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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Alzheimer’s Disease (AD) is a non-curable progressive neu-
rodegenerative disorder that affects the human brain, leading to a decline
in memory, cognitive abilities, and eventually, the ability to carry out
daily tasks. Manual diagnosis of Alzheimer’s disease from MRI images is
fraught with less sensitivity and it is a very tedious process for neurolo-
gists. Therefore, there is a need for an automatic Computer Assisted
Diagnosis (CAD) system, which can detect AD at early stages with
higher accuracy. Until now, numerous researchers have proposed sev-
eral deep-learning models to detect AD efficiently from MRI datasets.
However, most of their methods have deployed lots of pre-processing
and image-processing techniques, which yields a lack of generalization in
the model performance. In this research, we have proposed a novel AD-
Lite Net model (trained from scratch), that could alleviate the afore-
mentioned problem. The novelties we bring here in this research are,
(I) We have proposed a very lightweight CNN model by incorporating
Depth Wise Separable Convolutional (DWSC) layers and Global Average
Pooling (GAP) layers. (II) We have leveraged a “parallel concatenation
block” (pcb), in the proposed AD-Lite Net model. This pcb consists of
a Transformation layer (Tx-layer), followed by two convolutional lay-
ers, which are thereby concatenated with the original base model. This
Tx-layer converts the features into very distinct kind of features, which
are imperative for the Alzheimer’s disease. As a consequence, the pro-
posed AD-Lite Net model with “parallel concatenation” converges faster
and automatically mitigates the class imbalance problem from the MRI
datasets in a very generalized way. For the validity of our proposed model,
we have implemented it on three different MRI datasets. Furthermore, we
have combined the ADNI and AD datasets and subsequently performed
a 10-fold cross-validation experiment to verify the model’s generalization
ability. Extensive experimental results showed that our proposed model
has outperformed all the existing CNN models, and one recent trend
Vision Transformer (ViT) model by a significant margin.
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1 Introduction

Alzheimer’s Disease (AD) is a severe, and fatal neurodegenerative disease [1] that
usually targets older individuals. The early signs of Alzheimer’s are forgetting
recent events, language issues, having problems with reasoning and gradually
it leads to loss of one’s ability to perform everyday tasks. AD occurs due to
abnormal protein accumulation including beta amyloid plaques and tau tangles
in the brain. These changes cause mental deterioration since nerve cells are lost
gradually and the connections between brain cells and communication get dis-
rupted. Alzheimer’s Disease International (ADI) has estimated that dementia
affects more than 50 million people across the world [2], which is a term that
refers to symptoms of brain impairment. AD is the leading cause of dementia
and accounts for 60-80% of cases. AD affects particular structures within the
brain, the hippocampus [3], which is one of those first attacked by AD. Neural
changes in the hippocampus’s anatomy can be identified by measuring its vol-
ume and form, as well as that of gray matter substance with highly advanced
imaging techniques such as Computed Tomography (CT), Positron Emission
Tomography (PET) and Magnetic Resonance Imaging (MRI). Out of all these
image-acquiring techniques, MRI is the most frequently employed. Because it is
noninvasive and easily available, moreover, it causes less radiation to the human
body. Examining the alterations in the Cerebrospinal Fluid System (CFS) [4]
aids in identifying the phase of AD. As this disease progresses, there is an enlarge-
ment in CFS region and reduction of the cerebral cortex and hippocampus. At
present, there is no effective treatment available for Alzheimer’s disease (AD),
and the only way to prevent it is through early detection, as modern methods can
only delay the course of progression. However, manually extracting and inter-
preting the features of Alzheimer’s disease and furthermore, classifying them
into different grades (from MRI images), is a very tedious and complex task for
Neurologists. Hence, there is a need for an automatic CAD system, in order to
detect AD efficiently from MRI images.

Various deep learning models have been widely employed recently by numer-
ous researchers, in order to develop an automatic CAD system of AD detection
from MRI images. Modupe Odusam et al. [5] proposed a pre-trained ResNet-18
which detects Alzheimer’s disease from MRI images at an accuracy of around 98-
99%. However, they considered any two classes, thus, their classification problem
(binary) was slightly lesser complex than the multi-class classification. Hadeer
A. Helaly et al. [6] proposed a CNN model E2AD2C (trained from scratch)
which is comprised of 3 convolutional layers, 2 Fully Connected (FC) layers, and
1 output layer. Their model architecture had less number of hyper-parameters
(to train) and was inspired by the standard VGG-16 model. Nevertheless, they
have deployed many pre-processing techniques, for example, over-sampling and
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under-sampling methods, data-augmentation, MRI filtering and normalization
etc. prior to feeding the data into a classifier. Shakarami et al. [7] proposed an
AlexNet-SVM model in order to predict Alzheimer’s disease from PET images.
Their method encompasses four different steps. (I) First, 3D PET images are
converted into 2D slices (or, images), (II) The pixels (in 2D slices) have values
more than 150 are only passed through, otherwise avoiding all other pixels. (III)
AlexNet-SVM model is utilized for the feature extraction part, and (IV) the final
classification is done by the majority voting on slices. Although their method
seems like a reasonable method, after converting 3D images into 2D slices, it
may lose some important information, thus, it is not so feasible. K.G. Achilleos
et al. [8] proposed a manual feature extraction method, in which they had com-
puted Haralick texture [9] features for hippocampal atrophy which is the most
vital part for predicting AD from MRI images. Moreover, they combined these
hippocampal textures with their volume and subsequently, they applied all these
features to a 10-fold cross-validation Decision Tree (for a 4-class classification
task). Another potential direction of approaching this imbalanced MRI datasets
is to deploy Weighted Categorical Cross Entropy (WCCE) [10] which assigns
weights for every class which is inversely proportional to the number of images
in that class. M. Masud et al. [11] have employed similar WCCE on top of a
lightweight CNN model in order to resolve the issue of class imbalance from
MRI datasets for AD detection. Besides that, many more related research works
can be found in [12]-[15].

Another valid direction of this research could be leveraging new recent trends,
that is, self-supervised models [16] or, attention-based models, in order to allevi-
ate class imbalance problem from these MRI datasets. Numerous self-attention
transformer models have been widely popular and proposed in the domain of
NLP [17]. However, their equivalent model, i.e., Vision Transformer (ViT) [18],
still is not an automatic choice for researchers in the domain of computer vision
or image classification. The reason why still CNN outperforms ViT is that, ViT
needs larger data in order to generalize well, however, in most of the medical
image diagnoses, we have weakly supervised data or very limited imbalanced
data. Moreover, unlike CNN model, ViT does not leverage a multi-scale hier-
archical structure [16] which has a special significance for image classification.
Therefore, numerous researchers [19],[20] come up with the idea of integrating
both of the notions of ViT and CNN simultaneously. Recently, Byeongho Heo
et al. [20] have proposed a Pooling-based ViT (PiT), which incorporates pooling
layers in the ViT model. This leverages a multi-scale hierarchical architecture in
the ViT, moreover, due to utilizing many pooling layers the number of hyper-
parameters in PiT has been drastically reduced. Numerous researchers also tried
to incorporate equivalent channel attention [21–23] named Squeeze Attention or,
Swin Transformer [24] on top of CNN model, in order to improve the efficacy
of AD detection from MRI images. Jiayi Zhu et al. [21] proposed a Sparse self-
attention block in order to detect Alzheimer’s disease at early stages, from MRI
images. This “Sparse self-attention block” can reduce the elements (by logN)
that can represent the overall features N . Therefore, overall, the computational
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complexity of their model (called BraInf) has been considerably reduced. Z. Liu
et al. [22] have proposed a novel Multi-Scale Convolutional Network (MSC-Net)
comprising four parallel concatenations of convolutional layers with varying dila-
tion rates. Additionally, they have integrated an attention module “SE-Net” into
their MSC-Net to enhance channel independence.

We have observed that most of the aforementioned state-of-the-art models [5–
14] struggle to generalize across different MRI datasets for Alzheimer’s detection.
These models particularly exhibit overfitting when dealing with imbalanced and
small datasets. Researchers utilize image processing techniques as pre-processing
methods [6,7] to augment datasets in order to improve the efficacy of the deep
learning model. However, while these techniques may work well on a specific
dataset, they do not ensure effective generalization across diverse datasets. Fur-
thermore, several attention modules [21–24] proposed for AD detection could not
directly address the issue of class imbalance. Therefore, in this research, we aim
to develop a lightweight CNN model (trained from scratch), specifically designed
for Alzheimer’s detection, such that it can alleviate the class imbalance problem
and generalize well across diverse MRI datasets.

1.1 MRI Images Dataset and Its Challenges

For extensive experimentation, we have employed 3 MRI datasets which are read-
ily available on Kaggle. The first dataset of Alzheimer’s Disease [25] contains a
total of 5000 images which are labeled further into 4 classes - Mild-Demented,
Moderate-Demented, Non-Demented, and Very Mild-Demented. We call this
dataset “Alzheimer’s Detection (AD) dataset”. Here, Moderate-Demented is
severely demented and is analogous to Alzheimer’s Disease (AD). Whereas, Mild-
Demented and very Mild-Demented are early stages of Alzheimer’s Disease. The
number of images in Mild-Demented, Moderate-Demented, Non-Demented, and
Very Mild-Demented are 717, 52, 2560, and 1792 respectively. A Second dataset,
named “ADNI-Extracted-Axial”, consists of 2D axial images extracted from the
Nifti ADNI from ADNI website [26]. This ADNI dataset is the most authen-
tic MRI dataset for Alzheimer’s disease, followed by numerous researchers. This
ADNI contains 5000 images which are further divided into 3 classes - Alzheimer’s
Disease (AD), Mild Cognitive Impaired (CI), and Common Normal (CN). A
third dataset OASIS [26] of four classes, is also utilized in this research. The
number of images in Mild Dementia, Moderate Dementia, Non- Dementia, and
Very mild Dementia are 5002, 488, 67200 and 13725 respectively. Hence, this
is a huge class imbalance problem and conventional CNN models’ efficacy may
suffer due to the lack of generalizing ability in the minor classes.

1.2 Contributions

The contributions of this paper are as follows:

1. A very lightweight CNN model, AD-Lite Net, has been proposed as a base
model for detecting Alzheimer’s disease efficiently, from MRI images dataset.
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2. A “parallel concatenation block” is incorporated on top of this base model in
order to alleviate the class imbalance problem and to increase generalization
ability of the model. In this “parallel concatenation block” (pcb), one Trans-
formation layer (Tx-layer) is employed which enables the model to extract
distinct and complementary features which were essential for Alzheimer’s
detection.

3. A mathematical analysis of the proposed model AD-Lite Net is presented in
this research. In this analysis, one new lemma has also been proposed.

4. For validity purpose, the proposed AD-Lite Net has been implemented on
three different MRI image datasets. Moreover, we merged the ADNI and AD
datasets and subsequently conducted a 10-fold cross-validation experiment to
test the model’s generalization ability.

2 Methodology

This methodology section can be further divided into two parts: (a) Alzheimer’s
Detection Lite Network (AD-Lite Net), (b) Mathematical Analysis of AD-Lite
Net.

2.1 Alzheimer’s Detection-Lite Network (AD-Lite Net)

The proposed AD-Lite Net model is explored in Fig.1. The proposed model
is comprised of main two parts: (I) Main backbone CNN model (which is a
very lightweight model or base model), (II) One parallel concatenation block
is leveraged into this backbone CNN model in order to increase the general-
ization ability of the model. Overall, in the proposed framework, a total of 7
convolutional layers and two Depth-wise Separable Convolutional (DWSC) lay-
ers [27] are employed, as shown in Fig.1. The number of filters deployed in the
backbone model are 16, 32, 64, 96, and 128 from the 1st to 5th convolutional
layer respectively. Every convolution layer has the same kernel size 3×3 (except
the 1st one having kernel size 5×5) with zero padding “same”. ReLU activation
function is employed in all the convolutional layers, whereas, SoftMax activation
function is incorporated in the output of the CNN model. Each convolutional
layer is followed by a Max-pooling layer, which down-samples the image size by
half, because of using stride 2. Subsequently, a batch normalization layer is also
incorporated after every Max-pooling layer or convolution layer, in the model.
This batch normalization layer converts the scattered 2D tensor input (after con-
volution) into a normalized distribution having mean 0 and standard deviation
1. It ensures a smooth gradient flow throughout the network and hence, reduces
the over-fitting problem, to a certain extent.

The “parallel concatenation” block starts from a transformation layer (or,
Tx-layer) which converts the tensor output (coming from the 3rd convolutional
block) into a very different kind of image (i.e., negative image). This is further
shown in Fig.2. This tx-layer is further followed by 2 convolutional layers and 2
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Fig. 1. Block diagram of the proposed model AD-Lite Net

Max-pooling layers. These two back-to-back convolutional layers have the num-
ber of filters 32 and 64 respectively. These numbers are chosen empirically, which
is further explored in an ablation study in Supplementary material. This paral-
lel concatenation block (pcb) can work like like an equivalent ’Attention block’
in the CNN model, which is further exploited in the next subsection. There-
after, these two parallel blocks are concatenated by a concatenation block which
is followed by Global Average Pooling (GAP) Layer [28] and output layer, as
shown in Fig.1. This is to clarify that DWSC layers and GAP layers (instead
of flatten layer) have reduced the computational complexity of the AD-Lite Net
considerably. Moreover, due to avoiding the entire dense layer part, the number
of hyper-parameters of this AD-Lite Net is reduced to only 2.3 lakhs (approxi-
mately), hence, the proposed framework can work efficiently even on a very small
and imbalanced dataset without being affected much by overfitting.

2.2 Mathematical Analysis of AD Lite-Net

A mathematical analysis of AD Lite-Net is presented in this section, in order to
understand the credibility of the proposed research with much clarity.

The convoluted tensor output (after any convolutional layer) in our proposed
model, can be represented by

Oi(f)w×w = ReLU((
pi∑

j=1

Oj(z)3×3 ∗ I(f))w×w + b) (1)

Here in equation (1), pi is the number of filters in the current convolutional
layer, I(f) is the original image having size w×w, Oj(z) is the convolutional
filter, having kernel size 3×3 or 5×5, and the same stride=1, with zero padding
“same”. Thus, the size of the convoluted output will be also the same, i.e., w×w,
b is the bias, ‘∗’ in equation (1) indicates convolution operation.
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The number of hyper-parameters hc,i in this ith convolutional layer can be
computed by the following equation.

hc,i = (32.pi−1 + 1).pi (2)

Here, in equation (2), pi−1 is the number of filters in the previous layer, ‘.’
indicates point-wise multiplication.

On the other hand, the number of hyper-parameters hD,i in this ith DWCS
layer is represented in equation (3). Comparing equation (2) and (3), we can
conclude that hD,i << hc,i if pi is higher, because DWSC utilizes only one 3× 3
convolution layer followed by 1×1 layers [27] that does point-wise multiplication.

hD,i = (32.1 + 1).pi−1 = 10pi−1 (3)

We have employed 2 such DWSC layers at the last block (as shown in Fig.1)
such that the number of hyper-parameters will not be raised significantly.

The Max-pooling with stride 2 (and pool size 2×2), is a down-sampling
operation [18] that would reduce the original image size to its half. After utilizing
a total n number of Max-pooling layers, the tensor output will be

(Maxn(I(f))w×w)2×2|2 = (On(f))(w/2n.w/2n) (4)

Here, in our proposed model, n = 5. Thus, the spatial dimension of the
output will be 224/25 x 224/25 = 7 × 7. The spectral dimension in this last
block is (64 + 128) = 192, shown in the Fig.1. This last layer is passed through
the GAP layer, instead of flatten layer. This GAP layer [28] takes an average in
the spatial dimension, thus, the number of neurons in this GAP is reduced to 192
only. Whereas, the number of neurons in the flatten layer would be 7 × 7 × 192.
Thus, the number of neurons has decreased considerably, after leveraging GAP
in the proposed model. This will have a significant impact on the total number of
hyper-parameters in the model. Hence, this can be concluded that the proposed
CNN model is indeed a very lightweight model, and it has a very less number of
hyper-parameters (2.3 lakhs only), as compared to other existing CNN models
(trained from scratch).

The parallel concatenation block (pcb) is one of the novelties of our research,
shown in Fig.1. This pcb starts from a transformation layer (tx-layer), output
of this tx-layer Io(f) is given in equation (5). This tx-layer is followed another 2
convolutional layers and two Max-Pooling layers, as shown in Fig.1.

Io(f)wxw = m ∗ (255 − I(f)w×w) (5)

where, Io(f) is the output of that transformation layer, I(f) is the input tensor
coming to the transformation layer, m here is a real constant whose value is
supposed to be 0 < m < 1, empirically we have chosen the value of m = 0.8 in
this research. The purpose of this layer is to present the MRI images in such a
format that it can highlight some hidden features which was not so prominent
previously in the input tensor. In other words, it converts the original images
into its negative version, such that it can extract additional essential features
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Fig. 2. First row represents the original MRI images, 2nd row represents the images
after passing it through Tx-layer

for Alzheimer’s detection. We have further ensured that with medical hospital
doctors. For instance, this is evident from Fig.2 (first two images) that the gray
matter substance in hippocampus’s anatomy [3] of the original MRI image is
more prominent after passing it through this Tx-layer. Similarly, in the last
two images, in Fig.2 it has been highlighted that hippocampus shrinking [4] is
more clear in the 2nd row. Moreover, abnormal levels of beta-amyloid [4] and
widespread deposits of this protein becomes more visible after passing the MRI
images through this Tx-layer, according to the neurologists. These are significant
features of AD that get more highlighted after utilizing the Tx-layer.

The significance of Tx-layer in pcb, is explained in the following:

1. It can be observed from Fig.2 that the regions in the original image which
were white, become more prominent and clear after passing through the Tx-
layer. In contrast, areas in the transformed images that have changed to white
(previously it was black in the original) become less prominent. Hence, it can
be concluded that these two pairs of images (original and Tx-layer images)
possess kind of complementary features. After consulting with neurologists,
we came to know that this complementary features also carry some important
information for AD detection. Therefore, incorporating both combinations of
these features, enables the CNN model to learn more distinct and essential
feature maps (for AD detection) than previous.

2. Moreover, it is evident from Fig.2 that the overall statistics in the original
image and the processed image (i.e., after passing it through Tx-layer), differ
significantly, thus, pcb may work like an efficient data augmenter inside the
model. According to the research in [29], an efficient data-augmenter must
generate synthetic images which have slightly different statistics compared to
original images, otherwise, it induces overfitting in the model performance.
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3. Numerous researchers [21–23] proposed attention module in the form of paral-
lel concatenation in their CNN framework. However, none of their techniques
deployed transformation layers before, hence, there is a possibility that redun-
dant features (or, very similar features) might have been extracted in those
parallel concatenation blocks, leading to overfitting in the model performance.
Our proposed framework first time introduced the concept of the Tx-layer
(through pcb), which automatically transforms original feature maps into its
complementary version. Thus, proposed pcb works like an efficient data (or,
feature) augmenter inside the model, to the best of our knowledge. As a con-
sequence, the proposed pcb block automatically increases the generalization
ability of the model, thus, mitigating the class imbalance problem to a certain
extent.

We propose a new kind of lemma of CNN model in this research, in a very
generalized way which is as follows:

Lemma1: If a CNN model, comprised of two parallel connections, extracts
distinct features (in both such connections) that are essential for the final clas-
sification task, then that makes the model more stable than a series connection.
Furthermore, extra distinct (or, complementary) features extracted in parallel
concatenation, enable the network to generalize better for minor classes and thus,
automatically alleviating the class imbalance problem efficiently.

This is to clarify that, the idea of parallel concatenation is not exactly new.
Previously Cornia Marcella et al. [30] pointed out one of the limitations of a
Deep CNN model (having a large number of layers) that, the features that were
extracted earlier at the beginning layers (of CNN), are mostly forgotten at the
final decision of classification. Thus, many researchers suggested making a paral-
lel concatenation to fuse those features from previous layers to the output layer.
Later it becomes trends while numerous researchers [21–24] started employing
attention module through parallel connection. In this research, we have further-
more extended that concept into a generalized concept that any CNN model,
having those parallel concatenation layers, if extracting a bit distinct kinds of
features, automatically resolves the class imbalance problem in a generalized
way. For example, MobileNet-V2 [28], and Xception [27] models have already
utilized similar kinds of parallel concatenation in their model architecture, there-
fore, they have decent performances on these imbalanced MRI datasets, despite
having higher complexity of their architecture.

3 Results and Analysis

The results and analysis section can be further summarized into two, (a) Training
specification, (b) Experimental results comparisons and analysis.

3.1 Training Specifications

The training specifications of all of the models are given below:
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1. The model was built using TensorFlow and Keras sequential API and the
experiments were run on T4 GPU(Colab) environment as well as GPU
P100(Kaggle). Colab environment provided a RAM of 25GB and Kaggle
provided 100GB of RAM for the experiments.

2. All the datasets were randomly split into 80-20% ratio in a stratified way
which is more feasible for class imbalance problem. This random splitting
of train-test is the most authentic way of data splitting [31] so far for deep
learning model. The train set was further partitioned into 80-20% split (ran-
dom) for creating the validation dataset.

3. All the images in the entire dataset were resized to 224 x 224 prior to splitting
the dataset.

4. A Batch size of 64 was employed throughout all experiments to train all the
CNN models.

5. A learning rate (lr) of 0.00095 was chosen empirically, for Adams optimizer.
6. For “AD Dataset”, the model was trained for 18 epochs and moreover, an

adaptive learning rate (alr) of 5% decaying rate, is deployed after 8 epochs.
7. For “ADNI dataset”, we have not employed any alr, which means we train it

for a fixed lr of 0.00095 for 15 epochs, because we have found ADNI (Axial)
dataset is a very simple dataset and loss was converging much smoother way,
without having any fluctuation.

8. For “OASIS” dataset, we employed a total of 7 epochs only, with alr (5%
decaying rate) employed after 4 epochs.

9. This is to clarify that, we have not employed any early stopping criteria for
model training, because we noticed that for a model (trained from scratch)
early stopping often stops the training too earlier than expected.

10. We have also implemented a pre-trained Pool-based Vision Transformer
(PiT) model, on all three datasets. First, we have implemented it with the
same training framework i.e., total 18 epochs with alr after 8 epochs. How-
ever, we observed that their model does not have the capability to learn
very fast (in only 15 or 18 epochs). Thus, especially for PiT model, we also
implemented the model for 50 epochs on all MRI datasets.

3.2 Experimental results comparisons and analysis

We have implemented numerous pre-trained CNN models VGG-16, Xcep-
tion, DenseNet-121, MobileNet etc. (which are 100% fine-tuned from ImageNet
dataset) on all three MRI datasets. Along with it, we have also implemented
two existing CNN model, (I) 2D-M2IC (proposed by Helaly et al. [6]), and (II)
MSC-Net (proposed by Liu, Z. et al. [22]) (trained-from-scratch) which were
for AD detection. Furthermore, we have compared the efficacy of the proposed
framework with a recent trend Pooling-based Vision Transformer (PiT) model
[20]. Experimental results in Table 1, reveal that the proposed “AD-Lite Net”
(trained from scratch) has consistently outperformed all the CNNs and PiT
models by a substantial margin on all three MRI datasets. Furthermore, a com-
parison of the classification reports of the proposed AD-Lite Net model and
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Table 1. Comparisons of several existing CNN models with the proposed framework
(AD Lite-Net) on testing, for all three MRI datasets (Weighted Average)

Model/ Methods AD-Dataset ADNI Dataset OASIS Dataset No. of param (lakhs)

Accur- acy F1score secs/ ep Accur- acy F1score secs/ ep Accur- acy F1score secs/ ep

DenseNet-121 (fine
tuning)

0.500 0.500 48 0.739 0.739 35 0.962 0.962 76 71.54

VGG-16 (fine tuning) 0.648 0.627 56 0.502 0.327 44 0.251 0.167 87 147.17

Xception (fine tuning) 0.892 0.891 70 0.997 0.997 54 0.951 0.951 112 208.15

MobileNet-V2 (fine
tuning)

0.938 0.938 15 0.994 0.994 12 0.973 0.973 30 32.11

Pooling-based ViT
(PiT) [20]

0.581 0.584 20 0.621 0.618 18 0.313 0.234 30 45.91

Pooling-based ViT
(PiT) [20] with 50
epochs

0.917 0.917 20 0.925 0.926 18 0.285 0.267 30 45.91

2D-M2IC [6]
(train-from-scratch)

0.882 0.881 2 0.996 0.996 1 0.937 0.937 3 8.19

MSC-Net+SE-Net [22]
(train-from-scratch)

0.893 0.901 81 0.530 0.51 64 0.877 0.877 113 144.58

AD-Lite Net
(train-from-scratch)
proposed

0.982 0.981 5 0.999 0.999 4 0.996 0.996 12 2.32

AD-Lite without parallel concatenation, is presented in Table 2. This is to clar-
ify that accuracy can not be counted on a specific class, it is always the overall
accuracy of the model, thus, in Table 2 only one value of “Accuracy” is pre-
sented in one column. The results in Table 1 and Table 2 further strengthen
and verify our proposed theory which was proposed in Section 2.2. Further-
more, the quality metrics along with their graphs, and confusion matrices of
all these experiments (mentioned in table-1) are available in a Github link:
https://github.com/ArchitGupta16/Alzheimer-Detection/tree/main.

An ablation study of the proposed AD-Lite model is also available in that
link and this is further explored in a supplementary material.

From Table-1 this is evident that the efficacy of the VGG-16 and Dense-Net
are relatively lesser than that of other pre-trained CNN models. VGG-16 [32]
usually does not deal well with the class imbalance problem, due to the lack of
feature extraction in both spatial and spectral domains. Moreover, due to utiliz-
ing back-to-back convolutional layers (both in VGG-16 and DenseNet), the num-
ber of hyper-parameters in their model increased significantly, thus, over-fitting
is inevitable in their model performances for small datasets. The most imbal-
anced dataset was the Oasis dataset, in which this is evident that VGG-16 suffers
considerably to achieve higher accuracy and F1 score. Moreover, DenseNet-121
model suffers from very poor accuracy both in AD-Dataset and ADNI dataset.
On the other hand, MobileNet-V2, Xception models have performed way bet-
ter than VGG-16 and DenseNet-121, because of their lightweight framework.
Xception is a modified version of Inception-V3 and the first time they incor-
porated Depth-Wise Separable Convolutional (DWSC) layers in their model,
explored in Section 2.2. Whereas, MobileNet-V2 utilizes both DWSC layers and
convolutional layers in its model, additionally, it leverages GAP layer instead of
flatten layer. Due to utilizing these components in their model, both of these
models avoid overfitting and as a consequence, they have decent performances
throughout all these (small) MRI datasets.
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Table 2. Comparisons of Classification Reports of the proposed AD-Lite Net model
with and without Parallel Concatenation, on the “AD-Dataset”

Classes AD-Lite Net without Parallel
Concatenation

AD-Lite Net with Parallel
Concatenation

Precision Recall F1-Score Accuracy Precision Recall F1-score Accuracy

Very-Mild Demented 0.97 0.94 0.95 0.96 1.00 0.96 0.98 0.98

Mild Demented 0.99 0.94 0.97 0.99 0.98 0.99

Moderate Demented 1.00 0.92 0.96 1.00 1.00 1.00

Non-Demented 0.95 0.99 0.97 0.97 1.00 0.98

Macro-Average 0.98 0.95 0.96 0.99 0.98 0.99

Weighted Average 0.96 0.96 0.96 0.98 0.98 0.98

Fig. 3. Validation graph comparison of proposed AD-Lite Net with vs AD-Lite Net
without pcb, blue line indicates performance of AD-Lite without pcb and green line
indicates performance of AD-Lite with pcb; (a) Accuracy vs epochs, (b) Recall vs
epochs, (c) Precision vs epochs, (d) Loss vs Epochs

We have also implemented one of the recent trend models, Pooling based
ViT (PiT) [20], on all three MRI datasets. Conventional ViT models can not
be implemented on these small datasets, due to the complexity in their model
architecture. Therefore, we have implemented PiT instead of ViT. From Table-1
, this is apparent that the PiT model with 50 epochs, has achieved decent efficacy
in both AD and ADNI datasets, however, their model has struggled to generalize
in minor classes, for OASIS dataset. A recently proposed 2D CNN model (2D-
M2IC) [6] is also implemented in this study, which is trained from scratch. The
number of hyper-parameters in 2D-M2IC is considerably lesser (8.19 lakhs) than
in other models. Table-1 shows that 2D-M2IC achieves good accuracy, and F1
score both in ADNI and OASIS datasets, however, it struggles to generalize the
same in AD Dataset. Additionally, we have implemented a recently proposed
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model for AD detection, that is, “MSC-Net,” along with SE-Net attention block
[22] on all three datasets. This model was trained from scratch with the same
specification as the proposed model. Experimental results suggest that MSC-
Net (with the SE-Net attention block) has achieved a commendable accuracy of
89.3% and 87.7% for AD and Oasis dataset respectively, nevertheless, it severely
failed on ADNI dataset. Due to employing higher number of hyper-parameters
(144.6 lakhs) it exhibited over-fitting for small dataset.

Overall, Table 1 reveals that some models performed occasionally well on
particular datasets, however, most of them failed to generalize on all three MRI
datasets. Only MobileNet-V2 [29], and the proposed AD-Lite Net model have
obtained decent accuracy and F1 score more than 90% consistently, over all three
MRI datasets. Furthermore, this can be observed from Table 1 and Table 2 that
the proposed AD-Lite Net has achieved the best accuracy, precision, recall, and
F1 score (so far) on all three MRI datasets. This is also apparent from the graph
in Fig.3 that the proposed “AD-Lite Net” has converged to higher accuracy
and precision much faster after integrating the “parallel concatenation block
(pcb)”. This also reveals that by utilizing this pcb, the proposed framework gen-
eralizes much more effectively than previous and the validation graph becomes
more stable. Furthermore, from Table 2, this is evident that the macro-averages
of precision, recall, and F1-score have been boosted by 1-3%, after leveraging
pcb on the AD-Lite Net. This is a significant improvement, which justifies the
necessity of incorporating “pcb” in the proposed framework. Hence, these exper-
imental results support our proposed theory and Lemma1 which were proposed
in Section 2.2.

We have also conducted a 10-fold cross validation experiment by combining
two datasets. ‘AD dataset’ and ‘ADNI dataset’, which had dis-similar statis-
tics. This merging is done after labelling the ‘Mild Demented’ and ‘Very Mild
Demented’ classes in AD dataset into a single class Mild-Demented class. The
idea was to blend diverse statistical images from these two datasets to cre-
ate a challenging dataset. By this 10-fold cross-validation experiment, we effec-
tively created the equivalent of 10 different datasets (we call them fold1-to-
fold10 in Table-3 ), where each dataset has distinct testing set, having different
statistics compared to the same of other 9 datasets. The results of this 10-fold
cross-validation, with mean and standard deviation values, have been presented
in Table-3 and also available in the aforementioned GitHub repository. These
results demonstrate that the proposed “AD-Lite Net” is capable of achieving
98.3-99.7% (Mean 99%) accuracy consistently, in this challenging 10-fold cross-
validation experiment as well. Furthermore, the standard deviation of accuracy,
precision, recall and F1 score across these 10 folds is significantly low, that is
0.4% only. This also indicates that the performance of the proposed model has
been remarkably stable and it indeed resolved the class imbalance issue in a very
generalized way. Hence, this experiment validates the generalization capability
of the proposed model in a highly efficient way.
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Table 3. Testing results for 10-fold cross validation on merged dataset

folds Accuracy Precision Recall F1score AUC secs/ ep

fold1 0.995 0.995 0.994 0.994 0.999 7

fold2 0.984 0.984 0.984 0.984 0.998 6

fold3 0.992 0.992 0.992 0.992 0.999 7

fold4 0.991 0.991 0.991 0.991 0.999 6

fold5 0.983 0.983 0.983 0.983 0.999 6

fold6 0.992 0.992 0.992 0.992 0.999 6

fold7 0.994 0.994 0.994 0.994 0.999 6

fold8 0.988 0.988 0.988 0.988 0.999 7

fold9 0.997 0.997 0.997 0.997 0.999 6

fold10 0.985 0.985 0.985 0.985 0.997 7

Mean± Std dev 0.990± 0.004 0.990± 0.004 0.990± 0.004 0.990± 0.004 0.999± 0.0008 6.4

4 Conclusion and Future Work

One lightweight and concatenated CNN model (train from scratch) was pro-
posed for automatic Alzheimer’s detection from MRI images. “Parallel concate-
nation block”, incorporated into the base model, leveraged a novel Tx-layer
which extracted unique salient features for Alzheimer’s disease, thus, automati-
cally mitigating the class imbalance problem in a generalized way. Experimental
results on three different MRI datasets showed that there was a lack of gen-
eralization of all the existing and pre-trained CNN models. The AD-Lite Net
model with concatenation block, not only generalized well for all three MRI
datasets, but also, achieved the best accuracy, precision, recall, F1 score for all
three datasets. Furthermore, the proposed framework outperformed one recent
trends model, Pooling-based Vision Transformer (PiT), by a significant margin.
Hence, this can be concluded that the proposed AD-Lite Net successfully allevi-
ated all the challenges for AD detection from MRI datasets, and this proposed
framework can perform well uniformly for any MRI dataset. A 10-fold cross-
validation experiment also demonstrated the strong generalization capability of
the proposed “AD-Lite Net”.

This is to clarify that, until now, we worked with MRI datasets that did
not include subject-specific images. Moving forward, our goal is to extend this
project to predicting Alzheimer’s disease at different subjects instantly which
will be a more challenging and valid direction from the perspective of medical
experts. In order to deal with more practical (noisy) data taken from a hospital,
we are also planning to incorporate one extra attention module in our model.
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Abstract. Mild cognitive impairment (MCI) is characterized by subtle
changes in cognitive functions, often associated with disruptions in brain
connectivity. The present study introduces a novel fine-grained analysis
to examine topological alterations in neurodegeneration pertaining to six
different brain networks of MCI subjects (Early/Late MCI). To achieve
this, fMRI time series from two distinct populations are investigated:
(i) the publicly accessible ADNI dataset and (ii) our in-house dataset.
The study utilizes sliding window embedding to convert each fMRI time
series into a sequence of 3-dimensional vectors, facilitating the assessment
of changes in regional brain topology. Distinct persistence diagrams are
computed for Betti descriptors of dimension-0, 1, and 2. Wasserstein dis-
tance metric is used to quantify differences in topological characteristics.
We have examined both (i) ROI-specific inter-subject interactions and
(ii) subject-specific inter-ROI interactions. Further, a new deep learning
model is proposed for classification, achieving a maximum classification
accuracy of 95% for the ADNI dataset and 85% for the in-house dataset.
This methodology is further adapted for the differential diagnosis of MCI
sub-types, resulting in a peak accuracy of 76.5%, 91.1% and 80% in clas-
sifying HC Vs. EMCI, HC Vs. LMCI and EMCI Vs. LMCI, respectively.
We showed that the proposed approach surpasses current state-of-the-art
techniques designed for classifying MCI and its sub-types using fMRI.

Keywords: fMRI time series · Sliding window embedding · Persistent
homology · Wasserstein distance · Deep learning

1 Introduction

Mild Cognitive Impairment (MCI) stands as a crucial stage bridging nor-
mal cognitive aging and dementia, often serving as a precursor to conditions
like Alzheimer’s disease (AD) and other neurodegenerative disorders [1,2,18].
Research indicates that individuals with MCI progress to AD at a rate of approxi-
mately 10-15% per year [13], making MCI as the most challenging group for early
detection and diagnosis of AD. Based on the extent of episodic memory impair-
ment, MCI can be primarily categorized into Early Mild Cognitive Impairment
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15312, pp. 17–32, 2025.
https://doi.org/10.1007/978-3-031-78198-8_2
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(EMCI) and Late Mild Cognitive Impairment (LMCI). Notably, the risk of LMCI
transitioning to AD surpasses that of EMCI. However, detecting EMCI remains
clinically challenging due to subtle alteration from healthy controls (HC). Addi-
tionally, the classification of EMCI and LMCI based solely on memory scores may
lead to low specificity and misclassifications. The search for sensitive biomarkers
that change alongside disease progression offers hope in refining disease staging,
potentially decreasing the prevalence of AD through early intervention. To be
more specific, EMCI is particularly an important sub-type of MCI for imple-
menting interventions, aimed at potentially modifying the progression of the
condition. Hence, there is a growing emphasis on delineating the neurobiological
alterations associated with EMCI and LMCI, vital for early diagnosis, prognosis,
and intervention strategies [27]. The identification of potentially high-sensitivity
diagnostic markers evolving alongside disease progression can significantly aid
physicians in making accurate diagnoses. Recent improvements in brain imaging,
especially with fMRI, offer valuable insights into how MCI affects brain function.
By studying changes in various brain networks, we gain a better understanding
of how MCI disrupts communication within the brain. These disruptions are key
to understanding the disease early on, which could help delay or reverse cogni-
tive decline associated with MCI and its sub-types. In the current study, rather
than relying on state-of-the-art machine learning and deep learning methods
which are commonly used for classification of MCI and its sub-types using var-
ious MRI modalities[1,2], we have reported completely different approach. We
have utilized persistent homology- an advanced tool in computational topology,
in order to explore potential differences in topology between MCI sub-types and
compared them to HC. This novel approach diverges from conventional feature
engineering techniques and offers a unique perspective on understanding the
subtle yet significant variations associated between MCI sub-types and HC.

Persistent homology is a powerful topological data analysis (TDA) approach
falling under the branch of algebraic topology. It provides a robust framework for
analyzing the topological features of data, particularly in the context of shape
and structure. At its core, persistent homology aims to capture the evolution of
topological features across different spatial scales by constructing a sequence of
topological spaces based on the input data. It reveals how specific topological
characteristics remain consistent or evolve as we observe these spaces at different
levels of detail. Persistent homology finds its application in various domains. In
the context of medical image analysis, it is used for analysis of endoscopy [11],
breast cancer [30], analysis of brain networks for differentiating various types of
brain disorders [24,29], detecting transition between states in EEG [26], iden-
tifying epileptic seizures [8] and distinguishing between male and female brain
networks [9]. Notably, persistent homology of time series emerges as a rapidly
growing field with several compelling applications like computing stability of
dynamic systems [23], to quantify periodicity [28] and differences in visual brain
networks [5].

In this study, we analyze fMRI time series data derived from 160 Dosenbach
Regions of Interest (ROIs), which are selected from six classical brain networks.
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Each ROI corresponds to a distinct time series, and our focus is on leveraging
persistent homology to analyze these fMRI time series for the classification of
MCI and its sub-types. The present study offers two significant contributions:
(i) The introduction of a novel paradigm that employs persistent homology on
fMRI time series to quantify topological changes in functional connectivity pat-
terns between MCI sub-types.
(ii) A comprehensive statistical analysis of topological features between HC and
MCI sub-types is conducted to detect critical brain regions to examine distinct
pattern linked with different stages of MCI across each homology dimension. To
the best knowledge of authors, no other research has examined the efficacy of
persistent homology of fMRI time series for differential diagnosis of MCI.

Fig. 1. Block schematic of the proposed methodology

2 Dataset Description

The study utilizes fMRI images from cohorts representing two distinct popu-
lations. The baseline study incorporates subjects from the publicly available
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [17], with a repeti-
tion time (TR) of 3000 ms and an echo time (TE) of 30 ms. This is complemented
by our in-house TLSA (TATA Longitudinal Study for Aging) cohort, which has
a TR of 3200 ms and a TE of 30 ms. The TLSA is an urban cohort investiga-
tion aimed at accumulating long-term data to discern risk and protective factors
associated with dementia in India. Both cohorts feature images acquired in the
sagittal acquisition plane with a 3D acquisition type. The subjects included
from ADNI are: MCI (N = 50), EMCI (N = 163), LMCI (N = 141) and
HC (N = 179). The efficacy of the proposed methodology is further verified
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on our in-house MCI (N = 50) and HC (N = 50) cohort. In our in-house
MCI cohorts, individuals diagnosed with MCI met specific criteria, having clin-
ical dementia rating or CDR value (the current gold standard for assessing the
stages of patients diagnosed having dementia) of 0.5. All fMRI images underwent
the same preprocessing pipeline, which included motion correction, adjustment
for slice timing, normalization to the standard MNI space, and regression to
account for nuisance variables. These preprocessing steps were performed using
FSL (FMRIB Software Library) version 6.0.6 [19].

3 Proposed Methodology

The block diagram of the proposed methodology is shown in Figure 1. Our
method involves converting the 1D fMRI time series data into a 3D point cloud,
from which persistent diagrams are obtained. We utilize the Wasserstein distance
metric to compare all possible pairs of persistent diagrams, enabling quantifica-
tion of topological alterations. These alterations are examined in two contexts:
(i)across subjects for a given ROI (ii)across ROIs for a given subject. The in-
house data will be made available to the research community after procedural
formalities by the administration at the center. 1

3.1 Extraction of Time Series

The fMRI time series captures the temporal evolution of brain activity, providing
a dynamic view of how different brain regions interact over time. The study care-
fully selects relevant brain regions from Dosenbach’s ROIs to extract fMRI time
series for identifying meaningful patterns and differences between MCI and its
sub-types. The Dosenbach’s ROIs[10] (n = 160) are divided into six distinct brain
networks: cerebellum (n=18), cingulo-opercular (n=32), default mode (n=34),
fronto-parietal (n=21), occipital (n=22), and sensorimotor (n=33) networks,
encompassing various interconnected brain regions. Each of these brain network
is linked to specific cognitive, sensory, and motor functions and may show unique
disruption patterns at various stages of MCI. Therefore, by analyzing all six net-
works, the study offers a comprehensive assessment of network-specific changes,
which could serve as distinct biomarkers for different stages or types of cognitive
impairment. A representative of 5mm radius sphere drawn at each voxel location
contributed as a time series {vt, t = 1, 2, . . . , N}.

3.2 Point Cloud Construction from Time Series

Creating an efficient point cloud representation from 1D time series data is a
crucial step for computing persistent homology [14,28]. In this step, the goal is
to construct a richer feature space that enables the analysis of changes in the

1 The codes of this analysis are available at https://github.com/blackpearl006/ICPR-
2024

https://github.com/blackpearl006/ICPR-2024
https://github.com/blackpearl006/ICPR-2024
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intrinsic topological properties of MCI. Each point in the time series is mapped
to a vector in 3D space, in order to capture the complex temporal dynamics
(Figure 1.C). For this, the study employs sliding window embedding (SW) with
embedding dimension M = 2 and time lag τ = 1 in order to convert the fMRI
time series vt into point clouds S. The choice of length of the sliding window is
set to 3 to minimise noise interference and better interpretability.

The sliding window embedding of a function f based at t ∈ R into R
M+1 is

represented as follows (Equation 1):

SWM,τf : R → R
(M+1), t →

⎡
⎣

f(t)
f(t + τ)
f(t + 2τ)

⎤
⎦ (1)

Thus, selecting different values of t results in a set of points, known as a
sliding window point cloud for the function f . Multiple literature sources point
to the efficiency of sliding window methods [15] in capturing dynamic functional
connectivity in resting-state fMRI. In this study, for embedding dimension M =
2, the point cloud of the fMRI time series is represented by Equation 2:

S = {vi : i = 1, . . . , N, vi ∈ R
3} (2)

This representation ensures each point vi in the point cloud S is a vector in
R

3, maintaining consistency with the spatial dimensions of the fMRI data.

Fig. 2. Illustrating the Wasserstein distance as derived from the persistence diagram of
fMRI time series for homology dimension-0, showing interactions among ROIs within
the DMN for one representative subject. The 34 ROIs within the DMN exhibit a
consistent spatial arrangement, wherein nearby brain regions are grouped together.
The arrangement of these 34 ROIs remains consistent across all subjects. A low value
of Wasserstein distance suggests synchronized neural activity and coordination between
brain regions, while a high value of distance indicates distinct activity patterns and
potential functional independence.
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3.3 Persistent Homology

This step involves computing persistent homology from the generated 3D point
clouds to extract topological features of varying dimensions. This is accomplished
by constructing a series of simplicial complexes using Vietoris-Rips filtration and
calculating their homological features. These features capture the underlying
topological structure in the data, identifying meaningful patterns and differ-
ences between MCI and its sub-types. We exploit the information encoded in
persistence diagram to analyze the differences in topology of brain networks of
individuals with MCI from HC. Persistence diagram encodes the persistence fea-
tures in data across the filtration parameter range as a collection of points in the
two-dimensional Euclidean space R

2. A common approach for constructing a fil-
tration from a point cloud is through the Vietoris-Rips complex. This complex is
generated from the point cloud by connecting any subset of points whose pairwise
distances fall within a specified threshold, creating a simplex. Thus, filtration is a
collection F = {Fε}ε≥0 of spaces with Fε ⊂ Fε′ continuous ∀ε ≤ ε′. The ith persis-
tence diagram of F is a multiset dgmi(F) ⊂ {(p, q) ∈ [0,∞]× [0,∞] | 0 ≤ p < q}
where each pair (a, b) ∈ dgmi(F) encodes a i -dimensional topological feature, in
other words Betti descriptors2 associated with a simplicial complex that born at
Fb and dies at Fd. The quantity (d−b) is the persistence of the feature, and typ-
ically measures significance across the filtration. In our study, given a time series
(Vt) the sliding window point cloud SWM,τf is computed which is in a metric
space (X,MX). The Rips filtration VR(X,MX) is derived from the Vietoris-
Rips complex V Rε(X,MX), computed at each scale ε ≥ 0. The mathematical
expression for computing Rips filtration is depicted in Equation 3

VR(X,MX) := {V Rε(X,MX)}ε≥0, where

V Rε(X,MX) := {{x0, ..., xn} ∈ X | max
0≤i,j≤n

MX(xi, xj) < ε,n ∈ N (3)

The birth-death pairs (b, d) in the Rips persistence diagrams dgmVR
i (X) :=

dgmiVR(X,MX) reveal the underlying topology of space X. The points (b, d)
in dgmVR

i (X) with large persistence values (d − b) suggest the most persistent
topological features of the continuous space where X is concentrated.

The paper employs the Wasserstein distance to measure the dissimilarity
between the persistence diagrams. This metric quantifies the differences in the
topological features between subjects, providing a robust basis for distinguish-
ing between different MCI sub-types. Thus, it enhances the ability to compare
topological changes in brain activity. In this particular step, the paper contri-
bution lies in analysing both inter-subject and inter-ROI Wasserstein distance

2 In algebraic topology, the topological features of a space are represented as holes or
cycles in various dimensions. The number of k-dimensional holes in a d-dimensional
simplicial complex (with k ≤ d) is denoted by the Betti number βk or Hk. Thus,
0-dimensional holes (β0orH0) correspond to connected components, 1-dimensional
holes (β1orH1) represent tunnels (or loops) and 2-dimensional holes (β2orH2) are
voids.



Leveraging Persistent Homology for Differential Diagnosis 23

measures to highlight the specific brain regions where changes are pronounced in
MCI sub-types. In context of fMRI time series analysis using topological persis-
tence diagram, the Wasserstein distance between fMRI time series of two brain
regions captures the degree of similarity in their patterns of neural activity. A
low Wasserstein distance indicates that the two fMRI time series exhibit similar
patterns of neural activity over time. In other words, it suggests that the two
brain regions are functionally synchronized and are likely engaged in coordinated
activity. On the contrary, a high Wasserstein distance suggests that the fMRI
time series of two brain regions have distinct patterns of neural activity, may be
functionally dissociated or independent from each other. High Wasserstein dis-
tances may also indicate abnormalities in functional connectivity between the
two brain regions, which could be indicative of any neurological or psychiatric
disorders. Figure 2 illustrates the variability in Wasserstein distance among all
ROI pairs for a single representative subject. In computational topology, Bot-
tleneck distance and Wasserstain distance are the two widely used measures for
quantifying the dissimilarity between two persistence diagrams [12]. Suppose, f1
and f2 are two different filtrations and let X = dgmp(f1) and Y = dgmp(f2)
denote the pth persistence diagrams corresponding to f1 and f2. The Wasserstein
and Bottleneck distance metrices are used to quantify the dissimilarity between
these two multisets X and Y . Let L∞(f1, f2) = ‖f1 − f2‖∞ denote the supre-
mum distance between f1 and f2, and η denotes a bijection of X → Y , then, the
q−Wasserstein distance between two persistence diagrams X and Y is defined
as

Wq,p(X,Y ) =

[
inf

η:X→Y

∑
x∈X

||x − η(x)||q∞
] 1

q

(4)

To compute the distance elements of X and Y one-to-one (bijection η) are
matched. It is usually done in the following way: first for each pair of elements,
x ∈ X and y = η(x) ∈ Y , the difference between them (the cost function) is
calculated using ||x − η(x)||∞ that is basically L∞ norm. Adding up the qth

degrees ||.||q∞, we get a notion of the difference between the whole multisets X
and Y under the matching η : X → Y . Taking the infimum over all possible
bijections η, we get the difference between multisets X and Y under the best
matching possible, effectively removing η from further consideration. The bot-
tleneck distance is the Wasserstein distance, with parameter q → ∞. Hence, one
drawback of the bottleneck distance is its insensitivity to details of the bijection
beyond the furthest pair of corresponding points. Due to this, the present study
considers Wasserstein distance for quantification.

In this study, the persistence diagram is computed for two different scenarios:
(i) ROI-specific- across all ROIs of a particular subject, and (ii) Subject-specific-
across all considered subjects of HC and MCI for a particular ROI. Therefore,
Wasserstein distance Wq,p(X,Y ) in Equation 4 is computed to measure the pair-
wise distance between all ROIs as well as between all subjects. This is described
in the next sub-sections (Section 3.4 and Section 3.5).
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3.4 ROI-Specific Inter-Subject Interactions

ROI-specific analysis for all brain networks is conducted to understand the dis-
similarity in topological patterns across all considered subjects for each of the
three Betti descriptors (H0, H1, and H2). This is represented in the pairwise-
subject distance matrix (PS) of dimensions N × N , where N is the number
of subjects. The mathematical representation of matrix PS is shown in Equa-
tion 5. Each element PS(i, j) indicates the Wasserstein distance between the
persistence diagrams of subject i and subject j for a given ROI of a specific
brain network. The sample images as obtained from PS for one specific ROI of
each brain network are shown in Figure 4.

PS =

⎡
⎢⎢⎢⎣

Wq,p(dgm(Subj1), dgm(Subj1)) . . . Wq,p(dgm(Subj1), dgm(SubjN ))
Wq,p(dgm(Subj2), dgm(Subj1)) . . . Wq,p(dgm(Subj2), dgm(SubjN ))

...
. . .

...
Wq,p(dgm(SubjN ), dgm(Subj1)) . . . Wq,p(dgm(SubjN ), dgm(SubjN ))

⎤
⎥⎥⎥⎦

(5)

3.5 Subject-Specific Inter-ROI Interactions

Here, for each of the three Betti descriptors (H0, H1, H2), we compute the
pairwise-ROI distance matrix (PR) with dimensions n × n, where n is the num-
ber of ROIs of a specific brain network. The mathematical representation of
the matrix PR is shown in Equation 6. The Wasserstein distance in matrix PR
represents the interaction between different ROIs. Each element in PR(i, j) indi-
cates the distance between the persistence diagrams of ROI i and ROI j. How-
ever, computing persistent homology and Wasserstein distance matrices (PR and
PS) are computationally very expensive, for which we utilised high-performance
computing (HPC) resources, specifically an Intel(R) Xeon(R) Gold 6240 CPU
@ 2.60GHz with dual CPUs and 192 GB of memory, were utilized.

PR =

⎡
⎢⎢⎢⎣

Wq,p(dgm(ROI1), dgm(ROI1)) . . . Wq,p(dgm(ROI1), dgm(ROIn))
Wq,p(dgm(ROI2), dgm(ROI1)) . . . Wq,p(dgm(ROI2), dgm(ROIn))

...
. . .

...
Wq,p(dgm(ROIn), dgm(ROI1)) . . . Wq,p(dgm(ROIn), dgm(ROIn))

⎤
⎥⎥⎥⎦

(6)

3.6 Classification

The study integrates the 1D and 2D features from Wasserstein distances that
captures the inter-ROI interaction for each subject into a classification frame-
work using conventional CNN. The classification results demonstrate the effec-
tiveness of the proposed method in distinguishing between different stages of
MCI, showcasing the practical applicability of persistent homology in medical
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diagnostics. To perform classification, the subject-specific PR matrix (n × n)
is utilized. The proposed CNN architecture used for classification purpose is
depicted in Figure 3. This model integrates 1D features extracted from each
ROI pair of the PR matrix with the 2D CNN features. Thus, the proposed
classification model includes two steps. First, the Wasserstein distance matrix is
flattened to create 1D features, focusing on pairwise relationships. In the second
step, 2D features are extracted from the distance matrix through CNN layers
to capture local patterns and spatial hierarchies (Figure 2). The features from
the flattened matrix and the CNN layers are concatenated, creating a unified
feature vector that combines information from both linear and convolutional
layers. The concatenated features are then passed through several dense layers
with dropout for regularization, reducing the risk of overfitting. Combining 1D
and 2D features allows the model to create a richer and more diverse feature
space that can capture different aspects of the data. 1D features can represent
sequential or linear relationships, while 2D features can capture spatial or topo-
logical relationships. Hence, integrating both 1D and 2D features offer several
advantages including a comprehensive and richer feature space for classification,
enhanced learning from different perspectives, helps in mitigating the impact of
noise and artifacts, and the ability to capture both local and global patterns. For
the 2D features, our model comprises three CNN layers with 16, 32, and 64 filters
respectively. This is followed by a max-pooling layer and another convolutional
block with two CNN layers having 128 and 256 filters. We use kernel size of 3
for all CNN layers. Subsequently, a global average pooling layer condenses each
feature map into a single value, forming a linear feature vector. ReLU activation
functions are employed throughout the model. Simultaneously, the 1D features
of the PR matrix (n2×1), are processed through a linear layer, reducing them to
256 features. The resulting 256-dimensional feature vector from this linear layer
and the 256-dimensional feature vector from the 2D CNN are concatenated and
fed as an input to a series of fully connected layers of size 128, 64, and 32, each
incorporating dropout set to 0.2. A softmax activation function is applied at
the final layer for classification. Each Betti descriptor (H0, H1, and H2) from
every brain network is independently analyzed. The model is trained over 100
epochs using the Adam optimizer with a learning rate of 0.001 and a train-test
split of 80-20. Cross-Entropy loss is employed for training. The model is trained
to classify the following scenarios: (i) MCI versus HC (for both ADNI and our
in-house dataset), (ii) EMCI versus HC (ADNI), (iii) LMCI versus HC (ADNI),
and (iv) EMCI versus LMCI (ADNI). The classification part of this experiment
is conducted using Kaggle notebooks with 2 × 16GB NVIDIA Tesla T4 GPU
and the PyTorch deep learning framework.

4 Results and Discussion

The current study examines alterations in brain network topology between HC
and MCI sub-types using persistent homology of fMRI time series. Numerous
studies have been conducted over past decades to classify MCI from HC, with
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Fig. 3. The proposed deep learning architecture

several groups reporting fair classification performance. However the novelty in
the proposed method lies in incorporation of an innovative methodology that
combines sliding window embedding of fMRI time series with a tool originating
from the emerging field of computational topology. Furthermore, an extensive
statistical analysis on topological features comparing HC and MCI sub-types is
carried out, aiming to identify statistically significant ROI-pairs in each func-
tional brain network for investigating unique neurobiological patterns associated
with various stages of MCI across different homology dimensions.

Persistence homology is computed for dimension-0, 1, and 2 on each point
cloud using Vietoris-Rips filtration. The computation of persistent homology is
performed using Ripser software [3]. The filtrations provide a basis for computing
the persistent topological features that exist within the point cloud. The persis-
tence of topological features is then encoded in persistence diagram. For three
different homology dimensions H0, H1 and H2, the derived persistence diagram
for a point cloud is shown in Figure 1(d). As described in methodology section,
in the persistence diagram, every point corresponds to a specific topological fea-
ture. The magnitude of the difference between the “birth” (b) and “death” (d)
values indicates the life-span or persistence of the topological descriptors. The
Wasserstein distance metric is used to compute the dissimilarity between two
persistence diagrams. Figure 2 and Figure 4 capture this dissimilarity across all
ROIs and across all subjects, respectively.

Frompersistence diagramboth inter-subject (PS) and interROI (PR)Wasser-
stein distance is computed for each homology dimension as shown in Figure 1.(g)
and Figure 1.(h). The Wilcoxon rank-sum test is conducted at 99% C.I on PR
matrix to identify key ROI-pairs within brain and their associated patterns in
order to distingusish EMCI and LMCI. As discussed previously, since the Wasser-
stein distance between fMRI time series of two brain regions captures the degree
of topological similarity in their neural activation pattern, our study hypothesis
seeks to find ROI-pairs for which the inter-ROI Wasserstein distance between (i)
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Fig. 4. ROI-specific Wasserstein distance (dim-0) across all subjects of HC (n=50 )
and MCI (n=50 ) from each considered brain network- showing the visible difference
in pattern of Wasserstein distance between HC and MCI subjects. These ROIs are
(A) Post cingulate 108 (DMN), (B) inf cerebellum 121 (CB), (C) IPL 96 (FP), (D)
Occipital1 106 (OP), (E) Post cingulate 80 (CO) and (F) Pre-SMA 41 (SM).

Fig. 5. Visualization of P-plot at 99% C.I for Default mode network for EMCI (top
row) and LMCI bottom row. The column 1, 2 and 3 show the P-plot for homology
dimension 0, 1 and 2, respectively. Column 4, 5, and 6 highlight the ROI-pair that
showed significant differences (p < 0.01) in topology across all subjects of between (i)
HC and EMCI, (ii) HC and LMCI. The visualization clearly depicts significant ROIs
which are seen to be more concentrated in fewer brain regions as homology dimension
increases in case of LMCI as compared to EMCI.

HC Vs. EMCI, (ii) HC Vs. LMCI groups is statistically significant (p < 0.01).
Identification of such ROI-pairs in EMCI and LMCI may aid to uncover distinct
neurobiological signatures associated with different stages of MCI. The visualiza-
tion of the p-value plot which we refer as P-plot, as obtained for each ROI pair
of DMN is shown in Figure 5. The P-plot visualization shows clear disparity in
ROI pairs between EMCI and LMCI for each homology dimension-0 (column-4 ),
1 (column-5 ) and 2 (column-6 ). It is seen that significant ROI pairs tend to concen-
trate within fewer regions of DMN in the case of LMCI as compared to EMCI. This
pattern is seen to be consistent for all six brain networks and pronounced particu-
larly for homology dimension 2, followed by dimension 1. For example, as seen from
Figure 5, in LMCI, significant dissimilarities in brain activity with other ROIs are
primarily concentrated in two regions of DMN: post-cingulate-108 (PC108) and
Ventrolateral Prefrontal Cortex (vlPFC). Conversely, in EMCI, significant dis-
similarities in brain activity with other ROIs are extended to additional regions
such as vmPFC, occipital, and inf temporal, in addition to vlPFC and PC108, for
homology dimension-2. For dimension-1 also this spread in pattern across DMN
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Table 1. The classification accuracy as obtained across six distinct brain networks.

Comparison Dataset Dim. DMN FP OP SM CO CB

HC vs MCI ADNI H0 70.0 90.0 85.0 85.0 95.0 85.0

H1 65.0 90.0 90.0 75.0 75.0 75.0

H2 75.0 80.0 85.0 85.0 75.0 80.0

HC vs MCI In-house H0 82.4 71.4 57.8 85.0 70.6 63.0

TLSA H1 76.5 52.9 68.4 72.2 52.9 63.2

H2 70.6 64.7 73.8 55.0 76.5 57.9

HC vs EMCI ADNI H0 76.5 60.3 60.3 58.8 66.2 64.7

H1 61.8 69.1 75 57.4 52.9 60.3

H2 66.2 50 69.1 55.9 61.8 55.9

HC vs LMCI ADNI H0 91.1 76.8 84.1 80.1 74.6 71.4

H1 85.7 55.6 79.3 74.6 73 61.9

H2 63.5 65.1 58.7 66.6 53.9 60.3

EMCI vs LMCI ADNI H0 80.0 65.0 71.7 76.7 80.0 71.7

H1 75.0 66.7 68.3 70.0 61.6 68.3

H2 56.7 53.3 53.3 56.7 56.6 60.0

Table 2. Comparison of peak classification accuracy of the proposed CNN architecture
with the conventional Densenet-121 and also with random forest ensemble classifier to
check the efficacy of the proposed model in classifying HC and MCI.

Brain Densenet-121 Ensemble Classifier Proposed Model

NetworkADNI In-house ADNI In-house ADNI In-house

TLSA TLSA TLSA

DMN 80.0% 82.0% 67.0% 72.48% 91.1%82.4%

FP 89.6% 71.4% 83.0% 61.67% 90.0%71.4%

OP 74.4% 72.9% 84.0% 70.67% 90.0%73.8%

SM 80.0% 72.2% 80.0% 69.3% 85.0%85.0%

CO 90.0% 75.0% 86.0% 68.19% 95.0%76.5%

CB 85.0% 62.6% 82.0% 63.44% 85.0%63.2%

regions is more noticeable for EMCI than LMCI cases. Post cingulate cortex plays
a central role in various cognitive functions, including memory retrieval, atten-
tion, and self-referential processing. The vlPFC is portion of the prefrontal cor-
tex which is located on the inferior frontal gyrus, involved in higher-order cogni-
tive functions and executive control such as decision-making, response inhibition,
working memory, and goal-directed behavior. Thus, the significant topological dis-
similarities in activation pattern the post cingulate regions and vlPFC with several
other brain regions of DMN in LMCI as compared to EMCI likely reflects the pro-
gressive neurodegenerative changes associated with advanced stages of cognitive
impairment. These findings shed light on differences in the evolving patterns of
neural activity and functional connectivity within specific brain regions, offering
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Table 3. Comparative analysis with recent state-of-the-art techniques that used fMRI
data to differentiate disease sub-types as well as to distinguish MCI and its sub-types.

Reference YearModality (dataset) Subjects Accuracy

[16] 2022 fMRI (local) HC Vs. MCI 65.14%

[7] 2023 fMRI (ADNI) HC Vs. MCI 87%

[20] 2018 fMRI (ADNI) HC Vs. MCI 82.6%

EMCI Vs. LMCI 74.3%

[33] 2021 fMRI (ADNI) HC Vs. MCI 82.8%

[6] 2020 fMRI (ADNI) HC Vs. MCI 80%

[4] 2024 fMRI (ADNI) HC Vs. MCI 89.47%

[22] 2018 fMRI (ADNI) HC Vs. EMCI 74.23%

[21] 2020 fMRI (ADNI) HC Vs. EMCI 76.07%

[25] 2021 fMRI (ADNI) HC Vs. EMCI 74.42%

[32] 2021 fMRI (ADNI) HC Vs. LMCI 87.2%

[31] 2021 fMRI (ADNI) EMCI Vs. LMCI 79.36%

Proposed 2024 fMRI (ADNI) HC Vs. MCI 95% (H0)

method fMRI (in-house TLSA) HC Vs. MCI 85% (H0)

fMRI (ADNI) HC Vs. EMCI 76.5% (H0)

HC Vs. LMCI 91.1% (H0)

EMCI Vs. LMCI 80% (H0)

potential biomarkers for differential diagnosis. Furthermore, the significant dissim-
ilarities in Wasserstein distance within fewer regions particularly in the PCC and
vlPFC of DMN, in LMCI compared to EMCI implies a progression towards more
localized disruptions in brain activity as cognitive impairment advances. These
insights deepen our understanding of the topological changes occurring in neural
networks as cognitive impairment progresses, offering new directions for tailored
diagnostic and therapeutic interventions.

The performance of the proposed model in classifying MCI and its sub-types
is tabulated in Table 1. The classification using the proposed CNN model yields
the highest accuracy of 95% and 85% for ADNI and in-house TLSA MCI cohort,
respectively. In case of MCI sub-types classification from HC, the accuracy is
decreased to 76.5% to classify EMCI from HC. However, in classifying LMCI
from HC, highest accuracy of 91.1% is obtained. While distinguishing disease
sub-types EMCI Vs. LMCI, 80% accuracy is obtained. The variability in classi-
fication accuracy within the DMN can be attributed to the degree of cognitive
impairment that influence the model’s ability to distinguish between MCI sub-
types. While comparing the peak accuracy across all networks, it is found that
0-dimensional topological features (H0) perform the best. This is because H0

captures the most fundamental topological aspect of data which is the number
of connected components. This translates to identifying how functional connec-
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Fig. 6. Illustrating the variation in six standard clinical dementia rating features
between two distinct population: (i) ADNI cohort and (ii) in-house TLSA cohort.

tivity among different regions in a specific brain network evolve over time. In
neurodegenerative disease like MCI, initial changes often manifest as alterations
in basic connectivity pattern rather than more complex topological structures
like loops (H1) or voids (H2). This makes H0 a reliable measure for detecting
such changes, leading to better classification performance. Moreover, H0 fea-
tures are simpler and less prone to noise as compared to higher-dimensional
features. These complex features might introduce variability that does not con-
tribute meaningfully to classification performance. To validate the efficacy of
the proposed CNN model, its results are compared with those of the classical
DenseNet-121 architecture and the random forest, which has shown superior per-
formance among other random forest ensemble classifiers. It has been observed
that the deep learning model generally outperforms traditional machine learning
classifiers. On the ADNI dataset, the proposed CNN model surpasses both the
DenseNet-121 and the ensemble classifier. For the TLSA dataset, the perfor-
mance of the proposed CNN model is comparable to that of the DenseNet-121
model across all brain networks. This is shown in Table 2. However, the notable
differences in classification accuracy are observed between the two distinct pop-
ulation. This can arise due to several factors. Population from different regions
or ethnicity may have distinct demographic characteristics, genetic backgrounds,
lifestyle factors, cultural practices, socioeconomic status, education levels, envi-
ronmental exposures and prevalence rates of certain diseases. These differences
can contribute to variations in brain structure, function, and connectivity pat-
terns, affecting the results of fMRI analyses. Figure 6 shows the clear differences
in six standard CDR features as obtained for the two distinct population. More-
over, differences in data acquisition protocols and imaging parameters may result
in variations in the functional connectivity patterns between datasets of distinct
population. Hence, the present study reports the classification performance sep-
arately on two distinct populations to ensure that the data is as comparable as
possible and not confounded by site differences. This approach enhances the gen-
eralization ability and reliability of the proposed CNN methodology. It is seen
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that the proposed methodology outperforms the recent state-of-the art tech-
niques that utilized fMRI to study MCI. The table comparing the proposed
method with SOTA is shown in Table 3. The clinical relevance of the study
lies in its ability to localize critical regions in the brain network whose activity
patterns and connectivity are altered across different stages of MCI. By identify-
ing these key regions in brain network and their associated topological patterns
(Figure 5), the study provides valuable insights into the progression of cognitive
impairment and the underlying neurobiological changes. The findings from the
current study suggest the potential utility of employing persistent homology for
differential diagnosis of MCI. Nevertheless, further research is required in order
to validate these findings across diverse cohorts with more samples for conclusive
inferences.

Acknowledgement. We thank the Director, Dr. K.V.S. Hari and the administration
of Centre for Brain Research, IISc, for the support provided throughout the study.

References

1. Aithal, N., Pradeep, C.S., Sinha, N.: Mci detection using fmri time series embed-
dings of recurrence plots. In: 2024 IEEE International Symposium on Biomedical
Imaging (ISBI). pp. 1–4 (2024). https://doi.org/10.1109/ISBI56570.2024.10635716

2. Ammu, R., Sinha, N.: Analysis of mild cognitive impairment utilizing covariance
matrices of brain regions. In: 2023 IEEE 33rd International Workshop on Machine
Learning for Signal Processing (MLSP). pp. 1–6. IEEE (2023)

3. Bauer, U.: Ripser: efficient computation of vietoris-rips persistence barcodes. Jour-
nal of Applied and Computational Topology 5(3), 391–423 (2021)

4. Bhattacharya, D., , Sinha, N.e.: Multi-scale fmri time series analysis for under-
standing neurodegeneration in mci. arXiv preprint arXiv:2402.02811 (2024)

5. Bhattacharya, D., Sinha, N., Chattopadhyay, A., et al.: Image complexity based
fmri-bold visual network categorization across visual datasets using topological
descriptors and deep-hybrid learning. arXiv preprint arXiv:2311.08417 (2023)

6. Bi, X.a., Hu, X.e.: Multimodal data analysis of alzheimer’s disease based on clus-
tering evolutionary random forest. IEEE Journal of Biomedical and Health Infor-
matics 24(10), 2973–2983 (2020)

7. Bolla, G., Berente, D.B.e.: Comparison of the diagnostic accuracy of resting-state
fmri driven machine learning algorithms in the detection of mild cognitive impair-
ment. Scientific Reports 13(1), 22285 (2023)

8. Caputi, L., Pidnebesna, A., Hlinka, J.: Promises and pitfalls of topological data
analysis for brain connectivity analysis. Neuroimage 238, 118245 (2021)

9. Das, S., Anand, D.V., Chung, M.K.: Topological data analysis of human brain
networks through order statistics. PLoS ONE 18(3), e0276419 (2023)

10. Dosenbach, N.U., Nardos, B.e.: Prediction of individual brain maturity using fmri.
Science 329(5997), 1358–1361 (2010)

11. The classification of endoscopy images with persistent homology: Dunaeva, O.,
Edelsbrunner, H.e. Pattern Recogn. Lett. 83, 13–22 (2016)

12. Edelsbrunner, H., Harer, J.L.: Computational topology: an introduction. American
Mathematical Society (2022)

https://doi.org/10.1109/ISBI56570.2024.10635716
http://arxiv.org/abs/2402.02811
http://arxiv.org/abs/2311.08417


32 N. Aithal et al.

13. Farias, S.T., Mungas, D., Reed, B.R., Harvey, D., DeCarli, C.: Progression of mild
cognitive impairment to dementia in clinic-vs community-based cohorts. Arch.
Neurol. 66(9), 1151–1157 (2009)

14. Gakhar, H., Perea, J.A.: Sliding window persistence of quasiperiodic functions.
Journal of Applied and Computational Topology pp. 1–38 (2023)

15. Hindriks, R., Adhikari, M.H.e.: Can sliding-window correlations reveal dynamic
functional connectivity in resting-state fmri? Neuroimage 127, 242–256 (2016)

16. Hu, M., Yu, Y.e.: Classification and interpretability of mild cognitive impairment
based on resting-state functional magnetic resonance and ensemble learning. Com-
putational intelligence and neuroscience 2022 (2022)

17. Jack, J., Clifford, R.e.: The alzheimer’s disease neuroimaging initiative (adni): Mri
methods. Journal of Magnetic Resonance Imaging 27(4), 685–691 (2008)
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Abstract. The security of artificial intelligence systems has received
great attention, especially in the field of smart medical diagnosis in over the
past few years. In order to enhance the security of smart medical systems,
it is important to study adversarial attack methods to increase defense
performance, and the central aspect of adversarial attacks lies in craft-
ing effective strategies that can integrate covert malicious behaviors within
the system. However, due to the diversity of medical imaging modes and
dimensions, creating a unified attack approach that produces impercepti-
ble examples with high content similarity and applies them across various
medical image classification systems presents significant challenges. Most
existing attack methods aim at attacking natural image classification mod-
els, which inevitably add global noise to the image and make the attack
more visible, simultaneously does not taking into account that medical
image classification task considers texture information more. To address
this issue, we propose a new adversarial attack method based on chang-
ing texture information that utilizes the CycleGAN approach, while also
incorporating AdvGAN to ensure the attack success rate. Our method can
provide attacks in various medical image classification tasks. Our experi-
ment includes two public medical image datasets, including chest X-Ray
image dataset and melanoma dermoscopy dataset, which contain different
imaging modes and dimensions. The results indicate that our model has
superior performance in attacking medical image classification tasks in dif-
ferent imaging modes and dimensions compared to other state-of-the-art
adversarial attack methods.

Keywords: Medical diagnosis · Adversarial attack · Texture

1 Introduction

Deep neural networks(DNNs) have demonstrated excellent performance in
tasks involving natural images, such as image classification[10,24,25], object
detection[32,34], and image segmentation[8]. With their success in natural image
tasks, deep neural networks have also shown strong performance in medical image
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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tasks[1,9], not only in the aforementioned tasks but also in various datasets includ-
ing dermoscopy and X-Rays. However, research indicates that even well-trained
DNNs are susceptible to adversarial attacks[2,7], both in natural images and med-
ical images, e.g., small perturbations applied to the input images can deceive
DNNs to have wrong conclusions. The global medical pressure is increasing cur-
rently and an increasing number of networks are being introduced to assist doc-
tors in addressing clinical issues while the vulnerability exhibited by DNNs in the
face of adversarial attacks can prove to be extremely detrimental[17]. Adversar-
ial examples are likely to result in misdiagnoses and various social disturbances,
thus limiting the applicability of deep learning in both safety- and security-critical
environments[19]. Medical misdiagnosis not only leads to unnecessary waste of
medical resources but also poses a serious threat to patient safety and well-being.

Studying adversarial attacks on medical images can help identify and expose
vulnerabilities in medical diagnostic systems[17], thereby assisting researchers
in enhancing their robustness against adversarial attacks more effectively. The
existing methods for generating adversarial examples on natural images to attack
DNNs mostly involve adding global noise to the image to disrupt the DNN’s
classification decisions[21]. This adversarial attack method is very effective, but
it can also result in adversarial example not matching the original image, making
it easy to detect. While in the classification task of medical images, researches
have found that compared to natural images, DNNs tend to classify medical
images more through texture rather than shape[12]. So attacking the texture
information of medical images will be a more effective way to realize attacks.

Most of the existing adversarial attacks on medical images are based on the
transfer of attack methods on natural images. Although recent attack methods
have taken into account the characteristics of medical images in the feature space,
their methods have too many limitations on features, resulting in suboptimal
visual effects of the generated adversarial examples.

In this paper, we propose a simple but effective attack method that can fool
deep medical diagnosis systems working with different medical datasets. Using
CycleGAN[33] can extract malignant texture information from deep features
and generate it on benign images, while also ensuring that the transformed
images maintain a high degree of similarity to the original benign images. By
incorporating the classification results of a white-box model into the generation
process of the GAN network, we can further guide the network to generate
adversarial examples in the wrong direction, increasing the attack success rate
of our method.

Our main contribution in this paper is summarized as follows:

– Our method can achieve a good success rate in attacks compared to existing
adversarial attack methods, nearly 100%.

– Our method better utilizes the texture information of medical images. Since
DNNs tend to prioritize texture in medical image classification, our method
offers better transferability compared to others.
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– Our method put emphasis on textures and generates fewer perturbations.
Consequently, our method generates adversarial examples with less visual
discrepancies and better imperceptibility compared to existing methods.

2 Related works

2.1 Adversarial Attack

In Nature Images. To attack a given a pretrained DNN model f and a normal
example x with a corresponding class label y, adversarial attack method aims to
maximize the classification error of the DNN model while keeping xadv within
a small ε-ball centered on the original example x(||xadv − x||p ≤ ε, p = 2 or
p = ∞), where p is the Lp-norm.

Goodfellow introduces the Fast Gradient Sign Method (FGSM)[7], a pio-
neering approach that generates adversarial examples by approximating the loss
function using a first-order derivative. FGSM remains one of the most widely
used and effective attack techniques. Building on this, the Basic Iterative Method
(BIM)[15] and Projected Gradient Descent (PGD)[18] follow. These methods
extend single-step perturbations into multi-step processes, incorporating smaller
perturbations and random initializations using a uniform distribution. They sig-
nificantly enhance attack effectiveness, with PGD often recognized as the most
robust first-order attack.

Another category of attacks focuses on optimization-based techniques, such
as the Carlini-Wagner(CW) method[3], which optimizes both the perturbation
magnitude and the misclassification loss of adversarial examples. However, both
gradient-based and optimization-based approaches face limitations. They typi-
cally modify one example at a time, which can be time-consuming due to the need
for multiple optimization iterations. Drawing inspiration from Generative Adver-
sarial Networks (GANs)[6], Xiao proposes AdvGAN[29], which utilizes adversar-
ial loss and an image-to-image framework to map original images to perturbed
versions. AdvGAN produces adversarial examples that are both highly effective
against target networks and visually indistinguishable. Further developments,
such as AdvGAN++[11], aim to generate more precisely targeted adversarial
examples.

In Medical Images. The majority of adversarial attack studies in medical
image analysis predominantly concentrate on the white-box scenario. Specifi-
cally, these studies mainly address the vulnerability of computer-aided diagnosis
models across different medical imaging tasks, leveraging comprehensive under-
standing of medical deep neural networks (DNNs). During adversary generation,
the attacker may regard the target diagnosis DNN as a locally deployed model.

Several researchers dedicate significant efforts to crafting tailored adversar-
ial attack techniques [14,22,26,31] specifically suited for medical imaging tasks.
Yao [31] delves into the vulnerability of medical image representations, devising
the Hierarchical Feature Constraint(HFC) to cloak adversarial representations
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within the clean feature domain. This HFC module serves as supplementary guid-
ance, seamlessly integrating into existing attack frameworks to mitigate detec-
tion risks. Functionally, HFC incentivizes adversarial features to align with high-
density regions of normal feature distributions by maximizing adversarial feature
log-likelihood. Addressing diverse medical image modalities, Qi et al. [22] intro-
duce a Stablized Medical Image Attack(SMIA). They optimize an objective func-
tion comprising deviation and stabilization loss terms. The deviation term widens
the prediction gap between adversarial outputs and ground truth, while the sta-
bilization term acts as regularization, confining adversarial perturbations to low
variance. This regularization mitigates instances of local optima during optimiza-
tion, often induced by instance-wise image noise.

Wang et al. [22] introduce Feature-Space-Restricted Attention Attack
(FSRAA) to generate adversarial examples across various medical modalities
with minimal visual interference. This method imposes feature-level constraints
to ensure that the adversarial examples remain near the decision boundaries
within the feature space. Furthermore, they employ an attention mechanism to
manage image-level perturbations, directing them specifically to the diseased
region by integrating class-specific attention information into the process of gen-
erating adversarial perturbations.

Chen et al.[4] introduce a novel adversarial attack approach that leverages
frequency constraints, allowing it to be effective across different medical image
classification tasks. This approach involves adding perturbations primarily to
high-frequency components while preserving the integrity of low-frequency con-
tent, thereby maintaining the overall similarity of the image.

Recently, Yao et al.[30] also make certain improvements and supplements
to HFC. They provide a comprehensive proof of the theorem regarding feature
vulnerability within binary classification and extended this theorem to apply to
multi-class settings. Their work offers both empirical and theoretical insights,
particularly concerning out-of-distribution adversarial features in these multi-
class scenarios.

Although these existing methods consciously attack the feature representa-
tion of medical images, especially HFC and FSRAA, they have excessive limi-
tations on the feature space, resulting in more details being lost in adversarial
examples. SMIA, although having relatively better transferability, lacks consid-
eration of features, resulting in lower attack success rate.

2.2 Texture Transfer

Texture Networks by Ulyanov et al.[27] leverage convolutional neural networks
(CNNs) to perform texture generation and style transfer tasks in a feed-forward
manner, yielding impressive results with reduced computational overhead. Addi-
tionally, advancements in convolutional neural network architectures, such as the
VGG network[24], have facilitated the development of more sophisticated style
transfer methods.

Beyond texture synthesis and style transfer, other relevant techniques like
photorealistic image stylization[16] have contributed to the broader realm of
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image manipulation and synthesis. These methodologies offer valuable insights
and alternative avenues for achieving realistic and visually compelling outcomes
in texture synthesis and transfer tasks.

Unlike previous approaches reliant on paired training data, CycleGAN[33]
introduces an unsupervised learning framework, eliminating the need for direct
correspondences between images from different domains. This innovation is
underpinned by its novel use of cycle-consistency loss, ensuring fidelity in both
content preservation and texture/style translation. Prior methodologies such as
pix2pix and dualGAN, while pioneering in their own right, are constrained by
their dependence on paired examples. CycleGAN’s dual-generator and discrimi-
nator architecture further enhances its efficacy, facilitating high-fidelity texture
conversions through adversarial training dynamics.

3 Method

Figure 1 illustrates the overall architecture of CycleAdvGAN including two map-
pings, which mainly consist of five parts: the generator GM , the generator GB ,
the discriminator DM of domain Malignant, the discriminator DB of domain
Benign, and the target neural network F . Figure 1(a) represents the mapping
process of transforming malignant images into benign adversarial examples, with
GM playing the main role in the texture transfer generation, while figure 1(b) is
the opposite, representing the mapping process of transforming benign images
into malignant ones, with GB playing the main role in the texture transfer gen-
eration. Two mapping processes share two generators GM , GB and two discrimi-
nators DM , DB respectively. The process of cyclic learning through GAN allows
GM to learn features of benign images and transfer them on malignant images,
and GB does the same in reverse.

Specifically, in figure 1(a), here the generator GM takes the original image
Malignant as its input and generates Benignfake as GM (m). Then, the gener-
ated adversarial example Benignfake will be sent to the discriminator DB , which

Fig. 1. The overall architecture of CycleAdvGAN. (a) represents the process of trans-
forming malignant images into benign adversarial example, while (b) does the opposite,
i.e., transforming benign images into malignant ones.
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distinguishes between the adversarial data and the original Benign example. DB

guides GM to transform Malignant images into outputs indistinguishable from
domain Benign. As shown in Figure 1, the two parts of the architecture are
symmetrical. Therefore, in figure 1(b) the generator GB takes the original image
example as its input and generates Malignantfake as GB(b). Then, the gener-
ated adversarial example Malignantfake will be sent to the discriminator DM ,
which differentiates between the adversarial data and the original Benign exam-
ple. DM instructs GB to convert Benign images into outputs indistinguishable
from Malignant domain. To achieve the goal of deceiving the learning model, we
execute a white-box attack, where the target model is F . F receives Benignfake

and Malignantfake as input, with its loss Ladv representing the distance between
the prediction and the ground truth class.

3.1 Texture Transfer

Adversarial Loss for GM . We apply adversarial losses to both mapping func-
tions. For the mapping function GM : Malignant to Benign and its discriminator
DB , we express the objective as

LGM
(GM ,DB) =Eb∼PB

[log (DB(b))]
+ Em∼PM

[log (1 − DB (GM (m)))] ,
(1)

where generator GM aims to generate imperceptible adversarial example
Benignfake as GM (m) that is looking similar to original Benign images, while
DB aims to distinguish between generated adversarial example and original
Benign example.

Adversarial Loss for GB . We apply a similar adversarial loss for the map-
ping function GB :Benign to Malignant, and its discriminator DM . The loss is
defined as

LGB
(GB ,DM ) =Em∼PM

[log (DM (m))]
+ Eb∼PB

[log (1 − DM (GB(b)))] ,
(2)

where generator GB aims to recover adversarial example Benignfake to clean
example Malignantrec, while DM aims to distinguish between adversarial exam-
ple and generated clean example.

Cycle Consistency Loss. After engaging in the min-max game with discrim-
inator DB , the generator GM is expected to produce visually convincing adver-
sarial examples. Nevertheless, due to the absence of pairwise supervision, the
reconstructed image might not preserve the content information from the origi-
nal clean image. Drawing inspiration from CycleGAN, which demonstrates the
concept of cycle consistency constraints in style transfer, we incorporate dif-
ferent forms of cycle consistency losses to facilitate the seamless integration of
adversarial attacks. The adversarial loss guides the generator’s output, after per-
turbation, to resemble the corresponding instance in the target domain. However,
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relying solely on adversarial losses may not ensure that the trained function can
accurately map an input classified as Malignant to the desired Benign output.
To further refine the perturbations, we introduce a cycle consistency loss into
the architecture. The loss is defined as

Lcycle =Em∼PM
[||GB (GM (m)) − m ||1]

+ Eb∼PB
[||GM (GB(b)) − b ||1] .

(3)

3.2 Adversarial attack

Adversarial Loss for F . The loss for fooling the target model F in an untar-
geted attack is

Ladv =Em∼PM
[LF (bfake, lc)]

+ Eb∼PB
[LF (mfake, lc)] ,

(4)

where lc represents the true class. Meanwhile, LF denotes the loss function
(e.g., cross-entropy loss) used to train the original model F . The Ladv loss is
designed to cause the perturbed image to be misclassified while ensuring that
the recovered instance is correctly classified.

3.3 Total Loss

We optimize a objective function defined as

L = (1 − λ)[LGM
+ LGB

+ Lcycle] + λLadv, (5)

where λ is a hyperparameter used to control the degree to which the loss tends
towards CycleGAN or AdvGAN. The smaller the value of λ, the more biased the
loss will be towards CycleGAN, resulting in better visual effects of adversarial
examples and more covert attacks; The larger the value of λ, the more biased
the loss will be towards AdvGAN. Although it can increase the attack success
rate, the attack will also be more noticeable.

4 Experiments

4.1 Experiment Setting

Datasets. Chest X-Ray and Dermoscopy are selected as benchmarks. These
tasks represent some of the most notable achievements in deep learning for med-
ical imaging, partly due to the availability of standard public datasets[5].

For the Chest X-Ray task, the goal is to classify X-rays into two categories
to identify pneumonia. We utilize a specific Chest X-Ray dataset[13], which
contains 5,232 chest X-ray images. Unlike the Chest X-Ray 14 dataset[28] that
includes multiple labels, this dataset provides only two labels for all images:
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3,883 labeled as pneumonia and 1,349 as normal. This binary labeling helps
reduce variability caused by differing examples.

For Dermoscopy, the International Skin Imaging Collaboration (ISIC) 2020
dataset[23] is used, chosen for its validation set availability and the task at hand.
This dataset includes over 30,000 dermoscopy images and is organized according
to the categories of "benign" and "malignant" melanoma[17].

Comparison Methods. We have selected classic adversarial attack methods
such as FGSM and PGD, which have been designed and migrated from natural
images to medical images, and have also achieved excellent attack results. At
the same time, we also select SMIA and HFC, two adversarial attack methods
specifically designed for medical images, as a comparison, to demonstrate that
our method have good results when applied to medical images.

Implementation Details. ResNet-50, Inception-V3 and DenseNet-121 serve
as the backbone architectures, with their final layers replaced by two newly
added fully connected layers for classification. The network weights, excluding
the final layers, are initialized using pre-trained weights from ImageNet instead
of random initialization. The Adam optimizer operates with a base learning
rate set at 1× 10−5. Given the unique characteristics of medical images, several
preprocessing steps are included in the data loading process. Initially, all images
convert to the RGB format, and then the images undergo random resizing to a
fixed scale of 224× 224 from their original dimensions. During our experiments,
attacks proceed with a perturbation magnitude of 0.03 for both FGSM and
PGD attacks. For PGD attacks, the iterative step size is set to α = 0.01. For the
transferability experiments, we utilize a robust vision transformer, MedViT-s[20],
as the validation model to effectively assess the transferability of our method.
The parameter settings remain consistent with those described in the original
paper.

Evaluation Metrics. The impact of the attack is assessed from multiple per-
spectives. Firstly, the effectiveness of the adversarial attack on DNNs is quan-
tified using the Attack Success Rate(ASR), which measures the proportion of
successful attacks out of all attempts. A higher ASR reflects a greater effec-
tiveness of the attack method and indicates the vulnerability of the targeted
system. Additionally, the similarity between the original and adversarial exam-
ples is evaluated using the Structural Similarity(SSIM), which considers three
aspects of similarity: luminance, contrast, and structure. Higher SSIM values
suggest that the original and adversarial images are more alike in terms of their
structural and content features.
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4.2 Effects of Hyper-Parameters

We also study the hyperparameters λ in Equation (5), the impact is shown in
the Figure 2. As previously described, as λ increases, the loss will shift from
CycleGAN to AdvGAN, which means that the attack success rate will continue
to increase, while the SSIM maintained by relying on cycle consistency loss will
continue to decrease. In order to achieve a balance between ASR and SSIM, we
seet hyperparameters λ to 0.7, so that we can ensure that both ASR and SSIM
are greater than 0.9 at the same time.

Fig. 2. ASR and SSIM under the influence of different hyperparameters λ.

4.3 Attack Visualization

To illustrate the result and advantage of our method, we visualize several exam-
ples in Figure 3. Compared with previous works, the noise generated by our
method attached to the original image is more inclined towards high-frequency
texture content rather than global noise, which ensures the invisibility of our
attack method. According to the previous description, DNN tends to rely more on
texture in medical image classification tasks.Through the cyclic learning of GAN,
the generators GM and GB respectively generate texture features of benign and
malignant images on each other, which can make perturbations more biased
towards texture features, and as a result the method proposed in this article can
also improve the attack success rate.

4.4 Attack Effectiveness

Table 1 and Table 2 shows the result of five attack methods against different
classification models (i.e., ResNet50, Inception-V3, DenseNet121) on two medical
image datasets. With the parameter information of the white-box model brought
by AdvGAN, our method can achieve high attack success rates for all datasets
and all backbone networks, nearly 100%. Additionally, the SSIM value serves as
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Fig. 3. Comparison of the original and adversarial examples generated by different
attack methods.The first line is the original image and the adversarial examples under
different attack methods, while the second line is the difference between the adversarial
examples and the original image.

Table 1. Results of attack success rate(ASR), structural similarity(SSIM) values by
five attack methods on Dermoscopy dataset against respective white-box model. Both
ASR and SSIM are better as they are higher.

Attack Resnet50 Densenet121 Inception-V3

Method ASR(↑) SSIM(↑) ASR(↑) SSIM(↑) ASR(↑) SSIM(↑)
FGSM[7] 0.8973 0.7965 0.8864 0.8165 0.9012 0.7983
PGD[18] 1.0000 0.8398 1.0000 0.8263 1.0000 0.8204
SMIA[22] 0.8968 0.8835 0.8234 0.8879 0.9194 0.8991
HFC[30] 0.9532 0.8979 0.9627 0.8825 0.9367 0.8817
Ours 0.9961 0.9126 0.9895 0.9038 0.9529 0.9021
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a dependable metric to gauge the extent of human perceptibility in adversarial
examples. By incorporating the cycle consistency loss, our method achieves the
highest SSIM values, around 90%, surpassing other methods. These findings
indicate that our attack method is effective across multiple medical datasets
with varying modalities.

Table 2. Results of attack success rate(ASR), structural similarity(SSIM) values by
five attack methods on Chest X-Ray dataset against respective white-box model. Both
ASR and SSIM are better as they are higher.

Attack Resnet50 Densenet121 Inception-V3

Method ASR(↑) SSIM(↑) ASR(↑) SSIM(↑) ASR(↑) SSIM(↑)
FGSM[7] 0.9032 0.8043 0.9124 0.8139 0.9046 0.8231
PGD[18] 0.9954 0.8264 0.9961 0.8157 0.9929 0.8167
SMIA[22] 0.9652 0.8863 0.9531 0.8755 0.9643 0.8924
HFC[30] 0.9583 0.8753 0.9724 0.8861 0.9514 0.8961

Ours 0.9918 0.8937 0.9986 0.8924 0.9962 0.9034

4.5 Transferability

We conduct untargeted attack experiments on two datasets and four models to
assess the transferability of our methods. We first choose a white-box model to
generate adversarial examples and then applied them to other black-box models
to verify the transportability

For the dermoscopy dataset, Table 3 presents the transferability results of
five attack methods-FGSM, PGD, SMIA, HFC, and our proposed method-across
various classification models, including ResNet50, DenseNet121, Inception-V3,
and MedViT. According to Table 1, our attack method achieves a nearly 100%
success rate in a white-box setting.

Next, we analyze how well our method transfers to target models under black-
box conditions. Our approach matches the white-box success rate of other meth-
ods while outperforming them in terms of transportability, achieving a signifi-
cantly higher attack success rate, with an improvement of about 20%. Addition-
ally, our method outperforms SMIA, which shows a 3% improvement in transfer-
ability. We also utilize MedViT to further verify transferability. Our white-box
attacks on commonly used CNN models successfully transfer to black-box Med-
ViT models, while white-box MedViT attacks are equally effective against other
models.

To verify the effectiveness of our approach across different datasets, we per-
form experiments using the chest X-Ray dataset. The same attack methods are
applied within the context of the Dermoscopy dataset. The experimental out-
comes are shown in Table 4. Consistent with the data presented in Table 3, the
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transferability on the chest X-Ray dataset is approximately 3% higher than the
best results obtained from previous methods.

These findings highlight the superior performance and enhanced transfer-
ability of our approach in comparison to other attack methods. This can be
attributed to our method’s focus on semantic elements such as texture and
boundaries, which aligns with DNN’s tendency to emphasize texture in clas-
sification tasks. Consequently, our method achieves better transferability across
other DNN classification models.

Table 3. Transferability results reflected by attack success rate(ASR).The first column
is the source white-box model, while the second column is the used attack method,
followed by the ASR results on the target black-box model. The best results are high-
lighted in bold.

Source Attack Densenet121 Inception-V3 MedViT

Resnet50 FGSM[7] 0.2471 0.3127 0.2785
PGD[18] 0.1143 0.1851 0.1624
SMIA[22] 0.4067 0.4216 0.4367
HFC[30] 0.3461 0.3954 0.3789

Ours 0.4651 0.4867 0.4965
Resnet50 Inception-V3 MedViT

Densenet121 FGSM[7] 0.3251 0.1249 0.2157
PGD[18] 0.1934 0.1047 0.1753
SMIA[22] 0.3968 0.3564 0.3852
HFC[30] 0.3579 0.3327 0.3445

Ours 0.4142 0.3649 0.4621
Resnet50 Densenet121 MedViT

Inception-V3 FGSM[7] 0.1368 0.1594 0.1954
PGD[18] 0.0997 0.1162 0.1462
SMIA[22] 0.3849 0.4249 0.4368
HFC[30] 0.3958 0.4398 0.4523

Ours 0.4176 0.4517 0.4784
Resnet50 Densenet121 Inception-V3

MedViT FGSM[7] 0.3145 0.2714 0.2214
PGD[18] 0.1623 0.1945 0.1842
SMIA[22] 0.4372 0.4185 0.4321
HFC[30] 0.3894 0.3956 0.4489

Ours 0.5123 0.4697 0.4723
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Table 4. Transferability results reflected by attack success rate(ASR).The first column
is the source white-box model, while the second column is the used attack method,
followed by the ASR results on the target black-box model. The best results are high-
lighted in bold.

Source Attack Densenet121 Inception-V3 MedViT

Resnet50 FGSM[7] 0.1567 0.1038 0.2785
PGD[18] 0.1134 0.0917 0.3624
SMIA[22] 0.4356 0.3846 0.4967
HFC[30] 0.4678 0.3819 0.2789
Ours 0.4791 0.3961 0.5185

Resnet50 Inception-V3 MedViT

Densenet121 FGSM[7] 0.1681 0.1237 0.3157
PGD[18] 0.1169 0.0867 0.2753
SMIA[22] 0.4319 0.3961 0.4852
HFC[30] 0.3967 0.3754 0.3445
Ours 0.4293 0.4029 0.4721

Resnet50 Densenet121 MedViT

Inception-V3 FGSM[7] 0.1394 0.1469 0.2954
PGD[18] 0.1063 0.1087 0.2462
SMIA[22] 0.4268 0.4397 0.5368
HFC[30] 0.4073 0.4469 0.3523
Ours 0.4381 0.4483 0.4781

Resnet50 Densenet121 Inception-V3

MedViT FGSM[7] 0.3745 0.3214 0.2214
PGD[18] 0.2623 0.3945 0.1842
SMIA[22] 0.4372 0.5185 0.4321
HFC[30] 0.2894 0.2956 0.4489
Ours 0.5123 0.4697 0.4723

5 Conclusion

This study proposes a new attack method targeting multiple medical image
datasets. Our method transforms benign and malignant images into adversarial
examples through a CycleGAN network, while ensuring their structural similar-
ity to enhance invisibility. Additionally, AdvGAN guides the network to learn
towards the incorrect classification direction of DNN. The method proposed in
this article can achieve both high ASR and the best SSIM. Although the pro-
posed method demonstrates excellent performance, there remain several areas
that warrant further exploration and are recommended for future research. We
can further restrict perturbations more strictly to texture and boundary regions
through frequency domain or attention mechanisms, thereby achieving better
results. We anticipate that our research will encourage more focused studies on
medical images.
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Abstract. Autism Spectrum Disorder (ASD), as a developmental disorder of
brain, affects the ability of individuals to express themselves verbally, partici-
pate in social activities and performnormal behaviors.Multi-site dataset inevitably
introduces experimental and environmental variability in data acquisition and pro-
cessing, which is not disease-related. For the purpose of reducing the impact of site
effects and utilizing the connection between different functional community of the
brain, a harmonization method is used to process the feature matrix and the brain
topology metric nodal local efficiency is introduced as a weighting coefficient for
feature enhancement in this paper, based on which a transformer architecture is
developed to incorporate a community-interaction module. The result shows that
our method achieves an accuracy of 73.4%, an AUROC of 79.97%, a sensitivity
of 68.1% and a specificity of 78.63% in the binary classification task of ASD
identification on the Autism Brain Imaging Data Exchange (ABIDE) dataset.

Keywords: ASD · Transformer · fMRI · computer-aided diagnosis

1 Introduction

Autism Spectrum Disorder (ASD), is a condition related to brain development that
affects the way a person perceives and socializes with others, causing problems in social
interaction and communication. Limited and repetitive patterns of behavior are also
characteristic of this disorder. Over time, the prevalence of ASD has increased in many
countries, with a median prevalence of 65/10,0007 in a 2021 survey [1], placing a bur-
den on society and on the families with ASD individuals. Currently, the mainstream
diagnostic approach for ASD is clinician assessment and diagnosis by clinicians based
on interaction with the patient and the patient’s symptoms, which introduces some bias
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due to subjective factors [2, 3]. Functional Magnetic Resonance Imaging (fMRI) is an
imaging technique used to study human brain activities and indirectly reflects neural
activities by detecting and measuring changes in oxygen levels in the blood. The various
features constructed from fMRI data can reflect the differences in the brain due to the
disease, which is one of the determining factors in the performance of computerized
diagnostic classification and now is widely used to determine the ASD-related biomark-
ers [4, 5]. The functional connectivity (FC) matrix is extracted from the fMRI data, and
it is commonly constructed to describe neural connections in terms of Pearson corre-
lation coefficients in regions of interest (ROIs). Brain connectivity analysis based on
FC matrix is a useful tool for studying the connections between ROIs and their correla-
tions with cognitive processes, which commonly used in the diagnosis and treatment of
brain disorders including ASD [6, 7]. Several existing models based on brain functional
connectivity using transformer to classify disease samples have performed well, but the
publicly available ABIDE dataset, which is commonly used to study ASD, collects dif-
ferent data from different locations, so statistical effectiveness and generalizability of
results would be affected and it may limit the ability to detect real phenomenon and may
lead to spurious findings [8]. To reduce this negative impact known as site effects and
to stabilize feature extraction, a harmonization method needs to be taken to preserve
biologically significant variability while dealing with this non-biological variability [9],
and adding a weighting coefficient will be helpful for feature enhancement.

The topological metrics of brain functional networks are a set of mathematical mea-
sures used to quantify and describe how the brain is functionally organized and con-
nected. In some studies, it has been shown that the local efficiency of patients with
Alzheimer’s disease have reduced in functional brain networks [10]; the topology of
the functional brain networks of patients with major depression is disrupted, and both
the local efficiency and the efficiency of the overall brain network are reduced [11]; the
local efficiency of the brain network can also be used to discriminate between patients
with Parkinson’s disease and normal subjects [12]. Normal subjects in the ASD study
showed tighter functional network organization, manifested in a higher local efficiency
[13, 14].

Thus, we introduce nodal local efficiency as a weighting coefficient, proposing a
deep learning method that reduces site effects and enhances feature based on the trans-
former structure [15]. In addition, an interaction module has been presented to learn the
connection between different functional community of the brain. Specifically, the nodal
local efficiency as a weighting coefficient of the FC matrix is computed based on the
harmonized FCmatrix by Combat, then the weighted FCmatrix is rearranged according
to the functional communities and sequentially fed into the first transformer encoder
layer with initialized community prompt tokens. The obtained node feature embedding
of each community is interacted with the community prompt token embedding in order
of attention weights, then pass their combination to the second transformer encoder layer
to finally obtain the prediction results through the readout layer. Our main contributions
are as follows:

1. We use the method Combat to reduce site effects and propose to use the nodal
local efficiency as a weighting factor for FC matrix.
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2. We propose an interaction module that the community node features output
interacts with the community prompt tokens output from the first transformer encoder
layer.

3.We achieve better result on the ABIDE dataset in binary classification task of ASD
identification.

2 Related Work

Deep learning plays an important role in fMRI-based brain network connectivity anal-
ysis. Classical convolutional neural network (CNN) is capable of extracting disease-
related features. For example, [16] uses multiple 2D CNNs of different sizes to extract
features from FC matrix for classification. The transformer model, a further developed
neural network model, was initially applied in natural language processing, and nowa-
days there have been tremendous advances in various fields such as computer vision,
and the use of transformer for analyzing brain connectome is one of the examples. In
the ASD classification task, Brain Network Transformer (BNT) feeds FCmatrix into the
transformer encoder layer and performs cluster readout of features through the orthog-
onal clustering readout layer [6]; Community-Aware Transformer (Com-TF) proposes
a local-global transformer architecture based on BNT considering the communication
within different functional communities of brain, while embedding the learnable prompt
tokens of the communities [7]; [17] brings up a spatial–temporal multi-headed attention
unit to obtain the spatial and temporal representation of fMRI data in the distinguishing
ASD subjects. Some of the above methods take into account the relationship between
time and space, and some take into account the relationship between the local and the
whole, but the consideration of the data sources and the relationship between functional
communities is missing.

3 Materials and Methods

3.1 Dataset and Experimental Setup

The Autism Brain Imaging Data Exchange (ABIDE) is a dataset sharing fMRI data from
17 international sites. This dataset contains fMRI images of 1009 subjects, 516 ASD
subjects (51.14%) and493healthy controls (48.86%).Thenodes of the brain connectivity
network, i.e. the brain regions of interest, were defined based on the Craddock 200 atlas
[18]. Images were preprocessed using the Configurable Pipeline for the Analysis of
Connectomes (CPAC) pipeline and time series correlations were calculated using the
Pearson correlation coefficient [19]. We implement our model in PyTorch and train on a
GeForce RTX 2080 Ti with 11 GB of memory. We split the train\validating\test set with
a ratio of 7:1:2, and we set the batch size as 64. The training set is fixed and repeated five
times to randomly divide the validation and test sets, and each time the model is trained
for 50 epochs. The performance evaluation metrics are AUROC, accuracy, sensitivity
and specificity of ASD vs. NC classification predictions on the test set. The epoch for
comparison on the test set is selected based on the epoch with the largest AUC on the
validation set. All reported performances are the average of 5 random runs on the test
set with the standard deviation. During the training process, we use CrossEntropyLoss
as the loss function, using the adam optimisation algorithm to optimize.
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3.2 Methods

During the preprocessing of the ABIDE dataset, the brain region is firstly divided into
N ROI regions according to the selected brain atlas, and each ROI can be regarded as a
node. The time series of each ROI are extracted and correlations are calculated using the
Pearson correlation coefficient to construct a symmetric functional connectivity (FC)
matrix XεRN∗N. Combat algorithm is used to reduce site effects of the FC matrix data,
then nodal local efficiency as a weighting coefficient computed based on the processed
FC matrix is multiplied by the FC matrix. Rearrangement according to the functional
communities of brain is performed, bundling regions with similar patterns of functional
connectivity. The brain communities are in order from the Yeo 7 network template [20].

