIM ↑LPIPS ↓FID ↓ NIQE ↓
T HE[11] 14.54 0.377 0.640 0.5036 118.398.437

CLAHE [26] 9.83 0.397 0.510 0.4225 107.377.394
LIME[8] 14.22 0.514 0.767 0.3683 97.50 8.058

U CycleGAN[40] 19.51 0.746 0.860 0.2377 102.663.4049
En.GAN[12] 18.76 0.731 0.835 0.2416 93.21 4.2478
RRDNet[39] 11.00 0.440 0.601 0.3710 92.78 7.4306
ZeroDCE[7] 16.24 0.511 0.729 0.4012 140.457.8830
RUAS[20] 16.40 0.500 0.822 0.2701 112.406.3418
SCI[23] 14.78 0.522 0.854 0.3393 93.21 7.8726
PairLIE[5] 19.51 0.736 0.891 0.2477 87.19 4.0847
Ours 20.27 0.754 0.905 0.1552 78.31 3.9435

S RetinexNet[33] 16.54 0.709 0.672 0.3179 184.485.5463
MBLLEN[21] 18.98 0.816 0.866 0.1400 67.38 4.2301
DRBN[34] 18.80 0.830 0.931 0.1009 74.55 5.1131

3.1 Comparison with state of the art

Quantitative Comparison. Tables 2 and 3 provide quantitative comparisons
with other methods on the LOL dataset and no-reference datasets(MEF, LIME,
NPE, and DICM), respectively. Table. 4 reports the model parameters, FLOPs
and runtime averaged over 50 images of size 512x512. As can be seen, our method
achieves the best performance in terms of most metrics on the LOL dataset and
the no-reference datasets(MEF, LIME, NPE, and DICM), demonstrating the
stable good performance of our proposed methods.
Qualitative Comparison. Figs. 5 and 6 presents visual comparisons on
the LOL dataset, MEF dataset and DICM dataset. Our model can enlighten
low-light inputs correctly while successfully maintaining texture information
and effectively removing noise, demonstrating the superiority of our proposed
method.



Unsupervised LLIE with Dual Contrastive Learning 335

Table 3. NIQE scores on the no-reference datasets, including MEF, LIME, NPE, and
DICM. The best and the second results are marked in bold and underlined, respectively.

TypeMethod MEF LIMENPE DICMAve. NIQE↓
input 4.265 4.438 4.319 4.255 4.319

T HE[11] 3.508 4.892 4.045 3.825 4.068
CLAHE [26] 3.352 3.982 4.032 3.731 3.774
LIME[8] 3.720 4.155 4.268 3.846 4.000

U RRDNet[39] 3.480 3.911 3.975 3.972 3.835
ZeroDCE[7] 3.467 4.130 4.233 3.652 3.871
RUAS[20] 5.142 4.827 6.586 6.674 5.807
SCI[23] 3.681 4.011 3.878 3.786 3.839
PairLLE[5] 3.911 4.348 4.323 4.090 4.168
CycleGAN[40] 3.782 3.2764.036 3.560 3.664
En.GAN[12] 3.232 3.719 4.113 3.570 3.659
Ours 3.2153.708 3.8393.513 3.569

S RetinexNet[33] 4.215 5.109 4.283 4.096 4.234

Table 4. Quantitative comparison for Parameters, FLOPs, and Runtime. Params
denotes the parameter number.

Method Params (M)FLOPs (G)Runtime (S)
RetinexNet[33] 0.838 148.54 0.023
MBLLEN[21] 0.450 21.37 0.159
DRBN[34] 0.577 42.41 0.140
En.GAN[12] 8.367 72.61 0.011
ZeroDCE[7] 0.0789 5.2112 0.0042
RUAS[20] 0.0014 0.2813 0.0063
SCI[23] 0.0003 0.0619 0.0017
Ours 0.6928 24.82 0.023

3.2 Ablation Studies

We perform an ablation study to verify the effectiveness of our contrastive learn-
ing strategy employed in stage II on the LOL dataset. The quantitative compar-
ison is concluded in Table. 1, where we report the initial results of stage I, and
investigate the role of FSAM, LG

texture and LG
illu. We further provide visualiza-

tions of the enhancement results of different settings in Fig. 7. As observed, by
adopting dual FSAM, contrastive term LG

texture and LG
illu, our method signifi-
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cantly correct the lightness and preserves texture details, thus promoting model
performance.

4 Conclusion

To tackle degradations like poor visibility, acute noise, and low contrast, we ana-
lyze the previous VGG-based low-light image enhancement methods and explore
the potential of contrastive learning on refinement. Following the principle of
coarse-to-fine, we disentangle the whole enhancement process into an unpaired
low-light image enhancement and refinement stage. Through the utilization of
the proposed Frequency-Spatial Attention Module, we acquire an adaptive illu-
mination map to guide light enhancement and noise removal. A state-of-the-
art performance has been proved on various datasets. However, our proposed
method may exhibit diminished performance in extremely dark scenarios due to
the inherent loss of detail and noise in low-light images. Compared to supervised
methods with ground-truth supervision, our approach generates fewer structural
details. Enhancements can be improved by incorporating robust semantic infor-
mation. In the future, it will be worthwhile to explore training a large pre-trained
model that incorporates semantic features. We hope that our strategy could serve
as a new refinement scheme for future research.

Acknowledgments. This work was supported by the Anhui Provincial Natural Sci-
ence Foundation under Grant 2108085UD12. We acknowledge the support of GPU
cluster built by MCC Lab of Information Science and Technology Institution, USTC.

References

1. Cai, Y., Bian, H., Lin, J., Wang, H., Timofte, R., Zhang, Y.: Retinexformer: One-
stage retinex-based transformer for low-light image enhancement. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 12504–12513
(2023)

2. Du, W., Chen, H., Yang, H.: Learning invariant representation for unsupervised
image restoration. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 14483–14492 (2020)

3. Fan, M., Wang, W., Yang, W., Liu, J.: Integrating semantic segmentation and
retinex model for low-light image enhancement. In: Proceedings of the 28th ACM
International Conference on Multimedia. pp. 2317–2325 (2020)

4. Fei, B., Lyu, Z., Pan, L., Zhang, J., Yang, W., Luo, T., Zhang, B., Dai, B.: Genera-
tive diffusion prior for unified image restoration and enhancement. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
9935–9946 (2023)

5. Fu, Z., Yang, Y., Tu, X., Huang, Y., Ding, X., Ma, K.K.: Learning a simple low-light
image enhancer from paired low-light instances. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 22252–22261 (2023)

6. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial networks. arXiv preprint
arXiv:1406.2661 (2014)

http://arxiv.org/abs/1406.2661


Unsupervised LLIE with Dual Contrastive Learning 337

7. Guo, C., Li, C., Guo, J., Loy, C.C., Hou, J., Kwong, S., Cong, R.: Zero-reference
deep curve estimation for low-light image enhancement. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1780–
1789 (2020)

8. Guo, X., Li, Y., Ling, H.: LIME: Low-light image enhancement via illumination
map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

9. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural.
Inf. Process. Syst. 30, 1–12 (2017)

10. Huang, J., Liu, Y., Zhao, F., Yan, K., Zhang, J., Huang, Y., Zhou, M., Xiong, Z.:
Deep fourier-based exposure correction network with spatial-frequency interaction.
In: Proceedings of the 17th European Conference on Computer Vision. pp. 163–180
(2022a)

11. Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization
for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752–1758
(2007)

12. Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P.,
Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. arXiv
preprint arXiv:1906.06972 (2019)

13. Ke, R., Schönlieb, C.B.: Unsupervised image restoration using partially linear
denoisers. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5796–5812 (2021)

14. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)
15. Lee, C., Lee, C., Kim, C.S.: Contrast enhancement based on layered difference rep-

resentation. In: Proceedings of the International Conference on Image Processing.
pp. 965–968 (2012)

16. Li, C., Guo, C.L., Zhou, M., Liang, Z., Zhou, S., Feng, R., Loy, C.C.: Embed-
ding fourier for ultra-high-definition low-light image enhancement. arXiv preprint
arXiv:2302.11831 (2023)

17. Li, L., Wang, R., Wang, W., Gao, W.: A low-light image enhancement method for
both denoising and contrast enlarging. In: Proceedings of the IEEE International
Conference on Image Processing. pp. 3730–3734 (2015)

18. Lin, X., Ren, C., Liu, X., Huang, J., Lei, Y.: Unsupervised image denoising in
real-world scenarios via self-collaboration parallel generative adversarial branches.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 12642–12652 (2023)

19. Lin, X., Yue, J., Ding, S., Ren, C., Guo, C.L., Li, C.: Unlocking low-light-rainy
image restoration by pairwise degradation feature vector guidance. arXiv preprint
arXiv:2305.03997 (2023)

20. Liu, R., Ma, L., Zhang, J., Fan, X., Luo, Z.: Retinex-inspired unrolling with coop-
erative prior architecture search for low-light image enhancement. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
10561–10570 (2021)

21. Lv, F., Lu, F., Wu, J., Lim, C.: MBLLEN: Low-light image/video enhancement
using CNNs. In: Proceedings of the British Machine Vision Conference. pp. 1–13
(2018)

22. Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi-exposure
image fusion. IEEE Trans. Image Process. 24(11), 3345–3356 (2015)

23. Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light
image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 5637–5646 (2022)

http://arxiv.org/abs/1906.06972
http://arxiv.org/abs/2302.11831
http://arxiv.org/abs/2305.03997


338 Y. Wang et al.

24. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image
quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2012)

25. Park, S., Yu, S., Kim, M., Park, K., Paik, J.: Dual autoencoder network for retinex-
based low-light image enhancement. IEEE Access 6, 22084–22093 (2018)

26. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer,
T., ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram
equalization and its variations. Computer vision, graphics, and image processing
39(3), 355–368 (1987)

27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

28. Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light
video enhancement using synthetic data produced with an intermediate domain
mapping. In: Proceedings of the European Conference on Computer Vision. pp.
103–119. Springer (2020)

29. Tsin, Y., Ramesh, V., Kanade, T.: Statistical calibration of ccd imaging process.
In: Proceedings of IEEE International Conference on Computer Vision. vol. 1, pp.
480–487 (2001)

30. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algo-
rithm for non-uniform illumination images. IEEE Transactions on Image Process-
ingg 22(9), 3538–3548 (2013)

31. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Change Loy, C.: ESR-
GAN: Enhanced super-resolution generative adversarial networks. In: Proceedings
of the European Conference on Computer Vision Workshops. pp. 63–79 (2018)

32. Wang, Y., Cao, Y., Zha, Z.J., Zhang, J., Xiong, Z., Zhang, W., Wu, F.: Progressive
retinex: Mutually reinforced illumination-noise perception network for low-light
image enhancement. In: Proceedings of the 27th ACM International Conference
on Multimedia. pp. 2015–2023 (2019)

33. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light
enhancement. arXiv preprint arXiv:1808.04560 (2018)

34. Yang, W., Wang, S., Fang, Y., Wang, Y., Liu, J.: From fidelity to perceptual qual-
ity: A semi-supervised approach for low-light image enhancement. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
3063–3072 (2020)

35. Zhang, L., Liu, X., Learned-Miller, E., Guan, H.: Sid-nism: A self-supervised low-
light image enhancement framework. arXiv preprint arXiv:2012.08707 (2020)

36. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effec-
tiveness of deep features as a perceptual metric. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 586–595 (2018)

37. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: A practical low-light image
enhancer. In: Proceedings of the 27th ACM International Conference on Multime-
dia. pp. 1632–1640 (2019)

38. Zhang, Y., Di, X., Zhang, B., Wang, C.: Self-supervised image enhancement net-
work: Training with low light images only. arXiv preprint arXiv:2002.11300 (2020)

39. Zhu, A., Zhang, L., Shen, Y., Ma, Y., Zhao, S., Zhou, Y.: Zero-shot restoration
of underexposed images via robust retinex decomposition. In: Proceedings of the
IEEE International Conference on Multimedia and Expo. pp. 1–6 (2020)

40. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. pp. 2223–2232 (2017)

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1808.04560
http://arxiv.org/abs/2012.08707
http://arxiv.org/abs/2002.11300


Transformer-Based Fringe Restoration for
Shadow Mitigation in Fringe Projection

Profilometry

Vaishnavi Ravi(B) , Siddharth Parlapalli , Sameer Ranjan ,
and Rama Krishna Gorthi

Indian Institute of Technology, Tirupati, Tirupati, Andhra Pradesh, India
vaishnavi1712@gmail.com

Abstract. Fringe Projection Profilometry (FPP) is a widely recog-
nized technique for deriving 3D profiles from images. Despite numer-
ous methodologies developed to determine depth in FPP, the inherent
triangulation setup of camera, projector, and object often introduces
substantial shadows in captured fringes, especially for complex objects.
These shadows can impede algorithm performance and introduce unde-
sirable artifacts in final depth profiles. In this work, we introduce a
Transformer-based Fringe Restoration network designed to repair shad-
owed regions in single deformed fringe images. The network comprises an
object localization module to identify object regions and a shadow repair
module that utilizes reference and deformed fringes to restore shadowed
areas. In addition, we construct a comprehensive pseudo-realistic dataset
using Blender, a computer graphics tool, to train the proposed net-
work. Our results demonstrate precise object region segmentation with
just a single fringe image, and the proposed network achieves superior
fringe restoration, as quantified by Intersection over Union (IoU) and dice
score metrics. Moreover, 3D reconstruction on shadowed and shadow-free
deformed fringes using standard single-shot methods exhibits enhanced
performance owing to the fringe restoration network.

Keywords: Shadow Removal · Depth Estimation · Fringe Projection
Profilometry

1 Introduction

Fringe Projection Profilometry (FPP) stands out as a robust method within opti-
cal metrology, enabling precise and non-contact 3D surface measurements with
remarkable accuracy and resolution. Its applications span across diverse indus-
tries such as automotive, aerospace, biomedical, cultural heritage preservation
etc. [1]

A typical FPP system comprises a projector that shines a sinusoidal pattern
of light onto the object under examination and a camera that captures the
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deformations of this pattern from a different view. The prevalent configuration
involves a cross-axis symmetric arrangement, wherein either the projector, the
camera, or both are tilted to align their fields of view. However, due to this
arrangement and the presence of a reference plane behind the object, shadows
occur in the captured deformed fringes.

These shadows pose a significant challenge, as they adversely affect the accu-
racy and reconstruction capability of the 3D profiling process. They result in
missing data, erroneous depth estimates, and can also introduce artifacts. Con-
sequently, researchers have proposed various strategies to mitigate the shadow-
related issues in FPP systems. Many of these approaches rely on image process-
ing techniques although their effectiveness may be limited when applied to fringe
images.

1.1 Motivation and Contribution

Nowadays, deep learning (DL) based models have demonstrated state-of-the-art
performance over existing conventional algorithms in various low-vision tasks
such as image enhancement, restoration, object detection, and 3D reconstruction.

The main motivation of this work is to employ a learning-based framework
which repairs the shadows present in deformed fringes using a single-shot app-
roach, thereby estimating precise 3D profiles in FPP. An overall high-level block
diagram is given in the Fig.1 below.

Fig. 1. Overall Block Diagram for Proposed Fringe Restoration Network

The main contributions of this work are:

– Proposed a Transformer-based Fringe Restoration network that takes a single
deformed fringe to repair the shadow regions.

– The proposed Fringe Restoration network encompasses an object localiza-
tion module to estimate the object mask and shadow repairment module to
mitigate the shadow in deformed fringes.

– A comprehensive dataset of fringe images with realistic shadow effects is cre-
ated using a computer graphics tool Blender for effective training of the Fringe
Restoration network.

– Proposed object localization module is evaluated in terms of Mean Absolute
Error (MAE), Dice Score and IoU score on synthetic and real test samples.
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– The proposed method’s 3D profiling results on shadowed images are eval-
uated using well-known single-shot approaches like Fourier Transform Pro-
filometry (FTP) and Windowed FTP (WFTP) followed by Quality Guided
Phase Unwrapping (QGPU).

The remainder of the paper is structured as follows. Sec.2 reviews the existing
literature on shadow-repairing techniques. Sec.3 describes the problem formula-
tion, proposed approach, data generation procedure and loss functions. Sec.4
presents the implementation details and results. Following this, the conclusions
are presented in Sec.5.

2 Related Literature

Numerous efforts have been made by researchers to address the challenge of
shadow elimination in earlier studies. Initially, some explored the incorporation
of multiple projectors or cameras from different perspectives to combine infor-
mation from multiple sources to deal with shadows [2], [3], [4]. These methods
were useful but involved high costs due to increased equipment.

Subsequently, the focus shifted towards developing image processing-based
solutions to separate the shadow from the background. While conventional meth-
ods for natural images relied on evaluating brightness and chrominance informa-
tion [5], distinguishing shadows in fringe images, characterized by specific pat-
terns and intensities akin to black fringes, proved challenging. Zhang [6] proposed
hole detection and filling method that employed a Gaussian filter to smooth
fringe patterns. However, this approach inadvertently smoothed object surfaces,
blurring reconstructed model details. Chen et al. [7] employed two-dimensional
linear interpolation to derive a final phase map after eliminating invalid points’
phases. Yet, indiscriminate smoothing of shadow areas introduced additional
phase errors across the repaired surface. Huang et al. [8] developed an identifica-
tion framework to remove the phase of invalid regions in the image like shadows.
Later, Lu, Zhang, and Zhong et al. [9], [10], [11] proposed an approach to delete
the phase in shadow area using an intensity-based threshold on the modulation
images. However, such methods often lacked precision.

Following this, Otsu’s thresholding is applied to solve the shadow problem
in [12]. Wang et al. proposed a method using a k-means clustering approach
to segment the background from the shadow regions. But, these two methods
are very time-consuming [13]. In [14], Zheng et al. utilized intensity difference
between the phase of shifting patterns to distinguish between shadow and back-
ground. Lu et al. [9] proposed to map a 3D point cloud onto the digital micro-
mirror device (DMD) plane and then identify the shadow regions by comparing
the captured fringe images with the mapping results. Precise system calibration
is required for this method. Another approach combined image gradient squares,
binary image sub-region areas, and image decomposition/composition to elim-
inate invalid phase values. But then these also involve intense computations.
After this, Lopez et al. proposed a method in [15] where the insufficient data in
shaded areas are substituted by masked reference planes and this segmentation is
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achieved by superpixel-based fast fuzzy c-means clustering algorithm. This also
involves intense calculations. In another attempt to classify the shadow areas into
valid and invalid, in which the valid shadow area is repaired by a neighboring
information fusion phase estimation (NIFPE), and the invalid area is repaired
by background phase matching (BPM) algorithms, respectively.

Recently DL methods have shown potential results to deal with shadows in
natural images as given in [16] and [17]. Inspired by this, some researchers have
developed DL-based methods for shadow removal in deformed fringe images.
In [18], Wang et al. proposed a direction-aware spatial context module based
network coupled with a generative adversarial network (GAN) for shadow region
detection and repair. It identifies the shadow regions in the image. Following this,
Li et al. introduced TPDNet, a DL model trained to estimate depth maps from
texture images, masks, and unwrapped phase maps. However, acquiring object
masks poses challenges in real-world images.

Hence, we propose a Transformer-based Fringe Restoration network that
takes a single deformed fringe to repair the shadow regions. The proposed net-
work has an object localization module which identifies the object region in the
images, and a shadow repairment module which restores the shadow regions
using reference and deformed fringes.

3 Proposed Methodology

In this section, we provide a comprehensive overview of problem formulation
where the importance of shadow repairment is discussed, followed by the descrip-
tion of the proposed DL-based Fringe Restoration network for repairing the shad-
ows. After this, the complete data generation procedure with real shadow effects
using Blender for training the proposed DL-based model and implementation
details are elaborated.

3.1 Problem Formulation

In FPP, a computer-generated fringe pattern is projected on the object of inter-
est, and the deformations are captured by a camera from another view as given
in Fig.2. The equation for fringe pattern can be written as:

Id(x, y) = a(x, y) + b(x, y)cos(2πfcx + Φ(x, y)) (1)

where a is the average intensity variations in the background, b is the non-
uniform reflectivity of the diffusely reflecting object, Φ(x, y) is the phase term
introduced by the object’s height profile, which is proportional to the shape of the
object. There are many algorithms developed to extract the height information.

Conventional FPP methods involve various steps like fringe analysis - to
extract the wrapped phase and phase unwrapping - to retrieve the absolute
phase from the wrapped ones, followed by calibration which maps the absolute
phase to height as given in [1]. Most works in the literature use Phase Shifting
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Profilometry (PSP) [19] followed by Multi-Frequency Temporal Phase Unwrap-
ping (MFTPU) [20] which takes images of multiple frequencies and phase shifts
to extract the absolute phase shift. On the otherhand, FTP [21] followed by
QGPU is used in place of PSP + MFTPU to address the dynamic scenarios
using a single fringe. Finally, these absolute phase shifts are converted to precise
height information with the proportionality constant given by the approaches in
[22].

Fig. 2. Problem Formulation

But, because of the triangulation principle, objects cater shadows onto the
reference plane present in the scene. These shadows recorded in captured fringes
hinder the performance of reconstruction algorithms and can introduce artifacts
in the wrapped phase maps. If a path-following algorithm like QGPU is employed
for unwrapping, it completely fails because of the presence of shadows. So, there
is a primary requirement to repair the shadows in the captured images using
a single-shot approach. Therefore, we posed this fringe restoration task as a
segmentation problem to localize the object region and developed a Transformer-
based DL model followed by a shadow repairment to restore the shadow regions.
In this work, we also generated a rich dataset of fringe images with realistic
effects like shadows to train the DL model whose details are given in Sec.3.3.

3.2 Proposed Transformer-based Fringe Restoration Network

In this subsection, we present the details of the proposed Fringe Restoration net-
work for shadow removal. Recently, a GAN-based approach for shadow repair-
ment focused on identifying the shadow region in the fringe image and repairing
it is proposed. But, our approach is different from [18] in the way that it has
two modules, namely (1) Object Localization module - which detects the object
region first unlike the shadow mask in [18] and then (2) Shadow Repairment
module which repairs the captured fringe leveraging the already available refer-
ence and deformed fringes.
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Object Localization module: The block diagram of the Object Localization
module is shown in Fig.3. Let the shadowed deformed fringe image be repre-
sented as Ds(x, y) and the object mask is M(x, y). This module’s task is to
localize the object region from a single Ds(x, y) and generate M(x, y). This
object mask generation task is posed as a learning-based segmentation problem.
We have leveraged a recent transformer-based segmentation framework, Swin
Transformer [23] for performing this task. The key design element of this trans-
former is its shift of window partition between the self-attention layers. These
bridge the windows of the preceding layer, providing connections among them
which enhances the modeling power. This feature is expected to be instrumental
in accumulating the object pixels and segmenting out the object.

Fig. 3. Block Diagram of Object Localization Module

The architecture of Swin Transformer consists of patch partition, which
divides the image into small regions and feeds to 4 concatenated stages of lin-
ear embedding and Swin Transformer block connected back-to-back. The Swin
Transformer block consists of a shifted windows-based multi-head self-attention
(MSA) followed by a multilayer perceptron (MLP) with Gaussian Error Linear
Unit Activation (GELU) non-linearity in between. A LayerNorm is applied before
each MSA module and each MLP, and also a residual connection is applied after
each module. The segmented object mask obtained at the end of this module is
fed to the Shadow Repairment Module.

Shadow Repairment module: The segmented object mask M(x, y) predicted
by the first module acts as the input to this module. Along with the mask, this
module takes the reference and the shadowed deformed fringe and performs the
shadow repairment as given in Fig.4. If the reference and the deformed fringes are
considered as R(x, y) and DS(x, y) respectively then the restored fringe image
DR(x, y) can be obtained by the equation given below:

DR(x, y) = [∼ M(x, y) ∗ R(x, y)] + [M(x, y) ∗ DS(x, y)] (2)

where [∼ M(x, y)] is the negative of object mask M(x, y). Then, the final
DR(x, y) obtained at the end of this module can be observed to be free from
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shadow regions retrieved from just one single deformed fringe. However, the
basic assumption on which this module works is that the intensity variations
of the reference R(x, y) and the shadowed deformed fringes are the same and
there are no illumination variations while recording the images. This ensures
that the shadow-mitigated deformed fringe will have uniform intensities all over.
The block diagram of this module is given in Fig.4.

Fig. 4. Block Diagram of Shadow Repairment

Loss Function The loss function employed to train the Swin Transformer-
based segmentation network mentioned in the first module is Binary Cross
Entropy (BCE) calculated using the following expression:

L(y, ŷ) = − 1
N

N∑

i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (3)

where L(y, ŷ) is the BCE loss in which yi is the true label and ŷi is the
predicted probability of the ith sample belonging to class 1, respectively. The
total number of samples is given by N.

3.3 Pseudo-Realistic Data Generation

It is well-known that the DL networks are data-hungry and need large amounts
of data to train for their effective learning.

As collecting diverse real training samples is a very time-consuming and
expensive process, it is preferred to generate synthetic datasets as performed in
earlier works [24], [25], [26]. However, the task at hand is shadow removal and
hence data cannot be generated using the procedures mentioned in these works.
Further, it is not straightforward to create shadows through mathematical mod-
eling. Hence, we have adopted a pseudo-realistic data generation procedure with
the help of a Computer Graphics tool called "Blender". Many recent works have
employed this kind of data-generation procedure for various tasks [18], [27]. In
this work, we employed Blender to generate shadowed deformed fringes for the
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3D Computer-Aided Design (CAD) objects and the object mask. This dataset
can be accessed from (Dataset) and can be employed to train the Object Local-
ization module.

A virtual FPP system with a light source, camera and a reference plane
as a wall is arranged in Blender which imitates the original FPP system. The
3D models of the objects are sourced from various prominent repositories and
datasets available online. One such sample is shown in Fig. 5. To make the cap-
tured data realistic, various parameters like the pitch, noise, material properties,
type of light source etc. have been carefully set.

Fig. 5. Training Data Generation in Blender.

The step-by-step procedure to set-up FPP virtually in Blender is as follows:

– Camera & Projector: The camera in the scene is set to the "Perspective
projection" mode. The light source chosen to be "Spotlight" is positioned and
oriented to project fringes onto a reference plane. The projector is tilted at an
angle that mimics the intensity falloff observed in the real-world camera setup.
The camera and projector are along the same line to get the shadowing effect.
The “spotlight" is replaced with a "point source" and the reference plane is
removed to obtain image as shown in Fig.5(c) which when thresholded as
shown in Fig.5(d) gives a ground truth mask to train the Object Localization
module.

– Data Samples: Each 3D object is scaled to fit in camera’s FOV. In order to
diversify the dataset, each object is set to 10 rotations along X,Y and Z axes
along with projecting patterns with 4 phase shifts of 0◦, 45◦, 90◦ and 135◦.
This results in 120 samples from a single 3D CAD object.

– Automated Pipeline: The Blender Python package (bpy) played a crucial
role in automating the entire data generation pipeline which generated the
deformed, reference, and object masks in this work.

To ensure a robust training process, the entire dataset is partitioned into
mutually exclusive train, validation, and test sets in 8:1:1 ratio. This strategic
mix aims to equip the model with the versatility needed to accurately reconstruct
real-world objects with diverse profiles.

https://github.com/sameeranjan22/Shadow-Removal-Dataset
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3.4 Implementation Details

A learning rate of 1 × 10−3 with multi-step learning rate scheduler and Adam
optimizer with β1 = 0.9 and β2 = 0.999 are used. A total of 45 3D objects have
been selected from web sources and 5400 shadowed deformed fringe images and
their corresponding object masks are generated. The model was trained on 4320
training and 540 validation samples for 30 epochs. The training was performed
on 4 NVIDIA A100-SXM Graphical Processing Unit (GPU). The results and
evaluations presented in this paper are tested with final weights obtained after
the entire process.

4 Results

In this section, we present the results of the proposed Fringe Restoration Net-
work on various synthetic and real samples. The results of the Object Localiza-
tion module is evaluated using metrics like Mean Absolute Error (MAE), IoU
score and Dice Score. Following this, in order to prove the efficacy of the pro-
posed method, the shadowed and repaired deformed fringes are reconstructed
using two standard single shot fringe reconstruction methods like Fourier Trans-
form Profilometry (FTP) [21] and Windowed FTP (WFTP) [28] followed by
QGPU [29].

Fig. 6. Test images, ground truth, and predictions from the proposed method.

4.1 Results of the Object Localization Module

This subsection presents the results of the Object Localization and Shadow
repairment modules for synthetic test samples.

With the proposed fringe restoration network, the object region is localized
and the shadows are repaired as shown in Fig.6. Two synthetic test samples
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with significant shadow regions are shown in Fig.6(a) and Fig.6(e). The ground
truth object masks for these test samples are given in Fig.6(b) and Fig.6(f).
The predicted results of the first module i.e, object localization module is in
Fig.6(c) and Fig.6(g). It can be observed that the Swin Transformer model is
trained very well to segment out the object regions very precisely. Then, the final
results of the shadow repairment module are presented in Fig.6(d) and Fig.6(h).
It can be observed that the shadows are precisely removed and intensities in
the shadow regions are properly restored. In order to quantify the performance
of the proposed module, we have calculated 3 metrics namely MAE, IoU, and
Dice score. These are calculated between the predicted mask, and the ground
truth and are presented in Table.1. The values reported in Table.1 show that
the model has been trained well to identify the object location precisely.

Table 1. Evaluation Metrics for Mask

Metric Mean Absolute Error
(MAE)

Intersection over Union
(IoU Score)

Dice Score

Proposed
Method

0.002 0.949 0.974

4.2 Evaluation Results on Synthetic Samples for 3D Profiling

Evaluation in terms of wrapped phases: Here, we present the wrapped
phase results of two test samples shown in Fig.6(a) and Fig.6(d). Fig.7 represents
the wrapped phase maps obtained using FTP and WFTP on shadowed and
shadow-repaired fringe images. It can be seen that the shadowed deformed fringes
have lots of artifacts in the wrapped phase maps, especially in the highlighted
regions. These artifacts are highlighted in Fig.7(a), 7(e), 7(c), 7(g) and act as
potential sources of error propagation while performing Phase Unwrapping using
single-shot unwrapping methods like QGPU.

