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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. For medical images, domain shift is a very common phe-
nomenon. To address this issue, researchers have proposed unsupervised
domain adaptation and multi-source domain generalization. However,
these methods are sometimes impractical for clinical applications since
they need multi-domain data. To this end, single-source domain general-
ization has been further proposed. However, most single-source domain
generalization methods are designed for grayscale medical images, mak-
ing them unsuitable for color images such as fundus images. In this paper,
we first propose a novel and effective Fourier transform-based data aug-
mentation method for single-source domain color medical images, named
spatial amplitude perturbation module (SAPM). The SAPM uses dif-
ferent Gaussian distributions to perturb different regions of the ampli-
tude map obtained by FFT decomposition, thereby avoiding the need for
information from other domains and ensuring the diversity of the aug-
mented images. Then, we use feature sensitivity to guide the network
to learn domain-invariant features, which can suppress feature channels
sensitive to domain shift and emphasize feature channels insensitive to
domain shift. We evaluate our method on a multi-domain fundus seg-
mentation benchmark, and the results demonstrate the effectiveness of
our proposed method.

Keywords: Domain generalization · Data augmentation · Medical
image segmentation

1 Introduction

In recent years, deep learning has made significant achievements in medical image
segmentation [10,17,19]. However, such achievements are based on the assump-
tion that the training data and testing data come from same domain. Unfor-
tunately, such an assumption often does not hold true in clinical applications
due to the variations in environmental factors, patient or disease severity during
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data acquisition, which often exhibit variations in the field of view, appearance,
and image quality. As a result, the performance of a model that is trained on
a source domain will drop sharply while the model processes data from unseen
domains, which severely impedes the application of deep learning models in clin-
ical settings [13].

To address this issue, researchers first proposed unsupervised domain adap-
tion (UDA) [25]. UDA methods learn the network on annotated source domain
images and unlabeled target domain images in order to make the network
have good generalization performance on target domains. Therefore, the goal of
the UDA is to narrow the domain gap between the source domain and the tar-
get domain, which makes it necessary for the UDA to acquire the target domain
data in advance. However, such a requirement is often infeasible in clinical appli-
cations for medical images segmentation.

To solve the limitation in UDA, researchers further propose domain gener-
alization (DG) [22]. In comparison to UDA, DG does not need to access target
domains, which means that the trained model can directly apply to unseen tar-
get domains. Classic DG setting assumes that access to multiple source domains
is feasible during training, which namely multi-source domain generalization
(multi-DG). Multi-DG methods can be mainly divided into data augmentation,
domain alignment, and meta-learning [31]. However, collecting and labelling data
from multiple domains is a time-consuming and labour-intensive process, espe-
cially for medical image data, which seriously hinders the clinical application of
domain generalization in medical image segmentation.

A more challenging yet realistic DG scenario is the single-source domain
generalization (single-DG), wherein the model is trained on labelled data from
one single source domain and subsequently applied to unseen domains [16]. The
primary challenge of single-DG is the constrained diversity of samples, which
makes the trained model susceptible to overfitting on the single source domain.
Therefore, one of the most straightforward approaches in single-DG is to expand
the diversity of single-source domain data through data augmentation. There has
been much research on single-source medical image data augmentation [14,20,
28,34], but these works are predominantly tailored for grayscale medical images
like CT or MRI scans, making them unsuitable for color medical images.

For color medical images like fundus images [23], most domain generalization
studies resort to data augmentation techniques based on Fourier transformation
[27,33]. These methodologies typically first decompose images via fast Fourier
transformation (FFT) to acquire amplitude maps and subsequently exchange the
low-frequency parts of the amplitude maps from different domains. Finally, the
augmented images are obtained through inverse fast Fourier transformation
(IFFT). Regrettably, these Fourier-based methods are not feasible for single-
DG settings due to their reliance on information from other domains. To make
the Fourier transformation applicable in the single-DG setting, it is imperative
to execute appropriate operations on the decomposed amplitude map. The most
intuitive approach is to apply Gaussian perturbation on the amplitude map.
However, owing to significant differences in the distribution of values in differ-
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ent parts of the amplitude map, simply perturbing the entire amplitude map
using the same Gaussian distribution is not a reasonable approach. To this end,
we propose a simple and effective Fourier transformation-based augmentation
method, named spatial amplitude perturbation module (SAPM), which adopts
different Gaussian perturbations for different locations on the amplitude map to
simulate domain shift better.

Besides, since the domain shift caused by Gaussian perturbation is limited,
if origin images and augmented images are only fed into the network for training
without explicitly guiding the network to learn domain-invariant features, the
network may learn domain-shared information rather than the domain-invariant
information [12]. The domain-shared information is usually shared information
between several domains, rather than domain-invariant information common to
all domains, which means that domain-shared information may sometimes not
work well for other unseen domains. Thus, we will also apply a method called
feature sensitivity guidance to explicitly guide the network to learn domain-
invariant features. This method can suppress domain-sensitive features and
emphasize domain-insensitive features, which have been proven effective in [26].

In general, our contributions are summarized as follows:

– We propose a novel Fourier-based data augmentation method for color med-
ical images that can significantly expand data diversity without using other
domain information.

– We employ feature sensitivity to explicitly guide the network to learn domain-
invariant features to promote the generalization ability of our color medical
images segmentation network.

– We compare our method with six recent single-DG methods on the single-
domain generalization tasks tailored to fundus OD/OC segmentation. Exten-
sive experimental results show that our proposed method is superior to the
compared methods.

2 Related Works

2.1 Single Source Domain Generalization

Single-source domain generalization is a more challenging task than multiple-
source domain generalization due to the lack of diversity of the training set,
which also makes it more realistic than multi-DG. The most popular method to
resolve single-DG is data augmentation, which imitates domain shift by generat-
ing pseudo domains different from the source domain. Several methods have been
designed for augmentation in single source domain generalization tasks through
different strategies [9,12,32]. As for the medical image, inspired by [35], many
methods change the pixel intensity of the source image by using monotonic non-
linear functions, such as Bezier curves, to expand the diversity of data. [14]
first, transformed the origin image twice to obtain two completely different aug-
mented images, and then blended the two images in a spatial-variables manner
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to remove the spurious correlations and constrain the model to make consis-
tent predictions of these two blended images, which finally makes the model not
affected by images’ appearance and spurious correlations. [20] observed that the
distribution of pixel intensity in different mask regions is various. Thus, they
augmented the source images by using their masks as guides instead of simply
performing the full image-level transformation. However, the above methods are
usually applied to grayscale images and not to RGB images, which means that
these methods are not suitable for color medical images such as fundus images.
[11] obtained different frequency views through different Gaussian filters, then
exchanged random portions of these views to obtain augmented images and
learned generalizable context-aware representations through a self-supervised
task, but this approach is only applicable to tasks like vessel segmentation.

Also, some single-DG methods focus on learning domain-invariant features by
introducing approaches such as the instance normalization layers [21] or feature
whitening transformation to remove domain-specific information [3,18].

2.2 Data Augmentation for Domain Generalization

Data augmentation is one of the most prevailing methods in domain generaliza-
tion, and it is common practice for such methods to perform a stylistic trans-
formation on the source domain image. [24] generated diverse images through
adversarial training, and [29] proposed random convolution to perturb origi-
nal images. Recently, numerous studies have used the Fourier transformation to
generate new images [15,27,30], which are based on a widely accepted notion
that the phase of an image contains semantic information while the amplitude
of an image contains style information. Specifically, these methods first decom-
pose the images into phases and amplitudes through fast Fourier transforma-
tion (FFT), and then they exchange the amplitudes of the images from different
domains. Finally, the original phase and the exchanged amplitudes are subjected
to inverse fast Fourier transformation (IFFT) to acquire augmented images. The
method is also widely applied in medical images. For example, [33] obtained new
images by exchanging low-frequency components of fundus images from different
domains. However, existing Fourier-based approaches are only applicable in the
case of multiple source domains.

3 Method

3.1 Overview

Let the source domain be denoted by DS = {xS
i , yS

i }NS
i=1, where xS

i is the i-th
source domain image, and yS

i is the corresponding mask. Our goal is to train a
robust segmentation model fθ : x → y on DS that can generalize well to the
unseen domain images.

The method we proposed mainly consists of a spatial amplitude perturbation
module (SAPM), a sensitivity guidance module and a segmentation backbone.
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The overall structure of our model is shown in Fig. 1. For image xS
j , our SAPM

generates a augmented images xA
j , which have the same semantic information

with some domain shift, the subscript j presents the j-th augmented image.
Then, we feed the origin image and augmented image into the segmentation
network to get the prediction ỹ. To learn more robust feature representation,
feature sensitivity will be used to guide the network to suppress shallow feature
channels that are sensitive to domain shift.

Fig. 1. Our model’s overview. The origin image xori first passes through the SAPM to
obtain augmented image xaug, where A(i, j) and P (i, j) are the original and augmented
amplitude maps, respectively. Then, the two images are input into network to extract
features and calculate the sensitivity vector S, and domain-sensitive features will be
suppressed by the guidance of S. Finally, the features fout will be fed into subsequent
layers to obtain predictions. Segmentation loss Lossseg, consistency loss Losscon and
guidance loss Lossg are employed to optimize our network.

3.2 Spatial Amplitude Perturbation Module (SAPM)

Prior works about Fourier augmentation methods are based on a consensus that
the phase component of the Fourier spectrum mainly retains semantic informa-
tion, and the amplitude contains style features. Hence, these methods trans-
form the image by exchanging the amplitude signals of the images in different
domains. However, in the single-DG setting, we are unable to obtain informa-
tion from other domains, so we choose to directly perturb the amplitude signal
reasonably.

An observation inspired the module. We decompose the source image through
FFT to get its amplitude, then shift the low-frequency components to the center
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and visualize it, as shown in Fig. 2. In the image, the center is brighter than the
surrounding areas, and the brightness fades outward in a circular pattern. It
should be noted that the relative pixel values in the image are calculated by
applying a logarithmic function to the original amplitude value. Next, we view
the raw values of the amplitude values and find that the values of the low fre-
quency in the center are much higher than in the other regions. Typically, values
in the centermost area are in the thousands to hundreds of thousands, while
values in the surrounding region decay rapidly to tens to hundreds, and values
in the outermost region are usually in the single digits.

In general, the perturbation for an image signal is to multiply the original
value by a scaled value obtained by sampling in a Gaussian distribution, and
we follow this practice for the perturbation of the amplitude map. However, due
to the significant differences in the amplitude values of the different frequencies,
simply scaling all the values with a same distribution would result in a limited
augmentation. Combined with the above observations, we believe that the degree
of perturbation should be small for the central low-frequency values, while the
degree of perturbation can be gradually increased for the surrounding values,
i.e., the larger the value, the smaller the degree of perturbation, and vice versa.

Fig. 2. Our observation of amplitude map (values processed by the log function). It
can be seen that values in the low-frequency region are much higher than those in the
high-frequency region.

Based on the above views, we propose the Spatial Amplitude Perturbation
Module (SAPM). We first decompose the original image into amplitude and
phase maps through FFT. Denoted the amplitude map as A(i, j), the perturbed
amplitude map as P (i, j), where (i, j) is the coordinates of the points in ampli-
tude map and (0, 0) is the center point coordinate, i ∈ {−H

2 , H
2 }, j ∈ {−W

2 , W
2 },

where H and W represent the height and width of the image, respectively.
For the center point (0, 0), its perturbation scaling values μ(0, 0) can be

obtained by sampling from a Gaussian distribution with a mean of 1 and a
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variance offset of β, β usually is set as 0.5, and then the original value A(0, 0) is
multiplied by the perturbation scaling value to get the perturbed value P (0, 0),
which can be expressed as:

P (0, 0) = A(0, 0) ∗ μ(0, 0), μ(0, 0) ∼ N(1, β) (1)

For other points, we use the spatial distance between the point and the
center point to determine the variance value of the Gaussian distribution that
is used for sampling perturbation scaling value. The spatial distance D(i, j) can
be acquired by following formula:

D(i, j) =
i2 + j2

max(i2 + j2)
(2)

where max(i2 + j2) is the maximum distance from the center point, which is
divided to obtain the normalized distance. Then the variance σ2

i,j is formulated
as:

σ2
i,j = α ∗ D(i, j) + β (3)

where α is the distance coefficient and is set as 6, β is the variance offset in Eq. 1.
Finally, the perturbed amplitude map can be represented as:

P (i, j) = A(i, j) ∗ μ(i, j), μ(i, j) ∼ N(1, σ2
i,j) (4)

After obtaining the perturbed amplitude map P (i, j), combine it with raw phase
map through IFFT to get the augmented image:

xaug = IFFT (P (i, j), RawPhase) (5)

3.3 Features Sensitivity Guidance

After obtaining the augmented image, we feed it along with the raw image to
the subsequent segmentation network. Although SAPM can simulate domain
shift and greatly expand data diversity, the ability of Gaussian perturbations
is limited, which may result in the network learning more about domain-shared
features. For this purpose, we apply a simple and effective method to guide the
network to learn domain-invariant features.

Previous works on single-DG [8,26] have shown that shallow features in dif-
ferent channels are differently sensitive to domain shift. Hence, we expect the
segmentation network to have the ability to learn channels that are greatly
affected by domain shift and suppress them.

The method we performed is called feature sensitivity guidance, which learns
domain-invariant features from the perspective of feature channels. The sensitiv-
ity guidance guides the network to focus on domain-invariant feature channels
via SENet [6].

Specifically, we first extract the low-level features fori and faug from the raw
image xori and augmented image xaug and then subtract them to obtain the
feature differences vector FD, which can be described as:

FD ∈ RB×C×1×1 = GAP (‖fori − faug‖) (6)
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where fori, faug ∈ RB×C×H×W , and GAP is global average pooling. Then the
sensitivity vector S ∈ RB×C×H×W can be obtained by normalizing FD:

S =
FD − FDmin

FDmax − FDmin
(7)

where FDmin is the minimum of FD and FDmax is the maximum of FD.
The feature sensitivity vector S reflects how sensitive the features of different
channels are to domain shift. A channel with a larger value means that it is
more sensitive to domain shift and vice versa, those feature channels that are not
sensitive to domain shift are considered as domain-invariant features.

Then fori and faug as input features f in are send to SE module to get channel
attentions CA and output features fout respectively, which can be formulated
as:

CA ∈ RB×C×1×1 = σ(Conv(GAP (f in))) (8)

fout = CA ⊕ f in (9)

where GAP is the global average pooling, Conv is a 1 × 1 convolution layer and
σ refer to sigmoid function. We hope that the channel attention CA and the
sensitivity vector S are negatively correlated because we want the network to
pay more attention to channels that are not sensitive to domain shift. The loss
between them is defined as guidance loss Lossg:

Lossg = ‖log(CA)log(S) − 1‖2 (10)

The Lossg can constraint the attention CA close to 0 when sensitivity vector S
close to 1 for each channel, which will guide the network to suppress channels
sensitive to domain shift and emphasize channels insensitive to domain shift.

For the loss of segmentation task Lossseg, we employ binary cross-entropy
loss and dice loss. Meanwhile, we constrain the consistency between the output
of the origin image and the output of the augmented image through consistency
loss Losscon, which can be represented as:

Losscon = MSE(yori − yaug) (11)

where yori, yaug are the network output of xori, xaug that processed by sigmoid
function. Thus, the total loss can be written as:

Losstotal = λ1 ∗ Lossseg + λ2 ∗ Losscon + λ3 ∗ Lossg (12)

where λ1, λ2, λ3 are hyperparameters to balance each loss, set to 1, 0.5, and 0.5
respectively in our experiment.

4 Experiments and Results

4.1 Datasets and Evaluation Metrics

The dataset used in this paper is the RIGA+ dataset [7], which is first utilized to
evaluate unsupervised domain adaption method in fundus image segmentation.
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Specifically, the RIGA+ dataset contains annotated fundus images from five
domains across two datasets, among which BinRushed and Magrabia are from
the RIGA dataset [1], and Base1, Base2, and Base3 are from the MESSIDOR
dataset [4]; every image is annotated by six ophthalmologists, we choose the
first ophthalmologist’s annotations as the masks. Data from different domains
are captured by different devices or different medical institutes.

For the evaluation, we use BinRushed and Magrabia as source domains for
training separately, then evaluate performance of models on images from the
Base1, Base2, and Base3 domains. The dice similarity coefficient is employed
to evaluate models’ segmentation performance, and a higher Dice coefficient
represents better performance.

4.2 Implementation Details

The origin images are center-cropped and resized to 512 × 512 and normalized
to [0, 1], the batch size is set to 8. We employ a U-net based structure as the
segmentation network for our method as well as for all the competing methods,
and we employ a modified ResNet-34 [5] as the encoder. We implement our
experiment with the PyTorch framework on one Nvidia RTX 3080 GPU with 10
GB memory and train the model for 200 epochs on each source domain. We also
employ the SGD optimizer with an initial learning rate of 0.01 and a momentum
of 0.99 to optimize our model. We utilize the average of the test results of the
last 10 epochs as our method’s final result because the network has converged
by this time. We also report the standard deviation of the final result, which can
illustrate the stability of the network.

4.3 Comparative Experiments

Table 1. Comparison results of using BinRushed as source domain

Methods Base1 Base2 Base3 Average

ODstd OCstd ODstd OCstd ODstd OCstd ODstd OCstd

w/o SDG 89.771.14 75.710.68 79.321.22 68.392.17 87.031.59 76.272.31 85.37 73.46

MaxStyle [2] 93.180.34 82.330.76 87.970.96 75.890.88 93.070.51 83.210.74 91.41 80.48

GIN-IPA [14] 93.070.77 81.921.34 92.650.92 81.010.98 92.870.71 82.201.01 92.86 81.71

ADS [28] 93.510.64 80.251.71 93.180.66 82.030.49 92.790.19 81.931.60 93.15 81.40

Dual-Norm [34] 92.991.89 82.380.92 91.720.52 80.291.22 92.310.44 82.930.87 92.34 81.87

SLAug [20] 94.110.39 84.070.95 93.960.36 82.151.21 94.780.43 83.000.27 94.28 83.07

CCSDG [8] 96.070.27 85.690.31 95.090.24 84.880.48 95.890.09 85.100.19 95.68 85.22

Ours 95.930.09 86.790.16 96.010.24 85.010.12 95.960.17 86.870.21 95.96 86.22

We first compare our method with one baseline, named ‘w/o SDG’ (i.e. train-
ing on source domains then testing on target domains without using single-DG
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Table 2. Comparison results of using Magrabia as source domain

Methods Base1 Base2 Base3 Average

ODstd OCstd ODstd OCstd ODstd OCstd ODstd OCstd

w/o SDG 87.200.44 75.810.79 83.631.11 74.980.42 88.930.39 79.860.57 86.59 76.88

MaxStyle [2] 90.330.32 79.631.27 89.880.33 79.820.70 91.390.67 81.971.02 90.53 80.47

GIN-IPA [14] 90.070.74 78.001.07 87.340.92 76.771.83 90.350.27 81.211.34 89.25 78.66

ADS [28] 90.921.03 78.780.56 90.111.97 79.191.07 91.261.99 80.551.28 90.76 79.51

Dual-Norm [34] 93.010.30 81.380.56 92.130.39 81.190.42 92.330.36 81.250.64 92.49 81.27

SLAug [20] 92.780.87 82.711.18 93.010.36 81.550.31 93.430.26 81.780.54 93.07 82.01

CCSDG [8] 95.220.13 85.690.33 94.500.17 85.030.29 94.620.07 86.400.37 94.78 85.71

Ours 95.370.06 85.910.19 95.930.11 85.880.13 95.640.03 86.780.17 95.65 86.19

methods). Then, we choose six recent medical SDG methods to compare with our
method, namely MaxStyle [2], GIN-IPA [14], ADS [28], Dual-Norm [34], SLAug
[20], CCSDG [8]. As we mentioned in the introduction, most single-DG methods
are designed for grayscale images, so most of these methods are also designed for
grayscale images. MaxStyle [2] extended the style space by introducing noise
and adversarial training. GIN-IPA [14] augmented images by global intensity
non-linear augmentation and removed the irrelevant variables from a causal
perspective. ADS [28] generated pseudo modality through adversarial training
and mutual information regularization. Dual-Norm [34] assisted in selecting the
optimal normalization path for unseen domain images through style informa-
tion. SLAug [20] obtained augmented images by performing different intensity
transformations on different regions of the mask. CCSDG [8] acquired style rep-
resentation and structural representation through feature decoupling and only
performed segmentation based on structural representation.

Qualitative comparison of our method with the competing methods is sum-
marized in Table 1 and Table 2, showing the Dice coefficient results with Bin-
Rushed and Magrabia as the source domains, respectively. We also visualize
prediction results of images from different domains in Fig. 3 and Fig. 4.

As shown in the Table 1 and Table 2, all the methods outperform the baseline
due to the domain shift between the source domain used for training and the
target domain used for testing, making it difficult for model trained simply using
the source domain to generalize to unseen domains.

Among all the methods, our method achieves the highest average Dice coef-
ficient. Compared with the methods designed for grayscale medical images, our
method has a significant improvement, indicating that our method has more
advantages in color medical images. This is mainly because the methods designed
for grayscale images usually transform pixel intensity values in a single channel,
while color images usually have three channels. The difference in the number of
channels in color images can affect the effectiveness of these methods. Even if
value transformation is performed separately for each channel of a color image,
the effect is limited and cannot simulate complex variations.
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In contrast, our augmentation method is based on the Fourier transform,
which is the most commonly used method in multi-source setting to augment
color medical images, and its effectiveness has been demonstrated in many works.
Therefore, the effectiveness can be guaranteed when applied to single-source
setting. At the same time, feature sensitivity can explicitly guide the network
to learn domain-invariant features. The combination of them can significantly
improve the generalization ability of the model.

Fig. 3. Our method’s visualization results of images from different domains

Fig. 4. Comparative visualization results of images from different domains predicted
by our and other competing methods

The method CCSDG also learns domain-invariant features from the perspec-
tive of feature channels and is also the optimal method on this dataset, but our
method is better than it, and the key reason is that our augmentation method
makes the data more diverse, making the network can better learn domain-
invariant features.

In Fig. 3, we visualize our results on images from different unknown domains,
and Fig. 4 shows the comparison of our method’s segmentation results with other
methods. As can be seen from the figures, our method can more accurately seg-
ment target structures when encountering images from unseen domains and the
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boundaries of segmentation results is relative smooth. Our method is able to
maintain segmentation accuracy even when the domain shift in the unseen
domains is significant, which is difficult for other methods to do so.

4.4 Ablation Analysis

Table 3. Ablation Experiments

U-net SAPM NormAug Sensitivity BinRushed Magrabia

OD OC OD OC

� 85.37 73.46 86.59 76.88

� � 94.98 84.41 94.55 84.05

� � 90.67 80.12 90.13 79.64

� � � 89.07 78.62 89.95 79.45

� � � 95.96 86.22 95.65 86.19

To evaluate the effectiveness of SAPM and sensitivity guidance, we conduct abla-
tion experiments using BinRushed and Magrabia as the source domain, respec-
tively. Results of the ablation experiments are shown in Table 3. The first line
is the result of the baseline U-net, the second line is the result of only using
the SAPM proposed in this paper based on U-net, the third line is the result
of only using common augmentation methods on u-net, such as color jittering
and Gaussian blurring, the fourth line is the result obtained by replacing the
SAPM with the common augmentation methods and using sensitivity to guide
the network, and the last line is the result of the overall method of this article.

As we can see from Table 3, the results are greatly improved with the use of
SAPM, which demonstrates that our augmentation method can greatly expand
the diversity of data. Although normal augmentation methods can also compen-
sate for the lack of cross-domain data to a certain extent, their effectiveness is far
inferior to our proposed method. After further adopting sensitivity guidance, the
performance of our network has been further improved.

However, after using sensitivity guidance on normal augmentation methods,
the results do not show significant changes and even decreased. This may be due
to the limited data diversity expansion ability of normal augmentation methods,
which results in the guidance network being unable to effectively learn domain-
invariant features and overfitting on the source domain. The results in the table
also show that expanding data diversity is the most direct and effective way to
improve the model’s generalization ability.

We also conduct ablation experiments on the hyperparameters α and β. We
use BinRushed as source domain and Base1, Base2, and Base3 as the target
domains. The average results are shown in Fig. 5. We first fix α to 6 and vary
β, and find that the generalization performance firstly increases and reaches a
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maximum at β is 0.5, then the performance is stable or decreases slightly. When
α takes other values, the overall influence of variation in β on performance is
the same. Next, we fix β to 0.5 and vary α, the performance increases first
and reaches its maximum when α is 6, and then the performance gradually
decreases. Intuitively, β offers the baseline value to perturbation and thus has
less impact on generalization performance after exceeding a certain threshold,
while α controls overall intensity applied to perturbations, so that variation of
α has a greater impact on the perturbation effect and performance. We set beta
to 0.5 and alpha to 6 in this paper, but the optimal values may vary slightly
depending on datasets and tasks.

Fig. 5. Effect of hyperparameters α and β. α is fixed to 6 when varying β, β is fixed
to 0.5 when varying α.

5 Conclusion

In this paper, we propose a novel Fourier-based data augmentation method called
SAPM for color medical images, which can greatly expand the diversity of data
without using information from other domains. The SAPM uses different Gaus-
sian distributions to perturb different regions of the amplitude map, thereby
avoiding the need for information from other domains. Also, we apply feature
sensitivity guidance to guide the network to learn domain-invariant features
to improve the generalization performance of the model further. The feature
sensitivity guidance can guide the network to suppress feature channels sensi-
tive to domain shift and emphasize feature channels insensitive to domain shift.
Our results on the cross-domain fundus dataset demonstrates the effectiveness
of SAPM and sensitivity guidance. The results of our ablation experiments show
that SAPM can significantly improve the generalization performance of the net-
work by expanding the data diversity. Meanwhile, the method proposed in this
article also has certain limitations. For example, when encountering grayscale
medical images, this method is not as effective as other methods specifically
designed for grayscale images. We will continue explore and try to address these
limitations in our future works.
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Abstract. In recent years, the image analysis landscape is witnessing a
paradigm shift with the emergence of the vision transformer as a better
alternative to Convolutional Neural Networks (CNNs). Transformers pro-
cess sequences globally with self-attention capturing long-range features,
while CNNs extract features locally through convolutional operations.
We propose the adoption of Swin Transformer as backbone for calcifi-
cation cluster detection in mammography, assessing its efficacy through
a comprehensive experimental study comparing transformer-based and
CNN-based models. Our experiments conducted on the large-scale mam-
mography image database OMI-DB demonstrate a notable superiority of
the Swin Transformer architecture. The best-performing Swin backbone
obtained a sensitivity of 80.67% at 0.1 false positive per image, with a
+3.34% improvement over the best convolutional backbone. Our findings
underscore the efficacy of transformer-based architectures for detecting
clusters of calcifications in mammography, offering improved diagnostic
accuracy in this field.

Keywords: Calcifications detection · Mammography · Transformers

1 Introduction

Breast cancer is the most common cancer among women and is the second lead-
ing cause of death. Throughout the years, the incidence of breast cancer has risen
worldwide, and one million new cases are reported annually [13,19]. The early
diagnosis of breast cancer is essential for improving survival chances, underscor-
ing the adoption of screening programs in many countries. Mammography stands
out as one of the most widely utilized imaging modalities both for screening and
diagnostic purposes [17]. Calcifications are tiny deposits of calcium that appear
as bright spots in mammography images, and they are recognized among the
initial discernible indicators of breast cancer. Moreover, a multitude of breast
lesions exhibit associations with calcifications. [2,35].
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15313, pp. 17–33, 2025.
https://doi.org/10.1007/978-3-031-78201-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78201-5_2&domain=pdf
http://orcid.org/0000-0002-6225-6680
http://orcid.org/0000-0003-0840-7350
http://orcid.org/0000-0002-5033-9323
https://doi.org/10.1007/978-3-031-78201-5_2


18 M. Cantone et al.

Computer Aided Diagnosis (CAD) systems are designed to help radiologists
in analyzing medical images. Traditionally, these systems are based on image
processing techniques and hand-crafted features designed by human experts.
Early approaches to the detection of calcifications include Difference of Gaus-
sian (DoG) filters, thresholding, and morphological operation [9,30]. With the
advancement of Machine Learning (ML), many of these approaches have been
used in conjunction with powerful statistical models and frequently employed
for data preprocessing [14,29,37]. Recent improvements in medical image analy-
sis using Deep Learning (DL) contribute to enhancing the performance of CAD
systems [17,23]. In the last decade, the most popular approaches have been
based on Convolutional Neural Networks (CNNs). These models are com-
posed of convolutional layers, designed to automatically learn spatial hierar-
chies of features from raw input data. CNNs have been widely applied for mam-
mography analysis, including single calcification detection and cluster detec-
tion [1,6,12,15,31,33].

In 2017, the introduction of transformer architecture [36] established new
state-of-the-art (SOTA) in many different fields, even in the medical image
domain. Although the transformer has replaced many specialized neural archi-
tectures for several domains, its superiority remains uncertain across all sce-
narios, considering its high demand for training data and the lack of certain
biases, such as locality [5]. However, the sparse and scattered nature of calci-
fications lends itself well to the global contextual understanding provided by
transformers and the capability of attention to correlate various parts of the
image. Furthermore, the small patch size adopted by some recent visual trans-
formers, like the Swin Transformer [25] with a patch size of 4, can be partic-
ularly effective in capturing the subtle variations in the image associated with
small lesions such as calcifications. Transformer-based models have been applied
for various tasks related to mammography analysis including single-view and
multi-view mammography classification [5,8], mass segmentation [24] and mass
detection [3].

The main contributions of this work are twofold. We propose the adoption
of the Swin Transformer, a hierarchical vision transformer backbone, as multi-
scale feature extractor for the detection of calcification clusters in mammography
images. Moreover, we investigate the benefits of using transformers through com-
prehensive experimentation using different convolutional backbone architectures
in combination with three object detection heads on the OMI-DB dataset [16].
To the best of our knowledge, this is the first work applying transformer models
to the detection of calcification clusters.

The rest of this work is organized as follows. Section 2 describes the dataset
and the network models employed. Details about the experimental methodol-
ogy, the implementation, and the metrics used are provided in Sect. 3. In Sect. 4
the obtained results are presented and discussed. We conclude with a summary
and a critical discussion in Sect. 5.
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2 Materials

2.1 Datasets

OMI-DB [16] is a large mammography database, the creation of which was
funded by Cancer Research UK. The dataset contains images in DICOM for-
mat coupled with anonymised clinical information, including bounding boxes
and lesion type annotations. The images include both for processing and for
presentation mammograms from scanners of different vendors such as Hologic
Inc., Siemens, Philips, General Electric Medical System, and Bioptics Inc. For
this study, only for presentation images from Hologic Inc. scanners were selected
as they represented the vast majority of the dataset. For training DL models we
used only the images suitable for calcification detection. Two types of images
were selected: normal mammograms with no lesions present, and images asso-
ciated with malignancies containing one or more calcification clusters. Images
with calcification clusters resulting in a benign biopsy were discarded and not
included either as normal or positive. Visual inspection of all the selected images
was performed to obtain a clean dataset without unwanted objects such as
implants, marker clips, bands across the image and overlaid text. The dataset
obtained consists of 9, 895 normal images and 2, 563 mammograms containing
2, 962 calcification clusters. We saved all mammograms in 16-bit PNG format for
faster processing with respect to DICOM format. In Fig. 1 are reported examples
taken from the OMI-DB dataset.

Fig. 1. Example of mammograms from the OMI-DB dataset. (a) a normal image, (b) a
malignant image with two clusters of calcifications, (c) magnification of the two clusters
present in (b).
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2.2 Backbones

ResNet. In 2015 He et al. proposed the ResNet architecture [18] for addressing
the vanishing gradient problem encountered in very deep networks. They intro-
duce skip connections which enable the flow of information from earlier layers
to later layers by bypassing intermediate layers. This facilitates the training of
deeper networks by allowing the gradients to propagate more effectively during
backpropagation. In ResNet, each layer learns residual functions with reference
to the layer inputs, rather than directly learning underlying mapping functions.

ResNetStrikesBack. Taking advantage of methodological innovations in neu-
ral network training strategies and data augmentation, Wightman et al. [38]
trained a ResNet-50 with a procedure that integrates such advances. With the
new training setting, a vanilla ResNet-50 managed to achieve an 80.4% top-1
accuracy on ImageNet [10] without extra data or distillation, a big improvement
compared to the 75.3% obtained in the original work.

EfficientNet. Characterized by the efficient use of computational resources,
EfficientNet [34] is a CNN that employs a compound scaling method that uni-
formly scales the networks depth, width, and resolution to balance model com-
plexity and computational cost. The baseline model on which compound scal-
ing is applied is obtained by leveraging a multi-objective neural architecture
search that optimizes both accuracy and FLOPS. These design principles make
EfficientNet well-suited for resource-constrained environments and applications
where computational efficiency is critical.

Swin. The Shifted Window Transformer [25] is a transformer-based architecture
that incorporates hierarchical processing of image patches to capture both local
and global contextual information effectively. Unlike traditional convolutional
neural networks, which process images in a sequential manner, Swin Transformer
organizes image patches into a hierarchical structure and processes them through
multiple stages, each consisting of alternating layers of local and global self-
attention mechanisms. This hierarchical processing enables Swin Transformer
to capture information at different scales efficiently, facilitating better modeling
of spatial relationships within images. Moreover, Swin Transformer introduces
shifted windows to capture long-range dependencies effectively while maintaining
linear computational efficiency. Swin Transformer achieved SOTA performance
in various computer vision tasks, including image classification, object detection,
and semantic segmentation. In Table 1 are reported the architectural parameters
for the Swin models employed in this work.

ConvNeXt. In 2022 Liu et al. present ConvNeXt [26], a modified variant of the
ResNet-50 inspired by the architectural innovations of the Swin Transformer.
Mimicking Swins macro design, ConvNeXt introduces changes regarding the
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Table 1. Architectural parameters for the two Swin Transformers variants employed
in this work.
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Swin-T [2, 2, 6, 2] [3, 6, 12, 24] 96 0 0.2 7 4

Swin-B [2, 2, 18, 2] [4, 8, 16, 32] 128 0 0.3 7 4

number of layers in each block and embraces patch-based image representations.
Furthermore, micro-level refinements such as grouped convolution and the adop-
tion of GeLU activation functions are employed. Remarkably, ConvNeXt achieves
competitive performance without resorting to self-attention, challenging atten-
tion mechanism as the main actor for achieving competitive performance.

2.3 Object Detection Heads

RetinaNet. Anchor boxes were introduced in the field of object detection with
the RetinaNet [21] architecture. They are predefined bounding boxes of various
sizes and aspect ratios, allowing the model to efficiently detect objects across
different scales and orientations in images. The RetinaNet head consists of two
key subnetworks: the classification subnet and the box regression subnet. The
classification subnet employs a series of convolutional layers to generate class
predictions for each anchor box. Meanwhile, the box regression subnet utilizes
similar convolutional layers to predict bounding box displacement, refining the
initial anchor box proposals. The focal loss function dynamically adjusts the loss
contribution of each anchor box based on its classification difficulty. This loss
mechanism effectively mitigates the impact of class imbalance, allowing Reti-
naNet to achieve superior performance on object detection tasks across various
datasets and benchmarks.

RepPoints. Introduced by Jiang et al. in 2020 [39], the RepPoints head
approaches the object detection task by leveraging representative points for
precise localization and feature representation. RepPoints focuses on compact
descriptors rather than bounding boxes or anchor points, enhancing adaptabil-
ity to diverse object shapes and sizes. Its architecture comprises a regression
subnet for refining object proposals and a representative point generation mod-
ule for accurate localization.

DDETR. The Deformable Detection Transformer was proposed by Zhu et
al. [40] by addressing the limitation of the DETR [7] regarding feature spa-
tial resolution and convergence speed. It achieves this by combining the best
of the sparse spatial sampling of deformable convolution, and the relation mod-
eling capability of Transformers. It proposed the deformable attention module,
which attends to a small set of sampling locations as a pre-filter for prominent
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key elements out of all the feature map pixels. Multiscale deformable attention
modules facilitate the effective handling of spatial information across different
scales and enhance model robustness to object size variations.

3 Experimental Methodology

DL models for object detection comprise a backbone that extracts features from
the raw input image and a network head that localizes and classifies the objects
returning labels and bounding boxes as output. In this work, we propose the
Swin Transformer as backbone for calcification cluster detection, comparing its
efficacy against widely used CNNs through an extensive experimental study.
Overall we used 8 backbone models: ResNet50, ResNet101, ResNetStrikesBack,
EfficientNet, ConvNeXt-T, ConvNeXt-S, Swin-T, Swin-B, and 3 heads: Reti-
naNet, RepPoints and DDETR. We train and test each backbone-head combi-
nation resulting in 24 experiments. All the backbones were pretrained on Ima-
geNet [10] whereas the different network heads were pretrained on COCO [22]
then the entire architecture was fine-tuned on our dataset.

3.1 Data Preprocessing

The following data preprocessing was applied. First, we segmented the breast
area discarding as much background as possible. This reduced the image size
speeding up the training and allowing higher resolution and batch size. Then,
pixel values were normalized to zero mean and unit standard deviation and
the images were resized to 1280 × 800 resolution. In order to use the model
weights pretrained on ImageNet and COCO, we convert all the images to RGB by
replicating the grayscale channel.

3.2 Data Augmentation

Following the work of Betancourt Tarifa et al. [3] on the mass detection in mam-
mography, we applied the following data augmentation techniques, each one with
a probability of 50%: (i) horizontal flip; (ii) random crop; (iii) contrast trans-
formation, with magnitude values of [0.4, 0.8, 1.5]; and (iv) brightness trans-
formation, with magnitude values of [0.3, 0.7, 1.3]. For Swin-B and ResNet101
backbones the probabilities were increased to 60%.

3.3 Training Hyperparameters

The dataset was split randomly using a 70-10-20 ratio in train, validation, and
test set. We trained the models for a maximum number of epochs ranging from 30
to 100. The best model was selected by mean Average Precision (mAP) over IoU
thresholds from 0.1 to 0.5 with a step of 0.05. We employed either Stochastic
Gradient Descent or AdamW [27] using different learning rates and a batch
size of 2. We adopt an exponential decay learning rate scheduler with linear
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warmup with different rates of decay and step epoch. In Table 2 are reported the
hyperparameters for all the trained architectures. Optimizations were conducted
exclusively on the validation set.

Table 2. Training hyperparameters. γ indicates the learning rate decay and the step
column refers to epochs after which the learning rate is adjusted.

Backbone Head Optimizer LR Best epoch (total) γ Step

ResNet50 RetinaNet SGD 7.81 × 10−5 17 (30) 0.2 [6, 12, 18, 24]

RepPoints SGD 1.00 × 10−4 12 (30) 0.1 [6, 12, 18, 24]

DDETR AdamW 1.25 × 10−5 17 (50) 0.1 [40]

ResNet101 RetinaNet SGD 7.81 × 10−5 13 (30) 0.2 [6, 12, 18, 24]

RepPoints SGD 1.00 × 10−4 16 (30) 0.2 [6, 12, 18, 24]

DDETR AdamW 1.25 × 10−5 23 (50) 0.1 [40]

ResNet- StrikesBack RetinaNet SGD 1.00 × 10−4 27 (50) 0.1 [6, 12, 18, 24]

RepPoints AdamW 1.25 × 10−5 21 (40) 0.1 [36]

DDETR AdamW 1.25 × 10−5 30 (100) 0.1 [40]

EfficientNet RetinaNet SGD 1.00 × 10−4 15 (30) 0.1 [6, 12, 18, 24]

RepPoints AdamW 1.00 × 10−4 15 (30) 0.4 [6, 12, 18, 24]

DDETR AdamW 1.25 × 10−5 65 (100) 0.1 [40]

ConvNeXt-T RetinaNet AdamW 1.25 × 10−5 85 (100) 0.1 [36, 44]

RepPoints AdamW 1.25 × 10−5 60 (100) 0.1 [36, 44]

DDETR AdamW 1.25 × 10−5 29 (100) 0.1 [40]

ConvNeXt-S RetinaNet AdamW 1.25 × 10−5 96 (100) 0.1 [36, 44]

RepPoints AdamW 1.25 × 10−5 74 (100) 0.1 [30, 45, 60]

DDETR AdamW 1.25 × 10−5 35 (100) 0.1 [40]

Swin-T RetinaNet AdamW 1.25 × 10−5 12 (30) – –

RepPoints AdamW 1.25 × 10−5 30 (50) 0.1 [36, 44]

DDETR AdamW 1.25 × 10−5 35 (50) 0.1 [40]

Swin-B RetinaNet AdamW 1.25 × 10−5 19 (30) – –

RepPoints AdamW 1.25 × 10−5 20 (30) – –

DDETR AdamW 1.25 × 10−5 18 (50) 0.1 [40]

3.4 Performance Evaluation

To evaluate the performances of the employed architectures, we calculated
cluster-based Free Receiver Operating Characteristic (FROC) curves that report
the True Positive Rate (TPR) over the average number of False Positives per
Image (FPpI) by varying the decision threshold applied to the scores associated
with the detected object. A predicted box was considered a true positive when
its IoU with the groundtruth cluster bounding box was equal or greater than
0.1. All predictions on normal images were counted as false positives. From the
FROC curve we extract 3 metrics: the Area Under the FROC Curve (AUFC) in
the FPpI ranges [0, 0.1] and [0, 1], and the TPR at 0.1 FPpI.
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3.5 Statistical Analysis

To assess the statistical relevance of differences in performance metrics between
pairs of backbones sharing the same head, the bootstrap method [32] was
applied. We sampled patients with replacement 10,000 times, with each boot-
strap sample containing the same number of patients as the original set. At
each bootstrapping iteration, FROC curves were recalculated for each method,
and differences in the metrics considered between methods under comparison
were evaluated. p-values were computed as the fraction of performance differ-
ences that were negative or zero, corresponding to cases where the target method
did not outperform the method compared (null hypothesis). Performance differ-
ences were considered statistically significant if p-value < 0.05.

4 Results and Discussion

In Tables 3 and 4 are reported the values of TPR at 0.1 FPpI, AUFC in the
ranges [0, 0.1] and [0, 1] for each backbone-head combination tested. Across
all the heads and metrics considered, the Swin-B backbone demonstrates supe-
rior performance compared to other backbones employed, achieving an aver-
age +4.11% TPR with respect to the top-performing convolutional backbone,
ConvNeXt-S. Swin-T, a less complex variant of Swin-B, did not surpass the
convolutional counterpart across all heads and metrics. However, on average it
performs better than other CNNs, exhibiting a TPR increment of +2.06% com-
pared to ConvNeXt-S, despite employing fewer parameters. Among the heads,
the best result was yelded by RepPoints, followed by RetinaNet and DDETR
with a TPR of 80.67%, 80.00%, and 78.67%, respectively. The absolute high-
est result was achieved by RepPoints/Swin-B with a 80.67% TPR, a 71.13%
AUFC[0,0.1] and a 86.83% AUFC[0,1]. In Fig. 2 and Fig. 3 models outputs and
radiologist annotation are represented on examples images taken from the test
set. The results indicate Swin-B as an effective alternative over CNN backbone
for cluster detection in mammography. This can be due to a more effective fea-
tures extraction since the results are the best across all the heads employed.
Additionally, the RepPoints/Swin-B architecture, which features a combination
of a transformer backbone and a convolutional head, highlights the importance
of integrating these two different paradigms.

Figure 4 shows the FROC curves for all the models employed with a sta-
tistical comparison between the best transformer and convolutional backbone
for each head, selected by AUFC[0,0.1]. For the RetinaNet and RepPoints heads
the FROC of the Swin-B is always higher then all the others, except for a small
range near 0.01 FPpI where it is surpassed by the EfficientNet in the case of Reti-
naNet head, and ConvNeXt-S in the case of RepPoints. For the DDETR head,
the Swin-B and the ConvNeXt-S achieve comparable performance. The bottom-
right plot of Fig. 4 shows a clear overlap between the two FROCs. In general, the
sensitivity between Swin-B and the best convolution backbone is comparable in
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Table 3. TPR at 0.1 FPpI for each backbone-head combination. In bold the best result
obtained for each head.

TPR at 0.1 FPpI

RetinaNet RepPoints DDETR

ResNet50 70.17% 71.83% 67.67%

ResNet101 71.00% 74.33% 70.17%

ResNetStrikesBack 74.17% 74.50% 69.83%

EfficientNet 75.00% 77.33% 63.67%

ConvNeXt-T 70.00% 56.33% 76.50%

ConvNeXt-S 76.50% 74.00% 76.50%

Swin-T 77.17% 79.17% 76.83%

Swin-B 80.00% 80.67% 78.67%

Table 4. AUFC for each backbone-head combination. In bold the best result obtained
for each head.

AUFC[0,0.1] AUFC[0,1]

RetinaNet RepPoints DDETR RetinaNet RepPoints DDETR

ResNet50 56.27% 61.39% 55.12% 80.46% 81.78% 76.67%

ResNet101 59.69% 63.33% 57.73% 81.64% 82.39% 79.99%

ResNetStrikesBack 63.40% 63.99% 54.98% 83.18% 83.00% 79.59%

EfficientNet 64.37% 65.17% 48.73% 83.45% 84.44% 73.80%

ConvNeXt-T 58.07% 45.11% 63.81% 77.29% 65.60% 83.12%

ConvNeXt-S 64.15% 66.14% 61.84% 81.09% 78.20% 84.09%

Swin-T 63.41% 70.20% 63.98% 86.03% 86.26% 83.50%

Swin-B 68.36% 71.13% 65.60% 86.27% 86.83% 84.39%

the FPpI range [0.01, 0.03] while after these values the transformer-based back-
bone clearly surpasses all the convolutional models. Swin-B consistently outper-
forms convolutional backbones, particularly in higher false positive rate ranges,
indicating its robustness in handling challenging detection scenarios. We believe
that the Swin Transformers hierarchical representation learning and spatial con-
text awareness contributed to its superior performance for calcification cluster
detection in mammography. By employing a self-attention mechanism, the model
captures intricate patterns at multiple scales, effectively discerning calcification
clusters from surrounding breast tissue. This hierarchical approach allows the
Swin Transformer to encode complex spatial relationships within mammogram
images, enabling it to effectively differentiate between true calcification clusters
and background noise or artifacts. The models ability to integrate spatial context
information across the entire image facilitates robust detection by considering the
relative positions and interactions between pixels and regions.
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Fig. 2. Example images from the test set with overlaid annotations and network bound-
ing boxes, with each subplot referring to a different head. In red the models outputs
using the Swin-B as backbone; in green, the models outputs using the best convolu-
tional backbone for the specific head selected by maximizing the AUFC[0,0.1]; in yellow
the radiologist annotation. (Color figure online)

Fig. 3. Example images from the test set with overlaid annotations (yellow) and
RepPoints/Swin-B predicted bounding boxes (red) at 0.5 threshold score. (a) and (b)
show false positive examples, and (c) an undetected cluster. (Color figure online)
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Table 5 illustrates the computational demand in GFLOPs for each detector
model.

Table 5. GFLOPs for each backbone-head combination.

ResN
et5

0

ResN
et1

01

ResN
etS

trik
esB

ack

Efficien
tNet

Conv
NeXt-T

Conv
NeXt-S

Swin-T
Swin-B

RetinaNet 206 282 204 117 562 648 211 444

RepPoints 190 266 190 102 498 584 195 428

DDETR 195 271 195 108 564 651 516 749

In Table 6 a comparison with existing methods is reported. The results are
not directly comparable since they were obtained with different datasets and at
different FPpIs. It can be observed that the proposed approach yields signif-
icantly lower false-positive values compared to those typically reported in the
literature while maintaining a high TPR.

Table 6. Comparison with SOTA methods for calcification clusters detection.

Dataset TPR FPpI

Gallardo et al., 2012 [11] DDSM 0.82 2.55

Bria et al., 2016 [4] Private dataset 0.96 0.21

Karale et al., 2019 [20] InBreast 1 1.78

Rehman et al., 2021 [31] DDSM 0.97 2.35

Cantone et al., 2023 [6] OMI-DB 0.44 0.1

Ours OMI-DB 0.81 0.1

4.1 Statistical Analysis

In Table 7 a statistical comparison between Swin-B and the best convolutional
backbone for each head is reported. For the RetinaNet and RepPoints heads, the
superiority of Swin-B was statistically relevant with a p-value always less than
0.018, and a TPR increment of +5.2 against the RetinaNet head, and +6.8
against the RepPoints head. The DDETR/Swin-B was not statistically better
than DDETR/ConvNeXt-S obtaining p-values sligtly greater than 0.05 for all
the metrics considered. However, the DDETR was the worst-performing head
among the three tested, indicating that is not best suited for this task. This sup-
ports the idea that transformers are not always the best choice since DDETR, a
transformer-based head, performs worst compared to the two convolution heads
RetinaNet and RepPoints.
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Fig. 4. Left: FROC curves illustrating the performance comparison of all tested back-
bones, with each subplot representing a different head. Right: Average FROC curves
obtained from 10,000 bootstrap iterations illustrating the comparison between Swin-B
and the best-performing CNN backbone for each head.
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Table 7. Statistical comparison between Swin-B and best convolutional backbone
selected by AUFC[0,0.1] using bootstrap method with 10,000 resampling.

Head Backbone ΔTPR
(p-value)

ΔAUFC[0,0.1]

(p-value)
ΔAUFC[0,1]

(p-value)

RetinaNet Swin-B vs. EfficientNet +5.2 +4.0 +4.0

(0.0035) (0.0183) (0.0012)

RepPoints Swin-B vs. ConvNeXt-S +6.8 +5.0 +8.6

(<0.0001) (0.0022) (<0.0001)

DDETR Swin-B vs. ConvNeXt-T +2.1 +1.8 +1.3

(0.0947) (0.1660) (0.1038)

4.2 External Dataset Evaluation

In this section we evaluate the detection performance of RepPoints/Swin-B and
RepPoints/ConvNeXt-S on the InBreast [28] dataset without retraining the mod-
els. The dataset consists of 105 normal images and 21 positive images with 27
annotated clusters. Figure 5 and Table 8 illustrate the obtained results. Also on
the InBreast dataset, the Swin Transformer statistically significantly outper-
forms its convolutional counterpart, achieving an increase of 20.8% in TPR,
14.5% in AUFC[0,0.1], and 4.0% in AUFC[0,1]. Moreover, the performance is
superior to that achieved on the OMI-DB dataset, indicating a strong general-
ization capability.

Table 8. Comparison between RepPoints/Swin-B and RepPoints/ConvNeXt-S on
InBreast without fine-tuning. The statistical analysis was carried out using bootstrap
method with 10,000 resampling.

Metric RepPoints/Swin-B RepPoints/ConvNeXt-S Δ-metric p-value

TPR@0.1FPpI 95.6% 74.8% +20.8% 0.0150

AUFC[0,0.1] 71.8% 57.3% +14.5% 0.0392

AUFC[0,1] 87.1% 83.1% +4.0% 0.0484
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Fig. 5. Average FROC curves obtained from 10,000 bootstrap iterations illustrating the
comparison between RepPoints/Swin-B and RepPoints/ConvNeXt-S on the InBreast
dataset without fine-tuning.

5 Conclusions

In this work, we adopted the Swin Transformer as backbone for calcifications
clusters detection in mammography comparing its performance with different
CNNs through a comprehensive experimental study. The hierarchical long-ranges
features extracted by the Swin Transformer consistently yielded superior perfor-
mances across all heads, indicating the extraction of more valuable features.
The best model achieved a remarkable result of 80.67% TPR at 0.1 FPpI and
86.83% AUFC in the range [0, 1], largely surpassing the best convolutional model
RepPoints/ConvNeXt-S by +6.8 TPR and +8.6 AUFC[0,1] with high statistical
significance (p-value < 0.0001). Relying exclusively on transformer-based models
may not always yield optimal results, and combining elements from transformer
and convolutional networks, as exemplified by the RepPoints/Swin-B model in
our study, leads to superior performance for the detection of clusters of calcifi-
cations. These insights underscore the potentiality of transformer-based archi-
tectures as backbone networks for detecting sparse lesions in medical imaging.
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H., Maćıas-Maćıas, M.: Independent component analysis to detect clustered micro-
calcification breast cancers. Sci. World J. 2012(1), 540457 (2012)

12. Ge, J., et al.: Computer aided detection of clusters of microcalcifications on full
field digital mammograms. Med. Phys. 33(8), 2975–2988 (2006)

13. Giaquinto, A.N., et al.: Breast cancer statistics, 2022. CA: Cancer J. Clin. (2022)
14. Guo, Y., et al.: A new method of detecting micro-calcification clusters in mam-

mograms using contourlet transform and non-linking simplified PCNN. Comput.
Methods Programs Biomed. 130, 31–45 (2016)

15. Hakim, A., Prajitno, P., Soejoko, D.: Microcalcification detection in mammography
image using computer-aided detection based on convolutional neural network. In:
AIP Conference Proceedings. AIP Publishing (2021)

16. Halling-Brown, M.D., et al.: Optimam mammography image database: a large-
scale resource of mammography images and clinical data. Radiol.: Artif. Intell.
3(1), e200103 (2020). https://medphys.royalsurrey.nhs.uk/omidb/about-omi-db/

17. Hamidinekoo, A., Denton, E., Rampun, A., Honnor, K., Zwiggelaar, R.: Deep learn-
ing in mammography and breast histology, an overview and future trends. Med.
Image Anal. 47, 45–67 (2018)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

https://medphys.royalsurrey.nhs.uk/omidb/about-omi-db/


32 M. Cantone et al.

19. Houssein, E.H., Emam, M.M., Ali, A.A., Suganthan, P.N.: Deep and machine learn-
ing techniques for medical imaging-based breast cancer: a comprehensive review.
Expert Syst. Appl. 167, 114161 (2021)

20. Karale, V.A., et al.: A screening cad tool for the detection of microcalcification
clusters in mammograms. J. Digit. Imaging 32, 728–745 (2019)

21. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 2980–2988 (2017)

22. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: ECCV 2014,
Part V, pp. 740–755. Springer (2014)

23. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60–88 (2017)

24. Liu, D., Wu, B., Li, C., Sun, Z., Zhang, N.: TrEnD: a transformer-based encoder-
decoder model with adaptive patch embedding for mass segmentation in mammo-
grams. Med. Phys. 50(5), 2884–2899 (2023)

25. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted win-
dows. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 10012–10022 (2021)

26. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for
the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986 (2022)

27. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

28. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso,
J.S.: Inbreast: toward a full-field digital mammographic database. Acad. Radiol.
19(2), 236–248 (2012)

29. Oliver, A., et al.: Automatic microcalcification and cluster detection for digital and
digitised mammograms. Knowl.-Based Syst. 28, 68–75 (2012)

30. Oporto-Dı́az, S., Hernández-Cisneros, R., Terashima-Maŕın, H.: Detection of
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Abstract. One of the most common tasks in histopathology is the
visual comparison of the images of successive multiply stained tissue sec-
tions. Automatic image registration is crucial to perform this analysis.
Although the tissue sections in general undergo non-rigid deformations,
the initial linear image alignment impacts the overall registration dras-
tically. However, most of the recent works do not study the linear trans-
formation compensation separately and focus on the non-linear part. In
this work, we propose a novel unsupervised feature matching approach
for affine registration of histological images. We perform the evaluation
on the Automatic Non-rigid Histological Image Registration (ANHIR)
dataset and show the supremacy of our method over the existing affine
registration approaches in therms of accuracy and robustness. The code is
available at https://github.com/VladPyatov/UnFeMa.

Keywords: Histological Imaging · Image Registration · Unsupervised
Learning · Vision Transformers

1 Introduction

Image registration aims at establishing spatial correspondences between a pair
or a set of images. Being one of the key tasks in biomedical image analysis
this research area attracted a lot of attention from the community over the last
several decades [6,27]. Even though there are some general methodologies [2,9]
that do not impose any specific limitations on the data, each application domain
of biomedical image analysis has its own peculiarities that have to be taken into
account when solving the registration task.

In digital pathology visual comparison of the successive multiply stained tis-
sue sections is crucial. This requires aligning all images into a common frame,
which is also necessary for applications like 3D reconstruction [15] and image
fusion [14]. Using an aligned images, pathologists can evaluate expression of mul-
tiple markers in a single area. However, tissue processing and image acquisition
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(a) (b) (c) (d) (e)

Fig. 1. Examples of the typical histological image pairs from the ANHIR dataset
demonstrating the diversity of the data.

procedures cause significant linear transformations and non-linear deformations
in the sections. Therefore, image registration is highly demanded.

Histological image registration poses several challenges, as illustrated in
Fig. 1:

1. The tissue sections can be globally misaligned: rotations up to 180◦ and trans-
lations (see Fig. 1b, e).

2. The images exhibit variance in appearance due to multiple staining within
one sample (see Fig. 1a, c, d, e).

3. The images of different organs can have completely different shape and struc-
ture (see Fig. 1a, b, c, d, e).

4. There are repetitive patterns and low textures (see Fig. 1c, e).
5. Section missing and occlusions may occur during tissue section preparation

(see Fig. 1b, e).

Thus, the image registration approaches designed for other common medical
image modalities like MRI [6], CT [17], or fluorescence microscopy [23] result in
imperfect registration or even fail completely on histological data.

In this work, we propose a novel end-to-end unsupervised feature-based affine
histological image registration approach and quantitatively compare it to the
existing registration methods. To the best of our knowledge, this is the first app-
roach that take advantage of unsupervised learning-based feature matching and
explicit estimation of affine transformation parameters. The proposed approach
was compared with two classic methods, i.e. SIFT [13] and AGH [30], our pre-
vious method [16] that uses off-the-shelf LoFTR matches [24], and two deep
learning-based approaches DeepHistReg [29] and LARHI [28]. To summarize,
the main contributions are as follows:

1. We propose unsupervised feature matching approach for the estimation of
affine transformation between a pair of images using the confidence weighting
optimization.
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2. Based on the proposed approach we developed an end-to-end trainable
method for affine histological image registration.

3. Additionally, we present a robust initial alignment algorithm, called Percep-
tual Search, to find the initial rotation and translation.

4. Our results outperform the existing affine histological image registration
methods by a large margin.

2 Related Work

2.1 Learning-Based Affine Image Registration

Affine medical image registration approaches can be divided into two major
groups: classical and learning-based. While the former involve an iterative opti-
mization for each image pair [9] or estimate the transformation based on detected
features [13], the latter formulate affine registration as a learning problem adopt-
ing neural networks of different architectures [28,29,32]. Such formulation allows
learning-based methods to hide tuning of hyper-parameters and iterative opti-
mization under the hood of the training procedure. As a consequence learning-
based methods perform fast estimation of affine transformation parameters at
the inference time usually at the price of arguable registration accuracy.

In DeepHistReg framework [29], the authors propose a simple ResNet-like
convolutional neural network that takes as input concatenated source and tar-
get images and after series of residual blocks aggregates information within fea-
ture maps via global average pooling. This high-dimensional representation is
then used to regress affine transformation matrix with one linear layer. The lim-
ited receptive field of convolution enables to account for a local misalignment
and can be beneficial for deformable registration. However, affine transforma-
tion is generally global and brings the maximum benefit compensating for a
large displacements.

In contrast to traditional CNNs, Wodzinski and Müller [28] proposed a net-
work architecture that is capable of aggregating global information. The source
and target images are first unfolded to a grid of non-overlapping patches and fed
into the Siamese feature extraction network. Then the features are concatenated
and the global correspondence is extracted with a 3D convolution followed by
the MLP for transformation regression. This work pioneered affine registration
methods focused on aggregation of the global context, but was fully based on
convolutional architecture inheriting its inductive bias.

These methods demonstrate the state-of-the-art performance, but learn to
estimate the transformation parameters directly. Hence, the ability to apply
these methods to various image resolutions, as well as their robustness, are
uncertain. In contrast, we propose to follow classic approaches and decompose
learning-based image registration into two parts - feature matching and explicit
estimation of transformation parameters.
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2.2 Feature Matching

All above mentioned image registration methods are intensity-based. That is,
to estimate a transformation they operate on the raw image intensity informa-
tion. Another approach for affine registration is based on feature matching, the
task of establishing correspondences between two images of the same object.
Conventional matching approaches consist of three stages - feature detection,
feature description, and feature matching. Classic hand-crafted features, such as
ORB [19] and SIFT [13], have been widely adopted in keypoint detection and
description stages for a long time. Later several works [4,31] proposed learning-
based approaches to regress interest point locations and descriptors in a single
forward pass of the neural network. Although the aforementioned methods take
advantage of learnable features, they use the nearest neighbor search (NNS)
to find reliable matches from all interest points detected in the first image to
all the interest points in the second image. In contrast, SuperGlue [20] pro-
posed a learning-based approach for local feature matching. Inspired by this
work, LoFTR [24] proposed a detector-free design to avoid the drawbacks of
feature detectors and directly produce dense feature matches.

Histological images are usually stained with different biomarkers that affect
tissue appearance color-wise and texture-wise. Therefore, feature-based formu-
lation of registration problem is more suitable for histological data. Recently,
Awan et al. [1] proposed affine registration approach based on matching of deep
features. Instead of applying feature detection stage, an image is divided into a
grid and the feature descriptor is computed for every grid cell. Feature descriptor
is formed by deep features extracted from three different layers of a pre-trained
VGG-16 network [22]. Inspired by the Transformer’s success in modelling long-
range dependencies, another recent work [16] leverage LoFTR, pretrained on
MegaDepth dataset [10], to perform feature extraction and matching. General
limitation of these methods is the exploitation of pretrained models. In contrast,
we propose a feature-based affine image registration approach that is end-to-
end trainable and thus enables to learn patterns that are specific to histological
images.

3 Method

Let IS(x) : R
2 �→ R and IT (x) : R

2 �→ R be the source and target images,
respectively.

Affine image registration aims to estimate an affine transformation Λ : R2 �→
R

2, such that:
IS ◦ Λ ≈ IT (1)

where IS ◦ Λ represents IS transformed by Λ.
We propose a novel feature-based end-to-end learnable affine histological

image registration method, that consists of the following parts:

– Initial alignment with Perceptual Search. Given image pair (IS , IT ),
Perceptual Search estimates the initial rotation angle ϕ̂ to compensate for a
large initial misalignment, e.g.∼ 180◦.
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Fig. 2. The overview of the proposed approach.

– Feature matching with Soft Point refinement. To establish the coarse-
level matches, LoFTR processes the prealigned images and outputs a set of
matched points. The obtained matches are then refined with the Soft Points
algorithm.

– Weighted estimation of affine transformation. The set of matched
points serves as an input to the weighted Direct Linear Transformation (DLT)
algorithm, that estimates the affine transformation parameters.

Figure 2 shows the overview of the proposed approach. We first introduce the
initial alignment with Perceptual Search algorithm in Sect. 3.2. Then, we describe
feature matching and Soft Points refinement in Sect. 3.3, and estimation of the
affine transformation in Sect. 3.4.

3.1 Preprocessing

The preprocessing algorithm is standard for histological image registration and
consists of the following steps.

Since fine-level details are not necessary to find an affine transformation, the
first step is to perform downscaling of the originally large images. We choose to
downscale images to 512 pixels in the biggest dimension for training for com-
putational efficiency and to 1024 pixels during inference for higher registration
accuracy.

The slides of the histological tissues are stained with different dyes during
preparation stage. As a result, both global and local color appearance change
from slide to slide. This information is essential for biomedical analysis but
redundant for affine transformation estimation and in some cases leads to lower
registration accuracy [1]. For this reason, we convert the images to grayscale
and normalize their intensities. We additionally invert image intensities for con-
venience, as histological tissues usually appear on the white background.
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3.2 Perceptual Search

Most of the existing methods [1,28–30] perform Exhaustive Search - initial align-
ment step prior to affine registration. This procedure usually involves rough esti-
mataion of translation and rotation parameters. First, the translation vector t̂
is estimated based on the centroids of the source and target images. Then, the
rotation angle ϕ̂ is obtained via the exhaustive search with a predefined step,
e.g.1◦, and normalized correlation coefficient (NCC) similarity measure.

When implemented on GPU, the aforementioned approach is fast, but pro-
duces a lot of outliers, i.e.pairs that can not be accurately registered on subse-
quent stages. However, for unsupervised image registration approaches, initial
alignment is an important step to avoid overfitting on local shape structure (i.e.
when images are misaligned by 180◦). Therefore, we propose more precise ini-
tial alignment method - Perceptual Search. This procedure is required only to
prepare the data for training and thus can be substantially simplified during
inference (see Sect. 3.6). Nevertheless, it can be utilized as a standalone initial
alignment step.

We do not estimate the translation vector and limit the angle search set to
four angles Φ = {0◦, 90◦, 180◦, 270◦}, since smaller global deformations can be
learned well during training. To find the best initial angle ϕ̂ ∈ Φ we calculate
the alignment loss Lal based on the perceptual loss in the feature space of the
pretrained VGG-19 [8] network, replacing L2 distance with negative NCC

Lal(IS , IT ) = −
∑

i,j,c

NCC
(
V c

i

(
ISj

)
, V c

i

(
ITj

))
(2)

where V c
i is the cth channel of the ith layer of the VGG-19 pretrained network and

j represents the resolution. Similar to [21], we use the pyramid of 6 resolutions
- 1024 × 1024, 512 × 512, 256 × 256, 128 × 128, 64 × 64 and 32 × 32.

In some cases, the displacement between images can be large after rotation
(see Fig. 1b), so we additionally calculate Lal(IS◦Aθ, IT ), where Aθ denotes affine
transformation estimated with matches predicted by LoFTR [24] pretrained on
MegaDepth [10] dataset. Therefore, the search loss Ls and the best initial angle
ϕ̂ are defined as:

Ls(IS , IT ) = min (Lal(IS , IT ),Lal(IS ◦ Aθ, IT )) (3)

ϕ̂ = argmin
ϕ∈Φ

Ls(IS ◦ Rϕ, IT ) (4)

where Rϕ is the rotation transformation through an angle ϕ about the image
center.

3.3 Feature Matching

Preliminaries: LoFTR Given the pair of images (IS ∈ R
H1×W1 , IT ∈

R
H2×W2), LoFTR utilize feature pyramid network [11] to extract multi-level
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features (F̃S , F̃T ) at 1/8 of the original resolution, and (F̂S , F̂T ) at 1/2 of the
original resolution.

Extracted coarse-level features (F̃S , F̃T ) are then passed through the LoFTR
module - the interleaving self and cross attention layers - to obtain position and
context dependent local features (F̃ tr

S , F̃ tr
T ).

To find matches, the score matrix S ∈ R
HS
8 · WS

8 × HT
8 · WT

8 between the trans-
formed features is first calculated as:

S(i, j) =
1
τ

·
〈
F̃ tr

S (i), F̃ tr
T (j)

〉
(5)

where i and j represent coarse-level coordinates of IS and IT , respectively.
Depending on the context, the coordinates either linearized or cartesian.

A dual-softmax operator [18,26] is then applied to obtain the confidence
matrix Pc of soft mutual nearest neighbor matches:

Pc(i, j) = softmax(S(i, ·))j · softmax(S(·, j))i (6)

After that, the matches with confidence higher than a threshold of θc are
refined to the original image resolution with the coarse-to-fine LoFTR module.
The matches for refinement Mc are selected based on the mutual nearest neigh-
bor (MNN) criteria:

Mc =
{
(̃i, j̃) | ∀(̃i, j̃) ∈ MNN (Pc) ,Pc(̃i, j̃) ≥ θc

}
(7)

A dual-softmax matching operator is differentiable and matching confidences
Pc can be directly supervised with the negative log-likelihood loss. However, the
MNN criteria is non-differentiable:

(̃i, j̃) ∈ MNN(Pc) ⇔

⎧
⎪⎨

⎪⎩

ĩ = argmax
i

Pc(i, j̃)

j̃ = argmax
j

Pc(̃i, j)
(8)

Therefore, we can not backpropagate gradients through the coordinates of the
matches and perform unsupervised learning of the image registration pipeline.
To tackle this problem, we introduce two improvements that make the method
end-to-end trainable. First one aims to make the coordinates differentiable. The
second is carried out at the stage of transformation estimation and allows to
backpropagate directly through the matching confidences Pc.

Soft Points. Given a set of matched pairs, we form a set of soft matches Mĉ

by estimating the expected coordinates (Soft Points) for each pair (̃i, j̃):

î = Ep(i | ĩ,j̃) i; ĵ = Ep(j | ĩ,j̃) j (9)

where p(i | ĩ, j̃) is the softmax distribution of scores S in the local vicinity Uε(̃i)
of the coordinates ĩ for the pair (̃i, j̃):

p(i | ĩ, j̃) = softmax
i∈Uε (̃i)

(S(i, j̃)) (10)
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We also define the soft confidence Pc(̂i, ĵ) of the soft match (̂i, ĵ) as:

Pc(̂i, ĵ) =

(
Ep(i | ĩ,j̃) Pc(i, ĵ) + Ep(j | ĩ,j̃) Pc(̂i, j)

)

2
(11)

The size of the vicinity ε is a hyper-parameter and when it equals 0, the
Eq. (9) degenerate into the Eq. (8). We choose to set ε = 1, because this case adds
flexibility of refinement of the matched coarse-level coordinates to the original
image resolution. Hence, Soft Points serves as a replace for the fine module of
LoFTR, as the use of separate network is beneficial with good supervision, but
introduces more degrees of freedom and complicates unsupervised learning.

3.4 Transformation Estimation

To estimate the affine transformation Λ, we use Direct Linear Transformation
(DLT) algorithm [7], which is reduced to the solution of the following least
squares minimization problem:

x� = argmin
‖x‖2=1

‖Ax‖22, (12)

where x = vec(Λ) is the vectorized Λ and A = A(Mĉ) is constructed from the
matched coordinates.

The approximate solution x� of Eq. (12) is the right singular vector corre-
sponding to the smallest singular value of the matrix A [7]. The SVD decompo-
sition of the matrix A can be computed in the differentiable way. Thus the algo-
rithm enables to backpropagate gradients through the solution x and learn the
matches Mĉ if the matrix A depends on the parameters of the matching net-
work. In our case A depends on the Soft Points. However, because of the locality
(ε = 1), the Soft Points propagate gradients only through the local vicinity Uε.
The increasing of ε, however, leads to unstable optimization. With this obser-
vations, we propose to additionally backpropagate gradients directly through
confidences Pc(̂i, ĵ), by solving a confidence weighted modification of this sys-
tem:

x� = argmin
‖x‖2=1

‖WAx‖22, (13)

where W ∈ R
2N×2N is the diagonal matrix, which weighs each pair of equations

corresponding to the match pair (̂i, ĵ) with the confidence Pc(̂i, ĵ).
The intuition of the weighting is that more confident matches should have a

higher influence on the system and its solution. More importantly, this technique
allows to backpropagate gradients directly through confidences Pc and learn the
matches Mĉ alleviating the problem of the non-differentiable MNN criteria.

The algorithm of weighted estimation of the affine transformation is imple-
mented as a separate module that is fully differentiable and makes image regis-
tration pipeline end-to-end trainable.
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3.5 Training Loss

After the estimation of the affine transformation matrix Λ, we use the nega-
tive local NCC to calculate the training objective L between the target image
IT and the transformed source image IS ◦ Λ:

L = − 1
|P |

∑

p∈P

NCC (IT (p), IS ◦ Λ(p)) (14)

where P is a set of non-overlapping patches of the size 32 × 32. Thus, learning
of Pc(̂i, ĵ) is organized in unsupervised fashion and the matches are optimized
indirectly through maximization of the similarity between IT and IS ◦ Λ images
after registration.

3.6 Implementation Details

In our approach we utilize LoFTR with QuadTree attention [25] for the fea-
ture matching stage. We initialize its weights from the model pretrained on the
MegaDepth [10] dataset and train it on the histological data in the proposed
image registration pipeline. The model is trained 32 epochs on 2 NVIDIA RTX
A6000 with batch size 16. We adopt the AdamW optimizer [12] and start with
learning rate 1 · 104 reducing it by half every 4 epochs.

At the inference stage we follow [16] to make registration resistant to the
global misalignment and check four possible angles ϕ ∈ {0◦, 90◦, 180◦, 270◦}.
Namely, for each ϕ we predict the matches between IS ◦ Rϕ and IT and then
estimate the affine transformation Λ with RANSAC [5] as a robust estimator to
discard outliers. The resulting transformation is the composition of rotation Rϕ

and corresponding affine transformation Λ that gives the highest NCC similarity.

4 Experiments

4.1 Dataset

We benchmark the proposed approach on the Automatic Non-rigid Histological
Image Registration (ANHIR) dataset [3], which includes the histological images
of eight different tissue types with approximate size of 10k × 10k pixels. The
images are organized into 49 sets of spatially close tissue sections that can be
meaningfully registered. Each image set contains 3 to 9 images. In total, the
dataset contains 355 images with 18 different stains, forming 481 image pairs.
The images were manually marked with the pairs of landmarks to enable evalu-
ation of the registration performance. The dataset is divided in two subsets. The
Training subset consists of the 230 image pairs with corresponding landmarks
for the source and target images. The Evaluation subset of 251 image contains
landmarks only for the source images and serves for the server-side evaluation.

It is important to note that landmarks were not used during model training,
and the proposed approach is fully unsupervised. The division of available data
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Table 1. Median Median (MMrTRE), Average Median (AMrTRE), Median Average
(MArTRE), and Average Average (AArTRE) errors for the evaluated methods on
the Train and Evaluation datasets. (t) and (e) denote that method was trained on
the Training and Evaluation datasets, respectively. Best results highlighted with bold,
second best results are underlined.

Method Training Evaluation

MMrTRE AMrTRE MArTRE AArTRE MMrTRE AMrTRE MArTRE AArTRE

Initial 0.039315 0.059856 0.040256 0.060415 0.051002 0.121860 0.052610 0.120204

SIFT [13] 0.013733 0.095091 0.015747 0.103877 0.023117 0.166627 0.026639 0.163326

AGH [30] 0.003792 0.009400 0.005349 0.010613 0.003928 0.008392 0.005070 0.009624

TAHIR [16] 0.003639 0.009256 0.004800 0.010691 0.003191 0.010595 0.004335 0.012196

DeepHistReg [29] (t) − − − − 0.016862 0.040922 0.019101 0.042921

DeepHistReg [29] (e) 0.017437 0.051237 0.018770 0.051990 − − − −
LARHI [28] (t) − − − − 0.018492 0.042270 0.020563 0.044280

LARHI [28] (e) 0.019787 0.053931 0.020094 0.054872 − − − −
Proposed (t) − − − − 0.003027 0.010573 0.004162 0.012429

Proposed (e) 0.003433 0.008212 0.004629 0.009636 − − − −

into training and evaluation was provided by ANHIR challenge organizers and
related only to the ability to run the evaluation locally or on the challenge server-
side. Thus, we evaluated the learning-based approaches in two scenarios: first,
training on the training data and evaluating on the evaluation data, and second,
training on the evaluation data and evaluating on the training data (see Table 1).

4.2 Evaluation Metrics

We use the aggregation metrics based on relative Target Registration Error
(rTRE) and Robustness introduced in [3]. The (rTRE) is the Euclidean dis-
tance between the coordinates of the landmarks in the transformed source IS

and target IT images

rTRES,T
l =

‖xS
l − xT

l ‖2
dS

(15)

normalized by the length of the image diagonal dS .
The Robustness is defined as the relative number of successfully registered

landmarks, i.e. those for which the registration error decreases, rTREl < rIREl.
Here, rIREl is the relative Initial Registration Error which is computed as rTRE
for unregistered pair of images. Finally, the Robustness is defined as

RT,S(m) =
|KT,S |
|LT | (16)

where KT,S =
{
(xS

l ,xT
l ) : rTREl < rIREl

} ⊆ LT is the set of successfully regis-
tered landmarks, and LT is the set of target image landmarks.

For quantitative evaluation, we utilize Median Median (MMrTRE), Aver-
age Median (AMrTRE), Median Average (MArTRE), and Average Average
(AArTRE) rTRE, as well as Median (MR) and Average (AR) robustness. It
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Fig. 3. The visualization of the registration results. Upper row from left to right:
initial source image, initial target image, initial images overlay, images registered by
AGH; bottom row from left to right: images registered by LARHI, images registered by
DeepHistReg, images registered by TAHIR, image registered by the proposed method.

is important to note that for ANHIR challenge rankings, the MMrTRE and
MR metrics were considered primary. For further details on evaluation metrics,
please refer to [3].

4.3 Results and Comparison

We report the performance of the proposed method in Table 1. For the fair
comparison we reproduced the results of several top-performing methods. All
the results were produced with the server-side evaluation system provided by the
ANHIR challenge organizers.

First, we compare the proposed approach to the classic feature-based affine
image registration methods, SIFT [13] with Exhaustive Search for initial align-
ment, AGH [30] which utilizes several descriptors with gradient-based optimiza-
tion, and TAHIR [16] that use RANSAC on top of the matches predicted by the
MegaDepth pretrained LoFTR matching network. We also compare our method
to the learning-based methods that directly predict the transformation matrix.
The first is the affine part of the DeepHistReg [29] non-rigid image registration
framework, that uses ResNet convolutional neural network. The second app-
roach LARHI [28] takes advantage of the convolutional attention mechanism and
patch-wise feature extraction.

The results show, that the proposed method outperforms the other
approaches by a large margin. MMrTRE and MArTRE metrics demonstrate high
registration accuracy of the proposed approach, while AMrTRE and AArTRE
indicates the less number of outliers compared to the other methods.
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Table 2. Median (MR) and average (AR) robustness for the evaluated methods on
the Training and Evaluation datasets. (t) and (e) denote that a method was trained
on the Training and Evaluation parts of the data, respectively

Method Training Evaluation

MR AR MR AR

Initial 0.705 0.677 0.660 0.659

SIFT [13] 0.917 0.651 0.972 0.730

AGH [30] 1.0 0.958 1.0 0.965

TAHIR [16] 1.0 0.958 1.0 0.957

DeepHistReg [29] (t) − − 0.960 0.820

DeepHistReg [29] (e) 0.912 0.754 − −
LARHI [28] (t) − − 0.961 0.815

LARHI [28] (e) 0.864 0.712 − −
Proposed (t) − − 1.0 0.966

Proposed (e) 1.0 0.957 − −

Fig. 4. The visualization of the registration results. Left column from top to bottom:
initial source image, initial target image, initial images overlay, images registered by
AGH; right column from top to bottom: images registered by LARHI, images regis-
tered by DeepHistReg, images registered by TAHIR, image registered by the proposed
method.
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The reported Robustness results (see Table 2) demonstrate that the proposed
method not only outperforms the existing approaches, but also behaves more
stable than the other learning-based methods.

The visual comparison of the registration results are depicted in Figs. 3 and
4. In Fig. 3, the tissue has nearly elliptic shape which turned out to be hard for
affine registration. Namely, AGH and TAHIR methods resulted in strong shear,
while LARHI and DeepHistReg scaled down the source image. In Fig. 4, the
proposed approach outperforms other methods, evident in the precise alignment
of the solid elliptical-shaped tissue fragment at the center of the images.

5 Conclusion

In this paper, we proposed an unsupervised feature matching approach for end-
to-end trainable affine histological image registration. The method relies on the
improved feature matching with Soft Point refinement and utilizes the weighted
Direct Linear Transformation to estimate the affine transformation parameters.
Additionally, we introduced the perceptual initial alignment step that enable to
compensate for the large rotations and translations prior to the training step.
The results on the common publicly available benchmark dataset ANHIR [3]
demonstrated that the proposed approach outperforms the existing affine histo-
logical image registration methods in both accuracy and robustness.
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Abstract. The use of deep learning for classification tasks has shown
great potential in medical applications. In critical domains as such, it
is of high interest to have trustworthy algorithms which are able to
tell when a reliable assessment cannot be guaranteed. Hence, detect-
ing out-of-distribution (OOD) samples is a crucial step towards building
a safe classifier. Following a previous study, showing that it is possible
to classify breast cancer in point-of-care ultrasound (POCUS) images,
this study investigates out-of-distribution (OOD) detection. Three dif-
ferent OOD detection methods were implemented and evaluated in this
study: softmax score, multi-level energy score and deep ensembles. As in-
distribution training data both standard ultrasound images and POCUS
images were used and a separate POCUS data set was used for test-
ing. All OOD detection methods were evaluated on three different OOD
data sets, which are a mixture of synthetic data and real ultrasound
data that represent different use cases for which OOD detection in auto-
matic breast cancer classification is needed, covering a range of simple
OOD cases, ultrasound images of poor quality and ultrasound images
of non-breast tissue. The results show that the softmax score is inferior
compared to the other methods at detecting OOD samples. The multi-
level energy score performs superior on two of the OOD data sets. The
deep ensembles perform superior on the OOD data set containing ultra-
sound images of poor quality with a 95% confidence interval for the area
under the receiver operating characteristic curve of 97.2%–98.5%.

Keywords: Out-of-distribution detection · breast cancer
classification · point-of-care ultrasound

1 Introduction

Deep learning has achieved promising results assessing different types of medical
images [1]. However, for safe deployment and trustworthiness, the algorithms
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Fig. 1. US (top) and POCUS (bottom) images capturing normal tissue, benign and
malignant lesions (from the left to right).

should be able to tell when they cannot make reliable assessments. This includes
detecting out-of-distribution (OOD) data, which comprise data samples that the
algorithm has not learned how to interpret. Progress has been made in this area
in recent years with numerous methods being suggested for OOD detection [2],
i.e. separating OOD samples from in-distribution (ID) samples. In this study
we explore different methods for OOD detection, including uncertainty-based
ones [3], with the aim of being used in a tool for breast cancer classification in
point-of-care ultrasound (POCUS) images.

Breast cancer is the most common type of cancer amongst women world-
wide [4]. Detecting breast cancer at an early stage improves patient outcome
both in terms of mortality and morbidity, but access to diagnostics is lacking in
many low- and middle-income countries [5,6]. Poor access to diagnostics is due
to limited resources both in terms of medical equipment and trained personnel.
A possible method to provide a timely diagnosis of breast cancer in low-resource
settings is using POCUS by minimally trained examiners with a deep-learning
based algorithm as decision support. Examples of standard ultrasound (US) and
POCUS images capturing normal breast tissue, benign and malignant breast
lesions are shown in Fig. 1.

In a previous study a convolutional neural network (CNN) has been used to
classify breast cancer in POCUS images with good performance [7]. However,
the CNN was not suited to decide whether a prediction should be made or
not. An unsuitable image should ideally be detected as an OOD sample and no
prediction should be made. Three reasons for an image being unsuitable are (1)
poor quality, (2) non-breast tissue and (3) rare lesion. The first case includes
images of poor quality which can occur due to numerous factors, resulting in
artefacts such as shadows and noise. Such factors can be poor transmission
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Fig. 2. Examples of poor quality POCUS images that are unsuitable for the classifier
to predict. The images contain noise, artefacts and shadows.

capabilities due to a lack of ultrasonic gel during examination, applying too
little pressure on the tissue or not holding the probe steady. Examples of POCUS
images of poor quality are shown in Fig. 2. The second case comprises images
exclusively capturing other structures than breast tissue, for example bones or
arteries. Since the CNN is specialized in classifying breast tissue it is neither
suitable nor safe to trust its prediction on other structures. The third case are
images which are unsuitable due to comprising lesions which the CNN is not
familiar with, for example a rare type of cancer.

Here we extend the work done in [7] by exploring and evaluating three differ-
ent OOD detection methods: softmax score, multi-level energy score and deep
ensembles, using both variance- and entropy-based uncertainties. The methods
have been evaluated thoroughly on three OOD datasets including both images
of poor quality due to noise and images of non-breast tissue. The distributions of
OOD scores were analyzed and cancer detection performance at different thresh-
olds for the OOD detection was evaluated. This approach should enable the CNN
detecting unsuitable images during inference, which is crucial for safe usage in
a real world setting.

2 Theory

2.1 Softmax Score

The probabilities outputted from the softmax activation function after the last
layer of a neural network have previously been used for OOD detection [8]. The
idea is that samples with low softmax scores for the predicted class are identified
as OOD. However, an issue with softmax score is that the scores for the classes
need to add up to one, even when none of the classes fits the sample. Thus,
softmax score might not be the best suited for OOD detection, but is included
in this study as a baseline.

2.2 Energy Score

Energy score is a post-hoc OOD detection method using the logits, i.e. the
unscaled outputs from the network before the softmax activation. By looking at
the logits, the issue of the softmax score requirement to add up to one is avoided.
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The method was proposed in [9] and does not require any retraining of the neural
network. For input x and network f(x), the energy score can be expressed as

E(x; f) = −T · log
K∑

i=1

efi(x)/T , (1)

where the logit for class label i and input x is denoted by fi(x), K denotes the
total number of class labels and the temperature T is a hyperparameter.

A related work to energy score is multi-level out-of-distribution detection
(MOOD) [10]. This method uses adjusted energy score but instead of just
analysing the score in the end of the network, it analyses multiple exits that are
added throughout the network. The idea is that obvious OOD samples should
be detected earlier in the network and more complex samples should be detected
further down in the network.

2.3 Deep Ensembles

Deep neural network ensembling [11] is a method to improve the generalizabil-
ity and reliability of a network by independently training multiple networks on
the same problem. The combined output makes it possible to calculate uncer-
tainties by looking at the differences between the separate predictions. These
uncertainties can be used for OOD detection. For OOD data samples, the uncer-
tainty should be high as opposed to ID data, where the uncertainty should be
small [12]. In the present study, an average ensemble is used, which makes a
prediction based on the average prediction from the N ensemble members

Fc(x) =
1
N

N∑

n=1

f (n)
c (x), (2)

where Fc(x) is the prediction of ensemble F for class c and f
(n)
c is the n-th

ensemble member’s prediction for that class.
Measuring the uncertainty in an ensemble can be achieved in various ways.

In this study we include variance-based uncertainty, weighted variance-based
uncertainty and entropy-based epistemic uncertainty. The variance-based uncer-
tainty, Uvar, is calculate as the sum of the variance of the ensemble for each class
c out of in total K classes,

Uvar =
K∑

c=1

Var[Fc(x)] =
K∑

c=1

1
N

N∑

n=1

(f (n)
c (x) − Fc(x))2. (3)

The weighted variance-based uncertainty, UweightedV ar, additionally weights
each class variance by the mean, consequentially taking the variance for the
predicted class higher into account,

UweightedV ar =
K∑

c=1

Fc(x)
1
N

N∑

n=1

(f (n)
c (x) − Fc(x))2. (4)
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Table 1. The sizes of the ID data sets.

POCUS US

Train Test Train

Normal 463 284 386

Benign 173 131 254

Malignant 178 116 520

Total 814 531 1160

The entropy-based epistemic uncertainty, Uepi, is defined as,

Uepi = −
K∑

c=1

Fc(x)logFc(x) +
1
N

N∑

n=1

K∑

c=1

f (n)
c (x)logf (n)

c (x). (5)

Epistemic uncertainty is the model uncertainty, which stems from the model’s
lack of knowledge [13].

3 Data

3.1 In-Distribution Data

The ID data consists of POCUS images capturing breast tissue collected with
a GE Vscan air CL probe [14] at Sk̊ane University Hospital, Malmö, Sweden.
This data set contains images of normal tissue as well as benign and malignant
lesions, see Fig. 1. The data was split into training and test set containing 814
and 531 images respectively.

In addition to the POCUS training set, a standard ultrasound (US) data set
containing 1160 images of breast tissue was also used for training. These images
were labeled as normal, benign or malignant and were collected with Logiq E9
and Logiq E10 ultrasound machines at Sk̊ane university hospital, Malmö, Swe-
den. The sizes and division of the ID data sets are shown in Table 1.

3.2 Out-of-Distribution Data

To evaluate the performance in terms of OOD detection, three different OOD
test data sets were used: MNIST (test set), CorruptPOCUS and CCA. The
MNIST test set consists of 10 000 images of handwritten digits [15] and was
used as a baseline to make sure that the OOD detection could handle simple
cases of wrong input data. The CorruptPOCUS and CCA data sets were chosen
as realistic OOD ultrasound data and cover different use cases. The Corrupt-
POCUS data set consists of POCUS images of poor quality, which was the first
case of unsuitable images mentioned in Sect. 1. The images were generated by
distorting each of the 531 images in the POCUS test set by randomly adding dark
areas, blur and noise to simulate the issues illustrated by the images in Fig. 2.
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The CCA data set contains 84 ultrasound images capturing the common carotid
artery [16], therefore comprising images of non-breast structure, the second case
of unsuitable images. Covering this case is especially important due to the poten-
tial misuse of our system for other diagnostic purposes for which it has not been
trained. The third case of unsuitable images was data which the CNN is not
familiar with, such as rare types of cancer. To the authors’ knowledge, no such
data set exists publicly and due to the complexity of collecting such a dataset,
this use case was excluded in this paper. Examples of images from the three
OOD data sets can be seen in Fig. 3.

Fig. 3. Example of images from the OOD data sets MNIST, CorruptPOCUS and CCA
(left to right).

4 Methods

4.1 Classification Network

The classification network used in this study is based on the architecture pre-
sented in [7]. It was implemented as a CNN consisting of five convolutional layers
followed by two fully connected layers. The input to the network consisted of one
channel images of size 180×180. The kernel sizes of the five convolutional layers
were set to 3× 3 with 32, 64, 128, 128 and 128 kernels respectively. Each convo-
lutional layer was followed by a ReLU activation, 20% dropout and finally a max
pooling layer with pool size 2 × 2 and stride 2. The final max pooling layer was
followed by 50% dropout and the output was flattened and used as input into two
fully connected layers of sizes 512 and 3. The ReLU activation and 50% dropout
was used between the fully connected layers and the softmax activation was used
after the final layer. If nothing else is stated, the following settings of training
parameters were used for the classification network and all OOD detection meth-
ods. The Adam optimizer was used with a learning rate of 0.0001, the batch size
was set to 32 and the network was trained for 50 epochs. The three different
classes were weighted to have equal influence during the training of the network.
Spatial data augmentation was used randomly for each image and epoch dur-
ing the training phase to increase the variability within the ID training data.
The augmentation was done by applying zoom, shear transform, vertical shift
or horizontal shift to the images, all within a range of 10%. Randomly flipping
the images horizontally was also included in the augmentation. The architecture
of the classification network was used for all experiments with some modifications
depending on the method.
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Fig. 4. Architecture of the classification network with additional classifiers and exits.
The scheme was created in NN-SVG [17].

4.2 Softmax Score

The softmax score was used as a baseline for the OOD detection methods. The
classification network mentioned above was used directly as described in the
previous section and the probabilities were obtained from the output of the
network. Samples with probabilities lower than a set threshold were detected as
OOD.

4.3 Multi-level Energy Score

The energy score was implemented according to Eq. (1), but the classification
network was modified to have three exits and the energy score was obtained at
multi-levels inspired by the idea behind MOOD. The modified architecture of
the classification network is displayed in Fig. 4. The classifiers added to the first
two exits consisted of one convolutional layer with 128 kernels of size 3 × 3, a
ReLU activation, a 2 × 2 max pooling with stride 2 and a fully connected layer
of size three without any activation. After trying out different values for the
temperature parameter T based on the ID data, it was set to 0.001. The classifi-
cation network was trained with three categorical cross-entropy losses, using the
outputs from the first two exits and the final softmax output. The three losses
were weighted 0.5, 0.5, 1, making the last exit influence the training the most.
For OOD detection, thresholds were found for each exit and if a sample had
higher energy score than all three thresholds it was labeled as ID, otherwise
OOD. The thresholds were chosen with the constraint of equal fraction of data
detected as OOD for each exit. For cancer classification task only the final exit,
i.e., the output of the network was used.

4.4 Deep Ensemble

For the deep ensemble, 20 independent models with the above described classifi-
cation network architecture (see Sect. 4.1) were trained. In order to diversify the
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models 0–15% of the training data was randomly left out for each of model,
followed by setting some of the training hyperparameters randomly. Table 2
specifies the training parameters that were randomly set and the correspond-
ing setting options.

Table 2. Possible training parameters for the deep ensemble models.

Parameter Options

Random training split 0–15%

Learning rate 0.0001–0.001

Optimizer Adam or RMSprop

Epochs 25–85

Batch size 8, 16, 32, 64 or 128

As the measure for uncertainty for the deep ensemble three different methods
were used: variance-based uncertainty, weighted variance-based uncertainty and
entropy-based epistemic uncertainty. For the variance-based uncertainty it was
used both with and without being weighted before summation, see Eq. 3 and
Eq. 4. The entropy-based epistemic uncertainty was used according to Eq. 5.

4.5 Experiments and Metrics

In a first experiment, all methods were evaluated for the purpose of detecting the
OOD samples from the three different OOD data set. The aim was to separate
POCUS test set (ID data) from OOD data solely based on the score obtained
from the OOD methods. In a second experiment, the methods were tested on
the POCUS test set for finding OOD samples within that data set. Exclud-
ing samples that are detected as OOD should ideally improve the classification
performance on the rest of the data, ultimately making the predictions more
trustworthy. Three types of metrics were used to evaluate the different methods:
receiver operating characteristic (ROC) curve, area under the ROC curve (AUC)
and false positive rate (FPR).

For the first experiment, both ROC and AUC were evaluated, using the
POCUS test set as ID and the OOD sets as OOD. The FPR was evaluated at
the OOD detection thresholds of 95% and 80% true positive rate (TPR) for
the POCUS training data, i.e. 95% or 80% of the data was detected as ID,
referred to as FPR95 and FPR80 respectively. The multi-level energy score was
evaluated both for each exit separately and combined. For statistical testing, the
95% confidence interval (CI) for the AUC (AUC 95% CI) was calculated using
bootstrapping on the ID test set 1000 times.

For the second experiment, the classification performance into normal and
benign (non-cancerous) versus malignant (cancerous) on the POCUS test set
was measured using AUC and AUC 95% CI. The performance was measured
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when using the whole test set, as well as when excluding samples based on the
OOD detection thresholds described for the previous experiment. Given these
thresholds, 5% or 20% of the POCUS training data would be left out, referred
to as leave-out-rate. Only the remaining samples were included in the classifi-
cation performance evaluation. Statistical significant classification improvement
was computed using the Mann-Whitney U-test, with p-values less than 0.05
considered significant.

5 Results

The AUC and corresponding CI, along with FPR80 and FPR95 were evaluated
for all OOD detection methods for each OOD data set, see Table 3. For the
MNIST and CCA data sets, the multi-level energy score has the best performance
with an AUC of 98.1% and 78.5% respectively. The CorruptPOCUS data set
is best detected using the deep ensemble with variance-based uncertainty, with
an AUC of 97.9%. For all the methods and OOD data sets, except for the softmax
score on MNIST, the false positive rate decreases when using FPR80 compared
to FPR95.

The ROC curves for each method and OOD dataset can be seen in Fig. 5,
showing the relation between false positive rate and true positive rate. The
softmax score performs the worst for all datasets and false positive rates. The
multi-level energy score performs the best for MNIST at all false positive rates
and CCA for low false positive rates. All the deep ensemble methods perform
similar with best performance for CorruptPOCUS at all false positive rates.

The individual results for OOD detection using energy scores from the dif-
ferent exits can be seen in Table 4. The performance of the separate energy
scores from the three exits varies for the different OOD data sets, with MNIST
being best detected in exit 2 and 3, and CorruptPOCUS and CCA being best
detected in exit 3. The table also shows that FPR80 is lower than FPR95 for all
exits and OOD data sets.

To visualise the separate energy scores from the different exits, the distri-
bution for each OOD data set is shown in Fig. 6. Corresponding plots for the
uncertainties from the deep ensemble can be seen in Fig. 7. For all methods and
OOD data sets there is an overlap of the distribution for the POCUS test set
and OOD data sets, making it impossible to separate them perfectly.

Finally, all methods were evaluated for breast cancer classification on the
POCUS test set, see Table 5. Since the underlying classification networks are
trained differently for the different methods, the baseline results on the whole
test set (without leaving out non-trustworthy samples) varies. With a leave-
out-rate of 0%, the deep ensemble performs the best, with an AUC on 95.6%.
When including thresholds for detecting OOD samples, all methods except for
the multi-level energy score show an improved classification performance on
the remaining samples. Using a 5% leave-out-rate, the highest performance was
obtained when using an ensemble with weighted variance-based uncertainty, with
an AUC of 96.1%. The best performance for the 20% leave-out-rate was achieved
using an ensemble with variance-based uncertainty, with an AUC of 97.6%.
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Table 3. AUC (%) and FPR (%) for the different OOD detection methods evaluated
on the OOD data sets. FPR is measured at TPR 95% and 80% for the POCUS training
data (FPR95 and FPR80). Here ↓ implies smaller values are superior and ↑ implies
larger values are superior.

Method OOD data AUC ↑ AUC 95% CI ↑ FPR95 ↓ FPR80 ↓
Softmax MNIST 0.1 0.0–0.3 100.0 100.0

CorruptPOCUS 73.1 70.0–76.3 96.0 63.7

CCA 53.6 46.6–61.7 100.0 69.0

Energy MNIST 98.1 97.3–98.9 1.0 0.0

CorruptPOCUS 85.5 82.9–88.2 25.8 18.6

CCA 78.5 72.5–84.0 60.7 31.0

Ensemble with
variance

MNIST 79.1 77.1–80.9 56.0 41.7

CorruptPOCUS 97.9 97.2–98.5 7.7 4.1

CCA 70.1 65.0–74.4 88.1 71.4

Ensemble with
weighted variance

MNIST 80.4 78.6–82.1 52.8 37.4

CorruptPOCUS 97.2 96.2–98.0 8.7 6.2

CCA 71.2 66.2–75.5 83.3 67.9

Ensemble with
entropy, epistemic
uncertainty

MNIST 84.6 82.8–86.3 48.6 27.7

CorruptPOCUS 97.4 96.3–98.2 7.3 5.1

CCA 70.2 65.4–74.6 85.7 69.0

Table 4. OOD detection results for multi-level energy score measured in AUC (%)
and FPR (%) for each exit and OOD data set. FPR is measured at TPR 95% and 80%
for the POCUS training data (FPR95 and FPR80). Here ↓ implies smaller values are
superior and ↑ implies larger values are superior.

OOD data AUC ↑ FPR95 ↓ FPR80 ↓
exit exit exit

1 2 3 1 2 3 1 2 3

MNIST 29 98 99 99 7 0 95 2 0

CorruptPOCUS 83 73 88 24 36 21 20 32 16

CCA 20 67 87 100 58 45 96 45 29

Using softmax score lead to a significant improvement in classification using a
leave-out-rate of both 5% and 20%, meaning the remaining predictions are more
likely to be correct and hence more trustworthy. All deep ensemble methods also
show significant improvements, however the epistemic uncertainty only shows
significant improvement using the 20% leave-out-rate and no significant improve-
ment for the 5% leave-out-rate. The variance-based and weighted variance-based
ensemble methods show significant improvements for both leave-out-rates.
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Fig. 5. ROC curves for the OOD detection methods evaluated on MNIST (left), Cor-
ruptPOCUS (middle) and CCA (right).

6 Discussion

The softmax score achieved inferior OOD detection performance compared to
the other methods on all data sets, with the lowest AUC and highest FPR for all
OOD data sets, see Table 3 and Fig. 5. It has previously been shown that the soft-
max score can be overconfident for samples far away from the training data [18],
which our results corroborate. The energy scores from different exits are use-
ful for different OOD data, as can be seen in Table 4. The MNIST samples are
not well detected as OOD in the first exit, but in the last two exits they are
almost perfectly detected as OOD. This is supported in Fig. 6 where at the last
exit the energy distribution for MNIST is almost totally separated from the
distribution for the POCUS test set. The CorruptPOCUS and CCA data are
best detected in the third exit, but are not as easily separated from the ID data
as the MNIST data. Table 4 also displays that the threshold at FPR80 achieves
better results than at FPR95, specifically for CCA at exit 3 where FPR80 is 29%
compared to 45% for FPR95. This general pattern is also confirmed in Table 3
where all methods achieve a better FPR at the 80% threshold compared to the
95% threshold.

According to Table 3, all OOD detection methods struggle to detect the CCA
data. These images are ultrasound images similar to the ID data, with the differ-
ence that they are capturing the common carotid artery instead of breast tissue,
hence they represent the second case mentioned in Sect. 1. Since these images are
so similar to the ID data, the OOD detection methods have trouble separating
them from the POCUS test data.

In a real world setting, which data is OOD heavily depends on the train-
ing data, the training procedure, hyperparameters and the network itself. What
appears to the human eye as OOD might not be OOD from a computational
perspective and vice versa. Underlying structures in an image or noise can cause
an image to be OOD without the human eye noticing these difficulties for the
algorithm. Therefore, there might be more cases of OOD data then the three
cases discussed here. In an optimal setting, an OOD detection algorithm would
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Fig. 6. Distribution of energy scores for the OOD data sets. Energies from exit 1 (left),
exit 2 (middle) and exit 3 (right). The vertical dashed lines mark the threshold where
80% (light gray) and 95% (black) of the POCUS training set images are detected as
ID.

show a strong correlation between OOD detection scores and the correctness of
a prediction, covering not only the cases discussed here, but also images that
are OOD due to other reasons. Ideally, we therefore want to find an OOD score
threshold that excludes all kind of unsuitable cases, including noisy images,
images of wrong tissue, images of rare lesions, but also images where the algo-
rithm is very uncertain on how to make a trustworthy prediction. A well working
OOD detection method would therefore lead to improved predictive accuracies
when data samples with high OOD scores are excluded.

Removing OOD samples with softmax score does not have any larger impact
on the AUC for the classification, see Table 5. Using the multi-level energy
score for removing OOD samples decreases the AUC, implying that there is no
correlation between correctness of prediction and energy score. However, the
performance of the classifier improves significantly when removing OOD samples
with the uncertainties from the deep ensemble. Additionally, the deep ensem-
ble methods perform superior when detecting CorruptPOCUS as OOD, which
is corrupted ID data (case 1 in Sect. 1). The good performance for both OOD
detection and classification implies that using the uncertainties works well when
the OOD data is relatively similar to the ID data. The deep ensemble methods
and multi-level energy score perform well on detecting different types of OOD
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Fig. 7. Distribution of the uncertainties from the deep ensemble methods for each
OOD data set: variance-based uncertainty (top), weighted variance-based uncertainty
(middle) and entropy-based epistemic uncertainty (bottom). The vertical dashed lines
mark the threshold where 80% (light gray) and 95% (black) of the POCUS training set
images are detected as ID.

data. A combination of these two OOD detection methods might be a good
solution to detect more cases and increase the trustworthiness of the classifier.

The softmax score and multi-level energy score have the advantages of not
requiring multiple trainings of the network, hence are fast to use. Deep ensembles
come with the drawback of complexity, in our case having a 20 times higher
training and inference time compared to the other methods.

Even though the OOD detection methods might not work as well for data
very close to the ID data compared to data that is very clearly OOD, it shows
promising results detecting data capturing corrupted ultrasound images. In a
real world setting this has the potential of being useful, by having the OOD
detector flag when an image is unsuitable and the prediction should not be
trusted. The novelty of this research lies in the application for a POCUS based
automatic breast cancer classification, which only becomes applicable in the real
world when the safety of the algorithm can be ensured. For future research more
OOD detection methods should be investigated, for example Bayesian neural
networks, deterministic uncertainty quantification methods and post-hoc OOD
detection methods. Furthermore, the generalizablity of these methods across
different medical applications should be tested.
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Table 5. The classification results (cancer versus non-cancer) for each OOD detection
method, measured with AUC (%) and AUC 95% CI. Here ↓ implies smaller values are
superior and ↑ implies larger values are superior.