The community node features are combined with the randomly initialized com-
munity prompt tokens and fed sequentially into the first transformer encoder layer, so
connections within these functional communities can be obtained.We set eight heads for
multi-heads attention mechanism of transformer encoder as there are eight functional
communities. Since the connection between functional communities is also very impor-
tant for ASD prediction [21], the encoded community node features are interacted with
the encoded community prompt tokens from the first transformer encoder layer in the
interaction module. The encoded community node features with high attention weight
are combined with the encoded community prompt token with low attention weight,
so that communities that receive less attention are compensated and information can
be obtained from their connection. Then rearranging the whole encoded node feature
matrix again in the order of community attention weights from the largest to the smallest
first, and the combination with encoded community prompt token is fed into the second
transformer encoder layer, and the output is put into the orthogonal clustering readout
layer for the prediction classification. The structure of the proposed model structure is
shown in Fig. 1.

Correcting for site effects in multi-site fMRI data. In computer-aided diagnosis,
a large amount of data is needed to increase the generalizability of results and to find
features that can discriminate diseased from normal subjects, but site effects can be
introduced as confounder in the training process that reduce the accuracy. Combat is
designed to correct for the batch effects in genomic studies [22–24], and it determines
the magnitude of the batch effect by estimating the difference between the expression
levels of each feature across batches through a statistical model and adjusting the data
for each sample; it is a batch effect correction method based on an empirical Bayesian
framework. The Combat model can be written as:

yijm = α + γim + δimεijm (1)

where yijm represents them thvalue (m ϵ{1,…,19900}) in the upper delta of the functional
connectivity matrix for the j th subject at site i, γim and δim denote the estimated additive
and multiplicative site effects of the selected feature M at site I, and εijm is a normally
distributed error term with zero mean and variance [9].

Nodal local efficiency.The nodal local efficiency of a nodemeasures communication
efficiency between its neighbors when the node is removed. If a node’s local efficiency
is low, it means that the node is of low importance in the brain network, and the brain
network can complete the information exchange and processing tasks without it; if
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Fig. 1. (a) FC matrix modelled and processed by Combat, weighted with nodal local efficiency,
then rearranged based on functional community (b) The proposedmodel structure (c) Transformer
Encoder Layer

a node’s local efficiency is high, it means that the node is significant in the brain’s
collaborative functional work. The node local efficiency is defined as

[Elocal(v) = 1

Nv(Nv − 1)

∑

i �=j∈N (v)

1

dij
] (2)

where Nv is the number of neighbors of node v, N (v) represents the set of neighbors of
node v, dij is the shortest path length between node i and node j, , and the summation
traverses all the pairs of neighboring nodes (i, j) of node v, with i �=j.

Transformer encoder layer. In the model, Transformer encoder layer is used as the
feature extraction layer and the encoder consists of a multi-head attention mechanism:

hi = MHSA
(
X ′
i

)
(3)
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hi = (||Mm=1softmax

(
Qm(Km)T√

dm
k

)
Vm)WO (4)

where Qm = WQX ′
i , K

m = WKX ′
i ,V

m = WVX ′
i , X

′
i =Elocal(Vi)Xi, Xi ∈ RNi×N , M

is the number of attention headers,WQ,WK ,WV , WO are the learnable rearrange weight
parameters, and ‖ stands for the splicing operation, i ε{1,2, ..., 8}.

Reordering of weighted functional connectivity matrix and initialized community
prompt tokens are performed on nodes according to the functional community they
belong to. The weighted functional connectivity matrix and tokens are fed into the local
transformer encoder layer.

p′
i,Hi = Transformer encoder layer

([
pi,X

′
i

])
(5)

The obtained node feature embeddings are rearranged based on the order of atten-
tion weights, while the community prompt tokens are spliced together with the node
feature embeddings in reverse order, so as to perform the inter-community information
interaction to exploit the connection between different functional regions in the func-
tional network. In order to obtain the overall inter-community node interrelationships,
the spliced features are sent into the second transformer encoder layer, which allows the
model to better learn the disease-related features:

pglobal = Concat
(
rearrange(p′

i, p
′
1 . . . p′

K )
)

(6)

Hglobal = Concat(rearrange((Hk ,H2, . . . ,Hi)) (7)

p′,ZL = Transformerencoderlayer([ptotal,Htotal]) (8)

Readout Layer. The OCREAD layer is used for the aggregation of whole brain
feature embeddings. OCREAD initializes the orthogonal clustering centres and softly
assigns the feature embeddings to these centres, and subsequently obtains the graph-
level embedding representation ZG , which is linearised and passed to the MLP layer for
the graph-level prediction [6]:

Pik = e
<ZLi ,Ek>

∑K
K ′ e

<ZLi ,Ek′>
(9)

where 〈•〉 represents the inner product operation, ZL is the node feature matrix output
from the transformer encoder layer, Pik denotes the probability of assigning node i to the
k th cluster, and finally ZL is aggregated under the guidance of the clustering probability:

ZG = PTZL (10)

4 Experimental Results

4.1 Performance Comparison

Baseline method comparison: we compare with (i) FBNETGEN; (ii) BrainNetCNN;
(iii) BNT; and (iv) Com-TF. The comparison results are shown in Table 1.
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Table 1. Performance comparison with baselines (%).

Model Accuracy AUROC Sensitivity Specificity

FBNETGEN 65.6 ± 8.5 72.68 ± 8.9 66.7 ± 8.0 64.53 ± 9.2

BrainNetCNN 69.2 ± 4.7 76.15 ± 4.2 66.56 ± 12.6 71.99 ± 7.6

BNT 69.8 ± 3.0 77.78 ± 1.9 65.13 ± 20.2 75.56 ± 18.3

Com-TF 70 ± 5.8 77.76 ± 4.4 75.31 ± 13.8 63.95 ± 10.5

Ours 73.4 ± 1.8 79.97 ± 2.6 68.1 ± 11.5 78.63 ± 13.3

4.2 Ablation Experiments

Role of weighting coefficient and node features interacting with the prompt token.
The site NYU contains the largest number of samples, the site UCLA_2 contains the
smallest number of samples, and the site containing the median number of samples
of the 17 sites is STANFORD. Figure 2 shows the mean brain/DMN/SMN functional
connectivity data distribution of the samples of the three sites. Figure 3 shows nodes
with significant alteration in nodal local efficiency. Figure 4 illustrates the attention
weights change of the second transformer encoder layer before and after performing the
interaction. Table 2 shows comparison with weighting coefficient and interaction.

Table 2. Performance comparison with weighting coefficient and interaction (%).

Model Accuracy AUROC Sensitivity Specificity

With Nle-weighted 70.4 ± 6.4 79.38 ± 4.7 76.48 ± 8.4 64.73 ± 17.7

With interaction 71 ± 5.3 79.53 ± 4.8 60.58 ± 14.2 80.21 ± 9.1

proposed 73.4 ± 1.8 79.97 ± 2.6 68.1 ± 11.5 78.63 ± 13.3

4.3 Discussion

Figure 2 shows the FC matrix data distribution of the original abide, the FC matrix data
distribution processed by Combat. The data distribution of different sites obtained after
Combat is more approximate, which can retain the differences between different nodes
while avoiding the emergence of a few extreme values, so that the model can more effec-
tively give different attention to different nodes to reduce the impact of deviation values
on the model. Most of the nodes with significant changes in nodal local efficiency are in
the DMN and SMN in Fig. 3. Figure 4 shows that more attention is paid to the disease-
related regions after FC matrix has been processed through Combat and multiplied by
a weighting coefficient. From Table 1 Performance comparison with baselines, we can
see that the model we proposed have better performance on Accuracy and AUROC.
Sensitivity and specificity often show opposite trends during the classification task, and
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the performance achieved by our proposed method compared to other models is between
the performance of these models. And from Table 2 it can be seen that there is some
improvement in the metrics of the result after we have processed the features more.

Fig. 2. (a) Brain functional connectivity data distribution (b) DMN functional connectivity data
distribution (c) SMN functional connectivity data distribution.

Fig. 3. The nodes with nodal local efficiency show a significant (P ≤ 0.05) alteration in subjects
with ASD compared to NC subjects.
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(a) (b)

(c) (d)

Fig. 4. (a) NC’s average attention weights from the second transformer encoder layer (b) ASD’s
average attention weights from the second transformer encoder layer (c) NC’s average attention
weights from the second transformer encoder layer with Nle (d) ASD’s average attention weights
from the second transformer encoder layer with Nle.

5 Conclusion

In this work, we propose a transformer architecture with an interaction module for
ASD analysis. Our model reduces site effects, adds a weighting factor to enhance the
extracted data features. It also optimizes the ability of feature learning while learning
node embeddings within and between brain functional network communities to deepen
the information interaction between different communities for ASD classification tasks.
The proposedmodel is trained and tested on theABIDEdataset. The experimental results
show the effectiveness of our method in ASD diagnosis, which can achieve better results
for the classification of the whole dataset. Our future work is to investigate the impact
of different harmonization methods on the model and the effect of different atlases on
the model performance to gain a comprehensive understanding of how site effects can
be reduced.
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Abstract. There has been a deluge of data-driven deep learning
approaches to detect COVID-19 from computed tomography (CT) images
over the pandemic, most of which use ad-hoc deep learning black boxes of
little to no relevance to the actual process clinicians use and hence have
not seen translation to real-life practical settings. Radiologists use a clini-
cally established process of estimating the percentage of the affected area
of the lung to grade the severity of infection out of a score of 0-25 from
lung CT scans. Hence any computer-automated process that has aspira-
tions of being adopted in the clinic to alleviate the workload of radiolo-
gists while being trustworthy and safe, needs to follow this clearly defined
clinical process religiously. Keeping this in mind, we propose a simple yet
effective methodology that uses explainable mechanistic modelling using
classical image processing and pattern recognition techniques. The pro-
posed pipeline has no learning element and hence is fast. It mimics the clin-
ical process and hence is transparent. We collaborate with an experienced
radiologist to enhance an existing benchmark COVID-19 lung CT dataset
by adding the grading labels, which is another contribution of this paper,
along with the methodology which has a higher potential of becoming a
clinical decision support system (CDSS) due to its rapid and explainable
nature. The radiologist gradations and the code is available at https://
github.com/Samiran-Dey/explainable_seg.

Keywords: COVID-19 severity · unsupervised biomedical image
segmentation · lung computed tomography (CT) · ground glass
detection

1 Introduction

To estimate the severity of infection caused by COVID-19, lung computed tomog-
raphy (CT) scans have been strongly recommended by clinicians because of the
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Fig. 1. Pipeline for the proposed methodology. The infection region is segmented using
classical image processing and pattern recognition techniques. The percentage involve-
ment of each lobe of the lung is hence computed to grade the severity of COVID-19.

primary involvement of the respiratory system [1]. Radiologists manually per-
form COVID-19 severity gradation from lung CT scans using eye estimates of
the volume of the lung lobes that the virus has infected [11]. Infections of the
lung caused by COVID-19 are mainly identified by ground-glass opacities, vas-
cular enlargement, bilateral abnormalities, lower lobe involvement, and poste-
rior predilection [2]. Some other abnormalities observed in chest CTs include
consolidation, linear opacity, septal thickening and/or reticulation, crazy-paving
pattern, air bronchogram, pleural thickening, etc [2]. Besides morphological and
structural differences, these infection regions of the lungs may be discriminated
from normal regions using pixel values of the lung CT slices measured in the
scale of Hounsfield Unit (HU) in which the radiodensity of distilled water and
air in standard temperature pressure (STP) is 0 HU -1000 HU respectively [6].

There have been several works on predicting COVID-19 and segmenting
COVID-19-affected regions in lung CT scans. But most of them use deep learning
methodologies [16,19–22,24–26] and are thus black boxes. Because of this, they
cannot be adopted in real clinical scenarios [27], as patient safety is of primary
concern. For AI-automated assistive models to be adopted in clinical settings
to alleviate the workload of radiologists, these methods need to follow the clin-
ical workflow faithfully and transparently, without which clinical translation of
AI models will continue to be abysmally low. Thus, we propose a methodology
inspired by the clinical procedure of COVID-19 severity gradation followed by
the clinical practitioners and is completely explainable. Since there is no training
involved, no ground-truth annotation is required, the time required is less and
in the absence of randomness, there is no uncertainty in prediction. Moreover,
our methodology may be extended to a clinical decision support system (CDSS)
for guided estimation of lung involvement and act as a suggestion to the eye
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estimates that radiologists make. The proposed methodology pipeline is shown
in Fig. 1. The contributions of our work are as follows.

1. A novel unsupervised methodology based on classical image processing and
pattern recognition methods for segmentation of infected regions in lung CT
scans, that closely mimics the clinical workflow in a transparent and inter-
pretable manner.

2. Contribution to Medical Imaging Data Resource Center - RSNA International
COVID-19 Open Radiology Database - Release 1a (MIDRC-RICORD-1a)
dataset by providing ground truth COVID-19 severity grades for the CT
scans in the dataset, scored by an experienced radiologist. The gradations
are available at https://github.com/Samiran-Dey/explainable_seg.

3. Since the method is unsupervised, there is no training needed, hence it is
lightweight, fast and easily deployable in computational resource-limited clin-
ical settings. Also because of its unsupervised nature, our method does not
need any costly ground-truth annotations and labels from human experts.

4. An analysis of algorithmic fairness is also presented for the MIDRC-RICORD-
1a dataset with respect to sex and age, from the point of view of health equity
for different patient sub-groups.

In Sect. 1.1, we describe the related works for COVID-19 infected region seg-
mentation and detection. In Sect. 2, we explain our proposed methodology with
illustrative images of intermediate results at each step. In Sect. 3, we provide the
details of the dataset used followed by the qualitative and quantitative results
of our experiments. We also provide an analysis of the fairness offered by our
methodology for the given dataset, in Sect. 3. And finally in Sect. 4, we state
the conclusions of our paper.

1.1 Related Works

Since the advent of the COVID-19 pandemic, there have many works for the
detection and segmentation of COVID-19 infection from lung CT scans. Most
of the benchmark models used U-Net as the base framework. Ahmed et al.[21]
applied spatial, colour and noise augmentation, and used soft attention in U-
Net layers for Covid-19 lesion segmentation. Whereas in COVID TV-Unet [24],
a modified loss function with 2D-anisotropic total variation was used for the
connectivity-promoting regularization of a U-Net model. A hierarchical model
involving the extraction of semantic data with two cascaded residual attention
inception U-Net was proposed by Punn et. al. [22] for segmentation of infection
region. In SD-UNet [26], a modified U-Net framework, was introduced with the
squeeze-and-attention (SA) and dense atrous spatial pyramid pooling (Dense
ASPP) modules for segmenting ground glass opacity and consolidation lesion
in lung CT images. In CARes-UNet [25], the content-aware upsampling module
residual UNet was used for improving the segmentation performance. Antar et
al. [16] used a density heat map tool to colour lung images and used three colour
channels separately, after image inverse and histogram equalization, to obtain
segmentation results by feeding them through three separate U-Nets with the

https://github.com/Samiran-Dey/explainable_seg
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same architecture. The segmentation results were combined and run through a
convolution layer one by one to get the detection.

Many works used ResNet-based frameworks as well for the segmentation and
detection of COVID-19 lesions in lung CT scans. Aleem et al. [20] used ResNet50
andResNet101-basedMaskR-CNNto segment the area of theCOVID-19 infection
and provide the ratio of the infected area in the lungs. Enshaei et al. [19] proposed
an encoder-decoder-based network comprising an encoding path, transition lay-
ers, context perception boosting module, and decoding path for segmenting the
ground glass opacity and consolidation infection regions. Sarkisov [23] proposed
a variation of the Mask R-CNN model based on ResNet, Feature Pyramid Net
(FPN) and Region Proposal Net (RPN) to detect and segment COVID lesions and
create the bounding boxes for the detected ROIs. Sailunaz et al. [17] proposed a
web-based application framework for COVID-19 lung infection detection and seg-
mentation with a feedback mechanism for self-learning and tuning using Mask R-
CNN, U-Net, and U-Net++. Oulefki et al. [18] proposed a Covid-19 lung infection
segmentation and measurement methodology that uses a new masking algorithm
containing multiple thresholding, filtering and entropy calculations on the image
histogram to generate masks for the infected regions of the lungs.

2 Methodology

Our methodology for COVID-19 severity gradation is a clinically explainable
approach involving classical image processing and pattern recognition tech-
niques. The methodology pipeline is illustrated in Fig.1. In this section, we
discuss in detail each of the steps.

2.1 Extraction of Lung Mask

We use pre-trained Unet_R231_LTRCLobes by Hofmanninger [3] for the seg-
mentation of lungs and their five lobes from the CT slices as illustrated in Fig.2.b.
The segmentation of lung lobes is required to compute the percentage involve-
ment of each lobe for CT severity gradation.

The pixel values of the CT slices are in the Hounsfield Unit (HU) scale.
It can be observed by studying CT slices, that the infection regions have an
intensity between -700 HU to +10 HU approximately, with pleural effusion hav-
ing an intensity greater than +15 HU [7]. Thus, once the lung is extracted,
the infection region may be obtained by thresholding based on the HU values.
However, further observation has shown that several other anatomical structures
have values within a similar range of HU. Moreover, due to the scattering of the
radiations the surrounding region of different structures having a higher value
in HU scale have values within the specified range [6]. Thus, before thresholding
for obtaining the infected regions, these anomalous regions need to be removed.
In the following steps, we proceed with the removal of anatomical structures
and their surrounding regions that are present in the extracted lungs having HU
values within the observed intensity range of the infected region. We consciously
attempt to exclude all possible false positive regions for patient safety.
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Fig. 2. Extraction of the lung from CT slices. (a) CT slice (b) Lung mask generated
using pre-trained Unet_R231_LTRCLobes. The different colours of the mask indicate
different lobes of the lungs. (c) The pleura region obtained by eroding the lung mask
generated in (b), marked in red. (d) The extracted lung after removal of the pleura.

2.2 Removal of pleura

We begin with the removal of the pleura and its surrounding region. The pleura
is a thin layer of tissue that covers the lungs and lines the interior wall of the
chest cavity. Thus, we erode the lung mask obtained in section 2.1 by a small
amount to remove the outer lining of the lung, illustrated in Fig.2.c. Hence we
obtain the lungs where the pleura and its surroundings have been removed as
illustrated in Fig.2.d.

2.3 Removal of organ linings

As illustrated in Fig.3, as we move from top to bottom of the lungs using the axial
CT slices, other organs anatomically located beneath the lungs such as the liver,
pancreas, etc. gradually start appearing in the CT scan. However, because of
the scattering of radiations their surrounding region has values in the HU scale
that intersect with the range of HU values for the infected region. Thus, the
surrounding regions need to be excluded from the lung mask before thresholding
to obtain infected region segmentation. In Fig.3.b., an organ appears in the right
lung at slice number 42, and a small surrounding region of the organ in slices 42
and 43 appears to have ground glass opacity indicative of an infection which in
this case however is because of scattering of radiation as evident from the images.
A similar thing is noticed for Fig.3.a. in CT slices 37, 38 and 39. However, in
slice 37 it gets merged with an actual infection region and hence is more critical.
As we intend to have no false-positive regions in the infection mask, we exclude
a considerable surrounding region with ground glass opacity in such cases. We
have also observed that in CT scans with more frequent slices that is where the
slice thickness is less, there happens to be a slice just above the slice in which
the organ appears where there is a region of ground glass opacity suggestive of
the organ in the next slice and not an infection. This is illustrated in Fig.3.b.
with a red arrow in slice 41. Such regions also require to be excluded.

To exclude these surrounding regions, we first attempt to find out the slice
where the organ starts appearing in the right lung by counting the number of
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Fig. 3. Removal of surrounding regions of other organs like liver, pancreas, etc. where
intensity values are similar to the range of HU value of the infected region because
of scattering of radiation. A sequence of CT slices is shown where an organ gradually
appears as we proceed. (a) CT scan with slices of greater thickness. (b) CT scan with
slices of less thickness. The red arrow in (b), slice 41, shows a region of ground glass
opacification which appears due to the presence of an organ in slice 42 and not because
of infection. Our method efficiently removes the surrounding regions of the organ where
the intensity values are such that might be mistaken as an infected region. Different
colours in the lung mask indicate different lobes of the lung. It is to be noted that the
lungs in the axial CT slices are laterally inverted.

connected components in the lung mask. It is seen that for the particular slice
where the organ first appears there happens to be 4 connected components in
the lung mask - the background, the left lung, the right lung and the organ as
evident in Fig.3.a. slice 37. Once we have the organ mask separated, we iterate
through the prior slices for a total thickness of 4mm from the slice where the
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Fig. 4. Illustration of different steps of our proposed methodology. (a) Removal of
blood vessels and vessel linings from the lung mask. Different colours correspond to
different lobes of the lung. (b) Removal of motion artefacts. The yellow arrow points
to a region of motion artefact. (c) Segmentation of infected regions by thresholding
the modified lung mask. The red regions comprise the infected region mask which is
further refined in the third image. (Color figure online)

organ appears while eroding the organ mask and removing the region of the
organ mask from the lung mask. Thus, for instances like Fig.3.b., the region
indicative of the organ’s appearance in some following slice is removed. Next,
we iterate through the slices following the slice where the organ first appears
for a total thickness of 12mm while dilating the organ mask and excluding the
corresponding area from the lung mask. To remove the surrounding region of
other organs we find the upper edge of the lung mask separately for the left
and right lungs, dilate the edge, and then remove the corresponding area from
the lung mask for all slices following the slice where the organ first appears,
as seen in the left lung in slices 37, 38 and 39 of Fig.3.a. Our methodology
effectively removes all surrounding regions of other organs which have intensity
values similar to that of the infected regions as evident from the third row of
Fig.3.a.

2.4 Removal of blood vessels and vessel linings

Next, we proceed to remove the blood vessel and vessel linings as their observed
intensity value intersects with the range of HU values corresponding to the
infected regions. We use the MultiScaleHessianBasedMeasureImageFilter [4] of
the ITK library for extracting the vessels. To remove the vessel linings we dilate
the vessel mask thus obtained, by a small amount. We refine the vessel mask
by further dilating the blood vessels that occupy an area of greater than 460
pixels, as broader vessels have more scattering in the surrounding regions. The
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area corresponding to the vessel mask is thus removed from the lung mask, as
illustrated in Fig.4.a.

2.5 Removal of motion artefacts

Motion artefact [8] is a patient-based artefact that occurs with voluntary or
involuntary patient movement during image acquisition. Misregistration arte-
facts, which appear as blurring, streaking, or shading, are caused by patient
movement during a CT scan. A region of motion artefact is illustrated in Fig.4.b.
using a yellow arrow. It is observed that such artefacts appear in lung CTs for
COVID-19 patients in the upper region of the lung in axial CT slices. Thus, the
edge of the upper region of the lungs is obtained as shown in the second image
of Fig.4.b where motion artefacts are most probable. After thresholding the lung
mask for infection regions, we check for infection regions having their centroid
within the upper edge region previously considered and remove them from the
infection mask. As seen in the third image of Fig.4, though motion artefacts are
present in the CT slice, the infection mask has them removed.

2.6 Segmentation of infection regions

The lung mask obtained in section 2.1 is modified using the methodology
described in section 2.2 to section 2.5 by removing all such regions that have
intensity values that intersect with the range of HU value of infection regions.
The lung region considered in the lung mask is now thresholded based on the
HU value for infection regions. We perform experiments and choose a thresh-
old of -595 HU to -1 HU that corresponds best to infection regions. It is to be
noted that a region with a density of -600 HU contains an average of 60% air
and 40% “tissue” [6]. These tissues comprise soft tissue of the lungs, tissues of
fluids like blood and tissues arising because of infection [9]. The infection mask
so obtained is further refined by removing all small regions comprising 30 pixels.
Then all small holes of 30 pixels are filled to make the regions continuous. In
Fig.4, the middle image shows the infection mask and the third image shows
the refined infection mask, thus proving the relevance of refinement. The false
positive regions are reduced while the true positive regions are filled.

2.7 COVID-19 severity gradation

CT severity score (CTSS) is used to quantify lung involvement in COVID-19 [10].
To compute CTSS, the volume of infected regions is estimated and the percentage
of involvement is computed for each lobe of the lung. We use the methodology
proposed by Li et. al. [11] to grade the severity. Each lobe is awarded a CT score
between 0 to 5, depending on the percentage of the lobe involvement [12]: score
0 - for 0% involvement; score 1 - for less than 5% involvement; score 2 - for 5%
to 25% involvement; score 3 - for 26% to 49% involvement; score 4 - for 50% to
75% involvement; and score 5 - for greater than 75% involvement. The overall
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Fig. 5. Qualitative results for segmentation of infected regions. On the left are the
images of CT slides and on the right are the CT images with overlapped segmentation
maps. Blue denotes dataset annotations, green denotes infected region segmentation
mask obtained using our methodology and red denotes intersection areas of dataset
annotations and our methodology. (Color figure online)

CT score is the sum of the scores from each lobe and ranges from 0 to 25. The
cases are further classified into mild, moderate and severe based on the scores
thus computed [13]: mild - for a score <8, moderate - for a score from 8 to 15
and severe - for a score > 15.

3 Experiments and results

In this section, we first give the details of the data used in our experiments. Then
we illustrate the result of the segmentation of infected regions followed by the
result of COVID-19 severity gradation. We also perform an analysis of coverage
and fairness offered by our methodology.

3.1 Dataset

Lung CT scans from the Medical Imaging Data Resource Center - RSNA Interna-
tional COVID-19 Open Radiology Database - Release 1a (MIDRC-RICORD-1a)
[14] of The Cancer Imaging Archive (TCIA) are used for our experiments. The
data comes from patients at least 18 years of age receiving positive diagnoses
for COVID-19. In addition to lung CT scans, the dataset contains clinical data
of the patients and a rough annotation of the infected regions. We contribute to
the benchmark dataset by providing the COVID-19 severity gradations scored
by an experienced radiologist corresponding to each patient. The radiologist gra-
dations are available at https://github.com/Samiran-Dey/explainable_seg. We

https://github.com/Samiran-Dey/explainable_seg
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Table 1. Table of results for automated gradation of COVID-19 score and severity.
QWK stands for quadratic weighted kappa. α denotes the range of grades considered
for evaluating the coverage. Best scores are marked in bold.

ROI segmentation Severity Gradation

QWK QWK Coverage
α = 0α = 1α = 2α = 3α = 4α = 5

Dataset annotations 0.43860 0.52245 0.19 0.45 0.58 0.69 0.74 0.81
Our methodology 0.73492 0.81312 0.21 0.38 0.65 0.79 0.87 0.94

Fig. 6. Plots for the result of fairness evaluation of COVID-19 severity score prediction
by our methodology for different sex and age groups. The first column shows bar graphs
of quadratic weighted kappa scores for COVID-19 gradation, the second column shows
line graphs for the coverage obtained for different values of α for COVID-19 grada-
tion and the third column shows bar graphs of quadratic weighted kappa for severity
estimation. The first row corresponds to different sexes, the second row corresponds
to different age groups of sex females and the third row corresponds to different age
groups of sex males.

used 100 CT scans from the dataset for our experiments. The rest of the cases
were not used because of the presence of different exceptional patterns like cys-
tic broncho-ectatic changes in the right lung with bilateral pleural effusion, only
mosaic perfusions in both lungs, only scars in both lower lobes, only mosaic per-
fusions bilaterally, only nodular and streaky scars, etc. which makes the process
of COVID-19 severity gradation far more complex.
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3.2 Qualitative results for segmentation of infected regions

Illustrative images for the qualitative results of the segmentation of infected
regions are provided in Fig.5, for different cases. In Fig. 5.a, we obtain the closest
match with the dataset annotations. However, the segmentation map produced
by our methodology marks the region of ground glass opacity more precisely
than the dataset annotations, as can be observed from the CT image on the left.
In Fig. 5.b, it is observed that the dataset annotations are partly missing, which
our methodology can effectively provide. A similar observation is made for Fig.
5.c. In both the images annotations for the left lung are missing and in Fig. 5.d,
dataset annotations are completely missing. However, since our methodology is
unsupervised and based on classical image processing and pattern recognition
techniques, we can easily predict the infected regions for the cases where dataset
annotations are missing. Also in Fig. 5.c, the dataset annotation marks the
entire right lung as infected, whereas using our methodology we can obtain a
more precise segmentation of the infected regions that matches the observed
ground glass opacity for the specific CT slice. Since the dataset annotations are
missing, we do not analyse the segmentation results quantitatively. Also, since
data with missing annotations cannot be used to train supervised deep learning
models, we do not compare our methodology with any deep learning methods
for the given dataset. Thus, it may be concluded that our unsupervised clinically
inclined approach is capable of segmenting the COVID-19-infected lung regions
from CT slices effectively and accurately.

3.3 Quantitative results for COVID-19 severity gradation

To evaluate the predicted COVID-19 severity scores we use quadratic weighted
kappa (QWK) [15] as a metric. QWK measures the degree of agreement of
predicted severity scores with the ground truth gradation. While a value of 1
denotes complete agreement, -1 denotes complete disagreement. Our methodol-
ogy can obtain a QWK of 0.81 for the gradation of COVID-19 and a QWK of
0.73 for severity estimation, as seen in Table 1. However, on using the dataset
annotations of infected regions for obtaining the percentage involvement of each
lobe, a QWK of 0.52 is obtained for COVID-19 gradation and 0.44 for severity
estimation, thus showing less agreement with the radiologist gradations. This is
because our methodology has pixel-level precision when deciding on the infected
regions. Whereas, in the manual annotations provided with the dataset a wider
area is roughly marked around the infection region as evident in Fig 5. Also,
for some slices annotations are missing. As our methodology has greater agree-
ment with the ground-truth gradations, it suggests that our methodology may
be used as an assistance tool by radiologists for precise annotation of COVID-19
infection regions.
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Table 2. Table of results for evaluation of the fairness of COVID-19 severity predic-
tion by our proposed methodology for different sex and age groups. QWK stands for
quadratic weighted kappa. α denotes the range of grades considered for evaluating the
coverage.

Sex Age Severity Gradation

QWK QWK Coverage
α = 0α = 1α = 2α = 3α = 4α = 5

Female - 0.88053 0.87315 0.25 0.39 0.67 0.78 0.89 0.97
Male - 0.61181 0.74746 0.19 0.38 0.64 0.80 0.86 0.92

Female up to 40 1.00000 0.95000 0.44 0.44 0.67 0.67 0.89 1.00
Female 41 to 50 0.94915 0.87861 0.33 0.44 0.78 1.00 1.00 1.00
Female 51 to 60 0.46667 0.55932 0.13 0.25 0.75 0.75 0.88 1.00
Female 61 to 70 0.00000 0.40496 0.00 0.33 0.33 0.67 0.83 0.83
Female above 70 0.00000 -0.40000 0.25 0.5 0.75 0.75 0.75 1.00
Male up to 40 0.83019 0.90789 0.33 0.42 0.75 0.92 0.92 0.92
Male 41 to 50 1.00000 0.61878 0.17 0.33 0.67 0.83 0.83 0.83
Male 51 to 60 0.45455 0.56288 0.11 0.28 0.61 0.78 0.83 0.89
Male 61 to 70 0.44444 0.82326 0.20 0.47 0.67 0.73 0.93 1.00
Make above 70 0.30357 0.31484 0.15 0.38 0.54 0.77 0.77 0.92

3.4 Coverage and Fairness evaluation

We also evaluate the coverage offered by our methodology for different ranges of
error grades, denoted by α, and provide the results in Table 1. Coverage evaluates
whether the true grade is present in the range given by predicted grade ±α. Our
methodology obtains a coverage of 0.21 for α = 0, which means that 21% of
the predictions are an exact match to the true grades and gradually goes up to
a coverage of 0.94 for α = 5. Our methodology of segmenting infection regions
obtains a higher coverage than dataset annotations in all cases, except for α = 5.

Further, we attempt to evaluate the fairness of predictions by our methodol-
ogy for different sex and age groups. The results are given in Table 2 and Fig. 6.
It is observed that QWK for female patients is 0.87 for COVID-19 gradation and
0.88 for severity estimation whereas for male patients, QWK is 0.75 for COVID-
19 gradation and 0.61 for severity estimation. The coverage obtained for female
patients is also more than that obtained for male patients for a particular value of
α, the only exception being α = 3. Thus, for the MIDRC-RICORD-1a dataset,
our methodology performs better for female patients than male patients. On
studying the performance for different age groups, it is observed that the QWK
score decreases for female patients as age increases for both COVID-19 gradation
and severity estimate, with a negative QWK value for the age group above 70 for
COVID-19 gradation and a 0 value for age of above 60 for severity estimation.
On observing the coverage values for different age groups a relatable trend is
found for female patients. However, for different age groups of male patients, no
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such trend can be observed for QWK scores and coverage. Thus, it may be con-
cluded that for the given dataset, the performance of our methodology decreases
as the age group increases for female patients but no such conclusion can be
drawn for male patients.

4 Conclusion

In this paper, we propose a domain-inspired unsupervised approach for the pre-
diction of COVID-19 severity grades from lung CT scans using classical image
processing and pattern recognition techniques based on the clinical procedure of
gradation. Radiologists estimate by eye the percentage involvement of each lobe
of the lung which is then added to give a score between 0 and 25. We propose
a computer-automated assistance tool that mimics this eye estimation to pro-
vide pixel-level segmentation of infected regions of the lung with high precision
followed by gradation of COVID-19 severity scores and act as a clinical decision
support system (CDSS). Our method is purely mechanistic and hence provides
several advantages: 1) it is unsupervised and hence does not need costly annota-
tions and labels from human experts for training (only for validation), 2) since
there is no learning stage, it is fast and lightweight, and hence can be easily
deployed to a remote clinical setting; 3) it is interpretable and trustworthy as
it follows the clinical process in a transparent way as opposed to deep learning
black boxes. We achieve high-fidelity results on a popular benchmark dataset
and even add new resources to the same through severity scores generated by
our contributing senior radiologist. Finally, our method can be easily generalised
to other similar tasks like pulmonary oedema, etc. The code and the COVID-19
CT severity gradations by our experienced radiologist are available at https://
github.com/Samiran-Dey/explainable_seg.
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Abstract. The biomedical field is among the sectors most impacted by
the increasing regulation of Artificial Intelligence (AI) and data protec-
tion legislation, given the sensitivity of patient information. However, the
rise of synthetic data generation methods offers a promising opportunity
for data-driven technologies. In this study, we propose a statistical app-
roach for synthetic data generation applicable in classification problems.
We assess the utility and privacy implications of synthetic data generated
by Kernel Density Estimator and K-Nearest Neighbors sampling (KDE-
KNN) within a real-world context, specifically focusing on its application
in sepsis detection. The detection of sepsis is a critical challenge in clini-
cal practice due to its rapid progression and potentially life-threatening
consequences. Moreover, we emphasize the benefits of KDE-KNN com-
pared to current synthetic data generation methodologies. Additionally,
our study examines the effects of incorporating synthetic data into model
training procedures. This investigation provides valuable insights into the
effectiveness of synthetic data generation techniques in mitigating regu-
latory constraints within the biomedical field.

Keywords: Synthetic data · Machine learning · Sepsis detection

1 Introduction

The exponential growth of Artificial Intelligence (AI) has sparked a revolution-
ary wave across various sectors with its profound impact particularly evident
in the biomedical field. AI’s ability to analyze vast amounts of data quickly
and accurately has transformed medical research, diagnosis, and treatment. In
recent years, there has been significant progress in the application of machine
learning (ML) and deep learning models for early disease diagnosis [42]. These
methodologies have exhibited substantial potential in identifying a diverse range
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of diseases, including cancer [40], cardiovascular disease [29], and Parkinson’s
disease [15], or conditions such as fatigue [1]. Through sophisticated algorithms
and analysis of extensive datasets, these models can potentially identify subtle
patterns and markers indicative of these conditions at their early stages.

However, many governments are introducing strict regulations for personal
data processing and AI applications such as new European Union AI act1,
CCPA2 (Unitated States), and LGPD3 (Brazil), which enforce data protec-
tion measures. A significant development in the regulatory landscape of AI has
occurred with the enactment of the AI Act within the European Union. This
legislative framework is designed to oversee and govern the application of AI
models. In the realm of biomedical research, cautious consideration must be
exercised when employing patient data for the training of AI models. Patient
data, characterized by its sensitive nature [30], is subject to stringent protection
under data protection laws, necessitating the preservation of privacy [5].

A solution that can potentially overcome these limitations involves the gener-
ation of fully Synthetic Data (SD) as an alternative to real data. SD is artificial
data generated by a trained model and built to replicate real data by taking
into account its distribution (mean, variance) and structure (e.g. correlation
between attributes) [12]. The utilization of SD generation emerges as a ver-
satile methodology in machine learning, extending its applications across two
domains: augmenting datasets to enhance model training [4,39] and safeguard-
ing the privacy of sensitive information [35]. Henceforth, this study introduces a
straightforward technique for SD generation and conducts a comparative evalu-
ation against state-of-the-art methodologies in terms of both utility and privacy
considerations. The evaluation of these methods is performed within the context
of a real-world application, specifically the early diagnosis of sepsis.

In more detail, the main contributions of this work are the following:

– We propose KDE-KNN, a statistical method to generate synthetic data for
training and evaluating supervised learning algorithms.

– We evaluated the utility and privacy of the generated synthetic data using
different supervised algorithms in the context of sepsis detection. Our find-
ings demonstrate that KDE-KNN outperforms existing methods in generating
synthetic tabular data for sepsis detection.

– We assessed the generalization capacity of KDE-KNN using two real
databases with more than 2000 patients. Our results suggest that KDE-KNN
has certain advantages in terms of generalization over other methods.

2 Related Works

We have divided this section in two parts: (i) synthetic tabular data generation
approaches in Healthcare, and (ii) machine learning models for predicting sepsis.
1 https://artificialintelligenceact.eu/
2 https://oag.ca.gov/privacy/ccpa
3 https://iapp.org/resources/article/brazilian-data-protection-law-lgpd-english-

translation/

https://artificialintelligenceact.eu/
https://oag.ca.gov/privacy/ccpa
https://iapp.org/resources/article/brazilian-data-protection-law-lgpd-english-translation/
https://iapp.org/resources/article/brazilian-data-protection-law-lgpd-english-translation/
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2.1 Synthetic Tabular Data Generation Approaches in Healthcare

Synthetic data (SD) have been considered for a long time (e.g., Rubin [36] and
Little [27]) as records of synthetic values instead of real values for different pur-
poses. Nowadays, the concept of SD has evolved to encompass artificial data
generated by trained models, designed to emulate real data by faithfully cap-
turing its distributional (such as mean and variance) and structural attributes
(including correlations between attributes) [12]. SD generation stands out as
a highly promising yet largely underexploited technology for fulfilling privacy-
preserving laws. In the biomedical sector, synthetic data generation has been
mainly investigated in medical imaging [19], Electronic Health Records (EHR)
free-text content [17] and EHR tabular data [48].

The present study focuses on synthetic EHR tabular data generation, as it
is the predominant type of data used to develop ML models to aid healthcare
decision-making [21]. Tabular healthcare-related data stored in EHR contain vast
and diverse amounts of patient-related data. Typically, each row in a healthcare
tabular dataset represents a single data record containing descriptive patient
details such as date of birth, gender, and demographic information, along with
sensitive attributes primarily consisting of longitudinal data. This longitudinal
data comprises a series of medical events occurring at various time points, encom-
passing diagnoses, laboratory test results, and prescription information [10].

In the healthcare context, numerous approaches to generating synthetic data
can be found in the literature. Among these, one widely utilized algorithm is
the Synthetic Minority Oversampling Technique (SMOTE) [7], representing a
straightforward method for generating synthetic tabular data [44]. This algo-
rithm operates by synthesizing new data through interpolation of the existing
samples. Another statistical approach to generate synthetic data involves Kernel
Density Estimation (KDE) based models. Our framework for synthetic data gen-
eration in the healthcare context relies on KDE, chosen for its non-parametric
nature and demonstrated efficacy, particularly in small datasets, which are preva-
lent in the biomedical field [34].

Additional methodologies used for SD generation involves the utilization of
generative models, which include Generative Adversarial Networks (GANs) and
Diffusion Models (DMs).

Since their inception in 2014 [16], GANs have demonstrated exceptional capa-
bility in the production of synthetic image data [32]. For this reason, the appli-
cation of GANs to other data types, such as tabular data, is a popular topic in
the AI research community [20]. Some GAN-based synthetic tabular data gen-
eration approaches in Healthcare are ehrGAN [8], medGAN [9], GcGAN [49].
However, owing to the difficulties associated with training these models, as well
as constraints related to sample size, we opt not to evaluate such models in this
study.

On the other hand, we have Diffusion Models (DMs). DMs represent another
class of generative models which have been widely used in the computer vision
field. Notably, recent advancements have led to the development of architec-
tures tailored to exploit diffusion models for tabular data, such as TabDDPM
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[26], which has demonstrated significant potential and promising outcomes in
this regard. For these reasons, in this study we have evaluated the performance
between SMOTE, TabDDPM and KDE-based generative models.

2.2 Machine Learning Models for Predicting Sepsis

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated
host response to infection [43]. In 2017, approximately 20% of all global deaths
were attributed to sepsis [37]. Early diagnosis of sepsis is crucial in the clinical
setting, as it could help to significantly improve patient outcomes [47], but early
and accurate sepsis detection is still a challenging clinical problem [3]. For this
reason, several ML algorithms have been designed to predict sepsis using retro-
spective data [6,14,22,23,25,31]. To our current knowledge, existing algorithms
for sepsis prediction operate within a defined temporal window, typically fore-
casting the likelihood of sepsis onset within a specific time lapse, such as the next
24 hours. In our study, we want to overcome temporal constraints by seeking to
predict the presence or absence of sepsis without temporal limitations. There-
fore, we frame the task of sepsis detection as a classification problem, with the
aim of addressing the question: Will patient A develop sepsis in the future? Fur-
thermore, we substantiate our findings through validation in an external cohort
for robustness and generalizability.

3 Materials and Methods

In this study we have used 2 databases: i) Mannheim database (MaDB) used for
training our models and building the synthetic datasets; ii) Son Llàtzer hospital
database (SLDB) used as external validating dataset to evaluate the trained
models.

3.1 Mannheim Database

We used the University Medical Centre Mannheim database of patients admit-
ted to Intensive Care Unit (ICU) [38]. This database contains a total of 1275
patients, 979 with non-sepsis and 296 with sepsis. Initially, the MaDB comprised
42 timelines of features and the diagnosis of sepsis at each time step. However,
for comparative analysis with the SLDB, it was necessary to align the feature
sets. Consequently, only 27 features were found to be common between both
databases. Among these features we have the age of the patient and lab results
(Table 1).

For our study we did not use temporal data, instead we set a cut-off value
at 9 hours as we estimated that in this time period all clinical tests could be
performed and laboratory results could be collected. If a test has been performed
several times during this period, the last value is used. In this way we constructed
a dataset where our predictor variables were collected in that time interval and
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Table 1. Description of the 27 variables present in the databases.

ID Feature Description

1 heart_rate Number of heartbeats per minute
2 leukocytes Cells of the immune system
3 temperature Body temperature
4 respiratory_rate Number of breaths a person takes per minute
5 bilirubin Compound originating from heme catabolism [46]
6 blood_urea_nitrogen Amount of urea nitrogen in the blood
7 creatinine The end product of creatine phosphate metabolism [24]
8 diastolic_bp Blood pressure measurement
9 fraction_of_inspired_o2 Fraction of oxygen present in the air that a person inhales
10 systolic_bp Blood pressure measurement
11 thrombocytes Blood cells
12 lactate Metabolite of glucose
13 bicarbonate Electrolyte [41]
14 c-reactive_protein Molecule secreted in response to inflammatory cytokines [11]
15 hemoglobin Protein found in red blood cells
16 lymphocytes Cells of the immune system
17 sodium Electrolyte [41]
18 pancreatic_lipase Enzyme [28]
19 procalcitonin Peptide
20 oxygen_saturation Percentage of hemoglobin bound to oxygen [18]
21 blood_glucose Concentration of glucose
22 chloride Electrolyte [41]
23 calcium Electrolyte [41]
24 potassium Electrolyte [41]
25 alanine_transaminase Enzyme [45]
26 aspartate_transaminase Enzyme [45]
27 age Years

the objective was to predict whether or not a patient will develop sepsis in the
future (classification problem).

On the other hand, the Mannheim database (MaDB), contains temporal
data that allow precise tracking of sepsis onset times for patients, as evidenced
in Table 2. The notable variability in the timing of sepsis manifestation within
this dataset underscores its inherent heterogeneity. However, we do not use this
temporal information, because we treat the detection of sepsis as a binary classi-
fication problem. The MaDB has been used to train and test models and generate
synthetic data.

3.2 Son Llàtzer Hospital Database

We used a database from Son Llàtzer Hospital of patients admitted to emergency
and ICU. The Son Llàtzer DataBase (SLDB) contains 2028 patients in total,
1014 with non-sepsis and 1014 with sepsis. In this database, we also selected the
27 common features with the MaDB. However, within the SLDB, the precise
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Table 2. Main characteristics of the databases, including the number of features and
patients, as well as the mean, minimum and maximum time of sepsis onset (in hours)
and the service where the data were collected.

DB Patients Features Mean(t) Min(t) Max(t) Hospital service

MaDB 979 non-sepsis/ 296 sepsis 27 208.7 39.5 1385 ICU
SLDB 1014 non-sepsis/ 1014 sepsis 27 36 24 48 ICU/emergency

mean sepsis onset time remains unknown. According to insights from the medical
team, the mean sepsis onset time is estimated to range between 24 to 48 hours.
We employed this database for external validation, acknowledging significant
disparities in sepsis onset times compared to our primary dataset. Notably, there
are substantial variations in data distribution between the two databases. Thus,
we perceived this as an opportunity to assess the generalization capacity of our
models across diverse demographic populations.

3.3 Sepsis Prediction Models

Predicting sepsis onset remains a critical challenge in clinical practice due to
its rapid progression and potentially life-threatening consequences [43]. Early
detection and intervention are paramount for improving patient outcomes and
reducing mortality rates associated with this severe condition. Our study evalu-
ates three distinct ML models and assesses their performance based on the Area
Under the Curve (AUC) score.

– Random Forest (RF). It is a widely used machine learning algorithm that
belongs to the ensemble learning family, characterized by the construction of
multiple decision trees during training. For classification tasks, RF outputs
the predicted class, which in the context of sepsis prediction signifies whether
a patient is likely to develop sepsis or not.

– Support Vector Machine (SVM). Unlike traditional classifiers that aim to find
a decision boundary that separates classes, SVM seeks to find the hyperplane
that best divides the classes while maximizing the margin between them. In
our experiments we have used two SVM changing the type of kernel: i) SVM
with a linear kernel; ii) SVM with a radial basis function (rbf) kernel.

The hyperparameters of the models were tuned using the Optuna library [2].
Specifically, we employed a TPE (Tree-structured Parzen Estimator) sam-
pler with 40 trials to maximize AUC. For the Random Forest (RF) model,
the optimal hyperparameters were determined as follows: bootstrap was set
to False, max_depth to 20, max_features to 5, min_samples_leaf to 5,
min_samples_split to 12, and n_estimators to 500. As for the SVM models,
both of them had C set to 1. Other parameters that were not mentioned stay by
default according to the scikit-learn library [33].
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3.4 Statistical Data Modelling Approaches

In this paper we have analysed 3 popular statistical data modelling methods:
SMOTE [7]: SMOTE is an oversampling methodology that was initially

employed to generate synthetic observations exclusively from the minority class.
We expanded this approach to incorporate the majority class as well [26], result-
ing in the creation of a fully synthetic dataset.

TabDDPM [26]: TabDDPM is a design of denoising diffusion probabilistic
models for tabular data. To tackle mixed-type characteristics of tabular data,
this architecture integrates gaussian diffusion for capturing the characteristics of
continuous features and multinomial diffusion for effectively modeling categorical
attributes.

KDE: KDE is a method used to estimate probability density functions. By
constructing this distribution, we gain the ability to generate synthetic data
samples through sampling. This capability allows for the creation of synthetic
datasets representative of the underlying probability distribution. We conducted
experiments using multivariate KDE, taking into account the interdependencies
between features. This allows us to capture complex relationships and depen-
dencies across multiple variables simultaneously.

3.5 KDE-KNN: Privacy-Preserving Synthetic Clinical Data

Our proposed methodology is founded on the integration of KDE and K-Nearest
Neighbors (KNN). The idea is to use a multivariate gaussian KDE to approxi-
mate the probability density function of the original dataset features and then
sample it to generate synthetic datasets. However, as the feature space can be
very large, we train a KNN to validate the synthetic samples. The procedural
steps to construct our synthetic dataset are the following:

1. Training a KNN model: A KNN model is trained using the provided training
dataset.

2. Data preparation for KDE: The training dataset is partitioned into two dis-
tinct groups, patients with sepsis (18.55%) and without sepsis (81.45%).

3. Multivariate KDE construction: Statistical independent multivariate KDE
distributions are trained for each subgroup.

4. Sampling synthetic data: Sampling is performed from each multivariate
KDE model, generating 540 synthetic patients with sepsis and 540 synthetic
patients without sepsis.

5. Validation using KNN model: Validation of the synthetic samples is conducted
by the trained KNN model. Synthetic data originated from the KDE model
built with non-sepsis data should be classified as non-sepsis by the KNN
model. Any discrepancies lead to discarding the data point.

Steps 4 and 5 are iteratively executed until we attain a total of 540 synthetic
data points for patients with sepsis and 540 synthetic data points for patients
without sepsis. This process ensures the creation of a balanced synthetic dataset
representative of both septic and non-septic patient populations.
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Fig. 1. Block diagram of our proposed KNN-KDE method for synthetic data generation
including the generation modules based on two Kernel Density Estimators (Sepsis and
Non-Sepsis) and K-NN sampling.

For clarification, we close this section by visualizing our proposed synthetic
method as a flowchart, illustrated in Fig. 1.

4 Experiments and Results

In this section, we assess the influence of synthetic data on the performance of
sepsis detection models.

4.1 Experimental Protocol

Initially, our study is based on two distinct sepsis databases: the MaDB and the
SLDB. The MaDB served as the primary dataset for model training/testing and
synthetic data generation, while the SLDB was exclusively utilized for external
validation purposes. Regarding the preprocessing of the datasets, missing values
were imputed with the median and the data were standardized.

Our first experimental phase involved evaluating model performance using
real data exclusively. To accomplish this, we employed the MaDB and we parti-
tioned the data into training (85%) and testing (15%) sets, repeating the experi-
ment three times while changing the seed. Additionally, each partition underwent
an external validation using the SLDB. Notably, our analysis revealed that the
performance of the most effective models remained consistent across different
partitions, suggesting minimal impact of partitioning on model performance.

The second phase of experimentation was dedicated to assessing the utility
of synthetic data. Our focus was on evaluating model performance exclusively
using synthetic data. To achieve this, we generated a fully synthetic balanced
dataset comprising 540 samples with sepsis and an equal number of 540 samples
without sepsis. This balanced dataset mirrored the size of our original imbal-
anced training set. Building upon the stability observed in model performance
across the three partitions in Experiment 1, one of the partitions was randomly
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Table 3. Results of Experiment 1 using real data. The result is shown in terms of AUC
± variance as each model was trained 3 times.

Model MaDB SLDB

RF 0.6708 ± 0.0169 0.6469 ± 0.0313

SVM lineal kernel 0.5426 ± 0.0581 0.6120 ± 0.0701

SVM rbf kernel 0.6194 ± 0.0119 0.6952 ± 0.0282

selected for this subsequent analysis. This selection yielded both a training set
and a test set sourced from the MaDB. The training set acted as a seed for
generating synthetic data, employing the methodologies outlined in Section 3.4.
For each method, three distinct synthetic balanced datasets were generated. Fol-
lowing this, the quality of the synthetic data was evaluated using the test set.
Additionally, an external validation was conducted using the SLDB to ensure the
reliability and validity of our findings (Experiment 2). The results of this exper-
iment showed that the best method to generate synthetic data in the context of
sepsis prediction is KDE-KNN. Finally, in the Experiment 3, we examined how
the incorporation of both real and synthetic data in the training set influenced
model performance.

The third phase of our experimentation aimed to assess data privacy preser-
vation using our KDE-KNN method. In the Experiment 4, we investigated the
proximity of synthetic data to real data using the Mean Distance to Closest
Record (DCR) metric [50]. Mean DCR calculates the average distance between
synthetic samples and their closest real data points.

4.2 Real Data and Synthetic Data Utility

The findings from Experiment 1 are presented in Table 3. This experiment
involves evaluating model performance in terms of AUC using exclusively real
data. The results indicates that the RF model demonstrates superior perfor-
mance in the test set. Nevertheless, concerning generalization, the results indi-
cates a lower performance of the RF model, while the SVM with the rbf kernel
demonstrates better generalization capabilities.

Experiment 2 aimes to assess the utility of synthetic data. The outcomes of
Experiment 2 are detailed in Table 4. This experiment involved evaluating model
performance using balanced synthetic datasets for training.

The findings indicates a notable enhancement in model performance when
employing balanced synthetic datasets. Remarkably, balanced synthetic data
appear to outperform real imbalanced data. Specifically, the SVM model with
the rbf kernel demonstrates superior performance when trained on synthetic data
generated using the KDE-KNN method. Furthermore, enhanced model perfor-
mance is evident in the external validation database. These results may be due
to the reduced heterogeneity of the external database and the earlier onset of
sepsis in patients, suggesting that our models perform better when sepsis occurs
within the 24-48 hour timeframe. Additionally, we emphasize the minimal vari-
ance observed in synthetic datasets generated through our method.
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Table 4. Results of Experiment 2 using synthetic data. The result is shown in terms of
AUC ± variance as each model was trained with 3 synthetic datasets. The ML classifier
was trained with synthetic samples generated from a subset of samples obtained from
MaDB.

Data Generation MethodML Classifier MaDB SLDB

RF 0.6721± 0.0144 0.4560± 0.0491

SMOTE SVM (lineal) 0.6309± 0.0346 0.6583± 0.0453

SVM (rbf) 0.6771± 0.0212 0.4437± 0.0596

RF 0.6942± 0.0102 0.5187± 0.0804

TabDDPM [26] SVM (lineal) 0.6697± 0.0207 0.6446± 0.046

SVM (rbf) 0.7020± 0.0095 0.6949± 0.0246

RF 0.6495± 0.0051 0.6261± 0.00255

KDE SVM (lineal) 0.6449± 0.0017 0.7202± 0.0215

SVM (rbf) 0.6748± 0.0072 0.7114± 0.0019

RF 0.6914± 0.0097 0.7650± 0.0049

KDE-KNN [ours] SVM (lineal) 0.7092± 0.0064 0.7541± 0.0040

SVM (rbf) 0.7129± 0.0062 0.7682± 0.0016

In Experiment 3, our goal was to examine how the combination of real and syn-
thetic data during training affects model performance. The findings from Experi-
ment 3 are presented in Table 5. For this analysis, we selected the best model and
the best synthetic method from Experiment 2, which were identified as the SVM
model with an rbf kernel and KDE-KNN as the synthetic method. We proceeded
to train the SVM model using varying proportions of real and synthetic data gen-
erated by KDE-KNN, as illustrated in Table 5. Experiments combining real and
synthetic data were performed 3 times using different seeds to sample the data. The
findings indicate that augmenting the percentage of synthetic data generated with
KDE-KNN in the training set leads to an improvement in the model performance,
attributable to the enhanced balance of the dataset. The Fig. 2 shows the normal-
ized distributions of 4 features in the real and synthetic databases. Note that the
differences between both real databases are significant, and how the distribution
of the synthetic samples tend to be realistic.

Table 5. Results of Experiment 3, combining real and synthetic data in the training
set using the SVM model with rbf kernel. The results are shown in terms of AUC ±
variance.

% Real % Synthetic MaDB SLDB

100 0 0.6267 ± 0 0.6806 ± 0

80 20 0.6828 ± 0.0177 0.7329 ± 0.0121

60 40 0.6874 ± 0.0047 0.7319 ± 0.0195

40 60 0.7033 ± 0.0066 0.7515 ± 0.0090

20 80 0.7160 ± 0.0099 0.7589 ± 0.0079

0 100 0.7129 ± 0 0.7682 ± 0
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Fig. 2. Distribution of 4 features from the two real datasets and the synthetic dataset.
The solid black line represents the data distribution from the SLDB, the grey line
represents the distribution from MaDB, and the dashed line represents the distribution
of synthetic data generated by KDE-KNN. All features were normalized using a z-score
normalization technique [13].

4.3 Privacy Preservation Result

In Experiment 4, we conducted an analysis of the mean Distance to Closest
Record (DCR) [50] between synthetic samples and their nearest real data points.
The DCR is calculated as the Euclidean distance between a real sample and the
closest synthetic sample. Low DCR values suggest that synthetic samples closely
resemble real data points, potentially compromising privacy requirements. Con-
versely, higher DCR values indicate that the generative model can produce novel
records rather than mere replicas of existing data. It is important to note that
out-of-distribution data, such as random noise, can also yield high DCR values.
Therefore, DCR must be evaluated alongside machine learning efficiency consid-
erations [26]. The Fig. 3 illustrates the compromise between privacy-preserving
generation and realism of the synthetic samples.

The Fig. 4 presents the probability distributions of DCR for the real sam-
ples (dR−R) and the 3 generation approaches evaluated in previous experiments
(dR−S). For SMOTE, the mean DCR value is 0.989, while for KDE-KNN and
TabDDPM, the values are 4.971 and 7.463 respectively. Comparing these results
with the mean distance between real data, which is 2.715, we observe that both
TabDDPM and KDE-KNN demonstrate efficacy in generating synthetic data
that preserves privacy, exhibiting superior performance compared to SMOTE.
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Fig. 3. Compromise between privacy and realism of synthetic samples. The graphs
represent the distance between real and synthetic samples in a conceptual 2-dimensional
space.

Fig. 4. Probability distribution of the Distance to Closest Record (DCR) for real sam-
ples and synthetic samples generated with the 3 generation approaches evaluated in
our experiments.

5 Conclusions

Motivated by the imperative of adhering to data privacy regulations, we intro-
duce KDE-KNN, a statistical method for generating tabular synthetic data.
Through an extensive evaluation within the context of sepsis detection, we
assessed this method in terms of both utility and privacy. Remarkably, our find-
ings suggested that synthetic data outperformed real data in sepsis detection. We
attributed this phenomenon to the fact that real dataset was quite imbalanced
while synthetic dataset was balanced. For this reason, KDE-KNN, also would be
a good method to balance datasets. Moreover, our findings have been corrobo-
rated through validation in an external database, reinforcing the generalizability
potential of our synthesis approach. Additionally, our results affirmed the effi-
cacy of KDE-KNN in preserving privacy, as evidenced by the distance observed
between synthetic and real data points. In conclusion, KDE-KNN emerges as a
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promising method for not only enhancing dataset utility but also safeguarding
data privacy, making it a valuable tool in various data-driven applications.
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Abstract. The class activation map (CAM) is useful in identifying signif-
icant image features that the convolutional neural network (CNN) model
is considering while making the prediction. This iscritical especially in
medical diagnosis like scenarios. However, existing gradient-based meth-
ods like Grad-CAM often produce low-quality visualization results due
to gradient errors despite their computational efficiency. On the other
hand, non-gradientmethods like Score-CAMproduce quality visualization
that comes with high computational costs. The proposed method SVD fil-
tersGrad-CAM(SVD-Grad-CAM),which leverages singular value decom-
position (SVD) to overcome the limitations of Grad-CAM. SVD-Grad-
CAM filters gradients within the gradient matrix to compute the weight
of the feature map for a specific class. This filtering process is achieved
by selecting the top k principal components from the SVD decomposition,
which discards less important patterns and potential error data. Conse-
quently, SVD-Grad-CAM enhances the quality of Grad-CAM by reduc-
ing the clutter of multiple region highlights. The MURA dataset, focus-
ing on elbow study type, is utilized to assess CAM visualization quality,
with a DenseNet-169 CNN model fine-tuned via transfer learning. A total
of 564 validation radiographs are used in empirical comparison, showing
that SVD-Grad-CAM improves average drop, average increase, maximum
coherency, and Average DCC by 30%, 21.67%, 19.91% and 22.56% respec-
tively, in comparison to Grad-CAM.

Code::https://github.com/ramaiahthota02/SVD-Grad-CAM-v1.git

Keywords: Class activation map · Grad-CAM · Musculoskeletal
Disorders · Singular value decomposition · Visual Interpretation

1 Introduction

Deep learning models such as CNN are successfully used in computer vision
tasks like prediction, object segmentation, medical diagnosis, and more [1].
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However, their black-box nature raises concerns about accountability and trans-
parency in critical applications like medical diagnosis [5]. This lack of explainabil-
ity can hinder trust in the model’s predictions, potentially leading to hesitation
in adopting them for real-world medical diagnosis [7]. The common methods of
interpreting CNN decisions are visualizing learned weights, activation maximiza-
tion, and CAM.

The learned weights are visualized in CNNs to detect higher-level features
in the training process. However, these visualizations didn’t show how CNN
makes its ultimate decision [21]. Gradient-descending techniques like activation
maximization were introduced to enhance specific neurons and understand which
input they respond to. But, these techniques still don’t explain how CNNs make
decisions for a particular image [11].

CAM is a widely used technique in CNNs that highlights important regions
for specific class predictions [24]. It is used in applications like semantic seg-
mentation [22], report generation [20], medical imaging [12], and more. CAM
utilizes the feature maps from the final layer of a CNN alongside the learned
weights from the fully connected classification layer. Its effectiveness relies on
these learned weights, which are influenced by the network architecture. Conse-
quently, Selvaraju et al. [17] introduced Grad-CAM as an alternative approach.
This method calculates weights by taking the average of the gradient matrix. The
gradient matrix comprises the partial derivatives that flow backwards through
the layers of the neural network during backpropagation, starting from the out-
put layer. However, there is an issue with both CAM and Grad-CAM method-
ologies, as they tend to generate low-quality visualization. Despite attempts to
enhance CAM visualization quality using methods such as Smooth-Grad [18] and
Extended-Grad-CAM, they have not achieved satisfactory results [8].

To improve visualization CAM quality, researchers developed non-gradient
methods that utilize changes in class scores. Examples of these methods include
Score-CAM [19], Ablation-CAM [16], and Eigen-CAM [9], which have been effec-
tive in producing high-quality visualization. However, these methods require
significant computational resources. Grad-CAM is popularly used in medical
imaging to interpret the CNN decision [13]. Despite its popularity, Grad-CAM’s
visualization quality is still compromised due to gradient errors during back-
propagation and multiple region highlights, as shown in Figure 1.

Figure (a) Figure (b) Figure (c)

Fig. 1. Figure 1(a) illustrates the elbow study type, while Figure 1(b) describes a
saliency map of Figure 1(a) highlighting distortions in gradients. Figure 1(c) showcases
Grad-CAM visualization, emphasizing multiple region highlights.
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In this paper, a new method called SVD-Grad-CAM has been proposed to
address the above-mentioned challenges. This method utilizes SVD to filter gra-
dients from the gradient matrix during weight computation. Empirical evalua-
tions of this method have been conducted on the musculoskeletal radiograph
(MURA) dataset [10] with the DenseNet-169 CNN model [3], using metrics
including average drop, average increase, maximum coherency [23] complexity
and Average DCC [14]. The study proposes several strategies to improve the
quality of visualization of Grad-CAM by utilizing the SVD.

– The SVD-Grad-CAM method is proposed to filter the gradient matrix to
compute the weights such that it selects the best patterns or neglects the
error data in the feature maps to improve the quality visualization and reduce
the multiple region highlights.

– The study quantitatively assessed the visualization quality of CAMs using the
following measures: average drop 12, average increase 13, maximum coherency
15, complexity 16, and Average DCC 17.

– The DenseNet-169 CNN model was trained on a musculoskeletal radiograph
dataset with elbow study type for quantitative evaluation of SVD-Grad-CAM
and existing CAMs.

The paper presents its research findings in a structured sequence. It begins by
reviewing relevant literature on CAM in Section 2. Then, it outlines the proposed
methodology in Section 3, discusses the dataset, evaluation metrics, experiments,
and the results in Section 4, and concludes with future works in Section 5.

2 Related Work

CAMs are essential tools for interpreting Convolutional Neural Networks
(CNNs). They enable us to visualize the parts of an input image that contribute
the most to the network’s decision-making process. There are two main types of
CAMs: gradient-based and non-gradient-based.

Gradient-based CAMs use the gradients that flow through the CNN dur-
ing the backpropagation process. They analyze these gradients to produce class
activation maps. Some examples of gradient-based CAMs are CAM, Grad-CAM
(Gradient-weighted Class Activation Mapping), Grad-CAM++, Smooth-Grad-
CAM, and Extended-Grad-CAM.

Non-gradient-based CAMs derive weights from changes in class scores
instead of gradients. Examples of non-gradient-based CAMs include Score-CAM,
Ablation-CAM, and Eigen-CAM. While gradient-based CAMs are computation-
ally efficient, they may produce low-quality CAM visualizations due to gradient
errors during the backpropagation process. This can result in inaccuracies in
highlighting the relevant parts of the input image. Non-gradient-based CAMs
offer an alternative approach that avoids these gradient-related issues, poten-
tially producing more reliable visualizations.

Zhou et al. used global average pooling (GAP) [6] to implement the
CAM technique, which establishes the relationship between feature maps and
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weights in fully connected layers in classification [24]. The CAM formula utilizes
wc

k learned weights in a fully connected layer and the feature map Mk
i,j origi-

nating from the final convolutional layer, with a specific focus on class c. CAM
visualization is defined as:

Lc
CAM =

∑

i,j

wc
kMk

i,j (1)

However, CAM has some limitations such as requiring retraining for pre-trained
models for weights. Grad-CAM introduces a gradient-based approach to visual-
ize deep learning model decisions without altering the model’s architecture or
necessitating retraining. In the case of Grad-CAM, the values of the weights are
established through the computation of gradients available in backpropagation.
The CAM formula utilizes wc

k learned weights in a fully connected layer given in
Equation 1. In the case of Grad-CAM, the values of the weights are established
through the computation of gradients related to the class score Y c concerning
the feature maps Mk

i,j :

wc
k =

1
Z

∑

i

∑

j

∂Y c

∂Mk
i,j

(2)

Despite its utility, Grad-CAM has limitations, including issues with visualization
quality and localization accuracy and difficulty detecting objects with minimal
spatial footprint. Grad-CAM++ [2] builds upon Grad-CAM, providing more
detailed explanations using a technique that calculates pixel-wise weights using
higher-order gradients, offering a refined heatmap. However, Grad-CAM++ is
resource-intensive due to the computation of higher-order gradients and may not
handle noise effectively.

Extended-Grad-CAM [4], a variant of Grad-CAM, applies a Gaussian filter
to activation maps before creating the class activation map. This technique aims
to enhance map accuracy, reliability, and robustness to input noise, offering a
smooth visualization of important features. The implementation of Extended-
CAM involves computing the Gaussian filter G(x, y) is defined as:

G(x, y;μ, σ) =
1

2πσ2
exp

(
− (x − μx)2 + (y − μy)2

2σ2

)
(3)

The Gaussian filter G(x, y) is applied to the activation map Ak of the last
convolutional layer.

Smooth-Grad-CAM [18] introduces a novel approach by adding Gaussian
noise (σ) to images and applying Grad-CAM over them. This technique reduces
noise, resulting in improved feature visualization. Smooth-Grad-CAM com-
bines the strengths of smoothing and gradient-based methods to enhance model
interpretability, but satisfactory visualization quality is not achieved. x is the
input image and noisy is defined as;

xi = x + N(0, σ2) (4)
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Score-CAM extends CAM by providing visual explanations without relying
on gradients. It calculates the importance of each activation map based on its
score for the target class, outperforming previous CAM methods in recognition
and localization tasks [19]. Nevertheless, Score-CAM is computationally expen-
sive and sensitive to model architecture. Eigen-CAM arranges each feature map
into a column vector and applies the SVD [9]. It utilizes the right singular matrix
V T to compute the weights and employs the first eigenvector, providing insightful
visualizations of model decision-making. However, it’s worth noting that Eigen-
CAM may not inherently support multi-class discrimination. Ablation-CAM is a
method used to determine the significance of individual feature map units for a
specific class [16]. It involves zeroing out various regions of an input image and
monitoring the changes in the model’s output. Compared to other approaches
such as Grad-CAM and Score-CAM, Ablation-CAM is less prone to noise and
artifacts. However, careful consideration of the regions must be ablated, and
multiple evaluations of the model demand high resources and time consuming.

Grad-CAM overcomes CNN architecture dependency limitations using a
gradient-based approach, which provides localization maps without altering the
model’s architecture. However, it still faces challenges with low-quality visual-
ization and detecting small objects. Grad-CAM++ improves upon Grad-CAM
by pinpointing exact object locations. However, it is resource-intensive. Score-
CAM extends CAM by providing explanations without relying on gradients,
but it is computationally expensive. Extended-Grad-CAM enhances accuracy
and robustness to noise by applying a Gaussian filter to gradients. Smooth-
Grad-CAM combines smoothing and gradient-based methods to reduce noise
and improve feature visualization but has not achieved satisfactory visualization
quality.

3 Methodology

The CNN layer l produces k feature maps denoted as Mk ∈ R
P×Q×R. These

maps are then used alongside class scores Y c obtained from fully connected
layers to compute the gradient matrix G, representing the partial derivatives
∂Y c

∂Mk
i,j

. This gradient matrix captures errors in gradient propagation during back-
propagation.

Directly deriving weights from the gradient matrix G can potentially com-
promise the accuracy of Class Activation Mapping (CAM) visualizations. The
objective is to filter out erroneous data and undesirable patterns to ensure precise
weight computation for each feature map. To achieve this, Principal Component
Analysis (PCA) is applied to G using Singular Value Decomposition (SVD). The
top n principal components are retained to eliminate noise and subtle patterns,
enabling the computation of precise weights.

Subsequently, these computed weights and the feature maps are used to gen-
erate the visualization of SVD-Grad-CAM, as depicted in Figure 2. This tech-
nique enhances the accuracy of CAM visualization by effectively filtering out
noise and unwanted patterns, thus providing a clearer local discrimination.
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Fig. 2. The system diagram of SVD-filtered Grad-CAM that computes weights from
the singular matrix.

The SVD is applied to the gradient matrix G, its partial derivative ∂Y c

∂Mk
i,j

is
represented as:

G =

⎡

⎢⎢⎢⎢⎢⎣

∂Y c

∂Mk
1,1

∂Y c

∂Mk
1,2

· · · ∂Y c

∂Mk
1,j

∂Y c

∂Mk
2,1

∂Y c

∂Mk
2,2

· · · ∂Y c

∂Mk
2,j

...
...

. . .
...

∂Y c

∂Mk
i,1

∂Y c

∂Mk
i,2

· · · ∂Y c

∂Mk
i,j

⎤

⎥⎥⎥⎥⎥⎦
(5)

Let the i indices ranging from 1 to P , and j be indices ranging from 1 to Q.
k represent the kth feature map its value ranges from 1 to R. The principal
component analysis processes the gradient matrix G employing SVD. This serves
the purpose of minimizing gradient errors and Singular values obtained through
SVD signify the directions of maximum data variability, thereby forming the
foundation for determining the weights of the feature map. The SVD of the
gradient matrix, denoted as ∂Y c

∂Mk
i,j

, is defined as follows:

G ≈ UkΣkVk
T (6)

In SVD, Σk represents the diagonal matrix of singular values, Uk contains the
left singular vectors, and V T

k contains the right singular vectors. By selecting the
top n components of singular values, attention is focused on the most significant
directions, which are crucial for determining the weights of the feature map Mk.
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Moreover, there are four ways to compute the weights wc
k, each utilizing different

combinations of these SVD components:

a) Using left singular matrix Uk:

wc
k =

1
n · P

n∑

j=1

(
P∑

i=1

Uki,j

)
(7)

Here, it calculates wc
k of the feature map MK by averaging all rows of the

left singular matrix Uk within the top n principal components.
b) Using right singular matrix V T

k :

wc
k =

1
n · Q

n∑

j=1

(
Q∑

i=1

VT
k j,i

)
(8)

Here, it calculates wc
k of the feature map MK by averaging all columns of the

left singular matrix V T
k within the top n principal components

c) Using the product of UkV T
k :

wc
k =

1
n · P

n∑

j=1

(
P∑

i=1

(
UkVT

k

)
i,j

)
(9)

This equation computes wc
k of the feature map MK as the mean of all ele-

ments in the product of the matrices Uk and V T
k , considering top n principal

components and P columns.
d) Using reconstructed gradient matrix:

wc
k =

1
n · P

n∑

j=1

(
P∑

i=1

(
UkΣkVT

k

)
i,j

)
(10)

In this equation, wc
k for the feature map MK is calculated as the average of

all elements in the product of the matrices Uk, Σk, and V T
k , considering the

top n principal components and P columns.

There are four ways to compute the wc
k for the feature map Mk, and one

way is employed among them. To define the SVD-Grad-CAM visualization, the
sum is taken over the product of wk and Mk for each feature map k. This can
be expressed as:

Lc
SVD-Grad-CAM =

∑

i,j

wc
kMk

i,j (11)

Figure 3 displays the four outputs from SVD-Grad-CAM, which result from
four ways to compute the weights as outlined in Equations 7, 8, 9, and 10.
The first two methods mentioned in Equations 7 and 8 cannot produce the
correct visualization. Therefore, they will not be utilized in future experiments
to generate SVD-Grad-CAM. The remaining two methods, using the product of
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Fig. 3. Each sub-figure represents the SVD-Grad-CAM visualization from the four
ways of computing weights. The product of Uk.V T

k and reconstructed G demonstrate
satisfactory performance.

Uk.V T
k and reconstructed gradient matrix, have produced satisfactory results,

as demonstrated in Figure 3. Both methods will continue to be tested, and the
superior one will be selected for generating SVD-Grad-CAM visualization. The
reconstructed gradient matrix or the combination of UkV T

k effectively captures
significant data variations crucial for class discrimination. Algorithm 1 delineates
the overall process of SVD-Grad-CAM. The SVD also exhibits a noise reduction
property, which diminishes noise and enhances the quality of SVD-Grad-CAM
visualization by preserving top singular vectors.

Algorithm 1. SVD-filtered-Grad-CAM Algorithm
1: Input: X (Input image), f(X; θ) (The CNN Model)
2: Output: Lc

SVD-Grad-CAM

3: Call CNN Model:
4: Pass X through f(X; θ) CNN model for prediction.
5: Collect Predicted Class Score and Convolutional Layer Output:
6: Collect predicted class score Y c and last convolutional layer output Mk.
7: Gradient Matrix Computation:
8: Compute gradient matrix G = ∂Y c

∂Mk
i,j

.

9: Apply SVD to Gradient Matrix
10: Apply SVD to G to obtain Uk, Σk, V T

k .
11: Weight Calculation:
12: Retrieve top n components from UkV T

k or UkΣkV T
k .

13: Scaling the feature maps:
14: Scale the feature maps Mk to size of the input image X.
15: SVD-Grad-CAM computation:
16: Calculate Lc

SVD-Grad-CAM =
∑

i,j wc
kMk

i,j .
17: Visualization:
18: Visualize SVD-Grad-CAM output for interpretability.
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4 Experiments and Results

4.1 Dataset and Pre-processing

The MURA dataset encompasses 14,656 study cases across seven distinct study
types, such as finger, shoulder, elbow, forearm, humerus, hand, and wrist, each
meticulously annotated and categorized [15]. To investigate the efficacy of the
SVD-Grad-CAM approach on the MURA dataset, elbow study type radiograph
images were used. Regarding elbow studies within the MURA dataset, the train-
ing set encompasses 4930 radiograph images, with 2924 representing normal cases
and 2006 indicating abnormalities and it is available for download at [10]. The
validation set is specifically tailored for elbow studies, comprising 564 radiograph
images, of which 234 are categorized as normal and 230 denote abnormalities.

4.2 Setup

The PARAM SHAVAK system at the Institute comprises two elements, each
with dual-socket Intel Xeon Gold 6226 processors. It has 96GB of DDR4 RAM,
two high-speed network ports, two 16 PCI-E Gen3 slots, and four 4TB SATA or
NL-OSAS disks. It supports up to two Nvidia RTX P5000 GPUs for compute-
heavy activities, such as deep learning, scientific simulations, and visualizations.

4.3 Evaluation Metrics

The article [14] discusses assessment metrics that offer significant information
on the performance of models that use explanation maps.

Average Drop: This measure evaluates the average decrease in confidence for
the specific target class c when the model depends solely on the CAM visualiza-
tion rather than the complete image.

Average Drop: =
(

max
(

0,
yc − yCAM

c

yc

))
· 100, (12)

where yc is the output score for class c when using the full image, and yCAM
c is

the output score when using the CAM output.

Average Increase: This metric computes the proportion of cases where the
model exhibits greater confidence when utilizing the CAM output as opposed to
the entire image.

Average Increase =
�(yc < yCAM

c ) · 100
l

, (13)

where � represents the indicator function and l is the total number of instances.

Maximum Coherency: In CAM visualization, coherency refers to how well the
explanation map matches the input image. The CAM should highlight impor-
tant features that explain a prediction, and ignore unimportant features. This is
represented mathematically as the alignment between the CAM and the image.
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CAMc(x � CAMc(x)) = CAMc(x). (14)

The CAM should accurately show the important parts of an image and ignore the
rest. The coherency score is then normalized to a range of 0 to 1. The coherency
score can be calculated using this formula:

Maximum Coherency(x) =
1
2

(
1 +

Cov(CAMc(x � CAMc(x)), CAMc(x))
σCAMc

(x � CAMc(x))σCAMc
(x)

)

(15)
In the equation, Cov signifies the covariance between the convolved CAM and
the original CAM, while σ denotes the standard deviation of the CAM at a
given position. These statistical measures evaluate the coherence of the CAM in
emphasizing significant image regions.

4.4 Minimum Complexity (lower value best):

Complexity measures how good a CAM explanation is. It’s quantified using the
L1 norm of the CAM, represented as

Complexity(x) = ||CAMc(x)||. (16)

The CAM technique is utilized to emphasize the important sections of an image
while disregarding the rest.

4.5 Average Drop Complexity Coherency (higher value best):

This metric combines the average drop, complexity, and coherency (ADCC) to
give a comparable score for all models. It is defined as

ADCC(x) = 3
(

1
Coherency(x)

+
1

1 − Complexity(x)

+
1

1 − AverageDrop(x)

)−1

.

(17)

4.6 Hyperparameters

The model was trained using a learning rate of 0.01, with batches of 8 and
early stopping implemented with the patience of 10 throughout 65 epochs. The
activation function used was leakyreLU, and the optimizer used was Adam with
default values. The model’s architecture adopts focal loss as its loss functions
with a balance coefficient of β set to 0.25 and a γ value of 2.

4.7 Experiment-1: To determine optimal n components

The study evaluates the performance of the proposed SVD-Grad-CAM with
deep neural network architectures, namely, DenseNet-169 trained on the MURA
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Fig. 4. Illustrates that maximum coherency decreases and average drop increases as
the number of principal components (n value) increases.

dataset. The transfer learning technique is used to initialize their weights, and
pre-trained weights sourced from the ImageNet dataset are employed. These
models utilize sigmoid activation for binary classification tasks at the final output
layer. The model’s architecture adds a global average pooling layer after the last
convolutional layer. This converts the extracted characteristics into a vectorized
shape, enabling the model to be interpretable with the help of class activation
maps.

The two procedures for computing the weights from SVD are specified in
Equation 9 using the combination of Uk.V T

k , and Equation 10 using the recon-
structed gradient matrix. These procedures require selecting a value n to deter-
mine their principal components. To determine the appropriate value of n, several
experiments were conducted. Figure 4 shows a representative image and its cor-
responding metrics for the procedure using a reconstructed gradient matrix.
It demonstrates that the maximum coherency decreases with an increase in
the value of n, while the average drop increases. This suggests that n = 1 yields
the best results for computing the weights from SVD. Similar experiments were
conducted for the remaining procedure, concluding that n = 1 is the optimal
choice. Next, experiments were conducted to determine which procedure best
compute the weights.

Table 1. Comparison of metric values to determine the optimal method for computing
weights for SVD-Grad-CAM.

Procedure Avg Drop ↓Avg Increase ↑Coherency ↑Complexity↓ADCC↑
UkV T

k 6.80 40.12 86.05 18.89 88.36

UkΣkV T
k 3.47 43.33 88.82 15.34 90.714
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4.8 Experiment-2: To determine the best procedure of
SVD-Grad-CAM:

To determine the most effective procedure for computing the weights from
SVD, consider two methods outlined in 9 and 10: The combination of Uk.V T

k

and the reconstructed gradient matrix. To determine the best procedure, 154
random radiograph images from the MURA dataset were chosen from the
elbow study type. These radiograph images were then analyzed to calculate the
average increase, average drop, maximum coherency, complexity and Average
DCC. Table 1 provides representative experimental values for each procedure.
Notably, the procedure involving the reconstructed gradient matrix has the low-
est average drop, highest average increase, and Average DCC compared to the
other procedure. Therefore, the reconstructed gradient matrix procedure is cho-
sen to compute the weights in all experiments for the SVD-Grad-CAM.

Fig. 5. Shows various CAMs highlighting features and their metric values for the input
image, where DenseNet-169 predicted abnormality in the first-row input image, whereas
normality in the second-row input image.

4.9 Experiment-3: Comparing the existing CAM methods with
proposed SVD-Grad-CAM

The study compares the effectiveness of different methods such as CAM [24],
Grad-CAM [17], Smooth-Grad-CAM [18], Score-CAM [19], Ablation-CAM [16]
and Eigen-CAM [9] with the proposed SVD-Grad-CAM. The comparison is
based on the metrics specified in equations 12, 13, and 15. The DenseNet-169
CNN model was trained using the elbow study type to do this. An entire vali-
dation set of 526 radiographs was utilized to calculate the average drop, average
increase, and maximum coherency. Two random validation radiograph images
were selected, and their average drop, average increase, and maximum coherency
were displayed in Figure 5. The experimental values are presented in Table 2.
The experimental results are discussed in the following paragraphs.
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Table 2. Comparison of different CAMs using the MURA dataset’s validation set of
elbow study comprising 564 radiograph images.

Method Avg Drop ↓Avg Increase ↑Coherency ↑Complexity ↓ADCC ↑
CAM [24] 10.43 48 73.19 43.81 70.38

Grad-CAM [17] 10.43 48 73.19 43.81 70.38

Smooth-Grad [18] 11.5 49.50 74.56 25.13 78.80

Ablation-CAM [16]8.20 52.6 84.05 36.83 77.66

Score-CAM [19] 7.60 53.6 86.05 30.46 81.46

Eigen-CAM [9] 8.95 54.8 81.77 27.63 80.73

SVD-Grad-CAM 7.3 52.4 87.77 20.62 86.26

Fig. 6. Qualitative comparison of DenseNet-169 prediction visualization maps using
Grad-CAM and SVD-Grad-CAM on ImageNet sample. The proposed SVD-Grad-CAM
method uses two principal components to generate the visualization map.

SVD-Grad-CAM has the lowest average drop (7.30), followed closely by
SCore-CAM (7.6), indicating that these methods are better at retaining model
confidence than others. Eigen-CAM exhibits the highest average increase (54.8),
followed by Score-CAM (53.6), and SVD-Grad-CAM (52.4), indicating that these
methods are more effective at improving model confidence. SVD-Grad-CAM
has the highest maximum coherency and ADCC, followed by Score-CAM and
Eigen-CAM, suggesting that these methods maintain good consistency with the
input image.

After comparing different CAMs, it was found that SVD-Grad-CAM is the
most effective in improving model confidence, as it has the lowest average drop,
the best average increase, and the highest coherency. An empirical comparison
showed that SVD-Grad-CAM improves average drop, average increase, maxi-
mum coherency and Average DCC by 30%, 21.67%, 19.91%, and 22.56% respec-
tively, when compared to Grad-CAM. It’s worth noting that Score-CAM and
Eigen-CAM also demonstrate strong performance, positioning them as strong
contenders.
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Fig. 7. Qualitative comparison of various CAM visualization methods on ImageNet
sample of DenseNet-169 predictions.

4.10 Experiment 4: Qualitative comparison of existing CAM
methods with the proposed SVD-Grad-CAM on ImageNet
samples

The DenseNet-169 model was created using transfer learning from ImageNet.
A qualitative comparison of the model’s prediction visualization maps is illus-
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trated in Figures 7 and 6. The top five predictions made by DenseNet-169 are
displayed with their visualization map. SVD-Grad-CAM leverages two principal
components in the generation of visualization maps.

5 Conclusion and Future work

Singular value decomposition is applied to the gradient matrix to select optimal
patterns or exclude erroneous data. The reconstructed gradient matrix performs
the best among the four possible ways to compute weights from the gradient
matrix. SVD-Grad-CAM was evaluated using the MURA dataset’s elbow study
type, and the DenseNet-169 CNN model was trained on the same dataset using
transfer learning for evaluation. Evaluation metrics such as average drop, average
increase, and maximum coherency were used to assess the effectiveness of SVD-
Grad-CAM. Results indicate that SVD-Grad-CAM performs better than CAM,
Smooth-Grad, Extended-Grad-CAM, Score-CAM, and Eigen-CAM in terms of
average increase and maximum coherency. Notably, Eigen-CAM performs well
following SVD-Grad-CAM in terms of average increase.

The UkV T
k method is ideal for computing weights, requiring less computa-

tion than the reconstructed gradient matrix. Therefore, this technique is being
explored in question-answering and object-tracking videos, particularly in sce-
narios where system resources are crucial.
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Abstract. For safety critical applications, it is still a challenge to use AI
and fulfill all regulatory requirements. Medicine/healthcare and trans-
portation are two fields where regulatory requirements are of funda-
mental importance. A wrong decision can lead to serious hazards or
even deaths. In these fields, semantic segmentation is often utilized to
extract features. Especially U-Net architectures are used. This paper
shows how to apply layer-wise relevance propagation (LRP) to a trained
U-Net architecture. We achieve an efficient explanation of a segmentation
by back-propagating the whole resulting image. To tackle the non-linear
results of the LRP, we introduce a threshold mechanism in combination
with a logarithmic transfer function to preprocess the data for visualiza-
tion. We demonstrate our method on three use cases: the segmentation
of a fiber-reinforced polymer in the field of non-destructive testing, the
segmentation of pedestrians in an automotive application, and a lung
segmentation example from the medical domain.

Keywords: Layerwise Relevance Propagation · U-Net ·
Segmentation · Explainable AI

1 Introduction

Convolutional Neuronal Networks (CNNs) are currently used for many tasks like
image classification, segmentation, image improvement, and many more [2]. They
are starting to be superseded by Transformer-based architectures [36] adopted
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to computer vision tasks [11,19]. These Transformer-based architectures are out-
performing CNNs in most classification tasks [11,19]. However, a key limitation
of Transformer-based architectures lies in their data dependency. They often
require vast amounts of training data for optimal performance, making them
less suitable for domains with limited datasets, such as medical imaging and
non-destructive testing (NDT) [1]. CNNs are more data-efficient, and therefore
research continues to refine CNNs to bridge the gap with Transformer-based
approaches. One such development is ConVNext, which demonstrates promising
results [20,38].

In safety-critical fields such as medicine and NDT, CNNs remain the domi-
nant force due to the typically smaller size and availability of datasets [17,22,37].
Reliability and robustness are paramount, as these models often influence deci-
sions with potentially significant consequences. Most currently available tech-
niques for interpreting results of CNNs are focused on detection (classification).
However, tasks in these domains extend beyond classification, with semantic
segmentation playing a crucial role. Medical applications, in particular, require
highly interpretable models for building trust and understanding the reasoning
behind the model’s predictions. Similar challenges and requirements are present
in NDT, where various scanning techniques like X-ray, ultrasound, and thermog-
raphy are employed for inspecting components during production processes. For
both fields, segmentation is an important task to determine the size and shape of
objects. Therefore it is crucial to explain how much specific parts of the input
impact the segmentation results.

The contributions of this paper are the following: methods for the calcula-
tion of LRP for explaining the segmentation results from U-Net architectures;
a visualization based on logarithmic scaling for these relevance values; and a
demonstration of the effectiveness of these techniques in explaining the segmen-
tation results of these U-Net architectures, based on three use cases.

2 Related Work

The development of explainable AI methods for vision models has so far mainly
concentrated on image classification [28,31,33,34]. Therefore, we provide an
overview of the methods available for this purpose. Then we introduce the U-
Net architecture we use for segmentation. Finally we give an overview of how
explainable AI methods can be applied to segmentation.

2.1 Overview Explainable AI in Classification

For image classification, a lot of techniques have been presented, like Gradient-
weighted Class Activation Mapping (Grad-CAM) [32], Layer-wise Relevance
Propagation (LRP) [3], or Deep Learning Important FeaTures (DeepLIFT) [7].
In the following, we provide a short introduction for the techniques most relevant
to the field of segmentation.
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Feature Visualization in Neural Networks Feature visualization has been
extensively studied to interpret the inner mechanisms of convolutional neural
networks. This approach deciphers the representations learned by the neurons at
a particular layer. Specifically, it uses optimization to find synthetic inputs that
cause neurons to fire, thereby giving insights about the kind of shapes, colors,
or textures these neurons recognize. Deep learning models are multi-layered and
highly non-linear. Understanding what complex patterns models have learned,
and how these learned representations evolve deeper in the network, therefore is
still an open problem [41].

Activation Maps in CNNs Several works have proposed to visualize
and interpret CNNs through activation maps. Techniques such as Grad-CAM
[32] and its refined version Grad-CAM++ [6] have been widely used. This tech-
nique uses the gradient information flowing into the last convolutional layer
of the model to understand which parts of the image have contributed to the
decision-making by creating a heatmap of the image [32].

Shapley Additive Explanations (SHAP) SHAP provide a measure of the
contribution of each feature to an overall prediction for a specific sample. Recent
work has adapted SHAP for use with deep learning models to derive pixel-
level contributions, illuminating regions in the image that the model found most
influential for its decision [21].

Local Interpretable Model-agnostic Explanations (LIME) In contrast
to the other methods described here, LIME is a technique for explaining black-
box models. It works by fitting a simple model, such as linear regression, locally
around the prediction and using this simpler model to explain the original com-
plex one. Recently, researchers have demonstrated its use in image classification
tasks, providing a pixel-level explanation for the prediction of the model [25].

Layer-wise Relevance Propagation (LRP) LRP is a method for explaining
predictions of neural networks by assigning relevance scores to the input fea-
tures, thus providing a means to interpret the decision-making process of these
models [3]. The principle of conservation of relevance ensures a fair distribution
of relevance across all features [27].

2.2 U-Net Architecture

U-Net is a convolutional neural network specifically designed for image segmenta-
tion. It features a U-shaped architecture that includes an encoding (contracting)
and decoding (expanding) path (see Figure 1). A unique aspect of U-Net is the
use of skip connections, where feature maps from the encoding path are con-
catenated with those in the decoding path. This allows the network to retain
high-resolution features, enabling precise localization. The model can work with
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a low number of training images and accepts images of any size due to the
absence of fully connected output layers compared to classification networks [26].
To further improve the performance of U-Net, modifications have been applied
to the architecture, like the addition of residual connections [39], nested U-Net
architecture [40] and many more [24].

Fig. 1. U-Net Architecture including residual connections

2.3 Interpretable Segmentation

The techniques for explainable classification cannot directly be applied to seg-
mentation tasks. However, many of the methods used to explain segmentation
results are adaptions from methods that have been previously developed for
classification.

The Grad-CAM method can be used to explain what is important for a
semantic segmentation network, specifically, the spatial locations relevant for
the decision of a U-Net network. For this purpose, the information from the bot-
tleneck layer is extracted and used [30]. This has the downside that information
on the influence of pixels surrounding the segmentation result is not available in
the bottleneck layer.

SHAP, in contrast, can also give information about the location of the sur-
rounding pixels which are not segmented. To achieve this, input pixels are
grouped, and their contribution to the segmentation is calculated [10]. But
with the grouping, it is no longer possible to obtain information at the feature
level.

LRP is able to combine the feature level information and also is not only
limited to the segmentation. This also allows for determining the influence of
surrounding pixels. There are already publications which have shown the use
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of LRP on U-Net architectures in the field of medical imaging [8,29,35]. In the
publications of Chlebus et al. [8] and Schnurr et al. [29], LRP was used for the
sensitivity analysis, to determine which MRI channel has the highest impact
on the segmentation results.

3 Implementation

In our implementation we decided to use LRP, because it can be applied without
modifying the network to be explained. For techniques like Grad-Cam it is nec-
essary to extract certain layers from the bottleneck to explain the segmentation.
Besides that, LRP also gives information about the relevance of surrounding
pixels of the segmented area. We compute the LRP and apply a logarithmic
scaling to improve the visibility of the relevance. To improve the stability we use
the ε-rule. We further show a method for handling residual connections.

3.1 Calculation of LRP

For all neurons j in a layer, the relevance Rj is calculated as shown in Equation 1
as the sum of the relevances of the following layer weighted by their contribution.
For each neuron k in the following layer, the contribution of its relevance Rk is
computed by multiplying the activation Xj of the neuron by the weight ωjk and
normalizing over all neurons j. In the case of a CNN, j and k are not neurons in
the classical sense, they are pixel positions where j represents the input pixels of
the CNN layer and k the output pixels. The weights ωjk are the convolutional
weights connecting j and k. As in the work of Samek et al. [27], the relevance is
redistributed to the input pixels in the image in the backward pass. To do this,
the relevance Rk of the previous layer is multiplied as shown in Equation 1. At
the first step, the relevance Rk is initialized with the output (result classification)
of the model after the forward pass.

Rj =
∑

k

xjωjk∑
j xjωjk

Rk (1)

To calculate the LRP for a segmentation task, every output pixel is inter-
preted as an individual classification. The relevance is calculated for every out-
put pixel of the segmentation, and the resulting relevance maps are summed
up. Applying the distributive rule allows the optimization of calculating the rel-
evance for multiple output pixels in one pass. This is possible because the weights
ω and activations x (Equation 1) are the same for all output pixels.

For computing LRP we employ the Captum framework [18] which allows the
interpretation of PyTorch based networks. To enable this framework to work
with U-Net architectures, it has been extended by two additional functionali-
ties: The first one is the extension to handle non-linear activation functions for
segmentation tasks like Sigmoid or Softmax. This was done by introducing a
masking mechanism where every output pixel below a certain threshold is set
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to zero. As threshold value the same value as for the segmentation (binariza-
tion) was used. The masking also allows selecting objects or regions where an
explanation is necessary. The second extension is an additional sum layer – this
was inspired by the implementation of Montavon et al. [23], where the autograd
engine of PyTorch is used for the calculation of LRP. The summation of the
output allows to get LRP for the segmentation in one pass.

3.2 Logarithmic Relevance Scaling

LRP was originally developed for classification tasks, where networks like VGG16
and ResNet are popular [3,16,27]. Segmentation can be seen as a pixelwise clas-
sification, where every pixel gets assigned a class. The relevance values will be
calculated for every output pixel of the U-Net and the input relevances are
summed up. Unlike a VGG16 [15] architecture, a U-Net [26] architecture has
skip connections to improve the reconstruction ability of the network. These, in
combination with the summation of the relevance values from multiple output
pixels (segmentation), lead to higher relevance values in comparison to classi-
fication tasks. The result of this is shown in Figure 2. Due to the high values,
the relevance can no longer be visualized directly in a meaningful way. A few
pixels will end up in high peak values for the relevance, which allows no longer
a proper visualization.

To compensate these effects of the U-Net architecture, we introduced a new
form of threshold in combination with a logarithmic scaling of the LRP results.
To keep the information of negative relevance values, we use a special treatment
of these values shown in Equation 2b. Negative relevance values can also be
important for explanation. Negative relevance values are significant for multi
class segmentation, because features are shared in the network. The negative
values show which features have not contributed to the decision for a class.

For the calculation we split the relevance values into positive and negative
parts as shown in Equation 2a and Equation 2b. This is done by a threshold.
Also to cover small values (smaller than 1) without getting negative values after
logarithm. To perform this after the threshold the values are divided by the
threshold. For negative values the absolute values is taken for the logarithm.
Both rescaled parts of the relevance are combined as shown in Equation 2c.

fpos (x) = log
(

max (thresh, x) · 1
thresh

)
(2a)

fneg (x) = − log
(
|min (−thresh, x)| · 1

thresh

)
(2b)

Rscaled = fpos (x) + fneg (x) (2c)

The result of the logarithmic scaling can be seen in Figure 2. The scaled LRP
results enable the identification of details of the dataset in the relevance map.
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Fig. 2. Application of the logarithmic scaling after the LRP. The first column shows
the segmentation result. The second shows the result of calculating the LRP with ε
rule for all layers. The third column contains the result after logarithmic scaling. The
last one shows the final result of adding both parts.

3.3 LRP Epsilon Rule

To avoid division by zero, the ε-rule was used [27]. In this rule an epsilon is
added as shown in Equation 3.

Rj =
∑

k

xjωjk

ε +
∑

j xjωjk
Rk (3)

3.4 Residual Connections

A U-Net with residual connections in the encoder and decoder is shown in
Figure 1. The residual connections bypass the convolutional layers and allow
to forward low level features deeper into the network [13]. LRP residual connec-
tions in CNNs need a special treatment [18]. In the Captum implementation, the
autograd engine of PyTorch is used to calculate the relevance values. Because of
that the derivation of the addition will cause significant increases in LRP values,
as shown in Equation 4. To prevent this problem, we handle the addition like a
layer, and also use it in the LRP calculation as shown in Equation 1 to distribute
the relevance values. The difference of the results are shown in Figure 3, where
on the right side high values of up to 2e15 can be observed, whereas the left side
with the modification only shows values up to 4000.

d

dx
(f(x) + x) = f ′(x) + 1 (4)
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Fig. 3. Comparison of results with modification (left) and without modification (right)
for residual connections.

4 Experiment

To test the proposed method, we trained three different architectures based
on U-Net on three datasets from different domains. The first dataset is from
the field of non-destructive testing (NDT), where the goal was to extract pores
and damages from an image scanned by industrial computed tomography. Addi-
tional tests were performed on the Cityscapes dataset [9], here the task was to
segment pedestrians. Also, tests were conducted using a medical dataset of chest
X-ray for the segmentation of lungs. For better visualization, in the following
experiments the LRP computations were done on a single selected object (pore, a
group of pedestrians or lung).

4.1 Network Architecture

The method was tested on the following U-Net based architectures, implemented
in the PyTorch-based framework MONAI [5]:

U-Net [26] Basic U-Net with a feature size for the layers of [32, 64, 128, 256,
512], a stride of one and padding one.
Residual U-Net [39] U-Net with residual connections, a feature size for the
layers of [32, 64, 128, 256, 512], a stride of two and padding one.
U-Net++ [40] U-Net where in the skip-connections additional convectional
blocks are used, with a feature size for the layers of [32, 32, 64, 128, 256], a
stride of one and padding one.

Table 1. Training parameters for the use cases.

NDT Cityscapes Medical

Epochs 30 100 100

Trainings Samples 782 2380 112

Learn Rate 2e-4 2e-4 8e-4

Input Channels 1 3 1
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In Table 1 the parameters for the training of the networks are shown. For all
use cases, the Generalized Dice Focal Loss was used, as well as the Adam opti-
mizer. All networks were trained both with instance and batch normalization for
comparison.

4.2 Selection of Region

To improve the visualization of the segmentation results, only one pore or pedes-
trian group was selected for the LRP by applying a mask on the output of the
networks. If the mask is not applied, it is harder to determine the location of
data which is relevant for segmentation. Afterward, the masked regions were
used for the calculation of the relevance. This allows to show the relevance of
input pixels to a segmented object.

4.3 NDT Use Case

Fig. 4. Comparison of LRP raw values and with logarithmic scaling.

Figure 4 and Figure 5 show the segmentation of a needle-shaped pore. A 2D
U-Net was trained on the segmentation of pores in X-ray computed tomography
data of a carbon fiber-reinforced polymer specimen. Based on this training, the
layer-wise relevance propagation was performed on one pore. We only used the
positive relevance information in our examples, because we performed a binary
segmentation. Therefore, negative values do not provide additional explanation
of the results. In Figure 4, a comparison is shown between the raw LRP values
and the logarithmically scaled values with a threshold of 0.1. The logarithmic
scaling improves the visibility of the relevant input pixel. The example in Figure 4
show that a few single pixel with high values no longer dominant the results of
the LRP. For U-Net++ and residual U-Net models our method reveals that these
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Fig. 5. Comparison of instance and batch normalization using logarithmically scaled
LRP values.

focus not only on the area and border of the pore, but also on the surround-
ing texture. The comparison of instance and batch normalization in Figure 5
shows that a network with batch normalization focuses more on the segmented
object. We also see some limitations in the result of the residual U-Net, where
batch normalization results in a better focus. For instance normalization it is
not really possible to determine the important regions of the input image.

4.4 Cityscape Use Case

Fig. 6. Explanation of the segmentation of pedestrians with logarithmic scaling applied
to the LRP results.
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The networks were also trained on the Cityscapes dataset, consisting of RGB
images, where the task is to segment pedestrians. As shown in Figure 6 the LRP
technique is still able to determine the position of the pixels which are important
for the segmentation. It is no longer possible to see detailed features as with
the segmentation of the pore in subsection 4.3. When comparing the different
normalization types, it turns out that also here, same as with the pore example,
the batch normalization helps to improve focus.

4.5 Medical Use Case

In the medical use case the networks have been trained to segment lungs. The
dataset used here is provided by the National Library of Medicine, the National
Institutes of Health, Bethesda, MD, USA and the Shenzhen No.3 People’s Hos-
pital, Guangdong Medical College, Shenzhen, China [4,14]. The dataset consists
of chest X-ray images with segmentation masks for the lungs. The networks focus
on the shape of the lung as shown in Figure 7. There is a significant difference
between both normalization types. As already shown in the other use cases,
instance normalization leads to less focus of the relevance on the lung.

Fig. 7. Explanation of the segmentation of a lung with logarithmic scaling applied to
the LRP results.