Evaluation of test samples in terms of 3D profiles: In this subsection, the
absolute phase maps of the test samples are generated using QGPU on wrapped
phase results of the test objects shown in Fig.7.

The actual 3D profiles, which are proportional to these absolute phase maps,
are generated for shadowed and shadow-repaired fringes to clearly depict the
effectiveness of the proposed Fringe Restoration network. This can be validated
by the MAE values given in Table.2 where the 3D profiles of samples in the test
dataset are generated and the MAEs are calculated in shadowed and shadow-
repaired cases. From the table, we can observe that there is a 43% and 57%
reduction in the error values of FTP+QGPU and WFTP+QGPU, respectively,
which validates the fact that repairing shadows indeed helps in the improvement
of the final 3D profile.
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Fig. 7. Wrapped phases of shadowed, shadow-free fringes with FTP and WFTP.

Table 2. MAE values for Shadowed and Shadow-Repaired images absolute phase values
for test data samples

Method Shadowed
(MAE)

Shadow-Free
(MAE)

FTP+QGPU 6.136 3.503
WFTP+QGPU6.337 2.709

To demonstrate the performance visually, the 3D profiles of two test samples
are shown in Fig.8. The ground truth surface profiles of the 3D test objects
are given in Fig.8(a), Fig.8(b). It can be clearly observed that the edges on the
object near the shadow regions incur high errors, and there are a few places
in the shadowed test samples where the unwrapping path is missed, leading to
unusual errors in the absolute phase maps. Once the shadows are repaired, the
absolute phase maps become more accurate as QGPU performs well.

4.3 Experimental Comparison with the State-of-the-Art

One unique distinction of the proposed approach is that we estimate object mask
in the process of dealing with shadows in FPP, whereas the existing methods like
[18] estimate a shadow mask. Further, for the shadow detection and removal
in [18], a mask is estimated for the shadow region using a complex multistep
process. This could not be automated in an end-to-end fashion as it has two
distinct DL models to train and also several handcrafted steps between the two
models. In contrast, the proposed method is simple and straightforward, which
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Fig. 8. Groundtruths, (FTP/WFTP + QGPU) estimated 3D profiles of Gem and
Facemask samples with shadow and shadow repaired results.

Fig. 9. Comparison of shadow mask and object mask-based approaches. The first row
shows the results of the shadow mask-trained model as in existing frameworks [18].
The second row shows the results of the object mask-trained model for a test sample,
as in the proposed framework.

performs shadow removal with a single end-to-end trained transformer network.
In this subsection, we compare the idea of shadow mask as employed in [18]
versus the object mask prediction strategy proposed in this work using the same
transformer-based model and discuss the pros and cons below. we generated
shadow mask ground truth for our dataset by using a point source in a blender
followed by thresholding. These shadow masks are used to train the same trans-
former model used in the Object Localization module for this experimental study.

In highlighted regions, small shadows adjacent to fringe troughs caused the
shadow mask-trained model to fail, producing faulty masks (Fig. 9(b)). In con-
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trast, our Object Localization module estimated better object masks, resulting
in higher quality repaired fringe (Fig. 9(g)). This distinction issue can also affect
performance on images without shadow-deformed fringes. Small errors in shadow
masks can lead to errors in the object region and depth prediction. Our app-
roach avoids these issues unless the object mask covers a significant shadow
region. Therefore, we believe object masking is superior to shadow masking.

4.4 Evaluations on Real Samples

In this subsection, we present the results on two real samples that are captured
using an FPP setup in a lab environment. The experimental setup for capturing
real fringes has a DLP (model: DLP Lightcrafter4500) and an industrial camera
(model:DFK 27BUJ003). The projector and camera are arranged in a cross-axis
symmetric arrangement with a baseline of 0.3m, a distance of baseline to the
reference plane of 0.9m, and a fringe frequency of 40 cycles/row.

Fig. 10. Results and comparisons on Real test sample 1.

Two CAD samples from our test set are fabricated into real objects through
3D printing for testing of real cases as depicted in Fig.10(a), Fig.11(a). For the
first sample, the real reference and the shadowed deformed fringes are shown
in Fig.10(b) and Fig.10(c). To match the contrast of real images with that of
the training dataset, gamma correction is performed as a preprocessing step.
Fig.10(d) shows the repaired deformed fringe estimated by the proposed Fringe
Restoration network. Following this, reconstruction algorithms FTP+QGPU
and WFTP+QGPU are applied on the shadowed and repaired real samples and
the results are presented in Fig.10(e)-10(h). From the reconstruction results of
FTP+QGPU, it can be observed in Fig.10(e) that the reconstruction of the bot-
tle around the shadow has completely failed because of the absence of wraps in
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that region leading to a faulty depth profile whereas the 3D profile obtained from
the repaired fringes as in Fig.10(f) reconstructs the shape more accurately. In the
case of WFTP+QGPU, there are erroneous values in the depth profile obtained
from the shadowed fringe as given in Fig.10(g); this is due to the addition of
artifacts while applying Fourier transform locally in WFTP and subsequently
leading to erroneous path selection by QGPU during unwrapping. On the other
hand, better reconstruction results are obtained in the case of repaired fringes.
The same analysis is carried out for the second test sample as shown in Fig.11
with a higher dynamic range (50mm ), nearly double the height of sample 1. It
can be clearly observed that the shadow mitigation by the proposed method is
aiding in accurate depth prediction.

Fig. 11. Results and comparisons on real test sample 2.

5 Conclusions

In this work, we proposed a Transformer-based Fringe Restoration network
designed to mitigate the impact of shadows on depth estimation. The proposed
model consists of an object localization module and a shadow repairment module
which identifies the object region from shadowed deformed fringes and restores
shadowed areas using reference and deformed fringes. In addition, we created a
rich pseudo-realistic dataset of fringe images with realistic shadow effects using
Blender for comprehensive model training. Through rigorous evaluation, our
proposed model showcases precise object segmentation in fringe restoration, as
quantified by metrics like MAE, IoU and dice score. Moreover, the enhanced per-
formance of the proposed method is evidenced by improved 3D reconstruction
results obtained from shadowed to shadow-free deformed fringes with standard
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single-shot methods. Overall, this work presents a promising approach to enhanc-
ing the accuracy and robustness of depth estimation in presence of shadows in
FPP, with potential applications in various fields requiring precise 3D surface
measurements.
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Abstract. In this paper, we introduce EMPATH, an advanced com-
putational framework developed to substantially enhance the recogni-
tion of Bangla Sign Language (BdSL). By integrating Ensemble Learn-
ing, MediaPipe Holistic for gesture tracking, and an Attention-based
Transformer model, EMPATH addresses the challenges of sign language
interpretation, setting new accuracy benchmarks and significantly sur-
passing previous records: achieving 79.81% on SignBD-Word-90 (previ-
ously best at 66.05%), 70.58% on SignBD-Word (previously best at 57%),
and 99.25% on BdSL40 (previously best at 89%).

A pioneering feature of EMPATH is its innovative interpolation model,
built to overcome the limitations posed by missing Hand keypoints
of MediaPipe. Validated in both EMPATH and a basic MLP frame-
work, this model showcases remarkable versatility across architectures.
EMPATH strategically selects its preprocessing and postprocessing tech-
niques, optimizing each for maximum impact on accuracy and perfor-
mance.

Extensively trained across various word-level datasets beyond Bangla,
including INCLUDE-50, INCLUDE, WLASL-100, and the Malaysian
Sign Language Medical Dataset, EMPATH demonstrates its broad
applicability and global potential. This diverse training scheme estab-
lishes superior accuracy benchmarks: achieving an impressive 100% on
INCLUDE-50, 94.67% on INCLUDE, and 93.46% on the MSL Medical
Dataset.

Through EMPATH, we aspire to bridge communication barriers for
the deaf and hard-of-hearing communities, showcasing the profound
impact of integrating advanced technological solutions to tackle the com-
plexities of sign language recognition.

Source code is available at https://github.com/kreyazulh/EMPATH.
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1 Introduction

Sign language recognition is a bridge for the deaf and hard-of-hearing commu-
nities, enabling essential communication and promoting inclusivity. Bangla Sign
Language (BdSL), significant yet underrepresented in computational recognition,
faces challenges due to the lack of proper datasets and continuation of research
on improvement. Previous efforts have focused more on dataset creation than
on advancing recognition technologies, particularly for BdSL, leaving a gap in
subsequent research and application.

EMPATH emerges as a comprehensive framework, making a significant leap
in BdSL recognition. It integrates Ensemble Learning [8], MediaPipe Holistic [14]
for gesture tracking, and Attention-based Transformer models [23] as shown in
Fig. 1, tackling the complex challenges of sign language interpretation with a
synergistic approach. Each component is chosen for its proven effectiveness, with
Ensemble Learning boosting reliability, MediaPipe providing advanced tracking,
and Transformers enhancing context processing.

The innovation of EMPATH is showcased in its pioneering application to
Bangla word-level sign language datasets, leveraging advanced modeling and
state-of-the-art augmentation techniques like frame dropping, time-scaling, and
quantization. Central to EMPATH’s advancements is a novel interpolation model
specifically designed to address the challenge of missing hand keypoints—a
notable limitation with MediaPipe technologies. This model has been rigorously
validated across both the comprehensive EMPATH framework and a straightfor-
ward Multilayer Perceptron (MLP) model [21], affirming its widespread appli-
cability.

Fig. 1. High-level Overview of EMPATH: The process begins with raw RGB videos fed
into MediaPipe Holistic, extracting landmarks. Should any hand keypoints be missing,
our interpolation model predicts and fills in the gaps. The data, now complete, is con-
verted to a parquet file format for efficient processing. Subsequently, the Transformer
model, initialized with parameters like Layer Normalization and Landmark Embed-
ding, takes over. The architecture employs Multi-Head Attention alongside dense layers
activated by GELU functions. Upon Transformer training completion, the results from
four individually trained models are aggregated using an ensembling method. This
collaborative decision-making leads to the final inference, resulting in the accurate
interpretation of sign language.
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A distinctive aspect of our approach is the custom-built Transformer model,
coded entirely from scratch to ensure full control over parameters. The model’s
lightweight architecture for the use of TFLite makes it suitable for deployment
on lower-end devices, such as mobile phones, broadening the potential for real-
world application and accessibility.

Furthermore, EMPATH enhances its predictive accuracy through ensemble
modeling, a technique that involves training four separate Transformer models
and employing majority voting for decision-making.

EMPATH has notably enhanced recognition on BdSL word level datasets,
achieving 79.81% on SignBD-Word-90, 69.42% on SignBD-Word [17], and
99.25% on BdSL40 [19], setting new benchmarks. Its adaptability extends
to other languages, evidenced by its success on datasets like INCLUDE-50,
INCLUDE [20], and the Malaysian Sign Language Medical Dataset [1], achiev-
ing 100%, 94.67%, and 93.46%, respectively. These achievements highlight
EMPATH’s role in reducing communication barriers and its potential for uni-
versal sign language recognition.

EMPATH along with our other proposed techniques have been rigorously
trained, tested and validated across multiple settings, highlighting their strong
performance and pinpointing opportunities for refinement. Our contribution is
summarized as follows:

– We introduce EMPATH, a comprehensive framework integrating Ensemble
Learning, MediaPipe Holistic, and Attention-based Transformer models for
improved sign language recognition.

– We develop a novel interpolation model to address the challenge of missing
hand keypoints, enhancing the accuracy of sign interpretation.

– We custom-build a lightweight Transformer model from scratch, optimized
for deployment on low-end devices to increase accessibility.

– We set new benchmarks not only in Bangla Sign Language (BdSL) recogni-
tion but also across a variety of datasets, showcasing the effectiveness and
adaptability of EMPATH to different languages.

Our paper is structured sequentially, covering sections dedicated to related
works, methodology, experiments, and a concluding segment.

2 Related Works

Research in sign language recognition has extensively utilized datasets to advance
the understanding of various sign languages. Predominantly, American Sign Lan-
guage (ASL) datasets like Purdue RVL-SLLL ASL [24], WLASL [13], and MS-
ASL [26] have been pivotal, providing vast numbers of RGB videos from multi-
ple signers. These resources have been instrumental in developing sophisticated
recognition techniques. Other significant contributions include LSA64 [16] for
Argentinean Sign Language, capturing unique regional signs, and DEVISIGN [7]
for Chinese Sign Language, both reflecting the linguistic diversity within the
sign language research community. For comprehensive details on the datasets
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Table 1. An overview of various word-level sign language video datasets. The datasets
highlighted are those that have been worked on in this paper.

Datasets Language Classes Videos Signers
Purdue RVL-SLLL ASL [24] American 104 2576 14
WLASL [13] American 2000 21083 119
MS-ASL [26] American 1000 9764 222
LSA64 [16] Argentinian 64 3200 10
BdSL-40 (INCLUDE Subset) [19] Bangla 40 611 7
SignBD-Word [17] Bangla 200 6000 16
BdSLW-60 [3] Bangla 60 9307 18
DEVISIGN [7] Chinese 2000 24000 8
INCLUDE [20] Indian 263 4287 7
MSL Medical Dataset [1] Malaysian 50 1040 7

discussed, as well as others, refer to Table 1. This includes well-known datasets
and those we intend to explore further. Additionally, numerous other datasets
are available for various sign languages, contributing to the broader field of sign
language research.

In contrast, research on Bangla Sign Language (BdSL) remains limited, par-
ticularly at the word level. While there is a reasonable foundation of alphabet-
level BdSL datasets [11,15], there has been a notable dearth of word-level data,
which is essential for comprehensive communication. The BdSL-40, an adapta-
tion from the INCLUDE dataset, the SignBD-Word, the BdSLW-60 [3] datsets
are some of the recent endeavors towards creating word-level BdSL datasets.
Although these are commendable efforts, they have not been extensively explored
or validated in subsequent research, leaving a vast area for potential exploration
and development.

Existing work on BdSL has not utilized the full potential of advanced com-
putational models. For instance, while MediaPipe has been adopted for gesture
recognition in various domains, its integration into BdSL recognition [10] has
been overlooked or alternative approaches [2] have been employed, and no work
addressing the challenge of missing hand keypoints has been presented. These
keypoints are critical for accurate gesture interpretation, and their absence can
significantly diminish a model’s performance.

Research into sign language recognition has explored a range of computa-
tional models, reflecting the diversity and complexity of interpreting sign lan-
guages. Classical approaches have often relied on convolutional neural networks
(CNNs) [22], given their proficiency in processing visual data. Recurrent neural
networks, particularly Long Short-Term Memory (LSTM) [3,12,17,20] networks,
have also been extensively utilized due to their capability to capture temporal
sequences which are inherent in sign language data. Graph Neural Networks
(GNNs) [25], Inflated 3D ConvNets (I3D) [6] and Visual-Language Pretraining
(VLP) [27] have also emerged as alternatives, capitalizing on their ability to
model intricate spatial structures and temporal information respectively.

However, the adoption of Transformer models in sign language recognition
has been limited. Despite their success in various machine learning domains due
to their sophisticated handling of sequential data and long-range dependencies—
their full potential in sign language recognition remains untapped, specially in
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BdSL works. There have been instances where Transformers have been applied
and shown promising results [5].

Ensemble modeling is another area that has not been fully explored within
the context of sign language recognition. While the technique is well-known for
its ability to improve performance by combining the strengths of multiple models
through strategies like majority voting or stacking, its application has been scant
in comparison to the individual model architectures.

In light of these gaps, our work aims to advance the field by introducing a
complete approach that synergistically combines MediaPipe, Transformer mod-
els, and ensemble learning. Our method addresses the critical issue of missing
keypoints in MediaPipe and proposes a solution to enhance accuracy and robust-
ness. By benchmarking our approach on various datasets and providing compar-
isons with existing works, we illuminate the path forward for future research in
this domain.

3 Methodology

3.1 Data Preparation and Landmark Extraction

Data Preparation: The initial step involves utilizing RGB videos from the
dataset to our research and systematically organizing them. Each video is tagged
with specific labels that represent the conveyed sign language gestures.

MediaPipe Holistic for Landmark Extraction: Following the organiza-
tion of videos and labels, we employ MediaPipe Holistic for extracting pose,
hand, and face landmarks. MediaPipe Holistic is part of the MediaPipe Frame-
work [14], a comprehensive toolkit designed for constructing efficient machine
learning pipelines on devices, enabling real-time sign language recognition. Medi-
aPipe Holistic is configured for landmark detection and tracking with minimum
detection and tracking confidence set at 0.5 and model complexity at 1. Although
setting the model complexity to 2 could potentially enhance performance, it sig-
nificantly extends inference time. The selection of tracking and detection param-
eters underwent thorough testing to ensure optimal performance.

Extracting Landmarks: With the MediaPipe Holistic configured, each video
undergoes processing to extract landmarks associated with poses, hands, and
faces. Post-extraction, the landmarks are stored in Parquet files corresponding
to each video, facilitating efficient data management and accessibility for future
analysis and model training. The choice of Parquet files is due to their compact
data structure and rapid read/write capabilities, making them highly suitable for
managing the voluminous datasets typical in sign language recognition research.



360 K. R. Hasan and M. A. Adnan

3.2 Transformer Training

Hyperparameters Setting and Preprocessing: Our training setup is
defined by several critical parameters: we opt for training with or without pre-
processing data (PREPROCESS_DATA), and setting specific hyperparameters like
input size (INPUT_SIZE = 12 or 24), batch size (BATCH_SIZE = 16), and learn-
ing rate (LR_MAX = 1e-3). The model is trained over 300 epochs (N_EPOCHS =
300) with a warm-up period (N_WARMUP_EPOCHS = 0). We employ a weight decay
ratio (WD_RATIO = 0.05) and use a masking value for data padding. We also
introduce a preprocessing layer designed for Tensorflow to handle data within the
TFLite environment, where data preprocessing must occur within the model due
to the inability to utilize Python for such tasks. This layer, PreprocessLayer,
applies essential preprocessing steps, including padding, downsampling, and fil-
tering frames with insufficient hand data.

Model Configuration and Transformer Architecture: Our transformer
model is designed to address the intricate challenges of sign language recogni-
tion, focusing on the effective processing of landmark data. The model configura-
tion combines embedding layers with transformer blocks to capture the dynamic
spatial and temporal information present in sign language videos.

The core elements of our model configuration are as follows:

1. Layer Normalization: We apply layer normalization with an epsilon value
set to 1 × 10−6 (LAYER_NORM_EPS), enhancing the stability of the learning
process.

2. Dense Layer Units for Landmarks: Dedicated dense layers for lips, hands,
and pose (LIPS_UNITS, HANDS_UNITS, POSE_UNITS = 384) converge into a
final embedding size (UNITS = 512).

3. Transformer Architecture: The architecture comprises three transformer
blocks (NUM_BLOCKS = 3) with an MLP ratio of 3 (MLP_RATIO), utilizing scaled
dot-product attention [23]:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

where Q, K, and V are the queries, keys, and values, respectively, and dk
denotes the dimensionality of the keys.

4. Dropout: To combat overfitting,
dropout is strategically applied during embedding (EMBEDDING_DROPOUT =
0.00), in MLP layers (MLP_DROPOUT_RATIO = 0.30), and at the classifier stage
(CLASSIFIER_DROPOUT_RATIO = 0.10).

5. Initializers and Activations: The He uniform and Glorot uniform initial-
izers, along with GELU activation functions, are employed to optimize the
model’s training efficiency.

6. Landmark Embedding: Custom embeddings for lips, hands, and pose land-
marks are designed to adeptly encode spatial features, incorporating an empty
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embedding vector for frames with missing landmarks, initialized to zeros (full
body pose is always not covered in videos). Hand landmarks were given a
higher weight while embedding due to its greater significance on sign expres-
sions.

7. Multi-Head Attention: The model leverages multi-head attention to simul-
taneously focus on various segments of the input sequence, enhancing its
capability to attend complex dependencies. The overall model structure is
depicted in Fig. 2

Fig. 2. Transformer Architecture with Multi-branch Parallel Processing

This architecture is crafted to adeptly process and interpret the challenging
patterns of sign language, providing a solid foundation for achieving accurate
and reliable sign language recognition.

3.3 Augmentation Techniques and Postprocessing

Augmentation Techniques: To enhance the generalizability of our model, we
employed two key augmentation techniques: frame drop and time-scale augmen-
tation. These methods introduce variability into the training process.

Frame Drop Augmentation probabilistically omits certain frames from
the video sequences. This approach simulates scenarios where frames might be
missing due to recording errors or transmission issues, training the model to
maintain performance even when input data is incomplete.

Time-Scale Augmentation modifies the temporal dimension of the video
data by either compressing or expanding the time scale of certain sequences.
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This simulates variations in sign execution speed among different individuals,
accommodating for the natural diversity in sign language delivery.

While these augmentation techniques introduce beneficial variability, larger
values or probabilities can reduce accuracy. Therefore, it is crucial to test and
determine optimal values to ensure the model’s performance is not adversely
affected.

Model Quantization: We apply quantization to reduce the model’s precision
from 32-bit floating-point to either 16-bit floating-point (fp16) or 8-bit integers
(int8), depending on the deployment needs. This results in a significant reduc-
tion in model size, typically down to approximately 60-70 MB. This reduction
simplifies deployment on mobile and embedded devices, where storage and com-
putational resources are typically constrained.
Without quantization, the larger 32-bit floating-point values make models
impractical for smaller devices, and their higher precision often doesn’t notice-
ably improve accuracy.

3.4 Ensemble Technique

We employed an ensemble technique using four distinct transformer models
(N_MODELS = 4) rather than a single model for increasing overall accuracy. Each
model is trained in the same environment. Our augmentation techniques are
probabilistic for each batch frames, introducing variation and different training
schemes for ensemble modeling. During inference, we aggregated the predictions
of these four models using majority voting, meaning the final output is based
on the prediction that the majority of the models agree upon. This strategy
reduces the likelihood of individual incorrect predictions due to very close pre-
diction scores among some labels.

We chose four models to balance accuracy and computational efficiency (see
table 2).

Table 2. Validation of the number of transformer models chosen for the ensemble
method

Dataset Trained:1 Trained:2 Trained:3 Trained:4 Trained:5
SignBD-Word-90 76.67% 76.67% 78.51% 79.81% 79.81%
INCLUDE-50 97.93% 98.44% 100% 100% 100%

Training multiple models takes time, and the final model size also increases.
Hence, the choice of the number of models was made considering these trade-
offs. We observed that for the datasets we worked with, the ensemble technique
did not increase accuracy after training four models. While three models also
provided good performance, the accuracy for SignBD-Word-90 increased slightly
with four models. Therefore, we decided to use four models for our ensemble
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technique. This choice optimizes the trade-off between accuracy, training time,
and model size.

3.5 Interpolation Model for Missing Keypoints

To address the challenge of missing hand keypoints in sign language video frames,
we apply a linear interpolation model. This is a preprocessing technique, utilized
when extracting keypoints from MediaPipe. While acknowledging that human
motion’s complexity may not be fully captured by a linear model, the relative
continuity of motion allows for effective linear approximations. This method
involves identifying frames before and after the missing sequence where keypoints
are fully present. Using these as reference, we interpolate the values for missing
frames based on linear progression.

Given hx as the x-coordinate of a hand landmark, lasthx and nexthx repre-
sent the x-coordinates of the last and next complete frames, respectively. For a
missing frame positioned at Mx within a gap of Nx − Lx frames, the predicted
x-coordinate is calculated as:

predictedhx = lasthx + (nexthx − lasthx)
Mx

Nx − Lx

This process is replicated for y and z coordinates across all 22 hand landmarks
to generate a complete set of predicted values.

An illustrative example of generating missing values is presented in Fig. 3.

Fig. 3. Missing keypoints regrenerated and arm aligned using the interpolation model
(the right image in each set). Frames are taken from a video of WLASL.

We also employ a transformation that aligns the pose wrist coordinates with
the hand wrist coordinates, considering the wrist as a reliable root detection
point. The translation is computed as the difference in coordinates between the
hand and pose wrist, utilizing homogeneous coordinates for transformation:

tx = handx − posex; ty = handy − posey; tz = handz − posez;



364 K. R. Hasan and M. A. Adnan

The transformation matrix and the original wrist coordinates are then mul-
tiplied to obtain the new aligned pose wrist coordinates:

⎡
⎢⎢⎣
1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣
x
y
z
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
x′

y′

z′

1

⎤
⎥⎥⎦

Algorithm 1 Hand Landmarks Prediction
Require: Video input file
Ensure: Processed video with improved landmarks
1: Initialize video capture, holistic model, variables and batch size
2: while video frames available do
3: Read and resize frame size if required
4: Process the frame using the holistic model and store frame info
5: Identify and update missing hand landmarks
6: if batch size reached or end of video then
7: Calculate missing landmarks using adjacent frames
8: Draw fixed landmarks on frames and output
9: Clear temporary lists to free memory

10: end if
11: end while
12: Release resources and close model

We employ the batch size variable to manage memory usage and prevent
exhaustion. We noticed a marginal increase of only 1.83% in average in batch
process using the interpolation model (see supplementary material section 4).

4 Experiments

In the experimental section, we evaluate EMPATH across multiple datasets,
including BdSL datasets, INCLUDE, WLASL, and the MSL Medical dataset.
The focus is to assess the models’ generalization capabilities and their effec-
tiveness in sign language recognition. Additionally, we test a fundamental MLP
model with our interpolation technique for handling missing keypoints, contrast-
ing its generalization capacity along with EMPATH’s complex framework. Our
experiments were conducted on a computational environment powered by a P100
GPU.

Evaluation Metrics We employ accuracy (top-1 and top-5) as our primary
metric to compare the outcomes against existing benchmarks. Confusion matrix
is deployed for visualization where it seems fit. We also incorporate macro-
averaged F1 score into our evaluation in specific cases.
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4.1 BdSL Datasets

SignBD-Word: The SignBD-Word dataset is a substantial video-based
resource for word-level Bangla Sign Language (BdSL) research, publicly available
and comprising over five hours of footage. It features 16 signers each performing
200 unique signs, totaling 6000 instances of sign language data. SignBD-Word
also offers a subset of 90 words, known as SignBD-Word-90. Our EMPATH
model, tested on both sets following the source train-test split, showcased
remarkable performance. It achieved a top-1 accuracy of 79.81% on SignBD-
Word-90 and an impressive 70.58% on SignBD-Word, outperforming established
benchmarks by substantial margins (see Table 3).

Table 3. Top-1 and Top-5 accuracy(%) of different models on SignBD-Word
Model SignBD-Word-90SignBD-Word

Top-1 Top-5 Top-1 Top-5
CNN-LSTM [17] 10.8 31.92 9.62 28.45
CNN-Attention-LSTM [17] 21.5 39.25 15.6 30.56
I3D [6] 64.2 88.25 52.5 80
SlowFast [9] 66.05 88.82 57 84.17
EMPATH (ours) 79.81 93.15 70.58 88.08

The original source dataset contained two versions: one as RGB videos and
another with skeletal keypoints. Our approach was to process the original RGB
videos according to the needs of the EMPATH model.

BdSL-40: The BdSL-40 dataset serves as a valuable resource in Bangla Sign
Language recognition, featuring 611 videos across 40 words. Stemming directly
from INCLUDE, it utilizes the linguistic affinity with West Bengal and Indian
sign languages. The adaptation process for creating the BdSL-40 dataset from
INCLUDE involved a review of the Bangladesh Sign Language Dictionary to
identify corresponding signs. We applied our EMPATH model to BdSL-40 and
accomplished a remarkable accuracy of 99.25% (see Table 4, Fig. 4), setting an
almost perfect benchmark. Notably, the original dataset comprised 39 classes
and 603 videos when downloaded from source.

We have incorporated some challenging label frames from BdSL-40 in the
example shown in Fig. 5. These labels are challenging because they have many
similarities in sign actions, making them difficult to predict accurately for less
powerful models or optimization techniques.

4.2 Other Language Datasets

INCLUDE: Transitioning to the INCLUDE dataset, we applied our EMPATH
model, which excelled on BdSL-40, to this broader lexicon of Indian Sign Lan-
guage (ISL). INCLUDE features a total of 4,287 videos, spanning 263 word signs
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Table 4. Comparison of model
accuracies on BdSL-40

Model Accuracy (%)
3D-CNN [22] 82.43
GNN [25] 89.00
EMPATH (Ours) 99.25

Fig. 4. BdSL-40

Fig. 5. First row: Video frames with ground truth "soap". Second row: Video frames
with ground truth "flat". These labels were interchangeably predicted when tested with
a base MLP model and a single transformer model without preprocessing, ensembling,
and augmentation techniques. However, with the full integration of the EMPATH sys-
tem, these labels have been successfully identified and predicted accurately.

categorized into 15 different classes. INCLUDE-50, a subset featuring 50 word
signs across categories, is used to fine-tune model parameters. Adhering to the
original train-test split from the source—correcting minor dataset discrepancies
(see supplementary material section 5)—we achieved remarkable results. We set
new benchmarks: a perfect 100% accuracy on INCLUDE-50 (see Table 5 and
Fig. 6) and 94.67% on the complete INCLUDE dataset, reinforcing the power
and versatility of EMPATH.

While employing the INCLUDE dataset for our EMPATH model, we noted
the absence of the ‘second’ (number) class in the original data. Consequently,
we proceeded with the evaluation using 262 classes (see Table 6 and Fig. 7).