Method Leave-out-rate (%) AUC ↑ 95% CI AUC ↑
Softmax 0 94.2 92.3–96.0

5 95.2 93.2–96.9

20 95.4 92.9–97.4

Energy 0 94.6 92.4–96.2

5 94.2 92.1–96.2

20 93.3 90.8–95.5

Ensemble with
variance

0 95.6 93.8–97.0

5 95.9 94.1–97.4

20 97.6 95.7–99.1

Ensemble with
weighted variance

0 95.6 93.8–97.0

5 96.1 94.4–97.7

20 97.4 95.5–98.9

Ensemble with
entropy, epistemic
uncertainty

0 95.6 93.8–97.0

5 95.5 93.5–97.2

20 97.3 95.3–98.7

7 Conclusion

In this work, three different OOD detection methods have been compared and
evaluated for the novel application of breast cancer classification in POCUS. Due
to different types of possible OOD cases, all methods were evaluated on three
different OOD data set before integrating them into the breast cancer classifi-
cation pipeline. The multi-level energy score performed the best on the MNIST
and CCA data, while the deep ensembles were superior on the CorruptPOCUS
data. Since the different OOD detection methods have proven to perform well
on different OOD data, it could be promising to investigate the use of different
OOD detection methods combined. The relative complexity of the deep ensem-
ble requires more computational power compared to using the multi-level energy
score. Thus, there is a balance between performance and computational complex-
ity when it comes to OOD detection. Finding OOD samples is important if deep
learning algorithms are to be used safely in a real world medical setting. The
methods show promising result for detecting OOD data far from the ID data,
but further research is needed in order to detect OOD data very similar to the
ID data, including rare types of cancer and cases with atypical appearances.
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Abstract. Accurate colon segmentation on abdominal CT scans is cru-
cial for various clinical applications. In this work, we propose an accurate
approach to colon segmentation from abdomen CT scans. Our archi-
tecture incorporates 3D contextual information via sequential episodic
training (SET). In each episode, we used two consecutive slices, in a CT
scan, as support and query samples in addition to other slices that did
not include colon regions as negative samples. Choosing consecutive slices
is a proper assumption for support and query samples, as the anatomy
of the body does not have abrupt changes. Unlike traditional few-shot
segmentation (FSS) approaches, we use the episodic training strategy in
a supervised manner. In addition, to improve the discriminability of the
learned features of the model, an embedding space is developed using
contrastive learning. To guide the contrastive learning process, we use
an initial labeling that is generated by a Markov random field (MRF)-
based approach. Finally, in the inference phase, we first detect the rec-
tum, which can be accurately extracted using the MRF-based approach,
and then apply the SET on the remaining slices. Experiments on our
private dataset of 98 CT scans and a public dataset of 30 CT scans
illustrate that the proposed FSS model achieves a remarkable validation
dice coefficient (DC) of 97.3% (Jaccard index, JD 94. 5%) compared to
the classical FSS approaches 82.1% (JD 70.3%). Our findings highlight
the efficacy of sequential episodic training in accurate 3D medical imag-
ing segmentation. The codes for the proposed models are available at
https://github.com/Samir-Farag/ICPR2024.
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1 Introduction

Automated image segmentation plays a crucial role in medical imaging research
and clinical applications by automating or facilitating the delineation of anatom-
ical structures and other regions of interest. The segmentation step is of signifi-
cant importance to facilitate accurate identification and delineation of structures
or abnormalities for clinical applications such as lesion localization, disease diag-
nosis, and prognosis [30,31]. Specifically, automatic colon segmentation is a key
step for medical image analysis pipelines (e.g. colonography [3,16]), because any
inaccuracies at the segmentation stage will carry through to subsequent steps.
This underscores the importance of prioritizing the segmentation process and
improving its effectiveness, which consequently leads to performance enhance-
ments in the next stages of this pipeline.

Fig. 1. Examples of challenges that hinder accurate segmentation of the colon [3,11].

However, segmenting the colon regions accurately from abdominal CT scans
poses significant challenges, as depicted in Fig. 1. First, colon regions exhibit
highly variable and asymmetric topology [22], and their positions vary between
different CT images [9]. Second, distinguishing colon regions from surround-
ing structures is complicated by the presence of Hounsfield intensity regions
containing soft tissues, air regions resembling gas-filled organs like the small
intestine, and high-attenuation structures, e.g., bones. Lastly, patient prepara-
tion imperfections, such as residual stool and lesions, can lead to disjointed colon
segments. These complexities inherent in colon segmentation, particularly in sce-
narios where automated algorithms are indispensable, may confuse segmentation
algorithms [9]

Colon segmentation approaches that have been reported in the literature
could be grouped into two main categories: (1) classic segmentation approaches,
which typically employ techniques such as MRF-based models, e.g. [3,5,21,26],
edge detection, region growth and division, e.g. [6,7,17,20,21], or hybrid segmen-
tation algorithms [14]; and (2) deep learning (DL) approaches, e.g. [2,10,15,30],
which exploit the available data to learn complicated high-level characteristics
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that can be used for segmentation, unlike the classical approaches that focus on
low-level traits, which may not be as helpful for segmentation.

Although DL approaches are successful segmentation tools, Jakob Wasserthal
et al. [30], who developed the state-of-the-art (SOTA) segmentation tool,
Totalsegmentator, reported that the colon posed the most significant challenges,
with a failure rate of ∼35% of cases. This failure was mainly attributed to diffi-
culties in precisely segmenting the subtle details of the colon.

Traditional deep Convolutional Neural Networks (CNNs) adept at semantic
segmentation often encounter challenges, relying on a plethora of densely anno-
tated images for effective training and struggling to generalize to unfamiliar
object classes. This issue is exacerbated in medical imaging, where the dearth of
annotations hampers the applicability of conventional methods. Recently, few-
shot learning (FSL) has emerged as a prominent deep learning approach to equip
a model with the ability to segment unseen semantic classes by learning from
just a few labeled images of this unseen class during inference, without necessi-
tating model retraining. Hence, Few-Shot Segmentation (FSS) was introduced to
address the challenges of medical image segmentation by leveraging knowledge
distilled from labeled samples (support) to segment unlabeled samples (query).
FSS learns tasks composed of base class in an episodic training manner and
segments unseen classes in the form of tasks in the inference stage.

One of the pioneering DL networks proposed to utilize FSL in natural images
is PANet [29]. Prior to PANet, FSS methods demonstrated unsatisfactory gen-
eralization due to a lack of separation between knowledge extraction and seg-
mentation processes, as well as the utilization of support data solely for masking
purposes. PANet addressed these issues by introducing a separation between pro-
totype extraction (which involves feature extraction from support images and
subsequent prototype extraction from these features, along with feature extrac-
tion from query images) and non-parametric metric learning (which segments the
query image by computing the cosine distance between each support class pro-
totype and query features at each spatial location). Furthermore, PANet uses
annotations to supervise Few-Shot Learning. To eliminate the need for anno-
tations during training, Ouyang, Cheng et al. [19] developed a self-supervised
FSS framework, SSL-ALPNet, that exclusively utilizes superpixel-based pseudo-
labels for supervision. In addition, an adaptive local prototype module is pre-
sented to mitigate the challenge of foreground-background imbalance in medical
image segmentation. Wu, Huisi et al. [31] proposed AAS-DCL to combine dual
contrastive learning and anatomical guidance to enhance feature discriminability
and data utilization to help few-shot medical image segmentation.

In this work, we propose a novel FSS approach for precise colon segmenta-
tion in abdominal CT scans, addressing the inherent challenges of this critical
medical imaging task. Our proposed approach introduces an episodic segmenta-
tion strategy that takes advantage of sequential episode training and contrastive
learning techniques. Unlike traditional few-shot segmentation approaches, our
method employs supervised episodic training, facilitating enhanced feature dis-
criminability and segmentation accuracy. In particular, we incorporate unrelated
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slices rich in anatomical structures to provide vital background guidance, further
refining the segmentation process. Based on the AAS-DCL framework [31], our
approach integrates dual contrastive learning (DCL) and anatomical guidance,
culminating in improved feature extraction and segmentation performance. In
addition, we introduce a novel MRF-based rectum detection and initial labeling
technique, enhancing the robustness and accuracy of the proposed approach.
The primary contributions of our work are as follows:

i) Develop an MRF-based rectum detection and initial labeling method, con-
tributing to improved accuracy and robustness of the overall segmentation
process.

ii) Integrate supervised sequential episodic training and contrastive learning
techniques to enhance feature discriminability and segmentation accuracy,
while incorporating unrelated slices rich in anatomical structures to provide
essential background guidance.

iii) Enhance feature extraction and segmentation performance through the inte-
gration of dual contrastive learning with anatomical guidance.

2 Method

Our approach aims to accurately segment the colon in abdominal CT scans. We
use a method that combines 3D information (through SET) with 2D segmenta-
tion models. This allows us to avoid the high computational costs of complex 3D
neural networks while still achieving precise results. The 2D models are efficient
and flexible, handling individual CT images well even with irregular sampling.

2.1 Proposed Episodic Segmentation Approach

The traditional episodic training strategy for the few-shot segmentation (FSS)
approach involves training a model over a large number of epochs, with multiple
episodes in each epoch. So, a dataset, in episodic training, is arranged into mul-
tiple episodes and each episode consists of support and query pairs. For a set of
images X and its corresponding set of binary masks Y, we define the support set
S = {xc

s, y
c
s} and the query set Q = {xc

q, y
c
q}, where xc

s(q) ∈ X , yc
s(q) ∈ Y, and the

superscript c represents an arbitrary class in a set of classes C. Since few-shot
segmentation approaches were introduced to take advantage of distilled knowl-
edge from labeled samples for segmenting unlabeled ones, in these approaches,
a model is trained to identify a set of classes Ctr in a training dataset Dtr. But
it never sees the set of classes Cts in the test dataset Dts. Then, during the infer-
ence, the model is used to segment the unseen classes Cts in Dts using annotated
samples of these classes, without the need to re-train the model.

We propose an FSS-like approach in which we use support and query sets,
but unlike the classical FSS approaches, we use the episodic training strategy
in a supervised manner. Therefore, training and test classes are the same, that
is, Ctr = Cts = {colon}, but Dtr �= Dts where Dtr contains training scans and
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Dts contains testing scans. Moreover, to enhance the discriminability of learned
features of the model, we exploit unrelated slices U = {xc̄

u, yc̄
u} but rich with

anatomical structures (i.e., c̄ non-colon regions, e.g., liver) to provide more back-
ground guidance. Using support, query, and unrelated features, extracted from
xc
s, xc

q, and xc̄
u, respectively, we develop an embedding space using contrastive

learning to pull closer (xc
s, x

c
q) and push farther (xc

q, x
c̄
u).

Fig. 2. The proposed SET FSS approach with DCL. An MRF-based auxiliary super-
vision is used to enhance the baseline AAS-DCL. The workflow starts by arranging
scans into pairs of consecutive slices (xc

s, x
c
q). Then unrelated slices are selected as

negative samples {xc̄
u}. The episode (xc

s, x
c
q, {xc̄

u}) is fed into encoders to extract fea-
tures (fs, fq, {fu}). Masked average pooling is applied on these features and contrastive
learning is used to generate an embedding space. Finally, decoders with skip connection
are used to estimate the final segmentation

∼
yq, which is iteratively refined using initial

labeling.

We build on the AAS-DCL approach [31], as shown in Fig. 2, to combine DCL
and anatomical guidance to enhance feature discriminability. However, unlike
the AAS-DCL approach, we use SET, in which support and query samples are
consecutive slices in a CT scan. The motivation behind this is that the anatomy
of the human body does not have abrupt changes and thus if a pixel in the
current CT slice is colon, it is most likely that this pixel will be colon within
the next or the previous few CT slices. Therefore, using consecutive slices as
support and query samples simplifies the segmentation approach. Moreover, for
more guidance, we start with an initial labeling that is generated using an MRF-
based approach (Algorithm 1). This enhances the DCL. Finally, in the inference
stage, we first detect the rectum, which can be accurately extracted as shown in
Fig. 4, then apply the sequential episodic approach.

Unrelated Slices Selection: The proposed workflow starts by arranging CT
scans into pairs of consecutive slices (xc

s, x
c
q). Then, in each episode, we randomly
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select three unrelated slices as negative samples {xc̄
u}. These unrelated slices

do not include colon regions but they may have irrelevant organs or tissues.
To define masks {yc̄

u} for unrelated samples {xc̄
u}, we employ an unsupervised

graph cut-based algorithm [8], offline, which generates superpixel segmentation.
These pseudo-labels are binarized by choosing the dominant superpixel (i.e., the
largest connected region) in each pseudo-label as a target and other superpixels
as a background. Then an encoder is used to extract the features {f c̄

u} from {xc̄
u}.

Finally, these features and their masks {f c̄
u, yc̄

u} are included in the AAS-DCL
scheme.

Dual Contrastive Learning: To provide more background guidance, we
exploit the unrelated slices with query and support slices in contrastive learn-
ing. Inspired by the baseline AAS-DCL approach [31], we combine prototypical
contrastive learning and contextual contrastive learning to form a DCL scheme,
which makes the features of the colon regions closer to other characteristics of
dissimilar tissues. The infoNCE loss [18] L(vq, vs, vu) is used for the training
process of the contrastive learning module.

L(vq, vs, vu) = −vq.vs/τ + log
n∑

i=1

exp(vq.vui/τ),

where τ is a control parameter, n is the number of negative samples, vq, vs,
and vu are the query, support and background prototypes, respectively. These
prototypes are generated by the global average pooling of features and the corre-
sponding masks. However, these prototypes cannot acquire intra-class variations.
To overcome this problem, patch-based prototypes may be used.

Prototypical Contrastive Learning: Prototype-based learning is based on the gen-
eration of prototypes that discriminate between the features of the foreground
and the background. In this approach, support features {fs} and their corre-
sponding masks {ys} are used to generate the colon prototype using the masked
averaged pooling (MAP) operation [34] vs =

∑
r ys(r).fs(r)∑

r ys(r)
.

Unlike the baseline AAS-DCL approach, which uses global average pooling to
calculate the query prototype, we exploit the initial query mask ŷq to calculate
the query prototype using masked average pooling. Also, instead of using the
query feature fq, we employ a prior embedding module [31] to enhance the
query feature. The enhanced query feature f̂q further activates the foreground

information in the query prototype vq =
∑

r ŷq(r).f̂q(r)∑
r ŷq(r)

.
Similarly, unrelated features {fu} and their corresponding masks {yu} are

also used to generate the background prototype vu using masked averaged pool-
ing.

To overcome intra-class variations and to exploit information about other
structures around colon regions as unrelated samples, we employed patch-based
learning [19]. In this method, the support feature and its mask are divided into
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patches, then these patches are used to generate a colon prototype and a back-
ground prototype depending on a threshold. This scheme increases the number
of negative samples and distinguishes between the local characteristics of differ-
ent tissues. Again, unlike the baseline AAS-DCL approach, we exploit the initial
mask of the query ŷq to calculate the query prototype using the masked average
pooling.

Contextual Contrastive Learning: Finally, to guide feature maps focusing on rich
contextual information, a spatial attention block [24] is employed to process the
support feature fs, enhanced query feature f̂q and unrelated features {fu}. Then
the processed features are averaged and used in contextual contrastive learning,
for more details see [31].

Iterative Prediction: For accurate segmentation, iterative optimization meth-
ods [28,32] are used to combine the prediction of the query with the query
feature by convolution. Unlike the baseline [31], we guide the iterative process
using the initial labeling to promote the fusion of the query feature and the pre-
dicted mask. The query prediction is updated through the similarity consistency
constraint, in which we also use initial labeling to calculate a similarity map
between support and query features.

Fig. 3. Examples of episodes from training dataset. Each row represents a single episode
that includes labeled support, query with initial labeling, and unrelated labeled slices.
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Training Stage: In this stage, two consecutive slices are randomly selected as a
pair of support and query. In addition, three randomly selected unrelated slices
are added to this pair to form an episode, as shown in Fig. 3. Each episode is fed
into the encoder-decoder sSENet [25] for feature extraction and reconstruction.
Then the cross-entropy loss uses the prediction of this module to calculate a
prediction error against the ground truth. The prediction error and contrastive
learning loss, which are computed using the extracted features and the initial
query mask, are backpropagated to train the network.

Inference Stage: This stage starts by detecting the rectum and the initial
mask for a given abdomen CT scan using the proposed MRF-based approach.
Subsequently, a rectum slice is considered a support sample and the consecutive
slice is a query. In addition, three randomly selected unrelated slices are added
to this pair to form an episode. Each episode is fed into the trained model to
generate the prediction of the query. Then, the segmented query slice will be the
support sample for the consecutive slice in the sequence. This iterative process
continues until all colon regions are successfully segmented.

Fig. 4. MRF-based initial labeling approach. Rectum is the only region, in the lower
CT slices that has air, and it can be easily identified as a disk-like region that has low
Hounsfield. First, EM is used to calculate the empirical distributions P of Hounsfield
intensities in a DICOM volume V. Thresholds between air and fat and between mus-
cle and fluid are used to generate OEM . RG algorithm is applied starting from the
rectum to generate an eroded colon ORG. This guarantees that other organs, e.g., small
intestine, are not merged with ORG. Finally, ORG is refined through an optimization
technique to generate OGC , which still may have other structures (colored) misclassified
as colon. (Color figure online)

2.2 MRF-Based Rectum Detection and Initial Labeling

To generate an initial labeling, we develop a multi-step approach, which employs
three algorithms: Expectation-Maximization (EM) to calculate the empirical
distributions of Hounsfield units (HU) in a DICOM volume, Region Growing
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(RG) to generate initial labeling by identifying colon regions starting from the
rectum, and Graph Cut (GC) to estimate the initial mask of colon regions. The
main components of a colon are the air, for which the characteristic peaks are
almost at -1000 HU [17], and the opacified fluid whose Hounsfield intensity is
greater than 300 HU. To extract the colon components, first we estimate the
marginal densities of air, fat, muscle, and fluid, in an abdomen scan, by fitting
four Gaussian components using the EM algorithm, as shown in Fig. 4-b. Then,
we identify colon regions using two thresholds. As shown in Fig. 4-c, the rectum
is the only region, in the lower CT slices of an abdomen scan, that has air.
Therefore, the rectum region can be easily identified as a disk-like region with
a low Hounsfield unit. This region is used as a starting seed, from which other
colon regions are extracted by the proposed model.

The problem is formulated as the maximum-A posterior estimate of an MRF
model, which involves finding the labeling that minimizes the following energy
function E(ỹ) (Eq. (1)) that combines both the spatial smoothness and data
consistency.

E(ỹ) =
∑

{r,t}∈N
V (ỹr, ỹt) +

∑

r∈P
D(ỹr), (1)

where N represents the set of neighboring pixel pairs (r, t), V (., .) is the potential
function that penalizes label inconsistencies between neighboring pixels, and
D(.) is the data penalty term that measures how well the labeling ỹr matches
the observed data. The minimization of the energy function in Eq. (1) using a
graph cut generates the initial labeling result. The Algorithm 1 summarizes this
approach.

Algorithm 1. MRF-based segmentation approach
0: Input: DICOM volume V
1: Calculate the histogram P of HU values in V
2: Apply EM algorithm, and identify air and fluid regions OEM

3: Detect rectum region in OEM

4: Starting from rectum region, apply RG algorithm to extract colon ORG from OEM

5: Use ORG as a seed for GC and minimize E(ỹ) to extract initial labeling OGC

3 Experiments

Dataset: We conducted experiments on our private dataset having abdominal
CT scans of 49 patients in both supine and prone positions. Experts annotated
the colon segments in these 98 CT scans. Also, for the sake of comparison, we use
the synapse public dataset [12] which has been used by several SOTA approaches.
In our work, we refer to this dataset as SABS. It contains 30 abdominal CT scans.
In SABS dataset, 13 organs were manually annotated (colon is not included) by
2 experienced undergraduate students and verified by a radiologist [1]. From
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these two datasets, we created three training datasets, Dtr1 , Dtr2 and Dtr3 , and
a testing dataset Dts:

i Dtr1 (SABS): Consists of 30 scans from the SABS CT dataset, with anno-
tated organs labeled 1 through 13. Specifically, the labels include spleen (1),
right kidney (2), left kidney (3), and so forth, up to the left adrenal gland
(13).

ii Dtr2 (SABS + CTC68): Combines the SABS dataset (with 13 annotated
organs) and 68 scans (34 prone and 34 supine) from our private dataset (with
annotated colon). Consequently, the combined dataset covers spleen (1), right
kidney (2), left kidney (3), and so forth, up to the left adrenal gland (13),
and includes the colon as label 14.

iii Dtr3 (CTC68): Includes 68 scans (34 prone and 34 supine) from our private
dataset (with annotated colon).

iv Dts (CTC30): Encompasses 30 scans (15 prone and 15 supine) from our
private dataset (with annotated colon).

Evaluation Metrics. We employed both DC and JD to quantify the pixel-wise
agreement between the predicted and ground truth segmentation [27]. This dual
assessment approach considers both the overlap and spatial agreement between
the predicted and ground truth colon regions.

Technical and Implementation Details: We implemented our framework
with PyTorch, based on the official baseline implementation https://github.com/
cvszusparkle/AAS-DCL FSS, on a Nvidia TITAN RTX with 24 GB. Among
the different available off-the-shelf fully convolutional networks, we utilized
ResNet101 that guaranteed high spatial resolutions in feature maps. As a pre-
processing step, we first resize the 2D slices to 256 × 256 resolution and divide
data into 4 patches for prototypical contrastive learning. Our proposed SET
starts with a learning rate of 10−4, a batch size of 1, and applies polynomial
decay. Adam optimization with power = 0.95 and weight decay = 10−7 is used
over 100 epochs. Data augmentation includes random adjustments to sharpness
and lightness. For high-resolution feature maps, a fully convolutional ResNet101
pre-trained on MS-COCO processes 256 × 256 images to 256 × 32 × 32 maps.
Training uses a Local Pooling Window of 4 × 4, reducing to 2 × 2 for infer-
ence. Training on a Nvidia TITAN RTX GPU takes 3 h, using 3 GB memory,
on average for the proposed model.

Standard FSS Approaches vs the Proposed SET FSS Approach: Since
the proposed approach uses the FSS concept of support and query sets, we
compare its performance against standard FSS approaches. To highlight the high
performance of our proposed SET FSS approach with respect to the standard
FSS segmentation approaches, we evaluated the SSL-ALPNet [19] model and
the AAS-DCL [31] network, which is our baseline, in the colon segmentation
problem. The experimental results on the test set Dts, shown in Table 1, shed
light on the performance of various model configurations in colon segmentation.

https://github.com/cvszusparkle/AAS-DCL_FSS
https://github.com/cvszusparkle/AAS-DCL_FSS
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Table 1. Comparison of validation DC and JD on Dts dataset for our proposed models
against the SOTA models, with different training and initialization settings.

Model Training Initialization DC JD

SOTA SSL-ALPNet [19] SABS None 34.1% 21.0%

SABS + CTC None 81.7% 70.0%

CTC None 82.1% 70.3%

AAS-DCL [31] SABS None 16.0% 8.8%

SABS + CTC None 65.5% 49.5%

CTC None 68.8% 53.2%

Proposed Guided-AAS-DCL SABS Superpixel 61.0% 44.2%

SABS + CTC Superpixel+MRF 83.0% 71%

CTC MRF 96.3% 92.9%

SET-DCL CTC None 96.8% 93.7%

Guided-SET-DCLCTC MRF 97.3%94.5%

First, we used the standard FSS technique, in which we train SSL-ALPNet
and AAS-DCL models using Dtr1 (i.e., self-supervised learning by training net-
works with data that included superpixel results instead of annotations). As
expected, standard FSS techniques do not perform well in this scenario. This
is due to many reasons, such as uncertainties in the dataset (e.g., prep deficits,
patient conditions, and scanner settings and errors). In addition, the learned
embedding space of the prototypes of different organs in the Dtr1 dataset has
different distributions than the colon prototype due to the characteristics of dif-
ferent tissues. Specifically, SSL-ALPNet trained in SABS achieved 34.1% DC
and 21.0% JD, and AAS-DCL trained on Dtr1 achieved 16.0% DC and 8.8%
JD. For learning a more general embedding space, in the second experiment,
we included the colon in the training phase. So, we used Dtr2 to train the two
models (i.e., supervised learning by training networks with data including the
colon along with the other 13 organs). This drastically enhances the performance
of the models. SSL-ALPNet trained on Dtr2 achieved 81.7% DC and 70.0% JD,
while AAS-DCL trained on Dtr2 achieved 65.5% DC and 49.5% JD.

To explore the upper limit of the performance of the models, we used the
purely supervised learning scheme by training the models using Dtr3. The SSL-
ALPNet trained model provides decent performance, achieving 82.1% DC and
70.3% JD, because the SSL-ALPNet model ensures that each prototype exclu-
sively represents a distinct part of the object-of-interest. This enables precise
localization of colon structures by preserving intricate local details crucial to
segmentation accuracy. However, the AAS-DCL model needs more guidance to
enhance its performance, achieving only 68.8% DC and 53.2% JD.

Ablation Study: The proposed approach depends on the initial labeling and
sequential episodic learning. Table 1 summarize effects of these components. In
order to enhance the performance of the baseline model, we guide the DCL
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Fig. 5. Qualitative results on different training settings show that the results of SOTA
FSS approaches include artifacts, on the other hand, the proposed method achieves
desirable segmentation results that are close to ground truth.

using an initial labeling as explained in the proposed approach. Also, we add the
constraint on a query slice to be within 5 neighbors from the support slice. This
limits the changes in the colon structure. The first Guided-AAS-DCL model is
trained using Dtr1 and the initial labeling for the organ of interest is estimated
using the superpixel approach. The initialization and the neighbor constraint
enhance the model performance from 16.0% to 61.0% DC and from 8.8% to
44.2% JD. Adding colon scans with MRF-based initial labeling to the training
dataset in Dtr2 boosts the model performance, yielding a DC of 83.0% and a JD
of 71%. Finally, the supervised learning performance of the Guided-AAS-DCL
model reaches 96.3% DC and 92.9% JD. This highlights that the synergistic
fusion of initial labeling and query constraint promises to deliver precise and
reliable colon segmentation results.

Exploiting the anatomical structure of the colon, we propose the sequential
episodic training SET-DCL FSS approach, in which the support and query are
neighboring slices. Additionally, the inference phase starts with the detected
rectum slices as a support and then sequentially segments the remaining slices
where each segmented slice acts as a support slice for the consecutive query slice
in the CT scan. Without any additional initialization, the proposed SET-DCL
model exhibits a DC of 96.8% and a JD of 93.7%, better than the Guided-AAS-
DCL model. Moreover, leveraging MRF-based initialization further enhances the
performance of the proposed Guided-SET-DCL model’s performance further,
resulting in a remarkable DC of 97.3% and a JD of 94.5%. This underscores the
efficacy of MRF-based initialization and sequential episodic training in increasing
segmentation accuracy.

Figures 5 and 6 show the robustness of the proposed framework that consis-
tently produces satisfactory results, especially for training solely with the CTC.
Also, Fig. 7 provides more illustrations on how the proposed approach accurately
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segments colon parts, while other SOTA approaches may miss parts and have
some artifacts.

Supervised Learning Scheme: Finally, since our proposed approach depends
on supervised learning, to compare against the SOTA CNN-based encoder-
decoder segmentation architectures trained using a supervised learning scheme,
we trained the PAN model [13] that is paired with resnest269e [33] backbone
and U-Net model [23] using Dtr3 then we tested them on Dts. The primary
challenge in traditional encoder-decoder networks lies in their inability to incor-
porate temporal information in a sequence of images such as colon CT scans.
Therefore, we explore the fusion of C-LSTM with U-Net by replacing the con-
volutional layers in the encoder section with C-LSTM layers [4]. As shown in
Table 2, our proposed approach outperforms the SOTA approaches. Specifically,
the DC for our proposed approach (Guided-SET-DCL) is 97.3%, which is higher
than MRF-based (87.9%), C-LSTMs (89.2%), U-Net (85.0%), and PAN (97.1%).
Similarly, the JD for our proposed approach is 94.5%, which also outperforms
MRF-based (84.5%), C-LSTMs (80.7%), U-Net (80.0%), and PAN (95.5%). The
C-LSTM has a lower performance because it has a larger number of parameters
that should be optimized, and this hinders the network learning, especially for
long and high-resolution image sequences.

Although the experiments were conducted to segment the colon, we believe
that the same approach can be successfully used to segment other organs that
are scanned as sequential slices that do not have abrupt changes.

Fig. 6. An example of an episode: query with ground truth, query with initial labeling,
unrelated slices with labels, and support with label. The qualitative results show that
SOTA FSS approaches miss colon semilunar folds (shown in red arrows); on the other
hand, the proposed method achieves desirable segmentation results that are close to
ground truth. (Color figure online)
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Fig. 7. Ground truth 3D colon and results of the proposed method compared to the
SOTA FSS approaches. The qualitative results show that the SOTA FSS approaches
miss parts and generate incomplete colon, on the other hand, the proposed method
generates accurate colon segments.

Table 2. Comparison of validation DC and JD on Dts dataset for our proposed app-
roach against CNN-based SOTA architectures.

Metric MRF-based C-LSTMs [4] U-Net [23] PAN [13] Guided-SET-DCL

DC 87.9% 89.2% 85.0% 97.1% 97.3%

JD 84.5% 80.7% 80.0% 95.5% 94.5%

4 Conclusions

We proposed an FSS approach that addresses the significant challenge of accu-
rate colon segmentation in abdominal CT scans. Through the integration of
a classical segmentation model, i.e., MRF model, deep learning, and sequen-
tial episodic training, we developed a comprehensive approach for colon seg-
mentation. Using episodic training and dual contrastive learning, our Guided-
SET-DCL approach achieves remarkable segmentation accuracy, outperforming
traditional SOTA FSS methods and CNN-based models. We demonstrated the
efficacy of our proposed approach in different training settings that highlighted
its robustness and generalization capability. By incorporating sequential episodic
training and anatomical guidance, we navigated the complexities of colon seg-
mentation, overcoming challenges such as variable topology and variations in
tissue intensity.
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Abstract. Thyroid carcinomas are often diagnosed by histopathology,
which is widely regarded as the most reliable method. However, alterna-
tive imaging modalities may also provide meaningful information about
thyroid tumors. Multiphoton Microscopy (MPM) images may be one of
them. MPM images include Second Harmonic Generation (SHG) and
Two-Photon Excitation Fluorescence (TPEF) images. Nevertheless, the
field of automated analysis of MPM images for the diagnosis of cancer
is in its infancy. We propose a strategy for the differential diagnosis of
thyroid tumors through information fusion from different types of MPM
images. We introduce a novel fusion autoencoder (FAE) for this task. The
fused information from the FAE is subsequently used by a classifier mod-
ule for the differential diagnosis of thyroid tumors. Our method is one
of the first approaches to look into the possibility of using MPM images
for the diagnosis of thyroid tumors. Extensive experiments demonstrate
the superiority of the proposed method compared to a number of state-
of-the-art classification techniques. The code for the paper can be found
at https://github.com/HarshithK13/ICPR2024-Thyroid-Diagnosis.git.

Keywords: Multiphoton Microscopy Images · Information Fusion ·
Fusion Autoencoder · Thyroid Tumor

1 Introduction

Thyroid tumors can be either benign (e.g., Follicular Adenoma (FA)) or malig-
nant (e.g., Follicular Thyroid Carcinoma (FTC)). Histopathological analysis of
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the nodule is generally required for the identification of malignancies. Multipho-
ton Microscopy (MPM) imaging is an advanced imaging technique that utilizes
nonlinear optical processes, such as Second Harmonic Generation (SHG) and
Two-Photon Excited Fluorescence (TPEF), to provide high-resolution, three-
dimensional images of biological tissues. SHG microscopy is useful for imaging
collagen or myosin. TPEF is emitted by proteins in tissue which are autofluores-
cent. Depending on excitation and detection wavelengths, different tissue compo-
nents can be imaged [1,2]. Thus, MPM can provide information about the tissues
that may not be obtained using conventional histopathology. Backward-detected
SHG (BSHG) imaging reveals a punctate pattern stemming from the presence
of small-diameter, segmental collagen, facilitating the detection of fibrillogene-
sis in immature tissue. In contrast, both Forward-detected SHG (FSHG) and
BSHG images of mature collagen fibrils display identical features. Thus, SHG
microscopy specifically offers detailed visualization of collagen architecture inside
a neoplasm [3], while TPEF imaging offers essential insights into intranodular
details [4], making MPM a valuable tool in biomedical research, particularly for
investigating tissue morphology and pathology. Thus, a combination of images
from BSHG, FSHG, and TPEF images can provide complementary information
about the sample under investigation.

Although SHG images are used for medical imaging applications [5], their
use for the diagnosis of thyroid tumors is less explored. Currently, the thickness
of the nodule capsule is the only significant histopathological characteristic that
is associated with malignancy [6], as compared to benign nodules. It is crucial
to distinguish thyroid carcinomas from adenomas and nodular goiters [7] since
a misdiagnosis of this condition can have severe consequences, despite its low
incidence rate. Considering corneal edema detection as mentioned in [5], SHG
microscopy data has proven to be useful to identify seamlessly and monitor
the architectural changes in the collagen of the cornea. It uses deep learning
techniques to classify edematous corneal tissues using a combination of multiple
models, and the model of such a combination has given better estimates than
using stand-alone models, viz., ResNet-50 [8], InceptionV3 [9], and the Flexible
Lightweight Model for Bioimage Analysis (FLIMBA). In [10], the authors show
the benefits of using SHG images of ovarian tissues which get characterized using
deep learning methods.

We propose a method for the differential diagnosis of thyroid tumors using
MPM images of multiple modalities. We design a fusion autoencoder (FAE) that
takes a stack of BSHG, FSHG and TPEF images for a Region of Interest (RoI)
as inputs and provides feature maps with the fused information. Although many
researchers have designed automated methods for the analysis of histopathology
images from thyroid nodules [11], the use of MPM images in this context is
relatively rare. Our primary contributions to this work are as follows:

– We design a method for the differential diagnosis of thyroid tumors using
MPM images of three modalities.

– We propose a fusion autoencoder that can fuse information from BSHG,
FSHG and TPEF images. The fused information is used for the classification
of thyroid tumors.
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– We experimentally demonstrate the utility of using MPM images from three
different modalities.

The rest of the paper is organized as follows. We discuss the proposed method
in Sect. 2 followed by experiments and results in Sect. 3. Finally, the paper is
concluded in Sect. 5.

2 Methodology

We introduce a novel approach for the differential diagnosis of thyroid tumors
based on MPM images, including BSHG, FSHG, and TPEF modalities. Our
goal is to classify tumors into FA and FTC categories by fusing information from
these images. These diverse modalities offer complementary insights into thyroid
nodules [12]. Our objective is to integrate information extracted from BSHG,
FSHG, and TPEF images of thyroid nodule capsules to classify tumors into FA
and FTC categories. To achieve this, we propose a methodology comprising two
main components: an Information Fusion Module (IFM) and a Classification
Module (CM). The IFM, crucial for combining data from multiple modalities
effectively, is devised around a novel fusion autoencoder architecture used for
our specific diagnostic task. The fused information derived from the IFM feeds
into the CM for the final diagnosis. A visual representation of our proposed
method is illustrated in Fig. 1. This schematic encapsulates the integration of
BSHG, FSHG, and TPEF images through our fusion autoencoder.

2.1 The Information Fusion Module (IFM)

In designing the IFM, several key considerations are taken into account. Firstly,
it is of vital importance that the fusion process effectively fuses salient infor-
mation from BSHG, FSHG, and TPEF images, each corresponding to an RoI.
Autoencoders have demonstrated efficacy in extracting significant features from
data [13]. Therefore, we propose employing a Fusion Autoencoder (FAE) for this
task, aimed at extracting relevant information from the different modalities.

The FAE architecture, as depicted in Fig. 1, comprises of one input head and
three output heads. Each RoI generates a stack of corresponding BSHG, FSHG,
and TPEF images, which are then stacked as input to the FAE. The encoder
within the FAE creates a latent space representation from the stacked images
across these three modalities. Subsequently, the decoder consists of common lay-
ers, along with private layers dedicated to each of the three output heads. These
private layers facilitate the preservation and propagation of modality-specific
information. The private layers help to propagate modality-specific information.
One output head is tasked to reconstruct the BSHG image solely from the latent
space representation, while the other two output heads aim to reconstruct the
FSHG and the TPEF images, respectively. Because of this, the fused feature
maps derived from the latent space are expected to encapsulate a fusion of the
salient information from all three imaging modalities.
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Fig. 1. A block diagram of the proposed method consisting of IFM (designed using
FAE) and CM (designed using CNN-based classifier). A stack of BSHG, FSHG, and
TPEF images of a single channel resulting in an image of 512 × 512 × 3-dimensional
input is applied to the input layer of the encoder. The latent space representations are
passed onto the decoder component that reconstructs the BSHG, FSHG, and TPEF
images through three separate branches, respectively. LB , LF , LT are losses from the
reconstructed BSHG, FSHG, and TPEF images, respectively. The CNN-based classifier
predicts the class label using the latent space representation (fused feature maps).

Let IB(n), IF (n), IT (n) be the BSHG, FSHG and TPEF images, respectively
corresponding to RoI n. We create a stack

I(n) = {IB(n), IF (n), IT (n)} (1)

and apply I(n) as input to the FAE. Let I ′
B(n), I ′

F (n) and I ′
T (n) represent

the reconstructed BSHG, FSHG and TPEF images, respectively. We define the
reconstruction loss for BSHG images (LB) as the mean squared error between
input BSHG images IB(·) and the reconstructed BSHG images I ′

B(·). Similar
losses are defined for the FSHG images (LF ) and TPEF images (LT ). Therefore,
the total loss for the FAE is

L = LB + αLF + βLT , (2)

where α and β are the weightage of loss of the FSHG images and TPEF images
relative to BSHG images. The weights for the different reconstruction terms
are the hyperparameters of our model. These terms are chosen based on the
validation performance. Our FAE is trained by minimizing L. The latent layer
representations from the trained FAE is fed to the classification module.
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2.2 The Classification Module (CM)

The CM is composed of a convolutional neural network-based classifier [14].
Using the latent space representations of the RoIs obtained from the IFM, the
classifier undergoes training. This training process involves minimizing binary
cross-entropy loss [15], which is designed for the task of two-class (FA and FTC)
classification.

2.3 Inference

During the inference phase, a stack of BSHG, FSHG, and TPEF images corre-
sponding to a test RoI is applied into the trained FAE. The FAE then generates
a latent space representation from these images. This latent space representation
is subsequently passed to the CM, where it is utilized to determine the final class
labels for the given RoI.

2.4 Implementation Details

In our experimental setup, we conduct hyperparameter tuning for the FAE on
a validation dataset comprising approximately 10% of the total data. The val-
idation set is used to evaluate the performance of each combination. Through
this process, we explored a range of hyperparameters and identified the set that
achieved the highest mean AUROC score.

The proposed FAE has 25 convolutional layers, each followed by a GeLU
activation function. Out of these, 12 are encoding layers, a latent layer and the
other 12 are part of the decoder. The proposed architecture has 3 × 3 kernels in
every convolutional layer. The decoder contains some common layers after the
latent layer and gets branched out after a specific decoding layer (after the 6th

decoding layer in the experimental setup) to retain information about individual
modalities as well as to have the fused information propagated further through
these images. We use Max Pool layers of 2 × 2 dimensions after the first, and
the sixth layers. In addition to these layers, we have two batch norm layers, one
in the encoder and the other in the decoder components. The size of the feature
maps after every convolutional layer starting from the first layer of encoder to
the output of decoder are shown in Table 1.

The CM utilizes an EfficientNet-B4 architecture pretrained on ImageNet [16].
The FAE is trained for 30 epochs, while the classifier undergoes training for 50
epochs. We set the batch size for FAE input as 1 and 32 for the classifier.
Both the FAE and the CNN-based classifier employ the Adam optimizer [17]
with a learning rate of 0.0001. We use sigmoid activation function at the last
classification layer. For a stack of input RoIs, we get class probabilities for the
FA and FTC classes. The class with the highest probability score is considered
to be the class of the input RoIs. For the ablation study, we maintain the same
hyperparameter configurations, but find that utilizing LeakyReLU activation
function yields better results for the fusion of BSHG with FSHG. Consequently,
we adjust the learning rate for both the IFM and CM to 0.001. We tune the
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Table 1. Feature Map Sizes After Each Convolutional Layer

Layer Batch Size Output Channels Height Width

1 1 12 502 502

2 1 14 500 500

3 1 16 248 248

4 1 20 246 246

5 1 20 244 244

6 1 32 242 242

7 1 64 240 240

8 1 128 118 118

9 1 128 116 116

10 1 256 114 114

11 1 512 112 112

12 1 512 110 110

13 1 3 108 108

14 1 256 112 112

15 1 128 114 114

16 1 64 116 116

17 1 32 118 118

18 1 24 120 120

19 1 12 122 122

20 1 1 124 124

21 1 1 126 126

22 1 1 128 128

23 1 1 257 257

24 1 1 512 512

25 1 1 512 512

hyperparameters for individual classifiers using the validation data, identifying
an optimal learning rate of 0.001 and a batch size of 16. We take α = 0.5 and β
= 0.05 in the loss function of (2).

3 Experiments and Results

3.1 Dataset

Our dataset contains different RoIs for 28 distinguishable tissue sections. We
have 115 RoIs on a total of 8 tissue sections and 181 RoIs on 20 other tissue
sections in FA and FTC categories, respectively. Further, each BSHG and FSHG
images folder has raw data with ten linear polarization images captured at 0◦
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Fig. 2. Sample (a) BSHG, (b) FSHG and (c) TPEF images of linear polarization at
0◦ of a particular RoI

to 180◦ with an interval of 20◦. Sample images of BSHG, FSHG and TPEF of a
particular RoI are shown in Fig. 2. Tissue samples were obtained after partial or
total thyroidectomy and were prepared according to standard histology proto-
cols. Thin tissue sections stained with H&E were reviewed by a senior pathologist
in order to place the diagnosis of either FA or FTC. Whole slide images were
acquired from all the tissue sections. These virtual slides were annotated by
the pathologist in order to highlight the nodule capsule surrounding the thy-
roid nodules, which were of interest in the present study. Using these annotated
virtual slides as guidance, MPM images were collected on tissue slides around
the thyroid nodule capsule. For each RoI, three images were simultaneously col-
lected: BSHG, FSHG and TPEF each having dimensions of 512 × 512 pixels.
No postprocessing was applied to the images acquired by the nonlinear optical
microscope.

3.2 Comparative Performances

To ensure that the train, validation, and test sets don’t have any overlapping RoIs
from the same tissue section, we adopt a dataset splitting strategy based on tissue
sections for our experiments. This approach prevents any information leakage
across splits. We use 70:10:20 split of tissue sections for training, validation,
and testing. A random split of the dataset may result in an unequal number of
training RoIs from FA and FTC. To deal with that, we perform splitting such
that the number of training RoIs from the two classes are almost the same.
Also, for each RoI, out of 10 polarization images of each modality, we average
the pixel values of 9 polarization images to streamline the data representation
(excluding the 180◦ image as it is the same as the 0◦ image) to form a 512 ×
512-dimensional resultant image.

We compare the proposed method with various state-of-the-art classifiers
including ResNet-18, ResNet-50, DenseNet-121 [18], EfficientNet-B0 (ENet-B0),
and EfficientNet-B4 (ENet-B4) using individual modality images and evalu-
ate their performances. All of these classifiers are pretrained on the ImageNet
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Table 2. Various performance metrics obtained using different classifiers on the test
dataset for individual modalities (BSHG, FSHG and TPEF images) are captured in the
table. They are compared with the metric values derived from the proposed architecture
where all three modalities are stacked together as input.

Modality Model Class Precision Recall F1 Score AUROC

BSHG ResNet-18 FA 0.53 ± 0.5 0.10 ± 0.1 0.16 ± 0.2 0.55 ± 0.1

FTC 0.72 ± 0.0 0.99 ± 0.0 0.83 ± 0.0

ResNet-50 FA 0.60 ± 0.2 0.25 ± 0.2 0.30 ± 0.1 0.57 ± 0.1

FTC 0.74 ± 0.0 0.89 ± 0.1 0.81 ± 0.0

DenseNet-121 FA 0.63 ± 0.2 0.43 ± 0.2 0.46 ± 0.1 0.63 ± 0.0

FTC 0.78 ± 0.0 0.84 ± 0.1 0.80 ± 0.1

EfficientNet-B0 FA 0.45 ± 0.1 0.47 ± 0.2 0.40 ± 0.1 0.58 ± 0.1

FTC 0.76 ± 0.0 0.67 ± 0.2 0.70 ± 0.1

EfficientNet-B4 FA 0.42 ± 0.3 0.37 ± 0.4 0.23 ± 0.2 0.51 ± 0.0

FTC 0.57 ± 0.3 0.66 ± 0.4 0.59 ± 0.3

FSHG ResNet-18 FA 0.41 ± 0.3 0.38 ± 0.4 0.26 ± 0.2 0.56 ± 0.1

FTC 0.77 ± 0.1 0.73 ± 0.3 0.69 ± 0.2

ResNet-50 FA 0.71 ± 0.3 0.18 ± 0.1 0.26 ± 0.1 0.56 ± 0.0

FTC 0.73 ± 0.0 0.94 ± 0.1 0.82 ± 0.0

DenseNet-121 FA 0.54 ± 0.2 0.56 ± 0.2 0.49 ± 0.1 0.63 ± 0.1

FTC 0.80 ± 0.0 0.69 ± 0.3 0.70 ± 0.2

EfficientNet-B0 FA 0.59 ± 0.2 0.52 ± 0.2 0.47 ± 0.1 0.63 ± 0.1

FTC 0.79 ± 0.0 0.75 ± 0.2 0.75 ± 0.1

EfficientNet-B4 FA 0.63 ± 0.2 0.40 ± 0.1 0.45 ± 0.1 0.63 ± 0.0

FTC 0.77 ± 0.0 0.85 ± 0.1 0.80 ± 0.1

TPEF ResNet-18 FA 0.36 ± 0.0 0.38 ± 0.0 0.37 ± 0.0 0.54 ± 0.0

FTC 0.72 ± 0.0 0.70 ± 0.1 0.71 ± 0.0

ResNet-50 FA 0.34 ± 0.1 0.39 ± 0.1 0.35 ± 0.1 0.53 ± 0.0

FTC 0.72 ± 0.0 0.69 ± 0.1 0.70 ± 0.1

DenseNet-121 FA 0.63 ± 0.2 0.43 ± 0.2 0.46 ± 0.1 0.63 ± 0.0

FTC 0.78 ± 0.0 0.84 ± 0.1 0.80 ± 0.1

EfficientNet-B0 FA 0.40 ± 0.0 0.63 ± 0.2 0.47 ± 0.1 0.61 ± 0.1

FTC 0.83 ± 0.1 0.58 ± 0.2 0.64 ± 0.2

EfficientNet-B4 FA 0.39 ± 0.0 0.72 ± 0.3 0.50 ± 0.1 0.63 ± 0.1

FTC 0.85 ± 0.1 0.54 ± 0.1 0.65 ± 0.1

ProposedEfficientNet-B4 FA 0.72 ± 0.2 0.47 ± 0.3 0.50 ± 0.2 0.66 ± 0.1

FTC 0.74 ± 0.1 0.85 ± 0.1 0.78 ± 0.1
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Table 3. AUROC (mean ± sd) over ten runs for the proposed method. This table
also shows the results using images of individual modalities and images from different
combinations of two modalities.

Modality Best Model AUROC

BSHG DenseNet-121 0.57 ± 0.07

FSHG EfficientNet-B4 0.56 ± 0.07

TPEF DenseNet-121 0.58 ± 0.07

BSHG-FSHG EfficientNet-B4 0.53 ± 0.04

BSHG-TPEF EfficientNet-B4 0.53 ± 0.05

FSHG-TPEF EfficientNet-B4 0.53 ± 0.04

Proposed EfficientNet-B4 0.66 ± 0.10

dataset. For each test data point, we compute the probabilities of belonging to
classes FA and FTC. The data point is then assigned the class label with the
higher probability. Based on these predicted class labels and the ground truth
class labels, the values of the recall and precision are calculated. We calculate a
recall and a precision value considering FA as the positive class. We do the same
considering FTC as the positive class. This enables us to get the class-wise recall
and precision values. We run each method for ten times. For each run, the learn-
able parameters are initialized randomly. We take the best five runs out of ten
runs to rule out the possibility of very poor initialization. The results for best five
runs (mean ± sd) are presented in Table 2. Notice that our method outperforms
all competitors in terms of the mean AUROC. Subsequently, we look into the
performances of competing methods when presented with stacked images from
three modalities as input to the modified autoencoder. This is a type of early
fusion [19]. This fusion helps to combine the information from the distinct sets of
images and hence improves the capabilities of the model, thus leading to a more
robust and efficient solution. Table 4 displays the metric values when computed
on the images using early fusion technique and passing the latent layer feature
maps to every competing classifier for comparison. It can be observed that our
proposed method with ENet-B4 shows superior performances compared to its
competitors. Results on sample images using the proposed method are presented
in Fig. 3.

Additionally, Table 3 shows the AUROC scores (mean ± sd) of the proposed
method over ten runs. This table also contains the results over ten runs using
images of individual modalities and a combination of images from two modalities.
For these experiments, we take the classifiers that provided the best results when
top five runs are considered.
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BSHG FSHG TPEF BSHG FSHG TPEF

Sample Image

Ground Truth

Predicted

Sample Image

Ground Truth

Predicted

Fig. 3. Sample BSHG, FSHG and TPEF images with their ground truth and predicted
class labels using our method (blue: correct prediction, red: incorrect prediction). (Color
figure online)

3.3 Ablation Studies

We perform ablation studies to examine the impact of information fusion using
images from three modalities. To this end, we perform experiments with differ-
ent combinations of modalities to construct stacked images at the input of our
method. Figure 4 illustrates the results obtained with various combinations of
two modalities, namely, BSHG-FSHG, FSHG-TPEF, and BSHG-TPEF, along-
side the results obtained using our proposed method. When utilizing two modal-
ities, we incorporate two output heads for the ablation studies. It is evident
from the results that using images from any two modalities leads to inferior
performance compared to our proposed method. This shows the importance of
information fusion using images from all three modalities in achieving optimal
classification performance.

4 Discussion

As mentioned before, both BSHG and FSHG images primarily provide informa-
tion on collagen or myosin. On the other hand, since TPEF is emitted by proteins
in tissues which are autofluorescent, TPEF may provide more complementary
information when combined with either BSHG or FSHG images.

Hence, our results shown in Table 3 indicate that the combination of BSHG
and TPEF or FSHG and TPEF as input leads to better performance compared to
using BSHG and FSHG alone. Specifically, the proposed method that integrates
all three modalities-BSHG, FSHG, and TPEF-achieves the highest performance
with a maximum mean AUROC score of 0.66.
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Table 4. Performance metrics with different classifiers that take the latent space rep-
resentation of our autoencoder as input.

Model Class Precision Recall F1 Score AUROC

ResNet-18 FA 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.5 ± 0.00

FTC 0.63 ± 0.00 1.00 ± 0.00 0.77 ± 0.00

ResNet-50 FA 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.5 ± 0.00

FTC 0.63 ± 0.00 1.00 ± 0.00 0.77 ± 0.00

DenseNet-121 FA 0.27 ± 0.26 0.30 ± 0.38 0.24 ± 0.27 0.53 ± 0.06

FTC 0.66 ± 0.05 0.77 ± 0.35 0.66 ± 0.22

EfficientNet-B0 FA 0.28 ± 0.26 0.39 ± 0.38 0.33 ± 0.31 0.57 ± 0.08

FTC 0.71 ± 0.09 0.75 ± 0.23 0.7 ± 0.07

Proposed FA 0.72 ± 0.19 0.47 ± 0.27 0.50 ± 0.22 0.66 ± 0.10

FTC 0.74 ± 0.09 0.85 ± 0.12 0.78 ± 0.05

Fig. 4. Mean AUROC scores over five best runs using different combinations of modal-
ities (FSHG with TPEF, BSHG with TPEF and BSHG with FSHG) alongside the
proposed method (BSHG, FSHG, and TPEF as input).

Furthermore, the proposed method outperforms models that use any two
modalities in combination. For example, the combination of BSHG and FSHG
achieved a lower mean AUROC score compared to when TPEF was included.
This combination hence enhances the capability of the model to distinguish
between different classes of thyroid tumors.

Our ablation studies shown in Fig. 4 also show the significance of using three
modalities. This finding highlights the potential of multimodal approaches in
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medical imaging, where different imaging techniques can complement each other
to provide a more comprehensive understanding of the tissue characteristics. The
synergy between the network architecture and the new data modalities is a key
factor driving the observed performance gains.

5 Conclusion

We delve into the potential of information fusion from different types of MPM
images for the differential diagnosis of thyroid tumors. To achieve this, we design
a Fusion Autoencoder, aimed at integrating information from three distinct
modalities. The latent space representation of the autoencoder is found to pro-
vide meaningful information through the fusion of MPM images of three different
modalities. Rigorous experiments show that the proposed method can obtain a
mean AUROC score of 0.66. However, the use of individual MPM images can
achieve a maximum mean AUROC score of 0.63. This shows the impact of infor-
mation fusion in our model. Furthermore, ablation studies show that the use of
information fusion from images of any two modalities is significantly less effec-
tive compared to the proposed strategy of using images from three modalities.
The present work is a proof-of-concept study to look into the utility of multi-
photon microscopy images. This method of fusing information from images of
multiple modalities and the use of a Fusion Autoencoder shows promising results
for the diagnosis of thyroid tumors. In the future, we will explore the feasibility
of integrating information from histopathological images with the information
from MPM images to further enhance the accuracy of thyroid tumor diagnosis.
We will also look into the possibility of utilizing larger datasets for our experi-
ments. Moreover, we intend to extend the application of such information fusion
strategies to incorporate non-image medical data, thereby broadening the scope
of diagnostic capabilities.
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Abstract. Convolutional Neural Networks (CNNs) have been broadly
employed in dermoscopic image analysis, mainly due to the large amount
of data gathered by the International Skin Imaging Collaboration (ISIC).
But where do neural networks look? Several authors have claimed that
the ISIC dataset is affected by strong biases, i.e., spurious correlations
between samples that machine learning models unfairly exploit while
discarding the useful patterns they are expected to learn. These strong
claims have been supported by showing that deep learning models main-
tain excellent performance even when “no information about the lesion
remains” in the debased input images. With this paper, we explore the
interpretability of CNNs in dermoscopic image analysis by analyzing
which characteristics are considered by autonomous classification algo-
rithms. Starting from a standard setting, experiments presented in this
paper gradually conceal well-known crucial dermoscopic features and
thoroughly investigate how CNNs performance subsequently evolves.
Experimental results carried out on two well-known CNNs, EfficientNet-
B3, and ResNet-152, demonstrate that neural networks autonomously
learn to extract features that are notoriously important for melanoma
detection. Even when some of such features are removed, the others are
still enough to achieve satisfactory classification performance. Obtained
results demonstrate that literature claims on biases are not supported
by carried-out experiments. Finally, to demonstrate the generalization
capabilities of state-of-the-art CNN models for skin lesion classification,
a large private dataset has been employed as an additional test set.

Keywords: ABCDE Rule · Convolutional Neural Networks · Skin
Lesion Classification · Dataset Bias · Transfer Learning

1 Introduction

Skin cancer is the most common form of human cancer and a major public
health issue. Malignant melanoma, although less common, is responsible for
most of the deaths [6]. The early detection of skin cancer remains one of the
key factors in preventing its progression to advanced stages and lowering mor-
tality rates [39]. To do so, many dermatologists rely on dermoscopy, which is a
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form of in-vivo skin surface microscopy performed using special equipment to
enhance the visibility of the pigmentation of the lesion and perform a faster,
more accurate diagnosis over time. Unfortunately, dermoscopy image analysis
must be performed by expert clinicians to be effective, and this is why many
efforts have been made toward the creation of tools to assist non-specialized
physicians in the analysis of dermoscopic images [2]. The outstanding results
of deep learning in many different research areas [5,23,25,46], make it one of
the most employed and effective options for analyzing medical images. However,
the great discriminative power of neural networks comes at the cost of very low
explainability. Hence, it is extremely difficult to understand the reasoning behind
a model prediction [22,37], and this characteristic can also lead to the possibil-
ity of CNNs learning a bias. A bias can exist in different shapes and forms and
may originate from different sources [34,45], but in the analysis carried out in
this paper, we focus on data-to-algorithm biases, which, when used by machine-
learning training algorithms, might result in biased algorithmic outcomes. In
particular, a dataset bias can be defined as a collection of features that are
semantically irrelevant to the investigated task, but which can be (undesirably)
exploited by neural networks to improve the evaluation metrics, hindering their
generalization capabilities [31]. This phenomenon has been thoroughly investi-
gated by several authors [4,20] and our goal is to explore it in dermoscopic image
analysis [19]. It is desirable for automatic skin lesion classification algorithms to
focus on medically relevant features instead of considering irrelevant artifacts
(e.g., checkerboard patterns introduced by sharpening filters, black round bor-
ders, pen drawings, rulers, and hair) which should be ignored for classification.

The most common dermoscopic relevant features for melanoma detection,
explicitly outlined by expert practitioners, are defined in the so-called “ABCDE
rule”: lesion Asymmetry, Border irregularity, Color variegation, Diameter (>6
mm), and Evolution over time [39].

Our study investigates how the performance of CNNs correlates with estab-
lished dermoscopic criteria by methodically altering images to omit each of the
ABCDE melanoma indicators. By selectively “removing” these elements, the
research aims to discern the extent to which CNNs rely on authentic clinical fea-
tures versus incidental image attributes. The contributions of this paper can be
summarized as follows:

i) Making use of state-of-the-art interpretability tools, we examine the correla-
tion between deep learning algorithms and well-known dermoscopic features
(ABCDE rule) used by expert practitioners to perform diagnoses;

ii) We propose an extensive set of experiments to highlight how the discrim-
inative power of state-of-the-art CNNs is affected by different dermoscopic
features and verify the literature claims on dermoscopic datasets biases;

iii) We validate the generalization capabilities of state-of-the-art CNN algorithms
for skin lesion classification by carrying out experiments on two totally dis-
tinct datasets: the combined ISIC2019 and ISIC2020 and a privately owned
one that has no intersection with the former.
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Fig. 1. Samples of the 2019 ISIC dataset. From left to right, top to bottom: Melanoma,
Melanocytic Nevus, Basal Cell Carcinoma, Actinic Keratosis, Benign Keratosis, Der-
matofibroma, Vascular Lesion, and Squamous Cell Carcinoma.

2 Related Work

CNNs have become the dominant machine learning approach, and the scaling up
strategy [23] has been widely used to achieve accuracy results similar to those of
dermatologists, particularly in skin lesion classification [1,16,17,26,32,33,38,51]
and to aid in diagnosis even on low-resolution non-dermoscopic images [15].
However, despite their success, concerns about CNN focusing on irrelevant arti-
facts were highlighted by [30,40], where studies on multiple COVID-19 datasets,
performed hiding sensitive information with large black squares, showed state-
of-the-art networks focusing on dataset-specific features rather than clinically
relevant ones, highlighting the incompatibility of those models for clinical usage.

In dermatology, Bissoto et al. [4] showed the effects of performing skin lesion
classification while occluding the actual skin lesion with large black bounding
boxes, obtaining a melanoma/non-melanoma classification AUC (Area Under the
ROC Curve) score of 77.4%, which is quite inferior compared to state-of-the-art
methods, but higher than what expert dermatologists can do [7], highlighting
a potential reliance on non-diagnostic features. Additional studies confirmed
the CNNs’ learned filters focusing on both relevant features (e.g., borders, and
colors) and extraneous features (like artifacts surrounding the lesion) [3,53].

Autonomous systems in medical applications aim to act as support tools
for clinicians and, therefore, must be trustworthy and highly interpretable. To
aid in this task, the outcome explainability of neural networks can be increased
thanks to several visualization strategies, like CAM (Class Activation Mapping),
which have been proposed for the identification of image regions that most con-
tribute to the final prediction [42,48].

In this paper, we make use of state-of-the-art interpretability tools, along with
quantitative results, to examine the correlation between deep learning algorithms
and well-known dermoscopic features [28] introduced in Sect. 1.
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Table 1. Class distribution of the three employed datasets: 2019 and 2020 ISIC datasets
and private dataset.

Class Label ISIC2019 % ISIC2020 % Private %

Melanoma MEL 17.8 1.8 16.7

Melanocytic Nevus NV 50.8 15.7 58.1

Basal Cell Carcinoma BCC 13.0 – 7.6

Actinic Keratosis AK 3.0 – 1.6

Benign Keratosis BKL 10.0 0.7 6.3

Dermatofibroma DF 0.9 – 1.0

Vascular Lesion VASC 1.0 – 0.0

Squamous Cell Carcinoma SCC 2.4 – 1.8

Unknown unknown – 81.9 6.9

Total 25 331 33 126 25 849

3 Dermoscopic Images

ISIC. The International Skin Imaging Collaboration (ISIC) began to aggre-
gate a large-scale, publicly available collection of dermoscopic skin lesion images
(Fig. 1) starting in 2016, with the aim of supporting research towards enhanc-
ing machine learning algorithms for automated skin cancer analysis, showcasing
the results of researchers in several challenges and workshops hosted over the
years [14]. The 2019 version of the ISIC archive contains a total amount of
25 331 labeled dermoscopy images, belonging to nine different classes [24], which
represent eight types of skin lesion plus an additional category, not available in
the training partition and containing dermoscopic images of different natures
with respect to the other eight classes.

The available data is heavily imbalanced in classes, therefore the 2019 chal-
lenge official metric was the balanced accuracy, computed as the average sensi-
tivity among classes regardless of their occurrence in the test set.

The successive 2020 SIIM-ISIC challenge dataset [41] gained patient-level
contextual information, providing for each image an identifier that allows lesions
from the same patient to be mapped to one another. This additional knowledge
is frequently used by clinicians to diagnose melanoma and is especially useful
in ruling out false positives in patients with many atypical nevi, leveraging the
“ugly duckling sign” rule [18]. The challenge edition, hosted on Kaggle,1 switched
to a binary classification problem: benign or malignant, employing the AUC
evaluation metric. In the subsequent sections of the paper, the name ISIC19-20
will be used to refer to the combination of ISIC2019 and ISIC2020 datasets. More
details about such a combination are provided in Sect. 5. Table 1 summarizes
ISIC dataset features.

Private Dataset. In order to evaluate the generalization capabilities of state-
of-the-art CNNs models, we extend the experiments by means of a private der-
1 kaggle.com/c/siim-isic-melanoma-classification.

https://www.kaggle.com/c/siim-isic-melanoma-classification
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Fig. 2. Samples of the Private dataset. From left to right, top to bottom: Melanoma,
Melanocytic Nevus, Basal Cell Carcinoma, Actinic Keratosis, Benign Keratosis, Der-
matofibroma, Vascular Lesion, and Squamous Cell Carcinoma.

moscopic dataset (Fig. 2) consisting of 25 849 images, collected between 2003
and 2019 in the University Hospital of Modena using several distinct acquisi-
tion tools, and employing the same classes mapped into the ISIC2019 dataset.2

This dataset presents a different category distribution compared to the ISIC2020
dataset, with a higher percentage of melanoma cases (Table 1). Similar to both
ISIC datasets, the private collection of data contains several clinical information
such as sex, age, and site of the lesion. Contrary to the public ISIC dataset,
visual artifacts that could be considered a source of biases, such as rulers, ink
markings/staining, and colored patches, are almost completely absent in our pri-
vate dataset (7% ruler, 1.9% ink, and no images with patches). The whole set
of dermoscopic images is used as an additional test set for the experiments and
analyses carried out in this paper, and thus yields important information about
the generalizability of state-of-the-art CNNs models and their possible applica-
tion in real-world scenarios.

4 Investigating ABCDE Features

Neural networks for skin lesion classification have been shown to focus on relevant
features for dermoscopic image analysis, aligned with the ABCDE rule [28,39],
but they might also focus on irrelevant visual aspects that are common in malig-
nant skin lesion images, such as artifacts related to pen drawings, markers, col-
ored patches, or rulers. Moreover, additional research showed that CNNs are able
to recognize acquisition device models and calibration settings, thus identifying
the provenience of an image that might be highly related to the final diagno-
sis [30]. Hence, it is extremely important to be able to interpret which image
characteristics neural networks take into account when making a class prediction
to highlight potential data-to-algorithm biases. This can be achieved by means

2 The dataset is currently under review by the ethical committee to be publicly
released. After approval, it will be accessible at https://ditto.ing.unimore.it/.

https://ditto.ing.unimore.it/
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Fig. 3. Grad-CAM visualization when debasing different ABCD(E) properties. (a)
Original, (b) Asymmetry, (c) Borders, (d) Grayscale, (e) Mask and (f) Diameter.

of Class Activation Mapping (CAM) strategies, employed in this paper. In par-
ticular, Grad-CAM [42] was exploited to locate the regions of an image that
most contribute to the final prediction. We run an extensive set of experiments
to study how introducing noise in the ABCDE properties affects neural net-
work performance and analyze which sections of an image CNNs focus on when
crucial features are debased or removed. Some of the experiments described in
the following exploit segmentation masks obtained by means of DeepLabv3+
[12], trained using the 2017 ISIC segmentation task dataset [9]. Sample images
obtained through feature debasing are reported in Fig. 3 and generated by means
of the European Computer Vision Library (ECVL) [10]. Additional examples of
ABCDE features debasing images can be found in Fig. 7 at the end of the paper.

By applying the feature debasing process described in the following of this
section, we obtain five additional variations of each considered dataset (i.e., five
variations of the ISIC datasets and five variations of the Private dataset), each
of them is employed for both training (ISIC19-20) and testing (ISIC19-20 and
private dataset) selected models.

Tampering with Asymmetry. Asymmetry is one of the most important
visual features for melanoma detection [35], it can be described as the differ-
ence in volume and shape of two parts of a skin lesion, obtained by cutting it
with a straight line passing through its center. In order to train a symmetry-
agnostic neural network, dermoscopic images can be split by a random straight
line and by its perpendicular, both passing through the center of the lesion.
Subsequently, a quarter of the image can be flipped over both axes to obtain a
version of the original lesion with increased symmetry. Practically, the center of
the image is aligned with the centroid of the lesion obtained from the segmen-
tation mask. The image is then randomly rotated, and the top-right quarter is
flipped with respect to the horizontal and vertical axes (Fig. 3b).

Concealing Borders. With the aim of removing valuable information about
the shape of a skin lesion edge, which is a crucial aspect when assessing its
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Fig. 4. Histograms of foreground density distribution within different test sets. (a)
ISIC2020 official test set, (b) ISIC19-20 “Internal” test set, (c) Private Dataset.
Benign and malignant skin lesions are depicted in blue and orange, respectively.

malignancy, we cover borders with a thick black line obtained from the contour
of the segmentation map. Firstly, a morphological dilation operation is applied
to the contour, with a kernel size proportional to both the image size and the
foreground-background ratio. Then, to smooth out irregular segments, a Gaus-
sian filter with a large kernel is applied. Finally, the black border image is super-
imposed on the original one, thus removing any information about the actual
transition from the human skin (background) to the actual lesion (foreground).
Figure 3c showcases an example of the end result image.

Removing Color. The presence of multiple colors within a single mole (blue,
black, white, red, and brown) or the uneven distribution of color can sometimes
be a warning sign of melanoma, since most benign lesions are usually a single
shade of brown or tan [29]. Two different sets of experiments are conducted in
order to assess the effects of discarding information about color from dermo-
scopic images. The first one is run by simply converting the image from RGB
to grayscale, thus removing any knowledge about the different colors within a
skin lesion (Fig. 3d). However, while this processing step erases any data about
hue and saturation, it does not affect the luminance, thus leaving the CNN the
chance to learn valuable features from the color distribution within moles. In the
second experiment, color features are completely removed as we train a neural
network to classify skin lesions using only their segmentation masks (Fig. 3e). In
this extreme setup, the neural network is fed with minimal knowledge about skin
lesions, and is forced to make a prediction based uniquely on noisy, automatically
obtained, binary mole shapes.

Altering Diameter. Because skin cancer cells grow abnormally fast, diameter
is one of the most important parameters in skin lesion classification. Unfortu-
nately, dermoscopic images are acquired at several scales, which are not always
included as metadata and can not be deducted from the image, as only a limited
amount of samples contain a ruler. As a matter of fact, a mole that exceeds the
borders of the image is not necessarily larger than one that does not; informa-
tion about diameter is extremely noisy and very hard to investigate, yet poten-
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tially extremely important for melanoma detection algorithms. To remove any
information about mole dimensions, the foreground-background ratio of images
is set to a fixed percentage. We choose to train a CNN uniquely with samples
where the skin lesion represents the 80% of the image, as it yields good qualita-
tive results. In order to achieve this, samples where the skin lesion is contained in
just a small portion of the image must be cropped, using the mole centroid as the
center, whereas images with moles covering more than 80% of the original sam-
ple are padded by reflecting the sections of the image closest to the borders. An
example of the result of this process is illustrated in Fig. 3f. Additionally, the
foreground density histograms in Fig. 4 show that this method mostly results in
crops, whereas only a very small portion of the dataset (foreground percentage
>80%) needs padding. By following the aforementioned Crop&Pad technique,
in the rare cases of very elongated lesions, a small part of the mole is left out
by the crop. However, each image will present the same number of foreground
pixels, thus eliminating the image scale differences and bringing all the lesions
to the same size.

About Evolving. Dermoscopic images seldom contain information about evo-
lution, as only in a few cases follow-up data is provided in the existing datasets.
Introducing such additional data in dermoscopic datasets would certainly have
significant implications in the research field, but it cannot be considered and
analyzed nowadays. For this reason, we were unable to experiment on lesion
evolution.

5 Experiments

Datasets Preprocessing. To harmonize the two ISIC datasets, the following
pre-processing steps have been employed: first, the 2020 classes are mapped into
2019 ones; then, in order to compensate for dissimilarities between image sizes,
a squared center crop is performed to produce images of min(h,w) ×min(h,w)
pixels, later resized to 768×768. The combined ISIC2019 and ISIC2020 datasets,
purged of duplicates [50], provide a total of 57 964 images. As previously
mentioned, we refer to this combined dataset as ISIC19-20. As introduced in
Sect. 3, we also employed a private dataset with the same class mapping as the
ISIC19-20.

Networks and Training Details. Our study utilizes two of the networks
constituting the ensemble strategy adopted by the ISIC2020 Kaggle challenge
winner [21], i.e., EfficientNet-B3 and ResNet-152. While achieving performances
that are comparable with the state-of-the-art, they have a limited computational
load in terms of time and memory and allow us to perform the extensive set
of experiments described in this section. Input image sizes are 300 × 300 and
256 × 256 for the two models, respectively. Both networks are trained with the
Cross-Entropy loss and Adam optimizer [27], with a learning rate of 3 × 10−5.
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Table 2. Experimental results obtained by training (and testing) the models on the
input configurations described in Sect. 4. Each of the Experiment correspond to a
training performed on the corresponding debased ISIC19-20 dataset and tested on the
debased ISIC19-20 “internal” test set. Threshold is set to 0.5.

Model Experiment
AUC
ROC

Precision
Recall

(Sensitivity)
Specificity F1-Score Accuracy

E
ffi

ci
en

tN
et

-B
3 Original 0.9671 0.7821 0.7180 0.9808 0.7487 0.9577

Asymmetry 0.9448 0.7755 0.5399 0.9850 0.6366 0.9459

Borders 0.9605 0.7326 0.6678 0.9766 0.6987 0.9495

Color (Grayscale) 0.9559 0.7420 0.7071 0.9763 0.7241 0.9527

Color (Mask) 0.8017 0.6897 0.0656 0.9972 0.1198 0.9154

Diameter 0.9724 0.8216 0.7399 0.9845 0.7786 0.9631

R
es

N
et

-1
5
2

Original 0.9572 0.7548 0.6934 0.9782 0.7228 0.9531

Asymmetry 0.9188 0.6539 0.4848 0.9837 0.5568 0.9320

Borders 0.9456 0.7548 0.6043 0.9706 0.6699 0.9475

Color (Grayscale) 0.9424 0.7216 0.5788 0.9784 0.6424 0.9432

Color (Mask) 0.8502 0.6073 0.1136 0.9206 0.1914 0.9154

Diameter 0.9553 0.7688 0.6513 0.9811 0.7052 0.9520

Table 3. Experimental results obtained by training (and testing) the models on the
input configurations described in Sect. 4. Each of the Experiment correspond to a
training performed on the corresponding debased ISIC19-20 dataset and tested on the
debased private dataset. Threshold is set to 0.5.

Model Experiment
AUC
ROC

Precision
Recall

(Sensitivity)
Specificity F1-Score Accuracy

E
ffi

ci
en

tN
et

-B
3 Original 0.7983 0.5299 0.5038 0.9104 0.5165 0.8425

Asymmetry 0.7693 0.5553 0.4025 0.9354 0.4667 0.8465

Borders 0.7896 0.5261 0.4992 0.9099 0.5123 0.8413

Color (Grayscale) 0.7673 0.4607 0.4540 0.8935 0.4573 0.8201

Color (Mask) 0.7032 0.6017 0.0322 0.9957 0.0612 0.8349

Diameter 0.8099 0.5597 0.5168 0.9185 0.5374 0.8515

R
es

N
et

-1
5
2

Original 0.7872 0.4774 0.5542 0.8772 0.5129 0.8229

Asymmetry 0.7340 0.5279 0.3176 0.9416 0.3966 0.8351

Borders 0.7559 0.4498 0.4921 0.8762 0.4700 0.8107

Color (Grayscale) 0.6860 0.3565 0.4411 0.8389 0.3943 0.7719

Color (Mask) 0.6881 0.5243 0.1187 0.8436 0.1936 0.8313

Diameter 0.7660 0.4121 0.5424 0.8409 0.4684 0.7899

Networks are trained for 20 epochs and produce 9 class probabilities as output,
among which only the melanoma class is considered.

Given the unavailability of ISIC test set labels, we expanded our evaluation
metrics by partitioning the validation set of ISIC19-20 to create an “internal”
test set: the resulting dataset counts 46 379 training images, 1 159 for validation,
and 10 426 images for testing. The private dataset is employed for testing clas-
sification performance as well. These datasets, modified as outlined in Sect. 4



Investigating the ABCDE Rule in Convolutional Neural Networks 103

Fig. 5. Example of failure cases due to wrongly generated masks.

facilitated a broader analysis across five variant datasets, against which des-
ignated architectures are trained and tested. Table 2 and Table 3 report results
obtained by training the model on the debased ISIC19-20 datasets and testing on
the ISIC19-20 “internal” test set and on the private dataset, respectively.

6 Discussion

The efficacy of our ABCDE feature-concealment methods, despite occasional
inaccuracies in segmentation mask generation (Fig. 5), underscores their abil-
ity to divert neural networks’ focus from compromised features towards other
ones, as demonstrated in most test scenarios (Fig. 3).

In particular, in Fig. 3c the neural network trained to classify images with
hidden borders makes a prediction focusing on the section of the lesion with
the most variance of color intensity. The same patch is equally important for the
network fed with grayscale images (Fig. 3d), whereas Fig. 3a shows that mole
borders are of great interest for the “standard” model.

On the other hand, CNN asked to make a prediction based solely on the
segmentation mask strictly focuses on the sections of the foreground with higher
concavity, which is roughly the only valuable piece of information about the
lesion to be found in the extremely degraded input.

As suggested by the high classification performance, neural networks
autonomously learn to extract features for melanoma detection. The accuracy
obtained when single important features are missing is very close to the “ref-
erence” values, meaning that the other image features are enough to produce
a satisfying classification prediction. Experimental results alone are clearly not
enough to distinguish whether such features are biases or notoriously important
elements for melanoma detection. For this reason, in our work, we also rely on
the clinically validated Grad-CAM analysis (Fig. 3).

The discriminative power of CNNs is also confirmed on the private dataset.
CNN performance tends to drop when the source domain (training data) and
the target domain (test data) come from distinct origins, even for extremely
simple tasks such as handwritten digit recognition, where classification accuracy
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across separate datasets can be decreased by up to 40% [49]. A performance drop
can be due to a large number of reasons (biases), such as different lighting set-
tings, resolution, image quality, human-introduced artifacts, subject centering,
and image acquisition devices [36,52].

Notably, this is also confirmed by our experiments, identifying that model
generalization abilities are satisfactory (AUC performance is higher than those
obtained by expert dermatologists [7]), but certainly require fine-tuning the mod-
els on the real case scenario they have to be employed, thus ensuring an adequate
level of Precision and Recall.
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Fig. 6. ROC curves for the Mask experi-
ment on the ISIC19-20 “internal” valida-
tion and test sets (Table 2 and Table 5 of
the paper). The threshold value that mini-
mizes the distance from the (0;1) are high-
lighted in both ROC curves. Moreover, the
points corresponding to the 0.5 threshold
are highlighted in the two curves.

About AUC. The Area Under
the Receiver Operating Characteris-
tic curve (AUC) is a well-known met-
ric designed to evaluate the diagnos-
tic capabilities of binary classifiers. It
is the official metric of the ISIC2020
challenge, and it offers the advan-
tage of not needing a fixed thresh-
old, thus supplying one less parame-
ter to “overfit” proposed algorithms
on the official test set. However, real
clinical applications require a thresh-
old to be set and a class predic-
tion to be given; evaluating experi-
mental results uniquely using the AUC
metric can be misleading. To put
results into context, we further dis-
cuss the performance of the CNN
trained to classify skin lesion binary
masks (i.e., debased dataset obtained
removing colors). Focusing on the
EfficientNet-B3 results in Table 2, the
fifth line shows that the investigated
network yields an AUC of 0.8017 when
tested on the subset of public images
(ISIC19-20) used as an “internal” test set. This is the area under the blue curve in
Fig. 6. When following this strategy, we obtain a tool with a sensitivity of 0.0656,
and a specificity of 0.9972, which means that the model can correctly recog-
nize only 6.5% of the melanoma cases, but successfully identifies 99.7% of the
not-melanoma cases. Clearly, this is not the positive result that an AUC of 0.8017
might suggest.

As a matter of fact, the assumption that 0.5 is an appropriate threshold when
dealing with neural networks is not correct [40], as shown in Fig. 6. Alternatively,
the threshold can be set by studying the ROC curve obtained on the validation
set (green curve in Fig. 6), and choosing the value in the graph closer to point



Investigating the ABCDE Rule in Convolutional Neural Networks 105

Table 4. Experimental results obtained by training (and testing) the models on the
input configurations described in Sect. 4. Each of the Experiment correspond to a
training performed on the corresponding debased ISIC19-20 dataset and tested on the
debased ISIC19-20 “internal” test set using a specific threshold calculated as the value
of the ROC curve which minimizes the distance from (0;1) on the validation set.

Model Experiment
AUC
ROC

Precision
Recall

(Sensitivity)
Specificity F1-Score Accuracy

E
ffi

ci
en

tN
et

-B
3 Original 0.9671 0.3163 0.9519 0.8020 0.4748 0.8152

Asymmetry 0.9448 0.2527 0.9628 0.7260 0.4003 0.7468

Borders 0.9605 0.2218 0.9858 0.6672 0.3621 0.6952

Color (Grayscale) 0.9559 0.2590 0.9628 0.7349 0.4082 0.7549

Color (Mask) 0.8017 0.1500 0.8536 0.5345 0.2551 0.5625

Diameter 0.9724 0.2419 0.9803 0.7044 0.3881 0.7287

Table 5. Experimental results obtained by training (and testing) the models on the
input configurations described in Sect. 4. Each of the Experiment correspond to a train-
ing performed on the corresponding debased ISIC19-20 dataset and tested on the pri-
vate test set using a specific threshold calculated as the value of the ROC curve which
minimizes the distance from (0;1) on the validation set.

Model Experiment
AUC
ROC

Precision
Recall

(Sensitivity)
Specificity F1-Score Accuracy

E
ffi

ci
en

tN
et

-B
3 Original 0.7983 0.2578 0.8570 0.5055 0.3963 0.5642

Asymmetry 0.7693 0.2140 0.9017 0.3365 0.3460 0.4308

Borders 0.7896 0.2012 0.9300 0.2600 0.3308 0.3718

Color (Grayscale) 0.7673 0.2291 0.8844 0.4038 0.3639 0.4840

Color (Mask) 0.7032 0.2421 0.7604 0.5229 0.3672 0.5626

Diameter 0.8099 0.2150 0.9263 0.3221 0.3489 0.4230

(0; 1), i.e., the value that maximizes True Positive Rate while minimizing False
Positive Rate. In this particular case, the desired rate is ≈0.06, and by employing
this same threshold on the EfficientNet-B3 CNN outputs over the test set, we
obtain a binary classifier with a sensitivity of 0.8536 and a specificity of 0.5345.
Table 4, Table 5, and Table 6 present the results obtained by setting the predic-
tion threshold following the described steps, always making use of the validation
set. Regardless of how thresholds are set, it is clear that high AUC values do not
always correspond to satisfying discriminative capabilities.
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Table 6. Experimental results using foreground densities obtained from segmentation
masks, bounding boxes, and bounding boxes that cover at least 70% of the image as
melanoma probability on the ISIC19-20 “internal” test set and on the private dataset.

Dataset Experiment
AUC
ROC

Precision
Recall

(Sensitivity)
Specificity F1-Score Acc.

ISIC19-20
“Internal”
test set

Segm. Mask 0.7215 0.1483 0.7388 0.5917 0.2470 0.6046

B. Box 0.7154 0.1483 0.7202 0.6019 0.2459 0.6123

B. Box 70% 0.6220 0.1830 0.3989 0.8286 0.2509 0.7909

Private
dataset

Segm. Mask 0.6980 0.2856 0.5898 0.7043 0.3848 0.6852

B. Box 0.6919 0.2573 0.6589 0.6190 0.3701 0.6256

B. Box 70% 0.6517 0.3328 0.4735 0.8098 0.3909 0.7536

Finally Identifying the “Bias” in Dermoscopic Datasets. Contrasting
with Bissoto et al.’s findings [4] where CNNs performed well despite significant
lesion occlusion, our analysis suggests that lesion size can be inferred from the
foreground-background ratio and significantly influences predictions. While Bis-
soto et al. observed high AUCs (0.712) with major lesion coverage (≥ 70%),
our evaluations posit that networks might rely on lesion dimensions rather than
intricate pixel patterns unrelated to the mole. This is substantiated by our Seg-
mentation Mask and Bounding Box experiments (Table 6), where AUCs corre-
late strongly with lesion area metrics, even without deep learning models. This
experiment has been pushed further by making predictions based only on lesion
bounding box (and not segmentation mask) dimensions and, finally, by setting
the foreground-background ratios as ≥ 70%. Results obtained are reported in
the aforementioned table with the name of Bounding Box and Bounding Box
70%. Finally, histograms in Fig. 4 show that the probability of a lesion being
malignant grows with its size within a dermoscopic image. Intuitively, a mole
that exceeds the borders or gets very close to them is not necessarily larger than
others, but it is more likely to be malignant. This characteristic might be more
related to the complexity of including a whole malignant lesion when acquiring
dermoscopic images [13,43], than to the diameter itself. Nevertheless, this fea-
ture is strongly related to the nature of dermoscopic images, and experiments
provided in [4] are insufficient to prove the presence of biases in the ISIC dataset.

7 Conclusion

In this work, we explored the correlation between automatic skin lesion classi-
fication and the ABCDE rule. This was done by gradually removing important
visual information from CNN inputs and analyzing performance changes. Exper-
imental results show that neural networks autonomously learn to extract features
that are notoriously important for melanoma detection, but also prove that their
performance is still satisfying when some of these features are removed. Our
experiments provide no proof that this is related to dataset biases: instead, the
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Fig. 7. Skin lesion image samples obtained from ISIC dataset after debasing different
ABCDE properties. Columns from left to right: (a) Original, (b) Asymmetry, (c) Bor-
ders, (d) Color - Grayscale, (e) Color - Mask, (f) Diameter. The first half rows depict
melanomas, while the others are generated from benign lesions.
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remaining information can be enough to achieve satisfying or even good classifi-
cation accuracy. As pointed out by different authors [44,47], the interpretation of
GradCAM’s saliency maps may be subjective to reader biases and cannot be
used to draw general conclusions about network behavior. However, combined
with the quantitative evaluation discussed and showcased in this paper, they
contribute to our final conclusion.

In particular, the proposed paper experimentally proved that the foreground-
background ratio is strongly related to the malignancy probability of a skin
lesion. The reasoning behind this might be related to the well-known diameter
characteristic from the ABCDE rule, but also to the fact that capturing the entire
malignant mole in a dermoscopic image is usually not trivial given its dimen-
sions, the non-clearly defined borders, and the irregular shapes that characterize
cancerous skin lesions [8,11,13,43]. Nevertheless, foreground-background ratio is
a valuable dermoscopic property. We cannot conclude that “there are no biases
in the ISIC dataset”, but we can certainly state that literature claims of strong
biases affecting the ISIC dataset are supported by an inconsistent experimental
analysis.

Finally, testing model performance on a totally distinct private dataset,
with no possible intersection with samples employed during the training phase,
demonstrated that, despite intra-datasets biases (if any), state-of-the-art algo-
rithms preserve satisfactory performance: still higher than those obtained by
expert dermatologists [7], but with lower Precision and Recall.
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Reggio Emilia and Fondazione di Modena, through the FAR 2023 and FARD-2023
funds (Fondo di Ateneo per la Ricerca).

References

1. Abayomi-Alli, O.O., Damasevicius, R., Misra, S., Maskeliunas, R., Abayomi-Alli,
A.: Malignant skin melanoma detection using image augmentation by oversam-
plingin nonlinear lower-dimensional embedding manifold. Turkish J. Electr. Eng.
Comput. Sci. 29(8) (2021)

2. Allegretti, S., Bolelli, F., Pollastri, F., Longhitano, S., Pellacani, G., Grana, C.:
Supporting skin lesion diagnosis with content-based image retrieval. In: 2020 25th
International Conference on Pattern Recognition (ICPR). IEEE (2021)

3. Barata, C., Celebi, M.E., Marques, J.S.: Explainable skin lesion diagnosis using
taxonomies. Pattern Recogn. 110 (2020)

4. Bissoto, A., Fornaciali, M., Valle, E., Avila, S.: (De)constructing bias on skin lesion
datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (2019)

5. Bolelli, F., Baraldi, L., Grana, C.: A hierarchical quasi-recurrent approach to video
captioning. In: 2018 IEEE International Conference on Image Processing, Appli-
cations and Systems (IPAS) (2018)

6. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global
cancer statistics 2018: GLOBOCAN estimates of incidence and mortality world-
wide for 36 cancers in 185 countries. CA: Cancer J. Clin. 68(6) (2018)



Investigating the ABCDE Rule in Convolutional Neural Networks 109

7. Brinker, T.J., et al.: Comparing artificial intelligence algorithms to 157 German
dermatologists: the melanoma classification benchmark. Eur. J. Cancer 111 (2019)
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Abstract. Breast ultrasound (BUS) imaging techniques have become
efficient tools for cancer diagnosis. Convolutional neural network (CNN)
based encoder-decoder architectures have been widely used for the auto-
mated segmentation of tumours in BUS images, assisting in breast cancer
diagnoses. However, these models have limitations in capturing long-
range dependencies. To overcome this limitation, various deep learn-
ing techniques, such as atrous convolution, attention mechanisms, and
transformer encoder-based models, have been introduced to capture long-
range dependencies in feature maps, improving segmentation accuracy
by considering larger receptive fields and global context. As modelling
techniques evolve, there is a shift towards more complex and intricate
designs. This study proposes a simple yet effective model that combines
UNet and Global Convolutional Network (GCN) architectures for breast
lesion segmentation. By leveraging the GCN block, our model captures
broader receptive fields with a simpler design strategy. We have demon-
strated the efficacy of our approach through various experiments, includ-
ing kernel size analysis, model component evaluation, and data prepro-
cessing assessment. The proposed model has been evaluated using four-
fold cross-validation with BUSI and Dataset-B datasets. Additionally,
models trained on both datasets have been validated with a blind test
dataset, where our model demonstrates better performance compared
to state-of-the-art methods, achieving a 4.9% and 6.7% improvement in
Intersection over Union (IoU) score, respectively. The robustness analysis
and external validation experiments underscore the superior generaliza-
tion performance of our model in breast lesion segmentation tasks.

Keywords: Breast cancer · segmentation · ultrasound imaging

1 Introduction

Breast cancer is a significant global health challenge, especially among women,
and it has high mortality rates [1]. Early detection of symptoms is crucial for
effective treatment. Breast ultrasound (BUS) imaging techniques have emerged
as efficient tools for cancer diagnosis. They are cost-effective, non-invasive, pro-
vide real-time results, and do not involve ionizing radiation [2]. Breast cancer is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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classified into benign and malignant breast lesions, where benign breast lesions
pose no threat to health, while malignant breast lesions are cancerous growths
that can spread throughout the body. The diagnosis of breast cancer involves
detection, segmentation, and classification stages. This study mainly focuses on
segmenting the lesion regions from BUS images to aid in the diagnosis of breast
cancer.

The medical field has seen significant advancements in the automation
of medical image segmentation, providing valuable assistance to clinicians in
quantitative pathological assessment and diagnosis. Segmentation methods can
broadly divided into semi-automated and fully automated procedures based on
the manual intervention to fine-tune the breast lesion regions in BUS images
[3,4]. A comprehensive review of earlier methods is available in Xian et al. [5].
Fully automatic methods, exemplified by recent works such as Chen et al. [6] and
Yan et al. [7], eliminate the need for user intervention. These methods primarily
leverage convolutional operations at each layer to extract local image features
from neighbouring pixels, enabling these models to predict the semantics of
objects in medical images. Among them, fully convolutional encoder-decoder-
based models like UNet [8] are extensively utilized. The UNet architecture com-
prises encoder and decoder layers to extract features for predicting maps at
image resolution. Additionally, it uses skip connections between the encoder and
decoder layers to preserve the spatial structure, enabling precise object localiza-
tion. The effectiveness of the UNet architecture is evident in its state-of-the-art
performances, particularly with small medical image datasets, owing to its com-
pact parameterization and encoder-decoder design. Variants of the UNet model
are widely adopted in biomedical image segmentation tasks [9–13].

Almajalid et al. introduced UNet for breast lesion segmentation from BUS
images [14]. Later, various UNet variants were proposed to refine segmentation
accuracy. These variants can be broadly categorized into four classes: multiscale
UNet [6,15–17], attention-based UNet [7,18,19], deep supervised UNet [20–22],
and multi-module hybrid UNet [23,24]. Multiscale UNet models utilize diverse
convolutional kernel sizes to capture context information across different recep-
tive fields. Attention-based UNet models aim to capture global context infor-
mation for improved segmentation, including hybrid dilated convolution-based
attention UNet [7] and channel attention module [19]. Deep supervised UNet
ensures each stage contributes to the loss function, enforcing feature learn-
ing proximity to the ground truth at every stage of the model. Multi-module
hybrid UNet architectures integrate disparate, independent modules-such as
Tversky loss functions [20], residual inception depth-wise separable convolutions,
and hybrid pooling strategies (combining max pooling and spectral pooling)-
alongside cross-spatial attention filters [23] to further refine segmentation pre-
dictions.

The convolution based encoder-decoder models encounter challenges asso-
ciated with capturing long-range dependencies between pixels in the feature
maps. The convolutional operation often leads to inductive biases [25], limiting
architectures’ ability to model long-range feature dependencies effectively. Two
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strategies are commonly employed to address the limitations, such as enlarg-
ing the receptive field [26–31] and incorporating attention mechanisms [32–34].
Atrous convolution operations [25] are utilized to insert holes into convolution
kernels, preserving resolution and enlarging the receptive field. However, relying
solely on atrous convolution operations may not fully address challenges posed by
surrounding tissues and indistinct boundaries [15]. Attention mechanisms have
also been integrated to exploit long-range dependencies in CNNs [11,19,20,34].
These mechanisms enhance models’ capacity to capture intricate details and dis-
regard irrelevant features by dynamically focusing on relevant regions within the
input image [11]. As modelling choices evolve, there is a shift towards more com-
plex and intricate designs. Several studies have utilized a combination of atrous
convolution and attention mechanisms [6,7,24] to enhance tumour segmentation
in Breast Ultrasound (BUS) images, categorizing them as hybrid models.

Fig. 1. The HAAM block architecture

Fig. 2. The GCN block architecture

A recent development in hybrid models for breast cancer segmentation is
the Adaptive Attention UNet (AAUNet) [6]. In this model, Chen et al. replaced
the conventional convolution layers in the UNet encoder and decoder blocks
with a Hybrid Adaptive Attention Module (HAAM) [6]. The intricate design of
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the AAUNet model has demonstrated superior performance compared to state-
of-the-art semantic segmentation models with BUS images. The HAAM block,
a key component of AAUNet, effectively captures a larger receptive field by
employing multiple convolutions with varying receptive fields. The channel and
spatial attention modules use these output features to enhance the segmentation
accuracy. The HAAM block diagram is shown in Fig. 1. In contrast, our pro-
posed approach presents a simpler architecture, leveraging the UNet framework
augmented with a Global Convolutional Network (GCN) [35]. The GCN block
primarily employs separable large filters to capture extensive receptive fields
while minimizing the number of parameters compared to standard convolutions.
The GCN has a symmetric structure to capture broader and better receptive
fields and is shown in Fig. 2. By integrating large receptive field information,
the GCN blocks allow superior segmentation predictions [35]. The combination
of UNet, Global Convolution Network (GCN), and Boundary Refinement (BR)
Module has been previously proposed for segmenting tongue medical images,
as demonstrated by [36]. GCN and BR blocks are employed to reduce the gap
between localization and classification. Moreover, the GCN block is incorporated
randomly in the UNet model. In contrast, the purpose of the GCN block in our
model is to increase the receptive field.

The remainder of this paper is organised as follows: Sect. 2 discusses the
proposed segmentation model for BUS images. Section 3 outlines the datasets
and evaluation metrics utilized in the study. Experimental results and inferences
are presented in Sect. 4. Finally, Sect. 5 outlines the future scope and conclusions
drawn from the work.

2 Methodology

Our proposed model presents a UNet-based architecture including a Global Con-
volutional Network (GCN) block. Utilizing the UNet as its foundation, the pro-
posed architecture comprises five encoder layers, five decoder layers, and skip
connections between encoder and decoder for preserving spatial structure. GCN
block is used to expand its receptive field, empowering it to extract contextual
information effectively. The GCN block integrates into the skip connection struc-
ture through empirical analysis, enhancing its capacity to capture spatial rela-
tionships and semantic context in medical imaging data. This simple approach
utilises the strengths of GCN to improve segmentation performance, particularly
in tasks requiring capturing spatial and semantic relations. The proposed model
architecture is shown in Fig. 3.

2.1 UNet

The UNet, introduced by Ronneberger et al. in 2015 [8], is an encoder-decoder
architecture based on fully convolutional neural networks. In the UNet, the
encoder layer initially captures high-frequency features and gradually refines
them for semantic extraction across subsequent encoder layers. Multiple encoder
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layers with max-pooling downsample the image to low-resolution feature maps,
which are then passed to a bottleneck layer. These features are upsampled using
decoder layers during the decoding process, and features from corresponding skip
connections are incorporated. Skip connections help preserve the spatial struc-
ture, while the upsampled features from decoder layers capture more semantic
information, facilitating precise identification of regions of interest within med-
ical images. Each encoder and decoder layer consists of two convolution layers
(3×3 kernel), followed by Instance Normalization [37] and LeakyReLU activation
functions.

Fig. 3. The proposed UNet-GCN architecture

2.2 Global Convolutional Network (GCN)

Medical image segmentation models typically use 3 × 3 kernels in convolutional
layers [8,13,14], primarily capturing local information and limiting larger recep-
tive fields in initial layers. While atrous convolution addresses this limitation
by employing dilated convolutions [6], it often provides only large, sparse recep-
tive fields [12]. A simpler approach would be using larger kernels in convolution,
which increases the receptive field and aids in handling significant variations in
lesion transformations in BUS images [15]. However, using large kernels increases
exponentially the number of parameters and GPU memory usage in each convo-
lution layer. GCN block [35] captures a larger receptive field with linear growth
in parameters and can easily be incorporated into existing architectures.

GCN approximates k×k convolutions using four low-rank convolutions in two
parallel branches. Each branch consists of two low-rank convolution kernel sizes
of k×1 followed by 1×k and vice versa. The dual branch gives equal precedence
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to the horizontal and vertical kernels to capture the information. Traditional
k × k convolutions require k2 parameters, whereas parameters increase linearly
in GCN and need only 4k parameters. GCN replicates dense connections to the
input feature map within the receptive field of k × k, which helps handle large
variations of transformations. GCN approach helps to increase the receptive field
in the early stages while reducing overall parameter growth in the model. Self-
attention cannot be used in early layers to capture larger contexts due to the
exponential increase in GPU memory, a challenge mitigated by GCN blocks. The
optimal position of GCN within the backbone network and the kernel sizes of
the GCN block are determined empirically, as detailed in Sect. 4.1, and Sect. 4.2.
The block diagram of GCN is shown in Fig. 2.

2.3 Preprocessing BUS Images

Ultrasound images often suffer from low signal-to-noise ratio (SNR) and vari-
ous artefacts like speckle noise, reverberations, and acoustic shadowing, which
degrade image quality [38]. Image preprocessing techniques are commonly
employed to enhance BUS images and their quality [38]. Image preprocessing
methods like contrast enhancement, brightness adjustment, Gaussian blurring
and histogram equalization are employed in our work. Gaussian blurring removes
the high-frequency noise and preserves the structure and edges in the image. His-
togram equalization [39] redistributes the intensity values across the histogram
to enhance the quality of the image. This process effectively stretches the inten-
sity levels, making the image appear more visually appealing with improved
contrast and detail. These preprocessing methods are integrated into the data
augmentation, as detailed in Table 1. Specifically, we employ six image transfor-
mations, with three randomly selected transformations applied to each image in
the batch during training. Such augmentation strategies have been demonstrated
to enhance model performance in semantic segmentation tasks significantly [40].

Table 1. Different image preprocessing methods employed in the Data augmentation
process.

Image Preprocessing Description

Identity Returns the original image.

Gaussian blur Blur the image with a Gaussian kernel.

Equalize Histogram Equalization

Contrast Adjusts the contrast of the image by [0.05, 0.95].

Brightness Adjusts the brightness of the image by [0.05, 0.95]

Random Flip Horizontally flips the image with a probability of 0.5.
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2.4 Model Settings

All the images are reshaped into 256 × 256 pixels before being input into the
proposed model. During model training, a stratified batch (equal number of
images from the breast lesion class and normal class) is used to avoid bias in the
class imbalance dataset [41]. Binary cross entropy [42] is employed as the loss
function.

LBCE = −
∑

(i,j)

GT (i, j) ∗ log(PD(i, j)) + (1 − GT (i, j)) ∗ (1 − log(PD(i, j)))

where GT (i, j) ∈ [0, 1] denotes the ground-truth mask (i, j), PD(i, j) ∈ [0, 1]
represents the predict masks. Adam optimizer with a learning rate of 0.0001
is used for model optimization. The model is trained for 100 epochs with a
batch size of 16. The parameters of the model are optimized on a validation
set. Balanced data from both normal and lesion classes are used for training to
maintain fairness. The code is written in PyTorch [43], and all experiments are
conducted using two GeForce GTX 1080 Titans with an overall 24 GB GPU
memory.

3 Datasets and Evaluation Metrics

3.1 BUS Dataset

The BUSI dataset, collected at Baheya Hospital for Early Detection & Treat-
ment of Women’s Cancer, Cairo, Egypt, in 2018 [44], consists of 780 BUS images
obtained from 600 patients aged 25 to 75 years. The dataset encompasses three
distinct classes of BUS images: benign (487 images), malignant (210 images),
and normal (133 images). Imaging data was captured using the LOGIQ E9
ultrasound and LOGIQ E9 Agile ultrasound systems. Following the acquisition,
skilled radiologists preprocessed the images to delineate lesion regions and elim-
inate extraneous areas. Subsequently, the images were converted to PNG format
for standardized analysis.

Dataset-B [45] consists of 163 images, including 110 benign images and
53 malignant images. This dataset was captured using the Siemens ACUSON
Sequoia C512 system at the UDIAT Diagnostic Centre of the Parc Tauĺı Corpora-
tion, Sabadell, Spain. Additionally, the STU dataset [24] contains 42 BUS images
and corresponding masks. These images were acquired using the GE Voluson E10
Ultrasound Diagnostic System at Shantou First Affiliated Hospital, Guangdong
Province, China. While all images in the STU dataset depict lesions, they are
not explicitly classified as benign or malignant. The STU dataset is an external
validation (test) dataset for evaluating model performance.

3.2 Evaluation Metrics

Image segmentation evaluation metrics are helpful in assessing the effective-
ness of segmentation models. Five widely recognized metrics are used in our
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work: Intersection over Union (IoU), Dice similarity coefficient (Dice), Preci-
sion (Prec.), Sensitivity (Sen.), and Specificity (Spec.). IoU is also known as the
Jaccard index, which estimates the ratio of the intersection area between the
prediction and ground truth mask. The dice score is also referred to as the F1
score, which estimates the ratio of twice the overlap between the prediction with
ground truth mask to the sum of their areas. IoU and DSC evaluate the spa-
tial correspondence between the predicted and ground truth masks, with higher
values indicating superior segmentation accuracy. Precision estimates the pro-
portion of correctly classified lesion pixels to the total number of lesion pixels
predicted in the prediction mask, while Sensitivity measures the proportion of
correctly classified lesion pixels in the prediction mask to the ground truth mask.
Moreover, Specificity assesses the proportion of correctly classified background
pixels in the prediction mask to the ground truth mask.

4 Experimental Settings and Results

This section presents a series of experiments to evaluate the performance of the
proposed and baseline models in breast cancer segmentation using BUS images.
An ablation study is conducted to understand the importance of GCN compo-
nents within the model architecture. We also investigate kernel size’s impact on
breast lesion segmentation in the GCN block. Another ablation study evaluates
the effect of data preprocessing techniques on BUS medical image segmentation.
We then present and discuss the segmentation results obtained with state-of-the-
art models using the BUSI and Dataset-B. All experiments are conducted using
four-fold cross-validation on the sorted dataset and employ internal shuffling for
uniformity. Finally, we assess our proposed and baseline models’ generalizability
using the unseen (Test) STU dataset. The STU dataset consists of two classes,
tumour and normal, and the trained models predict whether each pixel in the
BUS image is normal or a tumour.

4.1 GCN Position

The GCN is an independent block used to capture larger receptive fields and
can be easily integrated into the UNet architecture. We explore three variants:
Model A, where the GCN block is within the skip connection; Model B, where
it’s placed between each encoder and decoder block; and Model C, where it
replaces each convolution in both encoder and decoder blocks (except for the
upsampling convolution). Table 2 shows the performance of these variants, with
skip connections proving to be the optimal choice in terms of performance and
is employed for further analysis.
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Table 2. Segmentation results for GCN at different positions in the proposed network
with BUSI dataset. Models A, B, and C are defined in Sect. 4.1.

Models BUSI

IoU Dice Sensitivity Precision Specificity

Model A 61.05 ± 1.31 75.69 ± 1.00 72.13 ± 1.35 78.29 ± 2.98 98.28 ± 0.31

Model B 60.28 ± 1.55 75.07 ± 1.21 72.12 ± 1.39 78.41 ± 3.39 98.26 ± 0.40

Model C 59.96 ± 1.07 74.79 ± 0.83 70.98 ± 2.97 79.06 ± 3.47 97.36 ± 0.44

4.2 Kernel Size

Using larger kernels enables the model to have larger receptive fields, enhancing
its ability to predict lesions effectively. In an ablation study, we tested three
different kernel sizes (3, 5, and 7) for the k parameter in the GCN, ensuring
uniformity across all GCN kernels. We opt for a maximum kernel size of 7,
restricted by the smallest feature size of 8× 8 within the proposed network. It is
observed in Table 3 that the larger kernel is progressively improving the model’s
segmentation prediction.

Table 3. Segmentation results for different kernels used in the GCN block with BUSI
dataset.

Kernel Size (k) BUSI

IoU Dice Sensitivity Precision Specificity

7 61.05± 1.31 75.69± 1.00 72.13± 1.35 78.29± 2.98 98.28± 0.31

5 60.51± 0.81 75.26± 0.66 72.04± 3.09 79.08± 3.65 98.29± 0.49

3 59.44± 1.10 74.72± 0.84 72.37± 2.64 76.69± 1.53 98.06± 0.23

4.3 Data Augmentation

BUS images are characterised by noise and low quality, often exhibiting low con-
trast. We apply domain knowledge-based data augmentation methods to address
these issues and enhance image perception to improve contrast and reduce noise.
Rather than adding domain-based augmentation directly, random augmentation
settings are used for a superior augmentation approach [40]. To verify the claim
that such a data augmentation method improves the perception quality and aids
in the prediction of maps by the network, we perform an ablation study involving
data augmentation techniques. We train our model with and without augmen-
tation approaches and report its results in Table 4. The model trained with data
augmentation achieves superior Dice and IoU scores compared to methods that
do not utilise augmentation.
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Table 4. Segmentation results of the proposed model with and without data augmen-
tation using BUSI dataset.