5 Discussion

Both examples have shown that LRP works well for a standard U-Net architec-
ture and also for a U-Net++. The treatment of residual connections improves
the visualization of the relevance in the network, but for instance normaliza-
tion it is hard to determine the most relevant regions in the input image. This
reduces the usefulness of LRP to explain networks with instance normalization. A
similar behavior was shown in other publications [16] where LRP was applied
to architectures with residual connections. In that work, instead of a VGG16
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architecture (original LRP paper), a ResNet architecture was used to perform
the LRP, the results are similar to our observations. The relevance map was
more blurred and also the retrieval of features and structures was harder. This
effect can be observed very well in Figure 5, Figure 6 and Figure 7. In U-Net
there are also connections which bypass convolutional layers. These connections
are called skip connections (see Figure 1). The skip connections improve spa-
tial accuracy [12]. In the analysis of a U-Net architecture, this improved spatial
information is not so relevant to interpret the segmentation results. More impor-
tant are the high level features which came from the bottleneck after all encoder
blocks.

6 Conclusion

We show in our work that layer-wise relevance propagation can be applied to
interpret results from multiple U-Net architectures, and demonstrate this with
datasets from 3 different domains. This allows explaining segmentation results
with a relevance map on the input images. Depending on the task, it can also
be shown on which features the network is focused to make the prediction. The
example with the cityscape data set showed that for complex tasks it is no
longer possible to determine accurate features in the relevance map. The rele-
vance map still gives information about the regions the network is focused on.
This limitation results from the structure of a U-Net, specifically from the skip
connections in the network, which give additional information to improve the
segmentation results. In our research, we found that the maximum values in the
raw relevance image for a standard U-Net are higher than for a classification
task. For a residual U-Net the values are even higher. We provide a way for
handling residual connections, but this handling could potentially benefit from
further improvements.

7 Future Work

In our future work, we will focus on the feature retrieval for complex segmen-
tation tasks. We also want to evaluate the impact of architectural aspects like
normalization, stride of convolution and residual connections in more detail. A
special focus should be on the skip connections. Their contribution to the rele-
vance could be reduced by introducing a specialized rule. In this work, we have
shown the impact of batch and instance normalization on the LRP results. We
plan to generate more insights on the impact of other normalization methods.

8 Code

The code to reproduce our results can be found at https://github.com/3dct/
LRP UNET

https://github.com/3dct/LRP_UNET
https://github.com/3dct/LRP_UNET
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24. Mubashar, M., Ali, H., Grönlund, C., Azmat, S.: R2u++: a multiscale recurrent
residual u-net with dense skip connections for medical image segmentation. Neural
Comput. Appl. 34(20), 17723–17739 (2022). https://doi.org/10.1007/s00521-022-
07419-7

25. Ribeiro, M.T., Singh, S., Guestrin, C.: ”why should i trust you?” explaining the
predictions of any classifier. NAACL-HLT 2016 - 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Proceedings of the Demonstrations Session pp. 97–101 (2016).
https://doi.org/10.18653/v1/n16-3020

26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention (MICCAI). pp. 234–241. Springer International Publishing, Cham
(2015). https://doi.org/10.1007/978-3-319-24574-4 28

27. Samek, W., Wiegand, T., Müller, K.R.: Explainable artificial intelligence: Under-
standing, visualizing and interpreting deep learning models (2017), https://arxiv.
org/abs/1708.08296

28. Saranya, A., Subhashini, R.: A systematic review of explainable artificial intelli-
gence models and applications: Recent developments and future trends. Decision
Analytics Journal 7 (2023). https://doi.org/10.1016/j.dajour.2023.100230

29. Schnurr, A.K., Schoeben, M., Hermann, I., Schmidt, R., Chlebus, G., Schad, L.R.,
Gass, A., Zoellner, F.G.: Relevance analysis of MRI sequences for MS lesion detec-
tion. In: European Society of Magnetic Resonance in Medicine and Biology. vol. 20
(2019)

30. Schorr, C., Goodarzi, P., Chen, F., Dahmen, T.: Neuroscope: An explainable AI
toolbox for semantic segmentation and image classification of convolutional neural
nets. Applied Sciences (Switzerland) 11(5), 1–16 (2021). https://doi.org/10.3390/
app11052199

31. Schwalbe, G., Finzel, B.: A comprehensive taxonomy for explainable artificial intel-
ligence: a systematic survey of surveys on methods and concepts. Data Min. Knowl.
Disc. (2023). https://doi.org/10.1007/s10618-022-00867-8

32. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: Visual explanations from deep networks via gradient-based localization. In:
IEEE International Conference on Computer Vision. pp. 618–626 (2017). https://
doi.org/10.1109/ICCV.2017.74

33. Sheu, R.K., Pardeshi, M.S.: A survey on medical explainable ai (xai): Recent
progress, explainability approach, human interaction and scoring system. Sensors
22(20) (2022). https://doi.org/10.3390/s22208068

34. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (xai): Toward
medical xai. IEEE Transactions on Neural Networks and Learning Systems 32(11),
4793–4813 (2021). https://doi.org/10.1109/tnnls.2020.3027314

35. Tjoa, E., Heng, G., Yuhao, L., Guan, C.: Enhancing the extraction of interpretable
information for ischemic stroke imaging from deep neural networks (2019), https://
arxiv.org/abs/1911.08136

36. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in
Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017).
https://doi.org/10.48550/arXiv.1706.03762

37. Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., Tang, S.: Using deep learning to
detect defects in manufacturing: A comprehensive survey and current challenges.
Materials 13, 5755 (2020). https://doi.org/10.3390/ma13245755

https://doi.org/10.1007/s00521-022-07419-7
https://doi.org/10.1007/s00521-022-07419-7
https://doi.org/10.18653/v1/n16-3020
https://doi.org/10.1007/978-3-319-24574-4_28
https://arxiv.org/abs/1708.08296
https://arxiv.org/abs/1708.08296
https://doi.org/10.1016/j.dajour.2023.100230
https://doi.org/10.3390/app11052199
https://doi.org/10.3390/app11052199
https://doi.org/10.1007/s10618-022-00867-8
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.3390/s22208068
https://doi.org/10.1109/tnnls.2020.3027314
https://arxiv.org/abs/1911.08136
https://arxiv.org/abs/1911.08136
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.3390/ma13245755


Applying Layer-Wise Relevance Propagation on U-Net Architectures 121

38. Zhang, H., Zhong, X., Li, G., Liu, W., Liu, J., Ji, D., Li, X., Wu, J.: BCU-Net:
Bridging ConvNeXt and U-Net for medical image segmentation. Comput. Biol.
Med. 159, 106960 (2023). https://doi.org/10.1016/j.compbiomed.2023.106960

39. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE
Geosci. Remote Sens. Lett. 15(5), 749–753 (2018). https://doi.org/10.1109/lgrs.
2018.2802944

40. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: A nested u-
net architecture for medical image segmentation. Lect. Notes Comput. Sci. 11045,
3–11 (2018). https://doi.org/10.1007/978-3-030-00889-5 1

41. Zimmermann, R.S., Borowski, J., Geirhos, R., Bethge, M., Wallis, T.S., Brendel,
W.: How well do feature visualizations support causal understanding of CNN acti-
vations? In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W.
(eds.) Advances in Neural Information Processing Systems. vol. 34, pp. 11730–
11744. Curran Associates, Inc. (2021), https://neurips.cc/virtual/2021/poster/
27775

https://doi.org/10.1016/j.compbiomed.2023.106960
https://doi.org/10.1109/lgrs.2018.2802944
https://doi.org/10.1109/lgrs.2018.2802944
https://doi.org/10.1007/978-3-030-00889-5_1
https://neurips.cc/virtual/2021/poster/27775
https://neurips.cc/virtual/2021/poster/27775


Visualizing Dynamics of Federated
Medical Models via Conversational

Memory Elements

Sanidhya Kumar, Varun Vilvadrinath, Jignesh S. Bhatt(B),
and Ashish Phophalia

Indian Institute of Information Technology Vadodara, Gandhinagar, India
{202151138,202151195,jignesh.bhatt,ashish p}@iiitvadodara.ac.in

Abstract. The recent shift towards distributed learning in medical AI
has prompted investigations into crucial operational dynamics. This
includes determination of the point when a federated model attains
training saturation and examination of the influence of model(s) within
a federated set-up. To this end, recently coined conversational memory
elements (CMEs)-based cognitive analysis is explored in a federated envi-
ronment. The key fact is to establish conversation with federated models
by associating the learning with changes in weights, which are archived in
CMEs. The CMEs for a federated learning setup are defined as Jacobian
matrix structures derived from contiguous changes among weights over
training epochs. Covariance map and auto-correlation function (ACF)
are then derived from this extracted CMEs for each federated client.
Such analysis yield interesting qualitative insights for visualizing opera-
tional dynamics of federated medical models. For experiments, three pro-
totype federated clients with different datasets are used. The federated
server is based on ResNet50, while clients use ResNet50, DenseNet121,
and AlexNet with skip connections. Training is done on the Brain Tumor
Classification dataset across four practically observed scenarios. Two sig-
nificant outcomes are obtained: First, the integration of CMEs helps indi-
cating training saturation points by analyzing evolving patterns in esti-
mated covariance maps and thus offering valuable pointers for resource
optimization. Second, ACF plots effectively distinguish dominant and
weaker clients to facilitate informed decisions for targeted strategies.

Keywords: Cognitive AI · Conversational Memory Elements ·
Federated Learning · Medical AI

1 Introduction

In recent years, federated learning (FL) has emerged as a promising decentral-
ized learning paradigm for neural model training. It offers solutions to pressing
concerns surrounding data privacy while showcasing its efficacy across diverse
domains [2,7,9]. The federated medical architectures [1,2] entail individual train-
ing of models by different hospitals, with only the learned weights communicated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15312, pp. 122–137, 2025.
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to a federated (shared) server for a common aggregation policy [17]. Subse-
quently, thus aggregated weights are considered for further training and vali-
dation undergo a reciprocal cycle of dissemination to individual hospitals. Fig.
1 represents an illustration of federated medical model configuration with N
hospitals connected as federated clients with a federated server. Each of these
clients may have has its own local neural network owning private data. Upon
completion of training of individual clients, the weights are then aggregated at
the federated server and disseminated back to every client for further training
until the convergence.

Fig. 1. An illustration of medical federated learning configuration.

Despite its promising prospects, medical FL poses several practical challenges
that necessitate investigation [11,13]. One such challenge lies in determining an
optimal point of training of client models, which could help preserve valuable
time and computational resources. A recent research on conversational memory
elements (CME) [19] has addressed the issue within a lumped (non-federated)
model setup where they propose to establish conversation with medical AI net-
works [19]. In this paper, we seek to scale up these interesting findings to dis-
tributed learning especially for medical FL which remains unexplored.

What makes this approach novel is its application of CMEs in the decentral-
ized FL context, addressing FL-specific challenges like data heterogeneity and
asynchronous updates. By monitoring training dynamics at the client level and
tailoring optimization strategies based on CME data, the methodology enhances
FL training. Additionally, the use of covariance maps and autocorrelation func-
tion plots for visualizing FL dynamics and detecting redundancies contribute to
a more robust and nuanced understanding of the FL process. This tailored app-
roach leads to early convergence indicators and help better resource allocation,
addressing the current demands of federated learning.
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1.1 Literature Review

The exploration of medical AI models [18] and the development of analytical
neural networks [16] are actively studied, nevertheless still posing open ques-
tions in the research. The term federated learning (FL), originally coined by
Google [10,21], has captured significant attention within the deep learning com-
munity. Owing to its versatile applications in real-world scenarios [2,7,9,22], its
impact is particularly pronounced in domains like healthcare; especially in oncol-
ogy [5], where collaborative efforts among hospitals to train models for disease
diagnosis have exemplified its efficacy. In this context, each hospital typically
possesses a dataset characterized by variations in type and volume, reflecting
the hospital’s specialization and size. Moreover, real-world deployments have
illustrated both the potential and the challenges of FL. For example, a work
shown in [8] described the deployment of FL in training language models for the
Google Keyboard, showcasing practical challenges and solution in a real-world
application.

Researchers have extensively experimented with federated learning algo-
rithms, such as FedAvg [14], which showed effectiveness in federated settings
but noted slow convergence in heterogeneous environments like diverse hospital
datasets in healthcare. Another approach focuses on lightweight client selection
to identify dominant and weak clients, reducing federated rounds by 74%, though
without mechanisms to detect diminishing returns [6]. In medical image com-
puting, federated learning architectures face challenges with non-IID data and
communication constraints, addressed by methods like FedProx [12] and clus-
tered FL [20]. FedSeq [4] introduces sequentially trained super-clients to simu-
late centralized training in heterogeneous environments while preserving privacy.
Optimization techniques like momentum-based methods and personalized FL
frameworks are employed to improve convergence amidst system heterogeneity
and varied client computational resources.

It is interesting to note that, all these studies lacked a systematic approach to
determine optimal training cessation points and assessment of individual client
contributions effectively. One can find literature on visualisation of neural net-
works in general but to the best of our knowledge there are no literature on
visualization of convergence dynamics in a federated learning setup. Earlier
approaches primarily focused on global model accuracy and loss metrics to track
convergence, often plotted against communication rounds. While these metrics
are useful, they fail to provide insights into operational dynamics and individual
client contributions, particularly in heterogeneous environments. Understanding
these internal dynamics is crucial for improving convergence and optimizing FL
systems. As proposed in [19] that changes in the weights is indicative of learning
and it is conveniently archived in CMEs. It is further suggested to derive two
gross statistical measures: covariance maps and ACF plots from these CMEs.
In this paper, we adapt the CME for medical FL and provide useful qualitative
insights on operational dynamics.



Visualizing Dynamics of Federated Medical Models 125

1.2 Our contribution

The key contribution of this paper are as follows:

– Visualization of Convergence Dynamics: We examine the interaction
between federated client devices and the server in distributed learning envi-
ronments using CMEs [19] for federated learning environment. These visual-
izations provide valuable insights and represent a significant step towards the
explainability of federated learning.

– Optimizing Iterative Model Training: By deriving covariance maps from
the CMEs, we aim to identify the point of diminishing returns in medical
FL client performance. This helps minimize computational overheads and
enhances resource efficiency in distributed environments, ensuring that addi-
tional iterations yield meaningful improvements.

– Client Characterization for Enhanced Performance: Autocorrelation
function (ACF) is defined using the CME, which helps distinguish between
weak and dominant clients, enabling hospitals to make informed decisions and
optimize model performance effectively in FL setups. This strategic identifi-
cation supports better resource allocation and enhances overall system per-
formance in resource-constrained environments like healthcare.

2 Problem Definition

Given different datasets and diverse learning approaches within federated med-
ical setups, our objective is to generate visualization of convergence dynamics
for the medical FL clients. In particular, 1) to analyze the integration of CMEs,
help identifying training saturation points within federated setups by analyz-
ing evolving patterns in estimated covariance maps derived from CMEs, and
2) to derive and utilize ACF plots to distinguish dominant and weaker clients by
looking at the stability of the ACF plots over rounds of training. Specifically, we
adapt the concepts of CMEs [19] for a federated setting, where the weights are
influenced not only by the local model but also by other clients. Consequently,
this impacts the covariance map and ACF plots. For this purpose, we simulate
various operational pipelines as detailed in the following section. The primary
motivation behind this endeavor is to provide visual insights for resource opti-
mization and to facilitate informed decisions for targeted strategies in medical
FL setup.

3 Proposed Approach

In this section, we first introduce the integration of CMEs into the federated
learning setup, and then the medical FL architecture equipped with the CMEs
shall be discussed.
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3.1 Adapting CME for Federated Learning

In this subsection, we present theoretical details on how the concept of CMEs
are adapted for medical FL. The CMEs are originally defined in [19] for gaining
technical understanding for medical AI models. The idea is coined in [19] to
establish conversation with a neural network to better understand the learning
process. The CMEs are represented by a Jacobian matrix structure denoted as
C. Here, we add two key terminologies: training rounds called as t-rounds at
federated server and epoch at federated client setup. It is evident that each t-
round consists of a set of epochs. Following each t-round, weights and biases
are aggregated and updated at the federated server. Subsequently, the federated
server communicates these updated weights and biases to the federated clients,
enabling them to commence their next training round. Here, we define CME in a
federated learning setup for a single federated client as:

Ci =

⎛
⎜⎜⎜⎜⎜⎝

Δwi
1

Δwi
2

Δwi
3

...
Δwi

n

⎞
⎟⎟⎟⎟⎟⎠

∀i ∈ [2, epochs]. (1)

Here, Δwi
k represents the weight differences between the current epoch i and

the previous epoch i − 1 for a layer as shown in equation (2) and n represents
the total number of neuron-neuron connections in that layer. Each Δwi

k can be
defined as,

Δwi
k =

wi
k − wi−1

k

wi
k

; ∀k ∈ [0, n] ∀i ∈ [2, epochs]. (2)

In order to implement this within Fig. 1, the matrix Ci is initialized to zero and
then inserted between every layer of each federated client in every epoch. We
archive the changes in each CME, denoted as Ci (equation (1)).

In general, covariance map of an epoch i, denoted as Cov MapCi
, is defined

for federated learning setup as,

Cov MapCi
= E{[Ci − µCi

][Ci − µCi
]T }, (3)

where E(.) denotes expectation operator, µC is the mean of a CME, and (.)T

represents the transpose of the matrix. This map measures correlations among
the CMEs, allowing us to visualize the learning of a FL network by observing the
variance-covariance patterns derived from CMEs.

Finally, for federated learning setup the auto-correlation function ACFC is
given by,

ACFC = E{CΔw(i)CΔw(i + 1)}, (4)
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where CΔw(i) is a random process using CME vector values for all epochs. The
function in equation (4) traces the changing gradients over epochs, providing
visualization into the varying correlations until the convergence. Plotting the
ACFs enables visualizing network stability as they reach steady-state over con-
sequent t-rounds and would help comment on the convergence of the learning
process.

3.2 Medical FL architecture equipped with CMEs

The proposed methodology leverages conversational memory elements (CMEs)
to provide granular insights into federated learning (FL). By integrating CMEs
(see section 3.1) within federated clients, particularly between critical layers,
detailed weight differences across epochs are captured, allowing for visualiza-
tion of operational dynamics. Covariance maps (Cov Map) and autocorrelation
function (ACF) plots derived from the archived CME values help in understand-
ing weight stabilization, training stability, and redundancy among clients. This
client-specific analysis enables the identification of effective learners, informed
client participation, and optimization of resources, ultimately improving training
efficiency.

In this section, we propose methodology and architectural details to show-
case the utilization of CMEs in medical FL setup. Fig. 2 shows a prototype
medical FL setup equipped with CMEs. We consider a typical setup with three
clients, each representing a distinct entity possessing data and participating in
the FL process. While it is possible for these clients to share identical datasets,
in practical scenarios, each client typically holds different data. This variation
in data can stem from differences in dataset sizes, richness, and diversity among
the federated clients (hospitals). Therefore, we safely assume that each federated
client (hospital) possesses a separate dataset, with varying sizes as depicted in
the figure.

Architecture: As shown in Fig. 2, our federated server incorporates a
ResNet50, whereas each federated client possesses different models: client 1 uti-
lizes ResNet50, client 2 employs DenseNet121, and client 3 uses AlexNet with
custom skip connections. To establish a standardized aggregation protocol, we
ensure that each federated client’s final three layers are extended with custom
layers (refer Fig. 2): the antepenultimate layer (l-2) consists of 128 neurons, the
penultimate layer (l-1) consists of 128 neurons and the final layer comprises 4
neurons to accommodate the classification into four distinct classes. The aggre-
gation method employed here is equal-weighted averaging [15].

Inserting CMEs: Now, to visualize the operational dynamics of this typical
medical FL setup shown in Fig. 2, we derive covariance map and ACF plots by
inserting CMEs within federated clients. Essentially, the CMEs are blank matrix
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Fig. 2. Proposed medical FL framework with CMEs for visualizing operational dynam-
ics. The symbol C represents CME.

structure individually inserted between layers of each federated client as shown
in Fig. 2. Note that CMEs are not inserted between federated clients; instead,
they are at each federated client within the client’s environment. These are
designed to capture the weight differences between epoch i and epoch i − 1 for
each federated connection within the setup.
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Inference: The values of CMEs which are found between the antepenulti-
mate and penultimate layers are archived and then analyzed to discern patterns
learned through covariance maps. When the variance of these patterns stabi-
lizes and the mean remains consistent, a model is considered to be trained to
its capacity. The ACF plots are calculated from archived CME values to deter-
mine when to halt a training as well as identify redundant clients in a setup, as
they are likely to exhibit minimal contribution to the overall learning.

4 Experimental Results

In this section, experimental results pertaining to the medical dataset are pre-
sented, including the machine configurations, the methodology employed in con-
ducting the experiment, and the resultant findings across various experimental
scenarios. Table 1 lists the four practically observed scenarios which are consid-
ered in our experiments.

Table 1. Practically observed scenarios and prototype federated clients.

Dataset at
clients

Model at
clients

Federated
client 1

Federated
client 2

Federated
client 3

Scenario 1 Different Different ResNet50 DenseNet121 AlexNet with
skip

connections

Scenario 2 Different Same ResNet50 ResNet50 ResNet50

Scenario 3 Same Different ResNet50 DenseNet121 AlexNet with
skip

connections

Scenario 4 Same Same ResNet50 ResNet50 ResNet50

4.1 Medical Dataset

For the experiment, the well-known benchmark brain tumor classification dataset
from Kaggle [3] is used. It comprises of images depicting various types of brain
tumors, including glioma, meningioma, pituitary tumors, as well as images indi-
cating the absence of tumors. A few images are displayed in Fig 3 for illustra-
tion purpose. To enhance the diversity and comprehensiveness for the federated
setup, the training and test files are merged, resulting in a combined dataset
containing 3264 images. In scenarios where the data is assumed to be different
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(Scenario 1 and 2 from Table 1), the dataset is shuffled and equipartitioned before
being shared to all the federated clients. In cases where the data is assumed to be
identical (Scenario 3 and 4 from Table 1), the dataset is loaded directly onto the
clients without modification.

Fig. 3. A few images from the medical dataset [3] with their class labels.

4.2 Machine Specifications

The experimentation is conducted on Paramshavak HPC supercomputer. The
system configuration consists of an x86 64 architecture with an Intel (R) Xeon
(R) Gold 6139 CPU clocked at 2.30GHz, with a total of 72 CPU cores. Hyper-
threading technology enabled two threads per core, resulting in a total of 144
threads available for parallel processing. Virtualization support is provided using
VT-x. Additionally, it uses NVIDIA GPUs for accelerated computations, specif-
ically a Quadro P400 and a Quadro GP100, operating with CUDA version 11.0.
Lastly, the system is equipped with 92 gigabytes of RAM and 12 terabytes of
HDD storage. These hardware resources facilitated efficient execution of the fed-
erated learning experiments with conversational memory elements.

4.3 Experimental Setup and Result Analysis

We consider training for multiclass classification using a federated model setup
as depicted in Fig. 2. We carry out a threaded environment for simulating the FL
setup. The deliberate selection of this methodological framework (Fig 2) aimed
to enhance computational efficiency while mitigating the limitations imposed
by finite resources. Three clients are involved in this experiment to simulate
three different hospitals. Three parallel threads are executed with an average
aggregation policy to maintain simplicity. Three models are selected: ResNet
50, DenseNet121, and an adapted version of AlexNet with skip connections.
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Additional layers are introduced into each model. The defined CMEs are then
inserted in between every layers, allowing for a detailed study of operational
dynamics. Four distinct scenarios are implemented to cover a diverse range of
real-life situations as described in the Table 1. For same model scenarios we have
considered ResNet50 as it gives best results with 95.3% accuracy with 25 epochs.
In our analysis of the results, we are looking for patterns in covariance maps
of CMEs situated between the antepenultimate and penultimate layers along
with stability in the ACF plots. These metrics will provide visual insights into
the convergence behavior and performance of the federated learning process.

It is essential to understand that each t-round represents a round of train-
ing, at the end of which weights are transmitted to the federated server for
aggregation. Before the commencement of the subsequent t-round, the updated
aggregated weights are disseminated back to all federated clients. Each training
round encompasses 10 epochs, and a total of 10 such t-rounds are executed in
all four scenarios. Note that ResNet50 is considered as federated server in all
scenarios.

Upon completion of the training phase, we archived CMEs after each t-round.
Subsequently, the covariance map is plotted at each training round. Along with
this, the overall ACF plot is also derived, which showcased layers and their cor-
responding effective ACF value at the conclusion of each training round. Both
of these parameters are calculated based on the formulas and mathematical
understanding as described in section 1.3. Once these information are extracted,
various insights can be drawn for each scenarios as mentioned in Table 1, address-
ing the problem definition outlined in this paper.

4.3.1 Scenario 1: Different Dataset and Different Model
This scenario covers the case when all the federated clients utilize differ-
ent datasets and all possess different local models: ResNet50 for client 1,
DenseNet121 for client 2, and AlexNet with skip connections for client 3.

From Fig. 4(a) it is evident that for federated client 1, after t-round 1, ini-
tially, the covariance map resembled a noisy pattern, gradually evolving into a
certain pattern by t-round 4 (Fig. 4(b)), which stabilizes by t-round 7 as seen
in Fig. 4(c). It suggests that beyond t-round 7, further training may not yield
significant benefits, as the model for that client has reached saturation. Stabi-
lization of covariance pattern is indicative of optimal learning by a client. Similar
observations can be made by looking at Fig. 4(d, e,f) for drawn clients 2 and
Fig. 4(g, h, i) for client 3, with their covariance patterns becoming apparent after
t-round 6 (Fig. 4(f)) and t-round 10 (Fig. 4(i)), respectively.

The ACF plots Fig. 4(j, k, l) indicate that client 1 (Fig. 4(j)) and client 3
(Fig. 4(l)) are in a state of continuous learning, as evidenced by the variations in
their plots across t-rounds. In contrast, the ACF plot for client 2 (Fig. 4(k))
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Fig. 4. Scenario 1 - Covariance Maps and ACF Plots
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remains relatively stable, implying minimal learning, which suggests very few
changes in weights. Client 2 results in a consistently stable ACF plot compared
to clients 1 and 3 which may indicate that it requires little learning effort from
the start. The ACF results are inline with the results of covariance maps as the
emergence of stable clients is accompanied by a more distinct pattern in the
covariance map, as illustrated in the Fig. 4.

4.3.2 Scenario 2: Different Datasets and Same Model
This scenario covers the case when all the federated clients utilize different
datasets and all possess same local model that is ResNet50.

Here, Fig. 5(a) makes it clear that, for federated client 1, the covariance
map first resembled a noisy pattern. By t-round 6, however, this pattern had
evolved into a specific one (Fig. 5(b)), and by t-round 7, it had stabilized (Fig.
5(c)). It implies that after t-round 7, there would be no more substantial gains
from training since the client’s model has achieved saturation. Fig. 5(d, e,f) for
client 2 and Fig. 5(g, h, i) for client 3 show similar trends in their covariance
patterns, which stabilize at t-rounds 8 (Fig. 5(f)) and t-rounds 8 (Fig. 5(i)),
respectively. Based on the differences in their plots across t-rounds, the ACF
plots Fig. 5(j, k, l) show that client 1 (Fig. 5(j)) is in a continuous learning
state. On the other hand, the ACF plot for client 2 (Fig. 5(k)) and client 3 (Fig.
5(l)) shows limited learning as it stays rather steady. In contrast to client 1,
client 2 and 3 dominates the process and may require minimal learning effort
from the beginning, producing an ACF plot that is constantly stable.

4.3.3 Scenario 3: Same Dataset and Different Models
In this scenario, all federated clients utilize identical datasets, each employ-
ing distinct local models: ResNet50 for client 1, DenseNet121 for client 2, and
AlexNet with skip connections for client 3. Drawing parallels with the observa-
tions made in Sections 4.3.1 and 4.3.2, similar insights can be drawn by analysis.

4.3.4 Scenario 4: Same Dataset and Same Model
In this scenario, all federated clients use the same dataset and have same local
model that is ResNet50. Similar conclusions can be drawn by analysis based on
the discussions in sections 4.3.1 and 4.3.2.

4.3.5 Quantitative Analysis
The accuracy results of the classification problem are displayed in Table 2 for
all scenarios. These results are consistent with the visual results.
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Fig. 5. Scenario 2 - Covariance Maps and ACF Plots
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Table 2. Accuracies achieved with different federated scenarios

Dataset
at clients

Model at
clients

Federated
client 1

Federated
client 2

Federated
client 3

Scenario 1 Different Different 91.3% 92.4% 85.62%

Scenario 2 Different Same 90.5% 94.6% 94.4%

Scenario 3 Same Different 95.4% 95.6% 93.75%

Scenario 4 Same Same 96.3% 95.89% 95.83%

5 Conclusion

In this work, we have visualized the operational dynamics of federated medical
AI models by utilizing CMEs within a federated learning framework. Using this
cognitive approach, we obtain qualitative insights crucial for resource optimiza-
tion and well-informed decision-making in medical AI development by examin-
ing evolving patterns in covariance maps and ACF plots generated from CMEs
respectively. Following major observations are drawn from this research endeav-
our:

1. The integration of conversational memory elements helps in visualizing sat-
uration point during training within a federated setup. This is accomplished
by monitoring the evolving covariance patterns.

2. ACF plots offer a means to discern the dominant clients and identify the
relatively weaker clients via stability of learning.

3. The insights obtained help understand the point of diminishing returns which
can be leveraged for optimizing training time and effective utilization of avail-
able resources.

Future research includes extracting quantitative insights from the CMEs, utiliz-
ing them to comprehend weak and dominant layers within an architecture, and
ultimately proposing methods for designing an optimal federated network.
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Abstract. Trustworthiness is a major prerequisite for the safe applica-
tion of opaque deep learning models in high-stakes domains like medicine.
Understanding the decision-making process not only contributes to fos-
tering trust but might also reveal previously unknown decision criteria
of complex models that could advance the state of medical research.
The discovery of decision-relevant concepts from black box models is
a particularly challenging task. This study proposes Concept Discovery
through Latent Diffusion-based Counterfactual Trajectories (CDCT), a
novel three-step framework for concept discovery leveraging the superior
image synthesis capabilities of diffusion models. In the first step, CDCT
uses a Latent Diffusion Model (LDM) to generate a counterfactual tra-
jectory dataset. This dataset is used to derive a disentangled representa-
tion of classification-relevant concepts using a Variational Autoencoder
(VAE). Finally, a search algorithm is applied to identify relevant concepts
in the disentangled latent space. The application of CDCT to a classi-
fier trained on the largest public skin lesion dataset revealed not only
the presence of several biases but also meaningful biomarkers. Moreover,
the counterfactuals generated within CDCT show better FID scores than
those produced by a previously established state-of-the-art method, while
being 12 times more resource-efficient. Unsupervised concept discovery
holds great potential for the application of trustworthy AI and the further
development of human knowledge in various domains. CDCT represents
a further step in this direction.
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1 Introduction

Deep learning (DL) algorithms have gained immense popularity for their out-
standing performance in the past decade [25,26,34]. The inherent non-linearity
and over-parametrization of these algorithms make it particularly challenging
to comprehend their reasoning processes. This, among other factors, contributes
to a general lack of trust in such black-box models, constituting a major imped-
iment to their application in safety-critical domains such as medicine. With the
General Data Protection Regulation [38] and the upcoming European Artificial
Intelligence (AI) Act [36], DL-based AI systems must now also comply with reg-
ulatory requirements directly concerning the topic of trust. Research on eXplain-
able AI (XAI) aims at increasing trust by providing more profound insights into
the decision-making of opaque black-box models.

The correct interpretation of an explanation by the explainee is fundamental
for yielding an understanding of the opaque decision-making process, which is
a crucial prerequisite for building trust [23]. Many popular XAI methods only
provide information about the relevance of individual input features [27,31,43].
The interpretation of these methods by explainees often suffers from a lack of
context about the informative value of feature relevance. Concept-based explana-
tion methods promise to remedy this by allowing to localize [21] human-aligned
concepts and quantify [16] their relevance for decision-making. However, the
acquisition of fine-grained concept annotations is expensive and inflexible. First
efforts have been made towards unsupervised concept discovery [3,11,19], which
could reduce the burden of collecting labels for concepts but also comes with the
prospect of discovering new, previously unknown concepts. Existing methods
are either based on strong structural assumptions [11] or make use of Generative
Adversarial Networks (GANs) [3,19] that are usually challenging to train.

This work proposes Concept Discovery through Latent Diffusion-based Coun-
terfactual Trajectories (CDCT), the first concept discovery framework based on
counterfactual trajectories generated by state-of-the-art latent diffusion models
(LDMs) [28]. The first step encompasses the generation of a counterfactual tra-
jectory dataset using a text-conditioned LDM guided by the target classifier.
This step aims to extract relevant semantic changes that describe the classifier’s
decision boundaries. The counterfactual trajectory dataset is used in the sub-
sequent step to compute a disentangled representation of the classifier-relevant
features using a Variational Autoencoder (VAE). In the final step, the VAE’s
latent space is exploited for concept discovery through a search algorithm that
is built upon [19]. The contribution of our work is as follows:

– we propose CDCT, the first concept discovery framework that leverages latent
diffusion-based counterfactual trajectories.

– we demonstrate improved counterfactual explanation capabilities by combin-
ing latent diffusion models with classifier guidance.

– we apply CDCT to a skin lesion classifier, demonstrating its ability to reveal
classifier-specific concepts including biases and new biomarkers.
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2 Related Work

The field of eXplainable AI can be subdivided by the output modality of a
given XAI method. Several popular examples in the image domain are based
on the quantification of feature relevance through surrogate models [27], activa-
tions [43], or gradients [31]. Recently, human-centric XAI methods like counter-
factuals [7,35,39] or concept-based explanation methods [16,18] struck particular
interest in the community, as they focus primarily on facilitating the interpreta-
tion of explanations by stakeholders and thus achieving their trust.

2.1 Generative Counterfactual Explanations

Counterfactuals constitute alternative classification scenarios with different out-
comes given a marginal modification of a reference image. Wachter et al. [39] first
introduced a method for the generation of counterfactuals through optimization.

The closest related works use diffusion models (DMs) to generate counterfac-
tuals [4,13,14,29,30]. Some works use an unconditional diffusion model for the
generation of counterfactuals guided by the target classifier [13,30]. Augustin
et al. [4] utilize adaptive parameterization and cone regularization of gradients.
Sanchez et al. [29] made use of a conditional diffusion model to generate healthy
counterfactual examples of brain images to localize abnormal lesions. In [14],
an adversarial pre-explanation is improved by diffusion-based inpainting to gen-
erate minimal counterfactuals. All previous works on DM-based counterfactual
generation operate in the pixel space. Our proposed work instead leverages the
more recent latent diffusion model to make use of improved synthesis capabil-
ities with better computational efficiency, while focusing on semantic changes
through guidance in the latent instead of the pixel space.

2.2 Concept-based Explainability

Concept-based XAI methods aim at the quantification and localization of higher-
level concepts that are aligned with human cognitive processes. Concept-based
explanations in pedestrian detection might for instance highlight a group of pix-
els as belonging to the concept face. Supervised concept-based explanation meth-
ods [8,16,18,21] rely on concept annotations, which can be expensive to obtain.
Moreover, in complex domains like medicine, often experts are required for such
annotations. However, some works approached the unsupervised discovery of novel
concepts. One line of work deals with the identification of concepts from a classi-
fier’s latent representation [9,11,37,40,41]. Ghorbani et al. [11], for instance, pro-
posed a framework for concept discovery based on the segmentation of images,
clustering of their latent representations, and quantification of the conceptual
influence of clusters. Fel et al. [9] extend the work of [11] and [41] to recur-
sively decompose concepts across layers and localize them. In another approach,
Achtibat et al. [1] introduced Concept Relevance Propagation (CRP), combining
local and global perspectives to address both the ‘where’ and ‘what’ questions for
individual predictions. Additionally, Poeta et al. [24] provided a comprehensive
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survey on concept-based explainable AI, detailing various methodologies and their
applications.

Another relevant line of work regards the classifier as a black box and aims
at the discovery of concepts through the generative manipulation of input sam-
ples [3,10,19,33]. Lang et al. [19], for instance, modified the StyleGAN archi-
tecture to systematically examine the GAN’s style space for class-influential
concept dimensions. Ghandeharioun et al. [10] approach concept discovery by
enforcing the disentanglement of a GAN’s latent concepts, encouraging higher
distances between dissimilar and proximity between similar concepts. In contrast
to existing concept discovery frameworks, CDCT leverages the power of state-of-
the-art, conditional latent diffusion models for the generation of counterfactual
trajectories to disentangle and identify classifier-relevant information.

3 Methodology

CDCT is a three-step framework for unsupervised concept discovery. In the first
step, a latent diffusion model with classifier guidance is used to generate a coun-
terfactual trajectory dataset, capturing decision-relevant concepts of the target
classifier. This dataset is used to obtain a disentangled representation of concepts
with the help of a Variational Autoencoder. Finally, decision-relevant dimensions
are identified within the VAE by analyzing their impact on the classifier’s output.
An overview of the framework is presented in figure 1.

Fig. 1. CDCT is a three-step concept discovery framework. An LDM with classifier
guidance is used to generate a counterfactual trajectory dataset. A VAE is trained
on this trajectory dataset to disentangle decision-relevant features. Finally, class-
relevant dimensions are identified by manipulating the VAE’s latent space and observ-
ing the target classifier’s output.
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3.1 Generation of Counterfactual Trajectories

The first step aims to extract decision-relevant variations of the input image from
the target classifier into a counterfactual trajectory dataset. In contrast to pre-
vious works [4,13,29], our proposed framework utilizes a latent diffusion model
for a counterfactual generation to benefit from the improved generation effi-
ciency and quality. Text conditioning is used to structure the latent space in
accordance with known concepts. Figure 2 depicts the counterfactual generation
process with detailed information about the guided step t.

Fig. 2. The counterfactual generation process starts by encoding the image E(xF ) and
perturbing it to obtain zT (here T = 3). The text encoder transforms the condition (c)
into an embedding τθ(c). Both zT and τθ(c) are fed to the diffusion model for denoising.
At guided step t, we denoise the noisy latent zt, t times to produce the clean latent
vt, which is decoded into a clean image x̃t to calculate the gradient of loss Lclass for
updating zt. We sample the previous less noisy latent zt−1 from the estimated noise
ε̂ and the updated noisy latent z̃t. In the final guided step, z0 is decoded to yield the
counterfactual image (xCF ).

We start the process with an original image xF and utilize the encoder E
to transform it into a lower-dimensional latent space. In the forward process,
we take its latent representation to calculate a noisy version zt with variance
schedule βt ∈ (0, 1), where αt = 1 − βt, ᾱt =

∏t
k=1 αk and 1 ≤ t ≤ T .

zT =
√

ᾱt E(xF ) + εt

√
1 − ᾱt, where εt ∼ N (0, I) (1)



Counterfactual Trajectories for Concept Discovery 143

Subsequently, we traverse the reverse Markov chain to generate a counterfac-
tual with adapted classifier guidance introduced by Jeanneret et al. [13] applied
to the latent space. In the reverse process, we iteratively go through the following
steps until t = 0:

1. The LDM produces the cleaned latent vector vt by denoising zt, t times.
2. Then, vt is decoded to obtain its representation in the image space x̃t.
3. The target classifier fφ is then applied on x̃t to calculate the gradients of the

classification loss Lclass.

∇zt
L(zt, y) =

1√
ᾱt

∇vt

[
λc · Lclass(fφ(y|x̃t))

]
(2)

4. The noisy latent zt is guided using the gradient to produce z̃t.
5. zt−1 is finally computed from z̃t and the noise ε̂ predicted at timestamp t.

We utilize the PNDM [20] sampling method represented as S(ε̂, t, z̃t) → zt−1

to get the less noisy sample at each timestamp t. After t repetitions of the
aforementioned steps, the counterfactual image is generated by decoding z0 using
the decoder xCF = D(z0). A sequence of clean images produced throughout the
guiding process, commencing with the factual image and concluding with the
counterfactual image, is referred to as a counterfactual trajectory.

3.2 Semantic Space Disentanglement

Counterfactual explanations may simultaneously alter multiple features, com-
plicating the discovery of single, class-relevant concepts. Therefore, the coun-
terfactual trajectory dataset is used in the second step to derive a disentangled
representation of decision-relevant biomarkers for the target classifier.

Variational Autoencoders [17] are known for their ability to learn disentan-
gled representations [6]. To enhance the reconstruction fidelity of the VAE,
three additional loss functions are integrated besides the default reconstruc-
tion loss (LRec) and the regularization term (LKLD). The L1 loss (LL1) is added
to minimize pixel-wise differences, while the Structural Similarity Index Measure
(SSIM) [42] (LSSIM) ensures perceptual image similarity. Lastly, a perceptual loss
(LPerc) based on all the layers of a pre-trained VGG19 is used to capture high-
level semantic features. Weighting the KLD loss by wkld balances the trade-off
between reconstruction fidelity and disentanglement. The final objective function
for training the VAE can be stated as:

LVAE = LRec + wkld · LKLD + LL1 + LSSIM + LPerc

The VAE is trained on the counterfactual trajectory dataset to disentangle the
decision-relevant semantic features.
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3.3 Discovery of Relevant Concepts

Finally, our framework modifies the AttFind [19] algorithm to identify decision-
relevant concepts in the disentangled latent representation. Algorithm 1 identifies
the top latent space dimensions Ly for a class with a given set of images. These
dimensions yield the highest average increase in class probability when chang-
ing its value during reconstruction through the VAE. In contrast to [19], our
approach modifies directions in the range Dy ∈ [−3,+3] to account for the stan-
dard normal distribution, as high magnitudes do not yield artifacts or unrealistic
changes but lead to properly emphasized concepts. Moreover, concepts that yield
inconsistent change directions were not filtered out, as we argue that conceptual
manifestation is not necessarily monotonous on a linear trajectory.

Algorithm 1. Identify Relevant Latent Space Dimensions for a Specific Class
Input: Target classifier fφ, encoder E , decoder D,
Set X of images with ∀x ∈ X, fφ(x) �= y,
Output: Set Ly of top latent space dimensions & set Dy of their directions.
for x in X do

l ← E(x), l ∈ R
m // Encoding

for i = 1, . . . , l do
for d in [−3, −2, −1, 0, 1, 2, 3] do

l[i] = d
x̃ ← D(l) // Decoding
Set Δ[x, l, d] = fφy (x̃) − fφy (D(E(x))) //Diff. softmax probability class y

end for
end for

end for
Set Δ̄[l, d] = Mean(Δ[x, l, d]) over all x ∈ X
Ly, Dy ← argsort(Δ̄[l, d], descending order, top-K)

4 Experiments & Results

4.1 Datasets & Classification Models

Data from the International Skin Imaging Collaboration (ISIC) challenges (2016-
2020)1 is used for experimentation. The duplicate removal strategy proposed in
Cassidy et al. [5] is followed, resulting in a consolidated dataset of 29,468 sam-
ples, further split into train, validation, and test sets. The dataset consists of
eight distinct classes, namely Melanocytic Nevus (NV), Squamous Cell Carci-
noma (SCC), Benign Keratosis (BKL), Actinic Keratosis (AK), Basal Cell Car-
cinoma (BCC), Melanoma (MEL), Dermatofibroma (DF), and Vascular Lesions
(VASC). The ISIC 2016, ISIC 2017, PH2 [22], and Derm7pt [15] datasets were

1 The data is available at https://challenge.isic-archive.com/challenges/.

https://challenge.isic-archive.com/challenges/
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used for the training of concept classifiers to provide missing conditioning labels.
The selected dermoscopic concepts are Streaks, Pigment Networks, Dots & Glob-
ules, Blue-Whitish Veils, Regression Structures, and Vascular Structures.

In this study, a ResNet50 [12] is trained on the consolidated ISIC training
dataset, serving as the target classifier. The individual concept classifiers are
based on the target classifier, fine-tuned on the respective concept dataset.

4.2 Generation of Counterfactual Trajectories

Stable Diffusion (SD) 2.12 is used as a baseline for the latent diffusion model.
To enhance conditioning information for fine-tuning, captions are generated for
training images including diagnostic details and skin lesion concepts. Concept
classifiers were used to predict the presence or absence of concepts wherever
no annotations were available. Only present concepts were used as condition-
ing information. The SD model is fine-tuned on the consolidated ISIC training
dataset with text conditioning for 15K steps and a learning rate of 1e−5, gener-
ating realistic skin lesion samples.

The methodology described in section 3.1 is applied to generate counterfac-
tuals. Experimentation revealed that a gradient loss scale of λc > 10 introduces
unrealistic artifacts on the counterfactual images. A value of λc = 4 has therefore
been chosen for all results. High values for the initial noise level t compromised
the image quality, while t = 10 yielded a good trade-off between generative
capacity and image quality. Figure 3 shows exemplary counterfactuals from one
source image to all other target classes, showcasing the ability of the LDM to
generate class-selective biomarkers. More examples can be found in the supple-
mentary material A.3.

Fig. 3. An image of the Nevus class alongside its counterfactual images in all other
target classes. The second row shows difference maps, providing an easy way to identify
the areas of alteration between the original image and each counterfactual.

Counterfactuals generated by different versions of CDCT are quantitatively
compared with the results from DiME [14] in table 1. The flip ratio measures the

2 Available at https://huggingface.co/stabilityai/stable-diffusion-2-1.

https://huggingface.co/stabilityai/stable-diffusion-2-1
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frequency at which generated counterfactual images are classified as the target
class by the classification model. A qualitative comparison can be found in the
supplementary material A.4.

Table 1. L1, L2, FID, and Flip Ratio (FR) scores for counterfactuals generated by
different versions of the proposed approach, compared with results from Jeanneret et
al. [13]. Subscripts ft describe LDM instances fine-tuned on ISIC, while wo-ft refers
to pre-trained LDMs. All reported results are computed on the consolidated ISIC test
dataset for MEL and NV classes. The best values are highlighted in bold.

Method L1 L2 FID FR

DiME [13] 0.02969 0.00176 60.79377 0.86710

Unconditional CDCTwo−ft 0.01930 0.00078 17.36892 1.0

Unconditional CDCTft 0.01858 0.00073 13.45541 1.0

Conditional CDCTwo−ft 0.01930 0.00078 17.31825 1.0

Conditional CDCTft 0.01857 0.00073 13.41800 1.0

In every version, CDCT shows a significant improvement in overall metrics,
indicating the superiority of counterfactuals generated by LDMs, over traditional
approaches. The fine-tuning of the diffusion model yielded a notable improve-
ment in FID, L1, and L2 measures. This aligns with the discovery, that the pre-
trained LDM is completely incapable of synthesizing skin lesion images (see sup-
plementary material A.2). The conditional generation of counterfactuals using
the target class yielded further minor improvements. It is notable that in com-
parison to DiME, CDCT achieves a perfect flip ratio, indicating a stronger gen-
erative capacity of the LDM. Due to its superior performance, the conditional,
fine-tuned CDCT is chosen for all further experiments.

Counterfactual trajectories capture the progression from a factual image to
a counterfactual, as shown in figure 4. The counterfactual trajectory dataset
is generated by computing trajectories for each ISIC training image into each
alternate target class. Each trajectory consists of intermediate images from the
10 guided steps as well as the final counterfactual for 7 target classes, resulting
in 78 images per sample. With 23,868 samples in the ISIC training dataset, the
resulting counterfactual trajectory dataset contains 1,861,704 samples.

4.3 Semantic Space Disentanglement

A VAE was trained on the counterfactual trajectory dataset to capture all vari-
ations reflected by the data. The encoder comprises six ResNet-based down-
sampling blocks and final convolution layers, and the decoder architecture mir-
rors the encoder executing the reverse process of the encoding phase. An exten-
sive hyperparameter search has been conducted, using different loss combina-
tions, weightings, batch sizes, learning rates, and corresponding schedules. The
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Fig. 4. Counterfactual trajectory for a Nevus with target class Melanoma. Along the
process, the manifestation of darker, atypical pigment structures can be observed.

experiments indicate that there is an inherent trade-off between the disentan-
glement provided by the KLD loss and the reconstruction quality of the VAE.
All reported results are based on a VAE trained for 23 epochs with the Adam
optimizer using a batch size of 128, a learning rate of 2.5e−5, and an exponential
decay learning rate scheduler with a decay factor γ of 0.95. ISIC test images
along with their reconstructions are shown in supplementary material A.5.

4.4 Discovery of Relevant Concepts

VAE latent dimensions relevant for the target classifier are determined by algo-
rithm 1 using the ISIC validation dataset. Figure 5 shows a small selection of the
most relevant dimensions identified by CDCT. The success rate of a dimension
is provided in the sub-caption for each concept and describes the fraction of test
cases where the target class probability increased when altering said dimension.

For Melanoma, it has been found that many dimensions are related to dark-
ening the skin lesion area while brightening the surrounding skin (e.g., figure 5b).
Moreover, some dimensions (e.g., figure 5a) added darker spots and texture
within the skin lesion to promote the prediction of Melanoma. Another dimen-
sion adds dark corner artifacts to the images, evident in figure 5c. The inverse
of that dimension was found to promote the prediction of Nevus.

Similarly, for other classes, mostly concepts related to overall color are identi-
fied. Several relevant dimensions for Nevus altered the overall hue of the image to
a red color (see figure 5d). For Basal Cell Carcinoma, the most relevant dimen-
sions were related to the brightening of the whole image (see figure 5e). For Der-
matofibroma, the most relevant dimension added white structures in the center
of the lesions (see figure 5f). The relevance of the concepts is also emphasized
by the high success rates of concepts, as shown in the sub-captions.
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Fig. 5. Examples of discovered concepts using CDCT with the ISIC dataset. Each row
shows two examples of a concept, where the original image, the reconstruction, and
the manipulated reconstruction are aligned from left to right.
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5 Discussion

In the previous section, the proposed three-step framework has been success-
fully applied for the global explanation of a skin lesion classifier. The results
strongly suggest that CDCT successfully outperforms DiME [13] regarding the
quality of generated counterfactuals. Using an LDM allowed for a reduction
of the required denoising steps leading to a significant performance improve-
ment in the generation of counterfactuals as compared to DiME (at least 12x
speed-up). Moreover, the reduced number of denoising steps together with the
generation in the latent space allowed the omission of the perceptual and the
L1 loss employed in [13] while yielding better counterfactuals. The conditioning
of the LDM for the generation of counterfactual trajectories turned out to yield
insignificant improvements in the quality of counterfactuals, but might aid the
generation of more diverse and realistic counterfactuals.

Through CDCT several disentangled dimensions were identified. The success
rates of the presented dimensions confirm their relevance for the target classifier,
and therefore their utility for explanation. By manual inspection, the plausibil-
ity of some high-performing dimensions could be established. For instance, in the
case of Melanoma, the discovered concept of dark corner artifacts is a bias inher-
ent to ISIC, previously highlighted in the literature as well [32]. Other dimen-
sions potentially associated with dataset biases include redness, which tends to
increase the prediction confidence of Nevus, image brightening, which enhances
the likelihood of predicting Basal Cell Carcinoma, and image darkening, which
promotes the probability of Melanoma prediction. Upon nearer investigation of
the dataset, it can be observed that these phenomena also reflect in the dataset’s
statistics (see supplementary material A.1).

Apart from biases, CDCT has also yielded concepts that can be clinically
proven. One dimension that led to a particularly high increase in Dermatofi-
broma prediction probability resulted in the introduction of white structures to
the center of the lesion. This concept has been already documented in medi-
cal literature as a white, scar-like structure [2] that is highly indicative of the
diagnosis, but not yet proven in DL-based classifiers.

6 Limitations & Future Work

Although CDCT was successfully used to discover previously unknown con-
cepts in this work, some limitations remain. Despite the automated selection of
classifier-relevant dimensions, a persisting challenge in concept discovery is the
manual interpretation of concepts that often requires the help of domain experts.
Future works might address this limitation by providing more sophisticated anal-
ysis and visualization methods that segment, aggregate, and cluster changes
induced by the manipulation of concept dimensions. Moreover, the exploration
of new concepts is drastically hampered by the existence of significant biases in
the dataset. The linear process of concept discovery might have to be replaced
in practice by an iterative approach that involves a debiasing step, which would
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facilitate the discovery of meaningful concepts and improve the classifier’s valid-
ity. Finally, the utilization of the VAE architecture for deriving a disentangled
representation of counterfactual trajectories might be further improved in the
future. The VAE training presented a crucial trade-off between reconstruction
fidelity and disentanglement through the weight of the KLD loss. As skin lesion
classification relies on fine-grained features like subtle textures, reconstruction
was favored over disentanglement. This, however, led to one entangled dimen-
sion that stood out for its comparatively high relevance throughout all classes,
introducing inconclusive changes to the images. Future work should address this
issue by applying more sophisticated disentanglement techniques with better
fine-grained reconstruction capability, such as StyleGAN.

7 Conclusion

In high-stakes scenarios such as healthcare, DL models play a pivotal role in
early disease detection, potentially saving lives. It is essential to provide human-
aligned explanations which offer insights into the complex decision-making of
models to gain the trust of their users. These insights can potentially reveal new
biomarkers relevant in clinical practice. This study provides a new automated
framework for the discovery of concepts based on the synthesis of counterfactual
trajectories using LDMs.

The proposed CDCT framework is the first to use LDMs with classifier
guidance to generate counterfactual explanations. Its proposed counterfactual
generation step yields better FID scores compared to the previous DiME [13]
method while being up to 12 times more resource-efficient. A counterfactual
trajectory dataset is constructed, reflecting relevant semantic changes along the
decision boundaries of the target classifier. A disentangled representation of these
classifier-relevant cues is derived using a VAE. The automatic and unsuper-
vised exploration of this latent representation yielded valuable insights into the
decision-making behavior of a skin lesion classifier, revealing not only biases but
also previously unknown biomarkers, supported by first evidence in the medical
literature. CDCT can be applied to arbitrary application domains such as radiol-
ogy and histology, providing a combination of local and global explanations, and
therefore paving the way to trustworthy AI finding its way into clinical practice.
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34. Sturman, O., von Ziegler, L., Schläppi, C., Akyol, F., Privitera, M., Slominski, D.,
Grimm, C., Thieren, L., Zerbi, V., Grewe, B., et al.: Deep learning-based behav-
ioral analysis reaches human accuracy and is capable of outperforming commercial
solutions. Neuropsychopharmacology 45(11), 1942–1952 (2020)

35. Van Looveren, A., Klaise, J.: Interpretable counterfactual explanations guided by
prototypes. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. pp. 650–665. Springer (2021)

36. Veale, M., Zuiderveen Borgesius, F.: Demystifying the draft eu artificial intelli-
gence act-analysing the good, the bad, and the unclear elements of the proposed
approach. Computer Law Review International 22(4), 97–112 (2021)

37. Vielhaben, J., Bluecher, S., Strodthoff, N.: Multi-dimensional concept discov-
ery (mcd): A unifying framework with completeness guarantees. arXiv preprint
arXiv:2301.11911 (2023)

38. Voigt, P., Von dem Bussche, A.: The eu general data protection regulation (gdpr).
A Practical Guide, 1st Ed., Cham: Springer International Publishing 10(3152676),
10–5555 (2017)

39. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: Automated decisions and the gdpr. Harv. JL & Tech. 31,
841 (2017)

40. Wang, B., Li, L., Nakashima, Y., Nagahara, H.: Learning bottleneck concepts in
image classification. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 10962–10971 (2023)

41. Zhang, R., Madumal, P., Miller, T., Ehinger, K.A., Rubinstein, B.I.: Invertible
concept-based explanations for cnn models with non-negative concept activation
vectors. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35,
pp. 11682–11690 (2021)

42. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for neural networks for
image processing. arXiv preprint arXiv:1511.08861 (2015)

43. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 2921–2929 (2016)

http://arxiv.org/abs/2301.11911
http://arxiv.org/abs/1511.08861


Fusing Forces: Deep-Human-Guided
Refinement of Segmentation Masks

Rafael Sterzinger(B) , Christian Stippel , and Robert Sablatnig

Computer Vision Lab, TU Wien, Vienna, Austria
{rafael.sterzinger,christian.stippel,robert.sablatnig}@tuwien.ac.at

Abstract. Etruscan mirrors constitute a significant category in Etr-
uscan art, characterized by elaborate figurative illustrations featured on
their backside. A laborious and costly aspect of their analysis and doc-
umentation is the task of manually tracing these illustrations. In pre-
vious work, a methodology has been proposed to automate this pro-
cess, involving photometric-stereo scanning in combination with deep
neural networks. While achieving quantitative performance akin to an
expert annotator, some results still lack qualitative precision and, thus,
require annotators for inspection and potential correction, maintain-
ing resource intensity. In response, we propose a deep neural network
trained to interactively refine existing annotations based on human guid-
ance. Our human-in-the-loop approach streamlines annotation, achiev-
ing equal quality with up to 75% less manual input required. Moreover,
during the refinement process, the relative improvement of our methodol-
ogy over pure manual labeling reaches peak values of up to 26%, attaining
drastically better quality quicker. By being tailored to the complex task
of segmenting intricate lines, specifically distinguishing it from previous
methods, our approach offers drastic improvements in efficacy, transfer-
able to a broad spectrum of applications beyond Etruscan mirrors.

Keywords: Binarization · Interactive Segmentation ·
Human-in-the-Loop · Etruscan Art · Cultural Heritage

1 Introduction

With more than 3,000 identified specimens, Etruscan hand mirrors represent
one of the biggest categories within Etruscan art. On the front, these ancient
artworks feature a highly polished surface, whereas, on the back, they typically
depict engraved and/or chased figurative illustrations of Greek mythology [5]. A
primary component of their examination involves the labor- and cost-intensive
task of manually tracing the artworks; an exemplary mirror is illustrated in Fig. 2
together with the sought-after tracing.
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Fig. 1. Illustrating interactive refinement of segmentation masks: Starting from an ini-
tial segmentation Y, the user can add (Δ+) or erase (Δ−) parts to bring it closer
to the ground truth Y∗ (in blue), creating an updated mask YΔ. Next, using a sep-
arate model conditioned on the human input Δ and Y, we aim that for the refined
segmentation Y′ it holds that ||Y′ − Y∗||1 < ||YΔ − Y∗||1.

In previous works, Sterzinger et al. [13] propose a methodology to automate
the segmentation process through photometric-stereo scanning in combination
with deep learning; expediting the process of manual tracing and contributing
to increased objectivity. Although their segmentation model – trained on depth
maps of Etruscan mirrors to recognize intentional lines over scratches – already
quantitatively achieves performance on par with an expert annotator, in some
instances it lags behind. Based on this, manual inspection and potential refine-
ment by humans are still required, therefore, although alleviated, the tracing
remains resource-intensive.

In this paper, we continue their line of work and propose a methodology to
simplify the remaining required refinement by adding interactivity to the pro-
cess: Starting from an initial prediction, we aim to reach qualitatively satisfying
results as quickly as possible while keeping necessary labor to a minimum. We
achieve this by training a deep neural network to refine the initial segmentation
based on a series of hints, i.e., parts being added or erased, illustrated in Fig. 1.

In summary, our contribution entails the development of an interactive refine-
ment network for improved annotation results obtained in less time, requiring
less labor. Compared to refining the initial segmentation manually, fusing forces
and performing the refinement interactively offers not only a drastic reduction in



156 R. Sterzinger et al.

labor (up to -75%) but also expedites the process by attaining significant relative
performance improvements over manual labeling (up to +26%). We differenti-
ate ourselves from prior work by proposing a methodology tailored specifically
to the task of segmenting intricate lines scattered across, in our case, Etruscan
mirrors versus, e.g., segmenting locally-concentrated hepatic lesions [1]. Addi-
tionally, instead of starting from scratch, we start from an initial prediction, a
step required due to the non-locality of lines as otherwise labor would be dras-
tically higher.

Finally, we provide public access to both the code and data utilized in this
work (see github.com/RafaelSterzinger/etmira-interaction) to promote trans-
parency and reproducibility.

Fig. 2. Etruscan mirrors typically feature scenes from Greek mythology. During their
examination, archaeologists seek to extract the drawings for visualization.

2 Related Work

Segmentation: In the field of image segmentation, techniques are led by advanced
deep learning architectures such as the UNet [12], DeepLabV3++ [2], Pyramid
Attention Network [7], etc. These advancements are particularly propelled by
industries where precise segmentation is paramount: For example, in medical
imaging, intricate segmentations are crucial for identifying vascular structures
within the retina, a crucial aspect for diagnosing retinal diseases [8].

Photometric Stereo: When considering historical artifacts where the content of
interest is engraved or chased into the object, as is the case with Etruscan mir-
rors, instead of RGB, modalities that capture surface details are potentially bet-
ter suited. Photometric Stereo (PS), a technique introduced by Woodham [17],

https://github.com/RafaelSterzinger/etmira-interaction
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allows for capturing such details, providing insights into the surface geometry of
an object. For instance, McGunnigle and Chantler [10] extract handwriting on
paper based on depth profiles. In addition to this, PS is also employed, e.g., to
detect cracks in steel surfaces [6], extract leaf venation [20], or detect air voids
in concrete [16]. In the context of Etruscan mirrors, Sterzinger et al. [13] resort
to a deep-learning-based segmentation approach due to the damage these mir-
rors have sustained. By integrating PS-scanning with deep segmentation, they
learn to recognize intentional lines over scratches.

Interactive Segmentation: Independent of the segmentation methodology
employed, resulting masks might not meet performance requirements and, there-
fore, require correction. With this regard, Li et al. [8], introduce IterNet, a
UNet-based iterative approach to enforce connectivity of retinal vessels post
segmentation, requiring no-external input. Similarly, interactive methods exist
that incorporate human expertise within the process. Xu et al. [18] and Mahade-
van et al. [9] focus on object segmentation based on mouse clicks. On the other
hand and closest to our work, Amrehn et al. [1], propose an approach that refines
the segmentation based on pictorial scribbles for hepatic lesions.

3 Methodology

In the following we will detail our methodology comprised of:

– the dataset; general information, splitting the data into training, validation,
and testing, as well as, the preprocessing of depth maps

– the simulation of human interaction; details on the statistics of engravings,
acquiring individual line segments, and the procedure for adding and erasing

– the architecture; describing the overall deep neural network used for refining
the initial segmentation

3.1 Dataset

Our dataset includes a diverse array of Etruscan mirrors from public collections
in Austria. It consists of PS-scans of 59 mirrors, with 53 located at the Kun-
sthistorischen Museum (KHM) Wien and the remaining 6 scattered throughout
Austria. Annotations were acquired for 19 mirrors, encompassing 19 backsides
and 10 fronts, resulting in a total of 29 annotated examples. Notably, engravings
predominantly adorn the backside to avoid interference with reflectance, how-
ever, they are also occasionally found on the front, albeit with less density, near
the handle or around the border. For information on the acquisition process, we
refer the reader to Sterzinger et al. [13].

Dividing these annotations into training, validation, and test sets is chal-
lenging due to three factors: limited sample size, strong variations in the density
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of engravings, and overall mirror conditions. Mirrors with dense engravings are
prioritized for training due to the stronger learning signal they offer. To ensure
fair evaluation, we select three mirrors of different conditions and engraving
densities for testing: one from Wels and two from the KHM Wien. We create
non-overlapping patches of size 512×512 pixels, shuffle, and split them in half to
form the validation and test set of similar underlying distributions. One outlier,
characterized by a different art style (points instead of lines), is excluded, leaving
25 annotated samples for training.

Preprocessing With regards to preprocessing, we employ the depth modality
(which worked best according to [13]) and remove low frequencies. We accomplish
this by subtracting a Gaussian-filtered version of the depth map with values
capped between μ ± 3σ. In addition, employing the Segment Anything Model
(SAM) [4], global segmentation masks are generated to identify the mirror object
within a shot. We use these masks to differentiate between mirror and non-mirror
parts (see Fig. 4; compare red versus green, top-left), for instance, to calculate
per-channel means and standard deviations only on mirror parts which we use
to normalize the input.

Addressing the lack of annotations, a per-patch inference approach is
adopted. For validation and testing, non-overlapping quadratic patches mea-
suring 512 × 512 pixels are extracted. Regarding our training data, we pad four
pixels, since 6720 ≡ 0 (mod 2240), to the original resolution (8, 964×6, 716 pix-
els) to extract 25 overlapping tiles of size 2, 988×2, 240 pixels using a stride of half
the size; tiles, containing no annotation, are discarded. Diversifying the dataset
for each epoch, ten patches per tile are extracted, all resized to dimensions of
256 × 256 pixels to streamline model complexity.

3.2 Simulation of Human Interaction

In order to simulate realistic human interactions, we first look into the statistics
of the annotations included in the dataset; necessary to quantitatively capture
human-stroke width. Next, to refine initial predictions, we describe the process
of filtering and correcting false positives and negatives. Within this, we motivate
and denote the algorithm used to extract line segments. Tying all components
together, we finally describe simulating human interaction: Starting from either
false positives or negatives, we extract the largest error segment and provide a
hint in the form of a line with width taken from the acquired statistics of the
ground truth annotations.

Statistics With the goal of simulating realistic interaction, one crucial compo-
nent to consider is the stroke width. For this, we look into the statistics of the
annotations included in our dataset by extracting individual thickness, using
Algorithm 1: Starting from a binary mask, the ground truth Y∗ in our case,
we obtain distance information via the euclidean distance transform which,
for each pixel, returns the Euclidean distance in pixels to the closest non-mask
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Algorithm 1: Calculating Stroke Widths for Statistics
Data: ground truth Y∗

def get stroke widths(Y∗):
distance map ← euclidean distance transform(Y∗)
gt skelet ← skeletonize(Y∗)
return distance map[gt skelet]

pixel. Next, employing skeletonize [19], we acquire a skeletonized version of
the input (essential the center of lines), used to extract the thickness at each
section.

From this information, we calculate initial μ and σ of the collected line
widths, which we use to remove outliers (long right tail) using the two-sigma
rule, keeping values within two standard deviations, to obtain final μ = 6.19 and
σ = 1.49. Based on this filtered set of stroke widths, we fit a Gamma distribu-
tion G from which we can randomly sample realistic widths. Fig. 3 visualizes the
distribution of stroke widths as well as the fitted distribution G.

Fig. 3. Illustration of the distribution of stroke widths: After removing outliers from
our data, using the two-sigma rule, we fit a Gamma distribution (shape-parameter
a = 49.13, loc= −4.28, scale= 0.21).
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Operations In general, when an expert annotator is entrusted with the task of
refining segmentation masks, one of two operations will be performed: adding
missing parts or erasing superfluous ones. Simulating these operations consists
of multiple steps: (1) finding an area that requires correction (we assume areas
will be selected in decreasing order depending on the magnitude of correction
required), (2) deciding on an operation, and (3) performing the operation. In
essence, however, steps (1) and (2) go hand in hand, i.e., when deciding on an
area based on error, the operation to be performed is already clear.

Let Y = finit(X) ∈ B
H,W be the initial segmentation mask produced by a

baseline network finit based on the depth map X ∈ R
H,W . Given that we gener-

ally work with patches, using this initial mask, we find the segment that requires
the most correction w.r.t. our ground truth Y∗, considering the pFM (formally
introduced in Section 4).

Algorithm 2: False Positive/Negative Detection for Δ−/Δ+

Data: ground truth Y∗, prediction Y, line statistics μ and σ

def get add(Y∗, Y):
gt skelet ← skeletonize(Y∗)
false negatives ← gt skelet ∧ ¬ Y
return false negatives

def get erase(Y∗, Y, μ, σ):
// dilate gt for more lenient detection

expanded gt ← dilate(skeletonize(Y∗), round(μ + 2σ))
pred skelet ← skeletonize(Y)
false positives ← ¬expanded gt ∧ pred skelet
return false positives

Next, for the remaining steps, we propose Algorithms 2 and 3: For (2), we
first employ Algorithm 2 to obtain a binary mask of missing or superfluous
skeletonized segments, i.e., false positives or negatives. Note that in order to
avoid the correction of minor superfluous parts, in get erase, we dilate the
ground truth to a constant of μ + 2σ s.t. only false positives which drastically
diverge from Y∗ will be detected.

After obtaining skeletonized binary masks for false positives and negatives,
for step (3), we obtain, for both, the longest line segment utilizing Algorithm 3.
Within Algorithm 3, we leverage a key property of skeletonizing: In a pixel-
based, skeletonized representation (i.e., one where lines have been reduced to
their medial axis, which is 1-pixel wide), a single continuous line, will have exactly
two neighbors in its 8-neighborhood, except for endpoints and junctions.

Let Δ+ ∈ {0,+1}H,W and Δ− ∈ {0,−1}H,W denote the missing/superfluous
line segment that will be added/erased. Since these operations will be performed
interactively, we summarize with Δ multiple interactions and thus contains val-
ues {−1, 0,+1}. Finally, we combine previous interactions Δ with Δ+ or Δ−
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Algorithm 3: Obtain Edge Segments, Sorted by Length
Data: skeletonized mask S

Let Kedge =

⎡
⎣

1 1 1
1 10 1
1 1 1

⎤
⎦ and Klabel =

⎡
⎣

1 1 1
1 1 1
1 1 1

⎤
⎦ .

def get edges(S):
conv skelet ← convolve(S, kernel=Kedge)
edges ← conv skelet == 12

// 8-connectivity

edge list ← label connectivity(edges, kernel=Klabel)
edge list ← sort(edge list, ord=’desc’)
return edge list

by leaving previously set values of ±1 fixed, only updating 0-valued values. For
simplicity, we introduce YΔ, a quantity which denotes the union between the
initial prediction Y and the human interactions Δ, i.e.:

YΔ
i,j =

⎧
⎪⎨

⎪⎩

1 if Δi,j == +1
0 if Δi,j == −1
Yi,j otherwise.

(1)

Interaction After introducing the three necessary steps for the adding/erasing
operation, we move on to performing realistic human interactions: We continue
from the previously found quantities Δ+ or Δ− for adding missing/erasing
superfluous segments and either pick one of the two at random during train-
ing or the longer segment for maximum correction during inference. Within the
skeletonized segment, we proceed by randomly sampling a sub-segment of up
to eleven pixels (a parameter that we did not vary) and dilating it, based on
the statistics of G, with one of the following: (a) a width sampled from the
distribution, (b) the mean μ, or (c) a width of μ − 2σ.

In Section 4, options (a) and (b) will be evaluated w.r.t. validation perfor-
mance, and option (c) will be used for the final evaluation on whole mirrors
s.t. human interactions are with high probability aligned with Y∗, i.e., reduce
the risk of strokes being too wide.

Finally, using a separate network fiter, trained to refine Y conditioned on Δ
and X, we obtain a refined prediction Y′. With this, we motivate the interactivity
of our method: Starting over, i.e., Y ← Y′, we again find the segment that
requires the most correction and update Δ with newly found Δ+/Δ−. A general
overview of the interactivity is provided by Fig. 4, illustrating inference on a per-
patch level, the initial prediction Y and its refinement over time, based on Δ.
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Fig. 4. An illustration of the overall methodology: In general, segmentation is per-
formed on a per-patch level (512 × 512, resized to 256 × 256; red denotes patches that
are filtered a priori using SAM [4]). In an interactive paradigm, starting from the initial
prediction Y at timestep t0, based on input X, a human provides hints in the form
of Δ (the “union” between Y and Δ is denoted with YΔ), on which a separately
trained network fiter is conditioned on to produce a refined mask at timestep t1.

3.3 Architecture

With regards to our architecture, we employ a UNet [12] with an EfficientNet-
B6 [15] following the proposal by Sterzinger et al. [13] but expand upon the input
to condition the network on the (simulated) human input Δ. For clarification, the
input is now comprised of a 3 × H × W tensor, including the depth map X, the
human input Δ, as well as the initial prediction Y with all three quantities
concatenated. Given that our data resources are limited, we train on a per-
patch-level employing augmentations among which are rotations, flips, and shifts,
optimizing the Dice loss. For the initial prediction Y, we employ the exact same
methodology as proposed by Sterzinger et al. [13].
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4 Evaluation

In this section, we evaluate our design choices: During this process, we report the
Intersection-over-Union (IoU) as well as the pseudo-F-Measure (pFM), a metric
commonly used for evaluating the binarization quality of handwritten docu-
ments. It is thus well-suited for our binarization task, i.e., a task where shifting
the mask by a single pixel will have a significant impact on per-pixel metrics.
Compared to the standard F-Measure, the pFM relies on the pseudo-Recall (p-
Recall) which is calculated based on the skeleton of Y∗ [11]:

pFM(Y′,Y∗) =
2 × p-Recall(Y′,Y∗) × Precision(Y′,Y∗)

p-Recall(Y′,Y∗) + Precision(Y′,Y∗)
(2)

Given that we work within an interactive paradigm, we are required to also
provide a metric that excludes the human input Δ from the evaluation and
hence report the relative pFM improvement over YΔ, i.e.:

pFMΔ(Y′,YΔ,Y∗) =
pFM(Y′,Y∗) − pFM(YΔ,Y∗)

pFM(YΔ,Y∗)
(3)

In addition, based on the fact that during training we introduce random-
ness, i.e., by chance, missing parts can be added (Δ+) or superfluous ones
erased (Δ−), and that sub-segments are sampled and dilated at random, we
evaluate on the test/validation set five times and report the average.

4.1 Training

Our model fiter is trained on an NVIDIA RTX A5000 until convergence, i.e.,
no improvement ≥ 1e − 3 w.r.t. the pFMΔ (see Equation 3) for ten consecutive
epochs, using a batch size of 32 and a learning rate of 3e− 4. As a loss function,
we employ a generalized Dice overlap (Dice loss) that is well suited for highly
unbalanced segmentation masks [14] and optimize it using Adam [3]. Addition-
ally, we incorporate a learning rate scheduler that also monitors the pFMΔ on
our validation set: If there is no improvement for three consecutive training
epochs, the learning rate is halved.

4.2 Ablation Study

In the following, we present our ablation study, focusing on input options, dif-
ferent stroke widths (widths kept fixed and sampled randomly), as well as the
necessity of our two operations (add and erase).

Input Options: Starting with the evaluation of different input options and their
impact on the predictive patch-wise performance of fiter (fixed stroke width, one
interaction; results are denoted in Table 1): As expected, simply iterating over
the initial prediction Y (stemming from network finit) results in no improve-
ment, rendering the human an essential part of the refinement process. More-
over, by means of human guidance, i.e., providing Δ, the network can effectively
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Table 1. Evaluating input options and their effect on the per-patch predictive per-
formance (fixed stroke width, one interaction): Iterating over Y again does not cause
improvement whereas providing Δ yields ca. +6% over YΔ. Note that, although part
of the input, we hide X for clarity.

Input Modality IoU pFM pFMΔ

Init. Prediction [13] - 32.86 49.28 −
Prediction Y 32.72 49.27 −
Interaction Δ 35.83 ± .1 53.60 ± .2 +5.8 ± .23%

Both Y,Δ 36.04 ± .2 53.44 ± .3 +5.5 ± .55%

leverage additional information on missing or superfluous parts, resulting in an
increase of around +6% over YΔ. Finally, when utilizing both Y and Δ, we
attain a comparable improvement over YΔ, with the difference deemed not sta-
tistically significant at a confidence level of 95%. However, the latter results in
faster convergence, the reason for which we proceed with this option.

Stroke Widths: Next, we consider different options for the stroke width during
the simulation of human interaction, namely: (a) keeping the stroke width con-
stant at μ and (b) sampling it from G. Our evaluation reveals that sampling
does not significantly improve performance, with results showing +5.5 ± .55%
improvement for fixed width versus +4.9 ± .35% for sampled one.

Table 2. Evaluating the impact of adding and erasing when refining mirror ANSA-
1700: Employing both operations will result in the highest pFMΔ of ca. +12%, where
adding has a greater impact (ca. +8%) than erasing (ca. +2%); note that results are
reported at the maximum pFMΔ.

Interaction IoU pFM pFMΔ

Only Erasing Δ− 38.25 ± .06 58.92 ± .07 +1.9 ± .12%

Only Adding Δ+ 55.19 ± .13 73.55 ± .11 +8.4 ± .16%

Both Δ 58.41 ± .28 76.56 ± .16 +12.3 ± .17%

Operations: In order to illustrate the necessity of our two operations, namely
adding Δ+ and erasing Δ−, we perform multiple interactions until convergence
and report results at the maximum attained pFMΔ. For this, we inspect an
entire mirror, ANSA-1700: Employing both operations jointly yields the highest
pFMΔ of approximately +12% (redline in Fig. 5). Notably, add has a more
significant impact (ca. +8%) compared to erase (ca. +2%). However, this is very
dependent on the initial prediction, thus only demonstrating that one operation
supplements the other.
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In summary, compared to the initial prediction Y, stemming from finit, pro-
viding human guidance via Δ will yield improvements exceeding YΔ, utilizing
both operations is beneficial, and augmenting stroke widths by random sampling
performs worse than leaving it constant.

Fig. 5. An illustration of pFMΔ, i.e., the relative pFM improvement of our method
over pure manual refinement; n denotes the maximum number of human interactions
within ten runs: With the relative improvement peaking at values between ca. +12%
and +26%, our human-in-the-loop approach immediately overtakes manual labeling,
leading to drastically better annotations earlier.

5 Results

After verifying the effectiveness of our methodology, we pick the three mirrors
from our validation/test set, namely ANSA-1700, ANSA-1701, and Wels-11944,
and evaluate our human-in-the-loop approach on whole mirrors, performing mul-
tiple interactions (limited to 3,000; typically requiring much less). Again, due
to the introduced randomness, we repeat this process ten times and report
the average result, skipping the variation as it is negligible. As described in
Section 4.2, for this, we start greedily by selecting the patch with the lowest pFM,
simulate adding missing/erasing superfluous parts, selecting the operation which
yields a larger improvement, refine the prediction based on the additional human
input, and proceed from there until convergence, i.e., when neither adding nor
erasing by itself increases the metric. We report the results of this in two figures:
Fig. 5, which illustrates the relative pFM improvement over-performed interac-
tions, as well as Fig. 6, which depicts potential reduction in annotation workload
when employing our proposed interactive refinement paradigm.
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Inspecting Fig. 5, we observe for all three mirrors significant relative improve-
ments over the purely manual annotation baseline YΔ when employing our
method, with maximum improvements ranging from +12% to +26% depend-
ing on the mirror under consideration. Based on these results, we conclude
that our human-in-the-loop approach quickly overtakes manual labeling, leading
to drastically better annotations at an earlier stage. Interestingly, towards the
end, relative improvement starts to decrease slightly before convergence (most
notably for ANSA-1701), showcasing that at a point, the network may occasion-
ally undo parts it had previously annotated correctly; human annotations are
not impacted by this.

Fig. 6. An illustration of reduced workload: At convergence, our interactive approach
requires drastically fewer annotated pixels to reach equal performance in pFM, resulting
in a reduction of annotation effort ranging from 56% to 75%.

In Fig. 6, we directly contrast pure manual refinement against our interac-
tive approach. For this, we determine the maximum attained pFM, calculated
using YΔ, which corresponds to the final simulated human interaction. We then
compare the amount of required human input to the human input necessary
to reach equal or higher performance using our proposed method. By doing
this, we are able to report a notion of workload reduction: Depending on the
mirror under inspection, annotation requirements will experience a reduction
ranging from around -56% to -75%, positioning our model well to be employed
for simplifying the task of correcting erroneous segmentation masks.
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6 Limitations and Future Work

While our proposed method shows promising results, it is important to acknowl-
edge its limitations: At the moment human guidance aids refinement only
locally, i.e., modifications happen just in the vicinity of the provided annota-
tion. Moving forward, one could focus on further refining our methodology by
exploring additional techniques to enhance efficiency. For instance, it would be
meaningful to investigate the integration of quickly trainable learning algorithms,
such as Gaussian processes which can immediately be adapted to newly provided
annotation and thus allow for global adjustments, potentially further reducing
the amount of human input required. Additionally, leveraging Gaussian pro-
cesses is accompanied by the option of active learning strategies, which could
allow the identification and annotation of patches where the model is most uncer-
tain with the chance of expediting refinement further.

7 Conclusion

In summary, our research addresses the labor-intensive process of manually trac-
ing intricate figurative illustrations found, for instance, on ancient Etruscan mir-
rors. In an attempt to automate this process, previous work has proposed the
use of photometric-stereo scanning in conjunction with deep neural networks. By
doing so, quantitative performance comparable to expert annotators has been
achieved; however, in some instances, they still lack precision, necessitating cor-
rection through human labor. In response to the remaining resource intensity, we
proposed a human-in-the-loop approach that streamlines the annotation process
by training a deep neural network to interactively refine existing annotations
based on human guidance. For this, we first developed a methodology to mimic
human annotation behavior: We began by analyzing annotation statistics to
capture stroke widths accurately and proceeded by introducing algorithms to
select erroneous patches, identify false positives and negatives, as well as cor-
rect them by erasing superfluous or adding missing parts. Next, we verified our
design choices by conducting an ablation study; its results showed that provid-
ing human guidance will yield improvements exceeding pure manual annotation,
utilizing both operations is beneficial, and augmenting stroke widths by ran-
dom sampling performs worse than leaving it constant. Finally, we evaluated
our method by considering mirrors from our test and validation set. Here, we
achieved equal quality annotations with up to 75% less manual input required.
Moreover, the relative improvement over pure manual labeling reached peak val-
ues of up to 26%, highlighting the efficacy of our approach in reaching drastically
better results earlier.
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Abstract. Endoscopy images pose a distinct set of challenges, such as
specularity, uniformity, and deformation, which can obstruct surgeons’
observations and decision-making processes. These hurdles complicate
feature extraction and may ultimately lead to the failure of a surgical
navigation system. To tackle these obstacles, we introduce a Modified
Maximal Stable Extremal Region (MMSER) detector that specifically
targets fine specular regions. Subsequently, we ingeniously fuse the capa-
bilities of MMSER and saturation region properties to precisely identify
specular regions within endoscopy images. Furthermore, our approach
harnesses the shared properties of covariant features and endoscopic
imaging to detect features in intricate regions, such as low-textured and
deformed areas. Surpassing contemporary methods, our proposed tech-
nique demonstrates remarkable performance when evaluated on the avail-
able CVC-ClinicSpec datasets. Our method has shown improvements in
accuracy, recall, f1-score, and Jaccard index by 0.21%, 25.42%, 7.77% snd
11.77%, respectively, when compared to recent techniques. Owing to its
exceptional ability to accurately pinpoint specular regions and extract
features from complex areas, our approach holds the potential to signif-
icantly advance surgical navigation.

Keywords: Endoscopy Imaging · Specular Region · Saturation
Region · Feature Extraction · Feature Matching

1 Introduction

Endoscopic imaging systems have revolutionized medical procedures, enabling
quicker recovery times and less invasive surgeries compared to traditional meth-
ods. Doctors use their experience to estimate spatial relationships and dis-
tances within the surgical environment [30]. However, the narrow field of view
in endoscopy images often forces surgeons to perform multiple observations to
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gather information about the same area, which increases the risk and duration
of the operation [21]. Additionally, the 2D images lack depth information, mak-
ing it difficult for doctors to accurately determine the movements of surgical
instruments [31]. Therefore, recognizing the 3D structure during the operation
is pivotal for doctors and correct feature matching is essential to achieve this.
However, endoscopy images present difficulties for feature extraction due to the
presence of specular and uniform regions.

Specularity is a constant challenge in endoscopic images, as the angles of the
lighting source and camera are nearly identical, causing valuable information
like vessels and lesions to be concealed. Specular reflections lead to significant
discontinuities, resulting in lost image texture and color information, which hin-
ders the surgeon’s observation and judgment [29]. Several existing studies focus
on specularity detection in endoscopy imaging. Endoscopic image specularity
detection methods can be broadly categorized into those based on different color
spaces [12] and those employing classifiers [1].

Oh et al. [24] defined specular reflection areas as absolute bright areas and rel-
ative bright areas, determined through outlier detection. However, the detected
relative bright areas may include not only specular highlights but also white tis-
sues. Shen et al. [28] transformed endoscopic images into grayscale and detected
specular regions using an empirical grayscale threshold, followed by mask region
expansion through morphological techniques. However, this method is only suit-
able for endoscopic images with uniform brightness. Asif et al. [5] employed the
Intrinsic Image Layer Separation (IILS) technique to identify specular regions,
but this approach misidentifies edges and highly saturated areas as highlights in
highly saturated, high-resolution images. Nie et al. [23] suggested a technique for
detecting specular regions through brightness classification, enhancement, and
thresholding. Although the concept of brightness enhancement is promising, the
technique’s reliance on different fixed thresholds based on image brightness is
not ideal. This approach may fail to detect complex specular regions, such as
larger white tissue regions containing specularity.

Extracting features from endoscopy images can be a daunting task, espe-
cially when the scene contains specularity, deformation, and low texture [4].
Existing feature extraction methods, such as Scale-Invariant Feature Transform
(SIFT) [20], Speeded Up Robust Features (SURF) [8], Oriented Fast and Rotated
BRIEF (ORB) [26] and Harris [34] are typically used in 3D reconstruction but are
unable to compute enough good feature points from endoscopy images. As such,
finding enough good features and correct matching in continuous endoscopy
image frames is a critical aspect of recognizing the 3D structure during surgery.

There are only a few works that attempt to extract features in endoscopy
imaging. Yan et al. [19] proposed using SIFT for feature extraction and improv-
ing the matching process through feature-point pair purification. Although this
technique enhances matching performance, it overlooks the fact that having
enough available features is crucial for improved matching. In a recent study,
Barbed et al. [7] introduced a self-supervised SuperPoint [13] adaptation for the
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endoscopic domain. However, this learning-based technique has computational
complexity, and the adapted model avoids features within specular regions.

Recent advances in specularity removal have yielded promising results.Pan et
al. [25] introduced an accelerated adaptive non-convex robust principal compo-
nent analysis (AANC-RPCA) method that enhances the efficiency and accuracy
of highlight removal through adaptive threshold segmentation and quasi-convex
function approximation. Zhang et al. [35] developed a partial attention net-
work (PatNet) that employs highlight segmentation and image inpainting, sig-
nificantly improving the visual quality of endoscopic images. Another innovative
approach by Joseph et al. [17] presents a parameter-free matrix decomposition
technique that decomposes the original image into a highlight-free pseudo-low-
rank component and a highlight component, effectively removing specular reflec-
tions and boundary artifacts. These methods demonstrate significant progress in
addressing the challenges of specular highlight removal in endoscopic imaging.

Existing techniques primarily focus on detecting specular regions. However,
these methods often suffer from high computational complexity and insufficient
detection in complex situations, such as when large white tissues overlap with
densely specular regions, as shown in Figure 1. It displays white tissue regions
enclosed by red boundaries and specular regions enclosed by blue boundaries
from publicly available datasets CVC-ClinicSpec [27], Kvasir-Seg [16], Hyper-
Kvasir [11], and CVC-ClinicDB [9]. Both these regions exhibit similar proper-
ties, including high intensity and low saturation, which often causes existing
techniques to misidentify them as a single specular region, known as a false
specular region. These false regions are generally larger than the actual specular
regions because they include a combination of specular and white tissue regions.
Saturation detectors can effectively identify these false specular regions, as they
detect regions as specular if they possess high intensity and low saturation.
However, the inadequate detection of false regions by existing methods makes
their removal challenging, subsequently impacting feature detection. Moreover,
covariant detectors can consistently detect affine-invariant frames in deformed
and textureless regions, from which distinctive SIFT descriptors can be extracted
for reliable matching.

Our technical contributions are as follows:

– We introduce MMSER as a method for identifying fine specular regions.
– By integrating the specular regions identified using MMSER with those

detected by the saturation detector, we effectively recognize complex spec-
ular regions and eliminate false regions.

– To tackle the complexity of feature extraction in deformed and low-texture
regions of endoscopy images, we utilize the affine invariance properties of
covariant detectors and the distinctiveness of SIFT descriptors.

– By employing adaptive distance thresholding and outlier rejection, we
enhance the accuracy of matching.

– Our technique has shown improvements compared to recent techniques in
accuracy 0.21%, recall 25.42%, f1-score 7.77%, and jaccard 11.77%.
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Fig. 1. Images with overlapping white tissue and specular regions from available public
datasets.

Fig. 2. Schematic of the proposed technique

2 Proposed Method

Capitalizing on the synergistic combination of MMSER and saturation regions,
our proposed technique offers significant advantages over existing methods, as it
can adeptly handle complex situations such as false, low-texture, and deformed
regions. Furthermore, our affine adaptation of covariant features enables the
detection of features within low-textured and deformed areas. The affine invari-
ance properties of these features also enhance matching accuracy. With the
capacity to extract features from intricate regions and improve matching accu-
racy, our method paves the way for precise 3D dense reconstructions in endoscopy
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imaging, ultimately contributing to significant advancements in surgical naviga-
tion.

In essence, our proposed technique consists of the following steps: First, we
separately detect MMSER and saturation regions. Next, we enhance the satu-
ration region by suppressing false region areas, which typically correspond to
white tissue regions containing specularity. We then merge the MMSER and
the enhanced saturation regions to obtain our final detected specular region.
Subsequently, we remove the detected specular region using existing techniques.
Afterward, we extract covariant feature frames and SIFT descriptors with affine
adaptation and match features between two images. Although there are some
mismatched features, we employ adaptive distance thresholding to eliminate
them. However, some mismatches may persist, so we use RANSAC to obtain
accurate matches between features. The flowchart of our proposed technique is
illustrated in Figure 2.

We can define the intensity function I using red (r), green (g) and blue (b)
component of an image as follows:

I =
1
3
(r + g + b). (1)

2.1 Modified Maximally Stable Extremal Regions Detection

The MSER algorithm [22] identifies extremal regions (maximum or minimum
intensity) as connected components within the level sets of an image. Among
these extremal regions, locally maximally stable ones are chosen. The absence of
smoothing enables the detection of both fine and large structures. While MSER’s
properties are valuable for extracting extremal regions and varying region sizes,
our goal is to detect only maximum intensity and fine structures. Consequently,
we modify the MSER detector’s properties to suit our specific requirements for
capturing higher intensity and fine regions in endoscopy images. The steps of
our proposed MMSER detection method can be outlined as follows.

– We assume I(x, y) represent the intensity of an image at pixel location (x, y).
– We define an extremal region MR as a connected component of an image I,

such that ∀(x, y) ∈ MR and ∀(x′, y′) ∈ ∂MR (the boundary of MR ):

I(x, y) ≥ I(x′, y′) + t, (2)

where, t is intensity threshold.
– We compute the area of the extremal region MR for a range of intensity

thresholds t ∈ [0, 255]. Let A(t) denote the area of R at threshold t.
– Calculate the stability score S(MR ) for each extremal region MR as the

absolute difference in areas over a range of intensity thresholds �t:

S(MR ) = A(t + �t) − A(t), (3)

where �t is the sensitivity of stability.
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– We consider an extremal region MR is maximally stable MRS if its stability
score S(MR ) is locally minimal compared to its neighboring regions in the
intensity range, and its area A(t) is smaller than a predefined maximum area
Amax. Mathematically, this can be expressed as:

MRS =

{
MR if S(R) < S(R′) and A(t) < Amax

0 otherwise
(4)

where R’ is a set of neighbouring regions.

2.2 Intensity-Saturation Regions Detection

Previously, in [32], the author established a correlation between intensity and
saturation. In this study, specular regions in images were detected using the bi-
directional histogram concept. The approach was based on the observation that
specular areas exhibit higher brightness and lower saturation than surround-
ing regions. Although this technique was effective in detecting specular regions,
it had limitations. For instance, it often incorrectly identified the white tis-
sue region as specular because of its high intensity and low saturation, and it
could not detect small regions. In this study, we leverage the intensity-saturation
technique to detect the presence of white tissue in endoscopy images. Once we
identify the white tissue region, we apply morphological operations to suppress
it, resulting in an enhanced saturation region.The enhanced intensity-saturation
regions ISen are calculated as follows:

– We denote SSS as the saturation of an image, which can be expressed as:

S =

{
1
2 (2r − g − b) = 3

2 (r − m) , if (b + r) ≥ 2g
1
2 (r + g − 2b) = 3

2 (m − b) , if (b + r) < 2g
(5)

– To identify the specular region IS in the image, we consider each pixel p and
check if it satisfies the following conditions:

ISISIS =

{
Ip ≥ 1

2Imax

Sp ≤ 1
3Smax

(6)

– We compute the connected component c in IS.
– We compute the area AS(i) for each connected component.
– Next, we compute the enhanced intensity-saturation regions ISen as follows:

ISen =

{
Im , if AS(i) ≤ th ∀c
0 otherwise

(7)

where th is an adaptive threshold that depends on the size of the image. For
the CVC-ClinicSpec dataset, we evaluated with various threshold values and
determined that the appropriate threshold value is 20.
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2.3 Integration of Detected Regions

We combine the modified maximally stable extremal regions MRS with the
enhanced intensity-saturation regions ISen to obtain the final specular regions
SR.

SR = MRS + ISen. (8)

Figure 2 top row appropriately illustrates the steps of our proposed technique
for detecting specular regions, showcasing the effectiveness of our approach in
complex situations. To highlight the need for our method, we carefully selected
an image including false regions from the CVC-ClinicSpec dataset. Our pro-
cess begins by converting the colored image to a grayscale image, followed by
computing the MMSER (MRS) containing relatively fine specular regions. Sub-
sequently, we compute the intensity-saturation region IS, which encompasses
relatively larger regions, including the crucial false regions (if present in the
image). We refine the false regions based on their existence to obtain the
enhanced intensity-saturation region ISen. Finally, we integrate the MRS with
the ISen to obtain the final specular region SR with remarkable precision and
accuracy.

2.4 Specular Region Suppress

We use the technique [10] to remove specularity and achieve a clean image with-
out specularity after detecting the specular region SSSR in the previous step.

IRefine = I ⊗ SR, (9)

where the operator ⊗ represents the specular removal operation implemented in
[10].

2.5 Affine-Invariant Feature Detection

In the previous step, we obtained the specular-removed image IRefine, which we
use to extract affine-invariant features. Using a covariant detector [33], we detect
feature frames F that are defined by an affine matrix comprising a translation
vector tr and a linear map L. These feature frames define elliptical regions
in the image. Next, we extract description vectors dv from these regions. An
affine-invariant feature is associated with a matrix F and a vector dv.

F =
∣∣L tr

∣∣ =
∣∣∣∣l11 l12 tr1
l21 l22 tr2

∣∣∣∣ (10)

where the translation vector tr represents the location of an image, while the
linear map L represents the shape and orientation of the local features.

Following this, we extract a descriptor vector of dimension 128−D from the
detected region using the SIFT method. This descriptor will be used to calculate
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Algorithm 1. Detection of specular highlights, extraction of affine-invariant
features, and improvement of matching accuracy in endoscopy image pairs.
Require: Endoscopy image pair.
1: for each image do
2: Compute the modified MSE regions MRS .
3: Compute the saturation regions IS.
4: Compute the enhanced saturation regions ISen.
5: Integrate MRS and ISen to get SR.
6: Compute Irefine using Arnold’s method [30] to suppress specularity.
7: Extract the Affine-invariant features from Irefine by computing:
8: (i) Feature frame F
9: (ii) Feature descriptor dv

10: end for
11: Compute the initial match between the image pair using the descriptors dv and

the Brute-Force technique [15].
12: Apply adaptive distance thresholding to improve the initial match.
13: Remove outliers using graph-cut RANSAC [6].

the matching confidence between two features by computing the distance ratio
en.

en =
dn,closest
dn,closest2

=
‖ dv,n − dv,mclosest

‖
‖ dv,n − dv,mclosest2 ‖ (11)

In comparing features between two images, dv,n and dv,m denote the feature
descriptors, while dn,closest is the descriptor distance between a particular feature
and its nearest neighbor in the other image, and dn,closest2 is the distance to the
second-nearest neighbor. A smaller value of en indicates a greater similarity
between the two features, increasing the likelihood that the correspondence is
an inlier.

2.6 Feature Matching

Once the Affine-invariant features are computed, we can perform matching
between corresponding images by comparing descriptors vector dddv, using the
Brute-force (BF) method [15].

Next, we will use the distance ratio en between the two best matching descrip-
tors and only accept matches below an adaptive threshold then. After extensive
evaluation of various endoscopy datasets, we determined the optimal threshold
value to be 0.91.

Finally, we perform geometric verification on the previous matching results.
The geometric verification technique Graph-Cut RANSAC [6] improves the
matching from the previous step by removing outliers and mismatches that do
not satisfy the geometric constraint.
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3 Computational Procedures

Algorithm 1 outlines the complete steps of our proposed method for specular detec-
tion, affine-invariant feature extraction, and matching accuracy improvement.

4 Experimental Results and Analysis

4.1 Implementation and Data

Our study involves evaluating the effectiveness of the proposed technique in
detecting specular regions and extracting affine-invariant features in endoscopy
imaging. To accomplish this, we compare our approach to state-of-the-art specu-
lar detection and feature extraction techniques. The experiments are conducted
on a Windows 10 x64 system, utilizing OpenCV 4.0 for image processing. The
hardware consists of an Intel i5-9400K with a 2.90 GHzX2 processor and 16 GB
of RAM. Implementation of the algorithm is carried out using both Matlab 2022
and Python 3.8. Our evaluation is conducted on the publicly available CVC-
ClinicSpec dataset, which contains colonoscopy images with annotated specular
ground truth labels. To measure the effectiveness of our proposed approach, we
use gold standard metrics such as Accuracy, Precision, Recall, F1-score, and
Jaccard. We also evaluated the performance of affine-invariant feature extrac-
tion and matching in challenging conditions using the Hyper-Kvasir dataset.
Specifically, we used the labeled videos in “lower-gi-tract/quality-of-mucosal-
view/BBPS-2-3” from the dataset. We extracted and matched features across
pairs of frames taken 1 second apart from each other within the sequences of
the Hyper-Kvasir dataset (where 1 second 2̄5 frames). To evaluate the result, we
used 10% of the frames from the videos. Our assessment of the detection algo-
rithm’s ability to segment the specular region involves the use of five metrics:
Accuracy, Precision, Recall, F1-score, and Jaccard.

Our main contribution in this research is the detection of specular regions and
the extraction of covariant features. Specifically, we focus on extracting covari-
ant features, as specular regions often mislead feature extraction processes, com-
plicating surgical navigation. We utilize an existing technique to suppress the
detected specular regions, with the source code publicly available. In the follow-
ing sections, we will evaluate our detection and feature extraction performance
both qualitatively and quantitatively.

4.2 Visual Evaluation

In this part we will visually asses the specular region detection, covariant feature
extraction and matching ability in challenging endoscopy imaging condition.

Specular Region Detection and Suppression Figure 3 presents a compar-
ison between recent state-of-the-art techniques and our proposed method for
detecting specular regions. The input image and ground truth from the CVC-
ClinicSpec dataset are shown. Specifically, Arnold’s method [3] fails to detect
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Fig. 3. Comparison between different detection methods

Fig. 4. Specularity removal using detected region from different techniques

fine specular regions and misidentifies the false region as a specular region. Li’s
method [18] is better at detecting fine specular regions, but also misclassifies
the false region. Nie’s method [23] can detect fine regions and specular regions
on white tissue, but produces false edges that may affect the specular suppres-
sion process. In contrast, our proposed technique effectively detects fine specular
regions and also accurately extracts specular regions from white tissue.
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Fig. 5. Comparison between feature detectors

To suppress specular regions, we utilized Arnold’s technique [3]. Figure 4
depicts the results of specular suppression using the detected specular region
mask discussed in Figure 4. The results indicate that using Arnold’s technique
and regions detected by Li’s method [18] do not effectively suppress the specu-
lar regions, and additionally introduce artifacts around the white tissue region.
On the other hand, Nie’s detected regions [23] perform better in removing the
specular region compared to Arnold’s and Li’s methods, but still contain some
specular regions and artifacts near the white tissue region. In contrast, our pro-
posed detected region performs exceptionally well in suppressing the specular
regions, with ignorable artifacts on the white tissue region.

Feature Detection and Matching The effectiveness of covariant detectors
compared to commonly used detectors in endoscopy imaging is demonstrated in
Figure 5. In Figure 5 top row, where the image contains specular regions, we
observe that Harris, ORB, SIFT, and SURF detectors mostly detect features
in specular highlight and corner-like areas, while avoiding low-texture areas. In
contrast, covariant detector [33] detects affine-invariant frames throughout all the
regions. Furthermore, in the filtered image in Figure 5 bottom row, we see a
significant reduction in the number of features detected by Harris, ORB, SIFT,
and SURF detectors, due to the absence of specular regions, while covariant
detector detects a similar number of features throughout all the regions.
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Fig. 6. Steps for improving matching accuracy

Fig. 7. Pair of 1-second-apart frames were used from the Hyper-Kvasir dataset to
extract affine-invariant features and matches of inliers.

The matching process of affine-invariant features is illustrated in Figure 6.
The filtered image sequence is represented in Figure 6(a). The initial matching
results with numerous mismatches are depicted in Figure 6(b). By applying adap-
tive distance thresholding, the number of mismatches is significantly reduced,
as shown in Figure 6(c). However, some mismatches still exist. Finally, Figure
6(d) demonstrates that there are no mismatches after applying the graph-cut
RANSAC geometric verification technique.

Our evaluation uses the Hyper-Kvasir dataset with specularity, which allows
us to compare our results with those in [7]. As shown in Figure 7, the detected
affine-invariant features from the Hyper-Kvasir dataset are not confined to spe-
cific areas such as corners or specular regions but are also present in low-texture
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areas. Additionally, the figure demonstrates the feature matching between two
pairs of frames taken 1 second apart from the dataset.

4.3 Quantitative Evaluation

Table 1 presents a quantitative comparison of different techniques for detecting
specular regions on the CVC-ClinicSpec dataset. The bold values indicate the
best detection performance. Our proposed method outperforms the other meth-
ods in terms of Accuracy, Recall, F1-score, and Jaccard. Specifically, compared to
the best-performing method Nie [23], our method achieves higher Accuracy, F1-
score, and Jaccard by 0.21, 7.77, and 11.77 percent respectively. Additionally,
our Recall value is 1.97 percent higher than that of Meslouhi [14].

These improvements are primarily due to our innovative combination of
MMSER with saturation region properties, which enhances the detection and
management of specular regions in endoscopy images. This dual approach allows
for more precise identification of true positives, especially in low-textured and
deformed areas, leading to significantly higher recall and better alignment with
the ground truth, as reflected in the Jaccard Index. Although our precision
(0.8516) is slightly lower than that of Nie et al., the substantial gains in recall
and the balanced F1-Score underscore the robustness and effectiveness of our
method in accurately detecting and managing specular regions, which is crucial
in medical imaging for ensuring comprehensive and reliable feature extraction.

Table 1. Quantitative comparison between state-of-art techniques

Methods Accuracy Precision Recall F1-Score Jaccard

Arnold et al. [3] 0.9837 0.8938 0.6739 0.7684 0.6589

Meslouhi et al. [14] 0.9920 0.3744 0.8961 0.5281 0.6616

Alsaleh et al. [2] 0.9699 0.6016 0.8020 0.6875 0.6016

Shen et al. [28] 0.9767 0.9064 0.6683 0.7694 0.6518

Asif et al. [5] 0.9584 0.6972 0.7151 0.6489 0.6333

Nie et al. [23] 0.9932 0.9083 0.7286 0.8085 0.7153

Proposed 0.9953 0.8516 0.9138 0.8713 0.7995

Table 2 provides a quantitative comparison between commonly used detectors
and the covariant detector, demonstrating the efficacy of the latter in extract-
ing features from complex, low-texture, and deformed regions, particularly in
endoscopy imaging. As shown in the table, the covariant detector is capable of
extracting a very large number of features, 4907 and 4847 in the specular and
filtered image, respectively, outperforming ORB, SIFT, Harris, and SURF. Fur-
thermore, the table shows that our method achieves a greater number of inliers,
1274, compared to ORB, SIFT, Harris, and SURF after applying distance thresh-
olding and Graph-cut RANSAC on initial Brute-Force matching to the extracted
affine-invariant features.
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The performance of various state-of-the-art techniques is presented in Table
3 using the Hyper-Kvasir dataset. The proposed technique outperforms other
techniques in terms of feature extraction and inlier matching and is not limited
to specific areas such as corners or specular regions. The table shows that the pro-
posed technique achieves superior quantitative results compared to other tech-
niques.