WLASL-100: The WLASL dataset, an extensive compilation of American Sign
Language (ASL), consists of 2000 classes that contribute significantly to sign lan-
guage research. Our focus was on the WLASL-100 subset, which ideally contains
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Table 5. Accuracy of different methods
on INCLUDE-50

Model Accuracy (%)
XGBoost [20] 89.1
MobileNetV2+BiLSTM [20] 94.5
MediaPipe+LSTM [?] 94.8
EMPATH (Ours) 100

Fig. 6. INCLUDE-50

Table 6. Accuracy of different methods
on INCLUDE

Model Accuracy (%)
XGBoost [20] 61.1
MobileNetV2+BiLSTM [20] 85.6
MediaPipe+LSTM [12] 87.4
SL-GCN [18] 93.5
EMPATH (Ours) 94.67

Fig. 7. Training Accuracy per Epoch

over 2000 videos. However, due to broken links and missing content, we initially
retrieved only 848 files, averaging fewer than seven videos per class to train.
Despite the challenges, we secured the remaining videos to complete the dataset.
Nonetheless, we chose to test the generalization ability of our EMPATH model
on the limited dataset to understand its performance under data-constrained
conditions. With only a fraction of the full dataset, EMPATH achieved a top-1
accuracy of 56.25%, a top-5 accuracy of 78.91%, and a macro-averaged F1 score
of 52.63%. In comparison, models like I3D [6] and SPOTER [4] reached top-1
accuracies of 65.89% and 63.18%, respectively, using the complete dataset with-
out pretraining. EMPATH’s performance, with less than half the training set,
showcases its robust class generalization capabilities, underscoring the experi-
ment’s aim to demonstrate its efficiency in data-limited scenarios.

MSL Medical Dataset: The MSL Medical Dataset represents the final dataset
in our series of evaluations, and its selection was strategic due to its structure
and unestablished benchmarks. This dataset uniquely encompasses both word
and sentence classes, with sentences incorporating words that are also catego-
rized independently. Such a structure allowed us to go deeper into EMPATH’s
generalization abilities. From this dataset, we extracted a total of 49 classes,
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Table 7. EMPATH model
performance on MSL Medical
Dataset

Metric Score (%)

Top-1 Accuracy 93.46
Top-5 Accuracy 99.53
Macro F1 Score 92.35 Fig. 8. Challenge in MSL Medical Dataset: EMPATH

struggled when context is present in both word and sentence
class, incorrectly interpreting "body" in sentences like "my
body feels itchy", leading to three incorrect predictions

inclusive of sentence labels. Our findings were compelling—EMPATH reached
a top-1 accuracy of 93.46%, a top-5 accuracy of 99.53%, and a macro-averaged
F1 score of 92.35% (see Table 7), thereby underscoring the model’s capacity for
class generalization, even within datasets rich in linguistic complexity.
Fig. 8 illustrates a rare instance of EMPATH’s failure to generalize. However,
this is not the common case as the model successfully interprets instances like the
word "tired" and the sentence "I’m vomiting and tired because I am pregnant."

4.3 Interpolation Model for Handling MediaPipe Missing Keypoints

Concluding our experimental section, we reflect on the effectiveness of the inter-
polation model employed as a preprocessing technique to handle missing key-
points from MediaPipe’s output. This model was utilized across all our prior
experiments. By incorporating the interpolation model, we sought to portray its
impact on two training approaches: the advanced EMPATH model and the fun-
damental MLP model. Our tests, conducted on the BdSL-40 and MSL Medical
Dataset, compared the performance outcomes with and without interpolation
preprocessing. The results (see Table 8) from this inquiry were intended to val-
idate the interpolation model’s wide-ranging utility and its adaptability to an
array of machine learning architectures.

Table 8. Performance comparison with and without interpolation preprocessing
Model Dataset Accuracy (no interpolation) Accuracy (with interpolation)
EMPATHBdSL-40 97.02% 99.25%
MLP BdSL-40 77.61% 79.10%
EMPATHMSL Medical 91.16% 93.46%
MLP MSL Medical 66.97% 69.30%

In summary, we evaluated our EMPATH model across multiple sign language
datasets, set new performance benchmarks in sign language recognition, tested
our proposed interpolation model for handling missing keypoints for acceptance
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across multiple architectures. Detailed ablation studies on augmentation tech-
niques can be found in supplementary material section 6.

5 Conclusion

The EMPATH framework has notably enhanced sign language recognition, incor-
porating MediaPipe Holistic and Transformer models to achieve breakthrough
performance on diverse datasets. Despite its success, EMPATH encounters dif-
ficulties with overlapping contexts and in handling missing keypoints in low-
quality videos due to simple interpolation technique implementation. Future
efforts will focus on refining context recognition, advancing keypoint reconstruc-
tion techniques, and incorporating non-manual signals for richer interpretations.
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ICT Innovation Fund, Government of Bangladesh, and the RISE Student Research
Grant from Bangladesh University of Engineering and Technology. The development
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Abstract. Both manual (relating to the use of hands) and non-manual
markers (NMM), such as facial expressions or mouthing cues, are impor-
tant for providing the complete meaning of phrases in American Sign
Language (ASL). Efforts have been made in advancing sign language to
spoken/written language understanding, but most of these have primar-
ily focused on manual features only. In this work, using advanced neu-
ral machine translation methods, we examine and report on the extent
to which facial expressions contribute to understanding sign language
phrases. We present a sign language translation architecture consisting
of two-stream encoders, with one encoder handling the face and the other
handling the upper body (with hands). We propose a new parallel cross-
attention decoding mechanism that is useful for quantifying the influence
of each input modality on the output. The two streams from the encoder
are directed simultaneously to different attention stacks in the decoder.
Examining the properties of the parallel cross-attention weights allows
us to analyze the importance of facial markers compared to body and
hand features during a translating task.

Keywords: Parallel Cross-Attention · Facial Expressions · SLT

1 Introduction

Sign Language is the primary means of communication used by Deaf and Hard of
Hearing (DHH) individuals, uses multimodal cues to fully express the intended
meaning. In the literature, it has been frequently noted that the linguistics of
many sign languages have yet to be as well analyzed and studied when com-
pared to their spoken counterparts [31]. This makes exploring automated sign
language understanding an important research field where emphasis can be put
on analyzing how other visual cues support the sign gestures [2].

Similar to spoken language, sign language has its own syntax, grammar, and
semantics. Spoken language uses speech as one of its main vehicles of trans-
mission. On the contrary, sign language combines visual gestures such as hand
shapes and movements, body movement, mouthing cues, and facial expressions.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15321, pp. 372–386, 2025.
https://doi.org/10.1007/978-3-031-78305-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78305-0_24&domain=pdf
http://orcid.org/0000-0002-8863-1338
http://orcid.org/0000-0002-9353-9528
http://orcid.org/0000-0003-1414-6433
https://doi.org/10.1007/978-3-031-78305-0_24


Cross-Attention Based Influence Model 373

These components are divided into two major categories: a) manual markers,
which include parameters like hand shapes, palm orientation, hand/arm move-
ment, and hand location changes, and b) non-manual markers, such as facial
expressions and mouthing cues.

Current works in sign language translation or generation mainly use only the
manual markers, oftentimes ignoring the non-manual aspects of the sign or, at
best, including them implicitly [4]. While this may be sufficient to accomplish
simple comprehension tasks, they lack the ability to capture the rich expressive
power1 of the sign language.

In this work, we are interested in analyzing the importance of using man-
ual and non-manual markers in Sign Language Translation (SLT). While there
have been different transformer-based models in the general pattern recognition/
machine learning community that model multimodal signals by fusing them and
then decoding the fused embedding, such models are unable to disentangle the
individual contributions of each input modality to the output result. Fusion hap-
pens, but the extent of the contributions becomes opaque due to the construction
of such models.

Hence, in this work, we aim to take advantage of how the cross-attention or
(encoder-decoder attention) mechanism in transformers highlights the relation-
ship between the input feature tokens and the plausible predicted output tokens.
Using such attention we can easily understand which input feature attends to
which output token the most at time t. Our proposed model encodes each input
channel separately and then fuses them via cross-attention in the decoder. This
ensures that each feature embedding is used to predict the final output tokens,
thus providing insight into the extent of the individual feature contributions. To
the best of our knowledge, there are no such multimodal transformer architec-
tures that can be used to explicitly measure the influence of each encoder input
on the resulting decoder output.

We evaluate our proposed method by estimating the influence of manual and
nonmanual features during Sign Language translation, tested on the RWTH-
PHOENIX-Weather2014T (PHOENIX14T) dataset [4] and the real-life Ameri-
can Sign Language dataset (ASLing) [1]. More details on the datasets are given in
Section 4.1. We benchmark our method against other translation methods that
use PHEONIX14T, thus demonstrating the viability of the proposed method. We
also use the real-life ASLing dataset to provide a more qualitative assessment.

In summary, we propose a novel parallel cross-attention decoder transformer-
based approach to analyze the contributions of each component, hand-based
sign gestures (manual) and facial expressions (non-manual markers), in the Sign
Language translation (SLT) task. While significant efforts have been made to
improve the performance numbers in SLT tasks, in this work, our focus remains
on conducting a comparative analysis of two major sign language components
and how they influence the downstream task of translation.
To this end, the contributions of this work can be summarized as follows:

1 The expressive power of a language refers to the variety and quantity of concepts
that can be represented and communicated in that language.



374 L. Chaudhary et al.

• We design a general, all-purpose, multi-channel cross-attention (encoder-
decoder attention) fusion model useful in multimodal pattern analysis for
understanding the influence that each input modality contributes to the
resulting end task.

• Using the proposed cross-attention fusion technique, we analyze the role of
facial expression in the Sign Language translation task.

• Employing two well-established datasets in the field, we present quantitative
and qualitative evaluation approaches for a continuous sign translation task.
These rely on the attention weights created by the parallel cross-attention
model during inference.

2 Related Works

Multi-Modal Sign Language Translation Sign Language Translation (SLT)
focuses on interpreting the signals conveyed in signing videos to spoken/written
text. Early works [4] introduced an RNN-based pipeline to solve the SLT prob-
lem. Many works [4,6,19,33] began using Transformer-based architectures to
further improve the performance. Most of these works have used skeleton-based
features focusing on the upper body and hands. Camgoz et al. [5] introduced a
framework that allowed for separate input channels to process individual sign
language components. Other works made similar advances by also incorporating
multiple modalities, though not necessarily multiple components of Sign Lan-
guage [9] - their two modality streams were the (i) raw RGB frames and (ii)
corresponding body keypoint sequence extracted from the frames. Chaudhary et
al. [8] built an end-to-end 2-way pipeline to use the sign-translated phrases to
generate the original signs.

Manual and Non-Manual Markers There is a common misconception
that Sign Language is only communicated using hand gestures [23], but in real-
ity, it is much more complex than this. Similar to phonemes in sound, Sign
Language phonology underscores the structure of each sign and the way they
are organized. Each sign can be broken down into smaller parts made up of the
handshape, hand location, hand/arm movement, palm orientation, and the cor-
responding nonmanual cues [32]. As outlined in Section 1, this work focuses on
understanding the manual signals (especially the upper torso with handshapes
and their movements) and non-manual signals, specifically facial expressions as
related to sign understanding.

Silva et al. [30] introduced a FACS-based facial expression database for
Brazilian Sign Language. Mukushev et al. [24] analyzed similar signs to find
if non-manual components can differentiate them distinctly. Zheng et al. [35]
attempted to improve the performance of SLT by adding facial expressions as
input. Koller et al. [15] modeled mouthing shapes in reference to the sign lan-
guage recognition task.
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3 Method

We introduce a fusion model that is useful for understanding the weightage of
each input feature representation during the training process when the model is
presented with more than one type of input. The proposed model consists of two
encoders and a decoder. The architecture is trained for a Sign Language Transla-
tion (SLT) task, which is considered a sequence-to-sequence learning problem [4].

Fig. 1: Overview of the proposed architecture showing the two-stream dual
encoder and the dual-cross-attention based decoder.

Figure 1 shows the overview of our proposed architecture, which consists of
a) two separate encoders, each for a single feature input, and b) a dual-cross-
attention-based decoder for generating spoken language output texts.

3.1 Parallel Cross-Attention Decoder Transformer

The proposed architecture follows the framework of a standard encoder-decoder
Transformer but consists of two detached encoders and an added encoder-
decoder attention layer. Each encoder is responsible for learning one input feature
representation: (i) hands and body pose (manual markers) and (ii) face features
(non-manual markers). The model is trained to accomplish the task of SLT by
learning the attention weights of individual features using a dual-cross-attention
module as the intermediary task. The intuition is that the problem at hand
involves understanding how much each of the two separate inputs contributes to
the single final task. A similar architecture [16] used a dual-decoder-based trans-
former for the joint simultaneous tasks of automatic speech recognition (ASR)
and speech translation. Note that this significantly differs from our proposed
work where we have dual encoders interacting within the cross-attention block.
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By simultaneously having two separate attention blocks being responsible for
each of the input features, the properties of each attention block can be evaluated
to determine how much influence that encoder (hence that modality) has on the
final output decoder task.

Two-stream encoding pipeline We make use of two separate encoders to
independently learn the representation of each of the input features. Each
encoder consists of an input embedding layer followed by a positional embed-
ding and several self-attention and feed-forward network (FFN) layers whose
inputs are normalized. Both the encoders follow the same layer configuration as
a standard Transformer encoder [33].

The first encoder takes the segments of stacked 3D body landmarks [22] Xb =
(x1

b, x2
b, x3

b, ...., xn
b) (further explained in Section 4.1) and the second encoder

takes segments of stacked 3D face landmarks [22] Xf = (x1
f , x2

f , x3
f , ...., xn

f )
as input sequence. Similar to the standard encoder layers the input sequence
is modeled with self-attention and mapped into contextual representation: zb =
(z1b, ..., znb) for the manual markers which are the body and hand joints2 and
zf = (z1f , ..., zn

f ) for the face landmarks which are the non-manual markers.
Each encoder stream is composed of M number of layers.

Decoding pipeline The parallel cross-attention decoder consists of a single
decoder with an additional multi-head attention layer. The additional multi-head
attention layer paired with the existing multi-head attention layer together are
called the parallel cross-attention layers. Each parallel attention layer follows
a standard encoder-decoder attention layer (also called multi-head attention). An
attention layer is defined by a function that maps a query and a pair of key-value
to an output vector. The attention function receives the inputs as a key K, a
value V , and a query Q. The decoder usually performs two types of attention
functions: a) a self-attention is performed on the shifted output sequence, where
the inputs K, V , and Q are the same, and b) a cross-attention, also known
as encoder-decoder attention, which maps the context representations with the
output sequence that are received from the self-attention layer.

In order to understand the importance of any feature against the output
sequence, cross-attention values are considered. Taking inspiration from paral-
lel combination strategy [20], we propose a model that will learn the context
representations from both features simultaneously, along with the weightage the
model puts on each feature when deciding on the final output sequence. To for-
mulate the problem, we consider the context representations from both encoders
as separate inputs to their respective attention function.

The attention function is given as:

Attn(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

2 Here landmarks and joints can be used interchangeably
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In the proposed parallel cross-attention decoder, each attention function is
responsible for attending to the output context representation from each encoder.
We let Attnbody be the attention layer that takes the output context represen-
tation zb of the body encoder as the key-value pair input. Similarly, Attnface

is the attention layer that attends to the output context representation zf from
the face encoder as the key-value pair. In both cases, the query value is received
by the normalized masked self-attention output from the previous shifted token
of the sequence.

To formulate the concept of parallel cross-attention decoder, we denote the
inputs as follows:

Qshifted is the query value received from the shifted output sequence
K(zf ), V(zf ) is the key-value pair received from the face encoder stream
K(zb), V(zb) is the key-value pair received from the body encoder stream

Thus, each of the attention functions in the parallel cross-attention decoder is:

Attnbody = softmax

(
QshiftedK

T
(zb)√

dk

)
V (zb) (2)

Attnface = softmax

(
QshiftedK

T
(zf )√

dk

)
V (zf ) (3)

The final output from the parallel cross-attention is received by merging
both the attention outputs from 2 and 3. We denote the final merged output as
Attentionfinal. The concatenation operator was used to merge the outputs to
get to the final output:

Attnfinal = linear([Attnbody;Attnface]) (4)

The combined attention output is normalized and then passed onto the feed-
forward network to predict the next token auto-regressively. We simultaneously
look at the attention weights from both the attention functions for the body and
face. For this, we focus on the correlation computed between the query (Qshifted)
and each key value - Kbody & Kface. Specifically, we observe the outputs of the
Scaled Dot-Product Attention [33] after the softmax layer. We formulate the
attention weights as follows:

wbody = softmax

(
QshiftedK

T
(zb)√

dk

)
(5)

wface = softmax

(
QshiftedK

T
(zf )√

dk

)
(6)

We use the weights from Equations 5 and 6 to analyze the role of manual and
non-manual markers in understanding sign language and present our findings in
Section 5.
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4 Implementation and Evaluation Details

4.1 Datasets

First, we use the benchmark dataset, PHOENIX14T [4] to evaluate and establish
credibility for our proposed translation model. We train our proposed parallel
cross-attention decoder transformer with 7096 training, 519 validation, and 642
test samples. The samples were collected from the weather forecast airings and
performed by nine different signers in German Sign Language (GSL)3. Along
with the samples, the dataset contains their corresponding German translations
and gloss annotations.

Next, we evaluate the proposed model on the more real-life, unconstrained
American Sign Language dataset, ASLing [1]. This dataset consists of 1027 train-
ing samples and 257 testing samples. The samples were performed by 7 native
signers and collected at 10 frames per second.

Fig. 2: Face crop samples from the datasets. Top: from the Phoenix2014 dataset;
Bottom: from the ASLing dataset

4.2 2-stage Input Feature Extraction Process

3D keypoints To accurately track the motion of each of the markers (body and
face), we make use of 3D joint features j = (x, y, z). We use [22] to extract both
body and face 3D joints for the input sequence XM . To independently under-
stand the weightage of each of the modalities, we separate the body and face
joints for individual video input sequences. Given the 3D graphical representa-
tions of the input features, we employ a Spatial-Temporal Graphical Convolution
Network (STGCN) [34]. Indices are selected based on points depicted in Figure
3.

3 German Sign Language is also known as Deutsche Gebärdensprache (DGS).
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Fig. 3: The (x, y) joint plots for body
(left) and face (right). Note that we use
3D points (x, y, z), in our analysis.

For the manual markers, we con-
sider only the upper torso with hands.
The body keypoints follow [29] for-
mat; we eliminate the foot, ankle,
and knee keypoints to get a total of
48 body keypoints including hands.
We consider all 72 face keypoints
for the non-manual markers to create
the skeleton. There is a total of 120
selected keypoints which are used as
the input to the embedding extractor.
To build a connection between the body and face keypoints, we build a custom
tree structure which is used in the processing of a Spatio-Temporal Graphical
Convolution Network (STGCN).

We pre-train the STGCN on a word-level Sign Language recognition dataset
(WLASL) [18] in order to learn general sign language motion representations.
The resultant vector per temporal window is of length 1024. Figure 4 shows the
process of feature extraction. The right side of the process is pretrained twice;
once on manual input features and the second on non-manual input features, to
get 1024 feature embeddings per modality.

Fig. 4: Overview of the 2-stage input feature extraction process.

Rotation Matrix Another feature we consider with the human skeleton
structure is the 3D rotation matrix, a special orthogonal 3× 3 matrix (SO(3) ),
that represents the rotation of one joint in Euclidean space. A chain of rotation
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matrices from the origin joint (pelvis) on the skeleton is used to represent the
human pose for each video frame.

Recent works [17] [3] have shown the effectiveness of different rotation repre-
sentations of SO(3) for gradient-based optimization in neural network learning.
Specifically, a rotation representation that contains less than five dimensions
suffers from discontinuities in the real Euclidean space, which leads the gradient
of the loss function to blow up [11]. The 3 × 3 rotation matrix we considered
in this work contains 9 parameters, which bakes in the redundancies needed to
deal with the discontinuous issue as compared to other rotation representations.

To make a fair comparison with 3D keypoint features, we follow the same
protocol to consider only the upper body and hand joints. We also pre-train the
STGCN with the WLASL dataset to learn the best motion representations from
the rotation matrix.

Width In continuous sign language videos, individual signs span over mul-
tiple frames; hence, for analyzing the representation of each sign, we exploit its
spatiotemporal properties by modeling it with a multi-scale STGCN. We use the
kernel window in the Temporal Gated Convolution layer of the STGCN to obtain
these segments. We consider a given video of length N , channels or dimension
size c, and the number of 3d joints v. We define a 1D convolution kernel τ which
maps the input chunks to a single output Y [34].

4.3 Training and Network Details

Our proposed network is trained using the Pytorch framework [28] and follows
the FAIRSEQ transformer setup [25]. We use Adam optimizer [14] with a batch
size of 32 and initialize the learning rate to 10−4 with a weight decay of 10−4.
The number of decoder attention heads was set to 12 and the best head was
selected to analyze the output attention weights of each modality. The model
was trained on a single NVIDIA RTX 3090 Ti processor.

4.4 Evaluation Metrics

We use the two popular language evaluation metrics to access our performance:
BLEU (BiLingual Evaluation Understudy) [26] and ROUGE-L [21]. BLEU com-
putes a modified n-gram precision where for each candidate n-gram a maximum
corresponding reference is counted. ROUGE-L was usd to measure the sentence-
wise similarity based on the longest common sub-sequence statistics between a
candidate translation and a set of reference translations.

5 Experiments and Results

The proposed model is evaluated on the Phoenix2014T and ASLing datasets,
and both quantitative and qualitative (explainable) results are reported. We
experiment with different settings of input modalities on the model, reporting
results on manual markers only, non-manual markers only, and manual + non-
manual markers. The attention weights for each modality is dissected and our
findings are presented via the extracted attention plots
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5.1 Quantitative

We test the proposed model with benchmark Phoenix2014T dataset and achieve
a BLEU4 [27] score of 11.27 on the task of Sign Language translation; the com-
plete results are shown in Table Table 1. Table 2 shows the performance scores
on the ASLing dataset. Due to its noisy nature and smaller size, we fine-tune
the model on ASLing by transfer learning from Phoenix2014T. Recall that the
aim of this work is to understand the structure and roles of different modalities
in Sign Language Understanding.

Table 1: Performance of proposed method on Phoenix2014T dataset
Method Width Modality Feature Bleu-1Bleu-2Bleu-3Bleu-4Rouge-L

Sign2Text [4] - Manual - 32.24 19.03 12.83 9.58 31.80
MCT [5] - Multi-channel - - - - 18.51 43.57
Skeletor [13] - Manual 2d to 3d lifting 31.86 19.11 13.49 10.35 31.80
TSPNet [19]
(Single)

{8} - RGB [7] 30.29 17.75 12.35 9.41 28.93

{9} - RGB [7] 23.87 15.49 11.08 8.71 24.7
{12} - RGB [7] 29.02 17.03 12.08 9.39 28.10
{16} - RGB [7] 35.52 20.33 14.75 11.61 32.36

Parallel
Cross-
Attention
Decoder
(Ours)

{9} Manual 3dkeypoints 29.40 17.23 11.98 9.82 23.4

Non-manual 3dkeypoints 22.35 11.32 7.68 6.25 15.5
Manual +
Non-manual

3dkeypoints 29.81 17.15 11.65 9.87 -

Manual rotmat9d 24.65 13.24 9.07 7.44 18.4
Manual +
Non-manual

3d-keypoints +rotmat9d 32.79 19.91 13.7 11.27 -

The intuition behind using the Phoenix2014T dataset is to verify the model’s
end performance and guarantee that the attention weights are learned correctly.
We experimented with different temporal width settings with STGCN, and based
on the accuracy achieved, we selected the width to be used in the model. We also
experimented with different feature extraction methods, i.e., 3d-keypoints and
3d rotation matrix (rotmat9d). The reported numbers for non-manual markers
for the ASLing dataset were substandard due to its noisy nature. Although
there were several images with clear, full-frontal face views, the number of face
images with poor lighting or pose conditions dominated. Nevertheless, we were
still able to identify patterns consistent with the Sign Language semantics. We
believe that the frames’ quality can directly impact the feature quality; hence,
the model attends poorly when the image quality is low, as shown in Figure 2.
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Table 2: Performance of proposed method on ASLing Transfer learned on
Phoenix2014T
Method Modality Feature Bleu-1Bleu-2Bleu-3Bleu-4

CFDF Manual 2d-keypoint +
Optical Flow
+
ResNet

22.39 15.96 13.56 12.25

Parallel
Cross-
Attention
Decoder
(Ours)

Manual +Non-manual rotmat9d 21.82 16.08 13.67 12.30

5.2 Qualitative

We observe the behavior of our proposed model by plotting the learned atten-
tion weights for each modality. The correlation is strong between a sequence
frame and the decoder output token when that frame consists of strong facial
feature movements that influence the output task. This indicates that along with
body motions, often when signing, facial features can also contribute significantly
to the output task (SLT in this case).

Figure 5 shows the attention weights for one sample from the testing set of
the Phoenix2014T dataset. The x-axis of the plot represents the input sequence
frames, and the y-axis represents the decoder output tokens. The darker blocks
in Figure 5 (bottom) demonstrate that the non-manual input features (facial
expressions) are attending more in the correlations to the output tokens.

6 Discussion and Conclusion

Fusion Techniques Most of the previous works using multi-modalities have used
early or late fusion of features. In the early fusion method, the features from
different modalities are fused to create a single representation of the sequence.
This implicitly helps the translation model build meaningful contextual rela-
tionships between the decoder output token and fused features. Although this
model works well for fusing multimodal inputs, it cannot determine the extent of
influence of each of the input modalities. Camgoz et al.[5] noted that performing
this type of late fusion does not always yield better results. Contrary to this, our
proposed model performs fusion at decoding time, not to learn about feature
representations but to extract learned attention weights for each modality.

We also show qualitative results on ASLing dataset in Figure 6. The plots
show the decoder output tokens plotted against the sequence frames. These
plots show the attention weights for the phrase: "Christmas is my favorite
season!" . For the duration of the input sequence in this example, based on the
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Fig. 5: Learned attention weights for Phoenix2014T dataset. Top: attention
weights based on the input manual markers (body features); bottom: attention
weights based on the input non-manual markers (facial features)

attention weights, we see that the facial features attend to the output token a
little more than the body features. This behavior can be seen when the signer
asks a question or conveys excitement or enthusiasm. A larger attention weight
value for a particular modality at time t indicates that this feature contributed
more to constructing the context representation between encoder and decoder
outputs at time t.

Performance Metrics Recent works have achieved better results than the pro-
posed method on Phoenix-2014T, have used gloss annotations to supervise their
training [12], [10]. Needless to say, it is assumed that the multi-modality meth-
ods are expected to give a better performance because of the added modality.
However, the performance of adding a modality can not always be guaranteed.
Many factors contribute to this; in the case of ASLing, the dataset was collected
in the wild (real-life setting) and is noisy Figure 2 (Bottom). On the contrary, the
Phoenix2014T dataset was collected in a more constrained environment where
the participants wore dark clothing to contrast with the background; the environ-
ment also had controlled lighting - See Figure 2 (Top). This can pose a challenge
when analyzing the ASLing dataset. Additionally, non-manual markers convey
more than just facial expressions they also construct the grammatical meaning
of a sign. This can be a complex structure to decode and understand if the rules
of a language are not learned.
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Fig. 6: Learned attention weights for ASLing dataset. Top: attention weights
based on the input manual markers (body features); bottom: attention weights
based on the input non-manual markers (facial features).

Conclusion

In this paper, in an attempt to develop an influence model in a multimodal
architecture, we introduced a dual encoder model, along with a parallel cross-
attention decoder, to study the contributions of manual and non-manual features
in Sign Language translation. Through the parallel cross-attention mechanism,
we are able to retrieve the attention weights for individual modalities, and while
the underlying goal is Sign Language translation (proven via quantitative mea-
sures), the proposed parallel cross-attention mechanism proved exceptionally
useful in estimating the contribution of influence that each modality had on the
decoder output during inference. This allowed us to measure the influence of
facial expressions on sign translation for different types of signed input phrases.
This attribute of the model is its major distinguishing factor among other exist-
ing Transformer-based architectures.
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GolfPose: From Regular Posture to Golf
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Abstract. While there already exist a number of 2D and 3D pose esti-
mation models with high accuracy, in special domains like sports, which
usually require even higher accuracy, there are still spaces to be improved.
Existing pose models primarily focus on regular daily activities, which,
when being applied to precision sports, such as golf swings, still face lim-
itations. In fact, the rare poses and self-occlusions in golf swing videos
can easily mislead regular pose models. To overcome these challenges, we
develop a small (2D and 3D) GolfSwing dataset that includes both golfer
and club poses. We then fine-tune state-of-the-art 2D and 3D posture
models, including HRNet, ViTPose, DEKR, and MixSTE, by GolfSwing
into a set of models called GolfPose for golfer-club pose estimation with
much higher accuracy. Such a simple-yet-effective method may be gen-
eralized to other sports with self-occluded properties. Code is available
at https://github.com/MingHanLee/GolfPose.

Keywords: Human Pose Estimation · Golf · Motion Capture ·
Precision Sports · Self Occlusion

1 Introduction

Human pose estimation (HPE) has been intensively studied in computer vision
and sensor fields. Solutions can be categorized as 2D and 3D ones. Image-based
2D HPE models are proposed in[2,8,31], while 3D postures can be derived by
regression [12,17,32] or by 2D-to-3D lifting [25,28]. There are wide ranges of pose
applications in sports, including using rugby players’ poses to evaluate the risk
of concussion during a tackle [27], predicting 3D flight trajectory of badminton
[20], incorporating a 3D geometry of the scene to enhance the accuracy of 3D
HPE [1], and comparing the pose differences between professional and amateur
runners using PoseCoach [19].

In this work, we consider the inference of golf swing videos taken by an off-
the-shelf RGB camera. Golf has been increasingly popular in recent years. Golf
swings directly impact performance. The studies [26,44] utilized motion capture
systems to collect golf swing poses and analyze its relation with injuries. Refer-
ences [13,14] used HPE to identify key frames in golf swing videos and assess
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15321, pp. 387–402, 2025.
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the effectiveness of a swing. How to employ deep learning to coach a beginner’s
swings based on experts’ ones is addressed in [15]. A similar study based on
motion capturing is in [16]. The GolfDB dataset [23] consists of 1,400 videos
of professional golfers’ swings with event frames and bounding boxes labeled.
However, the dataset is 2-dimensional and lacks pose keypoint annotations.