Data Augmentation BUSI

IoU Dice Sensitivity Precision Specificity

✓ 61.05± 1.31 75.69± 1.00 72.13± 1.35 78.29± 2.98 98.28± 0.31

✗ 59.31± 0.59 74.28± 0.50 70.59± 1.29 78.53± 2.24 98.29± 0.22

Fig. 4. The segmentation results of different methods on breast ultrasound images.
The first column represents the input image. The remaining columns represent the
corresponding mask predicted by the models.

Table 5. The cross-fold validation segmentation results for the baseline and proposed
model. Sen, Prec, and Spec represent sensitivity, precision and specificity, respectively.
NoP represents the number of parameters of the model, and the values are expressed
in millions. FLOPS represents the Floating-point operations per second, and values are
denoted in gigabits per second (Gbps).

Models BUSI Dataset-B NoP FLOPS

IoU Dice Sen. Prec. Spec. IoU Dice Sen. Prec. Spec.

UNet 53.82 ± 2.59 69.75 ± 2.10 65.96 ± 4.67 74.07 ± 4.49 97.98 ± 0.57 60.83 ± 3.29 75.62 ± 2.62 68.32 ± 3.35 84.70 ± 5.85 99.37 ± 0.35 39 27.78

Attention UNet 57.08 ± 1.12 72.57 ± 0.90 70.89 ± 3.15 74.65 ± 3.99 97.87 ± 0.57 69.98 ± 2.68 82.29 ± 1.82 78.48 ± 5.03 86.96 ± 5.75 99.41 ± 0.28 34 66.69

UNet ++ 57.14 ± 0.88 72.60 ± 2.21 69.15 ± 2.82 76.53 ± 3.59 98.16 ± 0.44 68.14 ± 2.17 80.99 ± 1.61 80.35 ± 5.75 82.25 ± 5.86 99.14 ± 0.37 47 199.85

UNet 3+ 56.93 ± 0.95 72.43 ± 0.79 68.45 ± 2.09 77.27 ± 2.15 98.20 ± 0.29 69.86 ± 2.29 82.23 ± 1.53 78.02 ± 4.03 87.06 ± 4.01 99.39 ± 0.17 26 198.03

SegNet 57.55 ± 1.44 72.93 ± 1.18 68.04 ± 2.85 78.73 ± 2.47 98.34 ± 0.30 68.38 ± 2.54 81.20 ± 1.88 77.75 ± 2.97 85.23 ± 3.72 99.32 ± 0.20 29 40.82

AAUNet 59.90 ± 2.24 74.72 ± 1.76 69.62 ± 2.99 80.68 ± 5.59 98.52 ± 0.62 70.02 ± 2.83 82.34 ± 1.93 78.42 ± 3.76 86.70 ± 4.15 99.40 ± 0.26 43 85.33

Proposed Method 61.05 ± 1.31 75.69 ± 1.00 72.13 ± 1.35 78.29 ± 2.98 98.28 ± 0.31 72.11 ± 1.92 83.77 ± 1.29 83.96 ± 3.46 83.72 ± 2.82 99.02 ± 0.18 80 37.08
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4.4 Comparison with State-of-the-Art Models

We have compared approaches like AAUNet, designed explicitly for breast lesion
segmentation, with our proposed model performance. The other state-of-the-art
medical segmentation methods include UNet [8], SegNet [46], Attention UNet
[11], UNet++ [13], and UNet3+ [9] are also assessed. We have used the officially
available repositories of these models to reproduce the results on the BUSI and
other datasets. All models are performed four-fold cross-validation with data
augmentation, and the results are shown in Table 5. Models were trained sep-
arately with four-fold cross-validation with datasets BUSI and Dataset-B. Our
proposed model performs better than other state-of-the-art models regarding
IoU, Dice score, and sensitivity with BUSI and Dataset-B. Though the num-
ber of parameters is large, the number of Floating-point operations per second
(FLOPS) is lower, suggesting that our approach is simpler and requires no intri-
cate design. Visual outputs of the proposed model and other state-of-the-art
models are shown in Fig. 4. Our approach captures the better spatial structure
of the breast lesions when compared to other state-of-the-art models.

Table 6. The External validation segmentation results for the STU dataset with base-
line and proposed model trained with BUSI and Dataset-B. Sen, Prec, and Spec rep-
resent sensitivity, precision and specificity, respectively.

Models BUSI Dataset-B

IoU Dice Sen. Prec. Spec. IoU Dice Sen. Prec. Spec.

UNet 69.77 ± 2.21 82.18 ± 1.54 79.11 ± 4.31 85.72 ± 2.82 98.16 ± 0.50 57.82 ± 6.78 73.09 ± 5.55 59.76 ± 7.54 94.92 ± 1.04 99.54 ± 0.14

Attention UNet 73.36 ± 3.69 84.60 ± 2.49 85.83 ± 0.65 83.48 ± 4.55 97.62 ± 0.79 68.43 ± 3.35 81.23 ± 2.32 72.71 ± 2.10 88.67 ± 3.48 99.12 ± 0.40

UNet ++ 74.02 ± 2.33 80.05 ± 10.90 83.18 ± 2.47 87.04 ± 1.16 98.29 ± 0.17 68.11 ± 2.77 81.01 ± 1.95 73.83 ± 4.41 90.08 ± 3.95 98.80 ± 0.57

UNet 3+ 71.63 ± 1.23 83.46 ± 0.84 81.65 ± 2.15 85.42 ± 1.62 98.07 ± 0.28 66.38 ± 1.90 79.78 ± 1.39 71.11 ± 1.49 92.25 ± 1.64 99.17 ± 0.21

SegNet 75.13 ± 0.62 85.80 ± 0.41 85.26 ± 2.22 86.45 ± 2.40 98.14 ± 0.44 68.30 ± 2.63 78.99 ± 1.92 69.30 ± 3.37 91.97 ± 1.90 99.15 ± 0.23

AAUNet 75.41 ± 3.22 85.96 ± 2.11 84.72 ± 2.52 87.29 ± 3.08 98.28 ± 0.47 70.06 ± 2.66 82.38 ± 1.86 74.35 ± 3.30 92.45 ± 0.59 99.16 ± 0.10

Proposed Method 79.08 ± 1.28 88.32 ± 0.80 87.43 ± 0.71 89.23 ± 1.12 98.59 ± 0.16 74.79 ± 0.39 85.58 ± 0.25 79.48 ± 1.94 92.78 ± 2.02 99.13 ± 0.28

4.5 External Validation

External validation is a critical step in assessing the generalizability and robust-
ness of segmentation models. In our study, we used the STU dataset as an exter-
nal validation set. This dataset, acquired by different imaging systems and from
different geographical locations compared to BUSI and Dataset-B, serves as an
essential benchmark for evaluating our proposed model’s performance in real-
world scenarios. Testing our model on this external dataset ensures its effective
generalization to unseen data and different acquisition conditions. We trained
models using BUSI and Dataset-B separately and tested them with the STU
dataset to predict whether each pixel in the BUS image is normal or a tumour.
Our proposed model demonstrates better generalizability to the unseen datasets
than other models, with the results shown in Table 6.
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5 Conclusions

Our study introduces a novel UNet-based model integrating GCN blocks in skip
connections to facilitate breast lesion segmentation in BUS images. Our pro-
posed model demonstrates superior performance compared to existing state-of-
the-art methods in this domain. Through several ablation studies, we explain the
significance of individual model components, providing insights into their con-
tributions to segmentation accuracy. Moreover, we emphasize the pivotal role
of image preprocessing in enhancing segmentation performance for BUS images.
Our model showcases robustness across unseen datasets. Looking ahead, we aim
to extend our model’s capabilities beyond segmentation to encompass compre-
hensive tasks such as cancer detection, identification, and segmentation within
a unified framework.
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Abstract. Synovial fluid imbalance in joints plays a significant role in the diag-
nosis of Rheumatoid arthritis (RA) at an early stage. RA mostly attacks the small
joints like finger and wrist joints which makes it challenging to segment the syn-
ovial fluid from those small joints automatically.Although ultrasonography (USG)
imaging is very sensitive to small joints and its fluid assessment, segmentation of
synovial fluid regions from the USG images in the literature are less understood.
Moreover, towards computer vision related research (especially segmentation of
the suspicious abnormal regions) using USG imaging, several challenges exists
including (a) USG images are prone to the certain artifacts in terms of noises
because of which the presence of the different appearance of synovial fluid is
less distinguishable with respect to the other anatomical appearances, (b) Also,
with respect to imbalance occurrence, synovial fluid changes its shape, size and
locations from one USG image to another USG image. To cope with such pre-
defined challenges, we proposed a novel lightweight network named as “Synovial
Fluid Region Segmentation Network (SFRSeg-Net)” for segmentation of synovial
fluid regions from the USG images. The proposed network enriches by incorpo-
rating a novel Interpretable Element Wise Additive-Discrete Wavelet Transform
(IEWA-DWT) based down sampling strategy to extract the significant salient fea-
tures by ignoring noise imposed in USG imaging and maintain the original image
integrity. As synovial fluid varies its shape in one image to another image, so
boundary loss is also significant learning parameter with pixel wise region loss
and its mutual combination is used as a loss function in our proposed network.
Experimental results on publicly available USG imaging dataset reveal that our
proposed SFRSeg-Net performed well with Dice similarity coefficient of 0.9066
± 0.0520 which surpasses both the most recent state-of-the-art techniques and the
current baseline.
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1 Introduction

Approximately 0.92% of Indian adults suffer from rheumatoid arthritis [1]. The typical
onset of rheumatoid arthritis (RA) is common for the age between of 35 to 60 years and
it can also affect young children, even those under the age of sixteen [2]. According to
the World Health Organization (WHO), RA affects women in about 70% of cases [3].
RA starts off affecting smaller joints such as fingers and toes and gradually spreads to
the larger joints like elbows, knees, ankles, shoulders, hips and this disease spreads to
the other organs too such as skin, eyes, heart, kidneys, and lungs [2, 4]. Consequently,
RA is caused by a disease process that starts in the synovial membrane, the membrane
that surrounds a joint and forms a protective hollow space [5]. This hollow space is filled
with the liquid called synovial fluid [5]. The membrane swells up and produces extra
synovial fluid, the swelling of the synovial membrane is called synovitis [6]. Synovial
fluid’s function is to lubricate the bone joint’s cartilage and supply nutrition by diffusion
so that there is less friction between the articular cartilages [6–9]. From this extensive
study, it is observed that the disease significantly changes the synovial fluid at a severe
stage as displayed in Fig. 1. Thus synovial fluid is the potential biomarker present in the
affected joints which can help in decision making of disease diagnosis.

Fig. 1. Rheumatoid Arthritis affected hand joint digital camera visualization (a) and Ultrasound
visualization (b)

To avoid the laborious manual work of the technicians and speed up the treatment
process, the research community is deterministically working on building a computer
aided diagnostic system for RA diagnosis. With the advancement of medical imaging
equipments for computer aided disease diagnosis, the research community have utilized a
variety of medical imagingmodalities are used to diagnose RA, such as ultrasonography,
computed tomography, Magnetic Resonance Imaging (MRI), Conventional Radiogra-
phy, etc. [10]. When it comes to analysis of any fluid and small joints ultrasonography
(USG) has been demonstrated to be more sensitive, real time and cost effective than clin-
ical examination and other medical imaging modalities [29]. In addition, other markers
of joint inflammation, such as synovitis, and marginal erosion, which may be radiologi-
cally occult, can be found and tracked with USG in the early stages of RA [11]. Although
USG has the advancement in the literature of automatic detection of arthritis, there are
still a lot of limitations using various image processing techniques. Among them noise is
the most challenging one introduced into the ultrasound/ultrasonography images, which
makes the presence of the suspicious region of interest (i.e., the appearance of synovial
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fluid) appear less distinct than other anatomical appearances. In addition to these chal-
lenges, synovial fluid changes its shape and size from one ultrasound image to another
ultrasound image. Therefore, segmentation of synovial fluid regions from the holistic
USG images plays a crucial part in effective grading of arthritis.

As found in the literature [12–14], very limited work has been done on the segmenta-
tion of the USG images which are mostly based on conventional segmentation methods
like active contour segmentation [12, 13]. Other than the conventional methods, in the
last decades, Convolutional neural networks (CNNs) have been incredibly successful in
the field of medical image analysis because of their ability to use detailed, important
features with strong discriminating powers. Inspired by these insights, the paper aims
at segmentation of the suspicious region of interest (ROI) from USG images thereby
extracting the meaningful information about synovial fluid changes considering all the
pre-defined limitations for RA diagnosis. In order to fulfill the specific necessities of the
overall aim, we highlighted the contributions of this proposed paper below:

1. In this paper, we proposed a novel lightweight end-to-end deep neural network named
as “Synovial Fluid Region Segmentation Network (SFRSeg-Net)” for segmenting the
synovial fluid regions fromUSG imagingmodality. AsUSG images are susceptible to
various artifacts, specifically noise and acentric appearance of suspicious ROIs (i.e.,
synovial fluid regions), the network incorporates a novel Interpretable Element Wise
Additive-Discrete Wavelet Transform (IEWA-DWT) based down sampling strategy
so as to extract prominent features of the ROIs. This strategy increases the receptive
field of lightweight networks, enabling them to capture contextual information of
suspicious ROIs at long range. To the best of our knowledge, the proposed work is
first attempt to use the building blocks of CNN for synovial fluid regions segmentation
from RA affected small joints using USG images.

2. The experimental results on publicly available USG image dataset of RA patients
[16] have been investigated and achieved new state-of-the-art results for extraction
of synovial fluid regions from the holistic USG images.

3. Even though, the proposed SFRSeg-Net has shown consistent results in labeling
the synovial and non-synovial regions precisely, the network also investigates the
influences of various noises externally imposed in the USG images for synovial
regions segmentation.

Paper Outline. Section 2 elaborates the review on the existing works for synovial
fluid region segmentation from USG images. In Sect. 3, our proposed SFRSeg-Net is
discussed in details. Section 4 reports the experimental results of the proposed network
for synovial region segmentation. Finally, conclusion is provided in Sect. 5.

2 Related Work

In this section we discussed the existing literature related with our proposed task i.e.,
synovial fluid segmentation using Ultrasound imaging modality towards Rheumatoid
arthritis detection. In the literature it has been observed that only three works have been
done based on detection of synovial fluid towards rheumatoid arthritis diagnosis. In [12],
Hemalatha et al. develop amethod of segmentation of the synovial region based on active
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contour technique using datasets from the MEDUSA database. The validation process
reveals a rising true-positive rate, which averages 88.52% and ranges from 78.12% to
98.95% at its maximum. An average of 1.41% is removed from the false-positive rate.
For instance, Veronese et al. [13] propose a method that can detect synovial borders in
USG image semi-automatically with little to no user input using own datasets, a series of
two distinct active contours is formed, the composition of which matches the entire syn-
ovial border. This method provides the sensitivity of 85 ± 13%, mean Dice’s similarity
index of 80 ± 8% and with a mean Hausdorff distance from the manual segmentation
of 28 ± 10 pixels. In another paper of Hemalatha et al. [14], they have detected synovial
fluid using various active contour segmentation methods on the database of MEDUSA.
Performance analysis of their proposed approach shows Dice coefficient with 0.873 ±
0.005, Hausdorff distance with 18.7± 0.010. From existing literature of the similar task,
it has been observed thatmost of thework focused on synovial region segmentation using
traditional methods. However, the traditional methods adopted by the research commu-
nity often suffers from the difficulties of parameter selection and accurate segmentation
with a minimum rate of cumulative over and under segmentation. Moreover, the existing
works discussed did not addresses the challenges of their used methods, algorithms and
dataset. The existing tasks were implemented based on traditional and semiautomatic
approaches. Therefore, there is huge scope to develop a deep learning network thereby
overcoming the pre-defined challenges of USG images for synovial fluid segmentation
towards RA diagnosis. To address this disparity, a novel segmentation network is pro-
posed incorporating our proposed wavelet pooling based down sampling strategy for
synovial fluid region segmentation from the USG images. In recent days, researchers
has proposed fewworks focusing on incorporatingwavelet based pooling in CNN frame-
works for various vision based applications. In [23], Williams et al. introduced discrete
wavelet pooling for convolutional neural networks to reduce features more structurally
than other pooling via neighborhood regions while resolving the overfitting issue raised
by max pooling. In this proposed discrete wavelet pooling mechanism, first-level high
pass filter generated sub-bands are discarded and second-level sub-bands are considered
to reduce feature dimensions further in the network. This method is validated on four
benchmark datasets (MNIST, CIFAR-10, SHVN, andKDEF) for classification purposes.
For instance, Souza et al. [46] used a combination of max-pooling and wavelet pool-
ing (DWT) followed by 1 × 1 convolution for semantic segmentation by concatenating
both outputs. This proposed method is used to solve the issue of loss of information
caused by existing pooling methods which reduce the number of parameters, improve
invariance to certain distortions, and enlarge the receptive field. IRRG images from the
Potsdam and Vaihingen datasets have been used to validate this proposed wavelet-based
pooling method. Consequently, to deal with noise interruption in convolutional neural
networks (CNNs) for image classification, Li et al. [47] proposed to integrate CNNswith
the simplest wavelet based pooling. This proposed method dropped the high-frequency
components to reduce noise and improve image classification. Thismethodwas validated
on the COCO dataset for suppression of the aliasing effect of noise. In the paper [48], to
reduce noise in image segmentation, Zhao et al. substitute discrete wavelet transform for
the conventional down-sampling modules. This proposed method splits the features into
low- and high-frequency components and then removes the high-frequency components.
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This method is validated on the Aneurysm dataset. From these reported works, we can
infer that till date simplest discrete wavelet pooling is implemented in the field of dif-
ferent noise robust image segmentation and classification tasks. All of the above related
work drops the high-frequency components where the problem of feature loss can arise.
To address this issue, in our proposed segmentation network, we have designed a novel
Interpretable Element Wise Additive-Discrete Wavelet Transform (IEWA-DWT) based
down sampling strategy which considers some of the high frequency wavelet sub-bands
thereby excluding the sub-band reflecting noise component.

3 SFRSeg-Net: Synovial Fluid Region Segmentation Network

In this section, we describe our proposed fully automated synovial fluid region seg-
mentation network named as SFRSeg-Net which is based on the sequential applications
of end-to-end encoder-decoder structure thereafter incorporating a novel interpretable
element wise additive discrete wavelet transform (IEWA-DWT) based down sampling
strategy so as to extract prominent features of the ROIs. Figure 2 illustrates the proposed
segmentation network. Each of the components of the proposed network and its learning
process is elaborated next.

3.1 Problem Definition

Let us define that input to our proposed network are USG images in RGB palette as It : φt
→ R

3, where t = 1, 2, …, t as the training images with size 128 × 128 × 3 and each of
them having their corresponding ground truth defining the synovial fluid regions in the
form of binary masks which is also defined as Gt : φt → R

2. We can state segmentation
as the following optimization problem with respect to the network parameters ɤ and is
mathematically expressed as Eq. (1):

min
r

∑

t

∑

i

L
(
Gt(i),Oft(i, r)

)
(1)

Here, i ε ϕt , Oft(i, ɤ) represents all the predicted output of the proposed optimized
model by learning parameters ɤ. Our proposed model aims to learn all the parameters
precisely towards correct pixel prediction by minimizing the loss between predicted
pixel and ground truth pixel value and position.

3.2 Architecture Overview of the Proposed SFRSeg-Net

In this subsection, we discussed our proposed deep neural network for segmenting ROI
i.e., synovial fluid regions from the holistic USG images towards RA detection. The
proposed network named as “SFRSeg-Net (Synovial Fluid Region Segmentation Net-
work)” consists of fully convolutional neural networks (FCNNs) with contracting and
expanding paths which are popularly dubbed as down sampling and up sampling respec-
tively. Finally, a softmax activation function was applied to the output of the final layer
after the last up sampling block.
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Module 1 (Down Sampling Path). For synovial fluid region segmentation, four blocks
of layers in the down sampling path made up the proposed network as shown in Fig. 2.
Each block designed with two convolution layers followed by batch normalization and
the RELU activation function. After each block in the down sampling path as displayed
in Fig. 2, we have incorporated the proposed IEWA-DWT as the pooling mechanism.
Each of the layer constituting the down sampling path of the proposed networks are
detailed below:

Convolutional Layer. The core building structure of FCNN is the convolution layer
where multiple filters with tunable learnable weights and biases are used to extract low

and high level distinguishable features to generate a feature map. Let Z
(
m(l−1)

)

n be an
input of lth layer from the (l − 1) layer, klmn be the learnable filter and blm be the bias
for the lth layer. So for mth output feature map, the nth receptive filed from (l − 1) layer
is convolved with mth kernel of lth layer and subsequently the bias added as shown in
Eq. (2).

Fig. 2. Diagrammatic Representation of the Proposed SFRSeg-Net for Synovial Fluid Region
Segmentation from the USG Images
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Cl
p =

⎛

⎝
j∑

n=1

Zml−1

n ∗ klmn + blm

⎞

⎠ (2)

The out of this layer gone through an activation functionwhich is non-linear in nature
(in our proposedmethod it is RectifiedLinearUnit (ReLu)) denoted as δ(·). Our proposed
down sampling strategy stacked up Cd convolution layers where d ∈ {1, 2, . . . , 10}.
Each of the Cd layers have kp number of learnable kernels with size 3 × 3 where
p ∈ {16, 32, 64, 128, 256}.

Fig. 3. Interpretation of Our Proposed IEWA-DWT Based Pooling for Synovial fluid Segmenta-
tion

Novel Interpretable Element Wise Additive Discrete Wavelet Transform (IEWA-DWT)
Based Pooling. In order to decrease the dimensionality of the feature maps rep resent-
ing the outputs of the intermediate activation layers and the number of subsequently
learnable parameters, this layer individually conducts a down sampling operation over
each activated feature map. Many existing networks addressed limitations of capabil-
ity of learning long-range spatial dependencies with their down sampling strategies. In
medical image segmentation, structural information is crucial and the existing pooling
approaches do not preserve the structural information [30]. In addition, existing down
sampling strategies are irreversible and invariably lead to information loss. Generally,
synovial fluid changes its shape and size from image to image and therefore to solve
this issue, our proposed network incorporates the novel idea of interpretable element
wise additive discrete wavelet transform (IEWA-DWT) based pooling. The visual rep-
resentation of the proposed IEWA-DWT as a pooling layer in our proposed network is
illustrated in Fig. 2. In our proposed down sampling strategy, we have modify and design
the wavelet block (IEWA-DWT) as a pooling layer in such a way that the network can
learn long range spatial dependencies and also can ignore the noise of USG images in the
progressive blocks and segment the region of interest with less computation. Our novel
down sampling strategy potentializes on wavelet transforms which enable invertible
down-sampling for self-attention learning and it ensuring the integrity of the data.

Inspired from [15], the proposed network reduces spatial information using IEWA-
DWT while maintaining image directionality, which is independent of position, scale,
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and rotation. This helps the proposed networks to generalize well and become resistant
to overfitting by enabling the recognition features of fine-grained patterns or boundaries.
Our proposed network consists of IEWA-DWTq number of pooling layers in each block
of down sampling path where q ∈ {1, 2,…, 4} i.e., after 2nd, 4th, 6th, and 8th convolution
layers. Considering the advantages of Haar wavelet [15] in our pooling layer, it will
generate four sub-bands (LL, LH, HL and HH) of an input feature map with high pass
(expressed in Eq. 3) and low pass (expressed in Eq. 4) filters. To mathematically express
the strategy, let us assume that we have a feature map from certain convolution layer of
the proposed network i.e., Fm ∈ RH×W×C . Next, Discrete Wavelet Transform (DWT)
has been employed using [15] to down sample the input feature maps in the pooling
layers of our proposed network. In the DWT operation �(•), firstly it will apply low
pass ( f L) and high pass filter ( f H ) in the row of the considered feature map to generate
two bands and then same filters were employed on the produced two bands to further
generates four sub bands (XLL, XLH, XHL, XHH) as shown in Eq. (5).

fL =
(

1√
2
,

1√
2

)
(3)

fH =
(

1√
2
,− 1√

2

)
(4)

�(Fm) = [XLL, XLH , XHL, XHH ] (5)

In Eq. (5), XLL denotes the low frequency component which reflects the structural
information of theROI from the holisticUSG images under consideration. Consequently,
the remaining XLH, XHL, XHH are the high frequency components that reflect the texture
and noise features respectively of the input feature maps. Thus, in our proposed neural
network, we discarded the XHH component to deal with the noise of the USG images.
After that, we concatenate the three sub bands (XLL, XLH, XHL) and this feature map
transforms to successive blocks of layers in the down sampling path to extract local and
global contextualized down-sampled feature maps. Let us consider Fm is the feature map
generated from 2nd Convolution layer and it will progress through the first IEWA-DWT
block which generates the transformed feature map (WFm) with reduced dimension as
shown in Eq. (6).

WFm = XLL ⊕ XLH ⊕ XHL (6)

Here,⊕ denotes the pixel wise addition of the generated sub bands. Figure 3 displays
the diagrammatic interpretation of our proposed IEWA-DWT layer. To justify the effec-
tiveness of our proposed layer (as displayed in Eq. (6)), we have analyzed the pixel wise
additive approach of four bands with respect to our proposed approach. The analysis has
been performed with respect to the assessment of the USG image quality as displayed in
Fig. 3. The assessment has been performedwith respect to threemetrics including Signal
to noise ratio (SNR), Peak signal to noise ratio (PSNR), and structural similarity index
measure (SSIM). The range of SNR and PSNR start from 1 decibel (dB) and higher
values indicate better image quality. Consequently, the range of SSIM is between −1 to
1 and value towards 1 indicates better image quality. For better visualization, the value
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of the SSIM values has been plotted in 10 point scale thereby multiplying the metrics
of the considered images with 10 for both approaches. It can be observed from Fig. 3
that our proposed IEWA-DWT (i.e., combined representation of XLL, XLH, and XHL
thereby discarding XHH) have higher values of these considered metrics as compared
to considering all the bands for pixel wise additive operation. This indicates that the
corresponding intermediate feature representation using our proposed pooling layer (so
as described in Fig. 2) can provide enhanced semantic representation of the USG images
with respect to quality thereby reducing the noises.

Module 2 (Up Sampling Path). In the up sampling path of the proposed network, the
output i.e., the significant content related to synovial fluid local features come and are up
sampled by convolution transpose method. It consists of adding zeros to the input matrix
to make it larger, followed by forward convolution based on the convolution kernel. Let
consider after 10th layer the feature map is Faa,bb

m and convolution kernel is Ka
m and the

8th layer feature map is Fcc,dd
m then to increase size of the Faa,bb

m zero will be added with
(cc-aa, dd-bb) size. Then the obtained feature map i.e. Fcc,dd

mn convolved with Ka
m. After

that it will concatenate with the 8th convolution layer output feature map i.e. Fcc,dd
m to

retrieve the location information of reconstructed significant pixels. In this way the up
sample path is made by similar operation four times in the place after the 10th, 12th,
14th, 16th convolution layers respectively. Thereafter, two more coevolution layers were
incorporated to reconstruct the image with its original size.

Output Layer. This layer in our proposed network performs the prediction of class
labels. As our problem domain is based on binary class segmentation, we have designed
our final layerwith a sigmoid activation function [31]which considers real values ranging
between 0 and 1. In the final layer i.e., after 18th convolution layer of our proposed
network, a sigmoid activation function is incorporated to generate the predicted binary
maps representing the synovial fluid regions pertaining in the holistic USG images. The
sigmoid activated output function can be mathematically expressed as Eq. (7).

Of = Sigmoid (Ff ) = 1

1 + e−Ff
(7)

Here,Of is the output of the proposedmodel andFf is the feature finalmap generated
from the 18th Convolution layer of the proposed network.

3.3 Training of Our Proposed SFRSeg-Net

In this subsection, we have illustrated the loss function which is utilized to optimize the
proposed network by fine-tuning the learnable kernels. Depending upon the objective
of the work (i.e., pixel based binary classification problem), we proposed to incorpo-
rate global loss function LGlobal(•) in our network as a combination of binary cross
entropy function LB(•) and dice similarity loss function LD(•) so as to learn the network
parameters. Using a combination of both the loss allows the network to balance between
pixel-wise accuracy and overall shape accuracy. Generally, the appearance of the regions
of interest (i.e., synovial fluid regions in our proposed work) in ultrasound images dif-
fer significantly with blurred boundaries. Therefore, dice similarity loss function LD(•)
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ensures that the predicted segmentation mask closely matches the ground truth in terms
of shape and overlap. Consequently, to maximize the likelihood of the correct class (i.e.,
to indicate individual pixel misclassifications), we have used binary cross entropy LB(•)

as USG images suffer from low contrast so pixel wise classification is more necessary.
Therefore, binary cross entropy loss function LB(•) can predict the pixel wise similar-
ity and dice similarity loss function LD(•) ensures accurate boundary localization. The
global loss function LGlobal(•) of the proposed network is mathematically calculated as
Eq. (8).

LGlobal(G,Of ) =LB(G,Of ) + LD(G,Of )

=
[
− 1

M

M∑

i=1

Gi · log
(
Ofi

) + (1 − Gi) log
(
1 − Ofi

)
]

+
[
1

M

M∑

i=1

2
(
Gi × Ofi

)

(Gi + Ofi )

]

(8)

Here, M represents the total number of samples (i.e., USG images) used for train-
ing the proposed network. The main goal of the proposed segmentation network is to
minimize the loss function for every epoch thereby updating the learnable parameters as
represented in Eq. (1). To continue the overall training process, ADAM optimizer [32]
has been used with the tuned hyper parameters.

4 Results and Discussions

In this section, the results of the proposed network for segmentation of the synovial fluid
regions from the holistic USG images are reported.

4.1 Dataset Details and Preparation

Formeasuring the effectiveness of the proposed network,we have used publicly available
ultrasound images of RA subjects from [16]. The dataset comprises 49 USG images of
the finger andwrist joints affected byRAwhich are available for the research community.
Among these, 20 cases involve finger joints,with the remaining 29 cases concerningwrist
joints. As our proposed work focuses on segmentation problems, therefore annotation
of the suspicious ROIs defining the synovial fluid regions has been performed thereby
reducing the strong subject biasness in annotating the ROIs. The ground truth annotation
has been performed under the supervision of a medical experts using an open-source
software tool called GNU Image Manipulation Programming, or GIMP [17]. Using the
GIMP tool, the ROIs are annotated as white pixels representing the synovial fluid regions
and black pixels representing the non-synovial regions of the USG images. Moreover, to
reduce the strong subjective biases, maximum voting policy scheme is adopted similar
to our previous work [33].

As our proposed network is a supervised learning approach, therefore to increasing
the volume and variety of the dataset and thereafter generalizing the proposed SFRSeg-
Net with respect to the USG image dataset, certain geometric based augmentation tech-
niques are applied to the original dataset before serving to the proposed network. As
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our dataset contains 49 USG images, 39 images are used for training and the remaining
10 images are used for testing the proposed model. Each of these training and testing
sample subset of the dataset are independently performed augmentation to increase the
size. For this, geometric augmentations including flipping (with horizontal and vertical
flipping), rotation (with 30°, 45°, 75°, 90°, 115°, 135°, 150°, 175°, 200°, 225°, 250°,
270°, and 315°), rescaling (with 1/255), and zooming (with 0.3 and 0.5) are performed
on the considered images and their corresponding ground truths. Depending upon these
augmentation techniques, we have increased the training and testing data subsets as 741
and 180 augmented USG images respectively.

4.2 Implementation Details

Asmentioned above, during training, Adam optimization [32] is utilized as the optimiza-
tion algorithm. Experimentally, the network’s learning rate, which determines howmuch
the model’s weights should change in response to the predicted error, is experimentally
set at 0.001. Also, we experimentally set the momentum with a decaying learning rate
to 0.9 and 0.005 respectively. For effective training, the training subset is divided in a
4:1 ratio to form a training set and validation set with their corresponding ground truth
images. Total 741 images with their corresponding ground truth have been fed to the
proposed SFRSeg-Net for the training process and 180 images are used to test the final
optimized model. Before the training dataset (so as mentioned in Subsect. 4.1 of the
manuscript) is sent into the network, random shuffling is performed. Also, for initiating
the training process of the proposed network, the initialization of the kernel weights is
done at random. Consequently, the input image size of the proposed network is 128 ×
128 pixels in the time of training and testing. Also, we have trained our proposed network
from 50 epoch to 300 varying epochs with a time stamp of 50 and mini-batch size of 16
and has been reported. To compare different state-of-the-art pooling mechanisms in the
proposed SFRSeg-Net, our proposed IEWA-DWT layer is replaced by different pooling
mechanisms in the respective positions of the proposed network and trained with simi-
lar hyper parameters as mentioned above. Using Tensorflow and Keras versions 2.10.0
[22], respectively, the proposed segmentation network was trained and tested entirely on
a Python environment [21]. In addition, a 64 GB RAM in-stalled with NVIDIAGeForce
GTX Titan XP GPU-based workstation (Model: HP Z4 Work-station) was utilized for
the entire training and testing process.

4.3 Evaluation Metrics

In the existing literature, the segmentation method’s performance are evaluated by Dice
Similarity Coefficient (DSC) [18] and Jaccard Index (JI) [19] metrics. Therefore for fair
comparison, our proposed work also evaluates using these metrics. The Dice Similarity
Coefficient (DSC) and Jaccard index are statistical metrics that quantifies the similarity
between two sets, often used in the context of image segmentation tasks. These metrics
arewidely used in the field ofmedical image analysis to assess the precision of automated
segmentation algorithms by contrasting their outputs with a reference standard that is
usually manually annotated by experts. Both DSC and JI produce a result between 0 and
1. A value of 0 says that there is no agreement between the two segmentations and no
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overlap. Perfect overlap, or exactly matching the reference segmentation, is represented
by a value of 1.

Table 1. Performance Analysis of our Proposed SFRSeg-Net with Varying Epochs

Network Epoch(s) DSC JI

SFRSeg-Net [Our Proposed] 50 0.4095 ± 0.2127 0.2795 ± 0.1703

100 0.9066 ± 0.0520 0.8330 ± 0.0824

150 0.9022 ± 0.0550 0.8262 ± 0.0878

200 0.9066 ± 0.0571 0.8338 ± 0.0901

250 0.8971 ± 0.0582 0.8181 ± 0.0908

300 0.9036 ± 0.0625 0.8296 ± 0.0985

Fig. 4. Segmentation Results of the Proposed Model for Synovial Fluid Region Extraction from
the USG Images

4.4 Segmentation Performance of the Proposed Network

In this subsection we have reported the performance of our proposed SFRSeg-Net on the
testing subset of the used dataset so as described in Subsect. 4.1. The testing performance
of the proposed network has been reportedwith the trainedmodels obtained fromvarying
epochs ranging from the 50 epochs to 300 epochs with time stamps of 50. All the
hyperparameters remain similar for all the varied epochs so as described in Subsect. 4.2.
The performance of the proposedmodel has been reported in Table 1with varying epochs
in terms of DSC and JI with standard representation (mean± standard deviation). Based
on these evaluation metrics, as reported in Table 1 which reveals that in 100 epoch the
proposed model gives more precise segmentation with DSC of 0.9066 ± 0.0520 and
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Table 2. Performance Comparison of the Proposed SFRSeg-Net with respect to State-of-the-Art
Pooling Layer Mechanisms

Pooling Mechanism(s) DSC JI

Max Pooling [24] 0.8082 ± 0.2061 0.6837 ± 0.2415

Average Pooling [26] 0.5694 ± 0.2091 0.4280 ± 0.2103

Mixed Pooling [25] 0.8958 ± 0.0591 0.8162 ± 0.0927

Polynomial Pooling [28] 0.4975 ± 0.2116 0.4481 ± 0.2255

Second Order Pooling [27] 0.8620 ± 0.2016 0.7574 ± 0.0580

Global Max Pooling [34] 0.8855 ± 0.0582 0.7945 ± 0.1189

Stochastic Pooling [35] 0.8966 ± 0.1572 0.8126 ± 0.0782

Global Average Pooling [36] 0.8414 ± 0.1890 0.7262 ± 0.1569

IEWA-DWT (Our Proposed) 0.9066 ± 0.0520 0.8330 ± 0.0824

Jaccard Index (JI) of 0.8330 ± 0.0824. Figure 4 visualizes the qualitative results of the
proposed network for synovial region segmentation for the best performed epoch.

Fig. 5. Visualizing the Effectiveness of Segmented Synovial Fluid Regions from USG Finger
Joint Image using Different Pooling Mechanisms in Our Proposed SFRSeg-Net.

4.5 Effectiveness of Different Pooling Mechanisms on Proposed Network

In this subsection, our proposed model is compared with eight different pooling mecha-
nisms from the literature. These pooling mechanisms includes max pooling [24], mixed
pooling [25], average pooling [26], second order pooling [27], polynomial pooling [28],
global max pooling [34], stochastic pooling [35], and global average pooling [36]. Con-
sequently, for fair comparison of our proposed network, we trained the proposed network
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thereby replacing the proposed IEWA-DWT layer with the above mentioned eight pool-
ing mechanisms. For fair comparison, the testing performance of the trained models
with different pooling mechanisms for the best performed epoch has been reported in
Table 2. For all the pooling mechanisms, except second order pooling [27], global max
pooling [34], and stochastic pooling [35], the best training performance is obtained
for 100 epochs. However, for second order pooling [27], global max pooling [34], and
stochastic pooling [35] the best training performance has been observed to be for 150,
200, and 200 epochs. It can be observed from Table 2 that stochastic pooling mechanism
[35] achieved the second-best result, resulting in an average DSC of 0.8966 ± 0.1572
and an average JI of 0.8126 ± 0.0782. Also, it has been observed that our proposed
network incorporating the proposed IEWA-DWT demonstrated the most commendable
performance at 100 epochs with an average DSC of 0.9066 ± 0.0520 and an average JI
of 0.8330 ± 0.0824. In the Fig. 5, the results of the models (i.e. proposed SFRSeg-Net
and replacing the proposed IEWA-DWT pooling layer with max pooling [24], mixed
pooling [25], average pooling [26], second order pooling [27], polynomial pooling [28],
global max pooling [34], stochastic pooling [35], and global average pooling [36] has
been presented.

4.6 Comparison with the Existing State-of-the-Art Segmentation Methods

To verify the robustness of the proposed model, in this subsection, we compared the seg-
mentation performance of the proposed SFRSeg-Net with respect to the state-of-the-art
segmentation methods. The comparative study has been conducted in two major parts.
In the first part, the state-of-the-art conventional and deep learning based segmentation
methods are compared with our proposed network on the used datasets and is reported in
Table 3. The methods used for comparison are active contour model (ACM) [37], Fuzzy
C-means clustering (FCM) [38], K-means clustering [39], Level set method [40], Otsu
thresholding [41], Watershed algorithm [42], SegNet [43], and U-Net [20]. The parame-
ters of each of these comparedmethods are adjusted based on the recommendation of the
authors and when not available are adjusted based on the enhanced results. In Table 3,
the best performed segmentation method is represented as b old face and underline texts
and consequently the second most best performed method is represented as bold face
texts. It can be observed that among the state-of-the-art segmentation methods, U-Net
has performed well for synovial fluid region extraction with an average DSC and JI of
0.8082 ± 0.2061 and 0.6837 ± 0.2415 respectively and can be considered as the second
best performed method. Consequently, among all the compared method our proposed
SFRSeg-Net has observed to obtain superior performance for segmentation of synovial
fluid regions from the USG images with an average DSC and JI of 0.9066 ± 0.0520 and
0.8330 ± 0.0824 respectively.

In the second part, the existing methods used for the similar tasks (i.e., segmentation
of imbalance of synovial fluid appearances from arthritis affected ultrasound images)
are compared on the used dataset as reported in Table 4. Till date as mentioned in Sect. 2,
very limited has addressed the task for synovial fluid region segmentation from the USG
images towards RA detection. From literature, two competent methods as proposed by
Veronese et al. [13] and Hemalatha et al. [14] are compared with our proposed SFRSeg-
Net. The segmentation performance for each of these compared methods are reported
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Table 3. Performance Comparison of Our Proposed Model with the State-of-the-Art Segmenta-
tion Methods on our Collected Publicly Available Dataset [16]

Segmentation Methods DSC JI

ACM [37] 0.2044 ± 0.0332 0.2567 ± 0.0491

FCM [38] 0.3906 ± 0.0661 0.3855 ± 0.0652

K-means [39] 0.3736 ± 0.0128 0.3525 ± 0.0483

Level set [40] 0.2392 ± 0.0497 0.2330 ± 0.0348

Otsu [41] 0.3554 ± 0.0485 0.3644 ± 0.0478

Watershed [42] 0.3673 ± 0.0716 0.3842 ± 0.0187

SegNet [43] 0.6964 ± 0.0537 0.5254 ± 0.0327

U-Net [20] 0.8082 ± 0.2061 0.6837 ± 0.2415

SFRSeg-Net (Our Proposed) 0.9066 ± 0.0520 0.8330 ± 0.0824

Table 4. Comparative analysis of our proposed SFRSeg-Net with the Existing State-of-the-Art
Method for Synovial Fluid Region Segmentation

Methods Dataset DSC

Veronese et al. [13] Own dataset 0.8000 ± 0.0080

Public Dataset [16] 0.5889 ± 0.1036

Hemalatha et al. [14] MEDUSA [44] 0.8730 ± 0.0050

Public Dataset [16] 0.6458 ± 0.1357

SFRSeg-Net (Our Proposed) Public Dataset [16] 0.9066 ± 0.0520

Table 5. Comparative Analysis of our Proposed SFRSeg-Net with the Existing Wavelet Pooling
based Segmentation Methods

Compared Methods Dataset DSC

Souza et al. [46] Public Dataset [16] 0.8530 ± 0.0050

Zhao et al. [48] 0.8708 ± 0.1092

SFRSeg-Net (Our Proposed) 0.9066 ± 0.0520

on the private datasets in terms of DSC. Therefore, for fair comparison, each of these
considered methods are implemented and tested on the publically available USG image
dataset [16] used in our proposedwork. It can be observed that even though the compared
methods has performedwell for segmentation of the synovial fluid regions from theUSG
images, but our proposed SFRSeg-Net has shown superior seg mentation performance
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on the used dataset with 0.32 and 0.26 percentage point improvements with respect to
the methods proposed by Veronese et al. [13] and Hemalatha et al. [14] respectively.

Table 6. Performance of our Proposed SFRSeg-Net Model with respect to the Noise

Type of Noise Method DSC JI

Gaussian U-Net [20] 0.7492 ± 0.2969 0.6237 ± 0.2415

SegNet [43] 0.6091 ± 0.3366 0.4938 ± 0.2783

Our Proposed 0. 8861 ± 0.2351 0.8228 ± 0.2053

Poisson U-Net [20] 0.7551 ± 0.3072 0.6459 ± 0.2498

SegNet [43] 0.6254 ± 0.3300 0.5074 ± 0.2792

Our Proposed 0.8954 ± 0.2270 0.8394 ± 0.2792

Salt & Paper U-Net [20] 0.7322 ± 0.2970 0.6097 ± 0.2403

SegNet [43] 0.5989 ± 0.3425 0.4810 ± 0.2840

Our Proposed 0.8809 ± 0.2229 0.8177 ± 0.3140

Speckle U-Net [20] 0.7387 ± 0.3125 0.6139 ± 0.2566

SegNet [43] 0.6003 ± 0.3322 0.4875 ± 0.2811

Our Proposed 0.8818 ± 0.3240 0.8180 ± 0.2311

To verify the robustness of the proposed segmentation network, the existing wavelet
pooling based deep learning methods used for segmentation tasks as proposed by Souza
et al. [46] and Zhao et al. [48] are also compared and reported in Table 5. For fair
comparison, each of these methods are trained and tested on the same dataset [16]
used for our proposed network. The training and testing datasets along with machine
specifications remains similar as mentioned in Subsect. 4.2 used for implementing our
proposed SFRSeg-Net. The hyper parameters of the compared methods were adjusted
based on the recommendation of the respective authors and when not available are
adjusted based on the enhanced results. From Table 5, it has been observed that the
method so as proposed by Souza et al. [46] and and Zhao et al. [48] achieved DSC of
0.8530 ± 0.0050 and 0.8708 ± 0.1092 respectively on the similar testing set mentioned
in Subsect. 4.2. Moreover, it can be seen from Table 5 that even though the compared
methods has performedwell for segmentation of the synovial fluid regions from theUSG
images, but our proposed SFRSeg-Net has shown superior segmentation performance
on the used dataset with respect to the compared methods with DSC of 0.9066± 0.0520.

4.7 Impact of Noise in the Segmentation Performance of the Proposed
SFRSeg-Net

Towards investigating the effectiveness of the segmentation performance of our proposed
network in case of presence of noise in the USG images, different noises i.e., Gaussian
Noise [45], Salt and Pepper Noise [45], Poisson Noise [45], and Speckle Noise [45] were
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externally imposed into the test set of the ultrasound images. In our proposed work, the
investigation was conducted with noise variance of 0.01 (i.e., Speckle and Gaussian
noise). Table 6 reported the segmentation performance on noise imposed testing set of
the USG images (so as mentioned in Subsect. 4.1) of the proposed SFRSeg-Net model.
Also, for fair comparison, segmentation performance of the two best performed state-of-
the-art segmentation methods i.e., U-Net [20] and SegNet [43] so as observed in Table 3
has been reported in Table 6. It is observed from Table 5, that there is decrease in the
segmentation performance for the compared state-of-the-art methods and our proposed
model.Moreover, it can also be observed fromTable 6 that as compared to the competent
methods [20, 43], the proposed model has performed better segmentation results for all
the considered types of noises with an average DSC of 0.8860.

5 Conclusion

Towards diagnosis of RA, synovial fluids play a significant sign in the early stage. The
paper proposed a novel SFRSeg-Net for automatic synovial fluid region segmentation
from the USG images of small joints as small joints are very prone to RA and mostly
early stage sign found in those joints only. We have observed that the proposed network
provides better results concerning all the state-of-the-art methods including traditional
and deep learning based methods. In this work, the proposed network also shows its
capability to tolerate different noise oriented issues in segmentation tasks. This task can
lead to building a computer aided decision making system by extracting the features
from the segmented region and comparing it with the healthy subjects. Even though
experimental results reveal that our proposed SFRSeg-Net outperforms for synovial
regions segmentation from USG image, there are certain limitations that need to be
addressed in future. As convolutional operations in our proposed network are limited to
global con-text, so some new modules such as transformer based architectures can to
be introduced which can deal with the local context of the USG images. On the other
hand, towards reducing the noise from the USG images, SFRSeg-Net removes one high
frequency sub band which may consist of some significant edge feature of synovial
fluid regions. So these limitations may be resolved in future with some attention based
mechanisms. In the future, the proposed work will be extended thereafter morphological
features based analysis of the segmented ROIs toward severity prediction.
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Abstract. Dermatological infectious diseases pose a significant public health
concern due to their highly contagious nature, often characterized by painful
sores, fluid-filled blisters, flesh-colored bumps, and itching. Despite their dis-
tinct visual symptoms, diagnosing these diseases can be challenging due to their
phenotypical similarities and overlapping clinical presentations with other skin
conditions. In this paper we introduce a novel and diverse skin lesion dataset
comprising patients from India, focusing on prevalent infectious skin conditions
such as herpes zoster, herpes simplex, molluscum contagiosum, and non-viral
skin disorders. These conditions are particularly common in this geographical
region. Furthermore, we test Deep Learning models using different augmentation
techniques, analyze the performance, and evaluate several metrics on different
deep models using image augmentations. By assessing the performance of these
models and analyzing several metrics across different augmentation methods, our
findings demonstrate the capability of deep-learning models in classifying skin
images and such computational techniques can be used to enhance healthcare
accessibility and effectiveness, in resource-constrained settings like India.

Keywords: Cutaneous diseases · Deep learning models · Generative models

1 Introduction

Skin is part of the integumentary system and is the largest outer organ of the body
providing us with sensory information and protecting internal organs from abnormal
temperature and stress working as a protective shield to the body [23]. Skin diseases
or cutaneous diseases are one of the most common causes of human illness [19] and
demonstrate a wide array of conditions ranging from lesions, fluid-filled blisters, scaly
patches, inflammation, flesh-colored bumps, mild irritation to chronic disfigurement.
Due to these dermatological disfiguring conditions, patients suffer from mental health
issues due to stigma leading to social exclusion or isolation [9]. These skin diseases can
be caused due to genetic reasons in addition to infectious agents such as bacteria, fungi,
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viruses, and yeasts. The screening test for these cutaneous conditions is visual observa-
tion where a dermatologist inspects the affected area looking for specific characteristics
such as texture, color and lesion distribution [29]. However, due to overlapping charac-
teristics, phenotypical similarity and similar clinical presentations it is very difficult to
reach an accurate differential diagnosis without sufficient experience which could lead
to misdiagnosis [26].

In recent times, the advancement of deep learning models has shown tremendous
success in the medical domain. Due to the availability of a large amount of annotated
data and computing power, the performance of these deep models has shown substan-
tial improvement. This is possible due to the large datasets available due to public and
private data collections. There are numerous skin image datasets available online cover-
ing a wide variety of skin diseases. The open source dataset published in [7,17,35] and
[12] provides a large number of benign and cancerous categories of skin pigmentation.
Various state-of-the-art deep learning models already show remarkable classification
performance on the above-mentioned datasets [18]. However, given the different skin
texture and color, models developed on the Caucasian population would prove to be
ineffective on the Indian population prompting the requirement of developing models
on Indian datasets.

2 Our Contribution

The main contributions of the work are listed below.

– Literature review has demonstrated that currently there is no dataset available spe-
cific to Herpes, Molluscum contagiosum or Non-viral disease. We create and publish
a skin lesion dataset for the Herpes simplex, Herpes zoster, Molluscum contagiosum
and Non-viral, particularly on the Indian demographic. The dataset consists of 200
skin lesion images with 50 images in each category.

– We investigate various augmentation techniques, from simple operations like flip-
ping and rotating, to more compute-intensive methods such as Wasserstein GAN
(wGAN) and convolutional autoencoders. The results show that simple augmenta-
tion techniques give better results than model-based augmentation techniques.

The structure of the paper is as follows: In Sect. 3 we discuss the previous work related
to applications of machine learning for skin disease classification/ diagnosis. In Sect. 4
we provide the theoretical background for image augmentation techniques, convolu-
tional neural network (CNN), wGAN and autoencoders. Further, in Sect. 5 we discuss
the dataset while in Sect. 6 we elaborate on the methodology and discuss the results and
conclude the study in Sect. 7.

3 Related Work

The study performed by [28] uses features extracted from images to classify skin dis-
ease. The Haar feature [33], color features and gray level co-occurrence matrix features
were used. This study compares support vector machine (SVM), K-nearest neighbor
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Table 1. Samples of the original images taken and extracted image lesions.
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Fig. 1. Sample images from each class of our dataset.

and K-means clustering for the classification. Due to the availability of huge labeled
dataset in this field, deep learning models have better results than traditional machine
learning algorithms. In [21] multiple deep convolutional neural network (CNN) models
for classifying four common fungal skin diseases were studied. The images underwent
normalization and basic augmentation techniques namely cropping, rotations, flipping,
translations, contrast adjustment, and scaling. The highest accuracy achieved is 93.3%.
The work done in [19] proposes a smartphone-based application used for fungal dis-
ease classification using images. The MobileNet-V2 [24] CNN model is used for this
purpose and the dataset used for this purpose is indigenous to the study location. The
study performed by [29] uses spectral centroid magnitude for a feature extraction app-
roach to classify skin diseases. This approach yielded a classification accuracy of 97%
which exceeded other studies. Further, [31] proposed a method applying autoencoder,
MobileNetV2, and spiking neural networks (SNN) for skin cancer detection. The exper-
iments were conducted using the ISIC skin cancer dataset. The proposed method used
features extracted using MobileNet-V2 on the original dataset and reconstructed dataset
using autoencoder. These features were then combined and passed to the SNNmodel for
classification. The study achieved a classification success rate of 95.27%. The authors
in [10] propose a decision system model for medical experts for the diagnosis of skin
lesion images. This novel method combines the texture features computed from images
and visual attributes provided by the physician to make individual predictions and pro-
vide decisions on the majority vote for predictions.

After the development of GANs [11], wGANs [3] and variational autoencoders [5]
these generative models are used for data augmentation and to handle class imbalance
problem. In [1] authors used the CGAN techniques to solve the class imbalance issue
by generating the desired images. With suitable data augmentation techniques, the sug-
gested models achieved accuracies of 92% for VGG16, 92% accuracy using the ResNet-
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50, and 92.25% accuracy using ResNet-101. For this study, the HAM10000 dataset is
used. The study performed by [14] implemented a Deep Generative Adversarial Net-
work (DGAN) for the classification of skin disorders. To address the class imbalance
problem, different images from various images have been taken from datasets available
online. To evaluate the effectiveness of GANs, two CNN models were simultaneously
developed using the ResNet50 and VGG16 architectures. The training datasets were
augmented using conventional rotation, flipping, and scaling techniques. DGAN sur-
passed conventional data augmentation methods, achieving a performance of 91.1%
for the unlabelled dataset and 92.3% for the labeled dataset. Authors in [4] proposed a
system for creating a robust skin condition identification system for Herpes Zoster diag-
nosis by condensing a group of Deep Neural Networks (DNN). This approach evaluated
robustness using the proposed knowledge distillation from the ensemble via the curricu-
lum training (KDE-CT) method. The main idea of this method was to train the teacher
model on an ensemble of multiple DNNs. The curriculum training is used such that the
student model can learn from a stronger teacher model. The Results concluded that the
trained MobileNetV3-Small achieved better results (93.5% overall accuracy, 67.6 mean
error) than the DNN ensemble.

Fig. 2. The flowchart of the methodology.

4 Preliminary

4.1 Basic Image Augmentation Techniques

The basic image augmentation techniques consist of geometrical transformations of
images such as rotation, flipping, cropping etc. Even though these techniques are easy
to implement the basic assumption is the distribution of the existing data is similar to
real-world data [34].

4.2 Convolutional Neural Network

A CNN is a widely implemented computer vision algorithm for feature representation.
CNN consists of convolution layers and pooling layers. In this case, the convolution
layer uses multiple filters to extract the features from the input map, a multi-channel
image. Let xi

m represents the m-th input map at the layer i, the n-th output map yin
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Fig. 3. Sample images generated by WGAN for each class.

Fig. 4. Sample images generated by CAE for each class.

at the i-th layer is represented in Eq. 1. The activation function rectified linear unit
(ReLU).

yni = ReLU

⎛
⎝

Mi−1∑
m

wn,m
i ∗ xi

m + bin

⎞
⎠ (1)

The pooling layer reduces the response provided to it to make it more compact. There
are three types of pooling mix pooling, min pooling and average pooling.
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4.3 wGAN

The deep learning-based GAN consists of a generator model G and discriminator model
D. The data distribution is captured by ‘G’. The discriminator ‘D’ gives the probabil-
ity of the sample if it is generated by ‘G’ or provided from the training dataset. Both
models are trained via an adversarial process simultaneously. The task of generator ‘G’
is to maximize the chances of ‘D’ to make an incorrect decision [20]. However, it is
observed that the training of the GANs is very unstable since the updating of the gen-
erator becomes worse as the training progresses [6]. So the discriminator outperforms
the generator, making the generator learn nothing due to mode collapse. wGAN tack-
les issues such as training instability and the vanishing gradient problem encountered
in classical GANs [2]. This is because wGAN utilizes earth mover distance to com-
pare the real and generated distribution [3]. Earth-Movers distance also known as the
Wasserstein-1 metric is expressed in the Eq. 2.

W (pg, pr) = inf
y∈∏

(pg,pr)

E(x,x′∼y)||x − x′|| (2)

where
∏
(pg, pr) is the joint distributions y(x, x′) whose marginals are pg and pr.

4.4 Convolutional Autoencoder

An autoencoder consists of an encoder and a decoder. The encoder tries to convert
the input data into feature space using a mapping function and non linearity [16]. The
general function of autoencoder can be represented as Eq. 3, where x is input, b is bias,
W is the weight of mapping function f and y is the hidden representation.

y = f(Wx+ b). (3)

Similarly, the decoder tries to predict the function f ′ to get z as the output also called as
the reconstruction of x. This process is represented using 4. Here y is input, b′ is bias,
W is the weight of mapping function f ′ and z is the reconstruction.

z = f ′(Wy + b′). (4)

The main aim of the autoencoder is to reduce the reconstruction error achieved by
reducing the cost function Cae. The cost function Cae is given by Eq. 5. Here p is the
number of images, xi-th and zi-th are the corresponding input image and reconstructed
image. L[xi, zi] is the reconstruction loss that is expressed in the Eq. 6.

Cae =
1
p

p∑
i=1

L[xi, zi]. (5)

Lae[xi, zi] = ||xi − zi||2. (6)
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Convolutional autoencoder (CAE) combines the convolution layer to autoencoder
instead of connected layer [36]. Subsequently, the convolutional autoencoder performs
the process of creating feature space from the input image and the convolutional decoder
performs the reconstruction process of converting the feature space to the output. So
the Eq. 3 and 4 can written as Eq. 7 and 8. Here w is the convolutional kernel for the
encoder, x is the input, b is bias and y is the feature space.

y = ReLU(wx+ b). (7)

z = ReLU(w′y + b′). (8)

where w′ is the convolutional kernel for the decoder, y is the input and z is the recon-
struction output.

4.5 Fréchet Inception Distance

Fréchet Inception Distance (FID) is a similarity measure between images [25]. It is
shown that the measure correlates well with the visual quality of human judgment and
has used InceptionNET to obtain visual-related features [15]. FID works using fea-
ture space representation rather than directly comparing pixel values. It first calculates
statistics (mean and covariance) of feature representations (often called embeddings)
extracted from real and generated/transformed images. The Fréchet distance is a simi-
larity measure between two probability distributions in a metric space. In the context of
FID, it’s calculated between the multivariate Gaussian distributions formed by the statis-
tics (mean and covariance) of feature representations of real and generated/transformed
images. The Gaussian distribution can be referred to as the maximum entropy distri-
bution for a given mean and covariance. The Fréchet Inception Distance is defined as
the Fréchet Distance between the Gaussian distribution with mean (m,C) of original
images and Gaussian with mean (mw, Cw) of generated/transformed images. A lower
FID indicates that the generated images are closer in terms of distribution to the real
images in the feature space. Therefore, lower FID scores indicate better image qual-
ity. The FID equation consists of two parts, first part calculates the Euclidean distance
between means of the feature representations of real and generated/transformed images.
It measures how far apart are the average characteristics of the two sets of images.
The second part calculates the trace of the covariance matrices of the real and gener-
ated/transformed images, adjusted for their covariance. It calculates the variance in the
images’ features, taking into account their interrelationships. The FID is given by Eq. 9,
wherem andmw are the mean vector of feature representation of real images and gen-
erated images, C and Cw is the covariance of feature representation of real images and
generated/transformed images and Tr denotes the sum of the diagonal elements of a
matrix.

d2((m,C), (mw, Cw)) = ||m − mw||22 + Tr(C + Cw − 2(CCw)
1
2 ). (9)
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5 Dataset

The dataset is created from the images of the patients acquired in the Department
of Dermatology and Sexually Transmitted Disease at Katihar Medical College and
Hospital, Bihar India1. The approval for data collection is given by Katihar Medical
College, Institute ethics committee, IEC No. KMC/IEC/2013-2016/008/MD (Derma).
The patients were treated in the outpatient department or admitted to the ward. These
patients’ images were categorized into the classes as per the diagnosis. The sample
images of the patients and the extracted images are shown in Table 1. We extracted 200
skin lesions from four different categories of the diagnosis. The categories are Herpes
zoster, herpes simplex, molluscum contagiosum and non-viral disorders. We extracted
50 skin lesions from different patients in image format for each category and resized
them into 512 × 512 pixels. The sample images of our dataset are shown in Fig. 1.

6 Methodology and Results

We performed multiple experiments using image augmentation techniques and deep
models to create a deep classification model. For the experimentation, we split our
dataset into train and test such that train images contain 35 images from each class while
the remaining 15 images are assigned to the test set (three iterations). All the results
are calculated on this test dataset of 15 images per class. Also, we perform primary
geometric data augmentation techniques like flip and rotate. Furthermore, we explore
wGAN [3] and CAE [32] to increase the training data size. After image augmentation,
we fine-tuned existing deep models namely VGG16 (batch Size = 16, learning rate =
0.001) [27], ResNET-18 (batch Size = 16, learning rate = 0.0001), ResNET-50 (batch
Size = 128, learning rate = 0.0001) [13], MobileNet-V2 (batch size = 32, learning rate
= 0.001) [24] and EfficientNet-V2 (batch size = 32, learning rate = 0.01) [30] on the
training dataset and evaluated them on the test set. Each deep learning model underwent
training for 500 epochs, employing early stopping with patience of 20 epochs. The
Adam optimizer and binary cross-entropy loss function were utilized during the training
process. All the experiments are performed on NVIDIA RTX A4000 16GB GPU. All
the deep models are pre-trained on the ImageNet-1k dataset and taken from the PyTorch
library [22]. The outline of our methodology is given in Fig. 2.

We also calculate the FID distance between the original images and generated/
transformed images (Table 2). The images created using geometrical transformations
achieved the lowest FID score of 0.59. Notably, the FID between original images
and wGAN-generated images is higher than that between original images and CAE-
generated images. This suggests that CAE-generated images in our dataset bear a closer
resemblance to the original images compared to wGAN-generated images which is sub-
sequently reflected in the results.

1 The dataset is available on request at niti.chikhale19@gmail.com or sushilsa-
vant786@gmail.com.
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Table 2. Fréchet Inception Distance.

Models 100 200 300 400 500

wGAN 9.91 9.75 9.81 9.83 9.73

CAE 2.50 2.66 2.71 2.85 2.30

Geometric Augmentation 0.59

Table 3. Results of classification of deep models on original dataset.

Models Accuracy Precision Recall F1 score

VGG16 0.88 ± 0.02 0.89 ± 0.02 0.88 ± 0.02 0.88 ± 0.02

ResNET-18 0.89 ± 0.01 0.89 ± 0.01 0.89 ± 0.01 0.89 ± 0.01

ResNET-50 0.95 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.95± 0.04

MobileNet-V2 0.89 ± 0.02 0.90 ± 0.02 0.89 ± 0.02 0.89 ± 0.02

EfficientNet-V2 0.74 ± 0.01 0.80 ± 0.03 0.74 ± 0.01 0.73 ± 0.02

Table 4. Classwise accuracy of the best model (ResNET-50) from Table 3.

Class Herpes simplex Herpes zoster Molluscum contagiosumNon-viral

Mean accuracy 0.900 0.960 0.920 0.850

6.1 Classification and Evaluation of Deep Models on Original Dataset

Experimental Setup: We train deep models on the training dataset (35 images per
class) and evaluate on the test dataset.

Results: The results of this experiment are shown in the Table 3 demonstrates the high-
est performance by ResNET-50 model with an accuracy of 0.95 ± 0.03, precision of
0.95 ± 0.03, recall of 0.95 ± 0.03 and F1 score of 0.95 ± 0.04 with the classwise accu-
racy of this model shown in Table 4. MobileNet-V2 also performs well, particularly
in terms of precision, while EfficientNet-V2 exhibits comparatively lower performance
across all metrics.

6.2 Classification and Evaluation of Deep Models on the Geometric Augmented
Dataset.

Experimental Setup: We expand the training dataset by employing rotation and flip-
ping techniques, including horizontal and vertical flips, and rotations at 0, 90, 180,
and 270◦ to keep minimum non-natural distortions to spatial relationships within the
images. Each original image yields six geometrically augmented counterparts, resulting
in 210 images per class. Additionally, we merge the 35 original training images with the
augmented set, totaling 245 images per class. The fine-tuned models are subsequently
evaluated using the test dataset.
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Table 5. Results of classification of deep models on the geometric augmented dataset.

Models Accuracy Precision Recall F1 score

VGG16 0.88 ± 0.00 0.89 ± 0.00 0.88 ± 0.00 0.88 ± 0.00

ResNET-18 0.93 ± 0.02 0.93 ± 0.02 0.93 ± 0.02 0.93 ± 0.02

ResNET-50 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01

MobileNet-V2 0.92 ± 0.02 0.93 ± 0.02 0.92 ± 0.02 0.92 ± 0.02

EfficientNet-V2 0.83 ± 0.03 0.86 ±0.02 0.83 ± 0.03 0.83 ± 0.03

Table 6. Classwise accuracy of the best model (ResNET-50) from Table 5.

Class Herpes simplex Herpes zoster Molluscum contagiosumNon-viral

Mean accuracy 0.920 0.920 0.980 0.930

Results: Table 5 shows that ResNet-50 demonstrates the highest performance across all
metrics, with an accuracy of 0.97 ± 0.01, precision of 0.97± 0.01, recall of 0.97 ±
0.01, and F1 score of 0.95 ± 0.01. The class-wise accuracy of this model is shown in
Table 6. ResNET-50 stands out as the top-performing model followed by ResNET-18
andMobileNet-V2. VGG16 also demonstrates strong performance, albeit slightly lower
than the aforementioned models. Conversely, EfficientNet-V2 shows slightly lower per-
formance across all metrics compared to the other models.

6.3 Classification and Evaluation of Deep Models on wGAN Generated Images

Experimental Setup: We utilized wGAN to generate images from our initial training
dataset, systematically escalating the quantity of generated images (Fig. 3). We estab-
lished five distinct sets, each generating 100, 200, 300, 400, and 500 images per class,
leveraging the initial training set containing 35 images per class. Moreover, we aug-
mented the generated images by incorporating the original training dataset.

Results: Table 7 shows the results of models trained on wGAN-generated images. Here
we can see that as we increase the number of images the performance of VGG16,
ResNET-18 and EfficientNetV2 decreases except for the MobileNetV2. Table 8 shows
the class-wise accuracy for the overall best-performing model i.e. ResNET50 for 300
images per class.

6.4 Classification and Evaluation of Deep Models on CAE Generated Images

Experimental Setup: We employed CAE to generate images from our original train-
ing dataset, systematically increasing the generated images (Fig. 4). We created five
separate sets, each generating 100, 200, 300, 400, and 500 images per class, using the
initial training set, which originally contained 35 images per class. Additionally, we
augmented the generated images by integrating them with the original training dataset.
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Table 7. Results of classification of deep models on the wGAN generated images.

Metrics A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

Models 100 200 300 400 500

V16

0.78

±
0.01

0.78

±
0.01

0.78

±
0.01

0.78

±
0.01

0.78

±
0.01

0.78

±
0.01

0.78

±
0.01

0.78

±
0.01

0.77

±
0.01

0.78

±
0.01

0.77

±
0.01

0.77

±
0.01

0.74

±
0.02

0.74

±
0.01

0.74

±
0.02

0.74

±
0.02

0.74

±
0.01

0.74

±
0.01

0.74

±
0.01

0.74

±
0.01

R18

0.93

±
0.01

0.93

±
0.01

0.93

±
0.01

0.93

±
0.01

0.90

±
0.03

0.90

±
0.02

0.90

±
0.03

0.89

±
0.03

0.91

±
0.03

0.92

±
0.03

0.91

±
0.03

0.91

±
0.03

0.90

±
0.02

0.91

±
0.02

0.90

±
0.02

0.90

±
0.02

0.92

±
0.02

0.92

±
0.02

0.92

±
0.02

0.92

±
0.02

R50

0.93

±
0.01

0.93

±
0.01

0.93

±
0.01

0.93

±
0.01

0.89

±
0.01

0.89

±
0.01

0.89

±
0.01

0.89

±
0.01

0.94

±
0.02

0.94

±
0.02

0.94

±
0.02

0.94

±
0.02

0.92

±
0.02

0.93

±
0.02

0.92

±
0.02

0.92

±
0.02

0.94

±
0.02

0.94

±
0.02

0.94

±
0.02

0.94

±
0.02

MV2

0.87

±
0.01

0.88

±
0.01

0.87

±
0.01

0.87

±
0.01

0.89

±
0.04

0.89

±
0.04

0.89

±
0.04

0.89

±
0.04

0.91

±
0.04

0.91

±
0.04

0.91

±
0.04

0.91

±
0.04

0.92

±
0.05

0.92

±
0.04

0.92

±
0.05

0.92

±
0.04

0.92

±
0.03

0.93

±
0.03

0.93

±
0.03

0.93

±
0.03

EV2

0.91

±
0.02

0.91

±
0.02

0.91

±
0.02

0.90

±
0.02

0.84

±
0.01

0.87

±
0.02

0.84

±
0.01

0.84

±
0.01

0.89

±
0.03

0.90

±
0.04

0.90

±
0.03

0.90

±
0.03

0.85

±
0.04

0.86

±
0.04

0.85

±
0.04

0.84

±
0.05

0.87

±
0.04

0.87

±
0.03

0.87

±
0.04

0.87

±
0.04

Here A - Accuracy, P - Precision, R - Recall, F1 - F1 score, V16-VGG16, R18 - ResNET-18, R50
- ResNET-50, MV2 - MobileNetV2 and EV2 - EfficientNetV2. 100, 200, 300, 400 and 500 are
the number of images generated per class

Table 8. Classwise accuracy of the best model (ResNET-50) from Table 7.

Class Herpes simplex Herpes zoster Molluscum contagiosumNon-viral

Mean accuracy 0.880 0.940 0.900 0.780

Results: Table 9 shows the results of all models on CAE-generated images. We can see
the increase in the performance of models as we increase the number of images. The
ResNET-50 outperforms the rest of the models on the performance metrics. We also see
an increase in the results of all models as we increase the number of images per class.
Table 10 shows the class-wise accuracy of the ResNET50 model for 500 images.

Table 3 and 5 demonstrate an improvement in the results of the deep models after
geometric augmentations. As we increase the training dataset, the results of deep mod-
els show improvement. These results show the utility of basic geometric augmentation
techniques. We can also see the utility of the generative model namely wGAN and CAE.
By comparing the results of Table 3, Table 7, and Table 9 we can see the improvement
in the performance of deep models. Table 4, Table 6, Table 8 and Table 10 show the
class-wise accuracies of outperforming models for respective experiments. We can see
the increase in class-wise accuracy for normal dataset and geometric augmented dataset
from Table 4 and Table 6. These results also show that the ResNET50 is able to clas-
sify all four classes without any class biases. After the wGAN image augmentation, the
class-wise accuracy of the best model for the experiment is shown in Table 8. Here we
can see the poor accuracy in Non-viral class and Herpes simplex suggesting poor image
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Table 9. Results of classification of deep models on the CAE generated images.

Metrics A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

Models 100 200 300 400 500

V16

0.88

±
0.01

0.88

±
0.01

0.88

±
0.01

0.88

±
0.01

0.90

±
0.00

0.90

±
0.01

0.90

±
0.00

0.90

±
0.00

0.83

±
0.02

0.85

±
0.02

0.83

±
0.02

0.84

±
0.02

0.86

±
0.02

0.86

±
0.01

0.86

±
0.02

0.86

±
0.02

0.86

±
0.01

0.87

±
0.01

0.86

±
0.01

0.86

±
0.01

R18

0.90

±
0.02

0.91

±
0.01

0.90

±
0.02

0.90

±
0.02

0.92

±
0.03

0.92

±
0.03

0.92

±
0.03

0.91

±
0.03

0.92

±
0.04

0.93

±
0.04

0.93

±
0.04

0.93

±
0.04

0.93

±
0.02

0.94

±
0.02

0.93

±
0.02

0.93

±
0.02

0.92

±
0.02

0.93

±
0.02

0.92

±
0.02

0.92

±
0.02

R50

0.92

±
0.03

0.93

±
0.02

0.92

±
0.03

0.92

±
0.03

0.92

±
0.02

0.93

±
0.01

0.92

±
0.02

0.91

±
0.02

0.93

±
0.02

0.94

±
0.01

0.93

±
0.02

0.93

±
0.02

0.95

±
0.02

0.95

±
0.02

0.95

±
0.02

0.95

±
0.02

0.95

±
0.02

0.95

±
0.02

0.95

±
0.02

0.95

±
0.02

MV2

0.89

±
0.02

0.89

±
0.02

0.89

±
0.02

0.89

±
0.02

0.92

±
0.04

0.93

±
0.03

0.92

±
0.04

0.92

±
0.04

0.91

±
0.03

0.92

±
0.03

0.91

±
0.03

0.91

±
0.03

0.91

±
0.02

0.92

±
0.02

0.91

±
0.02

0.91

±
0.02

0.93

±
0.03

0.93

±
0.03

0.93

±
0.03

0.93

±
0.03

EV2

0.79

±
0.08

0.84

±
0.05

0.79

±
0.08

0.78

±
0.09

0.76

±
0.06

0.80

±
0.06

0.76

±
0.06

0.75

±
0.06

0.91

±
0.03

0.91

±
0.03

0.91

±
0.03

0.91

±
0.03

0.81

±
0.08

0.83

±
0.06

0.81

±
0.08

0.81

±
0.08

0.85

±
0.04

0.88

±
0.03

0.85

±
0.04

0.85

±
0.04

Here A - Accuracy, P - Precision, R - Recall, F1 - F1 score, V16- VGG16, R-18 - ResNET-18,
R50 - ResNET-50, MV2 - MobileNetV2 and EV2 - EfficientNetV2. 100, 200, 300, 400 and 500
are the number of images generated per class

Table 10. Classwise accuracy of the best model (ResNET-50) from Table 9.

Class Herpes simplex Herpes zoster Molluscum contagiosumNon-viral

Mean accuracy 0.880 0.940 0.870 0.850

generation by wGAN. While in Table 10 shows the best models for CAE-generated
images showing better class-wise accuracy than wGAN-generated images.

The VGG16 is a smaller 16-layer model while ResNET18 and ResNET50 are 18-
layered and 50-layered deep models respectively [13,27]. ResNET18 and ResNET50
use residual blocks that allow gradients to flow through the network directly, address-
ing the vanishing gradient problem. The MobileNETv2 model is aimed at mobile and
embedded vision applications, focusing on efficiency and low computational cost, while
the EfficientNETv2 compound scaling method is used to balance network width, depth,
and resolution [24,30]. Our results show that the performance of the VGG16 model
is consistently low throughout. The geometric augmentation techniques are also not
able to improve the performance of VGG16 do to its comparatively poor architecture,
complex and small image dataset.

However, while comparing the performance of geometric-based augmentation to the
generative model from Table 5, Table 7 and Table 9 our experiment shows the model
trained on the geometric augmentations demonstrates better results. This in line with
Baisi et al. [8] who demonstrate that different augmentation methods variably impact
classification accuracy in skin lesions. This can be justified using the FID distance.
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The wGAN and CAE models incorporate gaussian noise into the existing distribution
to generate images. In contrast, transformation techniques typically do not introduce
noise as part of the image generation process, as seen in Table 2. Also, the training data
required for wGAN and CAE is more substantial than the data we used. Due to this,
the noise introduced is higher, showing high FID in Table 2 suggesting a noticeable gap
between the generated images and the real images in the feature space especially with
very little training data for wGANs and CAE-driven augmentation.

7 Conclusion

Dermatological diseases are very common in the world and cause mental stigma due
to disfigurement. The use of deep learning models can be helpful to medical experts
for diagnosis/ detection purposes. In this study, we present a skin lesion dataset for the
Herpes simplex, Herpes zoster, Molluscum contagiosum and Non-viral disorders. We
train multiple deep-learning models on our dataset with different augmentation tech-
niques. Also, we compare the performance of several augmentation techniques. Our
study shows that basic augmentation techniques such as rotate, flip and mirror can be
successfully used to increase the performance of deep models trained on smaller dataset.
In Table 5 we can see a gradual increase in the results metrics than the result metrics
of Table 3. Also, images generated from smaller datasets using wGAN and CAE may
degrade the performance of the deep models. One reason behind this is that the FID
distance between the generated and original images is on the higher side. Nevertheless,
our study represents a step towards leveraging deep learning technologies for diagnosis
and management of cutaneous viral diseases, with the potential to optimistically impact
patient outcomes and public health initiatives.
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Abstract. Medical image registration plays a crucial role in diagnosis,
treatment planning, and anatomical studies. Classical methods, relying
on iterative optimization algorithms, are complex and computationally
intensive. Recent advances in deep learning, particularly with convolu-
tional neural networks (CNNs) like VoxelMorph, have shown promise.
However, they often yield non-smooth deformation fields and require
inference at the same image resolution as the training data. To overcome
these challenges, we introduce FNOReg, a novel model based on Fourier
Neural Operators (FNOs), which can be trained on reduced-resolution
images without quality loss and produces smoother deformation fields.
We evaluated FNOReg on 2D and 3D datasets, demonstrating com-
parable quality to popular models like VoxelMorph, Fourier-Net, and
TransMorph when trained at the same resolution. However, these mod-
els exhibit significant quality decreases of up to 24.9% for 2D and 24.6%
for 3D data, when trained at halved resolutions. In contrast, FNOReg
demonstrates only marginal quality decreases of up to 0.8% for 2D and
2.7% for 3D data. This flexibility is essential for efficiently handling
large image resolutions, particularly in 3D imaging. Moreover, FNOReg
produces smoother deformation fields. The code is available at https://
github.com/anac0der/fnoreg.

Keywords: Biomedical image registration · Fourier Neural Operator ·
unsupervised learning

1 Introduction

Image registration is one of the key tasks in the field of image processing and
is widely used in the analysis of medical images. Among the many applications
of image registration, one can distinguish: (i) Combining information obtained
using various imaging devices or protocols to facilitate diagnosis and treatment
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planning. (ii) Studies that examine structural or anatomical changes in the same
areas of the body. Registration can be classified based on various factors, includ-
ing the dimensionality of the data (for example, 2D, 3D), the modality of the
image (for example, computer tomography or MRI), objects in the image (for
example, brain, lungs, and heart), and the form of transformation (rigid or non-
rigid registration). The goal of algorithms for non-rigid registration is to predict a
deformation field for the registered (moved) image so that the difference between
the fixed and moved images is minimal. Despite the simple idea, the task turns
out to be ill-posed and, therefore, difficult in practice. The solution to such a
problem may not be unique [19]. In practice, some constraints are imposed on the
deformation field, such as smoothness, symmetry, or diffeomorphism. These con-
straints serve as regularization for an iterative algorithm that solves the problem
of minimizing the difference between images.

Before the deep learning era, non-rigid registration was performed using itera-
tive optimization algorithms. Methods based on this approach include Free-Form
Deformation [22], LDDMM [5], Demons [23], Elastix [13], ANT [3], NiftyReg
[18], and Flash [25]. These methods are widely used and have a mathematical
foundation but also require the selection of parameters for each pair of images
and significant computational resources, which limits their use for the registra-
tion of large images in real-time. Currently, there is an increase in the number
of approaches to the registration of biomedical images based on deep learning.
Their advantage is the fast model inference without the need to select param-
eters for each pair of images. The most effective and popular methods, such as
VoxelMorph [4], predict the deformation field using a convolutional auto-encoder
(for example, U-Net [21]). Such methods are faster than classical ones since they
only require forward propagation of a pair of images through the neural net-
work and can be run on GPU out of the box. After the success of VoxelMorph,
other neural network-based registration methods have appeared, in one way or
another, improving the model which predicts the deformation field. For exam-
ple, in [6], the authors replaced the convolutional blocks of the encoder with
more complex transformer blocks with an attention mechanism, thus increasing
model performance on medical datasets. However, neural network-based models
often encounter issues with non-smooth deformation fields and require additional
regularization in the loss function. A recent model called Fourier-Net [11] aims
to address this problem by predicting a band-limited deformation field in the
Fourier domain, followed by zero-padding and inverse Fourier transform. How-
ever, this approach involves low-pass filtering of the deformation field spectra
with a rectangular step function, which can introduce various artifacts such as
ringing and aliasing. Additionally, all current neural network-based approaches
to image registration have a major disadvantage: they rely on classical convolu-
tional layers with small kernels for deep learning, resulting in a degradation of
registration quality when input data resolution changes.

Some classical approaches to registration are based on solving the Euler-
Lagrange equation for the corresponding loss functional [5]. Typically, partial
differential equations (PDEs) are solved using numerical techniques, but in recent
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years, physics-informed neural operators (PINOs) [15] are widely used for such
tasks. One of the PINO architectures is called the Fourier Neural Operator
(FNO) [14] and is designed to solve the parametric PDE. FNO has one important
property – since all operations are performed on a fixed set of frequencies in the
Fourier space, this architecture is capable of modeling non-local convolution
kernels. Consequently, FNO is weakly sensitive to the shape of input data and
can be used for image registration at different resolutions. Recently, FNO was
used for other image analysis problems such as image segmentation [24] and
classification [12].

In this paper, we propose FNOReg – a model for image registration based
on the original FNO architecture. The main advantage of this approach is its
robustness to input data resolution. Our model has two significant improvements
over the original FNO: we incorporated feature extractors based on the Spectral
Transform layer [7] and used additional residual connections in the Fourier layers.
Additionally, we tailored the training pipeline for the image registration problem.
We evaluated FNO and FNOReg on the OASIS-1 dataset [16] for 2D and 3D
data, and our model achieved similar quality compared to popular models widely
used for image registration (VoxelMorph [4], TransMorph [6], FourierNet [11]).
However, the performance of our FNOReg models does not significantly degrade
when trained and evaluated on data with reduced resolutions, whereas other
models exhibit a significant decrease in registration quality under these condi-
tions. This feature of the method is important for reducing memory consumption
when working with large data and can be especially useful for 3D data. More-
over, we compared the spectra of deformations obtained from different models
and demonstrated that FNO and FNOReg provide smoother deformation fields
compared to other models.

2 Methodology

2.1 From Image Registration to a System of PDEs

Let us define a spatial domain Ω ⊂ R
2 (we consider the two-dimensional case

for simplicity, but all calculations can be extended to the case of an arbitrary
dimension). We define x = (x1, x2) ∈ Ω to be an arbitrary point in domain Ω
and φ(x) = (φ1(x), φ2(x)) to be a displacement field representing the image
deformation. Let f(x) be a continuous function in Ω with continuous first order
partial derivatives on Ω. This function corresponds to the fixed image while
similarly introduced functions m(x) and mφ(x) corresponds to the moving and
moved images accordingly. Next, we demonstrate that the image registration
problem can be reduced to a parametric system of partial differential equations
that can be subsequently solved using neural operators.

Let Ωp ⊂ Ω be a finite set of points from Ω which is a pixel grid for discrete
versions of fixed, moving and moved images. Then, the common loss functional
for image registration task in discrete case can be written as:

Lf,m(φ) =
1

|Ωp|
∑

p∈Ωp

Df,mφ
(p) +

λ

|Ωp|
∑

p∈Ωp

||∇φ(p)||2,
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where Df,mφ
(p) is a pixel-wise difference between two images (for example,

Df,m(p) = (f(p) − m(p))2), the second term is the regularization term, and λ
is the regularization parameter.

In continuous case, we can rewrite the loss functional in an integral form as

L̂f,m(φ) =
∫

Ω

[
Df,mφ

+ λ

([
∂φ1

∂x1

]2

+
[
∂φ1

∂x2

]2

+
[
∂φ2

∂x1

]2

+
[
∂φ2

∂x2

]2
)]

dx1dx2.

Now, if we denote the expression under integral as Ff,m(φ), and the partial
derivatives ∂φi/∂xj as φi,j , we can write the Euler-Lagrange system [8] for L̂f,m:

∂Ff,m

∂φ1
− ∂

∂x1

(
∂Ff,m

∂φ1,1

)
− ∂

∂x2

(
∂Ff,m

∂φ1,2

)
= 0;

∂Ff,m

∂φ2
− ∂

∂x1

(
∂Ff,m

∂φ2,1

)
− ∂

∂x2

(
∂Ff,m

∂φ2,2

)
= 0. (1)

It can be shown that after transformations the system (1) can be expressed
as:

∂Df,mφ

∂φ1
− 2λ · Δφ1 = 0;

∂Df,mφ

∂φ2
− 2λ · Δφ2 = 0. (2)

where Δ = ∂2

∂x2
1

+ ∂2

∂x2
2

is the Laplace operator. Thus, if the displacement field

φopt is the point minimum for the L̂f,m(φ), then it is the solution of system
(2). This system is parameterized by the fixed image f and moving image m
and we can apply neural operators to approximate the solution operator of this
equation.

2.2 Fourier Neural Operator

Fourier Neural Operator (FNO) is a deep learning model for solving paramet-
ric partial differential equations [14]. FNO does not require knowledge of the
equation itself and based only on the provided data, which leads to the classical
supervised or unsupervised learning task.

The architecture of FNO is inspired by the mathematical principles that lies
behind the solution of some types of operator equations. More specifically, if we
have an equation Lu(x) = f(x) where L is a linear differential operator and
x ∈ Ω ⊂ R

n, then the solution u(x) of this equation is given by formula

u(x) =
∫

Ω

G(x, s)f(s) ds,

where G(x, s) is a Green function of operator L. As proposed in [1,14], u(x) can
be approximated using the following iterative process:

ut+1(x) := σ (Wtut(x) + (Kut)(x)) , t = 0, . . . , N − 1, (3)
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where
(Kut)(x) :=

∫

Ω

κt(x − y)ut(y) dy. (4)

Here ut(x) ∈ R
dut is the function of x, Wt ∈ R

dut+1×dut is a learnable linear
transformation, σ(·) is a nonlinear activation function and κt(x−y) is a learnable
kernel function of convolutional operator K. We can think about ut(x) as the
output of network hidden layer with dut

data channels.
We can apply the convolution theorem to the operator K and parameterize

it directly in Fourier space:

(Kut)(x) = F−1 (F(κ) · F(ut)) = F−1 (R · F(ut)) , (5)

where R(k) ∈ C
dut+1×dut is a learnable function in spectral domain, F is the

Fourier transform operator, and k = (k1, . . . , kn) ∈ N
n corresponds to non-

negative frequencies. To reduce the computational complexity of the model, R(k)
is nonzero only for kj ≤ kmax,j , j = 1, . . . , n. This step also provides FNO model
to be resolution-robust, because kmax,j does not depend on input data shape
and so the convolutional layer in FNO operates only on the fixed number of
harmonics in Fourier domain. The model architecture is given in Fig. 1.

Fig. 1. FNO model architecture. Lifting layer maps the input data into a hidden space
and increases the number of channels. Projection layer reduces the number of channel
to get the output of the network. Fourier Layer consists the logic from Eq. 3.

2.3 FNOReg Model Architecture

The FNOReg architecture represents an enhancement of the classic FNO archi-
tecture designed for image registration. The significance of this improvement will
be demonstrated later in Sect. 3.3. The model architecture is depicted in Fig. 2.
In comparison to classic FNO [14], our model incorporates several enhancements
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Fig. 2. FNOReg model architecture.

and additions that enable FNOReg to exhibit better quality and increased sta-
bility during training.

First, we utilize feature extractors (depicted as red rectangles in Fig. 2)
designed with the Spectral Transform layer [7] instead of the standard convolu-
tional layer. The main idea of the Spectral Transform is that convolution in the
spectral domain possesses a global receptive field in the spatial domain, allow-
ing us to extract non-local features from our images. This capability enables us
to achieve higher registration quality without compromising the model’s robust-
ness to input resolution. Our research has shown that incorporating two Spectral
Transform layers before and after the sequence of Fourier layers is enough for
performance improvement without significantly complicating the model.

Our second improvement involves additional residual connections in the
Fourier layers after the activation function. Residual connections tend to sta-
bilize the learning process, and in our experiments FNOReg proved to be more
robust when testing different model configurations than standard FNO.

The proposed improvements led to the better learning curve as can be seen
in Fig. 3.

2.4 Training Pipeline

The process of training the model for image registration at each iteration includes
a forward pass of data through the model, deforming the moving image according
to the deformation field, calculating the loss function, and updating the model
parameters. First, the fixed image f and moving image m are concatenated in
the channel dimension, so the input data consist of an image with 2 channels.
After propagating this image through the model, we obtain a deformation field
φ. Then, we apply this deformation field to the moving image using a spatial
transform layer [10], which is based on linear interpolation and implemented as
described in [4]. Finally, we update the parameters of the model according to
the value of the loss function, which is described below.
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Fig. 3. The loss functions of the FNO and FNOReg models for the OASIS-1 2D dataset.
The FNOReg loss starts at a value of 0.85, but its curve is much steeper than that of
FNO, as evidenced by the curves intersecting.

Loss Function. We use a common loss function for image registration consisting
of two components, Lsim and Lsmooth:

L(f,m,φ) = Lsim(f,mφ) + λLsmooth(φ).

Lsim(f,mφ) penalizes the difference between the fixed and moved images. In
our experiments, this component was mean squared error computed as:

MSE(f,mφ) =
1

|Ωp|
∑

p∈Ωp

(f(p) − mφ(p))2.

Lsmooth is a regularization term that allows for more realistic and smoother
deformation fields. We use a diffusion regularizer [2] implemented with finite dif-
ference approximation of gradient. Specifically, the following formula for Lsmooth

was used:

Lsmooth(φ) =
1

|Ωp|
∑

p∈Ωp

||∇φ(p)||2.

For 3D data registration, we incorporate an additional term Lseg into the
loss function to control segmentation overlap:

L(f,m, sf , smφ
,φ) = Lsim(f,mφ) + λLsmooth(φ) + γLseg(sf , smφ

),
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where sf and smφ
represent the anatomical segmentation of f and mφ , respec-

tively. We minimize the Dice loss [17] between sk
f and sk

mφ
, where k denotes the

k-th structure:

Lseg(sf , smφ
) = 1 − 2

K

K∑

k=1

|sk
f ∩ sk

mφ
|

|sk
f | + |sk

mφ
| .

To enable automatic differentiation of the loss function, we follow a similar
approach to [4], where sf and smφ

are image volumes with K channels, each
channel containing a binary mask defining the segmentation of a specific struc-
ture. The warped segmentation smφ

is computed using linear interpolation to
ensure differentiability of the loss function.

3 Experiments

3.1 Datasets and Evaluation Metrics

OASIS-1 dataset [16] consists of brain MRI scans from 414 subjects. Each
scan includes a segmentation of important anatomical areas. This dataset also
provides 414 2D slices and their segmentation masks from corresponding 3D
volumes. In our experiments, a preprocessed version of the 2D and 3D OASIS-1
dataset [9] was employed, where all 414 MRI scans were affinely aligned and
cropped to the size of 160 × 192 and 160 × 192 × 224, for 2D and 3D data
respectively. For 2D data, we split all scans into 201 for training, 12 for validation,
and 201 for testing. After pairing, we obtained 40200 pairs for training, 22 for
validation, and 400 for testing. For 3D data, we used 384 scans for training, 10
for validation and 20 for testing; after pairing we ended up with 766 training
pairs, 9 validation pairs and 19 test pairs. During the evaluation on the test data,
we computed the Dice score for every anatomical area on the fixed and warped
images. The evaluation metric for a single pair of images was the average Dice
score across all anatomical areas, while the evaluation metric for the entire test
dataset was the average across the evaluation metrics for each pair.

3.2 Implementation Details

We implemented our method using the PyTorch [20] framework and neuralop
package [14] which is an original implementation of Fourier Neural Operator.

The models were trained as follows:

– For 2D data, we trained our models for 80 epochs using the Adam optimizer
with a learning rate of 10−4 and a batch size of 8. The parameter λ was set
to 0.01.

– For 3D data, we trained our models for 500 epochs using the Adam optimizer
with a learning rate of 10−4 and a batch size of 1. The parameters λ and γ
were set to 0.01.
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3.3 Results

We compared FNO and FNOReg with several recent baseline methods based
on convolutional neural networks and transformers, which are widely used for
biomedical image registration:

1. Fourier-Net [11]: A CNN-based model that predicts a band-limited defor-
mation field in the Fourier domain and then obtains the final deformation
after zero-padding and inverse DFT.

2. VoxelMorph [4]: Model for image registration with a U-Net-based architec-
ture.

3. VoxelMorph-Large: A deeper version of VoxelMorph (number of convo-
lution kernels increases in 2 times on each layer, added some convolutional
layers between encoder and decoder).

4. VoxelMorph-Huge [6]: A customized VoxelMorph model with a comparable
parameter size to that of TransMorph that was used in [6] paper.

5. TransMorph [6]: A model with a transformer-based encoder and convolu-
tional decoder.

To study the robustness to image resolution, we trained and evaluated all
models in two scenarios. In the first scenario, the models were trained and eval-
uated at full resolution. In the second scenario, the models were trained on res-
olution reduced by 2 (80× 96 pixels for 2D data and 80× 96× 112 voxels for 3D
data), but evaluated at full resolution, as in the first scenario. For TransMorph,
we used the original authors’ implementation in [6], and due to technical con-
straints of the implementation, it was not possible to train this model on halved
resolution.

Results on 2D OASIS-1 Data. Table 1 presents the comparison of baseline
methods with FNO and FNOReg on the 2D OASIS-1 dataset [16]. We con-
sidered three configurations for FNO-based models: small (dut

= 16, N = 6,
kmax = (40, 48)), medium (dut

= 32, N = 12, kmax = (40, 48)), and large
(dut

= 32, N = 12, kmax = (60, 72)). The best Dice score when training at full
resolution is achieved by VoxelMorph-Large, but its quality loss with training
resolution reduction is 22.01% (0.777 Dice score versus 0.606). Fourier-Net has
fewer parameters than other baseline models (except classical VoxelMorph, which
achieved a comparable to Fourier-Net performance with only 91000 parameters)
and achieves a 0.757 and 0.761 Dice score (for models with 16 and 32 channels,
respectively) in the first training scenario, losing about 20–25% of quality in
the second scenario. At the same time, the results on full resolution for FNO-
based models are comparable to the results of TransMorph and VoxelMorph-
Huge (0.775 DSC for large FNOReg and the same result for TransMorph), but
the maximum loss of quality for training on downsampled images for FNO and
FNOReg is 0.67% and 0.78%, respectively. For 2D data, the mean inference
times were from 0.006 to 0.014 s for baseline models, and from 0.011 to 0.021 s
for FNO-based models.
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Table 1. Comparison of the models on the 2D OASIS-1 dataset; 1x and 0.5x indicate
training on full and halved resolution, respectively. The Dice score is used for compari-
son (the bigger the better). The best values in each column of each group (baseline and
FNO-based models) are highlighted in bold. The change in Dice score when training
on halved resolution compared to full resolution is indicated in the last column.

Model name #params Dice on 1x Dice on 0.5x Metric change on 0.5x

Initial (only affine) - 0.544 0.544 -

Fourier-Net (16 channels) 1.4M 0.757 0.611 −19.29%

Fourier-Net (32 channels) 6.1M 0.761 0.571 −24.97%

VoxelMorph 91K 0.760 0.715 −5.92%

VoxelMorph-Large 5.8M 0.777 0.606 −22.01%

VoxelMorph-Huge 21.1M 0.771 0.698 −9.47%

TransMorph 31.0M 0.775 - -

FNO (small) 1.3M 0.751 0.746 −0.67%

FNOReg (small) 1.3M 0.753 0.751 −0.27%

FNO (medium) 10.0M 0.766 0.762 −0.52%

FNOReg (medium) 10.0M 0.769 0.763 −0.78%

FNO (large) 22.8M 0.769 0.766 −0.39%

FNOReg (large) 22.8M 0.775 0.772 −0.39%

In Fig. 4, the deformation fields obtained by the compared models and their
spectra are depicted. From the visualization of deformation fields and their spec-
tra, it can be observed that VoxelMorph and TransMorph deformation fields con-
tain high-frequency modes, corresponding to the vertical cross on the spectra.
The FNO-based models and Fourier-Net produce smoother deformation fields.
However, in Fourier-Net, the spectrum is explicitly filtered with a box-shaped
low-pass filter inside the model, which theoretically produces some aliasing and
ringing artifacts that may affect the quality of the deformation fields.

Results on 3D OASIS-1 Data. Table 2 presents a comparison of baseline
methods with FNOReg on the 3D OASIS-1 dataset [16]. Due to computa-
tional constraints, we considered only one configuration of the FNOReg model
(dut

= 12, N = 15, kmax = (40, 48, 56)). For 3D data, obtaining a reasonable
hyperparameter configuration to train the standard FNO models was not feasi-
ble, as the training process did not converge. This highlights the significance of
the improvements presented in the proposed FNOReg model. While TransMorph
achieved the best Dice score when trained at full resolution, it was not possi-
ble to train it on half resolution due to limitations in the authors’ implementa-
tion. VoxelMorph-Large attained the second-best result, but its quality degraded
by 24.68% (0.863 Dice score versus 0.650) with training resolution reduction.
Fourier-Net exhibited a similar quality loss as for 2D data when trained on half
resolution. In contrast, the standard VoxelMorph model demonstrated a more
significant quality decrease when trained on reduced resolution for 3D data com-
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Fig. 4. Visual comparison of different methods on 2D OASIS-1 dataset. First column
consists of fixed image and moving image. Other columns consist (from top to bottom)
of moved image obtained from method, deformation field visualization, and deformation
field DFT amplitude.

pared to 2D data. FNOReg also showed a slightly larger quality decrease when
trained on downsampled images compared to 2D data (2.65%), but it remained
considerably less than the other models. For 3D data, the mean inference times
were from 0.087 to 1.048 s for baseline models, and 1.075 s for FNOReg.

Smoothness of Deformation Fields. To evaluate the smoothness of defor-
mations obtained from different models, we calculate the percentage of voxels
with a negative value of the Jacobian determinant of the deformation field (so-
called “folded voxels” [6]) for each model. The results of this evaluation are
presented in Table 3 for 2D data and in Table 4 for 3D data. As one can see,
Fourier-Net achieves the best result at the original resolution due to the explicit
low-pass filtering of the deformation field. However, in the case of Fourier-Net,
the number of folded voxels strongly increases at halved resolution, leading to a
degradation in performance. The smoothness of deformations from VoxelMorph
and VoxelMorph-Huge slightly changes at halved resolution, but the absolute
values of the metric at the original resolution for these models are worse than
for other models (especially on 3D data). The FNOReg model at full resolution
achieves the second-best result on 2D data and the forth-best result on 3D data.
Moreover, the number of folded voxels in deformations obtained by FNOReg
increases only slightly at halved resolution. To summarize, the FNOReg model
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Table 2. Comparison of the models on the 3D OASIS-1 dataset; 1x and 0.5x indicate
training on full and halved resolution, respectively. The Dice score is used for compari-
son (the bigger the better). The best values in each column of each group (baseline and
FNO-based models) are highlighted in bold. The change in Dice score when training
on halved resolution compared to full resolution is indicated in the last column.

Model name #params Dice on 1x Dice on 0.5x Metric change on 0.5x

Initial (only affine) - 0.572 0.572 -

Fourier-Net (16 channels) 4.5M 0.814 0.617 −24.20%

Fourier-Net (32 channels) 17.8M 0.822 0.619 −24.70%

VoxelMorph 274K 0.834 0.737 −11.63%

VoxelMorph-Large 15.2M 0.863 0.650 −24.68%

VoxelMorph-Huge 63.3M 0.849 0.722 −14.96%

TransMorph 46.8M 0.867 - -

FNOReg 98.1M 0.830 0.808 −2.65%

has the best absolute values for the folded voxels metric among the methods
that do not show significant degradation in the deformation field smoothness at
halved resolution. In other words, it achieves a tradeoff between smoothness of
deformation at the original resolution and only its minor degradation at reduced
resolution.

Table 3. Comparison of the smoothness of deformations from different models on the
2D OASIS dataset. A lower metric value indicates better performance. The best values
in each column of each group (baseline and FNO-based models) are highlighted in bold.

Model name % of |Jφ| < 0 on 1x % of |Jφ| < 0 on 0.5x

Fourier-Net (16 channels)0.668 ± 0.353 6.802 ± 1.499

Fourier-Net (32 channels) 0.751 ± 0.374 7.477 ± 1.573

VoxelMorph 0.717 ± 0.368 0.743 ± 0.365

VoxelMorph-Large 0.744 ± 0.371 7.213 ± 1.632

VoxelMorph-Huge 0.726 ± 0.366 0.512 ± 0.264

TransMorph 0.704 ± 0.365 -

FNO (large) 0.718 ± 0.356 0.802 ± 0.389

FNOReg (large) 0.690 ± 0.355 0.767 ± 0.370
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Table 4. Comparison of the smoothness of deformations from different models on the
3D OASIS dataset. A lower metric value indicates better performance. The best values
in each column of each group (baseline and FNO-based models) are highlighted in bold.

Model name % of |Jφ| < 0 on 1x % of |Jφ| < 0 on 0.5x

Fourier-Net (16 channels)0.167 ± 0.054 3.365 ± 0.357

Fourier-Net (32 channels) 0.213 ± 0.064 2.687 ± 0.326

VoxelMorph 0.772 ± 0.127 0.735 ± 0.131

VoxelMorph-Large 0.203 ± 0.047 3.197 ± 0.391

VoxelMorph-Huge 0.726 ± 0.123 0.717 ± 0.100

TransMorph 0.680 ± 0.118 -

FNOReg 0.314 ± 0.063 0.572 ± 0.080

4 Conclusion

This paper introduces FNOReg, a novel model for image registration that builds
upon the original FNO architecture. Using the properties of Fourier neural oper-
ators, FNOReg offers enhanced robustness to input data resolution. Our model
incorporates two significant improvements over the original FNO: the integration
of feature extractors based on the Spectral Transform layer [7] and the utilization
of additional residual connections in the Fourier layers. Moreover, we tailored
the training pipeline specifically for the image registration problem. In addition
to improving registration quality, our enhancements to the FNO architecture
stabilize the training process and enable the model to be trained in cases where
the standard FNO fails.

Through comprehensive evaluations on the OASIS-1 2D and 3D datasets [16],
we found that FNOReg achieves comparable quality to popular models widely
used for image registration, such as VoxelMorph [4], TransMorph [6], and Fouri-
erNet [11]. Notably, our FNOReg models maintain consistent performance even
when trained on data with reduced resolutions, unlike other models that exhibit
a significant decrease in registration quality. This aspect of our method is par-
ticularly advantageous for reducing memory consumption when handling large
datasets and can be especially beneficial for 3D data. Additionally, our compari-
son of deformation spectra obtained from different models reveals that FNO and
FNOReg yield smoother deformation fields compared to their counterparts.

Acknowledgements. For computational experiments, neural network training, and
fine-tuning, we utilized the MSU-270 supercomputer of Lomonosov Moscow State Uni-
versity with Nvidia Tesla A100 80GB GPUs.
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Abstract. Deep learning has demonstrated remarkable achievements in
medical image segmentation. However, prevailing deep learning models
struggle with poor generalization due to (i) intra-class variations, where
the same class appears differently in different samples, and (ii) inter-
class independence, resulting in difficulties capturing intricate relation-
ships between distinct objects, leading to higher false negative cases. This
paper presents a novel approach that synergies spatial and spectral repre-
sentations to enhance domain-generalized medical image segmentation.
We introduce the innovative Spectral Correlation Coefficient objective
to improve the model’s capacity to capture middle-order features and
contextual long-range dependencies. This objective complements tradi-
tional spatial objectives by incorporating valuable spectral information.
Extensive experiments reveal that optimizing this objective with exist-
ing architectures like UNet and TransUNet significantly enhances gen-
eralization, interpretability, and noise robustness, producing more con-
fident predictions. For instance, in cardiac segmentation, we observe a
0.81 pp and 1.63 pp (pp = percentage point) improvement in DSC over
UNet and TransUNet, respectively. Our interpretability study demon-
strates that, in most tasks, objectives optimized with UNet outperform
even TransUNet by introducing global contextual information along-
side local details. These findings underscore the versatility and effec-
tiveness of our proposed method across diverse imaging modalities and
medical domains. Code is available at https://github.com/vangorade/
HarmonizedSS ICPR2024.

1 Introduction

Medical image segmentation (MIS) is crucial for supporting clinicians in identify-
ing injuries, monitoring diseases, and planning treatments. Deep learning models
have allowed automated delineation of critical structures and organs, enhancing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15313, pp. 178–193, 2025.
https://doi.org/10.1007/978-3-031-78201-5_12
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the precision and efficiency of treatment. However, existing deep learning models
for MIS [10,12,15,16] lack generalization [18,23], i.e., they fail to accurately seg-
ment new and unseen data. The challenge to generalization includes the diversity
in medical imaging data stemming from variations in imaging devices, protocols,
patient demographics, and even the inherent biases [13,22,24,26] present in deep
learning models. The diversity manifests as intra-class variations or inter-class
independence. (1) Figure 1(a) depicts intra-class variations. It refers to the dif-
ferences in appearance (size, shape, location, and texture) within a single class,
such as organs like the stomach or polyps, across diverse samples from multiple
acquisition equipment.