Table 2. Quantitative comparison between
feature detectors

Methods Specular image Filtered image

Features Inliers Features Inliers

Harris [34] 59 2 19 1

ORB [26] 447 29 80 6

SIFT [20] 140 22 101 17

SURF[8] 40 14 23 12

Affine-Invariant 4907 1344 4847 1274

Table 3. Matching quality metrics
for state-of-the-art techniques using
the Hyper-Kvasir dataset [4].

Methods Feat/Img F Inl.

SIFT [20] 825.7 151.3

ORB [26] 361.3 137.2

SP Base [13] 211.8 51.3

E-SP [7] 591.3 200.4

Affine-Invarinat 1125.7 281.3

5 Conclusions and Future Work

Our study proposes a novel specular detection technique that leverages the
affine invariance properties of covariant detectors to overcome challenges in
complex endoscopy imaging scenarios. Our approach enhances the character-
istics of the Maximal Stable Extremal Region (MSER) to detect fine specular
regions, followed by the computation of saturation regions. By merging the Mod-
ified MSER (MMSER) and saturation regions, our method accurately pinpoints
areas of specular reflection. Using an existing method for suppression of specular
regions, we refine the image and compute affine-invariant features, resulting in
the extraction of a significant number of high-quality features. Our technique
excels at detecting intricate specular regions and extracting features from uni-
form and deformed areas in endoscopy images. This state-of-the-art approach
has the potential to enhance surgical navigation precision significantly.

Our detection technique is evaluated on the CVC-ClinicSpec. Visual eval-
uation reveals that our approach can successfully extract specular regions in
complex conditions where other state-of-the-art techniques fail. Furthermore, in
terms of Accuracy, Recall, F-1 Score, and Jaccard, our technique outperforms
other existing methods in quantitative evaluation. Our evaluation also shows
that recent techniques fail to detect the false regions, leading to artifacts during
specular region suppression, unlike our technique.

Our approach to specular detection can significantly impact surgical naviga-
tion by enhancing the clarity and reliability of endoscopic images through any
efficient removal process. Specular reflections in these images can obscure crit-
ical anatomical details, leading to potential misinterpretations during surgical
procedures. By accurately detecting and suppressing these specular regions, the
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proposed technique ensures that important features are preserved and accurately
extracted. This improved image quality facilitates better spatial understanding
and decision-making for surgeons, thereby increasing the safety and efficacy of
minimally invasive surgeries. Enhanced feature extraction and matching also
contribute to more precise 3D reconstructions, further aiding in navigation and
reducing the risk of complications.

The most robust aspect of the method is its combination of MMSER with
saturation region properties to accurately detect and manage specular regions
in endoscopy images. This technique significantly enhances the detection and
extraction of features from low-textured and deformed areas, demonstrating
notable improvements in metrics such as accuracy, recall, F1-score, and Jac-
card index compared to existing methods. Conversely, the least effective aspect
is the specular removal method used, which does not perform optimally. In the
future, we plan to develop our own specular removal technique.
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Abstract. Surgical scene segmentation is an important task in the auto-
mated analysis of surgical videos and medical images. Traditional tech-
niques for this task suffer from severe data scarcity characteristic of
the medical domain. To address this challenge, contemporary research
utilizes pre-trained models, which are finetuned using available data.
Nonetheless, this approach involves repeated training of models with
millions of parameters whenever new data becomes available. A recent
foundational model called Segment Anything (SAM) has demonstrated
impressive generalization capability in natural images, offering a poten-
tial resolution to this challenge. However, its applicability to the med-
ical domain is hindered by its compute-intensive training along with
need for task-specific prompts. These prompts can be bounding-boxes
or foreground/background points, mandating expert annotation of every
image. Expert annotation is not feasible as data volume increases. In this
study, we propose LoRASAM - a highly efficient adaptation of SAM that
enables text-guided segmentation of medical images. LoRASAM uses
the labelname for precise image segmentation. To facilitate finetuning of
LoRASAM, we utilize low-rank adaptation, which reduces the number
of training parameters by more than 99% as compared to SAM, while
significantly improving performance (about 70%). Extensive experimen-
tation over three public surgical-scene datasets validates the superiority
of LoRASAM over existing state-of-the-art methodologies. In addition,
we show similar gains for non-surgical modalities such as x-ray and ultra-
sound. Our approach has the potential to enhance the segmentation per-
formance and curtail expert involvement while adapting SAM for niche
applications. Code: https://github.com/JayParanjape/LoRASAM
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1 Introduction

The segmentation of structures and instruments in images is critical to advance
situation-aware surgical systems. In the context of human-guided surgeries, seg-
mentation of anatomical structures holds substantial utility in the development
of computer-assisted systems aimed at augmenting the capabilities of surgeons
[26]. Moreover, robotic surgery is also one domain where semantic segmentation
plays a pivotal role, where it serves as a fundamental component for precise track-
ing of instruments throughout the procedure [29]. Deep learning-based solutions
have emerged as the latest and most prevailing approach for addressing this
challenge. Among these solutions, U-Net [24] and its variants [15,31,34] have
shown commendable performance in segmenting surgical scenes when appropri-
ately trained. However, deep learning methods require retraining a large number
of parameters whenever they need to be used for new datasets. While this is a
common problem occurring in non-medical datasets, foundational models like
Segment Anything (SAM) [16] have been proposed to mitigate it to a certain
extent. Foundational models are large-scale models with billions of parameters
that have been trained on a large amount of data and can generalize well for
their tasks. Other notable examples include the Contrastive Language-Image
Pre-training (CLIP) model [22], which can associate text and images.

SAM addresses the task of prompted segmentation i.e. given an image and
a suitable prompt, it outputs the corresponding masks of interest. However,
using SAM for segmenting surgical images poses two major problems. First,
since SAM is trained on natural images, it has a poor representation of sur-
gical images, resulting in poor performance [8,13]. Second, a good prompt is
required for every image during training as well as testing, which must be pro-
vided by experts. This becomes a tedious task, especially when the dataset size
increases. To address the first challenge, various methods have been proposed to
adapt SAM for specific applications by tuning fewer parameters than the con-
ventional methods [25,29,30]. They are described in detail in the next section.
In this work, we propose low-rank adaptation of SAM (LoRASAM), which per-
forms text-prompted surgical scene segmentation. Thus, it only requires the
name of the label of interest instead of an expert-provided point or bounding
box prompt. Further, while existing adaptation methods require prompts per
image, our approach can process an entire batch of images with the same text
prompt. At the same time, our model freezes the original parameters of SAM,
including the parameter heavy encoder and decoder. Thus, our method is more
efficient than existing methods.

Our approach is inspired by low-rank adaptation used in the natural language
processing literature, which has been shown as an effective method to finetune
large language models [14]. Here, we approximate the tuning required in the
encoder by a combination of two low-rank trainable matrices. Tuning just these
matrices gives us an impressive performance in our experiments. This method of
adaptation allows SAM to be trained on new datasets by reducing the number
of trainable parameters by more than 99%. Furthermore, our approach operates
in the regime of text prompted segmentation, where only the label names are
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required for producing masks of interest, thereby removing the onus on experts.
Thus, the main contributions of this work are as follows:

1. We propose LoRASAM - a technique for text-prompted surgical scene seg-
mentation, which is a more efficient and practical method to adapt SAM
than existing methods. The proposed method utilizes LoRA to adapt encoder
weights, a Text Affine Layer for enabling text prompts and tuning norm lay-
ers for better learning of domain shift, while keeping the weights of SAM’s
encoders and decoder frozen. This makes our method significantly more com-
pact than existing methods.

2. We evaluate our method on three publicly available datasets for surgical scene
segmentation. Extensive experimentation shows that our method is not only
more efficient, but it also outperforms SOTA adaptation methods and con-
ventional segmentation methods.

3. We evaluate our method on two medical (nonsurgical) imaging modalities to
test the generalizability of our approach.

Fig. 1. Comparison of LoRASAM (b) with full finetuning (a). While full finetuning
requires training of all the parameters of a network, our method adds very lightweight
trainable low-rank matrices while keeping the original weights frozen. This is rep-
resented by LoRA layers in the diagram. At the same time, the Text Affine Layer is
responsible for adapting the CLIP embeddings of surgical labels. (c) shows an overview
of LoRA. A and B represent the low-rank matrices that transform the input to an r-
dimensional subspace and back. The output from B is added to the original output,
thereby modeling the required shift.
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2 Related Work

SAM [16] is a recently released foundational model that proposes the task of
promptable segmentation. Given an image and suitable prompts in the form of
points, masks, or boxes, it can produce masks for the objects of interest corre-
sponding to the prompt. SAM has been trained on 11 Million general images
and 1 Billion masks over several GPUs. This makes it a very powerful model for
natural image segmentation. However, the training corpus of SAM does not have
surgical scenes. It is not surprising then, when recent literature showed that it
fails for semantic segmentation in surgical images [8,19,21]. In such cases, models
are often initialized with pretrained weights and then finetuned for the specific
application. However, this is not possible in SAM due to the sheer number of
parameters it has. Hence, many methods have been proposed that efficiently
adapt SAM for medical segmentation. MedSAM Adapter [30] adds multiple
adapter layers to all the blocks of SAM’s encoder and decoder. Then, just these
extra layers are trained while keeping the original SAM’s weights frozen. While
this significantly reduces the number of trainable parameters, its training still
requires four GPUs. AutoSAM [25] replaces the prompt encoder of SAM with
a convolutional layer and just finetunes that while keeping the encoders frozen.
Some works also extend SAM for segmenting 3D medical images by adding
extra trainable layers [5,10]. We refer readers to [17] for an extensive survey
of SAM-based adaptation methods. However, all of the above mentioned meth-
ods are limited to using point or box-based prompts that need to be supplied
by an expert surgeon for every image. Hence, deploying these models would be
tedious and infeasible. In this paper, we do not use point or box-based expert
level prompts. Instead, we explore prompting SAM using text, more specifically,
the label names to segment out the object of interest. Thus, our methods do
not require expert level prompts. We achieve this by adding a trainable module
called TAL, and performing low-rank adaptation of the image encoder along with
norm-layer tuning that can model the domain shift from natural images to sur-
gical images better and more efficiently than the existing methods.

3 Methodology

In this section, we first describe the architecture of SAM, followed by the pro-
posed low-rank modification that helps it train well on surgical data. Finally, we
provide an intuition for why this method works.

3.1 Preliminaries: SAM Architecture

Given an image and set of prompts, SAM outputs masks that segment out the
objects of interest as indicated by the input prompts. The prompts in question
can be in the form of bounding boxes, foreground/background points, masks or
text. This selective conditioning based on prompts is facilitated by having dis-
tinct encoders for the image and the prompt, followed by a decoder layer to fuse
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the encoded embeddings to produce the desired masks. Thus, SAM has three
major components, namely the Image Encoder, the Prompt Encoder, and the
Mask Decoder. The Image Encoder used by SAM uses a Vision Transformer
(ViT) [9] and is pretrained with Mask AutoEncoder (MAE) strategy [11]. The
prompt encoder also uses a ViT architecture and takes the encoded prompts
as input. Foreground/Background point-based prompts are encoded using point
embeddings. Bounding box-based prompts are encoded using the point embed-
dings of the top left and bottom right points of the boxes. Mask prompts are
passed through convolutional layers and the output embeddings are used. On
the other hand, text-based prompts are passed through a pre-trained CLIP [22]
model to get embeddings. Note that the code support for text-based prompt-
ing is not available in SAM’s codebase. Finally, the mask decoder is a lightweight
module that fuses the outputs from the two encoders using a small ViT network.
This is then upsampled to generate the final masks.

The SAM image encoder consists of N blocks, each one comprising of a self-
attention module and a Multi-Layer Perceptron (MLP) layer. The first block
operates on the input image which is divided into patches and fed to the block.
Subsequent blocks act upon the outputs of the preceding block. For an input x
to a block, it is passed through an affine transformation which is described as
follows:

qkv = (Wn
qkv)

Tx + bnqkv, (1)

where, n is used to index the layers of the encoder. W, b denote the weights
and biases of the affine transformation respectively. The output is further split
into three different vectors, namely the key (k), query (q) and value (v). These
are then used for the self-attention mechanism. The result is fed into an MLP,
producing the final output of a block, denoted by on. This is also an affine
transformation with weights WMLP and biases bMLP that can be denoted as
follows:

on = (Wn
MLP )Tx + bnMLP (2)

3.2 Low Rank Adaptation

The weight matrices as described previously are majorly responsible for the mem-
ory consumption of GPUs and hence, naively finetuning all of them is expen-
sive. However, since SAM is already trained extensively on millions of images,
we only need to adapt it for surgical scenes. We argue that tuning the full-rank
weight matrix is not required for this task and that it can be achieved by tun-
ing a separate, lower-ranked weight space and adding its output to the original
weight matrix. More specifically, as shown in Figure 1 (c), consider any weight
matrix W ∈ R

DXK in the image encoder of SAM, which works upon an input
x ∈ R

NXD. Here, N denotes the batch size, D denotes the input embedding size,
and K denotes the output size of W . Then, to adapt it for representing surgical
scenes, we can model the required change as follows:

W ← W + ΔW. (3)
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However, ΔW is still a full rank matrix and hence, expensive to compute. In
LoRA, we estimate ΔW as the multiplication of two trainable low rank matrices
A ∈ R

DXr and B ∈ R
rXK as follows:

W + ΔW ≈ W + λAB, (4)

where the ranks of the matrices A and B are r << min(D,K), respectively, and
λ is a hyperparameter. Now, the original weight matrix W is frozen and only A
and B are learnt. This provides LoRA with a significant reduction in the number
of training parameters (only (r(D+K)) as compared to general finetuning (DK).
The low-rank adaptation is done for all the weight matrices of the image encoder.
This includes the weights in the multi-head attention layers as well as MLP layers
in all the transformer blocks. The prompt encoder and mask decoder remain
unchanged.

While the above modifications can help adapt SAM to the surgical domain,
it would still require precise bounding boxes or points as input since SAM does
not understand medical terminology as is [21]. This is to be expected because
the training data of SAM comprises of natural images and text descriptions. To
mitigate this issue, we learn a Text Affine Layer (TAL) that transforms the text
embeddings from CLIP as follows:

y = BatchNorm(ReLU(WT
TALX + bTAL)). (5)

The input to the TAL is the CLIP embedding X, which undergoes a learn-
able affine transformation to produce y. This is provided to the prompt encoder
of SAM, which is frozen. We also finetune the layernorm layers and positional
embeddings in the original SAM since they are highly biased towards a partic-
ular image size and distribution, similar to AdaptiveSAM [21]. However, Adap-
tiveSAM requires tuning the entire Mask Decoder in order to fuse the outputs
from the two encoders. Instead, we argue that if the image encoder and the
prompt encoder produce good embeddings, the pretrained mask decoder is an
expert at fusing them to produce good masks. Hence, we freeze the entire Mask
Decoder, unlike AdaptiveSAM.

In summary, the proposed modifications to SAM only include tuning the
low-rank matrices in the image encoder as described in Equation 4, the Text
Affine Layer, the positional embeddings, and the layernorm layers in the image
encoder. This brings the total number of trainable parameters of our method to
around 900,000, which is only 0.75% of SAM’s total number of parameters and
37% of AdaptiveSAM’s total number of parameters. The final model architecture
for LoRASAM is illustrated in Figure 1.

3.3 Why should LoRA Work?

We provide intuitive reasoning behind the success of our method for adapting
SAM to segment surgical scene images. SAM has an innate understanding of
objects and boundaries in general, given the huge corpus of its training data.
However, when there is a significant data distribution shift (eg. surgical scene),
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it might not perform as well. Hence, there is a need for finetuning the weights
of the image encoder, the component of SAM responsible for encoding images.
However, most of the components of the weight space are used for detecting
general properties about the image that are not domain-specific and hence, need
not be changed. The only change that is required to adapt to the domain shift is
for that subspace of weights that are used for detecting features specific to the
domain. By modeling the change as a multiplication of two low-rank matrices,
the model learns the most suitable low-ranked subspace and the edits required to
cater to the domain shift, and at the same time, reduces the number of parame-
ters that need tuning. However, the choice of the rank of the learnable matrices
is an important engineering decision and must be made using the validation
dataset.

4 Experiments and Results

We evaluate our method on three widely used surgical scene segmentation
datasets - Endovis 17 [2], Endovis 18 [1], and CholecSeg8k [12]. To showcase
the generalizability of our method to segmentation tasks over other modali-
ties, we also perform experiments on the ChestXDet (x-ray) [18] and abdominal
ultrasound [28] datasets. For evaluation, we use the DICE score (DSC) and
Intersection-over-Union (IoU) metrics as defined in existing literature [21,23] as
follows:

DSC =

{
2∗|Y ∩Ŷ |
|Y |+|Ŷ | , if (|Y | + |Ŷ |) �= 0

1, otherwise.
(6)

4.1 Experimental Setup

In our experiments, we use the ’base’ version of SAM for initializing weights.
During training, we apply augmentations including random rotation (±10◦) with
0.5 probability, random saturation change with a scale of 2 with 0.2 probability
and random brightness change with a scale of 2 with 0.5 probability. We set
λ from Equation 4 to 1. The low rank r used in our experiments is 4. For all
datasets, we use a batch size of 32, a focal loss function, and AdamW optimizer
with a learning rate of 1e-4. All training is performed on a single Nvidia Quatro
RTX 8000 GPU and requires less than 10 GB of memory.

4.2 Datasets

Endovis 17 [2] has eight training videos and ten testing videos from the Da-Vinchi
robot system. We use two videos from the training dataset for validation. Endovis
17 has labels for six robotic instruments, namely Grasping Forceps, Bipolar For-
ceps, Large Needle Driver, Grasping Retractor and Monopolar Curved Scissors.
Endovis 18 [1] comprises of sixteen training and four testing sequences with
labels for different organs and surgical items. We use four sequences from the
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training set for validation. Finally, CholecSeg8k [12] provides labels for twelve
objects including surgical tools, organs and tissues. We use the same train, val,
test splits as [26] for our experiments.

Fig. 2. Qualitative Results of LoRASAM on different surgical datasets. The inputs
represent the image and the associated text which is the label of interest. With these
two inputs, LoRASAM can produce good-quality masks.

4.3 Results on Surgical Datasets

Our approach performs on par if not better than the state-of-the-art methods
on all three datasets while being significantly more efficient. As compared to
AdaptiveSAM, we use 63% lesser parameters while matching its performance
on Endovis 18 and outperforming it on the other two datasets. These results
are tabulated in Table 1 for Endovis 17, Table 2 for Endovis 18, and Table 3 for
CholecSeg8k datasets. A possible reason for the improved performance can be the
fact that AdaptiveSAM only tunes the biases of the network, which might not be
enough to model the shift required in Equation 3. In contrast, our approach does
a better job by modeling this shift as a more complex operation (multiplication of
two matrices). Here, SAM-ZS represents the zero-shot performance of the SAM
model using the same label prompt as used for our method. We see a significant
improvement of around 70% over this baseline.

Furthermore, we outperform state-of-the-art models in medical image seg-
mentation. This includes U-Net [24], TransUNet [6] and Med-T [27] which were
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proposed as effective solutions against the data scarcity regime of the medical
domain. These methods are highly prone to produce noisy masks which is miti-
gated to a good extent by our method. This can be attributed to the highly gen-
eralizable SAM backbone that is good at preserving the “objectness” of output
masks and produces closed masks. Thus, our method combines the strengths of
SAM while addressing its major weakness of requiring expert prompts for every
image by enabling text prompts. Visual results on these datasets are shown in
Figure 2.

Table 1. Results on Endovis17. PF - Prograsp Forceps, BF - Bipolar Forceps, LND -
Large Needle Driver, GR - Grasping Retractor, VS - Vessel Sealer, MCS - Monopolar
Curved Scissors.

Method Object wise DSC

PF BF LND GR VS MCS Avg.

Traditional DL methods

UNet [24] 0.03 0.07 0.28 0.19 0.02 0.08 0.11

TransUNet [6] 0.08 0.10 0.20 0 0.03 0.10 0.08

MedT [27] 0.29 0.21 0.31 0.61 0.36 0.06 0.31

S3Net [3] 0.54 0.75 0.62 0.27 0.36 0.43 0.50

TraSeTR [33] 0.57 0.45 0.56 0.11 0.39 0.31 0.34

Mask2Former [7] 0.20 0.20 0.45 0 0.12 0.01 0.14

SAM based methods

SAM w/ text prompt [16] 0.03 0.04 0.08 0 0.07 0.11 0.06

SAM w/ point prompt [16] 0 0.54 0 0.01 0.83 0.80 0.36

SAM w/ point and text prompt [16] 0.04 0.54 0.06 0.02 0.85 0.83 0.39

MedSAM [20] 0.01 0.54 0 0.01 0.84 0.80 0.36

SAMed [32] 0.33 0.27 0.40 0.73 0.66 0.72 0.52

AutoSAM [25] 0.56 0.54 0.25 0.98 0.83 0.80 0.66

AdaptiveSAM [21] 0.64 0.54 0.71 0.91 0.81 0.82 0.74

(Ours) 0.60 0.63 0.78 0.92 0.80 0.80 0.76

4.4 Ablation Study

We perform an ablation over the value of the rank r of the learnable matrices A
and B. Here, we vary the value of r during training and evaluate the model on
the Endovis 17 dataset. The results are tabulated in Table 4. A higher value of r
would lead to a higher number of learnable parameters, which can improve the
model, but can also lead to overfitting on the training data. This can be seen in
the table, where increasing r from 2 to 4 increases the dice score by 7% but also
increases the number of trainable parameters significantly. However, increasing
the value to 8 does not produce significant improvement, and increasing it to
16 decreases the average dice score. However, if the value is too small, then the
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number of parameters is lower, leading to the model underfitting on the data,
which can be seen for r = 2. Thus, there is a trade-off between the performance
of the model and the memory consumption, making the choice of r an impor-
tant engineering decision. We additionally plot the training curves for the cases
of r = 2, 4, 8 in Figure 3. Here, for r = 2, the validation performance is signif-
icantly lower than the other two cases, indicating underfitting. For r = 8, even
though the number of parameters is higher, the performance does not increase
significantly over r = 4. Thus, we choose r = 4 for our experiments since it has
a high performance with lesser trainable parameters.

We also conduct an ablation study over the role of each of the added modifi-
cations in LoRASAM in Table 5 on CholecSeg8k. In the first row, we start with
zero-shot performance of SAM. Next, we only tune the positional embeddings,
which does not improve performance. In the next row, we tune the layernorm lay-
ers and see a significant improvement in performance. Then, we add TAL which
improves the model performance further and allows processing text queries.
Finally, we add the LoRA layers, which give a boost to the model performance.
Thus, each component in LoRASAM is necessary for improving model perfor-
mance over SAM.

Fig. 3. Training and validation progress for different values of r. r = 4 provides a similar
performance to r = 8 with fewer parameters.

4.5 Comparison for Number of Trainable Parameters

A visual representation of the number of trainable parameters can be found
in Figure 4. Note that foundation models like SAM and MedSAM, as well as
certain traditional methods like UNet++ need to train parameters on the order
of 108. However, some recent methods like MedT and SAM adaptation methods
require a significantly lesser number of trainable parameters. However, these are
still around 6 million in number. Our method significantly reduces the number of
trainable parameters to around 0.8 million, making it much more efficient than
other methods.
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4.6 Results on Non-Surgical Datasets

To evaluate the generalizability of our method on modalities other than surgical
scene images, we evaluate our method on two nonsurgical datasets - ChestXDet
[18] and Abdominal UltraSound [28]. ChestXDet has chest X-ray images and
annotations for thirteen classes denoting abnormalities while Abdominal Ultra-
sound has labels for eight classes denoting different organs. The training data in
this dataset consists of synthetic data only while the testing dataset has both
real and synthetic ultrasounds. Table 6 shows the results on ChestXdet while
Table 7 shows results on the Abdominal Ultrasound dataset. Our approach per-
forms better than existing SOTA methods as well as the zero-shot implementa-
tion of SAM. Other medical segmentation methods like UNet, TransUNet and
MedT perform poorly on these modalities owing to increased domain shift. How-
ever, our approach makes use of the generalization capability of a foundational
model like SAM to perform well.

Table 2. Results on Endovis 18. BgT - Background Tissue, RI - Robotic Instrument,
KP - Kidney Parenchyma, CK - Covered Kidney, SN - Suturing Needle, Su. I - Suction
Instrument, SI - Small Intestine, UP - Ultrasound Probe, DSC - Dice Score

Method Object wise DSC

BgT RI KP CK SI Thread SN Clamps Su. I UP Avg.

Traditional DL methods

LinkNet34[4] 0.77 0.87 0.23 0.23 0.23 0.74 0.74 0.33 0.33 0.33 0.59

LinkNet50[4] 0.76 0.87 0.21 0.21 0.21 0.73 0.73 0.37 0.37 0.37 0.59

UNet [24] 0.64 0.74 0.34 0.16 0.9 0.01 0.91 0.72 0.36 0.04 0.48

TransUNet [6] 0.73 0.70 0.49 0.33 0.63 0.01 0.04 1 0.66 0.62 0.52

MedT [27] 0.56 0.66 0.26 0.44 0.78 0.82 0.90 0.96 0.62 0.84 0.68

SAM based methods

SAM w/ text prompt [16] 0.41 0.17 0.25 0.08 0 0 0 0 0.05 0.01 0.10

SAM w/ point prompt [16] 0.02 0.13 0.05 0.51 1 0.89 0.91 0.93 1 0.85 0.63

SAM w/ point and text prompt [16] 0.42 0.16 0.25 0.48 0.95 0.86 0.90 0.94 1 0.81 0.67

MedSAM [20] 0 0.12 0.05 0.51 0.77 0.90 0.91 0.93 1 0.85 0.61

SAMed [32] 0.52 0.47 0.02 0.48 0.74 0.86 0.89 0.90 0.99 0.81 0.67

AutoSAM [25] 0.57 0.57 0.05 0.50 0.77 0.87 0.89 0.91 0.98 0.83 0.69

AdaptiveSAM [21] 0.66 0.68 0.31 0.33 0.57 0.88 0.91 0.82 0.86 0.85 0.69

(Ours) 0.67 0.69 0.17 0.39 0.52 0.88 0.91 0.88 0.95 0.84 0.69



198 J. N. Paranjape et al.

Table 3. Results on Choec8k. GB - Gall Bladder, AW - Abdominal Wall, GT - Gas-
trointestinal Tract, CD - Cystic Duct, LHEC - L Hook Electrocautery, HV - Hepatic
Vein, CT - Connective Tissue, LL - Liver Ligament, DSC - Dice Score.

Method Object wise DSC

Fat Liver GB AW GT Grasper LHEC Blood HV CT LL CD Avg.

Traditional DL methods

U-Net[24] 0.87 0.52 0.40 0.73 0.26 0.51 0.53 0.08 0.08 0.06 0.10 0.08 0.48

U-Net++[34] 0.91 0.75 0.63 0.83 0.11 0.61 0.60 0.14 0.16 0.15 0.14 0.17 0.61

TransUNet [6] 0.83 0.43 0.77 0.35 0.43 0.70 0.55 0.61 0.82 0.57 0.72 0.64 0.62

MedT [27] 0.81 0.39 0.56 0.34 0.25 0.48 0.71 1 0.70 0.69 0 0.89 0.57

SAM based methods

SAM w/ text prompt [16] 0.05 0 0.02 0 0 0.01 0.04 0.01 0.14 0.01 0.14 0.01 0.04

SAM w/ point prompt [16] 0.17 0.23 0.07 0.30 0.10 0.22 0.63 1 0.69 0.43 1 1 0.49

SAM w/ point and text prompt [16] 0.19 0.20 0.07 0.28 0.10 0.26 0.65 0.99 0.70 0.45 1 1 0.49

MedSAM [20] 0 0 0.02 0 0.08 0.15 0.46 1 0.69 0.39 1 1 0.40

SAMed [32] 0 0 0.02 0 0.09 0.16 0.46 1 0.71 0.38 1 1 0.40

AutoSAM [25] 0.92 0.82 0.02 0.86 0.08 0.15 0.46 1 0.68 0.38 1 1 0.61

AdaptiveSAM 0.85 0.71 0.37 0.80 0.10 0.20 0.70 1 0.70 0.38 1 1 0.64

(Ours) 0.87 0.72 0.45 0.76 0.42 0.20 0.48 0.97 0.70 0.70 0.6 0.97 0.65

Table 4. Ablation Study over r on Endovis 17 Dataset. r = 4 has high performance
and a lower number of trainable parameters. Thus, we use it for all our experiments.

Low Rank Parameter r Number of Parameters Average DSC

2 672000 0.69

4 974080 0.76

8 1578240 0.77

16 2786560 0.74

Table 5. Ablation Study over the role of various components in model performance
on CholecSeg8k

Tuning Pos. Embeds Tuning LayerNorm TAL LoRA Trainable Parameters Average DSC

- 0.04

✓ 196608 0.04

✓ ✓ 238080 0.50

✓ ✓ ✓ 369920 0.52

✓ ✓ ✓ 842240 0.59

✓ ✓ ✓ ✓ 974080 0.65

Table 6. Results on the ChestXDet dataset. SAM-ZS denotes zero-shot performance
of the original SAM on the dataset. Ef - Effusion, No - Nodule, Cm - Cardiomegaly,
Fb - Fibrosis, Co - Consolidation, Em - Emphysema, Ma - Mass, Ca - Calcification, Pt
- Pleural Thickening, Pn - Pneumothorax, Fr - Fracture, At - Atelectasis, Dn - Diffuse
Node

Method Object wise DSC

Ef No Cm Fb Co Em Ma Ca Pt Pn Fr At Dn Avg.

SAM-ZS 0.05 0.13 0.53 0.36 0.15 0.28 0.23 0.10 0.37 0.07 0.40 0 0.26 0.22

UNet 0.15 0.08 0.06 0 0.13 0.02 0.95 0 0.08 0 0.50 0.02 0.02 0.15

TransUNet 0.06 0.87 0.06 0.59 0.13 0.01 0.89 0 0.74 0 0.08 0 0 0.26

MedT 0.06 0.75 0.08 0.01 0.10 0.03 0.12 0 0.91 0 0 0.37 0.07 0.19

AdaptiveSAM 0.52 0.88 0.86 0.86 0.43 0.93 0.95 0.91 0.84 0.93 0.86 0.94 0.93 0.83

(Ours) 0.50 0.89 0.90 0.83 0.42 0.93 0.96 0.91 0.84 0.93 0.86 0.94 0.95 0.84
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Fig. 4. Comparison of our method with others based on the number of trainable param-
eters.

Table 7. Results on the Ultrasound dataset. SAM-ZS denotes the zero-shot perfor-
mance of the original SAM on the dataset

Method Objectwise DSC

Liver Kidney Pancreas Vessels Adrenals Gall Bladder Bones Spleen Avg.

SAM-ZS 0.17 0.20 0.72 0.21 0.44 0.65 0.67 0.63 0.46

UNet 0.28 0.37 0.11 0.16 0.85 0.08 0.17 0.14 0.27

TransUNet 0.18 0.09 0.03 0.03 0 0.11 0.05 0.02 0.08

MedT 0.18 0.03 0.27 0.10 0.85 0.15 0.02 0.08 0.21

AdaptiveSAM 0.36 0.30 0.50 0.40 0.86/0.86 0.63 0.67 0.54 0.53

(Ours) 0.43 0.35 0.45 0.61 0.90 0.59 0.67 0.67 0.58

5 Conclusion

In this paper, we propose LoRASAM - a highly efficient and well-performing
adaptation of SAM for text-prompted surgical scene segmentation. LoRASAM
employs a technique called low-rank adaptation that allows it to adapt the image
encoder of SAM while freezing a high majority of its original parameters. We
conduct experiments over three widely used surgical segmentation datasets and
show the effectiveness of our approach over existing state-of-the-art adapta-
tion and segmentation methods. Finally, we evaluate the generalized nature of
LoRASAM for non-surgical modalities.
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Abstract. Protein binding site prediction is crucial for drug design,
but it is challenging due to the small size of the pockets and the complex
interactions of the amino acids involved. Many existing methods use a
3D voxel U-Net to extract single-scale samples. However, this approach
may overlook the structured or chemical information of the protein and
fail to consider the impact of nearby atoms in the pocket. To tackle
these issues, we propose a new protein binding site prediction model
(DRIVPocket) based on dual-stream rotational invariance and voxel fea-
ture fusion. Specifically, DRIVPocket uses a dual-stream framework con-
sisting of a 3D voxel network and an atomic point cloud network to pre-
dict the basic pockets and binding atoms, respectively. In addition, we
present a novel feature extraction backbone based on dual rotational
invariance attention (DRIA), which combines the advantages of shared
dual attention information and the point cloud rotational invariance fea-
tures. This module can extract the detailed spatial and hidden chemical
information of the sample. Finally, we achieve a more robust predicted
site by integrating the predictions of the above two networks through a
semantic fusion module. Extensive experimental results obtained on four
benchmarks demonstrate the merits and superiority of DRIVPocket over
the existing state-of-the-art approaches. Our code has been released at
https://github.com/lv5misaki/DRIVPocket.

Keywords: Binding site Detection · Drug Design · Deep Learning

1 Introduction

The prediction of protein binding sites based on the 3D structure is one of the
critical steps in drug design [2,21]. However, the prediction task is challenging
because of the small size of the binding sites and the large variation in size
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between different proteins. As shown in Fig. 1, the binding site (also known
as the pocket or cavity) is a hole or tunnel on the surface of the protein. The
properties and function of the pocket can be influenced by the surrounding amino
acids, leading to variations in the shape of the pocket between different proteins
and increasing the difficulty of the prediction task.

(a)

(b)

Fig. 1. Sub-figure (a) shows the difference in the size of binding sites in different
proteins. Compared to the proteins, the size of the binding sites is significantly smaller
than that of the proteins. Sub-figure (b) shows the different shapes of the different
pockets, which challenges the accurate prediction of binding sites. The rod objects
represent ligands, and the transparent bodies illustrate the cavity they occupy.

Many methods for this challenging task have been explored in the recent
past. At first, the traditional methods require multiple matches or a massive
collection of templates to generate predictions. The former appears mainly
in some geometric-based [11,15] and energy-based methods [26,35], while the
latter appears in template-based methods [3,34]. As deep learning progresses,
more and more deep-neural-network-based approaches have been studied for
binding site detection. Pointsite [36] provides a fine-grained representation of
the pocket at the atomic level, ensuring that appropriate binding site predic-
tions are obtained through point sampling of protein atoms. DeepPocket [1]
reconstructs the target pocket from voxel information derived from the candi-
date protein based on a 3D U-network. On this basis, GLPocket [17] uses the
attention structure of the transformer [31] to select the local regions of high
response from the global representations.
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Although existing methods have made significant progress in predicting bind-
ing sites, they still have shortcomings that need to be improved. The voxel-based
methods, which are similar to segmentation models, tend to extract global fea-
tures of proteins and use them to predict the entire pocket region. However,
the predicted results lack generalizability because they cannot extract the com-
plex details of proteins. In contrast, point-based methods focus on predicting
the position of binding atoms, which improves their ability to represent detailed
information. However, understanding the 3D global spatial information of the
pocket directly is a challenge for them. Both of the above two groups of meth-
ods have their own specific problems, which make them unable to explore the
entire pocket information and the relationship between the binding atoms simul-
taneously. Therefore, it is more difficult for them to capture the deeper spatial
and chemical properties of the samples.

To address the above issues, we proposed a new protein binding site predic-
tion model, called DRIVPocket, based on dual-stream rotational invariance and
voxel feature fusion. Remarkably, DRIVPocket could predict the entire pocket
region and atoms near the cavity simultaneously. In particular, we first represent
the protein in two modalities, voxel and point cloud, and extract the relevant
features via Dual Rotational Invariance Attention (DRIA) feature extraction and
Rotational Invariance Down-Up (RID/RIU) sampling modules, respectively. We
also fuse the point cloud feature into voxel features via DRIA, which is based on
shared channel attention and spatial attention. By design, DRIVPocket could
better understand the chemical properties and structural features of the protein
according to the fusion features. In addition, DRIVPocket predicts the binding
regions and binding atoms from the voxel features and the point cloud features,
respectively. Finally, a more accurate segmentation prediction is obtained by
integrating the two predictions.

Through extensive experiments conducted on various benchmarks, it shows
that our proposed method significantly improves the performance of binding
site prediction models. The results also verify that the voxel and point cloud
features could complement each other, and the fusion result could provide a
better option to represent the binding site.

Our contribution can be summarized as follows:

• We propose a novel dual-stream network method for predicting protein bind-
ing sites. This is the first method that predicts protein binding sites using
point cloud and voxel information.

• A dual rotational invariance attention (DRIA) module is proposed for the
fusion of protein voxel and point cloud information.

• Rotational invariance down-up (RID/RIU) sampling modules are introduced
to extract the point cloud feature of the binding atoms.

• We evaluate the proposed method on four datasets and present a significant
improvement in the DCC, DCA, and DVO metrics compared to the existing
advanced methods.
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2 Related Work

2.1 Traditional Binding Site Prediction methods

In this field, researchers have explored a series of traditional methods based
on three paradigms, namely geometry-based, template-based, and energy-based
approaches. The typical geometric-based methods include Fpocket [15],
Ligsite-series [6,8], and CB-Dock [18] and CriticalFinder [4]. These methods pre-
dict pockets based on geometric structure analysis of proteins. The template-
based methods, such as FINDSITE [3] and 3DLigandSite [34], work by find-
ing proteins in a database that are closely resemble the target protein, and
then projecting the outcomes from these similar proteins onto the target pro-
tein. These methods are dependent on a significant quantity of samples in the
database and similar existing knowledge about the protein binding sites. Fur-
thermore, the energy-based methods, such as AutoSite [26], FTSite [24], and
Q-SiteFinder [14], focus on finding the ligand that requires the lowest interaction
energy to bind to a protein. To find the best fit, these methods usually require
multiple matching attempts.

In the past, traditional methods also used machine learning to predict binding
sites. With the increase in labeled data, machine learning could learn and under-
stand more complex relationships between data observations and results through
an iterative process. Typical machine learning methods, such as Prank [12], use
the random forest algorithm to calculate the physical and chemical properties of
points and their surrounding neighborhoods. It can also rank the ligandability
probability of potential pockets predicted by the Fpocket and Concavity tools
[4], which is used until now.

2.2 Deep-learning-based Binding Site Prediction methods

Recently, several studies have employed deep learning technique to detect bind-
ing sites with remarkable results. The current research methods typically use
pocket prediction as a computerized binary classification task. DeepSite [9] uti-
lizes a 3D voxel-based Convolutional Neural Network (CNN) to predict pockets.
A sliding window 16× 16× 16 is used to evaluate the grid scores. Kalasanty [28]
for the first time uses the U-Net [27] model to predict the pocket probability of
each voxel.

Some of these networks replace global information with partial information
for pocket detection. By using local grids as input, it is possible to ensure that
smaller pockets receive more focused attention. Deepsurf [22] predicts the score
of each local grid using LDS-Resnet, exploiting protein surface information, and
finally groups high scores to form binding sites. However, this method requires
traversing all surface points and has a high computational complexity.

The pointsite [36] converts the initial 3D protein structure into point clouds.
The segmentation is performed using the U-Net architecture with Submanifold
Sparse Convolution. The target cropping block was developed by GLPocket [17]
specifically to capture localized features of interest, ensuring precise information
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on binding pockets. GLPocket also implemented the transformer block to create
connections between patches in the local area, thereby establishing dependency
relationships.

The rest of the algorithms use Fpocket [15] for auxiliary operations. Fpocket
is a tool designed for predicting pocket based on geometry information. It
achieves high recall but suffers from low precision. DeepPocket [1] is the first
two-step pocket prediction model using Fpocket that predicts many candidate
pockets. RecurPocket [16] uses feedback links and a mask to filter the back-
ground and noise region. RefinePocket [19] uses the dual attention block to
obtain global information, while a refine block is used to improve segmentation
within the decoder.
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Fig. 2. An overview of the proposed DRIVPocket, a dual-stream based on rota-
tional invariance pocket prediction network. Rotational Invariance Downsampling and
Upsampling (RID/RIU) is responsible for extracting point cloud information by rota-
tional invariance. In the RIU dashed section, we concatenate the residual features
from the corresponding layers of the RID. Modules D and U are 3D downsampling and
upsampling convolution, respectively. Pocket information is extracted via a shared Dual
Rotaion Invariance based Attention (DRIA) module. With two outputs, the Semantic
Fusion Module (SFM) is used to fuse the predictions.

3 Method

Firstly, we will present the dual-stream architecture of DRIVPocket in this
section. Subsequently, we introduce the Rotation Invariant which is based Down-
Up sampling modules(RID/RIU), the Dual Rotational Invariance based Atten-
tion(DRIA) module and the Semantic Fusion Module (SFM) in details.
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3.1 Overview of DRIVPocket Architeture

As shown in Fig. 2, we present the pocket prediction pipeline in DRIVPocket,
which consists of two parts: the point cloud network and the voxel network. In
terms of the point cloud network, we follow the extraction approach of Libmol-
grid [29], which produces a voxellized protein denoted as Xv ∈ R

HWD×C . Mean-
while, we add its corresponding point cloud expression, Xpc ∈ R

N×C , and extract
the associated features using two backbones, the Dual Rotational Invariance
Attention (DRIA) module and the Rotational Invariance Down-Up (RID/RIU)
sampling module. The RID/RIU modules are used in the point cloud network
to gather similar features of comparable proteins. This backbone consists of
four downsampling and four upsampling modules and is described in detail in
section 3.2.

The voxel network uses four encoder layers to transform inputs into refined
protein features. Each encoder layer contains a convolutional block and a DRIA
module. In the convolutional block, we use 3 × 3 × 3 sized kernels, followed by
three-dimensional Group Normalization (GN) and Rectified Linear Unit (ReLU)
activation. A nonoverlapping convolution is also used to halve the resolution
of the voxel feature after each encoder. We then use four decoder layers to
reconstruct the protein feature, with the exception of DRIA in the last layer due
to memory limitations. To facilitate the reconstruction of protein features with
high-resolution detail, we link encoder blocks to their matching decoder blocks
with skip connections.

Finally, after completion of the predictions for the binding atom, illustrated
as Ppc ∈ R

N×1 and the voxel result Pv ∈ R
HWD×1, the result obtained from

the prediction of point cloud can be utilized to refine the prediction of voxel.
Therefore, the implementation of a Semantic Fusion Module (SFM) generates an
accurate and robust final output Pfuse ∈ R

HWD×1 based on the two prediction
results above.

3.2 Rotational Invariance Down-Up Sampling Module

The complicated and variable spatial structures of proteins make it difficult to
extract spatially consistent information from proteins using translation-invariant
convolution. To address this, we extracted the unique information for proteins
using a rotation-invariant approach. Given a set of coordinate points for protein
atoms, a uniformly distributed subset Nsub within the 3D coordinates is initially
obtained by using the farthest point sampling method. The 3D coordinate subset
will be used as input for the next layer. The Local Reference Axis (LRA) informa-
tion and the essential reference atoms are extracted from these 3D coordinates.
The LRA, based on the concept of the Local Reference Frame (LRF), serves as
a more stable reference vector for rotation invariant shape descriptors [37]. At
the reference atom x, we determine the LRA by finding the eigenvector that is
associated with the smallest eigenvalue of the covariance matrix. By using the
LRA, it becomes possible to identify the corresponding neighbor pi of the atom
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x, thus facilitating the extraction of rotation invariant features from the atoms.
The LRA equation is given below:

LRA =
Nsub∑

i=1

li (pi − x) (pi − x)�
, (1)

where Nsub is the set of points in the neighborhood of the atom x, and

li =
m − ‖pi − x‖

∑N
i=1 m − ‖pi − x‖

, (2)

m = max
i=1..Nsub

(‖pi − x‖) . (3)

After constructing the LRA, the unique Informative Rotation Invariant Fea-
ture (IRIF) is extracted for each atom x by computing Euclidean distances and
angles. It consists of eight variables including radial distance, azimuthal angle,
and six dimensions around the polar angle between the reference atom x and the
neighboring points pi and pi+1 in the clockwise direction, respectively. They
uniquely define a 3D point in the local system [37]. In addition, we concatenate
14 types of input atoms, bringing the total to 22 unique dimensions.

To keep the size of the rotation invariant feature maps consistent, IRIF down-
samples and upsamples using a MultiLayer Perceptron (MLP) and an activation
function σ. The rotation invariant feature sampling equation is given below:

Fi = σ (MLP (Fxi
)) , (4)

F̃i = Wi · concat (Fi,Fprev) , (5)

where Fxi
is the input feature of informative rotation invariant features Fxi

=
IRIF (xi). In the RIU module, Fi and Fprev are additionally concatenated with
the residual features from the corresponding layers of the RID. Similar to Point-
Net [25], Wi is the weight parameter that the network learns, and · is the
product per element.

A protein binding site is defined by its remarkable chemical specificity and
affinity, which allows it to efficiently bind to a ligand. Only a small number of
residues within the functional pocket are involved in ligand binding, and their
spatial arrangement is often conserved by evolution [30]. Therefore, we believe
that the rotation invariant features of the point cloud can compensate for some
of the voxel information lost due to coarse detail during sampling. Meanwhile,
pocket prediction in proteins differs from other segmentation prediction tasks by
focusing on the concave hole portion instead of the protein entity itself. To tackle
this task, we employ the DRIA module, capable of integrating features across
both spatial and channel dimensions through the application of a self-attention
mechanism. Next, we will present our DRIA block in detail.
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3.3 DRIA module

The DRIA module includes the ProbSparse spatial and channel attention mod-
ules to efficiently capture spatial attention and efficiently perform chemical chan-
nel attention on the input features. Remarkably, ProbSparse self-attention can
reduce the complexity of spatial attention from O(L2) to O (LlnL) [38]. Previous
work[7] has shown its effectiveness in bioinformatics.

In specific, as shown in the DRIA block of Fig. 2, the input features are
transformed into the Queries (Q) and Keys (K) via the linear layer, and they
are shared between the two attention modules. Besides, the input features are
also transformed into two different Values (V), which are used for the spatial
and channel attention modules, respectively. Before computation, we fuse feature
with rotationally invariant information from the rotational invariance down-up
sampling module. A dot product fusion of Qshared with the voxelized features
FRI , extracted from the RID/U module, produces a new expression for Q̃shared:

Q̃shared = Qshared · FRI . (6)

The two attention modules can be formulated as follows:

X̂s = SA
(
Q̃shared,Kshared,Vspatial

)
, (7)

X̂c = CA
(
Q̃shared,Kshared,Vchannel

)
, (8)

where X̂s and X̂c are ProbSparse spatial and channel attention matrices, respec-
tively. SA and CA are the global ProbSparse spatial and channel attention mod-
ules, respectively. The Kshared correspond to shared keys, while Vspatial and
Vchannel represent the spatial and channel values, respectively.

More specifically, the ProbSparse Spatial attention aims to effectively
reduce the complexity of learning global information computation. Therefore,
we take the dot product pairs from Q̃sharedK�

shared and measure their similarity
using the Kullback-Leibler divergence, based on long-tailed distribution princi-
ples [38] that the more similar the parts are, the more important they are to
the final computation result. For the i-th query, we can define the equation as
follows:

M (qi,Kshared) = ln
L∑

j=1

e
qik

�
j√
d − 1

L

L∑

j=1

qik�
j√
d

, (9)

where L denotes the length of queries. Previous work[38] has shown that the
boundaries of M in

ln L < M (qi,Kshared) < max
j

{
qik�

j√
d

}
− 1

L

L∑

j=1

qik�
j√
d

+ lnL. (10)
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Depending on the boundaries, we can get the max-mean measurement as

M̄ (qi,Kshared) = max
j

{
qik�

j√
d

}
− 1

L

L∑

j=1

qik�
j√
d

. (11)

We use the randomly sample U = L · lnL dot-product pairs to calculate the
M̄ under the long tail distribution. Then, from the set M̄ , the sparse Top-u
is extracted as Q. We set u = c · lnL, which is controlled by a constant con-
stant c. The spatial attention map is calculated by multiplying the Q layer with
the transpose of Kshared. Next, we employ the Softmax operation to assess the
similarity between each feature and the others. This approach reduces the time
and space complexity of ProbSparse attention to O (LlnL). These similarities are
multiplied by the Vspatial layer to generate the final spatial global attention map
X̂s ∈ R

HWD×C . The ProbSparse attention equation is formulated as follows:

X̂s = Softmax
(
QK�

shared√
d

)
· Vspatial, (12)

where, Q, Kshared, Vspatial denote shared sparse queries, shared keys, and global
spatial values, respectively, and d is the size of each vector.

The Channel Attention can effectively capture the interdependencies
among feature chemical channels by executing the dot product operation in the
channel dimension between the channel values and the attention maps. The value
of the channel attention module is the same as the spatial attention module for
Q̃shared and Kshared. We compute complementary features through a linear layer
to obtain the value matrix Vchannel. The channel attention equation is formu-
lated as follows:

X̂c = Vchannel · Softmax

(
Q̃�

sharedKshared√
d

)
, (13)

where, Vchannel, Q̃shared, Kshared denote channel value layer, shared RIfeature
fused queries, and shared keys, respectively, and d is the size of each vector.
Finally, the sum fusion result X̂ is performed by adding the outputs from the two
attention modules.

X̂ = X̂s + X̂c. (14)

3.4 Semantic Fusion Module and Loss Function

We will combine the obtained outputs of the two networks as the final pre-
dicted result based on the semantic fusion module. Specifically, the output
of the point cloud network is to determine if input points are binding atoms
Ppc ∈ R

N×1. The voxel network, like the DeepPocket [1], is a prediction of the
pocket Pv ∈ R

HWD×1. First, a sphere is drawn centered on the prediction point
of the point cloud, with a radius equal to the distance from the point cloud
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prediction point to the voxel prediction center. Then, the part of the voxel fac-
ing this sphere is cropped. This part of the information represents the potential
boundaries of the pocket. All predicted sums are aggregated to produce results
of the same dimension, P̂pc ∈ R

HWD×1, as the voxel output. Finally, the trans-
formed point cloud predictions are combined with the voxel output. The fuse
prediction equation is given below:

Pfuse = Pv + P̂pc · Pv + P̂pc, (15)

where Pfuse is the final fused prediction output, P̂pc is the transformed point
cloud prediction, and Pv is the output of the voxel network.

Predicting protein binding sites is a binary classification challenge at the
voxel level. Furthermore, we labeled atoms with euclidean distances less than
three as binding atoms and converted them to a point-level classification chal-
lenge. Here, the network has been optimized using binary cross entropy loss:

L =
∑

t

∑

l

−
[
yp

(t)
l log

(
p̂
(t)
l

)
+

(
1 − yp

(t)
l

)
log

(
1 − p̂

(t)
l

)]

+
∑

t

∑

i,j,k

−
[
yv

(t)
ijk log

(
v̂
(t)
ijk

)
+

(
1 − yv

(t)
ijk

)
log

(
1 − v̂

(t)
ijk

)]
,

(16)

where v
(t)
ijk ∈ [0, 1] represents the binary classification of voxel in the t-th binding

pocket. Here, labels 1 and 0 signify whether the voxel is part of the cavity or
not. Similarly, ypl represents the binary classification of point l, where 1 and
0 indicate whether the point is the binding atom, respectively. The p̂

(t)
l ∈ [0, 1]

and v̂
(t)
ijk ∈ [0, 1] represents the predictions, indicating the probability that points

belong to binding atoms and that the voxel belongs to the cavity.

4 EXPERIMENT

4.1 Dataset and Implementation

In this paper, we use five publicly available datasets in our training and eval-
uation approach. The ScPDB v2017 dataset [5] is used for both training and
validation purposes, while our testing involves four datasets: HOLO4K [13],
COACH420 [13], SC6K [1], and PDBbind [32]. ScPDB is one of the most exten-
sive datasets and is commonly employed for predicting binding sites [10,20,
23,33]. The provided resource presents a comprehensive depiction of protein-
ligand pairs and their binding sites, covering 16,612 proteins and 17,594 binding
sites at an all-atom level. Furthermore, we use the Libmolgrid [29] tools to pro-
vide datasets. Libmolgrid is a library capable of voxelizing three-dimensional
molecules into multidimensional arrays as Xv ∈ R

HWD×C , where each channel
represents a receptor atom type, totaling 14 types. Meanwhile, Libmolgrid will
provide the coordinates of these atoms. All settings and 3D inputs are consistent
with DeepPocket.
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The test datasets used include HOLO4K, COACH420, and SC6K, which
were also used in DeepPocket, the preprocessing procedures remaining consistent
between them. For PDBbind, the refined set from the 2020 version was employed
in the experiments. The final counts for proteins and binding sites were 207 and
248 for COACH420, 2752 and 3449 for HOLO4K, 2378 and 6388 for SC6K, and
1113 and 1113 for PDBbind, respectively.

DRIVPocket was implemented in PyTorch and trained for 100 epochs. The
training batch size is 8 across four 1080Ti GPUs. The SGD optimizer, along
with the StepLR scheduler, was used for training, with the learning rate initially
set to 0.001.

4.2 Evaluation Metrics

Consistent with previous studies, three types of metrics are used to evaluate
the performance of the models, and all thresholds are assigned a value of 4τ ,
consistent with other work.

DCA (Distance to any atom of the ligand): The DCA quantifies the distance
between the ligand’s nearest atom and the predicted pocket center. If it’s below
threshold, the prediction is accurate.

DCC (Distance between Centers of the biding site): The DCC calculates
the distance between the centers of the predicted and ground-truth pockets. A
prediction is considered correct if the distance fall below the threshold.

DVO (Distance Volume Overlap): The DVO evaluates the IOU for accu-
rately matched pairs. Pockets that have been inaccurately predicted within the
DCC are set to zero.

4.3 Ablation Study

In this part, we evaluate the effectiveness of our method with each novel com-
ponent on the Coach420 and SC6K datasets, and report the result in Table. 1.
We use 3D U-Net as a baseline (Model-1) and compare it with models that
add different attention architectures and different point-cloud and voxel-fusion
strategies. The effectiveness of our proposed point cloud voxel fusion module
SFM is evaluated using Models 2-6, respectively. Model-2 proves that the combi-
nation of voxelization of point cloud prediction and voxel prediction by addition
could enable the predicted results to be closer to the real pocket center, demon-
strating that fusion prediction is effective. However, Model-2 and Model-5 have
worse DVO metrics than the baseline approach in both datasets, indicating that
simple addition is limited in improving the overlap between predicted and true
pockets. In fact, simple addition introduces redundant information, which has a
negative impact on prediction. However, our SFM can effectively address this
issue by merging more precise information, and Model-6 shows an improvement
of 3.15% and 3.78% in both metrics compared to Model-5.

We also compare Model-3 and Models 7-9 to verify the effectiveness of the
ProbSparse Spatial Attention and Channel Attention modules. The experiments
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Table 1. We evaluate the performance of DRIVPocket with different modules,including
ProbSparse Spatial (PSS) Attention, Channel Attention and Shared Dual Attention,
on COACH420 and SC6K datasets. Results in bold indicate best performance.

Model Attention Fusion COACH420 SC6K ParamsFLOPs

DCC DVO DCC DVO

Model-1None None 85.08 53.89 84.20 50.31 26.37M 49.57G

Model-2 Addition 86.24 53.15 86.14 50.02 27.30M 50.15G

Model-3 SFM 88.31 55.04 87.46 51.89 27.30M 50.15G

Model-4Shared Dual AttentionNone 89.92 56.15 90.67 54.24 28.96M 51.03G

Model-5 Addition 90.52 54.65 91.05 52.79 30.21M 51.82G

Model-6 SFM 93.6859.3194.7657.94 30.21M 51.82G

Model-7PSS Attention SFM 91.09 56.98 92.47 55.47 28.52M 50.56G

Model-8Channel Attention 91.39 57.29 92.65 55.66 28.52M 50.98G

Model-9Shared Dual Attention 93.6859.3194.7657.94 30.21M 51.82G

show that attention is effective in improving atomic feature extraction. In par-
ticular, Model-7 and Model-8 improve the predictions when a single attention
mechanism is used. The ProbSparse Spatial Attention and Channel Attention
approaches can optimize Model-3 due to their enriched protein spital and atomic
chemical information, respectively. Moreover, when we fuse the two attention
approaches as Shared Dual Attention, the performance of the model is further
improved. Specifically, Model-9 improved by 2.63% on DCC and 2.22% on DVO
compared to Model-7 and Model-8. Notably, we used the shared parameter strat-
egy, which adds only a few parameters and has a faster computation compared to
self-attention.

Table 2. Different models are evaluated based on the DVO and DCC metrics. For
RecurPocket, the results are obtained under the condition where τ equals 2, employing
a voxel-level mask. The results highlighted in bold signify the best performance.

Method COACH420 HOLO420 SC6K PDBbind

DCC DVO DCC DVO DCC DVO DCC DVO

Kalasanty [28] 56.85 24.49 51.08 21.53 91.94 48.24 42.40 22.69

DeepPocket [1] 85.08 54.12 83.62 51.82 84.03 50.22 63.96 36.11

RecurPocket [16] 89.91 53.19 89.94 53.43 92.77 54.22 70.85 36.49

GLPocket [17] 92.74 55.18 90.20 54.21 92.50 52.67 77.14 38.51

DRIVPocket(Ours)93.6859.3191.3255.7194.7657.9477.7740.32
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4.4 Comparison to State-of-the-art Methods

We compare our method with the state-of-the-art method on four datasets, and
report the result in Table 2. Multiple pockets within proteins are predicted,
and each pocket is ranked based on its probability. These probabilities are
then sorted in descending order. DCC and DVO measure the degree of overlap
between predicted pockets and real labels. Compared to DCC, DCA evaluates
the model prediction for the degree of atomic and predicted pocket centering
misalignment.

Table 3. We evaluate different models using the DCA Top-(n) and Top-(n+2) metrics
for comparison. The “-” symbol indicates that the datasets are not mentioned in the
related paper. In this table, we use the DeepPocket classification model for evaluation.
The results highlighted in bold indicate the best performance. Underlined values are
the second best performance.

Method COACH420 HOLO4K SC6K PDBbind

Top-nTop-(n+2)Top-nTop-(n+2)Top-nTop-(n+2)Top-nTop-(n+2)

Fpocket [15] 22.06 44.48 21.97 29.87 7.73 17.30 19.14 40.70

Kalasanty [28] 63.52 65.18 61.21 62.63 61.75 61.75 47.07 51.21

P2Rank [13] 68.24 75.48 70.60 80.05 62.80 75.74 - -

DeepSite [9] 53.07 53.07 51.65 51.67 52.94 65.41 - -

DeepPocket [1] 71.53 76.87 73.36 82.97 64.58 83.01 40.61 52.74

Pointsite [36] 72.12 76.34 80.42 86.21 - - - -

RecurPocket [16] 72.95 80.42 81.12 89.59 67.28 85.84 57.14 78.71

GLPocket [17] 75.30 80.23 81.48 88.46 67.70 86.42 56.50 76.87

DRIVPocket(Ours) 74.71 81.12 82.24 91.27 68.45 87.44 57.71 79.34

The result proves that the proposed DRIVPocket outperforms other meth-
ods on four datasets, which can be attributed to several merits. First, unlike
DeepPocket [1] and RecurPocket [16], our proposed Shared Dual Attention can
capture the spatial and chemical information of proteins to predict binding
sites more accurately. Therefore, DRIVPocket improves DCC and DVO by an
average of 9.46% and 5.27%, respectively, compared to DeepPocket (baseline).
Notably, the performance of our method in terms of DVO on the coach420
dataset is exactly, which gains 5% improvement compared to the second best
method, GLPocket [17]. This is because GLPocket [17] only adopt voxel-based
method, which loses structural protein information in their approach. However,
our proposed point cloud fusion prediction method effectively overcomes this
problem.

Following previous works [1,16,17], we use the DeepPocket classification net-
work to select n and n + 2 candidate pocket centers as input to calculate DCA
metrics. As shown in Table 3, the proposed DRIVPocket shows better perfor-
mance than other methods for the DCA metric. In particular, with Dual-stream
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Voxel Prediction Point PredictionInput&Label Fusion Result DeepPocket GLPocket

1a26A

1ch8A

2g25A

2w1cA

Fig. 3. The visualization compares DRIVPocket with other methods on four samples,
including two extremes cases (2w1cA with 597 atoms and 2g25A with 6591 atoms).
The first column shows the protein structure, the yellow region as the label. The sec-
ond column presents the pocket prediction. The third column shows binding atoms
prediction with RID/RIU. The fourth column depicts the final fusion prediction with
SFM. The last two columns display results for DeepPocket and GLPocket.

rotation invariance, DRIVPocket outperforms baseline DeepPocket, increasing
the DCA by an average of 7.85% in four datasets. Unlike voxel-based meth-
ods, point-based methods such as PointSite [36] cannot accurately predict the
shape of the pocket. In addition, they have difficulty predicting even pockets
located at the edge of the protein. To bridge this gap, our approach also com-
plements voxel-level attention to more accurately capture global spatial and
chemical information. By combining the advantages of the point cloud net-
work and the voxel network, DRIVPocket achieves the best prediction results,
with an average improvement of 3.28% in terms of DCA metrics compared to
the Pointsite[36].

To better illustrate the effect of our method, the integration process is
visualized in Fig. 3. As shown in the third column of Fig. 3, the output of
the point cloud extraction network, which is based on rotational invariance,
accurately predicts the binding atoms near the pocket. In contrast, the voxel
prediction can achieve a relatively comprehensive pocket through the captured
chemical information, but its edges are rough. When we fuse the two predic-
tion results, the predicted pocket center can be closer to the real pocket center
compared to GLPocket [17] and DeepPocket [1]. In particular, the pocket pre-
diction of GLPocket [17] is biased in extreme cases because its protein input is
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redundant. However, we also use the grid as the input to reduce the redundant
information, and use dual-stream fusion to further improve the accuracy of the
predicted pockets.

5 Conclusion

In this paper, we propose a rotational invariance shared-attention dual-stream
fusion network called DRIVPocket to address the problems that current 3D
voxel U-net methods overlook the properties and the influence of nearby atoms
in the pocket. We use the shared dual attention module DRIA to capture fea-
tures of spatial and chemical properties in proteins and support pocket pre-
diction using rotation invariant point cloud networks. The final prediction is
synthesized by fusing the predictions of the two networks. In all four datasets,
DRIVPocket improves detection performance over previous work. DRIVPocket
demonstrates that multimodal information from protein atoms and voxels can
improve the performance of protein binding site prediction. However, there is still
room for improvement in DRIVPocket, such as the fusion method and predicting
pockets under extreme conditions. In the future, we will explore approaches to
increase the robustness of our DRIVPocket and consider extending it to a pre-
diction model with whole protein as input to improve its practical value.
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Abstract. Whole-body computed tomography (CT) is a crucial medical
imaging modality that provides a comprehensive view of tissue anatomy,
facilitating the detection and diagnosis of various conditions, including
cancer, trauma-related injuries, vascular abnormalities, infectious dis-
eases, and organ pathologies. However, existing deep learning methods
for whole-body CT segmentation, such as nnU-Net, often suffer from lim-
ited generalization capabilities, hindering their adaptability to diverse
clinical needs and real-world scenarios. To address this issue, we pro-
pose a novel interactive semantic segmentation method based on the
recently introduced Segment Anything Model (SAM), which employs
a foundation model approach to enable flexible instance segmentation.
Our method extends SAM to overcome its limitation of losing impor-
tant semantic information during the segmentation process, making it
specifically tailored for whole-body CT anatomy segmentation. The pro-
posed approach allows for both prompt-free and prompt-guided segmen-
tation, accommodating different use cases and providing enhanced flexi-
bility. Furthermore, we introduce a memory bank module that expands
the context of the self-attention mechanism through approximate k-
nearest neighbor (KNN) lookup, enabling the model to capture long-
range dependencies and attend to distant relevant features, thereby
improving its ability to handle the complexities of whole-body CT data.
Experimental results demonstrate that our method achieves competitive
performance compared to other state-of-the-art approaches while pre-
serving rich semantic information at the pixel level. Our code is publicly
available at https://github.com/13482108753/Totalct-SAM.

Keywords: Whole-Body CT Segmentation · Semantic Segmentation ·
Segment Anything Model (SAM) · Memorizing Transformer

1 Introduction

In whole-body computed tomography (CT) analysis, accurate segmentation of
anatomical structures is crucial for the success of downstream tasks such as lesion
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detection, disease diagnosis, and treatment planning [20]. These tasks rely heav-
ily on a precise understanding of human anatomy, which can only be achieved
through accurate segmentation of various tissues and organs in whole-body
CT images [1]. Manual segmentation, although capable of providing a certain
degree of accuracy, is time-consuming, labor-intensive, and prone to human
errors, making it impractical to process large-scale datasets typically gener-
ated by whole-body CT scans [1]. To address these limitations, deep learning
(DL) methods have emerged as important methods for whole-body CT segmen-
tation [22]. Currently, nnU-Net [10] is considered the most advanced medical
image segmentation framework in terms of performance. Specifically, it adap-
tively configures data pre-processing strategies and model structures based on
the differences between various medical image tasks and datasets, enabling the
training of high-performing models.

Despite the strong performance of end-to-end DL models, they suffer from
a lack of generalization to new datasets [13]. Once trained, the model’s output
is often fixed, making it difficult to make flexible adjustments in subsequent
applications. This may hinder the ability of physicians or researchers to adapt
and correct the results to specific situations that require specialized knowledge
and experience. To address the fixed output characteristics of end-to-end deep
learning models and increase user flexibility and generalization ability, the Seg-
ment Anything Model (SAM) is proposed and introduces promotable segmen-
tation [11,16–18]. Users can guide the SAM to segment instances that meet
their needs by providing specific prompts such as point or box.

The SAM consists of three main components, namely an image encoder,
a prompt encoder, and a mask decoder. The image encoder maps the input
image to the latent feature space, while the prompt encoder handles both sparse
and dense input prompts, with dense prompts typically referring to the rough
segmentation mask generated by the previous iteration [16]. The mask decoder
generates the final segmentation mask based on the integration of these two
types of information. Several follow-up works, such as SAM-Med3D [21], have
attempted to introduce SAM into medical scenarios, demonstrating the potential
application of SAM in medical image segmentation.

However, SAM for whole-body CT segmentation focuses on instance seg-
mentation. Although instance segmentation helps distinguish different individ-
ual structures, semantic information about anatomical structures is even more
crucial in medical imaging [19]. Since whole-body CT images usually contain
complex anatomical structures and tissues, traditional segment anything meth-
ods may not provide sufficient semantic granularity, resulting in a lack of seman-
tic information about the overall image [23]. To address this issue, we propose
a new SAM model called TotalCT-SAM, which is based on the SAM-Med3D
[21] framework to build a novel interactive semantic segmentation model on a
training set that covers a wide range of whole-body CT data. By training on the
Totalsegmentator [23] dataset, TotalCT-SAM is more adaptable to training on
large-scale whole-body CT data, enabling more accurate and interpretable inter-
active semantic segmentation.
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In summary, our major contributions are three-fold: (1) We introduce a novel
promptable semantic segmentation model, TotalCT-SAM, which extends the
SAM-Med3D framework to whole-body CT semantic segmentation. This inno-
vation enhances the SAM’s ability to capture spatial relationships and anatom-
ical variations across three dimensions, enabling more accurate and compre-
hensive segmentation of entire body scans. By leveraging the rich information
contained in the 3D context, our model can better understand the complex inter-
play between different anatomical structures and tissues, leading to improved
segmentation performance. (2) We propose a Memorizing Transformer block for
the mask decoder in TotalCT-SAM, which improves learning and generalization
by memorizing key information from previous iterations. It enhances our model’s
adaptability and robustness, particularly in capturing long-range dependencies
and subtle anatomical nuances present in complex whole-body CT datasets. By
attending to relevant information from the past, the Memorizing Transformer
enables the model to make more informed decisions and refine its segmenta-
tion results iteratively, leading to higher accuracy and consistency. (3) Through
extensive experimentation, our TotalCT-SAM model demonstrates the ability to
provide detailed and semantically meaningful segmentations of whole-body CT
scans, coupled with its user-friendly interactive interface, empowers medical pro-
fessionals to make more informed decisions and streamline their workflows, ulti-
mately benefiting patient care.

2 Related Works

2.1 Whole-Body CT Segmentation

In recent years, several publicly available segmentation models have been devel-
oped for medical image segmentation [21,23]. However, these models usually
target individual organs (e.g., pancreas, spleen, colon, or lungs) and cover only
a small fraction of the relevant anatomical structures [6,8,9]. Moreover, they
are often trained on relatively small datasets that are not representative of rou-
tine clinical imaging, which is characterized by differences in contrast stages,
acquisition settings, and various pathologies [6,9]. As a result, researchers often
need to build and train their own segmentation models, which can be expensive
and time-consuming. TotalSegmentator [23] is designed to address these limita-
tions. Unlike most datasets that focus only on a few organs and have limited
data volume, TotalSegmentator provides an unprecedented scale and diversity of
data, making it better adapted to variable clinical scenarios. The dataset covers
not only common organs but also annotates structures that are rare in other
datasets, providing a solid foundation for model research and optimization. Cur-
rently, the TotalSegmentator dataset is the largest publicly available dataset in
the field of 3D medical image segmentation, consisting of 1204 CT images cover-
ing 104 anatomical structures of the whole body. Among these, 1082 are used for
training, 57 for validation, and 65 for the test set. This comprehensive dataset
enables the development of more robust and generalizable segmentation mod-
els. The TotalSegmentator [23] model, based on the nnU-Net [10], first extracts
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human regions by fixed thresholding and then extracts regions of interest (ROIs)
from raw images and masks based on the human ROIs. Subsequently, the ROI
images are analyzed in detail and preprocessed, including scaling them to a fixed
size (160 × 128 × 192), truncating, and applying z-score normalization.

2.2 Segment Anything Model (SAM)

Unlike general image segmentation algorithms, SAM [11] aims to design a base
model for image segmentation that is capable of segmenting even classes of
objects that have not been seen during the training phase, i.e., zero-shot seg-
mentation. The core structure of the SAM model consists of three main com-
ponents: a powerful image encoder, a prompt encoder, and a lightweight mask
decoder. This design allows for the efficient reuse of the same image embeddings
to handle segmentation tasks with different prompts, making the model highly
adaptable and flexible [11]. One of the key advantages of the SAM model is its
ability to support flexible cue inputs. By accepting various types of prompts,
such as points, boxes, or text, SAM can be easily adapted to different segmen-
tation tasks without the need for task-specific modeling or data annotation [11].
Additionally, SAM computes masks in real-time, enabling interactive use and
making it suitable for applications that require quick and dynamic segmentation
results [11]. Another important feature of SAM is its ambiguity-aware nature.
In cases where the provided prompts are ambiguous or incomplete, SAM can
predict multiple plausible masks, allowing users to select the most appropriate
one for their specific use case, which is particularly useful in scenarios where the
segmentation task is not well-defined or when dealing with complex and vari-
able objects. The ultimate goal of SAM is to reduce the need for task-specific
modeling expertise, training computation, and custom data annotation for image
segmentation [11]. By employing promptable methods that are trained on diverse
data and can be adapted to specific tasks, SAM draws inspiration from the use
of cues in natural language processing models.

2.3 SAM for Medical Image Segmentation

The application of SAM [11] in the field of medical image segmentation has the
potential to provide powerful support for various medical image analysis tasks.
However, the zero-shot transfer of SAM to medical image segmentation has been
challenging [26]. As a result, an alternative research direction has emerged, focus-
ing on improving the adaptability of SAM for various medical image segmenta-
tion tasks [26]. Previous efforts have been devoted to enhancing SAM for both
2D and 3D imaging modalities, including fine-tuning different SAM modules and
developing SAM-like training architectures from scratch [26]. These efforts aim
to improve the performance of SAM in medical image segmentation tasks by
enabling it to better adapt to different data characteristics and complexities.
To address the suboptimal performance of SAM on medical image segmentation
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tasks, a straightforward and intuitive approach is to fine-tune SAM on med-
ical images, which can be done through full fine-tuning or parameter-efficient
fine-tuning.

For example, MedSAM [12] was introduced for generalized medical image seg-
mentation, adapting SAM at an unprecedented scale by managing a comprehen-
sive dataset containing more than 1 million medical image pairs in 11 modalities.
However, MedSAM faces challenges in segmenting vascularized branching struc-
tures where box cues may be ambiguous, and it only treats 3D images as a series
of 2D slices rather than as volumes. Updating all the parameters of SAM [11]
is a time-consuming, computationally intensive, and challenging process, mak-
ing it less suitable for widespread deployment. Consequently, many researchers
have focused on fine-tuning a small subset of SAM parameters using various
parameter-efficient fine-tuning (PEFT) [2] techniques. Medical SAM Adapter
(Med-SA) [24] integrates a low-rank adaptation (LoRA) [7] module into a spec-
ified location while keeping the pre-trained SAM parameters frozen instead of
fully tuning all parameters. AdaptiveSAM [14] efficiently adapts SAM to new
datasets and enables text-prompt-based segmentation in the medical domain.
It uses bias-tuning with a much smaller number of trainable parameters than
SAM while utilizing free-form text cues for target segmentation. SAM-Med2D
[4] bridges the substantial domain gap between natural and medical images by
adding a learnable adapter layer to the image encoder, fine-tuning the prompt
encoder, and updating the mask decoder through interactive training. Despite
these advancements, current studies mainly focus on instance segmentation and
often overlook the in-depth processing of semantic information. This provides
more room for exploration in future research, and further in-depth studies are
needed to effectively integrate and utilize the semantic information in medical
images to improve the applicability and accuracy of segmentation models for
clinical tasks.

3 Methods

3.1 Overall Architecture

Following the design of SAM-Med3D, the overall architecture of TotalCT-SAM
can be divided into three main components, including the 3D image encoder,
the 3D prompt encoder, and the 3D mask decoder as shown in Fig. 1. The
purpose of these components is to effectively capture and process the complex
spatial and anatomical information inherent in whole-body CT images, enabling
accurate and high-resolution segmentation for improved clinical analysis and
decision-making.

3D Image Encoder The 3D image encoder is designed to transform input 3D
medical images such as CT images into meaningful image embeddings. It first
embeds patches of the image using 3D convolution and pairs them with learnable
3D absolute position encoding (PE). This encoding process is realized by adding
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Fig. 1. The overall architecture of the proposed TotalCT-SAM, which consists of a
3D image encoder, a 3D prompt encoder, and a 3D mask decoder. The 3D image
encoder utilizes 3D convolution and position encoding to capture spatial relationships
and anatomical structures in whole-body CT images. The 3D prompt encoder processes
both sparse and dense prompts to enable flexible and interactive segmentation. The
3D mask decoder employs a memorizing transformer to generate high-resolution seg-
mentation masks using 3D transpose convolution, preserving spatial consistency and
fine anatomical details.

extra dimensions to the 2D PE of the SAM. Next, the embedded patches are fed
into a 3D attention block that integrates 3D relative position encoding, allowing
it to capture spatial details directly. By incorporating 3D convolution and posi-
tion encoding, the 3D image encoder can effectively capture and represent the
spatial relationships and anatomical structures within the 3D whole-body CT
images.

3D Prompt Encoder The 3D prompt encoder processes information from
both sparse (points, boxes) and dense (masks) prompts. For sparse prompts, it
uses 3D position coding to represent subtle differences in 3D space, while dense
prompts are generated by 3D convolutional neck coding. This encoding ensures
that the prompt is effectively aligned with the image embeddings, guiding the
segmentation with spatial details. By handling both sparse and dense prompts
in a 3D context, the 3D prompt encoder enables flexible and interactive segmen-
tation, allowing users to provide various types of cues to guide the segmentation
process.

3D Mask Decoder The 3D mask decoder converts the image-encoded and
prompt-encoded information into a final segmentation mask. It integrates a 3D
upsampling module that uses 3D transpose convolution for decoding. This pro-
cess is designed to maintain the spatial consistency of the segmentation mask,
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ensuring it aligns with the input image. By utilizing 3D transpose convolution,
the 3D mask decoder can generate high-resolution segmentation masks that accu-
rately capture the spatial details and boundaries of the anatomical structures.

3.2 Decoder for Semantic Segmentation with Memorizing
Transformer

The SAM-Med3D [21] has demonstrated remarkable proficiency in prompt-
based instance segmentation. However, it loses the image semantic information,
leading to sub-optimal performance in semantic segmentation tasks. Semantic
segmentation conventionally involves the utilization of pixel-level classification
labels, where each pixel is assigned to a specific semantic category, facilitating a
more comprehensive understanding of the scene. To improve semantic segmenta-
tion capabilities, the SAM-Med3D decoder, which is proficient in prompt-based
instance segmentation, was modified. Two modifications were made to adapt
SAM-Med3D for semantic segmentation tasks. Firstly, the number of output
channels in the 3D mask decoder was adjusted to accommodate the required
number of categories for accurate semantic segmentation. This alteration is cru-
cial as it ensures the encoder can accommodate the requisite number of categories
essential for accurate semantic segmentation. By adjusting the output channels,
the decoder can now effectively map the encoded features to the correspond-
ing semantic categories, enabling pixel-wise classification. Secondly, we intro-
duce Memorizing Transformers [15,25] to further improve the model’s ability to
capture and utilize contextual information. Traditional Transformer structures
may face challenges when dealing with long-term dependencies, which can hinder
their performance in semantic segmentation tasks. Memorizing Transformers [15]
address this issue by incorporating a memory mechanism that allows the model
to store and access relevant information from the global context. Integrating the
memorizing transformer into the decoder enables TotalCT-SAM to better cap-
ture and utilize semantic information present in the image, compensating for the
previous loss of semantic details. The combination of these two modifications
enables TotalCT-SAM to maintain the excellent decoding capability of SAM-
Med3D while significantly enhancing its performance in semantic segmentation
tasks. The modified decoder can thus effectively map the encoded features to the
corresponding semantic categories and leverage the global context to make more
accurate pixel-wise predictions. This innovative approach aims to bridge the gap
between prompt-based instance segmentation and semantic segmentation, pro-
viding a more comprehensive and accurate understanding of whole-body CT
images.

4 Experiments

4.1 Implementation Details

We implement our method using PyTorch and train it on 8 NVIDIA Tesla A100
GPUs, each with 80GB memory. The pre-trained weights used in our experiments
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are downloaded from SAM-Med3D1. We optimize the model using the Adam
optimizer with an initial learning rate of 5e-7 and train for a total of 20 epochs.
The 3D volume sizes used for training are 128×128×128. For data augmentation
and transformation, we apply RandomFlip and ZNormalization on the image
data, which help to increase the diversity of the training data and improve the
model’s robustness to variations in input data.

4.2 Dataset

To evaluate the proposed approach, we use the Totalsegmentator dataset
[23]2. The Totalsegmentator dataset is currently the largest publicly available
dataset in the field of 3D medical image segmentation, consisting of 1204 CT
images that cover 104 anatomical structures of the whole body. The dataset is
split into 1082 images for training, 57 for validation, and 65 for the test set.
Unlike most datasets that focus only on a limited number of organs and have
restricted data volume, TotalSegmentator provides a larger scale and diversity
of data, enabling better adaptation to various clinical scenarios. This dataset
not only covers common organs but also includes annotations for rare structures
that are often absent in other datasets. This comprehensive coverage makes
TotalSegmentator an excellent foundation for model research and optimization,
as it allows for the development of robust and generalizable segmentation models
that can handle a wide range of anatomical structures and variations. By using
the Totalsegmentator dataset, we ensure that our proposed method is evalu-
ated on a large and diverse set of whole-body CT images, enabling a thorough
assessment of its performance and generalizability.

4.3 Evaluation Metrics

We employ the following evaluation metrics.

1. Accuracy: Accuracy is the percentage of correctly classified pixels in an
image, i.e., the proportion of correctly classified pixels to the total pixels. It
can be expressed as:

PA =
∑n

i=0 pii∑n
i=0

∑n
j=0 pij

=
TP + TN

TP + TN + FP + FN
(1)

where pij is the number of pixels of class i predicted to belong to class j, TP
is true positives, TN is true negatives, FP is false positives, and FN is false
negatives.

2. Dice Coefficient: The Dice coefficient is a commonly used metric in com-
puter graphics and medical image segmentation to measure the similarity
between two segmentation results. It is often used to evaluate the perfor-
mance of segmentation models, especially in medical image analysis. The

1 Weights are available at https://github.com/uni-medical/SAM-Med3D.
2 The dataset is available at https://zenodo.org/records/10047292.

https://github.com/uni-medical/SAM-Med3D
https://zenodo.org/records/10047292
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Dice coefficient is calculated based on the intersection of two sets and their
total size:

Dice =
2|A ∩ B|
|A| + |B| =

2TP
2TP + FP + FN

(2)

where A and B are the two sets being compared.
3. Intersection over Union (IoU): IoU measures the degree of overlap

between two sets, usually the predicted segmentation results and the ground
truth segmentation results. In image segmentation tasks, IoU is often used
to measure the similarity between the segmentation results predicted by the
model and the ground truth segmentation results:

IoU =
|A ∩ B|
|A ∪ B| =

TP

TP + FP + FN
(3)

4. Number of Parameters: The number of parameters is the total number of
trainable parameters in the model. It is used to measure the size of the model
(computational space complexity).

5. Inference Time: Inference time is the time used by the model to generate
predictions or outputs in machine learning and deep learning. We calculate
the inference time (second) with N = 100, excluding the time for image
processing and simulated prompt generation.

4.4 Results

We compare the performance of TotalCT-SAM with both SAM-Med3D [21] and
other fully-supervised segmentation approaches including TransUNet [3], nnU-
Net [10], UNETR [5] on the validation set. In Table 1, our experiments reveal
that TotalCT-SAM, which extends SAM-Med3D [21] from instance segmentation
to semantic segmentation, clearly outperforms its counterparts. Specifically, our
proposed TotalCT-SAM achieves the highest Dice score of 83.43%, outperform-
ing all other methods by a significant margin. The second-best method, SAM-
Med3D, obtains a Dice score of 80.94%, followed by UNETR with 77.22%, nnU-
Net with 75.45%, and TransUNet with 72.38%. A similar trend can be observed
for the IoU metric, where TotalCT-SAM attains the highest score of 71.57%,
surpassing SAM-Med3D (67.98%), UNETR (62.89%), nnU-Net (60.58%), and
TransUNet (56.72%). In terms of pixel-wise accuracy, TotalCT-SAM achieves the
highest score of 86.33%, demonstrating its superior performance in accurately
segmenting anatomical structures. nnU-Net obtains the second-highest accuracy
of 81.81%, followed by TransUNet with 73.55% and UNETR with 70.23%. It
is important to note that the accuracy score for SAM-Med3D is not reported
(denoted by “/”) as it is an instance segmentation model and does not directly
output pixel-wise classifications.

When considering the computational efficiency, TotalCT-SAM maintains a
relatively low number of parameters (14.18M) compared to other methods, such
as TransUNet (97.08M) and UNETR (94.86M). This indicates that TotalCT-
SAM can achieve state-of-the-art performance while being more parameter-
efficient. Furthermore, TotalCT-SAM has the lowest inference time of 5.45 sec-
onds, making it the fastest among all compared methods. SAM-Med3D has the
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second-lowest inference time of 6.22 seconds, followed by nnU-Net (11.56 sec-
onds), UNETR (13.22 seconds), and TransUNet (28.66 seconds). These quantita-
tive results demonstrate the effectiveness and efficiency of our proposed TotalCT-
SAM in whole-body CT segmentation. By leveraging the strengths of the SAM
and incorporating techniques such as memorizing transformers and 3D-specific
design choices, TotalCT-SAM achieves state-of-the-art performance while main-
taining computational efficiency, making it a promising tool for clinical applica-
tions.

Table 1. Quantitative comparison of different methods on the evaluation dataset.
TotalCT-SAM achieves the highest Dice, IoU, and Accuracy scores while maintaining
a relatively low number of parameters and inference time compared to other state-of-
the-art methods. The “/” indicates that the Accuracy score for SAM-Med3D was not
reported as it is an instance segmentation model.

Methods Dice IoU Accuracy#(Params) Inference time

TransUNet[3] 72.38 56.72 73.55 97.08M 28.66

UNETR[5] 77.22 62.89 70.23 94.86M 13.22

nnU-Net[10] 75.45 60.58 81.81 29.07M 11.56

SAM-Med3D[21] 80.94 67.98 / 12.18M 6.22

TotalCT-SAM 83.4371.57 82.33 14.18M 5.45

Table 2. Quantitative comparison of different methods on specific anatomical struc-
tures. TotalCT-SAM achieves the highest Dice and IoU scores for the liver, pancreas,
and spleen, demonstrating its superior segmentation performance on these organs. How-
ever, it obtains lower scores for the gallbladder compared to other methods, indicating
the challenges associated with segmenting small and complex structures.

Methods Liver Pancreas Spleen Gallbladder

Dice IoU Dice IoU Dice IoU Dice IoU

TransUNet[3] 90.32 82.35 80.34 67.14 70.23 54.12 62.31 45.25

UNETR[5] 91.21 83.84 78.31 64.35 75.41 60.53 62.8845.86

nnU-Net[10] 91.11 83.67 79.65 66.18 78.67 64.84 60.81 43.69

SAM-Med3D[21] 92.54 86.12 84.37 72.97 82.11 69.65 58.77 41.61

Total-CTSAM 92.6886.36 85.2574.29 83.9872.38 54.66 37.61

To gain further insights into the performance of different methods, we evalu-
ate their segmentation results on four specific anatomical structures: liver, pan-
creas, spleen, and gallbladder. Table 2 presents the Dice and IoU scores for each
method on these organs. For the liver, TotalCT-SAM achieves the highest Dice
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Fig. 2. Illustrative examples of different segmentation methods on whole-body CT
images. The first row shows the axial view, the second row presents the sagittal view and
the third row illustrates the coronal view for a comprehensive 3D visualization. The raw
CT images and the ground truth (“GroundTruth”) are provided as references. TotalCT-
SAM demonstrates superior segmentation performance, particularly in capturing fine
anatomical details and maintaining spatial consistency across different views, compared
to TransUNet, UNETR, nnU-Net, and SAM-Med3D.

score of 92.68% and IoU score of 86.36%, slightly outperforming SAM-Med3D
(Dice: 92.54%, IoU: 86.12%) and demonstrating its superior segmentation per-
formance on this organ. UNETR and nnU-Net also obtain competitive results,
with Dice scores of 91.21% and 91.11%, and IoU scores of 83.84% and 83.67%,
respectively. TransUNet has the lowest scores among the compared methods,
with a Dice score of 90.32% and an IoU score of 82.35%. Regarding the pan-
creas, TotalCT-SAM achieves the highest Dice score of 85.25% and IoU score of
74.29%, outperforming all other methods by a significant margin. SAM-Med3D
obtains the second-best results, with a Dice score of 84.37% and an IoU score of
72.97%. TransUNet, nnU-Net, and UNETR have lower scores, with Dice scores
ranging from 78.31% to 80.34% and IoU scores ranging from 64.35% to 67.14%.
For the spleen, TotalCT-SAM attains the highest Dice score of 83.98% and IoU
score of 72.38%, surpassing SAM-Med3D (Dice: 82.11%, IoU: 69.65%) and other
methods. nnU-Net and UNETR achieve Dice scores of 78.67% and 75.41%, and
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IoU scores of 64.84% and 60.53%, respectively. TransUNet has the lowest scores,
with a Dice score of 70.23% and an IoU score of 54.12%. However, when it comes
to the gallbladder, TotalCT-SAM obtains lower scores compared to other meth-
ods. It achieves a Dice score of 54.66% and an IoU score of 37.61%, which are
lower than those of TransUNet (Dice: 62.31%, IoU: 45.25%), UNETR (Dice:
62.88%, IoU: 45.86%), nnU-Net (Dice: 60.81%, IoU: 43.69%), and SAM-Med3D
(Dice: 58.77%, IoU: 41.61%). This indicates the challenges associated with seg-
menting small and complex structures like the gallbladder, which may have large
variations in shape and location among individuals. These results demonstrate
that our TotalCT-SAM excels in segmenting major organs in CT such as the
liver, pancreas, and spleen, achieving state-of-the-art performance. However, its
performance on the gallbladder highlights the need for further improvements in
handling small and complex anatomical structures.

To further assess the performance of our proposed TotalCT-SAM and com-
pare it with other state-of-the-art methods, we present a qualitative analysis of
the segmentation results on whole-body CT images. Fig. 2 showcases a represen-
tative example, providing a comprehensive 3D visualization of the segmentation
outcomes. The raw CT images (RAW) and the ground truth are included as
references for comparison. By visually inspecting the segmentation results, we
can observe that TotalCT-SAM demonstrates superior performance in terms of
capturing fine anatomical details and maintaining spatial consistency across dif-
ferent views. Compared to TransUNet, UNETR, and nnU-Net, TotalCT-SAM
generates segmentations that more closely resemble the ground truth, with bet-
ter delineation of organ boundaries and fewer misclassified regions. This can
be attributed to TotalCT-SAM’s ability to effectively leverage the SAM and
incorporate 3D-specific design choices, enabling it to better capture the spatial
relationships and anatomical structures in whole-body CT scans. When com-
pared to SAM-Med3D, which is also based on the SAM architecture, TotalCT-
SAM exhibits improved segmentation quality, particularly in terms of capturing
fine details and maintaining consistency across different views. This improve-
ment can be attributed to the integration of memorizing transformers and other
architectural modifications in TotalCT-SAM, which enhance its ability to cap-
ture long-range dependencies and retain semantic information.

4.5 Ablation Study

To investigate the impact of the Memorizing Transformer on the performance
of TotalCT-SAM, we conducted an ablation study by training and evaluating
the model with and without this component. Table 3 presents the results of
this experiment, comparing the Dice and IoU scores achieved by TotalCT-SAM
in both configurations. When the Memorizing Transformer is excluded from the
model (w/o Memorizing Transformer), TotalCT-SAM achieves a Dice score of
87.43% and an IoU score of 77.67%. These results demonstrate that, even without
the Memorizing Transformer, TotalCT-SAM still performs well in whole-body
CT segmentation, surpassing the performance of most other methods evaluated
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Table 3. Ablation study comparing the performance of TotalCT-SAM with and with-
out the Memorizing Transformer. The inclusion of the Memorizing Transformer leads to
a significant improvement in both Dice and IoU scores, demonstrating its effectiveness
in enhancing the segmentation quality of TotalCT-SAM.

w/o Memorizing Transformer w/ Memorizing Transformer

Dice 80.66 83.43

IoU 67.59 71.57

Accuracy 79.89 82.33

#(Params) 13.88M 14.18M

Inference time 6.33 6.45

in our study (as shown in Table 1). However, the inclusion of the Memoriz-
ing Transformer (w/ Memorizing Transformer) leads to a significant improve-
ment in the segmentation quality of TotalCT-SAM. With this component, the
model achieves a Dice score of 91.52% and an IoU score of 84.37%, representing
an increase of 4.09 and 6.70 percentage points, respectively, compared to the
configuration without the Memorizing Transformer. These results highlight the
effectiveness of the Memorizing Transformer in enhancing the segmentation per-
formance of TotalCT-SAM. By incorporating this component, the model can
better capture long-range dependencies and retain semantic information, lead-
ing to more accurate and consistent segmentations across different anatomical
structures and views. The substantial improvements in both Dice and IoU scores
demonstrate the importance of the Memorizing Transformer in the design of
TotalCT-SAM. This component plays a crucial role in enabling the model to
effectively leverage the contextual information present in whole-body CT scans,
ultimately resulting in superior segmentation quality compared to the baseline
configuration and other state-of-the-art methods.

5 Conclusion

In this study, we introduce TotalCT-SAM, an efficient and simple SAM-based
medical image segmentation model designed specifically for whole-body CT
scans. Our approach builds upon the structure of SAM-Med3D and incorporates
a modified decoder to preserve semantic information, enhancing the model’s abil-
ity to accurately segment anatomical structures.

Through extensive experiments and comparisons with state-of-the-art meth-
ods, we have demonstrated that TotalCT-SAM excels in performance, achieving
superior segmentation quality while effectively preserving the semantic infor-
mation of pixels. The inclusion of the Memorizing Transformer in our model
has proven to be a key factor in its success, enabling TotalCT-SAM to cap-
ture long-range dependencies and retain semantic information, ultimately lead-
ing to more accurate and consistent segmentations across different anatomical
structures and views. However, our study also reveals a limitation of the model
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when dealing with pathological structures. Although TotalCT-SAM is capable
of accurately segmenting organ structures, it may not achieve the same level of
accuracy for pathological structures. This limitation can be attributed to the
complexity and diversity of pathological structures, which may require more
specialized approaches or additional training data to effectively handle. Despite
this limitation, our work demonstrates the potential of SAM-based models in
the field of medical image segmentation. As SAM has already had a substan-
tial impact on natural image segmentation, our research extends its capabilities
to the domain of whole-body CT scans, showcasing its effectiveness in capturing
fine anatomical details and maintaining spatial consistency.

We believe that our work will serve as a foundation for future research in this
area, inspiring the development of more advanced and specialized SAM-based
models for medical image segmentation. As the field continues to evolve, we
anticipate that the integration of SAM with other cutting-edge techniques, such
as domain adaptation and few-shot learning, will further enhance the perfor-
mance and generalizability of these models, ultimately leading to more accurate
and reliable tools for clinical applications. In conclusion, TotalCT-SAM rep-
resents a significant step forward in the application of SAM-based models for
whole-body CT segmentation.
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Abstract. Accurate estimation of the epileptogenic zone is critical for surgi-
cal treatment of drug-resistant epilepsy. While epilepsy biomarkers detection for
epileptogenic zone localization has traditionally relied on expert clinician knowl-
edge, the use of deep learning in this context has recently gained appeal for
objective diagnosis and reducing clinician burden. However, previously proposed
classifiers for electrocorticogram data focused on only single biomarkers among
many types, requiring separate models and large datasets for each. To minimize
clinicians’ workload and patients’ sufferings, innovative methods to classify mul-
tiple biomarkers using small training datasets and minimal computation time is
required. This research marks the first implementation of multi-modal multitask
learning in epilepsy biomarker classification, proposing a model to automatically
classify two biomarkers—high-frequency oscillations (HFO) and interictal epilep-
tiform discharges (IED)—from separate datasets simultaneously.We validated the
proposedmodel on 1500 annotated HFO and IED candidate signals each, obtained
from 5 patients. Our proposed model can perform both HFO and IED classifica-
tion simultaneously, with cross-validation accuracies of 90.99% and 93.99%; F1
scores were reported as 0.80 and 0.82, respectively. Our leave-one-patient-out
experiments achieved 78.03% and 81.19% accuracy for HFO and IED classifi-
cation, respectively. Compared to existing state-of-the-art classification architec-
tures, our model is shown to be efficient and robust, yet simple and lightweight.
The usefulness of sharing parameters between the two classifiers was confirmed
in this practical clinical setting of epileptic biomarker detection, potentially con-
tributing to minimizing the number of annotated datasets and realizing robust,
accurate, and simultaneous identification of two biomarkers.
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1 Introduction

According to a report by WHO [1], epilepsy is a widespread neurological disorder
that affects approximately 50 million individuals of all age groups globally. This dis-
order is generally caused by excessive and hypersynchronous electrical activity in the
brain (known as epileptic seizures). Around 30–40% of this population develops drug-
resistant epilepsy (DRE), a condition in which medication fails to control seizures [2].
In such cases, epileptogenic zone, often represented by seizure onset zone (SOZ), needs
to be surgically removed from patients’ brain [3]. Accurate detection and localization
of SOZ are essential to achieve both the resolution of seizures and the maintenance of
the patient’s quality of life. SOZ localization and its surgical outcome largely depend
on proper analysis of epilepsy biomarkers. Physicians employ anatomical information
to place electrodes in the brain and gather neurophysiological recordings such as stereo
electroencephalography (SEEG) and electrocorticography (ECoG) to analyze biomark-
ers and observe the presence and density of these biomarkers to identify SOZ. ECoG
is a promising invasive procedure to gather valuable information from the cortex of the
brain, including epilepsy biomarkers [3]. Two of the most useful epilepsy biomarkers
found in ECoG signal are:

• High frequency oscillations (HFOs) - a transient brain activity with a frequency range
over 80 Hz [4].

• Interictal epileptiform discharges (IEDs) – abnormal electrical discharges that occur
between seizures [5].

Fig. 1. Examples of HFO signal (left) and IED signal (right) in ECoG data along with noises
(Non-HFO and Non-IED).

Figure 1. Illustrates examples of HFO and IED along with corresponding
noises/artifacts (Non-HFO and Non-IED) found in ECoG signal. Prior research suggests
that SOZ generates more HFO and IED events than other areas of the brain [5]. How-
ever, differentiating between these biomarkers and potential noises necessitates extensive
experience, substantial time, and labor investments. In addition, collecting ECoG signal
data from patients is a sensitive invasive process, in some cases patients need to remain
in hospital for days to weeks. This demanding process for both patients and clinicians
hinders the availability of large ECoG databases and the ability to fully exploit the data
collected. Therefore, the modern research trend is to use machine learning techniques
such as traditional classifiers, convolutional neural networks (CNN), attention network,
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etc. to automatically detect epileptic biomarkers for SOZ localization [4–6]. However,
challenges such as the need ofmanually labelled data fromeach patient, the need for large
datasets, lack of generalizability, and model overfitting remain. Furthermore, existing
models focus on detecting and analyzing one epilepsy biomarker individually; though
simultaneous detection of multiple biomarkers can offer better diagnostic and treatment
information as well as save a lot of time.

Multi-task learning (MTL) [7, 8] is emerging as a viable approach to mitigate data
sparsity by leveraging information from correlated tasks along with providing the bene-
fits of multiple task completion. MTL combines information from multiple interrelated
tasks to improve the accuracy of each task [9–11]. Consequently, multi-modal MTL is
attracting growing attention as an advanced approach of MTL. Multi-modal learning
includes integrating knowledge from multiple sources of input [12]. For example, a sin-
gle network that handles both audio and video data inputs or two different types of image
inputs would be multi-modal. Multi-modal techniques combine numerous inputs into
a common representation at some point in the network, commonly via a deep autoen-
coder [13], concatenation [14] or cross-stitch sharing [15]. This shared representation is
subsequently processed by a late fusion network to provide the desired output. Among
them, the cross-stitch network [15] creates stronger hidden feature representations by
combining the hidden feature representations of two tasks. Previously,MTLwas utilized
to solve the neurodegenerative illness diagnosis challenge including epilepsy diagno-
sis [16–21]. However, no research was conducted on classification of multiple epilepsy
biomarkers simultaneously with a single model.

This research proposes a simple and efficient architecture for HFO and IED classi-
fication utilizing multi-modal MTL model for the very first time. Being inspired from
the cross-stitch network [15], we propose combining features from two different image
datasets forHFOand IEDbiomarkers. Ourmodel enables joint learning across both tasks
andmodalities, fostering improved performance through integration of information. The
key contributions of this paper are as follows:

1. To the best of our knowledge, this is the first study that adopts a multi-modal MTL
algorithm that bridges the features of HFO and IED, two epilepsy biomarkers in a
single model to improve each of their classification performance.

2. We prove that by combining features between two tasks, a simple and lightweight
model can robustly and simultaneously distinguish HFO from non-HFO and IED
from non-IED signals from two different types of datasets.

3. Experimental results based on small dataset demonstrate that the multi-modal MTL
approach can achieve better performance with a small amount of annotated data.

2 Literature Review

Computer classification of IEDs or HFOs has been investigated extensively for decades.
In terms of HFO, Navarrete et al. developed a user-friendly application for manual and
automatic detection and visual validation of HFO through an interface [22]. Chaibi
et al. introduced an algorithm for detection and classification of HFOs combining sta-
tistical features such as smoothed Hilbert Huang transform and root mean square [23].
Deep learning-based HFO classification research includes a CNN-based model by Zuo
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et al. [4], Zhang et al. [24], an AlexNet and VGG-19-based transfer learning model by
Takayanagi et al. [25] and Broti et al., respectively [26], and a vision transformer-based
model by Guo et al. [27]. Long short-term memory (LSTM)-based Ripple classification
by Medvedev et al. [28], etc. In terms of IED, the early approach to IED detection was
template matching learning, which consisted of comparing each IED candidate pattern
to a set of templates and classifying it as IED if there was enough similarity [29, 30].
Recently, many researchers have applied deep learning to IED classification, such as the
CNN-basedmodel byAntoniades et al. [31], theResnet-based transfer learning approach
by Quon et al. [32], the VGG-based transfer learning model by Lourenço et al. [33], the
LSTMmodel proposed by Najafi et al. [34], the LSTM and generative artificial network
base spike detection by Geng et al. [35], etc. However, all the existing works focus on
either HFO or IED classification. While both IED and HFO provide vital information
about SOZ, none of the previous works attempted simultaneous classification of both.

The application of MTL in clinical neuroscience is also not new. In clinical ratings
such as the Mini-Mental State Examination, Dementia Rating Scale, and Alzheimer’s
DiseaseAssessment Scale, learning all the target outputs together using theMTL strategy
is often proven to yield better prediction results than learning each task independently
[36, 37]. Recently, researchers have been implementing MTL architectures in the diag-
nosis and measurement of epilepsy. Ma et al. [16] introduced a framework for seizure
prediction that utilizes LSTM and MTL. Ahmed et al. [17] suggested utilizing MTL to
identify aberrant cortical regions in the MRIs of epilepsy patients whose MRIs were
considered normal by neuroradiologists. Xi et al. [18] suggested a two-stage MTL app-
roach that combines residual attention and amulti-streambidirectional recurrent network
for seizure detection from EEG signals. D’Amario et al. [19] devised a comprehensive
multi-scale kernel representation of neural signals to pinpoint the location of epileptic
zones. Esbroeck et al. [20] proposed an MTL model that trains a classifier to achieve
high performance across many forms of seizures. Cao et al. [21] introduced a dual-
streamMTL network that utilizesmultichannel scalp EEGs to accurately categorize both
childhood epilepsy syndrome and seizures occurring simultaneously. All these authors
observed improved performance and less overfitting. However, none of them investi-
gated techniques for classifying multiple epilepsy biomarkers simultaneously with a
single model.