Our goal is to estimate both 2D and 3D golfer-with-club postures through a
normal RGB camera. To the best of our knowledge, there is no dataset containing
all such annotations. We first develop a small GolfSwing dataset by a high-
quality motion capture system, which features ground truth of 3D golfer-with-
club keypoints. There are 17 keypoints for golfer and 5 keypoints for club. We
further synchronize these information with normal RGB cameras and project
these 3D keypoints to 2D ones as the ground truth. GolfSwing enables us to
derive a set of more accurate 2D and 3D models, called GolfPose, to infer golfer-
with-club keypoints through regular videos. In particular, we take a fine-tuning
approach. First, a number of 2D state-of-the-art HPE models are fine-tuned,
including HRNet [31], ViTPose-H [37], and DEKR [8]. Second, we include club
keypoints and fine-tune MixSTE [39], the state-of-the-art 2D-3D lifting model.
The results may facilitate various downstream golf applications.

We test these 2D and 3D models fine-tuned from GolfSwing . Our experimen-
tal results indicate that the original 3D MPJPE of MixSTE can be reduced from
109.4 mm to 35.6 mm and, if we further include club with golfer, the 3D MPJPE
can be reduced to a 32.3 mm. For the 2D case, the original mAP of the tested
2D models can be increased from the range of 0.669-0.706 to 0.877-0.936; if we
further include club keypoints, the mAP can be increased to 0.918-0.956. This
simple-yet-effective approach not only validates the value of GolfSwing , but also
indicates the feasibility of pretraining a 2D/3D pose model on large datasets
like Human3.6M [11] and TotalCapture [33], which primarily focus on regular
daily poses, followed by fine-tuning it with a small human-with-object dataset.
The results can also be generalized to other precision sports that suffer serious
self-occlusion effects, like tennis, badminton, and cricket.

2 Related Work

Motion Capture Systems. They can be categorized as marker-based, marker-
less, and inertial sensor-based. Marker-based systems [34] utilize reflective mate-
rials to facilitate tracking. Through multiple cameras, the 3D locations of mark-
ers are positioned by triangulation. While accurate, such systems are more costly
and difficult to set up. Markerless systems [3] do not require markers and track
the optical flows of pixels in 2D image spaces for constructing 3D positions. Iner-
tial sensor-based solutions are less costly and provide more degrees of freedom
[30]. However, error accumulation is a persistent problem.

Our GolfSwing dataset was recorded concurrently by RGB cameras and
Vicon cameras (a marker-based system), thus featuring both 2D and 3D ground
truth. Markers are attached to both golfer and club. We follow the configurations
in [11] in our setup.
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Golf Kinematics. A lot of studies tried to understand golf kinematics. To
study golf swings and injuries, [44] recorded LPGA and PGA golfers’ motions
and collected statistics including angles and angular velocities of swings. The
differences in injury risks and swing techniques among male and female profes-
sional golfers on injury regions were studied. The correlation between lumbar
and hip joint rotation during a swing and its association with lower back pain
was investigated in [26]. To help beginners to correct their poses, HRNet with
Simplebaseline3d was employed in [15] to infer 3D poses in GolfDB [23]. Through
[16], a learner’s poses can be synchronized with coaches’ in database, thus pro-
viding visualization assistance to learners.

2D HPE. 2D HPE can be broadly categorized into two approaches: top-down
and bottom-up. The top-down approach [31,35,37] consists of two stages: object
detection and pose estimation. It transforms multi-person pose estimation into
single-person estimation. It typically achieves higher accuracy but incurs higher
computing cost. The bottom-up approach [2,8,38] first estimates all keypoints,
followed by poses construction. This approach is faster, but generally less accu-
rate.

3D HPE. Monocular 3D HPE has been widely explored. Solutions can be
categorized as one- and two-stage ones. The one-stage approaches [12,17] directly
regress 3D skeletons from input without intermediate 2D skeleton representa-
tions and are thus more computing-intensive. Two-stage approaches first employ
a 2D pose detector to identify skeletons and then elevate 2D skeleton sequences to
3D ones. References [36,41] try to predict 3D skeletons directly from 2D skele-
tons, and are thus highly sensitive to 2D detection accuracy. Since temporal
information of continuous skeletons may reduce depth ambiguity, TCN [28] con-
ducts dilated convolutions on adjacent 2D skeletons to estimate 3D ones. Pose-
Former [43] proposes a spatial-temporal transformer encoder to capture skeleton
structure and temporal activity. Also based on transformer, MixSTE[39] focuses
on the temporal features of individual keypoints and spatial features in each 2D
skeleton. Following the recent trend, our GolfPose takes a two-stage approach.

Human Pose Datasets. Consisting of 200,000 images and 250,000 person
instances, COCO Keypoints [18] defines 17 2D human keypoints and includes
annotations for occlusion situations, enabling significant progress under challeng-
ing conditions. For 3D datasets, Human3.6M [11] contains large indoor scenarios
with 15 daily actions. Also with 17 human keypoints, it includes various data
types such as RGB images, human silhouette, bounding box, depth, 3D pose, and
3D laser-scanned human models. MPI-INF-3DHP [24] incorporates both indoor
and outdoor scenes with diverse human poses, clothing, and occlusions. Total-
Capture [33] provides human keypoints, activity types, and synchronized sensor
data. 3DPW [22] is a 3D dataset collected from handheld cameras with sensors
attached to human limbs in outdoor environments. SportsPose [10] consists of
five types of sports in dynamic scenes.
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Fig. 1. Framework of GolfPose. (Blocks marked by gray represent our contributions.)

3 Methodology

Our goal is not only to enhance the performance of existing 2D and 3D HPE
models but also to include keypoints of club. Fig. 1 shows our research frame-
work. There are three phases. The first phase is to derive GolfSwing by Vicon
cameras [34] plus regular RGB cameras. In the second phase, we will fine-tune
detectors and pose models. The third phase is, from normal RGB videos, to infer
golfer-with-club keypoints and, for the case of 3D, to conduct 2D-to-3D lifting.

3.1 GolfSwing Dataset

GolfSwing is collected concurrently by 9 Vicon infrared cameras and 2 RGB cam-
eras that are time-synchronized. The environment setup and equipment specifi-
cations are shown in Fig. 1. The infrared cameras are placed around the golfer,
while the RGB cameras are placed in the front and the side of the golfer. The
area size is about 6.8m x 7.1m. The golfer stands within the capture region,
utilizing a 7-iron club.

Before recording, we calibrate all Vicon cameras with a Vicon wand. A center
point on the ground is regarded as the 3D origin. There are 6 volunteer students
serving as golfer. Each volunteer is tagged by 28 markers for 3D trajectory
tracking. The marker placement is designed similar to Human3.6M, from which
we can calculate 17 keypoints as ground truth. In addition, club is tagged by 5
markers for keypoint tracking. The details are depicted in Fig. 2.

Post-processing is required because a marker has to be captured by at least
two Vicon cameras in order to reconstruct its 3D location. Due to the speciality
of golf sports, markers can be easily occluded during a swing. Missing markers
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Fig. 2. The specifications of GolfSwing .

are replaced using Vicon Nexus’s algorithms. In the end, we obtain a set of highly
accurate 3D golf swing keypoints as ground truth.

The above steps have led to 3D keypoint ground truth. The last step is
to perform coordinate transformation to produce 2D keypoint ground truth.
This is done by projecting 3D keypoints onto RGB images. We follow Zhang’s
calibration algorithm [40] and define four coordinate systems (Fig. 1):

1. Vicon World Coordinate System (VWCS): the 3D coordinate system of Vicon
cameras, with the calibration wand as the origin.

2. Checkerboard World Coordinate System (CWCS): the 3D coordinate system
to relate real world with RGB cameras via an external checkerboard.

3. Camera Coordinate System (CCS): the 3D coordinate system used by RGB
cameras.

4. Pixel Coordinate System (PCS): the 2D coordinate system of RGB images,
with the top-left corner as the origin.

Then we conduct three coordinate transformations. The first one is VWCS-
to-CWCS transformation. We place Vicon markers at the origin, x-axis, and
y-axis of CWCS as the transformation basis for VWCS. By these markers, we
calculate the rotation matrix R′ ∈ R

3×3 and translation matrix T ′ ∈ R
3×1,

which lead to the Rigid Transformation Matrix C ∈ R
4×4:

C =
[
R′

3×3 T ′
3×1

01×3 01×1

]
(1)

The second one is CWCS-to-CCS conversion. The Extrinsic Matrix E ∈ R
4×4

is employed [40]. It is also composed of a rotation matrix R ∈ R
3×3 and a

translation matrix T ∈ R
3×1, and can be denoted by:

E =
[
R3×3 T3×1

01×3 01×1

]
(2)

The third one is CCS-to-PCS transformation. We utilize the Intrinsic Matrix
K ∈ R

3×4, which consists of the focal length (fx, fy) and principal point (cx, cy).
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It is computed during the calibration algorithm [40]:

K =

⎡
⎣fx 0 cx 0
0 fy cy 0
0 0 1 0

⎤
⎦ (3)

By combining the above transformation matrices, we derive the projection from
a 3D point onto the 2D PCS:

s

⎡
⎣uv
1

⎤
⎦ = KEC

⎡
⎢⎢⎣
xw

yw
zw
1

⎤
⎥⎥⎦ , (4)

where
[
xw yw zw 1

]T is a 3D point in VWCS,
[
u v 1

]T is its corresponding 2D
point in PCS, and s is the scale factor referring to the ratio of the physical
measurement unit to the image unit. By projecting all 3D keypoints to PCS, we
obtain 2D keypoint ground truth of GolfSwing . From the above 2D keypoints,
we further calculate the bounding boxes of golfer and club as ground truth.

Overall, GolfSwing comprises 6 golfers of heights 160-180 cm, who had taken
2-4 sports classes or joined school sports teams. Each subject swung 7 times,
yielding a total of 42 trails. We asked volunteers to swing differently each time.
After manual curation, 20 highly accurate trails were collected. We followed
“cross-subject” split, with 4 for training and 2 for testing. 17,738 frames were
collected, with 13,782 (78%) for training and 3,956 (22%) for testing.

To summarize, there are several challenges during data collection: (i) players’
diversity, (ii) recording environments, (iii) fast-moving swings, (iv) missing key-
points in Vicon videos, and (v) opt-in permission required for each volunteer.
These are conquered by asking players to swing different each time, cleaning
blurry frames (especially for club), and manually making up missing keypoints.
Unfortunately, recording in the wild is not feasible currently for Vicon’s IR cam-
eras.

3.2 Model Fine-Tuning

We take a top-down approach [42] for golfer-with-club keypoint detection. With
GolfSwing , we fine-tune object detector, 2D pose, and 2D-3D lifting models. In
particular, there are two alternatives for object and 2D pose detection, one by
detecting golfer and club separately and the other by detecting them jointly.

For object detection, we employ Faster R-CNN [29] and YOLOX [7]. Both
models are pretrained on the COCO 2017 dataset, which includes 80 object cate-
gories. We fine-tune them by GolfSwing (2D) dataset. For the separated method,
two categories, namely golfer and club, are detected. For the joint method, only
one golfer-with-club category is detected.

For 2D pose detection, we employ HRNet [31] and ViTPose-H [37], which are
pretrained on the COCO 2017 dataset for 17 human keypoints. We also include
DEKR, which is a bottom-up method, for comparison purpose. Refering to Fig.
1, we then fine-tune them into three models by GolfSwing (2D).
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– For golfer pose, we modify the configuration file according to the Human3.6M
keypoint format. The backbones of the above three models are initialized by
pre-trained weights, and we retrain their keypoint heads from scratch, leading
to 17 keypoints as output.

– For club pose, we also use the backbones of the above three models and load
their pretrained weights. Then we modify their prediction heads for 5 club
keypoints and fine-tune them by GolfSwing (2D). The club keypoints are
shaft, hosel, heel, toe down, and toe-up.

– For golfer-with-club pose, the same fine-tuning is executed except that there
are 17+5 keypoints from prediction heads as output.

For 2D-3D lifting, there has been extensive research [21,28,39,43]. We choose
to fine-tune the state-of-the-art MixSTE [39]. We follow its design and extend
the dimensions of the model to include 5 extra club keypoints. The process
is shown in Fig. 3(a). The input to the model is a sequence of T 2D poses
XT,G+C ∈ R

T×(G+C)×2, where G and C are the numbers of golfer and club
keypoints, respectively. First, we project each keypoint to dm dimensions, lead-
ing to a higher-dimension feature map X̂T,G+C ∈ R

T×(G+C)×dm . Then, to pre-
serve positional information, the extended spatial embedding matrix Es-pos-ext ∈
R

(G+C)×dm and pre-trained temporal embedding matrix Et-pos ∈ R
T×dm are

applied. (Note that the pre-trained embedding Es-pos ∈ R
G×dm , which is trained

on human keypoints only, can not be directly fine-tuned.) Therefore, we ran-
domly initialize Es-pos-ext for retaining the positional information of both golfer
and club during fine-tuning. Subsequently, X̂T,G+C will be iternately learned for l
iterations between Spatial Transformer Block (STB) and Temporal Transformer
Block (TTB). Finally, the dimension dm is reduced to 3 by the Regression Head,
leading to a keypoint sequence YT,G+C ∈ R

T×(G+C)×3.
The modified STB and TTB transformer blocks are shown in Fig. 3(b). We

follow the transformer encoders designed in [6,39,43]. STB is to learn the spa-
tial relationships among keypoints in each frame. Frames are sent one-by-one to
STB. With the pre-trained weights of MixSTE, the multi-head self-attention of
STB already effectively preserved the spatial relation of keypoints for regular
human activities. During fine-tuning, for each frame at time t, its (dimension-
incremented) keypoints, denoted by it,n ∈ R

dm , n = 1...(G+C), are regarded as
a sequence of tokens by STB to enhance their spatial relation-capturing capabil-
ity, such as inter-golfer, inter-club, and golf-club keypoints’ relationships. On the
other hand, the trajectories of all keypoints along the temporal dimension are
also sent one-by-one to TTB. For each trajectory n, n = 1..G+C, its (dimension-
incremented) keypoints, denoted by in,t ∈ R

dm , t = 1...T , are regarded as a
sequence of tokens by TTB to enhance their temporal relation-capturing capabil-
ity. Overall, these two blocks alternately strengthen the correlations of keypoints
in spatial and temporal dimensions, respectively.

This model is fine-tuned end-to-end in a supervised manner. We adopt the
same loss functions: Weight Mean Per Joint Position Error (W-MPJPE) Lw

and Mean Per Joint Velocity Error (MPJVE) Lv [28]. Additionally, we adopt
Temporal Consistency Loss (TCLoss) Lc to improve motion smoothness [9].
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Fig. 3. (a) Extension of MixSTE for 2D-3D lifting and (b) extension of STB and TTB
transformer blocks to include club keypoints.

3.3 GolfPose Inference Model

GolfPose is built upon the above fine-tuned models. As shown in Fig. 1, it
accepts a RGB frame sequence of length (T,H,W,C) as input. If one chooses
to process golfer and club separately, we need to identify from each frame a
golfer bounding box Gb = (px, py, pw, ph, score) and a club bounding box Cb =
(cx, cy, cw, ch, score). Then, Pb and Cb are passed to the golfer and the club pose
models, respectively. Then golfer and club keypoints of all T frames are stacked
into tensors of (T, 17, 2) and (T, 5, 2), respectively, which are then concatenated
into a (T, 22, 2) tensor. If one chooses to process golfer and club jointly, the
process is similar, except that there is only one bounding box per frame and
we directly derive a (T, 22, 2) tensor. In either case, the concatenated tensor is
fed into the 2D-3D lifter. With joint golfer-with-club information, we shall show
that the lifter can better leverage the spatial-temporal correlations of keypoints
and thus achieve much higher accuracy.

4 Performance Evaluation

4.1 Implementation Details

As mentioned earlier, our 2D/3D models are pre-trained on the COCO 2017
dataset and the Human3.6M dataset, respectively, and then fine-tuned on Golf-
Swing 2D/3D. For GolfSwing , the training set (S1-S4) consists of 13,782 images,
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Table 1. Comparisons of 3D pose estimation models on our GolfSwing 3D dataset.

Strategy w/o Fine-tuned with Fine-tuned
Golfer GolferClub

VideoPose3D [28] (N=17, T=243) 134.8 52.0 -
Attention3D [21] (N=17, T=243) 149.7 46.8 -
PoseFormer [43] (N=17, T=81) 107.8 40.3 -
MixSTE [39] (N=17, T=243) 109.4 35.6 -
GolfPose-3D(GC) (N=22, T=243) - 32.3 62.8

2D/3D keypoints, and 27,564 bounding box annotations, while the test set (S5,
S6) consists of 3,956 images, 2D/3D keypoints, and 7,912 bounding box anno-
tations. For object detectors, the evaluation metric is mAP@IoU . During fine-
tuning, we set a batch size of 8 and train the models for 30 epochs. The optimizer
is SGD, and the learning rate is set to 2.5e-3. The computing environments are:
CPU i7-12700K, GPU GeForce RTX 3090*2, CUDA 11.6, PyTorch 1.12.1, and
mmdetection [4] version 3.1.0.

For 2D pose models, the evaluation metric is mAP@OKS. The computing
environments are the same but with additional mmpose [5] version 1.3.0. During
fine-tuning, we set the batch size to 16 and train the models for 20 epochs. We
use Adam optimizer, with a learning rate of 1e-4. For the golfer’s 17 keypoints,
we assign different weights [1.0, 1.0, 1.2, 1.5, 1.0, 1.2, 1.5, 1.0, 1.0, 1.0, 1.0,
1.0, 1.2, 1.5, 1.0, 1.2, 1.5] to them when calculating MSE loss. For the club’s
5 keypoints, we assign weights [1.6, 1.9, 2.0, 2.0, 2.0] to them. The golfer-with-
club’s keypoionts are given weights similarly.

To fine-tune MixSTE, in addition to extending to 22 keypoints, we perform
data augmentation on GolfSwing to enhance robustness. We rotate each 3D
pose by 90 degrees and project it onto the 2 RGB cameras. So the dataset
quadrupled, effectively rendering additional perspectives of 2D poses. We divide
keypoints into five groups (head, torso, upper limbs, lower limbs, and club) and
define the weight vector W = [1.5, 1, 2.5, 4, 4]. The frame length T = 243 and
the Adam optimizer is employed with a learning rate of 4.0e-5 and a decay of
0.98 per epoch. The batch size is 512 and the model is fine-tuned for 60 epochs.
The computing environments are: CPU i7-12700K, GPU GeForce RTX 3090*2,
CUDA 11.6, and PyTorch 1.10.1.

4.2 Performance Comparison

Quantitative Results. We compare GolfPose against four 3D models Video-
Pose3D [28], Attention3D [21], PoseFormer [43], and MixSTE [39] on the
GolfSwing dataset. Among them, MixSTE is the current state-of-the-art in
Human3.6M. We use the 2D pose ground truth as input to compare the pre-
dicted 3D poses by the MPJPE metric. We use the default hyper-parameters of
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Table 2. Comparisons of 2D pose models on our GolfSwing 2D dataset. (G, C, and
GC mean fine-tuning for golfer only, for club only, and for both, respectively. “Metric”
means the range of keypoints in calculating AP and AR.)

Model Source model Metric AP AP50 AP75 AR AR50 AR75

GolfPose-2D(G) HRNet APgolfer

ARgolfer

0.884 1.0001.000 0.887 1.0001.000

GolfPose-2D(GC) 0.899 1.0001.000 0.916 1.0001.000

GolfPose-2D(G) ViTPose-H 0.887 1.0001.000 0.898 1.0001.000

GolfPose-2D(GC) 0.901 1.0001.000 0.915 1.0001.000

GolfPose-2D(G) DEKR 0.869 1.000 0.898 0.888 1.000 0.904

GolfPose-2D(GC) 0.9171.000 0.968 0.9271.000 0.973

GolfPose-2D(C) HRNet APclub

ARclub

0.857 0.990 0.947 0.882 0.997 0.957
GolfPose-2D(GC) 0.949 1.000 0.990 0.955 1.000 0.999

GolfPose-2D(C) ViTPose-H 0.870 0.990 0.948 0.887 0.996 0.953

GolfPose-2D(GC) 0.942 1.000 0.990 0.956 1.000 0.998

GolfPose-2D(C) DEKR 0.858 0.990 0.946 0.888 0.999 0.951

GolfPose-2D(GC) 0.9771.0001.0000.9821.0001.000

GolfPose-2D(GC) HRNet APgolfer−club

ARgolfer−club

0.915 1.0001.000 0.930 1.0001.000

ViTPose-H 0.925 1.0001.000 0.930 1.0001.000

DEKR 0.9421.0001.0000.9451.0001.000

HRNet [31] - APlimb

ARlimb

0.701 1.000 0.948 0.731 1.000 0.954
GolfPose-2D(G) HRNet 0.918 1.0001.000 0.939 1.0001.000

GolfPose-2D(GC) HRNet 0.9561.0001.0000.9621.0001.000

ViTPose-H [37] - 0.706 1.0001.000 0.730 1.0001.000

GolfPose-2D(G) ViTPose-H 0.936 1.0001.000 0.947 1.0001.000

GolfPose-2D(GC) ViTPose-H 0.941 1.0001.000 0.948 1.0001.000

DEKR [8] - 0.669 1.000 0.979 0.689 1.000 0.988

GolfPose-2D(G) DEKR 0.877 1.000 0.868 0.887 1.000 0.871

GolfPose-2D(GC) DEKR 0.918 1.000 0.927 0.924 1.000 0.935

these four models during fine-tuning. As Table 1 shows, these four models all
improve significantly after fine-tuning, implying the contribution of GolfSwing .
After fine-tuning, MixSTE performs the best. Encompassing club information,
GolfPose generates N = 22 keypoints and outperforms the other methods, which
only yield N = 17 golfer keypoints. This indicates that including object is help-
ful for pose estimation. After fine-tuning, GolfPose achieves the lowest MPJPE
of 32.3 mm for golfer keypoints. In fact, the club’s MPJPE=62.8 mm because
its fast-moving nature causes blurry effects. Even under such a condition, it still
proves the importance of including club for golfer pose estimation.

Next, we consider the 2D pose estimation results, including golfer-only, club-
only, and golfer-with-club cases. Table 2 presents two types of results: HRNet
and ViTPose-H represent the top-down approach, and DEKR represents the
bottom-up approach. If we fine-tune for golfer only (G) or for club only (C) by
GolfSwing 2D, ViTPose-H performs the best with mAP=0.887 and 0.870, respec-
tively (underlined). If we fine-tune for both golfer and club (GC), all models are
further improved after fine-tuning. DEKR achieves the highest mAP of 0.917
in golfer’s keypoints, of 0.977 in club’s keypoints, and of 0.942 in all keypoints
(boldface). These results indicate that including club benefits golfer keypoint
detection, and reversely including golfer benefits club keypoint detection.
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HRNet (N=17) GolfPose-2D(GC) (N=22) MixSTE (N=17) GolfPose-3D(GC) (N=22)

Fig. 4. Qualitative comparisons on subject S5. (GT=dashed line; prediction=solid line;
red=right hand; green=left hand)

Finally, we compare the pre-trained and the fine-tuned models. Since COCO
and Human3.6M define skeleton differently, we have to take the 12 common key-
points between them (which include shoulders, elbows, wrists, hips, knees, and
ankles). The results are shown in the last section of Table 2. For each source
model (HRNet, ViTPose-H, and DEKR), our fine-tuned GolfPose does improve
mAP significantly. Overall, using golfer-with-club data to fine-tune HRNet per-
forms the best, achieving mAP= 0.956. This implies the value of GolfSwing
that makes 2D pose estimation more stable and accurate, which can further
contribute to the subsequent 2D-3D lifter.

Qualitative Results. Fig. 4 presents some qualitative results. The visualization
is from S5 of GolfSwing . The results show the improvement from the pre-trained
model to the fine-tuned model. Notably, even when hands are partially occluded,
GolfPose-2D and -3D can still detect keypoints quite accurately.

Inference speed. Regarding inference speed, GolfPose mainly involves a fine-
tuned 2D golfer pose model, a fine-tuned 2D club pose model, and a fine-tuned
2D-3D lifter. The first two models, when running on an i5-12500 CPU and
GeForce GTX 1080 Ti GPU, achieve 27.25 and 27.3 FPS, respectively. The
third model, when running on an i5-13400 CPU with a GeForce RTX 3060
GPU, reaches 6.67 FPS.

Object Detection. Table 3 compares the case of detecting golfer and club
separately and the case of detecting them jointly. We test two object detectors:
Faster R-CNN and YOLOX-s. There is clear advantage of detecting them jointly.
Contrary to intuition, when each individual object’s detection is low, jointly
detecting them helps improve detection rate. With joint detection, YOLOX-s
outperforms Faster R-CNN. Additionally, YOLOX-s boasts a higher inference
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speed of 88.84 FPS compared to Faster R-CNN’s 14.19 FPS. Therefore, we adopt
YOLOX-s as our object detector.

4.3 Ablation Study

Number of club keypoints. In Table 4, we further consider the effect of the
number of club keypoints. We denote the method by 17+ i, where i = 0..5 repre-
sents the number of club keypoints (when 0 < i < 5, we choose keypoints c1 to ci
in Fig. 2). When we start to add club keypoint, we observe significant improve-
ment on both golfer and golfer-with-club detection accuracy (from error=35.6
mm to 29-32 mm for golfer). However, adding more keypoints results in slight
increases of error. We suspect the reason to be the relative slower movement of
the grip part as opposed to the much faster movement of the head part of club.
As mentioned earlier, it is more difficult to detect fast-moving keypoint. There-
fore, when the value of i increases, these keypoints (of relative lower accuracy)
also confuse our model.

Table 3. Ablation study on separate and joint object detection.

Model Datasets Class AP AP50 AP75

Faster R-CNN (ResNet50-FPN) Coco + GolfSwing Golfer 0.9401.0001.000
Club 0.8961.0000.989
G-w-C 0.9701.0000.990

YOLOX-s (CSPDarknet) Coco + GolfSwing Golfer 0.9201.0001.000
Club 0.9111.0000.998
G-w-C 0.9841.0001.000

Table 4. Ablation study on the number of club keypoints.

MPJPE (mm) Number of keypoints
17+017+117+217+317+417+5

Golfer 35.6 29.5 30.5 30.8 32.3 32.3
Club - 50.9 59.6 62.9 61.4 62.8
Overall 35.6 30.7 33.6 35.6 37.9 39.2

Table 5. Ablation study on fine-tuning from Human3.6M.

MPJPE (mm) Train from scratch Fine-tuning

Golfer 48.5 32.3
Club 112.9 62.8
Overall 63.2 39.2
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Effect of fine-tuning. We consider the same structure of GolfPose that is
trained from scratch on GolfSwing for 80 epochs (i.e., without using the pre-
trained weights from MixSTE). From Table 5, it validates the benefit of the
pretrained weights from MixSTE (which reduces error from 48.5 mm to 32.3
mm for golfer). That is, a large amount of information is carried over from
the pre-trained weights obtained from Human3.6M. Even for club, the error is
reduced from 112.9 mm to 62.8 mm.

5 Conclusions

This work contributes in deriving the GolfSwing dataset, which includes keypoint
ground truth of 2D and 3D golf swing actions. It also contributes in deriving
the GolfPose framework, which can be fine-tuned from existing object detection
and pose estimation models, for inferring golfer-with-club keypoints simultane-
ously. The results imply that including auxiliary objects, such as club, with
even very few keypoints of a small dataset can improve human pose estimation
significantly. Nonetheless, detecting club poses in complex scenes is a challenge.
Future improvement on club pose estimation may further improve overall perfor-
mance. This approach can be extended to other sports, such as baseball, cricket,
badminton, and tennis, where players have an object at hand.
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Abstract. Recognizing social cues and emotions is vital for navigating
daily interactions, understanding emotions in conversations, interpret-
ing body language in meetings, and supporting friends in difficult sit-
uations. This work focuses on analyzing group-level emotions in videos
captured in natural settings, marking an attempt at multimodal group-
level emotion analysis. Automatic group emotion recognition is pivotal
for understanding complex human-human interactions. Group emotion
recognition in videos presents several challenges because existing work
predominantly focuses either on individual emotion recognition or group
emotion analysis in static images. To address this challenge, we introduce
a deep-learning-based multimodal fusion model that integrates diverse
modalities, including audio, video, and scene. Feature extraction employs
advanced models like TimeSformer for video description and wav2vec2.0
for audio analysis. All the experiments are conducted on the VGAF
dataset. Our key findings include: (1) Multimodal approaches outperform
their unimodal counterparts, (2) Experimental results confirm the supe-
rior performance of proposed approach compared to benchmark meth-
ods on the given dataset, and (3) There is a strong correlation between
modalities and respective emotions.

Keywords: Affective computing · Group level affect recognition ·
Human behavior analysis

1 Introduction

Understanding emotions is crucial in interactions between humans and comput-
ers. The field of emotion recognition research is expanding quickly because of the
potential applications for improved human-computer interfaces and automated
services that react instantly to the user’s or client’s emotions [13]. Group emotion
prediction is a very first step towards the development of artificial intelligence
(AI) systems that will be able to understand complicated human connections
and facilitate high-level human interaction [40]. Visual cues are insufficient to
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capture the complexity of human interactions, as collective emotion is a reflec-
tion of intentions, behaviours, and relationships within the group. Recognizing
emotions in groups using both audio and video is tough because it’s hard to
collect all the necessary information to understand emotions properly.

Humans are able to understand a video’s context in addition to the audiovi-
sual content that is shown, based on the mechanism that converts the conceptual
information that has been gathered in the brain into a visual cognition process
[8,23,24]. Thus, we believe that acquiring valuable insights into understanding
collective emotions can be facilitated by exploring various aspects of human rela-
tionships. Unlike machines, humans can grasp emotions more easily because we
connect what we see and hear with our memories, making it easier to under-
stand the context. Recent developments in emotional technology aim to make
our devices capable of understanding emotions as humans do. Recent interest in
group-level emotion recognition in real-world settings has surged due to inno-
vative data collection methods and multimodal capabilities. While the social
psychology community has long been intrigued by group-level emotion recogni-
tion [25], the importance lies in understanding social identity and individuals’
interactions within their social context. Beyond social psychology, various disci-
plines such as Education and healthcare are also fascinated by group emotions.