Fig. 1. (A-1) Appearance disparities within a single class of patient slices, highlighted
by white bounding boxes indicating pancreas variation. (A-2) variation in ROI across
data acquisition centers. (A-3) ROI variation between modalities. (B-1/2/3) Models
face challenges in effectively capturing intricate inter-class relationships, as highlighted
by the presence of white bounding boxes. These indicate instances of false negatives,
a result of the model’s struggle to learn relationships between classes effectively.

(2) Figure 1(b) shows the inter-class independence. It stems from the model’s
struggle to effectively model the intricate relationships between distinct objects
or classes within the data. For instance, accurately segmenting multiple organs in
a CT scan requires a deep understanding of their spatial interactions, influencing
their appearances and boundaries. Disregarding such inter-class dependencies
may lead to increased false negatives and poor generalization.

We introduce a novel approach that integrates prevalent spatial objectives,
such as the Dice Similarity Coefficient, with an innovative objective termed
the Spectral Correlation Coefficient. Unlike spatial objectives that concentrate
on pixel-level comparisons, the Spectral Correlation Coefficient operates in the
frequency domain. This integration is intended to augment segmentation mod-
els’ effectiveness in apprehending middle-order features and contextual long-
range dependencies. Both play a vital role in addressing variations within the
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same class (intra-class variations) and establishing connections between different
classes (inter-class dependencies). In contrast to previous methods [20,28,29], our
approach is unique in that it avoids the prevailing practice of applying the Fast
Fourier Transform (FFT) to input images. This novelty is important because
applying FFT to input images can inadvertently restrict the model’s ability
to comprehend contextual relationships between objects due to the presence of
ROI-irrelevant information in the images, as shown in Fig. 2.

Fig. 2. A dense low-frequency spectrum (in the middle) indicates that the mask spec-
trum retains more object information than the image spectrum.

The Spectral Correlation Coefficient can reveal intricate patterns that remain
hidden in the spatial domain. Its computation involves an O(N log N) FFT oper-
ation, balancing performance with computational overhead. Our contributions
are outlined as follows:

– We introduce a novel Spectral Correlation Coefficient objective, which inte-
grates seamlessly with any architecture. It synergizes spatial and spectral
representations, and enables effectively capturing middle-order features and
long-range dependencies for domain-generalized MIS.

– We emphasize that addressing intra-class variations and establishing inter-
class dependencies are crucial for achieving domain generalization in medical
image segmentation.

– We conduct experiments on eight medical image datasets, comprising diverse
imaging modalities and medical domains, e.g., including CT scans, MRIs,
skin lesions, histopathology, and polyps. Our method demonstrates significant
improvements in segmentation model out-of-distribution (OOD) robustness,
enhancing generalization, interpretability, noise resilience, and calibration.

2 Proposed Method

2.1 Motivation

Middle-Order Features: Most current segmentation methods rely on spa-
tial objectives to establish correspondence between predicted labels y and the
ground truth ŷ. However, the raw pixels in the spatial domain exhibit signif-
icant noise and often encompass low-order statistics [5,27]. Transformers and
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Convolutional Neural Networks (CNNs) possess distinct low-pass and high-pass
filtering properties [14,24], respectively. However, both transformers and CNNs
struggle to effectively model certain frequency bands, particularly those related
to middle-order features.

Incorporating the medium frequency descriptor, such as the Histogram of
Oriented Gradients (HOG), has proven beneficial in enhancing middle-order fea-
tures [27]. This observation has prompted the hypothesis that gaining insights
into medium frequencies could potentially aid the model in more effectively learn-
ing middle-order features. Our proposition is that by comprehensively modeling
these middle-order features, we can overcome the challenges posed by intra-class
variations and inter-class independence.

Fig. 3. Large variations in spatial space correspond to small variations in spectral space
and vice versa.

Long-Range Dependencies: Existing CNN architectures face challenges in
learning global features [25], which can lead to difficulties in capturing long-range
dependencies. In contrast, transformers excel at modeling long-range dependen-
cies [24]. Nevertheless, we have observed that solely learning long-range depen-
dencies through random patch interactions does not suffice to grasp inter-class
dependencies. We propose that to effectively learn these inter-class dependencies,
a model should focus on capturing long-range dependencies between pertinent
regions rather than redundant ones. The frequency space inherently facilitates
the modeling of long-range dependencies because minor alterations in frequency
space correspond to substantial spatial shifts, as demonstrated in Fig. 3. With the
proposed spectral correlation coefficient, as a model learns correlations between
the FFT mask and the predicted mask, it effectively learns the correlations
among different frequency components. These components encapsulate only rel-
evant class-related information, allowing us to capture and model inter-class
dependencies effectively.
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2.2 Problem Formulation

Medical image segmentation utilize a mapping function f , which assigns labels y
to pixels x, where the inferred segmentation label is ŷ. The loss function typically
combines Binary Cross Entropy (BCE) and the Dice similarity coefficient (Dice),
which evaluate the correspondence between predicted labels y and ground truth
segmentation ŷ:

Lspatial = BCE(y, ŷ) + (1 − Dice(y, ŷ)) (1)

Fig. 4. Method Workflow: Starting with image x and mask y, an encoder-decoder
network generates ŷ. Transforming to spectral space yields yfreq and ŷfreq. Training
involves spatial objective Lspatial between y and ŷ, alongside spectral objective Lspectral

between yfreq and ŷfreq.

Our goal is to augment f to transcend specific training domains and gen-
eralize effectively across diverse medical image datasets. This entails capturing
common features and patterns across different domains. We introduce the Spec-
tral Correlation Coefficient denoted as Lspectral. This harmonizes the frequency
components between predicted and ground-truth masks, effectively mitigating
the limitations inherent in Lspatial. Through the synergistic fusion of Lspatial and
Lspectral, the network can more effectively capture intricate inter-class relation-
ships and intra-class variations. This collaborative approach bolsters the model’s
robustness and efficacy across diverse imaging scenarios. Figure 4 summarizes our
approach.
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2.3 Spectral Correlation Coefficient as Regularizer

Given two spatial binary masks, y and ŷ, we apply FFT to convert them to the
frequency domain. This yields yfreq and ŷfreq, which reveal the frequency com-
ponents inherent to each signal. Then, we compute the complex inner product
between yfreqi

and ŷfreqi
for each index i. This complex inner product encap-

sulates both amplitude and phase interactions in a singular value: yfreqi
· ŷfreqi

.
This helps elucidate the interplay among these frequency components.

By extracting the real component of this complex inner product, denoted
as Re(yfreqi

· ŷfreqi
), we can discern the interplay between the real and imagi-

nary parts of these frequency components. This reveals the fundamental correla-
tion between them. To measure the strength of these frequency components, we
compute the squared magnitude (norm) of each frequency component, yielding
|yfreqi

|2 and |ŷfreqi
|2.

These insights culminate in Lspectral, a quantitative metric for correlating
yfreq and ŷfreq:

Lspectral =
2
∑N

i=1(Re(yfreqi
)Re(ŷfreqi

) + Im(yfreqi
)Im(ŷfreqi

))
∑N

i=1(|yfreqi
|2 + |ŷfreqi

|2)
(2)

Here, N denotes the number of samples in the batch. This equation affords
a comprehensive perspective on the similarity between yfreq and ŷfreq, effec-
tively encapsulating both their amplitude and phase characteristics. Lspectral

stands as a vital metric for quantifying the correlation and shared attributes
among frequency components across distinct signals. Our final loss function,
Lfinal = Lspatial + λ ×Lspectral. Synergizes the complementary representations
of individual loss functions. Here, λ is a hyperparameter for smoothly interpolat-
ing between spatial and spectral representation. Please refer to supplementary
material for sensitivity analysis of λ.

3 Experimental Platform

We conducted experiments on eight open-source MIS datasets to tackle diverse
tasks spanning different anatomical structures. (1) The Synapse Multi-Organ
Segmentation dataset [1] comprised 30 clinical CT cases, each equipped with
annotated segmentation masks for eight distinct abdominal organs. We allo-
cated 18 cases for training and 12 cases for testing [7]. (2) The ACDC dataset
[2] has 100 cardiac MRI exams, with labels for the left ventricle (LV), right ven-
tricle (RV), and myocardium (MYO). The train:validation:test split is 70:10:20
[7]. (3 & 4) For polyp segmentation, we used Kvasir-SEG [17] and PolypGen
dataset [3]. Kvasir-SEG, containing 1000 images, was employed for training, with
the official split of 880 training images and the remainder for testing. PolypGen
has 1537 images. It assessed model performance under an out-of-distribution
(OOD) setting. (5 & 6) For skin lesion segmentation, we use ISIC-18 [9] and
ISIC-17 [9] datasets. We used the same split as the prior work [4,6]. The ISIC-17
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test dataset [21], comprising 650 images, served for OOD testing. (7) For nuclei
segmentation, we used the MoNuSeg dataset [19], which has 30 images for train-
ing and 14 for testing. (8) Brain Tumour Segmentation (BTSeg) dataset [8]
has 3064 T1-weighted contrast-enhanced images, spanning three types of brain
tumors with corresponding binary masks. The train: test split is roughly 80:20.
For all datasets we set λ = 0.2. Please refer to supplementary material for sen-
sitivity analysis of λ.

Metrics: We used the Dice Similarity Coefficient (DSC) and the 95th per-
centile Hausdorff Distance (HD) metrics on the Synapse and ACDC datasets.
For the ISIC-18 and BTSeg datasets, we use Intersection over Union (IOU),
DSC, Specificity (SP), Sensitivity (SE), and Accuracy (ACC). We also use the
Expected/Mean Calibration Error (ECE/MCE) to assess the calibration. Lower
HD, ECE, and MCE values are better, while higher values for other metrics are
better.

Table 1. Results on the Kvasir-SEG, ISIC-18, MoNuSeg and BTSeg dataset.

Method Kvasir-SEG ISIC-18 MoNuSeg BTSeg

DSC IOU SE SP DSC IOU SE SP DSC IOU DSC IOU SE SP

UNet 88.77 76.97 81.55 98.72 91.53 80.34 85.97 96.65 72.85 58.80 84.40 68.94 74.58 99.85

TransUNet 87.68 75.56 81.94 98.17 90.92 79.42 86.30 95.44 76.92 63.01 83.15 67.69 73.63 99.84

UNet (Ours) 89.40 77.03 83.19 98.53 91.74 80.51 85.44 96.93 73.38 58.97 85.48 69.91 75.33 99.85

TransUNet(Ours) 89.52 77.69 83.61 98.34 92.00 80.81 87.21 95.79 77.66 63.63 87.19 71.03 74.94 99.89

Implementation Details: We used 224 × 224 images and train on RTX 2080
GPUs using Pytorch. During training, we used a batch size of 8 and a learning
rate of 0.01. The encoder was initialized with weights pre-trained on ImageNet.
We utilized the SGD optimizer with a momentum of 0.9 and weight decay of
0.0001. We employed data augmentations, such as flipping and rotating.

Techniques for Comparison: To ensure a comprehensive and fair evaluation,
we chose (1) a CNN-based network, namely UNet with ResNet50 pretrained on
ImageNet as the encoder. (2) a transformer-based network, namely TransUnet. It
has a similar configuration as above, except that it has a transformer bottleneck
with eight attention heads. We trained these models both with and without our
proposed Lspectral regularization technique. We refer to UNet optimized using
Lspatial as UNet, and the one optimized using Lfinal as UNet (ours); same for
TransUNet and TransUNet (ours). We maintained uniformity in hyperparame-
ters and architectural configurations across all the methods to isolate the effect
of the proposed regularization technique.

4 Experimental Results

4.1 Robustness Against Intra-class Variations

We conducted an extensive analysis to assess the effectiveness of our proposed
approach in addressing intra-class variation challenges. Table 1 presents a com-
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prehensive comparison of methods, highlighting the outcomes of our study. Our
proposed approach demonstrates clear advantages across diverse datasets that
exhibit a wide range of anatomical variations. Notably, our method showcases
the ability to accurately delineate both small and large anatomical structures
while maintaining fine boundaries.

Results on Kvasir-SEG and ISIC-18: From a quantitative standpoint, on the
Kvasir-SEG dataset, UNet(ours) performs comparably or better than the base-
lines. In fact, the improvements are even more pronounced with TransUNet, with
increases of 1.84 pp, 2.13 pp, and 1.67 pp for DSC, IOU, and SE, respectively.
The improvement in sensitivity indicates the model’s ability to capture posi-
tive instances more effectively and reduce false negatives. The ISIC-18 dataset
exhibits a similar trend, reaffirming the effectiveness of our approach. A qualita-
tive analysis, as depicted in Fig. 5, supports our findings. Our proposed method
can effectively capture intra-class variations. However, the performance of our
method may depend on the nature of the dataset. For instance, datasets such as
Kvasir-SEG and ISIC-18 predominantly include segmentation masks with single
foreground objects. Such scenarios may limit the effectiveness of our method.

Fig. 5. Segmentation maps for polyp and skin lesion segmentation: Kvasir-SEG and
ISIC-18 are trained under IID settings, while PolypGen and ISIC-17 are treated as
OOD datasets. Actual and predicted pathological regions are shown in Red and Green,
respectively. (Color figure online)

Results on MoNuSeg and BTSeg. Our approach improves the results on
both these datasets (Table 1). Specifically, on the MoNuSeg dataset, we observe
substantial advancements in performance for both UNet and TransUNet archi-
tectures, with increases of 0.53 pp and 0.58 pp in DSC, respectively. Similarly, on
the BTSeg dataset, our method significantly benefits both UNet and TransUNet,
showcasing DSC improvements of 1.08 pp and 4.04 pp, respectively. Figure 6
offers qualitative insights into our results. Particularly noteworthy is the consid-
erable improvement TransUNet(ours) demonstrated over other baseline meth-
ods. This substantial improvement underscores the crucial role of capturing con-
textual long-range dependencies, achieved through our proposed Lspectral objec-
tive. This proves especially advantageous in scenarios like MoNuSeg and BTSeg,
where segmentation tasks encompass a wide range of object variations in terms
of size, shape, and spatial distribution.
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Fig. 6. Segmentation maps on MoNuSeg and BTSeg. Actual and predicted regions are
shown in Red and Green, respectively. (Color figure online)

Table 2. Results on the Synapse and ACDC dataset. Blue indicates the best result.

Synapse ACDC

Method Mean Class-wise Dice Similarity Coefficient Scores Mean Class-wise DSC

DSC Aorta GB KL KR Liver PC SP SM DSC MYO RL LV

UNet 77.54 85.52 61.86 80.57 77.24 94.37 54.72 87.95 78.12 88.88 86.89 85.20 94.55

TransUNet 77.48 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62 89.69 87.42 86.80 94.88

UNet(ours) 78.36 86.42 61.16 83.55 79.64 94.44 57.69 85.67 78.32 89.69 87.90 86.62 94.74

TransUNet(ours) 78.74 85.79 63.61 82.73 77.38 94.90 59.09 86.44 80.00 91.32 90.09 88.34 95.53

HD Class-wise Hausdorff Distance Scores HD Class-wise HD

UNet 38.26 8.06 54.21 44.52 75.69 33.67 16.92 47.81 25.17 1.98 3.81 1.10 1.05

TransUNet 30.45 15.65 38.33 51.51 48.77 20.21 15.05 38.71 15.34 1.82 3.39 1.06 1.04

UNet(ours) 32.48 7.17 34.37 48.99 64.63 22.09 11.82 49.36 21.42 1.54 2.49 1.07 1.08

TransUNet(ours) 33.63 11.32 44.52 50.93 38.68 23.88 13.67 68.25 17.77 1.30 1.85 1.02 1.04

4.2 Robustness Against Inter-class Independence

We comprehensively analyze the effectiveness of our approach in modeling inter-
class dependencies. The results shown in Table 2 distinctly showcase the advan-
tages of synergistically employing both spatial and proposed spectral (Lspectral)
objectives. Our approach proves to be highly effective in mitigating issues aris-
ing from the dependencies between different classes in the segmentation process.
Furthermore, it exhibits a clear superiority in accurately delineating both larger,
more general objects and intricate fine boundaries between objects.

Fig. 7. Segmentation maps on ACDC and Synapse datasets. The segmentation maps
are color-coded to represent different anatomical structures. The overlapping white
bounding box represents errors made by the respective model. (Color figure online)
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Results on Synapse. We observed noteworthy improvements in segmentation
performance for both UNet (ours) and TransUNet (ours), compared to UNet
and TransUNet. UNet (ours), a CNN architecture, improves DSC by 0.82pp and
reduces HD by 5.78pp Interestingly, TransUNet (Ours), a transformer-based
architecture, demonstrates a substantial 1.26 pp improvement in DSC, with a
surprising increase of 3.18 pp in HD. This suggests that the efficacy of synergizing
spatial-spectral representations depends on the specific architecture employed.

The CNNs excel at encoding local information, yet they often struggle to
effectively capture global context. In contrast, transformer models are adept
at modeling global relationships within data. Our findings reveal that optimiz-
ing UNet using Lfinal led to considerable progress in accurately delineating
organs of varying sizes and in capturing intricate fine boundaries. This is due to
the spectral regularizer’s ability to model contextual long-range dependencies,
providing a complementary regularization effect to CNN’s strengths. However,
TransUNet (ours) tends to overly rely on the global context. While this improved
organ delineation, it also led to a limitation in accurately delineating boundaries
in multi-organ segmentation scenarios. Figure 7 further highlights that when
equipped with the proposed objective, existing networks can effectively model
inter-class dependencies and improved delineation of organs and boundaries.

Results on ACDC: The trends are similar to those on the Synapse dataset.
UNet(ours) improves DSC by a substantial 0.81 pp and reduces HD by 0.44
pp. Interestingly, TransUNet(ours) improves DSC by a substantial 1.63 pp and
reduces HD by 0.52 pp. On ACDC dataset, both UNet (ours) and TransUNet
(ours) show improved performance in delineating complex multi-scale contour
boundaries. The superior performance of TransUNet (ours) suggests that the
multi-scale nature of cardiac structure benefits more from the middle to the
global context. Figure 7 highlights that our objective helps existing networks to
better model inter-class dependencies and overlapping structures delineation.

Out-of-Distribution Robustness Table 3 shows the results obtained when
models pre-trained on ISIC-18 and Kvasir-SEG are tested on the ISIC-17
and PolypGen datasets. For the ISIC-17 dataset, both UNet(ours) and Tran-
sUNet(ours) demonstrate substantial improvements in both DSC and IOU. Tran-
sUNet(ours) is more sensitive compared to others. Moving to the more challeng-
ing PolypGen dataset, which comprises polyp data from 6 different centers, we
observe a different trend. Specifically, UNet(ours) demonstrates lower gener-
alization capacities compared to UNet. In contrast, TransUNet(ours) exhibits
much stronger generalization capabilities. Quantitatively, we observe a 3.72 pp
improvement in DSC, a 4.04 pp improvement in IOU, and a 1.49 pp improvement
in sensitivity.



188 V. Gorade et al.

Table 3. OOD testing results: ISIC-18 → ISIC-17 (pre-trained on ISIC-18 and tested
on ISIC-17) and Kvasir-SEG → PolypGen.

Method ISIC-18 → ISIC-17 Kvasir-SEG → PolypGen

DSC IOU SE SP DSC IOU SE SP

UNet 94.01 76.65 80.50 98.25 43.98 37.15 45.77 96.24

TransUNet 93.61 76.41 82.84 96.85 39.99 32.92 44.14 95.05

UNet(ours) 94.38 77.20 82.05 97.84 40.35 33.81 42.06 96.27

TransUNet(ours) 94.86 77.84 82.62 97.78 43.71 36.96 45.63 96.63

The difference in performance between UNet(ours) and UNet could be
attributed to the fact that the proposed objective Lspectral, as discussed ear-
lier, is designed to capture relationships and variations between objects present
in the mask. However, this dataset may lack such variations or may not have a
sufficient amount of them, leading to the observed performance difference. On
the other hand, the improved generalization capabilities of TransUNet (ours)
can be attributed to the transformer’s ability to capture long-range dependen-
cies, in addition to the contribution from middle-order features from Lspectral.
Figure 5 provides additional visual evidence of the enhanced capabilities of UNet
(ours) and TransUNet (ours) in accurately delineating diverse objects within an
out-of-distribution (OOD) setting. These results highlight the versatility of our
approach in addressing segmentation challenges across datasets with varying
characteristics and complexities. The consistent improvements in performance
on both ISIC-17 and PolypGen datasets underscore the generalizability and effec-
tiveness of our proposed method.

4.3 Calibration Analysis

We comprehensively evaluate the effectiveness of our proposed approach in gen-
erating confident predictions. Table 4 shows calibration results for both the In-
Distribution (IID) and Out-of-Distribution (OOD) settings. For the IID-setting
datasets ISIC-18 and Kvasir-SEG, both UNet(ours) and TransUNet(ours) gener-
ate confident predictions compared to their respective baselines. However, on the
Kviser dataset, UNet(ours) provides comparable results to UNet, whereas Tran-
sUNet(ours) reduces ECE and MCE by 1.37pp and 2.59pp, respectively. This
suggests that under the IID setting, both models consistently provide confident
predictions, but their performance varies based on the dataset characteristics.
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Table 4. Calibration performance under IID and OOD setting.

Method ISIC-18 Kvasir-SEG ISIC-18 → ISIC-17 Kviser → PolypGen

ECE MCE ECE MCE ECE MCE ECE MCE

UNet 9.13 17.51 8.61 15.85 12.80 25.00 23.67 44.53

TransUNet 9.72 18.60 9.47 17.86 14.04 27.50 27.33 51.71

UNet(ours) 8.68 16.60 8.48 16.04 13.34 26.12 23.30 43.49

TransUNet(ours) 9.46 18.13 8.10 15.27 13.10 25.54 21.19 39.58

Under the OOD setting, on the ISIC-17 dataset, UNet(ours) generates less
confident predictions than UNet, while TransUNet(ours) again shows improved
calibration. TransUNet(ours) reduces ECE and MCE by 0.94pp and 1.96pp,
respectively. For the PolypGen dataset, TransUNet generates highly confident
predictions, while UNet exhibits slightly more sensitive behavior and demon-
strates slightly improved calibration. In summary, our proposed approach con-
sistently yields confident predictions under both IID and OOD settings.

4.4 Robustness Against Noise

MRI and CT scan images are often imperfect due to hardware limitations and
patient motion. To test the resilience of our approach, we simulate synthetic
Gaussian and Bernoulli noise. Noise levels are set to 0.01, in line with real-
world artifacts. As shown in Table 5, UNet (ours) demonstrates improved robust-
ness against noise for the Synapse dataset. However, TransUNet(ours) loses
boundary details (higher HD). For the ACDC dataset, both UNet(ours) and
TransUNet(ours) demonstrate improved robustness against noise. The pattern
remains same for both the noise types. These results strongly emphasize our
proposed objective’s efficacy in improving models’ generalization under noisy
conditions.

Table 5. Performance comparison under noise.

Gaussian Bernaulli

Method Synapse ACDC Synapse ACDC

DSC HD DSC HD DSC HD DSC HD

UNet 70.37 37.82 73.59 3.72 76.19 44.93 41.60 7.16

TransUNet 66.59 30.15 76.62 3.04 72.02 42.68 49.55 5.79

UNet(ours) 71.78 29.51 73.46 2.64 77.07 32.82 46.26 6.37

TransUNet(ours) 70.74 36.63 79.18 2.61 76.49 49.28 53.98 5.15

4.5 Interpretability Analysis

Acquired Qualitative Spectral Maps. Figure 8 compares each model’s spec-
tral maps for Synapse and ACDC datasets. The proposed UNet(ours) and Tran-
sUNet(ours) better preserve low to high frequencies compared to the baselines.
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This improved preservation of spectral information contributes to a higher cor-
relation with the ground-truth spectral map. This makes the predictions more
interpretable and aligned with the underlying anatomical structures.

Fig. 8. Spectral maps for Synapse (row 1 and 2) and ACDC (row 3 and 4) datasets
(Corr. = correlation).

Acquired Gradient-weighted Class Activation Maps (CAMs): From
CAMs provided in Fig. 9, we conclude that: (1) UNet, with its limited receptive
field, focuses on local context and overlooks global context, which is crucial for
tasks like multi-organ segmentation. Our proposed spectral regularizer enhances
UNet’s capacity to capture both global contextual relationships while preserv-
ing local details across variations. (2) TransUNet tends to emphasize irrelevant
regions due to non-contextual long-range dependency modeling. In contrast, our
TransUNet(ours) excels at modeling contextual long-range dependencies and
middle-order features, thereby attending to both local and global contexts. (3)
Our method notably excels in modeling intra-class variations across sequences,
surpassing baselines. (4) Unet(ours) offers higher interpretability compared to
TransUNet and remains competitive with TransUNet(ours).

Fig. 9. Gradient-weighted class activation maps
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4.6 Sensitivity Analysis

Table 6. Sensitivity Analysis

Backbone ACDC Kviser-SEG

DSC HD DSC IOU

λ = 0.1 88.96 1.88 88.35 76.84

λ = 0.2 89.69 1.54 89.40 77.03

λ = 0.3 89.33 1.74 88.26 76.84

λ = 0.5 87.54 2.10 87.34 77.34

λ = 0.9 79.88 3.77 84.70 73.46

In Sect. 2.3 of the manuscript, we introduce the λ hyperparameter, and in
Table 6, we present a comprehensive analysis of its impact on the ACDC and
Kviser-SEG datasets. For the ACDC dataset, our analysis reveals that setting
λ to 0.2 yields the most favorable results in terms of Dice Similarity Coefficient
(DSC) and Hausdorff Distance (HD). On the other hand, when considering the
Kviser-SEG dataset, we found that a value of λ = 0.2 leads to the highest DSC,
whereas λ = 0.5 produces the best Intersection over Union (IOU). Notably, as we
increase the value of λ beyond these optimal settings, we observe a noticeable
degradation in segmentation performance for both datasets. This observation
underscores the significance of spatial representation in segmentation tasks, indi-
cating that spatial features offer superior representations. However, it is worth
emphasizing that a judiciously crafted weighting scheme that synergizes spatial
and spectral information can potentially enhance domain generalization.

5 Conclusion, Limitations and Future Work

In this study, we introduce a novel spectral objective, the spectral correlation
coefficient, in synergy with a spatial objective, effectively enhancing domain gen-
eralization in medical image segmentation. This approach seamlessly integrates
with existing encoder-decoder architectures. When combined with TransUNet,
it achieves remarkable performance and outperforms state-of-the-art methods
across diverse medical segmentation tasks. Our method exhibits interpretabil-
ity and resilience to noisy data while generating confident predictions. Future
work will concentrate on minimizing false negatives, especially in noisy environ-
ments. One intriguing avenue for future research involves integrating our pro-
posed method into established semi-supervised or knowledge distillation-based
[11] approaches to increase efficiency in terms of annotation and computation.
Additionally, there is potential for extending the scope of our method beyond
medical tasks, conducting performance analyses in diverse application domains.
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Abstract. This paper investigates the combination of intensity-based
distance maps with boundary loss for point-supervised semantic seg-
mentation. By design, the boundary loss imposes a stronger penalty on
the errors the farther away from the object boundary they occur. Hence
it is inappropriate for cases of weak supervision where the ground truth
label is much smaller than the actual object and a certain amount of
false positives (w.r.t. the weak ground truth) is actually desirable. Using
intensity-aware distances instead may alleviate this drawback, allowing
for a certain amount of false positives with similar intensities without a
significant increase to the training loss. This formulation is potentially
more attractive than existing CRF-based regularizers, due to its sim-
plicity and computational efficiency. We perform experiments on two
multi-class datasets; ACDC (heart segmentation) and POEM (whole-
body abdominal organ segmentation). Results are encouraging and show
that this supervision strategy has great potential. On ACDC it outper-
forms the CRF-loss based approach, and on POEM data it performs on
par with it. The code is made openly available.

Keywords: Segmentation · Point supervision · Boundary loss ·
Minimum barrier distance

1 Introduction

Convolutional neural networks (CNNs) are now the method of choice for various
image processing tasks including segmentation. However, they typically require a
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large amount of annotated ground truth data for training. In the medical domain
in particular such annotations require expert knowledge and are very costly to
obtain. This increased research interest in weakly supervised training, aiming to
utilize approximate labels that are cheaper and faster to produce.

Weak supervision comes in many different flavors, for example image-level
labels [8,9,32], bounding boxes [7,15,26,32], scribbles [12,14,18,28] or point anno-
tations [3,5,16,25], to name a few. Existing weakly supervised methods for image
segmentation typically either introduce additional segmentation constraints or
regularization [3,14,15,35], or generate pseudo-labels as an exact ground truth
substitute to use in full supervision [12,16,18,20,33]. But outside priors or addi-
tional information is generally required to formulate useful constraints and train-
ing with inaccurate labels can propagate errors, causing instabilities.

With the aim to improve the accuracy of segmentation methods, distance
maps have been employed in a multitude of ways [21]. An example of a very
direct inclusion of a distance map to guide the CNN training is boundary loss
[13], introduced in context of fully supervised segmentation. It uses a Euclidean
distance transform of the ground truth to minimize the distance between the
ground truth and the predicted segmentation boundaries at training time. This
proved very effective while remaining computationally lightweight and compati-
ble with different network architectures, optimization strategies and other losses.

In this paper, we investigate the use of boundary loss in a weakly supervised
setting and propose a way to make it directly compatible with training on point
annotations without requiring architectural changes or modifications to the train-
ing procedure. We propose to replace the Euclidean distance map used in the
original boundary loss paper with intensity-aware ones, taking pixel intensities
into account when computing the distance from the point annotations. In applica-
tions where the object to segment has a fairly homogeneous intensity and a decent
contrast around the object boundary, this can provide the network with a bet-
ter notion of the region extent and shape, addressing the incompatibility between
boundary loss and weak labels. It allows end-to-end training without explicitly for-
mulated priors, additional data-dependent information or pseudo-label creation.

Our proposed approach is evaluated using various intensity-aware distances,
on two multi-class segmentation tasks with artificially created point annotations.
We show that training with the combination of cross entropy and boundary loss is
not only compatible with point-level supervision but reaches competitive results
compared to a CRF-loss based training and even compared to full supervision.

2 Related Works

2.1 Point and Scribble Supervision

Xu et al. [32] present a unified approach for various types of weak supervision
like bounding boxes, image tags and partial labels. Their approach is based on
first oversegmenting the image to superpixels, then using max-margin clustering
with weak annotations as constraints.
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ScribbleSup [18] makes use of a superpixel-based graphical model for anno-
tation propagation jointly with a CNN based segmentation model, optimizing
them alternately. While the method was developed specifically for training with
scribbles, they report good results even on point annotations. Using point-level
supervision, [3] introduce a special loss based on both global image-level labels
and weighted supervision on annotated pixels. The loss is further supplemented
by an objectness prior, which requires independent supervised pretraining.

Conditional random field (CRF) based losses [29,34] implement the seminal
work of [17], and using such losses to add regularization has been shown to achieve
good results under weak supervision. In [34], dense CRFs are reformulated as
RNNs, to achieve an end-to-end trainable segmentation system. Tang et al. [28]
propose a kernel cut loss combining CRF and normalized cut terms and apply
it together with cross-entropy loss for semantic segmentation tasks with scribble
annotations.

While many works (e.g. [12,18]) use CRF as a postprocessing step to further
improve the segmentation results, it was shown that incorporating it as loss can
still be advantageous [29]. Also based on point annotations and CRF loss, [25]
create two coarse segmentations to be used in training: a Voronoi diagram based
one as a lower bound (undersegmentation) and a clustering based one as an upper
bound (oversegmentation). They show that training with both segmentations
jointly, with the addition of a CRF loss, performs well on nuclei segmentation in
histopathology images. All mentioned CRF-based methods however significantly
slow down the training time per iteration.

In [5], superpixels are created and labeled according to the point annotations,
using learned hierarchical features and superpixel affinity to propagate the labels
into the initially un-annotated superpixels. Liu et al. [20] focus on nuclei (single
class) instance segmentation, proposing a two-step learning scheme combining
a foreground proposal model with an instance separation model, both trained
with pseudo-labels. Even Yao et al. [33] rely on pseudo-label supervision for
nuclei segmentation, but add a so-called anchor quality loss to supress spuri-
ous responses far away from the point labels. This implicitly assumes the point
annotations are close to object centroids, which is conceptually similar to using
boundary loss with Eclidean distance on point annotations. In [16], a small set
of fully annotated data is used in stacked object proposal and refinment mod-
els of a teacher network to generate pseudo-labels. The final student network is
trained with both pseudo- and full labels.

2.2 Non-euclidean Distance Maps in Segmentation Tasks

Among works employing distance maps to boost segmentation, [6] apply a Geo-
desic distance-based filtering operator to produce a set of smooth segmentation
proposals, a viable subset of which is then searched for the best, energy min-
imizing labelling. In [2] and [10] the authors make use of Geodesic maps for
scribble-based segmentation, but in an interactive setting. While [10] introduces
a geodesic star convexity shape constraint computed on (intensity/colour-based)
likelihood maps, the geodesic matting framework from [2] calculates the Geodesic
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map on the space of the class probability densities and models class distribu-
tions based on the user scribble statistics. Also in a purely interactive setting, [31]
use the Geodesic maps from user-provided scribbles as additional input chan-
nels during CNN refinement. In [22], use of Geodesic map priors is proposed
to improve robustness when training with noisy labels. Their method consists
of first training an autoencoder to regress ground truth annotations based on
the Geodesic maps, then using the mean square error between the encodings of
segmentor network probabilities and distance maps as a part of the loss during
segmentor network training. Their approach requires additional training time
and while they work with noisy labels, they do not cover severe label degrada-
tion such as scribble or point annotations. In [23] the authors propose a vectorial
Dahu pseudo-distance, based on the Minimum barrier distance. While developed
and evaluated mainly for saliency detection, it is successfully used also in white-
matter segmentation with simple seeding and thresholding.

3 Method

3.1 The Boundary Loss

Boundary loss from [13] has so far been successfully applied in CNN training
for fully supervised segmentation tasks. It is calculated by computing a signed
distance map of the ground truth boundary mask and multiplying it with the
network output.

Formally, we have Ω ⊂ R
D as D-dimensional image space, with X : Ω → R

M

an image with M modalities, and Y : Ω → K its corresponding multi-class
ground truth, with K = {0 : background, 1 : first class, ...,K : last class}.
For simplicity, we will denote Y (k) := {i ∈ Ω|Y (i) = k} the subset of Ω contain-
ing all the voxels belonging to the class k. It follows that ∪{Y (k)}k∈K = Ω, and
Y (i) ∩ Y (j) = ∅ for any pair of classes i �= j; i, j ∈ K (i.e. they do not overlap).

In the original work on boundary loss the signed distance map for each class
k is computed as follows:

∀i ∈ Ω : φ
(k)
Y (i) =

{
−D

(k)
euc(i) if i ∈ Y (k);

D
(k)
euc(i) otherwise,

(1)

with D
(k)
euc(·) : Ω → R+ denoting the Euclidean distance map from the boundary

of the ground truth annotation for class k. Strictly at the annotation boundary
∂Y (k), the value of the distance map is 0 (with the boundary ∂Y (k) here denoting
all elements of Y (k) that have a neighbor outside this set).

Then, this distance map is used as-is inside the boundary loss:

LB(sθ , Y ) =
∑
k∈K

∑
i∈Ω

s
(i,k)
θ φ

(k)
Y (i), (2)

where sθ represents the probabilities predicted by the network.
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3.2 From Full- to Point Annotation

Generally, given an exact, full annotation of an object, such a Euclidean signed
distance map encodes the object shape. But when using a weak ground truth
Ỹ : Ω → K, where Ỹ (k) ⊂ Y (k) and ∪{Ỹ (k)}k∈K �= Ω, the distance simply grows
radially regardless of the actual shape of the object, thus making little sense from
an information point of view. Under the assumption of intra-object homogeneity
and inter-object intensity contrast, this problem can be circumvented to a degree
by using a distance function that takes also intensity values into account. An
example of a commonly used distance measure with an intensity component is the
gray scale Geodesic distance [30]. Let πx,y = 〈x = p0, . . . , pi, pi+1, . . . , pn = y〉
denote a path between x, y ∈ Ω, with pi and pi+1 being neighbors under a chosen
adjacency relation. Reusing the notation from before, a Geodesic distance map
from the boundary of the ground truth class k, D

(k)
geo(·) : Ω → R+, can be defined

as
D(k)

geo(·) = min
π∈Πk(·)

∑
pn,pn+1∈π

√
(1 − λ)ΔI2n,n+1 + λc2n,n+1 (3)

where Πk(·) := ∪j∈∂Y (k)π·,j and ΔIn,n+1 = In − In+1 is the intensity difference
between pn, pn+1 ∈ Ω. The value of cn,n+1 is the distance between pn and pn+1 in
space, and depends on the type of adjacency between them (in 3D for example,
it is equal to 1,

√
2 or

√
3 if pn and pn+1 share a face, an edge or a vertex

respectively). The parameter λ ∈ [0, 1] allows for balancing the contributions of
intensities and spatial proximity.

In practice, the Geodesic distance is often implemented using a weighted L1

distance instead. That means changing the expression under the sum in Eq. (3)
to (1 − λ)|ΔIn,n+1| + λcn,n+1. This definition is adopted also throughout this
paper, as it is easier and faster to compute and locally approximates the original
one up to the next greater integer number (see e.g. the implementation of [1]).

While setting the λ parameter to 1 actually results in a taxicab distance,
which can be seen as a discrete approximation of a Euclidean distance, setting
λ = 0 focuses purely on image intensities. From here on we shall call the latter
simply Intensity distance, Dint, and use the term Geodesic distance, Dgeo, to
denote the setting of λ = 0.5.

Entirely on the other side of the spectrum from the Euclidean are the fully
intensity-based distances, such as the Minimum barrier distance (MBD) from
[27]. It is calculated exclusively on the image intensity space and effectively
independent of the path length in space. Given the definition of Πk(·) above,
the MBD map from the boundary of ground truth class k, D

(k)
mbd(·) : Ω → R+,

can be defined as:

D
(k)
mbd(·) = min

π∈Πk(·)

(
max
pi∈π

Ipi
− min

pj∈π
Ipj

)
. (4)

MBD and Intensity distance are only pseudo-distances, as the reflexivity
property may be violated (i.e. it may be that D

(k)
mbd/int(x) = 0 even when x /∈
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Fig. 1. Comparison of different distance maps on an example slice from the ACDC
dataset [4], computed from the point labels shown in the first column. The three
rows show the ground truth and corresponding distance maps for the right ventricle,
myocardium and left ventricle respectively.

Y (k)). As opposed to full supervision, this can be a very desirable property in
the case of weak labels.

Both the Intensity and the Minimum barrier distance are defined exclusively
on the image intensity space. However, from the examples of Dint distance map
in Fig. 1d, we can notice that the values still increase somewhat radially from
the annotation. This behaviour is similar to the one of the Geodesic distance
in Fig. 1c (which actually includes the spatial proximity in its definition), and
is due to the summing operator in the general Geodesic distance definition in
Equation 3. While the intensities of two neighboring pixels on a path may be
the same, that will rarely be the case in real life, noise riddled images. This
makes the Intensity distance function approximately monotonically increasing
with increasing length of the path (in space), even in fairly homogeneous regions,
which is a potential drawback under point supervision.

As opposed to the Euclidean distance, all intensity-aware distances (geodesic,
intensity and MBD) are able to encode contrast sensitivity end preserve object
structure by harnessing intensity information. But MBD is the only distance
entirely disregarding spatial information, resulting in a less pronounced and
smooth increase in the values outward from the source point. In practice, using
such maps for network training means a lower penalty for false positives that
occur farther from the point annotation but are close to it in intensity, which is
desirable under weak supervision.
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If we were to use the boundary loss on the point labels alone, very few pixels
would be positively supervised: their probability is pushed up only when the
distance map is negative, i.e. on the exact dot annotation. We solve this minor
issue by combining it with a partial cross-entropy, L

˜CE
, which results in the

following model to optimize:

min
θ

∑
k∈K

∑
i∈Y (k)

− log(s(i,k)θ ) + αLB , (5)

with α ∈ R balancing the two losses. To differentiate between the boundary loss
computation with different distances, we use Ld

B to denote the boundary loss
computed with the distance metric d ∈ {euc, int, geo, mbd}.

The different distance functions have different advantages and drawbacks,
and when using them on real-life medical data, there are additional considera-
tions that need to be taken into account when choosing or designing the distance
metric for a particular use case. For example image dimensions and field of view,
sampling, number of modalities/channels, and distance range and stability. They
are described in more detail in the supplementary material.

4 Experiments

4.1 Datasets

ACDC [4]. The Automated Cardiac Diagnosis Challenge (ACDC) is a public
benchmark multi-class heart segmentation dataset. It contains cine-MR images
of 150 patients of which 100 are available for training, covering healthy scans
and four types of pathologies in equal amounts, with annotations for the right
ventricle (RV), myocardium (Myo) and left ventricle (LV) heart structures. We
split the training set randomly, using 65 subjects for training, 10 for validation
and 25 as a hold-out test set. Due to the large and varying interslice gap, we
train with (and compute distance maps on) 2D slices.

We normalize the volumes and resize the slices to 256 × 256 pixels. As the
official dataset comes with full annotations, a synthetic point ground truth is
created randomly for every slice and every foreground object present in it. For
more details on this process see the Supplementary A.

POEM. The Prospective investigation of Obesity, ENergy production and
Meta-bolism (POEM) is a local (not currently publicly available; PI: L. Lind,
see [19] for details) cohort of whole-body fat/water separated MR images. Full
annotations of the liver, kidneys, bladder, pancreas and spleen are available for
50 subjects, providing a challenging segmentation dataset with heavily imbal-
anced classes of varying shapes. The resolution is anisotropic, with reconstructed
voxel size of 2.07 × 2.07 × 8.0mm3 in left-right, anterior-posterior and foot-head
directions, respectively. For additional technical details regarding the acquisition
and image specifications see [19].

We split the dataset randomly, with 35, 5 and 10 subjects for training, vali-
dation and testing respectively. The images contain two channels, one for water
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and one for fat content. For training, we normalize the volumes (per channel)
and use 2D slices in the coronal plane, sized 256×256. The weak annotations are
created synthetically, following the same procedure as for the ACDC dataset.

4.2 Distance Map Computation

For computing the intensity-aware distance maps, the image intensities are first
scaled to 0–255 to ensure that the spatial distances and intensity differences
between voxels are comparable in 2D. The distance maps are then computed
prior to training, using full connectivity. On POEM data, they are computed
on the fat content channel only. For the approximate Euclidean, Geodesic and
Intensity distance, we use the FastGeodis implementation of [1]. For the Mini-
mum barrier distance, we use our own implementation1. See Supplementary B
for more details on distance maps.

For ACDC, we compute the maps on 2D slices. In the case of POEM, how-
ever, the majority of 2D slices contain only background, and even those slices
that contain foreground never contain all of the classes. As a lack of a class in
an image results in a zero distance map (by implementation design), that par-
ticular class can be arbitrarily segmented without an increase in the loss. To
circumvent this issue, we use a simple map of ones for every absent class, assur-
ing some minimal amount of penalty. In addition, considering that the POEM
data is highly anisotropic and its coronal slices may contain unconnected regions
belonging to the same class, we run a separate set of experiments with distance
maps calculated in 3D volumes, using all slice-wise point annotations. In 3D,
since all classes are present in every volume, the problem of zero distance maps
and no supervision is avoided entirely.

4.3 Baselines and Settings

We use cross-entropy with full supervision LCE as an upper bound. As a lower
bound, we train with partial cross-entropy L

˜CE
on the point annotations.

In addition, we compare the results to a state-of-the-art method for weak
supervision, using a combination of the partial cross entropy and a CRF-loss
from [29]. We choose this work in particular because a number of successful
works in various weakly supervised segmentation tasks either build upon it (e.g.
[25,28]) or use CRFs for postprocessing (e.g. [12,18]). In addition, it is the only
available method that requires only a change of loss in a full supervision setting
to allow for point supervision.

For both datasets, we use the lightweight E-Net [24] trained with Adam
optimizer. In addition, for the ACDC dataset we also use a U-Net configuration
as automatically determined by nnU-Net [11]. Both networks are trained with a
combination of the partial cross entropy and boundary loss, where both losses are
calculated only on the foreground classes and their contributions are weighted by
α = 1 in E-Net and α = 0.7 in nnU-Net. With nnU-Net, we omit deep supervision

1 Base code available at https://github.com/FilipMalmberg/DistanceTransforms.

https://github.com/FilipMalmberg/DistanceTransforms
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and compensate this with increasing the initial learning rate by a tenfold. For the
competing method of [29], the parameters (confirmed by a limited grid search)
are w = 2e − 9, σrgb = 15, σxy = 100, and the scale factor is set to 0.5. All the
experiments are run on a single NVIDIA GeForce GTX 3080 Ti using cuDNN
v11.8. The code is available at https://github.com/EvaBr/geodesic bl.

During training, we monitor the batch Dice score on a fully annotated vali-
dation set. The model that performs best according to this measure is used for
subsequent evaluations on the test dataset. Each experiment is run 3 times for
increased repeatability, and evaluation results are averaged over runs.

4.4 Evaluation Metrics

We evaluate the performance of the methods through two standard segmentation
metrics; Dice score (DSC) and 95th percentile Hausdorff distance (HD95). While
training is performed on 2D slices, the evaluation metrics are reported on full 3D
scans, for each foreground class separately as well as averaged over all classes.

DSC. The Dice similarity score measures the overlap between the ground truth
volume G and the output segmentation volume S, and is defined as 2|G∩S|

|G|+|S| ,
where | · | denotes the cardinality (in this case the nonzero element count).

HD95. The Hausdorff distance is a dissimilarity measure, representing the dis-
tance between the surfaces of G and S. As it is sensitive to outliers, we use the
95th percentile instead of the maximum for computing the directed distances.

5 Results and Discussion

5.1 Segmentation of Cardiac Structures

The average 3D Dice scores and HD95 values on the ACDC test set are given in
Tables 1 and 2 for E-Net and nnU-Net respectively. For the distribution boxplots
see Supplementary D. We see that, in terms of DSC, the proposed strategy of

Table 1. Mean ↑DSC and ↓HD95 values over five independent runs with E-Net, cal-
culated on 3D volumes of the ACDC test set. Labels RV, Myo and LV represent the
right ventricle, myocardium and left ventricle classes respectively. Boxplots for one run
showing the distributions over subjects are available in the supplementary.

Method RV Myo LV All

LCE (fully supervised) ↑ 0.7986 ↓ 2.911 ↑ 0.8111 ↓ 1.336 ↑ 0.8923 ↓ 2.774 ↑ 0.8748 ↓ 1.754

L
˜CE (point annotations) ↑ 0.0991 ↓ 91.645 ↑ 0.0689 ↓ 82.347 ↑ 0.2060 ↓ 88.119 ↑ 0.2137 ↓ 65.528

w/Leuc
B ↑ 0.6214 ↓ 6.611 ↑ 0.6709 ↓ 3.976 ↑ 0.8112 ↓ 5.69 ↑ 0.7742 ↓ 4.069

w/Lgeo
B ↑ 0.637 ↓ 8.106 ↑ 0.679 ↓ 5.186 ↑ 0.82 ↓ 5.529 ↑ 0.782 ↓ 4.705

w/Lint
B ↑ 0.639 ↓ 9.991 ↑ 0.6729 ↓ 5.435 ↑ 0.829 ↓ 4.282 ↑ 0.7834 ↓ 4.926

w/Lmbd
B ↑ 0.6553 ↓ 8.968 ↑ 0.6956 ↓ 5.943 ↑ 0.8297 ↓ 6.179 ↑ 0.7936 ↓ 5.272

w/CRF-loss [29] ↑ 0.2660 ↓ 63.467 ↑ 0.5385 ↓ 27.492 ↑ 0.8189 ↓ 16.165 ↑ 0.4558 ↓ 26.781

https://github.com/EvaBr/geodesic_bl
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Table 2. Mean ↑DSC and ↓HD95 values over five independent runs with nnU-Net,
calculated on 3D volumes of the ACDC test set. Labels RV, Myo and LV represent the
right ventricle, myocardium and left ventricle classes respectively. Boxplots for one run
showing the distributions over subjects are available in the supplementary.

Method RV Myo LV All

LCE (fully supervised) ↑ 0.850 ↓ 1.087 ↑ 0.866 ↓ 0.641 ↑ 0.931 ↓ 0.652 ↑ 0.911 ↓ 0.595

L
˜CE (point annotations) ↑ 0.029 ↓ 69.171 ↑ 0.091 ↓ 56.383 ↑ 0.281 ↓ 55.842 ↑ 0.100 ↓ 45.349

w/Leuc
B ↑ 0.003 ↓ 79.127 ↑ 0.129 ↓ 44.884 ↑ 0.243 ↓ 53.453 ↑ 0.338 ↓ 44.366

w/Lgeo
B ↑ 0.492 ↓ 13.313 ↑ 0.560 ↓ 6.881 ↑ 0.707 ↓ 6.923 ↑ 0.679 ↓ 6.779

w/Lint
B ↑ 0.365 ↓ 8.672 ↑ 0.441 ↓ 4.267 ↑ 0.509 ↓ 5.843 ↑ 0.575 ↓ 4.695

w/Lmbd
B ↑ 0.479 ↓ 14.038 ↑ 0.536 ↓ 8.911 ↑ 0.712 ↓ 8.126 ↑ 0.687 ↓ 7.844

w/CRF-loss [29] ↑ 0.023 ↓ 79.106 ↑ 0.497 ↓ 10.917 ↑ 0.680 ↓ 12.268 ↑ 0.300 ↓ 25.573

Fig. 2. Curve evolution of the average (over foreground classes) validation (3D) Dice
scores during training (on 2D slices) with E-Net, for the ACDC dataset.

using intensity-aware MBD distance within boundary loss performs better than
simply using the Euclidean distance, and better than using CRF-loss. The CRF-
loss results are significantly worse in both metrics. Figure 4 shows qualitative
results on two randomly chosen test slices, confirming that training with Lmbd

B

follows the image gradients and recovers the underlying shape better than Leuc
B .

The CRF-loss recover the shape of the myocardium and left ventricle to some
extent, but fails entirely on the right ventricle. In Figs. 2 and 3 we show the
3D DSC validation curve evolution for a single run. The CRF-loss seems to
have converged to a low DSC value, regardless of the architecture used. With
E-Net, all settings combining CE and boundary loss reach values close to the
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Fig. 3. Curve evolution of the average (over foreground classes) validation (3D) Dice
scores during training (on 2D slices) with nnUNet, for the ACDC dataset.

full supervision in the beginning of the training and then slowly collapse towards
to the point annotations. The MBD version stands out, degrading slower, thus
providing a wider range of potentially good models for evaluation. When using
nnU-Net on the other hand, the final performance of the MBD version of the
loss is slightly lower, however it is also more stable in terms of degrading slower.
CRF is unable to compete with it even here.

5.2 Abdominal Organ Segmentation

Using 2D Distance Maps. Table 3 shows the average DSC and HD95 results
(both using 2D and 3D computed distance maps) for the task of abdominal
organ segmentation in POEM data, using E-Net (for boxplots see Supplementary
D). We see that training with distances calculated on 2D slices Leuc

B and Lmbd
B

perform comparably, while Lint
B and Lgeo

B lag behind in both DSC and HD95
metric.

On this dataset, the CRF-loss is able to compete with the boundary loss-
based training strategies, even outperforming them on most classes. The reason
behind its increased performance on the POEM dataset may be due to a larger
number of classes, and thus inherently more supervision. Most notably, all models
trained with boundary loss appear to have a hard time segmenting the liver. We
hypothesize this may be due to extremely severe class imbalance, as the liver
covers a very large area compared to the rest of the classes. It is thus also more
strongly affected by undersegmentations. According to the validation curves in
Fig. 5, training on this dataset is less stable and slower than on ACDC for all
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Fig. 4. Two example ACDC test set outputs, per method and architecture.
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Fig. 5. Curve evolution of the average (foreground) validation 2D-Dice scores during
training E-Net on POEM data. Losses L·

B use 2D-computed distance maps.

methods. Using Euclidean or MBD maps reach full-supervision scores, surpassing
the other methods. However, due to the long computation times on 3D data from
the POEM cohort, the curves show the evolution of the 2D Dice, which is less
representative of the true success of the methods.

Using 3D Distance Maps. As expected, the results (Table 3) generally
improve when training on 3D-computed distance maps, confirming that for 3D
datasets with more complex class coocurrences distance maps should prefer-
ably be calculated in 3D directly (however, this can incur large preprocessing
computational costs, see the supplementary material. Using E-Net, nost notable
are decreases in HD95 values, as using volume-calculated distance maps pro-
vides more global information and additionally penalizes spatially unreasonable
segmentations. The boundary loss based methods, particularly Lgeo

B , are now
able to compete with the CRF-loss. The validation curve evolution for training
on 3D distance maps is shown in Fig. 6. Comparing it to the one with using
2D-computed distance maps (Fig. 5) we see that the curves for all the meth-
ods training with LB improve, with the exception of Lmbd

B based one. The lack
of improvement here could be attributed to the MBD bleeding through object
boundaries (due to noise and/or lack of contrast) and propagating low distances
further away in the volume, causing under-penalization. This is also suggested
by the degradation in performance from 2D to 3D maps in Table 3. On the other
hand, it allows for better segmentation of large and/or elongated (homogeneous)
objects, which is also confirmed by improvement of liver segmentation scores in
Table 3.
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Fig. 6. Curve evolution of the average (over foreground classes) validation batch (2D)
Dice scores during training, on the POEM dataset in multi-label segmentation training
with E-Net. The boundary losses L·

B use distance maps calculated on 3D volumes. The
curves for training with LCE, L

˜CE and CRF-loss are plotted again for easier comparison.

Table 3. Mean ↑DSC and ↓HD95 values over 3 independent runs with E-Net, on the
POEM test set 3D volumes. Labels BLD, KDR, LVR, PNC, SPL and KDL stand for
bladder, right kidney, liver, pancreas, spleen and left kidney respectively. For distribu-
tion boxplots over one run see the supplementary.

Method BLD KDR LVR PNC SPL KDL All

LCE (fully supervised) ↑ 0.607 ↓ 7.161 ↑ 0.734 ↓ 4.261 ↑ 0.895 ↓ 4.992 ↑ 0.327 ↓ 10.504 ↑ 0.588 ↓ 10.138 ↑ 0.656 ↓ 3.630 ↑ 0.687 ↓ 5.812

L
˜CE (point annotations) ↑ 0.004 ↓ 106.589 ↑ 0.015 ↓ 99.163 ↑ 0.169 ↓ 71.601 ↑ 0.005 ↓ 102.475 ↑ 0.027 ↓ 112.903 ↑ 0.024 ↓ 102.385 ↑ 0.035 ↓ 85.017

w/Leuc
B (in 2D) ↑ 0.482 ↓ 9.576 ↑ 0.689 ↓ 6.952 ↑ 0.087 ↓ 25.049 ↑ 0.436 ↓ 6.832 ↑ 0.530 ↓ 7.673 ↑ 0.664 ↓ 6.538 ↑ 0.555 ↓ 8.946

w/Leuc
B (in3D) ↑ 0.471 ↓ 5.469 ↑ 0.722 ↓ 4.028 ↑ 0.363 ↓ 13.576 ↑ 0.412 ↓ 5.417 ↑ 0.622 ↓ 4.864 ↑ 0.663 ↓ 3.094 ↑ 0.608 ↓ 5.207

w/Lgeo
B (in 2D) ↑ 0.354 ↓ 21.926 ↑ 0.558 ↓ 12.403 ↑ 0.078 ↓ 33.166 ↑ 0.326 ↓ 13.904 ↑ 0.323 ↓ 26.795 ↑ 0.492 ↓ 8.188 ↑ 0.447 ↓ 16.626

w/Lgeo
B (in 3D) ↑ 0.475 ↓ 6.857 ↑ 0.715 ↓ 4.948 ↑ 0.391 ↓ 14.342 ↑ 0.415 ↓ 6.212 ↑ 0.673 ↓ 8.500 ↑ 0.684 ↓ 2.878 ↑ 0.622 ↓ 6.248

w/Lint
B (in 2D) ↑ 0.256 ↓ 57.424 ↑ 0.571 ↓ 15.279 ↑ 0.052 ↓ 25.584 ↑ 0.322 ↓ 19.557 ↑ 0.330 ↓ 68.651 ↑ 0.409 ↓ 23.349 ↑ 0.420 ↓ 29.978

w/Lint
B (in 3D) ↑ 0.483 ↓ 5.596 ↑ 0.670 ↓ 8.650 ↑ 0.611 ↓ 16.394 ↑ 0.408 ↓ 6.234 ↑ 0.618 ↓ 13.020 ↑ 0.630 ↓ 5.846 ↑ 0.631 ↓ 7.963

w/Lmbd
B (in 2D) ↑ 0.468 ↓ 7.716 ↑ 0.634 ↓ 16.368 ↑ 0.218 ↓ 29.664 ↑ 0.386 ↓ 11.425 ↑ 0.530 ↓ 20.234 ↑ 0.598 ↓ 7.755 ↑ 0.547 ↓ 13.309

w/Lmbd
B (in 3D) ↑ 0.466 ↓ 7.696 ↑ 0.647 ↓ 4.415 ↑ 0.360 ↓ 22.900 ↑ 0.332 ↓ 8.855 ↑ 0.496 ↓ 12.700 ↑ 0.574 ↓ 4.648 ↑ 0.553 ↓ 8.745

w/CRF-loss [29] ↑ 0.396 ↓ 8.835 ↑ 0.685 ↓ 6.413 ↑ 0.758 ↓ 19.622 ↑ 0.448 ↓ 5.738 ↑ 0.695 ↓ 8.316 ↑ 0.661 ↓ 5.657 ↑ 0.663 ↓ 7.797

Both Table 1 and 3 show that the proposed use of boundary loss with intensity-
aware distances generally outperforms its original formulation under point super-
vision. However, the HD95 metric seemingly favours the Leuc

B setting. This is due
to a smoother and more spatially contained output compared to using purely
intensity-based distances that can result in more fragmented segmentations.
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Training with CRF-loss may perform well, but specially designed background
labels would potentially be needed to steer the CRF-loss training in the right direc-
tion. In addition, it incurs longer training times, see Supplementary C.

6 Conclusion and Future Work

We presented a novel approach of using intensity-aware distance with bound-
ary loss to train CNNs for segmentation tasks under very weak supervision.
Despite its simplicity, we achieve reasonable results without additional tuning
or increased training time. Across multi-class segmentation tasks, our approach
performs better or on-par compared to the state of the art CRF-loss that typ-
ically requires heavy tuning and is highly sensitive to parameter settings. In
addition, it is more easily understood, as it is based on visually interpretable
distance maps that have certain expected behaviours depending on the type of
data. Being directly interpretable and easily applied across datasets, it provides
a promising alternative to the CRF-loss training and methods derived from it.

Many small adaptations can be explored for further improvements. For exam-
ple, intensity averaging over the annotation (or its border) prior to distance
computation or adaptively controlling the spatial vs. intensity component con-
tributions in distance definitions during training. In addition, combining the
intensity-aware boundary loss training with CRF postprocessing remains to
be investigated. Moreover, while we focused on intensity-aware distances that
account for the underlying intensities in a direct way, texture-type distances
could potentially further stabilize the training and prevent bleedout.
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Abstract. Medical hyperspectral imaging (MHSI) is a highly promising
technology, offering new opportunities for computational pathology and
precision medicine. However, the high spatial-spectral dimensions make
simultaneous consideration of spatial and spectral features for image seg-
mentation extremely challenging. In this study, we propose a segmenta-
tion network that slices the high-dimensional features of hyperspectral
images into low-dimensional sequences, thus analyzing the spectral char-
acteristics of medical hyperspectral images from a sequence perspective.
This network is capable of learning both spectral and spatial information
simultaneously, thereby enhancing the performance of image segmenta-
tion tasks. Its uniqueness lies in leveraging the Convolutional Long Short-
Term Memory (ConvLSTM) structure to convert the long-range spec-
tral dependencies of MHSI into relationships between low-channel image
sequences, significantly improving the model’s inference speed. Exper-
iments conducted on the publicly available Multi-Dimensional Chole-
doch dataset demonstrate that compared to the state-of-the-art medi-
cal hyperspectral image segmentation algorithm, the Dual-Stream algo-
rithm, our approach improved the DSC metric by 0.24%, increased infer-
ence speed by 1.4 times, and was 5–20 times faster than existing 3D
networks.

Keywords: Medical hyperspectral images · MHSI segmentation

1 Introduction

Medical hyperspectral imaging (MHSI) is an advanced imaging technique that
combines the principles of spectroscopy and imaging to acquire high-resolution
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spectral information from the surface of objects. This technology enables simul-
taneous acquisition of spatial and spectral information from objects, providing a
new perspective and means for medical diagnosis, biomedical research, and med-
ical imaging. Typically, MHSI is represented in the form of a hypercube, which
includes hundreds of narrowband contiguous spectral bands and thousands of
pixels.

Fig. 1. Three convolutional neural network-based methods for hyperspectral image
analysis. (a) Spectral (pixel-level) method analyzes individual spectral features inde-
pendently through one-dimensional convolution. (b) Spatial method utilizes two-
dimensional convolution to extract spatial features for data analysis. (c) Spectral-
Spatial method performs three-dimensional convolution, fully utilizing the spatial and
spectral information of the hypercube. Gray areas (a–c) are represented by 1D, 2D,
and 3D kernels respectively, used for convolution operations. [13]

In recent years, Convolutional Neural Networks (CNNs), as one of the deep
learning methods, have emerged as the most successful and popular image anal-
ysis approach [13–15] CNN models for medical hyperspectral images can ana-
lyze input data in spectral (1D), spatial (2D), and spectral-spatial (3D) meth-
ods (Fig. 1). Spectral models, also known as pixel-level models, analyze spec-
tral profiles without considering spatial features. Since spectral information is
a mixture of spectra profiles of various biological molecules, important features
can be directly extracted from spectral information. To analyze the features
of one-dimensional spectral signals, one-dimensional convolution can be applied
(Fig. 1a).

While spectral methods offer promising prospects, they overlook spatial fea-
tures. Malignant or abnormal tissues often exhibit irregular shapes and fuzzy
edges, indicating that tissue morphology is also an important clinical feature.
To obtain clinically meaningful outputs from tissue morphology, researchers
employed spatial models to train CNN models using two-dimensional images at
different wavelengths as input data (Fig. 1b).

The spectral-spatial model fully harnesses all the information from hyper-
spectral data (Fig. 1c). Three-dimensional convolution is typically employed in
three-dimensional imaging techniques like magnetic resonance imaging [2] and
computed tomography [7]. For hyperspectral data, three-dimensional convolu-
tion involves scanning convolutional kernels across the three-dimensional space,
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such as along the x, y, and spectral axes. This method utilizes the entirety of
hyperspectral data to train CNN models, resulting in output encompassing all
tissue morphologies and biochemical features. However, compared to spectral
and spatial models, three-dimensional convolution demands more computational
resources and a richer set of hyperspectral data.

In order to simultaneously learn the spatial and spectral features of MHSIs,
we transformed MHSIs into low-dimensional data sequences composed of every
three adjacent spectral bands. We utilized these low-dimensional data sequences
to focus on learning spatial features and the spectral features of the sequences.
Additionally, to learn the global spectral features, we converted the intrinsic
spectral features of MHSIs into long-range dependency relationships among
sequences and employed a ConvLSTM structure to model these relationships
between sequences. Our architecture is based on a U-shaped 2D CNN design,
incorporating both the ResNet-34 [5] network structure and the ConvLSTM
structure within the U-shaped framework. Compared to the 3D network struc-
ture of SpecTr [15], we employ a 2D U-Net [9] structure as the base framework,
thereby reducing computational resource consumption. Compared to the Dual-
Stream algorithm proposed by B Yun [14], we utilize a 2D network structure to
jointly learn the spatial and spectral features of MHSIs, considering the correla-
tion between these features.

2 Related Work

Hyperspectral imaging integrates imaging technology with spectroscopy, cov-
ering a continuous spectral range and enabling the scanning of multiple spec-
tral bands. Unlike traditional RGB and grayscale images, hyperspectral imag-
ing provides richer spectral bands and higher resolution, facilitating the detec-
tion of subtle spectral variations in invisible objects across diverse pathological
conditions. To harness the spectral information embedded in three-dimensional
hyperspectral data, Wang et al. [12] introduced Hyper-Net, a 3D fully convolu-
tional network designed for segmenting melanoma in hyperspectral pathological
images. Their approach includes a dual-pathway strategy in the encoding phase
and employs dilated convolutions to capture fine features that might be lost in
deeper layers, resulting in significantly enhanced segmentation accuracy.

In subsequent research, by embedding a transformer in the encoding part of
U-Net [15] and applying it to image segmentation, dense correlations between
bands can be learned. It inherits the advantages of Transformer and U-Net, mak-
ing it more capable of segmenting medical images. However, the obtained infor-
mation is easily influenced by irrelevant bands. Therefore, a sparse scheme was
introduced to form the spectral transformer SpecTr, and experimental results
showed that this scheme outperformed 3D U-Net and 2D U-Net.

In the latest research, B Yun et al. [14] proposed an accurate and fast med-
ical hyperspectral image segmentation method based on factorized space and
spectrum. This method utilizes the low-rank prior of MHSIs, exhibiting compu-
tational efficiency and plug-and-play capabilities, and can easily be inserted into
any 2D architecture, greatly speeding up the network’s inference speed.
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3 Method

In mathematical terms, let Z ∈ R
C×H×W represent a three-dimensional vol-

ume of a pathological MHSI , where H × W is the spatial resolution and C
is the number of channels in each hyperspectral image in the hyperspectral image
dataset (i.e., the original spectral channel count). The objective of MHSI seg-
mentation is to predict the predicted values of annotation labels for each pixel
Ŷ ∈ {0, 1}H×W . Our training set is denoted as D = {(Zi, Yi)}Ni=1, where Yi

represents the ground truth values of each pixel of MHSI Zi.

Fig. 2. The proposed SS-ConvLSTM architecture involves temporal decomposition of
MHSI, followed by input to a 2D U-shaped network

The overall framework of our proposed method is illustrated in Fig. 2 where
Fig. 3(a–b) details the process of Spectral Slicing, this process groups images of
adjacent three bands from hyperspectral data, forming multiple three-channel 2D
images, and applies visualization processing. This approach effectively reduces
the complexity of the input MHSIs, facilitating subsequent feature extraction
and segmentation. When optimizing the network architecture, we enhanced the
U-Net framework by incorporating ResNet-34 as the core for feature extraction.
ResNet-34 not only deepens the network but also addresses the gradient vanish-
ing problem through residual connections, thereby improving the accuracy and
efficiency of feature extraction.

What’s more unique is that we introduced the ConvLSTM structure at the
skip connections of the U-Net structure. Compared to direct connections in the
original U-Net, the ConvLSTM structure can nonlinearly process image features
extracted through Res-blocks. By stacking multiple ConvLSTMCell structures,
we can capture long-distance dependency relationships between sequences in the
image sequence sliced by spectral bands, which represents the global spectral
information of MHSIs.
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Fig. 3. (a) An example of MHSI (b) Visual pseudo-color image after spectral slicing of
hyperspectral image

3.1 Spectral Slicing (SS)

We first perform Spectral Slicing (SS) on the hyperspectral image, reshaping it
from the original form Z ∈ R

1× C×H×W to Z ∈ R
T×(C

T )×H×W (see Fig. 3(a–
b)). In this process, we combine adjacent C

T spectral bands to form T low-
dimensional image combinations x0, x1, ..., xT−1, treating each combination as a
sample. Inspired by the spatial redundancy between adjacent spectral bands in
medical hyperspectral imagery and the methods for temporal processing of nat-
ural image video sequences, the samples x0, x1, ..., xT−1 in the sequence exhibit
specific long-distance dependency relationships, corresponding to the intrinsic
spectral features of the original medical hyperspectral image. We successfully
transform the complex spectral features of the hyperspectral image into sequen-
tial relationships between low-dimensional image sequences. To fully capture the
information between these sequences, we introduce the ConvLSTM structure.
ConvLSTM effectively handles image data with spatial structures in addition to
traditional sequential data. Through its internal convolution operations, it can
preserve spatial information while capturing temporal dependencies.
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3.2 ConvLSTM Structure

The ConvLSTM neural network cell (Fig. 4) typically consists of input layers,
hidden layers, and output layers. The input layer receives external input data,
while the hidden layer processes and stores information through memory cells,
forget gates (ft), and output gates (ot). ConvLSTM models have the advantage
of avoiding gradient vanishing/exploding, making them powerful in handling
long sequence data. The output layer generates the final prediction results. In
the diagram, each arrow represents a computational step, and nodes represent
neurons [10]. Compared to traditional neural networks, the ConvLSTM neural
network model has unique structure and advantages. (Fig. 4) Firstly, ConvLSTM
introduces gate mechanisms, allowing for selective information transmission,
thereby addressing the long-term dependency problem. Secondly, ConvLSTM
models have memory capabilities, enabling them to capture historical informa-
tion for more accurate predictions. Additionally, ConvLSTM models also have
the advantage of avoiding gradient vanishing/exploding, making them powerful
in handling long sequence data.

Fig. 4. The architecture of the ConvLSTMCell

The ConvLSTM can be expressed as follows:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + bi) (1)
ft = σ(Wxf ∗ Xt + Whf ∗ Ht−1 + bf ) (2)
ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + bo) (3)

C̃t = tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (4)

Ct = ft � Ct−1 + it � C̃t (5)
Ht = ot � tanh(Ct) (6)
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where ∗ and � denote convolution and Hadamard product respectively. Xt is
the input tensor, Ht is the hidden state tensor, Ct is the memory cell tensor,
Wx∗ and Wh∗ are the two-dimensional convolutional kernels corresponding to
the input and hidden state, bi, bf , bo, and bc are the bias terms [1].

Fig. 5. The architecture of the classical ConvLSTM structure

The classical ConvLSTM structure is designed to take in multiple sequences
as input and output the final hidden layer results (Fig. 5). However, for com-
plex data such as MHSIs, the relationships between the low-dimensional data
sequences formed after spectral slicing may be more subtle and intricate. Tra-
ditional ConvLSTM structures may not fully capture these relationships when
dealing with such data, hence they have limitations.

Given the excellent performance of ConvLSTM structures in handling time
series data, in order to more comprehensively capture the subtle relationships
within hyperspectral images, we have designed two ConvLSTM structures that
are better suited for medical hyperspectral images: Single Input Single Output
Model (SISOM) and Dual Input Dual Output Model (DIDOM).

Fig. 6. The architecture of the Single Input Single Output Model (SISOM)
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Single Input Single Output Model (SISOM). By observing the structure
of the classical ConvLSTM, we found that it is limited due to the forgetful-
ness of the ConvLSTM structure, making it ineffective in capturing long-range
dependencies. To fully utilize all the input information, we propose the forward
Single Input Single Output Model (Fig. 6) the hidden states (Ht) from different
time points are fused together through summation operation to fully utilize the
information from different time steps, as shown in Eq. (7):

Featureskip =
T−1∑

i=0

Hi (7)

Dual Input Dual Output Model (DIDOM). The SISOM structure can only
learn the sequence relationships in one direction, whereas theoretically, sequence
relationships should be bidirectional. Therefore, to better capture the inherent
dependencies between sequences, we designed a bidirectional input bidirectional
output model. The uniqueness of this model lies in simultaneously feeding the
original sequence forward and backward into a shared ConvLSTM structure.
By leveraging the sequence processing capabilities of the ConvLSTM structure,
we can more effectively learn the underlying relationships within the sequences
obtained after spectral slicing.

It is worth noting that although this structure inputs forward and backward
sequences into the ConvLSTM structure, its parameter count is comparable to
that of the SISOM structure. However, to delve deeper into learning the rela-
tionships between sequences, this model requires more computational resources.
This design aims to enhance the model’s expressive power and predictive perfor-
mance, enabling it to more comprehensively consider the features and patterns of
sequence data, as shown Eq. (8):

Featureskip =
T−1∑

i=0

Hi +
T−1∑

i=0

Hi (8)

Fig. 7. The architecture of the Dual Input Dual Output Model (DIDOM)
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As both our designed SISOM and DIDOM models are based on the ConvL-
STM structure, our approach will be collectively referred to as SS-ConvLSTM
in the following text. Only when it’s necessary to distinguish and compare them,
we will refer to them as SS-SISOM and SS-DIDOM.

4 Experimental Results

4.1 Dataset

MDC Dataset. Multi-Dimensional Choledoch (MDC) Dataset [14] comprising
538 scenes with high-quality labels for binary MHSI segmentation tasks. These
MHSIs were collected using a hyperspectral system with a 20× objective lens,
covering wavelengths from 550 nm to 1000 nm for MDC, resulting in 60 spectral
bands per scene. The size of individual band images in the MDC dataset was
resized to 256×320. The MDC dataset was partitioned into training, validation,
and test sets using a patient-centric hard split approach with a ratio of 3:1:1.

4.2 Experimental Setup

We trained using an Adam optimizer with a combination of dice loss and cross-
entropy loss for a batch size of 4 and 100 epochs. Segmentation performance was
evaluated using Dice-Sørensen coefficient (DSC), Intersection of Union (IoU),
and Hausdorff Distance (HD), Throughput (images per second), MACs (Mul-
tiply Accumulate Operations) and Params metrics. We utilized the PyTorch
framework and three NVIDIA GeForce RTX 3090 GPUs for implementation.

4.3 Evaluation of the Proposed Strategy

Comparison Between Different Feature Extraction Backbones After
Using Spectral Slicing. In Table 1, we used four structures from the ResNet
series: ResNet-18, ResNet-34, ResNet-50, and ResNet-101 to explore the impact
of different depths of ResNet architectures on the results and select the opti-
mal feature extraction backbone. The results show that as the depth of ResNet
increases, the model’s performance improves on certain metrics. For example,
ResNet-101 has the highest IOU and DSC, with values of 60.57 and 73.95,
respectively, indicating better segmentation accuracy. On the other hand, as the
network depth increases, the computational complexity and number of param-
eters also increase significantly. ResNet-101’s MACs and parameter count are
263.39G and 53.09M, respectively, which are much higher than other variants.
Additionally, ResNet-101 has the slowest processing speed, with a throughput of
only 17.27 images/s. Considering accuracy, computational complexity, and pro-
cessing speed comprehensively, ResNet-34 shows balanced performance across
various metrics and might be an ideal choice. It ensures high segmentation accu-
racy while maintaining relatively low computational complexity and parameter
count, and it also has a higher inference speed. This indicates that ResNet-34 can
provide the best balance between performance and efficiency when used as the
U-Net backbone.
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Table 1. Results of ResNet architectures with different depths.Performance compari-
son in “mean” in MDC dataset.

Backbone Method SS IOU ↑ DSC ↑ HD ↓ Throuput ↑MACs(G) ↓ Params(M) ↓
ResNet-18 U-Net � 59.05 72.38 81.47 42.72 63.39 15.90

ResNet-34 U-Net � 59.80 73.39 76.36 34.72 123.96 26.01

ResNet-50 U-Net � 60.47 73.76 80.30 25.82 141.5 34.1

ResNet-101 U-Net � 60.57 73.95 78.71 17.27 263.39 53.09

Table 2. The following is a comparison of the effects between our two improved
ConvLSTM models and the classical ConvLSTM structure.Performance comparison
in “mean(std)” in MDC dataset.

Backbone Method SS Model IOU ↑ DSC ↑ HD ↓
ResNet-34 U-Net � Classical ConvLSTM 61.48 (18.23) 74.48 (14.85) 77.54 (32.04)

ResNet-34 U-Net � SISOM 62.42 (16.70) 75.48 (13.56) 74.41 (29.96)

ResNet-34 U-Net � DIDOM 62.71 (16.83) 75.68 (13.64) 76.59 (30.04)

Comparison of the Two Improved ConvLSTM Models Proposed in
This Paper and the Classical ConvLSTM Structure. Table 2 illustrates
the performance comparison in segmentation tasks between two improved Con-
vLSTM models proposed in this paper (SISOM and DIDOM) and the classi-
cal ConvLSTM structure. The results demonstrate that the enhanced SISOM
and DIDOM models outperform the classical ConvLSTM in terms of IOU and
DSC metrics, respectively showcasing higher segmentation accuracy. The SISOM
structure shown in Fig. 6 and the DIDOM structure shown in Fig. 7, compared
to the classic ConvLSTM structure in Fig. 5, can capture all hidden layer states.
These hidden states capture the complex relationships between spectral slices,
effectively characterizing abstract spectral features in hyperspectral data. The
method proposed in this paper further enhances the model’s representation capa-
bility of spectral information by integrating these hidden layer states through
addition.

Ablation Study. Our SS-ConvLSTM model demonstrates a high degree of
adaptability. Initially, we conducted a comprehensive ablation study to assess the
effectiveness of each component. We use the Unet architecture and Resnet34 fea-
ture extraction blocks as the basic framework. By adopting the SS-ConvLSTM
framework, we merged the SS module with the ConvLSTM structure. We
inserted our designed ConvLSTM modules at different skip-connection points in
the network architecture, labeled as L1, L2, L3, and L4, as illustrated in Fig. 2.
When the ConvLSTM structure is not inserted at the skip connection points,
we average the sequential features obtained in the encoding part and then con-
catenate them with the features obtained in the decoding part. The results of
the ablation study in Table 3 indicate that by incorporating the spectral slicing
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module, our model achieved a segmentation performance improvement of over
1.7% (73.39 vs. 71.68). The spectral slicing module divides MHSIs into multiple
low-channel data, which helps reduce data dimensionality, mitigate overfitting
risks, and enhance the model’s generalization ability, thereby improving segmen-
tation performance. Additionally, leveraging the ConvLSTM structure enables
effective capture of long-range dependencies in sequential data, facilitating learn-
ing of spectral features in medical hyperspectral images. This compensates for
the disruption of spectral features in medical hyperspectral images caused by
spectral slicing, further enhancing the model’s segmentation capability. We used
an example to showcase the details of using the SS module and embedding our
proposed ConvLSTM structure at different positions (Fig. 8).

Table 3. Performance comparison in “mean (std)” on MDC dataset.

SS SISOM IOU↑ DSC↑ HD↓
L1 L2 L3 L4

57.88 (17.58) 71.68 (14.87) 77.42 (31.98)

� 59.80 (16.89) 73.39 (13.85) 76.36 (31.22)

� � 61.29 (16.73) 74.60 (13.61) 77.23 (31.55)

� � 60.93 (16.66) 74.32 (13.69) 78.55 (32.17)

� � 60.17 (17.38) 73.58 (14.44) 77.55 (30.11)

� � 61.82 (18.55) 74.66 (15.38) 76.79 (31.08)

� � � � � 60.43 (16.75) 73.87 (14.16) 78.03 (30.08)

� � � 60.81 (18.07) 73.91 (15.45) 80.41 (33.60)

� � � 61.82 (16.31) 75.08 (13.25) 75.25 (30.50)

� � � � 62.42 (16.70) 75.48 (13.56) 74.41 (29.96)

Fig. 8. Based on the U-Net+ResNet-34 architecture as the foundation, we use SS
modules and insert our proposed SISOM structure at different skip connection positions
(L1, L2, L3, L4) to demonstrate segmentation details. The evaluation metric in the
figure is DSC.
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Comparison with Other Medical Hyperspectral Image Segmentation
Methods. In Table 4, we compared our performance with state-of-the-art
(SOTA) methods, evaluating metrics including the “mean (std)” of IOU, DSC,
and HD, as well as throughput, MACs, and Parameters (Params). The best
results are highlighted. The experiments demonstrate that our proposed mod-
els (SS-SISOM and SS-DIDOM) outperform other algorithms in segmentation
accuracy measured by DSC. Additionally, our models achieve throughputs of
23.50 images/s and 19.90 images/s, significantly higher than the state-of-the-art
algorithms, Dual-Stream algorithm (13.84 images/s).

Table 4. Performance comparison with SOTA methods on the MDC dataset.

Method IOU(%)↑ DSC(%)↑ HD↓ Throughput↑ MACs(G)↓ Params(M)↓
2D SS-DIDOM (ours)62.71 (16.83) 75.68 (13.64) 76.59 (30.04) 19.90 305.24 32.21

SS-SISOM(ours) 62.42 (16.70) 75.48 (13.56) 74.41 (29.96) 23.50 214.60 32.21

Dual-Stream [14] 62.28 (16.25) 75.44 (13.31) 77.70 (30.34) 13.84 111.29 27.06

DeepLabV3+ [3] 58.82 (18.40) 72.32 (15.27) 77.50 (33.94) 43.10 13.55 22.62

FPN [8] 59.73 (18.48) 73.03 (15.37) 76.14 (32.36) 42.88 12.26 23.33

U-Net [9] 57.88 (17.58) 71.68 (14.87) 77.42 (31.98) 39.93 13.48 24.62

3D 3D-UNet [4] 59.08 (18.02) 72.55 (15.37) 82.40 (28.91) 4.04 1110.77 -

nnUNet [6] 60.49 (15.80) 74.12 (12.91) 79.87 (30.50) 1.92 1253.82 -

HyperNet [12] 58.86 (17.75) 72.47 (14.77) 83.75 (33.85) 0.99 1512.24 -

Swin-UNETR [11] 58.54 (16.30) 72.39 (14.31) 78.38 (31.74) 1.45 245.04 -

SpecTr [15] 59.99 (16.12) 73.66 (13.30) 76.92 (31.93) 1.40 1049.72 -

Fig. 9. Qualitative visualizations of our proposed methods and other methods on the
MDC dataset. The evaluation metric in the figure is DSC.
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Through qualitative visualizations on the MDC dataset (Fig. 9), we
present the performance of the proposed SS-ConvLSTM method and other
methods. The qualitative visualizations showcase the segmentation results
of the SS-ConvLSTM method alongside other popular segmentation meth-
ods. Through these comparisons, we demonstrate the advantages of the SS-
ConvLSTM method in capturing fine structures and boundary information in the
images. These qualitative visualizations provide an intuitive understanding of the
performance of different methods, aiding researchers and medical professionals
in assessing the applicability and accuracy of various approaches in real-world
applications. These results also serve to guide future research and development
in the field of medical image analysis.

5 Discussion

Our method introduces the ConvLSTM module into the U-Net architecture
to enhance model performance. Despite the additional modules increasing the
model’s parameters and computational load, resulting in a decrease in through-
put metrics, we observed a significant improvement in the model’s segmentation
capability. Accurate segmentation is crucial in medical image processing. There-
fore, we believe that sacrificing some performance for better segmentation is
acceptable. Additionally, we believe that further optimization and adjustments
can mitigate the decrease in throughput metrics to achieve a better balance while
maintaining high segmentation accuracy. It is worth noting that the FPN and
DeepLabV3+ structures we compare also utilize ResNet-34 as the backbone
network for extracting features from hyperspectral images. Thus, they are com-
parable to the U-Net structure based on ResNet-34 in terms of parameter count,
computational load, and throughput metrics.

Experiment with the Results of Different Numbers of Band Combi-
nations. The method in the text only processes the 60 bands in the MDC
dataset by slicing every 3 adjacent bands. However, for datasets with 200 or
more bands, this method leads to significant redundancy. Therefore, in the SS-
DIDOM method, we investigated the effect of combining different numbers of
adjacent bands on the experimental outcomes. The Table 5 demonstrates the
impact of combining different numbers of bands on various performance metrics
in the SS-DIDOM method. When combining 3 bands, the IOU and DSC val-
ues are the highest, at 62.71 and 75.68 respectively, indicating the best segmen-
tation performance. As the number of bands increases, the throughput improves,
reaching a maximum of 34.75 (with 12 bands), while the computational complex-
ity (MACs) significantly decreases, with a minimum of 82.06 (with 12 bands).
Overall, combining more bands can enhance processing speed and reduce com-
putational complexity, but the best segmentation performance is achieved with a
combination of 3 bands. This suggests that when handling hyperspectral image
data with more bands, combining a larger number of spectral bands can reduce
redundancy after slicing and accelerate inference speed.
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Table 5. The results of using the SS-DIDOM method with different numbers of adja-
cent band combinations.

SS-DIDOM

bands IOU ↑ DSC ↑ HD ↓ Throughput ↑ MACs(G) ↓
2 62.01(17.06) 75.08(14.17) 77.13(35.24) 14.62 454.03

3 62.71 (16.83) 75.68 (13.64) 76.59 (30.04) 19.90 305.24

4 60.88(16.13) 74.37(13.15) 76.01(29.66) 22.98 230.85

5 61.59(16.74) 74.82(13.72) 75.87(30.65) 25.72 186.21

6 60.81(16.95) 74.19(13.79) 76.72(32.28) 27.23 156.45

10 59.55(17.37) 73.08(14.59) 78.36(32.44) 33.25 96.94

12 60.81(19.13) 73.76(15.88) 82.37(32.42) 34.75 82.06

6 Conclusion

We decomposed medical hyperspectral images into multiple low-channel data
through spectral slicing, and processed them using the ConvLSTM structure.
This transformation converts the long-range spectral dependencies of hyperspec-
tral images into relationships between low-channel image sequences. Testing on
the MDC dataset showed that our approach improved the DSC metric by 0.24%
and achieved an inference speed approximately 1.4 times faster. Compared to
existing 3D algorithms, our method showed a speed enhancement of 5-20 times.
Our approach provides a more efficient and accurate means of handling medical
hyperspectral image segmentation. By jointly considering spectral and spatial
features in the learning process, our method not only enhances segmentation
accuracy but also significantly improves inference speed.
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Abstract. Brain tumor classification from MRI scans demands precise
image analysis, a challenge compounded by the variable morphology
and location of tumors. Addressing this, our study presents an inno-
vative approach that combines edge detection with a hierarchical deep
learning framework to classify brain tumors accurately. This method
enhances edge clarity, facilitating the deep learning model’s ability to dis-
tinguish between meningioma, glioma, and pituitary tumors. By deploy-
ing a two-stage model, initially segregating a meta-tumor class and pitu-
itary and subsequently refining the meta-tumor class into glioma and
meningioma with a binary classifier, we capitalize on the strengths of
both traditional image processing and advanced neural networks. The
already proven ResNet50 architecture, our model’s backbone, benefits
from transfer learning, enabling efficient feature extraction from the
edge image tailored to brain tumor recognition. Our results, evidenced
by an over 96% overall accuracy rate obtained on a large benchmark
brain tumor dataset, underscore the potential of integrating edge detec-
tion processing with deep learning. This integrative multi-level strategy
promises to streamline the diagnostic process, offering a reliable, fast, and
cost-effective solution that could reduce the need for expensive human
specialist intervention.

Keywords: Brain Tumor · MRI · Canny Edge Detector · Deep
Learning · Medical Image Analysis

1 Introduction

Medical image analysis and classification is an emerging technology in different
medical domains, and it is used with huge success in fields such as cell counting
[1], chest x-ray analysis [2,3], brain scan analysis [4,5], etc. All these approaches
facilitate a non-invasive approach based on classical image processing techniques
and recognition mechanisms to help health professionals make appropriate deci-
sions without being concerned by the limited number of existing professionals,
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which are expensive to train and their possible fatigue during the analysis of
such images which can lead to erroneous decisions and diagnoses.

Brain tumors encompass a variety of abnormal cellular growths within the
brain (see Fig. 4, Fig. 5 and Fig. 6), each with potentially serious implications for
patient health and treatment outcomes. Accurately identifying these tumors is
paramount [6] in devising effective treatment strategies. Yet, the task is fraught
with complexity due to the intricate anatomy of the brain and the subtle dif-
ferences between tumor types. Traditionally, the diagnosis of brain tumors has
relied heavily on the expertise of medical professionals analyzing magnetic reso-
nance imaging (MRI) scans. While MRI provides detailed images of brain struc-
tures without exposing patients to ionizing radiation, the manual interpretation
of these images is subjective. It can lead to inconsistencies, especially given the
nuanced distinctions between various tumor appearances.

The advent of computer vision and machine learning technologies [4], espe-
cially deep learning [5], has introduced promising advancements in medical imag-
ing analysis. These technologies offer the potential to automate and enhance the
accuracy of brain tumor classification from MRI scans, addressing some of the
inherent challenges of manual interpretation. However, despite these advances,
applying such techniques to brain tumor detection is not without its hurdles [4,7].
Key issues include the requirement for large, annotated datasets for training these
models, the selection of the appropriate information for training the models, the
substantial computational resources needed, and the critical need for the resulting
models to be both accurate and interpretable by medical professionals.

This paper proposes a novel approach to overcome these challenges, utilizing
advanced image processing techniques coupled with a hierarchical dual-model
classification system. By employing Canny edge detection for image preprocess-
ing, we aim to improve the delineation of tumor boundaries, facilitating their
subsequent identification. This choice is motivated by current strategies involv-
ing deep neural networks work mainly on the original MRI scans, which contain a
multitude of unnecessary information. Meanwhile, our solution focuses on regions
where tumors can be spotted. Implementing a two-tiered model architecture
leverages deep learning capabilities to achieve more precise tumor classification
in each decision-making step.

The rest of the paper is structured as follows: Sect. 2 gives an overview of the
state-of-the-art, in Sect. 3. The proposed method will be described, –involving
image processing, data augmentation, and classification by a deep neural net-
work. Section 4 will present the computational setup, the benchmark data of
the MRI brain scans, the metrics considered for the experiments, the results
obtained, and last but not least, some comparisons with similar methods pro-
posed in the literature. Finally, a brief summary highlighting the technique and
the results will be provided in Sect. 5.

2 Related Work

Magnetic Resonance Imaging (MRI) and Deep Learning (DL) intersection for
brain tumor detection and classification represent a rapidly evolving research



228 H. A. Vu and S. Vajda

area [4]. Pioneering studies have leveraged the capabilities of convolutional neu-
ral networks (CNNs) [8], transfer learning, and image processing techniques to
improve diagnostic accuracy [5,9]. However, critically examining these method-
ologies reveals persistent challenges that hinder their clinical applicability.

2.1 Deep Learning in MRI-Based Brain Tumor Classification

This section focuses into the evolving landscape of deep learning methodologies
within MRI-based brain tumor classification.

Nazir et al. [10] offer a detailed review of DL in MRI-based brain tumor clas-
sification, focusing on the pivotal role of CNNs in driving the field forward. They
identify crucial challenges, including the need for large, annotated datasets, high
computational overhead, and models’ interpretability issues, pointing towards
efficient, transparent models capable of operating with limited data.

Expanding upon these observations, Sarfarazi et al. [11] research into the
performance of specific CNN models such as AlexNet [12], VGG16 [13], and
ResNet [14] in brain tumor identification. They emphasize the crucial impact of
dataset quality on model performance and note the dependency on comprehen-
sive, high-quality datasets for practical training and validation.

Khan et al. [15] investigate a dual-model strategy combining a 23-layer CNN
with VGG16, achieving high classification accuracy. They highlight the impor-
tance of extensive datasets and the need for model interpretability, especially in
clinical applications.

Innovatively addressing data scarcity, Soumik et al. [16] and Swati et al.
[17] utilize transfer learning with InceptionV3 and VGG19, respectively, for
tumor classification. By pre-training on ImageNet and employing strategic fine-
tuning, they demonstrate how transfer learning can significantly enhance clas-
sification accuracy, even with limited datasets, setting a precedent for future
diagnostic advancements.

Irmak [18] pushes the envelope further by applying CNNs for multi-
classification of brain tumors, highlighting the importance of hyperparameter
optimization through grid search to significantly boost accuracy, showcasing the
critical role of fine-tuning in leveraging deep learning for medical diagnostics.

2.2 Addressing Data Quality and Computational Challenges

We examine methods aimed at refining tumor classification through enhanced
data quality and computational efficiency. From image enhancement and cluster-
ing techniques to dense networks and support vector machine (SVM) approaches,
the focus lies on preprocessing, segmentation accuracy, and scalable diagnostic
tools.

Rasheed et al. [19] and Sahoo et al. [20] contribute to the discourse with
methods that integrate image enhancement and clustering for refined tumor
classification. They stress the significance of preprocessing and segmentation
accuracy while acknowledging the need for image quality improvements and
adaptable segmentation techniques.
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Further contributions by Zhou et al. [21], Montoya et al. [22], and Dheepak
et al. [23] explore dense networks and SVM approaches, offering solutions to com-
putational efficiency and the necessity for large datasets through novel preprocess-
ing strategies and multi-kernel SVM approaches for feature extraction, highlight-
ing the ongoing evolution toward more precise and adaptable diagnostic tools.

Cheng et al. [24] innovate by augmenting tumor regions and partitioning
them for a detailed analysis combining several feature extraction techniques,
illustrating the potential of leveraging the tumor’s spatial information to elevate
classification accuracy.

2.3 Innovative Approaches and Frameworks

Innovative strides in overcoming limitations in conventional CNNs are explored
in this section. From hybrid models like DeepTumorNet to novel techniques
integrating spatial relationships and active contour algorithms, the emphasis is
on enhancing tumor detection accuracy and reliability for automatic diagnosis.

The introduction of DeepTumorNet by Raza et al. [25] and an automated
DL model by Ullah et al. [26] represents a leap in overcoming conventional CNN
limitations through hybrid models and information fusion strategies, addressing
the challenge of imbalanced datasets.

Afshar et al. [27] take a unique path by enhancing Capsule Networks with
tumor boundary information, focusing on spatial relationships to improve net-
work performance. In contrast, Shanaka et al. [28] combine deep learning with
active contour algorithms for segmentation, presenting a method that signifi-
cantly boosts tumor detection accuracy.

Building on previous research, it becomes clear that each study has strengths
and limitations, such as limited data sets, complex and computationally inten-
sive classification models, and modest performance figures. While Shanaka et
al. [28] employed contouring methods to highlight tumor edges, their approach
does not segregate tumors from other brain components as effectively as our
method. Our work focuses on isolating the tumor from the edge image and clas-
sifying this specific region of the MRI scan. By emphasizing tumor edges, we
effectively delineate brain tumors from other components, such as brain tissue
and fluid, in 2D MRI images, significantly boosting model training efficiency
and accuracy. Unlike the approach in [28], we rely on tumor contours for spatial
representation and location. Additionally, our hierarchical classification model
distinctively identifies three pathological tumor types: glioma, meningioma, and
pituitary. Given the similarity between meningioma (see Fig. 5) and glioma (see
Fig. 4), a multi-level classification scheme is necessary. In the first stage, we sep-
arate pituitary malformations from other pathologies. In the second stage, a
dedicated classification scheme differentiates between glioma and meningioma
tumors, enabling efficient and reliable automatic diagnosis.

3 Methodology

This section outlines our study’s comprehensive approach to enhancing MRI-
based brain tumor detection and classification. We describe the use of the
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Fig. 1. Examples of MRI images and their corresponding edge images from the brain
tumor dataset [29].

Canny edge detector to extract contours and edges from the original MRI image,
the proposed architecture of our hierarchical classification model designed to
differentiate between tumor types, and the model parameters set to optimize
the model performance.

3.1 Data Processing with Canny Edge Detector

In optimizing MRI image processing for brain tumor detection, the Canny edge
detector was chosen for its ability to accurately delineate tumor boundaries while
ignoring irrelevant pixels, enhancing tumor identification precision [30]. The deci-
sion to utilize the Canny Edge Detector before model training considers the
distinct morphologies of pituitary, glioma, and meningioma tumors. Pituitary
tumors are typically situated between the eyes, gliomas, and meningiomas can
occur in various brain parts, but meningiomas are generally round in shape. Thus,
edge-enhanced images are advantageous for classification, isolating tumors from
other MRI components like tissues and fluids, and streamlining model training.

This preference is rooted in the Canny detector’s sophisticated, multi-stage
algorithm, which combines noise reduction and precise edge detection, setting it
apart from alternatives like Sobel, Prewitt, or Roberts cross [31]. This precision
is crucial for MRI scans, where accurately defining tumor boundaries directly
impacts diagnosis.

Our implementation of the Canny edge detector begins with converting MRI
images to grayscale, emphasizing their structural integrity. The process continues
with Gaussian blurring using a 5× 5 kernel, which effectively reduces noise by
smoothing pixel values with their neighbors based on a Gaussian distribution
[32]. This step is crucial for minimizing potential false edge detection.

Next, we apply the Balance Contrast Enhancement Technique (BCET) to
scale pixel values from 0 to 255, enhancing the overall image contrast and making
critical features more distinguishable. Following this, K-means clustering with
four clusters segments the MRI images into components: skull, brain tissues,
fluid, and tumor, effectively removing unnecessary pixels and streamlining the
application of the Canny edge detector. The Canny edge detector, applied with
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Table 1. Parameters used in the image processing pipeline.

Step Parameter Value

Noise Reduction Kernel Size 5

Contrast Enhancement Low 0

High 255

Segmentation Clusters 4

Morphological Operations Opening/Closing Structure 3× 3

Edge Detection Lower bound of the gradient 100

Upper bound of the gradient 200

Fig. 2. The different stages in the image processing.

thresholds of 100 and 200, classifies edges based on gradient intensity: edges
with intensities above 200 are marked as strong edges, and those between 100
and 200 are marked as weak edges. This method ensures that only the most dis-
tinct and relevant edges are preserved in the image. The algorithm calculates the
intensity gradient at each pixel using operators like Sobel [33] to pinpoint poten-
tial edges through sharp intensity transitions. Non-maximum suppression then
refines these edges, preserving only the most significant gradient pixels [34].

Based on their gradient magnitudes, double thresholding categorizes edges
into strong and weak, followed by edge tracking by hysteresis. This final step
solidifies the detection of meaningful edges by retaining weak edges only when
connected to strong ones, effectively delineating tumor boundaries with remark-
able precision [31]. This process is visualized in Fig. 1, where the edge images
highlight the tumor regions in brain scans regardless of the image quality or
orientation. The results of the processing pipeline are illustrated in Fig. 2, show-
casing the original image, the enhanced image, the segmented image, and the
final edge-detected image. The parameters of each method are listed in Table 1.

3.2 Model Architecture

In tackling the challenge of classifying brain tumors from MRI images, a detailed
understanding of the visual traits of different tumor types is essential. Glioma
and meningioma, two common brain tumor categories, present considerable sim-
ilarities in their 2D MRI image appearances, especially in shape and position [9].
For more details, please refer to Fig. 4 and Fig. 5.
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Automated classification models often struggle with the overlapping morpho-
logical and textural characteristics of brain tumor images, leading to confusion
and inaccuracies. To address this, our model introduces a meta-classifier that
first differentiates between visually distinct tumor types. Specifically, it sepa-
rates the combined category of meningioma and glioma images from pituitary
images. This initial broad differentiation helps streamline and enhance subse-
quent classification stages’ accuracy.

Subsequently, a more specialized classifier is employed to distinguish between
images resembling glioma and meningioma. This hierarchical strategy allows the
model to efficiently categorize tumor images at a general level before honing in
on discerning between glioma and meningioma, significantly lowering misclassifi-
cation rates and improving diagnostic precision. Our approach involves this cas-
cading strategy comprising primary and secondary binary classifiers to enhance
classification precision through a systematic two-phase analytical approach (see
Fig. 3).

For our primary classification, we selected ResNet50. ResNet50 [14] excels
among neural network architectures due to its ability to learn deep features
without encountering the vanishing gradient problem, a frequent issue in deep
network training. We chose ResNet50 for classifying MRI brain tumors using the
Canny edge detector because of its superior performance in initial experiments.
Although we tested other models like GoogleNet, VGG16, VGG19, and Incep-
tionV3, ResNet50 consistently achieved higher accuracy. Its deep architecture
and residual learning capabilities make it adept at identifying crucial features
within edge-enhanced images, which is essential for precise tumor detection.

In the hierarchical design of our model depicted in Fig. 3, the primary
classifier distinguishes between pituitary and non-pituitary tumors, setting the
stage for focused and accurate downstream classification. This foundational step
is crucial, as it paves the way for subsequent, more granular classifications by
ensuring that the preliminary groupings are precise and informative. Following
this stage, images identified as non-pituitary advance to the secondary model,
where a binary classifier dedicates its processing to differentiating between
meningioma and glioma. Given their visual and textural similarities in MRI
scans, this critical distinction between two often conflated tumor types under-
scores the necessity of a tailored and detailed approach.

Implementing a binary classifier as our secondary model was a strategic
response to the challenge of differentiating between glioma and meningioma
tumors in MRI images, which often display similar visual attributes. Our initial
approach with a broad three-class model, utilizing a ResNet50 classifier, revealed
significant overlap between these tumor types, leading to a high misclassification
rate among the glioma and meningioma images.

Our approach underscores the need for a focused analysis to accurately iden-
tify subtle differences between glioma and meningioma, necessitating a binary
classifier for this task. This specialized secondary model refines the primary clas-
sifier’s broader effort by concentrating on distinguishing these two closely related
tumor categories. A specially trained ResNet50-type network was considered for
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Fig. 3. System overview of the hierarchical classification model.

this model. The effectiveness of this approach is validated by our testing results,
where the binary classifier significantly reduced misclassifications between these
tumor types, enhancing model reliability and clinical diagnostic accuracy (see
Sect. 4.5).

4 Experiments

Our study explores how our deep learning model handles the challenging brain
tumor dataset by utilizing the Canny edge detector and the ResNet50 architec-
ture. We also provide details in the upcoming sections about the evaluation met-
rics, computational setup, and hardware-related information considered for the
experiments. The results are summarized in Sect. 4.5 followed by some compar-
ison results with other state-of-the-art results obtained on the same benchmark
data.

4.1 Data Description

The current research employs the brain tumor dataset provided by Cheng [29]
available on Figshare1, a well-known data collection used as a benchmark for
many current research endeavors. This dataset comprises 3064 T1-weighted
contrast-enhanced images from 233 patients labeled into three tumor cate-
gories: Meningioma, glioma, and pituitary. Some representative examples of these
pathologies are to be seen in Fig 4, Fig. 5, and Fig. 6, respectively.

The dataset’s inherent class imbalance poses a significant challenge, reflect-
ing real-world diagnostic scenarios (see Table 2). For this study, the dataset was
divided into a training set (70%) and a testing set (30%), ensuring a represen-
tative distribution of each tumor type in both subsets. This particular split for

1 https://figshare.com/articles/dataset/brain tumor dataset/1512427.

https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
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Table 2. Number of MRI slices in the brain tumor dataset [29].

Tumor Class Number of Patients Number of MRI slices

Meningioma 82 708

Glioma 91 1426

Pituitary 60 930

Total 233 3064

the data was motivated by other researchers (see Table 5) who used the same
split. Thus, we wanted to be able to compare our results directly with theirs and
create a proper and fair evaluation framework.

4.2 Evaluation Metrics

To comprehensively assess the performance of our hierarchical brain tumor clas-
sification models, we utilize several key evaluation metrics [35,36]. Accuracy is
used to measure the proportion of correct predictions out of the total predictions.
Precision is defined as the ratio of true positives to the sum of true positives and
false positives, reflecting the model’s ability to correctly identify positive cases.
Recall, or sensitivity, measures the ratio of true positives to the sum of true
positives and false negatives, indicating the model’s effectiveness in detecting all
relevant cases. The F1 Score, which is the harmonic mean of precision and recall,
provides a balanced measure of a model’s performance, especially in situations
where precision and recall may be imbalanced.

4.3 Training Parameters

The strategic application of data augmentation is crucial for enhancing the
model’s adaptability to new, unseen medical images, ensuring consistent per-
formance across various imaging conditions. Using Keras’s ImageDataGenerator
class [37], we employ real-time augmentation techniques such as shearing, zoom-
ing, and flipping during training.

Data augmentation significantly increases the volume of training data. The
original set of 2,144 training images (256× 256 pixels) is expanded sixfold to
12,864 images post-augmentation, reducing overfitting and enhancing model
accuracy in diagnosing new images.

We selected the Adam optimizer and categorical cross-entropy loss function
[38] for model compilation, following best practices for multi-class classification
in deep learning. The training was configured over 60 epochs, with a learning
rate of 0.0001 and a batch size of 32. This setup balances precise model tuning
and computational efficiency, optimized through several trial runs.

4.4 Computational Setup

Our experiments utilized Google Colab’s cloud-based platform, leveraging the
Tesla V100 GPU for its rapid processing capabilities, which provided necessary
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Fig. 4. Image examples from the glioma class.

Fig. 5. Image examples from the meningioma class.

Fig. 6. Image examples from the pituitary class.

resources for managing the ResNet50 architecture and volume of data from
datasets. TensorFlow [39] was employed for deep learning model construction,
with Keras [40] providing an accessible interface for neural network design.

For image processing and augmentation, we used OpenCV [41], while NumPy
[42] enabled efficient numerical computations. Matplotlib [43] and Seaborn [44]
were used for data visualization, generating insightful plots and graphics to illus-
trate our models’ results and performance metrics.