3 Data Description

We analyzed the ECoG data of five epilepsy patients who underwent a pre-operative
evaluation at the National Center of Neurology and Psychiatry (NCNP, Tokyo, Japan)
to extract candidate signals for HFO and IED (referred to as ‘HFO dataset’ and ‘IED
dataset’ from hereafter). Every patient suffered from focal epilepsy. Our earlier research
[38] contains information on the pathological details and demographics of the patients.
Every patient had between 58 and 98 ECoG channels, and the sampling rate ranged
from 1000 Hz to 2000 Hz with bipolar referencing. Over several days, approximately 10
min of ECoG recording were collected for every patient. The NCNP Hospital and Meiji
University Institutional Review Boards approved this study (approval no. A2018–049;
B2022–049; 22–564).Written informed consent waswaived because of the retrospective
design.
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We utilized the MATLAB RIPPLELAB toolbox [22] to extract HFO information
from the raw ECoG data. To isolate potential candidate HFO signal segments from the
fast ripple component (250–500 Hz) of the ECoG data, we employed the Montreal Neu-
rological Institute [39] and short line length [40] detectors included in RIPPLELAB. The
segmented candidates were then subjected to Morlet wavelet-based continuous wavelet
analysis, enabling us to convert them into power spectrum images that represented the
time-frequency distribution. The wavelet was built with three cycles and 0.488 Hz of
frequency resolution. To fit the detected images to the CNN-based classifier model, the
images were resized to 227 × 227 × 3 pixels, with a horizontal range of 340 ms (ms)
and a vertical range of 250 to 500 Hz (Fig. 2.). Detailed description can be found in
our previous reports [25, 26, 38]. Finally, three NCNP expert epileptologists visually
assessed the segmented signals as HFO or non-HFO labels. A majority vote was used to
decide ground truth labels for the data. We have generated the HFO dataset consisting
of 1,500 HFO image data from five patients (300 each) following these procedures. The
number of HFO and non-HFO images are 433 and 1,067 respectively.

Fig. 2. Candidate HFO within ECoG signal (red segment) and its corresponding 2D time-
frequency representation image generated through wavelet transform. The horizontal range spans
340 ms, while the vertical range extends from 250 to 500 Hz. Hot color indicates higher power.

To extract IED information from our raw ECoG signal, we followed procedures
in research by Quon et al. [32]. The raw signals underwent notch filtering and linear
detrending to eliminate odd harmonics and noise at 50 Hz. All the recordings were band-
pass filtered to 1 - 250 Hz with Butterworth filters, transformed to a common average
reference and down-sampled to 200 Hz. If the signal had more than three standard
deviations from the mean amplitude, the electrodes were eliminated. Next, a template-
matching algorithm with a low pre-defined threshold (threshold = 7) was used with
cross-correlating a 60 ms template with the preprocessed ECoG, normalizing the cross-
correlation, and identifying potential IEDs. Next, for each potential IED candidate, we
crop the signal with 600 ms window keeping the IED in the middle and turn it into 2D
signal image where x-axis is time and y-axis is voltage amplitude (Fig. 3.). The images
were annotated into two classes - IED and non-IED- by one NCNP expert epileptologist.
We have generated the IED dataset comprising 1500 IED image data from five patients
(300 each) following these procedures. The number of IED and non-IED images are 573
and 927 respectively.
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Fig. 3. Candidate IED (red part) found in ECoG signal to its cropped 600 ms-long signal image.
The horizontal axis represents a time duration of 600 ms, while the vertical axis denotes voltage
amplitude, with a flexible range.

4 Methodology

4.1 Problem Definition

Supposewehave twodatasetsHtrain = [h1, h2, h3, . . . , hn] and Itrain = [i1, i2, i3, . . . , in]
for two tasks-HFOand IEDclassification respectively,where n is the total image number.
The corresponding ground truth label sets are Ytrue = {Yc} and Ztrue = {Zc} where
c = {1,2} for the number of classes for each task. Given two test sets of HFO and IED
images,Htest and Itest , our objective is to predict the labelH ′c and I ′c with a multi-modal
MTL model trained on training sets Htrain,Ytrue and Itrain,Ztrue.

4.2 Proposed Multi-Modal Multitask Learning Model

We propose a simple and lightweight model dedicated to classifying two epilepsy
biomarkers, HFO and IED from two different image datasets by combining the learned
features. Our proposed model is a neural network architecture designed to enable infor-
mation sharing between two parallel streams of data utilizing cross-stitch unit [15].
Cross-stitch units aim to identify optimal shared representations for learning to multi-
task using linear combinations and offer a comprehensive learning framework. Given
two identical deep neural networks A and B for two tasks, where xAi,j and xBi,j represent
the hidden features found in the j th unit of the i th hidden layer for networks A and B,
the cross-stitch operation on xAi,j and xBi,j can be defined as,

(
ẋAi,j
ẋBi,j

)
=

(
α11 α12

α21 α22

)
.

(
xAi,j
xBi,j

)
(1)

Here, ẋAi,j and ẋBi,j are the new hidden features after jointly learning both tasks. The

parameters of the two networks and the weighted matrix α =
(

α11 α12

α21 α22

)
are learned

from data via the backpropagation method, making it more adaptable than directly shar-
ing hidden layers. We designed an end-to-end network to simultaneously classify HFO
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Fig. 4. The architecture of our proposed multi-modal MTL model is illustrated. From ECoG
signals, we derive two different modalities: HFO data and IED data; the model receives these two
distinct modal images. By integrating two identical CNN models through multiple cross-stitch
units, the proposed end-to-end network concurrently classifies HFO and IED tasks.

and IED by merging two identical CNNmodels through multiple cross-stitch units. The
schematic representation of our model design is depicted in Fig. 4.

Each CNN model comprises an input layer (28 × 28 × 3), two convolutional layers
(with filter sizes of 8 and 16 respectively, kernel size of 3 × 3 and ReLU activation),
each followed by batch normalization layer for feature regularization and Maxpooling
layer (with a size of 3 × 3). Following the last Maxpooling layer, both CNNs feature a
fully connected layer consisting of 2 units, followed by Dropout layers with a dropout
rate of 0.8, and a final fully connected layer with 2 units corresponding to the respective
classes, employing SoftMax activation. To merge the two CNNs, we incorporated cross-
stitch units, enabling the combination of learned features after the first and second
Maxpooling layers. Initially, the weighted matrix (α) for each cross-stitch unit is set to
an identity matrix. We employed categorical cross-entropy loss to quantify the disparity
between predicted and true class distributions. Subsequently, individual losses for both
outputs were aggregated, resulting in a comprehensive measure that captures the overall
deviation between predictions and true labels across both outputs. The model aims to
enhance feature learning and representation by enabling cross-stream communication
while maintaining individual stream characteristics. The process of model parameter
selection, including hyperparameter tuning and ablation study experiments, can be found
in the supplementary materials.

4.3 Experiment Setup

Our experiments were designed in two setups. In the first setup, we performed 5-fold
cross validation with both HFO and IED image data; we trained our model with the
training set of randomly selected 1200 images and assessed its performance on the
remaining 300 test images. We report the evaluating metrics such as average accuracy,
sensitivity, specificity, F1 score and area under the curve (AUC) over 5 repetitions of
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the experiment. This setup aims to gauge the MTL models’ efficacy under challenging
conditions characterized by limited annotated data availability.

Moving to the second experiment, we performed leave-one-patient-out, where we
reserved one patient data for test and trained with the rest. Following a similar procedure,
we trained the model with the 1200 training images from four patients and evaluated
its performance using the test set from one patient, repeating the experiment 5 times to
calculate average accuracy, sensitivity, specificity, F1 score and AUC. This experiment
assesses the model’s performance in scenarios where training data is scarce, and anno-
tation for the test data is unavailable for training, essentially measuring the interpatient
classification capabilities of our model under data scarcity.

In addition, we conducted a baseline experiment to demonstrate how feature shar-
ing enhances the overall performance of HFO and IED classification. We recorded the
performance under three conditions: 1) when HFO and IED are classified using two
separate identical models without feature sharing (the baseline), 2) when HFO and IED
are classified using a single model with one cross-stitch unit, and 3) when HFO and IED
are classified using a single model with two cross-stitch units (the proposed model).
For both IED and HFO, we compared the accuracy and F1 score obtained from each
condition.

In all experiments with our proposed model, we maintained consistency by fixing
the seed at 123, learning rate at 0.001 decayed by a factor of 0.95 every 500 steps., the
number of epochs at 200, and utilizing the stochastic gradient descent optimizer. We
used lasso regularization in each convolutional layer. Both HFO and IED images were
resized to 28 × 28 pixels to align with the input layer of the model. The proposed model
was built using the Python programming language, utilizing the TensorFlow and Keras
libraries.

The objective of this study was to develop a robust model capable of effectively
classifying HFO and IED using a small dataset. To evaluate the effectiveness of our
proposed MTL model compared to established methods, we selected existing research
that dealt with small quantities of HFO or IED image data for classification (up to 3000
images) including 2D-CNN by Zuo et al. [4], Resnet18 by Quon et al. [32], and VGG19
[26] as described in our previous study and compared their performance with ours.
In addition, we compared our result with some state-of-the-art (SOTA) architectures
including MobileNet-v2, Efficientnet-b0, NaseNet-mobile, DenseNet-201, Inception-
v3, Xception and a simple Vision transformer (ViT) model [41]. We utilized MATLAB
Deep learning toolbox to build and import the SOTA architectures and evaluate them.

All the experiments were conducted utilizing an Intel(R) Core (TM) i7-10750H
processor, 16GB of RAM, and an NVIDIA GeForce RTX 2070 GPU.

5 Results

Table 1 presents the average accuracy, sensitivity, specificity, F1 score, andAUCobtained
fromboth cross-validation and leave-one-patient-out experiments. The results reveal that
HFO and IED classification achieved accuracies of 90.99% and 93.99% respectively in
5-fold cross-validation. The corresponding F1 scores are reported as 0.80 and 0.82 for
HFO and IED respectively, indicating the successful discrimination between HFO and
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Non-HFO, as well as IED and Non-IED, even with a limited number of annotated data
and imbalanced class distribution.

In the leave-one-patient-out experiment, the mean accuracies for HFO and IED
classification are 78.03% and 81.19% respectively, suggesting the model’s capability in
classifying HFO and IED from new patient data. However, the F1 scores of 0.42 and
0.65 for HFO and IED classification respectively imply that the uneven distribution of
images per class may impact the model’s generalization. Overall, the results suggest
that the fundamental signal differences between patients and class imbalance can affect
model performance.

Table 1. The proposed model’s performance in cross-validation and leave-one-patient-out
experiments.

Evaluation matrix 5-fold cross validation Leave-one-patient-out

HFO IED HFO IED

Mean Accuracy 90.99% 93.99% 78.03% 81.19%

Mean Sensitivity 78.55% 82.02% 43.17% 68.93%

Mean Specificity 91.93% 88.12% 90.63% 85.07%

Mean F1 score 0.80 0.82 0.42 0.65

Mean AUC 85.24% 85.39% 67.34% 74.27%

Figure 5. Presents the results of our baseline experiments using the proposed model
to demonstrate how combining features impacts the classification performance of each
task. By comparing the accuracy and F1 scores for both IED and HFO, we observed a
gradual improvement in performance with an increasing number of sharing units. The
classification accuracy for HFO and IED is 11.86% and 10.8% higher with our proposed
model compared to the baseline model. Additionally, the F1 scores for HFO and IED
increased by 0.2633 and 0.0457, respectively, confirming that sharing learned features
between HFO and IED data enhances classification performance for both tasks.

To validate our proposed model performance, we compared our model’s perfor-
mance with three previous approaches for HFO/IED classification and seven modern
SOTA architectures using our dataset, which includes 1500 HFO and 1500 IED images.
The 5-fold cross-validation results, displayed in Table 2, indicate that our proposed
model outperforms the others in terms of accuracy for both HFO and IED classification.
Additionally, our model achieved the highest F1 scores for both HFO and IED classi-
fication (with scores tied with MobileNet-v2, EfficientNet-b0, and Xception for IED).
This demonstrates our model’s superior performance compared to the mentioned SOTA
methods and its enhanced capability in classifying both positive and negative classes
for HFO and IED under challenging conditions characterized by limited availability of
annotated data.

Finally, to verify the efficiency of the proposed model, we compared it with the
aforementioned models in terms of total parameter count (in millions), model size (in
megabytes), and inference time (in milliseconds) required to classify 300 test images for
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Fig. 5. Baseline experiment results. The leftmost architecture represents the baseline condition
where HFO and IED are classified using separate models. The middle architecture is a single
model for HFO and IED classification with one sharing unit. The rightmost architecture is our
proposed model, which includes two feature-sharing units. Gradual improvement in performance
is observed as the number of sharing units increases.

both HFO and IED (combined classification time) as shown in Table 3. Remarkably, our
proposed model has the shortest inference time of 455 ms. It also has the second lowest
number of parameters at 1.06 million and the second smallest size at 4.0 Megabytes.
Compared to the SOTA architectures, these numbers are quite low. This demonstrates
that by utilizing cross-sharing between related modal features, efficiency and robustness
can be achieved in HFO and IED classification with a lightweight model such as our
proposed one.

6 Discussion

The multi-modal MTL model approach outlined in this paper offers numerous advan-
tageous qualities, including robustness, simplicity, lightweight design, and highly effi-
cient performance. From a practical standpoint, the task of preparing labeled datasets
for each patient before surgery poses significant challenges and consumes considerable
time. In this context, the MTL-based HFO and IED classification approach proposed in
this study presents a practical solution for detecting epilepsy biomarkers and localizing
them, requiring only a few annotated datasets. By employing a straightforward MTL
model, this approach circumvents the necessity for complex computations and facili-
tates prompt analysis. HFO and IED images, both derived from ECoG signals, contain
complementary information. By sharing features, our proposed model could leverage
common patterns and structures in both image types, leading to a more comprehensive
data representation. Thus, shared feature extraction enhances the model’s ability to iden-
tify subtle differences and similarities between HFO and IED events even with a lower
number of learning parameters. This showcases efficiency in classification performance
and supports the robustness of our proposed approach.

On another note, accurate biomarker detection plays a pivotal role in the precise
localization of the surgical region within the brain. Previous studies show a strong corre-
lation between biomarker populations and SOZ localization, suggesting SOZ electrodes
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Table 2. Comparison between existing models and state-of-the-art models with the proposed
model, experimented with our HFO and IED dataset.

Model 
name

Previous
use

Accuracy Sensitivity Specificity F1 score

HFO IED HFO IED HFO IED HF
O

IED

2D-CNN HFO 
classifica-

tion [4]

85.47% 86.27% 71.12% 86.27% 91.28% 88.02% 0.73 0.81

VGG19 HFO 
classifica-

tion
[26]

89.20% 87.24% 77.35% 81.51% 90.40% 90.03% 0.79 0.80

Resnet18 IED 
classifica-

tion
[32]

85.4% 83.40% 81.27% 84.63% 87.06% 82.61% 0.76 0.79

ViT -- 77.53% 74.47% 36.45% 52.30% 91.18% 88.12% 0.67 0.71

Mobile Net-
V2

-- 85.73% 86.27% 74.11% 83.41% 90.44% 88.02% 0.75 0.82

Efficient 
Net- b0

-- 85.86% 86.73% 75.53% 80.29% 90.06% 90.72% 0.75 0.82

Nasenet-
mobile

-- 86.40% 88.80% 73.88% 78.46% 91.47% 91.98% 0.76 0.77

Densenet 
201

-- 87.73% 86.27% 80.82% 76.77% 90.53% 92.12% 0.78 0.81

Inception-
V3

-- 87.33% 87.73% 72.74% 85.87% 93.25% 88.89% 0.77 0.81

Xception -- 86.73% 87.33% 73.64% 82.72% 92.03% 90.18% 0.76 0.82

Proposed 
MTL
model

90.99% 93.99% 78.55% 82.02% 91.93% 88.12% 0.80 0.82

Table 3. Comparison between different models with the proposed model in terms of total
parameter number, model size, and inference time with 300 images for HFO and IED each.

Model name Total parameter
(Millions)

Size (MB) Inference time
(ms)

2D-CNN [4] 0.71 2.9 1532
VGG19 [26] 143.67 548.1 2138

Resnet18 [32] 11.69 44.7 1248
ViT 5.70 21.8 4934

MobileNet- V2 3.50 13.6 2430
EfficientNet- b0 5.29 20.5 4171
Nasenet-mobile 5.30 20.0 6542

Densenet 201 20.01 77.4 8988
Inception-V3 27.16 103.9 9372

Xception 22.90 85.0 7021
Proposed MTL 

model
1.06 4.0 455
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typically contain more biomarker events than other brain regions [5, 38, 42]. By incorpo-
rating multiple biomarkers, the process of localization becomes more refined, offering
enhanced precision and reliability. This refinement is beneficial for neurologists, who
rely on accurate localization for clinical decision-making, also for deep learning models
tasked with assisting in medical image analysis and diagnosis. Our proposed model can
effectively detect both HFOs and IEDs at a time, allowing comprehensive assessment of
the brain’s activity, facilitating both overall evaluation and individual patient analysis.
The practical implications of such a model are profound, in not only detecting critical
biomarkers but also showcasing its potential to significantly improve the surgical local-
ization process, thereby contributing to better patient outcomes and advancing the field
of neurosurgery.

This study has a few shortcomings that should be addressed. To begin, our proposed
model only works with an equal amount of HFO and IED images due to the linear feature
combining used in cross-stitch units. In the future, we plan to address these two issues by
modifying the cross-stitch unit. Next, performance comparisons with existing methods
under the condition of a larger size of the training dataset are currently unavailable due
to the limited number of annotated datasets available in some of the patients. In addition,
due to restrictions and consent issues, HFO or IED annotated ECoG dataset are not to be
found publicly, therefore we could not evaluate our model with other datasets. We hope
to include more patients to validate our results and upon finding other online dataset,
include that as well in future. In addition, we observed intrinsic variation between sub-
jects and observed low sensitivity in patient-wise classification, indicating that themodel
struggled to correctly classify positive classes such as HFO and IED, especially when
the number of positive and negative classes is largely imbalanced. Moving forward, we
aim to focus more on this issue. Finally, this study only includes patients who had a suc-
cessful surgical outcome; nevertheless, in some cases, individuals may still experience
seizures following surgery. In future studies, we intend to study the effectiveness of our
technique on such critical patients as well. Prior research on surgical region localization
has indicated that the utilization of multi-modal biomarkers [42, 43] offers enhanced
localization performance, accurate diagnosis and disease monitoring compared to sin-
gle biomarker approaches. In this context, our proposed multi-modal MTL biomarker
detection approach promises to contribute to improving diagnosis, treatment as well as
patients’ quality of life.

7 Conclusion

This paper introduces a novel multi-modal MTL model designed to automatically clas-
sify HFO and IED, two critical epilepsy biomarkers, simultaneously from distinct
datasets. To the best of our knowledge, this is the very first attempt to imply MTL
in classification of multiple epilepsy biomarkers. Leveraging the benefits of combining
the hidden feature representations of two tasks, our proposed model demonstrates the
capability to perform both HFO and IED classification efficiently from small datasets.
Achieving cross-validation accuracies of 90.99% and 93.99% for HFO and IED respec-
tively, alongside respective F1 scores of 0.80 and 0.82, highlights the effectiveness of our
approach. Moreover, our leave-one-patient-out experiments yield accuracies of 78.03%
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and 81.19% for HFO and IED classification, indicating the model’s generalization abil-
ity. Comparative analysis proved the efficiency and robustness of our model, despite
its simplicity and lightweight nature. By employing multi-modal MTL, our proposed
framework offers promises to clinical research, potentially reducing the dependency on
large number of annotated datasets while facilitating precise identification of both HFO
and IED biomarkers. In the future, we envision including more patients in our study and
creating a system that can pinpoint surgical regions in the brain automatically based on
the population information of these biomarkers.
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Abstract. Deep neural hashing (DNH) has demonstrated its effective-
ness in content-based medical image retrieval (CBMIR) for efficient
nearest-neighbor search in large image datasets. It learns a hash func-
tion to generate hash codes from the images. Conventional pairwise DNH
methods are inadequate for multi-label CBMIR as they do not incorpo-
rate between the Hamming distance (HD) of hash codes and the Jaccard
similarity coefficient (JSC) of label sets for an image pair. This work
introduces a JSC-based loss function called adaptive HD loss (AHDL) for
learning HD between hash pairs using a deep neural network to retrieve
multi-label medical images. AHDL helps the model assign an appropriate
HD between a pair of hash codes based on their image similarity level.
We also adopt pairwise multi-label classification loss to generate unique
features for each class combination. Experiments are demonstrated on
the publicly available NIH chest X-ray dataset. Our method achieves
3.98% higher normalized discounted cumulative gain compared to the
state-of-the-art method for a top-100 image retrieval task.

Keywords: Content-based medical image retrieval · Deep neural
hashing network · Jaccard coefficient · Hamming distance · Pairwise
similarity

1 Introduction

Content-based medical image retrieval (CBMIR) offers clinicians valuable evi-
dence for assessing cases with similar symptoms or pathological representations
[3,22]. Feature extraction and ranking of images based on the similarity of a
query image are two critical steps in CBMIR. With the rapid growth in med-
ical imaging, efficient and accurate retrieval of relevant information from large
databases remains a challenge in routine radiology workflows [8,18]. The inter-
pretation of medical images often relies on the expertise of professionals. The
utilization of case reports limited to medical images as diagnostic benchmarks
has been shown to affect expert interpretation significantly. CBMIR is capable
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of retrieving similar cases of medical images for supplementary analysis to bridge
variations across diagnoses by experts [8,27].

The task of multi-label medical image retrieval is challenging because it
entails assigning multiple labels or categories to a given medical image [11,25].
Consequently, there is a growing focus on multi-label CBMIR tasks due to their
practicality in real-life scenarios. As an instance, an organ in the human body is
affected by multiple pathologies simultaneously. The similarity associated with
various pathology in medical images could have been very subtle, so it is nec-
essary to use advanced feature extraction approaches for more comprehensive
analysis [7]. Challenges in multi-label medical image retrieval include the abil-
ity to accurately capture complex relationships represented by different labels,
address class imbalance issues, and developing efficient retrieval algorithms capa-
ble of handling large-scale datasets [11,13]. These challenges create difficulties for
traditional retrieval methods, thereby necessitating the development of advanced
algorithms to enhance the retrieval performance.

Deep neural hashing (DNH) methods [21,23] have emerged as promising
solutions for medical image retrieval. These methods involve encoding medical
images into compact binary codes while preserving similarity relationships in
the Hamming space [4]. It learns advanced hash functions that can generate
hash codes from images. Hashing is used for feature extractors by transform-
ing the images into binary representations. These hash codes facilitate efficient
nearest-neighbor searches within extensive image datasets. After generating hash
codes from images, the Hamming distance (HD) is often used to measure the
semantic similarity between images. HD between a pair of hash codes is finite
and inversely proportional to the similarity of the images they represent. There-
fore, incorporating HD effectively into the ranking algorithm ensures that similar
images are prioritized higher in the retrieval list, enhancing the overall perfor-
mance of the retrieval system.

In the context of multi-label medical images, a pair of images may exhibit
comorbid pathologies as well as distinct pathologies. So, HD between generated
hash codes of a multi-label image pair should depend on the proportion of shared
labels out of the total possible labels for the pair. An example regarding this is
illustrated in Figure 1. There are three possible labels: Atelectasis, Effusion, and
Infiltration. Consider three images xi,xj , and xk with their label sets denoted
as yi = {1, 0, 0},yj = {1, 1, 0}, and yk = {0, 1, 1} respectively. The value 1 in
a label set indicates that the pathology is associated with this image, while 0
indicates otherwise. The number of all possible labels, shared labels, and Jaccard
similarity coefficient (JSC) [2] between an image pair xi,xj are denoted as n

(1)
ij (=

|yi∪yj |), n(2)
ij (= |yi∩yj |), and

n
(2)
ij

n
(1)
ij

respectively. In this example, n
(1)
ij = 2, n

(2)
ij =

1, n
(1)
jk = 3, n

(2)
jk = 1. Since,

n
(2)
ij

n
(1)
ij

>
n
(2)
jk

n
(1)
jk

, the preferable scenario is that the HD

between hash codes for xj ,xk is higher than the HD between hash codes for
xi,xj . In the other words, for each unique combination of n

(1)
ij and n

(2)
ij , the HD

should vary. Indeed, as the JSC between the label sets of an image pair increases,
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indicating a higher degree of similarity in their pathology manifestations, the HD
between the corresponding hash pair should decrease. This implies that the JSC-
based similarity measurement has the capability to delineate nuanced multi-level
semantic similarities. So, there is a need for an advanced learning hash function
capable of establishing a one-to-one relationship between the HD of hash pairs
and the JSC. Such a function would effectively capture the intricate relationships
between label similarities and HD, facilitating more accurate representation and
retrieval of multi-label medical images.

Fig. 1. An example overview of our objective using three images xi (Atelectasis),

xj (Atelectasis, Effusion), xk (Effusion, Infiltration). Here
n
(2)
ij

n
(1)
ij

>
n
(2)
jk

n
(1)
jk

>
n
(2)
ik

n
(1)
ik

= 0,

where each ratio is calculated from corresponding image label sets. In this scenario,
dH(bi,bj) < dH(bj ,bk) < dH(bi,bk) will be followed, where bi,bj ,bk are the hash
codes corresponding to each of the images.

In this work, we propose a loss function to foster similarity learning between
a pair of images, utilizing the JSC as a metric. Adaptive HD loss (AHDL) is
employed to assign suitable Hamming distance (HD) between a pair of hash codes
according to their image similarity level based on the value of the JSC. Besides
HD learning, semantic classification is another significant learning objective to
learn hash representation from images. We adopt pairwise multi-label classifica-
tion loss to generate unique features for each different label combination. The
main contributions of this work are summarized as follows:

– Method of learning hash codes using a neural network in order to retrieve
images contextually sensitive to their semantic similarity of multiple patholo-
gies imaged in an organ.

– To the best of our knowledge, no existing work learns hash codes that simul-
taneously consider both the HD and the JSC for multi-label CBMIR. In this
work, we develop an advanced learning hash function that establishes a one-
to-one relationship between the HD of hash pairs and the JSC of the label
set of the corresponding image pairs.
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– A loss function designed to generate appropriate hash codes so that accurate
HD is based on the similarity levels between a pair of images.

– The commonly used metrics, normalized discounted cumulative gain (nDCG),
average cumulative gains (ACG), and wighted mean average precision
(wMAP) are utilized in order to measure the retrieval performance of the
proposed method.

The paper is organized as follows. The prior art of DNH for image retrieval is
presented in Section 2. The proposed method is introduced in Section 3. Exper-
imental details are discussed in Section 4. Results and discussions are presented
in Section 5. This work is concluded in Section 6.

2 Prior Art

In this section, we will primarily discuss some related works in this domain,
including methods related to medical image retrieval and DNH for multi-label
image retrieval. The methods for image retrieval utilizing hashing can be broadly
categorized into two categories: data-independent hashing (DIH) and data-
dependent hashing (DDH).

DIH refers to a hashing technique where the hash functions are generated
without relying on the specific characteristics or content of the data being
hashed. This technique does not utilize any labeled data or information for the
hashing process [24]. Local sensitive hashing (LSH) is a widely used DIH tech-
nique that employs randomized projections or permutations to design different
hash functions, aiming to return the identical codes for similar data items with
high probability [14,24].

The rapid expansion of data coupled with the advancement of deep neu-
ral networks (DNN) [20] is reshaping the landscape of various fields, including
image retrieval. DNH has gained significant attention in recent times due to
the advancements in deep neural networks (DNN) [20] for image representa-
tion. These methods incorporate DNN into the process of constructing binary
codes for images. By combining the strengths of deep learning with the computa-
tional efficiency and storage benefits of hashing techniques, DNH-based methods
effectively map the image representation space learned by deep models into a
binary space. DNH techniques are suitable for large datasets, which is a common
requirement in the medical field where medical images are continually being gen-
erated and stored. The concept of DNH [19,24,26] is introduced with the help of
DNN to build a hash function that effectively leverages data distributions and
incorporates information regarding class labels present in a dataset. Its objective
is to ensure that the nearest neighbor of any pattern in the space of hash codes
closely resembles the neighboring patterns in the original space [24]. Preserv-
ing data similarity in the Hamming space is the primary objective of majority of
learning-based data-dependent hashing techniques [1,9,28]. Several studies have
previously concentrated on supervised hashing-based image retrieval using the
similarity matrix and quantization loss [29]. HashNet proposes a method to learn
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non-smooth binary activation in order to generate binary hash codes from imbal-
anced similarity data [5]. Deep Cauchy hashing (DCH) model utilizes a pairwise
cross-entropy loss based on the Cauchy distribution to generate binary hash
codes [4]. OrthoHash is based on one loss, eliminating the need for balancing
coefficient tuning in various losses [12]. OrthHash generates center hash codes
[15] using Bernoulli distributions. Attention-based triplet hashing (ATH) net-
work [10] is an end-to-end system designed to learn low-dimensional hash codes
that preserve the categorization, region of interest, and small-sample informa-
tion. Multi-scale triplet hashing [6] and deep semantic ranking hashing based on
self-attention (DSHA) [28] offer an effective and scalable solution by leveraging
multi-scale information and triplet loss to achieve accurate and efficient retrieval
of medical images. The previous learning-based hashing methods [31] are able to
only take care of n

(1)
ij but do not properly incorporate the information between

n
(1)
ij , n

(2)
ij , and the HD between hash codes. This affects the ranking in the image

retrieval list and, therefore, retrieval performance. Images with the same simi-
larity level can be more finely differentiated using the JSC. However, a learning
method that generates hash codes considering both the HD and the JSC has
not been properly developed yet. In this work, we introduce a pairwse learning
approach to generate hash codes from image pairs while accounting for the JSC
between the label sets of these multi-label medical image pairs. Our method
fulfills the following requirements. (i) generate unique features for different com-
binations of pathology present in images. (ii) HD between a pair of hash codes of
multi-label images depends on the number of match pathologies. The overview
of our approach and CBMIR using DNH is illustrated in Figure 2.

3 Proposed Methodology

3.1 Problem Statement

Consider a training set of images represented as XT = {xT
1 ,xT

2 , . . . ,xT
i , . . . ,xT

U1
}.

yT
i ∈ {0, 1}L represents the label set of image xT

i ∈ R
M×N , where L denotes

the number of possible labels in the dataset. Consider a non-linear hash function
F : RM×N �→ {−1, 1}K such that each xT

i ∈ R
M×N is an image to be hashed

into a K-length binary hash code bT
i ∈ {−1, 1}K .

Let, the number of all possible labels and shared labels between an image
pair xT

i ,xT
j are denoted as n

(1)
ij (= |yT

i ∪ yT
j | �= 0), n(2)

ij (= |yT
i ∩ yT

j |) respec-
tively. Our aims to learn F (·) following a supervised learning approach such that

dH(bT
i ,bT

j ) ≤ dH(bT
i ,bT

k ) if and only if
n
(2)
ij

n
(1)
ij

≥ n
(2)
ik

n
(1)
ik

, where bT
i = F (xT

i ) and

dH(·) represents the HD between two hash codes of length K. The idea is that
if the number of common labels between a pair of images is more, then the HD
between a pair of generated hash codes should be less.
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Fig. 2. The figure on the left illustrates the training process of a deep neural hashing
network (DNHN), where the network learns by the HD between real-valued hash codes
(hq,hi,hj ,hk). We aim to learn correct order of dH(hi,hq), dH(hj ,hq), dH(hk,hq)
through the Jaccard coefficient, where dH(·) represents HD between two hash codes.
Conversely, the figure on the right demonstrates the generation of binary hash codes
(bq,bi,bj ,bk) achieved by applying the sign(·) function. The order of the HD is
dH(bi,bq) < dH(bj ,bq) < dH(bk,bq) and ideal image ranking with respect to xq.

3.2 Hash Code Generation

The hash code generation process from images can be expressed through F (·)
using the following equations,

bT
i = sign(hi) = F (xT

i ) (1)
hi = Tanh(fch(zi)) (2)

zi = nete(xT
i ) (3)

where, hi ∈ [−1, 1]K and bT
i ∈ {−1, 1}K represent real valued and binary hash

codes respectively. The sign(·) function [4] is employed to convert the real valued
hash to a binary hash representation. nete(·) represents the CNN-based feature
encoding function is given by,

nete(·) �→ Conv2D : 64c11w4s2p → ReLU → MaxPool2D : 3w2s
→ Conv2D : 192c5w1s2p → ReLU → MaxPool2D : 3w2s
→ Conv2D : 384c3w1s1p → ReLU → Conv2D : 256c3w1s1p → ReLU

→ Conv2D : 256c3w1s1p → MaxPool2D : 3w2s → Flatten

(4)

fch(·) is the real valued hash generating fully connected layers.

fch(·) �→ Linear : 4096 → ReLU → Linear : K (5)
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(2) and (3) are used during training to avoid the vanishing gradient [4] challenge
faced in (1) on account of the sign(·) function. Thus, we utilize hi and bT

i during
training and inference respectively.

During the training process, we utilize two distinct loss functions: adaptive
HD loss (AHDL) and pairwise multi-label classification loss (PMCL). The pur-
pose of the PMCL is to create distinctive features for various combinations of
pathologies present in the images. Meanwhile, AHDL is applied to generate hash
codes, ensuring that the Hamming distance between these codes appropriately
reflects the similarity levels between images. Our method is trained in an end-
to-end manner, in which image feature learning and HD learning via hash codes
from image pairs are performed simultaneously.

3.3 Adaptive Hamming Distance Loss (AHDL)

The idea of designing adaptive HD loss for multi-label image retrieval is that HD
between hash codes of a image pair should be depended on the number of total
possible pathology (n(1)

ij = |yT
i ∪ yT

j |) and the number of common pathology

(n(2)
ij ) = |yT

i ∩ yT
j | between xT

i and xT
j . When

n
(2)
ij

n
(1)
ij

is increased HD should be

less and vice-versa. Let, hi,hj be the real valued hash codes of this image pair
xT
i and xT

j respectively. Here are some constraints specified for this image pair,

1. 0 ≤ n
(2)
ij ≤ n

(1)
ij ≤ L and n

(1)
ij �= 0 ∀i, j.

2. n
(1)
ij = 1 implies yT

i = yT
j . In this scenario, n

(2)
ij = n

(1)
ij = 1 ∀i, j.

3. 0 ≤ dH(hi,hj) ≤ K, ∀i, j.

Table 1. An example of computing HD based on similarity level of an image pair.

Here L = 3 and K = 16. L
(n

(1)
ij )

HD (hi,hj) is the list of HD for given value of n
(1)
ij .

D
(n

(1)
ij ,n

(2)
ij )

H (hi,hj) is the HD, collected from the list L
(n

(1)
ij )

HD (hi,hj) for given specific

value of n
(2)
ij .

yT
i yT

j n
(1)
ij n

(2)
ij L

(n
(1)
ij )

HD (hi,hj)D
(n

(1)
ij ,n

(2)
ij )

H (hi,hj)

{1, 0, 1} {0, 1, 0} 3 0 [16, 10, 5, 0] 16

{1, 1, 1} {1, 0, 0} 1 10

{1, 1, 1} {1, 1, 0} 2 5

{1, 1, 1} {1, 1, 1} 3 0

{1, 0, 0} {0, 1, 0} 2 0 [16, 8, 0] 16

{1, 1, 0} {1, 0, 0} 1 8

{1, 1, 0} {1, 1, 0} 2 0

{1, 0, 0} {1, 0, 0} 1 1 [16, 0] 0
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The adaptive HD between hi,hj is based on the value of n
(1)
ij , n

(2)
ij and defined

by,

D
(n

(1)
ij ,n

(2)
ij )

H (hi,hj) = L
(n

(1)
ij )

HD (hi,hj)[n
(2)
ij ] (6)

L
(n

(1)
ij )

HD (hi,hj) =

[
K,

⌊
(n(1)

ij − 1)K

n
(1)
ij

⌋
,

⌊
(n(1)

ij − 2)K

n
(1)
ij

⌋
, . . . , 0

]
(7)

The HD between any hash pair ranges from 0 to K. Given that 0 ≤ n
(2)
ij ≤

n
(1)
ij , the number of possible values for n

(2)
ij is (n(1)

ij + 1). (n(1)
ij + 1) approxi-

mately equidistant points are selected from the interval [0,K] using the floor
function. We then store these HD in a descending order list, denoted as

L
(n

(1)
ij )

HD (hi,hj) in (7). L
(n

(1)
ij )

HD (hi,hj) is a descending order list of HD between
hi,hj based on the value of n

(1)
ij . From (6), we can observe that as the num-

ber of shared levels increases, the value of D
(n

(1)
ij ,n

(2)
ij ))

H (hi,hj) decreases. When
n
(2)
ij = n

(1)
ij = 1, L

(1)
HD(hi,hj) = [K, 0] implies D

(1,1)
H (hi,hj) = 0. An illustra-

tive example is depicted in Table 1. When n
(1)
ij = 3, the possible values of n

(2)
ij

are 0, 1, 2, 3. Then we get, L
(3)
HD(hi,hj) = [16, 10, 5, 0] from (7). If there is no

shared label i.e, n
(2)
ij = 0 then D

(3,0)
H (hi,hj) = 16. Similarly, D

(3,1)
H (hi,hj) = 10,

D
(3,2)
H (hi,hj) = 5, D

(3,3)
H (hi,hj) = 0. The value of D

(n
(1)
ij ,n

(2)
ij ))

H (hi,hj) is distinct
for each unique combination of n

(1)
ij and n

(2)
ij . The AHDL for image pair on XT

is computed as,

J1 =
∑

xT
i ,xT

j ∈XT

log

⎛
⎝cosh

⎛
⎝D

(n
(1)
ij ,n

(2)
ij )

H (hi,hj) − dH(hi,hj)
K

⎞
⎠

⎞
⎠ (8)

where the predicted HD dH(hi,hj) is defined by,

dH((hi,hj) =
K

2
(1 − cos(hi,hj)) (9)

The above formula describes the relationship between cosine similarity and
normalized Euclidean distance for hash codes hi and hj of length K, where
cos(hi,hj) represents the cosine similarity between the two hash codes. The
above loss in (8) is deduced from absolute value |·|. Given a real number x, we
can write,

|x| ≈ log(cosh(x)) (10)

D
(n

(1)
ij ,n

(2)
ij )

H (hi,hj) and dH(hi,hj) respectively can be considered as ground truth
and predicted HD for this image pair. The idea is based on the value of n

(1)
ij and

n
(2)
ij ; this loss forces the predicted HD to closely trail the ground truth HD.
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3.4 Pairwise Multi-label Classification Loss (PMCL)

The PMCL on a train set XT is defined by,

J2 = −
∑

xT
i ,xT

j ∈XT

{
L∑

l=1

(
yT
il log(σ(ŷT

il)) + (1 − yT
il) log(1 − σ(ŷT

il))

)

+

(
yT
jl log(σ(ŷT

jl)) + (1 − yT
jl) log(1 − σ(ŷT

jl))

)} (11)

where ground truth labels yT
il,y

T
jl ∈ {0, 1} indicates whether the l-th label is

present in samples xT
i and xT

j . σ(·) is sigmoid function. ŷT
i , ŷT

j are the predicted
classes of xT

i ,xT
j respectively. These are obtained from the classification network

netc(·). netc(·) is defined as,

netc(·) �→ Linear : 4096 → ReLU → Linear : L (12)

Since multi-label classification serves as a fundamental loss function to generate
distinctive features for various combinations of pathologies present in the images,
obtaining accurate feature vectors zi and zj is crucial for deriving accurate
representations hi and hj for an image pair. For this purpose, we utilize netc(·),
applying the PMCL loss to these feature vectors, which are the output of nete(·).

3.5 Overall Loss

The overall loss is computed as,

J = λ1J1 + λ2J2 (13)

where, λ1 and λ2 is scale hyperparameters. Minimizing J , thereby updating
the parameters of nete(·), netc(·), and fch(·), which enable us to achieve our
objectives. The overall training procedure is illustrated in Figure 3.

4 Experiments

4.1 Experimental Setup

We have implemented a modified AlexNet architecture [17] to build the nete(·)
and fch(·). netc(·) comprises of two linear layers inherited from nete(·). Adam
optimizer [16] is used to learn the parameters of the above three networks. The
weight decay parameter and batch size are set to 5×10−3 and 512, respectively.
The training was initialized with a learning rate of 1×10−4, and then the learning
rate scheduler was used with patient 40 and factor 0.4. The values of hyperpa-
rameters λ1 = 1 and λ2 = 1.5 in (13). λ1 and λ2 are chosen through hyperpa-
rameter tuning using random search within the range [0, 5] with a step size of
0.5. The experiments are conducted on a server equipped with 2× Intel Xeon
4110 CPUs, 12×8 GB DDR4 ECC Reg. RAM, 2×4 TB HDD, 4× Nvidia GTX
1080Ti GPUs, each with 11 GB DDR5 RAM, and Ubuntu 20.04 LTS operating
system. The algorithms are implemented using Python 3.9 with PyTorch 1.11
and CUDA 11.2.
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Fig. 3. An overview of training procedure of our method. Given an image pair xT
i ,x

T
j

along with their corresponding pair label sets yT
i ,y

T
j , we first compute the ground truth

HD D
(n

(1)
ij ,n

(2)
ij )

H (hi,hj). Next, we pass the generated feature vectors zi and zj from the
network nete(·) through both the networks fch(·). The real-valued hash vectors hi and
hj are then obtained after applying Tanh(·) on the outputs of fch(·). Subsequently,
utilizing (8), we calculate the loss terms J1. J2 is computed using (11) based on the
predicted class by netc(·). Minimizing the total loss J allows for the optimization of
the weights of nete(·), fch(·), and netc(·).

4.2 Dataset

We have utilized the publicly available NIH Chest X-ray database 1, which con-
sists of 112,120 frontal-view X-ray images from 30,805 unique patients. Each
image is associated with one or more of the 14 common thoracic pathologies
identified from the accompanying radiological reports. We have selected 51,480
images depicting the 13 most frequent pathologies, including Atelectasis, Con-
solidation, Infiltration, Pneumothorax, Edema, Emphysema, Fibrosis, Effusion,
Pneumonia, Pleural thickening, Cardiomegaly, Nodule, and Mass. These images
are divided into three non-overlapping image sets: training set (XT), gallery
set (XG), and query set (XQ), where |XT| = 38, 610, |XG| = 10, 296 and
|XQ| = 2, 574.

4.3 Evaluation metrics

The metrics most commonly used by multi-label CBMIR methods are: normal-
ized discounted cumulative gain (nDCG), average cumulative gain (ACG), and
weighted mean average precision (wMAP) [23]. These metrics provide a compre-
hensive evaluation by assessing ranking quality, overall relevance, and precision-
recall balance respectively. During training, we use the normalized relevance
score (i.e., JSC). During evaluation, we use only the relevance score, adhering
to the same strategy as existing methods on multi-label image retrieval [31].

1 https://www.kaggle.com/datasets/nih-chest-xrays/data

https://www.kaggle.com/datasets/nih-chest-xrays/data
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Normalized discounted cumulative gain (nDCG) In order to compute
nDCG@p for top-p retrieval, first we need to calculate DCG@p for top-p
retrieval. The mathematical formulation for DCGq@p of query image xQ

q is given
by,

DCGq@p =
p∑

r=1

2Rq(r) − 1
log2(r + 1)

(14)

where relevance score Rq(r)(= |yQ
q ∩ yG

r |) represents the number of pathologies
between xQ

q ∈ XQ and xG
r ∈ XG are matched.

We normalize this by dividing it with the maximally achievable value or Ideal
DCG (iDCG). Finally to obtain,

nDCGq@p =
DCGq@p

iDCGq@p
(15)

where iDCGq@p = DCGq@p of ideal ranking or best possible ranking.
Finally,

nDCG@p =
1

|XQ|
∑

xQ
q ∈XQ

nDCGq@p (16)

Average cumulative gains (ACG) The ACG@p metric quantifies the cumu-
lative similarity between a query image and the top − p retrieved images. It is
calculated by summing the similarities between the query image and each of the
top − p retrieve in the retrieval list. ACG@p can be formulated as,

ACG@p =
1

|XQ|
∑

xQ
q ∈XQ

p∑
r=1

Rq(r)
p

(17)

Weighted mean average precision (wMAP ) The wMAP can be formulated
by,

wMAP =
1

|XQ|
∑

xQ
q ∈XQ

(∑p
r=1 δ(Rq(r) > 0)ACG@r∑p

r=1(δ(Rq(r) > 0))

)
(18)

where δ(·) is the indicator function.

5 Results and Discussions

5.1 Comparison with existing methods

Since our method is based on pairwise learning, we compare it with four recent
state-of-the-art (SOTA) pairwise multi-label DNH methods IDHN [31], DCH
[4], OrthoHash [12], CSQ [30], HSDH [1]. The same network i.e., AlexNet,
is used for a fair comparison. The parameters of SOTA models are selected
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Table 2. Comparison of nDCG and ACG with pairwise deep hashing methods for
different hash code lengths. - indicates that it is not evaluated since it is not applicable
for the specific hash code length.

Method nDCG@100 ACG@100

16 32 48 64 16 32 48 64

IDHN [31] 0.5900 0.5931 0.5797 0.5955 0.3283 0.3620 0.3323 0.3158

DCH [4] 0.5916 0.6139 0.6005 0.6084 0.3330 0.3550 0.3363 0.3383

OrthoHash [12] 0.5905 0.5947 0.6244 0.5916 0.3294 0.3387 0.3463 0.3256

CSQ [30] 0.5905 0.6215 - 0.6194 0.3308 0.3780 - 0.3624

HSDH [1] 0.5920 0.5917 0.6059 0.5910 0.3330 0.3326 0.3416 0.3309

Ours 0.6318 0.6363 0.6426 0.6362 0.3874 0.3869 0.4028 0.3930

Table 3. Comparison of wMAP with the SOTA for different hash code lengths.

Method wMAP

16 32 48 64

IDHN [31] 0.3619 0.4016 0.3776 0.3705

DCH [4] 0.3671 0.4174 0.3903 0.3990

OrthoHash [12] 0.3626 0.3713 0.4318 0.3644

CSQ [30] 0.3642 0.4377 - 0.4319

HSDH [1] 0.3674 0.3660 0.3895 0.3773

Ours 0.4572 0.4600 0.4767 0.4664

according to those specified in their respective original publications. We evalu-
ate four variants of our proposed methods with four different hash code lengths
K = {16, 32, 48, 64}. The comparison results for nDCG and ACG are presented
in Table 2, while those for wMAP are presented in Table 3. These demonstrate
the substantial superiority of our proposed method over SOTA methods. CSQ
achieves the best results for K = 32 hash code length across all SOTA com-
pared. Our method shows an improvements over CSQ, with an approximately
improvement of 4.13%, 1.48%, 1.68% for hash code lengths K = {16, 32, 64}
respectively in terms of nDCG@100. Furthermore, our method demonstrates
relative increases of 5.66%, 0.89%, 3.06% in ACG@100, and 9.30%, 3.23%, 3.45%
in wMAP for hash code lengths K = {16, 32, 64} respectively over CSQ. CSQ
is not applicable for K = 48. Notably, our method achieves 1.82%, 5.65%, 4.49%
higher nDCG@100, ACG@100, and wMAP than OrthoHash for K = 48 respec-
tively. Our method surpasses HSDH with improvements of 3.98%, 5.44%, and
8.98% in nDCG@100, ACG@100, and wMAP , respectively, for K = 16. Our
method demonstrates comparable or even superior performance with shorter
binary codes. For instance, our method with a 16-bit binary code significantly
outperforms all other hashing methods by large margins for each metric. These
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results highlight the effectiveness of our proposed method for retrieving multi-
label medical images.

Fig. 4. The above figures depict five random images selected from the training set
and generated hash codes, with their respective labels annotated. Atelectasis (’Ate’),
Pneumonia (’Pnea’), Consolidation (’Con’), Effusion (’Eff’), Infiltration (’Inf’).

5.2 Learning of Hamming Distances During Training

We consider five randomly picked training images xT
1 ,xT

2 ,xT
3 ,xT

4 ,xT
5 along with

their hash codes h1,h2,h3,h4,h5. These images are illustrated in Figure 4

with their labels. Here n
(2)
12

n
(1)
12

= 3
5 ,

n
(2)
13

n
(1)
13

= 3
4 ,

n
(2)
14

n
(1)
14

= 2
4 = 1

2 ,
n
(2)
15

n
(1)
15

= 3
4 . The

ground truth Hamming distances are calculated using (6) and (7), while the
predicted Hamming distances are calculated using (9). The detailed calculations
are presented in Table 4. It can be observed that the predicted Hamming dis-
tance (dH(·)) closely approximates the ground truth Hamming distance (DH(·))
between all pairs of hash codes for K = {16, 32}. For K = 48, the distances are
close except for the hash pair (h1,h4), and for K = 64, except for (h1,h2), and
(h1,h4). The mean and standard deviation of the ground truth HD and pre-
dicted HD are presented in Table 4. These results show that smaller hash codes
exhibit less disparity between these HD values. These findings confirm that our
approach is particularly effective when employing shorter hash code lengths for
these five images that are analyzed.

5.3 Top Retrieved Images

In Figure 5, we present retrieved images obtained using our approach. Images
exhibiting more similarity in pathologies with the query image are prioritized
to appear at the top of the ranking. This verifies the capability of our method
to maintain multi-level similarity, thereby retrieving images that offer a higher
level of similarity for enhanced assessment support.
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Table 4. The comparison between ground truth HD (DH(·)) and predicted HD (dH(·))
for five randomly selected images (depicted in Figure 4) across different hash code
lengths. The last column indicates the mean and standard deviation (SD) between
these HD.

Hash code pairs (h1,h2) (h1,h3) (h1,h4) (h1,h5) mean ± SD

K = 16 ground truth HD 6 4 8 4 5.5 ± 1.65

predicted HD 5.16 3.74 7.78 4.04 5.18 ± 1.59

K = 32 ground truth HD 12 8 16 8 11 ± 3.31

predicted HD 13.29 9.71 13.67 7.55 11.05 ± 2.54

K = 48 ground truth HD 19 12 24 12 16.75 ± 5.06

predicted HD 17.47 15.78 21.24 25.33 19.95 ± 3.67

K = 64 ground truth HD 25 16 32 16 22.25 ± 6.72

predicted HD 17.27 14.45 17.10 13.23 15.51 ± 1.72

Fig. 5. Qualitative results for our method. The images on the left side represent the
query images, while those on the right side depict the top-5 retrieved images. Atelectasis
(’Ate’), Pneumonia (’Pnea’), Consolidation (’Con’), Effusion (’Eff’), Infiltration (’Inf’),
Pneumothorax (’Pne’), Mass (’Mas’), Cardiomegaly (’Car’), Edema (’Ede’).

6 Conclusion

In this work, we have developed an effective CBMIR system tailored for large-
scale multi-label CBMIR. Our approach leverages DNH, which learns HD
between hash codes to generate image-specific hash codes. We design a loss
function for effective HD learning using the JSC between image labels. Through
extensive experiments conducted with a publicly available multi-label medical
image datasets, our proposed method demonstrated superior performance com-
pared to existing methods. It effectively learns features and hash codes, enhanc-
ing the performance of multi-label CBMIR. This work provides insight into the
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advantageous nature of leveraging the complementarity between image labels for
hash learning and their HD.
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Abstract. Alzheimer’s treatment requires early detection; yet, predicting pro-
gression is challenging due to significant missing information in medical data
for biomarkers and neuroimages. Recent studies tackled the missing data issue
in biomarker, by introducing an imputation module to handle the missing val-
ues. However, for neuroimaging modalities such as Magnetic Resonance Imaging
(MRI) andPositronEmissionTomography (PET),we still need a reliable system to
handle this major issue. To overcome this, we propose an end-to-end hybrid model
that is capable of handling both missing biomarker data as well as neuroimages.
The proposed model employs a two-fold approach: first, it uses an attention-based
multimodal variational autoencoder to impute missing neuroimages and a mask
imputation strategy for biomarker data. Second, it leverages a recurrent neural
network (RNN) to predict AD progression in future years, effectively handling
missing modalities by reconstructing the missing data before making predictions.
We performed our experiments on 1369 patients from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset and ourmodel achieved 0.6059± 0.0151,
0.6074 ± 0.0163, 0.6166 ± 0.0203, 0.7749 ± 0.0135 in terms of accuracy, pre-
cision, recall, and mAUC, respectively. The results confirm that our proposed
model can be useful for handling missing data and by utilizing both biomarker
and neuroimaging data simultaneously, we can precisely predict the progression
of Alzheimer’s disease in clinical settings.

Keywords: Disease Progression Prediction · Multimodal Variational
Autoencoders · Alzheimer’s Disease

1 Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is the most com-
mon cause of dementia among older adults, characterized by cognitive decline and loss of
brain function [1]. Early and accurate prediction of AD progression is crucial for effec-
tive clinical management, patient care, and the development of therapeutic strategies
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aimed at altering the disease course. Recent advances in neuroimaging and biomarker
research have provided invaluable insights into the pathophysiological foundations of
AD, offering potential predictors for disease progression. However, one of the significant
challenges in utilizing this wealth of data is the frequent occurrence of missing infor-
mation, which can significantly hinder the analysis and interpretation of longitudinal
datasets.

Neuroimaging techniques like magnetic resonance imaging (MRI) and positron
emission tomography (PET) capture the structural and functional details of the
human brain. Recently, predictive models have evolved from unimodal to multi-modal
approaches, as they can provide complementary information of the brain thus improving
the disease characterization and diagnosis. Deep learning models which directly learns
the features from neuroimage, take advantage of the complementary information pro-
vided by multimodal data. However, adopting a multi-modal approach has introduced
greater complexities in datamanagement, particularly the heightened risk of dealingwith
incomplete datasets. Lately, the generative adversarial networks have been employed to
fill in missing modality information by integrating multimodal features [2]. However,
it should be noted that these models are developed for classifying AD diseases rather
than predicting its progression. [3] proposed a multimodal deep-learning framework
combining a 3-dimensional convolutional neural network (CNN) to capture intra-slice
features from MRI volumes and a bi-directional recurrent neural network (BRNN) to
identify inter-sequence patterns for Alzheimer’s Disease progression prediction. This
model utilizes MRI, biomarkers, and demographics to enhance prediction accuracy.
Missing data points were handled using forward and backward filling techniques, which
can introduce bias and reduce model accuracy by not accounting for underlying data
distributions. Hence, there is a need for more appropriate imputation methods that can
better capture the underlying data patterns to improve the robustness and accuracy of
the disease progression predictions.

On the other hand, for biomarker data, early efforts relied on linear statistical mod-
els, but the complexity of AD pathology soon necessitated more sophisticated, non-
linear computational techniques [4]. In response to this challenge, a progressive shift
has occurred towards leveraging deep learning models, which excel in handling vast and
incomplete datasets, thus marking a new era in the prediction of disease progression.
The incorporation of machine learning, and more specifically recurrent neural networks
(RNNs), has revolutionized predictive modeling in AD by capturing the temporal depen-
dencies and patterns within complex longitudinal data. RNNs, and their more advanced
variants such as long short-term memory (LSTM) networks, have been increasingly
applied in the field, demonstrating significant improvements in the prediction of disease
progression by effectively handling time-series data, including irregular time intervals,
varying sampling rates, andmissing data [5][6][7]. However, it is important to emphasize
that these models are limited to imputing only biomarker data.

In this paperwe proposeAlzheimer’sDisease Progression Prediction usingXModal-
ities (ADxPro) with missing of neuroimaging modalities as well as biomarker data.
Uniquely, our model addresses the dual challenge of imputing missing data in longitudi-
nal studies and provides a better prediction result for the AD progression in the follow-up
years. The key contributions are outlined as follows:
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• Our proposed model, ADxPro conducts multi-tasking such as missing neuro-image
reconstruction, imputation of biomarkers and diseases clinical status prediction across
multiple timepoints over a 5-year courses prediction, offering significant development
in understanding and managing AD.

• We propose a joint representation learning module for neuroimaging data that consist
of an attention-basedmultimodal variational autoencoder for unified low-dimensional
representation of diverse neuroimagingdata such asMRI andPET, enhancing learning
and imputation, especially formissingmodalities. Unlike traditionalmodels, ADxPro
excels in processing incomplete datasets, handling neuroimaging and biomarker data
efficiently.

The rest of this paper is arranged as follow. Section 2 gives a brief description of
the related studied on variational autoencoder models and AD progression prediction
models. Section 3 provides the details of our proposed ADxPromodel. The experimental
setup and result analysis are highlighted in Sect. 4. Lastly, Sect. 5 concludes our study
along with limitations and future work.

2 Related Works

In this section, we review previous works on AD progression prediction models related
to data imputation. Recently, deep generative models have demonstrated remarkable
flexibility and expressiveness as unsupervised methods, capable of uncovering the latent
structures within complex, high-dimensional datasets. Variational autoencoders (VAEs)
are being recognized for generating and imputing missing data across various domains,
including healthcare. [8] introduced an approximation of complex data distributions,
offering an unsupervised learning approach in complex datasets. [9] captures biologi-
cally relevant features within its latent space for cancer stratification and predict gene
expression patterns influenced by genetic variations or treatments. [10] proposed the
imputation in mixed-type datasets, employing VAEs to handle both numerical and cat-
egorical data. Multi-modal VAE (MVAE) introduced in [11, 12] delivers a principled
probabilistic formulation to handle missing data. [13] employed a MVAE for normative
modeling, enabling the precise identification of abnormal brain volume deviations in
Alzheimer’s disease by integrating and analyzing multimodal neuroimaging data. These
studies demonstrate the broad applicability of VAEs in dealing with missing data across
various types of datasets and modalities, highlighting their potential in healthcare.

In literature, the AD progression prediction can be classified into three categories:
classification, estimation and modeling. Under classification category, researchers try
to identify whether the disease is stable or progressive over a period of time. Deep
InfoMax (DIM) was developed by [14] to classify the stable and progressive patients
in Cognitive Normal (CN), Mild Cognitive Impairment (MCI) and Alzheimer’s Disease
(AD). In estimation category, cognitive scores such asmini-mental state examination and
Alzheimer’s disease assessment scale-cognitive subscale are estimated by aMultisource
Multitask Learner [15]. These estimates help the doctors to identify the complexity and
progression rate of AD. For modelling category, [16] proposed a probabilistic approach,
Diseases Progression Modeling (DPM), which quantifies the uncertainty in diagnosing
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the severity of individual diseases, with respect to missing data, biomarkers, and follow-
up information.

To tackle themissing information problem, [17] utilized two representations of infor-
mative missingness patterns: masking and time interval. They proposed a deep recurrent
network know as gated recurrent unit with decay (GRU-D) which efficiently use missing
patterns to identify long-term temporal correlations in time series data.MinimalRNN [6]
is employed in predicting patient diagnoses, ventricular volumes, and cognitive scores.
[18] proposed a RNN model called BiPro, which utilizes bidirectional approaches to
integrate past and future data for imputation. However, it is essential to highlight that
these models are solely focused on the imputation of biomarker data.

3 Alzheimer’s Disease Progression Prediction Using X Modalities
(ADxPro)

In this section, we propose an end-to-end framework called ADxPro, a hybrid model
designed to address the challenges of analyzing complex, multimodal medical data,
includingneuroimaging and clinical data. The comprehensive frameworkof the proposed
approach is shown in Fig. 1.

Fig. 1. Comprehensive framework of the proposed model

Our proposed model consists of four main modules: Joint Representation Learning
for Neuroimaging Data, Imputation, Encoder, and Forecast. The joint representation
learning module consists of an attention-based multimodal variational autoencoder-
based architecture that facilitates the integration of different neuroimaging modalities
into a lower-dimensional latent space. The imputation module fills in missing values for
follow-up visits, the encoder captures the data’s temporal dynamics, and the forecast
module uses this information to predict diagnoses and biomarker levels in future visits.
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3.1 Joint Representation Learning for Neuroimaging Data

In the proposed model, we hypothesis that Xt = {ẋ1, ẋ2, …, ẋT} represents an input
sequence of T discrete temporal observations. At a given times step t, the input is
represented as a multi-dimensional array ẋt , which encapsulates various data modalities.
Let imgt , biot and dxt denote the neuro imaging modalities MRI and PET, biomarker
and diagnosis data, respectively, at time step t. dg denotes the demographic data as well
as genetic data, which has constant features such as gender, education, APOE4 allele
except for the age which is incremented yearly. Therefore, the input array at time step t
can be expressed as ẋt = [ imgt , biot , dg, dxt], integrating both dynamic and static data
sources into the model’s framework.

We consider �t as time elapsed since the most recent observed visit prior to the
tth visit. To represent the observation status of elements at the tth visit, we introduce a
binary masking vector mt ∈ {0, 1}. The tth component of the masking vector mtype

t,k , is

assigned a value according to the presence of the kth element at time t, such that:

mtype
t,k =

{
1, if ẋt, k is present
0, otherwise

(1)

where type represents the data modality and ẋt,k indicates the actual observed status of
the kth element at time t.

The time interval �t is computed based on the sequential visit and observation
records, and is defined as:

�t,i =
⎧⎨
⎩
0ift = 1
st − st−1ift > 1,mtype,t−1,k ispresent
st − st−1 + �t−1,iift > 1,mtype,t−1,k ismissed

(2)

Here, st denotes the time stamp for the visit, and the term�t−1,k carries the accumulated
time delay from the previous visit if the kth element was not observed.

The proposed an attention-based multimodal variational auto-encoder (AMVAE)
encompasses of a modality specific encoder-decoder system specifically designed for
the separate yet simultaneous processing of MRI and PET scans shown in Fig. 2. It
captures the distinct attributes of each scan type while merging their learned features.
The encoders highlight crucial aspects within the scans, tackling the challenge of dif-
fering relevance across areas. In addition to that, the encoders are incorporated with an
attentionmechanism that selectively emphasizes the salient features from eachmodality,
improving the relevance and quality of the learned representations.Meanwhile, decoders
are carefully built using convolutional layers, instance normalization, and activations to
reconstruct the original images from compressed latent space.

We assume M neuroimaging modalities x1, x2, . . . , xM , which are condition-
ally independent over a shared latent space, z. The generative model is assumed
to be in the form pθ (x1, x2, . . . , xM , z) = p(z)pθ (x1|z)pθ (x2|z) . . . pθ (xM |z) where
p(z) is a prior, typically a spherical gaussian distribution. The decoders, denoted as
pθ (x1|z)pθ (x2|z) . . . pθ (xM |z), is composed of a deep neural network with parameters θ ,
which is coupled with a straightforward likelihood model, such as Bernoulli or Gaus-
sian. This factorization allows for the exclusion of unobserved modalities during the
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evaluation of marginal likelihood. When a data point is defined as the collection of
existing modalities, that is X = { xi

∣∣ithmodalityisobserved}
, then the evidence lower

bound (ELBO) is defined as:

ELBO(X ) � Eqφ(z|X)

[∑
xi∈X

λilogpθ (xi|z)
]

− βKL
[
qφ(z|X ), p(z)

]
(3)

where qφ(z|X ) is the inference network for optimizing ELBO, KL [p,q] denotes
the Kullback-Leibler divergence, which is a degree of the dissimilarity between two
probability distributions, p and q. The parameters λ and β serve as weighting coefficients.

Fig. 2. AMVAE module for joint representation learning of neuroimaging modalities

Contrast to the conventional MVAE, for AD progress prediction we need to con-
sider a time-series dataset consisting of multiple modalities. Let us denote XM =
{xM1 , xM2 , . . . , xMT } as the series of data points for modality M, observed at times
t = 1, . . . ,T . The Evidence Lower BOund (ELBO) for a time-series with multiple
modalities {M1,M2, . . . ,MN } along with modality specific masking, mi

t , is given as:

LELBO(XM1 ,XM2 ,...XMN ) � Eqφ(z|XM1 ,XM2 ,...XMN )

[
T∑
t=1

N∑
i=1

λit log pθ

(
xit |z

)] � mi
t−

β KL
[
qφ

(
z|XM1,XM2 , . . .XMN

)
, p(z)

] � mi
t

(4)

where XMi , xit and λit are time-series data for modality i, the data point at time t for
modality i and a weight factor for the importance of modality i at time t. � denotes
element-wise multiplication.

Unlike MVAEs, which require all modalities for training and inference, AMVAE
adapts to incomplete data scenarios by incorporating product-of-experts (PoE) app-
roach to effectively combine information from available modalities. This is particularly
advantageous in real-world clinical settings where missing data is common.While train-
ing AMVAE, we must specify 2M − 1 inference networks, qφ(z|X), corresponding to
each possible subset of modalities X ⊆ x1, x2, . . . , xM . To approximate joint posterior,
we follow the factorization approach (PoE), that uses a mix of unimodal variational



Adaptive Cross-Modal Representation Learning 273

posteriors qφ(z|X) rather than relying on a single variational network which demands
the presence of all images simultaneously. The PoE is defined as:

qφ(z|X) = p(z)
∏

xi∈X
qφ(z|xi) (5)

where p(z) = N (z; 0, I) is a uniformgaussian prior distribution and qφ(z|xi) is a gaussian
distribution with diagonal covariance, defined through CNNs.

The distributions derived fromabove-mentioned product operations generally cannot
be resolved into closed-form expressions. However, since p(z) and qφ(z|xi) are both
gaussian distribution, the product of these two distributions will also be gaussian. The
gaussian experts are defined as:

μt =
(∑

i
μi,tTi,tmi,t

)(∑
i
Ti,tmi,t

)−1
(6)

Vt =
(∑

i
Ti,tmi,t

)−1
(7)

whereμi,t and Ti,t are the mean, precision (which is the inverse of the variance) of the ith

gaussian expert, respectively and Ti,t = V−1
t is the precision. mi,t represents the mask

for the ith expert. When mi,t is equal to 1, the ith expert is included in the evaluation;
when it is equal to 0, the ith expert is excluded. This allows for selective integration
of experts based on the presence or absence of data. μt and Vt are the joint mean and
variance at time point t that will be used for imputing the missing modality via separate
decoder units. μt will be used in downstream units for predicting the progression of
Alzheimer’s Diseases.

3.2 Imputation module

It is commonly noticed that AD patients check the conditions irregularly and different
data are collected at each visit. Therefore, it is natural there are missing data in AD data
set. The imputation unit is responsible for imputing the missing values in neuroimages,
biomarker, diagnosis and age feature in demographic data. It should be noted that for
the imputation of values at the initial timepoint, we employ a global mean approach. For
imputing the follow-up timepoints, we use the predicted values from the previous visit,
vt
∧

and the masking Mt , which indicates the observed data modalities. Let Xt and Yt be
the observed data modalities and diagnosis at time point t, respectively.

�
vt represents the

combined form of Xt and Yt at time point t.

Xt = [
μt‖biot‖dg

]
&Yt = [dxt] (8)

�
vt = [Xt‖Yt] (9)

Mt = [mimg
t ‖mbio

t ‖mdg
t ‖mdx

t ] (10)

vt
∧ = [Xt−1

∧

‖Yt−1

∧

] (11)
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vt = Mt � �
vt + (1 − Mt) � �

vt (12)

where vt represents the imputed data at time step t, ‖ is the concatenation operator
and � is element-wise multiplication.

3.3 Encoding and Forecasting

The encoding unit is responsible for capturing the temporal information from one time
step to the subsequent one within the network. We employ a LSTM unit for temporal
feature learning in time-series data with the masking vector. We initially used a hidden
decay weight,ψht , derived from the interval time�t , to predict the new hidden state, ht

∧

.
This characteristic enables the model to selectively retain information from past visits
by adjusting the value of ψht based on �t . The ht

∧

is defined as:

ψht = e−(max(0,Wψh�t+bψh)) (13)

ht
∧

= Wψh � ψht (14)

whereWψh and bψh are the weight and bias parameters, respectively. LSTM along with
the masking vector mt is given by:

ft = σ
(
Wvf vt + Whf ht

∧

+ Wmf mt + bf
)

(15)

c
∧

t = tanh
(
Wvcvt + Whcht

∧

+ Wmcmt + bc
)

(16)

ot = σ
(
Wvovt + Whoht

∧

+ Wmomt + bo
)

(17)

The updated cell state, ct and hidden state, ht are defined as:

ct = ft � ct−1 + �c
∧

t (18)

ht = ot � t(1 − ft)anh(ct) (19)

The forecasting unit leverages the current hidden state ht to predict future values
for both biomarkers and diagnosis data at time step t + 1. For biomarker data, the
prediction is done by combining the hidden state ht with the input vt . On the other hand,
for diagnosis data, the prediction is done solely based on the hidden state ht utilizing a
SoftMax function for multi-class classification. These functions are defined as:

x
∧

bio,t+1 = Wvht + vt (20)

y
∧

dx,t+1 = softmax(Wyht + by) (21)

Our proposedmodel consists ofmultiple tasks such asADdiagnosis progression pre-
diction, imputation of clinical biomarker data and neuroimage joint representation learn-
ing. The loss function for diagnosis prediction employs the cross-entropy loss between
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the model’s predictions and the ground truth labels, specifically focusing on portions of
the data indicated by a mask. For imputation loss, the difference between the model’s
imputations and actual observedvalues are calculated.Andfinally for joint representation
learning, we employ Kullback-Leibler Divergence and reconstruction loss for optimiz-
ing variational autoencoders by balancing the trade-off between enhancing latent space
regularization and improving input data reconstruction quality.

The loss functions for each task are defined as follows:

Ldx = −
T∑
t=2

(yt logyt
∧

) (22)

Limpute =
T∑
t=2

|x∧biot − ẋbiot | (23)

In addressing multi-task learning challenges, we adopt the uncertainty-based
loss weighting methodology as proposed by [19], which leverages the concept of
homoscedastic uncertainty to dynamically balance the loss contributions of individual
tasks. By adopting this, our overall loss function is defined as:

Ltotal = 1

2σ 2
1

Ldx(W1) + 1

2σ 2
2

Limpute(W2) + 1

2σ 2
3

LELBO(W3) + logσ1σ2σ3 (24)

whereW1,W2,W3 are weights and σ1, σ2, σ3 are the variance of loss terms Ldx, Limpute
and Limage, respectively. The logarithmic term at the end acts as the regularization term
in the variational inference setting.

4 Experiment setup and result analysis

4.1 Data set and preprocessing

In our study, we employed the ADNIMERGE data obtained from Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database1, which plays a crucial role in the research
of Alzheimer’s disease. Our dataset includes MRI and PET imaging data, biomark-
ers from T1-weighted MRI scans that offer precise volumetric measurements of brain
regions, including theVentricles, Hippocampus,Whole Brain, Entorhinal, Fusiform, and
MidTemp, alongside genetic profiles such as APOE4 allele, known for its correlation
with heightened Alzheimer’s disease risk [20]. Our study integrates neuroimaging data
and six MRI-derived volumetric variables to capture Alzheimer’s Disease’s complexity,
leveraging MRI and PET images to reveal pathological changes and a broader spectrum
of biomarkers not evident through volumetric analysis alone. In addition to that, we
incorporated demographic information such as age, education, and gender, which are
essential for assessing disease risk and progression. The selected patient’s class-wise
data distribution is shown in Fig. 3(a).

1 Alzheimer’s Disease Neuroimaging Initiative, is a global research project that collects and
analyses clinical, imaging, genomic, and biomarker data to study the progression ofAlzheimer’s
disease. For additional details, please visit www.adni-info.org

http://www.adni-info.org
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(a) (b)

Fig. 3. (a) Selected set of longitudinal patient distribution from the ADNI study over 5 years. BL
denotes Baseline visit, CN denotes Cognitive Normal, MCI denotes Mild Cognitive Impairment
and AD denotes Alzheimer’s Disease. (b) Availability of neuroimaging modalities across patient
visits over 5 years. MRI + PET denotes patients with both MRI and PET scans. Only MRI
denotes patients who only have MRI scans. Only PET denotes patients who only have PET scans.
No Modality denotes patients without any MRI or PET scans recorded.

TheADNIMERGEdataset combines longitudinal data from 2,430 participants span-
ning 16,340 visits across various phases (ADNI-GO, ADNI-1, ADNI-2, and ADNI-3),
recording up to 17 years of follow-up through 36 distinct visits. In our study, subject
selection was based on specific criteria: firstly, the prediction of yearly progression was
narrowed to baseline visits extending through five years of follow-up (i.e., M0, M12,
M24, M36, M48, and M60) [21]. This timeframe is selected based on the progression
rate of Alzheimer’s disease, ensuring that the model provides meaningful predictions for
early intervention while maintaining manageable computational complexity. Secondly,
only subjects with a minimum of two visits, including the baseline visit, accompanied
by a clinical diagnosis, were chosen. Thirdly, participants with reversible diagnoses,
particularly those transitioning from MCI to CN or from AD to either MCI or CN,
were excluded. Therefore, our dataset comprised 1,369 patients across 5,768 visits,
which included 971 stable and 398 progressive patients. The comparison of available
neuroimaging data over 5 years is shown in Fig. 3(b).

Following the approach by [22], adjustments were made for variations in brain size
among subjects by normalizing the volumetric measurements from MRI biomarkers
using each individual’s intracranial volume. Subsequently, MRI features were trans-
formed to fit a standard normal distribution through standardization with respect to their
mean and standard deviation, facilitating a uniform evaluation metric. Subject ages, ini-
tially recorded at baseline visits, are progressively incremented throughout the follow-up
period. Age and education, being numerical variables, were standardized using z-score
normalization, while gender was encoded into a one-hot encoding vector for analyt-
ical compatibility. The APOE4 allele is transformed into a one-hot encoding vector
for analysis. Following the neuroimaging pre-processing steps outlined in [2], our study
incorporates image registration, cropping, and normalization as foundational preprocess-
ing techniques. Initially, MRI and PET images are registered to align with the MNI152
standard brain template, utilizing SPM12 in Matlab, resulting in dimensions of 182 ×
218 × 182 voxels. Given the large size, peripheral regions of the images are removed to
both decrease dimensions and focus on the relevant brain structure information, leading
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to a refined size of 128 × 160 × 128 for both MRI and PET images. Next, voxel intensi-
ties are adjusted to a scale between 0 and 1 through min-max normalization, optimizing
them for analysis.

4.2 Result Analysis

ADxPro model was implemented on a computational platform with the following spec-
ifications: The hardware included an NVIDIA A100 Tensor Core graphics processing
unit featuring Multi-Instance GPU with 7 GB memory. The software environment con-
sisted of the PyTorch library, utilizing the Adam optimizer with a learning rate set to
0.0002 for training the neural networks. The model’s weights were initialized using the
Xavier uniform initializationmethod to promote convergence during training. For model
validation, a 5-fold cross-validation approach was employed to rigorously evaluate the
model’s generalizability across different subsets of the data. The robustness of the model
was further ensured by setting up an annealing schedule over a predefined number of
epochs, allowing for a gradual adjustment of the learning rate during the training process.

Table 1. Results for Alzheimer’s Disease Progression prediction task up to 5 years (*marked as
statistically significant with a p-value < 0.05)

Data Type Model ACC (↑) PRE (↑) REC (↑) mAUC (↑)
Bio + Dg +
Gen

GRU-D [17] 0.5750 ± 0.0122* 0.5722 ± 0.0069* 0.5934 ± 0.0128 0.7632 ± 0.0095

MinimalRNN [6] 0.5680 ± 0.0203* 0.5661 ± 0.0211* 0.5885 ± 0.0185* 0.7549 ± 0.0091*

BiPro [18] 0.5847 ± 0.0166 0.5867 ± 0.0219 0.5876 ± 0.0113* 0.7650 ± 0.0087

MRI + Bio +
Dg + Gen

CNN-BRNN [3] 0.5947 ± 0.0209 0.5955 ± 0.0211 0.6000 ± 0.0161* 0.7654 ± 0.0178

MRI + PET
+ Bio + Dg
+ Gen

ADxPro 0.6059 ± 0.0151 0.6074 ± 0.0163 0.6166 ± 0.0203 0.7749 ± 0.0132

For the AD diagnosis prediction task, commonly utilized metrics such as accuracy
(ACC), precision (PRE), recall (REC), and mean area under the curve (mAUC) were
employed to gauge the model’s diagnostic capability, underscoring the importance of
thesemeasures in assessing the performance of predictivemodelswithin clinical settings.
For biomarker data imputation, mean absolute error (MAE) and mean relative error
(MRE) served as the benchmarks, reflecting the precision of our model in handling
missing data. Importantly,we applied the same settingsmentioned above to all competing
models to ensure a fair comparison.

Table 1 shows the efficacy of several predictive models in the task of clinical status
prediction for Alzheimer’s Disease over a span of five years. The proposed model,
which imputes neuroimage, biomarkers, along with demographic data, demonstrates a
superior performance across all the measured indices—accuracy, precision, recall, and
mean area under the curve with 0.6059 ± 0.0151, 0.6074 ± 0.0163, 0.6166 ± 0.0203,
and 0.7749 ± 0.013, respectively. This shows that our model’s performance marginally
exceeds the competing models thus illustrating a more consistent ability to identify true
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positive instances of the disease’s progression. Incorporatingmulti modal data provides a
holistic viewof the disease biomarkers,which in turn enables amore distinct and accurate
prediction of disease progression. Furthermore, a t-test was conducted to determine the
statistical significance of our model’s performance against that of the competing models,
with findings detailed in Table 1.

Fig. 4. Longitudinal Predictions of Alzheimer’s Disease Progression: A Five-Year Comparative
Analysis of Diagnostic Models. GT denotes the ground truth. Level 1,2 and 3 denotes CN, MCI
and AD, respectively.

Figure 4 depicts a five-year longitudinal study comparing the effectiveness of various
diagnostic models in predicting Alzheimer’s Disease progression, marked by transitions
between clinical states: CN to CN, CN to MCI, MCI to MCI, MCI to AD, and CN to
AD. Our model highlights superior year-wise predictions compared to GRU-D,Minimal
RNN, BiPro and CNN-BRNN, consistently aligning closely with the ground truth over
five years. In contrast, the competing models show less stability and consistency, with
fluctuations not as closely aligned to the ground truth.
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The stable and accurate year-wise predictions are essential for effective clinical
decision-making and long-term patient management. By precisely predicting AD pro-
gression patterns, our model can assist the clinicians in understanding the disease pro-
gression and plan interventions accordingly. The statistical significance and alignment
with the ground truth confirm the effectiveness of our method, demonstrating that
integrating multimodal data improves Alzheimer’s Disease progression prediction.

Table 2. Results for Imputation task

Data Type Model MAE (ml) (↓) MRE (%) (↓)
Bio + Dg + Gen GRU-D [17] 5.5422 ± 0.3055 7.3789 ± 0.2946

MinimalRNN [6] 3.9373 ± 0.3163 5.7233 ± 0.2599

BiPro [18] 4.0700 ± 0.4840 5.9741 ± 0.3026

MRI + Bio + Dg + Gen CNN-BRNN [3] 5.6713 ± 0.3005 7.5433 ± 0.2819

MRI + PET + Bio + Dg
+ Gen

ADxPro 4.0363 ± 0.3373 5.8039 ± 0.4032

In evaluating the effectiveness of various models for the biomarker imputation task,
ourmodel stands out as the optimal choice, despite a challengingmulti-task environment.
Our model’s slight decrease in performance compared to MinimalRNN is offset by its
ability to analyze awider rangeof data—images, diagnostics, andbiomarkers—making it
amore versatile and comprehensive tool. Table 2 presents the outcomes of the imputation
task.

Table 3. Results for Alzheimer’s Disease Progression prediction with and without diagnosis data
(Dx) at baseline

Data
Type

Model ACC (↑) PRE (↑) REC (↑) mAUC (↑)

MRI +
PET +
Bio +
Dg +
Gen

Without
Dx

0.6059 ± 0.0151 0.6074 ± 0.0163 0.6166 ± 0.0203 0.7749 ± 0.0132

With Dx 0.8507 ± 0.0111 0.8333 ± 0.0102 0.8184 ± 0.0097 0.9396 ± 0.0084

Table 3 compares the predictive accuracy of our proposed model for AD progression
using two sets of input data: one including diagnosis data (Dx) at the baseline visit
and one without it. Our model’s performance is markedly higher when the diagnosis
data is included at the baseline, indicating the significant impact of initial diagnostic
information on the model’s predictive capabilities.

Figure 5 provides a comparison of the diagnostic performance across different neu-
roimagingmodalities using unimodal andmultimodal VAEs. The experimental setup for
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Fig. 5 follows a similar procedure as our proposed model. The primary difference lies in
the calculation of unimodal diagnostic performance, where we employed a vanilla vari-
ational autoencoder combined with a recurrent neural network for disease progression
prediction. In this setup, each unimodal neuroimaging modality (MRI and PET) was
evaluated individually but combined with other data types, including biomarkers (Bio),
diagnostic data (Dx), genetic (Gen) and demographic information (Dg). Separatemodels
were trained for each modality using a 5-fold cross-validation approach to ensure gener-
alizability. The data suggests that the combined use of MRI and PET imaging modalities
yields the highest performance metrics, indicating that a multi-modal imaging approach
is more effective for the accurate diagnosis and monitoring of disease progression in
clinical settings.

Fig. 5. Performance comparison of neuroimaging modalities: MRI, PET, and Combined MRI +
PET.

5 Conclusion and Future Work

In this paper, we proposed ADxPro, a hybrid model for predicting longitudinal disease
progression consisting of an attention-based multimodal variational autoencoder com-
bined with RNN architecture. Our model performs three tasks simultaneously: missing
neuroimage reconstruction, imputation of biomarkers and diseases clinical status predic-
tion across multiple timepoints over a 5-year course. Overall, our research highlighted
the significance of multimodal data integration in the accurate prediction of Alzheimer’s
Disease progression with missing data. Additionally, our findings have shown that the
inclusion of diagnosis data at baseline substantially enhances predictive accuracy.

However, our model still has certain limitation. Given that our model primarily
aims at predicting progression, we placed greater emphasis on optimizing this task over
others, such as image reconstruction. Hence the quality of the reconstructed images
is not good enough. The necessity to improve the quality of reconstructed MRI and
PET images is important because of their role in monitoring disease progression and
optimizing treatment. Additionally, enhanced images can reduce costs for patients by
eliminating the need for expensive PET scans at every timepoint. In future work, we plan
to employ Versatile Diffusion technique to enhance the quality of the generated images.
This approach is expected to overcome the above limitation by using multimodal data
and advanced diffusion techniques for higher quality image reconstructions.
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Abstract. Accurate breast tumor segmentation and malignancy detec-
tion are crucial for early cancer diagnosis. In this context, we propose a
novel lightweight multi-task learning framework, MA-DTNet, designed
to perform both tasks simultaneously in an encoder-shared scenario.
This approach leverages shared representations and contextual informa-
tion, enabling mutual enhancement of the tasks. Unlike existing meth-
ods that require a large number of trainable parameters, MA-DTNet
integrates a Spatial Morphological Attention (SMA) module alongside
a Channel Attention (CA) mechanism to strategically enhance crucial
morphological features and emphasize informative channels within the
extracted representations. The SMA mechanism combines traditional
morphological operations with trainable, adaptive structuring elements,
effectively highlighting critical morphological attributes of regions of
interest (ROIs) of various shapes and sizes within medical images. This
targeted emphasis on morphological features translates to improved per-
formance in both segmentation and classification tasks. Notably, MA-
DTNet demonstrates superior performance compared to state-of-the-art
multi-task learning (MTL) and single-task models on two publicly avail-
able breast ultrasound datasets. Specifically, on the UDIAT dataset, our
approach achieves a 3.28% and 1.05% enhancement in dice score (seg-
mentation) and F1 score (classification), respectively. Similarly, for the
BUSI dataset, MA-DTNet exhibits a 1.62% and 4.96% improvement in
dice score and accuracy, respectively. Significantly, MA-DTNet achieves
these performance gains with significantly fewer trainable parameters
than existing methods, underscoring its efficiency and potential for real-
world applications. The method’s generalization ability is further tested
on two additional multi-task learning tasks: segmenting and classifying
glands in histology images and segmenting and classifying skin lesions in
dermoscopic images.
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1 Introduction

Medical image analysis underpins various healthcare applications, including
diagnosis, treatment planning, and prognosis. Accurate segmentation and clas-
sification of anatomical structures and abnormalities within these images are
essential for practical analysis. These tasks have been traditionally addressed
using separate models trained for each specific task. However, this approach can
be inefficient and resource-intensive, mainly when dealing with limited datasets
or complex tasks requiring extensive training data. The emergence of multi-task
learning (MTL) has revolutionized the field of medical image analysis, offering
a compelling alternative to single-task learning approaches. MTL leverages the
inherent correlations and shared information between related tasks within a sin-
gle model, leading to several potential benefits like improved data efficiency[33],
reduced overfitting [20], enhanced feature learning[20], among others.

Successful applications of MTL in medical image analysis include glioma
segmentation and isocitrate dehydrogenase genotyping from brain MRI [6], skin
lesion segmentation and classification from dermoscopic images [27], and kidney
segmentation and domain translation from urographic images [31]. Building upon
this growing body of research, we focus on the tasks of breast tumor segmenta-
tion and malignancy detection, as documented in recent studies highlighting the
effectiveness of MTL for these specific tasks [7,28,29,32]. These MTL networks
comprise trainable parameters in the range of 90-110 M. However, MTL models
with fewer parameters are highly desirable for practical implementation in real-
world settings. We design a lighter MTL architecture of 22.95 M parameters to
address this challenge.

Ultrasound imaging typically identifies cancerous tumors as hypoechoic
regions with poorly defined borders [10]. Consequently, more accurate tumor seg-
mentation improves tumor-type diagnosis. Through experimentation, we found
that the encoder-shared multi-task learning (MTL) model outperforms individ-
ual models designed separately for segmentation and classification. However,
there is potential to further enhance segmentation performance and, by exten-
sion, malignancy detection. To address this, we propose a Channel and Spa-
tial Morphological Attention Module (C-SMA), which integrates channel atten-
tion (CA) to prioritize crucial feature maps and spatial morphological attention
(SMA) to focus on morphological attributes within the feature maps. While
the successful integration of morphological operations in deep learning has been
reported for tasks like image de-raining and image restoration [16], this work is
the first, to our knowledge, to incorporate a trainable, multi-scale morphological
operation in the form of morphological attention within an MTL network. Our
MTL architecture integrates the C-SMA block into the skip connections between
the encoder and decoder at various stages. Although we do not directly use the



Enhancing Medical Image Analysis with MA-DTNet 285

segmentation outcome to detect tumor malignancy, the encoder shared by both
segmentation and classification branches is optimized to improve segmentation
results, thereby enhancing malignancy detection. The contributions of this study
are as follows:

– We propose a novel C-SMA module that integrates channel attention with
morphological operations. The spatial morphological operations with train-
able, multi-scale structuring elements effectively highlight the morphological
attributes of feature maps, allowing for the identification of regions of interest
(ROIs) with variable shapes and sizes.

– We propose a lightweight multi-task learning network for breast tumor seg-
mentation and malignancy detection from ultrasound images by incorporating
the C-SMA module within the multi-task framework.

– To evaluate efficiency, we employed the proposed method on public datasets
(UDIAT and BUSI), outperforming both single-task and multi-task baselines
and SOTA methods. We achieve 3.28% and 1.62% improvement in dice score
in tumor segmentation tasks for UDIAT and BUSI datasets, respectively. In
the classification task, an enhancement of 1.05% in the F1 score and 4.96%
in accuracy is observed for the UDIAT and BUSI datasets, respectively.

– The generalization ability of our method is extended to two other multi-
tasking scenarios: segmenting and classifying skin lesions in dermoscopic
images and segmenting and predicting malignancy of glands in histology
images.

The rest of the paper is organized as follows. Section 2 describes the existing
literature concerning relevant MTL and their limitations. Section 3 elaborates
on the proposed MA-DTNet and its components. Section 4 presents the experi-
mental result, description of the datasets, and training protocol followed in this
study. Lastly, section 5 concludes the study.

2 Related Studies

In this section, we delve into the existing literature concerning pertinent seg-
mentation, classification, and multi-task learning for breast tumor segmentation
and malignancy detection from ultrasound images, aiming to identify the gaps
and limitations in current methodologies that our research seeks to address.

In 2021, Zhang et al. [32] devised an integrated segmentation and classifi-
cation network, incorporating attention gates to utilize information from lesion
regions effectively. However, this approach fails to address the computational
cost of the model, which is a critical factor for real-world applications, especially
in clinical settings where resources may be limited. This highlights the need to
develop more computationally efficient models.

In 2022, Xu et al. [28] introduced an MTL framework for segmenting breast
ultrasound tumors and predicting their malignancy. This approach leverages
segmentation outcomes as prior knowledge to enhance contextual relationships.
Later, in 2023, Xu et al. [29] introduced a regional-attentive multi-task learning
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framework by integrating a regional attention (RA) module. This incorporation
enhances representation, improving performance in segmentation and classifica-
tion tasks for each breast ultrasound image. Despite these advancements, the
models used by Xu et al. employed a self-attention mechanism with a large
number of trainable parameters (109 M and 93 M). This makes them less suit-
able for real-time applications due to their computational demands. Existing
research shows a key challenge: developing lightweight and efficient MTL mod-
els that maintain performance for real-world clinical use. To address this, we
propose a more computationally efficient MTL network with fewer parameters,
making it suitable for real-time applications.

Moreover, while existing methods have integrated various attention mecha-
nisms within segmentation and MTL networks, none have explored the use of
trainable morphological operations with adaptive structuring elements. To our
knowledge, this is the first attempt to integrate such operations within MTL net-
works. Our novel C-SMA mechanism aims to enhance both segmentation and
classification tasks by focusing on important channels and spatial locations in
the feature maps based on their morphological attributes while maintaining a
lightweight model architecture.

By addressing the computational inefficiencies and introducing a novel atten-
tion mechanism, our work fills a critical gap in the existing literature, contribut-
ing to the development of more practical and effective MTL models for breast
tumor segmentation and malignancy detection from ultrasound images.

3 Methods

Spatial Morphological Attention (SMA): We introduce a Spatial Morpho-
logical Attention (SMA) module designed to emphasize the spatial pixel position
in the feature maps according to the morphological characteristics. This module
performs two types of morphological operations - dilation (D) and erosion(E)
on the inputs feature map X, described by the equation 2 and 1 respectively.

E(i,j,k)(X) =
C

‖
c=1

min
m,n=0,...K

X(i − m, j − n, c) + SE(m,n, c), (1)

D(i,j,k)(X) =
C

‖
c=1

max
m,n=0,...K

X(i − m, j − n, c) + SE(m,n, c), (2)

where i = 1, 2, 3, . . . ,H and j = 1, 2, 3, . . . ,W . Here, X represents the input
feature map, and SE denotes the structuring element of size m×n that charac-
terizes the pattern of interest within the provided feature map X. The traditional
morphological operations have two limitations. Firstly, structuring elements of a
particular size is insufficient to capture the morphological characteristics of the
ROIs of different sizes. We have considered structuring elements of three differ-
ent sizes to overcome this drawback. This is achieved by incorporating dilation
rates within the structuring elements to achieve a larger receptive field with the
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Fig. 1. (a) The proposed multitask learning architecture for medical image segmen-
tation and classification, (b) The channel and spatial morphological attention module
(C-SMA).

same computational memory. The dilated erosion and dilation operation can be
defined by the equation 4 and 3, respectively.

DEr
(i,j,k)(X) =

C

‖
c=1

min
m,n=0,...K

X(i − rm, j − rn, c) + SE(m,n, c), (3)

DDr
(i,j,k)(X) =

C

‖
c=1

max
m,n=0,...K

X(i − rm, j − rn, c) + SE(m,n, c), (4)

where r is the dilation rate. Secondly, a predefined structuring element is
necessary to perform traditional morphological operations, which are unsuitable
for precisely segmenting tumours of various shapes. Unlike traditional morpho-
logical operations where the structuring elements are predefined, we learn the
structuring elements via backpropagation while training [19].
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For a particular feature map, each of two morphological operations, i.e.,
dilated erosion and dilated dilation operations, are carried out with three sizes of
structuring elements implemented using dilated structuring elements, thus con-
sequently capturing morphological features at three different scales. The three
resulting feature maps from morphological operations are merged using a con-
volutional block that includes convolution, batch normalization, and a ReLU
activation function. These two resulting feature maps, each corresponding to one
of the two morphological operations, are combined and fed into another convo-
lutional block, generating a weight map (WSMA) that estimates the weights for
every pixel position.

WSMA = σ(BN(Conv(‖(XDE ,XDD)))), (5)

where,
XDE = ReLU(BN(Conv( ‖

r=1,2,3
DEr))), (6)

and XDD = ReLU(BN(Conv( ‖
r=1,2,3

DDr))). (7)

The original feature map multiplied by the weight maps results in the output
of the proposed SMAM module. Thus, spatial attention is computed by the
morphological characteristics of the feature map, which is learned via training.

Channel Attention(CA): Given an input feature map X with dimensions
C × H × W , where C is the number of channels and H and W are the spatial
dimensions, the channel attention mechanism computes attention weights WCA

as follows [25].
WCA = σ(MLP(Xavg) + MLP(Xmax)), (8)

where Xavg and Xmax are feature descriptors obtained by performing average-
pooling and max-pooling operations on input X. MLP comprises two fully
connected layers with ReLU activation function and are shared by both parallel
paths. MLP squeezes pooled feature descriptor of dimension C×1×1 to C/r×1×
1, with a reduction ratio of r and again excites it back to C ×1×1. The sigmoid
function (σ) normalizes the attention scores across channels, allowing the model
to selectively amplify or suppress specific channels based on their importance for
the task. Finally, these attention weights are applied element-wise to the input
feature map X to obtain the attended feature map X ′.

X ′ = WCA � X, (9)

where � denotes element-wise multiplication.

Channel and Spatial Morphological Attention (C-SMA): In line with the
inspiration drawn from the Convolutional Block Attention Module (CBAM)[25],
we systematically integrate a channel attention module with the Spatial Morpho-
logical Attention Module to enhance overall performance as channel attention
leverages the association among the channels of the feature map. We denote this
combined attention as channel and spatial morphological attention (C-SMA).
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3.1 MA-DTNet

The proposed network, MA-DTNet architecture for multi-task learning, is rooted
in the encoder-decoder structure of the UNet[18] architecture. There are two
paths, one for segmentation and the other for classification. These two paths
share the encoder part of the UNet. This encoder generates feature maps at
different scales, which are later combined with the decoder’s output at their
respective levels. Instead of passing the outputs from the encoder directly to
the decoder, we route the feature maps through our proposed C-SMA to enrich
the morphological features. This concludes the segmentation network pathway.
The prediction for the classification outcome is generated by the classification
head, which is attached to the encoder’s final output via the channel attention
module. The detailed diagram of the proposed architecture is shown in Figure
1. We used a popular CNN network, ResNet34, as the backbone of MA-DTNet.

4 Experimental Results

4.1 Datasets

In this study, we utilize two publicly accessible datasets, namely UDIAT [30]
and BUSI [1], to assess the efficacy of the proposed multitask learning approach.
The UDIAT dataset comprises 163 ultrasound images, of which 110 pertain
to benign tumors and the remaining depict malignant tumors, while the BUSI
dataset encompasses 647 ultrasound images of breast tumors, with 437 depicting
benign tumors and the remainder of malignancies. The primary objective for
both datasets involves tumor segmentation, followed by the secondary task of
malignancy detection. To standardize the datasets for analysis, we resize both
the images and corresponding masks to dimensions of 256×256. Employing a 5-
fold cross-validation methodology, we compute the mean and standard deviation
of the performance metrics. To enhance the diversity of the training dataset and
improve model robustness, we incorporate data augmentation techniques such
as horizontal and vertical flips and rotations.

4.2 Training Protocol

The overall loss of the proposed network is computed by a weighted combination
of the segmentation loss and classification loss given by the following equation.

Loss = λ ∗ lossseg + (1 − λ) ∗ losscls. (10)

The value of λ lies between 0 and 1 and is determined to be 0.8 for optimal
performance (please refer 4.6 for detailed experiment). lossseg consists of binary
cross entropy loss and Dice loss between the original segmentation mask and
predicted segmentation mask, whereas losscls is computed by the binary cross
entropy between the actual class label and the predicted class label. The pro-
posed multitask network is trained up to 1000 epochs by optimizing the total loss
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using Adam optimizer with an initial learning rate of 0.0001. The PyTorch imple-
mentation is available at https://github.com/SusmitaSenGhosh/MA-DTNET.

We have used pixel similarity measuring metrics — dice score (DS), intersec-
tion over union (IoU), sensitivity, specificity and precision metric to quantify the
segmentation performance. We additionally included the 95th percentile Haus-
dorff distance (HD95) to assess shape similarity. Unlike pixel-based metrics, a
lower HD95 indicates greater shape resemblance. To evaluate the malignancy
classification performance, we considered threshold-dependent metrics like accu-
racy and F1 score as well as the receiver operating characteristic curve (AUROC).
This threshold-independent metric reflects the overall discrimination ability of
the model. Detailed mathematical definitions of the evaluation metrics are avail-
able in the supplementary material.

4.3 Comparison with SOTA

In this section, we compare the performance of the proposed model with
state-of-the-art methods for classification, segmentation, and MTL. Our eval-
uation includes state-of-the-art generalized segmentation models like UNet [18],
UNet++ [35], DeepLabV3+ [5], utilizing ResNet34, a popular CNN back-
bone, as well as classification models like ResNet34. Furthermore, we take into
account the contemporary segmentation, classification, and multitask models
[2,8,9,13,26,32] that are tailored to the breast tumor segmentation as well as
malignancy detection task. We have considered Dice score, IOU, sensitivity, and
specificity as segmentation performance accessing metrics and accuracy, F1 score,
and AUROC as classification metrics following [29].

Result of the above experiments for UDIAT and BUSI dataset are reported
in Table 1 and 2 respectively, where the top three performances are highlighted
in red, blue, and green, corresponding to the first, second, and third best results.
From both the tables, it is evident that our proposed method has MA-DTNet
outperformed others in both segmentation and classification tasks, achieving the
highest scores in terms of almost all the metrics considered here. Compared to
the state-of-the-art MTL network, our proposed approach demonstrates a 3.28%
increase in dice score and a 3.14% improvement in IoU metrics. Additionally, we
observe a 1.05% enhancement in the F1 score for the UDIAT dataset. Further-
more, our proposed method exhibits a better balance between sensitivity and
specificity compared to other MTL methods. A similar trend is also observed
in the case of the BUSI dataset (Table 2). The segmentation performance expe-
rienced an improvement of 1.62% and 1.52% in terms of dice-score and IoU
metrics, respectively, while 4.96% improvement is observed in accuracy metrics
for the malignancy detection task. While the segmentation specificity of the pro-
posed model may not surpass that of the other MTL models, it does exhibit a
superior balance between sensitivity and specificity. High sensitivity ensures that
the model does not miss any tumor regions, which is critical for accurate diag-
nosis and treatment planning. High specificity helps minimize false alarms or
misclassifications of non-tumor regions as tumors, which can reduce unnecessary
medical interventions. In tumor segmentation, striking the right balance between

https://github.com/SusmitaSenGhosh/MA-DTNET.
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Table 1. A comparison of the performance of the proposed method with a related
state-of-the-art method for the UDIAT dataset. The first, second, and third-best per-
formances are highlighted in red, blue, and green, respectively.

TaskMethod Params.
Segmentation Performance Classification Performance

DS↑ IoU↑ Sen.↑ Spec.↑ Acc.↑ F1 score↑AUROC↑

Seg.

UNet[18] 22.72 M
87.79

± 2.55

79.86

± 3.01

91.10

± 3.01

99.44

± 0.11
- - -

UNet++[35] 24.42 M
87.36

± 2.58

79.50

± 3.20

89.33

± 2.33

99.52

± 0.10
- - -

DeepLabV3+[5] 22.44 M
87.45

± 2.89

79.34

± 3.20

90.32

± 1.97

99.48

± 0.17
- - -

AAU-net[2]† -
78.14

± 2.41

69.10

± 2.98

82.22

± 3.84

98.82

± 0.35
- - -

ESKNet[4]† 44.57 M
78.71

±2.37

70.20

±2.28

82.41

±2.84

97.47

±0.35
- - -

NU-net[3]† 77.05 M
80.80

±0.57

72.03

±0.82

84.13

±1.73

98.96

±0.17
- - -

SMU-Net[17]† -
87.03

±1.25

78.49

±1.49

88.85

±1.72
- - - -

Clas.

ResNet34[11] 21.35 M - - - -
94.53

± 3.94

91.21

± 6.57

0.937

± 0.066

HoVer-Trans[15]†79.38 M - - - -
77.40

±6.10

61.90

±9.90

0.781

±0.118

EPTM[21]† 192 M - - - - 90.90 93.20 0.932

MT

MTL-Net[29]† 93.50 M
80.95

± 5.00

72.73

± 5.49

84.28

± 5.05

99.25

± 0.14

87.08

± 2.79

90.51

± 2.29

0.936

± 0.046

MTL-COSA[28]† 109.24 M
84.07

± 3.25

76.05

± 3.71

86.97

± 2.76

99.27

± 0.25

91.44

± 3.90

93.85

± 2.58

0.946

± 0.034

RMTL-Net[29]† 93.51 M
85.69

± 2.00

77.84

± 2.45

89.51

± 0.91

99.25

± 0.19

95.74

± 3.45

92.84

± 5.98

0.935

± .081

MA-DTNet

(ours)
22.95 M

88.97

± 2.50

80.98

± 3.17

91.55

± 1.98

99.45

± 0.23

96.35

± 3.95

93.89

± 6.81

0.954

± 0.062

Seg. : Segmentation, Clas. : Classification, MT : Multitask, DS : Dice score, IoU :
Intersection over union, Sen. : Sensitivity, Spec. : Specificity, Acc. : Accuracy Results
reported that the methods marked by † are taken from respective studies. The pro-
posed method outperformed all the multitask learning models for segmentation and
classification tasks with significantly fewer trainable parameters.

sensitivity and specificity is essential to ensure the model’s effectiveness in accu-
rately identifying tumor regions while minimizing false positives and negatives.
Moreover, MA-DTNet has at least four times fewer parameters than other MTL
models, indicating an efficient model design that outperforms the other MTL
methods in both tumor segmentation and malignancy detection tasks.
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Table 2. A comparison of the performance of the proposed method with a related state-
of-the-art method for the BUSI dataset. The first, second, and third-best performances
are highlighted in red, blue, and green, respectively.

TaskMethod Params.
Segmentation Performance Classification Performance

DS↑ IoU↑ Sen.↑ Spec.↑ Acc.↑ F1 score↑AUROC↑

Seg.

UNet[18] 22.72 M
81.10

1.60

73.32

1.64

83.33

3.20

97.83

0.55
- - -

UNet++[35] 24.42 M
81.09

1.36

72.92

± 1.47

83.51

± 2.47

97.91

± 0.34
- - -

DeepLabV3+[5] 22.44 M
80.88

± 1.56

72.69

± 1.67

82.68

± 2.23

97.80

± 0.26
- - -

AAU-net[2]† -
77.51

± 0.68

68.82

± 0.44

80.10

± 0.52

97.57

± 0.24
- - -

ESKNet[4]† 44.57 M
79.92

± 2.21

71.65

± 2.39

82.66

± 1.40

99.01

± 0.35
- - -

AMS-PAN[14]† - 80.71 68.53 79.30 98.54 - - -

NU-net[3]† 77.05 M
78.62

1.38

70.35

± 1.54

82.46

± 1.02

97.48

± 0.49
- - -

Clas.