Automatic group-level affect analysis presents greater challenges due to var-
ious factors. These include the potential occlusion of individuals in group sce-
narios due to camera placement, variations in label assignments by different
human annotators focusing on different group segments, and the influence of
multiple individuals on each other’s emotional states during interactions [20].
To work with these challenges, we employed multiple cues, including speech,
pose, frames, and overall video representation, for group-level affect analysis.
Overall, we make the following contributions:

– We introduce a novel multimodal decision fusion model, leveraging four
streams of data, each corresponding to a distinct feature type: audio, pose,
frame, and video representation, to classify group emotions in a multiclass set-
ting. Additionally, we investigate various methods for integrating information
from these video features.

– Our experiments reveal that multimodal fusion involving all four features:
audio, pose, frame, and video is highly predictive of emotion classes. We also
show that fusion approaches outperform their unimodal ones preserving the
cue complementarity of feature space.

– We have tested proposed approach on the public dataset: VGAF which clas-
sify emotions into one of three categories. Experimental findings confirms a
performance improvement over benchmark approaches.

– We have also investigated the correlation between emotion classes and the
corresponding feature space.

The subsequent sections of the paper are organized as follows: Section 2 delves
into previous research works in this domain. Following that, Section 3 discuss
the architecture and methodology employed. Section 4 covers the experimental
outcomes. At the end, the conclusion and future work is discussed.
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2 Background and Related Work

Recognizing emotions from images, particularly through facial cues [21], or via
video analysis [1], has long been an established field of research. However, the
exploration of group-level affect recognition is a rapidly evolving research area.
Recent advancements in machine learning technology have facilitated the ability
to recognize emotions in real-world scenarios, commonly referred to as "in-the-
wild" settings. Notably, current studies have been focusing on the challenging
task of predicting emotions at the group level in video contexts [36,37]. Initially,
researchers prioritized unimodal approaches [28,30], utilizing single cues only,
but now the majority employ multimodal inputs [5,11]. Various models have
been proposed to achieve group affect recognition, ranging from classic machine
learning-based approaches [17] to deep learning-based methods and more recent
attention-based techniques [42].

Several notable works contribute to the field: the work by Zhang et al.
[41], which introduces ERLDK, a RL (Reinforcement Learning) based model
for multimodal emotion recognition in conversation videos that utilize histor-
ical utterances, a DDQN with GRU layers, and domain knowledge to refine
recognition across diverse datasets. Liu et al. [22] introduce a hybrid network
by integrating audio, facial emotion, environmental object statistics (EOS), and
video streams. The EOS method effectively leverages facial expressions, environ-
mental context, audio, and temporal features for Audio-Visual group emotion
recognition. Also, Augusma et al. [2] propose a multimodal model with video and
audio branches employing cross-attention by utilizing a fine-tuned Vision Trans-
former (ViT) architecture for video and convolutional neural network (CNN)
blocks feeding Mel-spectrograms into a transformer encoder for audio. Another
work [38] presents the K-injection audiovisual network, capturing both explicit
and implicit knowledge in emotion recognition. Additionally, in work by Guo
et al. [14], recent deep neural models trained on various cues including facial
expressions, scene context and skeletal features are integrated for group emotion
classification. Also, Zhao et al. [42] propose the VisualAudio Attention Network
(VAANet), an end-to-end approach for video emotion recognition that integrates
different attention mechanisms such as spatial and channel-wise attention into
an audio-visual 2D/3D CNN network.

On the other hand, along with deep learning models, Pinto et al. [29] also uti-
lize machine learning models for group affect classification by integrating a pre-
trained Inflated ResNet-50 model for visual cues, processes audio features using
a Bidirectional Long Short-Term Memory (Bi-LSTM) network, and employs a
support vector machine classifier for classification. While, Dhall et al. [17] utilize
a global alignment kernel to explicitly measure the distance between two images
and introduce SVM-CGAK, a support vector machine approach for group- emo-
tion recognition. Balaji et al. [4] also employ SVM-based classification approach
by incorporating low-level and mid-level components, alongside deep neural mod-
els for feature extraction to classify group emotion. Also, in one of the interesting
work, Pan et al. [27] proposed a Random Forest based approach adopted for fus-
ing the fused features from various CNNs.
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3 Methodology

3.1 Problem Formulation

Let X denote the input video, where X ∈ R
F×H×W×C . Here, F represents the

number of frames each of size: height (H) × width (W ), and C encompasses
the number of channels in the video frame (see Figure 3). The task involves
analyzing a 5-second video (X) captured in natural settings featuring a group
of N individuals (where N>1). The goal is to categorize the overall emotion of
the entire video into one of three classes: Positive, Negative, or Neutral using
multiclass classification. Furthermore, the objective extends to investigating the
correlation between the utilized features and the available emotion class.

3.2 Features Extraction

We have extracted different features from the videos, such as audio, frame, pose,
and video features.

1. Audio Features: Audio features, including spectrograms, MFCCs, and
pitch [9,31], are numerical representations extracted from audio signals. We
have utilized wave2vec2.0 [3] for audio feature extraction due to its ability to
learn dense and semantically rich representations from sequential data. This
resulted in a 1024-dimensional audio embedding vector for each video.

2. Pose Features: Pose estimation requires detecting key points representing
body parts’ positions and orientations in images. YOLOv8 [19] introduces
specialized models for this, adept at accurately identifying key points across
diverse contexts. Inspired by this, we have utilized YOLOv8 on our video
frames, Let Yolo give ρ number of points as: {(x1, y1), (x2, y2), . . . , (xρ, yρ)}
of a person. In a frame, there are ‘m’ individuals (where ‘m’ may vary from
frame to frame). The average of each detected point (x, y) for each frame is
then calculated as:

X = (x1 + x2.......xm)/m (1)

Y = (y1 + y2.......ym)/m (2)

The mean features extracted from each frame are stacked to form the final
feature representation. Specifically, YOLOv8 detects a total of 17 key points,
but for our specific task, only 8 points - including wrist and hip points, which
are consistently visible in each video frame - is selected. This results in a 16-
dimensional vector. Furthermore, the count of people present in the video is
appended, yielding a 17-dimensional feature set. To ensure uniform temporal
sampling and comprehensive coverage, we selected 12 representative frames
from each 5-second video, with frame rates ranging from 13 to 30 fps (result-
ing in at least 65 frames), using 12 equally spaced frame indices. This choice
balances computational efficiency and pose variation. By sampling at regu-
lar intervals, we capture different stages of movement, effectively analyzing
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human poses and providing a broad view of posture changes. Considering
12 representative frames per video, results in total 204-dimensional feature
vector for each video.

3. Frame Features: A video consists of a sequence of frames, each captur-
ing the entire scene at a particular moment. To capture temporal informa-
tion, we have concentrated on the video’s temporal dimension by extract-
ing frame-level features. We utilize the OpenCV [16] library in Python to
extract frames from the input video. Additionally, after taking inspiration
from [18], a compact spatio-temporal network to extract frame-level features
is used. The spatio-temporal network, shown in Figure 1, incorporates sev-
eral layers, including LSTM-Conv2D and average pooling, which results in
30-dimensional features for each video. Here, the time-distributed layer is
utilized to apply the pre-trained ResNet-50 model [15], which was trained
on ImageNet, directly on each extracted frame using a time-distributed app-
roach. The output from this backbone was then passed through three 2D
convolutional LSTM layers, each comprising 10 filters with a kernel size of
3 × 3, followed by an average pooling layer. Subsequently, the outputs from
these three layers were concatenated.

4. Video Features: Several video understanding models [12,35,39] are avail-
able, but TimeSformer [6] architecture exclusively utilizes self-attention across
spatial and temporal dimensions, bypassing convolutional methods. This app-
roach enables direct spatiotemporal feature learning from sequences of frame-
level patches. Motivated by these properties, we employ TimeSformer for
comprehensive video feature extraction. The TimeSformer takes video clip
X ∈ R

F×H×W×C as input and result in a 768-dimensional feature vector for
each video.

Input

ConvLSTM2D

ConvLSTM2D

ConvLSTM2D

Average Pooling

Time
Distributed

Layer
Average Pooling

Average Pooling

Concatenate
FxHxWxC

Features

Fig. 1. Architecture of the network used in frame feature extraction.

3.3 Network architectures

Figure 2 illustrates the architecture of our proposed system, which includes the
feature extraction module, multichannel module, and decision fusion module. In
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Fig. 2. Overall architecture of the proposed methodology. The network contains four
deep-learning models to extract the audio, frame, pose, and frame features.

the domain of video data, various fusion strategies [33,34,39], exist, with our
emphasis specifically on decision fusion, chosen based on the ablation studies
detailed in section 4.4. Our approach incorporates three architectures: 1) Uni-
modal, 2) Bimodal/Trimodal, and 3) Multimodal decision fusion.

Multimodal decision fusion: Let FAudio, FFrame, FPose, and FV ideo are fea-
tures coming from Audio, Frame, Pose, and Video modality, respectively.

XAudio = vec(FAudio), XFrame = vec(FFrame),
XPose = vec(FPose), XV ideo = vec(FV ideo),

(3)

Here, vec(.) is the function that converts the input into the dimensions required
for the 1D-CNN. Let FAudio is a vector given to vec(.), below operations will be
performed by the vec(.) function:

XFlatten = FAudio.F latten(), (4)
XAudio = XFlatten.reshape(1,−1), (5)

Here, the reshape function adds one extra dimension to the given input vector.
Similar formulations apply to Frame, Pose, and Video features to get XFrame,
XPose, and XV ideo.

For each feature modality, 1D-CNN (Convolutional Neural Networks) is
applied to capture local patterns. Let C(·; θ, δf , φ) denote a convolutional oper-
ation with θ as the filter weights, δf as the filter size, and φ as the activation



Multimodal fusion for Group Emotion Recognition in Videos 409

function. For each feature type the convolutional layers are defined as:

EAudio = C(XAudio; θa, δf ,ReLU), (6)
EFrame = C(XFrame; θf , δf ,ReLU), (7)
EPose = C(XPose; θp, δf ,ReLU), (8)
EV ideo = C(XV ideo; θv, δf ,ReLU), (9)

Where EAudio, EFrame, EPose, and EV ideo represents the output of the convo-
lutional layers for Audio, Frame, Pose, and Video features respectively.

Component-wise attention is applied to each feature, followed by a softmax
function ϕ. Let QAudio, KAudio, and VAudio are the query, key, and value matri-
ces computed from the input sequence EAudio, embedded into appropriate matri-
ces. The component-wise attention and the final feature representation are com-
puted as follows:

αAudio = ϕ

(
QAudioK

T
Audio√

dk

)
VAudio, (10)

where αAudio will be a weighted sum of the corresponding elements in VAudio,
where the weights are determined by the attention scores computed using QAudio

and KAudio. Similar formulations apply to Frame, Pose, and Video features to
obtain the αFrame, αPose, and αV ideo.

For each feature modality, the output from the corresponding attention mod-
ule (αAudio, αFrame, αPose, αV ideo, ) undergoes processing through a dense layer
followed by a softmax layer. This sequential operation results in the class prob-
abilities for three distinct emotion classes (see Figure 2). Let D(·;λ) denote the
dense module with parameters λ. The output is given by:

Aprob = ϕ(D(αAudio;λa)), (11)
Fprob = ϕ(D(αFrame;λf )), (12)
Pprob = ϕ(D(αPose;λp)), (13)
Vprob = ϕ(D(αVideo;λv)), (14)

Where ϕ is a softmax function used for multiclass classification problems. The
model incorporates a decision fusion mechanism to weigh the importance of
each input modality. Finally, we have applied the decision fusion method, which
involves the aggregation of the output scores produced by the softmax layers
of each feature modality through a weighted sum operation in the following
manner:

Ŷ = γ1Aprob + γ2Fprob + γ3Pprob + γ4Vprob (15)
where Aprob, Fprob, Pprob, and Vprob are the predicted probabilities for three
classes using four different modalities (i.e. Audio, Frame, Pose, and Video), and
γ1, γ2, γ3, and γ4 are the decision weights where each γi ∈ [0, 1] and

∑
i γi = 1.

And Ŷ represents the predicted class probability. We perform a grid search with
a step size of 0.05 to identify the optimal weights(γ1, γ2, γ3, and γ4), maximizing
classification accuracy. Results are reported for best-performing weight values.
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Bimodal / Trimodal: For bimodal and trimodal decision fusion, unimodal
descriptors are combined using weighted sums, employing equations similar to
those used for multimodal decision fusion (as described above). Each feature
modality undergoes processing through a single 1D-CNN layer, followed by an
attention layer and, subsequently a softmax layer, resulting in class probabilities
for each feature cue. The resultant outputs are then merged using the weighted
sum methodology to produce the final class probabilities.

Unimodal: Motivated by the advancements in monomodal architectures [30],
we have attempted to evaluate the predictive efficacy of unimodal methodologies.
To achieve this, we deployed two distinct architectures: a 1D-CNN capable of
capturing local data patterns and an Attention-based architecture proficient in
capturing both local and global dependencies within the input sequence. The
1D-CNN model includes an input layer, one 1D-CNN layer, a dropout layer
(dropout rate of 0.2), ReLU activation, and an output layer with 3 neurons with
softmax activation. Conversely, the Attention-based architecture consists of an
input layer, an attention layer, and an output layer with 3 neurons and softmax
activation. These models are trained on features extracted from each individual
modality.

Early Fusion (EF): For ablation purpose, we have also explored fusing fea-
tures from each modality using feature fusion before forwarding them to any
softmax (output) layer. Early fusion combines features from different modalities
before they undergo further processing in subsequent neural network layers. This
method enables the model to learn from multiple information sources simulta-
neously, potentially enhancing its understanding and performance.

4 Experiments and Results

The experimental details, ablation studies, and discussion of the results are
described in this section.

4.1 Dataset

To evaluate the performance of proposed approach, we employ a publicly avail-
able VGAF dataset [31,32] for group emotion classification. The VGAF (Video
Group Affect) dataset comprises YouTube videos featuring a diverse range of
genders, ethnicity, event types, group sizes and poses. VGAF dataset has three
types of group-level emotions: positive, negative, and neutral. The dataset con-
tains a total of 326 videos and a total samples of 4,183; in these samples, 2,661
are train samples, 766 are validation samples, and 756 are test samples respec-
tively. The videos display varying resolutions, and 5-second labeled clips are
extracted from the entire video, with frame rates ranging from 13 to 30 frames
per second. Within the VGAF dataset, each 5-second video clip sourced from
the same origin might be annotated with distinct emotional labels, resulting in
emotional ambiguity that complicates recognition.



Multimodal fusion for Group Emotion Recognition in Videos 411

Fig. 3. Sample video frames from three different video samples containing positive,
neutral, and negative classes from the VGAF dataset.

Table 1. Details of the parameters tuned using KerasTuner along with their potential
choices and final value. Here CCE represents Categorical cross-entropy.

Parameter detail Options Selected Value

Learning rate {1e−2, 1e−3, 1e−4, 1e−5} 1e−4

Validation split {10%, 15%, 20%} 10%
Batch Size {64, 100, 128, 256} 128
No. of filters (Conv1D layer){128, 256, 512, 1024} 256
Kernel size (Conv1D layer) {3, 5, 7, 9} 5
Network Optimizer {Adam, RMSprop, Adagrad, SGD}Adam
Loss Function {Categorical cross-entropy, CCE

Sparse Categorical cross-entropy }
Activation Function {ReLU, Sigmoid, Tanh, SeLU} ReLU
Epochs {100, 150, 200, 250, 300, 350} 250

4.2 Training strategy and parameter tuning

We have trained our model using NVIDIA QUADRO P5000 GPU with 16 GB
GDDR5X GPU memory, 2560 CUDA cores, and 16 GB Virtual RAM with
Ubuntu 22.04 OS machine. The testing of the trained network has been car-
ried out using 12th Gen Intel(R) Core i7-12650H, 2300 Mhz 16 GB RAM CPU
machine with Windows Operating System.

We have used KerasTuner [26] to find out the best parameters for our app-
roach. Table 1 contains the information related to the choice of parameters and
final values chosen using parameter tuning.
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4.3 Prediction Settings

We are utilizing the VGAF dataset (public) to test the performance of the pro-
posed model. The VGAF dataset includes distinct samples for training, valida-
tion, and testing. However, as the test set is not publicly accessible, we have only
obtained the training and validation sets from the dataset owners. For experi-
mental purposes, we have trained the network using the training set and tested
it using the validation set. It’s important to note that the validation set has not
been exposed to the model during training, serving as an unseen split for testing
purposes. Our models are fine-tuned using the validation split, which comprises
10% of the training data and do not rely on external datasets for fine-tuning
or pretraining. The validation split is decided using KerasTuner (see Table 1).
We train the model for 250 epochs with early stopping. Results are reported in
terms of classification accuracy.

Table 2. Comparison of overall accuracy (%) with state-of-the-art methods on the
validation set of the VGAF Dataset. A: Audio, V: Video, H: Holistic, F: Face, L:
Language, SD: Synthetic Data, P: Pose, Fr: Frame, Val: Validation, Acc: Accuracy.

Reference Features Method Val Acc

Dhall et al. [10] A,V Inception-V3, CNN-LSTM 51.30
Petrova et al. [28] SD VGG-19 52.36
Sharma et al. [31] A, H, F Early fusion with LSTM and MLP 61.61
Pinto et al. [29] A, V Resnet-50, BiLSTM, and fusion SVM 62.40
Wang et al. [38] A, V, L K-injection network 66.19
Augusma et al. [2]A, V, SD ViT, Transformer Encoder, Cross Attention78.72
Proposed A, V, P, FrMultimodal decision fusion 81.98

4.4 Results & Discussion

This section elaborates on the results produced with the proposed approach. A
summary of the results with different combinations of fusion methods and clas-
sification models is present in Table 4. A summary of the different combinations
of features with the proposed approach is available in Table 3. While, Table 2
contains the comparison of the results from the proposed approach with the
state-of-the-art(SoTA) approaches.

Overall Results We present the overall and class-wise classification results on
the validation set in Table 3. Our proposed multimodal fusion method outper-
form baseline (see Table 2) accuracy by 29.88%. We make following observations:

– Fusion approaches outperform their unimodal counterpart and showing the
efficacy of combining information from multiple sources.
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Table 3. Classwise and overall accuracy (%) of proposed model across various feature
combinations on validation set.

Features used Classwise(Val: Acc) Overall
PositiveNeutralNegative (Val: Acc)

Audio Only 41.67 88.17 64.22 64.09
Frame Only 60.24 72.43 93.21 72.06
Pose Only 27.53 60.43 81.34 48.30
Video Only 73.65 64.25 50.12 60.57
Audio + Frame 58.23 82.43 95.33 75.84
Audio + Pose 37.56 91.65 82.23 67.62
Audio + Video 53.17 88.76 77.12 71.40
Frame + Pose 59.56 72.41 93.46 72.06
Frame + Video 61.34 74.49 92.34 73.10
Pose + Video 44.89 65.87 80.76 61.09
Audio + Frame + Pose 57.69 82.11 84.93 75.84
Audio + Frame + Video 62.34 83.34 95.55 77.41
Frame + Pose + Video 61.25 74.55 92.31 73.10
Audio + Pose + Video 43.67 90.92 91.32 71.93
Audio + Pose + Frame + Video66.83 84.78 94.16 81.98

– Proposed approach has resulted in 81.98% accuracy, showcasing the efficacy
of the proposed approach.

– Trimodal Fusion (Audio + Frame + V ideo) is also resulted in comparable
performance.

Feature-Affect Class Correlation Analysis In order to discern the rela-
tionship between the utilized features and affect classes (positive, neutral, or
negative), we trained unimodal features and computed the accuracies for each
class (refer to Table 3). Notably, we observed that:

– Audio exhibits strong predictive capability for the neutral class. This phe-
nomenon may be attributed to the fact that audio contains contextual cues
beyond verbal content, with vocal expressions commonly associated with neu-
tral emotions—such as calm and composed tone and clearer vocal intonations
are predominantly conveyed through audio signals.

– Frame features, which capture the spatio-temporal context, and Pose Fea-
tures, which contain finer movements of individuals, demonstrate superior
performance in predicting negative affect. Negative emotions tend to display
significant deviations in facial expressions and body postures across consecu-
tive frames of a video sequence compared to the other two classes. Pose and
frame-level features serve as baseline descriptors of negative emotional states
by establishing a reference point against which deviations are detected. In
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Table 4. Results of the ablation study investigating a multimodal model incorporating
audio, pose, frame, and video data over the validation data set. Accuracy (Acc) is
reported in percentages (%), with two fusion methods evaluated: Early Fusion (EF)
and Decision Fusion (DF). Here, κ is used for the Number of filters in the 1D-CNN
layer. Γ is used to denote the fusion method. A number in a bracket denotes the number
of layers used.

Model Γ κ Classwise(Val: Acc) Overall
PositiveNeutralNegative(Val: Acc)

1D-CNN (1) EF 25672.24 54.89 67.15 64.62
1D-CNN (1) DF25649.44 78.34 69.78 65.01
Attention (1) EF - 69.23 56.23 70.54 65.01
Attention (1) DF- 45.14 60.78 71.33 56.91
1D-CNN (1) + Attention (1)EF 25664.83 84.78 94.16 78.72
LSTM (1) EF - 55.62 60.35 73.36 61.61
LSTM (1) DF- 32.11 77.14 76.08 59.13
LSTM (1)+ Attention (1) EF - 75.43 65.34 82.93 69.76
LSTM (1)+ Attention (1) DF- 45.54 79.64 88.91 65.18
1D-CNN (2) DF25654.63 73.92 71.73 65.79
Attention (2) DF- 26.15 86.78 70.10 58.87
1D-CNN (2) + Attention (1)DF25667.54 91.07 93.47 80.18
1D-CNN (2)+ Attention (1) DF12863.57 93.57 87.50 79.28
1D-CNN (2)+ Attention (2) DF25635.23 80.00 82.65 59.53
1D-CNN (3)+ Attention (2) DF25637.20 79.00 81.65 59.34
1D-CNN (3) + Attention (1)DF25668.87 94.28 76.08 79.89

contrast, positive and neutral emotions may exhibit less pronounced devia-
tions from this baseline, highlighting the relevance of features that capture
intensity or arousal.

– TimeSformer-based features (Video only) demonstrate their efficacy in pre-
dicting the “Positive” class. Positive emotions typically entail dynamic tem-
poral changes, such as excitement or happiness. TimeSformer models excel at
capturing temporal dependencies and long-range interactions within sequen-
tial data, allowing them to encode the temporal dynamics associated with
positive emotions effectively. Furthermore, video features yield comparable
results for the “Negative” class, indicating their capability to preserve dynamic
temporal changes.

Comparison with state-of-the-art(SoTA) approaches The outcomes of
our proposed method on the VGAF dataset have been presented and juxta-
posed with existing methodologies in Table 2. Our approach exhibits superior
performance compared to benchmark methods. Augusma et al. [2], utilizing two-
stream features (A, V) and Synthetic Data, achieved 78.72% accuracy, while the
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baseline by Dhall et al. [10] was 52.10%. We demonstrate that capturing small
details, such as pose position, context, and surrounding objects, contributes to
better modeling of group emotions.

Table 5. Results of the ablation study investigating an unimodal model incorporating
audio, pose, frame, and video data over the validation data set. Accuracy (Acc) is
reported in percentages (%). A number in a bracket denotes the number of layers used.

Model Feature Classwise(Val: Acc) Overall
PositiveNeutralNegative(Val: Acc)

1D-CNN (1) Audio 30.79 82.14 48.91 53.91
1D-CNN (1) Frame 42.38 57.85 74.44 55.74
1D-CNN (1) Pose 12.10 62.85 78.26 45.43
1D-CNN (1) Video 72.28 66.78 54.63 63.31
Attention (1)Audio 24.17 88.57 49.45 53.78
Attention (1)Frame 15.33 67.60 19.12 36.55
Attention (1)Pose 17.54 71.50 17.23 38.90
Attention (1)Video 72.82 61.78 26.82 50.65
1D-CNN (2) Audio 35.09 74.28 53.80 53.91
1D-CNN (2) Frame 43.70 54.28 71.19 54.17
1D-CNN (2) Pose 11.34 60.35 80.84 44.12
1D-CNN (2) Video 71.19 70.00 44.37 60.18

Ablation Study Additionally, we conducted an ablation study using various
fusion strategies (early fusion and late fusion) with three architectures (CNN,
LSTM, and Attention) across four features: audio, frame, pose, and video. The
results are depicted in Table 4, along with two different unimodal architectures
for each feature input shown in Table 5. Table 4 demonstrates that certain
classes, such as Neutral (EF (1D CNN + Attention)), perform exceptionally
well across different configurations. In Table 5, some features, like video, con-
tribute significantly, while others, like pose, show negligible performance with
certain architectures. This study helped us determine the optimal architecture
and fusion strategy for classifying video-group emotions.

5 Conclusion and future work

In this paper, we introduce a multimodal decision fusion model designed to pre-
dict group affect at the video level. We integrate various modalities, including
audio, video, and pose, into multimodal fusion settings and assess their per-
formance. Our experimental findings reveal that the audio modality exhibits a
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strong predictive capacity for negative emotions, attributed to its inclusion of
contextual cues beyond verbal content. Additionally, the pose modality effec-
tively captures consistent facial expressions and subtle body movements char-
acteristic of the neutral class. Multimodal fusion surpasses unimodal, bimodal,
and trimodal fusion approaches, showcasing its ability to retain more information
from parallel pipelines. Experimental results demonstrate superior performance
compared to state-of-the-art approaches. Moreover, our analysis extends beyond
multiclass emotion classification to explore correlation patterns between classes
and features (interpretability). We demonstrate that features extracted from
audio, pose, frame, and video-level modalities contribute to video-based group
affect recognition in real-world settings.

One limitation of our study is the lack of additional datasets available to
assess the generalizability of the proposed model. For future research, we propose
to enhance the model’s capabilities by integrating more advanced models for
feature extraction and employing new techniques for fusing information from
multi-branch sources. Additionally, we plan to evaluate the performance of our
approach on diverse datasets with varying labels, such as sarcasm detection [7],
to further validate its effectiveness. Furthermore, we aim to prioritize improving
the model’s generalizability to ensure its applicability across different contexts
and scenarios.
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Abstract. Reference-based super-resolution (RefSR) utilizes an exter-
nal high-resolution reference (Ref) image to transfer detailed textures
to a low-resolution (LR) image, resulting in improved performance over
single-image super-resolution (SISR) methods. The main challenge in
RefSR is to find correspondences between the LR and Ref images, and
accurately convey the rich texture information of the Ref image. How-
ever, this becomes difficult when the similarity between the LR and Ref
images is low or there is ambiguity in the matching stage. To address
these challenges, we propose a novel cross-and self-feature transformer
(CSFT) which integrates not only the rich visual features of the Ref
image, but also the internal information within the input LR image. In
addition, we introduce a high-frequency feature alignment (HFFA) mod-
ule to robustly fuse the features of the LR and Ref images even in areas
where alignment is ambiguous. Based on the proposed CSFT and HFFA
modules, we define a new RefSR pipeline, referred to as CSSR, where
each module is structured with multi-scales. The CSSR can fully utilize
textural information in both Ref and LR images and achieve outstanding
performance, even when feature matching between Ref and LR images
is challenging. Various experiments have been conducted to verify the
effectiveness of CSSR, both quantitatively and qualitatively. The source
codes is available at https://github.com/SeonggwanKo/CSSR.

Keywords: Reference-based super-resolution · Transformer · deep
neural networks

1 Introduction

Single image super-resolution (SISR) [6,16,19,32,43] is an extensively studied
field that aims to generate a high-resolution (HR) image from a single low-
resolution (LR) image. Due to the loss of high-frequency details during the
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down-sampling process, the ground truth (GT) HR image corresponding to an
input LR image is not unique. Therefore, SISR is a highly ill-posed problem char-
acterized by a complex one-to-many relationship. To tackle this problem, there
have been various attempts, such as utilizing natural image priors (i.e., gradient
profile [27]) or a generative adversarial network (GAN) [10]. Even though these
approaches can produce visually plausible images, the output may deviate from
the original HR image.

Recently, to mitigate this issue, reference-based super-resolution (RefSR)
that utilizes additional HR images has been introduced [14,21,34,36,44,45].
Most RefSR methods restore a high-quality HR image by accurately finding
the correspondence between the input LR and Ref images and then transferring
the detailed information of the Ref image. However, there are still challenging
issues that need to be addressed in order to recover detailed textures. First, the
Ref image becomes less effective in generating the final SR result when there
is a low similarity between the input LR and Ref images. This can be seen in
the top of Figure 1, where the performance of DATSR [2], which is one of the
recent RefSR methods, drops significantly under such circumstances. To restore
the red box in the LR image, it may be more beneficial to obtain useful informa-
tion from other scales of the LR image (i.e., the yellow box of the top in Fig. 1)
rather than the low-similarity Ref image. Second, even slight variations in view-
point or illumination between Ref and LR images can make feature alignment
ambiguous, and degrade performance. As shown in the bottom of Fig. 1, it seems
simple to restore the red box in the input by using textures in the yellow box in
the Ref image, but DATSR suffers from difficulties in feature alignment due to
ambiguity caused by aforementioned variations. In this case, it can be helpful to

Fig. 1. (Top) The dissimilarities between the two images prevent successful match-
ing, resulting in an alignment performance drop. (Bottom) Although the two images
share similarities, their different viewpoints and brightness prevent leads in misalign-
ment. Our approach of utilizing cross-and self-features transformer (CSFT) and high-
frequency feature alignment (HFFA) in both LR and Ref pairs is effective in mitigating
these issues.
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perform feature alignment based on the high-frequency components excluding
the low-frequency components.