4.5 Results

After testing on 920 images (Glioma: 428, Meningioma: 213, Pituitary: 279)
across five different randomly selected data splits, maintaining a 70% vs. 30%
ratio, our hierarchical classification model achieved an exceptional average
accuracy of 96.54%. The class-wise average accuracies were 98.2% for glioma,
93.4% for meningioma, and 96.3% for pituitary. Detailed evaluations for the five
random runs with different datasets are shown in Table 3, including the exact
class distributions. The relatively low accuracy for meningioma is attributed
to its similarities with glioma, as reflected in the confusion matrices in Fig. 8.
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Table 3. Results of the five test sets generated for the experiments.

Experiment Glioma Meningioma Pituitary Model Accuracy (%)

1 421 197 269 96.4

2 424 205 266 97.3

3 420 204 275 97.7

4 425 190 265 95.7

5 412 199 268 95.6

Average accuracy (%) 98.2 93.4 96.3 96.54

Table 4. Classification scores for the experiment 1.

Class Precision Recall F1-score Support

Glioma 0.95 0.98 0.97 428

Meningioma 0.96 0.92 0.94 213

Pituitary 0.99 0.96 0.98 279

Average Accuracy 96.41%

Macro Avg 0.97 0.96 0.96 920

Weighted Avg 0.96 0.96 0.96 920

The classification report, detailed in Table 4, highlights the model’s high pre-
cision, recall, and F1-scores across the three tumor types: glioma, meningioma,
and pituitary-attesting to its robustness and reliability in medical diagnostics.
The confusion matrices detailed in Fig. 8 show the model’s proficiency in distin-
guishing pituitary tumors. However, the classification of glioma and meningioma
is more difficult due to their similar imaging characteristics. To better qualify
the results besides the classical accuracy measure, Fig. 7 separately shows the
receiver operating characteristic (ROC) curve for all five experiments.

Initially, the model achieved 89% accuracy scores when a single classifier (see
Fig. 8) was considered to distinguish between the three tumor types. However,
introducing this two-stage hierarchical approach, which first isolates the pitu-
itary class, significantly improved the overall performance, mitigating confusion
between the glioma and meningioma classes by the second specialized network
classifier.

Our model’s efficiency is further highlighted by the computational speed,
with the Canny edge detector processing features in just 0.00079 s per image,
allowing for rapid classification of the test suite. Such speed, at an average of
0.225 s per image for classification over 920 images, underscores the model’s
potential for real-time clinical application without compromising accuracy. The
“Macro Avg” and “Weighted Avg” metrics provide insight into the model’s
consistent performance across classes and its sensitivity to class imbalance, with
a slight decrease in the weighted metrics indicating the impact of prevalence in
the overall model’s performance.



Advancing Brain Tumor Diagnosis 237

Fig. 7. ROC curve of all five experiments based on Table 3.

Fig. 8. Confusion matrices for all experiments.
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Table 5. Comparison of the proposed framework with the other state of art models.

Method Classifier Acc. (%) Comment

Khan et al. [15] 23-layers CNN 97.8 Train: 2454 images

Test: 610 images

Soumik et al. [16] InceptionV3 99.4 5-fold cross-validation

Train: 2452 images

Test: 612 images

Swati et al. [17] VGG19 94.5 5-fold cross-validation

Train: 2452 images

Test: 612 images

Irmak [18] CNN 92.66 Train:2424 images

Test: 640 images

Zhou et al. [21] DenseNet-LSTM 93 Train: 2207 images

Test: 857 images

Montoya et al. [22] Resnet50 97.3 Train: 2451 images

Test: 613 images

Dheepak et al. [23] Distinct Customised
Kernel (Ensemble) with
SVM Classifier

93 5-fold cross-validation

Train: 2452 images

Test: 612 images

Cheng et al. [24] SVM and KNN 91.2 5-fold cross-validation

Train: 2452 images

Test: 612 images

Afshar et al. [27] Capsnet 90.8 5-fold cross-validation

Train: 2452 images

Test: 612 images

Shanaka et al. [28] Deep Learning + Active
Contouring

94.6 Train: 2144 images

Test: 920 images

Momina et al. [45] Mask RCNN +
ResNet50

95.9 Train: 2144 images

Test: 920 images

Proposed MethodCanny Edge Detector +
ResNet50

96.54 Train: 2144 images

Test: 920 images

4.6 Comparison with Other Methods

Table 5 encapsulates a comprehensive comparison, wherein each method, includ-
ing our proposed approach, has been rigorously tested and benchmarked on the
same brain tumor dataset comprising 3064 images using mainly similar splits for
training and testing. This ensures a consistent and fair evaluation platform for all
techniques under consideration, allowing for objectively assessing their relative
performance in brain tumor classification for the data collection.
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As reported in Table 5, some results [15,16,22] exceed ours, while the large
majority of the works rank behind our achievements. For those works outperform-
ing our strategy, after a thorough analysis, one could realize that these methods
considered as input the original images in their original size, which puts an enor-
mous computational burden on the models, or they use way more training data to
fine-tune their models while the testing is performed only on a limited number of
images which is way bellow to our 920 images considered for test.

5 Conclusion

In conclusion, this study introduces a novel methodology that synergizes Canny
edge detection with a hierarchical deep learning classification scheme to signif-
icantly advance the accuracy of brain tumor classification from MRI scans. By
harnessing the precision of edge detection techniques to enhance the visibility
of tumor boundaries, coupled with the power of a two-tiered deep learning frame-
work, we present an approach that markedly improves diagnostic processes in
neuro-oncology.

Our methodology not only elevates classification accuracy to an impressive
96.54% rate but also delineates a path towards reducing the reliance on extensive
human expertise in the initial stages of diagnosis.

The integration of the ResNet50 architecture, augmented through transfer
learning, enables robust feature extraction and classification from edge images,
effectively bypassing the significant variability inherent in the original MRI
images. The results achieved, along with comparisons to other state-of-the-art
methods, demonstrate the relevance and strength of our approach, positioning
it among the top strategies in the literature. Future work will focus on fur-
ther refining our model by exploring additional deep learning architectures and
edge detection techniques, aiming to enhance both the accuracy and efficiency of
tumor classification.
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Abstract. Automated evaluation of hippocampus volume plays a cru-
cial role in the analysis of various neurodegenerative conditions like
Alzheimer’s Disease and Epilepsy. Examination of the hippocampus sub-
fields assumes paramount importance as it can reveal early signs of brain
abnormalities. However, delineating these subfields becomes extremely
challenging due to their intricate nature and the requirement for manu-
ally annotated high-resolution magnetic resonance images. In this paper,
we propose an innovative deep graph cut approach, boosted by shape
information, for automatic segmentation of hippocampus subfields. A
deep learned shape term is incorporated in the energy function of the
graph cut. A modified α − β swap technique, that leverages deep learn-
ing, is designed to improve the execution time of the proposed multi-
class segmentation algorithm. We demonstrate the efficacy of our solution
by outperforming a number of state-of-the-art methods on the publicly
available Kulaga-Yoskovitz dataset.

Keywords: Hippocampus subfield segmentation · Multi-class Graph
cut · Shape term · Deep Learning

1 Introduction

The hippocampus (HC) is a paired brain structure situated in the medial tem-
poral lobe adjacent to the brainstem in close proximity to the cerebellum. It
plays a crucial role in various cognitive functions, such as, memory and spa-
tial reasoning [23]. Over the past decade, there has been a growing interest in
segmenting hippocampal subfields using MRI. Recent research has identified dis-
tinct functional roles for these anatomical subregions, with CA1 implicated in
memory integration and inference [28], CA3 in memory retrieval [8], and both
the dentate gyrus (DG) and CA3 in pattern separation [2]. Clinically, the volume
or morphology of the hippocampus and its subfields are closely related to many
neurodegenerative diseases like Epilepsy [32] and Alzheimer’s disease [17]. So, it
is desirable to develop automatic hippocampal subfields segmentation from brain
MR image. However, manual delineation of hippocampal subfields is a laborious
and time-intensive task, leading to constraints on sample sizes in various studies.
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We first discuss some works that use classical techniques for HC subfield
segmentation. The authors in [36] used a multi-atlas approach combined with a
similarity-weighted voting and a boosting-based error correction as a solution.
They termed their method, ASHS. This method took several hours to produce a
segmentation due to exhaustive use of non-linear registrations. More recently,
a method named HIPS [26] obtained state-of-the-art results with relatively low
processing times. While classical methods integrated domain-specific image fea-
tures like gradient, intensity, and textures within an energy minimization frame-
work, they are found to heavily depend on initialization, such as manual seeding.
As a result, they are prone to segmentation errors caused by uncertain position-
ing of the markers. Furthermore, these approaches are quite laborious and may
not be practical for clinical environments with a heavy workload.

Deep learning approaches have surpassed classical methods, delivering supe-
rior segmentation performance in significantly less time. Recently, due to the
expansion of deep learning (DL) in medical imaging for tasks like classifica-
tion [10] and segmentation [11], novel methods based on this technology have
been proposed to further improve the accuracy of HC sub-field segmentation.
UNet based methods [22,37] have shown promising results. Shi et al. [29] pro-
posed a Generative Adversarial Network (GAN) to create a segmentation model.
But UNet and GAN based methods require a lot of data and medical imaging
lacks consistent and sufficient annotated data, making DL algorithms perform
poorly in many cases [31]. Although some authors have tried to bypass this prob-
lem using multi scaling technique [35] and using higher resolution data [20], the
problem continues to exist.

A combination of both classical and DL techniques can achieve better seg-
mentation performance than using DL methods or classical methods in isolation.
For example, see the works [24,27] in lung nodule segmentation. In case of 3D
brain tumor segmentation [12], a combination of UNet and graph cut helped
circumvent manual seeding problem of the graph cut and undersegmentation of
UNet due to scarcity of data.

In this paper, we propose a shape driven multi-class segmentation method
using UNet [9] and graph cut. We take inspirations from [12], [11] and [33] to cre-
ate a state-of-the-art model to segment the HC into three classes, namely, CA1-
3, CA4/DG and Subiculum (Sub). In [5], Boykov et al. showed that a two-class
segmentation is achievable in polynomial time using graph cuts. However, if the
number of labels exceeds 2 (as for the present problem), finding an exact solution
becomes an NP-hard problem. They suggested two types of large moves (chang-
ing labels of individual pixels/voxels) based on minimal graph cuts, namely,
α-expansion and α-β swap. In this work, we use UNet to improve the α-β swap.
A number of research papers demonstrated that use of shape information can
improve the segmentation accuracy [11,19,21]. Shape priors provide valuable
guidance by incorporating prior knowledge about the expected shapes of objects
in the image. This guidance helps the segmentation algorithm to make more
informed decisions about the boundaries and regions of interest [30]. By impos-
ing shape constraints, shape priors help to enforce consistency in the segmented
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shapes, ensuring that the output conforms to the expected shape characteristics
[1]. The shape prior has to be made adaptive in case of substantial noise and
intensity variations. Here, we better an adaptive shape prior from deep learned
information via UNet. Our main contributions are now summarized below:

1. Propose a new energy function for multi-class segmentation based on graph
cut and deep learning (UNet)

2. Incorporate learned information from UNet for optimizing the number of α-β
swaps

3. Show how an adaptive shape prior can be learned from UNet

2 Proposed Method

2.1 Deep Graph Cut

Let us define the 3D MRI input as a gray-scale volumetric data, which may be
represented as a 3D weighted graph denoted by G = G(V,E). Each vertex is
represented by a voxel x in G, and X is the collection of all voxels. We introduce
two new vertices, called ‘source’ and ‘sink’, represented by s and t respectively.
There are two sorts of edges or linkages that we consider: t-links (T) and n-links
(N). s and t is linked to very voxel x through t-links. We utilize a compact
26-neighborhood, represented as Ne(x) for every voxel x. Assume that y is a
neighbor of x. Therefore, y belongs to the neighborhood of x, and we establish
a connection between x and y by an n-link. Therefore, the set V is defined as
the union of sets X, s, and t, whereas the set E is defined as the union of sets
T and N. Let us establish a segmentation A as a classification of all voxels into
two distinct classes: “object” or “background”. This classification is done on
a voxel-wise basis. Therefore, according to the reference [7], it is necessary to
minimize the subsequent energy function:

ζ(A) = B(A) + λR(A) (1)

The term B(A) represents the boundary characteristics or smoothness term of
A, while R(A) represents the regional properties or data term of A. These terms
are represented mathematically as below:

B(A) =
∑

x∈X,y∈Ne(x)

B(x,y) (2)

R(A) =
∑

x∈X

Rx (3)

In [12], we modified the above energy function (Eq. 1) by incorporating learned
information from the 3D UNet [9]. The modified energy function is given below:

ζDGC(A) =
∑

x∈X,y∈Ne(x)

BDGC(x, y)+

λDGC(x)
∑

x∈X

RDGC(x)
(4)
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2.2 Multi-class Deep Graph Cut

As stated earlier, in this work, we deal with multi-class hippocampus segmenta-
tion where a voxel x can belong to any of ‘CA1-3’, ‘CA4/DG’ and Subiculum.
Following [5], our goal is to find a labeling f that assigns each voxel x ∈ X a
label fx ∈ L and, |L| > 2, where f is both piecewise smooth and consistent with
the observed data. Any labeling f can be uniquely represented by a partition of
image voxels, V = Vl|l ∈ L where Vl = x ∈ V |fx = l is a subset of pixels assigned
a label l. Hence, Eq. 4 can be rewritten as:

ζDGC(Af ) =
∑

x∈X,y∈Ne(x)

BDGC(fx, fy) + λDGC(fx)
∑

x∈X

RDGC(fx) (5)

where ζDGC(Af ) is the energy of the labelling f . The knowledge acquired from
the 3D UNet [9] is included into the energy function of the 3D graph cut algo-
rithm in order to achieve precise segmentation. The 3D probability map is
obtained from the last convolutional layer for each image. This map is then
used to determine the probability, denoted as Pr(fx)UN , of any voxel x belong-
ing to label fx. The 3D UNet calculates a regression function that maps the
voxels of a 3D input to a 3D voxel-wise probability map. This is denoted as
P : R3 → (0, 1), and it assigns a value between 0 and 1 to each voxel. Addition-
ally, this probability map is used as an automated seed required by 3D graph
cut algorithm. With this, we now explain the smoothness and data term in the
context of multi label problem as follows. As mentioned in [12], BDGC(fx, fy) is
a product of four components as shown below-

BDGC(fx, fy) = K(x,y) × e−(
(Ix−Iy)2

2σ2 ) × 1
d(x, y)

× 1
δ(x, y)DGC

(6)

where d(x, y) represents the Euclidean distance between two voxels x and y
having intensity values Ix and Iy respectively. The term K(x,y) is based on the
probabilities of x and y to have the labeling fx and fy and is mathematically
represented as:

K(x,y) = 1 − |Pr(fx)UN − Pr(fy)UN | (7)

where fx = fy. The factor σ is the standard deviation of voxel intensities of
the image [19]. The term δ(x, y)DGC denotes the sum of differences between
probabilities of neighbouring voxels x and y to belong to fx and fy where fx �= fy.
This can be expressed as:

δ(x, y)DGC = |Pr(fx = α)UN − Pr(fy = α)UN |
+|Pr(fx = β)UN − Pr(fy = β)UN | (8)

where α, β ∈ L. The data term RDGC(fx) is dependent on the probability map
of UNet as shown below-

RDGC(fx) = − ln Pr(fx = α)UN (9)
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α-β Swap. As mentioned in Boykov et al.’s article [5], segmenting a binary
image is possible in polynomial time using graph cut. But if the number of
labels is more than 2 (as in our case), finding exact solution becomes an NP-
hard problem. Therefore, Boykov et al. proposed two types of moves based on
minimal graph cuts - α-expansion move and α-β swap move. A standard move
means changing the label of a single vertex (voxel in our case). We now discuss
how and why we modify the optimization function of α-β swap moves. The
choice of which type of move to select depends on whether the smoothness term
of the energy function is a metric or a semi-metric [5]. If the smoothness term
is metric, α-expansion can be used, otherwise α-β swap move needs to be used.
For a function V (α, β) to be metric, it has to satisfy the following constraints:

1. V (α, β) ⇔ α = β
2. V (α, β) = V (β, α) ≥ 0
3. V (α, β) ≤ V (α, γ) + V (γ, α)

for any labels α, β, γ ∈ L [5]. If V (α, β) satisfies only the constraints (1) and
(2) but not (3), then it is called a semi-metric. We have chosen α-β swap moves
to optimize our energy function, as our smoothness term (BDGC(fx, fy)) is a
semi-metric. We explicitly show in the appendix that the smoothness term is
indeed a semi-metric.

Deep Learned α-β Swap. If a move from a partition Vl to a new partition V ′
l

has labels α, β, then V ′
l = Vl for all labels l �= α, β. This is known as a α-β swap

[5]. So, the only thing that’s different between Vl and V ′
l is that some voxels that

were labeled as α in Vl are now labeled as β, and the other way around. The
main idea is to use graph cuts to separate all α voxels from β voxels one by one.
Each time through the algorithm, the α − β mix will be different. The program
will keep going through all the possible combinations until it converges with the
minimum energy. The algorithm is guaranteed to converge in O(V ) time, but
when there are a lot of vertices, the whole segmentation process takes a long
time.

As reported in [5], segmenting a 384 × 288 image with α − β swap takes 35
seconds. In our case, the image size is 182 × 218 × 182 which is far greater than
the images used in [5]. Hence, there is a dire need to optimise the move algorithm
to speed up the overall segmentation.

For this, we turn to Pseudo-Boolean optimization techniques used in [6]. As
mentioned in [6], we encode the moves of the α−β swap algorithm as a vector of
binary variables t = ti,∀i ∈ V . So, ti = 0 means the label of voxel i changed to α
and ti = 1 means the label changed to β. The transformation function T (fc, t) of
a move algorithm takes the current labelling fc and a move t and returns a new
labelling fn that has been induced by the move. The transformation function
Tαβ() for an α − β swap transforms fc as

fn
i = Tαβ(fc

i , ti) =

⎧
⎪⎨

⎪⎩

fc
i , if fc

i �= α and fc
i �= β,

α, if fc
i = α or β and ti = 0,

β, if fc
i = α or β and ti = 1.

(10)
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If the current labelling fc
i is neither α nor β, we don’t change it. The energy of

the move t is the energy of labelling fn that the move t induces, i.e., Em(t0 =
E(T (fcmt)). Further details about the pseudo boolean energy of the swap move
can be found in Sect. 3.3 of [4].

We modify Eq. 10 by adding the label probability information derived from
UNet as follows-

fn
i = T (fc

i , ti) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fc
i , if fc

i �= α and fc
i �= β,

α,

if fc
i = α or β, ti = 0, [Pr(fx = α) − Pr(fx = β) > τ ]

, or [Pr(fx = β) − Pr(fx = α) < (1 − τ)],

β,

if fc
i = α or β, ti = 1, [Pr(fx = β) − Pr(fx = α) > τ ]

, or [Pr(fx = α) − Pr(fx = β) < (1 − τ)],
(11)

We added two more constraints when deciding the new labelling to be α or β.
We wanted the confidence of the UNet model to decide whether a label should be
swapped or should be kept the same. We define confidence of prediction as the
difference between the probabilities of a voxel to have label α and β, i.e. [Pr(fx =
α)−Pr(fx = β)]. Generally, a model is said to predict a label (say α) with high
confidence if the probability of the voxel to belong α is much higher than that
of the voxel to belong to another label (say β), i.e., if [Pr(fx = α)−Pr(fx = β)]
> τ or [Pr(fx = β) − Pr(fx = α) < (1 − τ)] where τ is some threshold. So, if
for any voxel i, [Pr(fx = α) − Pr(fx = β)] < τ and fc

i , the current label of i
is either α or β, then the label of voxel i will be changed to α. Similarly, the
decision to change a label to β if the confidence of the UNet model for that voxel
to have label β is greater than τ .

2.3 Deep Learned Shape Information

In this section, we first discuss what is the significance of addition of a shape term
in HC segmentation, then we briefly mention the importance of adaptive shape
term and how the incorporation of UNet’s probability map helps in creating an
adaptive shape term suitable for 3D HC segmentation.

Need of an Adaptive Shape Term. In cases where images are affected by
substantial noise and intensity variations, the necessity for a shape prior can vary
across different pixels. Consequently, assigning a uniform weight to the shape
prior term for all pixels may not be suitable. In our case, 3D MRI images do
suffer from noise and intensity variations and in many places the HC and non HC
region of the brain has very low contrast as shown in Fig. 1. Segmentation tasks
use the adaptive shape term to selectively impose shape constraints based on
pixel labeling difficulty to give flexibility and local adaptation. This adaptability
allows the system to modify shape prior strength based on local image properties,
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Fig. 1. A sagittal slice view of a brain MRI showing the hippocampus bounded in red.
The region marked in yellow shows that the contrast is less between hippocampus and
its surrounding region which poses a challenge in segmentation. (Color figure online)

applying shape restrictions where they are most useful. The adaptive shape term
dynamically adjusts shape priors based on image intensity, resulting in more
accurate and context-aware segmentation results [33].

Improved Adaptive Shape Term with UNet. We improve Wang et al.’s
[33] adaptive shape prior formulation using learned information from 3D UNet.
Following their approach, we add to the smoothness term BDGC(fx, fy), a shape
term of the form SDGC(fx, fy) with η as the shape weight. Note that the authors
in [33] defined η = e−(Pr(x)−Pr(y))2 , where, Pr(k) is the likelihood of a pixel
k belonging to the foreground. They determined this likelihood by using an
unsupervised technique like applying Gaussian filter.

Unlike in [33], where the authors used 2D images and performed binary
segmentation, we deal with 3D images and multi-class segmentation in this work.
So we redefine η as:

η = e−(Pr(fx)−Pr(fy))
2

(12)

where, Pr(fk) denotes the likelihood of voxel k to have labelling fk. Further,
Pr(fk) is obtained from the probability map of UNet as mentioned in Sect. 2.1.
This ensures that we have better probability values than that obtained from
using unsupervised techniques, as in [33].
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The shape term, SDGC , can be formulated as the unsigned distance function
(as used in [16]) of the segmentation obtained after thresholding probability map
P. Let the segmentation obtained by thresholding P is G with a threshold value
of κ. Then,

SDGC = φ̄G

(
x + y

2

)
(13)

where, φ̄G : R3 → R is the distance function on G and is such that c̄ =
x ∈ R3 : φ̄(x) = 0; c̄ being the set of points that form the boundary of the shape.
The energy will be low if φ̄G

(
x+y
2

) ≈ 0 for all neighboring voxels x and y and
fx �= fy. If a voxel x lies near the shape template, then it will satisfy φ̄(x) ≈ 0.
Since,

(
x+y
2

)
is roughly a point on the boundary of the segmented object, the

condition for SDGC to be small is the same as the condition that the boundary
of the segmented object lies near the shape template.

2.4 Shape Driven Multi-class Deep Graph Cut

We started with Eq. 4 which is the deep graph cut for energy function for binary
segmentation. Then we modified it to adapt to multi class segmentation in
Eq. 14. We then modified the α-β swap moves using information from UNet
as described in Sect. 2.2. We compute the data term RDGC(fx), smoothness
term B′

DGC(fx, fy) and Finally, after incorporating the two terms described in
the previous section and shown in Eq. 12 and Eq. 13 in the energy function of
multi class deep graph cut (Eq. 5), we get the final energy function for Shape
induced Multi class Deep Graph Cut (SMDGC) method as shown below-

ζSMDGC =
∑

x∈X,y∈Ne(x),fx �=fy

BDGC(fx, fy) + ηSDGC(fx, fy)+

λDGC (fx)
∑

x∈X

RDGC (fx)
(14)

The algorithm for our overall workflow is shown below in Algorithm 1 followed
by a discussion on its time complexity-

2.5 Analysis of Time-Complexity

The alpha-beta swap algorithm, used for multi-label graph cuts, iteratively opti-
mizes the graph G = G(V,E) by swapping labels between pairs (α, β) to min-
imize the energy function. The time-complexity of this algorithm is influenced
by factors, such as, the number of labels, the number of pixels (or nodes), and
the underlying max-flow algorithm used. The time-complexity analysis of the
proposed SMDGC algorithm is as follows:

1. Max-flow Computation: The time-complexity of each max-flow computation
depends on the specific max-flow algorithm used. We have used Edmond
Karp’s approach [14] in the Ford-Fulkerson algorithm [15], where augmenting
paths are computed using the Breadth First Search. It has a time-complexity
of O(V E2).
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Algorithm 1: SMDGC
Input: 3D UNet model M trained on training set of the data, Graph G

represented as a 3D grid of voxels
Output: Gout with desired segmentation and same dimensions as G

1 Compute data term RDGC(fx) for each voxel in x ∈ G as shown in Eq. 9
2 Compute smoothness term BDGC(fx, fy) for each voxel x and its neighbor

y ∈ Ne(x) in G as shown in Eq. 6
3 Compute η and SDGC as shown in Eqs. 12 and 13 respectively
4 Compute the modified transformation function for optimizing the number of

α-β swap moves using Eq. 11.
5 Compute the final energy function using Eq. 14, perform Graph cut and store

the result in Gout.
6 return Gout

2. Number of Labels: The alpha-beta swap considers all pairs of labels. So, the
number of iterations is proportional to

(L
2

)
= L(L−1)

2 , which is O(L2), where
L denotes the number of labels.

Combining the two factors, we can say that the time-complexity of our algorithm
is O(L2V E2).

3 Experimental Results

In this section, we first describe the dataset used for the experimentation. Nec-
essary details of the parameters, and, hyperparameters used, are provided next.
To showcase the significance of different components of our solution, we then
present a number of ablation studies. Finally, we show performance comparisons
with several state-of-the-art approaches.

3.1 Dataset

We have used a publicly available 3D MRI dataset, described in [18]. We hence-
forth abbreviate this Kulaga-Yoskovitz dataset as the KY dataset. It comprises 25
healthy adult subjects aged between 21 and 53 years, with a mean age of 31.2±7.5
years and a male-to-female ratio of 12 : 13. The data were acquired using a 3T
Siemens Tim Trio MRI scanner equipped with a 32-channel head coil. Submil-
limeter T1 and T2 images were obtained for all participants. The 3D MPRAGE
T1 image had a spatial resolution of 0.6 × 0.6 × 0.6 mm3 (isotropic voxel size).
The matrix size was 336 × 384, with a field of view (FOV) of 201 mm × 229 mm
and 240 axial slices at a slice thickness of 0.6 mm. The T2 image was acquired
using a 2D turbo spin-echo sequence with a matrix size of 512× 512, an FOV of
203 mm × 203 mm, and 60 coronal slices angled perpendicular to the hippocam-
pal long axis, with a slice thickness of 2 mm, resulting in a voxel size of 0.4 × 0.4 ×
2.0 mm3. The manual segmentation protocol for this dataset categorized the hip-
pocampus into three labels: subiculum (SUB), a combination of CA1, CA2, and
CA3 (CA1-3), and a combination of CA4 and DG (CA4/DG).
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3.2 Preprocessing

We preprocessed the data using the steps described in [22] that included cropping
along the HC area and data augmentation by left - right flipping. Finally, we
got 50 samples having 100 axial slices with the length and breadth same as
mentioned earlier for T1 and T2 images. Since, the number of samples is less,
we did 5-fold cross validation to assess the results.

3.3 Experimental Settings

We implemented our 3D UNet network in PyTorch [25]. The training process
was executed on a HP-Z640 workstation having Intel Xeon processor with 14
Cores, a Random Access Memory (RAM) with capacity of 128 GB along with a
dedicated graphics processor unit (GPU) of 24 GB with model name NVIDIA
Titan RTX. The network is trained for 100 epochs with initial learning rate of
0.0001, weight decay of 0.00001 and mini-batch size equal to 2 samples. We have
used Adam Optimizer and dice loss in the process. Our energy function does
not have any parameters that need to be set manually, as all the information is
being provided by a trained UNet model. The only parameter κ, which is used
for thresholding the UNet probabilities to create a segmentation (as described
in Sect. 2.3) is set to, 0.5 which is the most common value as mentioned in [34].

We have used Dice score [13] as the metric to compare the segmentation
performance, as this was the metric used by most other works on segmentation
[20,29,37].

3.4 Ablation Studies

As mentioned earlier, we present three ablation studies for providing a better
understanding of our solution. Table 1 shows the results of our first ablation
study. Here, we demonstrate the improvement our model brings over baseline
multi-class graph cut and multi-class UNet, applied in isolation. In Table 2, we
first show the performance of DGC [12] for multi-class segmentation, by adding
to it traditional α-β swap. It is then demonstrated how the execution time
improves due to optimization of α-β swap strategy using learned information
from UNet. The computation time improves drastically improves by almost 50%

Table 1. Ablation Study I: Comparison of segmentation performance of multi-class
graph cut, multi-class UNet, and the proposed method. Mean Dice Score of each com-
peting approach over all three classes are reported. Best values are shown in bold.

Method Dice Score

Multi-class Graph Cut 0.64000 ± 0.073

Multi-class UNet 0.82000 ± 0.047

SMDGC (Ours) 0.91467 ± 0.009
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Table 2. Ablation Study II: Impact of deep learned α-β swap on the segmentation
performance. Mean Dice Score of each competing approach over all three classes are
reported. Best values are shown in bold.

Method Dice Score Time (in secs)

DGC [12] with α-β swap 0.88230 ± 0.032 15

DGC [12] with deep learned α-β swap0.89860 ± 0.008 8

Table 3. Ablation Study III: Impact of deep learned shape on segmentation perfor-
mance. Mean Dice Score of each competing approach over all three classes are reported.
Best values are shown in bold.

Method Dice Score

Graph cut with adaptive shape term [33] 0.85297 ± 0.026

SMDGC (Ours) 0.91467 ± 0.009

when we use modified α-β swap. DGC with normal α-β swap takes on average
15 s to segment one 3D sample, whereas, the modified α-β swap achieves the
same goal in 8 s. A slight improvement in the segmentation accuracy can also be
noticed as more informed decision is taken to change a label during a move due
to the confidence of UNet incorporated into the optimization strategy (Eq. 11).

We then analyze the impact of a shape term in a graph cut setup through
Table 3. The first row shows the results, where an adaptive shape term is used but
without deep learning. For that, we re-implement [33] and add α-β swap moves,
as that work was originally developed for binary segmentation. We compare the
performance of this method with ours, where we have employed deep learned
shape information (Eq. 14). The values of the Dice Scores clearly illustrate the
benefits of a deep learned shape information.

Qualitative comparisons of different strategies used in the three ablation
studies are shown in Fig. 2. We only include the second method of Table 2 as the
improvement there is more in terms of execution time to achieve desired seg-
mentation, rather than the segmentation accuracy per se. In Fig. 2, the visual
improvements in segmentation performances clearly corroborate the quantita-
tive results. We specifically highlight how multi-class UNet and graph cut with
adaptive shape term suffers from over segmentation of CA1-3 and SUB, as shown
in the yellow boxes of the sagittal slices. DGC with modified α-β swap also finds
it difficult to decide among the CA1-3 and SUB, as shown in the yellow box
of its coronal slice. In general, CA4/DG is relatively difficult to segment by all
methods, as it is the smallest region among the three classes under consideration.
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Fig. 2. Qualitative ablation of our method. GT represents the ground truth. Segmen-
tation with color red represents CA1-3 class, blue represents the CA4/DG class and
green represents the SUB class. (Color figure online)

3.5 Comparison with State-of-the-Art Methods

We compare our proposed method with five state-of-the-art approaches (papers
published within the last five years). These methods are [20,22,35,37], and, [29].
We showed comparisons with only DL based approaches, as we did not come
across any work on multi-class HC segmentation using primarily graph cuts. As
can be clearly seen from the Table 4, our method has yielded the highest mean
Dice Score, which is marginally better than [29]. We are marginally behind [29]
in the SUB subfield segmentation, the most complex object to segment within
the HC. However, our model requires much less computational resource, as we
used only plain 3D UNet, and, graph cut while, other approaches have used
sophisticated DL models that take a lot of time and resources to train.
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Table 4. Comparison with state-of-the-art methods. Mean Dice Score ± standard
deviation of Dice Score is reported for each class. Additionally, the overall mean Dice
Score is reported for each method. Best values are shown in bold.

Method CA1-3 CA4/DG SUB Mean

Syn SegNet (2023) [20] 0.865 ± 0.005 0.821 ± 0.014 0.821 ± 0.013 0.835 ± 0.007

CAST (2020) [35] 0.917 ± 0.011 0.89 ± 0.017 0.881 ± 0.021 0.906 ± 0.014

ResDUNet (2019) [37] 0.92 ± 0.011 0.879 ± 0.02 0.888 ± 0.018 0.896

UNet CNN (2022) [22] 0.9245 ± 0.01 0.8887 ± 0.023 0.898 ± 0.015 0.9

GANs (2019) [29] 0.919 0.903 0.906 0.88

SMDGC (Ours) 0.933 ± 0.007 0.9078 ± 0.013 0.903 ± 0.008 0.9146 ± 0.009

4 Conclusion

Hippocampus subfield segmentation is a crucial step in the diagnosis of many
diseases like Alzheimer’s, Epilepsy as the treatment depends on the analysis of
volumetric atrophy of the subfields. Automating this process will greatly enhance
the treatment experience for both doctors and patients. In this work, we proposed
a state-of-the-art method of subfield segmentation using a combination of multi-
class graph cuts with shape information and deep learning. In particular, we
showed how deep learning can boost the shape knowledge, and the α − β swap
move. Comparisons with a number of state-of-the-art methods on a publicly
available dataset clearly establish the efficacy of our proposed solution. In the
future, we plan to include other datasets that contain more subfields to achieve
a more fine-grained segmentation of the hippocampus. We also plan to introduce
explainability [3] into our proposed hippocampus segmentation model so that it
can be more effectively used in the real-world clinical settings.

Acknowledgement. Arijit De was supported by Tata Consultancy Services Research
Scholar Program (TCS-RSP).

Appendix

Lemma 1. The product of a semi-metric and a metric function is semi-metric.

Proof. Let ρ1 be a semi-metric function and ρ2 be a metric function defined on
some set X. Then, for any x, y, z ∈ X:

ρ1(x, z) ≤ ρ1(x, y) + ρ1(y, z)
(
∵ ρ1(x, z) is semi-metric

)

= c1 · (ρ1(x, y) + ρ1(y, z))
(
where c1 ≤ 1

)

ρ2(x, z) > ρ2(x, y) + ρ2(y, z)
(
∵ ρ2(x, z) is metric

)

= c2 · (ρ2(x, y) + ρ2(y, z))
(
where c2 > 1

)
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Now, consider the product

ρ(x, z) = ρ1(x, z) · ρ2(x, z)

=
(
c1 (ρ1(x, y) + ρ1(y, z))

)
·
(
c2 (ρ2(x, y) + ρ2(y, z))

)

= c1c2ρ1(x, y)ρ2(x, y) + c1c2ρ1(x, y)ρ2(y, z)
+ c1c2ρ2(y, z)ρ1(x, y) + c1c2ρ2(y, z)ρ1(y, z)

Now, c1c2 > 1 when c1 = 1. Hence,
ρ(x, z) > ρ1(x, y)ρ2(x, y) + ρ1(y, z)ρ2(y, z) + ρ1(x, y)ρ2(y, z) + ρ2(y, z)ρ1(x, y)

> ρ(x, y) + ρ(y, z) + ω1 + ω2

where ω1 ≥ 0 and ω2 ≥ 0.
Therefore, ρ(x, z) > ρ(x, y) + ρ(y, z) when c1 = 1 which means ρ(x, z) does
not obey triangle inequality for some particular cases. Thus, the product of a
semi-metric and a metric function remains a semi-metric function.

Theorem 1. BDGC(fx, fy) is a semi-metric.

Proof. BDGC is a product of four components as shown in Eq. 6. Among them,
K(x,y) and δ(x, y)DGC depends on probabilities. From Eq. 7, it is evident that
K(x,y) lie between [0, 1] whereas, from Eq. 8, δ(x, y)DGC lie between [0, 2]. Both
these functions satisfy points (1) and (2) of Sect. 2.2, i.e., Kx,y ⇔ x = y, Kx,y =
Ky,x ≥ 0 and similarly for δ(x, y)DGC . But they do not satisfy the triangle
inequality (point 3). If we consider three voxels x, y and z, then Kx,y, Ky,z

and Kx,z can take any value between [0, 1] and hence, there will be cases where
K(x,z) > K(x,y)+K(y,z) for some x, y and z. A similar situation can also occur in
the case of δ(x, y)DGC . Therefore, these functions are semi metric. For example,
if we consider K(x,y) = 0.2, K(y,z) = 0.3 and K(x,z) = 0.7, then K(x,z) >

K(x,y) +K(y,z). Now, we consider the term e−(
(Ix−Iy)2

2σ2 ), which is based on image
intensities Ix and Iy. The intensity value lies between [0, 255]. We can similarly

argue that e−(
(Ix−Iz)2

2σ2 ) > e−(
(Ix−Iy)2

2σ2 ) + e−(
(Iy−Iz)2

2σ2 ) for some Ix, Iy and Iz.

Thus, K(x,y), e−(
(Ix−Iy)2

2σ2 ) and δ(x, y)DGC are semi metric in nature, 1
d(x,y) is

metric as d(x, y) is the Euclidean distance. Hence, from Lemma 1 it follows that
BDGC(x, y) is a semi metric.
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Abstract. Fiber tractography is a cornerstone of neuroimaging, enabling
the detailed mapping of the brain’s white matter pathways through diffu-
sion MRI. This is crucial for understanding brain connectivity and func-
tion, making it a valuable tool in neurological applications. Despite its
importance, tractography faces challenges due to its complexity and sus-
ceptibility to false positives, misrepresenting vital pathways. To address
these issues, recent strategies have shifted towards deep learning, utiliz-
ing supervised learning, which depends on precise ground truth, or rein-
forcement learning, which operates without it. In this work, we propose
Tract-RLFormer, a network utilizing both supervised and reinforcement
learning, in a two-stage policy refinement process that markedly improves
the accuracy and generalizability across various data-sets. By employing a
tract-specific approach, our network directly delineates the tracts of inter-
est, bypassing the traditional segmentation process. Through rigorous val-
idation on datasets such as TractoInferno, HCP, and ISMRM-2015, our
methodology demonstrates a leap forward in tractography, showcasing its
ability to accurately map the brain’s white matter tracts.

Keywords: Tractography · Transformers · Reinforcement Learning

1 Introduction

Tractography is an advanced reconstruction technique in neuroscience, that
leverages diffusion MRI to create detailed visual representations of brain’s white
matter pathways. This technology has played a crucial role in assisting neurosur-
geons with meticulous pre-surgical planning, benefiting patients with a range of
neurological disorders [7], by enabling a deeper analysis of the white matter.
Over the years, a range of tractography algorithms have been developed, to
map critical neurological pathways. Deterministic algorithms [2] trace fiber paths
directly based on the most probable direction of water molecule diffusion, offer-
ing clear but sometimes oversimplified views of white matter tracts. In contrast,
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probabilistic algorithms [4] incorporate the inherent uncertainty in diffusion data
to predict multiple potential pathways, resulting in detailed fiber reconstruction.
Global algorithms [8] attempt to reconcile the deterministic and probabilistic
approaches by optimizing whole-brain tractography reconstructions to capture
the complex architecture of brain connectivity.

Despite these advancements, tractography still faces challenges such as the
crossing-fibers issue (also known as the bottleneck phenomenon) [12] due to its
ill-posed nature. These issues arise because the algorithms rely on local diffu-
sion information to reconstruct the brain’s complete fiber network, occasionally
resulting in erroneous projection of fiber pathways or false positive connections.

To overcome these obstacles, recent research employs machine learning and
deep learning (DL) approaches to enhance tractography accuracy. Supervised DL
techniques [3,15] for tractography rely on accurate and comprehensive ground
truth data to train and validate the algorithms, which is very difficult to obtain.
In this regard, recent works [20,21] have proposed deep reinforcement learning
(DRL)-based approaches, that learn to perform tractography by interacting with
the environment. These techniques, leveraging deep neural networks, enhance the
ability to predict brain fiber configurations, promising significant advancements
in fiber mapping quality for neurological research and clinical applications. How-
ever, improving tractography algorithms for effective use across diverse datasets
remains a challenge for further research in the field.

Recently, transformers have shown remarkable performance in various
domains, including language modeling [23], image recognition [6], time series
forecasting [27], and even protein structure prediction [11]. Their robust perfor-
mance in various sequence prediction tasks demonstrates their ability to capture
long-range dependencies and contextual information effectively, making them
well-suited for mapping neural pathways in tractography. Building on their suc-
cess in related fields, we now extend the generalization, transfer learning, and
autoregressive capabilities of transformers (GPT), to the tractography domain in
a novel hybrid framework. We adopt an RL framework [5] to generate train-
ing data for our GPT model, Tract-RLFormer, reducing the need for extensive
ground-truth typically needed to train transformers. This addresses a significant
challenge of applying transformers for tractography where ground-truth fibers
are very difficult to obtain.

This approach also represents a significant departure from traditional meth-
ods, as it simplifies the tractography process by targeting specific tracts, thereby
eliminating the need for complex and often cumbersome segmentation algorithms
employed post-tractography. Moreover our data-driven approach has the poten-
tial to utilize data from RL agents trained across diverse neuroimaging environ-
ments. Our key contributions are as follows:

1. Data driven policy learning via hybrid framework: We propose Tract-
RLFormer, a GPT-based network trained by leveraging both reinforcement
learning (RL) and supervised learning (SL) paradigms, to approximate and
refine a policy for tract generation that outperforms recent RL-algorithms.
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2. Innovative Tract-Specific Generation: We train Tract-RLFormer to gen-
erate the tract of interest, utilizing our developed Mask Refinement Module
(MRM) to generate tracking masks for the target tract, bypassing segmenta-
tion overhead.

3. Generalization: Through extensive testing on diverse datasets (TractoIn-
ferno, HCP, ISMRM2015), we demonstrate our network’s superior perfor-
mance and generalization capabilities across different neuroimaging contexts.

2 Related Work

Research in fiber tractography has transitioned from traditional deterministic
and probabilistic methods to machine learning and deep reinforcement learning.
Supervised learning and the exploratory dynamics of deep reinforcement learn-
ing unlock several possibilities for accurately mapping the brain’s connectivity.
Below, we review some recent works in these paradigms.

Supervised Machine Learning Based Algorithms: In several studies,
machine learning techniques have been explored to enhance fiber tractography
with promising results. Notably, [13,14] utilized a Random Forest classifier in
a supervised learning setting to identify 25 distinct fiber bundles, leveraging
data from the ISMRM2015 dataset [12]. The effectiveness of their approach was
assessed using the Tractometer tool, demonstrating the classifier’s ability to accu-
rately distinguish between different fiber pathways. Building on this founda-
tion, subsequent research shifted focus towards regression-based methods for fiber
tracking. [15] suggested to employ a Gated-Recurrent Unit (GRU) model to pre-
dict new tracking steps from diffusion signal resampled to 100 directions. This
method advances the field, moving beyond traditional classification techniques
to offer a more nuanced understanding of fiber tract development. Advancing
the understanding of deep learning’s potential for tractography, [3] applied both
deterministic and probabilistic approaches to the task. In [25], authors introduced
an innovative method known as iFOD3, utilizing a feed-forward neural network
to analyze raw, resampled signals. This approach considers the spatial context of
streamlines, incorporating seed points located at the interface between white and
gray matter—a notable departure from conventional methods that focus solely
on white matter. This broader perspective on seed point placement contributed to
the method’s enhanced performance. In a subsequent development in [24], authors
presented a probabilistic machine learning model that outputs Fischer-von-Mises
distributions rather than deterministic paths. This approach marked improve-
ment over previous techniques, offering a more accurate and effective means of
mapping the intricate networks of brain fiber tracts. These advancements under-
score the rapidly evolving landscape of fiber tractography, highlighting the criti-
cal role of machine learning and deep learning in pushing the boundaries of neu-
roimaging research.

Reinforcement Learning Based Algorithms: Contrary to the supervised
training common in machine and deep learning approaches (poses challenges
due to the difficulty of generating large scale ground truth data), the authors
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explored reinforcement learning (RL)-based approach for fiber tractography in
[21]. In this approach, tractography is conducted similar to classical methods,
wherein a reward function is employed by a learning model to generate stream-
lines based on local fiber orientation. Unlike the supervised paradigm for tractog-
raphy, the RL-based model does not utilize reference streamlines while training.
In [21], the Twin-Delayed Deep-Deterministic Policy Gradient (TD3) algorithm
[9] and the Soft Actor-Critic (SAC) algorithm were employed for RL-based fiber
tractography to reduce false positives and enhance model generalization. In [20],
the authors further examined different aspects of the RL framework, such as
algorithm choice, seeding strategies, state representation, and reward functions,
paving the way for advancements in this domain.

3 Proposed Methodology

In this section, we begin by discussing the data and its preprocessing, followed
by a systematic presentation of our proposal. We utilize three public diffusion
MRI datasets (Table 1). These datasets include a series of diffusion weighted
images (DWI) that capture the diffusion of water molecules in tissue. Each voxel
in a DWI contains information about the magnitude and direction of water
diffusion, reflecting the underlying tissue micro-structure.

Table 1. Description of the three public DWI Datasets

Dataset Subjects DWI data Distortion Corrections

TractoInferno [16] 284 b = 1000 s/mm2; resolution =
1 mm isometric

N4 bias field;
eddy-current;
head-motion

HCP [22] 1200 b = 1000/2000/3000 s/mm2;
270 directions; resolution =
1.25 mm isometric

EPI; eddy-current;
subject-motion

ISMRM [12] 1 b = 1000 s/mm2; 32 directions;
resolution = 2 mm isometric

eddy currents; head
motion (by our
preprocessing)

Diffusion MRI Pre-processing: We process DWI data to extract crucial
information, including Spherical Harmonics Coefficients (SHC), Fiber Orien-
tation Distribution Functions (fODF), and fiber peaks. Initially, the DWI data
is projected into an 8th order spherical harmonics basis, yielding 45 SHC vol-
umes. The fODF, representing the distribution of fiber orientations within each
voxel, is then computed, providing essential local information regarding stream-
line orientation. Subsequently, using the fODF, local fiber directions (peaks) are
computed, which are used to define the reward function for training networks in
the RL framework, as elaborated in Sect. 3.2.

Moreover, in traditional tractography methods, white matter masks are typ-
ically derived from DWI data to perform whole-brain tractography, followed by
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segmentation of specific tracts. In contrast, we generate tailored masks for each
tract, as detailed in Sect. 3.1. Our models are trained and tested within these
masks, allowing for precise and efficient tract-specific analysis.

We propose an iterative policy learning framework for tract-specific genera-
tion, delineated as a five-step process (see Fig. 1). In this framework, we start
by training an RL agent (TD3) to learn a policy by exploration (within the
tracking mask) to generate a tract of interest. We call it as level-1 policy. Using
this initial policy, the agent interacts with the (tracking) environment by taking
actions (tracking steps). The agent’s experience (policy rollouts) is collected and
sampled to train a refined version of the policy, by our T-RLF model, which
learns in a data-driven manner through general pre-training and tract-specific
fine-tuning. Our study focuses on seven principal white matter (WM) tracts:
Corpus Callosum (CC), left and right Pyramidal (PYT), Arcuate Fasciculus
(AF), and Cingulum (CG) Tracts. The selection of these seven tracts is based
on their clinical significance and frequent analysis as suggested in [18,20]. To
conduct such tract-specific training and generation, we first compute a tracking
region of interest (mask) tailored for each tract using our Mask Refinement Mod-
ule (MRM), described in 3.1. Following this, we proceed with the five sequential
steps depicted in Fig. 1, detailed in subsequent subsections of the methodology.

Fig. 1. Overview of the proposed Iterative Policy Learning for Tract-Specific Gener-
ation using DWI data. (a) An RL agent (πθ) interacts with the environment (E) to
learn an optimal level-1 policy (πθopt). (b) This policy is used to generate tract-
specific roll-outs, denoted as ‘experience replay’. (c) and (d) illustrate the offline, auto-
regressive training of the proposed Tract-RLFormer φ, referred to as T-RLF, over these
roll-outs. In (c), T-RLF undergoes general pre-training, while in (d) it is fine-tuned to
learn an optimal tract-specific policy (πφopt). (e) shows the testing phase, where T-RLF,
which has learned the new level-2 policy (πφopt), performs tracking in environment
E to produce the desired tract. Training and tracking steps are shown in yellow and
orange backgrounds, respectively.
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3.1 Mask Refinement Module (MRM)

We combine reference tracts from 2 Atlases, namely HCP842 [26], and
RecobundlesX [17] to develop a fiber template for each of the seven tract classes.
To obtain the mask of a given tract for any subject, the template fibers of the
tract are aligned to the subject’s brain space [1], creating an initial mask which
is then dilated by 5 mm to get an augmented region of interest (ROI). This ROI
is further refined by our Mask Refinement Module (MRM), which produces a
tracking mask for a specific tract utilizing the fiber orientation information of
the given subject. It consists of a fully connected neural network (FCNN) that
refines the augumented ROI to obtain an estimate of the ground-truth mask for
a given subject. The process starts with a larger mask and progressively refines
it by eliminating its voxels based on the Spherical Harmonics Coefficients (SHC)
in the local neighborhood. The input for each voxel is the SHC (45 per voxel) of
the voxel itself and its six immediate neighbors, concatenated with the expanded
mask values, resulting in an input size of 322 (7 * 46).

The neural network architecture comprises three hidden layers with 512,
256, and 128 neurons, respectively. Each layer employs a ReLU activation func-
tion and is followed by batch normalization and a dropout layer (0.5). The
output layer uses a sigmoid activation function, which determines the probabil-
ity of retaining each voxel in the refined mask. Voxels with an output probability
greater than 0.5 are kept in the predicted mask, while those with lower prob-
abilities are eliminated. Training is performed voxel-wise, using Binary Cross
Entropy as the loss function to compare the predicted mask value with the
ground truth for each voxel. The model was trained with 50 subjects randomly
selected from the TractoInferno dataset over 100 epochs. The resulting mask is
then dilated by 1 mm to produce the final refined tracking mask for the given
subject.

3.2 RL Policy Learning

We learn a Level-1 policy by training a reinforcement learning (RL) agent (πθ)
to perform fiber tracking. The RL agent learns the policy through exploration
within the tracking environment (E) (see Fig. 1 (a)).

Environment Details: Adopting the RL framework from [21], we train an
RL agent within the 3D diffusion MRI voxel space. The training process starts
from seed voxels chosen within a 3D tract-specific mask (M), obtained from
MRM. At any given voxel, the environment presents state (st) to the agent
and rewards the agent’s actions based on their alignment with the fODF peak,
aiding in the learning of the optimized policy πθopt. The tracking continues until
the streamline exits the mask (M), surpasses a maximum length (l), or deviates
significantly (>60◦) from the previous tracking direction.

The state (st) is defined by 45 spherical harmonic (SH) coefficients and track-
ing mask (M) values from the current and six neighboring voxels, along with the
four previous tracking directions, amounting to 334 dimensions (7×(45+1)+
3×4). The predicted action (at) is a 3D vector representing tracking/fiber
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direction. The action space of the environment is continuous, allowing the agent
to explore a wide range of potential fiber directions, with values in the range [-1,
1]. The reward (rt) at time-step t is given by the absolute dot product between
the agent’s predicted action (at) and the closest fODF peak (pi), weighted by
the dot product of the action (at) with the agent’s previous tracking step (ut−1)
(defined below).

rt =
∣
∣
∣
∣
max

pi

(pi · at)
∣
∣
∣
∣
× (at · ut−1) (1)

Training Details: During the agent’s exploration phase, the transitions
(s, a, r, s′) are recorded in a replay buffer for batch-wise policy optimization.
We utilize the TD3 algorithm to train 7 tract-specific agents. It has an Actor
and two Critic networks (along with their time delayed target networks).

The actor and critic networks are both fully-connected neural networks with
two ReLU activated hidden layers of 1024 neurons each. The actor has a 334
dimensional input layer and 3-neuron tanh activated output layer, while the
critic has a 337 dimensional input layer and a single neuron tanh output layer
(similar to [21]). Each tract-specific RL agent is trained on five subjects from the
TractoInferno dataset (1030, 1079, 1119, 1180, and 1198), for 50 batches (4096
episodes each) per subject, hence a total of 1,024,000 (250*4096) episodes. We
train the TD3 agent in 5 different instances of the environment (E) specified by
each subject’s distinct diffusion data, fODF peaks, and tracking mask. Training
is conducted at 7 seeds per voxel and a step-size of 0.375 mm, with fiber lengths
between 20 mm and 200 mm. Maximum possible episode length is set to 530
(200/0.375). Other hyper-parameters include: learning rate: 8.56e-06, Discount
factor (γ): 0.776, and Exploration noise (σtrain): 0.334.

3.3 T-RLF: Policy Refinement

This subsection involves the training steps of our T-RLF model. We train a
GPT-based network, to learn a refined, level− 2 policy (πφopt) for tract-specific
fiber generation. It is trained on the policy rollouts of the level − 1 TD3 policy
(πθopt) (ref: Sect. 3.2) to interpret and generate fiber data within the agent’s
experience space. This is accomplished through a two-stage process: (a) Initially,
the Tract-RLFormer undergoes a generic, tract-agnostic pre-training. (b) This
is followed by fine-tuning for the downstream task of tract-specific generation.
Together, these constitute the next three steps (out of five), namely training
data generation (Fig. 1(b)) and the two-stage training process (Fig. 1(c, d)) of
T-RLF. Each component of the training framework is discussed in detail below.

Unlike prior methods that generate fiber points by training on diffusion infor-
mation along ground truth fiber streamlines, our network, T-RLF, learns from
the sequence of state-action-reward (s, a, r) tuples (policy roll-outs) of a trained
RL agent (Fig. 2). T-RLF is trained on trajectories derived from the policy
roll-outs of seven tract-specific TD3 agents. Each trajectory is represented as
τ = (R0, s0, a0, R1, ..., RT , sT , aT ), where Rt is the scalar sum of rewards
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Fig. 2. Data Representation for T-RLF: Tract specific policy refinement using a
trajectory-based approach in an RL agent’s experience space. The figure illustrates
a k length fiber streamline f in human brain voxel space, represented as a trajectory
τ = (R0, s0, a0, R1, s1, a1, ....., Rk, sk, ak). Each point in the streamline corresponds to
a state, action, and return-to-go tuple at a time-step t.

from time-step t to the episode’s end, st is a 334-dimensional state vector, and
at is a 3-dimensional action (see Sect. 3.2).

Training Data Generation: To generate training data trajectories, we initi-
ate tracking for the 7 trained TD3 agents (see Sect. 3.2) on 5 training subjects
from the TractoInferno dataset. For each of the 7 tracts, we save all tracking
episodes (until termination) as (R, s, a) sequences, called trajectories. Tracking
is conducted for all 5 subjects within their tract-specific masks using 7 seeds
per voxel, resulting in a total of

∑5
s=1 7× nvs,i

tract-specific trajectories for the
ith tract, where nvs,i

is the number of voxels in the ith tract’s mask for the sth

subject. From these, 50,000 trajectories are selected per tract, with 10,000 from
each subject. Half of these (5,000) are the longest trajectories for that subject’s
ith tract, while the other half represent the streamline variability of the tract.
This yields a tract-specific dataset τi for each tract i used for model fine-tuning
for downstream tasks. From the 350,000 (7× 50,000) trajectories of the seven
tract-specific datasets (τi for i = 1 to 7), a total of 150,000 trajectories are
selected. Half (75,000) of these are the longest trajectories, and the other half
are randomly selected, resulting in a mixed tract dataset τmix used for generic
tract-agnostic pre-training.

It should be noted that nvs,i
varies with the tract and subject. nvs,i

is the total
number of voxels within the tracking mask for tract i (Mi) when aligned to the
space of subject s. Moreover, the minimum and maximum length of trajectories
in the τmix dataset (representative of all tracts) are 48 and 292 respectively. It
is later used to determine the training parameter of GPT model.
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Fig. 3. Data Driven Policy Learning: Visual representation of training Tract-RLFormer
for action prediction at time-step t, using context information from K length fiber
(Sect. 3.3). The input sequence tuples < R, s, a > are causally masked from at onwards
and processed through embedding layers embR, embs, and emba, with a learnable
positional encoding layer (PE). Embeddings are processed by L decoder blocks (L = 3
for pre-training, L = 4 for fine-tuning), incorporating Multi-Head Attention (MHA)
and Multi-Layer Perceptron (MLP), to generate predicted action ât.

Model Architecture: Tract-RLFormer adopts the GPT architecture (as shown
in Fig. 3) to model trajectories autoregressively [5]. The network consists of 4
decoder layers with 1 attention head each (n heads=1), a context length (K)
of 40, an embedding dimension (d) of 128, ReLU activation functions, and a
dropout rate of 0.1. These parameters were selected after thorough experimen-
tation presented in Sect. 4.3. It begins with a dedicated embedding layer of 128
dimensions (as shown in Fig. 3) for each component of the trajectory: state (s),
action (a), and return-to-go (R). Subsequently, a trainable positional encoding
layer processes the timestep sequence (of max ep len) as input, generating posi-
tional/timestep embeddings of dimensionality d = 128, where each timestep (t)
has 3 tokens < Rt, st, at >. The maximum possible episode length (max ep len)
controls length of episode. It is set to 530 because the maximum length of a fiber
is 200 mm, equivalent to 530 steps for a TractoInferno subject (as 1 step corre-
sponds to 0.375 mm; refer 3.4). If an episode exceeds 530 timesteps, it is trun-
cated to this length. Embeddings for each component of the trajectory (state,
action, return-to-go) are then combined and fed into the decoder layers. We uti-
lize four decoder blocks, where each block includes a multi-headed self-attention
mechanism followed by position-wise feed-forward networks. After processing
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through the decoder blocks, the output is passed through an output embedding
layer, from which we obtain the predicted action of dimension (3, 1).

Training Details: The proposed T-RLF model is trained to generate an opti-
mal level-2 policy, (πφopt), specifically tailored for tract-specific generation. It
undergoes a two-stage training process, starting with general pre-training on
mixed tract dataset (τmix), followed by tract-specific fine-tuning on tract-specific
dataset (τi). The first three decoder layers are pre-trained over 0.15 million mixed
trajectories (taken from τmix), containing a total of 30 million transitions for 30
iterations. Later the 4th decoder layer is fine-tuned on the tract-specific trajec-
tories buffer for 10 additional iterations. In each iteration, the model undergoes
10,000 training steps, each processing a batch size= 128 number of K-length tra-
jectories. A batch of 128 tokens of < Rt, s, a > are sampled from training data
(τ) and stacked for a context length (K = 40) and fed as an input to the T-
RLF. It passes through an embedding layer with 128 dimensions, and positional
encoding is added, resulting in a (128× 120 × 128) matrix and is processed
by the 4 decoder layers with causal masking (Fig. 3). The decoder output is
mapped through an output embedding layer to predict the action. Unlike the
TD3 agent, T-RLF does not interact with the environment during its training
process. Instead, it is trained entirely in an offline mode using only trajectory
datasets (τ ’s). For the context length K, a 5-step loss (accounting for current
and 2 steps in both forward and backward directions) is computed, aggregating
the angular difference between predicted and actual action at each time-step.

L =
K−2∑

t=2

(
2∑

i=−2

cos−1 (at+i · ât+i)

)

(2)

The learning of weights for πφopt is facilitated by this 5-step loss function, in
order to generate more effective and robust actions. Here, at+i and ât+i are the
true and predicted actions at (t + i)th timestep respectively.

Similar to [5], T-RLF training is conditioned to generate action (at) using
return (Rt) at each timestep. During inference, Rt is initialized to an expert
return value or the longest trajectory return. In our case, the longest trajectory
length is 292, and since the maximum possible reward at each timestep is 1, we
initialize Rt to 300 (∼1x expert return). This was experimentally verified among
various values: 100, 200, 300, 500, and 600. For model training, we employed the
AdamW optimizer, set with a learning rate of 1e-4 and a weight decay of 1e-4.

3.4 T-RLF: Inference

The final step in our fiber tract generation method involves using the trained
T-RLF models to perform tracking, followed by cleaning the resulting tracts.
Having learnt the refined policy (πφopt), T-RLF can function autonomously as
a generic substitute for TD3 agent. Consequently, it can independently
perform fiber streamline generation in the same environment (E) as
detailed in Sect. 3.2, without relying on the original TD3 agent. Fiber genera-
tion (tracking) is executed within tract-specific masks obtained from MRM and
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is initialised with 7 seeds per voxel, and Rt is set to R0 = 300. Tracking step size
is (empirically selected) and is dataset-specific, 0.375 mm for the TractoInferno,
0.468 mm for HCP, and 0.75 mm for the ISMRM dataset. At each step, the
return-to-go (Rt) is reduced by the achieved reward and predicted action(at),
new state (s′

t), and Rt are appended to the context window to serve as input for
the next prediction. This auto-regressive process by Tract-RLFormer generates
the fiber tract of interest. Finally, the tracts undergo a Cleaning procedure
using a fast streamline search (FSS) [19] to eliminate any extraneous fibers,
by comparing the predicted tract with the atlas reference tracts (representing
general anatomical structure). Our tracts are confined to masks generated by
the MRM module, tailored to each subject’s fiber orientation. This approach
ensures that tract generation remains confined to regions proximate to the actual
neural fibers of the subject, thus mitigating the risk of false positives. Conse-
quently, we can perform a high radius search using FSS, without incurring a
major risk of high overreach. This high radius search ensures that accurate fibers
are not discarded based on minor deviations from atlas tracts.

Performance Parameters: In order to evaluate the quality of our generation,
the Ground Truth tract is aligned to Montreal Neurological Institute (MNI)
space using Advanced Normalization Tools (ANTs) [1], facilitating compari-
son with our cleaned tracts that are already in MNI space. The Dice (D),
Overlap (OvL), and Overreach (OvR) scores (similar to [20,21]) are then com-
puted against the ground truth tract and are reported in Sect. 4. The Dice score
assesses both the accurate coverage and the minimization of extraneous exten-
sions beyond the ground truth area, where values near 1 signify a high simi-
larity level. Overlap measures the intersection of the generated tract with the
ground truth, while Overreach indicates how much the generated tract exceeds
the ground truth, with lower scores suggesting greater precision.

4 Results and Discussion

In this section, we present the outcomes of our evaluation of tract-specific T-
RLF models under various experimental setups, including comparative analysis,
generalization performance, and an ablation study. We trained TD3 and T-RLF
models, on eight tracts- seven principal white matter tracts (refer Sect. 3) and OR
tract (for analysis in 4.1) using five train subjects (id: 1030, 1079, 1119, 1180,
and 1198) of the TractoInferno dataset and reported their performance on various
test subjects across different datasets in subsequent subsections. Additionally,
we assess their effectiveness relative to supervised approaches and traditional
tractography methods that do not incorporate learning.

4.1 Comparative Analysis

This section provides a comparative analysis of our model, T-RLF, against super-
vised learning, traditional tractography, and state-of-the-art (SOTA) reinforce-
ment learning (RL) algorithms, using Dice scores to evaluate performance across
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Table 2. Comparison of mean Dice scores for the OR, PYT, and CC tracts for subject
1006 from TractoInferno dataset. Supervised learning scores are from [16]; RL-based
scores, with std. dev., are from [20]. The last 2 rows includes scores for T-RLF and TD3,
evaluated using our tract-specific approach. The highest and second highest scores are
highlighted in green and red, respectively. ‘*’ denotes tract-specific setting for methods.

Algorithm OR PYT CC

DET-SE 0.569 0.665 0.658

DET-Cosine 0.598 0.708 0.646

Prob-Sphere 0.599 0.695 0.648

Prob-Gaussian 0.542 0.723 0.668

Prob-Mixture 0.436 0.522 0.614

DET 0.516 0.475 0.345

PROB 0.549 0.740 0.590

PFT 0.644 ± 0.136 0.753 ± 0.010 0.827 ± 0.008

VPG 0.369 ± 0.135 0.434 ± 0.128 0.428 ± 0.182

A2C 0.225 ± 0.108 0.323 ± 0.082 0.222 ± 0.025

ACKTR 0.397 ± 0.171 0.559 ± 0.028 0.584 ± 0.054

TRPO 0.330 ± 0.154 0.498 ± 0.062 0.594 ± 0.048

PPO 0.440 ± 0.187 0.619 ± 0.042 0.650 ± 0.028

DDPG 0.612 ± 0.063 0.630 ± 0.045 0.731 ± 0.006

TD3 0.555 ± 0.097 0.603 ± 0.045 0.688 ± 0.035

SAC 0.598 ± 0.098 0.658 ± 0.028 0.753 ± 0.010

SAC Auto 0.608 ± 0.088 0.655 ± 0.032 0.747 ± 0.019

DET∗ 0.648 0.752 0.713

PROB∗ 0.652 0.765 0.731

TD3∗ 0.644 0.764 0.720

T-RLF (Ours) 0.673 0.772 0.738

three major white matter bundles: PY T,OR, and CC. As presented in Table 2,
all methods are tested on subject 1006 from the TractoInferno dataset (sim-
ilar to [20,21] for fair comparison). For the first and third tabular subparts of
Table 2, the models are trained on ISMRM data. The second subpart does not
involve training (classical methods). These 3 subparts are assessed using whole-
brain tractography and segmentation [16] [20]. Additionally, the last subpart
details the performance of our T-RLF and the TD3 model, where T-RLF was
specifically trained on trajectories derived from the TD3 agent.
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In Table 2, our framework outperforms the state-of-the-art method (PFT)
for PYT and OR tracts, demonstrating its robustness in tract-specific tractog-
raphy. Additionally, T-RLF shows comparable performance to state-of-the-art
RL algorithms for CC tract.

Furthermore, the TD3 agent demonstrates markedly improved performance
within our tract-specific generation framework. Testing of tract-specific TD3 on
the ISMRM or HCP datasets cannot be conducted due to the absence of the
evaluated tracts in these datasets. However, the enhancement in TD3’s perfor-
mance in our tract-specific setting can be attributed to the training approach
rather than dataset consistency. This is evidenced by TD3’s comparable or supe-
rior performance on different tracts across the ISMRM and HCP datasets, as
detailed further in Tables 3, 4.

Moreover, dice scores for DET and PROB improved for all tracts in the tract-
specific setting, especially for CC, where DET increased by 106.67% (0.345 to
0.713) and PROB by 23.89% (0.590 to 0.731). The enhanced tracking perfor-
mance of DET and PROB, despite not being trained, is indicative of the effec-
tiveness of our tract-specific masks. Also, in the whole-brain setting, there is
a huge difference between DET (0.475) and PROB (0.740) scores on the PYT
tract (Table 2), whereas this gap is significantly smaller in the tract-specific set-
ting (marked with ‘*’), where the tract-specific performance of DET∗ (0.752)
and PROB∗ (0.765) align closely with each other and with the T-RLF and TD3
methods. The consistency and stability observed for these classical methods are
attributed to our tract-specific approach.

4.2 Generalization Performance Evaluation

In this section, we present the performance evaluation of our T-RLF model
across three distinct datasets (Tables 3, 4), demonstrating its effectiveness and
generalizability. The averaged results include analyses across five test subjects
in the TractoInferno (TtoI) dataset (id: 1160, 1078, 1159, 1061, and 1171),
four from the HCP dataset (id: 930449, 992774, 959574, and 987983), and
one from the ISMRM dataset. A visual comparison across datasets and sub-
jects is presented in Fig. 4(a). We also compare the performance of T-RLF with
classical algorithms, which were employed using tract-specific masks, and the
tract-specific TD3 agent, from which the training data for T-RLF was derived
(Fig. 4(b)).
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Fig. 4. Visual comparison of reconstructed tracts illustrating (a): Intra-dataset vari-
ability, Inter-dataset variability, and (b): Variability across tracts reconstructed by
different algorithms. The depicted tracts include the left PYT, CG, and a part of CC.
The algorithms evaluated in bottom section of figure are T-RLF (ours), TD3, and PFT.

In Table 3, we see that T-RLF model displays a notable generalization
performance. Interestingly, the classical deterministic (DET) and probabilistic
(PROB) methods exhibit slightly better performance than learnable methods in
some cases (Tables 3,4).

As previously mentioned in Sect. 4.1, the consistency observed in Tables 3,
4 for the classical methods (DET and PROB) is due to our tract-specific app-
roach. This improvement and stabilization may be attributed to the elimination
of premature termination issues in narrow and deep WM regions, as described
in [10], facilitated by the refined spatial exploration enabled by MRM in our
tract-specific approach. It can be observed from Tables 2 and 4, that the per-
formance of PFT declined in the tract-aware setting, dropping from 75% to
66.2% in the PYT and from 82% to 55% in the CC (refer Table 4). This decline
can be attributed to use of Continuous Map Criterion (CMC) as a stopping
criterion for fiber tracking. The CMC terminates fiber tracking based on Par-
tial Volume Estimate (PVE) maps, allowing tractography to continue until the
streamline correctly stops in the gray matter. This approach may generate fibers
beyond our tract-specific masks, leading to increased overreach (see Fig. 4(b))
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Table 3. Performance metrics(in %) for the CG and AF tracts, trained on the TractoIn-
ferno dataset and tested across multiple datasets to evaluate generalization. Tracking is
performed using our proposed tract-specific generation method. A dash (‘-’) indicates
the absence of ground-truth tracts in the corresponding dataset, precluding evaluation.

Dataset Algo. Cingulum (CG) Arcuate Fasciculus (AF)

Left Right Left Right

Dice OvL OvR Dice OvL OvR Dice OvL OvR Dice OvL OvR

HCP T-RLF 53.3 42.5 16.6 45.6 33.7 13.9 61.8 51.2 13.4 41.8 27.9 5.40

TD3 53.0 42.3 16.9 45.2 33.6 14.3 61.6 51.0 13.7 41.6 27.7 5.60

DET 55.2 46.4 21.5 52.6 41.7 16.3 62.8 52.5 14.0 43.9 30.0 6.6

PROB 57.6 51.8 27.9 56.1 45.5 16.6 65.5 57.9 18.3 47.4 33.7 8.6

PFT 67.3 55.2 7.8 59.6 45.4 6.4 71.3 71.9 29.7 69.9 71.6 33.3

TtoI T-RLF 61.0 56.8 28.6 56.5 52.6 34.9 52.7 45.1 27.8 39.5 36.5 49.8

TD3 60.0 55.1 27.3 54.9 49.8 32.4 51.8 44.3 28.2 38.4 34.9 46.9

DET 61.2 58.8 32.3 58.2 54.7 33.7 54.6 46.3 24.7 45.4 41.7 46.9

PROB 67.9 69.1 33.6 64.7 64.6 36.7 62.3 57.2 27.2 50.3 48.3 50.9

PFT 55.9 48.8 25.4 54.5 51.3 38.6 62.8 60.1 31.5 53.9 62.8 88.0

ISMRM T-RLF 54.2 46.6 25.5 52.8 44.1 23.1 - - - - - -

TD3 53.1 44.8 23.7 51.2 41.6 21.1 - - - - - -

DET 57.5 51.9 28.5 57.7 52.4 29.2 - - - - - -

PROB 61.1 59.3 35.1 64.0 65.4 39.0 - - - - - -

PFT 55.4 49.4 28.9 57.3 49.4 22.9 - - - - - -

and consequently lower Dice scores. Furthermore, fibers generated outside the
tracking mask may be erroneous and subsequently filtered or cleaned via FSS,
resulting in a lower OvL score.

Table 4. Results are presented for the left and right parts of PYT and a segment of
CC on the TractoInferno (TtoI) dataset. Tracking for all algorithms is conducted using
our proposed tract-specific generation method.

Dataset Algo. Pyramidal Tract (PYT) Corpus Callosum (CC)

Left Right

Dice OvL OvR Dice OvL OvR Dice OvL OvR

TtoI T-RLF 70.3 64.1 17.2 70.1 63.1 16.9 70.4 71.2 32.6

TD3 69.4 62.5 15.9 69.2 61.4 15.8 68.1 64.8 26.1

DET 72.7 79.3 38.8 70.3 76.2 40.7 70.1 72.6 35.8

PROB 77.6 79.5 25.3 74.8 72.5 21.3 72.6 76.4 36.7

PFT 66.2 55.7 12.4 65.9 57.8 17.4 54.9 51.2 36.1
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Summarization: In summary, our results demonstrate that we surpass super-
vised methods (Table 2). Additionally, we consistently outperform the TD3
model (Tables 2, 3 and 4), which served as the basis for training T-RLF. Notably,
our tract-specific setting not only improves TD3 performance but also the per-
formance of classical methods like DET and PROB compared to the whole-brain
setting. This suggests a promising new direction of data driven policy learning
for tract specific fiber generation in limited ground truth scenarios that can
naturally scale up effectively.

4.3 Ablation Study

We conducted an ablation study to determine the optimal configuration for our
T-RLF model. The evaluation presented in Table 5, identified the best architec-
ture with n heads=1, K=40, and an embedding dimension of d=128. This study
highlights the importance of a larger context in tractography, illustrating how
a broader temporal receptive field can enhance the model’s ability to generate
accurate fiber tracts.

Table 5. Dice scores (in %) averaged over 7 tracts of subject 1006 from TractoInferno
dataset, at different values of T-RLF parameters: number of attention heads (n heads),
context length (K ), and embedding dimension (d). Best score is in bold.

K = 20 K = 30 K = 40

d = 128 d = 512 d = 128 d = 512 d = 128 d = 512

n heads = 1 64.7 65.2 66.2 67.3 68.6 67.6

n heads = 2 63.4 66.3 66.2 67.5 68.0 68.2

We also examined the impact of two key components: Mask Refinement Mod-
ule (MRM) discussed in Sect. 3.1, and the tract-specific policy fine-tuning as
detailed in Sect. 3.3. Table 6 reports the results for the T-RLF network trained
over TractoInferno dataset. We have observed that initial tracking masks led to
a significant overreach (OvR), extending beyond actual region of interest. This
OvR was notably reduced after incorporating MRM, leading to improved Dice
and overlap metrics across all tracts. Furthermore, fine-tuning the network spe-
cific to each tract allowed it to learn better and robust tract-specific diffusion
characteristics, resulting in additional improvements in the performance metrics.
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Table 6. Average performance metrics (in %) obtained using Tract-RLFormer high-
light the impact of the MRM on test subjects from the TractoInferno dataset. The table
also compares the performance of the pre-trained network with the fine-tuned network
post MRM application, illustrating the effect of policy fine-tuning on the same dataset.

Tract Without MRM With MRM

Dice OvL OvR Pre-trained Fine-tuned

Dice OvL OvR Dice OvL OvR

PYT 44.1 30.4 5.6 65.9 55.1 11.8 70.3 67.2 24.7

CG 41.1 45.4 80.3 51.5 45.7 30.3 58.7 54.7 31.7

AF 34.2 34.4 65.1 45.8 39.5 36.1 46.1 40.8 38.8

CC 58.9 59.0 41.9 66.2 59.9 20.8 70.4 71.2 32.6

5 Conclusion

Tractography can be an essential tool in neuroimaging, enabling the detailed
mapping of neural pathways crucial for both clinical and research applications.
Our work significantly advances this field by introducing a data driven Tract-
RLFormer framework which is a tract-specific, transformer-based network inte-
grating supervised and reinforcement learning paradigms. A distinctive feature
of our Tract-RLFormer is its ability to train within the reinforcement learning
experience space, independent of ground truth fibers. The fine-tuning stage of
our model focuses and refines its capabilities in generating the tracts of inter-
est. This approach demonstrates its excellent generalization performance across
various datasets as well as scalability. Our data-driven approach has the poten-
tial to utilize data from any reinforcement learning agents trained in diverse
neuroimaging environments. Moreover, our innovative tract-specific modeling
approach simplifies the reconstruction process by directly generating the target
tract, thus avoiding the complex and error-prone segmentation step.
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Abstract. Generalizing deep learning for all requires individual self-
assessment. However, the quality of ground-truth labels depends on the
annotators’ self-awareness. Real-world datasets inevitably experience the
Concept Shift problem. Recent advances in Out-of-distribution (OOD)
detection have received much attention due to its ability to alleviate
distribution shift problems by distinguishing between anomalous and in-
distribution(ID) data samples. Existing approaches underlie pre-trained
ID models learned with class-balanced data. However, this assumption
makes the methods incapable when the ID models are trained with inter-
and intra-class variance depending on user characteristics, such as gen-
der, culture, and genetics. We present an OOD detection framework.
Our system builds a generalized ID model by extracting high-quality
data from high-dimensional neural activities considering individuals’ cog-
nitive and perceptional ability to evaluate self-assessments. The pro-
posed system detects and removes abnormal pairs of data and labels
to enhance model performance by considering the maximum softmax
probability approach. Experimental results on public EEG datasets in
emotion recognition demonstrate the superiority of our method despite
the non-stationary nature of EEG signals. The codes are available at
https://github.com/affctivai/coglier.

Keywords: Concept Shift · EEG · Emotion · Labeling · Self-awareness

1 Introduction

The development of reliable deep learning-based machine systems has garnered
increasing attention. This development necessitates the ability to generalize
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Fig. 1. Concept Shift under Different Levels of Self-awareness on Emotion Labeling. (a)
Neurophysiological signals (X) objectively reflect human cognitive states, representing
individual levels of labeling (Y ) awareness. (b) Human-annotated datasets inevitably
experience Concept Shift (Ptrain(Y |X) �= Ptest(Y |X)) due to the inherent ability in
individual cognition and perception to understand and categorize their environment.

their predictive capabilities to new data, which often includes both known and
unknown classes, in real-world scenario [11,15]. While deep learning models
have increased such capability with high performance in various applications,
they tend to be overconfident in the unknown classes [18]. These overconfident
behaviors by confusing known and unknown classes affect the model generaliza-
tion adversely in real-world environments.

In light of the recent success in out-of-distribution (OOD) detection with deep
neural networks, several inference-time or post-hoc methods have been proposed
to identify unknown classes while correctly classifying known ones [25]. Current
methods learn in-distribution (ID) data to recognize OOD data, adopting the
open-world assumption, in which test samples can be OOD drawn from either
different classes or a different domain [25]. The assumption can be formulated
as Distribution Shift, which occurs when the joint distribution at training is not
equal to that at testing; that is, Ptrain(X,Y ) �= Ptest(X,Y ). Existing approaches
underlie pre-trained ID models trained with class-balanced data for the model
generalization. However, this assumption makes the above methods incapable
when their ID model is trained with inter- and intra-class variance [12]. Unfor-
tunately, this incapability is natural in real-world applications that require indi-
vidual self-assessment [4,17]. Carrying out precise self-assessment, such as data
labeling, is almost impossible in such scenarios. Human annotation on extensive
data is too costly. Moreover, the quality of ground-truth labels depends on the
annotators’ level of self-awareness [10,24]. Recent advances in wearable tech-
nologies enable the record of neurophysiological activity patterns, which vary
depending on the characteristics of the users, such as gender, culture, and genet-
ics, in the wild [20]. Neurophysiological signals objectively reflect human cogni-
tive and emotional states in response to the human body’s central nervous system
(CNS) and autonomic nervous system (ANS). Among the signals, recent studies
have increasingly utilized EEG as inputs (X) to investigate cognition-emotion
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Fig. 2. Overview of the Proposed Framework. The removal process of data correspond-
ing to Out-of-Distribution (OOD) is added. (1) A model is trained and evaluated for
each subject, followed by an accuracy distribution analysis. Subjects are then cate-
gorized into High/Low Groups based on Top-K%. (2) High Group data are shuffled
(subject-independent) to train the OOD Detection Model (ODM). The detection per-
formance of ODM is evaluated with paired ‘High Group’s testing data’ and ‘Low Group
data.’ (3) Training data is filtered through the pre-trained ODM to obtain MSP. Sam-
ples with MSP above a threshold (T ) are classified as In-Distribution (ID), and an ID
Model is trained accordingly. Otherwise, the samples are considered as OOD data to
be removed.

interactions by analyzing high-dimensional neural activities in the brain. [14].
Since data labeling (Y ) is a primary cognitive process, the signals (X) represent
individual levels of labeling awareness, which in turn have a decisive effect on
the quality of labels (Fig. 1).

Hence, real-world datasets inevitably experience the Concept Shift prob-
lem, which occurs when Ptrain(Y |X) �= Ptest(Y |X) [25]. Particularly, building
emotion-aware systems suffers from inter- and intra-subject variability problems
in detecting emotional changes due to the inherent ability in individual cogni-
tion and perception to understand and categorize their environment [23]. The
main challenge is that one needs to detect individual levels of labeling awareness,
which causes Concept Shift. Besides, whereas most OOD research is based on
well-curated data in computer vision and natural language processing, other non-
visual modalities have inherent difficulties in visualization and interpretation for
user-curated ID data collection [9].

To solve the above problem, we propose an OOD detection framework in
emotion recognition (Fig. 2). Our system builds a generalized ID model by
extracting high-quality of subject-wise data from high-dimensional neural activ-
ities considering individuals’ cognitive and perceptional ability to evaluate
self-assessments. The proposed system detects and removes abnormal pairs of
data and labels to alleviate the Concept Shift problem by considering the max-
imum softmax probability (MSP) approach from the output layer of a deep
learning model as a confidence measure to refine the dataset [8].

We conduct extensive experiments to show the effectiveness of the proposed
system. Experimental results on public EEG datasets in emotion recognition



Concept Shifts Detection on Emotion Labeling 279

Fig. 3. Density plots showing the accuracy distributions for SEED, SEED-IV, and
GAMEEMO datasets. The right-skewed distributions with long left tails show that
most subjects had high accuracy, with a few having significantly lower accuracy.

demonstrate the superiority of our method for learning discriminative ID fea-
tures of EEG signals despite their non-stationary nature. Furthermore, we inves-
tigate the difference between the ID and OOD identified by the proposed model
based on topological distributions. This approach provides neuroscientific evi-
dence that people with low cognitive levels correlate highly to provide abnormal
data and label pairs. The analysis gives subject-independent insights, paving the
way for enhanced emotion recognition systems by serving as a high-level outlier
removal technique for supervised learning.

2 Methodology

Data labeling is a primary cognitive process that allows individuals to under-
stand and categorize their environment. However, the labels assigned to the
data can be inconsistent due to biased judgments or subjective interpretations.
This inconsistency in data distribution across users leads to a 10–20% decrease
in performance for subject-independent models compared to subject-dependent
ones [14]. Motivated by the inconsistency, we make the following assumptions:

– Concept Shift occurs when irregular data and label distributions are present.
– People with low cognitive levels provide abnormal pairs of data and labels.
– Subject-dependent models would perform worse when those with lower cog-

nitive levels conduct data labeling.

High- and Low-cognitive ability to evaluate self-assessments. Under
the assumptions, we consolidate cross-subject data samples in ID from subject-
dependent data, dividing them into two levels on the basis of self-awareness on
labeling. While common studies have treated heterogeneous datasets as ID and
OOD, we aim to separate the two distributions from subject-dependent datasets:
one with High Label-Reliability (High Group) and another with Low Label-
Reliability (Low Group).

Top-K Subject-Adaptive OOD Detection. The variability in accuracy
between subjects is a characteristic feature of users’ involved real-world appli-
cations. Besides, it can also be attributed to Concept Shift in the context of
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supervised learning. Top-K% subject-dependent models sorted by their accu-
racies in descending order are selected. All data samples associated with the
selected models are grouped in the High Group, otherwise grouped in the Low
Group. Hence, the two groups are subject-independent and disjoint. We des-
ignate the Top 85% (Q85), underlying a 10–20% decrease in performance for
subject-independent systems compared to subject-dependent ones. Furthermore,
our observation across various datasets and models suggested the value as a rea-
sonable guideline (Fig. 3), although not fixed because of inter- and intra-subject
variability. That is, the criterion is not strictly fixed at 85%; it can be adjusted by
1–2 subjects based on the distribution in Fig. 3, at the experimenter’s discretion.

Detecting and Removing OOD Data. To generalize further, we attribute
the degradation in model performance to broken correlations between X (data)
and Y (label) and aim to apply the OOD detection methods described. Thus, our
core premise is that the database contains non-corresponding (abnormal) data-
label pairs, and identifying and eliminating these as OOD will likely enhance the
classification performance.

Typically, OOD detection is done in an inference process using the confidence
score of the model—as intuitively expected, higher confidence tends to be ID, and
lower confidence tends to be OOD. The proposed method leverages this for detect-
ing and removing OOD data samples using the MSP with the threshold T . If MSP
< T , our framework detects the sample as an outlier, which should be removed.
Our framework computes the MSP by OOD detection model trained from the
subject-independent High Group. It should be noted that High Group data is used
for training, validation, and evaluation while the Low Group data is used for eval-
uation only. The proposed framework is summarized in Algorithm 1.

3 EXPERIMENTS

3.1 Datasets and Data Preprocessing

In this study, we evaluated our framework for EEG-based emotion classification
tasks with three public EEG datasets.

– SEED [28] contains EEG signals induced from 45 maximum 4-minute video
clips, eliciting three emotions (positive, negative, and neutral). Fifteen sub-
jects participated in 45 trials over three sessions, resulting in 675 data sam-
ples. In each trial, the subjects watched a single video, and EEG signals were
collected using a 62-channel ESI NeuroScan System. The EEG signals were
filtered between 1 ∼ 75 Hz, and the sampling frequency was 200 Hz. A sliding
window method was applied with a window size of 400(= 2 s × 200), resulting
in a final dataset of 152,055 samples.

– SEED-IV [27] contains 64-channeled EEG signals recorded by the same equip-
ment as SEED. Fifteen participants watched 72 maximum 2-minute video
clips, reporting their emotions among four categories (happiness, sadness,
fear, and neutral). They participated in a total of 72 trials over three ses-
sions, resulting in a total of 1,080 data samples. EEG signals were filtered
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between 1 ∼ 75 Hz, and the sampling frequency was 200 Hz. A sliding win-
dow of 400 (= 2 s × 200) was applied, resulting in a final dataset size of
150,765 samples.

– GAMEEMO [1] is an EEG dataset obtained by playing games of four gen-
res (boring, calm, horror, funny) for 5 min each, totaling 20 min of EEG
data. Twenty-eight participants evaluated their emotions, annotating discrete
valence and arousal ratings on scales from 1 to 9 using the Self-Assessment
Manikin (SAM) assessment tool [16]. Valence represents the degree of posi-
tivity or negativity, and arousal indicates the level of emotional activation,

Algorithm 1: Top-K Subject-Adaptive OOD Detection Framework
Input: Data for each subject i: Dsubi

= {(X, y)}, where y ∈ {1, 2, . . . , C}
Output: Dtrain

ID ,Dtrain
OOD, θODM, θID

Initialization: Split data Dsubi
into Dtrain

subi
and Dtest

subi
for all

i = 1, 2, . . . , N

1. Subject-dependent Evaluation
for each subject i = 1, 2, . . . , N do

Train and evaluate with parameter θi
Sort accuracies {acc1, acc2, . . . , accN}, set k to the index of Q85

Divide into: High Group {acc1, . . . , acck−1} and Low Group
{acck, . . . , accN}
2. OOD Detection Model (ODM) Training
Train ODM using Dtrain

High = {Dtrain
sub1

,Dtrain
sub2

, . . . , Dtrain
subk−1

} to obtain θODM

Evaluate ODM using Dtrain
Low = {Dtrain

subk
,Dtrain

subk+1
, . . . , Dtrain

subN
}

3. Data Refinement
for each (X, y) ∈ Dtrain do

Calculate MSP:

MSP = max

(
ezX,j∑C
j=1 ezX,j

)

if MSP ≥ threshold then
Add (X, y) to Dtrain

ID

else
Add (X, y) to Dtrain

OOD

return Dtrain
ID ,Dtrain

OOD

4. ID Model
Train the ID Model using Dtrain

ID to obtain θID
for each (X, y) ∈ Dtest do

Calculate MSP using θODM

if MSP ≥ threshold then
Evaluate (X, y) using θID
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with higher values indicating more positive emotions and higher arousal lev-
els. EEG signals acquired through 14-channel EMOTIV EPOC+ were filtered
from 0.16 to 43 Hz, with a sampling frequency of 128 Hz. By applying a slid-
ing window of 256 (= 2 s × 128) with an overlap of 128, the final dataset size
was 33,264 samples.

Each dataset was divided into training data (90%) and test data (10%) within
each subject, with 10% of the training data used for validation. For ODM train-
ing, the High Group data was split 9:1, with the smaller portion used for ODM
detection performance.

3.2 Baselines and Model Comparisons

Three deep learning models were employed for generality: CCNN [26] and TScep-
tion [7], both based on convolutional neural networks (CNNs), and the graph-
based Dynamic Graph Convolutional Neural Network (DGCNN) [22]. We fur-
ther compared the model performance in outlier detection with the Riemannian
Potato (RP) method, a multivariate adaptive method for identifying artifacts in
continuous data [3]. The principle of the RP is to represent clean signals by
estimating a reference and a measure of dispersion (z-score) for each epoch.

3.3 Experimental Setup

EEG Feature Extraction We used two widely used EEG features: Differential
Entropy (DE) and Power Spectral Density (PSD) [2]. DE divides EEG signals
into four frequency bands (theta (4 ∼ 7 Hz), alpha (8 ∼ 13 Hz), beta (14 ∼
31 Hz), and gamma (32 ∼ 49 Hz) and calculates the differential entropy for each
band. Extracted DE features are transformed into a grid (9 × 9) array to match
the electrode locations and channels. This grid transformation was performed to
accommodate deep learning models that consider channel locations. PSD divides
EEG signals into the same four frequency bands as DE and calculates PSD for
each band. Extracted PSD features are log-transformed and transformed into a 9
× 9 grid array as input for the model. We also standardized EEG raw signals for
deep learning models with feature extraction layers.

Network Configuration and Parameter Settings. In all stages of the
experiments, the loss function was Cross-Entropy Loss, the optimization algo-
rithm was Adam optimizer, and the learning scheduler applied was Cosine
Annealing Warmup Restarts. The batch size was 64. The maximum learning
rate (LR) was set to 10−4 for CCNN and 10−3 for TSception and DGCNN. The
dropout rate was set to 0.5 for CCNN and TSception. Model parameters were
determined when the validation loss converged during training processes.

4 Results

Table 1 reports the comparative performance of the proposed framework on the
three datasets. Intuitively, all methods combined with ours have an average
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accuracy improvement of 2.98%, with the most significant gain of 6.7% over the
methods without the proposed OOD detection. This result confirms that our
approach is universal and can be applied to various deep-learning methods for
building a subject-independent ID model, alleviating the Concept Shift problem.
We analyze and visualize neural activities with the results from the CCNN-DE
method in Sect. 5.4 to further support our claim since they recorded the highest
accuracy and AUROC across all datasets. As reported in Table 2, the proposed
ODM model consistently recognized different emotions represented by DE fea-
tures well in both sensitivity and specificity. This result indicates that the better
the ODM discriminates data samples between High and Low Groups, the higher

Table 1. Classification Accuracy/AUROC of Baseline, RP, and Ours. Three thresholds
(T ) were performed per model, and Removal Rate (RR) is the percentage of data
removed.

SEED SEED-IV GAMEEMO
Model RR Emotion(3) RR Emotion(4) RR Valence(9) RR Arousal(9)

TSception Baseline - 91.33 / 93.48 - 79.18 / 85.86 - 87.94 / 93.26 - 88.96 / 93.84
RP = 1.5 45.7 93.47 / 95.10 30.1 84.71 / 89.80 13.7 89.22 / 93.93 13.7 88.99 / 93.94
RP = 2.5 10.6 93.10 / 94.81 11.6 83.64 / 89.07 1.5 88.78 / 93.67 1.5 89.48 / 94.10
T = .65 5.9 91.91 / 93.93 25.2 80.33 / 86.63 9.3 90.14 / 94.30 8.1 90.73 / 94.85
T = .70 7.7 92.86 / 94.64 30.7 80.16 / 86.66 12.0 88.27 / 93.45 10.7 91.03 / 94.94
T = .80 9.7 92.55 / 94.40 36.7 81.07 / 87.25 18.3 90.82 / 94.76 15.8 90.27 / 94.57

CCNN
-PSD

Baseline - 84.92 / 88.66 - 67.76 / 78.66 - 73.74 / 84.67 - 74.01 / 85.46

RP = 1.5 45.7 84.18 / 88.11 30.1 67.11 / 78.09 13.7 76.83 / 86.78 13.7 74.02 / 85.61
RP = 2.5 10.6 84.36 / 88.26 11.6 66.96 / 78.14 1.5 73.48 / 84.89 1.5 73.46 / 85.40
T = .50 2.0 85.68 / 89.23 15.5 70.56 / 80.33 9.5 75.85 / 85.64 12.9 75.61 / 86.33
T = .55 5.5 84.82 / 88.60 23.3 71.47 / 80.97 14.4 76.56 / 86.26 19.0 76.44 / 86.85
T = .60 9.2 86.82 / 90.03 30.2 72.07 / 81.30 19.7 77.35 / 87.12 24.6 76.58 / 86.99

CCNN
-DE

Baseline - 97.48 / 98.11 - 92.25 / 94.86 - 91.18 / 94.69 - 90.40 / 94.42

RP = 1.5 45.7 96.83 / 97.62 30.1 92.72 / 95.14 13.7 92.35 / 95.50 13.7 90.73 / 94.81
RP = 2.5 10.6 97.66 / 98.24 11.6 93.60 / 95.75 1.5 91.31 / 94.92 1.5 91.50 / 95.20
T = .85 7.3 97.92 / 98.44 13.1 93.80 / 95.89 20.1 94.48 / 96.60 14.7 93.17 / 96.08
T = .90 9.3 98.11 / 98.57 16.0 93.89 / 96.03 24.9 95.57 / 97.30 18.3 93.76 / 96.63
T = .95 12.2 98.39 / 98.79 21.1 94.72 / 96.50 32.4 96.14 / 97.72 23.9 94.48 / 97.03

DGCNN
-PSD

Baseline - 83.60 / 87.66 - 65.94 / 77.31 - 70.86 / 83.40 - 69.75 / 82.96

RP = 1.5 45.7 82.83 / 87.10 30.1 65.60 / 77.04 13.7 72.14 / 83.31 13.7 72.27 / 84.58
RP = 2.5 10.6 82.77 / 87.06 11.6 66.50 / 77.65 1.5 70.92 / 83.57 1.5 70.03 / 83.26
T = .50 19.9 87.37 / 90.38 16.8 68.86 / 79.35 15.0 73.31 / 84.46 11.6 73.48 / 85.13
T = .55 25.0 87.76 / 90.70 24.5 69.43 / 79.78 21.7 75.29 / 86.02 17.8 74.54 / 85.88
T = .60 30.4 88.97 / 91.43 31.6 70.24 / 80.08 27.7 76.08 / 86.13 23.5 74.54 / 85.77

DGCNN
-DE

Baseline - 96.09 / 97.06 - 88.69 / 92.52 - 86.76 / 92.49 - 87.94 / 93.34

RP = 1.5 45.7 95.59 / 96.68 30.1 89.08 / 92.71 13.7 89.50 / 93.93 13.7 88.44 / 93.40
RP = 2.5 10.6 96.53 / 97.26 11.6 89.84 / 93.27 1.5 86.38 / 91.97 1.5 87.65 / 92.99
T = .85 7.2 97.17 / 97.87 17.7 91.58 / 94.40 18.0 91.55 / 95.05 18.7 90.70 / 94.90
T = .90 9.0 97.18 / 97.88 21.9 92.10 / 94.74 21.6 91.35 / 94.72 23.6 91.83 / 95.61
T = .95 12.2 97.72 / 98.28 28.9 92.73 / 95.15 27.8 93.43 / 95.80 29.7 92.79 / 95.98
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Table 2. OOD Detection Model (ODM) Performance: Sensitivity/Specificity for High
and Low Groups.

Methods SEED SEED-IV GAMEEMO
Valence Arousal

TSception 0.92 / 0.12 0.65 / 0.39 0.83 / 0.36 0.92 / 0.21
CCNN PSD0.93 / 0.14 0.74 / 0.43 0.85 / 0.36 0.79 / 0.41

DE 0.95 / 0.29 0.89 / 0.39 0.75 / 0.67 0.81 / 0.52
DGCNN PSD0.73 / 0.42 0.73 / 0.43 0.77 / 0.43 0.84 / 0.32

DE 0.93 / 0.25 0.78 / 0.50 0.79 / 0.57 0.72 / 0.52

the gain in classification accuracy. RP with TSception outperformed our model
in SEED and SEED-IV, showing a decrease of 0.7% and 3.1%, respectively. This
observation partially supports the efficacy of detecting outliers at an abnormal
distance from the X distribution without considering the Y distribution. How-
ever, the model had decrements in performance by about 2.82% compared with
ours when experimented on the GAMEEMO dataset. The RP model could not
prevail over the intra- and inter-subject variability in light of the imbalanced data
distribution.

The results on GAMEEMO demonstrate the superiority of the proposed
framework on unbalanced datasets. While T increased, the proposed frame-
work enabled all models to have consistent increments up to 2.7% across all
datasets, whereas the RP model did not. This result implies that our strategy
provides more efficient structures to detect abnormal samples that may cause
Concept Shift and prevent models from collapsing due to low SNR by remov-
ing the samples.

5 Discussion

5.1 Effect of the Hyper-Parameters.

Since the parameter T is a model’s confidence score, its variables determine
the amount of outliers. As shown in Fig. 4, as many outliers were detected and
removed, the model exhibits a steeper curve than the RP model. The proposed
model takes less training time for the same number of iterations and reaches
better accuracy faster1. As reported in Table 1, whereas the RP method limits
improvement of the accuracies to less than 1%, our framework enables an increase
in performance up to 2%. This observation implies that our framework strategy
provides more efficient structures to achieve a high signal-to-noise ratio.

1 Xeon-Gold 6330 CPU, 256GB RAM, A6000 GPU.
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Fig. 4. Convergence curves of validation loss and accuracies on the GAMEEMO-(a)
Valence and -(b) Arousal datasets during training.

Fig. 5. Distribution of MSP corresponding to High and Low Groups in GAMEEMO-
valence dataset.

5.2 OOD Detection Performance and MSP Distribution.

In classification problems, ID and OOD classes are generally separated. ID data
belongs to specific class labels, while OOD data does not. This separation helps
the model maintain its classification performance on ID while accurately identi-
fying OOD data. However, in this study, ID and OOD are set within the same
dataset, leading to overlapping distributions. Consequently, our ODM’s perfor-
mance is lower than typical OOD detection benchmarks due to the overlapping
MSP distribution seen in Fig. 5. For the same reason, increasing T also increases
the OOD Removal Rate (RR).

5.3 ODM’s Impact on Individual and Group-Level Accuracy

Figure 6 depicts the ratio of ID and OOD data (on the left) and the corresponding
test results (on the right) for each subject in the GAMEEMO dataset, catego-
rized by arousal (a) and valence (b) labels, using the CCNN-DE method (the left
column corresponds to T = 0.95). As expected, individuals in the Low Group
generally experienced a decrease in accuracy, likely due to the reduced data
sample resulting from the exclusion of Low Group data during the ODM con-
struction. However, there were notable exceptions. For example, subject 8 in
GAMEEMO-arousal achieved higher accuracy than the baseline, despite having
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Fig. 6. Left shows the ratio of ID/OOD samples per subject (bold indicates Low Group)
and Right shows subject-group accuracies for Baseline and Ours in GAMEEMO-(a)
Arousal and -(b) Valence datasets.

the second-largest amount of OOD data removal (Fig. 6 (a)). Similarly, sub-
jects 8, 25, and 28 in GAMEEMO-valence also exhibited increased accuracy,
even though they were assigned to the Low Group (Fig. 6 (b)). On the other
hand, subjects 16, 21, and 2 in GAMEEMO-valence were in the High Group but
had many samples removed. Surprisingly, these individuals showed a notewor-
thy increase in individual accuracy. These observations suggest that our ODM
effectively captured the subject-invariant characteristics of the High Group and
contributed to building a robust classification model by eliminating inappropri-
ate samples.

5.4 Qualitative and Statistical Analysis on Neural Patterns

To gain deeper insights into the OOD characteristics under Concept Shift, we
provide neuroscientific mechanisms by employing EEG data analysis and visual-
ization. Through these analyses, we aim to discern and elucidate the distinctions
in neural patterns between the ID and OOD data groups, shedding light on the
underlying essence of OOD data and its impact on Concept Shift. Throughout
this section, we primarily leverage data from the CCNN model with DE features
(T = 0.95) as it consistently yields the best results across all datasets.

Figure 7 depicts the comparative topographic map of DE between the ID and
OOD data, specifically for the affective label with the highest percentage of OOD
data in the GAMEEMO dataset. DE values from all ID and OOD data channels
within the same frequency band were normalized to fall within the range of (0, 1).
Statistical analyses were also conducted through t-tests to assess the differences
in DE values between these two groups across all channels. The resulting p-
values are displayed in the last row of each subfigure. Within the GAMEEMO
dataset, the arousal label of 4 (depicted in Fig. 7 (a)) and the valence label
of 1 (shown in Fig. 7 (b)) exhibit the highest OOD percentages at 24% and
49%, respectively. In the SEED (Fig. 7 (c) and SEED-IV (Fig. 7 (d)) datasets,
the highest OOD percentages are observed in the affective labels “Positive”



Concept Shifts Detection on Emotion Labeling 287

Fig. 7. Topographic map of differential entropy values in four frequency bands for ID
and OOD data of (a) GAMEEMO dataset with arousal label of 4, (b) GAMEEMO
dataset with valence label of 1, (c) SEED dataset with “Positive” label, and (d) SEED-
IV dataset with “Sad” label.

(9.1%) and “Sad” (17%), respectively, but with only marginal differences in
OOD percentages among the other classes.

For the GAMEEMO dataset, an arousal label of 4 on a scale of 1 to 9 typically
represents a neutral affective state characterized by normal activity across all
frequency bands. However, upon closer examination, OOD data exhibit notable
distinctions. These differences manifest as significantly heightened activity in the
frontal region, particularly in the theta band, as well as in both the frontal
and occipital regions, along with the right temporal region in the alpha band.
Notably, both the theta and alpha band dominances are typically associated
with relaxed or low arousal states [19], presenting a perplexing contrast with
the expected neutral state. In contrast, ID data showcase elevated beta and
gamma activity, indicating a higher level of arousal compared to OOD data.
These intriguing observations suggest that OOD data exhibit a lower level of
arousal than the ID data, supporting the hypothesis that challenges posed by
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Concept Shift may, in part, arise from inaccuracies in self-assessments of emo-
tional labels.

For the valence label of 1 in the GAMEEMO dataset (Fig. 7 (b)), OOD data
consistently exhibit heightened activity in the left frontal region across all fre-
quency bands, while ID data demonstrate increased activity in the right frontal
region, particularly in the alpha and beta bands. This intriguing contrast aligns
with the notion that negative emotions (low valence) tend to manifest as higher
activity in the right hemisphere according to the well-established hemispheric
valence theory [21]. Additionally, OOD data reveal significantly higher activity
in the right temporal and parietal areas across the theta, alpha, and beta bands.
In contrast, ID data display elevated activity in the left temporal and parietal
regions, particularly in the alpha, beta, and gamma bands.

In Fig. 7 (c), a similar pattern in the distribution of DE across the scalp is
observed in the “Positive” data of the SEED dataset for both ID and OOD data.
Positive emotions are typically associated with higher activity in the left hemi-
sphere [21], a pattern evident across all frequency bands in both ID and OOD
groups. However, results from t-tests reveal significant differences between the
two groups in several scalp regions across all frequency bands. These findings
suggest that while the neural patterns in both ID and OOD data align with the
expected pattern for “Positive” emotions, the OOD data exhibit distinct details
that significantly differ from the ID data. One plausible explanation for this phe-
nomenon is that the affective labels in the SEED dataset primarily account for
the valence aspect of affective states, encompassing only “Negative”, “Neutral”,
and “Positive” emotions, while omitting considerations of arousal levels. Conse-
quently, the OOD data within the ‘Positive’ class may represent instances with
varying arousal levels compared to the norm established by the ID data.

The distributions of DE across the scalp in the “Sad” data of SEED-IV
dataset are shown in Fig. 7 (d). “Sad” emotion, which encompass both medium-
to-low arousal and low valence, are theoretically associated with high activity
in the lower frequency bands and a greater involvement of the right hemisphere
[6]. From the figure, higher activity in the right temporal lobe can be observed
for both ID and OOD data. OOD data consistently exhibit significantly higher
activity in the theta and alpha band than the ID data, suggesting a potential
tendency toward lower arousal levels. In contrast, ID data showcase heightened
gamma band activity, indicating a higher level of arousal [13]. This situation
parallels the issue observed in the SEED dataset, where the discrete emotion
approach [5] is used to describe affective states. While the SEED-IV dataset
includes the label “fear”, which theoretically associates with high arousal and
low valence, it lacks affective labels that pertain to a wide range of emotional
spectrum.