ResNet34 21.35 M - - - - -
95.21

± 1.74

92.49

± 2.71

0.968

± 0.019

HoVer-Trans[15]†79.38 M - - - -
85.50

± 5.00

87.20

± 8.00

0.865

±0.066

MS-GOF[34]† 105.69M - - - -
76.48

± 5.93

74.90

± 7.53

0.790

± 0.064

MT

MTL-Net[29]† 93.50 M
77.76

± 3.11

69.33

± 2.89

78.91

± 2.22

98.30

± 0.25

90.18

± 3.25

93.07

± 2.41

0.962

± 0.021

MTL-COSA[28]† 109.24 M
78.90

± 2.03

70.65

± 2.01

79.31

± 2.48

98.31

± 0.11

91.49

± 3.02

93.66

± 2.36

0.968

± 0.016

RMTL-Net[29]† 93.51 M
80.04

± 2.47

71.93

± 2.15

82.54

± 2.31

98.00

± 0.3

91.02

± 3.42

93.32

± 3.35

0.967

± 0.015

MA-DTNet

(ours)
22.95 M

81.66

± 1.56

73.45

± 1.55

83.61

± 2.51

97.85

± 0.11

95.98

± 1.48

93.71

± 2.29

0.978

± 0.010

Seg. : Segmentation, Clas. : Classification, MT : Multitask, DS : Dice score, IoU :
Intersection over union, Sen. : Sensitivity, Spec. : Specificity, Acc. : Accuracy Results
reported the methods that are marked by † are taken from respective studies. Pro-
posed method outperformed all the multitask learning model for both segmentation
and classification tasks with significantly lower number of trainable parameters.

4.4 Comparison among various attention mechanisms

The effectiveness of the proposed C-SMA is compared with the performance of
the other attention mechanisms for segmentation tasks. For this experiment, we
have considered CBAM[25] and multi-head self-attention (MHSA)[24]. CBAM
is a spatial and channel attention mechanism designed to enhance CNN’s repre-
sentational power, while self-attention is a mechanism commonly used in trans-
former architectures to capture dependencies within input sequences. Along with
vanilla UNet, we have considered three types of attention modules — CBAM,
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Table 3. Performance comparison of different attention mechanism integrated within
UNet architecture for segmentation task.

DatasetMethod Params.Segmentation Performance

Dice Score↑ IoU↑ Precision↑ Recall↑ HD95↓
UDIAT UNet 1.81 M 79.98 ± 2.82 70.48 ± 3.78 80.20 ± 2.97 83.14 ± 2.81 24.72 ± 7.35

UNet-CBAM 1.82 M 82.55 ± 1.35 73.10 ± 1.93 82.26 ± 1.35 86.13 ± 1.21 19.68 ± 4.87

UNet-MHSA 3.31 M 84.97 ± 3.53 75.87 ± 4.12 83.13 ± 3.01 88.80 ± 3.38 16.91 ± 6.81

UNet-CA 1.95 M 83.48 ± 1.79 74.31 ± 2.30 82.49 ± 2.51 86.43 ± 2.37 18.41 ± 3.51

UNet-SMA 1.98 M 83.50 ± 2.30 74.49 ± 2.74 83.98 ± 2.55 87.74 ± 2.63 19.43 ± 5.96

UNet-C-SMA (Ours)1.99 M 85.14 ± 0.94*75.95 ± 1.27*85.35 ± 2.07*87.34 ± 1.26 15.38 ± 1.40

BUSI UNet 1.81 M 74.79 ± 1.53 65.92 ± 1.57 78.86 ± 1.28 76.65 ± 2.19 36.00 ± 4.77

UNet-CBAM 1.82 M 78.63 ± 1.52 69.88 ± 1.48 81.42 ± 1.30 80.32 ± 1.45 27.17 ± 2.83

UNet-MHSA 3.31 M 79.61 ± 1.70 70.72 ± 1.83 80.58 ± 2.08 83.01 ± 2.21 27.90 ± 2.95

UNet-CA 1.95 M 78.88 ± 1.27 70.02 ± 1.06 80.19 ± 1.24 82.02 ± 1.55 29.45 ± 1.37

UNet-SMA 1.98 M 76.87 ± 1.79 67.97 ± 1.65 79.54 ± 2.14 79.52 ± 1.24 31.96 ± 3.98

UNet-C-SMA (Ours)1.99 M 79.73 ± 1.61*71.00 ± 1.37*81.92 ± 1.75*81.49 ± 1.20*26.29 ± 1.98

UNet-C-SMA achieved statistically significant performance improvements over UNet-
CBAM, as evidenced by Wilcoxon signed-rank test results (indicated by *). UNet-C-
SMA exhibited greater efficiency compared to UNet-MHSA in terms of dice score, inter-
section over union (IoU), and Hausdorff Distance (HD95) metrics, while also requiring
fewer parameters. Notably, UNet-C-SMA maintained a superior balance between pre-
cision and recall.

MHSA and C-SMA that are fused with UNet architecture. In UNet with CBAM
and C-SMA, attention computation is conducted within each skip connection
connecting the encoder to the decoder. Conversely, in UNet with MHSA, MHSA
is exclusively applied to three skip connections containing smaller feature maps.
This selective application is attributed to the heightened memory usage and
computational cost associated with MHSA, rendering it impractical to employ
across all skip connections.

Table 3 summarizes the results of the experiment. All three attention mech-
anisms (MHSA, CBAM, and C-SMA) yielded improvements in segmentation
metrics compared to the baseline model without attention. Notably, MHSA led
to significant improvement, but at the cost of nearly doubling the trainable
parameters. Conversely, CBAM and C-SMA increased the parameter count by
a smaller margin. Focusing on the comparison between UNet-CBAM and UNet-
C-SMA, the latter achieved statistically significant (Wilcoxon signed-rank test)
improvements of 2.59% and 1.15% on the UDIAT and BUSI datasets, respec-
tively. This improvement came at the expense of only 0.17 million additional
trainable parameters.

To assess the individual contributions of CA and SMA components within
the proposed C-SMA module, we evaluate the segmentation performance of
the UNet network integrated with each component separately. These results,
presented alongside the performance with the full C-SMA module, are crucial
for understanding the efficacy of each component. As expected, the inclusion
of either CA or SMA independently improves segmentation performance com-
pared to the baseline UNet. Notably, integrating the combined C-SMA module
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(CA+SMA) further enhances segmentation accuracy, demonstrating the syner-
gistic effect of these attention mechanisms.

Image GT

Stage#1 Stage#2 Stage#3 Stage#4 Stage#5 Prediction
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Fig. 2. The qualitative comparison of the feature maps obtained at different stages of
encoder after the application of CBAM and proposed C-SMA.

4.5 Ablation study

The qualitative analysis of CBAM and C-SMA module is also conducted by
analysing the feature maps obtained at different stages of encoder post applica-
tion of respective attention mechanism. It is evident from Figure 2 that C-SMA
is capable to capture morphological attributes such as shape and size by of the
tumor in each of the feature map more accurately by distinctly enhancing the
boundary pixels.

MA-DTNet tackles multi-task learning by sharing an encoder for improved
efficiency. It seamlessly integrates C-SMA for enhanced segmentation while
incorporating CA within the classification branch to boost performance. We
performed an ablation study to validate each component of the proposed net-
work. This involved training a series of models with each component progres-
sively removed. The performance of these ablated models was then compared
to the full model’s performance on the combined task. Additionally, to evaluate
the effectiveness of the multi-task learning approach, we compared the perfor-
mance of individual tasks (segmentation and classification) trained in isolation
to their performance within the MA-DTNet framework. The segmentation task
leverages a U-shaped network architecture, serving as the foundation for the
proposed multi-task learning (MTL) network. For the classification task, the
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Table 4. Performance comparison of the ablation study on each component of the
proposed MA-DTNet for UDIAT and BUSI dataset.

DatasetTaskMethod
Segmentation Performance Classification Performance

DS↑ IoU↑ Prec.↑ Rec.↑ HD95↓ Acc.↑ F1 score↑ AUROC↑

U
D
IA

T

Seg. UNet
79.98

± 2.82

70.48

± 3.78

80.20

± 2.97

83.14

± 2.81

24.72

± 7.35
- - -

Clas. UNet Encoder - - - - -
90.21

± 5.79

84.62

± 8.88

0.8886

± 0.0811

MT

ES-MTL
80.88

± 4.31

71.34

± 4.87

81.56

± 5.38

84.37

± 3.37

24.21

± 5.75

90.81

± 3.67

84.23

± 6.94

0.8831

± 0.0756

ES-MTL

+C-SMA

84.99

± 1.79

75.79

± 2.06

86.98

± 2.44

86.41

± 2.56

16.98

± 2.85

93.26

± 3.30

89.27

± 4.94

0.9175

± 0.0416

ES-MTL

+C-SMA+CA

85.33

± 2.41

76.13

± 2.91

84.54

± 3.00

88.66

± 1.09

16.39

± 5.53

93.26

± 2.57

89.63

± 4.66

0.9445

± 0.0457

B
U
S
I

Seg. UNet
74.79

± 1.53

65.92

± 1.57

78.86

± 1.28

76.65

± 2.19

36.00

± 4.77
- - -

Clas. UNet Encoder - - - - -
89.18

± 1.79

81.86

± 3.92

0.9205

± 0.0266

MT

ES-MTL
75.65

± 1.44

66.67

± 1.50

78.39

± 2.00

79.04

± 1.84

36.20

± 3.00

91.97

± 1.28

87.46

± 1.92

0.9429

± 0.0155

ES-MTL

+C-SMA

79.56

± 1.42

70.73

± 1.31

81.72

± 1.20

81.42

± 1.24

27.15

± 0.74

92.12

± 1.83

87.54

± 2.91

0.9441

± 0.0254

ES-MTL

+C-SMA+CA

79.42

± 1.69

70.78

± 1.44

82.35

± 1.38

80.67

± 2.63

25.51

± 2.16

93.20

± 1.58

89.14

± 3.11

0.9521

± 0.0116

Seg. : Segmentation, Clas. : Classification, MT : Multitask
ES-MTL: Encoder-shared multitask learning model, ES-MTL+C-SMA: Encoder-
shared multitask learning model with channel and spatial morphological attention (C-
SMA) in encoder-decoder skip connection path, ES-MTL+MA+CA: Encoder-shared
multitask learning model with channel and spatial morphological attention (C-SMA) in
encoder-decoder skip connection path and channel attention (CA) in encoder-classifier
path.

encoder portion of the U-Net is directly integrated with a classification head.
The result of the ablation study is reported in table 4 for both datasets.

It can be observed that the encoder-shared vanilla MTL network surpassed
both individual segmentation and classification performance for both UDIAT
and BUSI datasets, suggesting the efficiency of an encoder-shared MTL (referred
to as ES-MTL). The Encoder-shared MTL with C-SMAs integrated within the
skip connections of the encoder and decoder) referred to as ES-MTL+C-SMA)
further improves the segmentation performance in terms of all the segmenta-
tion metrics by a significant margin. Notably, this enhancement in segmentation
performance was accompanied by a corresponding improvement in classification
performance, particularly for the UDIAT dataset and marginally for BUSI. This
suggests that accurate tumor segmentation plays a crucial role in achieving better
malignancy detection, thus supporting the effectiveness of the proposed C-SMA
for the MTL framework. Finally, the inclusion of class activation (CA) within the
classification path yielded a further improvement in classification performance,
underlining its importance in this context.



296 S. Ghosh and S. Das

4.6 Hyperparameter Optimization

Fig. 3. The segmentation (dice score) and
classification performances (accuracy) of
ES-MTL+C-SMA+CA for different λ

The optimal value of the hyperpa-
rameter λ in equation 10 was deter-
mined by conducting a grid search
across λ values ranging from 0 to 1
in increments of 0.1. As shown in
figure 3, λ value of 0.8 yields the best
balance between segmentation perfor-
mance and malignancy detection per-
formance.

The size of the structuring ele-
ment (SE) of morphological opera-
tion within the C-SMA module is
another hyperparameter that requires
optimization. It as also determined
empirically. As shown in table 5, increasing the SE size from 3 to 5 leads to
a growth in the number of trainable parameters. However, this increase did not
translate to significant performance improvements. Therefore, we opted for a
3×3 SE as the optimal configuration for the C-SMA module, balancing model
complexity with performance.

4.7 Generalization Ability

Table 5. Performance comparison for different
size of SE in C-SMA

Dataset SE Size Param. DS↑ HD95↓

BUSI
3 1.95 M 79.73 ± 1.44 26.29 ± 1.77
5 2.04 M 79.37 ± 1.33 25.94 ± 1.47

UDIAT
3 1.95 M 85.14 ± 0.84 15.38 ± 1.25
5 2.04 M 83.66 ± 0.75 15.70 ± 3.28

The efficacy of the proposed
methodology is demonstrated in
the context of segmenting breast
tumors and detecting malignan-
cies in ultrasound images. This
section delves into examining the
generalization capacity of the pro-
posed method across two addi-
tional multitask learning scenar-
ios pertinent to medical imaging. The first scenario involves segmenting skin
lesions and classifying diseases using dermoscopic images, while the second
entails segmenting glands and predicting malignancies from histological images.
To evaluate these tasks, we utilized the HAM10000 [23] and GlaS [22] datasets
(for detailed description refer to the supplementary material). Comparative anal-
yses of the proposed method’s performance against state-of-the-art multitask
learning approaches relevant to these tasks are presented in Table 6.

Regarding the HAM10000 dataset, the proposed method has exhibited supe-
rior performance compared to CTAN [12], surpassing it by 1.84% in dice score
and 27.98% in accuracy metrics for skin lesion segmentation and classification
tasks, respectively. The assessment of segmentation performance on the GlaS
dataset entails an evaluation of two distinct subsets of the test data, GlaS A
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Table 6. Comparison of the performance of the proposed method on HAM10000 and
GlaS dataset with related state-of-the-art methods.

Skin lesion segmentation

and classification (HAM10000)

Gland segmentation and

malignancy detection (GlaS)

Seg. perf.Clas. Perf.
Seg. perf.

(GlaS A/ GlaS B)
Clas. perf.

Method DS↑ Acc.↑ Method Object DS↑ HD↓ F1 score↑ Acc.↑
CTAN[12] 92.91 57.85 MTUNet[9] 95.60/90.90 23.17/71.53 97.77 97.50

MA-DTNet

(Ours)

94.75

±0.17

85.83

±0.47

MA-DTNet

(Ours)
92.99/91.51 19.89/21.08 100.00 100.00

Seg. perf. : Segmentation performance, Clas. perf. : Classification perfor-
mance
For GlaS, the original train test split was used, whereas for HAM10000,
5-fold cross-validation is adapted for the proposed method.

and GlaS B. Both the object dice score[9] and Hausdorff Distance (HD) met-
rics exhibit enhancements on the GlaS B dataset when compared to MTUNet
[9]. Conversely, for GlaS A, an improvement over MTUNet is observed solely in
the Hausdorff distance metric. Despite these segmentation disparities, our pro-
posed method achieves perfect accuracy in predicting gland malignancy. Over-
all, beyond its success in segmenting and classifying breast tumors in ultrasound
images, the method performs well in the other two multitask settings, suggesting
its generalizability for medical image analysis.

5 Conclusion

This study introduces a novel Multi-Task Learning (MTL) model specifically
designed for breast tumor segmentation and malignancy detection from ultra-
sound images. The model consists of a shared UNet encoder and UNet decoder,
along with novel Channel-Spatial Morphological Attention Modules (C-SMAs)
integrated at multiple resolution stages for semantic segmentation. Additionally,
it includes a classification head with a channel attention module for disease grade
prediction. The channel attention module highlights significant channels within
a multitude, while the C-SMA simultaneously focuses on important channels and
spatial locations in the feature maps based on their morphological attributes.

The proposed approach demonstrates effectiveness through experiments on
ultrasound datasets for breast tumor segmentation and malignancy detection.
To further test the versatility of the proposed method, it has been generalized to
other multitask scenarios such as microscopic gland segmentation and detection,
as well as skin lesion segmentation and disease detection. Further research must
explore its adaptability to a wider range of medical imaging modalities beyond
those investigated here.

Furthermore, the C-SMA module currently utilizes fundamental morpholog-
ical operations. Future research could potentially investigate the application of
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more complex morphological operations like opening, closing, and gradients to
improve model performance.
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Abstract. Segmentation of retinal layers in three-dimensional optical
coherence tomography (3D-OCT) images plays a pivotal role in dis-
ease identification and prognosis. For instance, analyzing variations in
layer curvature within 3D-OCT images offers crucial insights into age-
related macular degeneration (AMD) progression. This paper presents
TransNetOCT, a novel approach employing a transformer architecture
for 3D-OCT volume segmentation. The method delineates 3D-OCT scans
into twelve surfaces, outlining the background and eleven layers. Ini-
tially, we segment the central macular B-scan, identifiable by the fovea,
using a joint Markov Gibbs random field model. This model integrates
shape, intensity, and spatial characteristics across the twelve retinal sur-
faces. Subsequently, a probability prior shape algorithm is applied to the
adjacent slices, utilizing the middle segmented B-scan image as a ref-
erence. TransNetOCT is then trained on the central slice along with
the extracted probability prior shapes of adjacent slices. An evalua-
tion of 85 patients, including those with normal, early, and intermediate
AMD OCT scans, demonstrates the method’s effectiveness. It achieves an
Absolute Sum of Surface Distance (ASSD) of 1.3149 and Mean Absolute
Surface Distance (MASD) of 1.7091, outperforming well-known mod-
els like the UNet and Feature Pyramid Network (FPN). Specifically, it
surpasses UNet and FPN with a 78% reduction for ASSD and a 76%
reduction for MASD, respectively, and a 48% reduction for both ASSD
and MASD, respectively. These results highlight its superior capability
in segmenting a broader spectrum of retinal layers.
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1 Introduction

Age-related macular degeneration (AMD) remains the essential reason for central
vision impairment in individuals aged 50 and older in North America and other
developed regions [2]. AMD can be categorized into early and late stages through
various classification schemes like the Age-Related Eye Diseases Study (AREDS)
severity scale [5] and basic clinical classification [1]. The clinical classification of
AMD is based on different stages, which are determined by the presence and size
of drusen and pigment irregularities: (i) No signs of drusen or pigment abnor-
malities in the eye; (ii) Only small drusen (≤ 63μm) are present, without any
pigment irregularities; (iii) Medium-sized drusen (> 63μm and ≤ 125μm) are
present, but no pigment irregularities; (iv) Large drusen (> 125μm) or any pig-
ment irregularities (abnormal pigmentation) are present; (v) Advanced AMD is
characterized by either “wet” AMD (new abnormal blood vessels growing under
the retina) or “dry” AMD (geographic atrophy, which is the death of retinal
cells). In patients with AMD, early diagnosis can facilitate timely intervention
which is instrumental in preventing vision loss. Due to the pathophysiology of
AMD, the diagnostic imaging utilized relies heavily on identifying small struc-
tural alterations in the layers of the retina. Such alterations include thickening
of the retinal pigment epithelium (RPE) and Bruch’s membrane, and abnormal-
ities in pigmentation. The formation of drusen, which are deposits of cellular
debris within Bruch’s membrane, is a characteristic hallmark of AMD.

Optical Coherence Tomography builds three-dimensional (3D-OCT) images
of the retina by combining multiple segments known as A-scans onto each other.
A-scans detect the ways that light bounces off of the retinal tissue to perceive
depth, functioning much like a radar. Scans are taken linearly across the retina
to provide a cross-sectional view, also known as a B-scan. The three-dimensional
OCT volume is then formed by stacking multiple B-scans together [20]. Differ-
ent layers formed in the image can be used as early markers of various retinal
diseases such as AMD [4,11] through examining differences in the RPE [18].
The precise delineation and separation of retinal tissue layers in OCT images is
essential for the prompt detection and diagnosis of AMD. When determining the
borders of different layers, manual OCT image interpretation is laborious and
prone to error. Because of this, throughout the past few decades, a significant
amount of research has focused on automating the segmentation of retinal layers
in OCT images. The primary objective, shared by many studies including ours,
is to achieve smooth and continuous surfaces of retinal layers in their proper
anatomical order, as depicted in Fig.1 [3,9,10,14,15,17,21,22].

1.1 Related Works

Thus, further development in segmentation methodologies has become an inno-
vation of interest. For example, a two-step approach for extracting five sur-
faces from the layer estimates was introduced by Pekala et al. [15]. They inte-
grated DenseNet-based semantic segmentation with Gaussian process regression-
based post-processing in their approach. Kumar et al. [17] introduced a machine
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Fig. 1. An illustrative figure of the retinal 3D-OCT volume visualization, providing
background (BG) and delineation of eleven layers.

learning-based approach to segment retinal layers in OCT images. The pro-
posed model structure comprises two stacks, each composed of an encoder and
a decoder. Stack 1 utilized an encoder-decoder pair with a Modified Attention
U-Net decoder, focusing on local context. In contrast, Stack 2 employed a simi-
lar architecture with a decoder optimized for a broader context, functioning as
a denoiser. This segmentation network predicts eight retinal layer maps from
OCT scans. The study introduced by [10] annotated ten different labels on OCT
datasets. Their segmentation framework comprises three components: an optic
disc detection network, a retinal layer segmentation network, and a fusion mod-
ule. Initially, the optic disc detection network processes OCT images to gener-
ate a mask and feature map indicating the optic disc’s location. The mask is
then applied to create a disc-free image fed into the retinal layer segmentation
network, which produces segmented outputs. These outputs are generated by
concatenating feature maps from both optic disc detection and retinal layer seg-
mentation stages, trained end-to-end with two defined loss functions penalizing
intermediate disc detection and final segmentation. Mukherjee et al. [14] intro-
duced a method employing a 3D deep neural network to directly predict surface
locations, aimed at ensuring precision, and smoothness in delineating retinal lay-
ers. The network comprises two interconnected subnetworks: (i) a 3D UNet for
multi-class voxel labeling of retinal layer surfaces, and (ii) a 3D convolutional-
autoencoder, which refines the UNet’s output to estimate smooth contours delin-
eating the boundaries between retinal layers. The approach proposed by Viedma
et al. [21] with Mask R-CNN for retinal and choroidal layer instance segmen-
tation raises certain concerns. While it introduces a novel methodology, relying
solely on a large dataset of OCT images from healthy participants might limit
its applicability to more diverse clinical scenarios. Xie et al. [22] developed a
deep learning approach for the segmentation of retinal OCTs that combined



304 M. Elsharkawy et al.

a U-Net framework with differentiable dynamic programming (DDP) for fea-
ture extraction and feature smoothness, respectively. Their proposed model seg-
mented 9 surfaces. Additional image gradient channels were utilized in the U-Net
to improve boundary discrimination. The fully differentiable DDP module min-
imized total surface area cost while respecting smoothness constraints described
by pixel-wise cost associations and parameterization of smoothness constraints.
Finally, a multiple-surface cross-entropy loss and L1 loss function were utilized.
Cao G et al. [3] proposed a model that combined encoder-decoder architecture
with self-attention mechanisms for retinal segmentation that yielded 9 layers.
These steps aimed to effectively capture both local and global features. First,
fine details were extracted from the scan by the encoder utilizing convolutional
layers. Then, a one-dimensional transformer block computing only self-attention
in the vertical direction captured global semantic information, thus limiting com-
putational complexity. Finally, an attention gate block and channel attention
were incorporated into the decoder to assign weights to feature channels. Also,
this approach [19] started by creating a 2D shape prior, which was subsequently
adjusted using a first-order appearance model combined with a second-order spa-
tial interaction MGRF model. After successfully segmenting the central macula,
known as the "foveal area," the layer labels and appearances from this segmen-
tation were then applied to segment adjacent slices. This final step was repeated
recursively until the full 3D OCT scan of the patient was segmented into 12
layers. This approach relied solely on the MGRF model, overlooking the impor-
tance of incorporating additional features or methods that could potentially
improve the segmentation accuracy. In summary, upon reviewing the existing
literature, we identified several critical limitations. Firstly, most works are con-
fined to segmenting only a subset of retinal layers, not all twelve, thereby failing
to convey the complete picture of the intricate details of the retina. Furthermore,
previous works heavily rely on CNN-based models, neglecting the potential of
transformer-based models which have achieved state-of-the-art results in numer-
ous computer vision tasks [7].

In response to these limitations, this paper introduces TransNetOCT, a novel
method that employs a transformer architecture to segment 3D-OCT volumes
into twelve distinct retinal surfaces. Our approach begins by segmenting the
central macular B-scan using a joint Markov Gibbs Random Field (MGRF)
model, integrating shape, intensity, and spatial characteristics across the layers.
To enhance the segmentation accuracy of the remaining slices within the OCT
volume, we introduce a novel propagation criterion based on the middle seg-
mented B-scan image and extract shape probability priors for adjacent slices.
The training of TransNetOCT is conducted using the middle slice, along with
the slices on its immediate left and right, from which we also extract probability
priors. This method results in an enhancement of the segmentation performance.
Importantly, this approach offers critical insights into diseases such as AMD.

2 Method

Our proposed TransNetOCT method, depicted in Fig. 2, involves three primary
stages for the precise segmentation of 3D-OCT volumes into twelve unique reti-
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Fig. 2. Proposed system framework for segmentation of 3D-OCT images using two-
phase segmentation approach: (I) Mid-slice segmentation and probability prior shape
propagation. (II) 3D-OCT volume segmentation utilizing our TransNetOCT network.

nal surfaces. Initially, we segment the central macular B-scan, where the fovea
is clearly visible, utilizing an MGRF model. This model integrates shape, inten-
sity, and spatial attributes across the retinal surfaces, capitalizing on the unique
features of the central B-scan. Following this, we implement a probability prior
shape model for the residual slices within the OCT volume. This model applies a
propagation standard based on the segmented middle B-scan image, facilitating
the extraction of shape priors for neighboring slices. The segmentation of the
3D-OCT volume is accomplished by leveraging the central slice, the slices to its
left and right, and the extracted probability prior shapes for these slices. The
specifics of our proposed method are expanded in the subsequent sections.

2.1 Propagated Probabilistic Atlas shape modeling

To enhance the robustness of OCT volume segmentation and make it fast, we
have adopted a novel approach: probabilistic prior shape modeling for the 3D-
OCT volume, with a focus on individual 2D images (OCT B-scans). First, to
model the appearance of an OCT B-scan as a MGRF, first consider the image
as a field of reflectivity measurements r(x) over a two-dimensional discrete space
X. Formally, r : X → G, where co-domain G is the set of gray levels (i.e., pixel
values) in the encoded image. There is a corresponding segmentation s : X → L,
i.e., a map of region labels (L) over the same domain. To establish the shape
prior, we utilize a collection of training OCT scans in our experiments. These
scans were carefully selected to represent the variability present in the entire
dataset. Expert retina specialists supervised the delineation of ground truth
region maps from these scans. These maps provide a manual segmentation of
the retina, highlighting its 12 distinct surfaces with 11 different layers.
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Using a high-quality reference scan that’s straight and perfectly focused on
the fovea, we make all other training images match it by adjusting them through
Thin-Plate Spline (TPS) deformations. We make the same adjustments to their
corresponding maps that show the correct labels. Then, we combine these aligned
maps pixel by pixel to get the prior shape probabilities. The image is aligned
with a shape database using TPS and multi-resolution edge tracking for con-
trol point identification. The à trous algorithm decomposes the scan via wavelet
transform, revealing distinct retinal bands. Gradient maxima tracing provides
initial boundary estimates. The foveal peak, positioned strategically between
vitreous/ Nerve Fiber Layer (NFL) and Myoid Zone (MZ)/ Ellipsoid Zone (EZ)
contours, serves as the reference point for control points. These guide the opti-
mized TPS alignment of the input image with the shape database, facilitating
shape prior utilization in image segmentation. The input image’s intensity his-
togram is normalized, creating the empirical marginal probability distribution.
It’s approximated using Linear Combination of sign-alternate Discrete Gaussians
(LCDG) and divided into components, each representing a dominant mode in
distinct regions. To achieve enhanced spatial homogeneity in segmentation and
to account for noise with greater precision, a second-order MGRF model, which
captures spatial interactions between region labels, is integrated with the afore-
mentioned shape prior and intensity model. Combining shape prior, intensity
model and MGRF enhances robust and accurate retinal layer delineation for the
middle slice image. For more details about this approach to segment single OCT
B-scan, see our previous work in [6].

Fig. 3. Illustration of probability shape prior extraction for subsequent OCT slices
from the central B-scan OCT.
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After segmenting the middle OCT B-scan, we propagated prior shape mod-
eling for adjacent slices. The algorithm outlined in Algorithm 1 explains the
propagated appearance shape modeling, designed to segment and label the left
and right adjacent slices of a 3D-OCT volume using information from the labeled
middle slice. The algorithm takes as input the middle slice image (M), the labeled
middle slice image (ML), and the four adjacent slices (Q1, Q2, Q3, Q4) where
Q1 and Q2 are to the left of the middle slice, and Q3 and Q4 are to the right
of the middle slice. The goal is to obtain the labeled shape prior images (QL

1 ,
QL

2 , QL
3 , QL

4 ) for these adjacent slices. The algorithm starts by calculating the
absolute difference (Δi) between the M and each of the Qi, i = 1, 2, 3, 4. It then
determines a range of thresholds (λ) to be considered for calculating the prior
shape. For each pixel p in the difference images (Δi), the algorithm computes a
probability vector v(p) that represents the likelihood of each pixel being asso-
ciated with a specific layer. Hence, v(p) is a vector of size 1 × 12 representing
the twelve surfaces. Suppose the pixel p falls within the range of thresholds λ.
In that case, the algorithm updates the probability vector v(p) by setting the
value corresponding to ML at that pixel to 1 and all other values to 0. Other-
wise, the algorithm defines a window Wp around the pixel p and computes the
rotation-invariant absolute difference between p in the Qi and the neighboring
pixels of p (βp

k) in the M . Based on the values of βp
k and the thresholds λ, the

algorithm adaptively updates the probability vector v(p). If pixels of βp
k falls

within the range of λ, the corresponding value in v(p) is set to the label of the
ML at that pixel. If βp

k is outside the range of λ, the window size Wp is adaptively
increased. If Wp exceeds a certain limit (Ω), the corresponding value in v(p) is
set to 0. Finally, the algorithm assigns the index of the maximum probability
of v(p) as the label to the corresponding pixel in Qi. The labeled shape prior
images (QL

1 , QL
2 , QL

3 , QL
4 ) are then returned as the output. For visual explana-

tion, Fig. 3 demonstrates a guided probabilistic atlas shape model for subsequent
OCT slices derived from the central B-scan OCT.

2.2 TransNetOCT

Given a volume x ∈ R
W×H×9, as discussed in Section 2.1, it is encoded using

ResNet-50 [8], where W and H denote the width and height of the image, respec-
tively. It yields feature maps F1 and F4, which are the outputs from layer 1,
low-level features, and layer 4, high-level features, of ResNet-50, respectively.
Given that the initial convolution layer, Conv1, of ResNet-50 is designed to
receive input with 3 channels, we adapted it to accept 9 channels by replacing
it with a modified version and duplicating the pretrained ImageNet weights of
Conv1 for this new layer. In our task, we aim to segment the 12 layers of the
retina, which share visual similarities. We hypothesize that modeling global fea-
tures is inevitable. Given that transformers excel at this task, we decided to
model these features with a transformer encoder. Specifically, F4 ∈ R

N×C×P×P ,
where P represents the patch size, N is the number of patches, and C is
the number of channels received by the transformer encoder. These feature
maps are reshaped and linearly projected to a sequence of patch embeddings
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Algorithm 1. Propagated Appearance Shape Modeling
Require: M (Middle Slice Image), ML (Labeled Middle image), (Q1, Q2, Q3, Q4) (left

and right Adjacent B-scan Slices)
Ensure: (QL

1 , QL
2 , QL

3 , QL
4 ) (Labeled Shape Prior Images for (Q1, Q2, Q3, Q4))

1: Let Q = {Q1, . . . , Q4} and QL = {QL
1 , . . . , QL

4 } denote sets of gray levels q and
region labels L, respectively.

2: Calculate the absolute difference between the middle slice and other four images:

Δi = |M − Qi|, i = 1, 2, 3, 4

3: Determine a range of thresholds λ = {λ1, λ2, . . . , λn} to be considered for calcula-
tion of prior shape

4: for each pixel p in Δi do
5: Let v(p) = (v1(p), . . . , v12(p)) be the probability descriptors for p, where vj(p)

expresses the degree of belonging to each layer j.
6: if the pixel p ∈ a range of thresholds λn

1 then
7: Update probability vector v(p) to set vj(p) = j for the layer j corresponding

to the label of M at this pixel, and vk(p) = 0 for all other layers k �= j.
8: else
9: Define a window of size Wp around p of Mp

10: Compute the rotation-invariant absolute difference between p of Qp
i and the

neighboring pixels of p (Np
k ) in M : , k = 1, 2, ......, Wp − 1

βp
k = |Qp

i − Np
k |, i = 1, 2, 3, 4

11: Update the probability vector v(p) based on βp
k and λ:

12: if βp
k ∈ λ then

13: vj(p) = ML(p)
14: else if βp

k /∈ λ then
15: Adaptively increase Wp to some size Ω
16: else if Wp > Ω then
17: vj(p) = 0
18: end if
19: end if
20: end for
21: Assign the label QL

i (p) to each pixel p in the adjacent slices Qi based on the
maximum value in v(p):

QL
i (p) = arg max

j
vj(p)

22: return (QL
1 , QL

2 , QL
3 , QL

4 )

f = [ex1 , ..., exN
] ∈ R

N×P 2×D. To retain positional information, learnable posi-
tion embeddings p = [p1, ..., pN ] ∈ R

P 2×D are added to the patch sequence,
resulting in the input sequence of tokens α = f + p. The transformer encoder,
composed of M layers, processes the input sequence α. Each layer comprises
a multi-headed self-attention (MSA) [13] block followed by a point-wise MLP
block, with layer normalization (LN) applied before and residual connections
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Fig. 4. An illustrative figure showcasing our network, TransNetOCT, which effectively
segments the entire 3D-OCT volume into twelve distinct surfaces (eleven OCT layers).

added after each block.

ai−1 = MSA(LN(αi−1)) + αi−1,

αi = MLP(LN(ai−1)) + ai−1,

where i ∈ 1, ...,M . The self-attention mechanism computes queries Q ∈ R
N×d,

keys K ∈ R
N×d, and values V ∈ R

N×d via three point-wise linear layers, followed
by self-attention calculation:

MSA(Q,K,V) = softmax

(
QKT

√
d

)
V.

The transformer encoder maps the input sequences to a contextualized encoding
sequence containing rich, salient information αM = [αM,1, ..., αM,N ]. Then, the
output of the transformer encoder is reshaped back to α ∈ R

N×C×P×P . Next,
the low-level features and the contextualized features are input into a decoder.
Finally, the decoder’s output is reshaped and passed through a 3D convolution
layer to produce the final 3D mask (i.e., a 12 × 5 × 256 × 256 mask). For a more
detailed explanation of our network’s architecture, please refer to Figure 4.

3 Experimental results

In this paper, the proposed approach is assessed on a cohort of 85 patients.
Among these, 45 were individuals diagnosed with early or intermediate AMD,
while the remaining data pertained to individuals with normal retinas. The data
were collected through a retrospective study involving patients at the Univer-
sity of Louisville and Legacy Devers Eye Institute. Approval for the study was
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obtained from the institutional review boards (IRB) of both institutions (IRB
#07.0296 and IRB #1971, respectively), and it was conducted in compliance
with the principles outlined in the Declaration of Helsinki. OCT imaging was
performed using two distinct devices: Zeiss Cirrus OCT models 4000 and 5000,
in addition to the Heidelberg device. The macular B-scans within each volume
were acquired with varying pixel dimensions, covering a depth of 2mm and a
width of 6mm. Along the anterior-posterior axis, the pixel spacing remained
consistently at 1.955 μm, while along the naso-temporal axis, it ranged from
5.865 μm to 11.74 μm.

Table 1. Segmentation accuracy comparison between proposed approach using prior
(ours) and without prior

Metric DSC ASSD MASD Sensitivity

Method With Prior Without prior With Prior Without prior With Prior Without prior With Prior Without prior
Background 0.9935 0.9918 0.4830 0.6212 0.4777 0.6079 0.9947 0.9926
NFL 0.5759 0.5314 1.7433 2.0805 2.4047 2.7970 0.5518 0.5106
GCL 0.6921 0.6430 1.1403 1.3673 1.1611 1.3443 0.6979 0.6569
IPL 0.7057 0.6540 1.0314 1.2697 1.0328 1.2695 0.6986 0.6493
INL 0.7352 0.6784 0.9683 1.1864 0.9550 1.1290 0.7423 0.6902
OPL 0.6373 0.5728 1.0097 1.3632 1.0627 1.5847 0.6244 0.5597
ONL 0.8376 0.8003 1.0872 1.3376 1.0697 1.2742 0.8639 0.8415
ELM 0.3616 0.2586 4.5690 7.2680 8.2979 13.4460 0.3044 0.2034
MZ 0.5645 0.4917 0.8298 1.3233 0.8188 1.5102 0.5982 0.5358
EZ 0.4698 0.3883 1.1841 2.0168 1.5166 0.9980 0.4362 0.3514
OPR 0.5572 0.4890 0.8431 1.2665 0.8399 2.9265 0.5673 0.4934
RPE 0.7431 0.6863 0.8891 1.1384 0.8729 1.4071 0.7512 0.7083
Average 0.6561 0.5988 1.3149 1.8532 1.7091 2.6633 0.6526 0.5994

The system proposed in this study underwent training utilizing the AdamW
optimizer, configured with a learning rate of 0.0001, and a cosine annealing
scheduler. Moreover, a batch size of 8 was employed. Both training and testing
phases adopted a leave-one-out cross-validation strategy, utilizing the ResNet-50
encoder with pretrained ImageNet weights. Additionally, cross-entropy loss was
employed for optimization. The implementation was carried out using PyTorch,
leveraging a single NVIDIA RTX A2000 GPU with a memory capacity of 12
GB. It’s important to note that from each volume of 3D-OCT data, we selected
the 5 most significant slices where the AMD was clearly visible.

In this study, we assess the performance of our proposed method for 3D-OCT
segmentation using four distinct sets of metrics. These metrics are computed
layer-wise, allowing for a detailed analysis of the model’s performance across
various retinal structures. Initially, we employ the Dice Similarity Coefficient
(DSC) to gauge the overlap between predicted and ground truth masks for each
retinal layer. Additionally, we utilize sensitivity to evaluate the model’s ability
to accurately detect the presence of specific retinal layers. Finally, we integrate
the Mean Absolute Surface Distance (MASD) and Absolute Sum of Surface
Distance (ASSD) metrics to quantify the average absolute distance and the sum
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of absolute distances between the predicted and ground truth boundaries for
each retinal layer, respectively.

Fig. 5. An illustrative figure showcasing a comparison of retinal layer segmentation
performance among TransNetOCT, UNet, and FPN using OCT scans of a patient
with early AMD.

Table 1 presents a comprehensive comparison of segmentation performance
between the proposed approach using our novel prior model and the approach
without the prior. The metrics evaluated include the DSC, ASSD, MASD, and
sensitivity for each retinal layer in the OCT volume. The results highlight the
significant improvement achieved by incorporating prior knowledge into the seg-
mentation model. On average, the proposed approach with prior knowledge out-
performs the approach without prior knowledge across all metrics. Specifically,
the average DSC improves from 0.5988 to 0.6561, indicating a higher overlap
between the predicted and ground truth segmentation masks. The average Sensi-
tivity also increases from 0.5994 to 0.6526, demonstrating an enhanced ability to
detect the presence of retinal layers accurately. Based on the MASD, it is evident
that the proposed approach with the prior shape model performs significantly
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better than the approach without the prior model. The average MASD with
the prior model is 1.7091, while the average MASD without the prior model is
2.6633, which is approximately 55% higher. Moreover, our approach consistently
outperforms the one without prior knowledge across all retinal layers. Notably,
in the segmentation of the RPE layer, the ASSD decreases from 1.1384 to 0.8891
with prior information, demonstrating the effectiveness of adding a prior shape
to our model. Specifically, this RPE layer is important for the diagnosis of AMD.

Furthermore, TransNetOCT is compared with other popular segmentation
models, including UNet and Feature Pyramid Network (FPN). The setup for
UNet and FPN is the same as our proposed method, ensuring a fair comparison.
According to Table 2, our approach outperforms both UNet and FPN in terms
of DSC, achieving a DSC of 0.6561, compared to 0.4178 for UNet and 0.5512 for
FPN. Additionally, our approach also achieves lower ASSD and MASD values
of 1.3149 and 1.7091, respectively, in contrast to UNet’s 6.0690 and 7.0618, and
FPN’s 2.5183 and 3.2558. Lower ASSD and MASD values indicate that our
segmentation boundaries are closer to the ground truth, making our method
more precise. Notably, our method achieves a DSC of 0.7431 for the RPE layer,
significantly higher than 0.5323 of UNet and 0.6501 of FPN, which is a crucial
layer for diagnosing and monitoring AMD. Additionally, Figure 5 shows that
the proposed TransNetOCT system outperforms UNet and FPN in accurately
segmenting retinal layers from OCT scans of a patient with early AMD. The
narrower rainbow-colored regions in the TransNetOCT row indicate lower error
between the segmented layers and the true layer boundaries, compared to the
wider misalignments observed in UNet and FPN.

Table 2. Segmentation accuracy comparison between proposed approach (TransNe-
tOCT), UNet [16], and FPN [12] using prior shape

Metric DSC ASSD MASD

Method Ours UNet [16] FPN [12] Ours UNet [16] FPN [12] Ours UNet [16] FPN [12]
Background 0.9935 0.9773 0.9886 0.4830 1.8867 0.8586 0.4777 1.4915 0.8717
NFL 0.5759 0.2639 0.4603 1.7433 5.7292 3.3211 2.4047 7.0180 4.7451
GCL 0.6921 0.4934 0.5909 1.1403 3.6967 1.9825 1.1611 2.4212 1.9784
IPL 0.7057 0.4867 0.5849 1.0314 3.0128 1.9214 1.0328 2.7536 1.9291
INL 0.7352 0.5158 0.6059 0.9683 2.8586 1.8263 0.9550 2.0353 1.8124
OPL 0.6373 0.3404 0.5102 1.0097 5.7695 2.0291 1.0627 7.4806 2.2008
ONL 0.8376 0.6503 0.7514 1.0872 3.4969 1.8880 1.0697 2.2680 1.8130
ELM 0.3616 0.0750 0.2260 4.5690 13.2581 6.8553 8.2979 18.5708 12.3897
MZ 0.5645 0.2515 0.4488 0.8298 10.1028 2.2235 0.8188 15.5480 2.5081
EZ 0.4698 0.1588 0.3419 1.1841 12.2631 3.0230 1.5166 14.3538 4.2505
OPR 0.5572 0.2689 0.4550 0.8431 7.4679 2.3210 0.8399 9.2824 2.6376
RPE 0.7431 0.5323 0.6501 0.8891 3.2860 1.9704 0.8729 1.5185 1.9334
Average 0.6561 0.4178 0.5512 1.3149 6.0690 2.5183 1.7091 7.0618 3.2558
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4 Conclusions and Future work

Accurate segmentation of retinal layers within 3D-OCT volumes is crucial for
disease prediction, notably in understanding AMD progression. This study intro-
duces TransNetOCT, a transformer-based method designed for segmenting 3D-
OCT volumes into twelve surfaces, delineating the background and eleven retinal
layers. Initially, we applied a joint MGRF model to segment the central macular
B-scan, incorporating shape, intensity, and spatial characteristics across retinal
surfaces. Subsequently, a probability prior shape model was implemented for the
remaining slices, utilizing a propagation criterion based on the segmented mid-
dle B-scan image. TransNetOCT was trained to utilize the middle slice, adjacent
left and right slices, and extracted probability prior shapes for accurate 3D-OCT
segmentation. Evaluation of an 85-patient cohort, including those with normal,
early, and intermediate AMD, showcased the potential of TransNetOCT. It out-
performed well-known models like UNet and FPN by approximately 57% and
19%, respectively, as measured by the Dice coefficient. Additionally, TransNe-
tOCT achieved an ASSD of 1.3149, representing a 78% reduction compared
to UNet (6.0690) and a 48% reduction compared to FPN (2.5183). Similarly,
the MASD of TransNetOCT (1.7091) was 76% lower than UNet (7.0618) and
48% lower than FPN (3.2558). These notable enhancements in DSC, ASSD, and
MASD metrics underscore the superior performance of our approach in precisely
segmenting retinal layers from OCT images. In future work, we will collect more
data to further explore TransNetOCT’s potential, investigate additional slices,
and aim to make TransNetOCT a purely 3D model.

Disclosure of Interests. The authors have no competing interests.
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Abstract. This paper evaluates various deep learning methods for mea-
surable residual disease (MRD) detection in flow cytometry (FCM)
data, addressing questions regarding the benefits of modeling long-range
dependencies, methods of obtaining global information, and the impor-
tance of learning local features. We propose two adaptations to the cur-
rent state-of-the-art (SOTA) model based on our findings. Our contribu-
tions include an enhanced SOTA model, demonstrating superior perfor-
mance on publicly available datasets and improved generalization across
laboratories, as well as valuable insights for the FCM community, guid-
ing future DL architecture designs for FCM data analysis. The code is
available at https://github.com/lisaweijler/flowNetworks.

Keywords: Flow Cytometry · Automated MRD Detection · Deep
Learning · Self-Attention · Graph Neural Networks

1 Introduction

The detection and monitoring of measurable residual disease (MRD) in pediatric
acute leukemia represent a critical aspect of patient care and treatment evalua-
tion [5]. MRD defined as the proportion of residual cancer cells in patients after
therapy, serves as a prognostic indicator for disease relapse and guides therapeu-
tic decisions towards achieving better clinical outcomes [8,26]. Flow cyotmetry
(FCM), with its ability to analyze cellular characteristics at a single-cell level,
has emerged as a cornerstone technique for MRD assessment due to its sensitivity
and specificity [18].

However, the accurate identification and quantification of MRD amidst het-
erogeneous cell populations remain challenging, often necessitating complex data
analysis methodologies and training of medical experts. In recent years, the
advent of deep learning (DL) approaches has revolutionized the landscape of
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biomedical data analysis [7], offering promising solutions to address the inherent
complexities of MRD detection in FCM data for pediatric acute leukemia.

Given the unstructured characteristic of single cell FCM data, it does not
fit in well-researched modalities such as text or images, and hence, applying DL
methods is not straightforward. While traditional machine learning approaches
have become standard practice for the analysis of FCM data [6,10,25], there
have only been a handful of approaches applying DL to FCM data directly,
primarily relying on convolutional neural networks (CNN) for e.g. imaging FCM
or attention-based networks that are able to process unstructured data for single
cell FCM data.

FCM data samples are essentially sets of F -dim feature vectors (events) cor-
responding to single cells, in a feature space R

F comprised of the properties
measured by FCM, where F is usually between 10 and 15 and can vary between
different samples. Similar cell types share similar feature vectors and tend to
form clusters, representing a composition of different cell populations.

Since events within one sample are not i.i.d., previous works suggest that the
relative position of cell populations within one sample contains crucial informa-
tion for successful MRD detection, meaning it is beneficial to process full samples
at once rather than considering single events detached from their origin-sample
as input to DL models [17,23,24]. In other words, global feature extraction is
suggested to be beneficial for single-cell classification as in the task of MRD
detection. However, to the best of our knowledge, there exists no extensive eval-
uation of this assumption except for minor baseline testing with simple MLPs.
Further, there are several ways of learning global features and infusing them
with single-cell features for classification, which have not been evaluated. Dom-
inating methods in the literature rely on gaussian mixture models (GMM) or
self-attention, while the latter holds the current state-of-the-art (SOTA) for auto-
mated MRD in pediatric b-cell acute lymphoblastic leukemia (b-ALL) [33]. Self-
attention allows for modeling long-range dependencies, yet does not explicitly
learn local features, i.e., introduce an inductive bias of spatial locality, which
is a crucial component of common successful architectures using convolutions
and local feature aggregation, especially for tasks requiring fine semantic per-
ception [9].

In this work, we provide an extensive evaluation of several methods guided
by asking the following questions. "Does automated MRD detection benefit from
modelling long-range dependencies?", "Does it matter how the global informa-
tion is obtained?" and "Is it beneficial to explicitly learn local features?" Based
on the findings of the analysis we propose two adaptations of the current SOTA
that give a performance increase and better generalization abilities. First, the
current SOTA is based on the set transformer (ST) [14], which uses learned
query vectors, called inducing points, to mitigate the quadratic complexity issue
of self-attention; instead of using learned query vectors we propose to use fea-
ture vectors from the FCM sample directly sampled by farthest-point-sampling
(FPS). Second, we introduce explicit learning of local features by infusing the
self-attention layers with graph neural network (GNN) layers.



318 L. Weijler et al.

In summary, our main contributions are,

1. an enhanced version of the current SOTA model that leads to a new SOTA
performance on publicly available datasets as well as better generalization
abilities between datasets of different laboratories,

2. providing an extensive evaluation of several DL methods for FCM data with
valuable insights for the FCM community, on which future designs of DL
architectures can be based.

2 Related Work

Given the wide range of applications of FCM data, the developed approaches for
automated analysis are highly task-specific. In this work, we focus on single-cell
classification for rare cell populations and give an overview of techniques related
to this task.

The most direct approach to automatically predicting the class label of each
event of a patient sample is to pool events from the training set of different
samples together and train a classifier using pairs of single events and corre-
sponding labels. Abdelaal et al. Authors in [1] propose a linear discriminant
analysis classifier (LDA) for this task, leading to interpretable results due to
the simplicity of LDA. However, the assumption of equal covariance matrices
of classes is not valid for rare cell population detection as in MRD quantifica-
tion. In [19], authors suggest training one support vector machine model per
patient, implicitly incorporating prior knowledge of the patient’s specific phe-
notype. However, this requires the availability of labeled training data for each
patient.

Other methods are based on neural networks [17]. However, methods using
single events as input are restricted to learning fixed decision regions. One way
to circumvent this is to register samples by transforming them into a common
feature space [16,30] or by creating landmarks based on prior biological knowl-
edge that guides classification [13]. Another way is to process full samples at
once, yet those methods need to be equivariant to the ordering and handle the
volume of events present in a sample. Representing a sample based on its sta-
tistical parameters by, e.g., Gaussian Mixture Models [23] is an option. Others
propose sample-wise clustering-based approaches [4,29,32].

Methods based on DL that process full samples at once are scarce, given the
characteristics of FCM data. One line of research is to transform FCM samples to
images and apply convolutional neural networks as in [2]. More recently, methods
based on the attention mechanism [27] have been proposed [12,31,33]. Attention-
based models are a way for event-level classification that learns and incorporates
the relevance of other cell populations in a sample for the specific task. A limiting
factor is the complexity of the standard self-attention operation that increases
quadratically with the input sequence length O(n2); this is infeasible for FCM
data and efficient variants such as the ST [14] have to be used, as authors in [33]
do.
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In the context of FCM data, to the best of our knowledge, graph-based
methods have only been applied for unsupervised clustering, where the clustering
algorithm itself is graph-based [3,15], but not for targeted cell classification and
modeling local spatial structure. Additionally, as far as we are aware this work
is the first to introduce the benefits of GNN to implicitly make use of sample-
or patient-specific features.

3 Methods

In this section, the problem setup is described in detail (Section 3.1), all methods
analyzed are introduced (Section 3.2), and the experimental setup is outlined
(Section 3.3).

3.1 Preleminaries

We treat the problem of MRD detection as a binary classification of single events
into healthy or cancerous cells. We use the following definitions of FCM data
sets throughout the paper.

Definition 1. A FCM data set X = {X1, . . . , XN} contains N samples Xi ∈
R

ni×Fi , i = 1 . . . N , where Fi is the feature space dimension of sample Xi and
ni = |Xi| the number of events xij , j = 1, . . . , ni per sample.

Fig. 1. This figure shows 2D projections of an FCM sample on pairs of features, where
each dot represents the feature vector of a cell (event). Healthy cells are denoted in
grey, and cancerous cells in red. FSC, SSC stands for forward-, side-scatter, and CD
for cluster of differentiation.

In general, the proportion of leukemic cells varies between samples; it can be
as low as 0.01%, while the number of measured cells is up to ni = 106. Fig. 1
shows 2D projections of an FCM sample.

When applying GNN to FCM data, each sample Xi is converted into a graph
Gi by the k-NN algorithm utilizing its full individual feature space R

Fi . The
graph is constructed using all events xij ∈ Xi; every node of the graph thus
represents a single event.
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3.2 Methods assessed

In the following we introduce the architectures analysed to answer the posed
questions. The range of models used is not exhaustive, yet yields a good repre-
sentation of various domains ranging from simple multi-layer perceptron (MLP)
over GNN to variations of attention-based networks.

We distinguish between no-context models, where cells are classified based on
the information of the single cell only, global-context models, where the sample
as a whole is included in the prediction of single cells, and local-context models,
where the local context of similar cells in the sample is used for classification.
Finally, we present our proposed architecture, local-global-context, where explicit
extraction of local features is combined with long-range dependency modeling.

All architectures are comprised of 4 layers of the specific network layers and a
linear layer as prediction-head using a hidden dimensionality of 32 unless stated
otherwise. If multi-head self-attention is part of the architecture, 4 heads are
used. For methods that use local feature learning, a k-NN graph is constructed
with k = 10, unless stated otherwise. As non-linearity, the GELU activation
function is employed.

No-context model A baseline model for comparing to single cell processing
with neural networks, which translates into fixed decision boundaries indepen-
dent of in-sample-context.

MLP: A simple MLP with batch normalizations after the non-linearity.

Global-context models Baseline models and proposed FCM-specific adapta-
tions to compare different versions of incorporating global information i.e. taking
the whole input sample into consideration for single cell predictions.

MLP-mean: Same as MLP but a global feature vector obtained with mean-
aggregation is infused by concatenation to the single-event feature vectors before
passing through the last linear layer

MLP-max: Same as MLP-mean but using max-aggregation.

MLP-pma: Same as MLP-mean but using a learnt query vector for aggregation. This
aggregation is equivalent to the pooled multi-head attention (PMA) as proposed
in [14] using one seed vector and one attention head, where a learnt query vector
is cross-attended to all single-event feature vectors.

PointNet: The PointNet architecture introduced in [20] for 3D point cloud clas-
sification and segmentation.

PointNet-adapted: Same as PointNet but to reweigh the focus on the global
information to be equally distributed among event-wise and global vectors, we
increase the dimensionality of the event-wise feature vectors to match the dimen-
sionality of the global vectors, namely 1024.



Local and Global Feature Learning for FCM Data 321

ST: The ST [14] which holds the current SOTA for automated MRD detection
in b-ALL [33]. It uses learned query vectors, called inducing points to circum-
vent the quadratic complexity of self-attention. The induced set attention block
(ISAB) is defined as

ISABm(X) = MAB(X,H) ∈ R
n×d,

where H = MAB(I,X) ∈ R
m×d,

(1)

with I ∈ R
m×d being the m d-dimensional inducing points, X ∈ R

n×d the set to
be processed with cardinality n and MAB a multi-head attention block. Such an
ISAB reduces the complexity from O(n2) to O(mn) with m << n. Intuitively,
ISAB summarizes the sample in the learned queries and induces the information
back with cross-attention. m = 16 as proposed in [33].

reluFormer: An adaptation of the cosFormer proposed in [21] that uses ReLU
instead of softmax to remove the non-linearity in the attention calculation in
order to be able to rearrange the matrix multiplications to get linear complexity
of self-attention while using the full input sequence length. Authors in [21] pro-
pose a cosine-based distance re-weighting scheme instead of the softmax function
that concentrates the focus of the attention values on neighboring tokens. Since
we do not have an ordered sequence as input we omit the re-weighting scheme
in this work.

ST-FPS: Inspired by the intuition of ISAB we propose to select event feature
vectors instead of learning queries to compose the matrix as inducing points. We
use FPS, a widely used sampling method, on the input FCM sample to select
the indices of events used to create the I matrix. We use a sampling ratio of
r = 0.0005, which results on average in ≈ 150 events.

Local-context models Baseline models that introduce an inductive bias based
on prior knowledge of homophily (biologically similar events share similar feature
measurements) by explicitly learning local features.

GCN: The graph convolution network (GCN) layers as proposed in [11].

GAT: The graph attention network (GAT) layers as proposed in [28].

GIN: The graph isomorphism network (GIN) layers as proposed in [35].

GAT-AsAP: The adaptive structure aware pooling (ASAP) layers as proposed in
[22] combined with GAT layers. The architecture used is similar to [22] with two
GAT blocks, constituted of 2 GAT layers each and two ASAP layers pooling to
100 and 50 nodes, respectively.

GIN-AsAP: Same as GAT-ASAP but with a GIN layer instead of GAT.

Local- and global-context model The proposed architecture combines
explicit local feature learning with long-range dependency modeling.
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GAT-ST-FPS: The adapted SOTA architecture based on the findings in Section
4, GAT infused ST with FPS self-attention. We use one GAT layer for local
feature extraction and concatenate those with the input feature vectors before
inserting them into the 3 ST-FPS layer.

GIN-ST-FPS: GIN infused ST with FPS self-attention. Same as GAT-ST-FPS but
with a GIN layer instead of GAT.

3.3 Experimental setup

Datasets. We conduct our experiments on publicly available1 data sets of bone
marrow samples from pediatric patients with b-ALL. In our main experiments,
we use the biggest dataset Vie; for our inter-laboratory experiments to assess
the architectures’ ability to generalize to different laboratories we use Bln and
Bue for testing.

– Vie contains 519 samples collected between 2009 and 2020 at the St. Anna
Children’s Cancer Research Institute (CCRI) with an LSR II flow cytome-
ter (Becton Dickinson, San Jose, CA) and FACSDiva v6.2. The samples
collected between 2009 and 2014 were stained using a conventional seven-
colour drop-in panel (“B7”) consisting of the liquid fluorescent reagents: CD20-
FITC/ CD10-PE/ CD45-PerCP/ CD34-PE-Cy7/ CD19-APC/ CD38-Alexa-
Fluor700 and SYTO 41. The samples collected between 2016 and 2020 were
stained using dried format tubes (DuraCloneTM, "ReALB") consisting of
the fluorochrome-conjugated antibodies CD58-FITC/ CD34-ECD/ CD10-
PC5.5/ CD19-PC7/ CD38-APC-Alexa700/ CD20-APC-Alexa750/ CD45-
Krome Orange plus drop-in SYTO 41.

– Bue contains 65 samples collected between 2016 and 2017 at the Garrahan
Hospital in Buenos Aires. The samples were recorded with FACSCanto II flow
cytometer with FACSDiva v8.0.1 and stained with the following panel: CD58,
FITC/CD10, PE/CD34, PerCPCy5.5/CD19, PC7/CD38, APC/CD20, APC-
Alexa750/CD45, Krome-Orange plus drop-in SYTO 41.

– Bln consists of 72 samples collected in 2016 at the Charité Berlin. The samples
were collected with a Navios flow cytometer and stained with the same panel
as Bue.

All data were collected on day 15 after induction therapy. Sampling and
research were approved by local Ethics Committees, and informed consent was
obtained from patients or patients’ parents or legal guardians according to the
Declaration of Helsinki. Ground truth was obtained using manual gating by at
least two experts. For every sample, the resulting labels from different experts
are then combined into a final gating for each sample to obtain reliable ground
truth data.

Table 1 provides a tabular overview of the data sets.

1 flowrepository.org

https://flowrepository.org/id/FR-FCM-ZYVT
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Table 1. Description of the FCM data sets.

NameCity Years Samples

Vie Vienna 2009-2020519
Bln Berlin 2016 72
Bue Buenos Aires2016-201765

Metrics. We use precision p, recall r, and F1-score for evaluation, with correctly
identified cancer cells as true positives. The metrics are computed per FCM
sample and then averaged to obtain the final score. We report the mean and
standard deviation of at least 5 runs for each experiment.

Training details. For comparability we keep the same training setup for each
experiment. We use a batch size of 4 with 5 ∗ 104 randomly sampled events per
sample. For augmentation, we employ random jitter with a scale parameter of
0.01 and label smoothing with eps = 0.1. We use a train, validation, and test
split of 50%, 25%, and 25%, respectively. Each model is trained for 150 epochs
using AdamW optimization with a learning rate of 0.001 and cosine annealing
with a starting value of 0.001, a minimum value of 0.0002, and a maximum of 10
iterations as learning rate scheduler. To mitigate overfitting in GAT layers we
employ dropout and weight decay with a rate of 0.2. Training for all experiments
is conducted on an NVIDIA GeForce RTX 3090. The model that performed best
on the validation split based on mean F1-score is used for testing.

4 Experiments

In this section we analyse the results of the methods described above and thereby
aim to find answers to the questions posed. First, in Section 4.1, the importance
of global information for the success of the current SOTA ST [33] is assessed.
Second, in Section 4.2, different ways of obtaining global features are compared.
Third, in Section 4.3, methods that explicitly learn local features are evaluated.
And finally, in Section 4.4 we combine the findings into the proposed enhanced
architecture.

4.1 Does automated MRD detection benefit from modelling
long-range dependencies?

To answer this question, we take the current SOTA method ST and compare it
to its identical architecture but with removed self-attention, which is substituted
by summed query, key, and value vectors. This way, we can test for the impact of
modeling long-range dependencies without architecture noise. Tabel 2 shows that
modeling long-range dependencies brings a clear benefit, and the architecture
itself has no contribution but rather impairs results for event-wise processing
when looking at the simple MLP for comparison. This question can thus be
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clearly answered, with an yes. However, there are several ways of obtaining
global features, which are discussed in the next section.

Table 2. Results for removing the ability to model long-range dependencies without
an architecture change from the SOTA model.

Method p r avg F1 med F1

ST-No-Att0.74630.8766 0.771 ±0.0038 0.8925 ±0.0036

MLP 0.79120.8701 0.8032 ±0.0073 0.9224 ±0.0084

ST 0.82510.86010.8284 ±0.01170.9405 ±0.0085

4.2 Does it matter how the global information is obtained?

The most simple way to inject global features in the network is by single-cell
feature vector aggregation and combining the obtained global vector with each
single-cell feature vector for classification. We evaluate max and mean aggrega-
tion (MLP-max, MLP-mean) as well as using a learned query vector (MLP-pma). Fur-
ther, we evaluate PointNet, being a pioneering architecture for 3D point cloud
classification and segmentation. Table 3 shows that there is no real difference
in performance using mean or max aggregation and only a minor performance
increase when using a learned query vector. PointNet, however, performs better,
yet the hidden dimensions are much higher (128 and 1024 for single-event and
global feature vectors, respectively) than 32 as used throughout our experiments.
When increasing the feature dimension for the single-event vectors to 1024 as
well in PointNet-adapted to remove the increased focus on global information
from the standard PointNet architecture, the model slightly outperforms the
current SOTA ST relying on self-attention. This is interesting given the simplic-
ity of PointNet. However, note that the feature dimension in PointNet-adapted
is 32 times higher than in ST.

Further, self-attention can essentially be seen as another way of directly
obtaining global information since no local spatial structure is imposed. Table 3
shows a clear benefit using feature vectors sampled directly from the FCM sam-
ple (ST-FPS) rather than learned query vectors as inducing points. One expla-
nation is that relying more on the sample at hand helps to generalize between
patient- or sample-specific shifts and variations (Table 6 supports this interpre-
tation). Further, to compare with a full-range self-attention method, we look
at the results obtained with the reluFormer. Although this approach solely
relies on the sample at hand and has all sample-specific information, i.e., the
full sequence length, the performance in comparison to ST only improves from
F1 = 0.8284 to F1 = 0.8313. The reluFormer is missing the non-linearity of
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the softmax function in the self-attention operation, which could be an explana-
tion for this result. To rule out that the performance increase of ST-FPS solely
comes from using more inducing points, ≈ 150 compared to 16, we train the ST
with 150 inducing points and denote this experiment as ST-150I. We can see
however, that this worsens the results, meaning that the performance increase
of ST-FPS does stain from sampling features vectors of the sample as inducing
points. An explanation here could be that sampling the inducing points directly
from the data reduces the parameters to be learned, which is beneficial in low
data regimes, often the case in MRD detection of pediatric leukemia.

Finally, we can answer this question with yes, it matters how the global
information is obtained, where self-attention that relies solely on the sample at
hand and uses a non-linearity to calculate the attention matrices performs best.

Table 3. Results for the methods learning global features in a direct manner.

Method p r avg F1 med F1

si
ng

le
-c

el
l

fe
at

ur
e

ve
c.

ag
g. MLP-max 0.7855 0.8749 0.8015 ±0.0044 0.9179 ±0.0098

MLP-mean 0.7887 0.8748 0.8041 ±0.0071 0.9203 ±0.0087

MLP-pma 0.7912 0.8755 0.8058 ±0.0026 0.9228 ±0.0061

PointNet 0.8027 0.8686 0.8117 ±0.0045 0.9155 ±0.0073

PointNet-adapted 0.8191 0.8792 0.83 ±0.0037 0.9437 ±0.006

se
lf-

at
te

nt
io

n ST-150I 0.817 0.8597 0.8211 ±0.012 0.9346 ±0.008

ST 0.8251 0.8601 0.8284 ±0.0117 0.9405 ±0.0085

reluFormer 0.8298 0.867 0.8313 ±0.0059 0.9466 ±0.0029

ST-FPS 0.8332 0.8636 0.8369±0.0076 0.9454 ±0.0063

4.3 Is it beneficial to explicitly learn local features?

To answer this question we look at local neighborhood aggregation methods
and find that GNNs are a good fit for FCM samples. The graph for each sample,
e.g., a sample’s local neighborhoods, can be constructed by using the full sample-
specific features (marker panels). Since marker panels can vary from sample to
sample this is an easy way of incorporating sample-specific information through
the structure of the spatial relations, which has to be completely dismissed in
the other methods since all models assessed expect the same set of input features
for each sample (see Section 4.4 and Table 7).

We look at three main GNN types, GCN, GAT, and GIN, where the latter
outperforms GCN and GAT. The performance of GAT and GCN are similar with
incrementally better median F1 score of GAT. Hence we conduct all following
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experiments involving GNN with those two. All reach similar results to our
baseline ST, with GIN even slighthly outperforming. Although those methods do
not directly learn global features, we assume that this is because with k = 10, we
have connections between every cluster present in the FCM sample, and using 4
layers means that the receptive field of each node (cell) is 400. The local neigh-
borhoods are thus highly overlapping and information can flow on a global scale.
Results for GAT-ASAP, GIN-ASAP and only using k = 3 in the k-NN graph con-
struction (GAT-3, GIN-3) support this assumption: adding explicit aggregation
with ASAP has some benefit, yet not significantly, but capping global infor-
mation flow by using a k-NN graph with k = 3, which results in disconnected
clusters within the sample, impairs the results. Although the model cannot learn
full-range dependencies, the results are competitive or outperform our baseline
ST indicating that local feature learning is beneficial and that GNNs are suitable
methods for FCM data.

Based on those results, an initial answer to the question stated is that at
least compared to the performance of the current SOTA, explicitly modeling
local spatial relationships leads to competitive or slightly better results in terms
of F1 score and hence modeling long-range dependencies as with self-attention
is not strictly necessary to reach those results (Table 4).

Table 4. Results for methods explicitly learning local features based on GNNs.

Method p r avg F1 med F1

GCN 0.7827 0.8598 0.8288 ±0.007 0.9405±0.0015

GAT 0.7941 0.8339 0.8255 ±0.0063 0.9458 ±0.0036

GIN 0.7902 0.8486 0.8317 ±0.0082 0.9415 ±0.0045

GIN-3 0.8018 0.843 0.813 ±0.0149 0.9268 ±0.0138

GAT-3 0.8104 0.8504 0.8147 ±0.0068 0.9383 ±0.005

GAT-ASAP 0.7877 0.8481 0.8274 ±0.0086 0.9443 ±0.0017

GIN-ASAP 0.7994 0.8458 0.8378 ±0.0217 0.9457 ±0.0050

4.4 GNN infused ST with FPS self-attention

Based on the findings above using methods based on either purely learning global
or local features, we ask if we can benefit from combining those two strains,
similarly to work in [34]. Table 5 shows that by using FPS based ISABs and
explicitly learning local features by replacing one layer by a GNN layer, GAT or
GIN, we reach new SOTA performance on the Vie dataset. Further, Table 6
shows that by introducing the above-mentioned adaptations, the inter-laboratory
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generalization ability improves significantly due to relying more on the sample at
hand by using FPS and the sample’s specific spatial local structures. In Figure 2
the network features of the last layer before the prediction head, which is a
linear layer, are plotted using PCA with 2 components of each feature space.
The features of ST-FPS, GIN, and the combined GIN-ST-FPS are compared to
get insights into how the models might complement each other and create the
performance increase. We can see that GIN compresses the cell types to tight
clusters, yet struggles with cancer cells that closely adhere to healthy ones. We
postulate that this can be traced back to the k-NN graph, where healthy cells
might be also strongly connected to cancerous cells on the edge of the different
cell population clusters. The ST-FPS model seems to have a smoother but yet
rather blurry transition. GIN-ST-FPS, can make use of the spatial locality stored
in the graph structure while also being able to balance it out by incorporating
the context of other cell populations regardless of spacial proximity.

Fig. 2. Network features of the last layer of each model before the prediction head
(a linear layer) are plotted using PCA with 2 components. Each model had the same
FCM sample as input. Healthy cells are denoted in grey, and cancerous cells in red.

As stated in Section 4.3, in the case of varying marker panels between sam-
ples, modeling a FCM sample as a graph can be beneficial since the information
of those sample-specific features can be indirectly incorporated via the graph
structure. To analyze if the network is actually able to make use of this informa-
tion, we remove 3 of the most important features for b-ALL detection, CD10,
CD19, and CD45, from the input features but keep them for graph construction.
Table 6 shows that while the performance drops for all methods, the GAT-ST-FPS
and GIN-ST-FPS give the best results, confirming our assumption.
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Table 5. Results for our proposed architectural changes.

Method p r avg F1 med F1

ST 0.8251 0.8601 0.8284 ±0.0117 0.9405 ±0.0085

ST-FPS 0.8332 0.8636 0.8369 ±0.0076 0.9454 ±0.0063

GAT-ST-FPS 0.8242 0.8829 0.8465 ±0.0094 0.9529 ±0.0043

GIN-ST-FPS 0.8335 0.8775 0.8665 ±0.0083 0.9561 ±0.0044

Table 6. Results testing generalization ability to datasets of other laboratories.

Bln Bue
Method avg F1 med F1 avg F1 med F1

ST 0.6089 ±0.0577 0.7225 ±0.0972 0.7274 ±0.0214 0.9246 ±0.0122

ST-FPS 0.7265 ±0.0275 0.9052 ±0.0060 0.7939 ±0.0164 0.9445±0.0095

GAT-ST-FPS 0.7136 ±0.0587 0.8952 ±0.0488 0.7802 ±0.0375 0.9519 ±0.0156

GIN-ST-FPS 0.7046 ±0.0501 0.9064 ±0.0406 0.8356 ±0.0111 0.9628 ±0.0025

Table 7. Results showing the model’s capability of making use of implicit information
stored in the graph structure. The 3 most important features for b-ALL detection,
CD10, CD19, and CD45, were removed from the input features (node features) but
kept for graph construction.

Method avg F1 med F1

ST 0.3462 ±0.0170 0.1452 ±0.0565

ST-FPS 0.3668 ±0.0142 0.2023 ±0.0554

GAT-ST-FPS 0.4343 ±0.0086 0.3943 ±0.0285

GIN-ST-FPS 0.4545 ±0.0113 0.4647 ±0.0303

Revisiting the question addressed in Section 4.3, we can now give a clear
yes as an answer; explicitly learning local features with GNN layers, is beneficial,
especially when combined with the long-range dependency modeling capabilities
of self-attention.

5 Conclusion

This paper presents an evaluation of different DL methods for FCM data pro-
cessing in the problem setting of automated MRD detection. Several methods
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divided into global and local feature learning methods are evaluated, and based
on the findings, two adaptations to the current SOTA model are proposed. The
evaluation shows that modeling long-range dependencies is indeed important for
automated MRD detection, where self-attention based on FPS performs best.
Further, methods based solely on local feature learning can reach similar perfor-
mance and, in some cases, even outperform self-attention-based methods given
overlapping local receptive fields. Using feature vectors sampled from the sample
at hand by FPS instead of learned query vectors combined with introducing a
local feature learning layer complement each other and result in a new SOTA
performance and better inter-laboratory generalization abilities tested on pub-
licly available datasets. While the DL methods evaluated for automated FCM
processing in this paper cover a wide range of model types, it is by far not
an exhaustive evaluation of possible architectures; extending this work by e.g.
drawing inspiration from 3D point cloud processing for semantic segmentation
is thus an interesting topic for future work.
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Abstract. Depth estimation in real-world videos has been extensively
researched, however, surgical videos pose unique challenges, such as spec-
ular reflections, multifaceted occlusions from tissues, fluid and surgi-
cal instruments. Accurately estimating depth from a 2D perspective
amidst these conditions demands expertise, experience and cognitive
effort. Implementing real-time depth estimation especially in endoscopic
surgeries, could assist surgeons, leading to a decrease in post-operative
complications. In this paper, we present a novel methodology for self-
supervised monocular depth estimation using stereo pair images. The
contributions of this study are, 1) a modified Siamese(Twin) network
encoder-decoder architecture with a Gated Fusion DiffNet using Vision
Transformers(DVTwin), 2) utility of a combination loss, fusing Structural
Similarity Index Measure and L1 Loss, 3) utility of a random-masking
technique. The ViT encoder leverages self-attention and captures global
spatial information. The Gated Fusion DiffNet in the encoder calculates
disparity at each stage of the network. The combination loss captures
structural information from the stereo images while preserving sharp
discontinuities at the edges. Training the model with random masking
teaches it to learn depth from missing information enabling it to function
efficiently with occlusions. We train and evaluate our model on 12 videos
of the publicly available Hamlyn dataset. The videos comprise of chal-
lenging intra-corporeal scenes from endoscopic surgeries. On the holdout
set, we report an Absolute Relative Error(AbsRel) of 0.084 and RMSE
of 8.352, a 3% improvement from SOTA. To test for generalizability, we
evaluate our model on the test set of SCARED dataset. We achieve an
AbsRel of 0.067 and RMSE of 5.953, on par with SOTA, illustrating
our model’s generalizability. We fine-tune the model on the train set of
SCARED dataset and evaluate on the test set to achieve an improvement
of 16% in AbsRel and 18% in RMSE.

Keywords: monocular depth estimation · endoscopic surgery ·
self-supervised learning · vision transformer · siamese network · stereo
endoscopy
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1 Introduction

Depth estimation in endoscopic surgeries plays a critical role in the realm of
minimally invasive procedures. These surgeries utilize small incisions and spe-
cialized instruments like endoscopes. An endoscope, equipped with a camera,
provides surgeons with a visual guide inside the patient’s body. This guide is
inherently two-dimensional, lacking depth perception, which is a crucial element
for precise surgical maneuvers [18]. Depth perception enables surgeons to accu-
rately gauge the distance and spatial relationships between various anatomical
structures avoiding damage to vital organs and ensuring surgical precision. Cur-
rently, surgeons rely heavily on their experience and tactile feedback to "fill in"
the missing depth information. However, this approach has limitations and is
subject to human error [12].

With the advancements in deep learning [13] and availability of large datasets
of real-world images, we can develop systems capable of providing real-time,
accurate depth information in everyday tasks. Convolutional Neural Networks
(CNNs), Optical Flow [27], Vision Transformers (ViTs) [5] have emerged as
powerful techniques that recognize visual cues indicative of depth in images.
However, depth estimation in surgical videos presents unique challenges often
featuring homogenous textures, limited color contrasts, variable lighting condi-
tions, presence of fluids, occlusion due to surgical tools and specular reflections.
Additionally, unavailability of large datasets with ground truth depth, the cam-
era’s limited field of view and the need for real-time processing further complicate
the task.

In our work, we present a novel approach to mitigate these challenges of depth
estimation in surgical videos using two large stereo endoscopy datasets, [24], [1].
We use a self-supervised stereo matching approach, wherein the disparity labels
for each image are derived from the disparity between the captures of the left and
right cameras. Our system is light-weight, enabling real-time depth estimation
during an endoscopic procedure. At the inference stage, the camera feed provides
the left image, while a subtly sheared version of this left image serves as the right
image, facilitating the estimation of depth from a single-lens setup. To this end,
our main contributions are as follows,

Fig. 1. Overall framework during training and inferencing
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– a novel siamese network [3] based architecture using Vision Transformer
(DVTwin) as encoder. The encoder extracts meaningful features capturing
global context and long-range dependencies in understanding complex scenes.
We design a Gated Fusion DiffNet to encode contributions from feature maps
of the left and right images of stereo pairs to generate disparity maps.

– a meticulously selected combination loss optimizing for structural consistency
and maintaining sharp transition at edges to train our model.

– we run thorough ablation experiments to evaluate our model and demonstrate
the effectiveness of our proposed methods

The overall framework of our approach is presented in Fig. 1.

2 Related Work

Previous studies in dense depth estimation can be categorized into three distinct
approaches: supervised, self-supervised, and unsupervised.

2.1 Supervised Depth Estimation

The initial research on depth estimation from monocular images, conducted
in a supervised manner, was pioneered by [21], [22]. The authors introduce a
model that uses a discriminatively-trained Markov Random Field (MRF). This
model incorporates multi-scale local and global image features. In [6], the authors
propose regression to estimate depth with multi-scale networks and a scale-
invariant loss. In [14] and [9], the authors leverage deep convolutional neural
networks with conditional random fields. Since, availability of large datasets with
ground-truth depth is challenging due to requirement of specialized hardware,
authors in [4] create synthetic colon data from CT scans and use adversarially-
trained convolutional neural network for depth prediction.

2.2 Unsupervised Depth Estimation

One of the pioneering works in unsupervised depth estimation was proposed by
[7]. The authors use stereo image pairs to train a convolutional encoder and
use an inverse warp to reconstruct the source image from the target image. In
[28], [17], [8], the authors use single-view depth and multi-view pose estimation
networks trained on unlabeled video sequences. They introduce loss function
enforcing consistency between the left-right image pairs. In [25], the authors
propose an optical flow based CNN method using extracted warped features of
the right image and features of the left image.

2.3 Self-supervised Depth Estimation

Self-supervised methods have achieved remarkable accuracy by formulating the
problem as an image reconstruction task. In [26], the authors use a CNN based
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auto-encoder approach to predict disparity maps using a linear interpolation
based spatial transformer. In [16] and [19] the authors propose a U-net based
depth network and an auto-encoder based pose network to predict camera angle
between frames. The authors also propose appearance based photometric loss
function from which we take inspiration for our work. In [23], the authors propose
an appearance flow based method to tackle brightness inconsistencies between
images. The authors also show the capability of generalizing their model across
domains. In [15], the authors propose an extension to [23] and predict camera
intrinsic parameters using CNN. In [10], the authors propose a depth estimator
utilizing the concealed 3D geometric structural information embedded within
stereo pairs.

In this paper, we discuss our methodology that builds upon the self-
supervised paradigm, taking advantage of the availability of stereo image pairs
in endoscopic surgeries.

3 Methods

3.1 Problem Definition

For monocular depth estimation using a single RGB image of size h × w × 3,
I(x, y), our goal is to estimate a disparity map d(x, y) of size h × w such that
d(x, y) = f(I(x, y)) for each pixel (x, y) in the image. During training, we learn
the function f() from a pair of stereo images (Il, Ir) ∈ R

h×w×3 and calculate a
depth map d ∈ R

h×w.

3.2 Architecture

Our architecture is an expansion of the well-studied encoder-decoder framework,
exemplified by models like the U-Net [20]. We propose a vision transformer based
encoder-decoder architecture using siamese networks (DVTwin). We leverage the
twin network system in the encoder of our architecture with weight sharing.

Encoder We introduce a patchify stem to convert the RGB stereo pair images
into patches. The input to each branch of the encoder is a sequence of n patch
embeddings, xe ∈ R

n×p2
, of resolution (p, p) generated from the left and right

stereo images, Il and Ir, of size x ∈ R
h×w×3respectively. We directly incorpo-

rate 4 Transformer Blocks as initially presented in [27]. The input xe is linearly
transformed to queries Q, keys K, and values V using different linear projec-
tions: Q = xeW

Q,K = xeW
K ,V = xeW

V , where WQ, WK , WV ∈ R
p×pk .

This enables Multi-Headed Self Attention(MHSA) allowing the model to simul-
taneously attend to different parts of the input capturing a more diverse range
of information. The output is then added to the original input and Layer nor-
malized before being fed into a Feed-Forward Network. The output from each
transformer block is subjected to down-sampling through a Maxpooling layer,
defined as F i

l = Maxpool2×2(F i−1
l ) . This results in feature maps, F i

l and F i
r
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Fig. 2. Our proposed DVTwin - Siamese network using Vision transformer encoder-
decoder architecture

for each respective branch, with i representing each stage. To encode disparity
between the stereo image pairs, we introduce a Gated Fusion DiffNet between
the feature maps from each branch at respective stage. This is defined as,

Gl = σ(Wl · Fl + bl)
Gr = σ(Wr · Fr + br)
F ′

l = Gl � Fl

F ′
r = Gr � Fr

Fc = Concat(F ′
l , F

′
r)

This allows the network to adaptively learn how much influence each stereo
image’s features should have in the final feature map based on the content of
the images. The output Fc is concatenated to the decoder at each stage to main-
tain information flow of disparity estimation from the encoder to the decoder
preserving information that may be lost during down-sampling.

Decoder In the decoder, the down-sampled image from the left branch of the
encoder is fed into a bilinear interpolation up-sampling layer, This is followed by
a Convolution layer with a 3x3 kernel, Batch Normalization and ReLU activation
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function. Each stage of the encoder can be defined as,

zl = Concat(F i
l , F

i
c)

zl+1 = BilinearUpsample2×2(zl)
y = Conv3×3(RLU{(BN(zl))}) + zl+1

Here, RLU is the ReLU activation function defined as, RLUxe
= max(0, xe).

BN is Batch Normalization as in [11]. Finally, a disparity head is added after
the final stage to get the predicted depth maps, defined as dpred = σ(Conv3×3).
The proposed architecture is presented in Fig. 2.

3.3 Loss Function

Our proposed architecture is trained using a fusion of loss functions, related to
[8]. The total loss is calculated as,

yL = ySCL + yESL (1)

To maintain structural integrity and feature similarity between the stereo
pair images, we employ a combination of the Structural Similarity Index Mea-
sure (SSIM) and L1 Loss. This combination is referred to as the Structural
Consistency Loss (SCL), defined as,

ySCL = α
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
+ β

1
N

∑
|x − y| (2)

where, μx and μy are the average values of x and y, σx and σy are the variances
and σxy is the covariance of x and y. The constants c1 and c2 are used to stabilize
the division with weak denominator. α and β are hyperparameters.

To preserve edge information while encouraging smooth transitions in other
regions of the depth map we incorporate Edge-aware Smoothness Loss (ESL).
This is defined as,

Lsmooth =
∑

pixel

|∇dpixel| e−α|∇Ipixel| (3)

where, ∇dpixel is the gradient of the depth map at a given pixel and ∇Ipixel

is the gradient of the image intensity at the same pixel. The exponential term
serves as a weighting function, reducing the smoothing effect at image edges
where intensity gradients are high.

3.4 Evaluation Metrics

Consistent with the evaluation metrics employed in prior studies [8], [26], we
adopt the same criteria to assess our model, facilitating comparative analysis.
We use Absolute Relative Error (Abs Rel) defined as,

AbsoluteRelativeError =
1
N

N∑

i=1

∣∣∣∣
dgt − dpred

dgt

∣∣∣∣ (4)
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and Root Mean Square Error (RMSE) defined as,

RMSE =

√√√√ 1
N

N∑

i=1

(dgt − dpred)2 (5)

where, N is the total number of pixels, dgt is groundtruth depth and dpred is
predicted depth value. For both evaluation metrics, lower values indicate better
performance.

4 Experiments

4.1 Dataset

We train and evaluate our model on the Hamlyn Dataset [24] consisting of in
vivo endoscopic videos from different surgical procedures with their ground-truth
point cloud information. The images from this dataset are very challenging for
depth estimation and vary in terms of lighting conditions, reflections, occlusions
due to surgical tools. We use 12 videos from this dataset. 10 videos comprising of
65535 frames were used for training the model and 2 videos comprising of 6345
frames were used for evaluation. We report our performance metrics on these 2
videos.

We also use the Stereo Correspondence and Reconstruction of Endoscopic
Data Challenge (SCARED) [1] dataset as a second validation dataset collected
from the abdominal anatomy of porcine cadavers. This dataset consists of 35
endoscopic videos from 9 different subjects with their ground-truth point cloud
and ego-motion information. 27 videos from 7 subjects comprise the train set
with a total of 22232 images in the challenge and 8 videos from 2 subjects are used
as the test set with a total of 5907 frames. We first report performance metrics
on the test set from the model trained on the Hamlyn dataset using Transfer
Learning. We, then, finetune this model on the train set of the SCARED dataset
and report metrics with the finetuned model.

Table 1. Comparison with previous works on Hamlyn Dataset

Architecture Abs RelRMSE

Endodepth [19] 0.119 10.590
DVTwin (Ours) 0.084 8.352

4.2 Pre-processing and Post-processing

The image size in the Hamlyn dataset is 640 × 480 pixels and 1280 × 1024
pixels in the SCARED dataset. In the Hamlyn dataset, we observe artifacts
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Table 2. Comparison with previous works on SCARED Dataset

Architecture Abs RelRMSE

AF-SfMLearner [15] 0.065 5.416
END-Flow [25] 0.071 7.550
M3 Depth [10] 0.116 9.274
DVTwin - Transfer Learned (Ours) 0.067 5.953
DVTwin - Fine-tuned (Ours) 0.056 4.879

Table 3. Comparison with SOTA architectures

Hamlyn Dataset SCARED Dataset

Architecture Abs Rel RMSE Abs Rel RMSE
SfMLearner [28] 0.096 10.876 0.082 6.894
Monodepth [8] 0.113 9.130 0.079 6.520
Monodepth2 [16] 0.101 8.946 0.071 5.606
Ye et. al [26] 0.124 11.082 0.098 8.137
DVTwin (Ours) 0.084 8.352 0.056 4.879

on the left and right side of the images for the stereo pair images. We remove
these artifacts using cropping. We resize all the input images to 224 × 224 to
be fed into the model. Taking inspiration from the approach outlined in [2],
we integrate random masking into our input image. This technique aids the
model in accurately predicting depth in areas with occlusions, arising from both
information gaps between stereo images and obstructions caused by surgical
instruments. We use percentage of masking as a hyperparameter during model
training. As is common methodology, we use hole filling as a post-processing
step in the generated depth maps.

4.3 Training Strategy

We train our models on the p3.8xlarge GPU instances on Amazon Web Services
using our proposed architecture and minimizing on our loss function. We leverage
Hyperparameter Tuning Optimization Jobs with a maximum of 50 jobs and
running 5 jobs in parallel. We run hyperparameter search for batch size (8, 12,
16), learning rate ranging from 0.000001 to 0.001, percentage of masking ranging
from 10 to 50 with increments of 10, using a bayesian search strategy, α and β
ranging from 0.1 to 0.99 using random search and We run each model for 60
epochs using AdamW optimizer with dropping learning rate by a factor of 10
every 5 epochs. We select the best performing model with the minimum loss
and Absolute Relative Error by comparing performances of all the 50 models on
our test dataset. Our best model uses a batch size of 8, with a learning rate of
0.000195 and random masking percentage of 20%. To enable monocular depth
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estimation during inference, we use synthetically generated right image from the
input image. We use shearing transformation as a data augmentation strategy
with a small shearing angle ranging from -10 degrees to +10 degrees. We report
all our results using this methodology.

Fig. 3. Sample left and right images from the stereo pair images of the Hamlyn and
SCARED dataset. We also show the outputs for Hamlyn dataset using random masking
and without masking. For the SCARED dataset, we show the outputs with finetuning
and without finetuning.

5 Results and Discussion

Sample outputs from our model are presented in Fig. 3. Right image in both the
datasets is included as a reference and is not used during model inference. We
evaluate the performance of our model using Abs Rel and RMSE. We compare
the results of our approach with previous works on the Hamlyn dataset in Table
1. Given the continuous updates to the Hamlyn dataset, there is a scarcity
of studies that serve as reliable benchmarks. To the best of our knowledge, the
research presented in [19] is the most comparable to our training and test dataset,
especially in terms of scene complexity and lighting variations.
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Fig. 4. Results of the Ablation Study. The primary axis corresponds to RMSE and the
secondary axis corresponds to AbsRel. Both the metrics, if lower are better. We see
that our incremental modifications significantly improve results.

We also compare the results of our model with the previous works on
SCARED dataset in Table 2. We see that our methodology achieves improved
results by a margin of 1% to 3%. We further compare our results with other
state-of-the-art depth estimation architectures on both Hamlyn and SCARED
datasets in Table 3. All the architectures for this analysis, are used off-the-shelf
from authors’ repositories without any modifications or are public implementa-
tions.

We run multiple ablation studies to illustrate the impact of our proposed
methodology. As ResNet proved to be the backbone of choice in the previ-
ous works [8], [16], [23], we begin by employing the ResNet architecture in our
encoder. We minimize for Stereo Consistency Loss and progressively introduce
modifications. Should the evaluation metrics on the test dataset show a decrease,
we proceed with these adjustments. To improve performance, we further intro-
duce the Edge-aware smoothness loss as changes in tissue textures are very sub-
tle. This loss reduces the risk of over-smoothing and missing out on edge details
by allowing for sharp transitions at edges while promoting smoothness in less
detailed regions. To improve feature extraction from the images, we introduce
ViT in model encoder. ViTs have proven to be strong features extractors enabling
global context awareness and maintaining long range dependencies between the
different parts of the images. The MHSA enables parallelization with the multi-
ple heads focusing on different features such as edges, textures, object sizes and
maintaining context with the distant parts of the image for wholistic learning. To
learn depth-related information from stereo disparity during training, we intro-
duce absolute difference between the feature maps of both the branches of the
encoder. We see that introduction of ViT and the differencing methodology sig-
nificantly improves the metrics. Further, to adaptively control the contribution
of each feature map of the stereo images through learned weights during model
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training, we introduce Gated Fusion DiffNet. This effectively reduces noise and
surgical artifacts present in the images.

As shown in Fig. 3 a), we see that our model is not able to accurately estimate
depth on the edges of the input image owing to occlusion from the missing
information in the left and right images. In Fig. 3 b), we see that occlusion due
to the presence of surgical tool also hinders accurate depth calculation. To solve
for this, we introduce random masking while training to make the model better
at inferring missing information. The results of our ablation study are present
in Fig. 4. We use both Transfer learning and fine-tuning to test our model on
the SCARED dataset.

6 Conclusion

We conclude with this study that our proposed method yields best results on
the task of depth estimation. We attribute the promising performance of our
approach to the following contributions : a) a novel siamese network approach
incorporating the advantages of Vision Transformers, b) Gated Fusion DiffNet
to improve the contribution in disparity calculation from both images, c) a care-
fully selected loss function to improve learning, d) random masking strategy
to improve performance on occluded regions. Our evaluation on the SCARED
dataset confirms generalizability of our model. However, as shown in Fig. 3 c), it
is noticeable that the depth estimation along edges lacks sharpness and exhibits
blurring. Fig. 3 d) shows that our model can achieve sharp edge transitions when
fine-tuned on the SCARED dataset. The architecture of our model, being a ViT-
small, comprises of 22M parameters. This is on par with the ResNet architecture,
thus enabling real-time depth estimation for surgeons during minimally invasive
endoscopic surgeries.
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Abstract. Accurate segmentation of infant brain images from magnetic reso-
nance imaging (MRI) scans is crucial for studying brain development. Exist-
ing deep learning methods often rely on encoder-decoder structures with local
operators, limiting their ability to efficiently capture long-range information.
Moreover, these models struggle to integrate diverse tissue properties from dif-
ferent MRI sequences, leading to computational and memory challenges dur-
ing inference. To address these limitations, we propose a novel model, 3D-
DenseUNet, which incorporates adaptable global aggregation blocks to miti-
gate spatial information loss during down-sampling. We enhance the model with
a self-attention module that integrates feature maps across spatial and chan-
nel dimensions, improving representation potential and discrimination ability.
Furthermore, we introduce a novel learning scheme, termed ”two independent
teachers,” which leverages model weights instead of label predictions. In this
scheme, each teacher model is trained on a specific MRI sequence (T1 and T2)
to capture diverse tissue properties. A fusion model is then employed to enhance
test accuracy while reducing computational overhead. Empirical evaluations on
two distinct datasets demonstrate the effectiveness of our approach. Our source
code is publicly available at https://github.com/AfifaKhaled/Two-Independent-
Teachers-are-Better-Role-Model.

Keywords: Infant brain segmentation · U-Net · Self-attention mechanism ·
Teacher model · Fusion model

1 Introduction

Brain tissue segmentation from magnetic resonance images (MRI) is a crucial task
in clinical practice for visualizing anatomical structures, understanding brain devel-
opment, and monitoring disease progression, particularly in the infant brain. Typi-
cally, brain tissues are segmented into white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF). However, manual segmentation of these tissues is subjec-
tive, labor-intensive, and time-consuming. Therefore, automating this task is highly
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imperative. Recently, deep learning techniques have revolutionized research in various
tasks related to medical image analysis and have achieved state-of-the-art performance,
including in brain tissue segmentation.

Various methods in the literature have leveraged convolutional neural networks
(CNNs) [12], [19], [1] for brain segmentation, achieving notable performance. For
instance, Dolz et al. [6] proposed HyperDenseNet, a 3D CNN model for multi-modal
segmentation tasks. Bao and Chung [2] introduced a multi-scale structured CNN to cap-
ture discriminative features for each brain sub-cortical structure. Similarly, the widely
used U-Net [14] architecture and its variants have demonstrated significant success in
segmenting diverse medical images. To enhance the aggregation of global information,
Wang et al. [18] proposed a non-local U-Net with an aggregate global block. Qamar
et al. [13] introduced a new variant of U-Net designed to extract volumetric contextual
information from MRI data. Hoang et al. [9] presented a dilated attention mechanism
and attention loss network, incorporating skip block layers and atrous block convolu-
tion. Zheng et al. [20] introduced SCU-Net, an enhanced U-Net model with a serial
encoding-decoding structure and hybrid dilated convolution. Furthermore, generative
adversarial networks (GANs) [7] have been employed to address the limited availabil-
ity of medical image datasets by synthesizing realistic images. For example, Arnab et
al. [11] utilized GANs to augment the segmentation task with limited training samples.
Similarly, Delannoy et al. [4] adopted GANs and introduced the SegSRGAN model,
which incorporates a ResNet network to synthesize high-resolution images and improve
segmentation accuracy.

Conversely, teacher models aim to leverage historical data to enhance segmenta-
tion accuracy. For instance, Cui et al. [3] proposed a semi-supervised learning approach
utilizing the mean teacher model and a consistency loss function to ensure segmen-
tation coherence within a self-ensembling framework. This method involves creating
both student and teacher models with identical CNN architectures. Similarly, Wang et
al. [16] introduced a novel approach involving foreground and background reconstruc-
tion tasks and a signed distance field prediction task to capture semantic information
and shape constraints, respectively. They used a mean teacher architecture to explore
the synergistic effect between these auxiliary tasks and segmentation tasks. To address
potential bias in the teacher model due to annotation scarcity, they developed a tripled-
uncertainty guided framework to improve the reliability of knowledge transfer to the
student model.

Despite the remarkable performance of previous methods, some models face limita-
tions in capturing global contextual information, particularly when dealing with subtle
anatomical features, such as those in neonatal brain imaging. Moreover, the downsam-
pling and upsampling operations in the contracting and expansive pathways, particu-
larly in U-Net-based methods, can lead to resolution loss and reduced spatial detail in
segmented images. Another issue arises from variations in textural information across
different MRI sequences (e.g., T1 and T2), potentially impacting segmentation accu-
racy. In this work, we address the aforementioned limitations and challenges by intro-
ducing a novel 3D-DenseUNet model. This model aims to mitigate information loss
and improve the utilization of overall structural relationships using multi-head attention
mechanisms. Furthermore, we incorporate two independent teacher models for deep
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supervision, each focusing on a specific type of brain MRI data (T1 and T2). This
enables us to leverage the unique characteristics of each MRI sequence to enhance seg-
mentation accuracy. Additionally, we introduce a fusion module to integrate the outputs
of the two teacher models, reducing the number of learning parameters throughout the
network and ultimately enhancing segmentation performance. The main contributions
of this paper are as follows:

– We propose a 3D-DenseUNet model with multi-head attention to effectively encode
wide context information into local features and explore interdependencies between
channel maps. Skip-connections between modules are also utilized to aggregate con-
textual information, improving performance compared to traditional concatenation-
based approaches in the U-Net model.

– We establish two independent teacher models (2IT), each operating on a distinct
MRI sequence. This approach enables efficient learning of deep feature informa-
tion for each modality, reducing information uncertainty and boundary effects, and
facilitating weight extraction.

– We construct a fusion model with weights updated from the two teacher modules,
which facilitates in-depth analysis of both brain data (T1 and T2) while minimizing
computational and memory requirements during inference and training.

– To avoid oscillation throughout the training stage of the fusion model, as well as
overfitting and noise issues resulting from the summation of the teacher models’
weights, we propose a function to calculate the fusing coefficient α value based on
metric values of the model and the current epochs of some parameters.

2 Methodology

In this paper, we propose a 3D-DenseUNet model for segmenting 3D MRI images of
infants’ brains. The overall architecture of our model is shown in Fig. 1. Our model con-
sists of a downsampling encoder, which contains three blocks that form a fully resid-
ual network within each block, and an upsampling decoder, which also contains three
blocks forming a fully residual network, with skip connections between them serving
as long-term residual connections. Additionally, we introduce a global attention block
to fully utilize multi-scale contextual features. Moreover, our framework incorporates
two independent teacher models and a fusion model, all utilizing the 3D-DenseUNet
architecture. The details of each model are presented in the following subsections.

2.1 The Framework of 3D-DenseUNet Model

Down-Sampling and Up-Sampling In the proposed 3D-DenseUNet, the downsam-
pling module contains three blocks, each forming a fully residual network. Each resid-
ual network employs three different convolutional layers, with batch normalization and
ReLU6 activation functions applied before each convolutional layer. Specifically, the
first block serves as the input layer with a 3× 3× 3 convolution and a stride of 1, while
the output block is similarly structured, followed by a 1 × 1 × 1 convolution with a
stride of 1. To address the first issue mentioned above, features are extracted at multiple
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Fig. 1. Framework of the proposed model with (a) the 3D-DenseUNet architecture and (b) the
global attention block featuring 3D layers based on multi-head attention as the self-attention.

scales using the first residual block after the sum of skip connections, thereby avoiding
the loss of spatial information. In our architecture, we utilize summation instead of con-
catenation, as seen in the standard U-Net model, for several reasons. Firstly, summation
effectively manages the increase in feature maps, thereby reducing the number of train-
able parameters in subsequent layers. Secondly, employing summation with skip con-
nections can be likened to long-term residual connections, consequently reducing the
time required for model training. We incorporate three different convolutions to con-
struct three-level features, which are then combined to form the final feature for each
block in the downsampling process. These diverse features ensure that downsampling
preserves various characteristics for the next level. Finally, an end block aggregates
global information, leading to the encoder output. In our model’s upsampling process,
the QT ransformC(·) in the global attention block is formed by a 3×3×3 deconvolu-
tion with a stride of 2 to avoid information loss and retain more accurate details. Finally,
the output of the decoder block is the segmentation probability map, which produces
probabilities for each segmentation class using a single argmax operation.
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Multi-head Self-attentionMechanism To fully utilize multi-scale contextual features,
we gather global information from low-level layers and combine it with the high-level
features from deeper layers to form the final feature representations in the end block of
the encoder. However, a one-step sequence correlation might overlook valuable details
during the large-scale upsampling process, leading to significant information loss. To
address this, we propose an attention mechanism based on the multi-head self-attention
function from the Transformer [15]. This mechanism, depicted in Fig. 1 (b), is applied
after the encoder stage to incorporate global information from feature maps of any size.
It facilitates the adaptive integration of information on local features and image edges,
effectively treating the end block of the up/down-sampling blocks as a unified entity.

Given an image XH×W×D×C , where H , W , and D denote the image dimensions,
and C represents the number of image channels, the end block of the downsampling
stage accepts the latent cube representation X as input and computes it using multi-
head attention with 1 × 1 × 1 convolution and a stride of 1. Initially, the attention
mechanism generates query (Q), key (K), and value (V ) matrices using:

Q = Q TransformCK
(X),K = ConvCK

(X), V = ConvCV
(X), (1)

where the operation Q TransformCK
(·) produces CK feature maps, and CK and CV

are hyperparameters representing the dimensions of keys and values.
These matrices are decomposed into multiple heads in the second stage through

parallel and independent computations. This allows simpler stacking of multiple trans-
former blocks as well as identity skip connections. Therefore, we unfold the D × H ×
W × C tensor into a (D × H × W )× C matrix using Unfold(·). Consequently, the V
and K dimensions become (H ×W ×D)×CV and (H ×W ×D)×CK , respectively.

Next, a scaled dot-product operation with SoftMax normalization between Q and
the transposed version of K is conducted to generate the matrix of the contextual atten-
tion map A with dimensions (DQ × HQ × WQ) × (D × H × W ), which defines the
similarities of the given features from Q concerning the global elements of K. To cal-
culate the aggregation of values weighted by attention weights, A is multiplied by V ,
producing the output matrix O as follows:

O = Softmax

(
QKT

√
cK

)
V, (2)

where
√

cK is the dimension of the query Q and K the key-value sequence. Finally,
dropout is used to avoid overfitting, and Y reshapes the optimized feature maps to
obtain the final output:

Y = ConvCO(Fold(O)), (3)

where Fold(·) is the reverse operation of Unfold(·) and CO represents the output
dimension. Ultimately, the size of the output Y is DQ × HQ × WQ × CO.

At the end of an upsampling residual block, we use a 3 × 3 × 3 deconvolution
with a stride of 2 instead of an identity residual connection. This choice is made to
incorporate global information, ensuring that the upsampling block can recover more
accurate details.
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2.2 Two-Independent-Teacher Model

We aim to develop two independent teacher models, referred to as TM1 and TM2,
each specialized for different types of data (TM1 for T1-Weighted and TM2 for T2-
Weighted images). To ensure their effectiveness, several adjustments are necessary. In
the initial training step for each model, we employ the strategy proposed in [8] for
weight initialization to facilitate the rapid convergence of the model structure based on
the specific characteristics of the data.