In this paper, we effectively resolve two aforementioned issues as follows.
To address the problem of low similarity between two images, we introduce a
novel cross-and self-feature transformer (CSFT), a module that uses detailed
textures from the Ref image as well as internal information within the input
LR image. Specifically, the CSFT module comprises two cross-feature trans-
formers (CFTs) and a self-feature transformer (SFT). The first CFT aggregates
high-frequency features extracted from the Ref image, whereas the second CFT
combines restored LR features utilizing a pre-trained SISR model. Subsequently,
the SFT enhances features even more by capitalizing on internal self-similarity
information. Meanwhile, to overcome ambiguity problems by the low-frequency
feature components, we propose a high-frequency feature alignment (HFFA)
module to align textures in the Ref features by effectively conveying residual
features. The proposed HFFA performs better feature alignment in detailed tex-
tured areas compared to the existing flow-based deformable convolution net-
work [13,14]. Based on the proposed CSFT and HFFA modules, we develop
CSSR, a new RefSR method that is robust against low similarity with the Ref
image or ambiguity in texture regions during feature alignment. We summarize
our key contributions as follows:

– We propose a novel cross-and self-feature transformer (CSFT) for RefSR,
which effectively utilizes internal information in the input LR image, as well
as the cross-information between Ref and LR images.

– To align detailed information in the Ref image to the grid of the input LR
efficiently, we suggest a high-frequency feature alignment (HFFA) module.

– Through extensive experiments on benchmarks, we demonstrate that our
model achieves notably high performance even when input and Ref images
are less similar and there are ambiguities in the feature alignment.

2 Related Works

2.1 Single Image Super-Resolution

Single image super-resolution (SISR) is a task to recover the high-resolution
(HR) image from the low-resolution (LR) image. Most of the deep learning-
based SISR methods are built on the convolutional neural network (CNN), and
have achieved much better performance than conventional algorithms [3,9,15,
30,37,38]. As a pioneering work, [6] proposed an SRCNN consisting of three
convolutional layers for SISR. Based on SRCNN, there are various efforts to
design very deep networks with residual connections in [18–20,22,29,43]. After
that, to further boost up the performance by exploiting long-range dependencies
within the image, the attention mechanisms have been adopted in [4,5,17,24,
42,46]. However, despite the efforts aforementioned, most existing SISR models
tend to produce smoothed results. To overcome this issue, [16] designed SRGAN
using the adversarial loss to generate a realistic HR image. Later, [32] proposed
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ESRGAN exploiting relativistic discriminator to reduce artifacts in SRGAN and
produce more realistic results.

2.2 Reference-Based Super-Resolution

Unlike SISR, reference-based super-resolution (RefSR) can generate a realistic
and detailed HR image by using an additional HR Ref image. The main issue
of RefSR is to find corresponding patches between the LR and Ref images,
and transfer features of the Ref image. Recently, CNN-based RefSR models
have been suggested to utilize high-frequency information from the Ref image.
[45] proposed CrossNet, which transfers textures in the Ref image by warp-
ing features of the Ref image. However, the performance is degraded due to
inaccurate alignment. Then, SRNTT [44] improved matching performance in
a patch-match-based correlation method. Although the matching accuracy has
been improved, SRNTT has a limitation in delivering detailed textures of the
Ref image because it relies on VGG19 [26] that focuses on semantic features for
the classification. To align the feature more accurately, [36] proposed a learnable
texture transformer while [25] utilized a deformable convolution. [21] introduced
MASA, which is based on the coarse and fine matching module to reduce the
computational cost of finding correspondences between the LR and Ref images.
Furthermore, [34] applied the coarse-to-fine patch-match module, which requires
lower resources. To enhance the feature extractor against rotation and scale
variations, C2-matching was proposed by [14] based on contrastive learning and
knowledge distillation in patch matching steps. Recently, [13] proposed a method
that reduces the reference mis-use and under-use issues by decoupling the tex-
ture transfer module and the SR module. [2] proposed DATSR that improves
performance via deformable attention with multiple reference images. More-
over, [41] introduced RRSR that adopts progressive alignment with multiple
reference images. [40] proposed LMR that introduces an efficient alignment for
multiple references. Most previous studies have focused on improving matching
accuracy and alignment to effectively convey rich visual features from the Ref
image. However, in cases where similar information is lacking in the Ref image,
there is a tendency for performance to degrade. Therefore, this paper not only
utilizes Ref features and the SISR model as in [13], but also proposes a cross-
and self-feature transformer (CSFT) module that comprehensively leverages the
internal information inherent in the input LR image. Furthermore, to address
ambiguity issues during the feature alignment that can arise in textured regions,
a high-frequency feature alignment (HFFA) module is introduced. By seamlessly
integrating CSFT and HFFA, state-of-the-art performance is achieved on the
RefSR benchmarks.

3 Proposed Method

The proposed CSSR network is implemented in the manner of multi-scale. For
the sake of simplicity, we describe the process on a single scale. An overview
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Fig. 2. Overview of CSSR network. Our CSSR consists of high-frequency feature align-
ment (HFFA), cross-and self-feature transformer (CSFT) and residual blocks (RB) with
a multi-scale structure.

of CSSR network is shown in Figure 2. We first extract the features of the
LR and Ref images for matching to obtain a warping map, and then align the
features of the Ref image through the high-frequency feature alignment (HFFA)
module. Next, the cross-and self-feature transformer (CSFT) module aggregates
the features of the Ref and LR images with cross-and self-information to generate
more detailed features. Finally, the decoder generates the final output.

3.1 Feature Matching

To find correspondences between the feature of the Ref image Iref and the
feature of the LR image Ilr, the correlation matrix between features of Iref and
Ilr is typically used in RefSR tasks. In our CSSR, similar to [13,45], we employ
an upsampled image Isisr from using the SISR model [32] instead of Ilr. To be
specific, we train a shared feature extractor similar to a method as introduced
in [14], but utilize SISR-Ref pairs to reduce the geometric transformation gap.
Then, we extract features of Isisr and Iref through this trained shared feature
extractor. After that, we compute the correlation matrix M between two features
of Isisr and Iref . Note that these features are only used to compute M . With
this correlation matrix, we compute a warping map Ti that transforms pixels of
Iref for the position i of the Isisr as

Ti = argmax
j

Mi,j . (1)

In contrast to [13], we use multi-scale flow T for every step. Meanwhile, since
the feature to be used for the final super-resolved output should have rich visual
information of Iref and Isisr rather than information useful for matching, we
utilize multi-scale features Fref extracted from a pretrained VGG19 [26] and an
upsampled features Fsisr obtained by the SISR model. In summary, the esti-
mated T , Fref and Fsisr are passed to HFFA module. We discuss the feature
extractor and each multi-scale feature in the supplementary material.
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Fig. 3. The architecture of HFFA.

3.2 High-Frequency Feature Alignment

In this stage, we align Fref to obtain detailed textures in the Ref image.
The existing flow-based DCN struggles [13,14,34] to efficiently convey high-
frequency information from Iref , thus we propose high-frequency feature align-
ment (HFFA) inspired by [8]. Let Fin be the input feature for the proposed
HFFA module at each scale step. Note that Fin = Fsisr for the first step. For
the rest of the steps, the output of the previous step is the input of the next step.
(See the dot line in Fig. 2). First, we pass Fin to a convolutional layer, and add
the warping map T estimated in (1) to obtain an offset O for stably training the
DCN. We apply the DCN to Fref with O to get the initially aligned features as

Finit = DCN(Fref , O), (2)

where DCN(·) means an operation of the DCN. Then, unlike previous meth-
ods [13,14,34], we compute a high-frequency residual features by subtraction
from Fsisr as

Fhfre = conv(Fsisr − conv(Finit)), (3)

where conv(·) is a convolution operation. The final aligned features are computed
by summing Fhfre and Finit as

Falig = Fhfre + Finit. (4)

Note that Fhfre contains the high-frequency details by subtracting Fsisr, whereas
Finit has overall contents of visual information. Therefore, compared to previous
methods, the proposed HFFA module can boost detailed texture in Iref . The
processes of HFFA module are shown in Figure 3.

3.3 Cross-and Self-Feature Transformer

Although promising results can already be obtained by using only HFFA module,
in order to achieve further performance improvement, a module capable of more
comprehensive aggregation of the information of the Ref image, the restored
image from the SISR model, and the input LR image is required. Therefore, we
newly introduce a novel cross-and self-feature transformer (CSFT) that is com-
posed of two cross-feature transformers (CFTs) and a self-feature transformer
(SFT). The first CFT module transfers rich texture features Fref in the Ref
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Fig. 4. The architecture of CSFT. CSFT module consists of two CFTs that enrich
aligned features by transferring features from both the Ref and the restored images and
a SFT that utilizes the internal information of aligned features for further improvement.

image to the aligned features Falig, while the second CFT conveys restored fea-
tures Fsisr from the pretrained SISR model. In other words, the two CFTs can
aggregate both the complementary information of the Ref image and the restored
image by the SISR model. Note that, to aggregate Fref more easily, we initially
warp Fref into the grid of LR using T from Eq. (1) before passing it to the first
CFT. We denote it as F̄ref . Then, the SFT is applied to further exploit internal
similarity information within an image. Hence, a series of CFTs and the SFT is
expressed as

Fagg = SFT (CFT (CFT (Falig, F̄ref ), Fsisr)), (5)

where Fagg is an aggregated feature by CSFT module while CFT (·) and SFT (·)
are operations of CFT and SFT, respectively. As introduced in [39], query
Q, key K and value V vectors are extracted by Q = WdpLN(f1), K =
WdpLN(f2), V = WdpLN(f3). Here, LN(·), Wdp denote a layer norm [1] and
a series of a point-wise convolution and a depth-wise convolution. f1, f2 and f3
are three input features. In more detail, both CFT and SFT consist of a feature
attention and a feed-forward network, and they are defined as

FA(f1, f2, f3) = Wp(V · Softmax(K · Q)) + f1, (6)
CFT (f1, f2) = FFN(FA(f1, f2, f2)), (7)

SFT (f1) = FFN(FA(f1, f1, f1)), (8)

where Softmax(·), Wp, FFN(·) and FA(·) are a softmax operation, a point-
wise convolution, the feed-forward network and the feature attention, respec-
tively. We select GDFN [39] as the feed-forward network [7] to transfer high-
quality texture information while suppressing less useful features. Our CFTs



426 S. Ko and D. Cho

and SFT are illustrated in Figure 4. In the end, the aggregated feature Fagg

in (5) is passed into the decoder to obtain the next step of the output feature.
The output feature of decoders will be used as Fin for the next scale step. In the
last scale step, the decoder generates the final restored image Irefsr. Note that
decoders are composed of residual blocks.

3.4 Training Strategies

Training SISR model. To obtain a restored image Isisr, we trained a SISR
model from scratch using CUFED5 [44] dataset based on an �1-norm reconstruc-
tion loss. After training, all the parameters of the SISR networks are fixed. For
a fair comparison, we adopt RRDB [32] applied in [13] as a SISR model.
Training CSSR. We follow all hyper-parameter setting and the training strat-
egy following [14]. With fixed a pretrained SISR model and a feature extractor,
our CSSR network is trained by a combination of an �1 norm reconstruction
loss Lrec, a perceptual loss Lper, an adversarial loss Ladv. Therefore, Irefsr is
compared to the GT image Igt using Lrec, Lper and Ladv losses. Additionally, we
adopts reciprocal loss Lrtrr [41] for better reconstruction. For computing Lper,
we utilize features from relu51 layer in VGG19 [26]. Also, we adopt WGAN-
GP [11] for Ladv without the pretrained model. The final loss for training is

L = λrecLrec + λperLper + λadvLadv + λrtrrLrtrr, (9)

where λrec,λper,λadv, λrtrr are weights for each loss term, and set to 1.0, 10−4,
10−6, 0.6 respectively. We select ADAM optimizer with β1 = 0.9 and β2 = 0.999.
The data augmentation contains random rotations, vertical and horizontal flips.

4 Experiments

4.1 Datasets and Evaluation

Our model is trained on CUFED5 [44] dataset containing 11,781 pairs of images,
with each pair consisting of the HR and Ref images of size 160×160. For each
pair, a LR image is generated from a HR image by downsampling. For evalua-
tion, the test sets of CUFED5, SUN80 [28], Urban100 [12], Manga109 [23] and
WRSR [14] datasets are used. Each dataset is composed as follows. In CUFED5,
the testing set consists of 126 pairs of images, each pair consisting of a single
input image with five Ref images that are another level of similarity. For test-
ing, we only select a single Ref image that has the most similar level to the LR
image. Sun80 provides 80 image pairs consisting of 20 Ref images corresponding
to a single input image. WR-SR has 80 pairs of images, each pair containing a
single image with a single Ref image. Urban100 and Manga109 only provide 100
and 109 images without Ref images. Thus, we randomly select HR images in the
dataset as Ref images as conducted in other previous work [2]. The results of
the RefSR methods are evaluated as PSNR and SSIM [33] with Y channel on
YCbCr space. All experiments were performed with the scaling factor set to 4.
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Table 1. Quantitative comparisons. We compare with SISR and RefSR models in terms
of PSNR and SSIM. Note that CSSR utilizes only a single Ref image on CUFED5.
The suffix ‘-rec’ means reconstruction loss only version of RefSR models and without
the suffix means full loss version. LMR* does not provide results from training with
CUFED5, therefore we train LMR with CUFED5 for a fair comparison. The best results
are marked in bold.

Method CUFED5 Sun80 Urban100 Manga109 WR-SR

PSNRSSIM PSNRSSIM PSNRSSIM PSNRSSIM PSNRSSIM

SISR SRCNN [6] 25.33 0.745 28.26 0.781 24.41 0.738 27.12 0.850 27.27 0.767

EDSR [19] 25.93 0.777 28.52 0.792 25.51 0.783 28.93 0.891 28.07 0.793

RCAN [43] 26.06 0.769 29.86 0.810 25.42 0.768 29.38 0.895 28.25 0.799

SRGAN [16] 24.40 0.702 26.76 0.725 24.07 0.729 25.12 0.802 26.21 0.728

ESRGAN [32] 21.90 0.633 24.18 0.651 20.91 0.620 23.53 0.797 26.07 0.726

SwinIR [17] 26.62 0.790 30.11 0.817 26.26 0.797 30.05 0.910 28.06 0.797

SRFormer [46] 26.66 0.790 30.14 0.817 26.53 0.802 30.25 0.911 28.07 0.796

RefSRSRNTT [44] 25.61 0.764 27.59 0.756 25.09 0.774 27.54 0.862 26.53 0.745

SRNTT-rec [44] 26.24 0.784 28.54 0.793 25.50 0.783 28.95 0.885 27.59 0.780

TTSR [36] 25.53 0.765 28.59 0.774 24.62 0.747 28.70 0.886 26.83 0.762

TTSR-rec [36] 27.09 0.804 30.02 0.814 25.87 0.784 30.09 0.907 27.97 0.792

DCSR [31] 25.39 0.733 - - - - - - - -

DCSR-rec [31] 27.30 0.807 - - - - - - - -

MASA [21] 24.92 0.729 27.12 0.708 23.78 0.712 27.34 0.849 - -

MASA-rec [21] 27.54 0.814 30.15 0.815 26.09 0.786 30.28 0.909 - -

C2-Matching [14] 27.16 0.805 29.75 0.799 25.52 0.764 29.73 0.893 27.80 0.780

C2-Matching-rec [14] 28.24 0.841 30.18 0.817 26.03 0.785 30.47 0.911 28.32 0.801

LMR* [40] 27.41 0.814 - - - - - - 27.81 0.781

LMR-rec* [40] 28.49 0.848 - - - - - - 28.27 0.801

AMSA [34] 27.31 0.803 29.83 0.803 25.60 0.770 29.79 0.896 - -

AMSA-rec [34] 28.50 0.849 30.29 0.819 26.18 0.789 30.57 0.914 - -

TDF [13] 27.37 0.816 28.85 0.768 25.80 0.776 30.12 0.889 27.40 0.769

TDF-rec [13] 28.64 0.850 30.31 0.820 26.71 0.807 31.23 0.917 28.52 0.807

DATSR [2] 27.95 0.835 29.77 0.800 25.92 0.775 29.75 0.893 27.87 0.787

DATSR-rec [2] 28.72 0.856 30.20 0.818 26.52 0.798 30.49 0.912 28.34 0.805

CSSR 28.30 0.840 29.95 0.806 26.02 0.782 30.01 0.897 28.29 0.797

CSSR-rec 29.03 0.858 30.36 0.821 26.87 0.807 31.37 0.918 28.55 0.807

4.2 Evaluations

Quantitative evaluations. We compare the proposed CSSR with both exist-
ing SISR and RefSR methods. In particular, we adopt SRCNN [6], EDSR [19],
RCAN [43], SRGAN [6], ESRGAN [32], SwinIR [17], SRFormer [46] as
SISR methods, and SRNTT [44], TTSR [36], DCSR [31], MASA [21], C2-
matching [14], AMSA [34], DATSR [2], TDF [13] and LMR [40] as RefSR meth-
ods.

As reported in Table 1, CSSR-rec shows a better performance than the recon-
struction loss only version of other methods. Especially, CSSR-rec gains over
+0.3dB than other RefSR methods, on standard dataset CUFED5 in RefSR.
Our CSSR also performs relatively better compared to other RefSR methods
with full losses in terms of PSNR and SSIM. In particular, CSSR with full losses
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Table 2. PSNR comparisons based on similarity level between LR and Ref images.
Note that Ref images most similar to LR images are denoted by L1 and the least similar
Ref images are denoted by L4. The best results are marked in bold.

Method L1 L2 L3 L4 Average

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRNTT-rec [44] 26.15/0.781 26.04/0.776 25.98/0.775 25.95/0.774 26.03/0.777

TTSR-rec [36] 26.99/0.800 26.74/0.791 26.64/0.788 26.58/0.787 26.74/0.792

DCSR-rec [31] 27.30/0.807 26.92/0.795 26.80/0.791 26.70/0.788 26.93/0.795

C2-Matching-rec [14] 28.24/0.841 27.39/0.813 27.17/0.806 26.94/0.799 27.44/0.815

AMSA-rec [34] 28.58/0.849 27.52/0.816 27.25/0.809 27.04/0.803 27.60/0.819

DATSR-rec [2] 28.50/0.850 27.47/0.820 27.22/0.811 26.96/0.803 27.54/0.821

TDF-rec [13] 28.64/0.850 27.77/0.821 27.46/0.815 27.23/0.807 27.75/0.823

CSSR-rec 29.03/0.858 27.98/0.828 27.71/0.820 27.45/0.811 28.04/0.829

improves performance significantly on the CUFED5. Quantitative comparisons
indicate that CSSR is generally superior to other methods.
Qualitative evaluations. We also provide visual results for the reconstruction
loss only and full losses versions in Figure 5. It is confirmed that our method
naturally transfers the details of the Ref image to the input LR image. In the left
bottom of reconstruction loss version Fig. 5, CSSR delivers a similar clothing
texture from the Ref, and produces a more detailed results image compared
to other RefSR models. For another result in the right bottom of the full losses
version, CSSR produces more accurate results exploiting letters in the Ref image.

4.3 Ablation study

Effects of similarity in reference images. We execute experiments to com-
pare the performance according to the similarity level between LR and Ref
images. We utilize CUFED5 dataset because it contains multiple Ref images
with different similarity levels for a single LR image. In Table 2, our CSSR out-
performs all RefSR methods even with different similarity levels. These results
verify that CSSR is more robust even when Ref and LR images are less similar.
Effects of each module. In order to demonstrate the effectiveness of the pro-
posed CSFT and HFFA modules, we conduct ablation studies by experiments
by removing each module. As a baseline, we adopt a method that takes only
warped Ref features using T obtained by (1) to transfer details of the Ref image.
The performance of the baseline is reported in Table 3 (A), and compared with
those of methods with the proposed HFFA and CSFT modules. As expected,
our HFFA and CSFT modules increase the performance of the baseline RefSR
model in terms of PSNR and SSIM. In addition, we qualitatively compare the
results of variant versions of the proposed CSSR in Figure 6. We conduct those
ablation studies on the CUFED5 dataset.
Cross-and self-feature transformer. As reported in Tab. 3 (D), the result
with CSFT module has PSNR performance improvement of over +0.3 dB com-
pared to (C). In Tab. 3 (B) shows that even in the absence of HFFA, the per-
formance of the baseline with CSFT improves. Furthermore, we perform more
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Fig. 5. Qualitative comparisons of RefSR models. The suffix ‘-rec’ means reconstruc-
tion loss only version and without the suffix means full loss version.

in-depth experiments to check the effect of each submodule because the pro-
posed CSFT module consists of the CFT and the SFT. For these experiments,
we design several variations of CSFT as follows. On the top of the baseline model
with HFFA, we gradually attach the CFT and the SFT to make variant versions.
Since our CSFT of two CFTs, we name the first CFT as CFT1 and the second
CFT as CFT2. As reported in Figure 7a, the performance increases as each mod-
ule is added. The bright bar in Fig. 7a represents the results obtained using the
entire CUFED5 dataset, while the dark bar corresponds to results using a subset
of CUFED5 that includes complicated textures. A detailed description of this
subset is provided in the supplementary material. Using the selected subset, we
can further verify the effectiveness of our submodules. In Fig. 7b top, our model
with the CFT1 produces detailed textures using Ref features. As can be seen
in Fig. 7b middle, the model using all CFTs reconstructs more details due to the
SISR features than the model with only the CFT1. Moreover, the effectiveness of
the SFT module is validated the on Urban100 dataset that contains numerous
patch recurrences. As shown in Fig. 7b bottom, CSSR with the SFT is more
robust to repeating patterns than CSSR consisting of only two CFT modules. In
Table 4, we explore the performance of the SFT and the CFT based on the sim-
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ilarity between Ref and LR images. The CFT1 improves performance because
it utilizes rich texture from the Ref image in the case of L1. On the other hand,
the CFT2 utilizes SISR features, resulting in a constant performance increase
regardless of the similarity of the Ref image. Finally, the SFT performs better
as it leverages internal features. These results illustrate that the CFT exploits
features from both Ref images and restored images from the SISR model for
aggregation, while the SFT leverages internal information by self-attention.

Table 3. Ablation study on each module. (A) The base. (B) With CSFT. (C) With
HFFA. (D) Ours.

ID HFFACSFTPSNR/SSIM

(A) 28.53/0.844
(B) � 28.66/0.848
(C) � 28.72/0.849
(D)� � 29.03/0.858

Fig. 6. Visualization of the effects of each module. The baseline with all modules shows
the most detailed textures.

Table 4. Further analysis of CSFT submodules based on similarity level.

L1 L2 L3 L4
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

w/o CSFT28.71/0.852 27.80/0.823 27.57/0.816 27.30/0.806
+CFT1 28.91/0.854 27.86/0.823 27.60/0.816 27.33/0.807
+CFT2 28.95/0.856 27.89/0.826 27.64/0.818 27.37/0.809
+SFT 29.03/0.85727.98/0.82827.71/0.82027.45/0.811

High-frequency feature alignment module. In Tab. 3 (C), it is confirmed
that adding HFFA improves the PSNR over the baseline performance. Also, as
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Fig. 7. (a)Quantitative evaluation of CSFT. Submodules of CSFT are progressively
attached to the baseline with HFFA module. Light color bar: entire CUFED5. Dark
color bar: the subset of CUFED5. (b) Qualitative evaluation of CSFT. Effectiveness of
the CFT1 (top). Effectiveness of the CFT1 and CFT2 (middle). Effectiveness of the
SFT (bottom). (c) Qualitative evaluation of HFFA. The bottom results indicate the
gradient images. Zoom in for the best quality.

Table 5. Ablation study on HFFA module. We replace HFFA module with the flow-
based DCN [13] and EBFA [8], respectively.

EBFA DCN HFFA

PSNR/SSIM28.93/0.85628.86/0.85329.03/0.858
GMSD↓ 0.1212 0.1221 0.1206

shown in Fig. 6, the high-frequency details are well restored with the HFFA than
the baseline method. We perform more empirical studies to confirm the effec-
tiveness of HFFA module. To verify that HFFA boosts high-frequency texture in
the Ref image, we select gradient magnitude similarity deviation (GMSD) [35] as
the gradient-based metric. We compare HFFA module to the existing flow-based
DCN [2,13,14] and EBFA [8], which are recently adopted by many SR tasks. As
reported in Table 5, CSSR with HFFA modules achieves superior performance
than the other alignment modules. In Fig. 7c, the output with the gradient result
of HFFA module contain more detailed texture.

5 Conclusion

In this paper, we have proposed a novel CSSR network for the RefSR task, which
is robust even in cases where matching between input LR and Ref images is dif-
ficult. The cross-and self-feature transformer (CSFT) effectively aggregates fea-
tures from both Ref and restored images as well as exploits internal information
from the input LR image. In addition, we introduced a high-frequency feature
alignment (HFFA) module to deliver the detailed residual features. The afore-
mentioned three modules are seamlessly combined at multiple scales. Through
various ablation studies, we verified the effectiveness of each proposed module
in CSSR both quantitatively and qualitatively.
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Abstract. Given the increasing emphasis on multimodal data analytics, depth
maps have been employed for Salient Object Detection (SOD) task. RGB-D
SOD task utilizes the spatial structure information in the depth maps to improve
detection accuracy. In this paper, we propose a Transformer-based Depth Opti-
mization Network (DONet) for RGB-D SOD task. A depth feature optimization
and integration module (DOIM) is first designed to maximize the auxiliary effect
of depth information. In DOIM, high-quality depth information is retained and
low-quality information is discarded conversely. Then aiming to comprehensive
detail complement, the context supplement modules (CSMs) are configured to
absorb features of adjacent layers to refine the features adequately. In addition,
for global information exploration, we deploy a location perception guider (LPG)
to guide our model to explore the location of salient objects accurately. Based on
the wide application of Transformer, the Pyramid Vision Transformer with less
computational requirement and equal efficiency is chosen to balance performance
and computational cost. Experiments on five widely-used datasets show that the
proposed network achieves significant advantage compared to 13 state-of-the-art
methods.

Keywords: Image processing · RGB-D salient object detection · Deep
learning · Depth feature optimization · Transformer

1 Introduction

Salient object detection (SOD) is a crucial computer vision task aimed to identify and
highlight the most prominent objects within an image [13]. Traditional methods for
SOD typically relied on factors such as image features, color, and texture. However,
relying solely on RGB information is not enough to resist the interference of some
complex factors such as illumination changes and shadows. This limitation can be com-
pensated by depth maps that provide the distance of the object to the lens. With the
development of RGB-D sensor technology, depth maps can be easily acquired from
devices such as stereo cameras and smart phones, which promoted the wide applica-
tion of RGB-D data in computer vision. Concurrently, within the prevailing trend of
multimodal data analysis, an increasing number of researchers have been dedicated to
RGB-D SOD task, which leverages the spatial structural information of depth maps to
assist model in performing detection task.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15321, pp. 435–450, 2025.
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The advent of deep learning technology [11] has led to significant advancements in
salient object detection. Most of the prior RGB-D SOD methods based on convolution
neural networks (CNNs) have achieved superior performance. However, CNNs have
relatively weaker capture of global relationships within the overall scene. In contrast,
Transformer [25] is adept at handling positional information within sequences, which
is crucial for a nuanced understanding of object context in salient object detection. In
the past two years, Transformer has been gradually applied to RGB-D SOD task. Most
Transformer-based models show significant advantages, which motivates us to adopt
Transformer as the backbone network.

In RGB-D SOD task, it is necessary to focus on the fusion of depth maps and RGB
images. However, most of the previous works ignored the impact of different qualities
of depth information. The quality level of depth information is uneven, high-quality
depth information should be retained while low-quality depth information should be
discarded. Based on this, we design a depth feature optimization and integration mod-
ule (DOIM) to further optimize and fuse depth and RGB information. Specifically, we
first enhance the preliminary extracted depth features, then adopt the attention mecha-
nisms to filter them before merging with RGB features, so as to maximize the auxiliary
effect of the depth information. Detailed information contains crucial content. Whereas,
after the depth feature optimization, many fine-grained details are inevitably lost. Three
context supplement modules (CSMs) are configured in the proposed network to enable
detailed information exploration. The overall strategy of CSM is absorbing the features
of previous layers and subsequent layers (for the first layer, only the subsequent layer is
introduced) to supplement the details of the current layer. Furthermore, we improve the
effect of detail complement by the combination of spatial attention and channel atten-
tion mechanisms. In SOD task, accurate positioning plays a vital role in detecting salient
objects. Generally speaking, high-level features contain rich global information, which
contributes to identifying the locations of salient objects. Based on this, a location per-
ception guider (LPG) is designed on the features of the last two layers. Different from
previous works, we leverage the self-attention mechanism to model the global relation-
ships in high-level features. To guide the proposed network to locate salient objects
more accurately and adequately, the features with location-aware information are sent
vertically to the CSM and horizontally to the fusion block.

Our main contributions can be summarized as follows:

– We propose a Transformer-based depth optimization network (DONet) for RGB-D
SOD task, which focuses on the optimization of depth information, detail supple-
ment of features and perception of salient objects’ location.

– To maximize the auxiliary effect of depth information, we design a depth feature
optimization and integration module (DOIM). The module enhances and filters
depth information, then aggregates it with the RGB information.

– For comprehensive detail complement, context supplement modules (CSMs) are
configured to absorb features of adjacent layers, expanding the coverage of inter-
actions to refine the features adequately.

– We deploy a location perception guider (LPG) with self-attention mechanism for
global information exploration of high-level features in order to accurately locate
salient objects.
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2 Related Works

RGB-D salient object detection task utilizes the combination of RGB image and depth
map to identify salient object. RGB images contain appearance and texture information,
while depth maps provide spatial structural information. The fusion of RGB and depth
features has been a crucial issue in RGB-D SOD. According to the order of fusion
operations in the whole decoding process, some RGB-D SOD methods employed early
fusion [4,38], while others utilized dual-branch networks for intermediate fusion [1,15]
and late fusion [6,21]. To address the problem of low-quality depth maps, D3Net [9]
employed a gating mechanism to filter out inferior depth maps, EF-Net [3] enhanced
depth maps using RGB hint maps. Considering the importance of both enhancement
and filtering of depth features, in this paper, we adopt the strategy of enhancing first
and filtering subsequently to maximize the auxiliary effect of depth information.