As a culmination of our analysis, two critical insights emerge regarding the
OOD data challenge within the Concept Shift problem. Firstly, our observa-
tions indicate that OOD data might arise due to inaccuracies in self-assessments
of affective states. These findings underscore that, despite sharing the same
affective state label, OOD data can exhibit varying degrees of specific neural
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activation, highlighting the nuanced nature of emotional experiences. Secondly,
the challenge is exacerbated by the use of the discrete emotion approach to label
affective states, particularly when the number of labels is limited. This concern is
evident in both the SEED and SEED-IV datasets, where affective state labels fail
to encompass the full spectrum of human emotions. Consequently, neural and
data patterns within the same class may vary significantly, reflecting the intri-
cate and multifaceted nature of the cognitive processes underlying emotions.
These insights reveal the complexity of addressing the OOD data challenge and
emphasize the need for more precise and comprehensive approaches to affective
state labeling in the field of affective computing research.

6 Conclusion

Our proposed framework improved classification accuracy in public datasets,
addressing Concept Shift issues due to unreliable self-assessments in EEG-based
emotion classification through OOD detection. We introduced a unique solution
that leverages overlooked inter-subject variability by categorizing subjects into
High and Low Groups based on the Top-K results of subject-dependent. This
approach is beneficial for datasets where human labeling is unreliable due to
inherent ability in individual cognition and perception. Our findings emphasize
the need to consider OOD during data collection if its distribution can differ
by user characteristics, advocating for recording latent variables to refine data
and improve model performance. While we focused on optimizing the model for
the majority of subjects, we have laid the groundwork for developing tailored
enhancement plans for the few low-performing subjects. This approach ensures
that we can address the specific challenges faced by these individuals in future
work.
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wolfgang.fuhl@uni-tuebingen.de

Abstract. Scanpath classification is an area in eye tracking research
with possible applications in medicine, manufacturing as well as training
systems for students in various domains. In this paper we propose a train-
able feature extraction module for deep neural networks. The purpose
of this module is to transform a scanpath into a feature vector which is
directly useable for the deep neural network architecture. Based on the
backpropagated error of the deep neural network, the feature extraction
module adapts its parameters to improve the classification performance.
Therefore, our feature extraction module is jointly trainable with the
deep neural network. The motivation to this feature extraction module
is based on classical histogram-based approaches which usually compute
distributions over a scanpath. We evaluated our module on three public
datasets and compared it to the state of the art approaches.

Keywords: Neural Network · Deep Neural Network · Modul ·
Saccade · Classification · Scanpath classification

1 Introduction

Our eye movements reveal more than just what we see. They also show how
our brain and senses work together. By looking at the sequence and duration
of eye fixations and jumps, called the scanpath, we can learn how we process
information. In different fields, eye tracking studies have discovered patterns in
eye movements. These patterns can distinguish between different types of people
(e.g., beginners and experts), or different situations, such as the task given to a
person. For example in art, eye movement differences have been observed between
professional and novice art viewers for both realistic and abstract art [46]. More-
over, top-down expectations and bottom-up visual features can influence the eye
movements on artworks [33,35]. Similarly in the medical field, scanpath differ-
ences can indicate the professional and the treatment factors. Scanpath differ-
ences between beginners and experts have been reported in microneurosurgeons
[14,31] and radiologists [22,34]. It was also found that dental students who took
a specific radiography training course could be correctly identified from their
scanpaths.
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Fig. 1. The forward and backward pass of the proposed feature extractor module.

Regarding the treatment factor, eye movement differences from healthy con-
trols have been observed in both patients with schizophrenia [26] and autism
spectrum disorder [36,42]. Therefore, scanpaths can potentially be used for
more precise training, diagnosis, and treatment methods. In driving, scanpaths
have been applied to reliably assess safe or unsafe driving in people with visual
impairments [31]. Moreover, they can be utilized in driver assistance systems
to signal the take-over readiness [41] or cognitive load [30], and fatigue [44].
Notably, most of the studies above focus on finding statistically significant dif-
ferences in single scanpath measures. Hence, there is a large and ever increas-
ing body of scanpath comparison and classification methodology: From simple
statistics to state-of-the-art machine learning [7].

In this paper we propose a novel deep neural network layer for scanpath
classification which is inspired by the approach from [19]. Our approach is not
dependent on generated or predefined areas of interest and works on the gaze
samples directly. We reformulated the angle and angle range approach from [19]
in a way that it is trainable by the backpropagation algorithm. This means
that our novel layer for deep neural networks is jointly trainable and works as a
feature extraction module in front of the classification part, which is usually a
fully connected stage.

In short, our contributions are:

– A novel feature extraction layer for deep neural networks.
– Integration of the angle and angle range approach into the backpropagation

algorithm.
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– Evaluations on multiple public datasets and comparison to the state of the
art approaches.

2 Related Work

In the 1990 s, the initial proposal of automated metrics took place [5]. Since then,
there has been a significant evolution in the methodology for automated scan-
path comparison [2]. Recently, machine-learning based approaches have emerged,
showing impressive results [10,16,27,47]. These approaches are capable of dis-
tinguishing relevant eye movement patterns from high levels of noise. However,
there is still an ongoing debate regarding how to efficiently encode eye move-
ment trajectories for machine learning purposes. Some algorithms heavily rely
on time-aggregated features or complete-sequence alignment, while others focus
on gaze transitions (i.e., the shift of gaze between two targets, also known as a
saccade) as a popular feature [6,11,12,27]. This strategy allows for the modeling
of cognitive associations between gaze targets. Hidden Markov Models (HMMs)
remained long the most common approach [9,24], but there are also other meth-
ods that extend these patterns to span multiple subsequent fixations and sac-
cades. Identifying patterns in longer sequences is particularly important, as these
patterns can be more specific to a task or subject group, making them highly
useful for classification [31].

A CNN related to autism spectrum disorder used fixation maps from the
entire scanpath as input [15]. Multiple deep learning models for schizophrenia
and task classification also used heatmaps as input [29,43]. To include temporal
information, CNN-LSTM networks classified autism spectrum disorder using
scanpath-based patches from a saliency map [39]. [15] used gaze snapshots based
on group attention at time intervals as input for an autoencoder. These attention
map methods often apply techniques like Gaussian blurring to the raw data.
Other methods use different scanpath image creations for classifications, such
as Markov random fields [45], object detection based [40], input image patch
based [8], and principle component based [32].

Creating images from the raw scanpath data is another representation option.
This approach preserves potentially relevant information for the model that pre-
processing could remove. [38] used scanpath images from the raw gaze for the
entire duration and for five second intervals as input for an RNN to classify con-
fusion. [1] used scanpath images by connecting saccades and weighting them by
the fixation densities with a CNN. A generative model for scanpath classifica-
tion that converted gaze data into emojis was proposed in [17]. It encodes gaze
data as a compact image with the red, green, and blue channels representing
the spatial, temporal, and connectivity which is than fed to a deep neural net-
work. [3,4,7] explored different scanpath representations for classification. They
used temporal coloring for saccade velocities or symbols for different fixation
durations.
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3 Method

Figure 1 shows the workflow of the proposed approach, which is inspired by
the random ferns used in [19]. In the forward pass, our layer gets the entire
sequence and checks a series of inter-sample angles and angle ranges. Based
on these checks, a histogram index is selected and increased. Each bin in this
histogram corresponds to an angle and an angle range (Fig. 1 central histogram).
If the angle between two samples falls into this angle range, centered around
the base angle, the bin is increased. The final histograms are given to a classifier,
which is, in our case, a residual neural network with convolutions. This part of
our approach is similar to what was done in the original paper with balanced
decision trees, also known as random ferns [19] without the residual network
as a classifier. The interesting part and the main contribution of our method
is the backward pass. Here, we propagate the gradient back to each histogram
bin. Based on the sign of the gradient, we either increase or decrease the angle
range. In the following, we will describe our module and its integration into the
backpropagation algorithm in detail.

Algorithm 1. The algorithmic description of the forward pass for the proposed
module. First, we set the histograms to zero. Afterward, all angle and angle
range checks are applied to the entire sequence. Based on these checks, an index
for the current histogram that belongs to a set of angles and angle ranges is
computed. With this index, a histogram bin is increased, and in the end, each
histogram is normalized.
1: procedure ForwardPass(sequence, anglesets, histograms)
2: histograms = 0
3: for all seti ∈ anglesets do
4: for seqj = 0; seqj < size(sequence − size(seti)); seqj + + do
5: index = 0
6: for all angleANDrangek ∈ seti do
7: if angleANDrangek(sequence(seqj + k)) then � 1 if in range
8: index+ = 2k

9: histograms[index(seti)][index]+ = 1

10: for histoi = 0; seqj < size(seti); seqj + + do � Normalize histogram

11: histograms[index(seti)][histoi] = histograms[index(seti)][histoi]
∑size(seti)

l=1 histograms[index(seti)][l]

Algorithm 1 describes the forward pass of our approach in the backpropa-
gation algorithm. Before we can use our layer in a neural network we have to
specify two parameters, one is the amount of angle sets which is the amount
of sequences consisting of angles and angle ranges we want to use. The second
parameter is the length of such a sequence. A simplified illustration can be found
in Fig. 1. In this illustration, the sequence length would be one, which means that
each angle and angle range has its own bin in the histogram. After we set up
those two parameters, we evaluate each angle and angle range sequence on the
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given samples from an eye tracking recording and compute the histograms as
described in Algorithm 1. The filled histograms are normalized and given to a
neural network for further processing.

Algorithm 2. The backward pass of our approach is described as an algorithm.
In the first part, we have to do the forward pass again. With the computed
indexes, we can access the gradients corresponding to different angle and angle
range sets. Next, we need to compute which angle and angle range check are
evaluated positive. For all positive angle and angle range checks, we sum up
the corresponding gradients without updating them directly. In the last step, we
update all angle ranges according to the cumulated gradients. We do not update
them directly since this would change the angle and angle range checks, which
would invalidate our gradient computation. In the real implementation, we do
not need to compute the indexes since they are stored with the forward pass.
In addition, we also do not need to evaluate which angle and angle range check
evaluated positive, since this is already known based on the histogram index. This
means that we described the backward pass in a way it can be computed and
that can be understood more easily. The real implementation therefore differs
from the algorithm to save resources and training time.
1: procedure BackwardPass(sequence, anglesets, gradient, learningrate)
2: for all seti ∈ anglesets do
3: for seqj = 0; seqj < size(sequence − size(seti)); seqj + + do
4: index = 0
5: for all angleANDrangek ∈ seti do
6: if angleANDrangek(sequence(seqj + k)) then � 1 if in range
7: index+ = 2k

8: for all angleANDrangek ∈ seti do
9: if angleANDrangek(sequence(seqj + k)) then � 1 if in range

10: angleANDrangek.rangeUpdate+ = gradient[i][index]
11: � Computation of the cumulative update of the angle range

12: for all seti ∈ anglesets do
13: for all seti ∈ anglesets do
14: for all angleANDrangek ∈ seti do
15: angleANDrangek.range+ = angleANDrangek.rangeUpdate ∗

learningrate
16: � Applying the cumulative update to the angle range

Algorithm 2 describes the backward pass of our approach. For simplification,
we added the parts of the forward pass into it so it can be fully understood. In the
real implementation, we store the result of the forward pass, and we also know
based on the histogram bin which angle and angle range evaluated to one due
to the way we set them up in our memory. The input to the neural network, our
histograms, receive the back propagated error from the network. With the error
or gradient assigned to each bin in our histograms, we can compute which angle
and which angle range has evaluated to one. The corresponding angle ranges are
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then adjusted based on the gradient. If the gradient is negative, we reduce the
angle range and if it is positive, we increase the angle range. Since multiple
angle ranges participated on multiple places over a sequence, we accumulate the
gradient first. This is indicated by “.rangeUpdate” in Algorithm 2.

4 Evaluation

In this section we first describe the used public datasets and how we performed
the training, validation and test splits. Afterward, the training parameters of
our approach and the configuration of the other approaches is described. The
last part in this section presents and discusses our results.

4.1 Datasets

Gaze [13]: A data set with eye tracking data on moving scenes. The data was
collected using an SR Research EyeLink II eye tracker with 250 Hz. For our
experiment, we used the data given for static images where each static image of
a video was treated as the same image. Moreover, we omitted subject V01 since
there was only one recording available. Hence, we used the eye tracking data of
10 subjects on 9 images for our experiment with an average recording duration
of 2 s. The training and test split was done using 50% for the training and 50%
for the testing with a random selection. For the stimulus classification we made
sure that no subject is shared between the training and testing set and for the
subject classification we did the same based on the stimulus.

WherePeopleLook [28]: An eye tracking dataset that focuses on integrating
top-down features into the generation of saliency maps. This dataset comprises
1003 static images, each accompanied by eye tracking data from 15 subjects.
The eye tracking data was collected for an average recording length of 3 s per
image. To conduct our experiment, we divided the dataset into a training set
and a testing set, ensuring a balanced split of 50% for each. We took great care
to ensure that no subject appeared in both the training and testing sets for
stimulus classification. Similarly, for subject classification, we made sure that
no stimulus overlapped between the training and testing sets. This meticulous
approach guarantees the integrity and reliability of our experiment results.

DOVES [37]: An extensive eye tracking dataset consisting of data from 29
subjects recorded on 101 natural images. The recordings were conducted using
a high-precision dual-Purkinje eye tracker with a sampling rate of 200 Hz. Each
recording had an average length of 5 s. Following the approach used in the
WherePeopleLook dataset, we split the dataset into training and testing sets,
with an equal distribution of 50% for each. To ensure accurate stimulus classifi-
cation, we took care to avoid any overlap of subjects between the training and
testing sets. Similarly, for subject classification, we ensured that no stimulus was
shared between the training and testing sets. This rigorous methodology ensures
the reliability and validity of our dataset for further analysis and experimenta-
tion.
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We decided to use those datasets since they have a large amount of available
sequences, which is important for neural network based approaches.

4.2 Training and Adaption of the Other Methods

All used CNNs (Convolution neural networks) are ResNet-12 [25] in our evalu-
ation. This concerns all indications of “+ CNN” in Table 2 and our approach.
For the training of those networks, we used a soft max classification layer with
the stochastic gradient descent optimizer and momentum. The initial learning
rate was set to 10−3 and reduced to 10−4 after 50 epochs. With the learning
rate of 10−4 we trained additional 50 epochs and used the best model based
on the results of the validation set which consists of 20% randomly selected
from our training set. For the features HOV and HEAT we computed multiple
parameter configurations and selected the best model based on the 20% valida-
tion set. For [7] we evaluated all representations and selected the best performing
representation based on the results on the 20% validation set. For *RNN [38] and
*LSTM [39] we did not find the code online and therefore tried to reproduce the
approach as best as we could. For Subsmatch 2.0 we selected the best performing
AOI selection approach, and we also tried different classifiers for the features as
well as different parameters for the classifiers. For the random fern approach,
we evaluated different feature selection and ensemble combination parameters
and selected the best performing one. For the *EM Statistics and Auto AOI
+ statistics we used duration, speed, and acceleration based on the AOIs or
the eye movement types which were classified using a velocities and dispersion
threshold. Based on duration, speed, and acceleration, we computed the mean,
variance, standard deviation, and the confidence intervals. All together was one
feature vector. The deep semantic gaze embedding was also reproduced with
a ResNet-12. For the Encodji approach, we used the ResNet-12 as classifier as
well as discriminator to train the generative adversarial network. The generative
adversarial network itself was a U-Net with interconnections. All approaches had
the same training, validation and testing data.

4.3 Results

In Table 1 we evaluated different combinations of our two parameters amount
of angle sets and the set size. For the evaluation, we used 80% of the train-
ing data and 20% of the training data for validation. The reported accuracy is
rounded and computed on the validation set. As can be seen, the amount of
sequences has a huge impact on the classification accuracy. This is the case since
randomly selected angle and angle range sequences can also be useless. With
more such sequences, we increase the chance in getting good combinations. For
the set size parameter the same is true since larger sequences have a lower proba-
bility of a good selection since there are more possible combinations. This means
that both parameters are in relation to each other, which means that higher set
sizes also require larger amounts of angle sets. Based on our evaluation, we have
selected 212 = 4.096 angle sets and an angle as well as angle range sequence
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Table 1. The metric in this table is accuracy rounded to two decimal places. We
evaluated different initializations of our approach for the dataset Gaze. We performed
the subject and stimulus classification. Angle sets are the amount of all sequences of
angles and angle ranges that are randomly initialized and evaluated during the forward
pass. Set size is the amount of angles and angle ranges that are in one angle set. For
the evaluation we performed a 80% training and 20% validation split on the training
data only.

Angle sets Set size Dataset Gaze

10 Classes Subject 9 Classes Stimulus

29 4 54 22

29 5 68 31

29 6 71 34

210 4 73 39

210 5 82 51

210 6 81 47

211 4 78 43

211 5 89 58

211 6 87 55

212 4 82 49

212 5 91 62

212 6 88 57

length of 4. For binary decisions, end up in 25 = 32 possible combinatorial
outcomes. Therefore, our produced tensor for the neural network has a size of
4.096 × 32.

Table 2 shows the comparison to other state of the art approaches with the
accuracy metric. As can be seen, our approach works similarly well as the random
fern approach from which we used the feature extraction approach. This means
that the sequence of angles and angle ranges seams to be a good feature for
the used datasets or scanpath in general. What can be seen also is that all neu-
ral network based approaches, excluding the ones on statistics, worked well on
the datasets. The reason for this is possibly that the large amount of available
sequences helped the neural networks. The statistical based approaches as well
as the features HEAT and HOV worked not so well on the datasets, which is
due to the short recording length. Statistics and features like the histogram of
oriented gradients or the heatmaps need possibly more data to be discrimina-
tive. The worst approaches were the RNN and the LSTM, they suffer the most
from the short recording length since they require long sequences for which they
are designed. In total, our approach was at least as good as the random ferns.
Sometimes our approach outperformed the ferns, and for the stimulus classifi-
cation in the WherePeopleLook dataset the ferns were slightly better compared
to our approach. Therefore, we think our approach to integrate the angle and
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Table 2. The used metric is accuracy, which we rounded to two decimal places. We
compared our approach with the best parameters from Table 1 with other state of the
art approaches. Best results are shown in bold, and * indicates that we have reim-
plemented the methods as it is described in Sect. 4.2. Evaluated on the testing data.

Dataset Gaze WherePeopleLook DOVES

Target Sub Stim Sub Stim Sub Stim

Classes 10 9 15 1003 29 101

*Deep semantic gaze embedding [8] 80 38 39 37 15 48

Random Ferns [19] 85 44 42 41 18 52

Subsmatch 2.0 [31] 69 28 27 30 8 30

*EM Statistics [23] + SVM 61 22 21 20 5 28

*EM Statistics [23] + Tree ENS 62 24 25 21 6 31

*EM Statistics [23] + two layer NN 60 24 23 21 6 29

Auto AOI [21] + statistics + SVM 69 27 29 27 9 39

Auto AOI [21] + statistics + Tree ENS 72 29 30 28 10 41

Auto AOI [21] + statistics + two layer NN 71 29 29 28 10 40

Encodji [17] 83 39 36 34 16 48

Encodji input only [17] + CNN 77 31 32 31 11 45

Best from [7] + CNN 78 33 31 33 12 47

HEAT + SVM [20] 74 28 30 29 8 46

HEAT + Tree ENS [20] 76 29 33 31 10 47

HEAT + two layer NN [20] 75 26 30 28 9 44

HOV + SVM [18] 74 31 31 28 10 45

HOV + Tree ENS [18] 75 30 33 30 11 46

HOV + two layer NN [18] 73 27 31 26 9 43

*RNN [38] 70 26 27 22 6 31

*LSTM [39] 67 23 26 20 5 27

Proposed 87 45 42 40 19 52

angle range feature into deep neural networks or into the backpropagation algo-
rithm was successful. The advantage of our approach vs the Random Ferns are,
that our approach can be trained with batches instead of requiring the entire
dataset during training like the random ferns do. In addition, the ResNet-12 can
be replaced with larger models. As soon as larger datasets for eye tracking are
available, it would be possible to use transformers for example.

5 Limitations

We compared our approach on three public datasets with different amounts of
subjects and stimuli. While this can be seen as an extensive evaluation, it is not
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guaranteed that the results apply for all datasets. One example here are long
term recordings in real life which are publicly not available as a dataset, which
is also the reason why we did not evaluate on such datasets. Another limitation
of our paper are the optimal parameters for the state of the art approaches.
We tried to reproduce the methods and approaches as good as we could and
also tried to select the best parameters, but it is still possible that there are
preprocessing steps or parameter combinations which lead to better result.

6 Conclusion and Outlook

In this paper, we proposed a module for deep neural networks which is based
on the angle and angle range approach from [19]. Our main contribution is the
integration of the approach into the backpropagation algorithm, which makes it
possible to train it jointly with deep neural networks or any other computational
graph based approach which requires derivatives for gradient determination. Our
approach outperformed most of the state of the art approaches, but it has to be
noted that all of our datasets have only a small recording length since long term
recordings with many subjects and many sequences of scanpath are not publicly
available, which is especially true for medical recordings. The approach with
random ferns is very close to our results, and sometimes beats our deep neural
network based approach. This means that it is still the case that entropy and
information gain, which is used to train decision trees like the random ferns, can
outperform deep neural networks as it is common for tabular data. In addition, it
is also obvious that especially for the used datasets, the consecutive sample angles
form strong features for the classification. Overall we think that our proposed
method to integrate the consecutive angle and angle range approach into the
backpropagation algorithm was successful since it delivers results close or slightly
better than the original approach based on decision trees [19]. Future work should
investigate if it is possible to also learn the base angle itself as well as more
advanced module for an internal use in deep neural networks. In addition, it
could be possible to use it in generative adversarial networks to generate human
visual behavior.

7 Potentially Harmful Impacts and Future Societal Risks

The proposed approach is directed into the research area of eye tracking with the
purpose to help humans in terms of a supportive diagnosis system or to be part
of educational software. Of course, there are many possibilities to use scanpath
classification in harmful ways, like the observation and intention prediction of
humans. The classification of abnormal behavior could for example reveal if
somebody has a sickness like Alzheimer or Autism, which is private information.
Scanpath analysis could also be used to train humans for specific harmful tasks
or to cheat in competitions like poker for example. We as researchers do not
want our knowledge to be used in such areas or for such tasks, but we cannot
prevent it from happening.
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31. Kübler, T.C., Rothe, C., Schiefer, U., Rosenstiel, W., Kasneci, E.: Subsmatch 2.0:
scanpath comparison and classification based on subsequence frequencies. Behav.
Res. Methods 49, 1048–1064 (2017)

32. Kumar, A., Howlader, P., Garcia, R., Weiskopf, D., Mueller, K.: Challenges in
interpretability of neural networks for eye movement data. In: ACM Symposium
on Eye Tracking Research and Applications, pp. 1–5 (2020)

33. Locher, P., Krupinski, E., Schaefer, A.: Art and authenticity: behavioral and eye-
movement analyses. Psychol. Aesthet. Creat. Arts 9(4), 356 (2015)

34. Manning, D., Ethell, S., Donovan, T., Crawford, T.: How do radiologists do it? the
influence of experience and training on searching for chest nodules. Radiography
12(2), 134–142 (2006)

35. Massaro, D., et al.: When art moves the eyes: a behavioral and eye-tracking study.
PLoS ONE 7(5), e37285 (2012)

http://arxiv.org/abs/2101.03793


304 W. Fuhl

36. Nation, K., Penny, S.: Sensitivity to eye gaze in autism: is it normal? is it auto-
matic? is it social? Dev. Psychopathol. 20(1), 79–97 (2008)

37. Rajashekar, U., Cormack, L.K., Bovik, A.C., van der Linde, I.: Doves: a database
of visual eye movements. Spat. Vis. 22(2), 161–177 (2009)

38. Sims, S.D., Conati, C.: A neural architecture for detecting user confusion in eye-
tracking data. In: Proceedings of the 2020 International Conference on Multimodal
Interaction, pp. 15–23 (2020)

39. Tao, Y., Shyu, M.L.: Sp-asdnet: Cnn-lstm based asd classification model using
observer scanpaths. In: 2019 IEEE International Conference on Multimedia & Expo
Workshops (ICMEW), pp. 641–646. IEEE (2019)

40. Venuprasad, P., et al.: Analyzing gaze behavior using object detection and unsuper-
vised clustering. In: ACM Symposium on Eye Tracking Research and Applications,
pp. 1–9 (2020)

41. Vicente, F., Huang, Z., Xiong, X., De la Torre, F., Zhang, W., Levi, D.: Driver
gaze tracking and eyes off the road detection system. IEEE Trans. Intell. Transp.
Syst. 16(4), 2014–2027 (2015)

42. Volkmar, F.R., Mayes, L.C.: Gaze behavior in autism. Dev. Psychopathol. 2(1),
61–69 (1990)

43. Vortmann, L.M., Knychalla, J., Annerer-Walcher, S., Benedek, M., Putze, F.:
Imaging time series of eye tracking data to classify attentional states. Front. Neu-
rosci. 15, 664490 (2021)

44. Wang, Y., Huang, R., Guo, L.: Eye gaze pattern analysis for fatigue detection
based on GP-BCNN with ESM. Pattern Recogn. Lett. 123, 61–74 (2019)

45. Wang, Z., Oates, T., et al.: Encoding time series as images for visual inspection
and classification using tiled convolutional neural networks. In: Workshops at the
Twenty-ninth AAAI Conference on Artificial Intelligence, vol. 1. AAAI Menlo Park,
CA, USA (2015)

46. Zangemeister, W.H., Sherman, K., Stark, L.: Evidence for a global scanpath strat-
egy in viewing abstract compared with realistic images. Neuropsychologia 33(8),
1009–1025 (1995)

47. Zhang, A.T., Le Meur, B.O.: How old do you look? inferring your age from your
gaze. In: 2018 25th IEEE International Conference on Image Processing (ICIP),
pp. 2660–2664. IEEE (2018)



Cascading Global and Sequential
Temporal Representations with Local
Context Modeling for EEG-Based

Emotion Recognition

Hyunwook Kang1 , Jin Woo Choi3 , and Byung Hyung Kim1,2(B)

1 Department of Electrical and Computer Engineering, Inha University, Incheon,
Republic of Korea
bhyung@inha.ac.kr

2 Department of Artificial Intelligence, Inha University, Incheon, Republic of Korea
3 Department of Neurology and Neurological Sciences, Stanford University School of

Medicine, Stanford, CA 94304, USA

Abstract. Electroencephalogram (EEG)-based emotion recognition is
an emerging research area in brain-computer interface (BCI) providing
a direct window into one’s cognitive states. Recent studies employ deep
learning models such as a convolutional neural network (CNN), a long
short-term memory (LSTM), and the Transformer owing to their high
performances achieved for EEG-based emotion recognition. Despite their
significant research outcomes, individual networks have their respective
limitations in their modeling capabilities. To learn complementary fea-
ture representations, we cascade global and sequential temporal repre-
sentations with local context modeling by unifying CNN, Transformer
and LSTM into one framework. To verify the effectiveness of our pro-
posed model, we conducted extensive comparative experiments on two
popular benchmark datasets for EEG-based emotion recognition, i.e.,
SEED-IV, and DEAP, in which we bring further improvements over the
recent state-of-the-art models. Our code is publicly available at: https://
github.com/affctivai/ConTL.
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1 Introduction

Emotion recognition is a thriving field of study in artificial intelligence [1,2] due
to its strong effects on human cognition [3]. While earlier study in this field has
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mostly focused on text, vision, and speech [1,4,5], individuals may sometimes
conceal their real emotions. On the other hand, physiological signals are more
reliable sources as they originate from the central nervous system responding to
given stimuli. Among various physiological signals, EEG signals receive the most
popular attention since the revelation of correlations between EEG signals and
human emotion [6].

Motivated by the effective generalization capability of the convolutional
neural network (CNN) [7], many CNN-based deep learning models have been
employed for various EEG classification problems [8–10]. Furthermore, a vari-
ant of CNN that utilizes the graph neural network called DGCNN [11] has
been developed to learn functional connectivity between different EEG chan-
nels. Despite their success with significant performances for EEG-based emotion
recognition, CNNs are limited in contextual learning due to the fixed size of the
receptive field, where the kernel can behold [5,12]. This limitation may not effec-
tively capture important clues for emotion recognition as the human emotional
cognitive process continuously evolves [13].

Although a long short-term memory (LSTM) network allows contextual
learning by extracting effective temporal relationships using its memory archi-
tecture, temporal dependencies are lost after long time steps, which hampers
it learning global temporal relationships [4]. Since the advent of the Trans-
former [14], it has allowed learning global temporal relationships with paral-
lelized computation. However, it is difficult to learn sequential information by
the Transformer due to the loss of its position [15]. To complement the respective
drawbacks of LSTM and Transformer, a recent method proceeds the Transformer
with LSTM [4]. While they have shown a significant performance improvement
by complementing the Transformer with LSTM’s learned sequential representa-
tions, the local context modeling of the convolution operation may bring further
improvements for EEG-based emotion recognition as it could detect the emotion-
related local patterns [5].

More recently, Conformer [12] uses convolution operation to learn local
patterns and further learns global temporal dependencies through the follow-
ing Transformer [14]. Despite its remarkable performance for different EEG
paradigms [12], we suggest that adding sequential relationships can bring more
benefits for EEG-based emotion recognition. Therefore, we propose a novel deep
learning framework, namely, ConTL, which leverages LSTM to enhance CNN-
Transformer network with sequential temporal representations. The proposed
model first extracts emotion-related local patterns using convolution operation.
Next, the Transformer [14] performs self-attention on the extracted features to
learn global temporal information. Then we further cascade the learned features
to the following LSTM. For LSTM, we use the stacked bi-directional LSTM
(sLSTM) [1] to capture the effective sequential relationships not only from the
past but also from the future.

In summary, our contributions are three-folds:

– We explore the effects of learning sequential relationships based on the
CNN-Transformer hybrid-network through sLSTM [1] for EEG-based emo-
tion recognition.
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– We propose a novel hybrid-network composed of CNN module, Trans-
former [14] module, and LSTM module for EEG-based emotion recognition.

– We conduct the ablation study to verify the efficacy of our method and show
the distribution of the predicted emotional vectors using t-SNE visualization
for interpretability [17].

The rest of this paper is organized as follows: In Sect. 2, we begin by exploring
existing studies on EEG-based emotion recognition and hybrid-networks related
to our proposed network. Section 3 presents our proposed model called ConTL,
composed of CNN module, Transformer module, and LSTM module. In Sect. 4,
we compare the performance of ConTL with seven state-of-the-art models. In
Sect. 5, we articulate our contributions with comprehensive summary. Finally,
we draw the conclusion in Sect. 6.

2 Related Works

2.1 EEG-Based Emotion Recognition

There are two types of emotion modeling to measure one’s emotional state:
discrete emotion modeling and the dimensional emotion modeling [17]. The for-
mer defines a set of emotions mainly with six basic categories, i.e., happiness,
sadness, disgust, anger, fear, and surprise [18]. The latter measures the degree
of emotion with valence and arousal, represented in two-dimensional Cartesian
coordinates [17]. The valence ranges from unpleasant to pleasant and the acti-
vation level ranging from calm to excited is quantified by the arousal. Their
respective degree is positioned on the horizontal axis for valence and the vertical
axis for arousal.

Traditional methods for EEG-based emotion recognition have mostly adapted
machine learning approaches, which are usually divided into two stages: EEG
feature extraction and classifier training [13,17]. There are various methods to
extract the EEG features, which can be distinguished by time domain, frequency
domain, and time-frequency domain. For example, Wang et al.. [17] investi-
gated power spectrum, wavelet, and non-linear dynamical features for EEG sig-
nal analysis. While most studies for feature extraction focus on single-channel
analysis [11], there are a few methods that attempt to calculate the features from
multiple channels to investigate the inter-channel relationships [19,20]. For exam-
ple, Wu et al.. [19] constructed critical sub-network to explore emotion-related
functional brain connectivity patterns using three topological features (strength,
clustering coefficient, and eigenvector centrality). Li et al.. [20] has adapted a
multiple feature fusion approach, in which the activation patterns and the con-
nection patterns are combined for emotion recognition. Recently, Kim et al.. [21]
introduced a discriminative SPD feature learning approach based on Rieman-
nian geometry. Their method normalizes the distribution of SPD matrices and
learns the Riemannian center for each class, penalizing the distances between
each matrix and its corresponding class center.
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Fig. 1. Illustration of the proposed ConTL’s overall architecture.

In our study, we conduct single-channel analysis for EEG-based emotion
recognition using deep learning methods. The datasets used in our experiment,
SEED-IV [22] and DEAP [23] are based on discrete emotion modeling and dimen-
sional emotion modeling, respectively.

2.2 Hybrid-networks

To date, a hybrid-network has been developed to take advantages of both
CNN and LSTM while preventing their respective drawbacks for speech recogni-
tion [24]. Sainath et al.. [24] proposed CLDNN, which learns temporal structures
with reduced frequency variation in the input by placing CNN before LSTM. Shi
et al.. [25] also proposed a model that combines CNN and LSTM named as Con-
vLSTM for precipitation nowcasting. Later, their model has been adopted for
EEG-based emotion recognition by Kim and Jo [26].

Besides, other previous studies have developed hybrid-networks for EEG-
based emotion recognition [12,13,27,28]. Li et al.. [27] proposed a hybrid deep
learning model called C-RNN that combines inter-channel relationships from
CNN with the contextual information from LSTM. Later, a different approach
of CNN and LSTM combination has been demonstrated by Yang et al.. [28],
in which they perform late fusion of the separately learned features from CNN
and LSTM. These two different types of CNN and LSTM incorporation are
also employed for different EEG paradigms by Zhang et al.. [29], in which they
defined each method as cascade and parallel methods.

Although there are many other recent deep learning models, they are gen-
erally huge with deep layers for good performance, which require large amount
of data to prevent overfitting [30]. In contrast, aforementioned hybrid-networks
can be used to increase the representational power with small amount of data
such as EEG signals due to their difficulty in collection. For a latest model of
hybrid-network, Conformer [12] demonstrated superior performance for EEG-
based emotion recognition by extracting inter-channel correlations with CNN
followed by Transformer for global temporal feature extraction.
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3 Methodology

In this section, we first begin by describing the feature extraction method for
EEG signals. Then we explain details of our network architecture, which is illus-
trated in Fig. 1.

3.1 Feature Extraction

Recently, models trained with differential entropy (DE) features have shown
superior performances compared to other features for EEG-based emotion recog-
nition [11,31,32]. Thus, we used the extracted DE features from the preprocessed
EEG signals as input features to train our classifier [32]. The DE function com-
putes the complexity of continuous random variables as:

h(X) = −
∫
X

f(xi)log(f(xi))dx, (1)

where X denotes the set of possible EEG signals and xi ∈ X denotes the i-th
EEG sample within that range. Instead of directly solving the above (1), we can
take the Gaussian distribution N(μ, σ2) for a random variable to achieve similar
outcomes with:

h(X) = −
∫ ∞

−∞

1√
2πσ2

exp
(xi − μ)2

2σ2
log

1√
2πσ2

exp
(xi − μ)2

2σ2
dx

=
1
2

log 2πeσ2.

(2)

In (2), μ, and σ denote the mean and the standard deviation respectively,
and we followed the previous method as in [32] to extract the DE features.
Firstly, 5 frequency bands (delta: 1–3 Hz, theta: 4–7 Hz, alpha: 8–13 Hz, beta:
14–30 Hz, gamma: 31–50 Hz) are extracted from the EEG signals using a 256-
point short-time Fourier transform (STFT). For the window function of STFT,
non-overlapping Hann window with 1 s is chosen. Finally, DE features are cal-
culated for each frequency band of every channel.

For feature standardization, we perform the Z-score on the extracted DE
features defined as:

xo =
(xi − μ)

σ
, (3)

where xo denotes the output of standardization. We note that the mean and the
standard deviation are calculated for each frequency band from the train set and
their values are directly used to perform the Z-score on the features in the test
set.
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3.2 Network Architecture

As shown in Fig. 1, ConTL comprises of three different types of network mod-
ules, i.e., CNN module, Transformer module, LSTM module, followed by the
final classifier for emotion prediction. Each EEG input sample, xi ∈ R

C×F , is
rearranged into 310-dimensions, where C and F denote the number of chan-
nels and the number of frequency bands, respectively. Then it is extended by
one dimension for the convolution channel reshaping the EEG input vector into
xi ∈ R

1×310.

CNN Module. To perform local context modeling, the CNN module is com-
posed of two convolutional layers, in which the size of kernel and stride are 4
and 2, respectively. These layers learn the representation of interactions between
neighboring electrode channels. For further generalization, the second convolu-
tional layer is followed by LeakyReLU, batch normalization and dropout. The
batch normalization drives faster convergence and the dropout is adopted for
further regularization. The output channels of these convolutional layers have
64 units and the dropout rate is set to 0.2. Subsequently, these features are
downsampled to h units and expanded by one dimension at the first axis to feed
them to the following Transformer as tokens.

Transformer Module. The Transformer [14] generates multiple parallel atten-
tions by employing the scaled-dot product defined as:

Attention(Q,K, V ) = softmax(
QKT

√
h

)V. (4)

The Q, K, and V are the tokens from the previous module, which denote the
query, key, and value respectively. Given head-specific parameters, W

q/k/v
i ∈

R
h×h, each attention output is computed by leveraging (4) as:

headi = Attention(QW q
i ,KW k

i , V W v
i ). (5)

Then the final output from the Transformer is computed as:

G = (head1 ⊕ · · · ⊕ headn)W o, (6)

where ⊕ represents the concatenation.

LSTM Module. Once the Transformer outputs the learned global temporal
representations, we cascade them to the following LSTM layers as:

olstm = sLSTM(G; θlstm). (7)

The proposed model further learns sequential relationships through these
LSTM layers. Each LSTM layer outputs two sequential representations from the
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past and the future, where each representation has 8 units. The four sequential
temporal representations from two LSTM layers are stacked, whose end-state
hidden representations, olstm, gives 32 units.

Subsequently, one fully connected (FC) layer is used to downsample the out-
put features to M units, in which the M is the number of emotion categories to
predict the correct emotion for the given EEG features.

For the loss function, we use the cross-entropy as:

L= − 1
N

N∑
i=1

M∑
j=1

yilog(ŷj), (8)

where y, and ŷ denote the ground-truth and the predicted emotion label, respec-
tively. The symbol N indicates the number of samples in a batch.

To sum up, the convolution operation performs local context modeling by
extracting emotion-related local patterns from the given EEG features. These
emotion-related local features are cascaded to the following Transformer [14] to
learn global temporal relationships. Then the bi-directional LSTM layers com-
plement the output features of Transformer with learning sequential temporal
features. Finally, FC layer outputs M units to recognize the corresponding emo-
tion for the given input EEG features.

4 Experiments

In this section, we first describe two datasets used in our experiment, i.e., SEED-
IV [22], and DEAP [23]. Next, we delineate the experimental settings. To verify
the effectiveness of our proposed ConTL, we compare the mean classification
accuracy of all subjects on these two benchmarks with seven baseline models.
These baseline models’ results are all reproduced by reimplementing them using
their public access codes under the same hyper-parameter settings for train-
ing. Additionally, we conduct ablation study to observe the effects of learning
sequential relationships based on the joint representation of local information
and global temporal relationships. We also show the t-SNE visualization of the
predicted vectors for interpretability.

4.1 Datasets

SEED-IV [22] contains 45 experiments from 15 participants, in which each par-
ticipant has taken 3 experiments. The first 16 trials are used for training and
the rest 8 trials are used for the test. Each EEG signal is labeled by one of 4
emotion categories, i.e., happy, sad, fear, and neutral.

The DEAP [23] database contains EEG data of 32 participants, which are
collected from the 32 electrodes while the participants are watching 1-minute
40 music video clips. Each video has been rated with degrees ranging from 1
to 9 according to the levels of arousal, valence, like / dislike, dominance and
familiarity. In this paper, only the EEG signals are used to train the emotion
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recognition model without the other 8 peripheral channels. According to the
international 10–20 system, 32 channels are chosen to collect the EEG signals.
In our experiment, we choose valence and arousal for evaluation.

4.2 Experimental Settings

In our experiments, we prepare consistent train and test sets as in [31] to check
whether our reproduced results of DGCNN [11] is reasonable for comparison
with our proposed model. While [31] explicitly describes the train set and the
test set for the reported mean classification accuracy of DGCNN [11] on SEED-
IV [22] dataset, it is unclear whether they have used the same test set for the
validation set. However, to prevent data leakage, we used 30% of the original
train set for the validation set. As shown in Table 1, our reproduced result of
DGCNN [11]’s performance is 65.22%, in which there is a loss of 4.66% compared
to what’s been reported in [31]. Accounting that this difference may have been
resulted from splitting the original train set to apply early stopping guided by
the validation loss in our experimental settings, we regarded it can be a good
baseline result for comparison with our proposed model.

We have implemented the proposed ConTL with PyTorch and evaluated
its performance using the NVIDIA RTX A6000 GPU. To train the model, we
used the adam optimizer and set its learning rate, β1, β2 to 0.0002, 0.5, and
0.999, respectively as demonstrated in [12]. The proposed model is trained for
500 epochs with the batch size of 128. To prevent the overfitting, we use early
stopping with an initial patience of 7.

4.3 Baseline Comparison

In this section, we conduct extensive subject-dependent experiments [11,22,31]
and compare the performance of the proposed ConTL with seven state-of-the-art
methods. For example, EEGNet [8], which is a CNN-based model developed to
learn temporal feature perception across different BCI paradigms; CCNN [10]
and MT-CNN [9], which have shown remarkable results with CNN-based end-
to-end frameworks for EEG-based emotion recognition tasks on the DEAP [23]
dataset; DGCNN [11], which exploits CNN with the adjacency matrix to learn
functional connectivity between different EEG electrodes for emotion recogni-
tion; PCRNN [28], complementing CNN’s limited receptive field with learned
temporal dependencies from LSTM; Conformer [12], which first mines inter-
channel correlations from the input EEG signals with CNN and learns global
temporal dependencies through the following Transformer; and DRBN [21],
which has improved the understanding of non-stationary EEG signals by learn-
ing the barycenters of SPD matrices.

For SEED-IV [22], we use the mean classification accuracy and F1-score of
all subjects with their standard deviations to measure the performance. For
DEAP [23] in Table 1, we present the mean classification accuracy/standard
deviations of valence and arousal, in which their degrees are categorized into
low/medium/high states for the classification task.
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Fig. 2. Comparison of ConTL’s performance on the SEED-IV dataset with six baseline
models for 15 subjects in classification accuracies.

In Table 1 on SEED-IV [22], the proposed ConTL surpasses the latest model
among baselines, DRBN [21], by 1.07% and 1.24% in both mean classification
accuracy and F1-score, respectively. Compared to CNN-based end-to-end app-
roach, we can observe that our ConTL significantly improves the classification
accuracy by 5.17%, 4.01% over MT-CNN [9] and EEGNet [8]. This result indi-
cates the ConTL’s adeptness in capturing cascaded representations of both global
and sequential temporal dependencies. Although the mean classification accu-
racy of EEGNet [8] is not as high as other baseline models but MT-CNN [9], and
DGCNN [11], it shows highest mean F1-score over all baseline models. However,
our proposed ConTL still outperforms it by 0.93% in mean F1-score, which is an
indication that the distribution of our proposed model’s predictions are balanced.

Next, we compare classification accuracies for 15 subjects with the six base-
line models on SEED-IV [22] as shown in Fig. 2. Compared to Conformer [12],

Table 1. Comparison of the proposed ConTL’s performance with baseline models in
mean classification accuracies/standard deviations on two benchmarks.

Datasets SEED-IV DEAP

Models Acc F1 Valence Arousal

EEGNet [8] 66.20 / 10.87 69.18 / 11.03 51.45 / 8.59 55.39 / 10.46

CCNN [10] 69.52 / 12.81 68.64 / 14.80 56.22 / 7.15 60.03 / 08.83

MT-CNN [9] 65.04 / 14.36 65.09 / 16.30 54.63 / 7.60 55.86 / 10.01

DGCNN [11] 65.22 / 12.09 65.42 / 12.99 57.81 / 6.73 60.65 / 08.95

PCRNN [28] 69.06 / 13.00 68.27 / 14.98 56.63 / 7.05 60.18 / 08.48

Conformer [12] 68.54 / 18.78 65.83 / 19.16 54.10 / 8.02 57.97 / 10.24

DRBN [21] 69.14 / 11.52 68.87 / 10.36 58.11 / 5.79 60.93 / 09.38

ConTL 70.21 / 13.58 70.11 / 14.27 58.07 / 7.07 61.06 / 08.82
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Fig. 3. Comparison of ConTL’s performance with six baseline models for eight different
categories of valence, arousal on the DEAP dataset in mean classification accuracies.

which learns global temporal dependencies via the Transformer [14] based on
CNN, the proposed ConTL yields superior performances over it for 8 number of
subjects, i.e., first, third, fourth, fifth, sixth, seventh, eighth, and ninth. While
Conformer [12] shows better performances over PCRNN [28] for 10 number of
subjects, PCRNN [28] outperforms Conformer [12] for 5 subjects, i.e., the third,
fourth, fifth, sixth, and tenth subjects. Although this result is an indication
that the Transformer [14] generally performs better than LSTM accounting that
Conformer [12] and PCRNN [28] respectively opt the Transformer and LSTM to
combine with CNN, there are still some scenarios where LSTM can be more ben-
eficial, in which sequential relationships count. Moreover, for the third subject,
Conformer [12] suffers learning discriminative features compared to PCRNN [28].
Although the proposed ConTL’s performance for the third subject is not as
high as PCRNN [28], we can observe high improvements in ConTL over Con-
former [12]. This result underscores the significance of learning both global and
sequential temporal information, which can alleviate the performance decrease
that might arise by the use of Transformer alone based on CNN. Overall, the
proposed ConTL yields superior performances over both PCRNN [28] and Con-
former [12] for the first, seventh, eighth, and ninth subjects.

For the DEAP [23] dataset in Table 1, both our innovative ConTL and
DRBN [21] outperforms all baseline models for valence and arousal predictions.
Compared to DRBN [21], our ConTL shows marginal difference of 0.04% in
accuracy for valence prediction, and ConTL surpasses its performance by 0.13%
for arousal prediction. DGCNN [11] outperforms all three CNN-based models
[8–10] signifying its effectiveness in learning EEG functional connectivity. How-
ever, the proposed ConTL outperforms DGCNN [11] by 0.26% and 0.41% for
low/medium/high valence and arousal state predictions. PCRNN [28], which
jointly fuses learned features from CNN and LSTM, also shows higher perfor-
mances over all three CNN-based models [8–10] for both valence and arousal
predictions on the DEAP dataset. This indicates that CNN can be comple-
mented with additional sequential temporal relationships from LSTM. However,
on the SEED-IV dataset [22], PCRNN [28] shows slight reduction in performance
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compared to CCNN [10], which indicates that hybrid-networks require differ-
ent hyper-parameter settings depending on the domains. Similar phenomenon
is observed for another type of hybrid-network, Conformer [12], which combines
CNN with the Transformer [14]. While Conformer [12] outperforms two CNN-
based models, i.e., MT-CNN [9], and EEGNet [8] on SEED-IV [22] by 3.5%,
2.34% in mean classification accuracy, it [12] lags behind MT-CNN [9] by 0.53%
for valence prediction and it [12] benefits for arousal prediction with a 2.11%
improvement over MT-CNN [9].

To further investigate, we compared the performances of the proposed ConTL
with the six baseline models for 8 different categories of degree for valence and
arousal from DEAP [23]. We discretized the emotional degree of the valence and
arousal by the following rules. Firstly, we calculate the offset by dividing 9 by
the chosen number of categories from 2 to 8, whose corresponding offsets are 4.5,
3.0, 2.25, 1.8, 1.5, 1.29, 1.13 respectively. Then the first lower bound starts from
1 and the upper bound is the offset. To compute the next level of the degree, the
former upper bound becomes the lower bound and the upper bound is updated
by adding the offset. For example, if two categories are chosen for the degree,
the first degree level is in between 1 and 4.5 and the next level is in between
4.5 and 9. For three categories of degree, the boundaries of first, second and
third levels are in between [1,3.0], [3.0, 6.0], and [6.0, 9.0], respectively. For four
categories, the boundaries are as [1, 2.25], [2.25, 4.5], [4.5, 6.75], [6.75, 9.0]. The
rest of the categories follow the same rules except for 9 categories. For the final
9 categories, we have rounded up the floating point degree level to the nearest
integer.

As expected, similar patterns are shown for different models, in which they
suffer from learning discriminative emotional representations as the number of
categories increase as shown in Fig. 3. For the arousal prediction in the right of
the Fig. 3, it is interesting to observe that the performance of MT-CNN [9] on the
prediction of 7 different categories is higher compared to predicting 6 different
arousal categories. Compared to the proposed ConTL, we outperform the five
baseline models but DGCNN [11]. However, our model generally brings higher
improvements over DGCNN [11] for the valence predictions of 2, 3, 5 categories
and arousal predictions of 3, 4, 5 categories.

4.4 Ablation Study

In Table 2, we observe the effects of each module in the overall proposed model
by removing CNN, Transformer, and LSTM modules, respectively.

On both datasets, significant performance drop is observed by removing CNN
module, in which the effects were more significant on SEED-IV over DEAP.
While all three modules had their respective effects in the overall performance,
the LSTM module contributed to an 0.91% improvement on SEED-IV and
1.24%, 0.85% improvements on DEAP, respectively. This result signifies that the
CNN-Transformer network architecture can be improved by learning sequential
temporal representations.
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Fig. 4. Visualization of the predicted vectors of valence for the DEAP dataset. The
first row shows the distribution of predictions without LSTM and the second row shows
the result with LSTM. Different colors represent different emotional categories.

Figure 4 shows the distribution of the predicted vectors embedded into 2-
dimensions using t-SNE [17]. While there are many overlappings between differ-
ent categories without LSTM as shown in the first row of Fig. 4, the proposed
model with LSTM helps the predicted vectors to cluster closer to their respective
intra-class categories as can be seen in the second row of Fig. 4. Thus, t-SNE [17]
visualization further verifies the effectiveness of learning sequential relationships
for emotion prediction through LSTM based on the cascaded network of CNN
and Transformer.

Next, we change the number of input units to the Transformer, h, which is
the number of output units from the CNN module. In Fig. 5, we can observe
large perturbations on SEED-IV [22] relative to different values of h. On the
other hand, the respective performances relative to different values of h are quite
consistent on the DEAP [23] dataset for both valence and arousal compared to
SEED-IV [22]. Based on Fig. 5, we chose 50 units for h as it exhibits state-
of-the-art performances across two popular benchmark datasets for EEG-based
emotion recognition as shown in Table 1.

Table 2. Respective effects of CNN, Transformer, and LSTM modules in the overall
model.

Datasets SEED-IV DEAP

Models Acc Valence Arousal

Transformer+LSTM 45.80 / 15.14 56.09 / 7.91 58.91 / 9.02

CNN+LSTM 68.36 / 11.99 57.86 / 6.67 60.35 / 8.36

CNN+Transformer 69.30 / 11.63 56.83 / 7.61 60.21 / 9.13

CNN+Transformer+LSTM 70.21 / 13.58 58.07 / 7.07 61.06 / 8.82
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Fig. 5. Effects of the number of input units to Transformer in the overall model.

Fig. 6. Effects of the number of attention heads in classification accuracy on DEAP

Different head selections on Transformer networks can learn different
aspects of features. Figure 6 presents their relative classification accuracy for
low/medium/high valence predictions on DEAP. While we can observe a mild
fluctuation in average classification accuracy, they have not significantly influ-
enced in prompting feature learning.

5 Discussion

Previous hybrid-networks for emotion recognition either leverage LSTM or CNN
to integrate with the Transformer. While each method lacks local or sequential
features, we aim to learn complementary feature representations of global and
sequential relationships through Transformer and LSTM based on convolution
operation for local context modeling. Through extensive comparative experi-
ments, we verified that the proposed method can learn more discriminative rep-
resentation over existing CNN-based models, and combined networks of CNN
with LSTM or Transformer.
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As shown in Fig. 2, we present faithful experimental results by reproducing
the baseline models’ results using their open access codes. While EEG emotion
recognition accuracy on DEAP can be highly improved by using baseline signals
[9,28], they can introduce latency for real-time emotion recognition due to the
calculation time. Therefore, in our experiments, baseline signals are not used
and our comparative experiments’ results are only affected by different model
architectures but other factors by setting all hyper-parameters same. Although
our reproduced results of baseline models could not reach the reported results in
[9,28,31], these results are reasonable accounting that we use early stopping with
cross-validation. That is, our comparative experiments’ results present general-
ized measure of each model’s learning power, in which the performance is only
affected by their respective network architectures.

6 Conclusion

This paper presents a novel end-to-end method to learn complementary fea-
ture representations by cascading emotion-related local features, global tem-
poral dependencies, and sequential information. The CNN module first learns
inter-channel correlations using the convolution operation. The following Trans-
former [14] performs self-attention on the extracted features to learn global
temporal relationships. Subsequently, we leverage sLSTM [1] to further learn
sequential relationships from the output of the Transformer [14]. The compar-
ative experiments on two benchmarks show the effectiveness of the proposed
ConTL, which surpasses the performance of the state-of-the-art models. To ver-
ify the efficacy of learning sequential temporal relationships in addition to local
patterns and global temporal dependencies, we conducted the ablation study as
shown in Table 2. To further validate the effectiveness of our proposed method,
we compared the distribution of the predicted vectors of the proposed ConTL
with and without the LSTMs using the t-SNE [17] visualization. While our
proposed ConTL yields good performance for emotion recognition from EEG
signals, there are still some limitations: 1) the performance of hybrid-networks
are dependent on different hyper-parameter settings for different domains; and
2) the large number of parameters induced due to the integration of different
types of networks are inevitable, which arise slow inference time during the model
deployment. Thus, the following works of hybrid-networks shall consider devel-
oping light-weight models robust on different domains. There are many previous
studies such as knowledge distillation and domain adaptation, in which they aim
to solve these problems and we leave it as our future work.
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Abstract. Engagement in virtual learning is crucial for a variety of fac-
tors including student satisfaction, performance, and compliance with
learning programs, but measuring it is a challenging task. There is there-
fore considerable interest in utilizing artificial intelligence and affective
computing to measure engagement in natural settings as well as on a
large scale. This paper introduces a novel, privacy-preserving method for
engagement measurement from videos. It uses facial landmarks, which
carry no personally identifiable information, extracted from videos via
the MediaPipe deep learning solution. The extracted facial landmarks are
fed to Spatial-Temporal Graph Convolutional Networks (ST-GCNs) to
output the engagement level of the student in the video. To integrate the
ordinal nature of the engagement variable into the training process, ST-
GCNs undergo training in a novel ordinal learning framework based on
transfer learning. Experimental results on two video student engagement
measurement datasets show the superiority of the proposed method com-
pared to previous methods with improved state-of-the-art on the Enga-
geNet dataset with a 3.1% improvement in four-class engagement level
classification accuracy and on the Online Student Engagement dataset
with a 1.5% improvement in binary engagement classification accuracy.
Gradient-weighted Class Activation Mapping (Grad-CAM) was applied
to the developed ST-GCNs to interpret the engagement measurements
obtained by the proposed method in both the spatial and temporal
domains. The relatively lightweight and fast ST-GCN and its integra-
tion with the real-time MediaPipe make the proposed approach capable
of being deployed on virtual learning platforms and measuring engage-
ment in real-time.

Keywords: Engagement Measurement · Graph Convolutional
Network · Ordinal Classification · Transfer Learning

1 Introduction

Engagement is key in education, blending students’ attention and interest within
a learning context [1]. It not only stems from existing interests but also fosters
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new ones through sustained attention [2], essential for content comprehension
and engagement development [1]. However, measuring and upholding engage-
ment is challenging, and demands significant effort from educators. The advent
of remote sensing, Artificial Intelligence (AI), and affective computing offers new
avenues for accurately measuring engagement across various learning environ-
ments, including virtual learning platforms. Technologies such as facial expres-
sion recognition [3] and eye gaze tracking [4] enable more precise monitoring
and enhancement of student engagement. This paper explores the development
of AI algorithms for automated engagement measurement in virtual learning,
taking into account the definition of engagement in educational psychology and
its measurement methodologies.

Fredricks et al. [5] defined engagement through affective, behavioral, and
cognitive components. Affective engagement relates to students’ emotions and
attitudes towards their tasks, including interest or feelings during a learning class
[6]. Behavioral engagement refers to active participation, such as focusing on a
computer screen or not being distracted by a phone [7]. Cognitive engagement
deals with a student’s dedication to learning and tackling challenges, affecting
outcomes such as recall and understanding [1]. Booth et al. [1] identified that
engagement is measured through various signals such as facial expressions, eye
movements, posture, heart rate, brain activity, audio, and digital interactions.
Cameras, prevalent in devices for online learning, make video a key data modality
for AI-based engagement measurement [8,9]. Therefore, AI techniques predom-
inantly focus on video to measure student engagement [8–10].

AI-driven engagement measurement methods are divided into end-to-end and
feature-based approaches. While feature-based methods generally outperform
end-to-end approaches, which process raw videos, they require extensive identifi-
cation of effective features through trial and error [8–10]. Extracting multi-modal
features from videos with multiple computer vision algorithms or neural net-
works [11,12], and their subsequent analysis by deep neural networks to measure
engagement, render these methods computationally demanding [8,13]. Such com-
putational requirements limit their use on local devices and necessitate the trans-
fer of privacy-sensitive video data to cloud servers for engagement measurement.
In contrast, extracting low-dimensional landmark information, such as facial and
hand landmarks, not only provides more compact data but also captures essen-
tial geometric features for affect and behavior analysis, including engagement,
without personal identifiers [14–16]. Previous feature-based engagement mea-
surement approaches extracted features such as head pose, facial Action Units
(AUs), iris and gaze features, and affect and emotion features, which are indica-
tors of the behavioral and affective components of engagement [8–10]. The liter-
ature has demonstrated the success of facial landmarks in capturing these afore-
mentioned features [3,17–20]. A model such as Spatial-Temporal Graph Convo-
lutional Networks (ST-GCNs) [21], capable of analyzing spatial-temporal facial
landmarks and learning these aforementioned features inherently, can reduce the
need for raw facial videos. An approach based on facial landmarks prioritizes pri-
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vacy and reduces computational demands, making it more practical for real-time
engagement measurement.

In this paper, an alternative course away from conventional end-to-end and
feature-based approaches is charted, and a novel engagement measurement tech-
nique using facial landmarks extracted from videos is presented. The proposed
method is characterized by its privacy-preserving nature and computational effi-
ciency. This work makes the following contributions:

– This marks the first instance in video-based engagement measurement [8,9,
13,22–25] where facial landmarks, as the single data modality extracted from
videos, are analyzed through ST-GCNs [21] to infer the engagement level in
the video;

– To integrate the ordinal nature of the engagement variable into the training
process, ST-GCNs undergo training in a novel ordinal learning framework
utilizing transfer learning;

– Extensive experiments conducted on two video-based engagement measure-
ment datasets demonstrate the superiority of the proposed method over pre-
vious methods, achieving an improved state-of-the-art in engagement level
classification accuracy. For explainability, Gradient-weighted Class Activation
Mapping (Grad-CAM) is applied to the developed ST-GCNs to interpret the
engagement measurements obtained by the proposed method in both spatial
and temporal domains.

2 Related Work

The literature review in this paper serves two main purposes: discussing past
video-based engagement measurement techniques and examining the use of
graph convolutional networks for facial expression and affect analysis.

2.1 Engagement Measurement

Karimah et al. [8] conducted a systematic review on measuring student engage-
ment in virtual learning environments, revealing a focus on affective and behav-
ioral components of engagement. Most methods utilize datasets annotated by
external observers [10] to train both feature-based and end-to-end models. In
the following, some of the relevant feature-based and end-to-end works on video-
based engagement measurement are discussed.

In the domain of end-to-end engagement measurement techniques, deep neu-
ral networks analyze consecutive raw video frames to output the engagement
level of the student in the video. These methods do not employ the extrac-
tion of handcrafted features from the videos; instead, the network is adept at
autonomously learning to extract the most useful features directly from the
videos, utilizing consecutive convolutional layers. The deep neural networks
implemented in these end-to-end approaches include networks capable of video
analysis, such as 3D Convolutional Neural Networks (3D CNNs) and Video
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Transformers [26–28], as well as combinations of 2D CNNs with sequential neu-
ral networks such as Long Short-Term Memory (LSTM) and Temporal Convo-
lutional Network (TCN) [26,27,29,30].

The process of measuring engagement through feature-based techniques
involves two stages. Initially, behavioral and affective features are extracted from
video frames, relying on either domain-specific knowledge or pre-trained models
for facial embedding extraction. OpenFace [31] is notably effective for its com-
prehensive feature extraction capabilities, including AUs, eye movements, gaze
direction, and head positioning, and is widely applied in engagement measure-
ment [12,13,32,33]. Examples of facial embedding include the Masked Autoen-
coder for facial video Representation LearnINg (MARLIN) [11], utilized by Singh
et al. [12], and the Emotion Face Alignment Network (EmoFAN) [19], used by
Abedi et al. [13]. Subsequently, to analyze these extracted features and infer
engagement, various machine learning and deep learning models are employed,
such as Bag-of-Words (BoW) [32], Recurrent Neural Network (RNN) variations
[24], Temporal Convolutional Networks (TCNs) [13,33], Transformers [12,34],
and ensemble models [35].

2.2 Graph-Based Facial Affect and Expression Analysis

Liu et al. [3] conducted a comprehensive review of the literature on graph-based
methods for facial affect analysis. These methods typically take an image or a
sequence of images as input and produce an affect classification or regression
as output. Based on their review, Liu et al. [3] proposed a pipeline for graph-
based facial affect analysis, which includes (i) face preprocessing, (ii) graph-based
affective representation, and (iii) graph-based relational reasoning. Preprocess-
ing involves steps such as face detection and registration. Graph-based affective
representation involves defining the structure of the graph, i.e., nodes and edges.
The graph structure can be spatial or spatiotemporal depending on whether the
input data is still images or videos. The graph structure can be at the land-
mark level, region level, or AU level, with nodes representing facial landmarks,
facial regions of interest, or facial AUs, respectively. In the relational reasoning
step, the edges, nodes, their interrelations, and temporal dynamics are analyzed
through relational reasoning machine-learning or deep-learning models to make
inferences regarding affect. Models used to analyze graph data include dynamic
Bayesian networks, RNNs, CNNs, fully-connected neural networks, and non-
temporal and temporal graph neural networks [3].

Zhou et al. [36] proposed a facial expression recognition method based on
spatiotemporal landmark-level and region-level graphs. The intra-frame graph
is formed by the connections among thirty-four facial landmarks located around
the eyes, lips, and cheeks. The definition of these intra-frame connections was
done manually. Inter-frame connections were established by linking each node
in one frame to its corresponding node in the following frame. Two parallel
ST-GCNs with analogous structures were trained; one on the nodes’ x- and y-
coordinates, and another on their histogram of orientation features. ST-GCNs’
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outputs were concatenated and processed by a fully connected network to iden-
tify facial expressions. This method’s disadvantages include independent training
of the two ST-GCNs rather than joint learning, and manual definition of nodes
and edges.

Wei et al. [15] presented a graph-based method for micro-expression recog-
nition in video. The method included a dual-stream ST-GCN, focusing on the
x and y coordinates of facial landmarks and the distance and angles between
adjacent facial landmarks. An AU-specific loss function was incorporated into
the neural network’s training process in order to incorporate the association
between AUs and micro-expressions. Their methodology employed three differ-
ent sets of facial landmarks as graph nodes, comprising sets with 14, 31, and
Dlib’s [37] 68 facial landmarks. Notably, the set with 68 landmarks was the only
one to include landmarks along the jawline. The experiments demonstrated the
best results for micro-expression recognition when 14 facial landmark sets were
used.

Leong et al. [25] introduced a method employing spatial-temporal graph
attention networks to analyze facial landmarks and head poses, aimed at iden-
tifying academic emotions. The facial landmarks used were those around the
eyebrow, eye, nose, and mouth excluding those that outline the face’s outer
shape, with the reasoning being they lack correlation with affective states. A
notable limitation of this approach is its reliance on multiple deep neural net-
works for extracting features, i.e., facial landmarks and head pose. The method
achieved lower academic emotion detection accuracy when compared to prior
feature-based methods [13].

2.3 Discussion

As reviewed in this section, while some methods have used facial landmarks and
ST-GCNs to recognize facial affect and expression in videos, there has been no
exploration of the use of these methods to measure engagement. The fundamen-
tal differences between engagement and facial affect and expression make their
measurement different. First, engagement is a multi-component state compris-
ing behavioral, affective, and cognitive components. To illustrate, key indicators
of behavioral engagement, such as being off-task or on-task, are determined by
head pose, eye gaze, and blink rate. These indicators, and therefore engage-
ment, cannot be effectively measured using methods designed solely for facial
affect analysis. Second, engagement is not a constant state; it varies over time
and should be measured at specific time resolutions where it remains stable and
quantifiable. An ideal measurement duration for engagement is between ten and
forty seconds, which is longer than the time resolution for facial affect analy-
sis, which sometimes occurs at the frame level. Third, engagement measurement
could involve recognizing an ordinal variable that indicates levels of engagement,
as opposed to facial expression recognition, which identifies categorical variables
without inherent order.

Existing engagement measurement approaches face limitations due to the
necessity of employing multiple deep neural networks for the extraction and
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analysis of multi-modal features. Coupled with the significant differences between
facial affect analysis and engagement measurement as outlined above, these limi-
tations underscore a gap in the field. In response, we introduce a straightforward
yet effective method for engagement measurement. This method is lightweight
and fast, preserving privacy while also demonstrating improvements over current
methodologies across two video-based engagement measurement datasets.

3 Method

The input to the proposed method is a video sample of a student seated in front
of a laptop or PC camera during a virtual learning session. The sequences of
facial landmarks extracted from consecutive video frames through MediaPipe
[14,20] are analyzed by ST-GCN [16,21] to output the engagement level of the
student in the video.

3.1 Graph-Based Representation

The MediaPipe deep learning solution [14], a framework that is both real-time
and cross-platform, is employed for the extraction of facial landmarks from video.
Incorporated within MediaPipe, Attention Mesh [20] is adept at detecting 468
3D facial landmarks throughout the face and an extra 10 landmarks for the
iris. However, not all 478 landmarks are employed in the proposed engagement
measurement method. Consistent with existing studies [3], only 68 of the 3D
facial landmarks, which match those identified by the Dlib framework [37], in
addition to the 10 3D iris landmarks, making a total of 78 landmarks, are utilized.

The 3D facial landmarks encapsulate crucial spatial-temporal information
pertinent to head pose [17], AUs [18], eye gaze [20], and affect [3,19]-key features
identified in prior engagement measurement studies [8–10,13,22–24,26,27,33].
Consequently, there is no necessity for extracting additional handcrafted features
from the video frames.

The N 3D facial landmarks extracted from T consecutive video frames are
utilized to construct a spatiotemporal graph G = (V,E). In this graph, the set of
nodes V = {vti|t = 1, . . . , T, i = 1, . . . , N} encompasses all the facial landmarks
in a sequence. To construct G, first, the facial landmarks within one frame are
connected with edges according to a connectivity structure based on Delaunay
triangulation [38] which is consistent with true facial muscle distribution and
uniform for different subjects [3]. Then each landmark will be connected to the
same landmark in the consecutive frame.

3.2 Graph-Based Reasoning

Based on the spatiotemporal graph of facial landmarks G = (V,E) constructed
above, an adjacency matrix A is defined as an N×N matrix where the element at
position (i, j) is set to 1 if there is an edge connecting the ith and jth landmarks,
and set to 0 otherwise. An identity matrix I, of the same dimensions as A,
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is created to represent self-connections. A spatial-temporal graph, as the basic
element of an ST-GCN layer, is implemented as follows [21].

fout =
(
Λ− 1

2 ((A + I) � M)Λ− 1
2 finWspatial

)
Wtemporal (1)

where Λii =
∑

j(A
ij + Iij). M is a learnable weight matrix that enables scaling

the contributions of a node’s feature to its neighboring nodes [21]. The input
feature map, denoted fin, is the raw coordinates of facial landmarks for the
first layer of ST-GCN, and it represents the outputs from previous layers in
subsequent layers of ST-GCN. The dimensionality of fin is (C,N, T ), where C
is the number of channels, for example, 3 in the initial input to the network
corresponding to the x, y, and z coordinates of the facial landmarks. In each
layer of ST-GCN, initially, the spatial (intra-frame) convolution is applied to
fin based on the weight matrix Wspatial, utilizing a standard 2D convolution
with a kernel size of 1×1. Subsequently, the resulting tensor is multiplied by the
normalized adjacency matrix Λ− 1

2 ((A+I)�M)Λ− 1
2 across the spatial dimension.

Afterward, the temporal (inter-frame) convolution, based on the weight matrix
Wtemporal, is applied to the tensor output from the spatial convolution. This
convolution is a standard 2D convolution with a kernel size of 1 × Γ , where Γ
signifies the temporal kernel size.

Following an adequate number of ST-GCN layers, specifically three in this
work, that perform spatial-temporal graph convolutions as outlined above, the
resulting tensor undergoes 2D average pooling. The final output of the network
is generated by a final 2D convolution. This convolution employs a kernel size
of 1 × 1 and features an output channel dimensionality equal to the number of
classes K, i.e., the number of engagement levels to be measured. An explanation
of the detailed architecture of the ST-GCNs for specific datasets can be found
in Subsect. 4.2.

3.3 Ordinal Engagement Classification Through Transfer Learning

The model described above, with a final layer comprising K output channels,
tackles the engagement measurement problem as a categorical K-class classifica-
tion problem without taking into account the ordinal nature of the engagement
variable [10,39,40]. The model could harness the ordinality of the engagement
variable to enhance its inferences. Drawing inspiration from [13,41], a novel ordi-
nal learning framework based on transfer learning is introduced as follows.
Training phase- The original K-level ordinal labels, y = 0, 1, . . . , K − 1, in the
training set are converted into K − 1 binary labels yi as follows: if y > i, then
yi = 1; otherwise, yi = 0, for i = 0, 1, . . . ,K − 2. Subsequently, K − 1 binary
classifiers are trained with the training set and the K − 1 binary label sets
described above. The training of binary classifiers is based on transfer learning,
which proceeds as follows: Initially, a network is trained on the dataset with the
original K-class labels, employing a regular final layer with K output channels.
After training, the ST-GCN layers of this network are frozen, and the final layer is
removed. To this frozen network, K−1 separate untrained 2D convolution layers
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with a single output channel each are added, resulting in K − 1 new networks.
Each of these networks consists of a frozen sequence of ST-GCN layers followed
by an untrained 2D convolution layer. These K−1 new networks are then trained
on the entire dataset using the K − 1 binary label sets described above. During
this phase, only the final 2D convolution layers are subjected to training.
Inference phase- For the ordinal classification of a test sample, the sample
is initially input into the pre-trained (and frozen) sequence of ST-GCN layers,
followed by a 2D average pooling layer. The tensor obtained from this process
is then input into K − 1 pre-trained final 2D convolution layers, each yielding a
probability estimate for the test sample being in the binary class yt = yi, where
i = 0, 1, . . . ,K − 2. Subsequently, these K − 1 binary probability estimates are
transformed into a single multi-class probability of the sample belonging to class
y = 0, 1, . . . ,K − 1, as follows [41].

p(yt = k) =

⎧
⎪⎨
⎪⎩

1 − p(yt ≥ 0), if k = 0,
p(yt > k − 1) − p(yt ≥ k), if 0 < k < K − 1,
p(yt > K − 2), if k = K − 1.

(2)

Despite the increased training time for the ordinal model within the afore-
mentioned ordinal learning framework, the final count of parameters in the ordi-
nal model remains nearly identical to that of the original non-ordinal model.

4 Experiments

This section evaluates the performance of the proposed method relative to exist-
ing methods in video-based engagement measurement. It reports and discusses
the results of multi-class and binary classification of engagement across two
datasets. Based on the engagement measurement problem at hand, several eval-
uation metrics are employed. In the context of multi-class engagement level clas-
sification, metrics such as accuracy and confusion matrix are reported. For binary
engagement classification, accuracy, the Area Under the Curve of the Receiver
Operating Characteristic (AUC-ROC), and the Area Under the Curve of the
Precision and Recall curve (AUC-PR) are utilized. In addition, the number of
parameters of the models used, memory consumption, and inference time of the
proposed method are compared to those of previous methods.

4.1 Datasets

Experiments on two large video-based engagement measurement datasets were
conducted, each presenting unique challenges that further enabled the validation
of the proposed method.

EngageNet: The EngageNet dataset [12], recognized as the largest dataset
for student engagement measurement, includes video recordings of 127 subjects
participating in virtual learning sessions. Each video sample has a duration of
10 s, with a frame rate of 30 fps and a resolution of 1280 × 720 pixels. The
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subjects’ video recordings were annotated as four ordinal levels of engagement:
Not-Engaged, Barely-Engaged, Engaged, and Highly-Engaged. The dataset was
divided into 7983, 1071, and 2257 samples for training, validation, and testing,
respectively, using a subject-independent data split approach [12]. However, only
the training and validation sets were made available by the dataset creators
and were utilized for the training and validation of predictive models in the
experiments presented in this paper. The distribution of samples in the four
aforementioned classes of engagement in the training and validation sets are
1550, 1035, 1658, and 3740, and 132, 97, 273, and 569, respectively.

Online SE: The Online SE dataset [42], comprises videos of six students partic-
ipating in online courses via the Zoom platform. These recordings span 10 s each,
with a frame rate of 24 fps and a resolution of 220× 155 pixels. The videos were
annotated as either Not-Engaged or Engaged. The dataset was segmented into
3190, 1660, and 1290 samples for training, validation, and testing, respectively.
The distribution of samples in the two aforementioned classes of engagement in
the training, validation, and test sets is 570 and 2620, 580 and 1080, and 570
and 720, respectively.

4.2 Experimental Setting

The sole information extracted from video frames is facial landmarks, which
are analyzed by ST-GCN to determine the engagement level of the student in
the video. Drawing inspiration from the pioneering works on body-joints-based
action analysis [21,43], the proposed ST-GCN for facial-landmarks-based engage-
ment measurement is structured as follows. The input facial landmarks are first
processed through a batch normalization layer, followed by three consecutive
ST-GCN layers with 64, 128, and 256 output channels, respectively. Residual
connections are incorporated in the last two ST-GCN layers. A dropout rate of
0.1 is applied to each ST-GCN layer. The temporal kernel size in the ST-GCN
layers is selected to be 9. Subsequent to the ST-GCN layers, an average pooling
layer is utilized, and its resulting tensor is directed into a 2D convolutional layer
with 256 input channels and a number of output channels corresponding to the
number of classes. A Softmax activation function then computes the probabil-
ity estimates. In cases where engagement measurement is framed as a binary
classification task, the terminal 2D convolution layer is configured with a sin-
gle output channel, substituting Softmax with a Sigmoid function. The Sigmoid
function is also employed for the individual binary classifiers within the ordinal
learning framework detailed in Subsect. 3.3. The models are trained using the
Adam optimizer with mini-batches of size 16 and an initial learning rate of 0.001
for 300 epochs. The learning rate is decayed by a factor of 0.1 every 100 epochs.

4.3 Experimental Results

Comparison to Previous Methods. Table 1 presents the comparative results
of two settings of the proposed method, a regular non-ordinal classifier and an
ordinal classifier, with previous methods on the validation set of the EngageNet
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Table 1. Classification accuracy of engagement levels on the validation set of the
EngageNet dataset [12]: comparison of state-of-the-art end-to-end methods and feature-
based methods with various feature sets and classification models against two config-
urations of the proposed method - facial landmarks analyzed by ST-GCN and ordinal
ST-GCN. Bolded values denote the best results.

Ref. Features Model Accuracy

[27] End to End Model ResNet + TCN 0.5472

[30] End to End Model EfficientNet + LSTM 0.5757

[30] End to End Model EfficientNet + Bi-LSTM 0.5894

[12] Gaze LSTM 0.6125

[12] Head Pose LSTM 0.6760

[12] AU LSTM 0.6303

[12] Gaze + Head Pose LSTM 0.6769

[12] Gaze + Head Pose + AU LSTM 0.6704

[12] Gaze CNN-LSTM 0.6060

[12] Head Pose CNN-LSTM 0.6732

[12] AU CNN-LSTM 0.6172

[12] Gaze + AU CNN-LSTM 0.6275

[12] Head Pose + AU CNN-LSTM 0.6751

[12] Gaze + Head Pose + AU CNN-LSTM 0.6751

[12] Gaze TCN 0.6256

[12] Head Pose TCN 0.6611

[12] AU TCN 0.6293

[12] Gaze + Head Pose + AU TCN 0.6779

[12] Gaze Transformer 0.5545

[12] Gaze + Head Pose Transformer 0.6445

[12] Gaze + Head Pose + AU Transformer 0.6910

[12] Gaze + Head Pose + AU + MARLIN Transformer 0.6849

[34] Gaze TCCT-Net 0.6433

[34] Head Pose TCCT-Net 0.6891

[34] AU TCCT-Net 0.6629

[34] Gaze + Head Pose TCCT-Net 0.6564

[34] Gaze + Head Pose + AU TCCT-Net 0.6713

Ours Facial Landmarks ST-GCN 0.6937

Ours Facial Landmarks Ordinal ST-GCN 0.7124

dataset [12]. The engagement measurement in EngageNet [12] is a four-class
classification problem and the accuracy is reported as the evaluation metric.
The previous methods in Table 1 include state-of-the-art end-to-end methods,
including the combination of ResNet-50 with TCN [27] and the combination of
EfficientNet B7 with LSTM and bidirectional LSTM [30], followed by state-of-
the-art feature-based methods. The previous feature-based methods in Table 1
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used different combinations of OpenFace’s eye gaze, head pose, and AU fea-
tures [31] along with MARLIN’s facial embedding features [11]. These features
were classified by LSTM, CNN-LSTM, TCN, and Transformer. Refer to [12] for
more details. The results of the feature-based method proposed by Vedernikov
et al. [34] are also reported, where the aforementioned features are classified
using a Transformer-based neural network called the Tensor-Convolution and
Convolution-Transformer Network (TCCT-Net).

Despite the abundant data samples in the EngageNet dataset [12] available
for training complex neural networks such as ResNet + TCN [27] and Effi-
cientNet B7 + bidirectional LSTM [30], their performance is inferior to that of
feature-based methods. This highlights the necessity of extracting hand-crafted
features or facial landmarks from videos and building classifiers on top of them.

In the single feature configurations of previous methods in Table 1, head pose
achieves better results compared to AUs, which is better than eye gaze. While
head pose and eye gaze are indicators of behavioral engagement [7,13], AUs,
which are associated with facial expressions and affect [19], are indicators of
affective engagement. Combining these three features is always beneficial since
engagement is a multi-component variable that can be measured by affective
and behavioral indicators when the only available data is video [13]. Among
classification models, utilizing more advanced models improves accuracy; the
Transformer is better than TCN, which is better than CNN-LSTM and LSTM;
however, it comes at the cost of increased computational complexity. For sin-
gle features, the Transfomer-based TCCT-Net [34] outperforms other classifiers;
however, for multiple feature sets, the vanilla Transformer [12] outperforms the
others.

The proposed ST-GCN in Table 1, which relies solely on facial landmarks
without requiring raw facial videos or multiple hand-crafted features, outper-
forms previous methods. Moreover, making the proposed method ordinal further
improves the state-of-the-art by 3.1% compared to eye gaze, head pose, AUs, and
MARLIN features [11] with the Transformer [12]. Tables 2a and 2b depict the
confusion matrices of the ordinal and non-ordinal configurations of the proposed
method in Table 1. As shown, incorporating ordinality significantly increases the
number of correctly classified samples in the first three classes and results in a
2.7% improvement in accuracy compared to its non-ordinal counterpart.

Table 2. Confusion matrices of the proposed method with (a) non-ordinal and (b)
ordinal ST-GCN on the validation set of the EngageNet dataset [12].

(a) Non-ordinal ST-GCN

Class 1 2 3 4

1 9914 13 6
2 1029 33 25
3 9 19100 145
4 5 4 45 515

(b) Ordinal ST-GCN

Class 1 2 3 4

1 10412 10 6
2 15 36 24 22
3 10 26112 125
4 9 5 44 511
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Table 3. Classification accuracy of engagement levels on the validation set of the
EngageNet dataset [12] for different variants of the proposed method.

Variant Accuracy

ST-GCN is replaced with LSTM 0.6847
ST-GCN is replaced with TCN 0.6813
Only x and y coordinates of joints are used0.6655
A temporal kernel of 3 is used 0.6748
A temporal kernel of 15 is used 0.6841
Every 2 frames are used 0.6813
Every 4 frames are used 0.6907
Every 8 frames are used 0.6907
Every 16 frames are used 0.6841
Hand landmarks are added 0.6956

The feature extraction step in [12,34] involves running multiple deep-learning
models in OpenFace [31] to capture eye gaze, head pose, and AUs, as well as
another complex network for MARLIN feature embeddings [11]. While these
feature extraction networks are complex for real-time use, the proposed method
relies on facial landmarks extracted using the real-time MediaPipe [14,20]. Con-
sidering only the classification models, the number of parameters in EfficientNet
B7 + LSTM [30], ResNet + TCN [27], Transformer [12], the proposed non-
ordinal ST-GCN, and ordinal ST-GCN are 82,681,812, 24,639,236, 1,063,108,
861,688, and 861,431, respectively. The memory consumption for EfficientNet
B7 + LSTM [30], ResNet + TCN [27], Transformer [12], and the proposed ordi-
nal ST-GCN are 2268.78, 790.35, 178.00, and 180.96 megabytes, respectively.
The inference time for classifying a data sample using EfficientNet B7 + LSTM
[30], ResNet + TCN [27], Transformer [12], and the proposed ordinal ST-GCN
are 348, 51, 10, and 0.8 milliseconds, respectively. This indicates the efficiency
of the proposed method, which, while being lightweight and fast, also improves
the state-of-the-art.

Variants of the Proposed Method. Table 3 displays the results of different
variants of the proposed method on the validation set of the EngageNet [12]
dataset. In the first two variants, the x, y, and z coordinates of facial landmarks
are converted into multivariate time series and analyzed by an LSTM and TCN.
The LSTM includes four unidirectional layers with 256 neurons in hidden units
and is followed by a 256 × 4 fully connected layer. The parameters of the TCN
are as follows: the number of layers, number of filters, kernel size, and dropout
rate are 8, 64, 8, and 0.05, respectively. While their results are acceptable and
better than most of the earlier methods in Table 1, they cannot outperform ST-
GCN, the last two rows of Table 1. The fact that the accuracy of the LSTM
and TCN in Table 3 is higher than those in Table 1 signifies the efficiency of
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facial landmarks for engagement measurement. In the third variant, the z coor-
dinates of facial landmarks are disregarded, and the decrease in the accuracy
of the non-ordinal ST-GCN indicates the importance of the z coordinates for
engagement measurement. Temporal kernel sizes other than 9 in the fourth and
fifth variants have a negative impact on the results of the non-ordinal ST-GCN.
When engagement measurement is performed using every 2, 4, 8, and 16 frames,
instead of every frame, there is a slight decrease in the accuracy of the non-ordinal
ST-GCN. However, this is a trade-off between accuracy and computation since
reducing the frame rate corresponds to a reduction in computation. The last row
of Table 3 shows the results of the ordinal ST-GCN when 21 hand landmarks
extracted using MediaPipe [14] were added to the facial landmarks. The lower
accuracy compared to using only facial landmarks is due to two factors. Firstly,
there is 80% missingness in the hand landmarks due to the absence of hands in
the videos. Secondly, it indicates that facial landmarks alone are sufficient for
engagement measurement, capturing both behavioral and emotional indicators
of engagement.

Results on the Online SE Dataset. Table 4 presents the results of the pro-
posed method in comparison to previous methods on the test set of the Online SE
dataset [42]. The earlier methods listed in Table 4 are feature-based, extracting
affective and behavioral features from video frames and performing binary clas-
sification of the features using TCN in [33], TCN in [13], LSTM with attention
in [44], and BoW in [32]. Given that engagement measurement in the Online SE
dataset [42] is posed as a binary classification problem, implementing the ordinal
version of the proposed method is not required. The proposed method, employing
facial landmarks with ST-GCN, attains the highest accuracy and AUC PR.

Table 4. Binary classification accuracy, AUC ROC, and AUC PR of engagement on
the test set of the Online SE dataset [42]: comparison of previous methods against the
proposed method. Bolded values denote the best results.

Method Accuracy AUC ROC AUC PR

[33] 0.7803 0.8764 0.8008
[13] 0.7637 0.8710 0.7980
[44] 0.7475 0.8890 0.7973
[32] 0.8191 0.8926 0.9018

Proposed 0.8315 0.8806 0.9131

Interpretation of Results. Figure 1 displays the interpretation of engagement
measurements taken using the proposed method by applying Grad-CAM [43] to
the ordinal ST-GCN trained on the training set of the EngageNet dataset. For
visualization purposes, three exemplary frames (out of 300) from the beginning,
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middle, and end of three data samples annotated as Not-Engaged in the valida-
tion set of the EngageNet dataset are shown in Fig. 1 (a)-(c). The facial land-
marks extracted through MediaPipe are overlaid on the frames, where the color
map of the facial landmarks, from blue to red, depicts the class activation map
values of the last ST-GCN layer in the trained ST-GCN. The facial landmarks
associated with the target class of Not-Engaged at certain frames are colored
towards red. In Fig. 1 (a), during the beginning and middle of the video, the
first two exemplary frames show the student engaged, with lower class activa-
tion map values. At the end of the video, when the student is not looking at the
camera (computer screen) and is looking elsewhere, landmarks on the iris, eye,
and jawline show higher values, resulting in the model classifying the sample as
Not-Engaged. In Fig. 1 (b), the student is not paying attention and is playing
with their phone. Jawline, eye, iris, and eyebrow facial landmarks with red colors
have higher class activation map values, resulting in the model classifying the
sample as Not-Engaged. In Fig. 1 (c), throughout the entire video sample, the
head pose of the student is normal and perpendicular to the camera. However,
the eyes are almost closed, indicating sleepiness and low arousal. This is detected
by the higher class activation map values on the eye and iris landmarks, corre-
sponding to the intensity of AU number 45, which indicates how closed the eyes
are. This resulted in the model classifying the sample as Not-Engaged.

5 Discussion

Our research led to the development of a novel deep-learning framework for stu-
dent engagement measurement. In the proposed framework, sequences of facial
landmarks are extracted from consecutive video frames and analyzed by ordinal
ST-GCNs to make inferences regarding the engagement level of the student in the
video. The successful application of our model to the EngageNet [12] and Online
SE [42] datasets not only confirms its efficacy but also establishes a new standard
in engagement level classification accuracy, outperforming previous methods. As
the sole input information to the developed engagement measurement models,
the 3D facial landmarks contain information about head pose [17], AUs [18],
eye gaze [20], and affect [3,19], which are the key indicators of behavioral and
affective engagement. The relatively lightweight and fast ST-GCN and its inte-
gration with real-time MediaPipe [14] make the proposed framework capable of
being deployed on virtual learning platforms and measuring engagement in real-
time. The proposed method is privacy-preserving and does not require access to
personally identifiable raw video data for engagement measurement. In a real-
world deployment, the cross-platform MediaPipe solution [14], running on a web,
mobile, or desktop application, extracts facial landmarks from video data on
users’ local devices. These non-identifiable facial landmarks are then transferred
to a cloud, where they are analyzed by ST-GCNs to measure engagement. The
interpretability feature of the proposed method, enabled through Grad-CAM,
facilitates understanding which facial landmarks, corresponding to behavioral
and affective indicators of engagement, contribute to certain levels of engage-
ment. It also helps identify the specific timestamps at which these contributions
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Fig. 1. Interpretation of engagement measurements taken using the proposed method
by applying Gradient-weighted Class Activation Mapping (Grad-CAM) to the Spatial-
Temporal Graph Convolutional Network (ST-GCN). Please refer to the last paragraph
of Subsect. 4.3 for further details.

occur. This provides instructors with additional information to take necessary
actions and promote student engagement. A limitation of the proposed method
is its reliance on the quality of facial landmarks detected by MediaPipe. In the
context of engagement measurement in virtual learning sessions, an occluded
or absent face, and consequently non-detected facial landmarks, correspond to
lower levels of engagement or disengagement. Our developed ST-GCN was able to
correctly classify most samples with occluded or absent faces, i.e., no facial land-
marks, as Not-Engaged. To improve the performance of the proposed method,
the following direction could be investigated: analyzing facial landmarks with
more advanced ST-GCNs, which are equipped with attention mechanisms and
trained through contrastive learning techniques and applying augmentation tech-
niques to video data before facial landmark extraction [45] or to facial landmark
data to improve the generalizability of ST-GCNs.
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Abstract. There are complex emotional interactions between individu-
als in group and between group and individuals. Although existing meth-
ods for group emotion recognition (GER) made quite efforts to learn
the spatial-temporal characteristics via efficient deep learning-based net-
works, they neglected to model the interactive characteristics within
group videos. In this article, we propose a graph-based GER approach
to learn the spatial-temporal interactive characteristics from the facial
and holistic cues of a group video. Specifically, we construct a spatial-
temporal graph with facial information to describe the emotional rela-
tionships within a group in spatial and temporal dimensions. We employ
a graph attention network (GAT) to dynamically model the emotional
relationships and influences between individual and group nodes across
the spatial-temporal dimension. The proposed method utilizes the GAT
to explore the temporal correlations of holistic features extracted from
the video frames. The introduced graph attention mechanism helps the
proposed network effectively focus on the important nodes, capture inter-
active information, and generate a more precise spatial-temporal repre-
sentation for GER. We fuse the decisions based on facial and holistic
information in a linear way to obtain a comprehensive recognition result
for the emotional state of group videos. Extensive experiments demon-
strate that the proposed method learns effective spatial-temporal emo-
tional features, and achieves superior performance in overall accuracies
of 70.23% and 92.90% on the VGAF and GECV datasets, respectively.

Keywords: Spatial-temporal Graph · Group Emotion Recognition ·
Graph Attention Network

1 Introduction

Group emotion plays a crucial role in human society, influencing individual per-
formance in areas such as cooperation, conflict resolution, creativity, and social
cohesion [1]. Accurate identification of group emotions is beneficial for promot-
ing cooperation and achieving better outcomes. In the field of affective comput-
ing, most research on group emotion recognition (GER) focuses on estimating
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group emotional states from static images of individuals in multiple social events.
Although existing image-based GER approaches have achieved promising results
[4,19,20], they are incompetent to learn the emotional cues implied in successive
frames of group video.

Recently, video-based GER methods were proposed to estimate the group
emotional state during a period time. Current video-based GER methods have
proved the feasibility and effectiveness of estimating group emotions from videos.
However, the emotional interaction existed within the group has not been taken
into consideration in these method. Researches on social psychology have demon-
strated that there are various emotional interaction relationships within a group,
such as the emotional influence between group members, the individual’s impact
on the generation of the group emotion, and the group emotion feedback on indi-
viduals [8]. Moreover, this phenomenon of emotional interaction not only exists
at each moment within the group, but also manifests over time. For instance,
the group’s emotion at a moment affects the subsequent emotional states of
individuals and the group. This fact requires an efficient GER method employed
to describe the spatial emotional relationships of a group at each moment and
characterize the temporal relationship of emotion in multiple consecutive instan-
taneous frames.

In this work, we propose a graph-based approach to learn the interactive emo-
tional cues from a group video for video-based GER. We construct a graph data
structure to describe the complex emotional relationships among group videos.
Specifically, this work represents each group member at any given moment as a
node (individual node), and the instantaneous group emotion at each moment
as a pseudo node (group node). These directional edges in the graph indicate
the emotional influence relationships between nodes at the same moment (i.e.,
spatial relationship) or the emotional influence relationships between nodes over
time (i.e., temporal relationship). Furthermore, for effective usage of the con-
structed graphs of group videos, we employ a graph attention network (GAT) to
dynamically learn the interaction information between different nodes, capture
the interaction patterns between nodes, and generate effective spatial-temporal
representations for group emotion recognition. Overall, the main contributions
of our paper can be summarized as:

• We construct spatial-temporal relational graph data and comprehensively
describe the complex emotional relationships over a specific time period
within a group.

• We introduce the attention mechanism to exploit the constructed spatial-
temporal graph data and learn the weights of importance between nodes in the
graph. The proposed method can prioritize nodes with significant emotional
impact and extract interactive information more effectively.

• Extensive experiments on two popular video-based GER benchmarks, Video
level Group AFfect (VGAF) [15], and Group-level Emotion on Crowd Videos
(GECV) [14] datasets, show that the proposed method outperformed the
state-of-the-art methods. The proposed method improved the best accuracies
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of GER from 68.02% to 70.23% on the VGAF dataset and from 90.46% to
92.90% on the GECV dataset.

2 Related Work

Video-based group emotion recognition (GER) is a process that involves analyz-
ing and interpreting the collective emotional state of a group of individuals in
a video. Existing video-based GER methods employ temporal models to char-
acterize the correlations between consecutive features across frames, and yield
temporal representations of group emotions. For instance, Sharma et al. [10] pro-
posed the VGAFNet net-work to extract facial features from each video frame
and generate temporal emotional fea-tures with an LSTM model for group emo-
tional recognition. Liu et al. [10] used a TSM temporal model [9] and an OpenS-
mile toolkit [3] to extract group emotional features from audio and dynamic
sequences, respectively. Additionally, some research utilized 3D convolutional
neural networks (3D CNNs) to capture spatial-temporal emotional information
from group videos [13]. The existing video-based GER methods have shown
impressive recognition performance, while these approaches neglect to model the
fact that there exist group member interactions in a group and these interactions
influence group emotion. The simulations of emotional interactions rarely are
reflected in existing research, and the effectiveness of learned emotional features
has room for improvement. In this work, we aim to model the spatial-temporal
emotional interaction among the group video and extract interactive information
for accurate group emotion recognition.

3 Proposed Approach

The proposed approach constructs two graphs by learned facial and holistic
information to represent the relationship implied in a group video. Then, we
use a graph attention network (GAT) with the constructed graphs to model
the emotional interactions from individual to individual, individual to group,
and group to individual temporally. Modeling emotional interactions among the
group video helps the model learn interactive information and obtain effective
temporal representation for GER. Finally, the GER results obtained from facial
and holistic views are linearly integrated as a comprehensive recognition result.
The overall framework of our approach is illustrated in Fig. 1.

Fig. 1. The overall framework of the proposed approach
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3.1 Problem Formulation

Video-based group emotion recognition involves identifying and classifying the
collective emotional state of a group of people from video data. Let V denotes
the group video, and y = [y1, y2, . . . , yC ] denotes the emotional label of the
sample, where C is the number of emotion categories. Assuming each group video
consists of T frames, and V =

[
I1, I2, . . . , IT

]
. Consequently, the holistic feature

sequence extracted from T frame images can be represented as a feature matrix
Xh =

[
h1,h2, . . . ,hT

]
, where h denotes the holistic feature of a frame image.

We use the graph data structure to describe the emotional relationship for each
frame of a group video. In the proposed method, group members are regarded
as nodes (individual nodes), and the edge connecting each two individual nodes
indicates the emotional relationship between the two individuals. The attribute
(feature) of the i-th individual node in the t-th frame image is denoted as xt

i.
X =

[
x1
1,x

1
2, . . . ,x

T
N

]
represents the feature matrix formed by all individual

features in the group video. The emotional relationship between individuals in
the t-th frame image can be characterized by the adjacency matrix At. In this
article, we assume the edge in the graph is fully connected and the weight of
an edge is learned from the node’s attributes. Therefore, adjacency matrix At

is an N × N matrix of all ones, 1N×N , where N is the number of individuals in
the video. For a group video V, there exists a set which contains T adjacency
matrices and the set can be denoted as Av =

{
A1,A2, . . . ,AT

}
.

3.2 Feature Extraction

Facial information in a group offers direct insights into the emotional states of
its members and is the most significant cue for GER. Besides, holistic informa-
tion includes humans, surrounding objects, and background, and it also provides
rich emotional cues for estimating the emotional state of a group. Considering
the effectiveness of facial and holistic information for GER, the proposed app-
roach separately extracts the facial and holistic features from a frame image to
represent the individual and global emotional state.

To extract effective individual emotion features, we use the fine-tuned
VGGFace network [12], which has been trained on face images and emotion
labels, as the facial emotion extraction network. The output of the last fully
connected layer of the VGGFace network is used as the emotional feature (a
4096-dimensional vector) for each individual node. The feature extraction pro-
cess of the i -th individual node in the t-th frame image is expressed by Eq. (1),

xt
i = VGGFace

(
Iti

)
, (1)

where Iti denotes the i -th face image in the t-th frame image, and xt
i ∈ R

4096

is the individual emotion feature extracted from the face image. We employ
the popular face detector MTCNN [21] to detect and crop the regions of faces
from each frame of group videos. The sequence number of the individual in each
image frame is determined by sorting the output confidence of the face detector
network.
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The effectiveness of holistic information has been demonstrated in group
emotion recognition tasks [15]. To effectively capture emotional cues from frame
images, we employ the ResNet-50 network [5] trained on image-based GER
datasets [2,5], to extract the holistic emotional features:

ht = ResNet-50
(
It

)
, (2)

where It denotes the t-th frame image of a group video. We use the output of the
last convolutional layer of the ResNet-50 network as the holistic emotional fea-
ture (a 2048-dimensional vector), and ht ∈ R

2048 is the holistic emotion feature
extracted from the t-th frame image.

3.3 Graph with Facial Information

Previous works described the emotional relationship within a group image
and benefited from exploiting interactive information from spatial relations for
image-based GER [10,18]. However, the emotional cues implied in the tempo-
ral relationships have not been explored in video-based GER. In this work, we
introduce a spatial-temporal emotional graph to comprehensively characterize
the complex relationship in the group video.

Fig. 2. Emotional interaction considering temporal relationships. (a) The state of the
group node at time t generated by the aggregation of individual node. (b) The state
of the group node at time t affects the states of individual nodes at time t+1

1) Basic emotional relationships: In order to characterize the emotional
influence relation in both space and time, we introduce a pseudo (group) node
into the emotional relationship graph at every moment. As illustrated in Fig. 2,
we aggregate the attribution of individual nodes at the current moment to gener-
ate the attribution of the group node (instantaneous group emotion). Then, the
instantaneous group emotion serves as an emotional context [8] to influence the
attributions of individual nodes at the subsequent moment. Figure 2 illustrates
three types of emotional relation: the emotional influence between individuals at
each moment; the impact of the individuals on the instantaneous group emotion;
and the influence of the generated instantaneous group emotion on individuals
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at the next moment. Figure 2(a) depicts an emotional relationship that indi-
vidual emotions influence the group emotion, and it can be represented by the
adjacency matrix as Eq. (3),

At
x→g =

[
At 0(N×1)

1(1×N) 1(1×1)

]
, (3)

where At
x→g denotes the adjacency matrix of the individual node and group

node at time t, x denotes the attribution of the individual node, g denotes the
attribution of group node, and the symbol x → g for aggregating the information
of individual nodes to generate new attribution of the group node. In Eq. (3),
At represents the individual emotional relation at time t, 0(N×1) denotes an
N × 1 dimensional vector consisting entirely of zeros, and 1(1×N) denotes a
1×N dimensional vector consisting entirely of ones. The adjacency matrix At

x→g

indicates the unidirectional relationship between N individual nodes and the
group node.

Figure 2(b) depicts an emotional relationship where the group emotion influ-
ences individuals at the next moment, and it can be represented by the adjacency
matrix shown in Eq. (4),

At
g→x =

[
1(1×1) 0(1×N)

1(N×1) At+1

]
, (4)

where At
g→x denotes the adjacency matrix of a group node at the moment t and

an individual node at the moment t+1, the symbol g → x denotes the group
node influences the individual node on emotion. At+1 represents the individual
emotional relation at time t+1.

2) Spatial-temporal Graph in Serial Pattern: Eqs. (3) and (4) repre-
sent the adjacency matrixes of two types of emotional relationships, which are
temporally adjacent in sequence. To build the spatial-temporal emotional rela-
tionship, we define the merging operation for the adjacency matrices At

x→g and
At

g→x as shown in Eq. (5),

At
x→g ∪ At

g→x =

⎡

⎣
At 0(N×1) zero padding

1(1×N) 1(1×1) 0(1×N)

zero padding 1(N×1) At+1

⎤

⎦

=

⎡

⎣
At 0(N×1) 0(N×N)

1(1×N) 1(1×1) 0(1×N)

0(N×N) 1(N×1) At+1

⎤

⎦ ,

(5)

where ∪ denotes the operation of merging two adjacency matrixes that have
temporal relations. Analogous to the associative property of multiplication, the
final merged adjacency matrix remains the same when merging the adjacency
matrixes of three or more temporally adjacent matrices. The merging of the
adjacency matrixes for three temporally adjacent matrices is denoted by Eq. (6),
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At
x→g ∪ At

g→x ∪ At+1
x→g =

⎡

⎢
⎢
⎣

At 0(N×1) 0(N×N) 0(N×N)

1(1×N) 1(1×1) 0(1×N) 0(1×N)

0(N×N) 1(N×1) At+1 0(N×1)

0(1×N) 0(1×1) 1(1×N) 1(1×1)

⎤

⎥
⎥
⎦ . (6)

Figure 3 illustrates the merging process for the three temporally adjacent
matrixes, where the merged spatial-temporal adjacency matrix in Fig. 3 cor-
responds to the description in Eq. (6). For a group video that comprises T
frame images, the spatial-temporal emotional relationship can be represented by
Eq. (7),

Af = A1
x→g ∪ A1

g→x ∪ A2
x→g ∪ · · · ∪ AT

x→g, (7)

where Af denotes the spatial-temporal adjacency matrix, which characterizes
the emotional relationships within a group on the spatial and temporal dimen-
sions. Since in the adjacency matrix Af the temporal relation of emotions is
described by serially connecting nodes at different moments in time, the graph
data based on adjacency matrix Af is named as the spatial-temporal emotional
graph with serial pattern.

For the pseudo (group) nodes introduced in the spatial-temporal emotional
graph, the emotional feature matrix of a group at time t can be denoted as
Xt

f = [xt
1,x

t
2, . . . ,x

t
N ,gt] , where the subscript f indicates that it is based on

facial information. The emotional feature matrixes of nodes across all moments
are represented as Xf =

[
X1

f ,X2
f , . . . ,XT

f

]
. At the t-th moment, the initial

feature of the group node can be calculated by averaging the emotional features
of all individuals at that moment:

gt =
1
N

N∑

i=1

xt
i. (8)

The spatial-temporal graph with a serial pattern for characterizing the emo-
tional relationship within group video can be represented by Gf = {Af ,Xf}.

2) Spatial-temporal Graph in Parallel Pattern: In the serial pattern, the
spatial-temporal graph indicates the emotional influence from the individual’s
nodes to a group node, and then the updated group node affects the individual’s
nodes in the subsequent moment. If the feature learning of a group node at a
certain moment is biased, it would significantly impact the feature learning of
nodes in subsequent moments. On the other hand, the emotional state of an
individual or group at a certain moment can influence not only the emotional
state of other individuals or groups in the next moment but also the emotional
states across multiple subsequent moments. This suggests that the influence of
emotions has multiple parallel pathways, rather than a sequential, serial pattern.

Figure 4 illustrates the emotional influences in a parallel pattern. We present
a parallel pattern spatial-temporal graph to represent the complex emotional
relation in the spatial and temporal, whose adjacency matrix can be defined by
Eq. (9),
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Fig. 3. The merged adjacency matrix for representing the spatial-temporal emotional
relationship.

Ãf = ϕ (Af ) , (9)

where Af is the spatial-temporal graph in a serial pattern defined, as defined
in Eq. (7). Ãf denotes the adjacency matrix within the parallel pattern. ϕ(·)
denotes the operation of replacing the element values of 0 in the lower triangular
region with values of 1, and it ensures that the output matrix Ãf is a lower
triangular matrix. The adjacency matrix Ãf indicates the emotional state of
the nodes at the current time t is influenced by all nodes from time 1 to t.
Furthermore, we employ a graph attention network to learn the attention weights
of each edge, effectively focusing on the emotional information of significant
nodes.