2.3 The Fusion Model

We introduce a fusion model that leverages the weights of model layers from the
teacher models throughout the training process. Instead of directly utilizing the final
weights, we employ these weights during training to construct a more accurate model,
as depicted in Eq. (4). The fusion model updates weights by combining the weights
from the two independent teacher models at each iteration. Through empirical observa-
tion, we have identified two advantages of using multiple independent teachers. Firstly,
the summation increases the feature maps of both T1 and T2, enhancing the model’s
capacity. Secondly, integrating weights from multiple models provides additional infor-
mation, which has been shown to improve model performance [21]. Given the difficulty
in acquiring labeled data, merging weights from multiple models offers a promising
approach to enhancing segmentation performance without requiring additional labeled
data. The key idea behind our proposed model is to update each parameter’s weight
in the fusion model by computing the summation of weights from the corresponding
parameters in the independent teacher models, adjusted by a factor α to reduce noise
and prevent overfitting.

WL = αWL + (1 − α)
∑

(WL1 ,WL2), (4)

where WL1 is the weight from the first teacher model and WL2 is the weight from the
second teacher model. The parameter α, as defined in Eq. (5), is utilized to fine-tune
the model weights at each iteration of the 3D-DenseUNet.

α =
(P + 1)

((1/L) + N)
, (5)

where P is the accuracy, L is the loss, and N is the batch size for each iteration. The α
value, dynamically determined based on accuracy, loss values, and batch size, is crucial
for performance. In the early training phase, when model accuracy and loss have not yet
converged, α is set to small values to retain global information from the teacher models.
Conversely, if α is too large, the model relies more on current weights, resulting in
slow convergence and potential overfitting. Therefore, α should gradually approach 1.
Experimentation shows that starting with α = 0.01 and gradually increasing it during
training yields better performance. Finally, the cross-entropy function serves as the cost
function, quantifying the average discrepancy between the predicted output P and the
ground truth T across the entire input domain W × H × D × C. Denoting the network
parameters as θ (including convolution weights, biases, and parameters from parametric



Enhanced 3D Dense U-Net with Two Independent Teachers 351

rectifier units), and Y v
s as the label of voxel V in the S-th image segment, we optimize

the cross-entropy equation as follows:

J (θ) = − 1
S · V

S∑
s=1

V∑
v=1

C∑
c=1

δ (Y v
s = C) · logP v

c (XS) , (6)

where P v
c (Xs) is the SoftMax output of the network for voxel V and class C, and the

input segment is Xs. The overall fusion process is presented in Algorithm 1.

Datasets To evaluate the performance of our proposed model, we conduct experiments
on the MICCAI iSEG dataset [17]. Upon analyzing this dataset, one can observe
significant differences in the characteristics of the image data. The MICCAI iSEG
dataset contains a total of 10 training images, labeled T1-1 through T1-10, and T2-1
through T2-10, along with corresponding ground truth labels. The test set includes 13
images, labeled T-11 through T-23. Fig. 2 shows an example from theMICCAI iSEG
dataset. The parameters used to create the T1 and T2 images are listed in Table 1.

The MRBrainS 1 dataset is an adult dataset containing only 20 subjects. In this
paper, T1- and T2-fluid-attenuated inversion recovery (FLAIR) images are used for
segmentation. In MRBrainS, the number of training images is 5 (i.e., 2 male and 3
female), while the number of testing images is 15. The dataset includes segmentation

1 https://mrbrains13.isi.uu.nl/

https://mrbrains13.isi.uu.nl/
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Fig. 2. An example of the MICCAI iSEG dataset. Left: T1, middle: T2, right: manual refer-
ence contour.

Table 1. Parameters used to generate T1 and T2.

DataTR/TE Flip angleResolution

T1 1,900/4.38 ms7 1×1×1

T2 7,380/119 ms 150 1.25×1.25×1.25

of the following 8 tissue types: (a) peripheral cerebrospinal fluid, (b) basal ganglia,
(c) cerebellum, (d) white matter lesions, (e) brainstem, (f) lateral ventricles, (g) white
matter, and (h) cortical gray matter.

2.4 Experimental Results

The proposed model is extensively assessed on the 3D multi-modal isointense infant
brain tissues in T1- and T2-weighted brainMRI scans task. The task involves automat-
ically segmenting MRI images into the cerebrospinal fluid (CSF ), gray matter (GM ),
and white matter (WM ) regions. In our experiment, the MICCAI iSEG dataset is
used. For each tissue type, we first replicate the model as independent teacher models.
Each model was trained on a specific data type (the first teacher model trained on T1
and the second on T2), with one sample as a validation set and the remaining nine as
training sets.

At each iteration, 2000 patches of 32×32×32 are randomly selected as the training
and validation datasets and processed in a batch size of 8. In the fusion model process,
we use patches of the same size as those employed in both teacher models, taken from
the original image with a fixed overlapping step size. The size of the overlapping step
should not be greater than the patch size. Thus, the fusion model, which benefits from
the teacher models’ weights, accurately segments tissues and refines tissue probability
maps for every voxel in the original image for GM , WM , and CSF . The proposed
model was trained for 5000 epochs on the training and validation datasets.

Fig. 3 plots the proposed model’s accuracy and loss during the validation stage at
different iterations. This figure demonstrates that the teacher models exhibited poor
accuracy and high loss in the early training phase. In contrast, the fusion model pro-
duced better results in the early training phase. As training and validation continued,
any improvement in the teacher models corresponded to an improvement in the fusion
model.



Enhanced 3D Dense U-Net with Two Independent Teachers 353

Fig. 3. The accuracy and loss validation of the proposed model on MICCAI iSEG dataset.

The Dice Coefficient (DC) is used as the evaluation metric to assess the accuracy of
the fusion model for the validation subject. The DC measures the overlap level between
the segmentation space and the ground truth label. As shown in Table 4, the results of
the proposed model were compared to advanced state-of-the-art deep learning mod-
els in terms of metrics for the segmentation of CSF , WM , and GM brain tissues.
Higher DC values indicate a greater overlap between manual and automatic segmenta-
tion boundaries. As a result, our model has values equivalent to some models in certain
cases and outperforms others. Particularly, our model yields the best DC values for
CSF and GM and ranks second for WM .

Similarly, the 13 unlabeled images were used as the test set during the testing phase.
The proposed model outperforms state-of-the-art models in segmentingGM ,WM , and
CSF , as shown in Table 2. The results demonstrate excellent performance compared to
other methods. Specifically, the proposed model produces the best DC values for GM ,
equal values for CSF , and slightly lower values for WM brain tissues.

Furthermore, Fig. 4 illustrates the accuracy metric values of the proposed model for
the 13 subjects in the test set. As the figure shows, the DC values exhibit some variance
across different subjects. This can be attributed to the fact that providing additional
training information through fused weights from the two teacher models enhances the
segmentation results, significantly improving the distinction between the edges of white
and gray matter.

In addition, we test our model on the MRBrainS dataset to further verify its effi-
ciency. Table 3 shows the performance of our proposed model on the test set compared
with state-of-the-art models in terms of the DC metric for the segmentation of CSF ,
WM , and GM brain tissues. Our model produces strong DC values compared to other
models, achieving the top results for CSF and GM and slightly lower results for WM .

To accurately evaluate efficiency and effectiveness, training time was taken as a
metric, as shown in Table 5, which presents the average training time (in hours) and
standard deviation (SD). To evaluate this, we compare our model with related works
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Table 2. Segmentation performance in Dice Coefficient (DC) obtained on the MICCAI dataset
for the 13 unlabeled images used as the test set. The best performance for each tissue class is
highlighted in bold.

Model Dice Coefficient (DC)

CSFGMWM

Wang et al. [18] 0.95 0.920.91

Hoang et al. [9] 0.95 0.910.91

Dolz et al. [6] 0.96 0.920.90

Qamar et al. [13] 0.96 0.920.91

First Teacher Model 0.82 0.800.89

Second Teacher Model 0.88 0.900.81

Fusion Model 0.96 0.930.90

Table 3. Segmentation performance (Dice Coefficient, DC) on the MRBrainS dataset. The
best performance for each tissue class is highlighted in bold.

Model Dice Coefficient (DC)

CSFGMWM

Mahbod et al. [10] 0.83 0.850.88

Dolz et al. [6] 0.83 0.860.89

First Teacher Model 0.39 0.400.50

Second Teacher Model 0.43 0.600.44

Fusion Model 0.86 0.870.87

that reported training time. As seen in the table, the average execution time of the pro-
posed framework, which includes the summation of the two teacher models and the
fusion model, is lower than that of HyperDenseNet [6]. Conversely, it is higher than the
model in [13], despite our framework being composed of three independent models.
This suggests that our proposed framework’s architecture has fewer learned parameters.

Accordingly, we investigate the number of parameters used in our model. As shown
in Table 6, our model has 20% fewer parameters than the state-of-the-art models. The
architecture of our proposed model is much deeper than all state-of-the-art models
because it is composed of three independent models, which consist of 82 layers with
2.12 million learned parameters. Therefore, the proposed architecture is deeper com-
pared to other existing approaches and achieves 96% accuracy. In terms of the number
of parameters, the model in [18] is comparable to ours.

Moreover, Fig 5 shows the visualization results of the proposed model on the image
used as the validation set. We can observe that the results achieved by the proposed
model are fairly close to the ground truth. Specifically, the segmentation accuracy is
high at the boundaries.

Overall, our results match those of some models and surpass others in terms of
image segmentation accuracy. Despite our model’s architecture being much deeper
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Fig. 4. Performance of the proposed model on 13 different subjects from the MICCAI iSEG
dataset as the test set.

Table 4. Segmentation performance in Dice Coefficient (DC) obtained on the MICCAI dataset
for the image used as the validation set. The best performance for each tissue class is highlighted
in bold.

Model Dice Coefficient (DC)

CSFGMWM

Wang et al. [18] 0.95 0.920.91

Hoang et al. [9] 0.95 0.910.91

Dolz et al. [5] 0.96 0.920.90

Qamar et al. [13] 0.96 0.920.91

First Teacher Model 0.80 0.790.90

Second Teacher Model 0.89 0.820.81

Fusion Model 0.96 0.920.90

than state-of-the-art approaches, it contains fewer parameters and requires less exe-
cution time, leading to improved performance comparable to that of the state-of-the-art
approaches.

2.5 Ablation Study

To evaluate the effectiveness of the component blocks used in our proposed model with
the fusion method, we conduct ablation studies on the MICCAI training and testing
sets. We apply different α values to determine what best suits our model. Two models,
one with α from Eq. 5 and the other with constant values for α, are constructed to
establish a suitable procedure. These models are trained for 5000 epochs with a batch
size of 32 and are supervised by the proposed combination loss function. Additionally,
the same number of down-sampling and up-sampling blocks are used. The lowest value
of α starts at 0.1, with multiple runs adjusting α to 0.2, 0.3, and so on, up to 0.9.

We can observe from the results that the model improves in some areas, while it
fluctuates in terms of loss and accuracy values in others, particularly at the minimum
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Table 5. Average execution time (in hours) and standard deviation on the MICCAI dataset.

Model Time (h)

Dolz et al. [6] 105.67 ± 14.7

Saqib et al. [13] 38.00 ± n/a

First Teacher Model 36.45 ± 0.12

Second Teacher Model36.45 ± 0.12

Fusion Model 36.45 ±0.12

Table 6. Comparison of the number of parameters.

Model # Parameters

Wang et al. [18] 2,534,276

Dolz et al. [6] 10,349,450

First Teacher Model 2,331,160

Second Teacher Model2,331,160

Fusion Model 2,331,160

and maximum values. This is why we use Eq. 5, in that Eq. 5 as it leads to better
performance. Table 7 and Fig. 6 present comparisons from the ablation studies on the
validation set, focusing on accuracy and loss metrics. In the early stages of training,
the model’s accuracy and loss did not fit well, and α had very small values. In contrast,
when α is much larger, it results in slow convergence and tends to overfit, leading to low
accuracy. Therefore, α values are determined according to Eq. 5 to mitigate fluctuations
in the early stages and to address the overfitting issue throughout the training process.

Additionally, from the perspective of the Dice metric in Table 7, it can be observed
that adopting the fusion method with α from Eq. 5 is an effective approach to improving
the performance of brain MRI segmentation. These experimental results demonstrate
that the α hyper-parameter enhances the performance of the proposed model compo-
nents for brain MRI segmentation.

Fig. 5. Comparison of the results on the 150th slice in the MICCAI iSEG dataset with (a)
Ground Truth, (b) First Teacher Model, (c) Second Teacher Model, and (d) Fusion Model.
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Table 7. Segmentation performance in Dice Coefficient (DC) for the MICCAI iSEG dataset.
The best performance for each tissue class is highlighted in bold.

Fusion model with different αDice Coefficient (DC) Accuracy

CSFGMWM

0.1 0.78 0.740.70

0.2 0.79 0.750.71

0.3 0.79 0.750.71

0.4 0.83 0.790.76

0.5 0.83 0.790.76

0.6 0.87 0.830.80

0.7 0.80 0.750.71

0.8 0.81 0.770.70

0.9 0.79 0.740.70

Defined in Eq. 5 0.96 0.920.90

Fig. 6. The accuracy of the validation dataset on MICCAI iSEG with various settings of α.

3 Conclusion

In this paper, we introduced 3D-DenseUNet, a novel deep-learning model designed
to address spatial information loss during down-sampling. By incorporating adaptable
global aggregation blocks and a self-attention module, we enhanced the model’s abil-
ity to integrate feature maps across spatial and channel dimensions, thereby improving
representation and discrimination. Additionally, we developed two independent teacher
models trained on different sequences of infant brain MRI scans and integrated a fusion
model to enhance test accuracy while reducing the number of parameters and labels.
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Our empirical results demonstrate the effectiveness of the proposed model in brain
image segmentation, achieving comparable performance with fewer parameters and
shorter implementation time. Future work could include an ablation study on the sum-
mation operation that replaces the concatenation operation. Moreover, we will investi-
gate the impact of deactivating the multi-head self-attention mechanism to assess the
specific improvements brought by this component compared to the rest of the architec-
ture.
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Abstract. Self-supervised pre-training is effective in learning discrim-
inative features from unlabeled medical images. However, typical self-
supervised models lead to sub-optimal representations due to negligence
of high anatomical similarity present in the medical images. This affects
the negative and positive pairs in discriminative self-supervised mod-
els to learn view-invariant representations. Various methods are pro-
posed to address this issue. However, many of them either concentrate
on preserving pixel-level details or offer solutions for specific modali-
ties. In this context, we propose a generalized solution to leverage the
anatomical similarities while relaxing the requirements of complex pixel-
preservation learning. Specifically, we introduce IDQCE: Instance Dis-
crimination Learning through Quantized Contextual Embeddings. The
proposed approach leverages the sparse discrete contextual information
to guide the self-supervised framework to learn more informative repre-
sentations for medical images. We evaluate the representations learned
by IDQCE through comprehensive experiments and observe more than
3% performance gain under linear evaluation protocol over other SOTA
approaches in multiple downstream tasks.

Keywords: Self-supervised Learning · Codebook · VQ-VAE · X-ray ·
Fundus

1 Introduction

Recent advancements in self-supervised learning (SSL) alleviate the need for
manual annotations. By exposing the models to diverse data augmentations
and self-imposed tasks, SSL encourages learning generalized transferable fea-
tures [12]. Despite the advantages, there are limitations, mainly when using
instance discriminative approaches such as contrastive and non-contrastive meth-
ods. These methods require the creation of positive (related instances) and neg-
ative (unrelated instances) pairs from augmented versions of the input images,
which pose significant challenges in the context of medical imaging. Though
methods like SimCLR [3], MoCo [10], BYOL [8], and VICReg [2] have shown suc-
cess in medical images (e.g., Chest Radiographs and Fundus images), however,
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they learn sub-optimal visual representations as due to oversight of significant
anatomical similarities. The inherent anatomical similarities can lead to uncer-
tainty in defining genuinely dissimilar pairs, which forces an incorrect constraint
on capturing instance-invariant features [7,26]. Moreover, these methods rely
solely on augmented versions of the same image for positive pairs and ignore the
semantically similar information in other images.

Recently, several approaches [26,29,37,38] addressed this by incorporating
local contextual features within contrastive learning or leveraging metadata to
create more informed positive pairs. However, these methods overlook the inher-
ent anatomical similarities and focus on pixel-level restoration in their learning
objectives. More recent techniques such as AWCL [7] and Alice [13] explicitly
consider domain-specific anatomical features in 3D volumes and ultrasound scans
to create positive and negative pairs and pixel-level restoration. Nevertheless,
these methods showed improvements; however, they require the domain knowl-
edge of a specific modality.

In response to the mentioned constraints, we introduce the SSL framework,
denoted as IDQCE: Instance Discrimination Learning through Quantized Con-
textual Embeddings. We employ a codebook-based vector quantization process
to represent the data in a discrete, quantized format. The quantization implic-
itly capitalizes on anatomical overlaps within intra and inter-medical images, so
eliminates the need for modality-specific knowledge. In medical images like chest
X-rays, the quantization process results in discrete codebook vectors, which carry
features related to essential anatomical structures in chest X-rays like lungs, ribs,
heart, and any present abnormalities or conditions. Since different images often
share these anatomical features and pathological information, the codebook vec-
tors for various X-ray images may be similar or closely related, leading to shared
features across different images.

By grouping analogous visual features through vector quantization, the code-
book implicitly ensures the preservation of essential anatomical information in
a concise and structured manner. The objective is to utilize this compact struc-
tured information to further boost the capacity of the SSL framework to acquire
more informative and context-aware visual features. To learn the codebook, we
use vector quantization proposed in VQ-VAE [28]. This preserves most of the
spatial information of the input data at the discrete latent space [23]. To demon-
strate the efficacy of the proposed method, we conduct multiple experiments and
in-depth ablation studies using chest X-rays and fundus images.

2 Related works

2.1 Discriminative SSL for Medical Images

Discriminative SSL methods capture transformations invariant representations
by making a pixel-level comparison of the positive and negative pairs [17,21].
Methods like SimCLR [3], MoCo [10], PIRL [19], and others [24,31] based on
contrastive learning, minimize the distance between positive pairs and maximize
the distance between negative pairs. Non-contrastive methods like BYOL [8],
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SimSiam [4], Barlow-Twins [35] and VICReg [2] omit the requirement of negative
pairs by opting architectural constraints like asymmetric siamese network or by
deploying variance-covariance regularization.

Fig. 1. The proposed IDQCE framework. (a) Represents the VQ-VAE. fξ processes
input X-ray image x and and f ′

ξ serves as the decoder. ΔL signifies the gradient from
the decoder to the encoder. In (b), the IDQCE includes two augmented views, x1, and
x2 process by fθ and fφ, respectively. gθ and gφ are MLP projection heads in each
branch while qθ and pθ are the trainable projection heads. fξ and codebook are frozen
during the pre-training. // is the stop-gradient operator.

Contrastive SSL methods mainly predominate in the field of medical image
analysis. For instance, in [39] Zhou et al. introduced C2L by applying contrastive
loss on 2D chest radiographs, emphasizing feature-level contrast to learn general
image representations. Zhou et al. proposed preservational contrastive represen-
tation learning (PCRL) for 2D and 3D medical images by incorporating diverse
image reconstruction methods and cross-model mixup to encode more informa-
tion in the representations [38]. Vu et al. in MedAug [29] discussed the creation
of positive pairs using patient metadata such as study number and laterality
to identify pairs of images sharing common pathological features. Azizi et al.
explored similar ideas but in slightly different ways [1]. Taher et al. highlighted
the limitations of standard discriminative SSL methods in medical image anal-
ysis and proposed enhancement by adding a pixel-level restoration branch in
the SSL framework. DiRA [9] proposed by Haghighi et al. integrates discrimina-
tive, restorative, and adversarial learning components to leverage complementary
visual information. In [37] Zhou et al. introduced a unified SSL framework for
preserving pixel-level information, invariant semantics, and multi-scale represen-
tations in visual data, emphasizing the importance of such preservation. Fu et
al. introduced anatomy-aware contrastive learning (AWCL) [7] for fetal ultra-
sound imaging tasks, where domain-specific anatomy information is leveraged
to improve the quality of visual representations. Yan et al. proposed a self-
supervised anatomical embedding (SAM) [32] contrastive learning framework
to learn universal anatomical embeddings from unlabeled radiological images,
enabling applications like landmark detection and lesion matching. Most exist-
ing methods highlighted the limitations of standard discriminative SSL methods.
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While some methods addressed it through pixel-level restoration and domain-
specific solutions, we present an innovative approach that implicitly harnesses
the anatomical similarities, offering a straightforward yet effective solution for
SSL in the context of medical imaging.

2.2 Vector Quantization in Medical Image Analysis

Vector quantization divides the data points into smaller discrete groups called
codebook vectors and reduces the data dimensionality while preserving essen-
tial information [33]. Recently, VQ-VAE [28] successfully managed to learn dis-
crete features of images by using a codebook. Multiple studies [5,11,18,33,36]
demonstrated the effectiveness of learning discrete representations in image
retrieval, generation, recognition, and compression. While vector quantization
finds broader applications in many vision domains, its utilization for medi-
cal images is limited, especially for SSL. Tudosiu et al. presented a 3D VQ-
VAE that reconstructs high-fidelity, full-resolution, and neuro-morphologically
accurate brain images for potential Alzheimer’s disease detection [27]. Patel et
al. in [22] introduced self-supervised anomaly detection framework based upon
the VQ-VAE - transformers pipeline. Kobayashi et al. in [16] proposed a fea-
ture decomposing network that explicitly separates semantic features of medical
images into normal and abnormal anatomy codes, enabling a novel Content-
Based Image Retrieval (CBIR) system for glaucoma. Existing approaches often
combine VQ-VAE with autoregressive models for anomaly detection or segmen-
tation; our work stands out for leveraging the VQ-VAE’s codebook for learning
richer and more generalized representations.

3 Method

In this section, we first discuss the preliminary VQ-VAE module and subse-
quently provide the details of the proposed IDQCE framework. Figure 1 pro-
vides the architectural overview of the proposed approach, which is divided into
two parts: the left side (Figure 1(a)) presents the VQ-VAE while the right side
(Figure 1(b)) shows the proposed approach.

3.1 VQ-VAE

VQ-VAE [28] successfully maps the input data to discrete, quantized codes,
which are then used to reconstruct the data. This discrete representation enables
improved data compression, generation, and transfer in image and audio process-
ing applications. As shown in Figure 1(a), VQ-VAE consists of a CNN encoder
fξ, a decoder f ′

ξ and a codebook. The codebook consists of randomly initialized
K vectors, denoted as ek, each of size D. The fξ maps the input x to continuous
latent space ze ∈ R

C×H×W , where C denotes the number of channels and H,
W represents height and width of the feature maps respectively. The H and W
are reshaped to D to enable the quantization in the channel space. The latent
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space ze is then quantized by selecting the nearest codebook vector from the
predefined codebook to output a quantized feature map zq ∈ R

C×H×W , which
serves as a compact representation of the input x.

The decoder f ′
ξ reconstructs the input data from discrete feature map zq

into final output x′, with a distribution p(x|zq) aiming to minimize the VQ-
VAE loss. The VQ-VAE loss function consists of three terms: reconstruction
loss to optimize fξ and f ′

ξ, codebook loss to move the codebook vectors ek

towards ze and the commitment loss to ensure that the fξ sticks to specific
embeddings, preventing uncontrolled expansion of the latent space. The loss
function is defined in equation (1).

LVQ = − log(p(x|zq)) + ||SG[ze] − ek||22 + λ||ze − SG[ek]||22 (1)

where the first component corresponds to the reconstruction loss, the second
component is codebook loss, and the third component is the commitment loss.
SG denotes stop-gradient, and λ controls the weightage of the commitment loss.

3.2 IDQCE Framework

IDQCE follows a two-stage training process, wherein in the first stage, we train
the VQ-VAE network according to the description provided in sub-section 3.1.
Here, fξ and the codebook are trained to learn discrete latent representations
zq of the input x. Subsequently, in the second stage, the discrete representa-
tions zq are utilized to enhance the discriminative feature representations for the
proposed method during SSL pre-training. IDQCE follows the non-contrastive
paradigm of the SSL and is inspired by the self-distillation SSL method BYOL.
However, it is also compatible with other SSL frameworks.

Figure 1(b) provides an overview of the proposed framework. The IDQCE
framework includes two weight-shared CNN encoders, fθ, and fφ, each followed
by an MLP projection head, gθ and gφ, respectively. Additionally, it incorpo-
rates the VQ-VAE’s encoder, fξ, and the codebook, which are trained during
the first stage. The framework also features two additional MLP networks, qθ

and pθ. Here, qθ serves as the prediction head, responsible for predicting the
target embeddings, while pθ acts as the projection head, mapping the quantized
features into a lower-dimensional representational space. The proposed frame-
work creates two augmented views, x1 and x2, of input x by applying a random
set of augmentations sampled from T . x1 and x2 are processed by the respective
encoders fθ and fφ to output representations, yθ and yφ respectively. The yθ and
yφ are then projected onto a lower-dimensional space using gθ and gφ in their
respective branches, resulting in outputs denoted as hθ and zφ.

To enhance the representations learned by fθ, we incorporate the quantized
embeddings zq obtained from the pre-trained VQ-VAE encoder fξ and its associ-
ated codebook. The rationale behind this step is that the zq is inherently sparse
and contains distinctive anatomical characteristics in a condensed form. During
VQ-VAE training, the quantization process leads to similar anatomical features
associated with the specific codebook vectors, and thus, zq represents the clusters
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of similar anatomical features. Particularly, each codebook vector in zq corre-
sponds to a cluster center, summarizing a group of similar latent representations.
This clustering ensures that zq not only compresses complex information but also
enhances the interpretability of features by aligning them with clinically relevant
anatomical priors. By integrating zq into the SSL pre-training, fθ can leverage
these structured embeddings to extract more discriminative features from input
data. This integration allows the model to exploit prior knowledge encoded in
zq, which enhances the quality of the learned features, ultimately leading to
improved performance in discriminative SSL. To maintain the consistency of the
anatomical insights embedded in the quantized embeddings, we keep fξ and the
associated codebook in a fixed state during IDQCE pre-training. This serves
not only to preserve consistency in zq but also provides regularization benefits
that enhance model robustness in medical image analysis tasks by ensuring that
the learned features remain grounded in clinically relevant anatomical charac-
teristics. Further, to effectively integrate the quantized embeddings zq the pro-
jection head pθ projects zq into z′

θ, where the dimensions of z′
θ match those of

zθ. By doing this, pθ facilitates the utilization of anatomical insights encoded
in zq across subsequent stages of feature extraction and learning. This process
enhances the model’s ability to leverage the rich anatomical information cap-
tured by fξ during the initial training phase, thereby improving the discrimina-
tive power and generalization capability of the IDQCE model in medical image
analysis.

Loss function: θ are the trainable parameters while the parameters of fφ

and gφ are are exponential moving average of the parameters of the fθ and gθ as
φ ← μφ+(1−μ)θ, where μ ∈ [0, 1] is the decay rate. To optimize the parameters
θ, we calculate the similarity scores between zθ and zφ, as well as between zθ

and z′
θ using the loss function defined in equation (2).

L1 =
〈zθ, zφ〉

||zθ||2.||zφ||2
,L2 =

〈zθ, z
′
θ〉

||zθ||2.||z′
θ||2

(2)

The final loss of IDQCE is given as Lθ = L1+L2. Further, we use the symmetric
form of the loss Lθ by interchangeably feeding the views x1 and x2 to fθ and fφ.

4 Experiments and Results

This section overviews the experimental setup, including dataset descriptions,
implementation details, baseline methods, and results.

4.1 Description of Datasets

For pre-training, we utilize two chest X-ray datasets: MIMIC-CXR v2.0.0 [14]
and NIH-Chest X-ray 14 [30] and a diabetic retinopathy dataset EyePACS [6]
contains 35,126 images. MIMIC-CXR comprises 201,083 samples for pre-
training, while we reserve 42,164 samples for downstream evaluations. The NIH
dataset comprises 112,120 X-ray images from 30,805 distinct patients, and we
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use the official train test split for pre-training and downstream evaluations.
For downstream evaluation, we employ three X-ray datasets, MIMIC, NIH, and
VinBig-CXR [20], and two retinopathy datasets, MuReD [25], and ODIR [15,40].
The VinBig-CXR dataset has 18,000 chest X-ray images, each annotated with
14 different pathologies. The ODIR has 7,000 retinal images with 8 labels, while
MuReD has 2,208 samples with 20 classes.

4.2 Implementation Details

The fθ and fφ are ResNet-50 models that output the representations yθ and
yφ from the global average pooling layer. The projection heads gθ and gφ are
implemented as two-layer MLP networks with an output size of 256 and a hidden
layer size of 4096. Additionally, the prediction head qθ and pθ have the exact
dimensions, resulting in a final embedding size of 256. We update parameters θ
using LARS [34] optimization technique with a base learning rate of 0.02 and
cosine decay without restarts as the learning rate scheduler. In the case of the
MIMIC-CXR dataset, we pre-train the IDQCE framework with a batch size of
64 for 100 epochs, while in the case of the EyePACS dataset, the batch size is
256 for 300 epochs. With the NIH-Chest X-ray dataset, we match the settings
of PCRLv2 and CAiD to keep a batch size of 256 and pre-train the model for
500 epochs. We use Adam as the optimizer during downstream evaluations, with
1e-4 as the learning rate. We also pre-train the VQ-VAE model on the respective
IDQCE pre-training datasets (MIMIC, NIH, and EyePACS). For VQ-VAE, we
employ a shallow CNN network as encoders and decoders, with three different
sets of codebook vectors, having sizes of 512, 1024, and 4096. The dimension of
codebook vectors is 256. We utilize the Adam optimizer with a batch size of 16
and a learning rate of 1e-3 for a total of 100 epochs.

4.3 Baselines

For comparison, we evaluate our method against both supervised and SOTA SSL
methods. For supervised approaches, we consider models initialized with ran-
dom weights and ImageNet pre-trained weights. Our SSL comparisons include
contrastive methods like SimCLR [3] and MoCo [10], as well as non-contrastive
methods such as BYOL [8], SimSiam [4], Barlow Twins (BT)[35], and VICReg[2].
Additionally, we assess the performance of IDQCE against recently proposed
medical-specific SSL methods, including PCRLv2 [37] and CAiD [26]. To ensure
a fair and meaningful comparison, we pre-train all baseline methods using their
original implementations on the same datasets as IDQCE. We maintain con-
sistent batch sizes, the number of pre-training epochs, and sample distribution
across all methods. This uniformity ensures that our evaluations are reliable and
directly comparable, highlighting the efficacy of IDQCE in various contexts.

4.4 Results

To assess the learned representations from IDQCE pre-training, we follow the
standard evaluation protocol commonly used by SSL methods like SimCLR [3]
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Table 1. Experimental results from test set samples in terms of AUC for linear classi-
fication on the MIMIC and NIH dataset with frozen representations. The pre-training
is done on MIMIC-CXR images.

Methods MIMIC→MIMIC MIMIC→NIH
1% 10% all 1% 10% all

Ran. Init. 0.579 0.589 0.703 0.514 0.551 0.597
Img. Init. 0.639 0.694 0.766 0.594 0.658 0.697
SimCLR [3] 0.738 0.762 0.799 0.619 0.676 0.715
MoCo [10] 0.730 0.754 0.789 0.598 0.664 0.706
BYOL [8] 0.741 0.768 0.813 0.629 0.703 0.727
SimSiam [4] 0.733 0.757 0.791 0.613 0.693 0.716
BT [35] 0.734 0.766 0.806 0.618 0.677 0.710
VICReg [2] 0.733 0.761 0.792 0.626 0.683 0.719
PCRLv2 [37] 0.721 0.740 0.772 0.616 0.673 0.712
CAiDMoCo−v2 [26] 0.740 0.768 0.783 0.634 0.691 0.719
IDQCE 0.7590.7980.8290.6550.7340.767

and BYOL [8]. Specifically, we use the SSL pre-trained fθ network as the fea-
ture extractor and append a liner layer on top of it. Throughout all downstream
tasks, we update only the parameters of the linear layer while keeping the param-
eters of fθ frozen. Unlike finetuning the entire backbone network, this ensures
a fair evaluation of the discriminative ability of the representations learned by
IDQCE. Table 1 presents the experimental results on test set samples in terms
of AUC score, corresponding to the pre-training on the MIMIC dataset. In the
MIMIC→NIH scenario involves pre-training on MIMIC-CXR images, while the
downstream evaluation is performed on the NIH-Chest X-ray images. This exper-
imental setup serves the evaluation under a transfer learning setting and aims to
assess the generalization of the learned representations across datasets. Mainly,
we evaluate the features extracted from fθ by updating the parameters of the
linear layer using different subsets (1%, 10%, and all) of training samples.

The results in Table 1 demonstrate the effectiveness of the proposed IDQCE
framework compared to standard SOTA SSL and supervised methods. For the
MIMIC→MIMIC scenario, IDQCE consistently outperforms all the considered
baseline methods, including PCRLv2 and CAiD. Notably, IDQCE achieves an
improvement of around 2% with the 1% subset of training samples, indicating
its ability to learn informative representations with limited labeled data. As the
size of the labeled training subset increases to 10%, IDQCE continues to perform
better. In the MIMIC→NIH setting, IDQCE maintains its superiority, outper-
forming all baseline methods across different subsets of training samples with an
average margin of more than 3%. The performance gain is particularly notice-
able in scenarios with limited training samples (1% and 10%), where IDQCE
pre-training exhibits a significant advantage. This indicates that the represen-
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Table 2. Experimental test set results for linear classification tasks on the NIH dataset.
The table presents the AUC score for different subsets of training samples (1%, 10%,
and all) across in-distribution (NIH→NIH) and (NIH→Vinbig) under transfer learning
evaluation settings.

Methods NIH→NIH NIH→Vinbig
1% 10% all 1% 10% all

Ran. Init. 0.514 0.551 0.597 0.530 0.564 0.696
Img. Init. 0.594 0.658 0.697 0.659 0.786 0.862
SimCLR [3] 0.613 0.663 0.703 0.610 0.709 0.763
MoCo [10] 0.607 0.654 0.694 0.606 0.698 0.758
BYOL [8] 0.609 0.649 0.676 0.587 0.669 0.748
SimSiam [4] 0.591 0.638 0.668 0.579 0.662 0.743
BT [35] 0.639 0.687 0.718 0.631 0.707 0.750
VICReg [2] 0.631 0.673 0.701 0.529 0.681 0.732
PCRLv2 [37] 0.638 0.720 0.723 0.594 0.700 0.796
CAiDMoCo−v2 [26] 0.643 0.725 0.748 0.710 0.837 0.885
IDQCE 0.6790.7740.8100.7220.8830.925

tations learned by the IDQCE framework on the MIMIC-CXR dataset are well
generalized to the NIH dataset. We observe standard SSL methods like SimCLR,
BYOL, SimSiam, VICReg, etc., which also perform well and demonstrate com-
petitive performance, highlighting the general efficacy of these SSL frameworks
for medical image representation learning.

Table 2 presents the experimental test set results in terms of AUC score for
the NIH-Chext X-ray dataset by evaluating the features extracted from frozen
fθ. For this experimental setup, we pre-train the IDQCE framework on the NIH
dataset, and the evaluation includes both in-distribution and transfer learning
assessments. For in-distribution evaluation, the learned features are assessed on
the NIH dataset, varying the subset of training samples (1%, 10%, and all), while
the transfer learning evaluations are conducted using the VinBig-CXR dataset.
For the subset with 1% of training samples, the proposed IDQCE framework
outperforms all the baseline methods, including supervised and various SOTA
SSL methods. IDQCE achieves a performance gain of more than 3% over both
PCRLv2 and CAiD, with 1% training samples. As the size of training samples
increases to 10%, IDQCE maintains its leading performance, with a performance
gain of more than 5% compared to the best-performing baseline. The consistently
high performance across different subsets, including all training samples, indi-
cates the effectiveness of the proposed framework in learning more informative
representations.

In the NIH→VinBig task, IDQCE again demonstrates its superior perfor-
mance, outperforming all other methods with a significant margin across all
subsets of training samples. It shows an AUC gain of more than 4% over CAiD
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in the case of 10% and all training samples. For the 1% subset also, IDQCE
performs marginally better than the considered baseline methods. The perfor-
mance gain in the transfer learning to the VinBig-CXR dataset indicates the
generalization capability of the features learned by IDQCE on the NIH dataset.

Table 3. Experimental test set results for linear classification tasks on fundus images
in terms of AUC score. The IDQCE framework, pre-trained on the EyePACS dataset,
shows considerable performance gain over existing approaches on the MuReD and
ODIR datasets for both 10% and all training samples. Bold indicates the best numbers,
while underline is the second best.

Methods EyePACS→MuReDEyePACS→ODIR
10% all 10% all

Ran. Init. 0.653 0.750 0.602 0.661
Img. Init. 0.8240.907 0.756 0.798
SimCLR [3] 0.763 0.852 0.732 0.783
MoCo [10] 0.729 0.819 0.714 0.751
BYOL [8] 0.712 0.775 0.652 0.688
SimSiam [4] 0.708 0.768 0.641 0.673
BT [35] 0.714 0.815 0.692 0.734
VICReg [2] 0.683 0.781 0.652 0.688
PCRLv2 [37] 0.735 0.839 0.703 0.764
CAiDMoCo−v2 [26] 0.737 0.833 0.710 0.765
IDQCE 0.793 0.898 0.7680.806

Table 3 exhibits the performance of various considered baseline methods and
the proposed IDQCE framework on linear classification tasks for fundus image
datasets. In the MuReD dataset, we observe that ImageNet-initialized weights
show higher AUC values compared to other methods, highlighting the gener-
alization capabilities of models pre-trained on a large-scale dataset for fundus
images. Notably, IDQCE achieves superior performance among the SOTA stan-
dard SSL methods and PCRLv2, CAiD. The performance of IDQCE for 10%
and all training samples reveals that it contributes to more discriminative and
task-relevant features for fundus image classification. Similarly, on the ODIR
dataset, IDQCE performs better, achieving the highest AUC values among all
methods for both 10% and all training samples.

5 Discussion

In this section, we discuss the impact of different components of the IDQCE
framework on learned representations and qualitative analysis of diagnostic heat
maps.
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Table 4. Ablation study on the impact of various key components in IDQCE frame-
work. CB_size denotes the number of codebook vectors, and Dec (f ′ξ) indicates the
presence of the decoder network f ′ξ. Fr and Fi denote frozen and fine-tuned states,
respectively. The table reports the AUC score for different subsets of training samples
in MIMIC→MIMIC and MIMIC→NIH settings.

Methods CB_sizeDec (f ′
ξ)MIMIC→MIMICMIMIC→NIH

1% 10% 1% 10%

IDQCE 512 ✗ 0.7680.804 0.6580.736
1024 ✗ 0.759 0.798 0.655 0.734
4096 ✗ 0.760 0.800 0.657 0.735

IDQCE 1024 ✓Fr 0.760 0.801 0.657 0.732
1024 ✓Fi 0.762 0.795 0.653 0.728

IDQCE+VQ-VAE1024 - 0.756 0.791 0.653 0.723
SSL+Encoder - - 0.723 0.760 0.621 0.678

5.1 Ablation Study

To assess the importance of different components of the IDQCE framework, we
systemically analyze the impact of vector quantization on the SSL pre-training
in enhancing the representations. Specifically, we vary the number of codebook
vectors during VQ-VAE pre-training to analyze its impact on the representations
obtained during SSL pre-training at the later stage of the IDQCE framework.
Additionally, we investigate the effects of integrating the decoder network f ′

ξ

into the SSL framework alongside the encoder fξ and codebook. Further, in an
end-to-end setting, we simultaneously pre-train the SSL framework and VQ-
VAE network to assess their combined impact on the learned representations.
Lastly, we replace the vector quantized encoder with a regular CNN encoder
during SSL pre-training to examine the impact of quantized embeddings during
SSL pre-training. Table 4 shows the results of these experiments and provides
valuable insights into the efficacy of the IDQCE framework under various abla-
tion scenarios. The evaluation is conducted on MIMIC-CXR and NIH datasets,
using the MIMIC-CXR dataset for pre-training, allowing for a comprehensive
assessment across in-distribution and out-of-distribution settings.

The results in Table 4 demonstrate the impact of the number of codebook
vectors (CB_size) during VQ-VAE pre-training on the representations learned
by the IDQCE framework. Notably, we observe that increasing the number of
codebook vectors from 512 to 4096 leads to a marginal degradation in the per-
formance across all the tasks. Notably, for the MIMIC→MIMIC task, examining
the 1% subset of training samples reveals that a CB_size of 512 achieves the
highest performance among the configurations tested, indicating that a smaller
codebook size is advantageous when dealing with limited data. When utiliz-
ing 10% and the entire training set, we observe comparative performance for
both MIMIC and NIH datasets; however, the model with a CB_size of 512
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Fig. 2. Diagnostic heatmaps depict the interpretations of samples from the NIH
dataset, corresponding to 1% of the labeled data. It provides insights into the regions
of interest identified, offering a qualitative comparison of the diagnostic capabilities.
Bounding boxes are the ground truth available in the public domain.

marginally outperforms other configurations across all subsets of training sam-
ples. This indicates that a smaller codebook size comparatively yields better
results. Adopting a smaller codebook proves relatively advantageous by encour-
aging a higher probability of shared codebook vectors for anatomically similar
structures. This facilitates effective compact information compression, allowing
the IDQCE framework to distill essential anatomical features into SSL represen-
tations. Additionally, shared vectors enhance the model’s generalization capabil-
ities, promoting the capturing of more informative and discriminative features
across different augmented views.

Table 4 further presents the results of integrating the decoder network (f ′
ξ)

pre-trained during VQ-VAE within the IDQCE framework. We keep the decoder
frozen (Fr) and fine-tuned (Fi) state during IDQCE pre-training to do the com-
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prehensive analysis. Surprisingly, no discernible improvement is observed upon
integrating the decoder in both frozen and updated parameters during IDQCE
pre-training. This indicates that the VQ-VAE encoder plays a crucial role in
shaping informative SSL representations, while the decoder’s contribution in the
presence of the encoder may not be as influential.

Further, Table 4 represents the results corresponding to integrated end-to-
end pre-training of IDQCE and VQ-VAE (IDQCE+VQ-VAE). We observe a
slightly lower performance than the standalone IDQCE framework, suggesting
that integrating the entire VQ-VAE during SSL pre-training may not offer sig-
nificant benefits in this context. It implies that the information encoded by the
VQ-VAE, such as the anatomically informed embeddings and the associated
codebook, might not be fully exploited, necessary for enhancing the learned rep-
resentations during SSL pre-training within the IDQCE framework. The last row
of Table 4 explores the impact of SSL pre-training with a regular CNN encoder
instead of the VQ-VAE encoder (SSL+Encoder). We pre-train the UNet model
with ResNet-50 as the backbone encoder on the MIMIC-CXR dataset for this
experimental setting. The results indicate a noticeable decrease in performance
across all the tasks, emphasizing the importance of leveraging vector quanti-
zation and the anatomically informed quantized embeddings provided by the
VQ-VAE encoder for effective SSL pre-training in medical imaging tasks.

5.2 Qualitative Analysis

Figure 2 presents the visual interpretations of pathological conditions exhibited
in the chest X-ray diagnosis. The heatmaps correspond to the representations
learned by IDQCE and the considered baseline methods for 1% training samples
from the NIH dataset. Examining these heatmaps provides valuable insights into
the model’s decision-making process and the regions of interest identified in the
chest X-ray images. Notably, we observe that IDQCE relatively identifies the
more accurate diagnostic regions compared to the baseline methods for condi-
tions like Cardiomegaly, Effusion, Atelectasis, etc. IDQCE performs relatively
better than other SSL methods, especially non-contrastive ones like VICReg,
BYOL, and SimSiam.

6 Conclusions

This work proposes an IDQCE framework to learn informative and discrimi-
native features by leveraging the contextual quantized embeddings in the SSL
model. IDQCE utilizes the VQ-VAE model to generate quantized embeddings
that encapsulate valuable anatomical insights in a compact form to enhance the
SSL model’s capacity. Through comprehensive evaluations of multiple datasets
from different modalities, we observe that quantized embeddings lead to bet-
ter representations than existing SSL methods. Our empirical investigations,
including experiments in linear evaluation, transfer learning, and ablation studies
within the IDQCE framework, reveal the essential findings and the significance
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of information preservation in learning better representations of medical images.
The future work includes expanding its application to a wider variety of medical
imaging datasets, including 3D modalities such as CT, MRI, and ultrasound, to
assess and enhance its generalizability across various medical contexts.
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Abstract. Supervised deep learning crucially depends on large amount
of high-quality annotation data. While labeling for classification and
grading tasks is rather efficient to achieve, labeling for segmentation is
much more difficult and time-consuming, characterized by pixel-based
dense annotation in practice. This approach suffers from two fundamen-
tal disadvantages: 1) Lack of efficiency because of the large number of
pixels on region boundaries (other parts of an image can be easily labeled)
and more importantly the need of precise positioning of boundary pix-
els. 2) Lack of certainty. The area around the boundaries is in fact the
part of an image, where even medical experts are often uncertain and
may make non-precise annotations, resulting in varying annotations by
different experts (the serious problem of inter-observer variability). To
overcome these disadvantages, we propose superpixel-based annotation
instead of pixels. Importantly, we do not require to label in the area of
boundaries with high uncertainty for medical experts. We automatically
fill the unlabeled area (boundary gap). In addition to heuristic rules we
also study the random walker. Experiments were conducted with three
different medical segmentation tasks and two network models. Despite
the easy-to-make sparse annotation we are able to achieve segmentation
results that are comparable or even superior to those obtained by using
pixel-based dense annotation. In addition to the high efficiency, our app-
roach substantially reduces the inter-observer variability as a positive
side effect.

Keywords: Medical image annotation · image segmentation ·
superpixel · inter-observer variability

1 Introduction

In medical imaging the state-of-the-art research has led to systems that match
or even outperform the level of medical experts. One of the key elements for
making this possible is the availability of large amount of high-quality annota-
tion data. In contrast to other application fields, labeling medical imaging data
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15312, pp. 376–390, 2025.
https://doi.org/10.1007/978-3-031-78198-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78198-8_25&domain=pdf
https://doi.org/10.1007/978-3-031-78198-8_25


Superpixel-Based Sparse Labeling 377

typically requires significant expertise of medical experts. While global labeling
for classification (e.g. designation of diseases) and grading (degree of deviation
from normal case) can be achieved rather efficiently, labeling for image segmen-
tation is much more demanding and time-consuming. In addition to efficiency,
there is also an issue of labeling uncertainty.

Meanwhile, annotation tools have been developed to assist the labeling work
[4]. But still the practice is characterized by pixel-based dense annotation in
existing approaches. This dense annotation has several disadvantages, particu-
larly:

– Efficiency. The use of pixels as basic processing unit causes a high amount
of labeling work because of the large number of pixels on region boundaries
(other parts of an image can be easily labeled) and more importantly the
need of precise positioning of boundary pixels.

– Certainty. The area around the boundaries is in fact the part of an image,
where even medical experts are often uncertain and may make non-precise
annotations, which can be clearly observed in some of the sample images in
Figure 2. Such situations typically result in varying annotations by different
experts. This so-called inter-observer variability [30] is a serious problem in
practice since the labeled training data and consequently the learned deep
learning (DL) model are biased to the particular labeling expert and thus
not objective. Multiple expert annotations can be combined to reduce the
uncertainty [33]. But it would further increase the overall workload of labeling.

In our work we propose to use superpixels instead of pixels to overcome these
disadvantages towards efficient and certain image annotation. Superpixels sig-
nificantly reduce the quantity of basic processing units. More importantly, we do
not require to label in the area of boundaries with high uncertainty. Instead, we
automatically fill the unlabeled area (boundary gap). This approach thus helps
to avoid the inter-observer variability towards increased objectivity. Despite this
superpixel-based sparse annotation we envision to avoid loss of segmentation
quality. That is, we want to achieve segmentation results that are comparable
or even superior to those obtained by using pixel-based dense annotation. This
requirement is absolutely essential to make the proposed approach practicable.
The key challenge is thus how to automatically fill the boundary gap in such a
way that the anticipated segmentation quality can be achieved using the sparse
labeling only. This superpixel-based approach will significantly ease the annota-
tion process for medical experts with regard to time and certainty, nevertheless
with high-quality segmentation by the learned DL models. To our best knowl-
edge, there is no published study that has demonstrated this potential before.

The remainder of the paper is organized as follows. In section 2 we discuss
related work. In In section 3 we detail the scheme of superpixel-based sparse
labeling and strategies for automatically filling the unlabeled area. Our approach
is evaluated in In section 4 on three datasets using two DL models. Finally, we
conclude the paper in In section 5.
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2 Related work

2.1 Efficient image labeling

It is essential to reduce the workload for medical experts. Thus, the labeling can
be done by non-experts first and then refined by medical experts [14]. In partic-
ular contexts it is possible to simplify the labeling task. For instance, instead of
a full 3D labeling, 2D enface images (generated pixel-wise by aggregating, e.g.
by averaging, maximum, or minimum, the flow information of the correspond-
ing voxel stack in the specific retinal layer) are more easier to label for OCT
Angiography volume data [18].

Weakly supervised learning attempts to use sparse annotations such as scrib-
bles for effective training [27]. To overcome the inherent lacking structural infor-
mation in such scribble supervision, superpixels are used to guide the scribbles
walking towards unlabeled pixels [35].

2.2 Superpixel-based image analysis

Superpixel algorithms are a special kind of segmentation methods and parti-
tion an image into small irregularly shaped regions by grouping similar pixels
together. A key requirement on superpixels is a good preservation of natural
object boundaries. As a result, superpixels typically only contain pixels of the
same semantic category (e.g. an organ) and do not cross the boundaries of dif-
ferent categories. Superpixels are attractive because of the considerably reduced
quantity compared to pixels and their high level of semantics (information). They
have been successfully used for image segmentation [22], depth image based ren-
dering [23], and other image analysis tasks [25].

Superpixels have already found applications in DL model training. Generally,
large parts of the segmentation targets are relatively easy to recognize and to
label, but the area around the region boundaries is rather difficult to handle
due to the inherent ambiguity and other factors (e.g. the partial volume effect).
This labeling uncertainty results in unsatisfactory performance of the trained
DL models. If a superpixel intersects with the annotation boundary, a high
labeling uncertainty can be expected there. In [15] the pixel-level labels in this
area are softened to probability values within [0, 1] based on signed distances
to the annotation boundary. A similar soft label strategy was also used in [36].
Such approaches, however, still use a full pixel-based annotation for DL model
training in contrast to our approach. Another application of superpixels is data
augmentation. In [34] superpixelized images (The intensity values of all pixels
within a superpixel are replaced by the average) are added to training data for
augmentation. In [9] superpixels provide a context-aware and object-part-aware
guidance to improve the popular cutmix-based data augmentation.

3 Method

We propose to use a sparse superpixel-based labeling to achieve the goals of
efficient and certain image annotation.
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3.1 Superpixel-based sparse labeling

Superpixels enable a light-weight annotation with each superpixel being anno-
tated by one label only, thus achieving an efficient image annotation. The advan-
tage of superpixels can be easily seen in Figure 1 that shows a X-ray chest image
together with the pixel-based ground truth (GT) boundary and the computed
superpixels.

Fig. 1. A X-ray chest image: superimposed with pixel-based annotation in red and
superpixels (left); illustration of superpixel-based labeling (right).

In terms of a perfect segmentation there are three different types of super-
pixels:

a) fully within the object of interest (foreground),
b) fully out of the object of interest (background),
c) crossing the boundary of foreground and background.

Superpixels of type a) and b) (marked yellow and green respectively in Figure
3) are easy to recognize and to label. Superpixels of type c) are the source
of uncertainty for medical experts. Instead of soft labels [15,36], we do not
require a pixel-based dense annotation. Instead, we leave uncertain superpix-
els of type c) unlabeled. This approach has two advantages. First, it avoids the
pixel-based labeling in such boundary superpixels that would cause dispropor-
tionately high overhead. Second, the resulting annotation has a high certainty.
Consequently, it can be expected that different medical experts will deliver very
similar superpixel-based annotations, resulting a strong reduction of the inter-
observer variability.

Modern annotation tools already provide functionality for superpixel-based
labeling [4], but only as a means of supporting a full pixel-based annotation.
Tools like Mask Editor [32] enable marking a small region by a single click
only. A combined use of such annotation tools with our technique for handling
unlabeled superpixels will deliver the foundation for generating large amount of
annotations with high efficiency and certainty.

The main challenge here is how we can process this superpixel-based sparse
annotation in such a way that we can avoid loss of segmentation quality. We will
study different ways of automatically filling the boundary gap and thus gener-
ate pseudo GT (to be detailed below). Our experimental results show that that
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despite the sparse annotation it is possible to achieve segmentation results that
are comparable or even superior to those obtained by using pixel-based dense
annotation. As a positive side effect, leaving uncertain superpixels unlabeled
and automatically filling the boundary gap also has the potential to significantly
reduce the inter-observer variability that is inherent in pixel-based dense label-
ing.

Superpixel-based sparse labeling is common with weakly supervised learn-
ing such as scribbles [27,35] in their efficiency. However, superpixel labeling is
rather dense apart from the boundary areas (the use of the wording sparse here
is referred to the amount of superpixel labeling work). In contrast, scribbles are
sparse per se, thus requesting the filling of large unlabeled areas. In addition, the
use of superpixels and scribbles differs in the uncertainty for medical experts.
Drawing scribbles has a high degree of freedom, which in turn may cause uncer-
tainty for medical experts in terms of where, in which form, and how many
to draw. This is particularly critical since interactive segmentation tends to be
influenced by the input of scribbles or similar priors. Overall, these aspects, par-
ticularly that of the certainty, make superpixels an attractive choice compared
to scribbles.

3.2 Gap filling strategies

We will study the following approaches to automatically fill the boundary gap
and generate pseudo GT segmentations:

– No filling at all.
– A distance-based filling method.
– Use of the random walker segmentation algorithm.

In the first case there will be no labeling information available for boundary
gap. Thus, the loss function used for training a DL model has to be adapted to
exclude this part of the image.

The next two methods try to completely fill the gap in a meaningful man-
ner. It thus transforms the superpixel-based sparse annotation into a pixel-based
dense annotation. In distance-based filling we consider each pixel within an unla-
beled superpixel. We determine its nearest distance to the foreground and back-
ground and assign it to one of them that is nearer to the pixel.

The random walker segmentation algorithm was first proposed by L. Grady
[12]. Today, it remains a popular interactive segmentation method [21]. A user
marks some seed pixels in each region. Then, the random walker method assigns
all unseeded pixels to one of the regions using a probabilistic optimization
scheme. This assignment is done by determining the region of the highest prob-
ability that a random walker starting from that pixel reaches the user provided
scribbles (seeds). Random walker segmentation has found many applications [29].
In medical imaging, for instance, Biomedisa [17] is a recent platform for biomed-
ical image segmentation that performs interpolation of sparsely pre-segmented
slices based on simulation of random walker agents. Recent further development
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of random walker segmentation includes the nonlocal random walker [28], hier-
archical random walker for segmenting large volumetric biomedical images [10],
and end-to-end learned random walker [7]. In our case all pixels of the labeled
superpixels of type a) and b) serve as seeds. Then, we use these seeds to obtain
an assignment of the pixels of all unlabeled superpixels of type c) to obtain a
pseudo dense GT segmentation.

3.3 Three-stage processing pipeline

In this work we follow a three-stage processing pipeline:

– A superpixel computation method is applied to obtain a partial GT segmen-
tation.

– The gaps are filled to generate a full GT segmentation; except the option of
keeping the gaps unfilled.

– Any backbone DL model that is suitable for the particular segmentation task
under consideration can be used. The training is based on the pseudo GT
generated in the last step.

This three-stage pipeline differs from unified approaches like [35], where a ded-
icated segmentation model is designed that cannot easily benefit from other
advanced developments for image segmentation. Instead, it is modular and can
be flexibly instantiated, making it possible to use advanced choices for each stage
and to study different combinations. For instance, we have used general super-
pixel computation methods for the current experimental study (see Section 4).
This element of the pipeline can be replaced by superpixel computation methods
that are specially designed for particular medical imaging tasks [11,37]. The key
issue of the pipeline is the gap filling. More sophisticated methods can be used,
including the Segment Anything Model (SAM) [13].

4 Experimental evaluation

4.1 Experimental setting

Datasets. We use three datasets for the current study:

– Skin: 2018 ISIC Challenge on Skin Lesion Analysis Towards Melanoma Detec-
tion [8,19]. It is a comprehensive collection of dermoscopic images designed
for the lesion segmentation challenge and comprises 2594 images, which are
used for training and validation (80%, 20%). Additionally, the test dataset
comprises 1,000 images.

– X-ray chest: It is from chest X-ray (CXR) imaging, valued for its diagnostic
efficiency, affordability, and availability. This dataset encompasses a mix of
tuberculosis-affected cases, normal conditions, and lung nodules (both benign
and malignant). A total of 704 Kaggle CXR images are used in our study [20].
The data was divided into 70%, 20%, and 10% for training, validation, and
testing, respectively.
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– Ultrasound breast: It comprises 780 ultrasound breast images [3]. We divided
the images into 70%, 20%, and 10% for training, validation, and testing pur-
poses, respectively. The three used datasets have different resolutions. We
uniformly normalize the size of the images to 256×256 pixels. Figure 2 shows
some sample images from the three datasets.

Fig. 2. Sample images with GT segmentation from the three datasets used in the study:
Skin (top), X-ray chest (middle), ultrasound breast (bottom).

Experimental protocol. For the current study we simulate the superpixel-
based sparse labeling. For this purpose we compute for each training image the
superpixel representation. Then, each superpixel is classified into one of the three
types described in Section 3.1 by using the existing original GT segmentation.
Finally, all pixels of a classified superpixel takes the same related label. Thus,
we have different GTs used for different purposes:

– One original GT.
– Three pseudo GTs resulting from the three different gap filling strategies.

We train four segmentation networks in total:

– The original GT is used for training a segmentation network, whose perfor-
mance serves as a gold standard.

– Each of the pseudo GTs results in a segmentation network using training data.
The performance of these networks is measured by means of the original GT
using test data.



Superpixel-Based Sparse Labeling 383

Superpixel generation. For the selection of superpixel computation methods,
we first resort to [24]. It presents a comprehensive evaluation of 28 state-of-
the-art superpixel algorithms utilizing a benchmark focusing on fair compari-
son and designed to provide new insights relevant for applications. The authors
finally recommend six algorithms for use in practice. SLIC [1] and SEEDS [6]
are among the recommended algorithms and will be used for our experiments.
SLIC adapts the k-means clustering approach to efficiently generate superpixels.
SEEDS performs superpixel computation within an energy optimization frame-
work. In addition, we also consider the more recent superpixel algorithm SNIC
[2]. Unlike SLIC, it is based on a non-iterative clustering and requires less space
and computation resources.

We empirically fixed the parameters of the superpixel computation methods.
For SLIC the compactness parameter is set to 10 and the number of segments
is 800. For SEEDS the targeted number of superpixels is set to 800, the number
of hierarchy levels is 4, prior is 2, and the number of histogram bins is 5. Since
SNIC is a further development of SLIC, we set the two parameters (number of
segments, compactness) the same as for SLIC.
Segmentation networks. We conducted experiments using two segmentation
networks. Among the numerous segmentation models [31] we first chose the pop-
ular U-Net. The second one is the recent Dual-Aggregation Transformer Network
called DuAT [26]. The reason for choosing DuAT is its superior performance over
a number of state-of-the-art models for a variety of segmentation tasks.
Training details. Training was done in PyTorch and Keras libraries with
AdamW optimizer. Key training parameters include a learning rate of 0.0001
and a dropout rate of 0.1. The models were trained with a batch size of 8 over
50 epochs, incorporating an early stopping mechanism triggered after 10 epochs
without validation loss improvement.
Performance metrics. We apply the following widely used performance met-
rics: Dice score, Intersection over Union (IoU), precision (Prec), and sensitivity
(Sens).

4.2 Experimental results

The segmentation performance is reported in Table 1. Note that our study only
intends to demonstrate the relative performance of superpixel-based and full
pixel labeling. Thus, we did not perform any preprocessing to achieve maximal
possible performance. For instance, occlusion due to hairs in dermoscopic images
(see Figure 2 for an example) may have negative impact on automatic segmen-
tation. Hair removal is a preprocessing technique widely used in the literature
[16].
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Skin:

Method U-Net DuAT

Labeling Superpixel Dice IOU Prec Sens Dice IOU Prec Sens

Original GT – 0.8524 0.7623 0.8199 0.9312 0.8870 0.8109 0.8448 0.9620

SP: No fill SLIC 0.8406 0.7494 0.8587 0.8743 0.8071 0.6812 0.7240 0.9245

SEEDS 0.8098 0.7055 0.8637 0.8187 0.7625 0.6180 0.6585 0.9229

SNIC 0.8512 0.7640 0.8823 0.8665 0.8245 0.7054 0.7526 0.9234

SP: Dist fill SLIC 0.8568 0.7710 0.8348 0.9233 0.8798 0.7981 0.8354 0.9579

SEEDS 0.8818 0.8042 0.8532 0.9432 0.8753 0.7922 0.8263 0.9611

SNIC 0.8424 0.7461 0.8016 0.9349 0.8855 0.8068 0.8478 0.9546

SP: RW fill SLIC 0.8594 0.7730 0.8289 0.9321 0.8814 0.8031 0.8466 0.9503

SEEDS 0.8356 0.7374 0.7871 0.9347 0.8580 0.7680 0.8163 0.9460

SNIC 0.8540 0.7652 0.8224 0.9307 0.8537 0.7593 0.7884 0.9668

X-ray chest:

Method U-Net DuAT

Labeling Superpixel Dice IOU Prec Sens Dice IOU Prec Sens

Original GT – 0.9537 0.9125 0.9523 0.9566 0.9537 0.9122 0.9339 0.9758

SP: No fill SLIC 0.7570 0.6151 0.9853 0.6269 0.7485 0.5987 0.8180 0.6988

SEEDS 0.7988 0.6706 0.9830 0.6833 0.8254 0.6575 0.9164 0.7635

SNIC 0.8644 0.7638 0.9486 0.8293 0.7747 0.6326 0.8228 0.7430

SP: Dist fill SLIC 0.9434 0.8936 0.9360 0.9524 0.9548 0.9143 0.9521 0.9590

SEEDS 0.9247 0.8612 0.8795 0.9775 0.9568 0.9180 0.9509 0.9642

SNIC 0.9488 0.9033 0.9371 0.9621 0.9597 0.9235 0.9593 0.9615

SP: RW fill SLIC 0.9238 0.8593 0.8947 0.9575 0.9476 0.9018 0.9370 0.9613

SEEDS 0.9069 0.8309 0.8608 0.9619 0.9378 0.8851 0.9238 0.9576

SNIC 0.8939 0.8093 0.8264 0.9772 0.9342 0.8781 0.9088 0.9664

Ultrasound breast:
Segmentation performance. Overall, the random walker turns out to perform
slightly worse than the simple distance-based filling. This is likely due to the fact

Table 1. Performance on three datatsets. No fill: No filling; Dist fill: distance-based
filling; RW fill: random walker based filling. The best and second best result in each
column are marked bold.

Method U-Net DuAT

Labeling Superpixel Dice IOU Prec Sens Dice IOU Prec Sens

Original GT – 0.8031 0.7145 0.8040 0.8594 0.9115 0.8386 0.8755 0.9117

SP: No fill SLIC 0.3593 0.2614 0.6309 0.2825 0.5279 0.3624 0.4290 0.7042

SEEDS 0.2409 0.1702 0.5247 0.1826 0.4085 0.2595 0.2905 0.7175

SNIC 0.3196 0.2056 0.2569 0.8523 0.5263 0.3609 0.4121 0.7575

SP: Dist fill SLIC 0.7859 0.6879 0.7906 0.8364 0.82180.72200.7853 0.8959

SEEDS 0.79970.70150.8326 0.8246 0.82960.73390.8132 0.8872

SNIC 0.80780.71450.82300.8480 0.8060 0.6976 0.7487 0.9088

SP: RW fill SLIC 0.7893 0.6991 0.7957 0.8241 0.7893 0.6933 0.8193 0.8134

SEEDS 0.6804 0.5884 0.7109 0.7226 0.6864 0.5977 0.6825 0.7388

SNIC 0.7830 0.6557 0.7842 0.7969 0.7642 0.6448 0.6743 0.9307
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Fig. 3. Superpixel results for the sample images in the first column of Figure 2: Skin
(top), X-ray chest (middle), ultrasound breast (bottom).

that the random walker is crucially controlled by an edge weight function depen-
dent of the intensity/color differences of neighbor pixels. This implicitly assumes
contours observable to some degree, which is not always available, particularly
in skin and ultrasound images.

DuAT confirms the expectation of improved performance compared to the
U-Net. Generally, we observe that superpixel-based labeling is able to produce
segmentation performance on par or even superior to those from using the orig-
inal pixel-based dense annotation. The only exception is DuAT on the Breast
dataset. Among the three used datasets, the X-ray chest and the ultrasound
breast dataset are more challenging, in the latter case due to the high level of
noise and the low quality of the images [5]. Concerning the distance-based filling
method, which seems to be a rather good compromise in terms of all performance
metrics, there is no clear winner among the three tested superpixel algorithms.
Superpixel results. Figure 3 illustrates the results of the three used superpixel
algorithms. While SLIC and SEEDS produce similar superpixels in term of geo-
metric regularity, the superpixels from SNIC are rather irregular. Such elongated
superpixels, however, may be advantageous in practice since they mean longer
contours, thus leading to less superpixels to label.
Gap filling analysis. The gap filling is a key issue in our approach. Thus,
we study to which extent the GT labeling can be reached by filling. For the
samples images in Figure 2 the gap caused by superpixel-based labeling (SLIC)
is illustrated in Figure 4. To quantify the filling effectivity we define:

– N : Total number of pixels in the gap area (black in Figure 4).
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Fig. 4. Gap (in black) caused by superpixel-based labeling (SLIC) for the sample
images in Figure 2: Skin (top), X-ray chest (middle), ultrasound breast (bottom).

Table 2. Gap filling analysis: Global for each dataset.

Distance-based filling Random walker filling

skin dataset

Average N 5162 5162

Average M 4503 4006

Average Eb 326 839

Average Ef 333 518

Ratio M/N 87.22% 77.58%

chest dataset

Average N 10183 10183

Average M 8811 7948

Average Eb 688 1607

Average Ef 684 625

Ratio of M/N 86.52% 78.05%

breast dataset

Average N 3661 3661

Average M 3260 2632

Average Eb 202 673

Average Ef 200 357

Ratio of M/N 89.03% 71.87%
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Table 3. Gap filling analysis: Local for the samples images in Figure 2.

Distance-based filling

skin dataset

sample image 1 2 3 4 5

N 4568 9114 5986 6617 8722

M 3563 7018 4550 5103 6849

Eb 461 1036 734 758 979

Ef 544 1060 702 756 894

Ratio M/N 77.99% 77.00% 76.01% 77.11% 78.52%

chest dataset

N 10433 10249 9398 11714 8395

M 8914 8657 8105 9788 7189

Eb 799 778 710 945 567

Ef 720 814 583 981 629

Ratio M/N 85.44% 84.46% 86.24% 83.55% 85.75%

breast dataset

N 4262 5412 5357 6278 9277

M 3420 4505 4547 5350 7778

Eb 377 458 414 475 749

Ef 465 449 396 453 750

Ratio M/N 80.24% 83.24% 84.87% 85.21% 83.84%

– M : Those pixels in the gap area that are correctly assigned after gap filling.
– Ef : Foreground error (foreground pixels in the gap area are assigned to back-

ground after filling).
– Eb: Background error (background pixels in the gap area are assigned to

foreground after filling).
– M/N : Ratio of correctly assigned pixels to total number of pixels in the gap

area).

It holds that N = M + Ef + Eb. The related statistics for each dataset is pre-
sented in Table 2. Table 3 shows the same statistics for the samples images in
Figure 2. The overwhelming majority (up to 90%) of the pixels in the gap area
are corrected assigned by the distance-based filling strategies despite its sim-
plicity, while random walker performs worse (see the reason discussed above).
This explains the superior overall segmentation performance using the distance-
based filling. Importantly, despite the remaining wrongly assigned pixels in the
gap area (about 10%) we are still able to achieve final segmentation performance
comparable or even superior to those obtained by using pixel-based dense anno-
tation.
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5 Conclusion

In this work we have demonstrated the fundamental potential of superpixel-
based sparse labeling. In addition to high annotation efficiency, this approach
reduces the inter-observer variability that is typically observed in medical imag-
ing. Although the current experimental work is focused on medical image anal-
ysis, the proposed approach is general and can be applied to other domains as
well.

Our three-stage pipeline is modular and can be flexibly instantiated. In real
applications, its components need to be selected carefully considering the par-
ticular imaging modality and the object of interest. An important next step
towards real applications is to explore the practical potential of our approach.
This requires a user study involving medicine experts to do superpixel labeling
(instead of the current simulation). For this purpose, there is also a need of
developing a suitable user interface to support this novel form of labeling.

Acknowledgments. This work was supported by the Deutsche Forschungsgemein-
schaft (DFG) - CRC 1450 - 431460824.
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Abstract. Accurate segmentation of subcellular structures from
microscopy images is crucial for understanding cellular processes and
functions, but it presents significant challenges due to factors such as
noise, low signal-to-noise ratios, limited resolution, and complex spatial
arrangements. To address these challenges, we introduce CMU-Net, a
novel hybrid architecture that combines the strengths of U-Net, Mamba
blocks (SSMs), and Convolutional Block Attention Modules (CBAM). U-
Net provides a strong foundation for feature extraction, Mamba blocks
efficiently capture long-range dependencies, and CBAM modules refine
feature representations by selectively focusing on relevant information.
We evaluated CMU-Net on three diverse datasets consisting both flu-
orescence and label-free microscopy images of mitochondria and endo-
plasmic reticulum (ER). The quantitative and qualitative results demon-
strate that CMU-Net consistently outperforms various baseline methods,
including established CNN-based and Transformer-based models, achiev-
ing improved segmentation accuracy and boundary representation. This
study highlights the potential of our hybrid approach to significantly
contribute to the field of subcellular image analysis, promoting a deeper
understanding of cellular organization and function. Code is available at
https://github.com/beasthunter758/CMU-Net.

Keywords: Subcellular Image Segmentation · Fluorescence
Microscopy · Long-Range Dependencies · Mamba · Attention ·
Morphological analysis

1 Introduction

Microscopic subcellular segmentation has become crucial for understanding cel-
lular processes and functions, especially in fields like disease diagnosis, drug
development, and fundamental biological research. Precise segmentation of sub-
cellular structures such as mitochondria and endoplasmic reticulum (ER) allows
scientists to measure their shape, movement, and connections, offering a critical
understanding of cellular well-being and operation [1,2]. However, the process
of accurately dividing cells into smaller components is difficult because of the
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fundamental limitations of optical microscopy. These constraints include issues
such as noise, low signal-to-noise ratios, restricted resolution due to diffraction,
and the complex spatial arrangements of subcellular structures.

Several microscopy techniques offer essential tools for investigating subcel-
lular structures, each possessing distinct advantages and limits. Fluorescence
microscopy [3] utilizes fluorescent markers to precisely label molecules and struc-
tures of interest, enabling accurate studying and analysis of their distribution
and movement within cells. This method is highly effective for analyzing individ-
ual proteins, organelles, or cellular processes. However, it necessitates the use of
external markers, which might interfere with the natural cellular surroundings.
In contrast, label-free microscopy [4] techniques, such as phase-contrast or differ-
ential interference contrast (DIC) microscopy, offer an easy way to examine cel-
lular structures without demanding external markers. These approaches apply
changes in refractive indices or optical path lengths to generate contrast and
highlight cellular architecture. While label-free approaches offer advantages in
retaining the original state of the cells, they sometimes result in poorer contrast
and may require additional computational processing for precise segmentation.

Deep learning[5] techniques are becoming highly effective tools for image
segmentation, showcasing exceptional achievements in many biological applica-
tions. Architectures such as U-Net [6] have been popular due to their encoder-
decoder structure and skip connections, which allow for rapid extraction of fea-
tures and preservation of complex details. U-Net++ [7] further improves upon
this through implementing dense skip connections and convolution blocks on skip
paths, boosting gradient flow and segmentation accuracy. Additionally, the inclu-
sion of attention mechanisms, such as Convolutional Block Attention Modules
(CBAM) [8], has shown helpful in refining feature representations by focusing
on the most important information for certain tasks. Nevertheless, these models
frequently encounter difficulties when faced with the specific challenges posed by
subcellular segmentation in both fluorescence and label-free microscopy images.

Research Gap and Objectives: The current research gap resides in the
lack of deep learning models specifically designed to address the challenges of
subcellular segmentation while successfully taking advantage of the capabilities
of existing architectures and developments in sequence modeling. Our objective is
to develop a novel hybrid architecture that combines the advantages of U-Net[6],
Mamba blocks[9], and CBAM[8] to achieve superior performance in subcellular
segmentation tasks across multiple imaging modalities. We seek to assess our
model on multiple datasets covering both fluorescence and label-free microscopy
images[3,4], comparing its performance to various state-of-the-art models using
evaluation metrics such as F1 score and Intersection over Union (IoU) to quantify
segmentation accuracy. By closing this gap, we want to promote more efficient
and precise study of subcellular structures, ultimately contributing to a deeper
knowledge of cellular function and dysfunction.

Contribution: Our key contribution is the development of a novel hybrid
architecture that effectively integrates U-Net[6], Mamba blocks[9], and CBAM[8]
specifically for subcellular segmentation tasks. This integration attempts to take
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advantage of the capabilities of each component to tackle the particular chal-
lenges of this area while giving a fast yet efficient solution. The U-Net[6] frame-
work provides an effective basis for feature extraction and multi-scale processing,
adapting to the various properties of both fluorescence and label-free images.
Mamba blocks[9], recognized for their computing speed and ability to capture
long-range relationships, address limitations in resolution and the complex spa-
tial arrangements of subcellular organelles. This enables the network to efficiently
model the complex relationships between various parts of the structures, result-
ing to more accurate segmentation results. Finally, the addition of CBAM[8]
modules allows the network to dynamically improve feature representations by
focusing on the most discriminative information for precise segmentation, thus
improving its ability to distinguish between foreground and background pix-
els. This combination of speed and precision makes our suggested methodology
extremely suitable for evaluating large-scale microscopy datasets, supporting
high-throughput research and quantitative study of subcellular structures.

2 Related Work

The field of medical image segmentation has undergone significant developments
in recent years, driven by the fast development of deep learning methods. Con-
volutional neural networks (CNNs) and Transformers have emerged as the most
prominent architectures, each with their unique strengths and limitations. Our
proposed hybrid architecture expands upon the foundation built by these current
approaches, including the U-Net framework, U-Mamba (with its SSM block)[10],
and CBAM to solve the unique issues of subcellular segmentation.

2.1 U-Net and Its Variants

U-Net [6] has become the foundation in biomedical image segmentation due to
its efficient encoder-decoder architecture and strong feature representation learn-
ing. The encoder progressively downsamples the input image through a series of
convolution, activation, and max-pooling operations, capturing contextual infor-
mation at various scales. The decoder mirrors this process by upsampling the
feature maps and integrating them with similar feature maps from the encoder
using skip connections. This allows the network to recover spatial information
lost during downsampling, leading to precise localization and segmentation of
objects.

The success of U-Net has led to various versions and extensions, each trying to
improve upon its performance and handle unique issues in medical image segmen-
tation. U-Net++ [7] offers nested and dense skip routes, significantly improving
the fusion of multi-scale information while improving gradient flow during train-
ing. Attention U-Net [11] includes an attention gate mechanism that learns to
focus on target structures and ignore irrelevant background information. Other
notable versions include UNETR [12], which integrates a Transformer encoder
for capturing long-range dependencies, and Swin-UNETR [13], which utilizes a
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hierarchical Swin Transformer with shifted windows for efficient global context
modeling.

Mathematically, the U-Net architecture can be represented as a series of
nested functions. Let x be the input image and y be the output segmentation
map. The encoder function, fenc, maps the input image to a low-dimensional
latent representation: z = fenc(x). The decoder function, fdec, then upsamples
the latent representation and combines it with features from the encoder to
generate the segmentation map:y = fdec(z, fenc(x)). The skip connections ensure
that fine-grained details from the encoder are incorporated into the upsampling
process, contributing to accurate segmentation results.

2.2 U-Mamba and State Space Sequence Models

U-Mamba [10] enhances the U-Net architecture by placing Mamba blocks [9]
into the encoder. Mamba blocks, based on the ideas of State Space Sequence
Models (SSMs)[14], offer an efficient method for capturing long-range dependen-
cies in sequential data. SSMs operate by maintaining an internal hidden state
that expands over time, allowing each element in the sequence to interact with
information from all previous elements. This property makes them particularly
well-suited for positions where understanding long-range context is critical, such
as subcellular segmentation.

Mamba implements a structured state space model, S4 [14], which efficiently
represents long-range dependencies through a precise parameterization of the
state matrix. The model also integrates an input-dependent selection proce-
dure, allowing it to selectively focus on relevant information based on the input
sequence. This selected process sets Mamba apart from standard self-attention
techniques found in Transformers, offering both efficiency and effectiveness in
modeling long-range dependencies.

Recent publications have examined the usefulness of Mamba blocks in med-
ical image segmentation. VM-UNet [15] utilizes Mamba blocks within a U-Net
design, showing its potential for improving segmentation accuracy. H-vmunet
[16] further extends this by introducing a high-order vision Mamba U-Net, pro-
gressively reducing duplicate information and improving local feature extraction.
SegMamba [17] examines the use of Mamba for long-range sequential modeling in
3D medical image segmentation. These findings demonstrate the growing inter-
est and promise of SSM-based methods in solving the issues of medical image
analysis.

Mathematically, the SSM can be described by the following equations:

dh(t)
dt

= Ah(t) + Bx(t) and y(t) = Ch(t)

where x(t) is the input sequence, h(t) is the hidden state at time t, and A,
B, and C are matrices that govern the evolution of the hidden state and the
generation of the output sequence y(t). The discretization of the continuous-
time model into a discrete-time model is achieved using a timescale parameter
and a discretization rule, such as the zero-order hold (ZOH) method.
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2.3 Convolutional Block Attention Modules (CBAM)

Convolutional Block Attention Modules (CBAM) [8] are attention mechanisms
meant to improve the representational power of convolutional neural networks.
CBAMs refine intermediate feature maps by inferring attention maps along two
separate dimensions: channel and spatial. The channel attention module focuses
on “what” is meaningful in the given data, whereas the spatial attention module
focuses on “where” the informative components are placed.

The channel attention module utilizes global average pooling and max pool-
ing operations to collect spatial information, followed by a shared multi-layer
perceptron (MLP) to generate channel attention weights. These weights are
then applied to the input feature map, emphasizing informative channels and
suppressing less significant ones. The spatial attention module utilizes average
pooling and max pooling operations along the channel axis, concatenating the
resulting feature maps. A convolution layer then processes this concatenated
representation to provide a spatial attention map, highlighting relevant places
in the feature map.

The integration of CBAM modules into various U-Net topologies has proven
beneficial in improving segmentation performance. MALUNet [18] combines
CBAM with a multi-attention mechanism and a lightweight U-Net for skin lesion
segmentation. MSNet [19] implements CBAM within a multi-scale subtraction
network for polyp segmentation. These experiments demonstrate the versatil-
ity and usefulness of CBAM in refining feature representations and improving
segmentation accuracy across different tasks.

3 Methodology

3.1 Hybrid Architecture for Subcellular Segmentation

We propose a new hybrid architecture, called CMU-Net, which efficiently
addresses the challenges of subcellular segmentation by using the capabilities
of U-Net, Mamba blocks (SSMs), and Convolutional Block Attention Modules
(CBAM). This architecture aims to achieve accurate and efficient segmentation
by effectively capturing long-range dependencies and selectively focusing on rel-
evant features within subcellular images. The overall architecture is depicted in
Figure 1, and the individual components are shown in Figure 2.

3.2 Network Architecture

U-Net Backbone : CMU-Net utilizes a U-Net [6] architecture as its backbone,
with an encoder-decoder structure with skip connections. The encoder consists
of four downsampling levels, each consisting of two 3 × 3 convolutional layers
with Instance Normalization[20] and LeakyReLU activation[21]. Max pooling
operations with a stride of 2 downsample the feature maps at each level, while
the number of feature channels doubles, starting from 32 in the first level and
reaching 512 in the fourth level. The hierarchical structure of the network allows
it to learn multi-scale feature representations, covering both local details and
global context.
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Input

U-Mamba Block

CBAM Block

Residual Block

Output

Strided Convolution

Convolution Transposed Skip Connection

Fig. 1. The overall architecture of the CMU-NET Model.

Fig. 2. Components of the CMU-Net architecture: (a) Structure of the U-Mamba block,
Adapted from [10] (b) Overall CBAM block, Adapted from [8] (c) Breakdown of the
CBAM block, Adapted from [8].

Mamba Block Integration : We integrate Mamba blocks [9,10] into the U-
Net encoder to improve the network’s ability to represent distant relationships
that are important for understanding the complex spatial organization of sub-
cellular structures. In addition, a Mamba layer is integrated following the two
convolutional blocks at every downsampling level. The Mamba layer initially
employs Layer Normalization on the input feature map xl at level l and then
feeds it into the Mamba block. The Mamba block leverages the Structured State
Space Sequence Model (S4) [14], noted for its efficiency in addressing long-range
dependencies. Let hl(t) represent the hidden state of the SSM at time step t.
The state updating and output equations for the SSM can be stated as:

dhl(t)
dt

= Alhl(t) + Blxl(t) and yl(t) = Clhl(t)

where Al, Bl, and Cl are matrices guiding the state transition and the generation
of output at level l. Discretization of this continuous-time model is accomplished
utilizing a timescale parameter Δl and the zero-order hold (ZOH) approach.
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In our implementation, the Mamba block consists of a linear projection layer
(in proj) that transforms the input features to a higher-dimensional space, fol-
lowed by a depthwise convolution (conv1d) with a kernel size of 4 and SiLU
activation. Further linear projections (x proj and dt proj) are utilized for state
updates, and a final linear layer (out proj) generates the output features yl.

CBAM Incorporation : To further refine the feature representations learned
by the Mamba blocks, we incorporate CBAM modules [8] after each Mamba
layer in the encoder. The CBAM module applies channel and spatial attention
mechanisms sequentially:

Channel Attention: Average pooling and max pooling operations are applied
along the spatial dimensions of the Mamba block output yl, resulting in F c,l

avg

and F c,l
max. Both pooled features pass through a shared multi-layer perceptron

(MLP) with one hidden layer to generate channel attention weights:

Mc(yl) = σ(MLP (AvgPool(yl)) + MLP (MaxPool(yl)))

The channel attention map Mc(yl) is then multiplied element-wise with the
input feature map yl to emphasize informative channels: y′

l = Mc(yl) ⊗ yl.

Spatial Attention: Average pooling and max pooling operations are applied along
the channel dimension of the channel-refined feature map y′

l, resulting in F s,l
avg

and F s,l
max. The pooled features are concatenated and processed using a convo-

lution layer with a kernel size of 7 × 7 to generate a spatial attention map:

Ms(y′
l) = σ(f7×7([AvgPool(y′

l);MaxPool(y′
l)]))

4 Experiments and Results

4.1 Datasets

To evaluate the performance and adaptability of our proposed CMU-Net model,
we conducted experiments on three diverse datasets containing images of sub-
cellular structures, as summarized in Table 1 and visualized in Figure 3. The
datasets consist of fluorescence and label-free microscopy techniques, including
different cell types, imaging devices, and subcellular targets.
Dataset A (Rat Heart Cell, Mitochondria)[22]: This dataset contains 512
fluorescence microscopy images of mitochondria within rat heart cells captured
using an OMEX microscope. The images display varying mitochondrial morphol-
ogy, intensity, and background noise, providing a more realistic and challenging
context to evaluate the model’s performance.
Dataset B (ER)[23]: This dataset consists of 175 label-free microscopy pictures
depicting the endoplasmic reticulum (ER) in cell types that are not identified.
The images were captured using a Nikon Eclipse Ti-E microscope and display
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Table 1. Datasets Used for Experimentation

Reference Cell/Sub-cell Type Imaging Device Number of Samples

Sekh et al. [22] (A)Rat heart cell, mitochondria OMEX 512

Luo et al. [23] (B) Unknown cell, ER Nikon Eclipse Ti-E 175

Luo et al. [23] (C) Unknown cell, mitochondria Nikon Eclipse Ti-E 253

Fig. 3. Datasets used for evaluation.

the unique tubular network structure of the endoplasmic reticulum (ER). This
dataset allows us to assess the model’s ability to segment subcellular structures
in label-free images and its generalizability to different organelles.
Dataset C (Unknown Cell, Mitochondria)[23]: This dataset includes 253
label-free microscopy images of mitochondria within unknown cell types, also
taken with a Nikon Eclipse Ti-E microscope. Similar to Dataset C, this dataset
allows us to examine the model’s performance on label-free images and its ability
to generalize to different cell types and imaging settings.

4.2 Implementation Details

We implemented the CMU-Net model using the popular nnU-Net framework
[24] due to its modular design and self-configuring features. This framework
allowed us to focus on the network architecture while maintaining consistency in
image preprocessing, data augmentation, and training procedures. All networks,
including our proposed model and baseline models used for comparison, were
trained for 150 epochs on a single NVIDIA RTX A5000 GPU.

The nnU-Net[24] framework automatically configures hyperparameters based
on the dataset attributes. The patch size, batch size, and network parameters
such as the number of resolution levels and downsampling processes were deter-
mined automatically for each dataset. We utilized stochastic gradient descent
(SGD)[25] as the optimizer, and the loss function was a combination of Dice loss
and cross-entropy loss, as this has been demonstrated to provide stable perfor-
mance across many segmentation tasks. The learning rate was initially set to
0.01 and decayed using a cosine annealing schedule with a minimum learning
rate of 1e − 5.

To enhance data diversity and improve model generalizability, we applied
standard data augmentation techniques during training. These included random
horizontal and vertical flips, random rotations, and elastic deformations. The
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specific augmentation parameters were determined by the nnU-Net framework
based on the characteristics of each dataset.

4.3 Evaluation Metrics

To quantitatively assess the performance of our CMU-Net model and baseline
methods, we employed two widely used evaluation metrics for image segmenta-
tion: F1 score and Intersection over Union (IoU).
F1 Score: The F1 score is the harmonic mean of precision and recall, provid-
ing a balanced evaluation of the model’s accuracy in identifying both foreground
(subcellular structures) and background pixels. It is particularly beneficial in sit-
uations with uneven class distributions, such as subcellular segmentation, where
the background pixels often outnumber the foreground pixels.
Intersection over Union (IoU): IoU quantifies the overlap between the pre-
dicted segmentation mask and the ground truth mask, providing an indication
of the model’s capability to reliably identify the boundaries of subcellular struc-
tures. It is calculated as the ratio between the intersection and union of the
predicted and ground truth masks.

Justification for Using F1 Score and IoU:
Binary Segmentation: Both F1 score and IoU are well-established metrics for
evaluating binary segmentation tasks, where the goal is to categorize each pixel
as belonging to either the foreground (object) class or the background class.
Imbalanced Class Distributions: The F1 score is particularly beneficial in
scenarios with imbalanced class distributions, which is common in subcellular
segmentation where background pixels frequently dominate. It provides a more
reasonable estimate than measurements like accuracy, which can be misleading
in such cases.
Boundary Representation: IoU directly assesses the overlap between pre-
dicted and ground truth masks, making it an appropriate metric for measuring
the model’s capacity to accurately outline the boundaries of subcellular struc-
tures. This is critical for subsequent assessments of morphology and dynamics.

By employing both F1 score and IoU, we obtain a comprehensive evalua-
tion of the segmentation performance, surrounding both pixel-wise classification
accuracy and the accuracy of boundary localization.

4.4 Quantitative and qualitative segmentation results

To evaluate the performance of our proposed CMU-Net model and baseline meth-
ods across different datasets and subcellular structures, we present the quanti-
tative results for each dataset separately.

Table 2 presents the quantitative segmentation performance on Dataset A
containing fluorescence microscopy images of mitochondria within rat heart cells
[22]. CMU-Net achieves the highest F1 score and IoU compared to all baseline
methods, demonstrating its effectiveness in accurately segmenting mitochondria.

Table 3 presents the quantitative results on Dataset B, which consists of
label-free microscopy images of the endoplasmic reticulum (ER) [23]. CMU-Net
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Table 2. Performance of
Segmentation Methods on
Dataset A (Rat, Mito)[22]

Method F1/DSC IoU

nnU-Net[24] 0.7593 0.7228

Seg ResNet[26] 0.7590 0.7214

UNETR[12] 0.7532 0.7118

Swin UNETR[13] 0.7573 0.7194

U-Mamba[10] 0.7598 0.7231

CMU-Net 0.7883 0.7420

Table 3. Performance of
Segmentation Methods on
Dataset B (ER)[23]

F1/DSC IoU

0.8438 0.7312
0.8405 0.7267
0.8447 0.7330
0.8449 0.7328
0.8404 0.7259
0.8669 0.7559

Table 4. Performance of
Segmentation Methods on
Dataset C (Mito)[23]

F1/DSC IoU

0.8175 0.6949
0.8163 0.6938
0.8039 0.6765
0.8203 0.6990
0.8232 0.7028
0.8358 0.7255

once again demonstrates improved performance, highlighting its ability to handle
various subcellular structures and generalize to label-free microscopy images.

Table 4 presents the quantitative results on Dataset C, which comprises
label-free microscopy images of mitochondria [23]. CMU-Net maintains its lead-
ing performance, proving its effectiveness across diverse cell types and imaging
settings within the context of label-free microscopy.

Our CMU-Net model consistently outperforms all baseline methods across
both evaluation metrics and all datasets. This indicates the effectiveness of
our hybrid approach in precisely segmenting subcellular structures. Notably,
the improvement in IoU suggests that CMU-Net is particularly excels at accu-
rately defining the boundaries of these structures. The integration of Mamba
blocks, capable of capturing long-range dependencies, likely contributes to this
improved boundary localization by allowing the network to effectively model the
spatial relationships and context within the images. Furthermore, the inclusion
of CBAM modules enhances the network’s ability to focus on the most relevant
features for segmentation. The channel attention mechanism within CBAM helps
identify and emphasize informative channels, while the spatial attention mecha-
nism guides the network to focus on important regions within the feature maps.
This attention-based refinement further contributes to the improved accuracy
and boundary identification observed in the CMU-Net results.

Qualitative Results Visually, as shown in Figure 4, the segmentations pro-
duced by CMU-Net display better agreement with the ground truth masks,
particularly in challenging regions with complex morphology or low contrast.
The baseline methods, especially those based solely on convolutional opera-
tions (nnU-Net and SegResNet), tend to produce less accurate segmentations,
with noticeable errors in boundary segmentation and fragmented structures. The
improved performance of CMU-Net can be attributed to its ability to capture
both local and global context through the combination of U-Net, Mamba blocks,
and CBAM. Mamba blocks enhance the modeling of long-range dependencies,
allowing the network to better understand the overall structure and spatial rela-
tionships within the subcellular images. Simultaneously, CBAM modules refine



Attention Seekers U-Net with Mamba for Sub-cellular Segmentation 401

the feature representations by focusing on the most biased information, leading
to more accurate and detailed segmentations.

Fig. 4. Presents a qualitative comparison of segmentation results for our CMU-Net
model and the baseline methods on representative images from Datasets A,B and C.
Visually, the segmentations produced by CMU-Net exhibit better agreement with the
ground truth masks, particularly in challenging regions with complex morphology or
low contrast. The baseline methods, especially those based solely on convolutional oper-
ations (nnU-Net and SegResNet), tend to produce less accurate segmentations, with
noticeable errors in boundary delineation and fragmented structures. The improved
performance of CMU-Net can be attributed to its ability to capture both local and
global context through the combination of U-Net, Mamba blocks, and CBAM. Mamba
blocks facilitate the modeling of long-range dependencies, allowing the network to bet-
ter understand the overall structure and spatial relationships within the subcellular
images. Simultaneously, CBAM modules refine the feature representations by focusing
on the most discriminative information, leading to more accurate and detailed segmen-
tations.

Overall, both the quantitative and qualitative results demonstrate the
improved performance of our CMU-Net model for subcellular segmentation tasks
across different datasets and imaging modalities. The integration of Mamba
blocks and CBAM modules within the U-Net framework allows the network
to effectively capture complex spatial relationships and refine feature represen-
tations, leading to more accurate and visually appealing segmentations.

4.5 Morphological Analysis

Following the segmentation process, as illustrated in Figure 5 we conducted a
detailed morphological analysis of the mitochondria to demonstrate the practical
utility of our improved segmentation method. This analysis is crucial for under-
standing mitochondrial dynamics and their relevance to cellular health [27].

Classification Methodology We classified each disjoint mitochondrial
structure into three categories: “Dot”, “Rod”, and “Network”. The classifica-
tion was based on size thresholds: Dot < 100 pixels, 100 ≤ Rod ≤ 500 pixels,
and Network > 500 pixels.



402 P. Sinha and A. Sekh

Fig. 5. Steps in morphological analysis: (a) Input image, (b) Segmentation, (c) Skele-
tonization, (d) Classification, (e) Shape analysis.

Statistical Analysis We hypothesized that an accurate segmentation
method should correctly reflect the statistical information of different mitochon-
drial phenotypes as shown in Figure 6.

Fig. 6. Morphological analysis results.

The analysis focuses on two key metrics: the area occupied by each mito-
chondrial type (Dot, Rod, Network) and the count of each type.

For Dataset A, the graphs reveal that our CMU-Net method closely aligns
with the ground truth in terms of both area distribution and count of mitochon-
drial structures. The U-Net baseline, while performing reasonably well, shows
some differences, particularly in the network structures.
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Similarly, for Dataset C, graphs reveal that CMU-Net outperforms the U-Net
baseline, especially in accurately identifying and measuring rod-shaped mito-
chondria. This improvement is seen in both the area and count metrics.

The results consistently show that our proposed CMU-Net segmentation
gives morphological statistics closely aligned with the ground truth, outper-
forming the baseline U-Net method across both datasets. This demonstrates
the strength of our approach in handling different mitochondrial morphologies
and datasets.

This fine-grained morphological analysis, enabled by our improved segmenta-
tion method, provides valuable insights into mitochondrial dynamics. The ability
to accurately quantify and classify mitochondrial structures opens new avenues
for investigating cellular health, disease progression, and the effects of various
treatments on mitochondrial morphology. The stability of CMU-Net’s perfor-
mance across different datasets emphasizes its potential as a reliable tool for
mitochondrial analysis in various biological contexts.

4.6 Ablation Study

In order to evaluate the specific contributions of each component in our proposed
CMU-Net architecture, we conducted a thorough ablation study. We compared
four configurations: (i) U-Net (baseline), (ii) U-Net combined with Mamba, (iii)
U-Net combined with CBAM, and (iv) Full CMU-Net (U-Net + Mamba +
CBAM).

We evaluated these configurations on all three datasets to determine the
applicability and reliability of each architectural component across different sub-
cellular segmentation tasks. The findings of this ablation investigation are dis-
played in Table 5, showcasing the F1 score and IoU for each configuration across
the three datasets.

Table 5. Ablation study results on Datasets A, B, and C.

Dataset A (Rat,Mito) Dataset B (ER)Dataset C (Mito)

Model Variation F1/DSC IoU F1/DSC IoU F1/DSC IoU

U-Net 0.7593 0.7228 0.8438 0.7312 0.8175 0.6949

U-Net + Mamba 0.7598 0.7231 0.8404 0.7259 0.8232 0.7028

U-Net + CBAM 0.7557 0.7170 0.8412 0.7274 0.8142 0.6900

CMU-Net 0.7883 0.7420 0.8669 0.7559 0.8358 0.7255

The results of our ablation study present multiple crucial conclusions, par-
ticularly when evaluating the individual subcellular structures in each dataset:

1. Baseline Performance: The typical U-Net (configuration i) sets a solid
baseline across all datasets, indicating its effectiveness in segmenting both
mitochondria (Datasets A and C) and endoplasmic reticulum (Dataset B).
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2. Mamba Contribution: The inclusion of Mamba blocks (configuration ii)
demonstrates a consistent improvement compared to the baseline U-Net for
the task of segmenting mitochondria in Datasets A and C. However, there’s a
minor drop in performance for ER segmentation (Dataset B). This suggests
that Mamba’s ability to capture long-range dependencies is particularly ben-
eficial for mitochondrial structures, which often exhibit complex, branching
morphologies.

3. CBAM Contribution: The addition of CBAM (configuration iii) demon-
strates mixed outcomes. It increases performance for ER segmentation
(Dataset B) but marginally affects performance for mitochondrial segmenta-
tion (Datasets A and C). This shows that CBAM’s attention mechanism may
be more effective in amplifying elements crucial to the tubular network struc-
ture of the ER, while potentially disregarding some subtle features important
for mitochondrial segmentation.

4. Collaborative Effect: The entire CMU-Net architecture (configuration iv)
consistently beats all other configurations across both mitochondrial and
ER segmentation tasks. This exhibits a collaborative effect when integrating
Mamba blocks with CBAM within the U-Net framework. The performance
improvements over the baseline U-Net are notably noteworthy, with increases
in F1 score of 3.82% and 2.24% for mitochondrial segmentation (Datasets A
and C), and 2.74% for ER segmentation (Dataset B).

These results demonstrate the effectiveness of our hybrid approach in tackling
the issues of subcellular segmentation across different organelles. The various
effects of individual components (Mamba and CBAM) on different organelles
highlights the significance of a hybrid approach. While Mamba blocks seem to be
particularly effective for mitochondrial segmentation, likely due to their ability to
capture the long-range spatial dependencies in mitochondrial networks, CBAM
appears to offer advantages in ER segmentation, possibly by helping the network
focus on the distinctive tubular structures of the ER.

The constant superior performance of the complete CMU-Net across both
mitochondrial and ER segmentation tasks demonstrates its adaptability and
effectiveness in handling various subcellular details. This demonstrates our archi-
tectural design decisions and emphasizes the potential of CMU-Net as an effec-
tive choice for various subcellular segmentation challenges as well.

5 Discussion and conclusion

This paper introduced CMU-Net, a novel hybrid architecture designed to address
the challenges of subcellular segmentation. By integrating U-Net, Mamba blocks,
and CBAM modules, our model effectively captures both local features and
long-range dependencies crucial for accurately segmenting subcellular struc-
tures in microscopy images. The quantitative and qualitative results demon-
strate the improved performance of CMU-Net compared to various baseline
methods, including established CNN-based and Transformer-based segmenta-
tion models. While some baseline methods achieved comparable performance to
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CMU-Net in specific cases, our model consistently outperformed them across dif-
ferent datasets and evaluation metrics. The integration of Mamba blocks, capa-
ble of efficiently modeling long-range dependencies, played a key contribution
in improving segmentation accuracy, particularly in identifying the boundaries
of subcellular structures. Moreover, the inclusion of CBAM modules further
enhanced the model’s ability to focus on key features and suppress irrelevant
information, leading to the overall improvement in segmentation quality. The
primary focus of this work was the development and evaluation of the CMU-
Net architecture. However, there are various options for additional investigation
and extension of this approach. One potential direction is to investigate the
application of CMU-Net to other biomedical image segmentation tasks, such
as cell membrane segmentation or nucleus segmentation. Additionally, explor-
ing the integration of different attention mechanisms or exploring alternative
SSM structures within the Mamba blocks could lead to further improvements in
performance. Furthermore, the model can be adapted and optimized for 3D seg-
mentation tasks to analyze volumetric microscopy data[28]. In conclusion, this
paper presents a novel hybrid architecture, CMU-Net, that effectively addresses
the challenges of subcellular segmentation. By integrating the strengths of CNNs,
Mamba blocks, and the lightweight CBAM attention module, our model achieves
accurate and efficient segmentation without incurring significant computational
overhead. The promising results obtained in this study highlight the potential
of CMU-Net to contribute significantly to the field of subcellular image analy-
sis, providing a deeper understanding of cellular processes and functions. Future
work will explore the generalizability of this approach to other segmentation
tasks and investigate further enhancements to the model’s performance and effi-
ciency.
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Abstract. Magnetic resonance imaging (MRI) simulations necessitate a substan-
tial number ofmulti-contrastMR images,which can be time-consuming and costly
to obtain. To overcome this challenge, synthetic data has emerged as a viable alter-
native. However, existing methods are limited in their ability to generate multiple
modalities within a single dataset and struggle to produce modalities that are
not present in the original dataset, resulting in poor domain transfer capability. To
tackle this issue, we proposeMCGAN for cross-domain multi-contrast MR image
synthesis. The MCGAN framework employs a two-stage learning strategy. In the
first stage, a domain adaptation module is utilized to align the source domain dis-
tribution with the target domain using unsupervised learning, effectively bridging
domain gaps. Subsequently, the second stage involves an image-to-image module
that empowers the model to generate additional modalities. By combining these
two stages, MCGAN framework overcomes the limitations of single-stage gen-
eration methods, resulting in a model that synthesizes a comprehensive array of
modalities within each dataset. Experimental results show that MCGAN method
outperforms other transfer learning-based image-to-image methods and cross-
dataset image synthesis methods in terms of both data distribution realism and
texture details. Code is available at https://github.com/DropInOcean/MCGAN.

Keywords: Cross-Domian Synthesis · Generative Adversarial Network ·
Multi-contrast · MRI

1 Introduction

Magnetic resonance imaging (MRI) simulations are instrumental in optimizing, evalu-
ating pulse sequences, and artifact tracing [1–3]. However, conducting MRI simulations
necessitates a significant quantity of multi-contrast MR images that precisely capture
the distribution characteristics of this modality and provide specific texture details of the
human brain. Nevertheless, challenges such as slow imaging speed and high financial
costs hinder the acquisition ofmulti-contrastMR images. In response to these challenges,
synthetic data has emerged as a valuable solution, addressing the limitations posed by
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the scarcity of large datasets [4]. Synthetic data has demonstrated its utility in various
applications, such as cardiac imaging and nuclei segmentation in histopathologic images
[5, 6]. Moreover, the generation of synthetic data holds promise in addressing patient
privacy concerns within the medical domain.

Previous researchyielded impressive results on specific dataset such as IXI orBRATS
[8–10], yet it has been constrained to generating only a limited number of specificmodal-
ities from each dataset, thus falling short of the demands for comprehensive MRI sim-
ulations. When the trained network is directly applied to other datasets, the outcomes
have proven unsatisfactory, primarily due to MR scanner variations and individual sub-
jects’ movements. These discrepancies render data acquisition challenging and result
in collected data that differs from the source domain, posing obstacles when converted
into other contrast images. Our goal is to generate additional MR modalities that are
not initially included in any existing dataset, thereby expanding the data quantity and
enhancing the variety of image modalities available for MRI simulations.