Transformer has achieved significant success in natural language processing (NLP)
and subsequently been widely applied in computer vision tasks. An increasing number
of researchers have adopted Transformer in RGB-D SOD task. Liu et al. [20] inserted
a triplet transformer module into the CNNs-based backbone network to enhance high-
level features. Subsequently, Cong et al. [8] reversed the primary and secondary rela-
tionship of the two architectures, using CNNs-based model as auxiliary component of
Swin Transformer-based architecture to optimize global context and local details. Liu
et al. [19] proposed to use a cross-modal RGB-D and RGB-T SOD fusion network
based on Swin Transformer. The model proposed by Wang et al. [28] was also based on
Swin Transformer but with additional edge guidance. In prior RGB-D SOD methods
based on Transformer, Swin Transformer [18] was predominantly utilized. However,
the substantial computational demand of Swin Transformer often results in prolonged
training duration. Pyramid Vision Transformer (PVT) [30], another Transformer com-
monly used in computer vision, disposes features at different scales through a pyramid
structure to better capture the information. Compared with Swin Transformer, PVT has
a small computational demand but equal efficiency. Therefore, considering the balance
between performance and computational cost, we chose PVT as the backbone network.

3 Methodology

3.1 Network Overview

The overall framework of the proposed DONet is shown in Figure 1. According to
encoder-decoder strategy, DONet consists of backbone network, depth feature opti-
mization and integration module (DOIM), context supplement module (CSM), location
perception guider (LPG) and fusion block.

To fit the configuration of the backbone network, both the RGB and depth images
are resized to 224×224, then fed into the shared Pyramid Vision Transformer for feature
extraction to get feature RGBi and Di of the ith layer, i ∈ {1, 2, 3, 4}. The DOIM allows
further feature extraction and selecting high-quality depth information to achieve max-
imum auxiliary effect. The CSM introduces the information of neighboring layers to
optimize features, while LPG strengthens the learning of high-level features to capture
global information so as to locate salient objects accurately. After fusion and linear
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layer, four refined maps are obtained, marked as Outi, i ∈ {1, 2, 3, 4}, which are super-
vised by the ground truth maps. The Out1 is picked to be the final prediction map in the
inference stage.

Fig. 1. The overall framework of the proposed DONet. The input images are resized to 224×224.
DONet consists of backbone network (PVT), depth feature optimization and integration module
(DOIM), context supplement module (CSM), location perception guider (LPG) and fusion block.
We take the Out1 as the final prediction map.

3.2 Depth Feature Optimization and Integration Module

After feature extraction through backbone network, we need pay more attention to
achieve efficient interaction between multi-level features of RGB and depth modality
in the encoding stage. Both the RGB and depth features extracted from the backbone
network are pretty coarse, so direct fusion will lead to inefficient decoding after graft-
ing. The grafting efficiency can be significantly improved by filtering out low-quality
depth features. In view of this, we propose a depth feature optimization and integration
module (DOIM). In DOIM, dual flow information is enhanced through asymmetric
convolutions stacked in parallel, while depth information is refined by attention mech-
anisms.

As shown in Figure 2, our proposed DOIM contains multi-scale features enhance-
ment (MSE) and depth optimization. For MSE, we first utilize a 1× 1 convolution layer
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on the input feature Fi of the ith layer to obtain the Fd
i with 64 channels. Then the MSE

is equipped with four parallel convolution groups, each of which contains connected
1 × 3 and 3 × 1 asymmetric convolutions. The output from each group is passed to the
subsequent group for element-wise addition. We define the output of each group as Mk

i ,
k ∈ {1, 2, 3, 4}, which is formulized as:

Mk
i =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

CBR3×1

(

CBR1×3

(

Fd
i

))

k = 1

CBR3×1

(

CBR1×3

(

Fd
i + Mk−1

i

))

k = 2, 3, 4
(1)

where CBR3×1(·) and CBR1×3(·) indicate 3 × 1 and 1 × 3 convolution followed by batch
normalization and relu layer, respectively. After that, we concatenate the outputs of four
groups followed by a 3 × 3 convolution and make a residual addition with the Fd

i . The
output of each MSE is defined as MSEi, which is formulized as:

MSEi = CBR3×3

(

Cat
(

M1
i ,M

2
i ,M

3
i ,M

4
i

))

+ Fd
i , (2)

where CBR3×3(·) indicates 3 × 3 convolution followed by batch normalization and relu
layer,Cat(·) indicates channel-wise concatenation. For the input RGB feature RGBi and
depth feature Di, we get the enhanced feature MSERGB

i and MSED
i , respectively. Before

the aggregation, depth features are filtered. Specifically, for MSED
i , we use channel

attention to obtain the corresponding attention map MSECA
i , followed by spatial atten-

tion to obtain MSED−attention
i , which is formulized as:

MSECA
i = MSED

i ∗CA
(

MSED
i

)

, (3)

MSED−attention
i = MSECA

i ∗ S A
(

MSECA
i

)

, (4)

where ∗ denotes element-wise multiplication, CA(·) and S A(·) denote channel attention
and spatial attention, respectively. At last, we aggregate the depth and RGB features,
which is formulated as:

DOIMi = MSERGB
i + MSED−attention

i , (5)

where DOIMi is the output of the whole depth feature optimization and integration
module of the ith layer. The aggregated features will be fed into the subsequent decoding
modules CSM and LPG.

3.3 Context Supplement Modules

The proposed context supplement modules (CSMs) connects DOIM and LPG, with the
purpose of refining the features of the previous stage and absorbing the location-aware
information. After the depth information decoding and aggregation in the previous
stage, certain detailed information are unavoidably lost. In order to comprehensively
supplement detailed information, we configures three CSMs, namely CSM1, CSM2,
and CSM3. As illustrated in Figure 1, each CSM assimilates features from the cur-
rent layer and its adjacent layers. This cross-linking mechanism expands the coverage
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Fig. 2. The structure of the proposed depth feature optimization and integration module (DOIM).

of feature interaction, establishing a close relationship between features at different lay-
ers. Employing the strategy analogous to DOIM, we incorporates attention mechanisms,
which allows self-adaptive selection of more valuable content from features of adjacent
layers. Notably, CSM3 further integrates location-aware information from the LPG by
substituting the fourth-layer feature with the output of LPG. We define the processing
of CSM as F(·), which is formulated as follows:

CSMi =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F (DOIM1,DOIM2) i = 1

F (DOIM1,DOIM2,DOIM3) i = 2

F (DOIM2,DOIM3, LPG3) i = 3

(6)

As shown in Figure 3 , the features of previous and subsequent layers are intro-
duced in addition to current layer for CSM2 and CSM3, while only the subsequent
layer is introduced for CSM1. We extract the previous attention map Pmi, subsequent
attention map Smi and current enhancement map Cmi by the combined operations of
subtle channel attention (CA) , spatial attention (SA) and convolutions, which can be
formulized as:

Pmi = Conv3×3 (DOIMi−1) ∗ S A (Conv3×3 (DOIMi−1)) , i = 2, 3 (7)

Smi =

⎧
⎪⎨
⎪⎩

Conv3×3 (DOIMi+1) ∗CA (Conv3×3 (DOIMi+1)) i = 1, 2

Conv3×3 (LPG3) ∗CA (Conv3×3 (LPG3)) i = 3
(8)

Cmi = Conv3×3 (DOIMi) , i = 1, 2, 3 (9)
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where ∗ denotes element-wise multiplication, Conv3×3(·) denotes 3 × 3 convolution.
After concatenating Pmi, Smi and Cmi, we obtain map Dmi by channel adjustment and
sent it to convolution layer. At last, the final output of CSM is generated by residual
addition with DOIMi and convolution layer.

Dmi =

⎧
⎪⎨
⎪⎩

Conv1×1 (Cat (Smi,Cmi)) , i = 1

Conv1×1 (Cat (Pmi, Smi,Cmi)) , i = 2, 3
(10)

CSMi = CBR3×3 (CBR3×3 (Dmi) + DOIMi) , i = 1, 2, 3 (11)

Fig. 3. The structure of proposed context supplement modules (CSMs).

3.4 Location Perception Guider

The mining of global information has always been a key issue in SOD task. Unlike some
existing SOD methods applying semantic segmentation modules such as ASPP [2] or
PSP modules [37] directly, we design a self-attention mechanism based location per-
ception guider (LPG). Considering that there is rich global information in the high-level
features, we choose the last two layers as the benchmark for object positioning. Details
of LPG are illustrated in Figure 4. First, we resize DOIM4 to align it with DOIM3, then
flatten the DOIM3 ∈ vC×H×W to DOIM f

3 ∈ v1×C×HW . Perform the same operations on

DOIM4 as described above, then we transpose it to get DOIM f t
4 ∈ v1×HW×C . A matrix

multiplication is performed on the linearized DOIM f t
4 and DOIM f

3 to obtain Y , which
can be formulized as:

Y = L
(

DOIM f t
4

)

× DOIM f
3 , (12)

where × indicates matrix multiplication, L(·) indicates the linear projection. We perform
a softmax operation on Y , followed by matrix multiplication with DOIM f

3 and DOIM f
4 ,

respectively. Then we reshape them back to size of vC×H×W to obtain S 3 and S 4 , which
can be formulized as:

S 3 = reshape
(

DOIM f
3 × so f tmax (Y)

)

, (13)
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S 4 = reshape
(

DOIM f
4 × so f tmax

(

Yt
))

, (14)

where Yt indicates the the transposed Y . On the basis of S 3 and S 4, the channel attention
mechanism is adopted, which allows our model to explore the attention weight from
the channel dimension and adjust the features adaptively. We multiply S 3 by itself after
sending it into the channel attention component, and then make addition supplement
with DOIM3 before feeding the convolutional block. The same operation is applied to
S 4. At last, we input them into the convolutional layer with double residual connections
to get the output of LPG. The process can be expressed as:

C3 = CBR23×3 (CA (S 3) ∗ S 3 + DOIM3) , (15)

LPG3 = CBR23×3 (CBR23×3 (C3 + DOIM3) +C3) , (16)

C4 = CBR23×3 (CA (S 4) ∗ S 4 + reshape (DOIM4)) , (17)

LPG4 = CBR23×3 (CBR23×3 (C4 + reshape(DOIM4)) +C4) , (18)

whereCBR23×3(·) indicates 2 stacked 3×3 convolution followed by batch normalization
and relu layer.

Fig. 4. Details of the proposed location perception guider (LPG).

3.5 Loss Function

To improve the accuracy of location perception guider, we apply additional supervision
to the boundaries. Referring to the work [35], the boundary DICE (BD) loss is employed
in our training process. The overall strategy of BD loss is to compute the DICE loss
[16] value on the distensible boundaries. For ground truth maps and prediction maps,
the corresponding thin boundary maps are obtained by dilation and erosion operations,
then max-pooling is performed to enlarge the boundary region. After that, the DICE loss
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is calculated on this thick boundary. Lbd denotes the BD loss, which can be formulated
as:

Lbd
(

Pb,Gb
)

= 1 −
1 +
∑H,W

i=1, j=1 2 × Pb
i j ×Gb

i j

1 +
∑H,W

i=1, j=1 P
b
i j +G

b
i j

, (19)

Pb
i j = max

(

Pb,thin
Ai j

)

, (20)

Gb
i j = max

(

Gb,thin
Ai j

)

, (21)

where max(·) means the max-pooling operation, Gb,thin
Ai j

and Pb,thin
Ai j

represent the thin
boundary map of the ground truth mapG and the prediction map P, respectively, Ai j rep-
resents the pooling area that surrounds the pixel (i, j). In addition, we also apply pixel-
level weighted BCE loss [31] to pay more attention to hard pixels, and map-level IOU
loss [33] to focus on the global structure of the map. Our proposed network includes
four supervised outputs in total–the final prediction map (Out1) and three refined maps
(Out2, Out3 and Out4). We combine the three kinds of loss functions mentioned above
as the total loss for the four supervisions, which can be formulated as:

Li = Lwbce (Outi,G) + LIOU (Outi,G) + Lbd
(

Outbi ,G
b
)

i ∈ {1, 2, 3, 4}. (22)

According to different levels of refinement, we assign decreasing attention to the four
supervisions. The sum of losses over the whole training process can be expressed as:

LTotal =
4∑

i=1

1
2i−1

Li. (23)

4 Experiment

4.1 Datasets and Evaluation Metrics

We evaluate the proposed network on 5 public RGB-D SOD datasets. NLPR [23] has
1,000 images with single or multiple salient objects. NJU2K [14] includes 2,003 stereo
image pairs and ground-truth maps in complex scenes. STERE [22] incorporates 1,000
pairs of binocular images from the Internet. SIP [9] contains 1,000 high-resolution
images of multiple salient persons. SSD [40] holds 80 images from stereo movies with
various scenes. We use the same training dataset as in [9] and [5], which consists of
1,485 samples from the NJU2K dataset and 700 samples from the NLPR dataset. The
training dataset is augmented by random cropping, flipping and rotation operations to
prevent the phenomenon of overfitting.

The performance of our model and other methods are evaluated through five
widely recognized metrics including S-measure (Sm) [29], mean F-measure (Fm) [29],
weighted F-measure (Wgt-F) [29], E-measure (Em) [29] and mean absolute error
(MAE) [29]. To ensure a fair comparison, evaluation is performed using saliency maps
provided by the authors or acquired by testing with the official codes.
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4.2 Implementation Details

The proposed model is deployed in the Pytorch framework and trained on an Nvidia
RTX 3080Ti GPU. The backbone PVT is initialized with parameters pretrained by Ima-
geNet. We employ the Adam optimizer to train our model with a batch size of 10 and
an initial learning rate 1e-4. The training converges within 68 epochs.

4.3 Compared with the State-of-the-art Methods

We conduct a comparison with 13 state-of-the-art models, including BBSNet [34],
DSA2F [24], TriTransNet [20], VST [17], DCMF [26], JL-DCF [10], DCFNet [12],
C2DFNet [36], MVSalNet [39], CIRNet [7], PICRNet [8], HIDANet [32], and AMINet
[27]. Among them, VST is a transformer-based model, and TriTransNet and PICRNet
are models with Transformer-assisted CNNs and CNNs-assisted Transformer, respec-
tively.

1. Quantitative evaluation: The quantitative results of the proposed DONet on five
commonly used datasets are presented in table 1. Clearly, our model achieves a
significant advantage, as evidenced by the fact that almost all the values of our model
are either optimal or suboptimal. Specifically, on the NLPR and NJU2K datasets, our
DONet achieves optimality on all five metrics. Compared with the 2023 PICRNet
[8], our model improves the MAE of these three datasets by 13.8%, 15.8% and 6.5%,
respectively.

2. Qualitative evaluation: Figure 5 presents some examples of visual comparisons
with other methods in several challenging scenarios. It can be observed that for
objects with similar colors in edge and background (i.e., b and e), the location is
annotated more comprehensively in our prediction maps. On irregular and densely
curved objects (i.e., a, c, d and f), our prediction exhibit higher boundary precision
and more detailed descriptions. Even in cases where the quality of the depth map is
poor (e.g., d and e), the proposed model accurately reconstructs the primary content
and boundary details of the salient object.

4.4 Ablation Study

We conduct ablation studies on NJU2K and NLPR test datasets to verify the contribu-
tion of each proposed module or component in the proposed DONet.

Effectiveness of General Structure We verify the effectiveness of DOIM, CSMs, and
LPG in Table 2. ID 0: DONet with full structure; ID 1: DOIM replaced by element-wise
addition; ID 2 and ID 3: CSMs and LPG removal, respectively.

Compared with ID 0, the deteriorating data in ID 1 shows the better performance of
DOIM, which verifies that the optimization of depth features before the aggregation of
two-stream features is necessary for subsequent decoding. The strategy of introducing
the features of adjacent layers is commonly used in RGB SOD task. Based on this,
we design CSMs and apply it to RGB-D SOD task. Observably, the improvement in
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Fig. 5. Visual comparisons with other methods.

ID 2 validates that our designed CSMs is just as effective in the RGB-D SOD task.
Compared to ID 0, the values of Fm in ID 3 decreases by 0.009 and 0.007 on the two
datasets, respectively. In other words, without the help of LPG, the performance of the
proposed model deteriorates, which proves that LPG has the ability to guide the model
to explore location of salient objects.

Table 2. Effectiveness analysis of general structure.

Method ID NJU2K NLPR

MAE↓Fm↑ Em↑ Sm↑ Wgt-F↑MAE↓Fm↑ Em↑ Sm↑ Wgt-F↑
DONet 0 0.025 0.933 0.961 0.928 0.92 0.016 0.929 0.97 0.937 0.918

w/o DOIM 1 0.028 0.92 0.955 0.92 0.907 0.017 0.923 0.969 0.933 0.912

w/o CSMs 2 0.028 0.927 0.955 0.922 0.911 0.018 0.921 0.967 0.931 0.908

w/o LPG 3 0.027 0.924 0.956 0.924 0.911 0.017 0.922 0.969 0.935 0.913

Effectiveness of Internal Structures of the Proposed Modules

1. Effectiveness of MSE and attention mechanisms in DOIM: The MSE and depth
feature optimization are the key components of the proposed DOIM, where the latter
is implemented by channel attention and spatial attention. As shown in Table 3,
ID 4 and ID 5 represents removing the MSE and the tow attention mechanisms,
respectively. It is found that either removing MSE or attention mechanism leads to a
decrease in the performance of the proposed model, which proves that both feature
enhancement and filtering are indispensable in our DOIM.

2. Effectiveness of adjacent layer features absorption in CSMs: In this part, we
erase the adjacent layer branches in CSMs and only keep current layer branches
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(Table 3, ID 6). The experimental data illustrates that the refinement based solely on
the current layer features does not perform as effectively as the additional absorption
of features of adjacent layers.

3. Effectiveness of self-attention mechanism in LPG: To verify the effectiveness of
self-attention in LPG, we remove it in experiment 7, that is, ignoring the transpose,
multiplication and channel attention operations. It is observed that the lack of self-
attention weakens the location exploration ability of the model, which validates that
the proposed self-attention mechanism motivates LPG to explore the location infor-
mation of salient objects.

Table 3. Effectiveness of internal structures of the proposed modules.

Method ID NJU2K NLPR

MAE↓Fm↑ Em↑ Sm↑ Wgt-F↑MAE↓Fm↑ Em↑ Sm↑ Wgt-F↑
DONet 0 0.025 0.933 0.961 0.928 0.92 0.016 0.929 0.97 0.937 0.918

w/o MSE 4 0.029 0.925 0.956 0.922 0.91 0.018 0.923 0.968 0.934 0.912

w/o CA,SA 5 0.028 0.927 0.954 0.925 0.913 0.019 0.918 0.964 0.932 0.907

w/current 6 0.027 0.93 0.959 0.926 0.916 0.017 0.924 0.968 0.935 0.912

w/o self-att 7 0.028 0.923 0.955 0.922 0.908 0.019 0.918 0.964 0.929 0.904

5 Conclusions

Following the research trend of multimodal data analysis, we propose a Transformer-
based depth optimization network (DONet) for RGB-D SOD task. To maximize the
auxiliary effect of depth information, we design a depth feature optimization and
integration module (DOIM) retaining high-quality while discarding low-quality depth
information. Meanwhile, the proposed context supplement modules (CSMs) refine fea-
tures by absorbing the features of adjacent layers. For global information exploration,
on the one hand, our location perception guider (LPG) utilizes self-attention mechanism
to capture the location of salient objects. On the other hand, we employ Transformer
as the backbone network, taking advantage of Transformers’ ability to comprehensively
dig out global information. The proposed DONet achieves significant advantage against
13 state-of-the-art methods on five benchmark datasets.

Acknowledgements. This work is supported in part by grants from the National Natural Science
Foundation of China (No. 61806126, 61973307, 61903256, 62062040, 62262030), the Natural
Science Foundation of Shanghai (21ZR1462600), the Shanghai Science and Technology Innova-
tion Action Plan (No. 22S31903900), Science and Technology Development Foundation of the
Shanghai Institute of Technology (No. ZQ2023-15), the Outstanding Youth Project of Jiangxi
Natural Science Foundation (No. 20212ACB212003), the Jiangxi Province Key Subject Aca-
demic and Technical Leader Funding Project (No. 20212BCJ23017) and the Natural Science
Foundation of Jiangxi Province under Grant (No. 20232BAB202021).



448 L. Li et al.

References

1. Chen, H., Li, Y.: Progressively complementarity-aware fusion network for rgb-d salient
object detection. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 3051–3060 (2018), 10.1109/CVPR.2018.00322

2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic
image segmentation with deep convolutional nets, atrous convolution, and fully connected
crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017). https://doi.org/10.1109/
TPAMI.2017.2699184

3. Chen, Q., Fu, K., Liu, Z., Chen, G., Du, H., Qiu, B., Shao, L.: Ef-net: A novel enhancement
and fusion network for rgb-d saliency detection. Pattern Recogn. 112, 107740 (2021). https://
doi.org/10.1016/j.patcog.2020.107740

4. Chen, Q., Liu, Z., Zhang, Y., Fu, K., Zhao, Q., Du, H.: Rgb-d salient object detection via 3d
convolutional neural networks. In: Proceedings of the AAAI conference on artificial intelli-
gence. vol. 35, pp. 1063–1071 (2021), https://doi.org/10.48550/arXiv.2101.10241

5. Chen, S., Fu, Y.: Progressively guided alternate refinement network for rgb-d salient object
detection. In: European conference on computer vision. pp. 520–538. Springer (2020),
10.48550/arXiv.2008.07064

6. Chen, Z., Cong, R., Xu, Q., Huang, Q.: Dpanet: Depth potentiality-aware gated attention net-
work for rgb-d salient object detection. IEEE Trans. Image Process. 30, 7012–7024 (2020).
https://doi.org/10.1109/TIP.2020.3028289

7. Cong, R., Lin, Q., Zhang, C., Li, C., Cao, X., Huang, Q., Zhao, Y.: CIR-Net: Cross-modality
interaction and refinement for RGB-D salient object detection. IEEE Trans. Image Process.
31, 6800–6815 (2022). https://doi.org/10.1109/TIP.2022.3216198

8. Cong, R., Liu, H., Zhang, C., Zhang, W., Zheng, F., Song, R., Kwong, S.: Point-aware inter-
action and cnn-induced refinement network for rgb-d salient object detection. In: Proceedings
of the 31st ACM International Conference on Multimedia. pp. 406–416 (2023), https://doi.
org/10.1145/3581783.3611982

9. Fan, D.P., Lin, Z., Zhang, Z., Zhu, M., Cheng, M.M.: Rethinking rgb-d salient object detec-
tion: Models, data sets, and large-scale benchmarks. IEEE Transactions on neural net-
works and learning systems 32(5), 2075–2089 (2020). https://doi.org/10.1109/TNNLS.2020.
2996406

10. Fu, K., Fan, D.P., Ji, G.P., Zhao, Q., Shen, J., Zhu, C.: Siamese network for rgb-d salient
object detection and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5541–5559
(2021). https://doi.org/10.1109/TPAMI.2021.3073689

11. Hu, J., Jiang, Q., Cong, R., Gao, W., Shao, F.: Two-branch deep neural network for underwa-
ter image enhancement in hsv color space. IEEE Signal Process. Lett. 28, 2152–2156 (2021).
https://doi.org/10.1109/LSP.2021.3099746

12. Ji, W., Li, J., Yu, S., Zhang, M., Piao, Y., Yao, S., Bi, Q., Ma, K., Zheng, Y., Lu, H., et al.:
Calibrated rgb-d salient object detection. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 9471–9481 (2021), https://doi.org/10.1109/
CVPR46437.2021.00935

13. Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: A dis-
criminative regional feature integration approach. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 2083–2090 (2013), https://doi.org/10.1109/
CVPR.2013.271

14. Ju, R., Ge, L., Geng, W., Ren, T., Wu, G.: Depth saliency based on anisotropic center-
surround difference. In: 2014 IEEE international conference on image processing (ICIP).
pp. 1115–1119. IEEE (2014), https://doi.org/10.1109/ICIP.2014.7025222

https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1016/j.patcog.2020.107740
https://doi.org/10.1016/j.patcog.2020.107740
https://doi.org/10.48550/arXiv.2101.10241
https://doi.org/10.1109/TIP.2020.3028289
https://doi.org/10.1109/TIP.2022.3216198
https://doi.org/10.1145/3581783.3611982
https://doi.org/10.1145/3581783.3611982
https://doi.org/10.1109/TNNLS.2020.2996406
https://doi.org/10.1109/TNNLS.2020.2996406
https://doi.org/10.1109/TPAMI.2021.3073689
https://doi.org/10.1109/LSP.2021.3099746
https://doi.org/10.1109/CVPR46437.2021.00935
https://doi.org/10.1109/CVPR46437.2021.00935
https://doi.org/10.1109/CVPR.2013.271
https://doi.org/10.1109/CVPR.2013.271
https://doi.org/10.1109/ICIP.2014.7025222


DONet 449

15. Li, C., Cong, R., Piao, Y., Xu, Q., Loy, C.C.: Rgb-d salient object detection with cross-
modality modulation and selection. In: Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16. pp. 225–241.
Springer (2020), https://doi.org/10.48550/arXiv.2007.07051

16. Li, X., Sun, X., Meng, Y., Liang, J., Wu, F., Li, J.: Dice loss for data-imbalanced nlp tasks.
arXiv preprint arXiv:1911.02855 (2019), 10.48550/arXiv.1911.02855

17. Liu, N., Zhang, N., Wan, K., Shao, L., Han, J.: Visual saliency transformer. In: Proceedings of
the IEEE/CVF international conference on computer vision. pp. 4722–4732 (2021), https://
doi.org/10.1109/ICCV48922.2021.00468

18. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer:
Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF
international conference on computer vision. pp. 10012–10022 (2021), https://doi.org/10.
48550/arXiv.2103.14030

19. Liu, Z., Tan, Y., He, Q., Xiao, Y.: Swinnet: Swin transformer drives edge-aware rgb-d and
rgb-t salient object detection. IEEE Trans. Circuits Syst. Video Technol. 32(7), 4486–4497
(2021). https://doi.org/10.1109/TCSVT.2021.3127149

20. Liu, Z., Wang, Y., Tu, Z., Xiao, Y., Tang, B.: Tritransnet: Rgb-d salient object detection with
a triplet transformer embedding network. In: Proceedings of the 29th ACM international
conference on multimedia. pp. 4481–4490 (2021), https://doi.org/10.1145/3474085.3475601

21. Liu, Z., Zhang, W., Zhao, P.: A cross-modal adaptive gated fusion generative adversarial
network for rgb-d salient object detection. Neurocomputing 387, 210–220 (2020). https://
doi.org/10.1016/j.neucom.2020.01.045

22. Niu, Y., Geng, Y., Li, X., Liu, F.: Leveraging stereopsis for saliency analysis. In: 2012
IEEE Conference on Computer Vision and Pattern Recognition. pp. 454–461. IEEE (2012),
10.1109/CVPR.2012.6247708

23. Peng, H., Li, B., Xiong, W., Hu, W., Ji, R.: Rgbd salient object detection: A benchmark and
algorithms. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part III 13. pp. 92–109. Springer (2014), https://
doi.org/10.1007/978-3-319-10578-9_7

24. Sun, P., Zhang, W., Wang, H., Li, S., Li, X.: Deep rgb-d saliency detection with depth-
sensitive attention and automatic multi-modal fusion. In: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition. pp. 1407–1417 (2021), https://doi.org/
10.1109/CVPR46437.2021.00146

25. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I.: Attention is all you need. Advances in neural information processing systems
30 (2017), https://doi.org/10.48550/arXiv.1706.03762

26. Wang, F., Pan, J., Xu, S., Tang, J.: Learning discriminative cross-modality features for rgb-
d saliency detection. IEEE Trans. Image Process. (2022). https://doi.org/10.1109/TIP.2022.
3140606

27. Wang, R., Wang, F., Su, Y., Sun, J., Sun, F., Li, H.: Attention-guided multi-modality interac-
tion network for rgb-d salient object detection. ACM Trans. Multimed. Comput. Commun.
Appl. 20(3), 1–22 (2023). https://doi.org/10.1145/3624747

28. Wang, S., Jiang, F., Xu, B.: Swin transformer-based edge guidance network for rgb-d salient
object detection. Sensors 23(21), 8802 (2023). https://doi.org/10.3390/s23218802

29. Wang, W., Lai, Q., Fu, H., Shen, J., Ling, H., Yang, R.: Salient object detection in the deep
learning era: An in-depth survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 3239–3259
(2021). https://doi.org/10.1109/TPAMI.2021.3051099

30. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao, L.: Pyramid
vision transformer: A versatile backbone for dense prediction without convolutions. In: Pro-
ceedings of the IEEE/CVF international conference on computer vision. pp. 568–578 (2021),
https://doi.org/10.48550/arXiv.2102.12122

https://doi.org/10.48550/arXiv.2007.07051
http://arxiv.org/abs/1911.02855
https://doi.org/10.1109/ICCV48922.2021.00468
https://doi.org/10.1109/ICCV48922.2021.00468
https://doi.org/10.48550/arXiv.2103.14030
https://doi.org/10.48550/arXiv.2103.14030
https://doi.org/10.1109/TCSVT.2021.3127149
https://doi.org/10.1145/3474085.3475601
https://doi.org/10.1016/j.neucom.2020.01.045
https://doi.org/10.1016/j.neucom.2020.01.045
https://doi.org/10.1007/978-3-319-10578-9_7
https://doi.org/10.1007/978-3-319-10578-9_7
https://doi.org/10.1109/CVPR46437.2021.00146
https://doi.org/10.1109/CVPR46437.2021.00146
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1109/TIP.2022.3140606
https://doi.org/10.1109/TIP.2022.3140606
https://doi.org/10.1145/3624747
https://doi.org/10.3390/s23218802
https://doi.org/10.1109/TPAMI.2021.3051099
https://doi.org/10.48550/arXiv.2102.12122


450 L. Li et al.

31. Wei, J., Wang, S., Huang, Q.: F3net: fusion, feedback and focus for salient object detection.
In: Proceedings of the AAAI conference on artificial intelligence. vol. 34, pp. 12321–12328
(2020), 10.1609/aaai.v34i07.6916

32. Wu, Z., Allibert, G., Meriaudeau, F., Ma, C., Demonceaux, C.: Hidanet: Rgb-d salient object
detection via hierarchical depth awareness. IEEE Trans. Image Process. 32, 2160–2173
(2023). https://doi.org/10.1109/TIP.2023.3263111

33. Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: Unitbox: An advanced object detection net-
work. In: Proceedings of the 24th ACM international conference on Multimedia. pp. 516–520
(2016), https://doi.org/10.1145/2964284.2967274

34. Zhai, Y., Fan, D.P., Yang, J., Borji, A., Shao, L., Han, J., Wang, L.: Bifurcated backbone strat-
egy for rgb-d salient object detection. IEEE Trans. Image Process. 30, 8727–8742 (2021).
https://doi.org/10.1109/TIP.2021.3116793

35. Zhang, J., Shi, Y., Yang, J., Guo, Q.: Kd-scfnet: Towards more accurate and lightweight
salient object detection via knowledge distillation. Neurocomputing p. 127206 (2023),
https://doi.org/10.1016/j.neucom.2023.127206

36. Zhang, M., Yao, S., Hu, B., Piao, Y., Ji, W.: C2dfnet: Criss-cross dynamic filter network
for rgb-d salient object detection. IEEE Trans. Multimedia (2022). https://doi.org/10.1109/
TMM.2022.3187856

37. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 2881–2890 (2017),
10.48550/arXiv.1612.01105

38. Zhao, X., Zhang, L., Pang, Y., Lu, H., Zhang, L.: A single stream network for robust and
real-time rgb-d salient object detection. In: Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16. pp. 646–662.
Springer (2020), https://doi.org/10.48550/arXiv.2007.06811

39. Zhou, J., Wang, L., Lu, H., Huang, K., Shi, X., Liu, B.: Mvsalnet: Multi-view augmentation
for rgb-d salient object detection. In: European Conference on Computer Vision. pp. 270–
287. Springer (2022), https://doi.org/10.1007/978-3-031-19818-2_16

40. Zhu, C., Li, G.: A three-pathway psychobiological framework of salient object detection
using stereoscopic technology. In: Proceedings of the IEEE international conference on com-
puter vision workshops. pp. 3008–3014 (2017), https://doi.org/10.1109/ICCVW.2017.355

https://doi.org/10.1109/TIP.2023.3263111
https://doi.org/10.1145/2964284.2967274
https://doi.org/10.1109/TIP.2021.3116793
https://doi.org/10.1016/j.neucom.2023.127206
https://doi.org/10.1109/TMM.2022.3187856
https://doi.org/10.1109/TMM.2022.3187856
https://doi.org/10.48550/arXiv.2007.06811
https://doi.org/10.1007/978-3-031-19818-2_16
https://doi.org/10.1109/ICCVW.2017.355


Detail-Enhanced Intra- and Inter-modal
Interaction for Audio-Visual Emotion

Recognition

Tong Shi(B) , Xuri Ge , Joemon M. Jose , Nicolas Pugeault ,
and Paul Henderson

School of Computing Science, University of Glasgow, Glasgow, UK
2431206s@student.gla.ac.uk

Abstract. Capturing complex temporal relationships between video
and audio modalities is vital for Audio-Visual Emotion Recognition
(AVER). However, existing methods lack attention to local details, such
as facial state changes between video frames, which can reduce the dis-
criminability of features and thus lower recognition accuracy. In this
paper, we propose a Detail-Enhanced Intra- and Inter-modal Interac-
tion network (DE-III) for AVER, incorporating several novel aspects. We
introduce optical flow information to enrich video representations with
texture details that better capture facial state changes. A fusion mod-
ule integrates the optical flow estimation with the corresponding video
frames to enhance the representation of facial texture variations. We also
design attentive intra- and inter-modal feature enhancement modules to
further improve the richness and discriminability of video and audio rep-
resentations. A detailed quantitative evaluation shows that our proposed
model outperforms all existing methods on three benchmark datasets for
both concrete and continuous emotion recognition. To encourage further
research and ensure replicability, our project code is public available at
https://github.com/stonewalking/DE-III.