In summary, the emotional spatial-temporal graph with a parallel pattern
can be represented as G̃f =

{
Ãf ,Xf

}
.

Fig. 4. The spatial-temporal emotional relationship in parallel mode.

3.4 Graph with Holistic Information

Holistic information from each frame image contains rich emotional cues and
reflects the emotional state of a group at any moment. In this work, we also
exploit the temporal correlations of holistic features with a graph-based model.
We first construct a graph to represent the temporal correlation of the holistic
information extracted from the group video. Specifically, we regard T consecutive
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frames from a group video as T frame nodes and use the extracted holistic
features (discussed in Sect. 3.2) as the nodal attributes. Similarly, we assume
that the influence relationships among these T nodes follow a “parallel” mode
in time. That is, the frame node at the t-th moment can affect the information of
the frames at the moments of t+1, t+2, and so on, up to frame T. The temporal
correlation of the T frame nodes can be represented by an adjacency matrix as
shown in Eq. (10),

Ah =

⎡

⎢
⎣

a1,1 · · · a1,T

...
. . .

...
aT,1 · · · aT,T

⎤

⎥
⎦ . (10)

In the adjacency matrix Ah, ai,j denotes the element of the i -th row and the
j -th column; aij = 1, when index i � j; and aij = 0, when i > j. Equation (10)
only simply describes there are edges (influence correlation) between T frame
nodes. Furthermore, we employ the graph attention network [17] to learn the
weights of edges to indicate the correlation degree from one node to another node
temporally, thereby the topological relationship between the frame nodes can be
dynamically characterized. In summary, the graph with holistic information can
be represented as Gh = {Ah,Xh}.

3.5 Graph Attention Network

We employ the graph attention network (GAT) [17] to separately exploit the
constructed graph with facial and holistic information. By utilizing the GAT
model, we can accurately learn the important relations between nodes, capture
complex temporal and spatial dependencies with constructed graph data, and
extract effective spatial-temporal features for GER. Using the graphs with facial
and holistic information (introduced in Sects. 3.3 and 3.4) as inputs for two GAT
models, the output results can be obtained by Eqs. (11) and (12),

X′
f = GATf (Af ,Xf ) , (11)

X′
h = GATh (Ah,Xh) , (12)

where X′
f and X′

h denote the feature matrix of all nodes inferred through GAT
models, respectively. In feature matrix X′

f , the last row corresponds to the fea-
ture of the group node at time T (represented as g′T ). Equation (11) is the
process of exploiting the spatial-temporal graph constructed based on facial
information, and the output feature g′T is the spatial-temporal emotional repre-
sentation which captures interactive information. We feed the feature g′T into a
fully connected layer to obtain GER results from the view of facial information
(represented as ŷf ). Similarly, in the feature matrix X′

h, the last row corresponds
to the feature of the frame node at the moment T (represented as h′T ) and it
is the temporal representation of a group video. By feeding the feature h′T into
a fully connected layer, the GER results from the view of holistic information
(represented as ŷh) can be obtained.
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3.6 Loss Function for Networks

By utilizing GAT models, we can exploit the constructed graph data and obtain
temporal features of facial and holistic information, i.e., g′T and h′T . Further-
more, we use cross-entropy loss to supervise the parameter updating of both GAT
models and the corresponding linear classifiers. To learn the spatial-temporal
representation from facial information, we use the cross-entropy loss function
with facial features as shown in Eq. (13),

Lf = − log
exp

(
WT

yi
g′T )

∑C
k=1 exp

(
WT

k g′T ) , (13)

where Wk denotes the k -th classifier for the facial feature. To learn the temporal
representation from holistic information of a group video, we use the cross-
entropy loss function with holistic features expressed by Eq. (14),

Lh = − log
exp

(
PT

yi
h′T )

∑C
k=1 exp

(
PT

k h′T ) , (14)

where Pk denotes the k -th classifier for the holistic feature. The proposed app-
roach computes the loss Lf to supervise the parameter updating of the GATf

model and the classifier W, as well as computes the loss Lh to supervise the
parameter updating of the GATh and the classifier P.

3.7 Results Integration

We fuse the decisions based the facial and holistic information of a group video,
i.e., ŷf and ŷh, to obtain a comprehensive recognition result for a group video.
The final recognition result ŷ can be calculated as,

ŷ = αŷf + (1 − α)ŷh,

s.t. 0 ≤ α ≤ 1,
(15)

where α is the fusion parameter for the two probability output vectors. We
employ a grid search approach to obtain the suitable numerical value of α.

4 Experiments

To evaluate the performance of the proposed approach, extensive experiments
were conducted on two widely used video-based GER datasets, including the
Video Group Affect (VGAF) [15] and Group-level Emotion on the Crowded
Videos (GECV) [14] datasets. VGAF is a large video dataset that contains 4183
collective videos. The videos in the VGAF dataset are divided into training,
validation, and test sets, containing 2661, 766, and 756 videos respectively. Each
video in the VGAF dataset has been manually annotated with one of three
group emotion categories (i.e., positive, neutral, and negative) by at least three
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people. Since the test set of the VGAF dataset is unavailable to the public,
the experiments only utilized the training and validation sets for performance
evaluation. The GECV dataset contains 627 group videos. Due to legal and
ethical reasons, some videos in the GECV dataset are not accessible, and only
408 videos are publicly available. Each video in the GECV dataset has also been
manually annotated with one of the three group emotion categories: positive,
neutral, or negative.

4.1 Implementation Details

Considering the computational efficiency of the proposed approach, for each
frame image, we only use the top eight detected faces that have been detected
by the MTCNN network [21]. The GAT models used in this work have two
attention layers, and the dimension of the intermediate and output layers is
1024. A fully connected layer is set as a classifier for the output feature of the
GAT model.

To train the GAT model and its classifier in the proposed method, we set the
batch size of the constructed graphs with facial and holistic information to 64.
The model’s parameters are optimized using an Adam optimizer with a learning
rate of 10−4, and the maximum number of training epochs is set to 50. To fuse the
results obtained by facial and holistic information, the fusion parameters α are
set to 0.5 and 0.3 for the VGAF and GECV datasets, respectively. Empirically,
we set the number of frames for each video sample to 20 and 15 in the VGAF
dataset and GECV dataset, respectively.

All experiments were conducted on a Linux server with Intel Xeon CPU
E5-2673 v4 2.30 GHz and GeForce GTX 2080Ti. We compared the proposed
method with several state-of-the-art baseline methods that performed the same
three-class classification [10,13,15,18] on the VGAF dataset. We compared the
accuracy of our proposed method with the results reported in these research
works. We also compared our method with several networks based on spatial-
temporal convolutions, such as R(2+1), R3D, and MC3D, on the GECV dataset
to evaluate the effectiveness of the proposed approach for video-based GER.

4.2 Comparison of Classification Performance

Tables 1 and 2 show the classification results of the proposed method and the
baseline methods on the VGAF and GECV datasets, respectively. In this exper-
iment, the proposed method employs the emotional spatial-temporal emotional
graph with a parallel pattern as the input to the graph attention network. As
there are different experimental setups present across the two datasets, the com-
parison results for each dataset are discussed separately.

Classification Results on VGAF Dataset: To ensure a fair comparison of
the VGAF dataset, both the proposed method and the baseline methods were
compared under the same emotional cues, and the overall accuracy results on
the VGAF dataset were reported in Table 1. Specifically, Table 1 reports the
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classification results obtained by using only the facial data source (titled “Facial
level”), only the holistic data source (titled “Holistic level”), and both the facial
and holistic data sources (titled “Facial + Holistic level”). The classification
results in Table 1 show that the proposed method improves the best GER perfor-
mance of using facial information by 64.36%. It demonstrates the effectiveness of
the proposed method in exploiting the spatial-temporal emotional correlations.
The comparison results of using facial and holistic data sources also indicate the
superiority of the proposed method in capturing spatial-temporal information
on constructed graphs and enhancing the performance of group emotion recog-
nition. Furthermore, the comparison results show the performance discrepancy
between the proposed method and the state-of-the-art methods in leveraging the
holistic information of a group video. This is because the network employed for
extracting holistic features in the proposed method is more efficient compared
to these state-of-the-art methods. For instance, the compared methods [10,18]
utilize the DenseNet [7] networks with 161 and 169 layers, respectively, while the
proposed method employs a ResNet network [6] with 50 layers. These methods
enhanced the effectiveness of feature representation, while their computational
complexity is also much improved.

Table 1. Comparison of the overall classification accuracy on the VGAF dataset (in
%). The symbol ‘-’ indicates ‘Not Reported’.

Method Accuracy obtained by using emotional cues

Facial level Holistic level Facial + Holistic

Wang+ [18] – 60.70 –

Pinto+ [13] – 62.40 –

Sharma+ [15] 60.18 59.00 64.75

Liu+ [10] 63.71 63.45 68.02

Ours 64.36 57.44 70.23

Classification Results on GECV Datase: Considering there are only 408
video samples in the public version of the GECV dataset, we use the principle
of ten-fold cross-validation to fully leverage the video samples for training and
performance evaluation. We reproduced several spatial-temporal networks dis-
cussed in the literature [16] for comparison, including R(2+1)D, R3D, MC3D
networks. We also compared with transformer architecture [11],i.e. Video Swin
Transformer, for comparison. Additionally, the experiment reports the recogni-
tion performance of the proposed method when solely using facial or holistic
information, i.e., “Ours (Facial level)” and “Ours (Holistic level)”. In Table 2,
we show the average accuracies of the ten-fold cross-verification on single and
overall categories in the columns marked by “Positive”, “Neutral”, “Negative”
and “Overall”. Comparison experiments show that the proposed method outper-
forms other methods in terms of recognition precision in individual categories as
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well as overall accuracy. It indicates the proposed method is effective in exploit-
ing the complex spatial and temporal relationships in constructed graphs. As the
R(2+1)D, R3D, MC3, and Video Swin Transformer networks are the methods
that exploit holistic information of a group video for GER, for a fair comparison,
we compare the results of these methods with “Ours (Holistic level)”. Compar-
ison results show the proposed method is significantly more effective than the
compared networks in leveraging holistic information. It also verifies the effec-
tiveness of the GAT-based method proposed in this work in learning temporal
features for GER.

Table 2. Comparison of average GER accuracy results obtained by the ten-fold cross-
validation on the GECV dataset (%).

Method Positive Neutral Negative Overall

R(2+1)D [16] 93.68 89.15 81.25 89.01

R3D [16] 94.00 85.84 73.86 86.79

MC3 [16] 95.84 82.63 86.96 90.46

Video Swin Transformer [11] 88.89 76.92 70.00 80.49

Ours (Facial level) 91.17 87.58 84.59 88.73

Ours (Holistic level) 96.22 89.23 89.09 92.41

Ours 96.65 90.56 89.75 92.90

4.3 Ablation Study

In the proposed method, spatial-temporal emotional graphs in both the serial
and parallel modes were constructed based on facial information. To investigate
the effectiveness of the proposed method in representing emotional relationships
within a group video and introducing pseudo (group) nodes into these graphs,
we conduct two ablation studies: (1) the recognition accuracies obtained using
spatial-temporal graphs in serial and parallel modes; (2) the impact of integrat-
ing pseudo (group) nodes in the parallel mode spatial-temporal graphs. Table 3
reports the GER results obtained by employing the GAT model to exploit three
types of spatial-temporal emotional graphs. “Serial graph” and “Parallel graph”
in Table 3 denotes the presented spatial-temporal emotional graphs with serial
and parallel modes. “Parallel graph (w/o p)” in Table 3 involves constructing a
parallel mode spatial-temporal graph without introducing pseudo nodes in the
graph. Then the GAT model updates the attributes of the nodes in the graph,
and the attributes of all nodes are averaged and fused for GER.
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Table 3. Comparison of GER results obtained by exploiting several spatial-temporal
emotional graphs. (in %)

Graphs VGAF GECV

Positive Neutral Negative Overall Positive Neutral Negative Overall

Serial graph 60.60 57.50 45.65 55.88 88.30 81.85 73.82 82.85

Parallel graph (w/o p) 73.84 53.57 59.78 63.06 91.25 87.58 83.45 88.48

Parallel graph 71.19 62.50 55.98 64.36 91.17 87.58 84.59 88.73

The recognition results related to the “Serial graph” and “Parallel graph” in
Table 3 demonstrate that using spatial-temporal graphs with a parallel pattern
yields higher recognition accuracy. This suggests that the real emotional impact
not only exists in serial paths where the group emotion influences the individual
emotion of the next moment but also in paths with emotional impacts over mul-
tiple moments, implying the presence of multiple parallel paths. On the other
hand, the comparison of with/without pseudo (group) nodes in the parallel mode
spatial-temporal graphs reveals that the use of pseudo nodes enhances overall
recognition accuracy. This indicates that introducing pseudo nodes into the emo-
tional graph in this work effectively simulates the influence of individuals on the
group and the feedback of the group on individual emotions. Consequently, it
extracts useful interaction information and improves GER performance.

5 Conclusion

We propose a graph-based approach to leverage the facial and holistic infor-
mation of a group video for GER. We first construct spatial-temporal graph
data with facial information to effectively describe the emotional relationships
within a group to the spatial and temporal dimensions. Then, we employ a graph
attention network to exploit the constructed graph and dynamically model the
emotional relationships and influences among individual and group nodes across
the spatial-temporal dimension. By introducing the graph attention mechanism,
the proposed method effectively focuses on the important nodes and captures
interactive information to generate a more precise spatial-temporal representa-
tion for GER. Similarly, the proposed method also utilizes the GAT model to
explore the temporal correlations of holistic features extracted from the frames
of a group video and learns emotional temporal representations based on holistic
information for accurate GER. Extensive experiments demonstrate that the pro-
posed method learns effective spatial-temporal emotional features, and improves
the accuracy of video-based GER from 68.02% to 70.23% on the VGAF dataset
and from 90.46% to 92.90% on the GECV dataset.
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Abstract. Micro-expressions, imperceptible spontaneous facial move-
ments reflecting underlying emotions, hold significant importance in emo-
tion recognition. Due to their short duration and low intensity, micro-
expression recognition (MER) remains challenging. The collection of
micro-expressions poses difficulties due to their characteristics, leading to
a scarcity of spontaneous micro-expression datasets. Furthermore, exist-
ing methods typically utilize only one type of input for MER, thus failing
to fully exploit the limited micro-expression samples. To address these
issues, we propose a new dual-stream spatiotemporal transformer net-
work combining optical flow and magnified micro-expression, enabling
to handle different types of information, thereby providing richer and
more comprehensive representations. By simultaneously inputting both
original micro-expression images and the corresponding optical flow
change images into the dual-stream net-work, we obtain a diverse range
of micro-expression information, consequently mitigating the impact of
the scarcity of micro-expression datasets. Experimental evaluations con-
ducted on three public datasets, namely SMIC, SAMM, and CASME II,
demonstrate the superiority of our approach over other methods.

Keywords: Micro-expression recognition · Transformer encoder ·
Dual-stream spatiotemporal attention · Deep learning

1 Introduction

Facial expressions serve as outward reflections of individuals’ inner worlds and
play the most intuitive role in discerning others’ emotions. However, in situations
of danger or other contexts, most individuals adeptly employ false expressions
to conceal genuine feelings, thus making it challenging to accurately compre-
hend their true thoughts. In such circumstances, determining individuals’ actual
emotional states through the observation of micro-expressions becomes crucial.

Micro-expressions are brief and imperceptible facial expressions that individ-
uals attempt to suppress, disguise, or conceal their true inner emotions [1]. Being
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spontaneous [2], micro-expressions are uncontrollable and thus cannot be hidden
by an individual, providing insights into one’s genuine emotional state. Different
from macro-expressions with longer duration, micro-expressions last for a very
short period, ranging from 1/25 to 1/2 of a second [3], making them challenging
to detect solely through visual observation, even for trained experts [4]. There-
fore, it is necessary to develop a high-performance automatic micro-expression
recognition algorithm in real-world.

According to the research of Ekman and Friesen [1], there are two types
of micro-expressions that can reveal underlying emotions: “The time-reduced
full affect micro displays (i.e., micro-expressions) may well be those which the
ego is not aware of, while the squelched micro displays may be those which the
ego senses and interrupts in mid-performance.” Therefore, current existing avail-
able spontaneous micro-expression databases [5–7] are collected according to two
induction paradigms: requiring participants to completely suppress facial move-
ments or to suppress facial movements upon becoming aware of facial actions.
In contrast, posed micro-expression databases [8,9] collect data by instructing
participants to mimic micro-expressions, which contradicts the spontaneity of
micro-expressions. It can be observed that the collection and annotation of micro-
expressions are extremely challenging, hence the scarcity of existing spontaneous
micro-expression datasets. Therefore, the limited data volume makes it difficult
to train models that can handle subtle changes in facial expressions and achieve
outstanding performance.

Earlier micro-expression recognition methods primarily relied on handcrafted
features, such as Local Binary Pattern (LBP) features. Recently, many works
have developed deep learning based approaches for MER. Shao et al. [10] pro-
posed I2Transformer architecture, which utilizes optical flow to extract global
facial features and employs adversarial training strategies to remove identity
interference. Subsequently, they utilize AU recognition as an auxiliary task to
learn AU representations relevant to micro-expressions. Finally, they use trans-
formers to process multiple AU representations and model the relationships
between them to achieve MER. Takalkar et al. [11] utilized a dual attention
network fed by upper face, lower face, and global face for MER. However, these
methods only exploit one type, such as original images, motion magnified images,
local face, or optical flow images, for MER, thus failing to fully exploit the limited
micro-expression samples.

To address the aforementioned issues, we propose a dual-stream spatiotem-
poral transformer network, consisting of spatial attention and temporal atten-
tion networks capable of handling different types of information and tempo-
ral information, thereby providing richer and more comprehensive representa-
tions. Specifically, both magnified micro-expression frames and their correspond-
ing optical flow change images are fed into the dual-stream spatial attention
network, learning more discriminative information of micro-expressions. Sub-
sequently, a simple but efficient temporal attention network is used to learn
the temporal information from the obtained spatial features in micro-expression
videos. Through these processes, we mitigate the impact of the scarcity of micro-
expression datasets. The main contributions of this paper are as follows: (1) We
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propose a dual-stream spatiotemporal attention module, where original micro-
expression images and optical flow change images are fed into the dual-stream
network. By concurrently learning features from both types of data, we obtain
rich spatial information of micro-expressions. (2) By integrating CNN with the
dual-stream spatial attention Transformer, our model is capable of processing
subtle local information and global information, thereby obtaining information-
rich representations of micro-expressions. (3) The superior performance of our
proposed framework is validated on public micro-expression datasets, including
SMIC, CASME II, and SAMM.

The rest of the paper is organized as follows. Section 2 will describe the related
works about micro-expression recognition. We will describe our proposed method
in Sect. 3. Section 4 will present the experiment results on three micro-expression
databases. We will give a conclusion in Sect. 5.

2 Related Works

Micro-expression recognition involves classifying detected facial expression
sequences based on their distinct features. Currently, there are three commonly
used fundamental methods: Local Binary Pattern (LBP) feature-based [12–16],
optical flow feature-based [10,17–19], and deep learning-based [20–25] micro-
expression recognition methods. However, with the advancement of deep learn-
ing, both LBP feature-based and optical flow feature-based methods have also
been combined with deep learning techniques [10,17,18].

LBP features have been widely used in the literature due to their simplic-
ity in computation. By applying thresholding to the eight neighbors of each
pixel and represent-ing the result with binary codes, LBP serves as a texture
operator. However, LBP can only extract spatial information from single images
and cannot directly capture temporal information from videos. To address this
limitation, Zhao et al. [26] proposed Local Binary Pattern on Three Orthog-
onal Planes (LBP-TOP), which extracts LBP features from three orthogonal
planes and cascades them to form new three-dimensional features. This approach
enables the extraction of both temporal and spatial dimensions of information,
thus achieving a transformation from two-dimensional to three-dimensional rep-
resentations. Wang et al. [12] proposed LBP-SIP (Local Binary Pattern with Six
Intersection Points) based on Zhao’s work, which describes micro-expression fea-
tures by taking the intersection points of LBP-TOP on three planes. The advan-
tage of LBP-SIP over LBP-TOP is that it retains the ad-vantages of extract-
ing spatiotemporal features while reducing feature redundancy and improving
feature processing speed. Similarly, Huang et al. [13] also built upon Zhao’s
work and introduced Spatiotemporal Local Quantized Pattern (STCLQP), which
incorporates sequence indicators as well as amplitude and direction information
into spatiotemporal data. The improvement in STCLQP leads to richer feature
information extraction and superior performance. Guo et al. [15] proposed a
novel facial micro-expression recognition method called Extended Local Binary
Pattern on Three Orthogonal Planes (ELBPTOP), which enhances recognition
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accuracy and efficiency by analyzing local second-order information in video
sequences. Additionally, the paper introduces the application of Whitened Prin-
cipal Component Analysis for micro-expression recognition to obtain more com-
pact and discriminative feature representations, significantly reducing computa-
tional costs.

Features based on optical flow: By calculating the relative motion informa-
tion be-tween different frames, micro-muscle movements can be captured, which
is useful for micro-expression recognition. Optical flow is used to describe the
motion of brightness patterns in images, with the basic concept being to deter-
mine the distance traveled by the same object in different frames. As optical flow
can capture temporal patterns between consecutive frames, it has been widely
used in MER [19,27,28]. Verburg et al. [27] utilized Histogram of Oriented Opti-
cal Flow (HOOF) to en-code subtle changes in selected facial regions over time.
Liong et al. [29] introduced another optical flow-based feature descriptor called
Bi-Weighted Oriented Optical Flow (Bi-WOOF), which uses only two frames
to represent a sequence of micro-expressions. Compared to HOOF, this method
employs the magnitude and optical strain values of optical flow as a weight-
ing scheme to highlight the importance of each optical flow, thereby reducing
the influence of noise flows with smaller intensities. Recently, several researchers
have combined optical flow features with or em-bedded into deep neural networks
to further identify spatial patterns [18,28]. Li et al. [28] proposed an enhanced
version of HOOF to reduce redundant dimensions. Zhang et al. [18] developed
short and long range relation based spatio-temporal transformer based on long-
term optical flow. However, there are certain drawbacks associated with using
directional histogram of optical flow features: (1) If the input image quality is
poor or contains noise, the directional histogram of optical flow features may
be affected, leading to unstable recognition results. (2) Directional histogram of
optical flow features mainly focuses on the motion of the selected facial region,
but micro-expressions typically involve subtle changes across the entire face.
Therefore, using only local information may not fully capture the features of
micro-expressions. (3) The generalization ability of directional histogram of opti-
cal flow features may be limited. Its performance may be inconsistent across
different faces, lighting conditions, and environments.

Recently, deep learning has become the most used method for micro-
expression recognition [17,18,30–32]. Khor et al. [30] proposed a Rich Long-term
Recurrent Convolutional Network (ELRCN), which first extracts features from
each micro-expression frame using Convolutional Neural Networks (CNNs), and
then processes the features using Long Short-Term Memory (LSTM) modules.
Reddy et al. [31] utilized 3D CNNs to extract features from both spatial and tem-
poral domains. However, these methods overlook the correlation between micro-
expressions and Action Units (AUs). Additionally, facial identity information
may interfere with the extraction of micro-expression features, thus limiting the
accuracy of MER. To address these issues, Shao et al. [10] proposed a new method
called I2Transformer, which enhances the accuracy of MER by learning invari-
ant identity representations and modeling the relation-ship in transformer style.
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This method utilizes optical flow to extract global facial features and removes
identity interference through adversarial training strategies. Subsequently, AU
recognition is utilized as an auxiliary task to learn AU representations relevant
to micro-expressions. Finally, transformers are employed to process multiple AU
representations and model the relationships between them to achieve MER. Fu et
al. [17] introduced the Phase Driven Transformer (PDT), which utilizes optical
flow features as input. PDT generates amplitude and phase information through
two networks and combines them for network training. By incorporating image
features into the frequency domain, PDT enhances the richness and diversity of
features, enabling the model to extract more effective information and address
the issue of unclear micro-expression features. Zhang et al. [18] proposed a novel
spatio-temporal Transformer architecture, which is a purely transformer-based
method for micro-expression recognition (i.e., without using any convolutional
networks). This architecture includes a spatial encoder for learning spatial pat-
terns, a temporal aggregator for temporal dimension analysis, and a classification
head. Liu et al. [19] pro-posed a new feature for spontaneous micro-expression
recognition called Main Direction Mean Optical Flow (MDMO) feature. MDMO
is a region-based, normalized statistical feature that considers local statistical
motion information and its spatial locations, and micro-expression recognition
is performed using a Support Vector Machine (SVM) classifier. Cen et al. [16]
proposed a micro-expression recognition method based on a multitask facial
action pattern learning framework and Joint Temporal Local Cubic Binary Pat-
tern (Joint Temporal LCBP). This method explores the relationship between
facial action units and emotional states by encoding temporal structures and
subtle variations and utilizes regularization techniques to select meaningful fea-
ture subsets to improve recognition performance. As the scarcity of samples
in micro-expression recognition poses a significant challenge, often leading to
overfitting during the learning process and unsatisfactory recognition perfor-
mance, some re-searchers have turned to transfer learning as a solution, which
has shown promising results compared to previous approaches. Xia et al. [11] pro-
posed a micro-expression recognition framework that utilizes macro-expression
samples as guidance to train the micro-expression classifier. By extracting fea-
tures from micro-expression and macro-expression samples, applying adversar-
ial learning strategies, and using the triplet loss function, the micro-expression
network can effectively capture shared features between them, thereby improv-
ing micro-expression recognition performance. Additionally, the incorporation of
attention mechanisms has made excellent contributions to improving the accu-
racy of micro-expression recognition. Wang et al. [33] proposed a novel attention
mechanism called Micro Attention, which is combined with residual networks to
focus the network on facial regions with expression micro-movements. Moreover,
to reduce the risk of overfitting when training deep networks on small datasets,
the micro-attention unit is designed not to significantly increase parameters, and
a simple yet effective transfer learning method is employed.



360 Y. Zhao et al.

Fig. 1. Overview of Dual-stream Spatiotemporal Transformer.

3 Method

3.1 Overview

As shown in Fig. 1, the proposed method is based on a dual-stream spatiotem-
poral transformer network (DST) and primarily consists of a dual-stream spatial
attention transformer (DSSAT) and a temporal transformer (TT). The model
processes RGB images and optical flow images as input. The DSSAT extracts
spatial facial features from each frame, while the TT generates discriminative
feature representations by processing the spatial features from all frames. Finally,
a fully connected (FC) network produces recognition results.

3.2 Dual-Stream Spatial Attention Transformer

Video Input: The DSSAT takes as input an RGB video of size XRGB ∈
R

T×3×H×W and an optical flow video of the same size XLOF ∈ R
T×3×H×W ,

where T = 17. We extract a fixed-length sequence of 17 facial expression frames
by cropping 8 preceding and 8 succeeding frames from the original video’s vertex
frame. The facial regions are cropped from these frames, and motion amplifica-
tion techniques are applied to the video sequences, resulting in the input RGB
video sequences. The optical flow video sequence computes long-term optical
flow for the cropped 17 facial frames by calculating the optical flow between
each frame and the initial frame among the 17 frames.

Convolutional Feature Extraction: We use four convolutional blocks to pre-
liminarily extract feature maps MRGB ∈ R

C×H
′ ×W

′
and MLOF ∈ R

C×H
′ ×W

′

for each frame of RGB and optical flow images. These feature maps are then
flatten into one-dimensional sequences Mf

RGB ∈ R
D×C and Mf

LOF ∈ R
D×C ,

where D = H
′ × W

′
. The input to the DSSAT is computed as follows:

z0p,RGB = mf
p,RGB + ep,RGB , (1)
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z0p,LOF = mf
p,LOF + ep,LOF , (2)

where ep,RGB ∈ R
C and ep,LOF ∈ R

C are learnable position encodings that
encode the spatial positions of the flattened images, and p ∈ {1, 2, · · · ,D}.

Calculation of Q, K, V: As shown in Fig. 1, the spatial encoder primarily
consists of a cross-attention mechanism and fully connected layers. Three such
spatial encoders form the DSSAT. In the l-th spatial encoder, Q, K, and V are
obtained from the (l − 1)-th spatial encoders zl−1

p,RGB and zl−1
p,LOF .

In the cross-attention mechanism, each input feature has three weight matri-
ces: query weight matrices W

(l,k)
Q,RGB ,W (l,k)

Q,LOF , key weight matrices W
(l,k)
K,RGB ,

W
(l,k)
K,LOF , and value weight matrices W

(l,k)
V,RGB ,W (l,k)

V,LOF . Therefore, Q, K, and V
are defined as follows: [

Q
(l,k)
p,RGB K

(l,k)
p,RGB V

(l,k)
p,RGB

Q
(l,k)
p,LOF K

(l,k)
p,LOF V

(l,k)
p,LOF

]
=⎡

⎣LN
(
zl−1
p,RGB

)
0

0 LN
(
zl−1
p,LOF

)
⎤
⎦

[
W

(l,k)
Q,RGB W

(l,k)
K,RGB W

(l,k)
V,RGB

W
(l,k)
Q,LOF W

(l,k)
K,LOF W

(l,k)
V,LOF

]
,

(3)

where Q,K,V ∈ R
C

′
, LN(·) denotes the layer normalization, k ∈ {1, · · · , S}

represents the index of the multi-head attention head, and S denotes the total
number of multi-head attention heads. C

′
= C

S represents the dimensionality of
each attention head.

Dual-Stream Spatial Attention Transformer (DSSAT) Encoder: The
DSSAT focuses on the fusion of features from different input images, namely
RGB images and optical flow images. To more effectively learn the interaction
features between these inputs, we simultaneously input z0p,RGB and z0p,LOF into
the dual-stream fusion transformer. The output calculation formula is as follows:⎧⎨

⎩
ẑlp,RGB = DSSAT

(
LN

(
zl−1
p,RGB , z

l−1
p,LOF

))
+ zl−1

p,LOF

ẑlp,LOF = DSSAT
(
LN

(
zl−1
p,LOF , z

l−1
p,RGB

))
+ zl−1

p,RGB

, (4)

{
zlp,RGB = MLP

(
LN

(
ẑlp,RGB

))
+ ẑlp,RGB

zlp,LOF = MLP
(
LN

(
ẑlp,LOF

))
+ ẑlp,LOF

, (5)

where the DSSAT (·) function is formulated as follows:

DSSAT (LN(zl−1
p,RGB , z

l−1
p,LOF )) = softmax(

Q
(l,k)
p,RGBK

(l,k)
p,RGB

T

√
C ′ )V (l,k)

p,LOF , (6)

DSSAT (LN(zl−1
p,LOF , z

l−1
p,RGB)) = softmax(

Q
(l,k)
p,LOFK

(l,k)
p,LOF

T

√
C ′ )V (l,k)

p,RGB , (7)

and ẑlp,LOF , and ẑlp,RGB , are intermediate outputs of each dual-stream spatial
encoder, zlp,LOF and zlp,RGB are the final outputs of each dual-stream spatial
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encoder. And then, the two output derived from he last spatial encoders across
RGB and LOF, i.e., zNp,RGB and zNp,LOF are concatenated into one feature and
fed into a fully connected layer, which is formulated as follows:

zNp = FC
(
concat

(
zNp,RGB , z

N
p,LOF

))
, (8)

where N = 3, FC and concat represent the fully connected layer and concatena-
tion operation, respectively, and zNp is the final output of the dual-stream spatial
attention transformer. The D vectors zNp are concatenated to form the feature
map F ∈ R

C×H′×W ′
, where C, H ′, and W ′ represent the number of channels,

height, and width, respectively. This process can be described as:

x′
t = GAP (g (F )) , (9)

where g(·) denotes a convolution operation and GAP (·) denoted global average
pooling, respectively, and t ∈ {1, 2, · · · , T}. The final output of the dual-stream
spatial attention transformer is denoted as X

′ ∈ R
T×P , where P = C×H ′ ×W ′.

3.3 Temporal Transformer (TT)

In this paper, we drew inspiration from the work of Zhao et al. [34] for the Time
Transformer module. The Time Transformer consists of three time encoders,
each encoder composed of multi-head self-attention mechanism and feed-forward
networks. Here, we simply described TT architecture.

Given the spatial feature of one micro-expression video X
′ ∈ R

T×D, position
embeddings are added, leading an input embedding z0t′ . Unlike the Dual-Stream
Spatial Attention Transformer, a special learnable vector x

′
0 ∈ R

P was added
at the first position of the sequence. Subsequently, the calculation of Q, K,
and V in the Time Transformer differs from the Dual-Stream Spatial Attention
Transformer. While the Dual-Stream Spatial Attention Transformer needs to
simultaneously process two different inputs, the Time Transformer only needs
to handle one type of data, which is the output of the Dual-Stream Spatial
Attention Transformer. Q, K, and V is computed as:

Q
(l,k)
t′ = W

(l,k)
Q LN

(
zl−1
t′

) ∈ R
P , (10)

K
(l,k)
t′ = W

(l,k)
K LN

(
zl−1
t′

) ∈ R
P , (11)

V
(l,k)
t′ = W

(l,k)
V LN

(
zl−1
t′

) ∈ R
P . (12)

After obtaining the spatial relationship embedding for each frame from the
Dual-Stream Spatial Attention Transformer, it is passed to the Time Trans-
former encoder to further learn long-range temporal relationships. We input z0t′

into the Time Transformer encoder, and the calculation formula is as follows:

z′l
t′ = TT

(
LN

(
zl−1
t′

))
+ zl−1

t′ , (13)
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zlt′ = MLP
(
LN

(
z′l

t′

))
+ z′l

t′ , (14)

where TT
(
LN

(
zl−1
t′

))
= softmax(

Q
(l,k)
t′ K

(l,k)
t′

T

√
F ′ )V (l,k)

t′ .

Lastly, the final classifier embedding is obtained from the first layer of
the Time Transformer output, which is the special learnable vector mentioned
earlier.

4 Experimental Analysis

In this section, we perform the experiments on SMIC [5], CASME II [7], and
SAMM [6] databases for evaluating of the performance of our proposed method.
Furthermore, we conduct the comparison with the state-of-the-art methods.

4.1 Database Description

The SMIC database comprises micro-expression sequences captured by high-
speed cameras from 16 subjects, totaling 164 sequences. The filming was con-
ducted at a frame rate of 100 fps. Micro-expression segments in SMIC were cat-
egorized into three types: positive (51), negative (70), and surprise (43).

CASME II consists of 247 micro-expression sequences from 26 subjects,
including categories such as happiness (33), surprise (25), disgust (60), suppres-
sion (27), and others (102). These categories were labeled based on Action Units
(AUs), self-reports from participants, and stimulus video content. All subjects
are Chinese, and the participants are limited to young individuals from China.

SAMM dataset comprises 159 micro-expression sequences from 32 subjects.
It includes eight categories: contempt (12), disgust (9), fear (8), anger (57),
sadness (6), happiness (26), surprise (15), and others (26).

4.2 Experimental Setting

Our model was trained on a NVIDIA GeForce RTX 3090 GPU equipped with
24 GB of memory using the open-source PyTorch platform. The SGD optimizer
is employed to optimize the parameters. Initially, the model was pretrained on
the DFEW dataset with a batch size of 32, an initial learning rate of 0.01, and a
division by 10 every 40 epochs, for a total of 100 epochs. The CASMEII, SAMM,
and SMIC databases were then fine-tuned using the pretrained model from the
DFEW dataset with a batch size of 16, a learning rate of 0.01, and a total of
100 epochs. The number of self-attention heads K was set to 8.

Experiment Protocol: For a fair comparison, all the experiments on each
data-base are conducted with the leave-one-subject-out cross-validation, where
samples from one subject are held out as the testing set while all remaining
samples are used for training.

Performance Metric: In the experiments conducted on the CASME II,
SAMM, and SMIC public datasets, the unweight F1-score (UF1) and accuracy
(Acc) are used to measure the performance of various methods.
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Table 1. Ablation Study on CASME II Dataset, where TT is temporal transformer,
MI and OF represent magnified image and optical flow image, respectively.

Input UF1 Acc (%)

baseline MI 0.7519 75.81

baseline OF 0.7652 78.73

DSSAT (N=1) MI+OF 0.8119 82.66

DSSAT (N=2) MI+OF 0.8235 83.06

DSSAT (N=3) MI+OF 0.8391 84.07

DSSAT (N=1) +TT MI+OF 0.8386 84.58

DSSAT (N=2) +TT MI+OF 0.8289 83.87

DSSAT (N=3) +TT MI+OF 0.8561 86.69

4.3 Ablation Studies

An ablation study was conducted on the CASME II database, focusing on the
number of spatial encoder and the impact of temporal transformer. The spatial
encoder is shown in Fig. 2. The baseline method employed an architecture based
on ResNet18 and Transformer, with magnified images as input. Additionally, for
DSSAT, global averaging pool and a fully connected layer were used to classify the
micro-expression sample. The results of ablation study are reported in Table 1.

Fig. 2. The basic structure of DSSAT with N spatial encoders.

As shown in Table 1, the baseline architecture achieved a UF1 score of 0.7519
and an accuracy of 75.81%, when magnified image was used as input. This serves
as a reference point for ablation studying our proposed model. When optical flow
was incorporated into the baseline architecture, DSSAT (N = 1) improved upon
the base-line, achieving a higher UF1 score of 0.8119 and accuracy of 82.66%.
The improvement is achieved by an increase of 0.06 in terms of UF1 and 5.69%
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Table 2. Performance comparison in terms of UF1 and accuracy on the CASME II
database. The bold font indicates best performance.

Methods UF1 Acc (%)

LBP-TOP [13] 0.424 46.46

LBP-SIP [13] 0.448 46.56

DiSTLBP-RIP [14] – 64.78

STCLQP [13] 0.584 58.39

AU-GCN [21] 0.7047 74.24

SLSTT [18] 0.753 75.81

MMFRN [24] – 63.51

GCL [25] 0.766 77.3

FeatRef [35] – 62.85

I2transformer [10] – 74.26

Ours 0.8561 86.69

Table 3. Performance comparison in terms of UF1 and accuracy on the SAMM
database. The bold font indicates best performance.

Methods UF1 Acc (%)

AU-GCN [21] 0.7045 74.26

SLSTT [18] 0.64 72.39

GCL [25] 0.765 77.1

GEME [36] 0.5467 65.44

FeatRef [35] – 60.13

I2transformer [10] – 68.91

Ours 0.7203 78.31

in terms of recognition rate. Furthermore, when the DSSAT model enhanced
by increasing the number of spatial encoders, there is a further improvement in
UF1 score of 0.8391 and accuracy to 84.07%.

The combination of DSSAT with N=1 and TT yields an even higher UF1
score of 0.8386 and accuracy of 84.58%. Furthermore, when N = 3 and TT, the
proposed model achieves the highest UF1 score of 0.8561, with a slight decrease in
accuracy to 86.69%. The experimental results demonstrate that both the DSST
and the addition of TT contribute to improved performance in terms of UF1
score and accuracy, compared to the baseline model. Additionally, increasing the
spatial encoder in the DSSAT model also leads to performance enhancements.

4.4 Comparison with State-of-the-Art Techniques

Our model was compared with two categories of baseline methods. The first
cate-gory includes handcrafted feature-based methods (LBP-TOP [26], LBP-SIP
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Table 4. Performance comparison in terms of UF1 and accuracy on the SMIC-HS
database. The bold font indicates best performance.

Methods UF1 Acc (%)

LBP-TOP [13] 0.538 53.66

LBP-SIP [13] 0.449 44.51

DiSTLBP-RIP [14] - 63.41

STCLQP [13] 0.638 64.02

SLSTT [18] 0.74 75

GCL [25] 0.756 77.2

FeatRef [35] – 57.90

GEME [36] 0.768 74.4

Ours 0.7768 76.22

[12], DiS-TLBP-RIP [14], and STCLQP [13]), while the second category com-
prises recent state-of-the-art deep learning methods (AU-GCN [21], SLSTT [18],
MMFRN [24], GCL [25], and I2transformer [10]). The performance comparison
is reported in Tables 2, 3 and 4.

According to Tables 2, 3 and 4, it can be observed that our method performs
the best overall. Specifically, our method outperforms early hand-crafted works,
such as LBP-TOP [26], LBP-SIP [12], STLBP-IP [14], and STCLQP [13], by
a significant margin, demonstrating that deep models have more advantages
in extracting micro-expression features. Moreover, compared with most state-
of-the-art deep learning-based methods, such as, AU-GCN [21], SLSTT [18],
MMFRN [24], GCL [25] and I2transformer [10], our method also achieves better
results on the CASMEII dataset.

On the SAMM dataset, our method achieves the best accuracy result, sur-
passing the second-place method by 4.05%. While our method may not be the top
performer in terms of UF1 score, it remains competitive. On the SMIC dataset,
our method achieves the highest UF1 score, surpassing the second-place method
by 0.0088. The accuracy is also only 0.98% lower than the top performer.

Fig. 3. The confusion matrices of our methods in the three databases.
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Furthermore, Fig. 3 shows the confusion matrices of DST on three databases.
As seen from Fig. 3, the confusion matrix in SMIC database indicates that the
DST per-forms relatively well in recognizing surprise expressions, achieving an
accuracy of 74.42%. For the CASME II database, the DST performs in others
and disgust expression, while it struggles with recognizing happiness, achieving
only a 65.62%. For the SAMM database, the DST performs reasonably well
in recognizing anger expression and happiness expression. However, it struggles
with recognizing contempt expressions, achieving only a 33.33% accuracy, and
confuses them with other expressions. Moreover, there are notable challenges in
accurately classifying surprise expression.

Overall, our proposed DST exhibits the promising performance on three
databases comparing with several feature-engineering descriptors and deep learn-
ing architectures. Additionally, our proposed method performs well in recogniz-
ing certain expressions across the three databases.

5 Conclusion

In this paper, we propose a dual-stream spatiotemporal transformer network
to process different types of information, thereby providing a richer and more
comprehensive representation. We simultaneously input raw micro-expression
images and optcal flow images into the dual-stream network to obtain rich micro-
expression information, thus mitigating the impact of the limited number of
micro-expression datasets. Specifically, we first use four convolutional blocks to
preprocess RGB images and optical flow-transformed images to obtain feature
maps. These feature maps are then simultaneously input into the dual-stream
spatial attention transformer. We then utilize a temporal transformer to learn
temporal features and finally output the classification results. This allows us to
fully utilize micro-expression datasets. Extensive experimental results demon-
strate that compared to existing methods, our approach achieves higher MER
accuracy.
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Abstract. The COVID-19 pandemic necessitates avoiding skin con-
tact to minimize the spread of virus infection. It paves the way for an
active surge in telehealthcare research. In this direction, Remote Pho-
toplethysmography (rPPG) plays a crucial role in analyzing heart rate
(HR) from non-contact face videos. Existing rPPG-based HR monitoring
methods fail when face video duration is small and the video contains
facial deformations. These issues are mitigated by our proposed method
HR-TRACK, that is, rPPG method for H eart Rate moniToring using
tempoRAl Convolution networK. It improves HR monitoring by intro-
ducing a novel architecture formed by sequentially stacking two novel
networks. The networks are inspired by the temporal convolution net-
work (TCN) to model long temporal sequences effectively. Our first net-
work automatically mitigates the noise induced by facial deformations
and performs blind source separation to predict pulse signals. The instan-
taneous HR obtained from the pulse signal can be erroneous. Thus, our
second network analyzes all the computed HR values and rectifies the
erroneous HR, if any. The experimental results conducted on the pub-
licly available datasets reveal that our proposed method outperforms the
state-of-the-art methods. Furthermore, the results justify the utilization
of both networks to improve HR monitoring.

Keywords: Heart Rate · Temporal Convolution Network · Remote
Photoplethysmograph · COVID-19

1 Introduction

In light of the significant impact of COVID-19 on healthcare systems, there has
been a growing demand for telehealthcare solutions that enable remote analysis
of individuals using non-contact technologies. Traditional monitoring techniques
reliant on sensor contact for extended durations need to be improved, especially
in contexts where minimizing physical contact is crucial due to infection con-
cerns. Moreover, such methods are impractical for monitoring individuals such
as newborns, those with compromised skin integrity, or individuals engaged in
activities like sleep or exercise [31]. As a response to these challenges, Remote
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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photoplethysmography (rPPG), a contactless technique, has gained popularity
[9,31]. This non-contact approach utilizes facial videos captured by camera sen-
sors to facilitate heart rate (HR) monitoring, offering versatility and accessibility
across various applications in telehealthcare [14,15]. Non-contact HR monitor-
ing has found utility in diverse areas, including cardiac disease monitoring and
chronic disease treatment therapies in telehealthcare [27], affective computing
for micro-expression recognition [10], stress analysis [23], biometrics for Deep-
fake detection [6], and spoof detection [2].

Traditionally, the rPPG technique involves HR estimation by performing the
following steps: (i) finding the region of interest (ROIs); (ii) estimating temporal
signals from different ROIs; (iii) denoising and consolidating the temporal signals
to get a pulse signal; and (iv) computing the HR from the pulse signal. These
steps are performed in several ways. For instance, [35] shows first that rPPG can
be measured remotely from an RGB video, and [34] used the green color varia-
tion to compute the temporal signals as the green color variation provides better
vital signals than the red and blue color variations. In [28], HR is computed from
an input video by consolidating the temporal signals using independent compo-
nent (ICA) based blind source separation (BSS). In [1], motion variations are
analyzed instead of color variations to extract the temporal signals, and rPPG is
computed using the principal component analysis (PCA) based BSS. The non-
rigid motion from different face regions employs the Robust Accurate Direct
Independent Component Analysis (RADICAL) technique to compute the HR
[24]. These methods effectively mitigate noise issues due to facial deformations,
head movement, and lighting variations in long-duration clips. However, they
encounter challenges when analyzing short-duration clips commonly used in HR
monitoring. Short-duration clips necessitate continuous computation of instan-
taneous HR, making the process more prone to errors than HR estimation and
limiting the availability of relevant healthcare information [30]. Despite exten-
sive research in HR estimation, efforts in HR monitoring remain constrained
due to the prevalent issue of short-duration clips, resulting in limited available
literature on rPPG-based HR monitoring.

Recent endeavors have focused on adapting existing HR estimation meth-
ods designed for long-duration videos to facilitate HR monitoring [30]. However,
these techniques often fail to provide instantaneous HR, which is critical for
healthcare applications [21]. Furthermore, the effectiveness of HR monitoring is
hindered by the necessity of analyzing short-duration videos. In these videos,
small differences between successive instantaneous HRs indicate more accurate
estimation due to the gradual nature of HR changes [19]. To this end, by lever-
aging this insight, a rule-based Bayesian tracking method has been proposed to
improve HR estimation by considering previous neighboring instantaneous HRs
[14]. It illustrates efforts to improve performance by integrating multiple neigh-
boring HR measurements and developing automated rectification techniques.
However, further advancements are necessary in this direction.

The recent evolution of Deep Learning (DL), known for its effectiveness across
various domains, has also gained popularity in this research field [17,22,26].
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Typically, sequential neural networks are employed for this purpose [25]. Never-
theless, such networks are incapable of modeling the long sequence of temporal
features. Thus, the effectiveness of rPPG-based HR monitoring could be dimin-
ished by utilizing such DL-based networks [8]. Hence, a suitable DL network and
a corresponding strategy are needed to address these limitations.

By considering all these challenges, this paper proposes a novel HR moni-
toring method, HR-TRACK, that is, rPPG method for H eart Rate moniToring
using tempoRAl Convolution networK. It improves HR monitoring by intro-
ducing a novel architecture formed by sequentially stacking two novel networks.
Both networks are inspired by the temporal convolution network (TCN). Our
first network automatically mitigates the noise from the temporal signals and
consolidates them to compute the instantaneous HR corresponding to the short-
duration video clips. Subsequently, the second network analyzes all the HR values
computed from the short-duration clips and rectifies the erroneous HR, if any.
Our primary research contributions are:

1. We proposed a novel HR monitoring network to automatically rectify the
spurious instantaneous HR computed from a short-duration clip. To this end,
our network utilizes the signal-to-noise ratio. Moreover, it is inspired by TCN
for modeling the instantaneous HR sequence in a better way than that of a
sequence network.

2. Our first novel network will automatically consolidate and denoise the tem-
poral signals by utilizing the action units (AUs). Moreover, it performs the
blind source separation to predict the clean pulse signal, unlike [20], wherein
only temporal signal denoising is performed, and that too for a specific facial
region.

3. Our experimental results on publicly available datasets reveal that the pro-
posed method performs better than state-of-the-art rPPG-based methods.

This paper is organized in the following way. The proposed method HR-
TRACK is discussed in the next section. The experimental results are analyzed
in Sect. 3. Sections 4 and 5 cover the discussion and conclusions, respectively.

2 Proposed Method

The proposed remote HR monitoring method, HR-TRACK, is presented in
this section. It first divides the input face video into several overlapping short-
duration fixed-size video clips, and instantaneous HR is computed for each clip.
To this end, HR-TRACK extracts several ROIs from the video clip and esti-
mates the temporal signal corresponding to each ROI. Subsequently, we select
those temporal signals that are least affected by facial deformations and pro-
vide them to our first network, rPPG-TCN, to estimate the pulse signal. The
network is inspired by TCN architecture because it models the long temporal
sequences in a better way than other sequence models [3]. It utilizes the action
units (AUs) to denoise the selected temporal signals and performs blind source
separation automatically to consolidate denoised temporal signals for computing
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the pulse signal. After that, we compute the instantaneous HR of the extracted
pulse signal. The instantaneous HR computed from each short-duration clip can
be spurious when the clip contains facial deformation. Thus, we utilize the neigh-
boring instantaneous HR to rectify the spurious instantaneous HR. To this end,
we propose Monitoring Rectification TCN (MR-TCN) for rectification. The flow
diagram of HR-TRACK is shown in Fig. 1, in which input videos are divided
into several overlapping clips. For visual clarity, each clip is represented in differ-
ent colors. These clips are then passed through the ROI detection process. Each
ROI is utilized for temporal signal estimation. The top 20 temporal signals with
the smallest standard deviation are applied to the rPPG-TCN network for pulse
signal estimation. These pulse signals are then used to compute instantaneous
HR, which is further applied to the MR-TCN network for rectification. In the
end, we obtained the non-spurious instantaneous HR.

Fig. 1. Flow graph of the proposed method, HR-TRACK. We extract the multiple
overlapping clips from the input video, and then ROIs are detected from each clip
to compute the temporal signals. Subsequently, the top 20 temporal signals with the
smallest standard deviation are passed to rPPG-TCN for pulse signal estimation and
instantaneous HR estimated from the pulse signal. Finally, the instantaneous HR is
passed through the MR-TCN to achieve rectified instantaneous HR.

2.1 Clips Extraction

The HR monitoring computes the instantaneous HR by analyzing several con-
tiguous short-duration video clips instead of considering the full video, as in HR
estimation. HR computation from long-duration video clips is avoided despite
being resistant to some facial deformation because it does not lack the rele-
vant information required for telehealthcare [29]. Unlike in [20], we have used
overlapping clips for HR monitoring. Hence, we divide the input face video into
overlapping short-duration video clips of equal duration. The HR monitoring
will be performed in the subsequent stages by analyzing each clip. For dividing
the input face video, we set the clip’s duration to 4 s with a 2-second overlapping
window (refer Sect. 3.3 for Parameter selection).
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Fig. 2. Landmark points of input facial regions. (i) Points 7, 8, 9, 10, and 11 on the
chin are highlighted in pink color. (ii) Points 2, 3, 4, 5, and 6 on the left cheek are
shown in purple color. (iii) Points 12, 13, 14, 15, and 16 on the right cheek are indicated
in yellow color. (iv) Point 29 on the nose is highlighted in black color. (Color figure
online)

2.2 ROI Detection

The rPPG information is mainly present in the facial skin region. One of the
ROI detection strategies employed in [21] is the Delaunay triangular method,
in which the shape of the ROI is triangular. This method operates the land-
mark points as vertices to part the entire face region into multiple triangles.
Each triangle is constructed by joining the three landmark points so that no
other landmark point will be presented on their circumcircle. Different from the
Delaunay triangular ROI detection method used in [20], we applied the square
block ROI detection strategy in this paper. Hence, we first localize the face and
extract several facial regions to compute the temporal signals. Our face local-
ization requires estimating the facial landmark points that provide the facial
boundary and outline the facial regions like eyes, nose, eyebrows, and mouth.
This estimation is performed by applying CLNF Openface [38] to the first frame
of the video clip. It provides 68 landmark points. Kindly note that we exclude
the eyes and forehead regions because these regions provide an erroneous result
due to eye-blinking and hairs, respectively. Thus, we utilize the remaining area
below the eye’s facial regions to define ROI. Specifically, this area is given by
the convex hull of the lower face region’s landmark points: i) 7, 8, 9, 10, and 11
of the chin; ii) 2, 3, 4, 5, and 6 of the left cheek; iii) 12, 13, 14, 15, and 16 of
the right cheek; and, iv) 29 of the nose. Figure 2 depicts these landmark points
on different facial regions. Furthermore, it is shown in [13] that facial deforma-
tion induces a large temporal variation at the facial boundary, which results in
deteriorating the pulse signal. Hence, we remove the boundary pixels by utiliz-
ing the morphological erosion operations [13]. Moreover, it is shown in [14] that
efficacy can be improved by considering several facial regions for temporal signal
extraction. Thus, we divide the extracted region into multiple ROIs using the
methodology proposed in [15]. For brevity, the complete region is divided into
non-overlapping square blocks of size 10 × 10.



HR-TRACK 375

2.3 Temporal Signal Extraction

In this subsection, the temporal signal corresponding to each ROI is extracted. It
is shown in [34] that the green color channel contains the strongest PPG signals
because it is better absorbed by hemoglobin than the red color, and it penetrates
human skin deeper than the blue color. Hence, we utilized the green color channel
of an ROI to compute the temporal signals. That is, we compute the temporal
signals by taking the average green color intensity of an ROI. Mathematically,
temporal signal Tj corresponding to the ROI Rj , is given by:

Tj =
∑

Ij1(x, y)
L(1)j

,

∑
Ij2(x, y)
L(2)j

, ...,

∑
Ijk(x, y)
L(k)j

(1)

where (x, y) ∈ Rj , the sum of intensities of the pixels in the green channel
belonging to jth ROI in the ith frame is denoted by

∑
Iji (x, y). In an input clip,

the total number of frames is k, and the total number of pixels in the jth ROI
of ith frame is denoted by L(i)j .

Along with the pulse signal, the extracted temporal signals contain respira-
tory signal information and the noises induced by facial deformation and illumi-
nation variations. The respiratory signal and other noises are mitigated from the
temporal signals by applying a fourth-order Butterworth bandpass filter [36]. We
set the range of the bandpass filter from 0.7 Hz (or 42/60) to 4 Hz (or 240/60)
because the human heart beats at the rate of 42 to 240 beats per minute (BPM)
[15]. Moreover, we apply the detrending filter to mitigate the noise generated by
illumination variations [33]. Furthermore, it is shown in [13] that facial deforma-
tion induced by facial expressions deteriorates only some temporal signals. For
instance, the temporal signals obtained from the mouth region are affected when
the person is smiling. Hence, the standard deviation of such affected temporal
signals is higher than the temporal signals not affected by the facial expressions
[15]. Thus, we select the top 20 temporal signals having the smallest standard
deviations and neglect the remaining signals for HR computation.

For better understanding, let us assume that T1, T2, · · ·Tn are the temporal
signals extracted from the face ROI region and sd1, sd2, · · · sdn are their corre-
sponding standard deviation values. The subscript n depicts the total number of
temporal signals. If Sp is one of the selected temporal signals having the smallest
standard deviation sdp, then it can be represented as,

Sp = Tp (2)

where, the index p is given by,

p = argmin
q∈(1,··· ,n)

(sdq) (3)

2.4 Extracting AUs

Facial expressions are usually studied in the literature in terms of action units
(AUs), which analyze the face’s different attributes [10]. Thus, we obtain the
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Fig. 3. The novel architecture of proposed rPPG-TCN. It requires the AUs and tem-
poral signals computed from the input clip and provides the denoised pulse signal. d
depicts the dilation rate.

AUs to mitigate the noise induced by facial expressions [20]. Following the AUs
extraction method used in [20], we employ the CLNF Openface [38] to find the
AUs from the face. The CLNF Openface takes an input clip and provides the
18 AUs for each frame of the clip. These AUs are provided in two ways: i) the
presence of particular AU as binary numbers 0 and 1, and ii) the intensity of an
AU ranges from 0 to 5. In this proposed method, we used the intensity of AUs
for denoising pulse signals.

2.5 Pulse Extraction Using rPPG-TCN

The noise induced by facial deformations corrupts the temporal signals. In this
subsection, we propose a novel network, rPPG-TCN, that denoises the tempo-
ral signals by mitigating such noise and automatically consolidates (or performs
blind-source separation of) the denoised temporal signals for pulse extraction.
It essentially requires the input clip’s AUs and temporal signals to provide the
denoised pulse signal. AUs are used to infer facial expression information. More-
over, our network is inspired by TCN architecture because it models the long
sequence of information more effectively than sequential architectures [3]. The
network architecture of rPPG-TCN is depicted in Fig. 3.

Our proposed rPPG-TCN network provides a denoised pulse signal using the
temporal signals and AUs. Thus, the input size to rPPG-TCN is 38 × f , where
f is the number of frames in the short-duration video clip, and 38 comes out
by concatenating 18 AUs and 20 temporal signals. Our network is formed by
sequentially stacking three blocks. Initially, the input is provided to the first
block wherein 2D convolution is first performed using the seven filters, each of
size 38 × 7. To perform the convolution operation, we used the same padding
in the temporal direction, and in the other direction, we used no padding. The
output size is 7×1×f , which is input to the average pooling layer to average the
size in one direction and the Rectified Linear Unit (ReLU) activation layer to
introduce non-linearity. After that, the resulting signal of size 1 × f is passed to
the second block, which is formed by taking inspiration from TCN architecture
[3]. Specifically, we apply 1D convolutions on the resulting signal using the seven
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filters, each having size 1 × 7 with the same padding. It results in a 7 × 1 × f
signal, which is subsequently passed from the average pooling layer and ReLU
activation layer to average the size in one direction and introduces non-linearity,
respectively. We also add the skip connection between the input and output of
the second block [3] and set its dilation rate to 2. After that, the resulting signal
of size 1×f is passed to the third block. The third block is similar to the second
block, with the difference that its dilation rate is set to 4. The output of our
third block is the denoised pulse signal of size 1×f . The details of the remaining
parameters are provided in Sect. 3.2.

2.6 HR and SNR Estimation

This section computes the pulse signal’s instantaneous HR and signal-to-noise
ratio (SNR). The pulse signal mainly contains HR frequency and some noise.
Thus, the frequency containing the maximum amplitude in the pulse spectrum
corresponds to HR frequency [12]. Mathematically, the instantaneous HR, hr, is
given by the below equation:

hr = fmax × 60 where fmax = argmax
f

PS (f) (4)

where fmax denotes the frequency of maximum amplitude in the pulse spectrum,
and PS [k] is the pulse spectrum’s amplitude at frequency kth. To compute
the instantaneous HR, we multiply the frequency by 60 because the number of
heartbeats in 60 s gives HR. Similarly, SNR [18] is given by:

SNR =

∑fmax+wn

k=fmax−wn
PS(k)

∑4
k=0.7 PS(k) − ∑fmax+wn

k=fmax−wn
PS(k)

(5)

where wn is the size of the neighboring frequency window chosen from [14]. The
human heart beats 42–240 BPM, so we choose the frequency range of 0.7–4 Hz.
Kindly note that the instantaneous HR computed from the short-duration video
clip can be erroneous when the corresponding clip contains noise due to facial
deformations. In such cases, the SNR will be high as opposed to the case when
the pulse signal contains small noise.

2.7 HR Monitoring Using MR-TCN

This subsection proposes a novel network that analyzes the instantaneous HR
and rectifies the erroneous instantaneous HR, if any. The network is referred to
as MR-TCN, which is Monitoring Rectification TCN. It takes the instantaneous
HR and SNR of short-duration clips. SNR is required to determine whether the
instantaneous HR is erroneous or not. It is motivated by the observation that the
SNR value is low when the clip contains facial deformations, resulting in erro-
neous instantaneous HR. Hence, our MR-TCN network employs the previous
and future instantaneous HRs and SNR values to rectify the erroneous instanta-
neous HRs. Like our rPPG-TCN network, our MR-TCN network is inspired by
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Fig. 4. The architecture of our proposed MR-TCN. It takes all the SNR values and
instantaneous HRs to rectify the erroneous HRs, if any. d depicts the dilation rate.

TCN architecture to model the long temporal sequence effectively. The network
architecture of MR-TCN is shown in Fig. 4.

The input size of our MR-TCN network is 2 × n, where n is the number
of clips, and 2 comes up by concatenating instantaneous HR and SNR. The
network is formed by sequentially stacking three blocks. The network’s first
block performs the 2D convolution using the five filters of size 2 × 5 with the
same padding in the temporal direction and no padding in the other direction.
The output has size 5 × 1 × n, and it is passed to the average pooling layer
applied in one direction to reduce the dimension. Then, the resulting signal is
passed from a ReLU layer to introduce the non-linearity. This output is passed to
the two sequential non-causal TCN (ncTCN) blocks. Both ncTCN block’s input
dimension is 1×n, where 1D convolutions are applied using the five filters of size
1×5 with the same padding. The resulting output dimension is 5×1×n. Then,
we apply average pooling in just one direction, and then we add ReLU activation.
The final output has a size 1 × n. It corresponds to all the instantaneous HRs.
We also add the skip connection between the input and output of each ncTCN
block (inspired from [3]). The dilation rates are set to 2 and 4 for the second and
third blocks of MR-TCN. The details of the remaining parameters are provided
in Sect. 3.2.

3 Experimental Results

3.1 Dataset and Metrics

We performed the experimental evaluation of HR-TRACK on the publicly avail-
able datasets, UBFC-rPPG [4] and COHFACE [16] datasets. The COHFACE
dataset contains 160 videos and the corresponding physiological signals recorded
from 40 subjects. The duration and fps of these videos are 1 min and 20 fps,
respectively. We used the 60% and 40% of training and testing ratios of subjects
for comparative analysis using the COHFACE dataset, as suggested in [16].
Similarly, the UBFC-rPPG dataset contains 42 videos and the corresponding
physiological signals recorded from 42 subjects. The duration and fps of these
videos are 2 min and 30 fps, respectively. We used the 67% and 33% of training
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Table 1. Comparative analysis of HR-TRACK with state-of-the-art methods

UBFC-rPPG COHFACE

SD∗ MAE∗ RMSE∗ r SD∗ MAE∗ RMSE∗ r

ICA [28] 4.50 3.70 4.61 0.67 10.63 7.80 12.45 0.26

Chrominance-rPPG [7] 4.50 3.70 4.61 0.67 10.63 7.80 12.45 0.26

AHRE [11] 4.95 4.20 5.78 0.61 6.38 5.72 11.52 0.31

Fusion-EL [12] 4.20 3.71 4.52 0.73 8.09 7.14 9.43 0.57

RAHR [15] 4.50 3.70 4.61 0.67 10.63 7.80 12.45 0.26

MOMBAT [14] 3.38 3.50 4.01 0.85 6.14 5.89 7.92 0.62

Physnet [37] 3.85 3.63 5.29 0.94 7.90 8.59 11.60 0.36

META-rPPG [19] 4.50 3.70 4.61 0.67 10.63 7.80 12.45 0.26

Deepphys [5] 7.42 5.71 8.58 0.70 7.80 6.89 13.89 0.34

HR-CNN [32] 4.15 3.82 4.92 0.71 9.23 8.10 10.78 0.29

AND-rPPG [20] 3.21 2.67 4.07 0.96 4.53 3.82 5.10 0.79

HR-TRACK 3.10 2.50 3.89 0.96 4.36 3.65 5.00 0.81

and testing ratios of subjects for comparative analysis using the UBFC-rPPG
dataset, as suggested in [4]. The dataset split is not mixed data from all par-
ticipants. It is subject-independent data in which 60% and 40% of the subjects
are taken as a training and testing set, respectively. These datasets provide the
pulse signal as a ground truth acquired from the pulse oximeter during the video
recording.

We compute the root mean square error (RMSE), the mean absolute error
(MAE), the standard deviation (SD), and the Pearson’s correlation coefficient
(r) between the ground truth HR and estimated HR for performance evaluation
[31]. We chose these metrics to provide a uniform comparison with the existing
HR estimation methods, which utilized the same metrics for performance eval-
uation. Moreover, these metrics are mostly utilized for regression tasks. Since
the HR estimation is one of the regression tasks in which the continuous output
is estimated, thus, we employed these metrics in our proposed work. The lower
value of these metrics indicates better network performance. Kindly note that
all metrics are specified in bpm.

3.2 Implementation Details

Our proposed method HR-TRACK is implemented in Python using Pytorch. We
perform experiments on the NVIDIA V100 GPU server and Intel Xeon Gold 6132
processor with 192 GB RAM. Initially, we train our rPPG-TCN network using
negative Pearson correlation loss [29] with Adam optimizer. The corresponding
learning rate is 0.001, the maximum number of epochs is 200, momentum is
0.9, dropout is 0.1, and weight decay is 0.0001. After training the rPPG-TCN
network, we freeze its weight and train the MR-TCN network using cross-entropy
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Table 2. Ablation study of our proposed method

UBFC-rPPG COHFACE

SD∗ MAE∗ RMSE∗ r SD∗ MAE∗ RMSE∗ r

HR-TRACK 3.10 2.50 3.89 0.96 4.36 3.65 5.00 0.81

Without-SNR 3.16 2.57 3.94 0.94 4.40 3.72 5.03 0.80

Without-MRTCN 3.20 2.62 4.03 0.93 4.45 3.79 5.07 0.80

Denoised-TCN 3.50 2.81 4.31 0.86 4.90 4.01 5.46 0.72

Without-AUs 8.99 8.28 10.13 0.70 11.92 11.45 12.97 0.59

LSTM -exp 7.82 7.02 8.98 0.71 10.35 9.20 10.92 0.62

WithoutTop20 8.98 9.38 10.24 0.64 10.52 9.82 11.44 0.57

loss [39] with Adam optimizer. The corresponding learning rate, the maximum
number of epochs, momentum, dropout, and weight decay parameters are set
to 0.001, 100, 0.9, 0.1, and 0.0001, respectively. After training the MR-TCN
network, we train both networks simultaneously for fine-tuning by unfreezing
both networks. The fine-tuning is performed for 50 epochs. Since most of the
samples in the existing datasets belong to the HR range of 70–90 BPM, but
the normal HR range is 40–240 BPM. We mitigate this problem of unbalanced
datasets by increasing the number of training samples. Thus, we utilize the data
augmentation technique [20], employing linear interpolation to downsample and
upsample the temporal signals. We downsample with a rate of 2 and 3 to generate
higher HR samples while upsample the temporal signals to lower the HR.

3.3 Parameter Selection

Currently, it is a standard practice to use short-duration clips, typically 4-second
clips, for HR monitoring [29]. If the clip size is less than 4 s, relevant HR infor-
mation is discarded [29]. In contrast, if the clip size is larger than 4 s, then fewer
clips are available for training, and the instantaneous HR information required
for HR monitoring is lost. Therefore, we set the clip size to 4 s.

3.4 Comparative Evaluation

This subsection compares the proposed method with the existing state-of-the-
art methods on the COHFACE and UBFC-rPPG datasets. The comparative
performances are shown in Table 1. For fair comparative analysis, we rerun the
publicly available codes1 under the same experimental settings. That is, we follow
the same testing protocol as used by [16,32] for fair comparative analysis. It can
be analyzed from Table 1 that the proposed method, HR-TRACK, outperforms
the state-of-the-art methods.

1 https://github.com/lokendra7/rPPG-Publically.

https://github.com/lokendra7/rPPG-Publically
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The methods ICA [28], Chrominance-rPPG [7], and RAHR [15] perform
poorly because these methods failed to mitigate the facial deformation-based
noise from temporal signals. Also, the methods AHRE [11], Fusion-EL [12], and
MOMBAT [14] demonstrate lower efficacy than the proposed method because
our rPPG-TCN network automatically performs the denoising and blind source
separation to mitigate several noises effectively. Similarly, our proposed method
outperforms the Deepphys [5], PhysNet [37], and HR-CNN [32] because these
methods failed to rectify the erroneous instantaneous HR and thereby provide
inaccurate HR monitoring. We mitigate this issue by proposing an MR-TCN
network. Likewise, META-rPPG [19] also exhibits lower performance than our
method because it used the LSTM architecture, which is incompetent to model
the long sequence of temporal information [3]. In contrast, we use TCN archi-
tecture to model long temporal sequences. Furthermore, our proposed method
outperforms the AND-rPPG [20] because the proposed method effectively con-
solidates the different temporal signals automatically and also rectifies the erro-
neous instantaneous HR.

3.5 Ablation Study

We conduct several experiments to rigorously analyze the importance of AUs,
rPPG-TCN, different ROIs, and MR-TCN. The corresponding results are shown
in Table 2. These experiments are formed by changing or removing a subpart of
the proposed method. The experiment details and the observations are as follows:

1. The experiment Without-MRTCN is performed by avoiding MR-TCN from
our method. It can be observed from Table 2 that the experiment Without-
MRTCN performs better than other state-of-the-art methods, shown in
Table 1. However, its performance is lower than the proposed method, indi-
cating that MR-TCN plays a crucial role in improving HR monitoring.

2. The experiment Denoised-TCN is formed by replacing the rPPG-TCN of our
proposed with Denoised-TCN network and blind source separation employed
in [20]. It can be observed from the table that our proposed method outper-
forms Denoised-TCN , indicating that our rPPG-TCN network has denoised
the temporal signals and performed automatic blind-source separation more
effectively than that proposed in [20].

3. In our proposed method, AUs provide relevant information about facial
expressions. It is required to mitigate the noise due to facial expressions and
thereby improve the HR computation. To experimentally justify the impor-
tance of AUs, we performed an experiment, Without-AUs, which is formed by
avoiding the AUs in the rPPG-TCN of the proposed method. It can be ana-
lyzed from the table that our proposed method outperforms Without-AUs.
It justifies the importance of AUs and advocates their utilization in HR mon-
itoring.

4. Also, we replace the rPPG-TCN of our proposed method with LSTM archi-
tecture to form the experiment LSTM -exp. It is observed from the table that
the proposed method’s rPPG-TCN performed better than LSTM architecture
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Table 3. Performance of HR-TRACK for different length clips

UBFC-rPPG COHFACE

SD∗ MAE∗ RMSE∗ r SD∗ MAE∗ RMSE∗ r

2-Second 5.05 3.70 5.61 0.84 6.12 5.51 7.00 0.68

3-Second 4.10 3.01 4.92 0.90 5.09 4.47 6.20 0.72

4-Second 3.10 2.50 3.89 0.96 4.36 3.65 5.00 0.81

5-Second 3.05 2.37 3.84 0.97 4.25 3.59 4.99 0.82

6-Second 3.01 2.29 3.68 0.97 4.20 3.42 4.86 0.83

7-Second 3.11 2.28 3.56 0.96 4.28 3.51 4.82 0.82

8-Second 3.36 2.50 3.89 0.95 4.58 3.64 4.91 0.81

9-Second 3.42 2.74 4.01 0.94 4.81 3.84 5.05 0.79

10-Second 3.73 2.89 3.84 0.91 4.90 3.99 5.23 0.75

because sequential architecture failed to model the long sequence of temporal
information.

5. In order to understand the importance of SNR, we design a method,
Without-SNR, which is formed by avoiding the SNR in the MR-TCN net-
work. It can be analyzed from the table that the performance decreases; it
justifies the importance of SNR in MT-TCN.

6. To understand the selection of the top 20 temporal signals, we conducted
a WithoutTop20 experiment in which we selected 20 random temporal sig-
nals to evaluate the proposed method, and it was found that performance
decreased. The top 20 selection methods select the quality temporal signals
and avoid noisy and spurious temporal signals.

4 Discussion

We have utilized the 4-second video clips to perform HR monitoring using the
proposed method. We have also tested our proposed method for different time
duration clips, and the corresponding results are shown in Table 3. It is analyzed
from the table that if we increase the time duration of clips, then the performance
of the proposed system increases for some time because long-duration clips can
easily mitigate some noise. However, the performance decreases after some time
because the number of clips required to train the model reduces. Also, it can be
observed from the table that our best performance is achieved when 6-second
video clips are used. Nevertheless, we set the clip size to 4 s because it is a widely
accepted practice [29].

For rigorous analysis and a better understanding of the effectiveness of data
augmentation in our proposed work, HR-TRACK, we conduct experiments with-
out utilizing the data augmentation technique. Consequently, we obtained unsat-
isfactory results due to the imbalanced dataset used in our work because most
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of the HR ranges lie between 70–90 bpm. In contrast, we achieve better results
when data augmentation is applied in our work.

5 Conclusion

The rPPG technique plays a crucial role for doctors and patients in this
COVID-19 pandemic to monitor the HR while avoiding the spread of the virus.
Unfortunately, this technique is ineffective when the face contains deformations
and short-duration face clips are utilized. Our proposed novel HR monitoring
method, HR-TRACK, has effectively mitigated these limitations by sequen-
tially stacking two novel networks inspired by the temporal convolution network
(TCN). Our first novel network, rPPG-TCN, has automatically mitigated the
facial expressions from the temporal signals and consolidated them to compute
the instantaneous HR corresponding to the short-duration video clips. It has
given some erroneous instantaneous HR when the corresponding clip contains
facial deformation. Hence, all the computed instantaneous HR values have been
provided to our second network, MR-TCN. The MR-TCN network has success-
fully rectified the erroneous instantaneous HR by analyzing all the instantaneous
HR and SNR values. The experimental results were based on publicly available
datasets, such as the UBFC-rPPG and COHFACE datasets. The experiments
have revealed that the proposed method outperformed state-of-the-art meth-
ods. In the future, we intend to use the attention mechanism-based transformer
architecture to improve HR monitoring. Additionally, we look forward to creat-
ing rPPG datasets for exceptional cases like dark skin tone.
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Abstract. This paper introduces LLDif, a novel diffusion-based facial
expression recognition (FER) framework tailored for extremely low-light
(LL) environments. Images captured under such conditions often suffer
from low brightness and significantly reduced contrast, presenting chal-
lenges to conventional methods. These challenges include poor image
quality that can significantly reduce the accuracy of emotion recognition.
LLDif addresses these issues with a novel two-stage training process that
combines a Label-aware CLIP (LA-CLIP), an embedding prior network
(PNET), and a transformer-based network adept at handling the noise
of low-light images. The first stage involves LA-CLIP generating a joint
embedding prior distribution (EPD) to guide the LLformer in label recov-
ery. In the second stage, the diffusion model (DM) refines the EPD infer-
ence, ultilising the compactness of EPD for precise predictions. Experi-
mental evaluations on various LL-FER datasets have shown that LLDif
achieves competitive performance, underscoring its potential to enhance
FER applications in challenging lighting conditions.

Keywords: Low-Light · emotion recognition · diffusion model

1 Introduction

In the domain of computer vision, precisely identifying facial emotions presents a
notable challenge, particularly in extremely low-light environments. Such envi-
ronments can significantly impair the quality of captured images, leading to
degraded visibility of facial features, which are crucial for precise emotion recog-
nition. This degradation not only destroys the basic structure of the face but
also introduces noise and distortion, further complicating the task for emotion
recognition algorithms. In Fig. 1, the low-light image (LL) at the top shows a
child’s face that is shadowed and details are obscured, making it challenging
to discern fine facial expressions. The histograms indicate that most pixel val-
ues are clustered toward the darker end of the spectrum, which suggests limited
brightness and contrast in the image. In the normal-light image (CI) at the bot-
tom, the child’s face is clearly visible with good detail, essential for recognizing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15313, pp. 386–401, 2025.
https://doi.org/10.1007/978-3-031-78201-5_25
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Fig. 1. Top: the low-light image (LL) shows a child’s face that is shadowed and details
are obscured, making it challenging to discern fine facial expressions. Bottom: In the
normal-light image (CI) at the bottom, the child’s face is clearly visible with good
detail, essential for recognizing emotions.

emotions. The histograms show a more even distribution of pixel values across
the spectrum, with higher frequencies in the mid to high ranges, indicating bet-
ter brightness and contrast. Traditional FER methods [10,13,14,22,29] perform
well under normal-light conditions; however, their effectiveness is considerably
diminished in low-light scenarios due to the loss of subtle facial structures. There
is a need for robust methodologies that can overcome the challenges posed by low
brightness while maintaining high accuracy in emotion recognition. Currently,
several approaches have been developed to tackle the challenge of learning from
noisy data in the field of emotion recognition. RUL [25] proposes to improve facial
expression recognition by weighing uncertainties based on the difficulty of sam-
ples to enhance performance in noisy environments. SCN [16] addresses uncer-
tainties in facial expression recognition efforts by using a self-attention block
to choose training samples and correcting uncertain labels by using a relabel-
ing approach, thereby improving the learning process’s dependability. However,
both methods require relabeling the samples based on the samples’ difficulties.
EAC [26] addresses noisy labels by using flipped image consistency and selective
features, preventing the model from relying on misleading features and thereby
improving learning accuracy. However, when these techniques are used in low-
light images, they encounter challenges. In particular, RUL [25] and EAC [26] are
based on the assumption of minimal losses. In extremely low-light settings, where
clear, fine facial details are lacking, these approaches might mistakenly equate
challenging samples with noisy ones since both can display high loss values in
the training of low-light images.



388 Z. Wang et al.

(a) Stage 1: Label-aware CLIP (LA-CLIP) (b) Stage 2: Label restortion with LLformer

Conv

Transformer
Block

DownScale

DownScale

Transformer
Block

Flatten

Flatten

Flatten

C

C

C

Q
K V

Q
K V

Q
K V

Q
K V

DGNet

DMNet

Input

MHCA

+

LN

MLP

+
Output

Input

Conv

MHCA

+

LN

MLP

+
OutputLow-light Transformer (LLformer)

O1

O2

O3

F1

F2

F3

DDPM

LLformer

(b) Stage 2: Train Diffusion LLDif (LLDifS2) & Inference Reverse Denoising Process

Surprise,
Fear,

Disgust,
Happy,
Sad,

Anger,
Neutral

The
facial

expression
is

Happy

Feature
Learner Pretrained

CLIP

LabelCaption

Gradient
Flow

Text
Encoder

Image
Encoder

C
onstrastive Learning

Image
Encoder

Feature
Learner

DDPM

Repeat T Times

Matmul

Scale

Softmax

Q

Matmul

VK

FC

Output

y

Text Label
Embedding

Text
Encoder

Image
Encoder

CLIP Text
Encoder

CLIP Image
Encoder

Lock
Parameters

LL Image

Prior Extraction
Network Feature Learner

DDPM

Diffusion Model

DGNet

Dynamic Gated
Forward network

DMNet

Multi-head Attention
Network

Facial Landmark cross
attention network

Low-Light Face
Image Cross-

Attention Network
MHCA

Multi-head Cross
Attention

LN

Layer
Normalization

MLP

Multilayer
Perception

Predicted Label

Caption
embedding

LL Feature
Embedding

LL Label
Embedding

Fig. 2. The proposed LLDif framework, comprising Label-aware CLIP (LA-CLIP),
LLformer, PNET, and a denoising network. LLDif employs a two-stage training
method: (1) Initially, we apply LA-CLIP to process the low-light image alongside its
image caption and label, producing a Joint Embedding Prior Distribution (EPD) Z.
This EPD is then used to instruct the LLformer in label restoration. (2) During the
second stage, the diffusion model’s (DM) strong capabilities are employed to approxi-
mate the joint Embedding Prior Distribution (EPD) from PNETs1. During the reverse
process of the diffusion model, low-light images x are fed into PNETs2 to derive a
conditional vector xs2.

To solve these issues, this paper proposes a novel method for handling noisy
images in low-light conditions, departing from the conventional method of identi-
fying noisy samples by their loss values. Instead, we introduce a distinctive app-
roach centered on learning the joint distribution of noise labels and images via
feature extraction and label restoration. We aim to create a diffusion-based net-
work for FER that use the capabilities of diffusion models (DMs) for effec-
tive label restoration by aligning them with their related images. To achieve
this, we present LLDif. Considering the transformer’s capability to handle long-
range pixel dependencies, we employ transformers as the foundational blocks of
the LLDif architecture. We organize transformer blocks in a U-Net configura-
tion to form the Low-Light Transformer (LLformer), which is aimed at extracting
features at multiple levels. The LLformer comprises two parallel networks: the
DTNet, tasked with extracting latent features from low-light images at various
depths, and the DLNet, which focuses on identifying the similarities between
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low-light images and facial landmarks. LLDif adopts a two-stage training app-
roach: (1) In the first stage, as illustrated in Fig. 2 (a), we use LA-CLIP to
process the low-light image along with its image caption and label, generating a
Joint Embedding Prior Distribution (EPD) Z. This EPD is then utilized to guide
the LLformer in label restoration. (2) In the second stage, shown in Fig. 2 (b), the
diffusion model (DM) can be trained to deduce the accurate EPD directly from
low-light images. Owing to the compactness of EPD Z, the DM can make highly
accurate EPD predictions, achieving consistent high accuracy after only a few
iterations.

This study offers several notable contributions, detailed as follows: 1) We
introduce a innovative diffusion-based approach designed to address the chal-
lenges encountered in facial expression recognition, particularly those arising
from diminished brightness and contrast in low-light conditions. 2) Our LLDif
model harnesses the powerful distribution mapping capabilities of diffusion mod-
els (DMs) to generate an accurate embedding prior distribution (EPD), signifi-
cantly enhancing the precision and reliability of FER results. This method stands
out for its independence from the need to understand the dataset’s uncertainty
distribution, distinguishing it from prior approaches. 3) Extensive testing has
demonstrated that LLDif achieves impressive performance in emotion recogni-
tion tasks across three low-light FER datasets, underscoring its effectiveness.

2 Related Work

Facial Expression Recognition. FER [24] focuses on enabling comput-
ers to interact with humans by identifying human facial expressions. In recent
years, the accuracy of recognizing expressions under normal-light conditions
has seen substantial improvements. Kollias et al. [4] introduces a CNN-RNN
hybrid method that leverages multi-level visual features for dimensional emotion
recognition. Zhao et al. [28] introduces Former-DFER, a dynamic transformer
that combines spatial and temporal transformers to robustly capture facial fea-
tures against occlusions and pose variations, achieving top performance on an
emotion recognition dataset. The Expression Snippet Transformer (EST) [8]
enhances video-based facial expression recognition by decomposing videos into
expression snippets for detailed intra- and inter-snippet analysis, significantly
outperforming conventional CNN-based approaches. Vazquez et al. [15] intro-
duces a Transformer-based model, pre-trained on unlabeled ECG datasets and
fine-tuned on the AMIGOS dataset, achieving top emotion recognition perfor-
mance by leveraging attention mechanisms to emphasize relevant signal parts.

Diffusion Models. Diffusion models are now utilized across a wide range of
tasks, including image enhancement for higher resolution, as mentioned by Shang
et al. (2024) [12], and creative image modifications, as highlighted by Yang et
al. (2023) [21]. Moreover, the latent features captured by diffusion models have
proven beneficial for classification tasks such as image classification, as noted
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by Han et al. (2022) [3], and for segmentation in medical imaging, as demon-
strated by Wu et al. (2024) [20]. Zhang et al. [27] introduces a novel approach
for editing single images using pre-trained diffusion models, combining model-
based guidance with patch-based fine-tuning to prevent overfitting and enable
high-resolution content creation and manipulation based on textual descriptions.
Rahman et al. [11] presents a diffusion model-based approach for medical image
segmentation that learns from collective expert insights to generate a variety of
accurate segmentation masks, outperforming existing models in capturing nat-
ural variations and evaluated by a new metric aligned with clinical standards.

3 Methods

3.1 Label-Aware CLIP

The key idea of LA-CLIP is to train the feature learner Fl to output low-light
features while simultaneously predicting the image’s label. As summarized in
Fig. 2 (a), the low-light feature embedding f I

c is matched with the image’s cap-
tion f t

c . Moreover, the low-light label embedding f I
l , predicted by the feature

learner Fl, is aligned with the input label embedding f t
l . This module helps

to create embeddings that correlate visual features with textual annotations,
which could be vital for low-light emotion recognition. It is designed to support
the LLformer in label restoration, leveraging pre-trained models to guide the
network in accurately predicting labels for low-light images.

As depicted in the yellow box of Fig. 2 during stage 2, PNETs1 employs
cross-attention layers to infer the Embedding Prior Distribution (EPD) Z. Fol-
lowing this extraction, DTNet leverages the EPD to aid in label recovery. Within
DTNet, as shown in the same yellow box of Fig. 2, the architecture comprises
DMNet and DGNet. We use the pre-trained LA-CLIP model to get the low-light
feature embedding f l

c and low-light label embedding f I
l ; these embeddings are

then input into PNETs1. The output from PNETs1 is the EPD Z, denoted as
Z ∈ RC . This process is detailed in (Eq. 1):

Z = PNETS1(Fl(x), Ie(x)). (1)

Subsequently, Z is fed into the DTNet in Fig. 3, acting as adjustable param-
eters to support the process of label restoration, as detailed in Eq. (2).

F
′
= W l

1Z ◦ LN(F ) + W l
2Z, (2)

here, W represents the weights of a fully connected layer, LN denotes layer
normalization and ◦ symbolizes element-wise multiplication. In DMNet Fig. 3
(b), we process the entire image to extract detailed information. The features
F ′ are converted into three different vectors: key K, query Q, and value V ,
through a convolutional layer. These vectors are reshaped as Q to RH′′W ′′×C′′

,
K to RC′′×H′′W ′′

, and V to RH′′W ′′×C′′
, making them compatible for subsequent

operations. By multiplying Q and K, the model can identify which image regions
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Fig. 3. The overview of DTNet, which consists of DGNet and DMNet.

to focus on, and generate an attention map A ∈ RC′′×C′′
. This operation in

DMNet is depicted in the following Eq. (3):

F ” = WcV × softmax(K × Q/α) + F, (3)

where α serves as a tunable parameter during the training phase. Following this,
the DGNet focuses on extracting both local and neighboring features through
aggregation. This is achieved by employing a small Convolution (1 × 1) to
extract local features, and a larger Convolution (3 × 3) to collect information
from adjacent pixels. Furthermore, a specialized gating mechanism is utilized
to ensure only the most important information is captured. The entire process
within DGNet is depicted in the following (Eq. (4)):

F ” = GELU(W 1
d W 1

c F
′
) ◦ W 2

d W 2
c F

′
+ F. (4)

3.2 Dynamic Landmarks and Image Network (DLNet)

Within the DLNet, a cross window attention approach is utilized to process
features from both 2D facial landmarks and related images taken in low-light
conditions. We start by dividing the low-light image features, denoted as Xll ∈
RN×D, into various distinct, non-overlapping windows xll ∈ RM×D. In parallel,
features from facial landmarks, represented as Xfl ∈ RC×H×W , are downscaled
to align with the dimensions of these windows, yielding xfl ∈ Rc×h×w, where
the dimension c matches D and the production h and w equate to M . This setup
enables the application of cross-attention between features of facial landmarks
and low-light images, as depicted in (Eq. 7).
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Q = xflwQ,K = xllwK , V = xllwV , (5)

Oi = Softmax(
QiK

T
i√

d
+ b)Vi, i = 1, ..., N, (6)

O = [O1, O2, ..., ON ]WO, (7)

where wO, wK , wQ and wV represent the weight matrices, and b denotes the
corresponding positional bias.

This cross-attention mechanism is implemented on every window of the low-
light image, termed as MHCA. The equations that describe the transformer
encoder within LLDif are presented as follows (Eq. (9)):

X
′
ll = MHCA(Xll) + Xll, (8)

X”
ll = MLP (LN(X

′
ll)) + X

′
ll, (9)

the fusion of output features F from DTNet and O from DLNet is required to pro-
duce the combined multi-scale features x1, x2, and x3. This involves concatenat-
ing the corresponding features: x1 = Concat(F1, O1), x2 = Concat(F2, O2), and
x3 = Concat(F3, O3). Following this, the fused features X undergo additional
processing through standard transformer blocks.

X = [x1, x2, x3], (10)

X
′
= MSA(X) + X, (11)

y
′
= MLP (LN(X

′
)) + X

′
, (12)

where MSA denotes the self-attention blocks with multiple heads and LN refers
to the layer normalization. The definition of the training loss is given as follows
(Eq. (13)):

Lce = −
N∑

i=1

M∑

c=1

yic log(pic). (13)

Our model is trained using the cross-entropy loss function, where M is the
number of distinct classes, and N signifies the total count of samples. Here, yic

indicates whether class c is the correct classification for observation i, and pic is
the probability predicted by the model.

3.3 Diffusion Model for Label Restoration

In the second stage, as shown in Fig. 2 (b), the diffusion model’s (DM) strong
capabilities are employed to approximate the joint Embedding Prior Distribu-
tion (EPD). Initially, the pre-trained LA-CLIP and PNETS1 is used to acquire
the EPD Z ∈ RC . Following this, the diffusion technique is applied to Z, result-
ing in a generated sample ZT ∈ RC , as explained in (Eq. (14)):

q(ZT |Z) = N (ZT ;
√

ᾱT Z, (1 − ᾱT )I). (14)
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here, T represents the total count of diffusion steps. The variable αt is defined
as 1 − βt, and ᾱT denotes the cumulative product of αi for all steps from 0 to
T . The term βt is a predetermined hyper-parameter, while N (.) signifies the
standard Gaussian distribution.

During the reverse process of the diffusion model, low-light images x are fed
into PNETs2 to derive a conditional vector xs2 ∈ RC as outlined in Eq. (15).

xs2 = PNETs2(x), (15)

where PNETs2 includes convolutional layer, residual layer and linear layer, which
will ensure the output’s dimension of PNETs2 is same as PNETs1.

The denoising network, represented as εθ, estimate the noise for each spe-
cific time step t. It processes the current noisy data Z

′
t , the time step t, and a

conditional vector xs2, which is obtained from the low-light image via the
stage-two prior distribution network PNETs2. The estimated noise, expressed as
εθ(Concat(Z

′
t , t, xs2)), is then utilized in the subsequent formula to determine

the denoised data Z
′
t−1 for the upcoming step, as illustrated in Equation (16):

Z
′
t−1 =

1√
αt

(Z
′
t − εθ(Concat(Z

′
t , t, xS2))

1 − αt√
1 − αt

). (16)

After T iterations, we get the final embedding prior distribution (EPD), symbol-
ized as Z ′

0. The stage-two prior distribution network (PNETs2), together with
the denoising network and the Low-Light Transformer (LLformer), are jointly
optimized through the total loss function Ltotal, as depicted in Equation (18).

Lkl =
C∑

i=1

Znorm(i) log(
Znorm(i)
Z̄norm(i)

), (17)

Ltotal = Lce + Lkl. (18)

In this formula, Znorm(i) and Z̄norm(i) refer to the EPDs derived from LA-CLIP
and LLDifS2, respectively, both normalized through softmax. The term Lkl rep-
resents a form of the Kullback-Leibler divergence, computed over C dimensions.
The total loss, Ltotal, is formulated by adding the Kullback-Leibler divergence
loss Lkl (Eq. 17) to the Cross-Entropy loss Lce (Eq. 13). Since the EPD includes
features from the low-light image and the corresponding emotion label encoded
via a pretrained LA-CLIP model, LLDif’s second stage (LLDifs2) can provide
accurate estimation for low-light image’s label in a few steps. Notably, during
the inference stage, LLDif doesn’t need actual ground truth labels in the reverse
diffusion process of DM.

4 Experiments

4.1 Datasets

LL-RAF-DB dataset includes 12,271 images in the training set and 3,068
images in the testing set, offering a robust basis for assessing FER algorithms
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Table 1. Evaluation of accuracy (%) compared to SOTA FER methods on RAF-DB,
KDEF and FERPlus.

RAF-DB FERPlus KDEF

Methods Acc. (%) Methods Acc. (%) Methods Acc. (%)

ARM [14] 90.42 DACL [2] 83.52 DACL [2] 88.61

POSTER++ [9] 92.21 POSTER++ [9] 86.46 POSTER++ [9] 94.44

RUL [25] 88.98 RUL [25] 85.00 RUL [25] 87.83

DAN [19] 89.70 DAN [19] 85.48 DAN [19] 88.77

SCN [16] 87.03 SCN [16] 83.11 SCN [16] 89.55

EAC [26] 90.35 EAC [26] 86.18 EAC [26] 72.32

MANet [29] 88.42 MANet [29] 85.49 MANet [29] 91.75

Ours 91.72 Ours 87.19 Ours 95.83

Table 2. Evaluation of accuracy (%) compared to SOTA FER methods on the LL-
RAF-DB Dataset.

DAN [19] POSTER++ [9] EAC [26] MANet [29] RUL [25] SCN [16] DACL [2] Ours

Acc.(%) 79.27 80.76 78.72 78.45 77.57 75.20 75.68 82.26

under low-light conditions. Likewise, the RAF-DB dataset [7] includes 7 emo-
tional categories and mirrors the testing and training configuration of LL-RAF-
DB dataset. The expression distribution is consistent across both datasets.

LL-FERPlus dataset expands the scope to low-light conditions, presenting
a comprehensive collection of 7,178 for testing and 28,709 images for training
in low-light settings. The FERPlus dataset [1], an extension of the FER2013
dataset, is enriched with additional labels from ten different annotators and
features the same quantity of training and testing images as the LL-FERPlus
dataset.

LL-KDEF dataset contains 4,900 images captured under low-light condi-
tions, taken from five unique angles. It comprises 3,920 images in the training
set and 980 in the testing set. The KDEF dataset [6], with an identical total
of 4,900 images, is a comprehensive collection in which each facial expression is
photographed from five distinct viewpoints, ensuring a broad spectrum of clear
visual information.

4.2 Implementation Details

We use Adobe Lightroom [5] to synthesize three benchmark low-light facial
expression recognition (LL-FER) datasets following [?], simulating natural
degraded image conditions by adjusting the exposure, white balance, highlights,
and shadows and taking natural image statistics into consideration from normal-
light FER images. Specifically, we start by generating three random variables,
a, b, and c, each uniformly distributed between 0 and 1. These variables are
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Fig. 4. Emotion distribution for samples in LL-RAF-DB dataset and RAF-DB.

Table 3. Evaluation of accuracy (%) compared to SOTA FER methods on the LL-
FERPlus Dataset.

DAN [19] POSTER++ [9] EAC [26]MANet [29] RUL [25] SCN [16] DACL [2]Ours

Acc.(%) 80.97 81.44 80.46 80.34 79.35 74.95 77.05 82.25

then used to create parameters typical of those used in Adobe Lightroom soft-
ware. The parameters include exposure (−5+ a2), highlights (−20min{b, 0.5}+
5), shadows (−20min{c, 0.5}) and white balance (−20(5 − 5a2)). The experi-
mental setup utilized PyTorch for model training, which was carried out on a
GTX-3090 GPU. For optimization, the Adam algorithm was chosen, with the
training spanning 200 epochs. The adopted training settings specified an initial
learning rate of 3.5 × 10−4, a batch size of 64, and a weight decay parameter set
to 1 × 10−4.

4.3 Comparison with Other SOTA FER Methods

Comparison with Other Typical State-of-the-Art FER Methods.
Table 1 offers a detailed evaluation of the accuracy of our proposed approach
against the latest SOTA facial emotion recognition techniques [2,9,14,16,19,25,
26,29] over three standard FER datasets: RAF-DB, KDEF and FERPlus. For
RAF-DB, our method records a 91.72% accuracy, outperforming several well-
established algorithms such as RUL [25], ARM [14], DAN [19], EAC [26], SCN
[16] and MANet [29], and is closely matched with POSTER++ [9] which has
a marginally higher accuracy of 92.21%. On the FERPlus dataset, the pro-
posed method demonstrates an 87.19% accuracy, exceeding the accuracy of RUL
[25] at 85.00%, POSTER++ [9] at 86.46%, EAC [26] at 86.18%, and MANet
[29] at 85.49%, and the SCN [16] method has a lowest performance compared
to the other methods. Within the KDEF dataset analysis, our proposed app-
roach secures the top accuracy at 95.83%, showcasing a progress against other
approaches, surpassing POSTER++ [9] at 94.44% and MANet [29] at 91.75%.
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Table 4. Evaluation of accuracy (%) compared to SOTA FER methods on the LL-
KDEF Dataset.

DAN [19] POSTER++ [9] EAC [26] MANet [29] RUL [25] SCN [16] DACL [2] Ours

Acc.(%) 82.03 88.93 43.53 83.13 83.99 77.50 86.69 92.97

Fig. 5. The predicted feature visualised by t-SNE between our method and SCN.

Table 5. Key components in LLDif.

Method Key components in LLDif Acc.(%)

Diffusion ModelLce Ltotal Insert Noise

LLDifS2-V1 ✘ ✔ ✘ ✘ 89.46

LLDifS2-V2 ✔ ✘ ✔ ✔ 91.67

LLDifS2-V3 ✔ ✔ ✘ ✘ 92.16

LLDifS2-V4 (Ours) ✔ ✔ ✘ ✔ 92.97

Overall, these results underscore the reliability of the proposed approach in han-
dling facial expression recognition across various datasets.

Comparison with the Low-Light FER-Model. We compare our method
with other SOTA methods on low-light images. Some samples are shown in Fig. 4.
Accuracy comparisons between our model and other SOTA FER methods on the
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LL-RAF-DB, LL-KDEF datasets, and LL-FERPlus are outlined in Tables 2,
3, and 4, respectively. The majority of the benchmarked models, including ARM
[14], RUL [25], DAN [19], SCN [16], EAC [26], and MANet [29], are based on the
ResNet-18 architecture. However, POSTER++ [9] stands out by adopting the
Vision Transformer architecture. In contrast, our model introduces a novel app-
roach by incorporating a ‘Diffusion’ backbone, moving away from the tradi-
tional ResNet-18 design. In the Table 2, the proposed method attains the highest
accuracy of 82.26%, which is a notable enhancement over other methodologies.
POSTER++ [9] registers the second highest accuracy with 80.76%, followed by
DAN [19]at 79.27%. The EAC [26], MANet [29], RUL [25], SCN [16], and DACL
[2] algorithms show a relative low accuracy from 75.20% to 78.72%. Table 3,
which focuses on the LL-FERPlus Dataset, shows “Ours” with a leading accu-
racy of 82.25%, marginally surpassing POSTER++’s [9] 81.44%. In the Table 4,
“Ours” shows the highest accuracy at 92.97%, which is significantly higher than
the other methods listed. The second most accurate method is POSTER++ [9],
with an accuracy of 88.93%. Other methods such as DAN [19], EAC [26], MANet
[29], RUL [25], SCN [16], and DACL [2] present accuracies ranging from 43.53%
to 86.69%. These results underscore the efficiency of the diffusion-based app-
roach within the context of facial expression recognition systems under low-light
conditions.

Feature Visualization. We used the t-SNE method to illustrate how mod-
els discern feature distributions. In contrast to Fig. 5 (a) and (b), where the
SCN model has difficulty separating different emotion categories, especially in
low-light conditions, our LLDif model exhibits effective expression recognition
in both clear and degraded low-light images. This indicates that LLDif success-
fully captures key features crucial for distinguishing between various emotional
expressions categories.

Visualization of Confidence Scores. We visualize the distribution of con-
fidence scores for facial expression recognition methods on clear and low-light
images in Fig. 6. For the baseline method [16], the mean confidence score for
clear images is 0.41 and for low-light images is 0.34, with an overall accuracy of
0.435. The DAN method [19] shows a mean confidence score of 0.42 for clear
images and 0.37 for low-light images, with an overall accuracy of 0.820. The
POSTER++ method [9] has mean scores of 0.46 for clear images and 0.45 for
low-light images, achieving an overall accuracy of 0.889. The proposed method
exhibits a notably higher confidence level with mean scores of 0.57 for clear
images and 0.53 for low-light images, corresponding to a high overall accuracy
of 0.929. The proposed method not only shows the highest accuracy but also the
small difference in confidence score between clear and low-light images, suggest-
ing robust performance even in challenging lighting conditions.
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Fig. 6. Confidence score of different methods on KDEF dataset. Accuracy for each
method is marked on the top. The baseline [16] method fails as FER data have small
inter-class distances. DAN [19] and POSTER++ [9] have relative high confidence score
while they still fall a lot in low confidence score area. Our method can effectively
separates different emotion samples on clear and low-light images.

4.4 Ablation Study

This section evaluates the impacts of crucial components within LLDif, including
the Diffusion Model (DM), various loss functions, and the insert noise during
the training phase, as depicted in Table 5. (1) The contrast between LLDifS2-V3
and LLDifS2-V1 underscores the DM’s robust ability in accurately predicting the
embedding prior distribution EPD. (2) The insert noise into the DM’s process
in LLDifS2-V4 is demonstrated to enhance the accuracy of EPD predictions.
(3) The efficiency of different loss functions is also examined. The comparison
between using Lce in LLDifS2-V4 (refer to Eq. (13)) and Ltotal in LLDifS2-V2
(refer to Eq. (18)) shows that using Lce is required for achieving better accuracy.

Impact of Iteration Numbers. This section examines how varying the num-
ber of iterations in the Diffusion Model (DM) influences the LLDifS2 perfor-
mance. We experimented with different iteration numbers in LLDifS2, adjusting
the βt value (with αt set as 1−βt, as outlined in Eq. 14) to ensure the variable Z
evolves toward a Gaussian distribution, ZT ∼ N (0, 1). Figures 8 and 7 demon-
strate that LLDifS2’s performance notably enhances at 4 iterations. Increasing
the iteration number over 4 iterations does not substantially impact model’s per-
formance, suggesting the attainment of an optimal threshold. Notably, LLDifS2
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Fig. 7. Progressive clustering of features in diffusion space visualized using t-SNE at
different time steps (T).

Fig. 8. Analyse impacts of iterations in DM.

reaches convergence more quickly than traditional DM methods, which typically
requires over 50 iterations. This enhanced efficiency results from applying DM
on the EPD, which is a one-dimensional, concise vector.

5 Conclusion

In this work, we present LLDif, an innovative framework utilising diffusion-based
method to enhance facial expression recognition under low-light conditions.
Addressing the challenges of image quality degradation in low-light settings,
LLDif employs a two-stage training approach, utilizing a label-aware CLIP (LA-
CLIP), an embedding prior distribution network (PNET), and a diffusion-based
transformer network (LLformer). By integrating advanced architecture like the
PNET and LLformer, LLDif can effectively restore emotion labels from degraded
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low-light images at multiple scale. Our experiments confirms that LLDif outper-
forms existing methods, gains competitive performance on three low-light facial
expression recognition datasets.
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Abstract. Automatic depression level estimation from speech is cur-
rently an active research topic in the field of computational emotion
recognition. One symptom commonly exhibited by patients with depres-
sion is erratic speech volume; thus, patients’ voices can be used as a bio-
signature to identify their level of depression. However, speech signals
have time-frequency properties; different frequencies and different times-
tamps contribute to depression detection in different ways. Accordingly,
we design a Coordinate Channel Attention (CCA) block for differentiat-
ing tensor information with different contributions. We use a dense block
to extract profound speech features with the above-mentioned blocks
to form our proposed Dense Coordinate Channel Attention Network
(DCCANet). Subsequently, a vectorization block is utilized to fuse the
high-dimensional information. We split the original long speech into short
audio segments of equal length, then feed these short segments into the
network after feature extraction to determine BDI-II scores. Ultimately,
the mean of the scores is used as the individual’s depression level. Exper-
iments on both the AVEC2013 and AVEC2014 datasets prove the effec-
tiveness of DCCANet, which outperforms several existing methods.
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1 Introduction

Depression is a severe health disorder that can be distinguished from the usual
mood swings and transient emotional reactions to the challenges of everyday life
[18]. Traditional methods of diagnosing depression essentially count the number
of presented symptoms; however, as depression becomes more severe, more con-
comitant symptoms can be observed [19], meaning that this method does not
always support doctors in determining the patient’s depression level or whether
the patient is depressed. Moreover, the growing global burden of depression [12]
indicates an urgent need for convenient and automated depression detection
methods.

Table 1. BDI-II scores and corresponding levels of depression

BDI-II Score Depression severity

0-13 None

14-19 Mild

20-28 Moderate

29-63 Severe

Physiological studies [3,13,14] have found significant differences in the speech
signals of depressed and non-depressed patients. Accordingly, existing works that
use deep learning techniques to find depression-related information in speech in
order to determine depression levels are of significance. Psychometric evidence
shows that the Beck Depression Inventory-II (BDI-II) [20,26] score can be utilized
to estimate the severity of a person’s depression, as shown in Table 1. Therefore,
many studies [1,5,10,21,23,24] have used this score as a criterion for depression
level assessment. Notably, although some of these methods have been proven to
be effective to varying extents, some aspects of them could still be improved.