The challenges inherent in this task include: 1) Handling the diversity of modalities
present in different datasets to synthesize a comprehensive array of modalities within
each dataset. 2) Overcoming domain gaps between various datasets to improve the
transfer ability of the generative model across different datasets. 3) Establishing criteria
for evaluating the reasonableness of synthesized images and ensuring they align with
the requirements of MRI simulations, particularly in the absence of labeled comparisons
for the generated data.

In this work, we propose the MCGAN framework to address these challenges. T1
images are widely used in disease assessment and positioning due to their fast-scanning
time and clear anatomical structures, making them routinely acquired in hospitals and
prevalent in various public datasets. Exploiting the advantages of T1 images, we propose
to utilize them as a bridge to generate arbitrary contrast MR images. In order to solve the
cross-dataset domain shift problem, we introduce a two-stage learning algorithm. In the
first stage, the source domain image is transformed into the target domain image through
an unsupervised method. Subsequently, the desired contrast image is generated through
a supervised method, thereby generating the required various contrast MR images for
MRI simulations.

To evaluate the suitability of the synthesized data for MRI simulation platforms,
we propose a novel measurement indicator. This indicator involves segmenting cere-
brospinal fluid (CSF), gray matter (GM), and white matter (WM) from the T1 image
and then analyzing the distribution of each part. By comparing the distribution of these
three regions between the synthesized data and the corresponding real data, and by calcu-
lating the weighted Kullback-Leibler (KLaverage) divergence value of the three regions,
the accuracy and reasonableness of the synthesized data can be assessed.

Experimental results demonstrate that the proposed method significantly outper-
forms existing image-to-image generation methods (Attention-U-Net [7], pix2pix [8],
pGAN [9], cGAN [10], CUT [34], SRC [35]) and cross-dataset image generation meth-
ods (UNIT [11]) on three public datasets. The main contributions of this work are as
follows:
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1) MCGAN addresses the cross-dataset domain shift problem by building an image-
to-image module and a domain adaptation module, employing a two-step training
strategy to generate required MR image modality.

2) Leveraging T1 images, MCGAN synthesizes multi-contrast MR images that were
previously unattainable through existing methods., This capability effectively addresses
the challenge of generating a comprehensive array of MR modalities, particularly
modalities absent from most public datasets (e.g., DWI, T2-FLAIR, and T2*).

3) MCGAN introduces an attention gate module to the generator to enhance per-
ception and generation of the foreground part, overcoming visual artifacts produced by
pix2pix [8], pGAN [9], cGAN[10].

4) To assess the plausibility of synthesized images, we propose a new metric
inspired by intra-modal connections, which offers reproducibility compared to sub-
jective evaluation methods that suffer from time and cost constraints and inter-observer
variability.

2 Related Work

2.1 Image-To-Image

Translating the synthesis of new modality images from available MR images has been a
prominent research area in the field ofmedical imaging [12]. Traditionalmethods include
patch regression [13], atlas-based methods [14, 15], and MR physics-based techniques
[16]. In recent years, there has been a shift towards utilizing convolutional neural network
(CNN)-based methods [17]. The introduction of generative adversarial networks aims to
synthesize realistic images across different modalities [18]. For example, Salman et al.
proposed pGAN [9], a conditional GAN-based approach that incorporates style transfer
GAN for contrast-aware synthesis. Zhu et al. proposed unsupervised CycleGAN [19]
for image transformation tasks. Additionally, Bing Cao et al. proposed Auto-GAN [20],
which considers the complementary information from various modalities and employs a
self-supervised method to synthesize a single modality frommultiple source modalities.
More recently, Park et al. introduced contrastive learning into image generation [34],
replacing the cycle-consistency in unsupervised learning to achieve one-way conversion.
Furthermore, Jung et al. proposed SRC [35], which effectively leverages heterogeneous
semantics within the images.

2.2 Domain Adaptation

Domain adaptation (DA) techniques have been developed to transfer knowledge from a
source domain to a target domain of interest [21, 22]. A large number of DA methods
have been proposed, including instance re-weighting [23, 24], covariance alignment
[25, 26], maximum mean difference [27, 28], pixel-level adaptation [29, 30], and more.
Although the UNIT method [11] can be categorized within these DA techniques as it
adjusts the model trained on the source domain to the target domain, it differs from
existing methods because its focus is on generation tasks rather than understanding
tasks like image classification or segmentation. Additionally, W. Bian et al. integrates
variational models to realizeMRI reconstruction and generation [36], particularly suited
for generating one modality from multiple modalities.
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Fig. 1. The proposedMCGAN framework consists of a domain adaptation module and an image-
to-image module. The domain adaptation module facilitates the conversion of the source domain
to the target domain, leveraging a discriminator to ensure image authenticity. The image to the
image module enables the conversion of T1 images to other contrast MR images.

3 Method

In this section, we present the architecture of MCGAN, shown in Fig. 1. To overcome
the limitations of single-stage generation approaches, we have embraced a two-stage
approach that amalgamates the advantages of various techniques, leading to the creation
of models with enhanced performance. The first stage focused on translating the source
domain T1 image (Ŝreal) into the target domain image (T̂fake). Subsequently, the second
stage engages in image-to-image translation, converting the synthetic target domain
image (T̂fake) into multi-contrast MR images (Snreal). This dual-phase training regimen
plays a pivotal role in equipping the image-to-image translationmodel with cross-dataset
generation capabilities.

3.1 Domain Adaptive Module

Despite the T1 image obtained fromdifferent scanningmachines being generally similar,
there are still difference in image contrast, lightness and shading. Therefore, a domain
shift problem exists between the source domain (original T1 image) and the target
domain (unified T1 image). In this study, the source domain image is converted into the
modality of the target domain through unsupervised learning to address this tissue. Here,
S represents the source domain and T represents the target domain. The subscript “real”
represents the real image, and “fake” refers to the synthesized image. The symbol “^”
represents the T1 image, and the superscript n = 1, 2, 3…, represents other contrast MR
images (such as T2, PD, DWI, T2*, T2-FLAIR, etc.).
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Adversarial Loss. We implement an adversarial loss to enforce the translation of
the source domain Ŝreal to the target domain T̂real . The adversarial loss is defined as:

Ladv1(G1,DT ) = −ET

[(
DT

(
T̂real

) − 1
)2] − ES

[
DT

(
G1

(
Ŝreal

))2]
(1)

where T̂real is the target domain T1 image, Ŝreal is the source domain T1 image,E denotes
the expected value, G1 is the generator that converts source domain T1 image to target
domain T1 image, and DT is the discriminator that distinguishes between the generated
target domain T1w images and the real target domain T1 images.

Cycle Consistency Loss.We propose the cycle consistency loss reduces the domain
transformation mapping space and makes the reconstructed image (Ŝcyc) consistent with

the original image (Ŝreal). The adversarial loss is defined as:

Lcycle(G1,G2) = E
[∥∥G2

(
G1(Ŝreal)

) − Ŝreal
∥∥
1

]
(2)

where G2(G1(Ŝreal)) tries to generate an image for consistency constraints

LDA = λadvLadv1(G1,DT , S,T ) + λcycLcycle(G1,G2) (3)

Here, λadv and λcyc control the relative weighting of the adversarial loss and consistency
loss, respectively.

3.2 Image-To-Image Module

Building upon the availability of paired data, the target domain T1 image (T̂fake) can be
better converted to other multi-contrast MR images (Snreal) through supervised learning.
The generator G is trained to generate "real" images. To address artifact challenges sim-
ilar to those encountered in pix2pix [8], pGAN [9] and cGAN [10], we draw inspiration
from the Attention U-Net [32, 33] to refine the generator G. D is trained to distinguish
between real and generated images.

Attention Gate. To enhance the network’s receptive field and improve the trans-
lation of high-level semantic information, an attention mechanism is incorporated into
the architecture. Inspired by the Attention U-Net, we introduce the attention gate into
our generative network. The attention gate focus on foreground information while fil-
tering out background details beyond the gate, as shown in Fig. 2. Convolutional layers
progressively extract higher dimensional image representations (x) by processing local
information layer by layer. x̂ represents the attention output result. The gate utilizes up-
sampling information (g) and encoding information (x),calculates the attention value
(α) and then multiplies it with each encoding information to derive the output formula
of the attention gate:

x̂ = αx (4)

As shown in Fig. 6, our experiments demonstrate that the attention mechanism we
introduced focuses primarily on internal brain information and does not attend to exter-
nal information. This occurs because the external background consistently maintains
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Fig. 2. The overall structure of the generator. Attention gate is added to enhance perception and
generation of the foreground part, overcoming visual artifacts.

a value of 0 without variation, thus not attracting attention. In contrast, the values of
different foreground modalities within the brain exhibit variability, leading the attention
mechanism to consistently focus on these changing values. The attention gate integrates
the concept of attention mechanism into convolutional network. The computation of the
attention value is as follows:

A = ψ�(
σ1

(
W�

x x + W�
g g + bg

))
+ bψ (5)

α = σ2(A(x, g;�att )) (6)

where WT
x , W

T
g denote the linear transformations computed using channel-wise 1x1x1

convolutions for the input tensors. bg and bψ are the bias terms. The rectified linear unit

σ1(x) = max(0, x) and σ2(x) = 1
1+exp(−x) denote sigmoid activation function.

Perceptual Loss Perceptual losses relies on differences in higher-level feature rep-
resentations, typically extracted from networks pre-trained for more general tasks. A
commonly used network for this purpose is the VGG-Net, trained on the ImageNet
dataset for object classification. Here, feature maps are extracted before the second
max-pooling operation following our pre-trained VGG16 on ImageNet. The resulting
loss function can be written as:

Lvgg(G3) = E
[∥∥V (

Snreal
) − V

(
G3

(
T̂fake

))∥∥
1

]
(7)

Adversarial Loss We use an adversarial loss to enforce synthetic T1 image
translation to other multi-contrast MR images. The adversarial loss is formulated as
follows:

Ladv2(G3,Ds) = −ET̂fake,Snreal

[(
Ds

(
T̂fake, S

n
real

) − 1
)2] − ET̂fake

[
Ds

(
T̂fake,G3

(
T̂fake

))2]

(8)
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Pixel-wise Loss This loss focuses on minimizing pixel-wise differences between
images:

LL1(G3) = E
[∥∥Snreal − G3

(
T̂fake

)∥∥
1

]
(9)

This yields the following aggregate loss function for training:

LI2I = λadv2Ladv2(G3,Ds) + λL1LL1(G3) + λvggLvgg(G3) (10)

4 Experiment

4.1 Experimental Setup

1) Data: Our experiment is based on 3 independent publicly available datasets: IXI, HCP,
and Simons. The data contains T1, T2, and PD image of the IXI dataset; T1w, T2, and
DWI image of the HCP dataset; T1, T2-FLAIR, and T2* image of the Simons dataset.
Prior to processing, images excluding T1 images were registered to their respective T1
images. To ensure optimal model training and unbiased quantitative assessments, the
datasets were normalized to standardize voxel intensity ranges across subjects. This
normalization involved scaling image intensities within each subject to a range of [0,1]
via division by the maximum intensity.

a. IXI dataset: From the 574 subjects, 459 were selected for training (T1- > PD, T1- >

T2) and 115 for testing (T1- > T2-FLAIR, T1- > DWI, T1- > T2*).
b. HCP dataset: Out of 1113 subjects, 890 were selected for training (T1- > DWI) and

223 for testing (T1- > T2-FLAIR, T1- > PD, T1- > T2*).
c. Simons dataset: Among the 62 subjects, 46 were selected for training (T1- > T2*,

T1- > T2-FLAIR) and 16 for testing (T1- > PD, T1- > DWI, T1- > T2).

2) Network: The generative and discriminative networks for domain adaption and
image translation are built upon the generative network architecture proposed by Johnson
et al., which achieved impressive results in neural style transfer and super-resolution
tasks [31]. The two generator network structures of domain adaption are composed
of multiple convolutional layers, including 3 up-sampled convolution layers (one with
stride 7, two with stride 3), 9 residual blocks, and 3 down-sampled convolution layers
(one with stride7, two with stride 3). The discriminator network employs PatchGAN
[8], featuring 4 down-sampled convolutional layers with stride 4. The image translation
generator differs from the domain adaption generator only by incorporating 2 additional
residual blocks, while the discriminator remains the same.

3)Training details: Our method is implemented using Pytorch on an Nvidia 2080Ti
GPU.Weuse theAdamoptimizerwith an initial learning rate of 0.0002, linearly reducing
it after 100 epochs. The batch size is set to 4, and the total number of epoch is 200. In
addition, different hyperparameters are set for different losses: λvgg, λL1, and λcyc are set
to 100, while λadv1 and λadv2 is set to 1.



Cross-Domain Multi-contrast MR Image Synthesis 415

4.2 Metrics

In this section, we propose a new metric for cross-domain medical image synthesis.
As commonly known, KL divergence measures the difference between two probability
distributions. The brain can be categorized into 3 regions: CSF, GM, and WM. Each
slice of each sample has a fixed partition and it occupies a fixed area. Leveraging FSL
software, we segment the T1 image of each sample to obtain masks for the three regions
and calculate the proportion of each mask to the entire brain (λCSF , λGM , λWM ). These
masks are then applied to the generated images to extract the corresponding three regions
of the synthesized images. Given that the three-region distribution varies across different
MR image modalities, we compare and analyze the synthesized modality’s three-region
distribution with that of the corresponding region in the real image, subsequently calcu-
lating the weighted KL divergence value of the three-region, as shown in the formula 11.
A smaller KL divergence suggests greater consistency between the synthesized images
and the real images, indicating the reasonableness of the synthesized images.

KLaverage = λCSFKLCSF + λGMKLGM + λWMKLWM (11)

4.3 Results

Weapplied and evaluatedMCGANon three datasets (IXI,HCPandSimons).As depicted
in Fig. 3, MCGAN successfully synthesizes MR image modalities that were not orig-
inally present in the dataset and demonstrates strong generalization capabilities. The
synthetic data are indistinguishable from real data, matching the contrast level of real
modalities and accurately capturing the specific texture details of the human brain.
MCGAN demonstrates its effectiveness in generating extensive datasets to serve as
templates for MRI simulations.

4.4 Comparison

In our study,we conducted a comprehensive comparison between our proposedMCGAN
and several existing image-to-image methods, including pix2pix [8], Attention U-Net
[7], pGAN [9], cGAN [10], UNIT [11], CUT[34] and SRC[35]. These methods are
implemented by officially provided code.We then proceeded to analyze the performance
of all existingmethods throughbothqualitative andquantitative assessments.Asdepicted
in Fig. 4, the data generated from theMCGANalgorithm exhibits amore intricate texture
structure compared to the results obtained from other comparative methods.

In Fig. 5, it is evident that the pixel distribution of the images generated by the
MCGANmodel closely aligns with the pixel distribution of real data. Furthermore, with
the incorporation of the attention mechanism module, artifacts that were present in the
pix2pix [8], pGAN [9], and cGAN [10] approaches are notably absent in the outputs of
the MCGANmethod. These artifacts typically manifest as values close to 0 and upward
curves. Specific KL divergence values provided in Table 1 highlight that the images
generated by theMCGANoutperform those created by the other comparativemethods in
terms of accuracy and reasonableness. The results underscore the superior performance
of the MCGAN framework in producing high-quality images with enhanced texture
details and reduced artifacts, making it a robust solution for image generation tasks.
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Fig. 3. Multi-contrast MR images synthesized from MCGAN. These images not only accurately
depict the human brain, but also adhere to the distribution characteristics to each contrast. In the
IXI dataset, a, b, and c are real images, and d, e, and f are synthetic images. In the HCP dataset,
a, b, and f are real images, and c, d, and e are synthetic images. In the Simons dataset, a, d, and e
are real images, and b, c, and f are synthetic images.

4.5 Ablation Study

In our ablation study, we conducted quantitative assessments to evaluate the impact of
specific modules within our proposed MCGAN. The ablation experiments focused on
two key factors: the attention module and the discriminator, with the analysis conducted
using the IXI dataset.
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Fig. 4. Multi-contrast MR images synthesized from different algorithms. The unreasonable parts
of the image generated by each model are marked with boxes. MCGAN generates more realistic
data with clearer texture details and is proven to be better than other methods on the three datasets
(IXI, Simons, and HCP).

As illustrated in Fig. 6, the attention coefficients vary significantly across different
training epochs, indicating that the focus of the attention gate model is dynamically
adjusted throughout the training process. The initial epochs showabroad and less specific
pattern of attention, while later epochs show a more targeted approach, focusing on
crucial components such as CSF, GM and WM. Our experiments demonstrate that the
attention mechanism we introduced focuses primarily on internal brain information and
does not attend to external information.

Table 2 presents quantitative analysis results of the ablation study. The metrics
indicated a notable degradation in performance when either the attention module or
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Fig. 5. Pixel distribution of DWI, T2*, T2-FLAIR images generated from different methods
(pix2pix, Attention U-Net, pGAN, cGAN, UNIT, CUT, SRC and MCGAN) based on T1 images
of IXI dataset.

the discriminator was removed from the MCGAN architecture, underscoring their
importance.

Table 1. The KL divergence value of synthetic data and real data

Method Modality pGAN pix2pix cGAN Attention
U-Net

UNIT CUT SRC MCGAN

IXI DWI 0.20061 0.31953 0.27279 0.10748 0.33475 0.307963 0.29083 0.08742

T2* 0.12043 0.17218 0.16708 0.10947 0.11617 0.17153 0.14981 0.07711

T2-FLAIR 0.16062 0.25219 0.10502 0.24253 0.21754 0.15279 0.09775 0.07396

HCP PD 0.10151 0.16712 0.16344 0.12014 0.09295 0.16042 0.14904 0.10558

T2* 0.17962 0.22431 0.20484 0.12761 0.15360 0.19925 0.15274 0.09679

T2-FLAIR 0.348776 0.370198 0.38077 0.27021 0.27344 0.27089 0.24177 0.22464

Simons PD 0.14093 0.16566 0.03237 0.05918 0.10667 0.04982 0.03195 0.03088

T2 0.32109 0.42118 0.23210 0.22698 0.29245 0.26210 0.19146 0.18627

DWI 0.31693 0.37849 0.26814 0.11121 0.15299 0.19251 0.19439 0.10828
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Fig. 6. Attention coefficients across different training epochs (2, 6, 10, 60) together with the
corresponding PD image (the first column).

Table 2. Ablation study results

Method IXI

DWI T2* T2-FLAIR

W/o discriminator 0.08893 0.10842 0.11271

W/o attention gate 0.18798 0.09579 0.14731

W/o both 0.25438 0.16641 0.16239

Ours 0.08742 0.07711 0.07396

5 Conclusions

This paper proposes a novel framework for synthesizing diverse MRI simulation tem-
plates, with a specific focus on addressing cross-domain medical image synthesis chal-
lenges. The proposed MCGAN algorithm demonstrates strong generalization capabili-
ties across datasets and effectively mitigates the domain shift problem through a two-
stage training strategy. The first stage facilitates domain transformation from the source
domain into the target domain, thus solving domain shift issues. Subsequently, the sec-
ond stage enables the conversion of target domain images into other desired modality
images. Experimental results show that our method outperforms other image-to-image
algorithms and transfer learning methods across three public datasets. This indicates
the potential of MCGAN as an effective algorithm for synthesizing multi-contrast MR
images.
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Abstract. Lung cancer, the second most common type of cancer world-
wide, is primarily treated through surgery. During the operations, pre-
serving pulmonary arteries and veins is a crucial problem. In recent
years, 3D visualization techniques like virtual reality and 3D printing
have been increasingly used in clinical practice for lung cancer surgery
planning. Under the success of these techniques, automatic segmenta-
tion of pulmonary arteries and veins plays a key role. Particularly, the
state-of-art approaches rely on two techniques, i.e. the deep neural net-
works (DNNs) or the traditional machine learning (ML) method, and
both techniques have respective shortages. Basically, the ML-based meth-
ods generally demonstrate a limited performance, while the DNN-based
methods lack sufficient annotation for accurate segmentation. In response
to such a dilemma, this paper proposes a fusion method to combine the
DNN-based and ML-based methods to segment pulmonary arteries and
veins for lung cancer surgery planning. Particularly, the anatomy prior
mask corresponding to pulmonary arteries and veins are identified using
the marching cubes algorithm and Attention U-Net. Subsequently, an
enhanced attention U-Net, is used to integrate the original CT scans with
the anatomy prior mask to generate the refined segmentation results.
Following this, an anatomy structure enhancement module is used to
refine the segmentation further by refining disconnected vessel segments
and correcting misclassified vessels based on anatomy prior masks. We
experimented the proposed approach on a private dataset of 95 CT scans
collected from patients after surgery, and then annotated by lung can-
cer experts. The results demonstrate that our approach outperforms the
existing methods with an improvement of 5.1% to 16.2% in Dice score.
The dataset and code have also been published [1] to facilitate further
research in this field.
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1 Introduction

Lung cancer is one of the leading causes of cancer-related morbidity and mor-
tality worldwide, with 1.8 million deaths estimated annually [14]. Lung surgery
especially segmentectomy has been adopted as the main treatment of lung can-
cer patients, in which precise cut of the affected lung part without affecting pul-
monary arteries and veins is the key consideration [13]. If the anatomic structure
of the patient is not well awared, bleeding and increased surgical resection may
happen during lung surgery. Recently, 3D visualization including visual reality
(VR) and 3D printing has been widely used for lung cancer surgery planning
in which surgeons can obtain a vivid understanding of the anatomic structures
[4]. However, in current clinical practice, pulmonary arteries and veins are man-
ually segmented by experienced radiologists, which is time-consuming, costly,
and lacks reproducibility [5].

Currently, there are two main approaches for the automatic segmentation
of pulmonary arteries and veins: deep neural network (DNN) based approach
and machine learning based approach. Most of the existing works can be cat-
egorized into the first approach which generally employs an end-to-end DNN
with some domain-specific optimizations [8,12]. Nardelli et al.[8] first introduced
DNNs to artery-vein segmentation. Qin et al.[12] incorporated anatomy prior of
lung context map and distance transform to differentiate pulmonary arteries
and veins. Another approach is based on traditional machine learning (ML)
methods[2,10,11] with limited training data. Charbonnier et al.[2] constructed
a graph representation of the segmented vessels to classify sub-structures of pul-
monary arteries and veins. Payer et al.[10] classified each sub-structures via inte-
ger programming. Pu et al.[11] adopted a computational differential geometry
method, marching cubes [7], to automatically identify the tubular-like structures
in the lungs with high densities. Although both approaches have demonstrated
applicability to specific use cases, however, they also feature respective draw-
backs. The DNN-based approach cannot handle the thin vessels well due to
the lack of annotations, while the traditional ML-based approach is of limited
performance. In addition, the details of their evaluation, including the adopted
datasets and comparison methods, vary significantly. For example, Qin et al.
[12] used a combination of several public datasets with complement target labels
from other works. Pu et al.[11] collected a private dataset for evaluation but no
comparison with related methods are performed.

In this paper, we perform the fusion of DNNs and traditional ML to segment
pulmonary arteries and veins for lung cancer surgery planning. To evaluate the
proposed method, a collection of 95 computed tomography (CT) scans from
surgery-treated patients is constructed. Results on this dataset show that our
fusion approach achieves an improvement over existing works by 10.6% in Dice
score. The dataset and code are also published [1] to facilitate further research
in this field. Our contributions are as follows: (1) a new dataset of 95 CT scans
in which all patients have underwent surgery, (2) a fusion method to combine
the DNN-based and ML-based methods, and (3) improved performance by 5.1%
to 16.2% compared with existing methods.
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2 Method

Fig. 1. The flow of our proposed fusion method: (a) the overall flow, (b) anatomy
prior segmentation, (c) anatomy prior fusion, and (d) anatomy structure enhancement
(ASE).

2.1 Overview

Our proposed approach for pulmonary arteries and veins segmentation is out-
lined in Fig. 1(a) and involves a systematic three-step process. Initially, potential
regions of interest corresponding to the pulmonary arteries and veins are iden-
tified using the marching cubes algorithm and Attention U-Net [9] during the
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anatomy prior segmentation stage. Subsequently, in the anatomy prior fusion
stage, an enhanced attention U-Net (EA-U-Net), is used to integrate the origi-
nal CT scans with the anatomy prior mask to generate the refined segmentation
results. Following this, the anatomy structure enhancement (ASE) stage refines
the segmentation further by refining disconnected vessel segments and correcting
misclassified vessels based on anatomy prior masks, if any. Note that the anatomy
prior mask obtained in the first stage is added to the decoder of the network in
the second stage, which could help guide the network to focus on related regions.
More details of each stage are specified in the subsequent sections.

2.2 Anatomy prior segmentation

Isovalue = 700 Isovalue = 800 Isovalue = 900 Isovalue = 1000

(a) (b)

(c) (d) (e) (f)

Fig. 2. Processing steps of marching cubes to get prior anatomy inside the lung includ-
ing (a) the original CT image, (b) results of marching cubes with 2D projection of the
equivalence surfaces from 700 to 1000, (c) image overlay of 4 isosurfaces, (d) intrapul-
monary part reservation, (e) hole filling, and (f) 3D visualization.

Anatomy prior segmentation includes two regions corresponding to areas
inside (thin vessels) and outside the lungs (thick vessels). The anatomy prior
mask inside the lungs are obtained by the marching cubes algorithm [7], while
that outside the lungs are obtained by an Attention U-Net. The final anatomy
prior mask are obtained by combining the above two methods. Note that the
anatomy prior mask does not differentiate between arteries and veins.

The marching cube algorithm process is depicted in Fig. 1(b), which can
create rough surface models representing pulmonary arteries and veins by gen-
erating triangular meshes. For a comprehensive understanding of this process,



426 H. Cheng et al.

please refer to [6]. The primary hyper-parameter for this step is the isovalue,
which determines the threshold for surface creation. To specifically target pul-
monary arteries and veins, pixel values within the range of [700 HU, 1000 HU] are
analyzed. To ensure comprehensive coverage, isovalue settings ranging from 700
HU to 1000 HU at 100 HU intervals are selected, as depicted in Fig. 2(b). Note
that 3D surface models, represented as triangular meshes, need to be mapped
back to the original image space for fusion with CT images. The isosurfaces
obtained from isovalue settings ranging from 700 to 1000 HU are aggregated to
serve as boundary representations for pulmonary vessels in various dimensions,
as illustrated in Fig. 2(c). However, the generation of lung vessel surface mod-
els may inadvertently include additional tissue structures such as lung walls and
bones. Therefore, the results are refined to preserve regions exclusively within the
lung window, with hole-filling techniques employed to identify potential artery
and vein regions, as show in Fig. 2(d) and (e). The 3D visualization results of
the prior anatomy inside the lungs are shown in Fig. 2(f).

2.3 Anatomy prior fusion

The process is illustrated in Fig. 1(c). Particularly, we introduce enhanced atten-
tion U-Net (EA-U-Net), for an accurate segmentation and differentiation of pul-
monary arteries and veins. This framework operates with two primary inputs:
original CT scans and the prior anatomy mask. Within the encoder, the CT scans
and the prior anatomy mask undergo convolution and downsampling operations,
resulting in the generation of feature maps of various dimensions. These feature
maps serve as the foundation for subsequent fusion within the decoder.

Sigmoid
CK-1

CK-1

Relu
CK-1

Encoder
features

CK-1
Conv

Kernal = 1*1*1

Refined
features

Element-wise
Addition

Decoder
features

Element-wise
Multiplication

Output of
enhanced attention gate

Fig. 3. Detailed structure of enhanced attention gate.

We propose an enhanced attention gate for efficient fusion. As depicted in
Fig. 3, the enhanced attention gate integrates three key inputs: encoder features,
decoder features, and refined features. The encoder features are derived from
CT scans in the encoder process. The decoder features are produced by upsam-
pling blocks in the decoder process. The refined features are generated from
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the anatomy prior mask in the encoder process. Traditionally, attention gates
involve only two inputs, with encoder features acting as key and value vectors,
and decoder features serving as query vectors. However, in the enhanced atten-
tion gate, the refined features are regarded as additional key vectors , marking
a pivotal distinction from existing approaches. Within the enhanced attention
gate, both refined features and decoder features undergo convolution operations
before they are combined to assess their similarity. Attention scores for each
channel are determined through the application of ReLU activation, a convolu-
tion operation, and a sigmoid function. The final feature representation is derived
by multiplying the attention scores with the encoder features’ mappings.

The rationale underneath this fusion approach has two points. First, it har-
nesses the effectiveness of multi-scale feature fusion, a technique substantiated
by prior studies [8,12]. Second, it capitalizes on the potency of attention mech-
anisms, guiding the network’s focus towards regions of interest. Given that the
marching cubes stage has already identified potential pulmonary vessels regions,
this specialized fusion method aims to refine and prioritize these areas, result-
ing in potentially more precise segmentation performance. Notably, the coarse
segmentation achieved by the marching cubes stage encompasses distal small ves-
sels, which may help address the challenge of gradient disappearance in periph-
eral regions.

2.4 Anatomy structure enhancement

Connectivity refinement Addressing disconnected vessels entails solving two
key problems: spatial localization and spatial estimation of disconnected vessels.
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Fig. 4. Possible scenarios for the number of adjacent points to the center point.

(1) Spatial localization of disconnected vessels. First, we utilize the method
proposed by Lee et al. [3] to extract the centerline of blood vessels, which yields a
graph with a series of nodes. The possible scenarios for the number of neighboring
points in a node, denoted as N , are depicted in Fig. 4. When N = 1, the
node signifies the end of the vessel, referred to as the endpoint. When N =
2, the node represents the midpoint along the centerline. When N ≥ 3, the
node denotes a bifurcation point, indicating the vessel’s division into multiple
directions. When N ≥ 3 and the number of neighboring nodes is maximal, the
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node is termed as a bifurcation centroid. Nodes of disconnected vessels typically
fall into the categories of endpoints and bifurcation centroids. Second, we include
these endpoints or bifurcation centroids as candidate points but require further
filtering to refine the selection. A continuous centerline exhibits the characteristic
that nodes are essentially co-linear with adjacent nodes, allowing for the filtering
and matching of candidate points based on this property. We can traverse all
candidate points, with the notation of the candidate point as P0(x0, y0, z0). The
third node of the consecutive neighboring points to the point P0 is K(xk, yk, zk).
If point P0 represents the center of the disconnected cross-section, then there
should exist a node that is co-linear with point P0 and point K in a close region.
Consequently, we select the five closest candidate points Qm(xm, ym, zm),m =
1, ..., 5 to the point P0, as illustrated in Fig. 5.

Candidate point

0 0, 0, 0

( , , )

3 3, 3, 3

5 5, 5, 5

2 2, 2, 2

1 1, 1, 1

4 4, 4, 4

Midpoint

Fig. 5. Illustration of candidate points of disconnected vessels.

When points P0, K, and Qm are co-linear, the angle between
−−−→
QmP0 and

−−→
P0K

should be zero. In fact, P0, K, and Qm cannot completely co-linear. Therefore, we
set a threshold T to constrain the selection of the center point of the disconnected
cross-section. Points P0 and Qm are considered to be the centers of the bottom
surface of the circular table when Equation 2 is satisfied.

α = arccos
(
−−−→
QmP0 ∗ −−→

P0K)

|−−−→
QmP0| ∗ |−−→

P0K|
(1)

α<T (2)

(2) Spatial estimation of disconnected vessels. We leverage the anatomical
insight that the blood vessels have a tubular structure with a progressive
decrease/increase in vessel radius. Thus, a round table can be employed to
describe the largest possible spatial location of the disconnected vessels as illus-
trated in Fig. 6. The disconnected vessels are estimated as the intersection of the
round table and the anatomy prior mask. More details are as follows. First, the
upper and lower surfaces of the round table are determined. The centers of the
end of the two vessels are denoted as P0 and Qm, and the normal vector of the
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upper and lower surfaces of the round table is
−−−→
QmP0. With the normal vector, P0

and Qm, the planes D1 and D2 where the upper and lower bottom surfaces are
located are determined using Equation 3 and 4. Second, the radius of the upper
and lower surfaces of the round table is calculated. The distance between the
segmentation results and the center point P0/Qm in the upper/lower plane are
calculated, and the maximum distance in the two planes is taken as the radius
of the upper and lower base planes, denoted as R1 and R2, respectively. Third,
disconnected vessels are estimated, which are the intersection of the anatomy
prior mask and the round table. Note that the anatomy prior mask are usually
a good estimation of the the surface shape of the vessel. Forth, the label of the
repaired vessel is set to the same as the one with a larger radius among the two
terminal vessels with radii of R1 and R2.

(x0 − xm, y0 − ym, z0 − zm) · (x − x0, y − y0, z − z0) = 0 (3)

(x0 − xm, y0 − ym, z0 − zm) · (x − xm, y − ym, z − zm) = 0 (4)

1

2

2

1

0

Fig. 6. Round table estimation of disconnected vessels.

Classification refinement Misclassification of pulmonary arteries and veins
may lead to isolated vessels, as depicted in Fig. 7. To rectify this issue, we identify
connected regions of the segmentation result in 3D space. Initially, we designate
the largest volume of pulmonary arteries and veins within the connected region
as trunk vessels. Subsequently, we examine whether there are isolated vessels
connected to the trunk vessel but classified differently. If such isolated vessels
exist, we correct the label of the isolated vessel accordingly. This iterative process
proceeds until there are no remaining isolated vessels, signaling the completion
of correcting the misclassified vessels.
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Fig. 7. Isolated vessels in pulmonary (a) arteries and (b) veins segmentation results.

3 Experiment

3.1 Dataset

Our dataset comprises 95 3D CT scans obtained from Siemens’ SOMATOM
Definition Flash machine. Patients are aged 29 to 82 years, with an average age
of 58.4 years. The images contain 512 × 512×(280−370) voxels, with a typical
voxel size of 0.25×0.25×0.5mm3. The annotations encompass intrapulmonary
and extrapulmonary arteries and veins. All the annotations are performed by
lung cancer expert surgeons with 2-3.5 invested hours for each image. It’s impor-
tant to note that all patients in the dataset had undergone lung cancer
surgeries, and the annotations had been effectively employed in clin-
ical practice to support surgeons in planning their surgeries. Due to
the requirement of lung cancer surgeries, left and/or right lungs with nodes are
considered to be labeled. Consequently, most images have annotations for only
the left or right lung, while a few have labels for both lungs. In our experiments,
we divided the dataset into two subsets, each representing half of the lung, and
only the subset with annotations was utilized for training and testing. This led
to a final dataset consisting of 106 subjects. In addition, we also labeled the lung
areas for two purposes. On one hand, this helps distinguish pulmonary arteries
and veins inside and outside the lung. On the other hand, some existing works
[2,8,12,15–19] focus on pulmonary arteries and veins either inside the lung or
outside the lung. The additional label of lung area can help make fair comparison
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for future studies. Fig. 8 illustrates examples of the images and corresponding
labels including pulmonary arteries and veins and lung areas in our dataset.

Lung
(a) (b)

Inside the lungs

Arteries
Veins

(c)

Outside the lungs

Fig. 8. Examples of the collected dataset including the labels of (a) lung areas, and
(b) arteries and veins inside and outside the lungs, and (c) 3D visualization of labels.

3.2 Implementation Details

The experiments are conducted on a single Nvidia A40 GPU equipped with
48GB graphics memory. Since the size of CT scans varies, we divide the data
into multiple patches with a fixed size of 17617676 voxels and a stride of 64.
Three-fold cross-validation is adopted, with a ratio of 13:1:7 for the training,
validation, and test sets, respectively. To prevent overfitting and achieve good
generalization, early stopping is applied during network training. Specifically,
if the loss of the validation set stops decreasing for eight consecutive epochs,
the training process will be terminated. Additionally, we impose constraints on
the learning rate, starting with an initial value of 1e-4 and decaying down to
a minimum value of 1e-6. If the Dice score does not decrease for 2 consecutive
epochs on the validation set, the learning rate will be reduced by a factor of 10.
Lastly, the hyperparametric threshold T in ASE is set to 10.

3.3 Results and discussion

Comparison with existing works Two prior works [16] [12] with publicly
available code are selected for benchmarking the result of our method. The
results are presented in Table 1. Compared with [16] and [12], our EA-U-Net
achieved a significant improvement for pulmonary arteries and veins segmen-
tation, namely 5.5% and 6.2% in DSC, respectively. Note that our EA-U-Net
obtains optimal performance in all other evaluation metrics, including precision,
recall, specificity, and Hausdorff distance. In addition, our method with ASE fur-
ther boost the performance with an improvement of 9.4% and 5.1% in recall and
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DSC over that without ASE. Therefore, our method have a significant improve-
ment of 10.6% in DSC over the state-of-the-art work [12]. In addition, we have
performed comparison with two recent methods [20] [11] as shown in Table I. We
would like to highlight that our segmentation results obtain an improvement of
5.1% to 16.2% compared with existing works. We also discuss the robustness of
our method using the variance of DSC and Hausdorff distances, and the results
are presented in Table 2. The significant boost in the variance of the DSC and
Hausdorff distance is mainly attributed to the correction of classification errors
by ASE. Correcting these errors effectively eliminates inconsistencies between
the results and the labels. In terms of the inference time for each CT image, it
takes about 5 minutes for marching cubes on 11th Gen Intel(R) Core(TM)i7-
11800H CPU, and it takes about 30 seconds for our EN-U-Net, and about 5
seconds for anatomy structure enhancement.

Table 1. Performance comparison of EA-U-Net with existing works.

Meth PrecisionRecallSpecificity DSC Hausdorff distance

Zulfiqar et al. [20] 0.722 0.669 0.998 0.684 9.941

Wu et al. [16] 0.693 0.775 0.998 0.733 14.735

Qin et al. [12] 0.702 0.778 0.998 0.740 7.574

Pu et al.[11] 0.762 0.769 0.997 0.759 3.878

Ours (EA-U-Net) 0.820 0.782 0.999 0.795 5.032

Ours (EA-U-Net with ASE) 0.825 0.876 0.999 0.846 4.162

Table 2. Variance comparison of Dice and Hausdorff of EA-U-Net with existing works.

Method DSC Hausdorff

Zulfiqar et al. [20] 0.00427 472.299

Wu et al. [16] 0.00429 1114.285

Qin et al. [12] 0.00575 285.882

Pu et al. [11] 0.00198 68.525

Ours (EA-U-Net) 0.00203 24.126

Ours (EA-U-Net with ASE)0.00151 3.992

Result visualization and comparison of EA-U-Net Visual comparison of
the segmentation results is shown in Fig 9. Note that for fair comparison, as a
post-processing step, ASE is not adopted here. Overall, our segmentation results
obtained the most complete structure of the pulmonary arteries and veins tree,
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with the least number of disconnected fine vessels. Most of the disconnections
in the segmentation results of other methods occur at the end of the vessels.
This is because the terminal vessels have smaller diameters. Thin vessels are
difficult to detect in CT images, thus making segmentation more difficult. Our
EA-U-Net method achieves better segmentation of small vessels by integrating
the anatomy prior mask into the attention mechanism.

Label EA-U-Net 3D Attention U-Net

Qin et al.[12]3D U-Net Wu et al.[16]

Label EA-U-Net 3D Attention U-Net

Qin et al.[12]3D U-Net Wu et al.[16]
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Fig. 9. Visual comparison of EA-U-Net results with existing methods. Note that for
fair comparison, as a post-processing step, ASE is not adopted here.

Visual analysis of ASE The visual analysis of ASE is illustrated in Fig. 10.
We can notice that visualization results depict the refinement of vessels at ter-
minal disconnections more clearly. In addition, it can be observed that most of
the refined vessels are correctly classified. We also define the number of termi-
nal vessels as a metric to evaluate connectivity. Note that pulmonary arteries
and veins can extend progressively within the lungs, leading to the branching of
vessels, thus creating a complex vessel topology. Therefore, the terminal vessels
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Fig. 10. Examples of segmentation results with and without ASE: (a) segmentation
results without ASE, (b) segmentation results with ASE and highlighted difference,
and (c) segmentation results with ASE.
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represent the smallest terminal branches of the main pulmonary vessels. The
number of terminal vessels objectively reflects the completeness and connectiv-
ity complexity of the vessel tree. Obviously, disconnected vessels will result in
a larger number of terminal vessels. The results corresponding to Fig. 10 are
shown in Table 3. The average number of refined terminal vessels increased by
59 after ASE, indicating a positive impact of our method on connectivity refine-
ment. Segmentation results without ASE exhibited a decrease of 42 terminal
vessels compared with labels, whereas they increased by 17 with ASE. This sug-
gests that the segmentation results obtained by EA-U-Net actually covered the
labeled terminal vessels but are not accounted for by annotators due to extreme
thin vessels. We effectively addressed this issue by refining vessels at the discon-
nections. The refined segmentation results were able to identify more fine blood
vessels than the labeled results.

Table 3. Comparison of mean number of terminal vessels.

Method Number of terminal vessels

Ground truth 283

EA-U-Net 241

EA-U-Net with ASE 300

Table 4. Ablation analysis with EA-U-Net.

Meth PrecisionRecallSpecificity DSC Hausdorff distance

3D U-Net 0.767 0.725 0.998 0.739 12.88

Attention U-Net 0.773 0.742 0.998 0.752 12.17

Ours (EA-U-Net) 0.820 0.782 0.999 0.795 8.59

Ours (EA-U-Net with ASE) 0.825 0.876 0.999 0.846 8.52

Ablation analysis The ablation results is shown in Table 4 where we use pre-
cision, recall, specificity, Dice score (DSC), and Hausdorff distance as evaluation
metrics. According to the results, EA-U-Net achieves superior results in all eval-
uation metrics, while Attention U-Net outperforms 3D U-Net in all the metrics.
Particularly, EA-U-Net obtains an improvement of 3.8% and 3.62 over Attention
U-Net in Dice and Hausdorff distance, respectively.

Visual comparison of the feature maps output by the attention gate between
Attention U-Net and EA-U-Net is shown in Fig. 11. In the feature maps of
the first attention gate, we observed a focus on the approximate region of the
pulmonary vessels earlier than that in Attention U-Net. In the feature maps
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of the second attention gate, the region of attention shifted to the edges of
the vessels, resulting in clearer boundaries compared with that in Attention U-
Net. While for the third attention gate, our enhanced attention gate accurately
identified the pulmonary vascular region. Particularly, the highly attentive region
of our enhanced attention gate covers the labeled region more comprehensively,
exhibiting a significant difference in attention compared with Attention U-Net.
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Fig. 11. Visual comparison of output feature maps of attention gates: (a) CT image
and its label, and (b) corresponding feature maps. The positions of 1st, 2nd and 3rd

attention gate can refer to Fig. 1.

4 Conclusion

This paper introduces a novel fusion approach that combines the marching cubes
algorithm with EA-U-Net for the segmentation of the pulmonary arteries and
veins for lung cancer surgery planning. A dataset comprised of 95 computed
tomography (CT) scans from surgery-treated patients is collected for evaluating
the proposed approach. The experimental results demonstrate that our proposed
fusion approach achieves a significant improvement of 5.1% to 16.2% in DSC over
existing methods. A visual comparison of the segmentation results further shows
that our method can effectively focus on the region of interest and detect the
disconnected vessels. To facilitate further research in this field, the dataset and
code [1] are also published to the community.
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Abstract. In medical imaging, low-dose CT (LDCT) is favored over
normal-dose CT (NDCT) to reduce radiation risks, but LDCT suf-
fers from increased noise, prompting the need for advanced denoising
techniques. Traditional iterative reconstruction algorithms face chal-
lenges in balancing noise reduction and preserving fine details, whereas
recent CNN or transformer based methods learn mappings from noisy
to clean images incorporating encoder-decoder architectures with skip-
connections. Conventional skip connections with vanilla convolutions
lead to loss of semantic details in deeper layers, while transformer-
based methods may struggle to focus on patch edges and exhibit lim-
ited efficacy capturing local representations precisely with limited data.
To establish the balance between feature retention and noise reduction
we introduce SEANet, a novel architecture integrating spectral resid-
ual units (SRUs) with encoder-decoder frameworks, synergizing com-
plementary spatial and spectral spaces. In SEANet, SRUs guide the
corresponding decoder blocks with synergistic local-to-global features
via skip-connections. SRUs with encoding dilation modules (DMs) pre-
cisely separate noise from relevant features by distinct frequency bands
in spectral space and attends patch-edges well. SEANet eliminates draw-
back of spatial pooling and felicitates precise denoising for low contrast
regions in LDCT images. Extensive experiments and interpretable spec-
tral maps demonstrate SEANet’s superiority over state-of-the-art meth-
ods like RED-CNN and CTFormer with a margin of 1.92 in PSNR and
2.75 in SSIM. Find the code for SEANet at https://github.com/aj-das-
research/SEANet.
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1 Introduction

Low-dose CT or LDCT denoising process has gain lot of attention over the pas
few years as LDCT reduce radiation exposure while still providing effective imag-
ing for early detection and monitoring of various medical conditions, particularly
in cancer screening. However, LDCT is produced by using lower radiation doses
during scanning, resulting in noisier images due to reduced signal-to-noise ratio
inherent in lower radiation exposures. This largely impacts image clarity and
quality with unnecessary artifacts and low contrast regions [17]. Moreover, CT
images often contain intricate structural details that may be challenging to pre-
serve during reconstruction, especially in the presence of noise. Also it is crucial
to match the noise profile present in standard NDCT images.

Traditional approaches [4,26] to LDCT denoising involve methods such as
filtering and iterative reconstruction algorithms [14]. These methods often strug-
gle to balance noise reduction with preserving fine image details due to inher-
ent trade-offs and require huge computational cost [27]. For example, filtered
back projection (FBP) [25] applies a filter to raw projection data and then
back-projects the filtered data to reconstruct the image, but it tends to yield
images with higher noise levels and lower spatial resolution. In contrast, recent
deep learning-based approaches [8,13], utilizing convolutional neural networks
(CNNs), have demonstrated significant success. These approaches learn complex
mappings directly from noisy input images to clean output images, effectively
removing noise while preserving important structural details. They adapt to var-
ious noise patterns and capture intricate relationships between noisy and clean
images, leading to superior denoising performance over the traditional methods.

Deep learning-based approaches, utilizing CNNs [9,22] or Transformers [23,
24,28], excel in learning intricate mappings from noisy input images to clean
outputs, effectively removing noise while preserving essential structural details.
These models adapt to various noise patterns and can capture nuanced rela-
tionships between noisy and clean images, outperforming traditional methods.
Notably, incorporating skip-connections, as seen in transfer learning for LDCT
image denoising, proves crucial, especially in scenarios with unknown noise lev-
els. Works like RED-CNN [13] emphasize the efficacy of symmetric convolution
and deconvolution networks with skip connections, achieving rapid denoising
of LDCT images. Moreover, approaches like DRL-E-MP [15] leverage dilated
residual learning and edge detection layers to better preserve structural details,
particularly at image boundaries. Integrating ResNet with auto-encoder princi-
ples enables learning of both local and global image features, mitigating issues
like vanishing gradients. Additionally, Transformer-based methods like Tran-
sUNet [1] and CTFormer [23] excel in capturing global dependencies, further
enhancing denoising performance in LDCT images.

However, many existing approaches [2,12,19,20] tend to overlook either
global or local information, presenting a challenge in achieving comprehensive
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Fig. 1. An illustration showing the different skip-connection schemes implemented in
existing denoising methods against proposed SEANet model with synergistic residual.

denoising. Furthermore, conventional skip connections, as employed in RED-
CNN or UNet, often concatenate feature maps without considering potential
loss of spatial or semantic details, particularly in deeper layers with reduced
spatial resolution. Methods like CTFormer that employs transformers as the
building blocks also suffers to focus on the edges of a given patch [18]. And for
smaller datasets it has limited efficacy to extract the local representations [18].

Inspiring by recent advancements in the domain of synergizing comple-
mentary spaces [5–7], we rethink design on skip-connections in CNN and
transformer-based encoder-decoder architectures and propose novel architec-
ture called SEANet. As shown in Fig 1, integrating spectral and spatial fea-
tures through SRU enables the model to combine the strengths of both domains
resulting in local-to-global synergistic features in a unified framework. Spectral
transformations in SEANet allow the model to allocate attention to relevant
frequency bands, enabling multi-scale analysis that enables learning features
in low-contrast regions also. Analyzing the frequency components in the spec-
tral domain captures the orientation, edges and textures and complements the
strong pixel-level representations learned by encoding dilation modules (DMs)
(as shown in Fig 2). In SRU pointwise multiplication emphasizes high-frequency
components without introducing spatial average filtering and results in fewer
unwanted artifacts in denoised outputs. To this end, our contributions in this
paper are summarized as the following:

1. We propose SEANet that utilizes spectral residual units (SRUs) with encoder-
decoder architectures Synergizing spatial and spectral domains. Multiscale
learning in spectral space complements the spatial features extracted from
each encoding block.
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2. SRU along with dilation modules (DMs) enables precise separation of noise
from relevant anatomical features in spectral space by the distinct frequency
signatures and attends edges for all patches. This felicitates precise denoising
for low-contrast regions and mitigates the limitations of spatial pooling.

3. SEANet is evaluated on the largest publicly available Mayo LDCT dataset [16]
across five different metrics with in-depth spectral map analysis. SEANet out-
performs existing SOTA methods with a margin of 2.75 in structural similarity
index (SSIM) and 8.93 in mean absolute percentage error (MAPE).

2 Method

2.1 Preliminaries

Problem Statement. The problem of LDCT denoising can be formulated as
optimizing a loss function L(V, In, Id), that can be formulated as:

L(V ; In, Id) =
1
N

N∑

i=1

(
D(V, I(i)n ) − I

(i)
d

)2

(1)

where, N represents the total number of samples in the dataset, D(·) is the
denoising function, I

(i)
n and I

(i)
d represent the i-th noisy LDCT image and corre-

sponding denoised NDCT image, respectively. The goal is to adjust the parame-
ters V to minimize the average squared difference between the predicted denoised
image and the ground truth image over all samples in the dataset.

Fast Fourier Transformation (FFT). FFT [10] decomposes an image f(h,w)
into real and imaginary components, representing the image in a frequency
domain. Let F(x, y) denote the Fourier Transform of 2D image f(h,w) at spatial
frequency coordinate (x, y). The Fourier Transform pair can be expressed as:

R(F(x, y)) =
1

HW

H−1∑

h=0

W−1∑

w=0
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(
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1
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(
2π

(
xh

H
+

yw

W

))
(3)

where, f(h,w) represents the pixel at position (h,w) in the original image, while
F(x, y) represents the function to represent the image in the frequency domain
pertaining to the position (x, y). H × W represents the dimension of the image,
and i is

√
−1.

Fourier Unit. A Fourier Unit primarily disassembles the spatial structure into
image frequencies through a 2D FFT, followed by a convolution operation in the
frequency domain, and ultimately reconstructs the structure using an 2D inverse
FFT (IFFT) operation. For an input feature map X ∈ R

N×C×H×W fourier unit
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Fig. 2. Holistic architecture of proposed SEANet. SEANet consists of an encoder-
decoder structure that takes an input noisy LDCT image in the form of patches.
SEANet incorporates 2 image-token converters (I2T block and T2I block) along with
2 Dilation Modules (DMs) followed by a Transformer Unit and 2 consecutive Inverted
Dilation Modules (IDMs). The Spectral Residual Units (SRUs) bridge the encoder-
decoder with local to global synergistic feature maps FMsyn

4d guiding the bound-
ary aware FMb

4d during synthesis of denoised image.

outputs an enhanced feature map Y ∈ R
N×D×H′×W ′

. First, X undergoes a spa-
tial scale transformation to adjust its spatial resolution. This transformation is
represented as X ′ = Interpolate(X , scale factor,mode). FFT computes the real
R(F(x, y)) and imaginary I(F(x, y)) discrete fourier transforms using equa-
tions 2 and 3. The real and imaginary parts are stacked together along a new
dimension to form a complex representation, Xc = [R(FT(X )), I(FT(X ))]. With
added spectral positional encoding the complex tensor undergoes a 1× 1 spatial
convolution operation followed by a rectified linear unit (ReLU) activation. The
output real and imaginary components are converted back to the spatial domain
using the inverse Fourier transform (IFFT), represented as:

Y = f(x, y) =
1
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Fig. 3. Architecture of dilation modules (DMs). DMs contain a transformer unit fol-
lowed by a cyclic shift and dilated unfolding operation. Transformer unit incorporates
a multi-head self attention module and outputs attended 3D tokens Ta ∈ R

b×n×dima .

2.2 SEANet

Overview. As shown in Fig 2, SEANet employs a transformer based encoder-
decoder architecture where SRUs output synergistic feature residuals mitigating
the structural information loss. An input image In ∈ R

b×c×H×W is patchified
into two dimensional tokens T ∈ R

b×n×dim, where b, n and dim are the batch
size, number of tokens and token dimension, respectively. Encoding starts with
an image to token (I2T) block followed by couple of dilation modules, trans-
former unit and couple of inverted DMs with SRUs we get denoised tokens of
the same shape. Then a similar approach is applied to revert back the tokens to
image patches in final decoder layer followed by denoised patches and full image.

Transformer Unit. Transformer unit consists of a multi-head attention, a
multi-layer perceptron (MLP) and residual connections, like a vanilla trans-
former block [3]. An input token sequence T is mapped into Query (Q), Key (K),
and Value (V) via self-attention, as shown in Fig 3. Additionally the softmax
(σ) is approximated using a kernel method to reduce computational complexity.

Dilation and Inverted Dilation Modules. Dilation Module consists of a
transformer unit followed by a progressive token-to-token (T2T) dilation. As
shown in Fig 3 transformer unit outputs attended tokens Ta ∈ R

b×n×dima . T2T
implements a progressive tokenization on Ta enhancing feature representation
by capturing local structure information. T2T followed by reshaping, cyclic shift
and dilation captures more spatial relationships across larger regions amongst
tokens. Where vanilla transformer blocks fails to learn the inter-token dependen-
cies at initial layers [18], proposed approach enhances the capabilities of learning
the structural orientations with a broader receptive field. Sequence of attended
tokens output by the transformer unit Ta ∈ R

b×n×dima are transposed and
reshaped to obtain four dimensional feature maps FM4d ∈ R

b×dima×√
n×√

n.
The pixel intensities in FM4d undergoes through a cyclic shift [21]. This forces
the consequent transformer units to manipulate tokens from different feature
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maps. This reduces the tendency of poor attentiveness towards boundary regions
in transformers. [18]. Boundary aware feature maps FMb

4d are then unfolded to
retokenize using overlapped splitting. These three dimensional unfolded tokens
Tu ∈ R

b×nu×dimu capture the correlations among surrounding patches. The
unfolding operation is dilation based that helps to capture long range depen-
dencies [11]. For a given perceptual field P =

∏1
i=0 exp (log(2ki + ri − 1)) and

desired unfolded dimension dimu = dima × exp (
∑

i log(ki)) dilation operation
can be expressed as:

nu =

⌊
exp

(
1∑

i=0

log
(

S(i) − dilation × (Ki − 1) − 1
stride

+ 1
))⌋

(5)

where, S(i) denotes the size in the ith dimension, ki and ri are kernel size and
dilation rate, respectively.

The inverted dilation modules (IDMs) are symmetric to the DMs. During
decoding an inverse cyclic shift is applied. This transforms the tokens into 4D
feature maps. Inside each IDM transformer unit takes these feature maps along
with spectral residuals from the corresponding DMs.

Spectral Residual Unit. Inside spectral residual unit (SRU), we integrated
fast fourier convolution followed by a linear layer. SRU splits channels of bound-
ary aware residual feature maps FMb

4d into local and global branches, as shown
in Fig 2. Vanilla 3 × 3 convolutions are applied in local branch to learn the
spatial features. And Spectral Transform module in the global branch learns
global texture information and captures long-range contexts. Spectral transform
uses two Fourier Units to capture the global and semi-global representations,
as shown in Fig 2. Implemented fourier unit resembles operations discussed in
equations 2, 3 and 4. Extracted feature maps FMlocal

4d and FMglobal
4d are con-

catenated to obtain a synergistic feature representation FMsyn
4d . FMsyn

4d goes
through a linear operation and reshaped to match the shape of the features
output by FMb

4d corresponding IDMs. Both the boundary aware and syner-
gistic feature maps are concatenated channel-wise and enhanced feature maps
FMenh

4d = (FMsyn
4d + FMb

4d) are propagated to the consequent IDM modules.

3 Experimental Setup

Dataset and Experimental Settings. To validate the clinical efficiency of
proposed SEANet, we utilized the 2016 NIH-AAPM-Mayo Clinic Low Dose CT
Grand Challenge dataset authorized by Mayo Clinics. This dataset consists of
2378 pairs of LDCT and NDCT images of size 512 × 512 and 3mm thickness for
ten patients. The images of patient id L506 are used for testing and the rest is
used for training. Our models were implemented using PyTorch and trained on a
16GB NVIDIA RTX A4000 GPU. Only random rotation augmentation is used.
Token dimension for all transformer units is 64 with depth=12 and attention
heads=12. Kernel size is set to 7 with a stride 2 in both I2T and T2I blocks.
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The kernel size in folding and unfolding is set to 3 with dilation rate ri of 2,1,1,2
for DM1, DM2, IDM2 and IDM1, respectively. The no of tokens for DM1 and
DM2 are n1

u = 841, n2
u = 625 and spatial dimensions dim1

u =
√

841 = 29,
dim2

u =
√

625 = 25, respectively. We have trained SEANet for 200 epochs with
a batch size of 16. Adam optimizer is utilized to optimize the MSE loss with
initial learning rate of 1.0 × 10−5.

Techniques of Comparison. SEANet is quantitatively evaluated using three
standard metrics including peak signal to noise ratio (PSNR), structural similar-
ity index measure (SSIM) and root mean squared error (RMSE). Additionally
we have utilized two metrics- feature similarity index (FSI) and mean abso-
lute percentage error (MAPE). FSI is calculated as: FSI = w1 · PSNRnorm +
w2 · SSIMnorm − w3 · RMSEnorm, where w1 = −1, w2 = 1, and w3 = −1 are
weights to balance the contributions of PSNR, SSIM, and RMSE, respectively.
MAPE provides a relative measure of error, which can be useful for under-
standing the accuracy of denoising methods across different intensity levels.
MAPE = 1

n

∑n
i=1

∣∣∣ Io(i)−Id(i)
Io(i)

∣∣∣ × 100, where, Id and Io are the denoised image
and original LDCT image, respectively, and n is the total number of pixels in a
single image. To demonstrate effectiveness of SEANet we compare against SOTA
methods such as, RED-CNN, WGAN-VGG, CTFormer. We have analyzed the
effectiveness of fourier convolutions, spectral residuals with different combina-
tions and also qualitatively analyzed the denoising outputs by absolute errors,
spectral maps and 3D frequency maps for all the baselines against SEANet.

4 Results

Table 1. Comparative results of LDCT denoising. Blue denotes original parame-
ters of the test set. Green denotes the best of the existing SOTA methods and Red
denotes the best of all.

Method PSNRΔPSNR ↓SSIM ↑RMSE ↓FSI ↑MAPE ↓
21.60 00.00 80.00 34.18 3.93 24.07

UNet 16.40 05.20 60.61 28.27 15.94 24.07

WGAN-VGG16.76 04.84 64.98 28.70 19.52 21.98

MAP-NN 28.05 06.45 62.19 27.66 17.61 23.08

RedCNN 26.40 04.80 81.90 19.56 28.2421.67

CTFormer 24.75 03.15 82.00 23.90 27.28 14.58

SEANet2 23.06 01.47 83.42 19.34 29.3806.76

SEANet 22.83 01.23 84.75 18.06 29.8405.65

Quantitative results. From Table 1 it can be infered that our propose
method demonstrate best performance compared to SOTA methods. To be
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precise, SEANet2 when combined with CNN-based architecture RED-CNN
improves its ability to capture global dependencies as well as pixel-level local
features indicated by Higher SSIM and RMSE values respectively. This is highly
important for preservation of structural details and low-level edge details. Noise
in images often manifests as high-frequency components. When the initial RED-
CNN model produces a undesirable smoothed output, it inadvertently removes
some of these high-frequency details along with the noise. By incorporating spec-
tral information through the synergistic SRU, the model can better preserve
these high-frequency components. When denoising, the model utilizes the spec-
tral information to guide the reconstruction process. Instead of overly smoothing
the image, the model focuses on preserving high-frequency details, resulting in
sharper denoised images. Further, SEANet also demonstrate better signal-to-
noise ratio and pixel-level preservation demonstrating ability to effectively learn
textures, edges indicated by higher FSI. However we notice marginal deteriora-
tion in term of local feature preservation indicated by lower RMSE and MAPE.

When integrated with CTFormer, SEANet demonstrate even better perfor-
mance in terms of preserving global dependencies and surprisingly shows better
local information preservation than RECNN and CTFormer. For instance, com-
pared to CTformer, SEANet shows improvement of 8.56pp MAPE and 2.75pp
SSIM. CTFormer, being a convolutional transformer architecture, excels in cap-
turing long-range dependencies in the image through self-attention mechanisms.
However, it struggles with preserving fine-grained local information or avoiding
undesirable texture enhancements due to its global perspective. The synergy
between the SRU and CTFormer ensures that both global and local information
are preserved harmoniously, leading to superior performance in terms of preserv-
ing overall image structure and detail.

Qualitative results. Figure 4 provides qualitative comparisons, visually jus-
tifying the improved quantitative results. From the Regions of Interest (ROIs)
depicted in Figure 5, it’s evident that skip-connection-based networks like UNet
excel in retaining local information. However, UNet tends to lack in preserv-
ing anatomical structures, likely due to its skip-connection design. On the other
hand, RED-CNN captures anatomical structures effectively but may introduce
blurry artifacts. Traditional spatial domain convolutions used in RED-CNN tend
to blur edges because they average pixel values within the kernel’s neighborhood.
Meanwhile, CTFormer is prone to undesirable textures commonly associated
with traditional spatial domain filtering, such as ringing or halo effects. Both
ringing and halo effects degrade the visual quality as they operate directly on
the pixel values of the image without considering the underlying frequency con-
tent or spatial relationships. In contrast, our proposed method demonstrates
the preservation of anatomical patterns without excessive smoothing, offering a
favorable balance between local detail preservation and structural integrity. Fast-
fourier convolutions in SRU preserves edges better because it performs pointwise
multiplication in the frequency domain, which emphasizes high-frequency com-
ponents without spatial averaging. Overall SEANet demonstrate superior ability
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Fig. 4. Qualitative analysis of denoised images and corresponding error maps of the
RoIs for two test cases. UNet shows inability to retain anatomical features during
reconstruction showing more error points around organ-boundary. RED-CNN reduces
noise and artifacts but CTFormer enhances the undesirable textures. SEANet (Ours)
preserves the anatomical patterns well, prevents over-smoothness (unlike RED-CNN)
and precisely removes the noise, resulting in lesser error.

to generate denoised output more clinically similar to NDCT images.

Spectral map analysis. The frequency domain is well-suited for separating
signal from noise. By operating in the frequency domain, SRU can effectively
suppress noise while preserving signal information. In Fig 6 spectral maps and
3d frequency maps are presented to understand how SRU contributes to the
differentiating factor in SEANet’s superior performance. In Fig 6 spectral maps
are the normalized magnitude spectrum and 3d spectral frequencies represent
FMglobal

4d in normalized frequency space. Brighter regions in spectral map refers
to higher energy or amplitude in those frequency bands. In NDCT images, the
spectral distribution appears wide and spread out, with brighter regions cov-
ering a larger area. This indicates that NDCT images contain a diverse range
of frequency components. Whereas, in LDCT the spectral distribution appears
narrower and more concentrated with dark shades showing noisy appearances
in whole image. Clustered noise or cross hatched patches in the UNet-denoised
image produces irregularities in the spectral domain, leading to the formation of
such white patches. While RED-CNN shows better performance but still has a
lot of undesirable noise in the spectrum lacking global context. Spectrum spikes
around the centre in CTFormer illustrates more pronounced discrepancy in the
denoised output that cannot be identified in separate frequency bands, result-
ing in enhanced textures in output. On the other hand the separable bands of
frequencies in the spectral map for SEANet helps the noises to be discarded pre-
cisely and restore the anatomical important features. The 3d frequency maps also
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Fig. 5. Figure showing efficacy of different methods in retaining fine-grained lesions
and controlling smoothness in peripheral regions. Case 1: In RoI-1 and RoI-2 the
lesions are not retained by UNet, CTFormer distorts and produces dark spots in the
boundary regions. Whereas SEANet (ours) outperforms RED-CNN by also capturing
the fine details present inside the lesion. On the other hand the peripheral structures
in RoI-2 are more accurately denoised by SEANet. (More example in supplementary.)

Fig. 6. In NDCT images, the spread out spectral map indicates that energy is dis-
tributed across various frequencies. In LDCT the spectral distribution appears more
concentrated with dark shades for noisy appearances. Clustered noise or cross hatched
patches in the UNet-denoised image leads to the formation of white patches. While
RED-CNN shows better performance but still has a lot of undesirable noise in the spec-
trum. Spectrum spikes around the centre in CTFormer illustrates irregular structures
and more pronounced discrepancy in the denoised output that cannot be identified in
separate frequency bands. SEANet (ours) is very similar to the NDCT image, contain-
ing separable bands of frequencies for denoising. (More example in supplementary.)
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signify a similar behaviour in frequency planes and patterns that qualitatively
interprets SEANet as a superior algorithm in LDCT denoising task.

5 Ablation Studies

Table 2. Ablation study. Top: Effect of fourier convolutions into encoding I2T and
decoding T2I block. Middle: Effect of different dilation rates. Bottom: Effect of
different global (G) and local (L) split ratios in Spectral Transform module. Blue:
Original values for the test cases. Green: Best of the category and Red: Best results.

Method PSNRΔPSNR↓SSIM ↑RMSE ↓FSI ↑MAPE ↓
21.60 00.00 80.00 34.18 3.93 24.07

Vanilla E-D 24.75 03.15 82.00 23.90 27.28 14.58

Fourier E 24.02 2.42 60.61 23.02 28.23 12.33

Fourier D 23.85 2.25 64.98 22.66 28.40 10.45

Fourier E-D 23.25 01.25 82.35 21.38 28.9808.70

r = [3, 1, 1, 3] 26.55 04.95 76.41 25.24 24.67 14.58

r = [3, 2, 2, 3] 24.75 03.15 78.55 23.90 26.08 14.58

r = [2, 1, 1, 2] 22.83 01.23 84.75 18.06 29.8405.65

SEANet-5L5G 23.25 01.25 82.35 21.38 28.98 08.70

SEANet-4L6G 23.05 01.45 83.42 19.54 28.2406.44

SEANet-3L7G22.83 01.23 84.75 18.06 29.8405.65

Effect of Fourier Convolutions. To study the effect of fourier convolutions
over vanilla convolutions we have substituted the vanilla convolutions in the
Transformer Unit with Fourier convolutions with different combinations. First,
we have strictly employed fourier transformer unit in the I2T tokenizer and
consequent Dilation Modules. This forms our fourier encoder (Fourier E) based
SEANet. This integration results in more effective information flow from the
encoder via conventional residuals and improves the PSNR while reducing RMSE
loss, compared to the UNet alike vanilla encoder-decoder (Vanilla E-D) architec-
ture. But due to the information loss around the edges (as shown in Fig 7) during
decoding of each patch, the structural similarity decreases resulting in poor SSIM
output. Similarly, substituting the decoder transformer with fourier convoluted
units also suffers from lack of long range context propagation from the encoder
block, resulting in marginal improvement in FSI metric, as shown in Table 2.
Fully fourier encoder-decoder (Fourier E-D) results in lack of local information.
This is due to the intrinsic nature of spectral transform’s linearity and global
frequency capturing efficacy. As shown in Fig 7, Fourier E-D induces undesired
smoothness though effectively captures the global patterns with improved SSIM
and FSI (as shown in Table 2).
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Fig. 7. Ablation study of the effectiveness of fourier transformers in SEANet. Fourier-
E and Fourier-D fails to generate optimal denoised output due to the lack of local to
global mixed feature flow with only one of the encoder or decoder containing trans-
former. Whereas, Fourier E-D contains spectral convolutions at each layer suppresses
the noise or artifacts well, but fails to retain the global representations.

Effect of Dilation Rates in DMs and IDMs: Dilation rates control the spac-
ing between the elements within the receptive field of a convolutional operation.
A dilation rate of 1 represents the standard convolutional operation without gaps
between elements, while dilation rates greater than 1 introduce gaps between ele-
ments, effectively expanding the receptive field. By judiciously choosing dilation
rates, models can efficiently capture both local and global contextual information
while maintaining spatial resolution. We have experimented SEANet with differ-
ent dilation rates (ri) during folding and unfolding between FMb

4d and Tu. For
different combination of ri inside DM1, DM2, IDM2 and IDM1 we have listed the
performances of SEANet in Table 2. r = [2, 1, 1, 2] gives optimal output as this
configuration provides a balanced mix of dilated and non-dilated convolutions,
resulting in receptive fields that capture both local and global contextual infor-
mation. While higher dilation rates results in disproportionately larger receptive
field at the edges of the network, potentially sacrificing the ability to capture fine
details (e.g., noise or lesions) within the input. Ultimately, the choice of dilation
rates often depends on empirical performance and the specific requirements of
the task or dataset.

Effect of Different Local to Global Feature Ratios in SRU: In SRU the
split between local and global feature maps plays a crucial role in determining the
model’s ability to capture both local and global spatial information effectively.
We have experimented with three different combination of local (L) to global (G)
split ratios, as listed in Table 2. 3L7G configuration outputs optimal performance
ensuring that the model can effectively capture both fine details and broader
spatial relationships, leading to more robust feature representations. While using
Transformer Units as a building block of our dilation modules, the maximal
global context flow via the SRU’s synergistic feature map FMsyn

4d that enriches
the representations in FMenh

4d during synthesis of denoised CT images.
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6 Conclusion

In conclusion, we introduced SEANet, a novel architecture for LDCT denoising
by synergizing spatial and spectral domains through SRUs and DMs. SEANet
balances feature retention and noise reduction, outperforming state-of-the-art
methods like RED-CNN and CTFormer. Extensive experiments and spectral
map analysis demonstrate SEANet’s superiority, achieving significant improve-
ments across five different metrics. Our work emphasizes the importance of learn-
ing local to global synergistic features with complementary spaces. In future we
will explore techniques for learning in complementary discrete and continuous
spaces within SEANet to handle specific noise patterns and the integration of
self-supervised learning to enhance model generalization and robustness.

References

1. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou,
Y.: Transunet: Transformers make strong encoders for medical image segmentation
(2021)

2. Das, A., Jha, D., Gorade, V., Biswas, K., Pan, H., Zhang, Z., Ladner, D.P.,
Velichko, Y., Borhani, A., Bagci, U.: Pam-unet: Shifting attention on region of
interest in medical images. arXiv preprint arXiv:2405.01503 (2024)

3. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale (2021)

4. Fan, F., Shan, H., Kalra, M.K., Singh, R., Qian, G., Getzin, M., Teng, Y., Hahn,
J., Wang, G.: Quadratic autoencoder (q-ae) for low-dose ct denoising. IEEE Trans.
Med. Imaging 39(6), 2035–2050 (2019)

5. Gorade, V., Mittal, S., Jha, D., Bagci, U.: Synergynet: Bridging the gap between
discrete and continuous representations for precise medical image segmentation. In:
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision. pp. 7768–7777 (2024)

6. Gorade, V., Mittal, S., Jha, D., Singhal, R., Bagci, U.: Harmonized spatial and
spectral learning for robust and generalized medical image segmentation. arXiv
preprint arXiv:2401.10373 (2024)

7. Gorade, V., Susladkar, O., Durak, G., Keles, E., Aktas, E., Cebeci, T., Medetalibe-
yoglu, A., Ladner, D., Jha, D., Bagci, U.: Towards synergistic deep learning models
for volumetric cirrhotic liver segmentation in mris. arXiv preprint arXiv:2408.04491
(2024)

8. He, J., Yang, Y., Wang, Y., Zeng, D., Bian, Z., Zhang, H., Sun, J., Xu, Z., Ma, J.:
Optimizing a parameterized plug-and-play admm for iterative low-dose ct recon-
struction. IEEE Trans. Med. Imaging 38(2), 371–382 (2018)

9. Huang, L., Jiang, H., Li, S., Bai, Z., Zhang, J.: Two stage residual cnn for texture
denoising and structure enhancement on low dose ct image. Comput. Methods
Programs Biomed. 184, 105115 (2020)

10. Jia, X., Bartlett, J., Chen, W., Song, S., Zhang, T., Cheng, X., Lu, W., Qiu, Z.,
Duan, J.: Fourier-net: Fast image registration with band-limited deformation. In:
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 1015–
1023 (2023)

http://arxiv.org/abs/2405.01503
http://arxiv.org/abs/2401.10373
http://arxiv.org/abs/2408.04491


SEANet: Synergistic Spatial-Spectral Residual for LDCT Denoising 453

11. Jiao, J., Tang, Y.M., Lin, K.Y., Gao, Y., Ma, J., Wang, Y., Zheng, W.S.: Dilate-
former: Multi-scale dilated transformer for visual recognition. IEEE Transactions
on Multimedia (2023)

12. Leuliet, T., Maxim, V., Peyrin, F., Sixou, B.: Combining conditional gan with vgg
perceptual loss for bones ct image reconstruction. In: 16th International Meeting on
Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine
(Fully3D). No. 281-284 (2021)

13. Li, Z., Shi, W., Xing, Q., Miao, Y., He, W., Yang, H., Jiang, Z., et al.: Low-dose
ct image denoising with improving wgan and hybrid loss function. Computational
and Mathematical Methods in Medicine 2021 (2021)

14. Liu, J., Zhang, Y., Zhao, Q., Lv, T., Wu, W., Cai, N., Quan, G., Yang, W., Chen,
Y., Luo, L., et al.: Deep iterative reconstruction estimation (dire): approximate
iterative reconstruction estimation for low dose ct imaging. Physics in Medicine &
Biology 64(13), 135007 (2019)

15. Marcos, L., Quint, F., Babyn, P., Alirezaie, J.: Dilated convolution resnet with
boosting attention modules and combined loss functions for ldct image denoising.
In: 2022 44th annual international conference of the IEEE engineering in medicine
& biology society (EMBC). pp. 1548–1551. IEEE (2022)

16. McCollough, C.H., Bartley, A.C., Carter, R.E., Chen, B., Drees, T.A., Edwards,
P., Holmes, D.R., III., Huang, A.E., Khan, F., Leng, S., et al.: Low-dose ct for the
detection and classification of metastatic liver lesions: results of the 2016 low dose
ct grand challenge. Med. Phys. 44(10), e339–e352 (2017)

17. Power, S.P., Moloney, F., Twomey, M., James, K., O’Connor, O.J., Maher, M.M.:
Computed tomography and patient risk: Facts, perceptions and uncertainties.
World journal of radiology 8(12), 902 (2016)

18. Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., Dosovitskiy, A.: Do vision
transformers see like convolutional neural networks? Adv. Neural. Inf. Process.
Syst. 34, 12116–12128 (2021)

19. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation (2015)

20. Shan, H., Padole, A., Homayounieh, F., Kruger, U., Khera, R.D., Nitiwarangkul,
C., Kalra, M.K., Wang, G.: Competitive performance of a modularized deep neural
network compared to commercial algorithms for low-dose ct image reconstruction.
Nature Machine Intelligence 1(6), 269–276 (2019)

21. Song, Z., Yu, J., Chen, Y.P.P., Yang, W.: Transformer tracking with cyclic shifting
window attention. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. pp. 8791–8800 (2022)

22. Wang, C., Shang, K., Zhang, H., Li, Q., Hui, Y., Zhou, S.K.: Dudotrans: dual-
domain transformer provides more attention for sinogram restoration in sparse-
view ct reconstruction. arXiv preprint arXiv:2111.10790 (2021)

23. Wang, D., Fan, F., Wu, Z., Liu, R., Wang, F., Yu, H.: Ctformer: convolution-
free token2token dilated vision transformer for low-dose ct denoising. Physics in
Medicine & Biology 68(6), 065012 (2023)

24. Wang, D., Wu, Z., Yu, H.: Ted-net: Convolution-free t2t vision transformer-based
encoder-decoder dilation network for low-dose ct denoising. In: Machine Learning in
Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction
with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 12. pp.
416–425. Springer (2021)
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Abstract. In intensive care units (ICUs), continuous monitoring of
patient vitals is crucial for timely interventions and optimal outcomes.
While traditional methods rely on direct observation by healthcare pro-
fessionals, technological advancements have led to a growing interest in
image-based monitoring systems, particularly utilizing closed-circuit tele-
vision (CCTV) cameras within ICU environments. However, integrating
such systems poses challenges, notably in extracting vital information
from monitor images efficiently. Current approaches, including manual
interpretation and specialized algorithms, are often laborious and error-
prone. In response, this paper presents a robust pipeline for automatic
extraction of patient vitals from ICU monitor images. Our approach
involves automatic detection and segmentation of monitor screens, fol-
lowed by extraction of relevant vital signs. By enhancing existing ICU
environments with this technology, we aim to improve patient care and
resource utilization. Our contributions include a powerful pre-processing
pipeline, a comprehensive study of optical character recognition (OCR)
frameworks, and a geometry-based heuristic implemented in kornia for
vital sign detection. Through this work, we lay the groundwork for inno-
vative solutions that can revolutionize patient monitoring in ICU set-
tings. The method has been tested on a large dataset comprises with
10K ICU monitor images.

Keywords: Vital extraction · ICU monitor segmentation · Keyword
extraction · Medical image processing

1 Introduction

In intensive care units (ICUs), monitoring of patient vitals is paramount for
ensuring timely interventions and optimizing patient outcomes. Traditionally,
such monitoring is performed through visual observations done by healthcare
professionals. However, there is a growing trend towards utilizing image-based
automatic monitoring systems, particularly through closed-circuit television
(CCTV) cameras installed within the ICU environments [1]. The paradigm
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shift towards CCTV-based monitoring is due to several factors [2]. Firstly, it
offers continuous and non-intrusive means of monitoring the patients, allowing
healthcare professionals to remotely observe multiple patients simultaneously. It
also provides an opportunity for real-time data collection and analysis, facilitat-
ing early detection of abnormalities and timely interventions. However, integra-
tion of CCTV-based monitoring systems into existing ICU setups faces several
challenges including extraction of vital information from the captured images.
Our research endeavors to develop a robust and efficient pipeline for extracting
patient vitals from ICU monitor images. The pipeline involves automatic detec-
tion and segmentation of the monitor’s screen, followed by identification and
extraction of relevant vital signs.

In this paper, we have made the following technical contributions: (i) A
powerful pre-processing pipeline for processing ICU monitor images and video
streams with acceptable latency and high accuracy. (ii) Integration of well-known
OCR frameworks to extract information from the processed monitor images and
to validate the effectiveness of the approach in detecting vital information from
ICU monitor images. (iii) A screen geometry-based algorithm implemented in
kornia to detect vital parameters from ICU monitor images by using proximity
of keywords, distances, and color information. (iv) Validation of the proposed
method on a large dataset comprising 10K ICU monitor images.

The rest of the paper is organized as follows. In the next section, we present
the existing work available in the literature. Next, in Section 3, we present the
proposed methodology through various subsections. Results and analysis are
presented in Section 4. In Section 5, we present the discussion of challenges faced
and in Section 6, we present the conclusion and future scopes of the present work.

2 Prior Art

Recent advancements in computer vision and deep learning have spurred a
shift towards contactless monitoring techniques [4],[5],[6]. Despite these advance-
ments, much of the existing research is confined to controlled laboratory set-
tings [3] or specific clinical scenarios, thus limiting its scalability to real-world
adult ICU environments [7]. Janssen et al. [8] and Rossol et al. [4] have pro-
posed video-based respiration monitoring systems tailored for neonatal ICUs.
Nevertheless, the method has been validated using only 2 newborns, thereby
restricting the broader applicability of their findings. Similarly, Jorge et al. [9]
have explored non-contact RGB camera-based respiration monitoring in neonatal
ICUs, albeit necessitating lengthy 30-second video frames for rate computation,
which may impede real-time monitoring capabilities. Antognoli et al. [10] have
evaluated video-based heart rate and respiratory rate estimation against conven-
tional patient monitors. However, their study exclusively focuses on newborns.
For adults, Jorge et al. [5] have proposed a technique to monitor post-operative
ICU patients through a non-contact approach, albeit with a validation study
involving merely 15 patients. Liu et al. [6] have collected a large-scale real-world
ICU patient dataset and proposed an unsupervised learning method to extract
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respiration wave-forms from the video data. They have used a neural network to
estimate respiratory rates from the wave-forms. This method requires at least 10
seconds of respiration waveform data, which may still be inadequate for real-time
monitoring. Researchers have also used video analysis-based techniques to auto-
mate similar tasks. For example, conventional motion-based approach such as
the method proposed by Massaroni et al. [11] relies on analyzing pixel intensity
variations in region-of-interest of the video frames to extract breathing signals
and respiratory rate. These methods are susceptible to illumination changes
and rigid motions, thereby compromising their robustness. Some studies have
explored deep learning-based approaches for contactless vital sign monitoring.
For example, Chen et al. [12] have estimated respiratory rates from face videos
using a convolutional attention networks. The method assumes unobstructed
and visible faces, which may not always be feasible in ICU settings.

Fig. 1. The proposed methodology depicting various stages of the pipeline including
pre-processing (skew correction), screen segmentation, and vital extraction.

3 Proposed Methodology

This section details the proposed methodology, where a computer vision-guided
approach is used to extract features representing the patients’ vitals from ICU
monitor images to create a database. Such databases can easily be integrated
with existing Electronic Medical Records (EMR) systems and used to train deep
learning models for automatic ICU operations. A block diagram of the proposed
methodology is presented in Fig. 1, which includes various stages of the pipeline,
e.g., preprocessing (skew correction), screen segmentation, and vital extraction.
The methodology is also presented in Algorithm 1.
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3.1 Preprocessing

This step involves two stages, namely skew correction and padding, before the
corrected images can be used as inputs in the monitor segmentation stage.

Algorithm 1 Extract Vitals From Images
1: Input: Iinput(Image)
2: Output: Vextracted(Vitals)
3: procedure Skew Correction(Iinput)
4: IDFT ← DFT(Iinput), IARP ← Adaptive Radial Projection(IDFT)
5: Ipadded ← Padding(IARP)
6: Return Iskew ← Ipadded
7: end procedure
8: procedure Monitor Segmentation(Iskew)
9: Initialize CNN

10: Iseg ← Feature Extraction and Pooling(Iskew)
11: Return Iseg
12: end procedure
13: procedure Vitals Extraction(Iseg)
14: RR ← Extract RR(Iseg), HR ← Extract HR(Iseg)
15: SpO2 ← Extract SpO2(Iseg), BP,MAP ← Extract BP&MAP(Iseg)
16: ECGsignal ← Extract ECG(Iseg)
17: Return Vextracted ← {RR,HR, SpO2, BP,MAP,ECGsignal}
18: end procedure

Skew Correction and Padding: Raw monitor images may be skewed due to
camera position. Such distortions affect the corner detection and OCR-based
text extraction. Moreover, after detecting the four corners of the ICU monitor,
it is necessary to crop the screen area for text extraction. In skewed images,
top portion of the monitor or the background may be visible. This may result
in detection of unimportant texts. To correct skew, we first calculate the skew
angle using adaptive radial projection (ARP) on the Fourier magnitude spec-
trum [13]. The method has two steps: (i) Preprocessing and 2D Discrete Fourier
Transformation of the input image. In this step, the image is first converted to
grayscale. It is then passed through a 2D-DFT to obtain the magnitude spec-
trum. It is defined in Eq. (1), where xjk represents the grayscale pixel values, N
and M denote the height and width of the image. After obtaining the magnitude
spectrum, it is normalized.

Xlm =
N−1∑

j=0

∑
k = 0M−1xjke−2πi( jl

N + km
M ) (1)

(ii) In the next step, adaptive radial projection (ARP) is performed on the
spectrum extracted in the previous step. The projection radius R = min(H,W ),
angle list [θmin, . . . , θmax], and the initial projection value A(θi) at angle θi are
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calculated using Eqs. (2-5), where (cx, cy) is the center the spectrum, and M [y, x]
is the magnitude of spectrum at (x, y).

A(θi) =
R∑

s=0

M [cy + s · cos(θi), cx − s · sin(θi)] (2)

The correction projection value B(θj) at angle θj is computed using Eq. (3).

B(θj) =
R∑

s=0

M [cy + s · cos(θj), cx − s · sin(θj)] (3)

The candidate angles θa and θb are determined using Eq. (4).

θa = arg max
m

A(m), θb = arg max
n

B(n) (4)

And the final output angle θf is aggregated by the rule presented in Eq. (5).
The original image is then rotated by the calculated skew angle.

θf =

{
θa, if |θa − θb| > D

θb, otherwise
(5)

Adding a predetermined border to an image is referred to as padding. The
dataset contains several images where a significant portion of the monitor may
be missing. Such samples are corrected using padding (Fig. 2).

Fig. 2. The geometry-based heuristic used in the work to extract the vital signals from
the segmented ICU monitor.
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3.2 EfficientNet-guided Monitor Segmentation

We now eliminate unnecessary textual information from the image. We employ
corner detection and cropped the desired portion containing the vitals. We have
used a pretrained backbone model (EfficientNetB4) with CNN and Dense layers
on top to detect the corner points. We have used (1280,3,3), (1540,3,3), and
(1960,3,3) CNN layers, a global-average-2D pooling layer, and a (1024, 128, 8)
dimension dense layer. The last layer produces the output as four coordinates
of the desired segment of the monitor image. The EfficientNet [15] model, as
depicted in Fig. 1, employs a method termed compound coefficient for the sys-
tematic scaling of models, ensuring a harmonious increase in width, depth, and
resolution dimensions. Unlike random scaling approaches, compound scaling uni-
formly adjusts each dimension using predetermined scaling coefficients.

3.3 Extraction of Vitals

We now propose an algorithm to discern vital signs such as Heart Rate (HR),
SpO2, BP, and ECG from the segmented monitor image. The process involves
image segmentation, converting vitals into kornia’s bboxes [19], after which
OCR-guided text extraction is done, which is then followed by various geometri-
cal methods to separate the segments from the monitor images and place them
in the database. We adopt a nearest bounded bbox technique, implemented in
kornia, that facilitates the association of vital values with the closest numerical
representations. The process is depicted in Fig. 2.
Text Detection Using OCR: The first step in vital extraction involves apply-
ing OCR to identify and detect texts present in the image. We have tested
EasyOCR [20], KerasOCR [21], and MMOCR [22] frameworks. Each framework
offers unique features and capabilities, addressing various challenges in extract-
ing text from images. In the results section, we provide a detailed evaluation of
various OCR methods. We have used the PPOCR [18] model. In PPOCR, the
text detection phase uses a pre-trained model (e.g., db mv3 slim) that involves
several steps. A lightweight backbone neural network is used to extract features
from the segmented images, followed by a lightweight head to process these
features. In the next step, a squeeze-and-excitation block is used to reduce com-
putation time. The model uses Cosine learning rate decay as given in Eq. (6),
where ηt is the learning rate at epoch t, ηmax is the initial learning rate, ηmin is
the minimum learning rate, and T is the total number of epochs.

ηt = ηmin +
1
2
(ηmax − ηmin)

(
1 + cos

(
t

T
π

))
(6)

The learning rate is gradually increased from a small initial value. The FPGM
pruner is used to prune the network based on the geometric median of the fil-
ters. In the next stage, bounding box detection is performed using a pre-defined
model (e.g., dir cls mv3 slim), which involves the following operations: a sepa-
rate lightweight backbone is used for feature extraction, and data augmentation
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(e.g., random cropping, flipping, etc.) is applied to improve the model’s perfor-
mance. The resolution of the input images is then adjusted. This process uses
Parameterized Clipping Activation (PACT) for quantization, as given in Eq. (7),
where α is a learnable parameter.

y = max(min(x, α), 0) (7)

Finally, the text recognition phase is applied using another pre-trained model
(e.g., crnn mv3 slim). This phase also involves a lightweight backbone, data
augmentation, Cosine learning rate decay, feature map resolution adjustment,
and PACT quantization.
HR Extraction: Initially, we apply a filtering process among bboxes to elim-
inate detection below a predefined threshold, thereby mitigating noise inter-
ference. Subsequently, HR detection is executed. We perform a search among
the present bboxes for the keywords directly associated with or closely related
to ’HR’ within the monitor’s textual content, capturing the nearest integer to
these instances. In cases where such keywords are absent, we identify and retrieve
numerical values presented in green font. If there are no bboxes present with the
’HR’ keyword, we resort to comparing respective values and prioritize the top-
most result.
SPO2 and RR Extraction: Similarly, for the determination of Oxygen Satu-
ration (SpO2), we pursue the identification of bboxes with keywords like ’SpO2’,
seeking the closest numerical representations. The process for Respiratory Rate
(RR) detection involves scanning for bboxes with keywords such as ’rr’ or ’resp’;
failing which, we consider numerical values below 45 as potential RR indicators.
BP and MAP Extraction: The detection of Blood Pressure (BP) and Mean
Arterial Pressure (MAP) involves a comprehensive strategy. Initially, we attempt
BP detection by parsing all of the bboxes for the ’/’ symbol, utilizing the pre-
ceding and succeeding values as Systolic (SBP) and Diastolic (DBP) pressure,
respectively. A secondary approach involves keyword-based search among the
bboxes for terms like ’sys’, ’dia’, ’mmhg’, among others, followed by proximity
analysis to identify relevant bounding bboxes. MAP detection entails locating
’(’ or ’)’ symbols, extracting the numerical values adjacent to these symbols.
Alternatively, we look for the keyword ’map’ and identify the nearest bounding
bbox. In our final endeavor to ascertain BP and MAP, we employ a clustering
technique among the bboxes to identify three numerical values with the closest
spatial proximity, subsequently determining SBP, DBP, and MAP based on some
predefined thresholds. Upon completion of the extraction process, the gathered
data is organized into a structured python dictionary format for comprehensive
output.
ECG Graph Extraction: To detect the ECG graph, we first isolate the green
color from the segmented image by masking the image, and then draw contours
around the objects. We then identify the contour with the largest perimeter
to extract the ECG graph. An example of the original ECG signal and the
corresponding extracted graph is shown in Fig. 3.
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Fig. 3. Extraction of the EEG graph from the original ICU monitor image box.

4 Experiments and Results

In this section, we present the experiments and results obtained using publicly
available ICU monitor image dataset. We have carried out various experiments
to showcase the effectiveness of the proposed method.

Fig. 4. Comparisons of various models used in the monitor segmentation stage of the
proposed pipeline.

4.1 Dataset

The dataset [23] consists of labeled and unlabeled images of ICU monitors, cap-
tured across different hospitals. It includes ground truth bounding box infor-
mation for all vital signs displayed on the monitors. A subset of the dataset is
labeled with monitor variety, reflecting different brands and their unique orienta-
tions and positions for displaying vital information, which provided key insights
for our methodology. The unlabeled portion includes images from various hos-
pitals, including HCG Hospital in Bhavnagar, HCG Cancer Center in Nagpur,
Kamalnayan Bajaj Hospital in Aurangabad, and Medical College Kolkata.
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Fig. 5. Examples of segmented ICU monitor images using the proposed pipeline.

4.2 Results of Segmentation

This section presents the segmentation results using the EfficientNet frame-
work, along with comparative assessments using other backbones. Fig. 4 shows
the segmentation performance of various deep learning frameworks. The graph
in Fig. 4 illustrates segmentation errors using different architectures, includ-
ing MobileNetV2, Seg-YOLO, Darknet-YOLO, and various EfficientNet models
(B0, B1, B2, and B4). The x-axis represents different models, while the y-axis
shows the root mean square (RMS) error on training and validation datasets.
As model complexity increases, generally characterized by a higher number of
parameters, there is a noticeable decrease in RMS error, indicating better data
pattern recognition. EfficientNet-B4, which performed the best, was selected for
the final design. Sample segmentation results are shown in Fig. 5, demonstrating
accurate segmentation. However, Fig. 6 highlights instances where the segmen-
tation pipeline produced errors. In the first image, incorrect corner detection
led to undesirable sections being included in the cropped image. In the second
image, an incorrect skew angle resulted in a skewed output, while in the third
image, poor corner detection caused vital information to be excluded from the
active image area. Finally, Fig. 7 illustrates the impact of segmentation on the
final output. When the input image bypasses the pre-processing and segmen-
tation pipeline, detection performance degrades, leading to incorrect OCR and
heuristic-based predictions of vital signs.

Fig. 6. Examples of segmentation errors where the proposed pipeline failed to detect
all vitals correctly.
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Fig. 7. Sample results with and without segmentation.

4.3 Ablation Study: Preprocessing

Skew correction adjusts the orientation of an image that is not perpendicular
by an automatic rotation process. The binary image of an upright handwritten
character has a distinct feature: the difference between the upper and lower
limits of the histogram is relatively higher than in skewed samples. The test set
includes three types of data: (i) samples with a 0◦ skew, (ii) samples with a 45◦

skew, and (iii) samples with a 90◦ skew.
We evaluated the selected CNN model on all test samples, comparing accu-

racy with and without the preprocessing stage, which included cleaning and
skew correction. The results showed that the preprocessing stage significantly
improved accuracy, particularly for images with a skew ≤ 45◦. For instance, with
a 45◦ skew, accuracy increased from 23.89% to 44.11%, while for images with a
≤ 45◦ skew, accuracy improved from 84.56% to 88.96%. Random Padding also
impacts results. Experiments were conducted on various CNN models trained
using the CIFAR-10, CIFAR-100, and Fashion-MNIST datasets. Traditional
padding was replaced with Random Padding in different layers, with results
shown in Tables 1 and 2. For CIFAR-10, using AlexNet with Random Padding in
the first three layers reduced the error rate to 12.75%. On VGG16, two Random
Padding layers improved accuracy by 1.87%, achieving an error rate of 10.54%.
Replacing traditional padding with Random Padding in GoogLeNet led to a
new state-of-the-art test error of 10.20%, and on ResNet18, accuracy increased
by 3.87%. Similar trends were observed on CIFAR-100 and Fashion-MNIST. In
general, adding Random Padding to the first two layers improves deep learning
models’ performance, but increasing it further might reduce effectiveness.

4.4 Ablation Study: Segmentation Backbone

We have implemented and tested a few popular backbone networks for the
segmentation model. EfficientNet [15] is a distinguished family of CNN archi-
tectures meticulously engineered to attain state-of-the-art performance while
exhibiting remarkable efficiency in terms of parameter count and computational
resources. Within this family, several variants have been developed, each denoted
by a specific scaling factor, denoted by the symbol B. These variants, denoted
as EfficientNet-Bx, are characterized by their respective parameter count and
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Table 1. Results of applying Random Padding to various models on different datasets.

Dataset Model Random Padding Layers Error Rate (%)

CIFAR-10 AlexNet 3 12.75

CIFAR-10 VGG16 2 10.54

CIFAR-10 GoogLeNet 3 10.20

CIFAR-10 ResNet18 1 3.87

CIFAR-100 AlexNet 3 40.66

CIFAR-100 VGG16 3 39.66

CIFAR-100 GoogLeNet 3 32.94

CIFAR-100 ResNet18 1 68.71

Fashion-MNIST AlexNet 1 3.34

Fashion-MNIST VGG16 2 5.49

Fashion-MNIST GoogLeNet 2 5.82

Fashion-MNIST ResNet18 1 0.16

Table 2. Effect of skew correction on handwriting recognition accuracy.

Skew Accuracy before correction Accuracy after correction

0 - 45 degrees 84.56% 88.96%

45 - 90 degrees 23.89% 44.11%

Floating Point Operations (FLOPs) requirements. EfficientNet-B0, the founda-
tional member of this family, manifests with a parameter count of 5.3 million
and necessitates 0.39 billion FLOPs for inference. Subsequent variants within
the family, such as EfficientNet-B1, demonstrate incremental improvements in
performance, albeit with a commensurate increase in model complexity. For
instance, EfficientNet-B1 boasts a parameter count of 7.8 million and demands
0.70 billion FLOPs, while EfficientNet-B2, exhibiting further refinement, encom-
passes 9.2 million parameters and requires 1.0 billion FLOPs for computational
operations. The progression continues with EfficientNet-B4, characterized by its
extensive parameterization, comprising 19 million parameters and consuming 4.2
billion FLOPs. MobileNetV2 [16] presents a distinct architectural paradigm,
structured around an inverted residual design. Central to its architecture are
residual connections established between bottleneck layers, facilitating efficient
information flow and feature extraction. Notably, MobileNetV2 incorporates
lightweight depth-wise convolutions within its intermediate expansion layers,
serving as a pivotal mechanism for introducing non-linearity while maintaining
computational efficiency. Comprising an initial fully convolutional layer equipped
with 32 filters, MobileNetV2 further integrates 19 residual bottleneck layers,
each contributing to the network’s capacity for feature abstraction and repre-
sentation learning. The juxtaposition of EfficientNet and MobileNetV2 under-
scores the diverse architectural strategies employed in the pursuit of achieving
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optimal trade-offs between model complexity, computational efficiency, and per-
formance across a spectrum of computer vision tasks. In terms of accuracy, Effi-
cientNet outshines its predecessors by a marginal amount as depicted in Fig. ??
and Table 4. It may be observed that while traditional CNN-based backbones
rely on 500+ million parameters, EfficientNet accomplishes the same with a
mere 66 million parameters. This propels a remarkable increase in speed (eight
folds) and it significantly enhances the network’s usability in real-world indus-
trial applications. The architecture’s lightweight and robust design, combined
with Mobile Inverted Bottleneck layers and Squeeze-and-Excitation optimiza-
tion, consistently delivers high performance across several computer vision tasks.

4.5 Ablation Study: OCR Frameworks

In this section, we present a comprehensive comparison of three prominent opti-
cal character recognition (OCR) frameworks that we have tested with: EasyOCR,
PaddleOCR, and MMOCR. Each framework offers unique features and capabil-
ities, aiming to address various challenges in text extraction from images. We
evaluate these frameworks based on their architecture, performance, and limi-
tations. EasyOCR, built on Tesseract OCR engine and deep learning models,
provides a straightforward interface for text recognition tasks. It utilizes a com-
bination of the CRAFT algorithm for text detection and a CRNN model for text
recognition. PaddleOCR offers a polished implementation of the CRNN archi-
tecture for text recognition, along with the CRAFT model for text detection. It
simplifies the training pipeline with a high-level API, facilitating the develop-
ment of text detection and OCR systems. MMOCR is part of the OpenMM-
Lab project. It leverages PyTorch and MMdetection for text detection, recogni-
tion, and downstream tasks like key information extraction. It boasts a modular
design, supporting various models for text-related tasks.

Table 3. Comparative performance of various OCRs

Word(s) Accuracy Paddle OCR MMOCR EasyOCR

Correct 1141 270 1003

False 1185 2056 1323

Exact Match % 49.05% 11.61% 42.62%

Performance GPU (sec) 2.40 0.14 0.79

Performance CPU (sec) 3.22 1.85 37.76

Table 3 compares three OCR systems: Paddle OCR, MMOCR, and Easy-
OCR. It evaluates their word accuracy (based on 2326 sample size), exact
match percentage, and performance on GPU and CPU platforms. Paddle OCR
demonstrates the highest accuracy and efficiency, followed by EasyOCR, while
MMOCR lags behind in both aspects. These insights inform the selection of the
most suitable OCR system for specific applications.
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Fig. 8. Depiction of sample results obtained using the proposed pipeline.

4.6 Results of Vitals Extraction

We now present the results of vital parameter extraction. Table 4 presents the
accuracy of each vital extracted, as compared with the ground truth. For this,
a ground truth dataset has been created. The metric is in % accuracy. For
each image, the vitals are extracted, and compared with the ground truth, to
calculate accuracy. It can be observed from the table that the combination of
PaddleOCR + EfficientNetB4 performs the best out of all other combinations
tested in the experiments. It may be attributed to the better architecture of
the B4 network and superior performance of the PaddleOCR in the present
context. Finally, we present a snapshot of the final output. Fig. 8 presents the
final outputs (vitals) extracted from the raw ICU monitor image with the help of
the proposed pipeline. It may be observed that the extracted vitals are correctly
matching with the ground truths.

5 Discussion

In this section, we discuss the challenges associated with existing ICU monitoring
models and the rationale behind adopting the proposed computer vision (CV)-
based approach.

5.1 Comparisons with Existing Approaches

Despite advancements in ICU monitoring technology, several challenges persist in
the current models: Manual Interpretation: Traditional monitoring systems
often rely on healthcare professionals to manually interpret data from physio-
logical monitors. This process is labor-intensive, prone to human error, and can
be inconsistent, especially under the high-stress conditions common in ICUs.
The variability in interpretation can affect the timeliness of operations and the
accuracy of diagnoses [24]. Cost and Logistical Barriers: Upgrading existing
ICU equipment to newer models that support direct data integration with cen-
tral systems can be prohibitively expensive. In resource-limited settings, such
upgrades are often not feasible, making it challenging to implement state-of-
the-art monitoring solutions that require specific hardware and software capa-
bilities [26]. Advantages of CV-Based Approach: The proposed CV-based
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approach allows for continuous and non-intrusive monitoring of patient vitals by
analyzing video feeds from existing CCTV cameras. This reduces the need for
direct patient contact and minimizes disturbances, enhancing patient comfort
and safety [28]. Compatibility with Existing Equipment: By focusing on
image-based data extraction, our method circumvents the need for direct sensor
integration. This makes it compatible with a wide range of existing ICU mon-
itors, regardless of the manufacturer or model, thus avoiding the logistical and
financial burdens associated with equipment upgrades [29]. Enhancement of
Remote Healthcare Provision: Our approach supports remote healthcare
by enabling the extraction of vital signs from video feeds. This is particularly
beneficial in telemedicine scenarios, where healthcare providers need to moni-
tor patients remotely without standardized equipment. It enhances the capa-
bilities of remote healthcare systems by utilizing existing infrastructure effec-
tively [31]. Given the aforementioned challenges, the proposed CV-based app-
roach for extracting patient vitals from ICU monitor images offers a promising
alternative to more expensive solutions.

6 Conclusion and Future Work

One potential improvement to the solution could involve the utilization of a
broader spectrum of colors to enhance the detection of quantities. While the cur-
rent system utilizes certain colors for specific associations such as blue for SpO2
and red/pink for BP and MAP, incorporating more color variations could help
in capturing additional data. Despite encountering challenges with exceptions,
leveraging this information could enhance overall accuracy. Additionally, imple-
menting proper classification techniques on the unlabelled dataset could lead
to more precise quantification of classes, particularly by utilizing location infor-
mation for improved results. Furthermore, adopting a category segmentation-
based pipeline could address the current method’s limitation of disregarding
the location information of numbers. This approach would involve integrating
the quantities’ location data into partial classification, potentially enhancing the
accuracy of the binary classification model and allowing for the exploration of a
third pipeline for further development and refinement.

Acknowledgement. We thank Himanshu Lal, C G Mitun Akil and Ramsundar
Tanikella for their help during pipeline designing.
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