Keywords: Audio-visual emotion recognition · Optical flow · Intra-
and Inter-modal modeling · Transformers

1 Introduction

Emotion perception is attracting ever-increasing research attention due to its
wide range of applications, such as affective computing [32], human-computer
interaction [3], and social robotics [34]. Multi-modal emotion recognition, espe-
cially integrating audio and video (i.e. AVER), is particularly important since it
makes use of the information present in two modalities that are vital to human
communication. Unlike single-modal emotion recognition, multi-modal emotion
recognition has access to different representations of the same emotion from
different modalities. This improves feature representation capabilities and dis-
tinguishability, leading to improved recognition accuracy [8,36].
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However, there are still two challenges that are the focus of ongoing research
in AVER: (i) how to enhance the representation of fine details within modalities,
such as tiny details of facial motion (e.g. due to micro-expressions), and (ii) how
to better leverage inter-modal associations to fully exploit the complementary
information from different modalities. Solving both will enable learning better
feature representations, and improve emotion recognition accuracy.

When learning features from one modality, intra-modal temporal relationship
mining [11,42,44] and feature detail enhancement [39] are important ways to
make features more discriminative. For instance, [42] proposed an adaptive graph
attention network to explore the relationship between frames of videos for micro-
expression recognition, while [39] introduced optical flow to replace face images
for micro-expression recognition based on a multi-scale feature representation.
However, these methods focus on the single-modal setting, and cannot exploit
information from multiple modalities. [44] used self-attention [37] within each
modality to enhance their representation and then fused them by a linear-based
function to classify; however this cannot fully account for the complex, nonlinear
relationships between audio and video.

Multi-modal approaches have recently become mainstream [24,28,41] since
considering both audio and video further improves representations, by fus-
ing information in associated video frames and audio fragments. For example,
[8] explored the effectiveness of different variants of transformer-based inter-
modal attention mechanisms for AVER and showed inter-modal interaction can
significantly improve performance. However, although inter-modal interaction
improves recognition, these methods do not investigate modeling temporal rela-
tionships within each modality. [13] adopts a multi-branch joint auxiliary train-
ing method, designing independent audio and video branches and multi-modal
fusion to enhance feature relationships, which greatly improves recognition per-
formance. [15,16] used a network shared across modalities to encourage consis-
tency of the multi-modal feature space. However, since different modalities have
different feature distributions and properties, a shared network may not fully
capture the unique characteristics of each modality, resulting in information
loss.

Most of the relationship modeling strategies mentioned above [15–17,35]
model temporal relationships based on implicit appearance representation of
video frames and audio fragments, but ignore an inherent challenge of AVER
– that in video features the frame-to-frame variations of faces are much weaker
than in audio. For example, there may be significant changes in content and into-
nation between two audio fragments, while there is little difference between video
frames. It is clear that these missing explicit details, especially state changes
between face frames of videos, may lead to reduced discriminability of feature
representations during the relationship modeling process, thereby affecting the
accuracy of AVER.

We address these issues by introducing a multi-modal interaction network
(Figure 1) that incorporates an explicit representation of visual detail changes
between frames, and which can better fuse the complementary information
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from video and audio. Different from methods that directly model relationships
between local regions of a facial sequence [10,12,19,30], optical flow is a simple
and effective way to represent the state changes between the facial frames. Opti-
cal flow can enhance the discriminability of visual representations by directly
highlighting significant detail differences between frames, especially those tex-
ture changes that can express facial emotions [39]. To this end, we propose a novel
detail-enhanced intra- and inter-modal interactions network (called DE-III) for
AVER, which integrates explicit optical flow information into an end-to-end
multi-modal interaction framework. In addition, two independent multi-modal
interaction fusion mechanisms and multiple residual connections further allevi-
ate the information loss problem in existing shared interaction strategies [15,16].
Our main contributions are as follows:

– we explicitly capture detail changes between video frames using optical flow,
and integrate this information using a lightweight attentive fusion module;

– we design novel detail-enhanced intra- and inter-modal interaction modules
for the video and audio modalities, which can effectively fuse associated infor-
mation of one modality into the other modality and reduce information loss
by residual connections.

We evaluate the resulting model and several variants on three widely used bench-
marks and obtain highly competitive results including a new state-of-the-art on
multiple metrics, e.g. 83.7% F1-Micro score on CREMA-D, 82.7% accuracy on
RAVDESS and the highest scores on MSP-IMPROV with 89.3%, 88.7% and
85.8% for valence, arousal and dominance.

2 Related Work

Emotion recognition has received a significant amount of attention in the com-
puter vision community. Numerous methods [22,31,38,43] have been proposed
to solve this task by using different data modalities, such as images, speech
and text. These methods can be divided into two main kinds: unimodal meth-
ods (that input just one modality), and multi-modal methods (that input two or
more modalities). Our proposed DE-III belongs to the latter category, combining
audio and video modalities to improve the performance of emotion recognition.

2.1 Unimodal Emotion Recognition

Unimodal emotion recognition methods [1,22,31,38,43] focus on application sce-
narios where only one kind of data is available; they design feature enhancement
and interaction methods based on the inherent properties of the corresponding
modality. The most common methods are text-based [1,9,40] and image-based
[31,38,43]. For example for text, [1] present a BERT-based model to explore the
importance of context extraction in texts for emotion recognition. One work
by [33] proposed one sequence-based convolutional neural network to detect
human emotion from big data. However, it is harder to to accurately predict



454 T. Shi et al.

human emotions from a text transcription compared to using richer modalities
such as images or videos. For image data, [31] proposed feature decomposition
and reconstruction learning for effective facial image expression recognition. [27]
introduced the image depth information to improve the context information of
images, which improved the representation capability and thus recognition accu-
racy. Moving to video, [2] introduced facial micro-expression analysis methods
that can improve emotion recognition by capturing richer contextual sequence
information than static images. Although unimodal emotion recognition has
achieved substantial progress and delivers promising results, it is inherently lim-
ited by having less information available than multi-modal approaches.

2.2 Multi-modal Emotion Recognition

Recently, multi-modal emotion recognition has become mainstream [7,8,13–
17,26,36] due to its ability to fully exploit the complementary information
present in different modalities. For instance, [8] explored the effectiveness of
different variants of transformer-based inter-modal attention mechanisms for
audio-video emotion recognition and showed that inter-modal interaction can
significantly improve performance. [25] showed that combining audio and with
a corresponding text transcription improves the representation ability of fea-
tures, since audio captures details of intonation, while text captures semantics
more explicitly. Moreover, [7] fused three modalities (audio, text and vision),
further improving recognition accuracy. The above works indicate that combin-
ing multiple modalities can significantly enhance the discrimination ability of
fused representations and thus the recognition performance. In this work, we
study multimodal-based emotion recognition, specifically for audio-video emo-
tion recognition (AVER). The most similar works to ours are [15,16], both of
which used a transformer-based architecture that is shared across video and
audio modalities to encourage consistency of the multi-modal feature space.
However, their proposed shared network cannot fully capture the unique fea-
ture distributions of each modality, such as explicit facial state changes between
face video frames, resulting in the loss of information during the multimodal
relationship modeling process. Unlike [13,14,36], which adopt attention-based
neural network to effectively process and integrate audio modalities, our model
not only learns the intra-relationships within video feature representations but
also models the inter-relationships when attentively fuses the audio representa-
tion. Our proposed model augments video features with optical flow informa-
tion before fusing with the audio features. Unlike traditional methods [21] that
directly combine the optical flow features with visual representations, we use
Conformer [17] networks to extract context-aware features, and design a novel
pairwise O-V attention fusion module to combine them.



Intra- & Inter-modal Interaction for Audio-Visual Emotion Recognition 455

3 Proposed Model

Fig. 1. Overview of our proposed method DE-III. Given video frames vi and audio
fragments ai, we extract features and pass these through separate Conformer encoders.
We introduce explicit information about facial motions – captured by optical flow
oi – to enhance video feature representations, with a new pair-wise O-V attention
fusion module that effectively integrates the information from optical flow and video
frames. We propose an inter-modal feature enhancement module (large boxes near top)
to attentively fuse the associated audio and video representations in both directions,
i.e. audio-to-video and video-to-audio. During training, the final emotion predictions
are calculated independently from three sets of features: the video features albeit with
audio information fused (i.e. without the model components in the chequered box);
the converse using the audio features; and finally using both sets of features after a
further fusion stage. During inference, we use the prediction head that performed best
on validation data.

The overall framework of our proposed model DE-III is shown in Figure 1. We
first extract video and audio features, then enhance their representative power
through temporal relationship modelling within their respective modalities, also
fusing optical flow information with the video features to better capture detail
changes. Then, the inter-modal feature enhancement module performs attention-
weighted fusion of each modality’s information with the other modality.

3.1 Audio Self-enhancement Module

To represent the information in audio, we use a pre-trained wav2vec model [18]
to embed the extracted audio fragments.The original speech audio is resampled
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at 16 kHz. Specifically, we split a given audio clip into a sequence of m frag-
ments A = {a1, a2, . . . , am} using a sliding window. Then we use the wav2vec-
large-robust model to extract corresponding fragment-level representations Ȧ =
{ȧ1, ȧ2, . . . , ȧm}. Next, a Conformer encoder [17] (a transformer-based model
with convolutions to improve temporally-local information processing) is used
to obtain enhanced audio-fragment representations Ā = {ā1, ā2, . . . , ām} that
account for (intra-modal) local and global temporal relationships.

3.2 Video Pairwise Attention Enhancement Module

Different from the audio features where contextual semantics are clear, i.e. there
is clear semantic content and significant intonation changes, in the video, subtle
yet important changes in facial texture tend to be lost during feature extrac-
tion. We therefore use a pre-trained optical flow model [20] to extract the flow
oi between adjacent pairs of video frames {vi−1, vi}, where i ∈ {1, . . . , n}
and n is the number of video frames; this can explicitly represent fine-grained
changes of facial texture such as micro-expressions. Then, we employ the widely-
used EfficientNet-B2 model [32], which has been fine-tuned on VGGface2 [5]
dataset, to extract representations for video frames and their corresponding
optical flow maps; we denote these features by V̇ = {v̇1, v̇2, . . . , v̇n} and
Ȯ = {ȯ1, ȯ2, . . . , ȯn} respectively. To further enhance the representational abil-
ity of these visual features, we use two independent Conformer encoders [17]
to embed them into the same dimensional space as the audio modality. This
also allows for subsequent inter-modal interaction. We next propose a simple
and efficient pairwise O-V attention fusion module to combine the features of
frames and optical flow into a joint embedding space. Specifically, we use a fully-
connected (FC) layer to map the features at each time-point to two channels,
then apply a softmax function [6] and interpret these values as weights for the
frame and flow features respectively. We finally obtain the detailed-enhanced
video representation ovi by a weighted sum of linearly-projected frame features
and corresponding flow features. Thus, we set

[ōi : v̄i] = [Conformer(ȯi) : Conformer(v̇i)], (1)
(βo, βv) = softmax(FC([ōi : v̄i])), (2)

ovi = βoWoōi + βvWv ōi, (3)

where [ : ] denotes concatenation along the channel dimension, Wo and Wv are
the linear projection parameters, and βo + βv = 1. We refer to the two conform-
ers followed by the OV-fusion as the pair-wise attention enhancement (PAE)
module.

3.3 Inter-modal Feature Enhancement Module

Inspired by the attention mechanisms [13,41], we next design an inter-modal
feature enhancement module (IFE) that allows each modality to attend to the
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other and integrate relevant information. For simplicity we describe only the
audio-to-video fusion (IFE-Video); however a similar approach is used for video-
to-audio. We want to allow the enhanced video frame features ovi to attend
to features of relevant audio fragments Ā = {ā1, ā2, . . . , ām}. Different from
traditional self-attention [37] and cross-attention [36], we take the target video
frame ovi as the query to calculate the attention weights, with the audio frag-
ment defining the keys and values after the linear projections. Attentive fusion
from another modality allows relevant modality information to be extracted and
integrated, thereby improving the distinguishability of target modality represen-
tation. Finally, we obtain the video representations ÖV = {övi} after IFE by
adding a residual connection, and passing through a feed-forward block (FFB)
which contains two linear layers. In summary, we set

sij =
(Wovovi)(Waāj)T

||Wovovi|| ||Waāj || ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , m} (4)

αij =
exp(sij)∑m
j=1 exp(sij)

(5)

övi =
∑m

j=1
αijW̄aāj + ovi, (6)

where Wov, Wa and W̄a are linear projection parameters. Similarly, we obtain
the attention-aware video fragment representations of each audio fragment and
combine them with an audio residual operation to give the final audio represen-
tations Ä = {ä1, ä2, ..., äm}.

3.4 Feature Aggregation and Objective Function

Since we want to make a single prediction for an entire video, we max-pool the
features along the temporal axis, yielding a video-centric feature vector öv∗ from
ÖV , and audio-centric feature vector ä∗ from Ä (note that öv∗ still incorporates
information fused from the audio modality as described in Section 3.3, and vice-
versa). We use three independent emotion prediction heads (each a multi-layer
perceptron) with corresponding losses to jointly optimize different branches the
model – the video-cross loss LV (using öv∗ as input to the MLP), audio-cross loss
LA (using ä∗) and audio-visual fusion loss LF (using öv∗ concatenated with ä∗).
The overall objective function is the sum of the three losses. We use multi-class
cross-entropy for datasets with discrete emotion class labels, and concordance
correlation coefficient (CCC) for datasets with continuous labels. Specifically,
CCC is given by

LCCC = 1 − 2ρσxσy

σ2
x + σ2

y + (μx − μy)2
(7)

where μx and μy are the mean of the predicted result ŷ and the label y, respec-
tively, σx and σy are their standard deviations, and ρ is their Pearson correlation
coefficient (a ρ value close to ±1 suggests a strong linear relationship, while a
value of 0 signifies the absence of any linear correlation). During inference we
can use predictions from any of the three heads; for our main experiments we
use the prediction head that performed best on the validation data.
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4 Experiments

4.1 Experimental Setup

Datasets and Metrics. To verify the effectiveness of our proposed app-
roach, we evaluate it on three popular AVER datasets: CREMA-D [4], MSP-
IMPROV [3] and RAVDESS [23]. CREMA-D consists of 7,442 facial videos with
corresponding audio from 96 participants (48 male, 48 female). Each audio-video
clip is labeled with one of 6 concrete emotion classes – anger, disgust, fear, happi-
ness, sadness, and neutrality. RAVDESS consists of 2,880 videos from 24 actors,
each enacting eight concrete emotional states. MSP-IMPROV consists of 8,385
audio-video clips from 12 participants (6 male, 6 female) with each clip labeled
by both concrete emotional states and continuous emotional states – valence,
arousal and dominance; following previous works [8,14,16,36] we use only the
continuous labels. We adhered to the protocol in [8,13], with 5 separate folds
where each fold divides the data into training, validation, and test sets with
non-overlapping actor identities. We evaluate based on the most commonly-used
metrics for each dataset – F1-Macro and F1-Micro for CREMA-D [4], Accuracy
for RAVDESS [23] and CCC for MSP-IMPROV [3].

Table 1. Comparisons with state-of-the-art methods for AVER on CREMA-D, MSP-
IMPROV and RAVDESS (in %). The best results are bold and second-best underlined.

Method CREMA-D MSP-IMPROVRAVDESS
F1-MacroF1-MicroVal. Aro. Dom. Acc.

Multi. [36] 64.4 69.2 77.5 76.1 77.8 78.5
MMER [8] – – – – – 81.6
UAVM [16] 74.9 76.9 47.1 54.4 68.7 –
AuxFormer [13] 69.8 76.3 67.2 65.2 82.0 –
LADDER [14] 80.2 80.3 – – – –
DE-III (ours) 79.5 83.7 89.388.785.8 82.7

Implementation Details. All models were trained for up to 20 epochs using
early stopping on the validation set, and we report our results on the test set. We
choose hyper-parameters based on validation set performance. We use AdamW
for optimization with a learning rate of 5 × 10−6 and weight decay of 5 × 10−2.
The face images are extracted from each frame of every video clip and resized to
224 × 224 pixels. We generate optical flow maps using [20] and normalize their
magnitude by a standard deviation calculated from the local optical flow magni-
tude at every pixel position within an entire video clip. We use the pre-trained
EfficientNet-B2 from [32] to extract features from the video frames and optical
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Table 2. Effectiveness of our inter-modal feature enhancement module (IFE), evalu-
ated on CREMA-D.

Method Cross attention Accuracy
A-crossV-cross F1-MacroF1-Micro

IFE-Fusion ✓ ✓ 77.2 82.2
IFE-Audio ✓ ✗ 78.3 82.2
IFE-Video ✗ ✓ 79.5 83.7
None-IFE ✗ ✗ 75.8 78.6

flow maps. The audio features are extracted using wav2vec2-large-robust [18].
Separate Conformer encoders for video and audio map the extracted features to
vectors of 1408-dimension each. Each Conformer block has a hidden dimension-
ality of 512, with 8 attention heads. The number of blocks in the acoustic, visual,
and optical flow Conformers were set to 3, 3, and 2, respectively. For the predic-
tion heads, we use MLPs with hidden dimensionality of 512. Our IFE module
(Section 3.3) uses single-head attention [37] with the linear feed-forward block
and the highlighted fusion feature dimensions remain unchanged. Our model was
implemented in PyTorch and trained on 2 NVIDIA RTX A5000 GPUs, taking
1 hour.

4.2 Quantitative Comparison

In Table 1 we present quantitative results for our method and several existing
works: 1) Multi [36], a transformer-based cross-modal attention fusion method;
2) MMER [8], with multiple self-attention fusion mechanisms; 3) UAVM [16],
a transformer-based feature enhancement model with a shared audio-visual
encoder; 4) AuxFormer [13], a transformer framework with two independent aux-
iliary branches; 5) LADDER [14], a transformer-based cross-attention framework
with auxiliary reconstruction tasks. We see that compared with the previous best
method LADDER [14] on CREMA-D, our DE-III achieves higher performance in
terms of F1-Micro score, 83.7% vs. 80.3%. On MSP-IMPROV, our DE-III attains
excellent CCC values of 89.3% for valence (Val.), 88.7% for arousal (Aro.), and
85.8% for dominance (Dom.), establishing a new state-of-the-art for this dataset.
Moreover, we also achieve a better accuracy (Acc.) score on RAVDESS compared
with the SOTA method, 82.7% for DE-III vs. 81.6% for MMER.

4.3 Ablation Studies

In this section, we evaluate the performance benefit due to various components
and design decisions in our model.

Effects of Inter-modal Feature Enhancement (IFE). In the IFE block,
we define video attending to audio as V-cross and audio attending to video as
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A-cross. We first experiment with removing the IFE module (i.e. without any
inter-modality fusion, only RGB images and flow maps, denoted None-IFE). In
Table 2, we see a large performance drop in this setting – compared with the
best output (from IFE-Video), the F1-Macro and F1-Micro scores decrease by
3.7% and 5.1% on the CREMA-D test set, respectively. This suggests that inter-
modality fusion plays an important role in improving AVER capabilities. Recall
that our model has three prediction heads: IFE-Audio (i.e. using features ä∗),
IFE-Video (i.e. using öv∗) and IFE-Fusion (i.e. using their concatenation). While
the main results use IFE-Video at inference time, we also report results from the
others in Table 2. IFE-Video achieves the best AVER performance, 79.5% F1-
Macro and 83.7% F1-Micro. The other prediction heads achieve slightly lower
though still competitive results.

Table 3. Effectiveness of different approaches to inter-modal fusion within our model,
evaluated on CREMA-D.

Model Fuse when?Visual input Seq. model Fuse how? Accuracy
EarlyLate FlowRGB Conf.Transf. Concat SumPAE F1-MacroF1-Micro

IFE-V-O n/a ✓ ✓ n/a 55.4 64.9
IFE-V-F n/a ✓ ✓ n/a 76.7 81.4

IFE-V-FOSC ✓ ✓ ✓ ✓ ✓ 78.5 81.7
IFE-V-FODC ✓ ✓ ✓ ✓ ✓ 77.8 82.6
IFE-V-FODS ✓ ✓ ✓ ✓ ✓ 78.0 81.8

IFE-V-Early ✓ ✓ ✓ ✓ ✓ 79.2 83.0

IFE-V-Trans ✓ ✓ ✓ ✓ ✓ 77.9 82.6

IFE-Video ✓ ✓ ✓ ✓ ✓ 79.5 83.7

Effects of Video Pairwise Attention Enhancement (PAE) Module. To
demonstrate our ablations on pair-wise attention enhancement (PAE) Module,
we categorize different settings as "Fuse when?", "Visual input", "sequential
model", and "Fuse how?". Results on CREMA-D are given in Table 3, all using
the IFE-Video prediction head. We first present results when trained with only
one part of the video information, i.e. RGB images only (IFE-V-F), or optical
flow maps only (IFE-V-O). We see that IFE-V-O achieves 55.4% F1-macro and
64.9% F1-micro. The result shows optical flow information present low capa-
bility to distinguish emotions, and it is much weaker than using RGB images
only. When combining optical flow maps with RGB images in the full model
(IFE-Video), there is a remarkable performance improvement vs. IFE-V-F. It
indicates that the flow maps indeed augment the video feature representations.
Next, we replace our PAE with one single conformer followed by one OV-fusion
block. To pass the image and optical flow features together into the conformer, we
attempt several alternative operations– temporal concatenation (IFE-V-FOSC),
channelwise concatenation (IFE-V-FODC), and summation (IFE-V-FODS). We
see (Table 3) that our PAE module achieves the highest recognition performance,
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with 1.0% improvement over IFE-V-FOSC on F1-macro and 1.1% improvement
over IFE-V-FODC on F1-Micro. These observations indicate that our PAE mod-
ule is a more effective fusion method for combining visual features and optical
flow features. Finally, we explore early fusion and late fusion strategies. We find
that by moving OV-fusion block before the Conformer (IFE-V-Early), accuracy
decreases slightly vs. having OV-fusion after the Conformer (IFE-Video), by
0.3% F1-Macro and 0.7% F1-Micro. We hypothesise that this is because the
additional computation performed beforehand by the Conformer is beneficial
in helping the OV-fusion module to determine whether to focus on image or
flow information for each time-point. Additionally, we compare our method by
replacing the conformer to the vanilla transformer [37], the accuracy decreases
slightly by 1.6% and 1.1%, this demonstrates that the conformer is superior to
the vanilla transformer at the image level in capturing changes in facial details
from feature representations.

Table 4. Effectiveness of different feature extractors and frame-selection strategies for
optical-flow, evaluated on CREMA-D for our IFE-Video model variant.

Feature extractor WindowStride Accuracy
F1-MacroF1-Micro

EfficientNet-B2 [32]1 1 79.5 83.7
3 1 76.1 81.4
5 1 74.3 80.8
7 1 75.2 81.6
3 3 77.2 82.4
5 5 76.2 80.7
7 7 78.5 82.8

DINOv2 [29] 1 1 76.8 82.6

Effects of optical-flow extraction variants. We next experiment with using
different sliding window lengths and strides when extracting the optical flow from
the videos. Firstly, we vary the window length while keeping the stride fixed to 1
(i.e. moving frame by frame). Secondly, we vary both the window length and the
stride together (i.e. non-overlapping windows). The results in Table 4 show that
using a window length of 1 with a stride of 1 performs best. Increased window
lengths, with fixed or increasing strides, show consistent drops in performance,
with the worst-performing variant having window length of 5 and stride of 1
(achieving 74.3% F1-Macro, versus 79.5% for window length and stride of 1).
This indicates that temporally-fine-grained information is valuable in increasing
the accuracy of emotion recognition. We also experiment with using a different
backbone feature extractor for the optical flow, since face images and flow-maps
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Fig. 2. Heatmaps showing inter-modality attention weights calculated by IFE-Audio
(left) and IFE-Video (right), for an example sequence with emotion ‘angry’. The hori-
zontal axis corresponds to time-points in one modality, which is fusing in information
from the other modality on the vertical axis. Brighter colors indicate stronger attention
to the time-point on the vertical axis, from the time-point on the horizontal axis.

are quite different domains. We choose DINOv2 [29], which has been shown to
be robust across many image domains, and fix the window length and stride to 1
(i.e. the best-performing setting). However, we find it performs worse than using
EffcientNet pre-trained on a large face images dataset, dropping from 79.5% to
76.8% F1-Macro and from 83.7% to 82.6% F1-Micro.

4.4 Qualitative Analysis

To better understand the behavior of our model, we visualize the inter-modal
fusion weights αij for IFE-Audio and IFE-Video (see Section 3.3) in Figure 2.
The brightness of each location in the heatmap represents the strength with
which the modality on the horizontal axis is attending to that on the vertical
axis, at that particular time-point. The pattern of attention varies considerably
for different points along the horizontal axis, showing that the model does not
attend to fixed, specific points in the other modality, but adapts depending on
the current features, and presumably the varying emotional states depicted in
the video. Notably, the heatmaps do not exhibit a bright diagonal line; this
indicates that time-points generally attend not to the corresponding time-point
in the other modality, but to other (presumably relevant or informative) time-
points. Overall these results suggest that our inter-modal feature enhancement
module can selectively fuse the useful information from each modality into the
other.
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5 Conclusion

We have presented a new model, DE-III, for audio-visual emotion recognition,
which combines intra- and inter-model feature enhancement in a unified frame-
work. DE-III introduces a pair-wise attention fusion method that integrates
explicit facial detail changes between video frames, captured by optical flow.
It not only improves the distinguishability of features within each visual modal-
ity, but also further increases the effectiveness of subsequent inter-modal feature
interactions. Our results demonstrate that DE-III enhances emotion recognition
by optimally fusing the information available in different modalities. Indeed, our
model achieves state-of-the-art performance on three popular datasets, for both
concrete and continuous emotion labels.
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