Some researchers [21,23,24] have used unsupervised hand-crafted features
to estimate the severity of depression in individuals. However, this approach
is highly dependent on the researcher’s research orientation and professional
experience; moreover, some depression-related information may be lost when
using this approach. Li et al. [10] use GIE to obtain long-term global depression
information and LASSO optimization to pool short-term features and thereby
obtain long-term features. The TDCA network proposed by Cai et al. [1] uses
dilated convolution blocks to extract time-domain speech signal information;
this approach can aggregate multiscale contextual information associated with
depression. However, while the above-mentioned methods have certain advan-
tages, these authors focus only on the features of the time dimension in speech
while neglecting the features of the frequency dimension. CSENet [5] has fur-
ther demonstrated that the amplitude and phase spectrogram can be used to
effectively perform feature extraction.

To deal with the above issue, we propose DCCANet to perform depression
level estimation from speech. Specifically, we use the normalized amplitude and
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(

′

′
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Fig. 1. (a) Detailed structure of the DCCA Network. (b) The coordinate attention
(CA) block is used to highlight the time frames and frequency bands that make
the largest contributions to each channel. (c) High-dimensional information fusion.
Permute denotes matrix transposition

phase spectrogram as the input to the network, the Dense block to extract
deep speech features, and the Coordinate Channel Attention (CCA) block to
automatically select the time frames and frequency bands that make more sig-
nificant contributions. Finally, inspired by [15], we utilize vectorization blocks
to fuse high-dimensional information in order to differentiate between different
levels of depression. Multiple experiments show that DCCANet is efficient for
depression level estimation from speech. The main contributions of this paper
can be summarized as follows:

– We propose a DCCANet for depression level estimation from speech. The
CCA block can extract effective time frames, frequency bands, and channel
information.

– We use the amplitude and phase spectrogram, normalized by time frame, as
the input in order to help the network extract valid data.

– Experimental results on the AVEC2013 and AVEC2014 datasets prove that
our method outperforms some of the more recent methods.

2 Methodology

Taguchi et al. [22] demonstrated that different time frames and frequency bands
make different contributions to depression diagnosis. The attention mechanism
can capture meaningful information from vocal inputs with high efficiency [7,
11,27]. In light of the above, we propose DCCANet. Specifically, we use the
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mean-variance normalized amplitude and phase spectrogram as the input of the
model, extract the deep speech features via Conv2d and Dense block, then use our
designed CCA block to filter the time frames and frequency bands that contribute
most prominently, and finally fuse the high-dimensional information to predict the
individual depression level. Our proposed framework is illustrated in Fig. 1(a).

2.1 Feature Extraction Module

To improve the extraction of speech information, we use the amplitude and phase
spectrogram Xp ∈ R2×F×T, normalized by the time frame, as the input of the
model, and extract the depth features of the speech using the dense block [8].
First, the short-time Fourier transform (STFT) is applied to the divided speech
segments x[s], as shown by Eq. (1):

A[t, f ] + P[t, f ] ∗ i = ST FT (x[s]), (1)

where A and P denote the corresponding amplitude and phase spectrograms,
respectively. ST FT denotes the short-time Fourier transform calculation. t,
f , and s are the index of the time frames, the frequency bands, and the speech
signals, respectively.

Subsequently, without affecting the physical meaning of the data, we nor-
malize the resulting amplitude and phase spectrograms by the time frame, as
shown in Eq. (2):

norm(x) =
xi − mean (xi)

var (xi)
, (2)

where x denotes the input speech segment, norm(·) denotes the normalization
function, i denotes the i-th frame of x, mean(·) denotes the mean of the frame,
and var(·) denotes the variance of the frame.

Finally, the normalized amplitude and phase parts are stacked together to
form the input Xp to the model, as shown in Eq. (3):

Xp = stack(norm(A[t, f ]),norm(P[t, f ])), (3)

where stack(·) denotes the tensor concatenation operation, Xp denotes the net-
work framework input.

With the feature extraction module, we extract the depression information
in the speech, while also taking into account the phase information contained in
the Fourier complex spectrogram.

2.2 Coordinate Channel Attention Block

In this section, we present the details of the designed coordinate channel atten-
tion (CCA) block, which consists of a Coordinate Attention (CA) block and an
Efficient Channel Attention (ECA) block. The CA block examines the contribu-
tion of each channel in the tensor for different time frames and frequency bands.
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The ECA block helps the model to attend to essential channels and suppress
noise or less informative channels, thereby improving the overall efficiency of the
network. In our method, we use a Conv2D and Dense block to extract the high
dimensional depression feature information of Xp in order to obtain the input
X ∈ RC×F×T of CCA; here, T, F, and C denote the total count of timestamps
(i.e., columns), the total count of frequency bands (i.e., rows), and the total
count of channels, respectively.

Coordinate Attention. We define each channel xi ∈ RF×T(i = 1, 2, · · · , C)
of X as an input to the CA block. Specifically, we compute the weight of the
timestamps and frequency bands for xi by Eqs. (4) and (5), respectively. Finally,
the weighted channels that emphasize the depression information are obtained
by Eq. (6).

AT (xi) = σ
(
con2T

(
con1

T (xi)
))

∈ R1×T , (4)

AF (xi) = σ
(
con2F

(
con1

F (xi)
))

∈ RF×1, (5)

where con1
F and con1

T are two Conv1D operations along the time and frequency
axes, respectively, while con2

F and con2
T are two Conv1D operations used to

obtain the weights on the time and frequency axes. σ is the sigmoid activation
function.

XCA
i = Xi � δ (AF (Xi) ⊗ AT (Xi)) , (6)

where XCA
i denotes the channel tensor after the weights are obtained, δ denotes

the normalized exponential function, and � and ⊗ denote the element-wise mul-
tiplication and the matrix multiplication operation, respectively.

By performing the above operation, we calculate the weights of each Xi to
obtain XCA ∈ RC×F×T. Figure 1(b) illustrates the operation of the CA block.

Efficient Channel Attention Block. Wang et al. [25] proposed the ECA
Network, which has proven very effective in a deep learning context. This mod-
ule involves only a few parameters and provides significant performance gains
without dimensionality reduction.

Specifically, the ECA block independently applies global average pooling to
each channel, consolidating three-dimensional channel information into a one-
dimensional vector. Moreover, a Conv1D with kernel size k is used to obtain
the channel-level weights for the current channel and its k neighboring chan-
nels. Finally, the tensor is activated by a sigmoid function. The channel weight
calculated by the ECA block is shown in Eq. (7):

XECA = σ
(
conc(gap(XCA))

)
, (7)

where XE CA ∈ RC×F×T is the output to the ECA block, σ is a sigmoid activa-
tion function, conc denotes Conv1D, and gap denotes the use of global average
pooling for each channel.

In summary, the Coordinate Channel Attention block calibrates all channels
and examines the time frame and frequency band of each channel.
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2.3 High-Dimensional Information Fusion

To obtain more accurate individual BDI-II scores, we utilize time-frequency
channel vectorization block [15] to perform high-dimensional information fusion.
In this block, two Conv1D operations are employed for each channel of input
X ′ ∈ RC×F×T to fuse the information for each time frame and frequency band
in order to obtain V c

T ′ ∈ R1×T and V c
F ′ ∈ R1×F, respectively. We then splice

the two feature vectors to obtain tensor V c ∈ R1×(F+T), which contains depres-
sion information within a channel. Finally, according to Eq. (8), we concatenate
each tensor into a new matrix in a row-by-row manner to fuse the depression
representations of all channels.

V m =

⎡

⎢
⎢
⎣

v1′

v2′

· · ·
vc′

⎤

⎥
⎥
⎦ , (8)

where V m is the vectorized representation of all channels and vc′
is the vectorized

representation of each channel.
Next, the fusion information of each channel is again fused by using Conv1D

to get V ′ ∈ RC . Figure 1(c) illustrates the high-dimensional information fusion
process. Finally, we use a Fully Connected Layer to convert V ′ into BDI-II scores.

3 Experiments

3.1 Dataset and Evaluation Metrics

The AVEC2013 [24] dataset consists of 150 sample videos recording 84 subjects
performing 14 different tasks based on computer prompts, with video lengths
ranging from 20 min to 50 min. The AVEC2013 dataset is divided into three
sections of equal size (each containing 50 samples): specifically, training, devel-
opment, and test sets.

The AVEC2014 [23] dataset consists of two parts, “Northwind” and
“FreeForm”. The length of recordings for the Northwind task ranged from 31 s
to 89 s, while the length of recordings for the Freeform task ranged from 6 s to
248 s. Each task has 150 videos, divided equally into three sections: training,
development, and test sets. In our method, we merged the two subsets into a
dataset. Thus, each set has 100 audio samples.

Both datasets used the BDI-II as a criterion for determining individual
depression levels. The relevant studies apply mean absolute error (MAE) and
root mean square error (RMSE) as assessment metrics for estimating the level
of depression, which are shown in Eqs. (9) and (10):

MAE =
1
M

M∑

i=1

|ai − pi| , (9)

RMSE =

√√
√
√ 1

M

M∑

i=1

(ai − pi)
2
, (10)
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where a and p denote the actual and predictive BDI-II scores, respectively, while
i is the index of the sample.

3.2 Implementation Details

In the experiments conducted in this paper, we first divide the sample audio into
segments of 3 s in length, with a repetition rate of 50% at the adjacent ends. The
rate of sampling for all extracted speech signal waveforms is 8000 Hz. In Eq.
(1), the Hamming window length is 32 ms and the window movement is 16 ms,
meaning that each window contains 256 sampling points; thus, the size of the
spectrograms is 129 × 188. The number of output channels for Conv2d is 64,
the growth rate for the Dense block is 32, and the number of Dense blocks is
6; in short, the number of channels for profound speech features is 256. In the
CCA block, we set the parameters to vf=7; vt=7; vc=13, which represents the
convolution kernel size in the frequency dimension, time dimension, and channel
dimension, respectively. In this experiment, the optimizer utilized is Adam [9],
the loss function used is RMSE, and the learning rate is 0.0001. We expanded
the data to optimize the AVEC2014 model using AVEC2013’s data and also
optimized the AVEC2013 model using AVEC2014’s data.

It is worth mentioning that in order to address the problem of the uneven
number of speech samples at different levels of depression. We first put all the
speech segments of the same subject into the same folder, and then divided all
the subject files of the same depression level score into groups. When training the
net-work, we took 8 speech segments sequentially from each group with the same
depression level score and ensured that each subject segment was sampled evenly.
With the above method, we ensure that the number of speech segments at each
depression level is the same in each training epoch.

Table 2. Comparison of DCCANet with some existing systems on the AVEC2013 test
set.

Systems RMSE MAE

Hybrid Net+lp-norm Pooling [16] 9.79 7.48

SAN-CNN [28] 9.65 7.38

LSTM sub-network with GIE [10] 9.63 7.51

STA+EEP [17] 9.5 7.14

CSENet [5] 9.28 6.79

TDCA-Net [1] 9.22 6.9

SR+SER [4] 8.73 7.32

CSF+GSR [2] 8.5 –

DCCANet(Ours) 8.47 6.78



DCCANet 409

Table 3. Comparison of DCCANet with some existing systems on the AVEC2014 test
set.

Systems RMSE MAE

Hybrid Net+lp-norm Pooling [16] 9.66 8.02

SAN-CNN [28] 9.57 7.94

LSTM sub-network with GIE [10] 9.4 7.37

STA+EEP [17] 9.13 7.65

CSENet [5] 9.61 7.13

ADTP [6] 9.27 7.26

TDCA-Net [1] 8.9 7.08

SR+SER [4] 8.82 6.8

DCCANet(Ours) 7.54 6.17

3.3 Comparison with Other Methods

Tables 2 and 3 report our comparisons with existing methods on AVEC2013 and
AVEC2014, respectively. Compared with the other baseline methods, especially
neural networks that incorporate attention modules [1,5,10], our proposed model
achieves better accuracy on both metrics. These findings indicate that our pro-
posed DCCANet improves the detection of depression levels from speech. This is
because the CCA block not only focuses on features in the channel and temporal
dimensions but also highlights features in the frequency band dimension.

3.4 Effectiveness of the Feature Extraction Module

Figure 2 shows the feature extraction results of the subjects with different depres-
sion levels. Furthermore, to maintain a single variable, we selected the results of
two subjects who performed the same task simultaneously. Here, the horizontal
axis denotes the time dimension after feature extraction, while the vertical axis
represents the frequency dimension after feature extraction. The brighter the
color, the larger the value. As Fig. 2 shows, the features of healthy and depressed
individuals differ significantly, especially the part enclosed by the black box; this
indicates that the feature extraction block can effectively distinguish the differ-
ences in acoustic characteristics.

3.5 Effectiveness of the CCA Module

To further explore the contribution of DCCANet, we conducted ablation
experiments using four network structures on two datasets (AVEC2013 and
AVEC2014) to verify the contribution of each component in DCCANet. As shown
by the experimental results (listed in Table 4), our proposed DCCANet improves
depression level estimation from speech by calibrating the channels as well as by
handling the time-frequency properties of each channel.
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(I) (II)

(III) (IV)

Fig. 2. (I) and (II) are the amplitude and phase spectrograms (respectively) obtained
from feature extraction for healthy subjects No. 215-3. (III) and (IV) are the amplitude
and phase spectrograms (respectively) obtained from feature extraction of No. 241-2
for major depressive disorder patients.

3.6 Visualization of Predictions

In order to visualize the prediction results of the method in this paper, we plotted
a scatter plot as shown in Fig. 3. The plot shows the predicted values of the model
and the true values of the subjects. The horizontal axis represents the subjects’
IDs and the vertical axis represents the BDI-II scores. As the accuracy of the
prediction of moderate depression may mask the inadequacy of the prediction
of other depression levels, we tuned up the weights given to the loss values of
healthy individuals and mild depression patients during training. As shown in

Table 4. Depression level estimation performance on the AVEC2013 and AVEC2014
test sets using various frameworks. “C2” is an abbreviation for “Conv2D”. “DB” is an
abbreviation for “Dense Block”.

Network AVEC2013 AVEC2014

structures RMSE MAE RMSE MAE

C2+DB 9.12 7.15 8.32 6.93

C2+DB+ECA 8.76 6.96 7.89 6.46

C2+DB+CA 8.59 6.92 8.08 6.56

C2+DB+CCA 8.47 6.78 7.54 6.17
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the figure, the method in this paper has the best performance in predicting
patients with moderate depression.

Fig. 3. The scatter plot of the true value vs predictive value on the test set of
AVEC2013 (a) and AVEC2014 (b) based on DCCANet.

4 Conclusion

Different time frames and frequency bands make different contributions to pre-
dicting individual depression levels. Therefore, we proposed a DCCA network to
estimate an individual’s depression level by extracting high dimensional speech
features of the normalized amplitude and phase spectrogram, then examining
the time frame and frequency band of each channel, calibrating all channels, and
finally fusing the high-dimensional features. Experiments and ablation studies
on the AVEC2013 and AVEC2014 databases prove that the proposed CCA block
can successfully differentiate temporal frames and frequency bands that make
different degrees of contribution to depression features, and can also emphasize
informative channels. On these two datasets, DCCANet obtains good perfor-
mance compared to several previous existing methods.
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In future work, we could investigate the embedding of these principles into
other network architectures in order to find information about depression from
speech more effectively.
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Abstract. Facial Emotion Recognition (FER) has gained significant
attention in recent years due to its potential applications in various
fields such as automotive, mental health, and education. Despite the
impressive results of Deep Learning (DL) in these areas, a critical short-
fall of these systems is the lack of explainability. This paper presents a
systematic analysis using Gradient-weighted Class Activation Mapping
(Grad-CAM) combined with Guided Backpropagation to investigate the
features learned by DL models in FER and their alignment with estab-
lished emotional theories. We apply this methodology to Convolutional
Neural Networks (CNNs) trained on three different emotional datasets:
FER-2013, RAF-DB, and AffectNet. Our findings indicate that machine-
learned features vary within an emotional state and are not necessarily
aligned with expert understanding in emotion psychology. This raises
questions about the reliability and ethical implications of using FER
systems in sensitive areas, where accurate interpretation of emotions is
critical. In response, our study proposes exploring Neuro-Symbolic AI
approaches as a potential pathway to more effectively grasp the com-
plexity of emotion psychology and address these concerns. This app-
roach paves the way for the development of new FER model architec-
tures, potentially fostering the emergence of more nuanced emotional
concepts.

Keywords: Grad-CAM · Guided Grad-CAM · Explainable AI ·
Emotion Recognition · Facial Emotion Recognition · Convolutional
Neural Network

1 Introduction

Emotion recognition refers to the capability of technical systems to infer human
emotional states from various behavioral cues, utilizing different data modalities.
Among these, facial emotion recognition has gained significant popularity due
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to the strong link between facial expressions and the external manifestation of
inner emotional states [19]. The concept of emotions is underpinned by numerous
theories that describe different facets of emotional experiences. The foundational
framework for many research activities in this field is based on Paul Ekman’s
proposal of seven universal emotional states: surprise, anger, disgust, fear, hap-
piness, sadness, and contempt [9]. A neutral expression can be added to these.
Due to the apparent simplicity of employing discrete emotional categories in
Machine Learning (ML) applications, these labels constitute the foundation for
many (research) datasets in the field. High-quality annotations typically require
substantial efforts and are best performed by certified experts knowledgeable in
emotional theory [21]. However, subjectivity is inherent to any labeling process,
irrespective of the annotators’ level of expertise. Furthermore, there has been a
lively debate in the emotion research community regarding the universal appli-
cability or validity of Ekman’s theory [4]. This discussion is particularly relevant
in light of earlier work indicating potential inconsistencies in data annotations
[12], which may contribute to the challenges associated with both the subjective
nature of emotional labeling and the ongoing debate about the universality of
Ekman’s framework.

In this context, it becomes crucial to examine which features ML models, par-
ticularly DL techniques such as CNNs, actually learn from limited or potentially
inconsistent annotated facial emotion data. Despite their success in computer
vision tasks, CNNs suffer from a lack of interpretability, which is particularly
problematic in sensitive areas, such as FER, where transparency and compre-
hensibility are essential for ensuring reliable system operation [5]. Explainable
AI (XAI) offers valuable techniques to investigate, after training (ex post), why
CNN models make specific predictions. These techniques provide insights into
the features or facial regions that contribute to the decision-making process
and shed light on how these regions align with theories of emotion psychology
[1].

The present study is organized as follows: Sect. 2 delves into attribution-
based XAI techniques, and XAI in the context of FER. In Sect. 3, we out-
line the research methodology and describe the data used for our systematic
analysis. The results obtained from applying Grad-CAM combined with Guided
Backpropagation to explore learned features and facial regions within one CNN
architecture are presented in Sect. 4. This is followed by an in-depth discussion
in Sect. 5, which examines the implications of these findings with respect to emo-
tion psychology theories. In addition, we offer insights into how future research
in the realm of FER (and XAI) can benefit from Neuro-Symbolic AI approaches.
Finally, we summarize our key contributions.

2 Related Work

XAI encompasses a range of techniques aimed at making AI decision-making
transparent and interpretable. Within this broad domain, attribution-based
methods are particularly significant in the field of computer vision.
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2.1 Attribution-Based XAI Methods

Attribution-based methods, also referred to as pixel attribution, identify pixels
that significantly contribute to the classification of an individual image by an
Artificial Neural Network (ANN). Attribution-based methods focuses solely on
image data [1,26], and can therefore be considered a subcategory of feature attri-
butions. They allow to understand individual predictions of DL models by assign-
ing a positive or negative value to each input feature proportional to its influence
on the prediction task. Attribution-based methods are divided into two main
categories. The first encompasses perturbation-based methods (also known as
occlusion-based methods), such as SHAP (SHapley Additive exPlanations) [22]
and LIME (Local Interpretable Model-agnostic Explanations) [29]. These tech-
niques are model-agnostic and they generate explanations by modifying or per-
turbing the input in various ways to observe the impact on the model’s predic-
tion. The second category consists of methods that utilize the gradients of an
ANN. Specifically, these methods compute the gradients of a particular classifi-
cation output with respect to the input image. Depending on the approach, the
way how gradients are calculated differ [1,26].

Several gradient-based XAI techniques have been developed to provide
insights into how CNNs make predictions. In the following, we describe some
prominent methods, which have evolved over time: Vanilla Gradient calculates
the gradient of the output concerning the input image, highlighting pixels that
significantly impact the model’s decision. The resulting Saliency Map offers a
visual representation of this influence [33]. DeconvNet aims to identify features
that trigger certain layers in CNNs, i.e. DeconvNet methodologically reverses
the operations of a CNN. This process projects feature activations back into
the input pixel space, facilitating visualization of the relevant characteristics
[37]. Class Activation Mapping (CAM) generates heatmaps which display class
activation over input images, utilizing the final convolutional layer’s weights in
CNNs. By emphasizing critical regions, CAM highlights the important areas
for prediction classes [38]. Grad-CAM unites gradient information with class
activation maps to pinpoint image regions crucial for specific predictions. This
technique yields more fine-grained heatmaps than CAM, enhancing localiza-
tion capabilities [30]. Guided Grad-CAM integrates Guided Backpropagation
and Grad-CAM techniques. Guided Grad-CAM produces high-resolution visu-
alizations. These heatmaps emphasize not only significant regions but also the
intricate details within those regions, which helps to understand the prediction
process [30]. Smooth Grad improves the vanilla gradient method by averaging
the gradients of the input image with added noise multiple times. This tech-
nique produces smoother and more visually coherent attribution maps, effec-
tively reducing noise and highlighting salient features more clearly [34].

2.2 XAI in Facial Emotion Recognition

The major challenge in FER is to infer emotional (inner) states based on the
outward expressions in the form of facial expressions, more generally referred
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to as facial behavior. The majority of research on FER concentrates on FER
model performance including the comparison of different FER model archi-
tectures (VGG-16, ResNet152, Inception, and Xception) and the ambition to
achieve higher accuracy [11,17,28]. So far, XAI research on FER has witnessed
limited exploration. Mouakher et al. [28] presented a multi-criteria evaluation
framework for FER with various criteria such as accuracy and explainability.
Shahabinejad et al. [31] also published a framework which is based on hybrid
features, combining feature maps of face recognition with FER. Deramgozin et
al. [8] discussed a hybrid XAI framework for FER, which consists of a CNN model
and integrates explainable components based on LIME and facial Action Units.
Guerdan et al. [15] work shows how facial affect analysis can contribute to make
human-machine interactions more understandable. Shingjergji et al. [32] present
an approach of gamified data collection of facial expression that contributes to
explainability in FER.

Having established the broader context of XAI in FER, we now narrow our
focus to Grad-CAM in FER. Bai et al. [3] discuss the analysis of mechanisms of
spatio-temporal models for micro-expression recognition with Grad-CAM. Araf
et al. [2] use Grad-CAM visualizations on a less complex real-time FER Cas-
cade Classifier model than CNNs and based on only one dataset. Chen et al.
[6] use Grad-CAM in combination with the so-called Broad Learning System for
FER to explore the effects of structural system changes. Wadhawan and Gandhi
[35] apply Grad-CAM to analyse Transfer Learning of Facial Landmark Local-
ization within an ensemble network for FER. Malek-Podjaski and Deligianni [24]
use a multi-encoder-decoder architecture to differentiate between biometrics and
affects in human-motion affect recognition. Thereby, Grad-CAM is utilized to
analyse the model in more depth. A very recent work [27] uses Grad-CAM to
analyze the classification of facial AUs based on one emotional dataset.

3 Methodology

This study extends the data collection, preprocessing, and CNN model train-
ing methodologies developed in our previous work [12] where we evaluated the
performance (precision, recall, and F1-score) of CNN models for seven univer-
sal emotional states across three datasets and identified inconsistencies in data
annotations. Building on this foundation, the current work conducts a system-
atic analysis using slightly modified training settings and the same CNN model
architectures. We employ attribution-based XAI methods to explore in greater
depth how these models interpret emotional expressions, employing techniques
analogous to [12].

3.1 Facial Emotion Databases

In our previous research [12], we conducted a comprehensive review of over
40 facial expression databases. We specifically focused on static databases that
included annotations of the six basic emotions according to Ekman [9], plus
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a neutral expression. From this selection, we excluded databases that featured
multimodal and three-dimensional data, centering our attention solely on two-
dimensional, static facial datasets. The remaining databases varied in terms of
size, type of data (static or sequential), and the environment in which the data
was collected (controlled or uncontrolled). We further narrowed down the selec-
tion by excluding datasets with fewer than 10,000 instances or those collected in
controlled settings, aiming to work with a large, diverse, and more representative
dataset.

Consequently, we focused on three primary databases. The first was the FER-
2013 dataset [14], comprising 35,887 grayscale images. These images were auto-
matically cropped and labeled, and validated by experts. The dataset includes
seven emotional categories, with each image resized to 48 × 48 pixels [14]. The
second database was the RAF-DB with basic emotions [20], which includes
a total of 15,339 aligned, RGB-color images. These images were manually anno-
tated by approximately 40 experts and resized to 100× 100 pixels [20]. Lastly, the
AffectNet (Mini Version) [25] was utilized. This subset includes only manually
annotated RGB-color images, totaling 291,650 images, each with dimensions of
224× 224 pixels. We chose to exclude the emotional state of contempt from our
analysis to align with the seven emotions presented in the other datasets.

3.2 Data Pre-processing

Since the images were already aligned and cropped, our pre-processing step was
confined to data normalization and augmentation, bypassing the need for face
localization and facial landmark identification. Furthermore, we standardized
the image sizes of RAF-DB and AffectNet to match the 48px * 48px resolution of
FER-2013, ensuring uniformity for comparative analysis. Our normalization pro-
cess involved scaling the RGB color values, which are represented by byte values,
to a range of 0 to 1 by dividing by 255. The distribution of emotional classes
across all datasets is detailed in Table 1.

Table 1. Distribution of Emotional Classes per Dataset

Emotion FER-2013 RAF-DB AffectNet

Angry 4,953 867 25,382

Disgust 547 877 4,303

Fear 5,121 355 6,878

Happy 8,989 5,957 134,915

Sad 6,077 2,460 25,959

Surprise 4,002 1,619 14,590

Neutral 6,198 3,204 75,374

Total 35,887 15,339 287,401
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Most emotional states are well-represented across the three datasets, with a
few exceptions. We partitioned each dataset into training and test sets in a 80:20
ratio, designating 30% of the training set for validation. This allocation resulted
in 56% of the data for training, 24% for validation, and 20% for testing. These
splits were stratified to maintain proportional representation of each emotional
class in the training, validation, and test sets. Due to the smaller test set size
in AffectNet, we combined its training and test sets before re-dividing them to
align with the training, validation, and test set ratios of the other datasets.

3.3 CNN Model Training

Our CNN model, inspired by the AlexNet architecture [18] with its stacked
convolutional layers, was designed not to exceed predefined performance bench-
marks, but to enable a systematic comparison of Grad-CAM visualizations. It
features four repeated units, each comprising two convolutional layers followed
by max pooling. All convolutional layers use ‘same’ padding and ReLU activa-
tion. This architecture then transitions through a flattening step to two dense
layers with dropout, ultimately classifying seven emotional states. The detailed
specifications of our CNN model are provided in Table 2. To guarantee repro-
ducibility and to minimize training variability, we standardized seed parameters
and trained five models per dataset. Each model underwent 50 epochs of training
with a batch size of 128 to ensure consistent weight updates, though the number
of steps per epoch varied with dataset size. We utilized the Adam Optimizer at
a constant learning rate of 1e−4. The final model selected was the one achieving
the highest validation accuracy across these epochs.

Table 2. Architecture of the CNN Model

Layer Output Shape Parameters

4x{
2x Conv2D (None, 48, 48, 32) 2,432 & 25,632

MaxPooling2D (None, 24, 24, 32) 0

. . .

Flatten (None, 2,304) 0

Dense (None, 128) 295,040

Dropout (None, 128) 0

Dense (None, 64) 8,256

Dropout (None, 64) 0

Dense (None, 7) 455

3.4 Grad-CAM and Guided Grad-CAM

Grad-CAM combines gradient data and class activation maps to identify criti-
cal image regions for specific predictions. This approach produces more detailed
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heatmaps compared to CAM, thereby improving localization capabilities [30].
Previous research indicates that deeper layers of CNNs are responsible for learn-
ing more abstract, higher-level visual features [23]. This insight supports our
rationale for focusing on the last convolutional layer, which offers an optimal
balance between high-level feature representation and detailed spatial content.
The referenced work underscores that as layers progress, they transition from
capturing low-level to high-level features, making the final layers particularly
effective for detailed yet abstract visual analysis. Applying Grad-CAM results
in a class discriminative localization map Lc Grad-CAM ∈ R

u×v represented in
Eq. 1 [30].

Lc
Grad-CAM = ReLU(

∑

k

wc
kA

k
ij)) (1)

To this end, we propagate the image data through the CNN and determine
the output score for the class of interest, right before the softmax layer. The
output score of the other classes are ignored by setting their activations to zero.
Next, the gradient of the class of interest is propagated backwards to the last
convolutional layer. This operation is noted as Eq. (2) where yc is the score of
the class and Ak is the activation of each feature map k. The width and height
dimensions are represented by the indices i and j, respectively. Subsequently,
each ‘pixel’ within every feature map is assigned a weight based on its gradient
with respect to the target class, as determined by the last convolutional layer
[30].

dyc

dAk
ij

(2)

Then, Global Average Pooling is applied to the backpropagated gradients
considering width i and height j. This results in weight wc

k denoted as Eq. 3.
wc

k acts as a simplified representation of the deeper portions of the network, and
quantifies the ‘importance’ of the feature map k in determining the output for
a specific target class c [30].

wc
k =

1
Z

∑

i

∑

j︸ ︷︷ ︸
Global Average Pooling

Backpropagated Gradients︷ ︸︸ ︷
dyc

dAk
ij

(3)

We proceed by multiplying each pixel’s value of the feature map Ak with the
corresponding gradient in order to receive the gradient-weighted average. Then
the Rectified Linear Unit (ReLU) function is applied on the results to normalize
them in range between 0 to 1. This is denoted as Eq. 4. By using ReLU, we focus
on the information in the sense of features which have a positive contribution
to the predicted class. The size of the heatmap corresponds to the size of the
last convolutional layer feature maps (in our case 6× 6). In a final step, we
increase the resolution of the heatmaps to the original resolution of the image
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size with 48 × 48 by means of bilinear interpolation [30].

Lc
Grad-CAM = ReLU(

∑

k

wc
k

︸ ︷︷ ︸
Class Feature Weights

Ak
ij︸︷︷︸

Feature Map

)) (4)

Guided Grad-CAM merges the class-discriminative capabilities of Grad-CAM
with the detailed, pixel-level visualization from Guided Backpropagation. While
Grad-CAM outlines general regions of interest via coarse heatmaps, it may not
clarify why certain features influence classifications. To enhance clarity, Guided
Grad-CAM fuses these methods by element-wise multiplication of their out-
puts, after upscaling the Grad-CAM map to match the input image’s reso-
lution. This technique produces detailed visualizations that highlight precise
features significant to the classification while maintaining an overall focus on
relevant areas [30].

In our analysis, we generated visualization of Grad-CAM combined with
Guided Backpropagation using the last convolutional layer of the best among
five trained models for each of the seven emotional states. These were applied
across three datasets: FER-2013, RAF-DB, and AffectNet. The visualizations
from the leading model, trained on RAF-DB, formed the basis of our detailed
analysis. Lastly, we computed aggregated Grad-CAM visualizations - capturing
both means and standard deviations - for each emotional state and each model
individually, as well as for all models collectively, across these datasets. This app-
roach enabled us to explore potential variances among the models attributable
to training differences.

4 Results

In this section, we first present the classification performance of our CNN
model across three datasets: FER2013, RAF-DB, and AffectNet. Table 3 displays
the average precision, recall, and F1-score from five training runs of the CNN
model. We also provide selected Grad-CAM visualizations based on the RAF-
DB dataset, as detailed in Sect. 3, focusing on the emotional states of ‘disgust’,
‘sadness’, and ‘happiness’. These states were chosen based on their distinctive
accuracy profiles across all datasets, with ‘disgust’ showing notably low accu-
racy, ‘sadness’ serving as the semantic opposite of ‘happiness’, and ‘happiness’
demonstrating consistently high accuracy.

Figure 1 shows four Grad-CAM visualizations. Three are aligned with the
emotions of ‘disgust’ (Fig. 1a), ‘sadness’ (Fig. 1b), and ‘happiness’ (Fig. 1c), while
Fig. 1d illustrates only false predictions within the ‘happiness’ category, contrast-
ing with Fig. 1c, which contains only accurate predictions for ‘happiness’. To aid
in identification, red crosses mark all incorrectly classified images within these
figures. This differentiation allows us to explore the discrepancies in activation
areas between correctly and incorrectly predicted emotions.

The visualizations were generated using the Grad-CAM method combined
with Guided Backpropagation, applied to the best-performing CNN model using
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the last convolutional layer. We analyzed ten randomly selected images from the
RAF-DB dataset’s test set. Additionally, we manually highlighted key facial
regions with dashed, circular markings, drawing from emotion psychology theo-
ries discussed in depth in Sect. 5.

Table 3. Average Precision, Recall, and F1-Score in five Model Training runs.

Emotion Precision Recall F1-Score Count

Angry-FER 0.49(±0.01) 0.46(±0.02) 0.48(±0.01) 991

Disgust-FER 0.83(±0.06) 0.16(±0.05) 0.26(±0.08) 109

Fear-FER 0.41(±0.01) 0.35(±0.04) 0.38(±0.02) 1,024

Happy-FER 0.77(±0.01) 0.77(±0.02) 0.77(±0.00) 1,798

Sad-FER 0.42(±0.02) 0.48(±0.04) 0.45(±0.01) 1,216

Surprise-FER 0.72(±0.05) 0.68(±0.03) 0.70(±0.01) 800

Neutral-FER 0.49(±0.03) 0.56(±0.04) 0.52(±0.01) 1,240

Angry-RAF 0.60(±0.05) 0.57(±0.04) 0.58(±0.03) 173

Disgust-RAF 0.44(±0.06) 0.26(±0.03) 0.33(±0.03) 175

Fear-RAF 0.67(±0.14) 0.32(±0.01) 0.43(±0.03) 71

Happy-RAF 0.84(±0.01) 0.88(±0.02) 0.86(±0.00) 1,192

Sad-RAF 0.61(±0.03) 0.57(±0.05) 0.59(±0.01) 492

Surprise-RAF 0.70(±0.04) 0.66(±0.04) 0.68(±0.01) 324

Neutral-RAF 0.61(±0.01) 0.72(±0.04) 0.66(±0.01) 641

Angry-Aff 0.41(±0.05) 0.31(±0.06) 0.35(±0.02) 5,076

Disgust-Aff 0.02(±0.04) 0.00(±0.00) 0.00(±0.00) 861

Fear-Aff 0.19(±0.17) 0.04(±0.04) 0.06(±0.06) 1,376

Happy-Aff 0.75(±0.01) 0.90(±0.01) 0.82(±0.00) 26,983

Sad-Aff 0.52(±0.05) 0.07(±0.04) 0.12(±0.07) 5,192

Surprise-Aff 0.31(±0.04) 0.22(±0.06) 0.25(±0.05) 2,918

Neutral-Aff 0.53(±0.01) 0.63(±0.04) 0.57(±0.01) 15,075

The visualizations consistently show varying activations within facial regions
for each of the three emotional states. Notably, such variations are apparent
across all seven emotional states and for all the three datasets - FER-2013,
RAF-DB, and AffectNet.

Alongside individual Grad-CAM visualizations, we employed aggregated
Grad-CAM visualizations that capture both means and standard deviations
across each emotional state to examine potential randomness in CNN model
training. These visualizations revealed variability in activations among the five
trained models, attributable to the inherent randomness in the training pro-
cess. Despite this variability, a consistent finding across all three datasets is the
fluctuation of specific facial features activated within any given emotional class.
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Fig. 1. Visualizations of Grad-CAM combined with Guided Backpropagation for ‘Dis-
gust’, ‘Sadness’, and ‘Happiness’ using images from the RAF-DB dataset.

Thus, while activations may differ between the training of five CNN models,
the features activated within the same emotional class also exhibit variability
within each individual model.

5 Discussion

Our systematic analysis of CNN models using Grad-CAM combined with Guided
Backpropagation reveals insightful nuances on how these models process and
interpret facial expressions of emotion. While these CNN models achieve satisfac-
tory performance scores, especially with emotions like ‘happiness’, the primary
goal was to understand the knowledge they encode. We observe notable incon-
sistencies in feature activation and their intensities within the same emotional
class across various datasets.

To contextualize these findings, comparing the learned features for individual
emotions against established emotion psychology expertise is instructive. Paul
Ekman’s Facial Action Coding System (FACS) describes facial activities based
on Action Units (AUs) [10]. According to FACS and related research [7,13,36],
an emotion prediction table describes the relationship between AU combina-



424 J. Gebele et al.

tions and emotional states. Table 4 summarizes the intersections of AU-emotion
combinations derived from multiple studies [7,13,36].

Table 4. AUs associated with Different Emotions.

Emotion AUs

Happy 6 +12

Sadness 1 + 4 + 15

Disgust 9 + 15

Anger 4 + 5 + 7 + 23

Fear 1 + 2 + 4 + 5 + 20

Surprise 1 + 2 + 5 + 26

To accurately recognize ‘Disgust’, activation of both AU 9, the ‘Nose Wrin-
kler’, and AU 15, the ‘Lip Corner Depressor’, is essential. AU 9 features a muscle
that stretches from the root of the nose to a point next to the nostril wings, con-
tracting to lift the skin below the nostril wings towards the nose’s root. AU 15,
which originates from the side of the chin and attaches near the lip corner, draws
the corners of the lips downward [10].

Figure 1a shows ten visualizations of ‘Disgust’, which is the emotional class
with the lowest accuracy for all three datasets. In these visualizations the regions
associated with AU 9 and 15 are highlighted with dotted, circular elements.
Analysis of truly predicted images such as Test Image 1, 4, and 7 reveals con-
sistent activations in the AU 9 area, whereas activations in the AU 15 region
are either absent, weak, or unilateral. Conversely, in falsely predicted images like
Test Image 2, 5, 9, and 10, a similar trend can be observed, although Test Image
5 notably exhibits perfect alignment of activations with AU 9 and 15.

For the emotional state ‘sadness’, expected activations include AU 1, the
‘Inner Brow Raiser’, AU 4, the ‘Brow Lowerer’, and again AU 15 the ‘Lip Corner
Depressor’. AU 1 involves a large muscle in the scalp and forehead that raises
the eyebrows, running vertically from the top of the head to the eyebrows and
covering almost the entire forehead. AU 4 involves three muscle strands in the
forehead that act together to modify eyebrow position [10].

Analyzing Fig. 1b reveals that in correctly classified images, regions associ-
ated with AU 1 and AU 4 are only moderately activated in Test Images 1 and
4. Conversely, these activations are completely absent in Test Images 6, 8, and
9. Notably, incorrectly classified images tend to show stronger activations in the
AU 1 and AU 4 areas. Similarly, for AU 15, correctly classified images exhibit
less intense activations compared to those that are incorrectly predicted.

For accurate recognition of ‘happiness’, both AU 12, the ‘Lip Corner Puller’,
and AU 6, the ‘Cheek Raiser’ must be present. The muscle for AU 12 is positioned
high in the lower face, near the cheekbones, and stretches to the corners of the
lips. It acts to pull the corners of the lips upward toward the cheekbones at an
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oblique angle. In contrast, the muscle associated with AU 6 is located in the
lower face, extending from the cheekbones to the corners of the eyes [10]. The
regions affected by theses AUs are highlighted in Fig. 1c and 1d.

Figure 1c demonstrates that, for some images in the test set, the activated
regions align perfectly with AU 6 and AU 12, as seen in Test Image 3, 4, and 5.
However, other cases, such as Test Image 1 and 6, activation is only unilateral
and moderate. Additionally, Test Image 7 and 9 show (large) activation in regions
outside of AU 6 and AU 12, which do not correspond well with the expected
regions. A comparison between Fig. 1c, which contains only true predictions,
and Fig. 1d, which includes solely false predictions, reveals a generally similar
activation pattern. However, Test Image 6 and 7 of Fig. 1d are notable exceptions,
where incorrect activations are specifically centered around the left and right eye,
respectively.

Our analysis of the emotional expressions of ‘disgust’, ‘sadness’, and ‘hap-
piness’, reveals discrepancies between CNN-based feature activations and tra-
ditional interpretations of emotion psychology. For ‘disgust’, we observed little
variation between activations in correctly and incorrectly classified images, with
the AU 15 region showing generally limited activation. Interestingly, one mis-
classified example of ‘disgust’ displayed perfect alignment with expert interpre-
tations. In the case of ‘sadness’, incorrectly classified images frequently aligned
more closely with expert-identified regions. For ‘happiness’, there was generally a
strong correspondence between the activations and expert frameworks; however,
some instances showed activations extending beyond the expected areas, a trend
consistent in both correctly and incorrectly predicted images. These findings
emphasize the complexities and challenges of accurately modeling and interpret-
ing emotional expressions through ML algorithms.

To better understand our AI model’s ability to recognize emotional expres-
sions, involving independent experts who have not contributed to the model
training or data annotation is essential. These evaluations can confirm if the
AI’s interpretations align with expert assessments and uncover novel patterns
that might escape expert notice. If aligned with expert evaluations, it could indi-
cate that traditional descriptions are missing details that the AI’s data-driven
methods can identify. Conversely, discrepancies might expose flaws in the AI’s
training data or fundamental assumptions about emotional expressions. These
findings could indicate that integrating expert-defined rules might enhance the
AI’s accuracy. This critical insight is pivotal for refining AI systems to more
accurately emulate human emotional recognition.

Given the complexities revealed in our analysis, we advocate for adopting a
Neuro-Symbolic AI approach that integrates data-driven methods (sub-symbolic
AI) with domain expert knowledge (symbolic AI). Such hybrid models aim to
merge the precision of ML features with the interpretability and dependabil-
ity of expert-defined rules, significantly enhancing the accuracy and contextual
applicability of FER systems. Exploring this further, we identify the following
potential technical strategies for implementing Neuro-Symbolic AI systems:
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1. Implement a set of universally applicable symbolic rules to establish a broad
decision-making framework, supplemented by detailed, data-driven calcula-
tions. This strategy harnesses high-level, expert insights to guide the AI’s
interpretations, enhancing the system’s reliability and generalizability.

2. Start with this foundational set of symbolic rules and continuously refine
the knowledge base through abductive learning, employing methods outlined
in [16]. This approach, as demonstrated in the source, allows the system to
dynamically adapt to new or ambiguous emotional expressions and make
necessary adjustments - modifying, discarding, or reinforcing rules based on
empirical evidence. Such integration not only ensures efficient evolution of the
system but also effectively merges theoretical expertise with practical insights
to enhance robustness and accuracy in emotion recognition.

By embracing a Neuro-Symbolic approach, we tackle the inconsistencies
and limitations observed in purely data-driven models for emotional expres-
sion recognition. This methodology not only enhances the system’s performance
but also sets a foundation for advancing more nuanced and sophisticated AI-
driven FER technologies. Such systems could better understand and interpret
human emotions in a way that mimics human cognitive processes, offering sig-
nificant improvements over current models.

This hybrid approach, with its dual reliance on symbolic and sub-symbolic
components, promises a richer, more accurate toolkit for developers and
researchers aiming to create AI-based FER systems that understand and inter-
act with human emotional states more effectively. Future research could explore
the optimization of these strategies, particularly how abductive learning can be
fine-tuned to meet specific operational needs or adapt to diverse cultural con-
texts.

6 Conclusion

In summary, this study examines the use of attribution-based XAI techniques,
primarily Grad-CAM combined with Guided Backpropagation, in FER. A key
finding is that the features learned by ML models (can) vary within the same
emotional state and may not always align with expert interpretations from
emotion psychology. This underscores the inherent complexities of using data-
driven AI systems, like CNN models, for FER.

To address these challenges, the study proposes integrating data-driven meth-
ods (sub-symbolic AI) with domain expert knowledge (symbolic AI) to create
Neuro-Symbolic AI systems. By integrating both symbolic and sub-symbolic AI
techniques, Neuro-Symbolic AI aims to leverage the advantages of each app-
roach. These hybrid systems can potentially achieve enhanced accuracy, relia-
bility, and explainability by combining learned features from data with expert-
defined rules derived from emotion psychology. This integration could facilitate
a more nuanced understanding of emotional concepts in FER systems.
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Abstract. Ensuring the security of face authentication systems is crucial, andFace
Anti-Spoofing System (FAS) play a key role in defending against spoofing threats.
Depth-supervised learning has proven effective in FAS, utilizing depth maps as
auxiliary features due to their computational simplicity. However, existing meth-
ods often struggle to generalize effectively in intricate environments and counter
unknown attacks. To address this challenge, our work introduces a novel GAN-
based architecture for FAS. To enhance generalization, we introduce Multi-Scale
Retinex with Color Restoration (MSRCR) images alongside RGB, and apply the
Convolutional Block Attention Module (CBAM) mechanism within the generator
framework to highlight salient features. The classifier is trained using a latent vari-
able encompassing depth information, improving generalization across diverse
environmental conditions, including variations in illumination and background.
Experimental results demonstrate the effectiveness of our approach, outperform-
ing other methods on multiple datasets including CASIA-FASD, MSU-MFSD,
OULU-NPU and Replay-Attack for both intra-dataset and cross-dataset testing
between Replay-Attack and CASIA-FASD datasets.

Keywords: Face anti-spoofing · presentation attack detection · generative
adversarial network · multi-scale retinex with color restoration

1 Introduction

The rise of face recognition (FR) technology in interactive AI systems has revolutionized
human-computer interaction, offering convenience and unparalleled accuracy. However,
the widespread adoption of FR systems has introduced a vulnerability to presentation
attacks (PAs) like printed images [1], video replays [2], and 3D masks [3]. These decep-
tive methods pose a serious threat to the reliability of face authentication systems. Rec-
ognizing the pressing need for enhanced security, the advancement of face anti-spoofing
(FAS) approaches has become critical, focusing on detecting and mitigating PAs.

Over the last two decades, presentation attack detection (PAD)methods have evolved
from traditional to deep learning-based approaches. Traditional methods primarily rely
on hand-crafted operators [4] for feature extraction in PAD. However, these methods
are susceptible to environmental variations, leading to suboptimal generalization perfor-
mance and impracticality. Alternatively, certain deep learning-based methods focus on
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face liveness detection at the frame and video levels. Many of these approaches frame
FAS as a binary classification problem [5, 6], supervised by a binary cross-entropy loss.
However, CNNs using binary loss encounter difficulties in discerning authentic spoof-
ing patterns. The introduction of pixel-wise supervision, incorporating labels such as
binary masks [7], pseudo depth [8] etc., has improved context-aware signals for local
live/spoofing cues. Despite these improvements, current implementations remain sus-
ceptible to disturbances. Existing FAS methods often overfit specific scenarios, making
them vulnerable to domain shifts and unforeseen attacks. Strategies like multi-domain
disentangled [9] learning aim to enhance generalization. However, detailed spoofing
pattern learning remains challenging, particularly with coarse supervision signals.

Lately,GenerativeAdversarialNetworks (GANs) [9, 10] have significantly advanced
generative modeling, excelling in representation learning and domain-to-domain data
transformation. Their efficacy arises from the incorporation of a discriminator, framing
the learning problem as a two-player minimax game. In FAS, Wang et al. [11] intro-
duced an innovative approach— the domain transfer network (DTN) employing a GAN.
This approach effectively shifts the domain from RGB to depth, allowing for the seam-
less fusion of latent feature embeddings from both sources. Consequently, it achieved
significantly enhanced generalizability compared to existing methods. Inspired by the
successes of GANs, this paper explores the effectiveness of depth data for generating
high-quality information in FAS. To realize this, we introduce a novel framework that
leverages the capabilities of GANs to convert input RGB images into depth maps for
live/spoof classification. Our proposed framework sets itself apart by integrating Multi-
Scale Retinex with color restoration filtering (MSRCR) [12] alongside RGB, enhancing
the input data before utilizing it as the main input for the generator. Both RGB and
MSRCR contribute discriminative information that is particularly effective for spoofing
detection. To fully leverage the strengths of both, we employ the Convolutional Block
AttentionModule (CBAM) [13] to accentuate essential features, which prove indispens-
able for generating precise depth maps within the generative network. Following this
framework, our generative network adeptly captures distinctive features and channels
them to the auxiliary classifier for binary classification.

The significant contributions of this paper can be outlined as:

• We propose a novel GAN-based framework for face anti-spoofing that integrates
MSRCR along with RGB to enhance input data quality and provide discriminative
information to the framework.

• We incorporate the CBAMmodule to enhance the attention, facilitating precise depth
map generation using generative network.

• We conducted comprehensive experiments on the CASIA-FASD [1], MSU-MFSD
[14], Replay-Attack [2], and OULU-NPU [15] datasets for intra- and cross-dataset
testing. All experiments results show that proposed framework performs comparably
with the other state-of-the-arts.

The paper is divided into these sections: Sect. 2 gives a concise review of relevant
research, Sect. 3 elaborates on the proposed framework, Sect. 4 reports on extensive
experiments that demonstrate its effectiveness, and Sect. 5 concludes the paper.
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2 Related Work

Face Anti-spoofing. FAS methodologies are generally categorized into three main
types: Traditional, Deep learning, and Generalized feature learning-based methods. Tra-
ditional methods rely on extracting handcrafted features [16, 17] from facial images,
aiming to capture spoof patterns [4] through color, texture, motion, and liveliness cues.
The advent of deep learning in computer vision has led to diverse approaches [9], treat-
ing FAS as a binary classification task using binary supervision or adopting pixel-wise
supervisions like pseudo depth maps [8], reflection maps [18] and binary maps [7] for
fine-grained learning. Researchers employ a variety of backbones, including CNNs [19],
pre-trainedVGG16 [20], lightweight networks, and vision transformers [5, 21, 22].How-
ever, the scarcity of diverse and large-scale datasets for spoof attacks poses challenges,
leading to overfitting and vulnerability to unseen attacks and domain shift [23] in exist-
ing FAS methods. To address this, Generalized feature learning-based approaches have
emerged, focusing on generalization to unseen scenarios. Techniques such as domain
adaptation [24, 25] and domain generation [26, 27] have been developed, emphasiz-
ing the potential of methodologies based on generative models. Yet, challenges persist,
including the need for domain labels and the limitations associated with binary classifi-
cation. The ongoing pursuit of robust and adaptable FAS methods continues to navigate
these complexities.

Generative Adversarial Network. GANs showcase remarkable versatility in image
generation tasks. In particular, the dual encoder-decoderGAN[28] specializes in creating
facial images with seamless pose transitions, while the self-growing and pruning GAN
[29] enhances network stability and image quality. GANs excel in tasks involving image-
to-image transfer [30], highlighting their adaptability across diverse domains.Within the
realm of FAS, GAN-based methods [10, 11, 31] are making significant strides in distin-
guishing between genuine and spoof faces. For example, STDN [32] integrates a disen-
tanglement generator, a reconstruction & synthesis module, and a multi-scale approach,
though it grapples with challenges related to unpaired samples. DC-MS [33] employs
feature swapping for feature-level decoupling, albeit with computation-intensive pro-
cesses. AIM-FAS [34] addresses FAS as a zero/few-shot learning problem, while CMA
[35] leverages cross-modal transfer for style transformation from RGB to NIRmodality.
Additionally, a semi-supervised framework [36] reduces reliance on annotated data using
pseudo labels. These advancements collectively underscore the substantial potential of
GAN-based techniques in significantly enhancing FAS methodologies.

3 Proposed Methodology

The schematic diagram in Fig. 1 illustrates the novel GAN-based FAS framework, which
integrates three essential components: a generator (G), a discriminator (D), and a clas-
sifier (C). The generator (G) maps RGB images to depth maps, the discriminator (D)
evaluates the accuracyof thesemaps, and the classifier (C) differentiates betweengenuine
and spoofed faces.

Using characteristics extracted solely from RGB images is not consistently effective
in distinguishing between live and spoofed faces, the generator employs a dual branch
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architecture.One branch process rawRGB images directly,while the other converts RGB
images into Multi-Scale Retinex with Color Restoration (MSRCR) images followed by
Convolutional Block Attention Module (CBAM). CBAM enhances essential features
by considering their significance across different channels and locations. RGB images
capture detailed facial textures but are sensitive to illumination variations. Conversely,
MSRCR images maintain invariance to illumination changes, albeit with a loss of some
minor facial details. To leverage the strengths of both branches, the framework performs
element-wise multiplication on the features obtained from each branch. This combined
feature is then fed into a U-Net architecture to generate depth maps. Following the GAN
paradigm, the discriminator classifies real and fake depth images, helping the generator
improve its outputs over time. The classifier, illustrated in Fig. 1, produces a binary
output indicating whether the input face image is live or spoofed. It processes feature
maps generated by generator, treating them as depth domain features.

MSRCR CBAM

Real/Fake

Skip Connections

Input 
Frames 

Generated 
Images

[ × × ] [ × × ]
Resize Ground Truth 

Images

[ × × ]

IRGB

IMSRCR

Fake Pair

Element-wise multiplication 
Concatenation 

Real Pair

- Generator - Discriminator   - Classifier 

Fig. 1. Illustration of the overall proposed GAN-based framework.

RGB

MSRCR

Live Cut-photo Print photo Display  

Fig. 2. CASIA-FASD images with pre-processing: green boundaries represent live samples and
red boundaries indicate different types of attacks. Top and bottom: RGB and MSRCR. (Color
figure online)

This section begins by introducing the MSRCR and CBAM blocks, then provides a
detailed explanation of the proposed network framework.
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3.1 Multi-scale Retinex with Color Restoration (MSRCR)

Various studies have explored algorithms that simulate the human visual system, with a
primary focus on luminance. Land’s Retinex theory [12] introduced a lightness model
that proved successful for image enhancement [37]. The Single Scale Retinex (SSR)
model further refined this approach [38], utilizing a Gaussian filter to normalize image
illumination. In a subsequent enhancement to SSR, [39] incorporated a guided filter,
yielding promising results in image enhancement. Building upon the SSR foundation,
the Multi-Scale Retinex (MSR) model [12] amalgamates outputs to create a compre-
hensive image enhancement methodology. For contrast enhancement, [40] an adaptive-
weight MSR was introduced, normalizing output pixel values within the range of [0,
255]. Addressing color deviation in MSR, Jobson et al. [12] proposed a solution by
multiplying the MSR result with a Color Restoration (CR) function. The MSRCR func-
tion includes gain and offset for each channel, effectively enhancing image contrast.
Applied independently to each color channel,MSRCR is particularly adept at addressing
images influenced by colored illumination. Our evaluation on diverse datasets under-
scores MSRCR’s adaptability and notable performance improvements, enhancing color
information under varying lighting conditions. This study provides valuable insights into
MSRCR’s strength in real-world scenarios with colored illumination. In Fig. 2, images
from the CASIA-FASD [1] dataset are depicted, presenting live and attack samples in
RGB and MSRCR representations.

Fig. 3. Schematic diagram of CBAMModule [13]
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3.2 Convolutional Block Attention Module (CBAM)

The Sequential Channel and Spatial Attention Module plays a pivotal role in highlight-
ing salient features embedded within the Generator framework. This module enhances
feature representation by creating a refined feature map, , through the processing of
MSRCR images (IMSRCR) obtained from RGB inputs, IRGB. When IMSRCR images enter
the channel attention block, they are denoted as :. This process compresses the
spatial dimension, yielding a 1D channel attention mapMCεRC×1×1. Subsequently, the
modified tensor , as given in Eq. (1), passes to the spatial attention block, resulting
in a two-dimensional attention map MsεR

1×H×W . The final output, , is expressed by
Eq. (2):

(1)

(2)

here ⊗ signifies the element-wise multiplication. CBAM’s architecture, depicted in
Fig. 3, involves two pivotal processes:

• Computation of Channel Attention: This process enhances finer details and reduces
information loss by simultaneously applying average and max pooling to aggregate
the squeezed spatial dimensions. The resulting descriptors, and , are fed into a
sharedMLP (Multilayer Perceptron) with a single hidden layer. The shared layer uses
a reduction ratio of 8 to minimize computation and parameter overhead. The MLP
outputs are combined element-wise, followed by the application of sigmoid function
resulting in the channel attention map , as specified in Eq. (3):

(3)

here, the symbol “ + ” represents the element-wise addition.

• Computation of Spatial Attention: This process emphasizes important details within
the feature map by utilizing max and average pooling across the channel dimensions
to produce 2D featuremaps, and . These feature representations
are then aggregated to form a robust map, which is convolved with 7 × 7 filter size
to produce the spatial attention map described as follows:

(4)

here, σ represents sigmoid function, and f7x7 denotes a convolutional operation with a 7
× 7 filter size.

Equations (3) and (4) collectively describe a feature map refinement process, oper-
ating along both the channel and spatial axes, respectively. The resultant CBAM feature
map,CMaps showcases augmented representation in both dimensions, thereby enhancing
the network’s feature extraction capabilities.
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3.3 Network Architecture

Generator. As shown in Fig. 1, the generator, G uses an encoder-decoder architecture
with EfficientNetB4 [41] as the backbone, achieving a balance between model capacity
and size. The encoder encodes RGB images for the decoder to exclusively reconstruct
depth maps. Our framework prioritizes multi-scale features and incorporates skip con-
nections to form a U-Net architecture. These connections seamlessly merge features
from both the encoder and up-sampling segments to ensure a smooth flow of infor-
mation, improving gradient flow and effectively tackling the vanishing gradient issue,
particularly in lower layers.

Despite the powerful non-linear feature learning of deep learning, anti-spoofing per-
formance degrades with varying input conditions. To address this, we introduceMSRCR
images (IMSRCR) obtained by converting RGB images (IRGB). MSRCR operates on the
intensity and chromatic channels separately, achieving both illumination invariance and
color fidelity.Unlike the commonlyusedRGBcolor space, prone to illumination sensitiv-
ity, MSRCR separates illumination information from color details. This creates a repre-
sentation resilient to lighting changes enhancing discriminative information for spoofing
detection and forming a complementary relationship with the detailed yet illumination-
sensitive RGB representation. To maximize the strengths of both, we employ a CBAM
mechanism specifically on IMSRCR, highlighting essential features based on the context
and considering their significance across different channels and locations. The resulting
attention map, CMaps, provides weight information for each pixel in an image. To opti-
mize this information, we perform element-wise multiplication between the obtained
CMaps and IRGB, generating the final refined input, Rinput , expressed as:

Rinput = IRGB ⊗ CMaps (5)

This Rinput is then fed as the final input to the U-Net-based architecture, ensuring the
meaningful extraction of features passed on to the decoder blocks. Following the last
decoder block, depthmaps are generated using a convolution layer and a Tanh activation.

Discriminator. In the proposed framework, the discriminatorD follows aPatchGAN-
inspired architecture [42], consisting of multiple convolutional layers, each followed by
batch normalization and LeakyReLU activation. D processes two inputs of dimensions
[32×32], comprising a real pair with ground truth depth maps (D) associated with IRGB,
and a fake pair composed of generated depth maps paired with IRGB. This
adversarial training allows G to improve gradually, guided by D’s gradients, enhancing
its performance in generating highly realistic depth maps from IRGB. The framework’s
objective is defined as:

(6)

where, D represents ground truth depth maps, and . To ensure network stability,
conventional methods incorporate supplementary image reconstruction losses (L1 or L2
distance). With the L1 reconstruction loss:

(7)
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The proposed framework is optimized using the combined objective:

Lour(G,D) = argminG D
max

LGAN (G,D) + λLL1(G) (8)

where λ represents a balancing parameter, ensuring effective training for detailed and
accurate depth image generation.

Classifier. In the FAS task, the classifier is the final component responsible for dis-
tinguishing between live and spoofed faces. It takes input from the latent variable within
the generator’s encoder, presumed to contain depth-representing features post-training
in the GAN network. The GAN training process ensures the effective integration of
RGB and depth features by the encoder, enhancing the classifier’s overall generaliza-
tion. The classifier is optimized using cross-entropy, guiding the model to identify subtle
features in the latent variable for accurate image classification. This seamless integration
of learned representations from the encoder significantly strengthens the FAS system’s
classifier. The classifier’s loss function is expressed as:

LC = −(ylog(p) + (1 − y)log(1 − p)) (9)

here p depicts the predicted probability and y represents the ground truth label. This
formulation captures the essence of the classifier’s task in evaluating the probability of
a given input image being either genuine or spoofed.

4 Experiments

In this section, we provide detailed insights into the datasets used in our study and the
metrics employed to evaluate our models. We describe our experimental setup, highlight
our achieved results, compare them with the latest benchmarks specific to each dataset,
and discuss our analysis of performance variations through an ablation study.

4.1 Datasets

To assess the efficacy and versatility of our framework, we conduct rigorous evaluations
on four benchmark datasets: MSU-MFSD [14], CASIA-FASD [1], Replay-Attack [2],
and OULU-NPU [15]. MSU-MFSD (M) [14] contains 280 video clips showcasing var-
ious photo and video-based attacks on 35 clients, categorized into three distinct spoof
attack types. CASIA-FASD (C) [1] comprises 600 videos with real and spoof faces, fea-
turing diverse attacks and varying image qualities captured from three types of cameras.
We split the dataset into training and testing sets, with 20 and 30 subjects, respectively,
for comprehensive evaluation. The REPLAY-ATTACK (RA) [2] dataset includes 1200
videos with genuine and spoofed faces, considering different illumination and support
conditions. We divide it into training, development, and testing sets for comprehensive
evaluation. Lastly, OULU-NPU (O) [15] consists of 5940 videos documenting genuine
access attempts and attacks across different contexts, with a split into training, devel-
opment, and testing subsets. This thorough evaluation on diverse datasets ensures a
comprehensive assessment of our proposed approach.
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4.2 Performance Metrics

For a comprehensive comparison with prior research, we employ specific evaluation
metrics corresponding to each benchmark dataset. In the C dataset, model outcomes are
evaluated using the Equal Error Rate (EER) on the test set. For the RA benchmark, we
adopt theHalf Total ErrorRate (HTER). In theOdataset, we employ the ISO/IEC30107–
3 metrics [43], which include Attack Presentation Classification Error Rate (APCER),
Bona Fide Presentation Classification Error Rate (BPCER), and Average Classification
Error Rate (ACER). These metrics correspond to APCER, BPCER, and their average,
respectively. To ensure generalizability across datasets, our primary evaluation criterion
involves HTER for cross-dataset testing between C and RA.

4.3 Implementation Details

Data Preprocessing. Our data preprocessing follows established research practices and
involves several steps to ensure consistency and accuracy across the benchmark datasets.
For video benchmarks, we employ frame sampling, face alignment, and systematic
extraction of frames at a 10th frame interval. Initially, face detection utilizes the Viola-
Jones algorithm [44], later transitioning to MTCNN [45] due to observed limitations in
specific datasets. Ground-truth depth maps are generated using PRNet [46], resulting
in [32 × 32] depth maps for genuine live faces and zeros for spoofed samples. Our
methodology includes additional steps such as random horizontal flipping and data
augmentation to enhance dataset diversity.

Training Setup. The proposed framework is implemented usingKeras and experiments
are conducted in the Google Colab Pro environment with the support of an Nvidia T4
GPU and 16 GB of RAM. The generator backbone, EfficientNetB4 [41], is initialized
using a pre-trained model from ImageNet. Newly introduced modules follow the “He-
Uniform” initialization approach. Network optimization employs the Adam optimizer,
initialized with a learning rate of 1e − 3, and a batch size of 16. The loss function
configuration includes λGAN and λL1 set to 1 and 100, respectively [11]. During each
training epoch, images are randomly shuffled and flipped, enhancing the diversity of the
training dataset.

4.4 Comparison with Other State-of-the-Arts

Intra-dataset Testing. In the intra-dataset testing, the training and testing sets are
derived from the same datasets to evaluate the performance of our framework in face
PA detection. We evaluated our method against leading approaches using the CASIA-
FASD (C), Replay-Attack (RA), and OULU-NPU (O) datasets, adhering to established
protocols and benchmarking against state-of-the-arts [16, 24, 47–51].
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Table 1 presents the spoofing detection results in terms of EER values for the C
dataset. Our framework surpasses all statistical methods and achieves the second-highest
performance with an EER of 1.21% following Zhang et al. [31] with 1.17%. Zhang et al.
[31] utilizedWasserstein loss and incorporated shortcut connectionswithin the generator.
For the RA dataset, Table 2 provides both EER and HTER values. Our framework
delivers the highest performance with respect to EER (0.05%) and secures the second-
best HTER at 0.03%, with only a marginal difference of 0.01% compared to the DTN
[11] (0.02%), which is computationally expensive. This demonstrates the framework’s
robust capability in distinguishing between genuine and spoof faces, attributable to the
integration of RGB and MSRCR features within the generator.

The comparative results for the OULU-NPU dataset are given in Table 3. In Protocol
1, althoughSGTD [55] andZhang et al. [31] exhibit superiorBPCER, ourmodel achieves
a low ACER of 0.6%. Under Protocol 2, our approach performs comparably to CDCN
[56], ranking second in both APCER and ACER. In Protocol 3, our method leads in
APCER and ACER, securing the third position in BPCER, following STASN [57] and
CDCN [56]. For Protocol 4, our approach achieves the highest performance in APCER
and the second-highest in BPCER and ACER, like the DTN [11] approach. These results
validate the generalization capability and effectiveness of our framework, particularly
as Protocol IV evaluates the model across all challenging aspects of the database. The
intra-dataset evaluation shows that our framework delivers strong effectively, yielding
competitive results across the benchmark datasets.

Table 1. Intra-Dataset evaluation on CASIA-FASD(C) Dataset (%).

Methods EER

Patch and Depth [48] 2.67

LBP [16] 18.2

Color Texture [47] 6.20

Attention [49] 3.14

ML-DAN [24] 3.7

FARCNN [50] 2.35

DTN [11] 1.34

MIQF-SVM [52] 12.7

DOG-ADTCP [53] –

Zhang et al. [31] 1.17

DSCNN [54] 2.9

Ours 1.21
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Table 2. Intra-Dataset evaluation on Replay-Attack (RA) Dataset (%).

Methods EER HTER

Patch and Depth [48] 0.79 0.72

LBP [16] 13.9 13.8

Color Texture [47] 0.4 2.9

Attention [49] 0.13 0.25

ML-DAN [24] 0.3 0.6

FARCNN [50] 0.06 0.18

DTN [11] 0.06 0.02

MIQF-SVM [52] – 5.38

DOG-ADTCP [53] 0.81 3.24

Zhang et al. [31] 0.09 0.22

DSCNN [54] 4.7 0.39

Ours 0.05 0.03

Cross-dataset Testing. The adaptability of a FAS framework across diverse environ-
ments is important for practical applications. To assess the generalization capability of
our proposed framework, we initially conducted cross-dataset testing using two labeled
datasets, referred to as C and RA. The outcomes, presented in terms of HTER in Table 4,
were obtained through two distinct experimental protocols. The first protocol involved
training on the C dataset and testing on the RA dataset, while the second protocol
reversed this arrangement. Table 4 demonstrates the excellence of our framework in
both scenarios.

To delve deeper into the framework’s generalization ability, we performed cross-
dataset testing across four different datasets, producing four unique test cases, as shown
in Table 5. In each test case, a single dataset was chosen as the testing set, with the other
three used for training. The four test cases were as follows: Test Case 1 - O&C&RA toM,
Test Case 2 -O&M&RA toC, Test Case 3 -O&C&MtoRA, andTest Case 4 -RA&C&M
toO. The results from these test cases indicate that our framework demonstrates superior
performance inTestCase 1, outperforming othermethods. InTestCase 2, it ranks second,
just behind CDCN-PS [58]. For Test Case 3, our framework ranks fifth, showing inferior
performance compared to CDCN [56], which is based on contrastive learning. In Test
Case 4, our framework ranks third, with a marginal difference from CDCN [56] and
CDCN-PS [58]. These findings highlight the capability of our GAN-based approach in
advancing the field of FAS.
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Table 3. Intra-Dataset evaluation on OULU-NPU (O) (%).

Protocols Methods APCER BPCER ACER

1 CPqD [59] 2.9 10.8 6.9

Auxiliary [60] 1.6 1.6 1.6

FaceDs [61] 1.2 1.7 1.5

STASN [57] 1.2 2.5 1.9

CDCN [56] 0.4 1.7 1.1

SGTD [55] 2 0 1

DTN [11] 0.78 1.06 0.92

MIQF-SVM [52] 6.9 1.5 4.2

Zhang et al. [31] 0.63 0.80 0.72

DSCNN [54] 0.37 2.9 1.6

Ours 0.3 0.9 0.6

2 CPqD [59] 14.7 3.6 9.2

Auxiliary [60] 2.7 2.7 2.7

FaceDs [61] 4.2 4.4 4.3

STASN [57] 4.2 0.3 2.2

CDCN [56] 1.5 1.4 1.5

SGTD [55] 2.5 1.3 1.9

DTN [11] 3.84 2.11 2.88

MIQF-SVM [52] 7.8 1.4 4.6

Zhang et al. [31] 2.53 1.36 1.95

DSCNN [54] 3.1 7.2 5.2

Ours 2.5 1.1 1.8

3 CPqD [59] 6.8 ± 5.6 8.1 ± 6.4 7.4 ± 3.3

Auxiliary [60] 2.7 ± 1.3 3.1 ± 1.7 2.9 ± 1.5

FaceDs [61] 4.0 ± 1.8 3.8 ± 1.2 3.6 ± 1.6

STASN [57] 4.7 ± 3.9 0.9 ± 1.2 2.8 ± 1.6

CDCN [56] 2.4 ± 1.3 2.2 ± 2.0 2.3 ± 1.4

SGTD [55] 3.2 ± 2.0 2.2 ± 1.4 2.7 ± 0.6

DTN [11] 1.9 ± 1.6 3.8 ± 6.4 2.8 ± 2.7

MIQF-SVM [52] 3.6 ± 0.9 4.3 ± 1.8 4.0 ± 1.4

Zhang et al. [31] 1.7 ± 1.4 2.7 ± 4.3 2.2 ± 3.0

DSCNN [54] 5.6 ± 1.7 4 ± 3.3 4.8 ± 2.5

(continued)
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Table 3. (continued)

Protocols Methods APCER BPCER ACER

Ours 1.6 ± 1.1 2.5 ± 1.0 2.05 ± 1.1

4 CPqD [59] 32.5 ± 37.5 11.7 ± 12.1 22.1 ± 20.8

Auxiliary [60] 9.3 ± 5.6 10.4 ± 6.0 9.5 ± 6.0

FaceDs [61] 1.2 ± 6.3 6.1 ± 5.1 5.6 ± 5.7

STASN [57] 6.7 ± 10.6 8.3 ± 8.4 7.5 ± 4.7

CDCN [56] 4.6 ± 4.6 9.2 ± 8.0 6.9 ± 2.9

SGTD [55] 6.7 ± 7.5 3.3 ± 4.1 5.0 ± 2.2

DTN [11] 4.0 ± 4.1 3.0 ± 4.9 3.5 ± 2.4

MIQF-SVM [52] 6.2 ± 4.3 4.9 ± 3.7 5.6 ± 4.0

Zhang et al. [31] 2.1 ± 4.5 5.7 ± 4.9 3.9 ± 3.2

DSCNN [54] 9.6 ± 6.0 7.8 ± 5.6 9.3 ± 6.3

Ours 3.8 ± 2.5 3.2 ± 4.6 3.5 ± 3.5

Table 4. Comparative Analysis of Cross-Dataset Testing CASIA-FASD vs. Replay-Attack in
terms of HTER (%)

Methods Train- C/Test- RA Train- RA/Test-C

LBP [16] 55.9 47.9

LBP-TOP [62] 49.7 60.6

Color Texture [47] 47.0 39.6

Deep-Learning [63] 48.2 45.4

Auxiliary [60] 27.9 28.4

STASN [57] 31.5 30.9

FARCNN [50] 26.0 29.4

Attention [49] 30.0 33.4

DTN [11] 16.64 22.98

Zhang et al. [31] 25.73 21.57

Ours 15.8 21.17
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Table 5. Comparative Analysis of Cross-Dataset Testing Across Four Datasets (%)

Methods Test Case 1 Test Case 2 Test Case 3 Test Case 4

HTER AUC HTER AUC HTER AUC HTER AUC

LBP-TOP [62] 36.9 70.80 42.6 61.05 49.45 49.54 53.15 44.09

MMD-AAE [64] 27.08 83.19 44.59 58.29 31.58 75.18 40.98 63.08

Color Texture [4] 28.09 78.47 30.58 76.89 40.4 62.78 63.59 32.71

Binary CNN [19] 29.25 82.87 34.88 71.94 34.47 65.88 29.61 77.54

MADDG [65] 17.69 88.06 24.5 84.51 22.19 84.99 27.98 80.02

Auxiliary [60] 22.72 85.88 33.52 73.15 29.14 71.69 30.17 77.61

CDCN [56] 22.90 85.45 22.46 86.64 19.98 84.75 16.92 90.46

CDCN-PS [58] 20.42 87.43 18.25 86.76 19.55 86.38 15.76 92.43

DTN [51] 19.40 86.87 22.03 87.71 21.43 88.81 18.26 89.40

Ours 16.3 90.7 21.17 83.55 23.21 85.7 17.65 89.69

Test Case 1: C&RA&O to M; Test Case 2: M&RA&O to C; Test Case 3: C&M&O to RA; Test
Case 4: C&RA&M to O.

Table 6. Ablation Study Results: OULU-NPU Protocol 2 (%)

Backbone Input APCER BPCER ACER

Simple Encoder-Decoder
(w/o skip connections)

RGB 11.5 8.9 10.2

U-Net RGB 9.6 7.7 8.65

RGB + MSRCR 5.4 4.8 5.1

With CBAM RGB + MSRCR 2.5 1.1 1.8

4.5 Ablation Study

Our ablation studies use the OULU-NPU protocol 2 as the exclusive testing bench-
mark, focusing on component selection within our framework. Initial trials with a basic
encoder-decoder network yielded in a high ACER of 10.2% due to challenges in accu-
rate depth map generation from its bottleneck design. Subsequently, adopting the U-
Net architecture with skip connections significantly improved performance reduced the
ACER. As shown in Table 6, standard RGB input led to 8.65%ACER, while introducing
MSRCR alongside RGB input lowered the ACER to 5.1%, highlighting the role of input
selection. Evaluation of the U-Net baseline network with RGB+MSRCR input showed
improved performance but struggled with more complex videos, causing confusion in
distinguishing genuine/spoof faces. To address this, we introduced CBAM module to
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focus on salient features in input, resulting in significantly improved performance. The
final model, incorporating the attention mechanism, achieved a reduced ACER of 1.8%,
highlighting the critical role of attention mechanisms in handling complex scenarios and
enhancing the overall robustness of our proposed framework.

4.6 Visualization and Analysis

In Fig. 4, we present examples of successful visualizations produced by our framework
for both live and spoof faces. The green boundary on the samples indicates live face
inputs, while the red boundary denotes spoof samples. For genuine samples, our frame-
work adeptly produces depth images that closely align with the ground truth, albeit
with minor discrepancies in finer details. Conversely, for spoof faces, our framework
predominantly generates zero-depth maps, occasionally resulting in images resembling
noise.

RGB InputsGround Truths Generated Images

Live Face

Live Face

Spoof Image 
(Replay Attack)

Spoof Image 
(Cut Photo Attack)

SUCCESS CASES

Proposed Framework

Live Face

Spoof Image 
(Replay Attack)

Ground Truths RGB Inputs Generated Images

FAILURE CASES

Proposed Framework

Fig. 4. Comparison of generated depth images and Ground Truths. Row1: RGB input images;
Row2: Ground Truth depth images; and Row 3: Framework generated depth maps. Blue box
indicates success cases, while red box display instances of failure cases. (Color figure online)
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(a) (b)

Fig. 5. The feature distribution based on t-SNE for (a) CASIA-FASD (C), (b) REPLAY-ATTACK
(RA) datasets

Figure 4 also highlights some failure cases. For instance, despite being live faces,
some samples processed by our framework result in inaccurate depth maps. Another
example includes a spoof face where a replay video of a person is fed into the frame-
work, resulting in patches of depth images that closely resemble facial depthmaps instead
of generating zero-depth maps. This highlights a fundamental challenge causing clas-
sification errors. To assess the discriminative capability of the CNN features extracted
for FAS, we utilize the t-SNE visualization technique [66]. By projecting the CNN fea-
tures used by our classifier, we observe distinctions between live and spoof samples,
as illustrated in Fig. 5. Figure 5(a) demonstrates feature distributions for the C dataset
using a model trained specifically on that dataset, while Fig. 5(b) shows distributions
for the RA dataset using a model trained on RA data. These figures highlight how our
proposed framework seamlessly translates RGB faces into the depth domain, resulting
in comparable feature distributions for both genuine and spoofing faces across different
datasets.

These observations suggest that while our framework learns a comprehensive range
of features for depth map generation, it struggles to accurately capture the features that
distinguish between genuine and counterfeit faces. This limitation likely stems from the
use of a basic U-Net architecture for our generator, which may not fully capture the
nuanced features required for precise depth map generation in all scenarios. As this is an
initial experiment, there is significant scope for future work. The experimentation can
be extended by enhancing the generator with advanced architectures for robust depth
map generation.

5 Conclusion

In thiswork, we introduce an innovativeGAN-based FAS approach by leveraging aGAN
network for face depth map generation and extracting crucial features to discern spoof
faces. The framework comprises of three integral components: a generator, a discrimina-
tor, and a classifier, employing a domain transfer process that integrates MSRCR images
alongside RGB. To optimize the strengths of both inputs, we implemented the CBAM
mechanism on incoming MSRCR images. This refined input is processed through the
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U-Net shaped architecture to ensures the meaningful extraction of features. The decoder
blocks then process these features to produce high-quality depth maps.

Our framework underwent comprehensive evaluation across three challenging
databases demonstrating competitive performance in both intra- and cross-database
testing scenarios. The evaluation outcomes show the proficiency of our generator in
producing profound depth maps for real data and zero-depth maps for spoof samples,
effectively utilizing the collaborative strengths of RGB and MSRCR data. These results
emphasize the robustness and versatility of our proposed approach in addressing the
intricacies of face anti-spoofing tasks across diverse datasets.
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Abstract. In recent years, significant progress has been made in improv-
ing the efficacy of wearable human activity recognition (HAR) tasks using
deep learning technology. Existing research indicates that stacked con-
volutional layers effectively extract high-semantic signal features from
multi-sensor channel time-series data. However, these approaches dis-
regard the fact that sensor signals are low-semantic and sensor-based
deep networks lead to overfitting and gradient vanishing. In this paper,
we present the parallel attention-based HAR (PA-HAR) method. Our
method employs multiple small-scale receptive fields to extract low-
semantic signals in parallel and a skip-squeeze excitation block to estab-
lish correlations among multi-feature maps based on the feature channel
dimension. We also introduce smooth and non-monotonic sigmoid linear
units (SiLU) to integrate multi-scale and cross-channel features in order
to prevent the loss of non-linear information due to small-scale receptive
fields and reduce representational ability loss. Extensive experiments on
seven public datasets show that our proposed PA-HAR model outper-
forms state-of-the-art approaches in HAR tasks. In addition, we develop
a wearable real-time activity recognition system based on the embedded
device with our model.

Keywords: Human Activity Recognition (HAR) · Wearable Device ·
Parallel Attention (PA)

1 Introduction

HAR utilizing Inertial Measurement Units (IMU) is extensively applied in
numerous fields due to the accelerated development of mobile sensing and
ubiquitous computing. These fields include activity monitoring, healthcare, and
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human-computer interaction. HAR is a technique of automatically classifying the
activities of specific people with different sensors placed in different parts of their
bodies. Then, HAR utilizes algorithms to identify the activity with these sensor
data.

For sensor-based HAR work, conventional Machine Learning (ML) methods,
such as Random Forest (RF) and Decision Tree (DT), can be used to predict
what humans are doing at any time, achieving remarkable performance. Despite
the various benefits provided by conventional ML methods in HAR, they require
the manual extraction of features from the raw signal data, which is usually com-
plicated and time-consuming. Additionally, shallow features could not classify
complex activities. Many deep learning methods, such as Convolutional Neu-
ral Networks (CNNs) and Recurrent Neural Networks (RNNs), are proposed in
recent years. These methods make HAR tasks more precise and efficient.

In previous studies, researchers utilize CNNs to extract the temporal and
sensor channel features in signal segments (signal image) [1]. In the CNN-based
HAR method, only local temporal and sensor channel features can be extracted
due to limited receptive fields, ignoring long-range dependencies in the temporal
dimension and cross-channel correlations in the sensor channel dimension [2].
Other researchers use 1-D filters to extract long-range temporal dependencies
along this research line. Then, they utilize high-contribution channels to replace
low-contribution channels by measuring the contribution of each feature channel
[3]. Other scholars find that normalization operations result in small contri-
butions from most feature channels. Thus, they reactivate feature channels by
applying whitening or decorrelation operations to equalize the contribution of
each channel [4]. However, these methods only reweight the feature maps in
the feature channel dimension and ignore the long-range dependencies in the
temporal and sensor channel dimension.

Due to the promising results achieved by RNNs in the field of time series
signals, some scholars employ RNNs to extract long-range correlations in both
the temporal dimension and sensor channel dimension. CNNs are then attached
to fuse local temporal and sensor channel features. Unfortunately, HAR data
often contains uncorrelated signals (noise), and RNNs tends to model such noise
repetitively, resulting in lower classification accuracy of the model [5].

The attention mechanisms can assist in determining where to focus informa-
tion while reducing repetitive or even useless information. Convolutional block
attention module (CBAM) [6] is among the numerous ways of introducing atten-
tion to the HAR area [7]. CBAM attention extracts long-range dependency and
cross-sensor channel correlations using a large-scale receptive field. However,
large-scale receptive fields can cause feature compression [8], which reduces the
resolution of sensor features and causes fine-grained feature loss for datasets
with a small number of sensor channels (such as the UniMib-SHAR dataset).
This is detrimental to the forward propagation of features. Other scholars uti-
lize multi-scale receptive fields to extract signal features in parallel [9], which
enables the simultaneous extraction of high-resolution and highly semantic fea-
tures. However, this method only consider the multi-scale features, and ignores
the correlation between multi-feature maps.
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In conclusion, CNN-based approaches lose long-range dependency and cross-
sensor channel correlation, whereas RNN-based methods may extract the back-
ground signal (noise) repeatedly, which is disadvantageous to activity classifica-
tion. Existing attention-based HAR approaches either compress signal features
or lose cross-feature channel interaction information [10].

Inspired by the pyramidal convolutional attention proposed in computer
vision area [11], in this paper, we propose a parallel attention mechanism for
the sensor-based HAR domain and we investigate the performance of multi-scale
parallel convolutional neural networks for low-semantic sensor data. Our app-
roach distinguishes itself from the pyramidal convolutional attention technique
employed in computer vision by virtue of its lightweight design and specialized
focus on extracting feature information from sensor signals. The PA mechanism
for sensor-based HAR concurrently utilizes two small-scale receptive fields to
extract higher semantic and high-resolution information, decreasing many sig-
nal features. Then, we propose the Skip Squeeze Excitation (SSE) to enhance
the feature by establishing the correlation of the multi-feature maps. The limited
non-linearity in lightweight attention may constrain the model’s representational
power. Hence, we replace the ReLU function with SiLU [12], which increases the
non-linearity and avoids the feature loss caused by the dead zone of ReLU. The
baseline network used is a 1D filter to extract only signal features, as previously
indicated [4,7]. With the enhanced PA mechanism, the model can extract higher
semantic features after each convolution layer, enhancing the feature space by
capturing temporal-spatial information on different scales. The following is a
summary of the contributions made by our work:

– We propose a parallel attention mechanism, which can further fuse features
from multiple sensor channels using different scales of receptive fields. Based
on the above methods, the model can extract high-resolution and high-
semantic features.

– We propose a lightweight skip-squeeze excitation (SSE) block to extract global
information and cross-feature channel correlation. It achieve the interaction
between the multiple feature maps. In addition, we employ the SiLU activa-
tion function to introduce more nonlinear information and thus enhance the
representational power of the model.

– We compare our proposed PA-HAR approach to SOTA methods on seven
sensor-based datasets and show that it provides superior results. Additionally,
on an embedded platform, we evaluate the practical application efficacy of
the PA-HAR model, demonstrating that it is effective for HAR on lightweight
mobile devices.

2 Methodology

2.1 Model Overview

In this section, we briefly introduce our proposed PA mechanism. The PA mech-
anism consists of three parallel substructures that process features at different
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resolutions and establish the cross-feature map relationship. The input data is
fed into the proposed multi-scale feature extraction block in the first substruc-
ture, which consists of multiple receptive fields. We use a 3 × 3 receptive field to
extract the long-range correlation of temporal and sensor channel dimensions as a
high semantic feature. To maintain the high-resolution sensor signal features and
to avoid feature compression issues, we use a 1 × 1 receptive fields. Based on the
above discussion, we only consider the high semantic and high resolution informa-
tion, ignoring the correlation between the multi feature maps. To address this, we
propose the SSE block based on the Squeeze Excitation (SE) block [13] for HAR
tasks, which can establish the correlation of the multi-feature map. Compare with
the SE block, the SSE block employs only a single fully connected layer, which
further reduces block complexity and maintains the PA mechanism’s lightweight
characteristic. The PA-HAR framework is illustrated in Fig. 1.

Fig. 1. Overview of Parallel Attention HAR Model Based on ResNet

2.2 Multi Scale Feature Extraction

Multiple raw sensor signals are represented as S = {s1, s2, . . . , sn} to a prede-
termined window size, where S ∈ R

m×n, S is the signal image provided to the
network, m is the duration of the time series, and n is the sensor channel dimen-
sion. Let X ∈ R

C×H×W as the signal feature map of the input network, which
represents the signal image S, that is pass through a layer of the convolutional
network. C represents the number of feature channels, H represents the height
(temporal dimension), and W represents the width (sensor channel dimension).
As shown in Fig. 1, we first utilize a multi-scale receptive field to extract the
high semantic information, which embeds the long-range correlation in temporal
and sensor channel dimensions. Moreover, we can maintain the high-resolution
feature. All signal feature maps are fed into the multi-scale convolution block
to extract the temporal and cross-sensor channel correlation. The generation
function of the multi-scale feature map is as follows:

Fi = Conv (ki × ki) (X), i = 1, 2 (1)

where ki represents the i-th receptive field size.
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Then, we send feature maps of different scales to the batch normalization (BN)
layer. The BN process can suppress less salient weights [14]. It penalizes the weight
sparsity of the multi scale feature, making it more computationally efficient while
maintaining equivalent performance. The following is the BN procedure:

Scalei = BN (Fi) = γ
Fi − μB√

σ2
B + ε

+ β, i = 1, 2 (2)

where μB and σB are the mean and standard deviation of mini-batch B, respec-
tively; γ and β are trainable affine transformation parameters (scale and shift).

2.3 Skip Squeeze Excitation Block

We aim to design a lightweight and efficient attention mechanism. To establish
multi-feature graph associations, we propose the SSE block, which uses a hopping
operation and only a fully connected layer compared to the SE block. The SSE
feature channel extraction module consists of two parts squeeze, and excitation.
In the squeeze part, we utilize the global average pooling operation to generate
global feature channel information. The operation formula is as follows:

P =
1

H × W

H∑

i=1

W∑

j=1

X(i, j) (3)

where X is the signal feature map and P is the global pooling process.
The excitation part needs to obtain attention weights based on the above

global features, computed as follows.

Z = σ(T (P )) (4)

where T represents the fully connected layer, σ represents the Sigmoid acti-
vation function, P represents the pooling operation of all signal feature maps
along the feature channel dimensions, and Z is the result generated by the SSE
block. The excitation section establishes linear relationships within the feature
channel dimension combinations between multiple feature maps using the fully
connected layer.

2.4 Feature Fusion

As mentioned above, the lightweight attention mechanism combined with shallow
networks has less non-linearity, which limits the model’s representational capabil-
ity, especially for dataset with multi sensors such as OPPORTUNITY [15], which
include multiple complex activities. Moreover, the ReLU function has a dead
zone, which causes negative gradients to be set to zero and cannot be updated.
In order to increase shallow network non-linearity information, we replace the
ReLU activation with SiLU. SiLU is a smooth approximation of ReLU, as is
shown in Fig. 2. In the following, we derive the formula for the smooth approxi-
mation of SiLU to ReLU. For a maximum function max (m1,m2, . . . ,mn), we can
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Fig. 2. Comparison of ReLU function and SiLU function.

obtain its smooth approximation by using a general approximation formula as
follows:

Fβ (m1, . . . ,mn) =
∑n

i=1 mie
βmi

∑n
i=1 eβmi

(5)

where β is introduced to control the degree of smoothing of Fβ . When β → ∞,
Fβ → max (Nonlinear), and β → 0, Fβ → Average (Linear). We denote the β as
1 to close to ReLU. For max (m1,m2, . . . ,mn), we consider the case when n = 2.
Given a common activation functions are in the form of max (ηa(m), ηb(m))
(e.g. ReLU max(m, 0)) where ηa(m) and ηb(m) denote linear functions. And we
denote σ as the Sigmoid function and the approximation becomes:

F (ηa(m), ηb(m))

= ηa(m) · eηa(m)

eηa(m) + eηb(m)
+ ηb(m) · eηb(m)

eηa(m) + eηb(m)

= ηa(m) · 1
1 + e−(ηa(m)−ηb(m))

+ ηb(m) · 1
1 + e−(ηb(m)−ηa(m))

= ηa(m) · σ [(ηa(m) − ηb(m))] + ηb(m) · σ [(ηb(m) − ηa(m))]
= (ηa(m) − ηb(m)) · σ [(ηa(m) − ηb(m))] + ηb(m)

(6)

We find that when ηa(m) = m, ηb(m) = 0, max(m, 0) is exactly the expression
of ReLU, and m · sigmoid(m) is exactly the expression of SiLU. We can think
of SiLU as a smooth way to get close to ReLU. We use the SiLU function to
correlate multi-scale features and multi feature maps as follows:

Out = SiLU(Scale1 + Scale2 + Z) (7)

where Scale1 represents the high resolution feature, Scale2 represents the
high semantic feature, and Z represents the multi feature maps correlation
information.

According to Fig. 2 and Eq. 6, we can see that SiLU is smooth and non-
monotonic, which can introduce more nonlinear information, and the gradient is
derivable. Compared to the ReLU function, the SiLU function has a smoother
curve as it approaches zero and allows the network to have an output range
between 0 and 1 due to the use of a Sigmoid function. The HAR data are time
series data (with upper and lower bounds), better results can be achieved using
SiLU than ReLU. In conclusion, SiLU is well suited for our proposed lightweight
parallel attention mechanism.
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2.5 Implementation

We choose three layers of the ResNet to show the benefits of the PA mechanism
over earlier HAR approaches since this study aims to offer a more efficient way
of boosting the convolutional features of HAR networks. ResNet’s convolutional
blocks comprise two convolutional layers with the same kernel size. The PA
mechanism is incorporated into the ResNet network, as illustrated in Fig. 1.

3 Experiments

The benchmark datasets, experimental settings, and evaluation metrics are each
presented in this section.

Table 1. The Concise Description of the Procedure for Working with the HAR
Datasets.

Attribute UCIHAR OPPO PAMAP2 USCHAD UniMib MHEALTH DSADS

Sampling Rate 50 30 100 100 50 50 25

Train/Test 7:3 8:2 7:3 7:3 7:3 8:2 7:3

Window Size 128 64 171 512 151 100 None

Overlap Rates 50% 50% None 50% 50% 50% None

Categories 6 17 12 12 17 13 9

3.1 Dataset Description

We evaluate the efficacy of our model using seven widely-used HAR datasets,
summarised in Table 1. The dataset processing method is set according to
existing literature [1,2]. The UCIHAR Dataset [16] comprises data from 30
participants who performed 6 activities while donning a smartphone on their
midsection. The PAMAP2 Dataset [17] is collected from 9 participants who
wear numerous sensors, including chest, wrist, and ankle sensors, to collect
data. The UniMib-SHAR Dataset [18] is collected from 30 participants using
Android smartphones, with each participant must carry a smartphone in both
of their front pockets. The OPPORTUNITY Dataset [15] is captured using multi-
sensor modalities and peripheral sensors placed on 12 subjects. The USCHAD
Dataset [19] comprises 12 physical activities and is collected from 14 volunteers.
The DSADS Dataset [20] consists of data collected on 19 activities performed
for 5 min by eight participants, 9 of which are utilized in our evaluation. Finally,
the MHEALTH Dataset [21] contains recordings of body movements and vital
signals from ten persons with varying features who completed 12 exercises.

3.2 Experimental Details

The datasets splitting strategy is summarised in Table 1. The batch size for the
UniMib-SHAR dataset is 128, while the other datasets are 64. For all datasets,
the beginning learning rate is 0.001, the Adam optimizer is used, and the cross-
entropy function is used as the loss function. The other hyperparameters are set
to their default settings.
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Table 2. Model Average Accuracy (%) on Various Datasets.

Methods

Datasets
UCIHAR OPPO PAMAP2 USCHAD UniMib MHEALTH DSADS

Other Researchers’ Results

97.35Huangetal.[4] 89.15Huetal.[22] 92.14Huangetal.[4] 91.70Bietal.[23] 78.65Huangetal.[4] 98.76∗Huangetal.[3] 94.44∗Huangetal.[3]

97.38Tangetal.[9] 87.40Kimetal.[24] 94.29Tangetal.[9] 91.07Lietal.[25] 79.19Tangetal.[9] 96.68∗Huangetal.[26] 94.52∗Huangetal.[26]

97.23Huangetal.[27] 81.42Huangetal.[27] 92.25Huangetal.[27] 85.71Huangetal.[28] 77.52Huangetal.[27] 90.50∗Qianetal.[29] 82.25∗Qianetal.[29]

Ours 97.60 91.20 97.63 93.33 79.46 99.10 95.10

ΔSOTA 0.22 ↑ 2.05↑ 3.34↑ 1.65↑ 0.27↑ 0.34↑ 0.58↑
Where * represents the reproduction of results.

3.3 Comparison with Other Methods

The comparison between our approach and the SOTA approaches is shown
in Table 2. The performance of the seven PA-HAR datasets significantly
outperforms the SOTA (State-Of-The-Art) approaches, as shown in Table 2.
Our method outperforms SOTA methods on the UCIHAR, OPPORTUNITY,
PAMAP2, USCHAD, UniMib-SHAR, MHEALTH, and DSADS datasets 0.22%,
2.05%, 3.34%, 1.65%, 0.27%, 0.36%, and 0.58%, respectively.

3.4 Ablation Studies

We conduct a series of ablation experiments to demonstrate the effectiveness of
the proposed PA mechanism. As seen in Fig. 3, adding PA mechanism enhances
the recognition ability greatly over the baseline network. Our method improves
by 1.06%, 3.24%, 2.17%, 1.35%, 2.26%, 0.84%, and 0.6% on the datasets UCI-
HAR, OPPORTUNITY, PAMAP2, USCHAD, UniMib-SHAR, MHEALTH, and
DSADS, respectively. The experimental results demonstrate that the PA atten-
tion mechanism can effectively extract multi-scale signal features and the cor-
relation of multiple feature maps, which is necessary to recognize long-range
periodic activities (running, cycling, etc.). These experiments demonstrate that
the PA mechanism is required for HAR classification.

Fig. 3. Comparison of ResNet Baseline Network and ResNet Network After Adding
PA Mechanism.

To evaluate the effectiveness of each part of the PA mechanism on model
recognition, we conduct experiments using the UniMib-SHAR and USCHAD
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datasets as examples. The results can be seen in Table 3. We conclude that
enhancing the network with cross-feature maps and multi-scale feature extrac-
tion may improve classification accuracy. Experimental results demonstrate that
multi-scale features are more critical for signal recognition ability because shal-
low convolution extracts only local dependencies and loses sensor as well as
temporal correlation. We use multi-scale extraction methods to extract higher
semantic features while retaining high-resolution features. The best accuracy is
attained when the two components are combined.

Table 3. The Effect of Various PA Mechanism Components.

Datasets
Network

Baseline +SSE +Multi Scale +PA

UniMib-SHAR 77.20% 77.51% 79.17% 79.46%

USCHAD 91.98% 92.62% 93.04% 93.33%

3.5 Experimental Analysis

1. Channel Importance

Fig. 4. The importance of sensor channels on PAMAP2 dataset.

We conduct position-dependent activity recognition studies on the PAMAP2
dataset using three IMU nodes placed at different body positions: hand, ankle,
and chest. Figure 4 depicts all of the available sensor combinations and their
location. We compare the baseline network with the PA-HAR network. The PA-
HAR model outperforms the baseline network for various hand, chest, and ankle
positions. Our findings show that a single accelerometer on the hand, ankle,
or chest can accurately detect some of the most typical activities, with an
average accuracy of 92.99%, 94.71%, and 94.04%, respectively. Adding the sec-
ond IMU improves the classification accuracy to 96.25% (hand+chest), 97.21%
(hand+ankle), and 97.04% (chest+ankle). Notably, the accuracy of activity detec-
tion is much lower for the hand and chest position than for the hand and ankle or
chest and ankle positions. Adding a third IMU node yields the best classification
result, suggesting that multi-modal sensor data is more beneficial for HAR.
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2. PA Mechanism Position Analysis
We perform ablation experiments using the UniMib-SHAR dataset to assess the
influence of the PA mechanism at various layers. The PA mechanism should be
inserted after the first, second, and third layers of the ResNet model for max-
imum efficiency, as shown in Fig. 5. This is because ResNet extracts long-term
dependence information. The PA method can extract deep cross-sensor channel
association characteristics while retaining low semantic information, allowing
many sensors to be correlated.

Table 4. The Effect of The Activation Function on The Model.

Datasets
Network

Baseline+ReLU +SiLU

OPPORTUNITY 87.96% 89.94% 91.20%

Fig. 5. Accuracy of PA Mechanism on Different Layers.

3. The Effect of the Activation Function on the Model
As shown in Table 4, using the OPPORTUNITY dataset as an example, we
observe that the SiLU activation function outperforms ReLU by 1.26% in clas-
sification accuracy. Unlike ReLU, the SiLU function has a smooth and non-
monotonic curve, which is differentiable at all points, which is advantageous
for model optimization.

4. Time Consumption Comparison
Figure 6 shows the results of an execution time comparison for the test data
of the MHEALTH dataset, which contains 1285 test data. As seen in Table 6,
although our method is not the quickest, it has no apparent downsides. Our
method is slower in terms of execution. Our PA mechanism increases the multi-
scale convolution and pooling processes, prolonging execution time. Several supe-
rior results, including the Local-Loss method [30], solely rely on cosine similarity
to calculate local losses in front of the network. To extract the largest mean dif-
ference, DDNN [29] employs a full connection mapping to extract the maximum
mean difference to high-dimensional space.
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Fig. 6. The Execution Time Comparison on Different Methods

5. Compare with Other Computer Vision Attention Mechanisms
We embed four attention mechanisms (such as SE [13], CBAM [6], EPSA
[11], and NAM [14]) in the area of computer vision into our baseline network. We
compare them with our method to demonstrate the importance of the proposed
parallel attention mechanism for HAR classification tasks.

Fig. 7. Accuracy on Other Computer Vision Attention Mechanisms

As is shown in Fig. 7, we can see that our method has excellent perfor-
mance on six datasets. We find that the model based on the SE attention
mechanism performs poorly on OPPORTUNITY because the dataset belongs
to complex activities. The SE mechanism uses pooling operations, which lose
spatial-temporal correlation information, and reduce the downstream classifica-
tion accuracy. The CBAM-based attention mechanism method improves classifi-
cation accuracy compared with the SE-based method. However, for the UniMib-
SHAR dataset, which uses a small number of sensor channels, the large-scale
receptive field causes feature compression and reduces the resolution of feature
maps. To solve the problem of feature compression caused by large-scale recep-
tive fields, Zhang et al. [11] propose a multi-scale feature extraction attention
mechanism (EPSA). We apply this method to the HAR domain. Compared with
CBAM-based methods, this method has an improvement on multiple datasets.
However, this method uses four receptive parallel fields, which increases the
model’s complexity. Moreover, the EPSA mechanism employs a 9 × 9 receptive
field to extract features, which is unsuitable for HAR data with low semantic
content.



Parallel Attention Based Network 461

Fig. 8. Discussion and Analysis of Experiments

Compared with the PA-HAR method, the classification accuracy of the
EPSA-based methods is lower. On the MHEALTH dataset, our PA-HAR method
did not outperform the CBAM-HAR method. We consider this because this
dataset has multiple periodic activities, such as cycling. We use only two low-
scale receptive fields to lose some long-range dependency features. The CBAM-
based method can extract relatively long-range association information by the
7 × 7 receptive field [6]. However, compared to the CBAM-based method, our
approach reduces it by only 0.08%. The EPSA-based method performs poorly
on the MHEALTH dataset because it employs receptive fields of 7 × 7 and
9×9 sizes. While it can extract long-range dependency correlations, it also com-
presses features with low semantic signals. Additionally, too large a receptive field
may extract boundary activity signals, such as the transition from “cycling” to
“standing”. These findings confirm that the PA-HAR method is robust across
different datasets.

6. Performance on Cross Validation
On the OPPORTUNITY dataset, we use cross-validation to test the robustness
of our approach. Unlike existing methods [2] that only use four specific data files
as the test set, we cross validated all combinations of all files in the dataset as the
validation set. As shown in Fig. 8(c), the PA-HAR block consistently produces
a performance gain.

7. Effect of Sliding Window Size on the Model
We investigate the influence of the sliding window length. As shown in Fig. 8
(d), a smaller sliding window typically results in poor recognition accuracy. We
find that using a window size of 64 and a stride of 32 gives the best performance
for the OPPORTUNITY dataset.
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3.6 Discussion

According to existing research [31,32] indicated, we demonstrate the benefits
of ResNet in classification using confusion matrices as shown in Fig. 8 (a), the
confusion matrices of the suggested model and the baseline ResNet for the HAR
task on the PAMAP2 dataset. It is clear that the PA-HAR model has fewer mis-
classifications when compared to the baseline ResNet for two similar activities,
namely “Ascending Stairs” (A9) and “Descending Stairs” (A10). We consider
that the PA mechanism provides high-semantic sensor channel correlation char-
acteristics, considerably improving this activity’s classification accuracy.

We present t-SNE diagrams of the baseline network and the PA-HAR model
on the OPPORTUNITY dataset in Fig. 8(c). The figure show lower intra-class
distances between features within the same class. For instance, Fig. 8(d) shows
that it is difficult to distinguish between the green and yellow classes, but
Fig. 8(c) shows that the characteristics produced by PA-HAR are more dis-
criminative. Based on the visualization results, it is further demonstrated that
our PA-HAR model, which extracts higher semantic features and preserves low-
resolution features, also establishes the association of multi-feature maps. These
features are significant for our activity signal classification.

3.7 Online Prediction System

Fig. 9. Online HAR System on Raspberry Pi 4B Platform

We deploy the PA-HAR model on the Raspberry Pi platform to verify the prac-
tical effectiveness of the PA-HAR method for online inference. We use the UCI-
HAR dataset as the training data and place the Raspberry Pi and IMU in the
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same position as the UCIHAR collect data to ensure the online inference effect.
The embedded development platform is Raspberry Pi 4B with 2 GB memory, and
the IMU is MPU9250. The inference results are transmitted to the display via
WiFi. Figure 9 displays the online reasoning interface for activity recognition.
The Raspberry Pi accurately predicts the activity as standing when the actual
activity is “Walking Upstairs”, with a confidence of 89% from the softmax clas-
sifier and an inference time of 125.76 ms.

4 Conclusion

This paper proposes a HAR framework named PA-HAR, which includes a par-
allel attention mechanism and a ResNet network. The parallel attention mech-
anism effectively extracts the multi-scale feature and multi-feature map corre-
lation. Then, we introduce non-linearity information to enhance the network’s
representational power. The parallel attention mechanism is embedded into a
three-layer ResNet network for HAR classification. The results of experiments
on seven HAR datasets show that the method we proposed works better. Addi-
tionally, plenty of ablation experiments and interpretative analyses show that
each part of the structure works.
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